WorldWideScience

Sample records for chemical detection system

  1. Chemical detection, identification, and analysis system

    International Nuclear Information System (INIS)

    Morel, R.S.; Gonzales, D.; Mniszewski, S.

    1990-01-01

    The chemical detection, identification, and analysis system (CDIAS) has three major goals. The first is to display safety information regarding chemical environment before personnel entry. The second is to archive personnel exposure to the environment. Third, the system assists users in identifying the stage of a chemical process in progress and suggests safety precautions associated with that process. In addition to these major goals, the system must be sufficiently compact to provide transportability, and it must be extremely simple to use in order to keep user interaction at a minimum. The system created to meet these goals includes several pieces of hardware and the integration of four software packages. The hardware consists of a low-oxygen, carbon monoxide, explosives, and hydrogen sulfide detector; an ion mobility spectrometer for airborne vapor detection; and a COMPAQ 386/20 portable computer. The software modules are a graphics kernel, an expert system shell, a data-base management system, and an interface management system. A supervisory module developed using the interface management system coordinates the interaction of the other software components. The system determines the safety of the environment using conventional data acquisition and analysis techniques. The low-oxygen, carbon monoxide, hydrogen sulfide, explosives, and vapor detectors are monitored for hazardous levels, and warnings are issued accordingly

  2. Chemical Detection Architecture for a Subway System [video

    OpenAIRE

    Ignacio, Joselito; Center for Homeland Defense and Security Naval Postgraduate School

    2014-01-01

    This proposed system process aims to improve subway safety through better enabling the rapid detection and response to a chemical release in a subway system. The process is designed to be location-independent and generalized to most subway systems despite each system's unique characteristics.

  3. A polarization system for persistent chemical detection

    Science.gov (United States)

    Craven-Jones, Julia; Appelhans, Leah; Couphos, Eric; Embree, Todd; Finnegan, Patrick; Goldstein, Dennis; Karelitz, David; LaCasse, Charles; Luk, Ting S.; Mahamat, Adoum; Massey, Lee; Tanbakuchi, Anthony; Washburn, Cody; Vigil, Steven

    2015-09-01

    We report on the development of a prototype polarization tag based system for detecting chemical vapors. The system primarily consists of two components, a chemically sensitive tag that experiences a change in its optical polarization properties when exposed to a specific chemical of interest, and an optical imaging polarimeter that is used to measure the polarization properties of the tags. Although the system concept could be extended to other chemicals, for the initial system prototype presented here the tags were developed to be sensitive to hydrogen fluoride (HF) vapors. HF is used in many industrial processes but is highly toxic and thus monitoring for its presence and concentration is often of interest for personnel and environmental safety. The tags are periodic multilayer structures that are produced using standard photolithographic processes. The polarimetric imager has been designed to measure the degree of linear polarization reflected from the tags in the short wave infrared. By monitoring the change in the reflected polarization signature from the tags, the polarimeter can be used to determine if the tag was exposed to HF gas. In this paper, a review of the system development effort and preliminary test results are presented and discussed, as well as our plan for future work.

  4. Insect-gene-activity detection system for chemical and biological warfare agents and toxic industrial chemicals

    Science.gov (United States)

    Mackie, Ryan S.; Schilling, Amanda S.; Lopez, Arturo M.; Rayms-Keller, Alfredo

    2002-02-01

    Detection of multiple chemical and biological weapons (CBW) agents and/or complex mixtures of toxic industrial chemicals (TIC) is imperative for both the commercial and military sectors. In a military scenario, a multi-CBW attack would create confusion, thereby delaying decontamination and therapeutic efforts. In the commercial sector, polluted sites invariably contain a mixture of TIC. Novel detection systems capable of detecting CBW and TIC are sorely needed. While it may be impossible to build a detector capable of discriminating all the possible combinations of CBW, a detection system capable of statistically predicting the most likely composition of a given mixture is within the reach of current emerging technologies. Aquatic insect-gene activity may prove to be a sensitive, discriminating, and elegant paradigm for the detection of CBW and TIC. We propose to systematically establish the expression patterns of selected protein markers in insects exposed to specific mixtures of chemical and biological warfare agents to generate a library of biosignatures of exposure. The predicting capabilities of an operational library of biosignatures of exposures will allow the detection of emerging novel or genetically engineered agents, as well as complex mixtures of chemical and biological weapons agents. CBW and TIC are discussed in the context of war, terrorism, and pollution.

  5. Chemical Sensor Systems and Associated Algorithms for Fire Detection: A Review

    Directory of Open Access Journals (Sweden)

    Jordi Fonollosa

    2018-02-01

    Full Text Available Indoor fire detection using gas chemical sensing has been a subject of investigation since the early nineties. This approach leverages the fact that, for certain types of fire, chemical volatiles appear before smoke particles do. Hence, systems based on chemical sensing can provide faster fire alarm responses than conventional smoke-based fire detectors. Moreover, since it is known that most casualties in fires are produced from toxic emissions rather than actual burns, gas-based fire detection could provide an additional level of safety to building occupants. In this line, since the 2000s, electrochemical cells for carbon monoxide sensing have been incorporated into fire detectors. Even systems relying exclusively on gas sensors have been explored as fire detectors. However, gas sensors respond to a large variety of volatiles beyond combustion products. As a result, chemical-based fire detectors require multivariate data processing techniques to ensure high sensitivity to fires and false alarm immunity. In this paper, we the survey toxic emissions produced in fires and defined standards for fire detection systems. We also review the state of the art of chemical sensor systems for fire detection and the associated signal and data processing algorithms. We also examine the experimental protocols used for the validation of the different approaches, as the complexity of the test measurements also impacts on reported sensitivity and specificity measures. All in all, further research and extensive test under different fire and nuisance scenarios are still required before gas-based fire detectors penetrate largely into the market. Nevertheless, the use of dynamic features and multivariate models that exploit sensor correlations seems imperative.

  6. Chemical Sensor Systems and Associated Algorithms for Fire Detection: A Review.

    Science.gov (United States)

    Fonollosa, Jordi; Solórzano, Ana; Marco, Santiago

    2018-02-11

    Indoor fire detection using gas chemical sensing has been a subject of investigation since the early nineties. This approach leverages the fact that, for certain types of fire, chemical volatiles appear before smoke particles do. Hence, systems based on chemical sensing can provide faster fire alarm responses than conventional smoke-based fire detectors. Moreover, since it is known that most casualties in fires are produced from toxic emissions rather than actual burns, gas-based fire detection could provide an additional level of safety to building occupants. In this line, since the 2000s, electrochemical cells for carbon monoxide sensing have been incorporated into fire detectors. Even systems relying exclusively on gas sensors have been explored as fire detectors. However, gas sensors respond to a large variety of volatiles beyond combustion products. As a result, chemical-based fire detectors require multivariate data processing techniques to ensure high sensitivity to fires and false alarm immunity. In this paper, we the survey toxic emissions produced in fires and defined standards for fire detection systems. We also review the state of the art of chemical sensor systems for fire detection and the associated signal and data processing algorithms. We also examine the experimental protocols used for the validation of the different approaches, as the complexity of the test measurements also impacts on reported sensitivity and specificity measures. All in all, further research and extensive test under different fire and nuisance scenarios are still required before gas-based fire detectors penetrate largely into the market. Nevertheless, the use of dynamic features and multivariate models that exploit sensor correlations seems imperative.

  7. Chemical Sensor Systems and Associated Algorithms for Fire Detection: A Review

    Science.gov (United States)

    Fonollosa, Jordi

    2018-01-01

    Indoor fire detection using gas chemical sensing has been a subject of investigation since the early nineties. This approach leverages the fact that, for certain types of fire, chemical volatiles appear before smoke particles do. Hence, systems based on chemical sensing can provide faster fire alarm responses than conventional smoke-based fire detectors. Moreover, since it is known that most casualties in fires are produced from toxic emissions rather than actual burns, gas-based fire detection could provide an additional level of safety to building occupants. In this line, since the 2000s, electrochemical cells for carbon monoxide sensing have been incorporated into fire detectors. Even systems relying exclusively on gas sensors have been explored as fire detectors. However, gas sensors respond to a large variety of volatiles beyond combustion products. As a result, chemical-based fire detectors require multivariate data processing techniques to ensure high sensitivity to fires and false alarm immunity. In this paper, we the survey toxic emissions produced in fires and defined standards for fire detection systems. We also review the state of the art of chemical sensor systems for fire detection and the associated signal and data processing algorithms. We also examine the experimental protocols used for the validation of the different approaches, as the complexity of the test measurements also impacts on reported sensitivity and specificity measures. All in all, further research and extensive test under different fire and nuisance scenarios are still required before gas-based fire detectors penetrate largely into the market. Nevertheless, the use of dynamic features and multivariate models that exploit sensor correlations seems imperative. PMID:29439490

  8. Integrated polymer waveguides for absorbance detection in chemical analysis systems

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; El-Ali, Jamil; Wolff, Anders

    2003-01-01

    A chemical analysis system for absorbance detection with integrated polymer waveguides is reported for the first time. The fabrication procedure relies on structuring of a single layer of the photoresist SU-8, so both the microfluidic channel network and the optical components, which include planar....... The emphasis of this paper is on the signal-to-noise ratio of the detection and its relation to the sensitivity. Two absorbance cells with an optical path length of 100 μm and 1000 μm were characterized and compared in terms of sensitivity, limit of detection and effective path length for measurements...

  9. Setting up a mobile Lidar (DIAL) system for detecting chemical warfare agents

    International Nuclear Information System (INIS)

    Tehrani, M Kavosh; Jaafari, E; Mobashery, A; Mohammad, M Malek

    2015-01-01

    The mobile light detection and ranging DIAL system of Malek Ashtar University of Technology has been developed for the detection of chemical warfare agents whose absorption wavelengths are in the range of 9.2–10.8 μm tunable CO 2 lasers of the system. In this paper, this system is first described and then ammonia detection is analyzed experimentally. Also, experimental results of detecting a sarin agent simulant, dimethyl–methyl phosphonate (DMMP), are presented. The power levels received from different ranges to detect specific concentrations of NH 3 and DMMP have been measured and debated. The primary test results with a 150 ns clipped pulse width by passive pinhole plasma shutter indicate that the system is capable of monitoring several species of pollutants in the range of about 1 km, with a 20 m spatial and 2 min temporal resolution. (paper)

  10. Detection and treatment of chemical weapons and/or biological pathogens

    Science.gov (United States)

    Mariella Jr., Raymond P.

    2004-09-07

    A system for detection and treatment of chemical weapons and/or biological pathogens uses a detector system, an electrostatic precipitator or scrubber, a circulation system, and a control. The precipitator or scrubber is activated in response to a signal from the detector upon the detection of chemical weapons and/or biological pathogens.

  11. From chemical or biochemical microsensors to fast detection systems

    International Nuclear Information System (INIS)

    Pistre, J.; Dejous, C.; Rebiere, D.

    2011-01-01

    The market of chemical and biochemical sensors is increasing and represents a large opportunity. The problem of chemical and biochemicaldetection involves the use of one/several transducing layer/interface. Several types of detection exist. Among them, acoustic wave devices present many advantages. The paper deals with surface acoustic waves devices and their implementation. The role and properties of the sensing layer are discussed for chemical sensors and biochemical sensors as well. Examples of realizations are presented taking into account the microfluidic approach.

  12. Autonomous Chemical Vapour Detection by Micro UAV

    Directory of Open Access Journals (Sweden)

    Kent Rosser

    2015-12-01

    Full Text Available The ability to remotely detect and map chemical vapour clouds in open air environments is a topic of significant interest to both defence and civilian communities. In this study, we integrate a prototype miniature colorimetric chemical sensor developed for methyl salicylate (MeS, as a model chemical vapour, into a micro unmanned aerial vehicle (UAV, and perform flights through a raised MeS vapour cloud. Our results show that that the system is capable of detecting MeS vapours at low ppm concentration in real-time flight and rapidly sending this information to users by on-board telemetry. Further, the results also indicate that the sensor is capable of distinguishing “clean” air from “dirty”, multiple times per flight, allowing us to look towards autonomous cloud mapping and source localization applications. Further development will focus on a broader range of integrated sensors, increased autonomy of detection and improved engineering of the system.

  13. ADAPTIVE MONITORING TO ENHANCE WATER SENSOR CAPABILITIES FOR CHEMICAL AND BIOLOGICAL CONTAMINANT DETECTION IN DRINKING WATER SYSTEMS

    Science.gov (United States)

    Optoelectronic and other conventional water quality sensors offer a potential for real-time online detection of chemical and biological contaminants in a drinking water supply and distribution system. The nature of the application requires sensors of detection capabilities at lo...

  14. On the detection of chemical reactions in the systems containing tritium and luminescent labels

    International Nuclear Information System (INIS)

    Krasnyanskij, A.V.

    1997-01-01

    Features of detecting chemical processes in scintillation systems containing tritium, are considered on the base of a model, connecting the counting rate with the mass of cenverted substance. It is shown that the character of the cunting rate dependence on the mass of the converted phase is determined by the spatial distribution of scintillating and radioactive phases in microheterogeneous systems. Calculation results can be used for designing sensor elements, based on radionuclide luminescent probe

  15. Lightweight autonomous chemical identification system (LACIS)

    Science.gov (United States)

    Lozos, George; Lin, Hai; Burch, Timothy

    2012-06-01

    Smiths Detection and Intelligent Optical Systems have developed prototypes for the Lightweight Autonomous Chemical Identification System (LACIS) for the US Department of Homeland Security. LACIS is to be a handheld detection system for Chemical Warfare Agents (CWAs) and Toxic Industrial Chemicals (TICs). LACIS is designed to have a low limit of detection and rapid response time for use by emergency responders and could allow determination of areas having dangerous concentration levels and if protective garments will be required. Procedures for protection of responders from hazardous materials incidents require the use of protective equipment until such time as the hazard can be assessed. Such accurate analysis can accelerate operations and increase effectiveness. LACIS is to be an improved point detector employing novel CBRNE detection modalities that includes a militaryproven ruggedized ion mobility spectrometer (IMS) with an array of electro-resistive sensors to extend the range of chemical threats detected in a single device. It uses a novel sensor data fusion and threat classification architecture to interpret the independent sensor responses and provide robust detection at low levels in complex backgrounds with minimal false alarms. The performance of LACIS prototypes have been characterized in independent third party laboratory tests at the Battelle Memorial Institute (BMI, Columbus, OH) and indoor and outdoor field tests at the Nevada National Security Site (NNSS). LACIS prototypes will be entering operational assessment by key government emergency response groups to determine its capabilities versus requirements.

  16. System for the chemical professing and evaluation gives the residual thickness the gives detecting for gives appearances LR115 type 2

    International Nuclear Information System (INIS)

    Carrazana Gonzalez, J.A.; Tomas Zerquera, J.; Prendes Alonso, M.

    1998-01-01

    In this work the system is described built in the CPHR for the homogeneous chemical processing gives detecting gives nuclear appearances. A new developed method is exposed, based on the application gives the technique optical densitometry, for the precise estimate gives the residual thickness, gives detecting, gives nuclear appearances LR115 type 2 after the process gives chemical engraving

  17. Unmanned Aerial Vehicle Non Line of Sight Chemical Detection Final Report

    Science.gov (United States)

    2016-12-01

    aircraft system that is used to perform point detection of chemical warfare agents and collection of vapor, liquid, and solid samples. A modular payload...their goals to better protect the Warfighter. The North Atlantic Treaty Organization members have divided detection distances into the following three...materials for onboard analysis or transporting chemical samples for analysis to a mobile laboratory. An innovative proposed solution to non-line-of

  18. SCTI chemical leak detection test plan

    International Nuclear Information System (INIS)

    1981-01-01

    Tests will be conducted on the CRBRP prototype steam generator at SCTI to determine the effects of steam generator geometry on the response of the CRBRP chemical leak detection system to small water-to-sodium leaks in various regions of the steam generator. Specifically, small injections of hydrogen gas (simulating water leaks) will be made near the two tubesheets, and the effective transport times to the main stream exit and vent line hydrogen meters will be measured. The magnitude and time characteristics of the meters' response will also be measured. This information will be used by the Small Leak Protection Base Program (SG027) for improved predictions of meter response times and leak detection sensitivity

  19. CMOS-MEMS Chemiresistive and Chemicapacitive Chemical Sensor System

    Science.gov (United States)

    Lazarus, Nathan S.

    Integrating chemical sensors with testing electronics is a powerful technique with the potential to lower power and cost and allow for lower system limits of detection. This thesis explores the possibility of creating an integrated sensor system intended to be embedded within respirator cartridges to notify the user that hazardous chemicals will soon leak into the face mask. For a chemical sensor designer, this application is particularly challenging due to the need for a very sensitive and cheap sensor that will be exposed to widely varying environmental conditions during use. An octanethiol-coated gold nanoparticle chemiresistor to detect industrial solvents is developed, focusing on characterizing the environmental stability and limits of detection of the sensor. Since the chemiresistor was found to be highly sensitive to water vapor, a series of highly sensitive humidity sensor topologies were developed, with sensitivities several times previous integrated capacitive humidity sensors achieved. Circuit techniques were then explored to reduce the humidity sensor limits of detection, including the analysis of noise, charge injection, jitter and clock feedthrough in a charge-based capacitance measurement (CBCM) circuit and the design of a low noise Colpitts LC oscillator. The characterization of high resistance gold nanoclusters for capacitive chemical sensing was also performed. In the final section, a preconcentrator, a heater element intended to release a brief concentrated pulse of analate, was developed and tested for the purposes of lowering the system limit of detection.

  20. Photon level chemical classification using digital compressive detection

    International Nuclear Information System (INIS)

    Wilcox, David S.; Buzzard, Gregery T.; Lucier, Bradley J.; Wang Ping; Ben-Amotz, Dor

    2012-01-01

    Highlights: ► A new digital compressive detection strategy is developed. ► Chemical classification demonstrated using as few as ∼10 photons. ► Binary filters are optimal when taking few measurements. - Abstract: A key bottleneck to high-speed chemical analysis, including hyperspectral imaging and monitoring of dynamic chemical processes, is the time required to collect and analyze hyperspectral data. Here we describe, both theoretically and experimentally, a means of greatly speeding up the collection of such data using a new digital compressive detection strategy. Our results demonstrate that detecting as few as ∼10 Raman scattered photons (in as little time as ∼30 μs) can be sufficient to positively distinguish chemical species. This is achieved by measuring the Raman scattered light intensity transmitted through programmable binary optical filters designed to minimize the error in the chemical classification (or concentration) variables of interest. The theoretical results are implemented and validated using a digital compressive detection instrument that incorporates a 785 nm diode excitation laser, digital micromirror spatial light modulator, and photon counting photodiode detector. Samples consisting of pairs of liquids with different degrees of spectral overlap (including benzene/acetone and n-heptane/n-octane) are used to illustrate how the accuracy of the present digital compressive detection method depends on the correlation coefficients of the corresponding spectra. Comparisons of measured and predicted chemical classification score plots, as well as linear and non-linear discriminant analyses, demonstrate that this digital compressive detection strategy is Poisson photon noise limited and outperforms total least squares-based compressive detection with analog filters.

  1. Detection of contamination of municipal water distribution systems

    Science.gov (United States)

    Cooper, John F [Oakland, CA

    2012-01-17

    A system for the detection of contaminates of a fluid in a conduit. The conduit is part of a fluid distribution system. A chemical or biological sensor array is connected to the conduit. The sensor array produces an acoustic signal burst in the fluid upon detection of contaminates in the fluid. A supervisory control system connected to the fluid and operatively connected to the fluid distribution system signals the fluid distribution system upon detection of contaminates in the fluid.

  2. Multisensor analyzer detector (MSAD) for low cost chemical and aerosol detection and pattern fusion

    Science.gov (United States)

    Swanson, David C.; Merdes, Daniel W.; Lysak, Daniel B., Jr.; Curtis, Richard C.; Lang, Derek C.; Mazzara, Andrew F.; Nicholas, Nicholas C.

    2002-08-01

    MSAD is being developed as a low-cost point detection chemical and biological sensor system designed around an information fusion inference engine that also allows additional sensors to be included in the detection process. The MSAD concept is based on probable cause detection of hazardous chemical vapors and aerosols of either chemical or biological composition using a small portable unit containing an embedded computer system and several integrated sensors with complementary capabilities. The configuration currently envisioned includes a Surface-Enhanced Raman Spectroscopy (SERS) sensor of chemical vapors and a detector of respirable aerosols based on Fraunhofer diffraction. Additional sensors employing Ion Mobility Spectrometry (IMS), Surface Acoustic Wave (SAW) detection, Flame Photometric Detection (FPD), and other principles are candidates for integration into the device; also, available commercial detectors implementing IMS, SAW, and FPD will be made accessible to the unit through RS232 ports. Both feature and decision level information fusion is supported using a Continuous Inference Network (CINET) of fuzzy logic. Each class of agents has a unique CINET with information inputs from a number of available sensors. Missing or low confidence sensor information is gracefully blended out of the output confidence for the particular agent. This approach constitutes a plug and play arrangement between the sensors and the information pattern recognition algorithms. We are currently doing simulant testing and developing out CINETs for actual agent testing at Edgewood Chemical and Biological Center (ECBC) later this year.

  3. Laser-based instrumentation for the detection of chemical agents

    International Nuclear Information System (INIS)

    Hartford, A. Jr.; Sander, R.K.; Quigley, G.P.; Radziemski, L.J.; Cremers, D.A.

    1982-01-01

    Several laser-based techniques are being evaluated for the remote, point, and surface detection of chemical agents. Among the methods under investigation are optoacoustic spectroscopy, laser-induced breakdown spectroscopy (LIBS), and synchronous detection of laser-induced fluorescence (SDLIF). Optoacoustic detection has already been shown to be capable of extremely sensitive point detection. Its application to remote sensing of chemical agents is currently being evaluated. Atomic emission from the region of a laser-generated plasma has been used to identify the characteristic elements contained in nerve (P and F) and blister (S and Cl) agents. Employing this LIBS approach, detection of chemical agent simulants dispersed in air and adsorbed on a variety of surfaces has been achieved. Synchronous detection of laser-induced fluorescence provides an attractive alternative to conventional LIF, in that an artificial narrowing of the fluorescence emission is obtained. The application of this technique to chemical agent simulants has been successfully demonstrated. 19 figures

  4. Detecting Chemical Weapons: Threats, Requirements, Solutions, and Future Challenges

    Science.gov (United States)

    Boso, Brian

    2011-03-01

    Although chemicals have been reportedly used as weapons for thousands of years, it was not until 1915 at Ypres, France that an industrial chemical, chlorine, was used in World War I as an offensive weapon in significant quantity, causing mass casualties. From that point until today the development, detection, production and protection from chemical weapons has be an organized endeavor of many of the world's armed forces and in more recent times, non-governmental terrorist organizations. The number of Chemical Warfare Agents (CWAs) has steadily increased as research into more toxic substances continued for most of the 20 th century. Today there are over 70 substances including harassing agents like tear gas, incapacitating agents, and lethal agents like blister, blood, chocking, and nerve agents. The requirements for detecting chemical weapons vary depending on the context in which they are encountered and the concept of operation of the organization deploying the detection equipment. The US DoD, for example, has as a requirement, that US forces be able to continue their mission, even in the event of a chemical attack. This places stringent requirements on detection equipment. It must be lightweight (developed for this application, including, but not limited to: mass spectroscopy, IR spectroscopy, RAMAN spectroscopy, MEMs micro-cantilever sensors, surface acoustic wave sensors, differential mobility spectrometry, and amplifying fluorescence polymers. In the future the requirements for detection equipment will continue to become even more stringent. The continuing increase in the sheer number of threats that will need to be detected, the development of binary agents requiring that even the precursor chemicals be detected, the development of new types of agents unlike any of the current chemistries, and the expansion of the list of toxic industrial chemical will require new techniques with higher specificity and more sensitivity.

  5. Early Detection and Identification of Anomalies in Chemical Regime

    International Nuclear Information System (INIS)

    Figedy, Stefan; Smiesko, Ivan

    2011-01-01

    This paper provides a brief information about the basic features of a newly developed diagnostic system for early detection and identification of anomalies incoming in the water chemistry regime of the primary and secondary circuit of VVER-440 reactor. This system, called SACHER (System of Analysis of CHEmical Regime) is being installed within the major modernization project at the NPP-V2 Bohunice in the Slovak Republic. System SACHER has been developed fully in MATLAB environment. The availability of prompt information about the chemical conditions of the primary and secondary circuit is very important to prevent the undue corrosion and deposit build-up. The typical chemical information systems that exist and work at the NPPs give the user values of the measured quantities together with their time trends and other derived values. It is then the experienced user's role to recognize the situation the monitored process is in and make the subsequent decisions and take the measures. The SACHER system, based on the computational intelligence techniques, inserts the elements of intelligence into the overall chemical information system. It has the modular structure with the following most important modules: normality module- its aim is to recognize that the process starts to deviate from the normal one and serves as the early warning to the staff to take the adequate measures, fuzzy identification module- its aim is to identify the anomaly on the basis of a set of fuzzy rules, time-prediction module- its aim is to predict the behavior/trend of selected chemical quantities 8 hours ahead in 15 min step from the moment of request, validation module- its aim is to validate the measured quantities, trend module- this module serves for showing the trends of the acquired quantities

  6. Chemical Detection Based on Adsorption-Induced and Photo-Induced Stresses in MEMS Devices

    Energy Technology Data Exchange (ETDEWEB)

    Datskos, P.G.

    1999-04-05

    Recently there has been an increasing demand to perform real-time in-situ chemical detection of hazardous materials, contraband chemicals, and explosive chemicals. Currently, real-time chemical detection requires rather large analytical instrumentation that are expensive and complicated to use. The advent of inexpensive mass produced MEMS (micro-electromechanical systems) devices opened-up new possibilities for chemical detection. For example, microcantilevers were found to respond to chemical stimuli by undergoing changes in their bending and resonance frequency even when a small number of molecules adsorb on their surface. In our present studies, we extended this concept by studying changes in both the adsorption-induced stress and photo-induced stress as target chemicals adsorb on the surface of microcantilevers. For example, microcantilevers that have adsorbed molecules will undergo photo-induced bending that depends on the number of absorbed molecules on the surface. However, microcantilevers that have undergone photo-induced bending will adsorb molecules on their surfaces in a distinctly different way. Depending on the photon wavelength and microcantilever material, the microcantilever can be made to bend by expanding or contracting the irradiated surface. This is important in cases where the photo-induced stresses can be used to counter any adsorption-induced stresses and increase the dynamic range. Coating the surface of the microstructure with a different material can provide chemical specificity for the target chemicals. However, by selecting appropriate photon wavelengths we can change the chemical selectivity due to the introduction of new surface states in the MEMS device. We will present and discuss our results on the use of adsorption-induced and photo-induced bending of microcantilevers for chemical detection.

  7. Chemical vapor detection using a capacitive micromachined ultrasonic transducer.

    Science.gov (United States)

    Lee, Hyunjoo J; Park, Kwan Kyu; Kupnik, Mario; Oralkan, O; Khuri-Yakub, Butrus T

    2011-12-15

    Distributed sensing of gas-phase chemicals using highly sensitive and inexpensive sensors is of great interest for many defense and consumer applications. In this paper we present ppb-level detection of dimethyl methylphosphonate (DMMP), a common simulant for sarin gas, with a ppt-level resolution using an improved capacitive micromachined ultrasonic transducer (CMUT) as a resonant chemical sensor. The improved CMUT operates at a higher resonant frequency of 47.7 MHz and offers an improved mass sensitivity of 48.8 zg/Hz/μm(2) by a factor of 2.7 compared to the previous CMUT sensors developed. A low-noise oscillator using the CMUT resonant sensor as the frequency-selective device was developed for real-time sensing, which exhibits an Allan deviation of 1.65 Hz (3σ) in the presence of a gas flow; this translates into a mass resolution of 80.5 zg/μm(2). The CMUT resonant sensor is functionalized with a 50-nm thick DKAP polymer developed at Sandia National Laboratory for dimethyl methylphosphonate (DMMP) detection. To demonstrate ppb-level detection of the improved chemical sensor system, the sensor performance was tested at a certified lab (MIT Lincoln Laboratory), which is equipped with an experimental chemical setup that reliably and accurately delivers a wide range of low concentrations down to 10 ppb. We report a high volume sensitivity of 34.5 ± 0.79 pptv/Hz to DMMP and a good selectivity of the polymer to DMMP with respect to dodecane and 1-octanol.

  8. Performance metrics for the evaluation of hyperspectral chemical identification systems

    Science.gov (United States)

    Truslow, Eric; Golowich, Steven; Manolakis, Dimitris; Ingle, Vinay

    2016-02-01

    Remote sensing of chemical vapor plumes is a difficult but important task for many military and civilian applications. Hyperspectral sensors operating in the long-wave infrared regime have well-demonstrated detection capabilities. However, the identification of a plume's chemical constituents, based on a chemical library, is a multiple hypothesis testing problem which standard detection metrics do not fully describe. We propose using an additional performance metric for identification based on the so-called Dice index. Our approach partitions and weights a confusion matrix to develop both the standard detection metrics and identification metric. Using the proposed metrics, we demonstrate that the intuitive system design of a detector bank followed by an identifier is indeed justified when incorporating performance information beyond the standard detection metrics.

  9. A portable system for nuclear, chemical agent, and explosives identification

    International Nuclear Information System (INIS)

    Parker, W.E.; Buckley, W.M.; Kreek, S.A.; Mauger, G.J.; Lavietes, A.D.; Dougan, A.D.; Caffrey, A.J.

    2001-01-01

    The FRIS/PINS hybrid integrates the LLNL-developed Field Radionuclide Identification System (FRIS) with the INEEL-developed Portable Isotopic Neutron Spectroscopy (PINS) chemical assay system to yield a combined general radioisotope, special nuclear material, and chemical weapons/explosives detection and identification system. The PINS system uses a neutron source and a high-purity germanium γ-ray detector. The FRIS system uses an electromechanically cooled germanium detector and its own analysis software to detect and identify special nuclear material and other radioisotopes. The FRIS/PINS combined system also uses the electromechanically-cooled germanium detector. There is no other currently available integrated technology that can combine a prompt-gamma neutron-activation analysis capability for CWE with a passive radioisotope measurement and identification capability for special nuclear material

  10. A Portable System for Nuclear, Chemical Agent and Explosives Identification

    International Nuclear Information System (INIS)

    Parker, W.E.; Buckley, W.M.; Kreek, S.A.; Caffrey, A.J.; Mauger, G.J.; Lavietes, A.D.; Dougan, A.D.

    2000-01-01

    The FRIS/PINS hybrid integrates the LLNL-developed Field Radionuclide Identification System (FRIS) with the INEEL-developed Portable Isotopic Neutron Spectroscopy (PINS) chemical assay system to yield a combined general radioisotope, special nuclear material, and chemical weapons/explosives detection and identification system. The PINS system uses a neutron source and a high-purity germanium γ-ray detector. The FRIS system uses an electrochemically cooled germanium detector and its own analysis software to detect and identify special nuclear material and other radioisotopes. The FRIS/PINS combined system also uses the electromechanically-cooled germanium detector. There is no other currently available integrated technology that can combine an active neutron interrogation and analysis capability for CWE with a passive radioisotope measurement and identification capability for special nuclear material

  11. Molecules for Fluorescence Detection of Specific Chemicals

    Science.gov (United States)

    Fedor, Steve

    2008-01-01

    A family of fluorescent dye molecules has been developed for use in on-off fluorescence detection of specific chemicals. By themselves, these molecules do not fluoresce. However, when exposed to certain chemical analytes in liquid or vapor forms, they do fluoresce (see figure). These compounds are amenable to fixation on or in a variety of substrates for use in fluorescence-based detection devices: they can be chemically modified to anchor them to porous or non-porous solid supports or can be incorporated into polymer films. Potential applications for these compounds include detection of chemical warfare agents, sensing of acidity or alkalinity, and fluorescent tagging of proteins in pharmaceutical research and development. These molecules could also be exploited for use as two-photon materials for photodynamic therapy in the treatment of certain cancers and other diseases. A molecule in this family consists of a fluorescent core (such as an anthracene or pyrene) attached to two end groups that, when the dye is excited by absorption of light, transfer an electron to the core, thereby quenching the fluorescence. The end groups can be engineered so that they react chemically with certain analytes. Upon reaction, electrons on the end groups are no longer available for transfer to the core and, consequently, the fluorescence from the core is no longer quenched. The chemoselectivity of these molecules can be changed by changing the end groups. For example, aniline end groups afford a capability for sensing acids or acid halides (including those contained in chemical warfare agents). Pyridine or bipyridyl end groups would enable sensing of metal ions. Other chemicals that can be selectively detected through suitable choice of end groups include glucose and proteins. Moreover, the fluorescent cores can be changed to alter light-absorption and -emission characteristics: anthracene cores fluoresce at wavelengths around 500 nm, whereas perylene cores absorb and emit at

  12. Chemical Microsensors For Detection Of Explosives And Chemical Warfare Agents

    Science.gov (United States)

    Yang, Xiaoguang; Swanson, Basil I.

    2001-11-13

    An article of manufacture is provided including a substrate having an oxide surface layer and a layer of a cyclodextrin derivative chemically bonded to said substrate, said layer of a cyclodextrin derivative adapted for the inclusion of selected compounds, e.g., nitro-containing organic compounds, therewith. Such an article can be a chemical microsensor capable of detecting a resultant mass change from inclusion of the nitro-containing organic compound.

  13. Chemical warfare agent detection: a review of current trends and future perspective.

    Science.gov (United States)

    Pacsial-Ong, Eden Joy; Aguilar, Zoraida P

    2013-01-01

    The World Health Organization recommends countries to create a public health system that can respond to the deliberate release of chemical warfare agents (CWAs). Procedures for preparedness, response, decontamination protocols and medical countermeasures against CWA attacks are described. Known CWAs, including their properties and pharmacological consequences upon exposure, are tabulated and discussed. Requirements imposed on detection systems by various applications and environmental needs are presented in order to assess the devices for detection and identification of specific CWAs. The review surveys current and near-term detection technologies and equipments, as well as devices that are currently available to the military and civilian first responders. Brief technical discussions of several detection technologies are presented, with emphasis placed in the principles of detection. Finally, enabling technologies that form the basis for advanced sensing systems and devices are described.

  14. Multiple-Parameter, Low-False-Alarm Fire-Detection Systems

    Science.gov (United States)

    Hunter, Gary W.; Greensburg, Paul; McKnight, Robert; Xu, Jennifer C.; Liu, C. C.; Dutta, Prabir; Makel, Darby; Blake, D.; Sue-Antillio, Jill

    2007-01-01

    Fire-detection systems incorporating multiple sensors that measure multiple parameters are being developed for use in storage depots, cargo bays of ships and aircraft, and other locations not amenable to frequent, direct visual inspection. These systems are intended to improve upon conventional smoke detectors, now used in such locations, that reliably detect fires but also frequently generate false alarms: for example, conventional smoke detectors based on the blockage of light by smoke particles are also affected by dust particles and water droplets and, thus, are often susceptible to false alarms. In contrast, by utilizing multiple parameters associated with fires, i.e. not only obscuration by smoke particles but also concentrations of multiple chemical species that are commonly generated in combustion, false alarms can be significantly decreased while still detecting fires as reliably as older smoke-detector systems do. The present development includes fabrication of sensors that have, variously, micrometer- or nanometer-sized features so that such multiple sensors can be integrated into arrays that have sizes, weights, and power demands smaller than those of older macroscopic sensors. The sensors include resistors, electrochemical cells, and Schottky diodes that exhibit different sensitivities to the various airborne chemicals of interest. In a system of this type, the sensor readings are digitized and processed by advanced signal-processing hardware and software to extract such chemical indications of fires as abnormally high concentrations of CO and CO2, possibly in combination with H2 and/or hydrocarbons. The system also includes a microelectromechanical systems (MEMS)-based particle detector and classifier device to increase the reliability of measurements of chemical species and particulates. In parallel research, software for modeling the evolution of a fire within an aircraft cargo bay has been developed. The model implemented in the software can

  15. Microfabricated Chemical Sensors for Aerospace Fire Detection Applications

    Science.gov (United States)

    Hunter, Gary W.; Neudeck, Philip G.; Fralick, Gustave; Thomas, Valarie; Makel, D.; Liu, C. C.; Ward, B.; Wu, Q. H.

    2001-01-01

    The detection of fires on-board commercial aircraft is extremely important for safety reasons. Although dependable fire detection equipment presently exists within the cabin, detection of fire within the cargo hold has been less reliable and susceptible to false alarms. A second, independent method of fire detection to complement the conventional smoke detection techniques, such as the measurement of chemical species indicative of a fire, will help reduce false alarms and improve aircraft safety. Although many chemical species are indicative of a fire, two species of particular interest are CO and CO2. This paper discusses microfabricated chemical sensor development tailored to meet the needs of fire safety applications. This development is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors. 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity. 3) The development of high temperature semiconductors, especially silicon carbide. The individual sensor being developed and their level of maturity will be presented.

  16. Nanomaterial based detection and degradation of biological and chemical contaminants in a microfluidic system

    Science.gov (United States)

    Jayamohan, Harikrishnan

    Monitoring and remediation of environmental contaminants (biological and chemical) form the crux of global water resource management. There is an extant need to develop point-of-use, low-power, low-cost tools that can address this problem effectively with minimal environmental impact. Nanotechnology and microfluidics have made enormous advances during the past decade in the area of biosensing and environmental remediation. The "marriage" of these two technologies can effectively address some of the above-mentioned needs. In this dissertation, nanomaterials were used in conjunction with microfluidic techniques to detect and degrade biological and chemical pollutants. In the first project, a point-of-use sensor was developed for detection of trichloroethylene (TCE) from water. A self-organizing nanotubular titanium dioxide (TNA) synthesized by electrochemical anodization and functionalized with photocatalytically deposited platinum (Pt/TNA) was applied to the detection. The morphology and crystallinity of the Pt/TNA sensor was characterized using field emission scanning electron microscope, energy dis- persive x-ray spectroscopy, and X-ray diffraction. The sensor could detect TCE in the concentrations ranging from 10 to 1000 ppm. The room-temperature operation capability of the sensor makes it less power intensive and can potentially be incorporated into a field-based sensor. In the second part, TNA synthesized on a foil was incorporated into a flow-based microfluidic format and applied to degradation of a model pollutant, methylene blue. The system was demonstrated to have enhanced photocatalytic performance at higher flow rates (50-200 muL/min) over the same microfluidic format with TiO2 nanoparticulate (commercial P25) catalyst. The microfluidic format with TNA catalyst was able to achieve 82% fractional conversion of 18 mM methylene blue in comparison to 55% in the case of the TiO2 nanoparticulate layer at a flow rate of 200 L/min. The microfluidic device was

  17. Test plan for Digface Chemical and Radiation Assay System

    International Nuclear Information System (INIS)

    Akers, D.W.

    1993-07-01

    The Digface Chemical and Radiation Assay System (CRAS) Project will develop a sensor using Prompt Gamma Neutron Activation Analysis (PGNAA) that can detect the present of hazardous chemicals and radioactive materials. The CRAS is being designed for in situ assay of closed drums and contaminated soils for gamma-ray emitting radionuclides and hazardous elements. The CRAS is based upon the use of 252 Cf PGNAA with a germanium gamma-ray spectrometer as the analyzer. Tasks being performed include determining detection limits for a number of hazardous chemicals and assessing matrix and transmission effects through soil. Initial analyses suggest that the technique is applicable to a number of hazardous materials such as trichloroethane and carbon tetrachloride

  18. Chemical sensing underclothing system for testing PPE

    International Nuclear Information System (INIS)

    Slabotinsky, J.; Kralik, L.; Bradka, S.; Castulik, P.

    2009-01-01

    Personal protective equipment (PPE) when worn is subjected to pressure differentials across the garment due to ambient wind flow, by body movement and breathing creating the bellows effect, which may force hazardous chemicals vapor or aerosol through the closures, joints, outlet valves and/or clothing protective fabric. Thus the design, fit, size or improper donning of the protective garment will influence chemical-agent penetration. In order to determine penetration of chemical-protective garments by chemical vapor or aerosol, it is necessary to test the entire suit system, including seams, closures, outlet valves and areas of transition with other protective equipment, that is, at the ankles, waist, wrists, neck etc. In order to identify penetration of chemical vapor or aerosol through protective assembly, the Man-in-Simulant Test (MIST) with passive adsorptive devices (PADs) is used, when adsorbed challenging agent (simulant) is desorbed from the PAD and quantified. The current MIST method is failing in complexity of leak detection, due to limited number of passive collection points fixed on human body or a mannequin and very labor extensive work associated with allocation of 20-40 PADs and quantification of adsorbed agent. The Czech approach to detect and quantify penetration/permeation of chemical agent is based on chemical sensing underclothing enable to change the color when exposed with simulant or even with real CW agent. Color intensity and shape of stains on sensing fabric are processed with Laboratory Universal Computer Image Analysis (LUCIA) allowing determining the quantity and the allocation of the penetrating noxious agent(s). This method allows for example calculate individual doses of exposure, the breakthrough coefficient of protective garment as whole and uniquely precise allocation of penetration/permeation shortfalls. Presentation is providing detailed description of imaging system with nickname 'LUCY' in combination with testing mannequin

  19. Microfabricated Gas Phase Chemical Analysis Systems

    International Nuclear Information System (INIS)

    FRYE-MASON, GREGORY CHARLES; HELLER, EDWIN J.; HIETALA, VINCENT M.; KOTTENSTETTE, RICHARD; LEWIS, PATRICK R.; MANGINELL, RONALD P.; MATZKE, CAROLYN M.; WONG, CHUNGNIN C.

    1999-01-01

    A portable, autonomous, hand-held chemical laboratory ((micro)ChemLab(trademark)) is being developed for trace detection (ppb) of chemical warfare (CW) agents and explosives in real-world environments containing high concentrations of interfering compounds. Microfabrication is utilized to provide miniature, low-power components that are characterized by rapid, sensitive and selective response. Sensitivity and selectivity are enhanced using two parallel analysis channels, each containing the sequential connection of a front-end sample collector/concentrator, a gas chromatographic (GC) separator, and a surface acoustic wave (SAW) detector. Component design and fabrication and system performance are described

  20. The Environics Mobile CBRN Detection System

    International Nuclear Information System (INIS)

    Jaakkola, T.

    2007-01-01

    Environics Oy has developed a novel monitoring system for detection of Chemical, Biological, Radiological and Nuclear compounds. The system is portable and rapidly installed into a monitoring location. It will allow real time monitoring and alarming of: Chemical Warfare agents (Nerve, Blister, Blood), Toxic industrial chemicals (General toxic-alarm), Biological warfare agents (Bacteria, viruses, toxins), Radiological agents such as alpha and gamma radiation. Monitoring Station makes continuously measurements. Sensor data is processed and stored to local database by the Master Module (MM) that is located within the station. The MM sends the data to the Control Centers by using communication network. The Control Center receives and logs the data and shows it in real time on a map interface. The status of each sensor and detector can be seen in real time. (author)

  1. Detection and intelligent systems for homeland security

    CERN Document Server

    Voeller, John G

    2014-01-01

    Detection and Intelligent Systems for Homeland Security features articles from the Wiley Handbook of Science and Technology for Homeland Security covering advanced technology for image and video interpretation systems used for surveillance, which help in solving such problems as identifying faces from live streaming or stored videos. Biometrics for human identification, including eye retinas and irises, and facial patterns are also presented. The book then provides information on sensors for detection of explosive and radioactive materials and methods for sensing chemical

  2. Anomaly-based intrusion detection for SCADA systems

    International Nuclear Information System (INIS)

    Yang, D.; Usynin, A.; Hines, J. W.

    2006-01-01

    Most critical infrastructure such as chemical processing plants, electrical generation and distribution networks, and gas distribution is monitored and controlled by Supervisory Control and Data Acquisition Systems (SCADA. These systems have been the focus of increased security and there are concerns that they could be the target of international terrorists. With the constantly growing number of internet related computer attacks, there is evidence that our critical infrastructure may also be vulnerable. Researchers estimate that malicious online actions may cause $75 billion at 2007. One of the interesting countermeasures for enhancing information system security is called intrusion detection. This paper will briefly discuss the history of research in intrusion detection techniques and introduce the two basic detection approaches: signature detection and anomaly detection. Finally, it presents the application of techniques developed for monitoring critical process systems, such as nuclear power plants, to anomaly intrusion detection. The method uses an auto-associative kernel regression (AAKR) model coupled with the statistical probability ratio test (SPRT) and applied to a simulated SCADA system. The results show that these methods can be generally used to detect a variety of common attacks. (authors)

  3. Microcantilever technology for law enforcement and anti-terrorism applications: chemical, biological, and explosive material detection

    Science.gov (United States)

    Adams, J. D.; Rogers, B.; Whitten, R.

    2005-05-01

    The remarkable sensitivity, compactness, low cost, low power-consumption, scalability, and versatility of microcantilever sensors make this technology among the most promising solutions for detection of chemical and biological agents, as well as explosives. The University of Nevada, Reno, and Nevada Nanotech Systems, Inc (NNTS) are currently developing a microcantilever-based detection system that will measure trace concentrations of explosives, toxic chemicals, and biological agents in air. A baseline sensor unit design that includes the sensor array, electronics, power supply and air handling has been created and preliminary demonstrations of the microcantilever platform have been conducted. The envisioned device would measure about two cubic inches, run on a small watch battery and cost a few hundred dollars. The device could be operated by untrained law enforcement personnel. Microcantilever-based devices could be used to "sniff out" illegal and/or hazardous chemical and biological agents in high traffic public areas, or be packaged as a compact, low-power system used to monitor cargo in shipping containers. Among the best detectors for such applications at present is the dog, an animal which is expensive, requires significant training and can only be made to work for limited time periods. The public is already accustomed to explosives and metal detection systems in airports and other public venues, making the integration of the proposed device into such security protocols straightforward.

  4. Portable standoff Raman system for fast detection of homemade explosives through glass, plastic, and water

    Science.gov (United States)

    Misra, Anupam K.; Sharma, Shiv K.; Acosta, Tayro E.; Porter, John N.; Lucey, Paul G.; Bates, David E.

    2012-06-01

    The University of Hawaii has been developing portable remote Raman systems capable of detecting chemicals in daylight from a safe standoff distance. We present data on standoff detection of chemicals used in the synthesis of homemade explosives (HME) using a portable standoff Raman system utilizing an 8-inch telescope. Data show that good-quality Raman spectra of various hazardous chemicals such as ammonium nitrate, potassium nitrate, potassium perchlorate, sulfur, nitrobenzene, benzene, acetone, various organic and inorganic chemicals etc. could be easily obtained from remote distances, tested up to 120 meters, with a single-pulse laser excitation and with detection time less than 1 μs. The system uses a frequency-doubled Nd:YAG pulsed laser source (532 nm, 100 mJ/pulse, 15 Hz, pulse width 10 ns) capable of firing a single or double pulse. The double-pulse configuration also allows the system to perform standoff LIBS (Laser-Induced Breakdown Spectroscopy) at 50 m range. In the standoff Raman detection, the doublepulse sequence simply doubles the signal to noise ratio. Significant improvement in the quality of Raman spectra is observed when the standoff detection is made with 1s integration time. The system uses a 50-micron slit and has spectral resolution of 8 cm-1. The HME chemicals could be easily detected through clear and brown glass bottles, PP and HDPE plastic bottles, and also through fluorescent plastic water bottles. Standoff Raman detection of HME chemical from a 10 m distance through non-visible concealed bottles in plastic bubble wrap packaging is demonstrated with 1 s integration time. Possible applications of the standoff Raman system for homeland security and environmental monitoring are discussed.

  5. Nanomechanical resonators and their applications in biological/chemical detection: Nanomechanics principles

    International Nuclear Information System (INIS)

    Eom, Kilho; Park, Harold S.; Yoon, Dae Sung; Kwon, Taeyun

    2011-01-01

    Recent advances in nanotechnology have led to the development of nano-electro-mechanical systems (NEMS) such as nanomechanical resonators, which have recently received significant attention from the scientific community. This is not only due to their capability of label-free detection of bio/chemical molecules at single-molecule (or atomic) resolution for future applications such as the early diagnosis of diseases like cancer, but also due to their unprecedented ability to detect physical quantities such as molecular weight, elastic stiffness, surface stress, and surface elastic stiffness for adsorbed molecules on the surface. Most experimental works on resonator-based molecular detection have been based on the principle that molecular adsorption onto a resonator surface increases the effective mass, and consequently decreases the resonant frequencies of the nanomechanical resonator. However, this principle is insufficient to provide fundamental insights into resonator-based molecular detection at the nanoscale; this is due to recently proposed novel nanoscale detection principles including various effects such as surface effects, nonlinear oscillations, coupled resonance, and stiffness effects. Furthermore, these effects have only recently been incorporated into existing physical models for resonators, and therefore the universal physical principles governing nanoresonator-based detection have not been completely described. Therefore, our objective in this review is to overview the current attempts to understand the underlying mechanisms in nanoresonator-based detection using physical models coupled to computational simulations and/or experiments. Specifically, we will focus on issues of special relevance to the dynamic behavior of nanoresonators and their applications in biological/chemical detection: the resonance behavior of micro/nanoresonators; resonator-based chemical/biological detection; physical models of various nanoresonators such as nanowires, carbon

  6. PREDICTION METRICS FOR CHEMICAL DETECTION IN LONG-WAVE INFRARED HYPERSPECTRAL IMAGERY

    Energy Technology Data Exchange (ETDEWEB)

    Chilton, M.; Walsh, S.J.; Daly, D.S.

    2009-01-01

    Natural and man-made chemical processes generate gaseous plumes that may be detected by hyperspectral imaging, which produces a matrix of spectra affected by the chemical constituents of the plume, the atmosphere, the bounding background surface and instrument noise. A physics-based model of observed radiance shows that high chemical absorbance and low background emissivity result in a larger chemical signature. Using simulated hyperspectral imagery, this study investigated two metrics which exploited this relationship. The objective was to explore how well the chosen metrics predicted when a chemical would be more easily detected when comparing one background type to another. The two predictor metrics correctly rank ordered the backgrounds for about 94% of the chemicals tested as compared to the background rank orders from Whitened Matched Filtering (a detection algorithm) of the simulated spectra. These results suggest that the metrics provide a reasonable summary of how the background emissivity and chemical absorbance interact to produce the at-sensor chemical signal. This study suggests that similarly effective predictors that account for more general physical conditions may be derived.

  7. Chemically-functionalized microcantilevers for detection of chemical, biological and explosive material

    Science.gov (United States)

    Pinnaduwage, Lal A [Knoxville, TN; Thundat, Thomas G [Knoxville, TN; Brown, Gilbert M [Knoxville, TN; Hawk, John Eric [Olive Branch, MS; Boiadjiev, Vassil I [Knoxville, TN

    2007-04-24

    A chemically functionalized cantilever system has a cantilever coated on one side thereof with a reagent or biological species which binds to an analyte. The system is of particular value when the analyte is a toxic chemical biological warfare agent or an explosive.

  8. Rapid, portable detection of endocrine disrupting chemicals through ligand-nuclear hormone receptor interactions.

    Science.gov (United States)

    Hunt, J Porter; Schinn, Song-Min; Jones, Matthew D; Bundy, Bradley C

    2017-12-04

    Endocrine disrupting chemicals (EDC) are structurally diverse compounds that can interact with nuclear hormone receptors, posing significant risk to human and ecological health. Unfortunately, many conventional biosensors have been too structure-specific, labor-intensive or laboratory-oriented to detect broad ranges of EDC effectively. Recently, several technological advances are providing more rapid, portable, and affordable detection of endocrine-disrupting activity through ligand-nuclear hormone receptor interactions. Here, we overview these recent advances applied to EDC biosensors - including cell lyophilization, cell immobilization, cell-free systems, smartphone-based signal detection, and improved competitive binding assays.

  9. Hot spot detection system for vanes or blades of a combustion turbine

    Science.gov (United States)

    Twerdochlib, M.

    1999-02-02

    This invention includes a detection system that can determine if a turbine component, such as a turbine vane or blade, has exceeded a critical temperature, such as a melting point, along any point along the entire surface of the vane or blade. This system can be employed in a conventional combustion turbine having a compressor, a combustor and a turbine section. Included within this system is a chemical coating disposed along the entire interior surface of a vane or blade and a closed loop cooling system that circulates a coolant through the interior of the vane or blade. If the temperature of the vane or blade exceeds a critical temperature, the chemical coating will be expelled from the vane or blade into the coolant. Since while traversing the closed loop cooling system the coolant passes through a detector, the presence of the chemical coating in the coolant will be sensed by the system. If the chemical coating is detected, this indicates that the vane or blade has exceeded a critical temperature. 5 figs.

  10. [Detection of nitrite and nitrosocompounds in chemical systems and biological liquids by the calorimetric method].

    Science.gov (United States)

    Titov, V Iu; Petrenko, Iu M; Vanin, A F; Stepuro, I I

    2010-01-01

    The capacity of nitrite, S-nitrosothiols (RS-NO), dinitrosyl iron complexes (DNICs) with thiol-containing ligands, and nitrosoamines to inhibit catalase has been used for the selective determination of these compounds in purely chemical systems and biological liquids: cow milk and colostram. The limiting sensitivity of the method is 50 nM. A comparison of the results of the determinations of RS-NO, DNIC, and nitrite by the catalase method and the Greese method conventionally used for nitrite detection showed that, firstly, Greese reagents decompose DNIC and RS-NO to form nitrite. Therefore, the Greese method cannot be used for nitrite determination in solutions of these substances. Secondly, Greese reagents interact with complexes of mercury ions with RS-NO, inducing the release of nitrosonium ions from the complex followed by the hydrolysis of nitrosonium to nitrite. Thus, the proposition about the spontaneous decay of the complexes of mercury ions with RS-NO is incorrect. Keeping in mind a high sensitivity of the method, the use of catalase as an enzyme detector of nitrosocompounds allows one to detect these compounds in neutral medium without prior purification of the object, thereby preventing artificial effects due to noncontrolled modifications of the compounds under study.

  11. Chemical systems, chemical contiguity and the emergence of life

    DEFF Research Database (Denmark)

    Kee, Terrence P.; Monnard, Pierre Alain

    2017-01-01

    to complex chemical systems over specific isolated functional apparatuses. We will summarize the recent advances in system chemistry and show that chemical systems in the geochemical context imply a form of chemical contiguity in the syntheses of the various molecules that precede modern biomolecules....

  12. Improvements in detection system for pulse radiolysis facility

    CERN Document Server

    Rao, V N; Manimaran, P; Mishra, R K; Mohan, H; Mukherjee, T; Nadkarni, S A; Sapre, A V; Shinde, S J; Toley, M

    2002-01-01

    This report describes the improvements made in the detection system of the pulse radiolysis facility based on a 7 MeV Linear Electron Accelerator (LINAC) located in the Radiation Chemistry and Chemical Dynamics Division of Bhabha Atomic Research Centre. The facility was created in 1986 for kinetic studies of transient species whose absorption lies between 200 and 700 nm. The newly developed detection circuits consist of a silicon (Si) photodiode (PD) detector for the wavelength range 450-1100 nm and a germanium (Ge) photodiode detector for the wavelength range 900-1600 nm. With these photodiode-based detection set-up, kinetic experiments are now routinely carried out in the wavelength range 450-1600 nm. The performance of these circuits has been tested using standard chemical systems. The rise time has been found to be 150 ns. The photo-multiplier tube (PMT) bleeder circuit has been modified. A new DC back-off circuit has been built and installed in order to avoid droop at longer time scales. A steady baselin...

  13. Transfer Rate Edited experiment for the selective detection of Chemical Exchange via Saturation Transfer (TRE-CEST).

    Science.gov (United States)

    Friedman, Joshua I; Xia, Ding; Regatte, Ravinder R; Jerschow, Alexej

    2015-07-01

    Chemical Exchange Saturation Transfer (CEST) magnetic resonance experiments have become valuable tools in magnetic resonance for the detection of low concentration solutes with far greater sensitivity than direct detection methods. Accurate measures of rates of chemical exchange provided by CEST are of particular interest to biomedical imaging communities where variations in chemical exchange can be related to subtle variations in biomarker concentration, temperature and pH within tissues using MRI. Despite their name, however, traditional CEST methods are not truly selective for chemical exchange and instead detect all forms of magnetization transfer including through-space NOE. This ambiguity crowds CEST spectra and greatly complicates subsequent data analysis. We have developed a Transfer Rate Edited CEST experiment (TRE-CEST) that uses two different types of solute labeling in order to selectively amplify signals of rapidly exchanging proton species while simultaneously suppressing 'slower' NOE-dominated magnetization transfer processes. This approach is demonstrated in the context of both NMR and MRI, where it is used to detect the labile amide protons of proteins undergoing chemical exchange (at rates⩾30s(-1)) while simultaneously eliminating signals originating from slower (∼5s(-1)) NOE-mediated magnetization transfer processes. TRE-CEST greatly expands the utility of CEST experiments in complex systems, and in-vivo, in particular, where it is expected to improve the quantification of chemical exchange and magnetization transfer rates while enabling new forms of imaging contrast. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Transfer Rate Edited experiment for the selective detection of Chemical Exchange via Saturation Transfer (TRE-CEST)

    Science.gov (United States)

    Friedman, Joshua I.; Xia, Ding; Regatte, Ravinder R.; Jerschow, Alexej

    2015-07-01

    Chemical Exchange Saturation Transfer (CEST) magnetic resonance experiments have become valuable tools in magnetic resonance for the detection of low concentration solutes with far greater sensitivity than direct detection methods. Accurate measures of rates of chemical exchange provided by CEST are of particular interest to biomedical imaging communities where variations in chemical exchange can be related to subtle variations in biomarker concentration, temperature and pH within tissues using MRI. Despite their name, however, traditional CEST methods are not truly selective for chemical exchange and instead detect all forms of magnetization transfer including through-space NOE. This ambiguity crowds CEST spectra and greatly complicates subsequent data analysis. We have developed a Transfer Rate Edited CEST experiment (TRE-CEST) that uses two different types of solute labeling in order to selectively amplify signals of rapidly exchanging proton species while simultaneously suppressing 'slower' NOE-dominated magnetization transfer processes. This approach is demonstrated in the context of both NMR and MRI, where it is used to detect the labile amide protons of proteins undergoing chemical exchange (at rates ⩾ 30 s-1) while simultaneously eliminating signals originating from slower (∼5 s-1) NOE-mediated magnetization transfer processes. TRE-CEST greatly expands the utility of CEST experiments in complex systems, and in-vivo, in particular, where it is expected to improve the quantification of chemical exchange and magnetization transfer rates while enabling new forms of imaging contrast.

  15. Alternative Chemical Amplification Methods for Peroxy Radical Detection

    Science.gov (United States)

    Wood, E. C. D.

    2014-12-01

    Peroxy radicals (HO2, CH3O2, etc.) are commonly detected by the chemical amplification technique, in which ambient air is mixed with high concentrations of CO and NO, initiating a chain reaction that produces 30 - 200 NO2 molecules per sampled peroxy radical. The NO2 is then measured by one of several techniques. With the exception of CIMS-based techniques, the chemical amplification method has undergone only incremental improvements since it was first introduced in 1982. The disadvantages of the technique include the need to use high concentrations of CO and the greatly reduced sensitivity of the amplification chain length in the presence of water vapor. We present a new chemical amplification scheme in which either ethane or acetaldehyde is used in place of CO, with the NO2 product detected using Cavity Attenuated Phase Shift spectroscopy (CAPS). Under dry conditions, the amplification factor of the alternative amplifiers are approximately six times lower than the CO-based amplifier. The relative humidity "penalty" is not as severe, however, such that at typical ambient relative humidity (RH) values the amplification factor is within a factor of three of the CO-based amplifier. Combined with the NO2 sensitivity of CAPS and a dual-channel design, the detection limit of the ethane amplifier is less than 2 ppt (1 minute average, signal-to-noise ratio 2). The advantages of these alternative chemical amplification schemes are improved safety, a reduced RH correction, and increased sensitivity to organic peroxy radicals relative to HO2.

  16. The All Terrain Bio nano Gear for Space Radiation Detection System

    International Nuclear Information System (INIS)

    Ummat, Ajay; Mavroidis, Constantinos

    2007-01-01

    This paper discusses about the relevance of detecting space radiations which are very harmful and pose numerous health issues for astronauts. There are many ways to detect radiations, but we present a non-invasive way of detecting them in real-time while an astronaut is in the mission. All Terrain Bio-nano (ATB) gear system is one such concept where we propose to detect various levels of space radiations depending on their intensity and warn the astronaut of probable biological damage. A basic framework for radiation detection system which utilizes bio-nano machines is discussed. This radiation detection system is termed as 'radiation-responsive molecular assembly' (RMA) for the detection of space radiations. Our objective is to create a device which could detect space radiations by creating an environment equivalent to human cells within its structure and bio-chemically sensing the effects induced therein. For creating such an environment and further bio-chemically sensing space radiations bio-nano systems could be potentially used. These bio-nano systems could interact with radiations and signal based on the intensity of the radiations their relative biological effectiveness. Based on the energy and kind of radiation encountered, a matrix of signals has to be created which corresponds to a particular biological effect. The key advantage of such a design is its ability to interact with the radiation at e molecular scale; characterize its intensity based on energy deposition and relate it to the relative biological effectiveness based on the correspondence established through molecular structures and bond strengths of the bio-nano system

  17. Raman spectroscopy-based detection of chemical contaminants in food powders

    Science.gov (United States)

    Raman spectroscopy technique has proven to be a reliable method for qualitative detection of chemical contaminants in food ingredients and products. For quantitative imaging-based detection, each contaminant particle in a food sample must be detected and it is important to determine the necessary sp...

  18. Intelligent Chemical Sensor Systems for In-space Safety Applications

    Science.gov (United States)

    Hunter, G. W.; Xu, J. C.; Neudeck, P. G.; Makel, D. B.; Ward, B.; Liu, C. C.

    2006-01-01

    Future in-space and lunar operations will require significantly improved monitoring and Integrated System Health Management (ISHM) throughout the mission. In particular, the monitoring of chemical species is an important component of an overall monitoring system for space vehicles and operations. For example, in leak monitoring of propulsion systems during launch, inspace, and on lunar surfaces, detection of low concentrations of hydrogen and other fuels is important to avoid explosive conditions that could harm personnel and damage the vehicle. Dependable vehicle operation also depends on the timely and accurate measurement of these leaks. Thus, the development of a sensor array to determine the concentration of fuels such as hydrogen, hydrocarbons, or hydrazine as well as oxygen is necessary. Work has been on-going to develop an integrated smart leak detection system based on miniaturized sensors to detect hydrogen, hydrocarbons, or hydrazine, and oxygen. The approach is to implement Microelectromechanical Systems (MEMS) based sensors incorporated with signal conditioning electronics, power, data storage, and telemetry enabling intelligent systems. The final sensor system will be self-contained with a surface area comparable to a postage stamp. This paper discusses the development of this "Lick and Stick" leak detection system and it s application to In-Space Transportation and other Exploration applications.

  19. Novel Miniature Spectrometer For Remote Chemical Detection

    International Nuclear Information System (INIS)

    Pipino, Andrew C.R.

    2000-01-01

    New chemical sensing technologies are critically important for addressing many of EM's priority needs as discussed in detail at http://emsp.em.doe.gov/needs. Many technology needs were addressed by this research. For example, improved detection strategies are needed for non-aqueous phase liquids (NAPL's), such as PCE (Cl2C=CCl2) and TCE (HClC=CCl2), which persist in the environment due their highly stable structures. By developing a miniature, ultra-sensitive, selective, and field-deployable detector for NAPL's, the approximate source location could be determined with minimal investigative expense. Contaminant plumes could also be characterized in detail. The miniature spectrometer developed under Project No.60231 could also permit accurate rate measurements in less time, either in the field or the laboratory, which are critically important in the development, testing, and ultimate utilization of models for describing contaminant transport. The technology could also be used for long-term groundwater monitoring or long-term stewardship in general. Many science needs are also addressed by the Project 60231, since the effort significantly advances the measurement science of chemical detection. Developed under Project No.60231, evanescent wave cavity ring-down spectroscopy (EW-CRDS) is a novel form of CRDS, which is an the emerging optical absorption technique. Several review articles on CRDS, which has been generally applied only to gas-phase diagnostics, have been published1-3. EW-CRDS4-10 forms the basis for a new class of chemical sensors that extends CRDS to other states of matter and leads to a miniaturized version of the concept. EW-CRDS uses miniature solid-state optical resonators that incorporate one or more total internal reflection (TIR) surfaces, which create evanescent waves. The evanescent waves emanate from the TIR surfaces, sampling the surrounding medium. The utility of evanescent waves in chemical analysis forms the basis for the field of attenuated

  20. Chemical warfare agents identification by thermal neutron detection

    International Nuclear Information System (INIS)

    Liu Boxue; Ai Xianyun; Tan Daoyuan; Zhang Dianqin

    2000-01-01

    The hydrogen concentration determination by thermal neutron detection is a non-destructive, fast and effective method to identify chemical warfare agents and TNT that contain different hydrogen fraction. When an isotropic neutron source is used to irradiate chemical ammunition, hydrogen atoms of the agent inside shell act as a moderator and slow down neutrons. The number of induced thermal neutrons depends mainly upon hydrogen content of the agent. Therefore measurement of thermal neutron influence can be used to determine hydrogen atom concentration, thereby to determine the chemical warfare agents. Under a certain geometry three calibration curves of count rate against hydrogen concentration were measured. According to the calibration curves, response of a chemical agent or TNT could be calculated. Differences of count rate among chemical agents and TNT for each kind of shells is greater than five times of standard deviations of count rate for any agent, so chemical agents or TNT could be identified correctly. Meanwhile, blast tube or liquid level of chemical warfare agent could affect the response of thermal neutron count rate, and thereby the result of identification. (author)

  1. An integrated leak detection system for the ALMR steam generator

    International Nuclear Information System (INIS)

    Dayal, Y.; Gaubatz, D.C.; Wong, K.K.; Greene, D.A.

    1995-01-01

    The steam generator (SG) of the Advanced Liquid Metal Reactor (ALMR) system serves as a heat exchanger between the shell side secondary loop hot liquid sodium and the tube side water/steam mixture. A leak in the tube will result in the injection of the higher pressure water/steam into the sodium and cause an exothermic sodium-water reaction. An initial small leak (less than 1 gm/sec) can escalate into an intermediate size leak in a relatively short time by self enlargement of the original flaw and by initiating leaks in neighboring tubes. If not stopped, complete rupture of one or more tubes can cause injection rates of thousands of gm/sec and result in the over pressurization of the secondary loop rupture disk and dumping of the sodium to relieve pressure. The down time associated with severe sodium-water reaction damage has great adverse economic consequence. An integrated leak detection system (ILDS) has been developed which utilizes both chemical and acoustic sensors for improved leak detection. The system provides SG leak status to the reactor operator and is reliable enough to trigger automatic control action to protect the SG. The ILDS chemical subsystem uses conventional in-sodium and cover gas hydrogen detectors and incorporates knowledge based effects due to process parameters for improved reliability. The ILDS acoustic subsystem uses an array of acoustic sensors and incorporates acoustic beamforming technology for highly reliable and accurate leak identification and location. The new ILDS combines the small leak detection capability of the chemical system with the reliability and rapid detection/location capability of the acoustic system to provide a significantly improved level of protection for the SG over a wide range of operation conditions. (author)

  2. Early detection and identification of anomalies in chemical regime based on computational intelligence techniques

    International Nuclear Information System (INIS)

    Figedy, Stefan; Smiesko, Ivan

    2012-01-01

    This article provides brief information about the fundamental features of a newly-developed diagnostic system for early detection and identification of anomalies being generated in water chemistry regime of the primary and secondary circuit of the VVER-440 reactor. This system, which is called SACHER (System of Analysis of CHEmical Regime), was installed within the major modernization project at the NPP-V2 Bohunice in the Slovak Republic. The SACHER system has been fully developed on MATLAB environment. It is based on computational intelligence techniques and inserts various elements of intelligent data processing modules for clustering, diagnosing, future prediction, signal validation, etc, into the overall chemical information system. The application of SACHER would essentially assist chemists to identify the current situation regarding anomalies being generated in the primary and secondary circuit water chemistry. This system is to be used for diagnostics and data handling, however it is not intended to fully replace the presence of experienced chemists to decide upon corrective actions. (author)

  3. System for chemical decontamination of nuclear reactor primary systems

    International Nuclear Information System (INIS)

    Schlonski, J.S.; McGiure, M.F.; Corpora, G.J.

    1992-01-01

    This patent describes a method of chemically decontaminating a nuclear reactor primary system, having a residual heat removal system with one or more residual heat removal heat exchangers, each having an upstream and a downstream side, at or above ambient pressure. It comprises: injecting decontamination chemicals using an injection means; circulating the injected decontamination chemicals throughout the primary system; directing the circulated decontamination chemicals and process fluids to a means for removing suspended solids and dissolved materials after the circulated chemicals and process fluids have passed through the residual heat removal heat exchanger; decontaminating the process fluids; and feeding the decontaminated process fluids to the injection means. This patent also describes a chemical decontamination system for use at, or above, ambient pressure in a nuclear reactor primary system having a residual heat removal system. It comprises: means for injecting decontamination chemicals into the primary system; means for removing dissolved and suspended materials and decontamination chemicals from the primary system; one or more residual heat removal pumps; means located downstream of one of the residual heat removal heat exchangers; and a return line connecting the means

  4. Robust chemical and chemical-resistant material detection using hyper-spectral imager and a new bend interpolation and local scaling HSI sharpening method

    Science.gov (United States)

    Chen, Hai-Wen; McGurr, Michael; Brickhouse, Mark

    2015-05-01

    We present new results from our ongoing research activity for chemical threat detection using hyper-spectral imager (HSI) detection techniques by detecting nontraditional threat spectral signatures of agent usage, such as protective equipment, coatings, paints, spills, and stains that are worn by human or on trucks or other objects. We have applied several current state-of-the-art HSI target detection methods such as Matched Filter (MF), Adaptive Coherence Estimator (ACE), Constrained Energy Minimization (CEM), and Spectral Angle Mapper (SAM). We are interested in detecting several chemical related materials: (a) Tyvek clothing is chemical resistance and Tyvek coveralls are one-piece garments for protecting human body from harmful chemicals, and (b) ammonium salts from background could be representative of spills from scrubbers or related to other chemical activities. The HSI dataset that we used for detection covers a chemical test field with more than 50 different kinds of chemicals, protective materials, coatings, and paints. Among them, there are four different kinds of Tyvek material, three types of ammonium salts, and one yellow jugs. The imagery cube data were collected by a HSI sensor with a spectral range of 400-2,500nm. Preliminary testing results are promising, and very high probability of detection (Pd) and low probability of false detection are achieved with the usage of full spectral range (400- 2,500nm). In the second part of this paper, we present our newly developed HSI sharpening technique. A new Band Interpolation and Local Scaling (BILS) method has been developed to improve HSI spatial resolution by 4-16 times with a low-cost high-resolution pen-chromatic camera and a RGB camera. Preliminary results indicate that this new technique is promising.

  5. Proton-sensing transistor systems for detecting ion leakage from plasma membranes under chemical stimuli.

    Science.gov (United States)

    Imaizumi, Yuki; Goda, Tatsuro; Schaffhauser, Daniel F; Okada, Jun-Ichi; Matsumoto, Akira; Miyahara, Yuji

    2017-03-01

    The membrane integrity of live cells is routinely evaluated for cytotoxicity induced by chemical or physical stimuli. Recent progress in bioengineering means that high-quality toxicity validation is required. Here, we report a pH-sensitive transistor system developed for the continuous monitoring of ion leakage from cell membranes upon challenge by toxic compounds. Temporal changes in pH were generated with high reproducibility via periodic flushing of HepG2 cells on a gate insulator of a proton-sensitive field-effect transistor with isotonic buffer solutions with/without NH 4 Cl. The pH transients at the point of NH 4 Cl addition/withdrawal originated from the free permeation of NH 3 across the semi-permeable plasma membranes, and the proton sponge effect produced by the ammonia equilibrium. Irreversible attenuation of the pH transient was observed when the cells were subjected to a membrane-toxic reagent. Experiments and simulations proved that the decrease in the pH transient was proportional to the area of the ion-permeable pores on the damaged plasma membranes. The pH signal was correlated with the degree of hemolysis produced by the model reagents. The pH assay was sensitive to the formation of molecularly sized pores that were otherwise not measurable via detection of the leakage of hemoglobin, because the hydrodynamic radius of hemoglobin was greater than 3.1nm in the hemolysis assay. The pH transient was not disturbed by inherent ion-transporter activity. The ISFET assay was applied to a wide variety of cell types. The system presented here is fast, sensitive, practical and scalable, and will be useful for validating cytotoxins and nanomaterials. The plasma membrane toxicity and hemolysis are widely and routinely evaluated in biomaterials science and biomedical engineering. Despite the recent development of a variety of methods/materials for efficient gene/drug delivery systems to the cytosol, the methodologies for safety validation remain unchanged in

  6. Computational Systems Chemical Biology

    OpenAIRE

    Oprea, Tudor I.; May, Elebeoba E.; Leitão, Andrei; Tropsha, Alexander

    2011-01-01

    There is a critical need for improving the level of chemistry awareness in systems biology. The data and information related to modulation of genes and proteins by small molecules continue to accumulate at the same time as simulation tools in systems biology and whole body physiologically-based pharmacokinetics (PBPK) continue to evolve. We called this emerging area at the interface between chemical biology and systems biology systems chemical biology, SCB (Oprea et al., 2007).

  7. Detection of land mines by amplified fluorescence quenching of polymer films: a man-portable chemical sniffer for detection of ultratrace concentrations of explosives emanating from land mines

    Science.gov (United States)

    la Grone, Marcus J.; Cumming, Colin J.; Fisher, Mark E.; Fox, Michael J.; Jacob, Sheena; Reust, Dennis; Rockley, Mark G.; Towers, Eric

    2000-08-01

    The explosive charge within a landmine is the source for a mixture of chemical vapors that form a distinctive 'chemical signature' indicative of a landmine. The concentration of these compounds in the air over landmines is extremely low, well below the minimum detection limits of most field- portable chemical sensors. Described in this paper is a man- portable landmine detection system that has for the first time demonstrated the ability to detect landmines by direct sensing of the vapors of signature compounds in the air over landmines. The system utilizes fluorescent polymers developed by collaborators at the MIT. The sensor can detect ultra-trace concentrations of TNT vapor and other nitroaromatic compounds found in many landmine explosives. Thin films of the polymers exhibit intense fluorescence, but when exposed to vapors of nitroaromatic explosives the intensity of the light emitted from the films decreases. A single molecule of TNT binding to a receptor site quenches the fluorescence from many polymer repeat units, increasing the sensitivity by orders of magnitude. A sensor prototype has been develop that response in near real-time to low femtogram quantities of nitroaromatic explosives. The prototype is portable, lightweight, has low power consumption, is simple to operate, and is relatively inexpensive. Simultaneous field testing of the sensor and experienced canine landmine detection teams was recently completed. Although the testing was limited in scope, the performance of the senor met or exceeded that of the canines against buried landmines.

  8. Stand-Off Chemical Detection Using Photoacoustic Sensing Techniques—From Single Element to Phase Array

    Directory of Open Access Journals (Sweden)

    Deepa Gupta

    2018-01-01

    Full Text Available Technologies that can detect harmful chemicals, such as explosive devices, harmful gas leaks, airborne chemicals or/and biological agents, are heavily invested in by the government to prevent any possible catastrophic consequences. Some key features of such technology are, but not limited to, effective signal-to-noise ratio (SNR of the detected signal and extended distance between the detector and target. In this work, we describe the development of photoacoustic sensing techniques from simple to more complex systems. These techniques include passive and active noise filters, parabolic sound reflectors, a lock-in amplifier, and beam-forming with an array of microphones; using these techniques, we increased detection distance from a few cm in an indoor setting to over 41 feet in an outdoor setting. We also establish a theoretical mathematical model that explains the underlying principle of how SNR can be improved with an increasing number of microphone elements in the phase array. We validate this model with computational simulations as well as experimental results.

  9. On-Site Detection as a Countermeasure to Chemical Warfare/Terrorism.

    Science.gov (United States)

    Seto, Y

    2014-01-01

    On-site monitoring and detection are necessary in the crisis and consequence management of wars and terrorism involving chemical warfare agents (CWAs) such as sarin. The analytical performance required for on-site detection is mainly determined by the fatal vapor concentration and volatility of the CWAs involved. The analytical performance for presently available on-site technologies and commercially available on-site equipment for detecting CWAs interpreted and compared in this review include: classical manual methods, photometric methods, ion mobile spectrometry, vibrational spectrometry, gas chromatography, mass spectrometry, sensors, and other methods. Some of the data evaluated were obtained from our experiments using authentic CWAs. We concluded that (a) no technologies perfectly fulfill all of the on-site detection requirements and (b) adequate on-site detection requires (i) a combination of the monitoring-tape method and ion-mobility spectrometry for point detection and (ii) a combination of the monitoring-tape method, atmospheric pressure chemical ionization mass spectrometry with counterflow introduction, and gas chromatography with a trap and special detectors for continuous monitoring. The basic properties of CWAs, the concept of on-site detection, and the sarin gas attacks in Japan as well as the forensic investigations thereof, are also explicated in this article. Copyright © 2014 Central Police University.

  10. Sensor-enabled chem/bio contamination detection system dedicated to situational awareness of water distribution security status

    Science.gov (United States)

    Ginsberg, Mark D.; Smith, Eddy D.; VanBlaricum, Vicki; Hock, Vincent F.; Kroll, Dan; Russell, Kevin J.

    2010-04-01

    Both real events and models have proven that drinking water systems are vulnerable to deliberate and/or accidental contamination. Additionally, homeland security initiatives and modeling efforts have determined that it is relatively easy to orchestrate the contamination of potable water supplies. Such contamination can be accomplished with classic and non-traditional chemical agents, toxic industrial chemicals (TICs), and/or toxic industrial materials (TIMs). Subsequent research and testing has developed a proven network for detection and response to these threats. The method uses offthe- shelf, broad-spectrum analytical instruments coupled with advanced interpretive algorithms. The system detects and characterizes any backflow events involving toxic contaminants by employing unique chemical signature (fingerprint) response data. This instrumentation has been certified by the Office of Homeland Security for detecting deliberate and/or accidental contamination of critical water infrastructure. The system involves integration of several mature technologies (sensors, SCADA, dynamic models, and the HACH HST Guardian Blue instrumentation) into a complete, real-time, management system that also can be used to address other water distribution concerns, such as corrosion. This paper summarizes the reasons and results for installing such a distribution-based detection and protection system.

  11. Chemical sensor system

    Science.gov (United States)

    Darrach, Murray R. (Inventor); Chutjian, Ara (Inventor)

    2008-01-01

    A chemical sensing apparatus and method for the detection of sub parts-per-trillion concentrations of molecules in a sample by optimizing electron utilization in the formation of negative ions is provided. A variety of media may be sampled including air, seawater, dry sediment, or undersea sediment. An electrostatic mirror is used to reduce the kinetic energy of an electron beam to zero or near-zero kinetic energy.

  12. Underground storage tanks containing hazardous chemicals

    International Nuclear Information System (INIS)

    Wise, R.F.; Starr, J.W.; Maresca, J.W. Jr.; Hillger, R.W.; Tafuri, A.N.

    1991-01-01

    The regulations issued by the United States Environmental Protection Agency in 1988 require, with several exceptions, that underground storage tank systems containing petroleum fuels and hazardous chemicals be routinely tested for releases. This paper summarizes the release detection regulations for tank systems containing chemicals and gives a preliminary assessment of the approaches to release detection currently being used. To make this assessment, detailed discussions were conducted with providers and manufacturers of leak detection equipment and testing services, owners or operators of different types of chemical storage tank systems, and state and local regulators. While these discussions were limited to a small percentage of each type of organization, certain observations are sufficiently distinctive and important that they are reported for further investigation and evaluation. To make it clearer why certain approaches are being used, this paper also summarizes the types of chemicals being stored, the effectiveness of several leak detection testing systems, and the number and characteristics of the tank systems being used to store these products

  13. [Rapid detection of four antipertensive chemicals adulterated in traditional Chinese medicine for hypertension using TLC-SERS].

    Science.gov (United States)

    Zhu, Qing-Xia; Cao, Yong-Bing; Cao, Ying-Ying; Lu, Feng

    2014-04-01

    A novel facile method for on-site detection of antipertensive chemicals (e. g. nicardipine hydrochloride, doxazosin mesylate, propranolol hydrochloride, and hydrochlorothiazide) adulterated in traditional Chinese medicine for hypertension using thin layer chromatography (TLC) combined with surface enhanced Raman spectroscopy (SERS) was reported in the present paper. Analytes and pharmaceutical matrices was separated by TLC, then SERS method was used to complete qualitative identification of trace substances on TLC plate. By optimizing colloidal silver concentration and developing solvent, as well as exploring the optimal limits of detection (LOD), the initially established TLC-SERS method was used to detect real hypertension Chinese pharmaceuticals. The results showed that this method had good specificity for the four chemicals and high sensitivity with a limit of detection as lower as to 0.005 microg. Finally, two of the ten antipertensive drugs were detected to be adulterated with chemicals. This simple and fast method can realize rapid detection of chemicals illegally for doping in antipertensive Chinese pharmaceuticals, and would have good prospects in on-site detection of chemicals for doping in Chinese pharmaceuticals.

  14. A Monolithically-Integrated μGC Chemical Sensor System

    Directory of Open Access Journals (Sweden)

    Davor Copic

    2011-06-01

    Full Text Available Gas chromatography (GC is used for organic and inorganic gas detection with a range of applications including screening for chemical warfare agents (CWA, breath analysis for diagnostics or law enforcement purposes, and air pollutants/indoor air quality monitoring of homes and commercial buildings. A field-portable, light weight, low power, rapid response, micro-gas chromatography (μGC system is essential for such applications. We describe the design, fabrication and packaging of mGC on monolithically-integrated Si dies, comprised of a preconcentrator (PC, μGC column, detector and coatings for each of these components. An important feature of our system is that the same mechanical micro resonator design is used for the PC and detector. We demonstrate system performance by detecting four different CWA simulants within 2 min. We present theoretical analyses for cost/power comparisons of monolithic versus hybrid μGC systems. We discuss thermal isolation in monolithic systems to improve overall performance. Our monolithically-integrated μGC, relative to its hybrid cousin, will afford equal or slightly lower cost, a footprint that is 1/2 to 1/3 the size and an improved resolution of 4 to 25%.

  15. Chemical Selectivity and Sensitivity of a 16-Channel Electronic Nose for Trace Vapour Detection

    Directory of Open Access Journals (Sweden)

    Drago Strle

    2017-12-01

    Full Text Available Good chemical selectivity of sensors for detecting vapour traces of targeted molecules is vital to reliable detection systems for explosives and other harmful materials. We present the design, construction and measurements of the electronic response of a 16 channel electronic nose based on 16 differential microcapacitors, which were surface-functionalized by different silanes. The e-nose detects less than 1 molecule of TNT out of 10+12 N2 molecules in a carrier gas in 1 s. Differently silanized sensors give different responses to different molecules. Electronic responses are presented for TNT, RDX, DNT, H2S, HCN, FeS, NH3, propane, methanol, acetone, ethanol, methane, toluene and water. We consider the number density of these molecules and find that silane surfaces show extreme affinity for attracting molecules of TNT, DNT and RDX. The probability to bind these molecules and form a surface-adsorbate is typically 10+7 times larger than the probability to bind water molecules, for example. We present a matrix of responses of differently functionalized microcapacitors and we propose that chemical selectivity of multichannel e-nose could be enhanced by using artificial intelligence deep learning methods.

  16. Selective chemical detection by energy modulation of sensors

    Science.gov (United States)

    Stetter, J.R.; Otagawa, T.

    1985-05-20

    A portable instrument for use in the field in detecting, identifying, and quantifying a component of a sampled fluid includes a sensor which chemically reacts with the component of interest or a derivative thereof, an electrical heating filament for heating the sample before it is applied to the sensor, and modulating means for continuously varying the temperature of the filament (and hence the reaction rate) between two values sufficient to produce the chemical reaction. In response to this thermal modulation, the sensor produces a modulated output signal, the modulation of which is a function of the activation energy of the chemical reaction, which activation energy is specific to the particular component of interest and its concentration. Microprocessor means compares the modulated output signal with standard responses for a plurality of components to identify and quantify the particular component of interest. 4 figs.

  17. Introduction to the Chemical Management System

    International Nuclear Information System (INIS)

    Sawyer, J.G.

    1993-01-01

    The CMS, a Laboratory-wide electronic chemical inventory tracking system, will assist PNL by establishing comprehensive, integrated, Laboratory-wide databases supported by consistent and standardized procedures for chemical inventory management. It will provide PNL with the information needed to meet its current chemical management responsibilities and regulatory requirements. Its objectives are to provide an inventory of all chemicals being held at PNL facilities, to provide a specific location for all chemical containers, to ensure that health and safety regulatory codes are being upheld, and to provide PNL staff and managers with hazardous-chemical information for better inventory management. It is composed of 5 modules: chemical purchasing; chemical inventory; chemical names, properties, and hazardous groups; reporting; and system manager

  18. Chemical Vapor Detection with a Multispectral Thermal Imager

    National Research Council Canada - National Science Library

    Althouse, Mark L. G; Chang, Chein-I

    1991-01-01

    .... Real-time autonomous detection and alarm is also required. A detection system model by Warren, based on a Gaussian vapor concentration distribution is the basis for detection algorithms. Algorithms recursive in both time and spectral frequency have been derived using Kalman filter theory. Adaptive filtering is used for preprocessing clutter rejection. Various components of the detection system have been tested individually and an integrated system is now being fabricated.

  19. Hazardous chemical tracking system (HAZ-TRAC)

    International Nuclear Information System (INIS)

    Bramlette, J.D.; Ewart, S.M.; Jones, C.E.

    1990-07-01

    Westinghouse Idaho Nuclear Company, Inc. (WINCO) developed and implemented a computerized hazardous chemical tracking system, referred to as Haz-Trac, for use at the Idaho Chemical Processing Plant (ICPP). Haz-Trac is designed to provide a means to improve the accuracy and reliability of chemical information, which enhances the overall quality and safety of ICPP operations. The system tracks all chemicals and chemical components from the time they enter the ICPP until the chemical changes form, is used, or becomes a waste. The system runs on a Hewlett-Packard (HP) 3000 Series 70 computer. The system is written in COBOL and uses VIEW/3000, TurboIMAGE/DBMS 3000, OMNIDEX, and SPEEDWARE. The HP 3000 may be accessed throughout the ICPP, and from remote locations, using data communication lines. Haz-Trac went into production in October, 1989. Currently, over 1910 chemicals and chemical components are tracked on the system. More than 2500 personnel hours were saved during the first six months of operation. Cost savings have been realized by reducing the time needed to collect and compile reporting information, identifying and disposing of unneeded chemicals, and eliminating duplicate inventories. Haz-Trac maintains information required by the Superfund Amendment Reauthorization Act (SARA), the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and the Occupational Safety and Health Administration (OSHA)

  20. Hazardous chemical tracking system (HAZ-TRAC)

    Energy Technology Data Exchange (ETDEWEB)

    Bramlette, J D; Ewart, S M; Jones, C E

    1990-07-01

    Westinghouse Idaho Nuclear Company, Inc. (WINCO) developed and implemented a computerized hazardous chemical tracking system, referred to as Haz-Trac, for use at the Idaho Chemical Processing Plant (ICPP). Haz-Trac is designed to provide a means to improve the accuracy and reliability of chemical information, which enhances the overall quality and safety of ICPP operations. The system tracks all chemicals and chemical components from the time they enter the ICPP until the chemical changes form, is used, or becomes a waste. The system runs on a Hewlett-Packard (HP) 3000 Series 70 computer. The system is written in COBOL and uses VIEW/3000, TurboIMAGE/DBMS 3000, OMNIDEX, and SPEEDWARE. The HP 3000 may be accessed throughout the ICPP, and from remote locations, using data communication lines. Haz-Trac went into production in October, 1989. Currently, over 1910 chemicals and chemical components are tracked on the system. More than 2500 personnel hours were saved during the first six months of operation. Cost savings have been realized by reducing the time needed to collect and compile reporting information, identifying and disposing of unneeded chemicals, and eliminating duplicate inventories. Haz-Trac maintains information required by the Superfund Amendment Reauthorization Act (SARA), the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and the Occupational Safety and Health Administration (OSHA).

  1. Detection of Chemical/Biological Agents and Stimulants using Quadrupole Ion Trap Mass Spectrometry

    International Nuclear Information System (INIS)

    Harmon, S.H.; Hart, K.J.; Vass, A.A.; Wise, M.B.; Wolf, D.A.

    1999-01-01

    Detection of Chemical/Biological Agents and Simulants A new detector for chemical and biological agents is being developed for the U. S. Army under the Chemical and Biological Mass Spectrometer Block II program. The CBMS Block II is designed to optimize detection of both chemical and biological agents through the use of direct sampling inlets[I], a multi- ported sampling valve and a turbo- based vacuum system to support chemical ionization. Unit mass resolution using air as the buffer gas[2] has been obtained using this design. Software to control the instrument and to analyze the data generated from the instrument has also been newly developed. Detection of chemical agents can be accomplished. using the CBMS Block II design via one of two inlets - a l/ I 6'' stainless steel sample line -Chemical Warfare Air (CW Air) or a ground probe with enclosed capillary currently in use by the US Army - CW Ground. The Block II design is capable of both electron ionization and chemical ionization. Ethanol is being used as the Cl reagent based on a study indicating best performance for the Biological Warfare (BW) detection task (31). Data showing good signal to noise for 500 pg of methyl salicylate injected into the CW Air inlet, 50 ng of dimethylmethylphosphonate exposed to the CW Ground probe and 5 ng of methyl stearate analyzed using the pyrolyzer inlet were presented. Biological agents are sampled using a ''bio-concentrator'' unit that is designed to concentrate particles in the low micron range. Particles are collected in the bottom of a quartz pyrolyzer tube. An automated injector is being developed to deliver approximately 2 pL of a methylating reagent, tetramethylamonium- hydroxide to 'the collected particles. Pyrolysis occurs by rapid heating to ca. 55OOC. Biological agents are then characterized by their fatty acid methyl ester profiles and by other biomarkers. A library of ETOH- Cl/ pyrolysis MS data of microorganisms used for a recently published study[3] has been

  2. Real-time, wide-area hyperspectral imaging sensors for standoff detection of explosives and chemical warfare agents

    Science.gov (United States)

    Gomer, Nathaniel R.; Tazik, Shawna; Gardner, Charles W.; Nelson, Matthew P.

    2017-05-01

    Hyperspectral imaging (HSI) is a valuable tool for the detection and analysis of targets located within complex backgrounds. HSI can detect threat materials on environmental surfaces, where the concentration of the target of interest is often very low and is typically found within complex scenery. Unfortunately, current generation HSI systems have size, weight, and power limitations that prohibit their use for field-portable and/or real-time applications. Current generation systems commonly provide an inefficient area search rate, require close proximity to the target for screening, and/or are not capable of making real-time measurements. ChemImage Sensor Systems (CISS) is developing a variety of real-time, wide-field hyperspectral imaging systems that utilize shortwave infrared (SWIR) absorption and Raman spectroscopy. SWIR HSI sensors provide wide-area imagery with at or near real time detection speeds. Raman HSI sensors are being developed to overcome two obstacles present in standard Raman detection systems: slow area search rate (due to small laser spot sizes) and lack of eye-safety. SWIR HSI sensors have been integrated into mobile, robot based platforms and handheld variants for the detection of explosives and chemical warfare agents (CWAs). In addition, the fusion of these two technologies into a single system has shown the feasibility of using both techniques concurrently to provide higher probability of detection and lower false alarm rates. This paper will provide background on Raman and SWIR HSI, discuss the applications for these techniques, and provide an overview of novel CISS HSI sensors focusing on sensor design and detection results.

  3. The accuracy of extended histopathology to detect immunotoxic chemicals

    NARCIS (Netherlands)

    Germolec, D.R.; Kashon, M.; Nyska, A.; Kuper, C.F.; Portier, C.; Kommineni, C.; Johnson, K.A.; Luster, M.I.

    2004-01-01

    The accuracy of extended histopathology to detect immunotoxic chemicals in female B6C3F1 mice was evaluated under the auspices of the National Toxicology Program (NTP). A workgroup was formed consisting of four pathologists who conducted extended histopathological evaluation of lymphoid tissues

  4. Chemical procedures to detect carcinogenic compound in domestic wastewater

    International Nuclear Information System (INIS)

    Abd Manan T S; Malakahmad A

    2013-01-01

    This review presents chemical methods to detect carcinogenic compound in wastewater. Atomic absorption spectroscopy (AAS), high performance liquid chromatography (HPLC) and gas chromatography mass spectroscopy (GCMS) and their alternative attached equipments were discussed. The application of each method is elaborated using related studies in the field.

  5. Potentiometric chemical sensors for the detection of paralytic shellfish toxins.

    Science.gov (United States)

    Ferreira, Nádia S; Cruz, Marco G N; Gomes, Maria Teresa S R; Rudnitskaya, Alisa

    2018-05-01

    Potentiometric chemical sensors for the detection of paralytic shellfish toxins have been developed. Four toxins typically encountered in Portuguese waters, namely saxitoxin, decarbamoyl saxitoxin, gonyautoxin GTX5 and C1&C2, were selected for the study. A series of miniaturized sensors with solid inner contact and plasticized polyvinylchloride membranes containing ionophores, nine compositions in total, were prepared and their characteristics evaluated. Sensors displayed cross-sensitivity to four studied toxins, i.e. response to several toxins together with low selectivity. High selectivity towards paralytic shellfish toxins was observed in the presence of inorganic cations with selectivity coefficients ranging from 0.04 to 0.001 for Na + and K + and 3.6*10 -4 to 3.4*10 -5 for Ca 2+ . Detection limits were in the range from 0.25 to 0.9 μmolL -1 for saxitoxin and decarbamoyl saxitoxin, and from 0.08 to 1.8 μmolL -1 for GTX5 and C1&C2, which allows toxin detection at the concentration levels corresponding to the legal limits. Characteristics of the developed sensors allow their use in the electronic tongue multisensor system for simultaneous quantification of paralytic shellfish toxins. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Explosive and chemical threat detection by surface-enhanced Raman scattering: A review

    DEFF Research Database (Denmark)

    Hakonen, Aron; Andersson, Per Ola; Schmidt, Michael Stenbæk

    2015-01-01

    Acts of terror and warfare threats are challenging tasks for defense agencies around the world and of growing importance to security conscious policy makers and the general public. Explosives and chemical warfare agents are two of the major concerns in this context, as illustrated by the recent...... progressively better, smaller and cheaper, and can today be acquired for a retail price close to 10,000 US$. This contribution aims to give a comprehensive overview of SERS as a technique for detection of explosives and chemical threats. We discuss the prospects of SERS becoming a major tool for convenient in......-situ threat identification and we summarize existing SERS detection methods and substrates with particular focus on ultra-sensitive real-time detection. General concepts, detection capabilities and perspectives are discussed in order to guide potential users of the technique for homeland security and anti-warfare...

  7. Coupled sensor/platform control design for low-level chemical detection with position-adaptive micro-UAVs

    Science.gov (United States)

    Goodwin, Thomas; Carr, Ryan; Mitra, Atindra K.; Selmic, Rastko R.

    2009-05-01

    We discuss the development of Position-Adaptive Sensors [1] for purposes for detecting embedded chemical substances in challenging environments. This concept is a generalization of patented Position-Adaptive Radar Concepts developed at AFRL for challenging conditions such as urban environments. For purposes of investigating the detection of chemical substances using multiple MAV (Micro-UAV) platforms, we have designed and implemented an experimental testbed with sample structures such as wooden carts that contain controlled leakage points. Under this general concept, some of the members of a MAV swarm can serve as external position-adaptive "transmitters" by blowing air over the cart and some of the members of a MAV swarm can serve as external position-adaptive "receivers" that are equipped with chemical or biological (chem/bio) sensors that function as "electronic noses". The objective can be defined as improving the particle count of chem/bio concentrations that impinge on a MAV-based position-adaptive sensor that surrounds a chemical repository, such as a cart, via the development of intelligent position-adaptive control algorithms. The overall effect is to improve the detection and false-alarm statistics of the overall system. Within the major sections of this paper, we discuss a number of different aspects of developing our initial MAV-Based Sensor Testbed. This testbed includes blowers to simulate position-adaptive excitations and a MAV from Draganfly Innovations Inc. with stable design modifications to accommodate our chem/bio sensor boom design. We include details with respect to several critical phases of the development effort including development of the wireless sensor network and experimental apparatus, development of the stable sensor boom for the MAV, integration of chem/bio sensors and sensor node onto the MAV and boom, development of position-adaptive control algorithms and initial tests at IDCAST (Institute for the Development and

  8. Statistical analysis of DNT detection using chemically functionalized microcantilever arrays

    DEFF Research Database (Denmark)

    Bosco, Filippo; Bache, M.; Hwu, E.-T.

    2012-01-01

    The need for miniaturized and sensitive sensors for explosives detection is increasing in areas such as security and demining. Micrometer sized cantilevers are often used for label-free detection, and have previously been reported to be able to detect explosives. However, only a few measurements...... on the chemically treated surfaces results in significant bending of the cantilevers and in a decrease of their resonant frequencies. We present averaged measurements obtained from up to 72 cantilevers being simultaneously exposed to the same sample. Compared to integrated reference cantilevers with non...

  9. Detection of chemical explosives using multiple photon signatures

    International Nuclear Information System (INIS)

    Loschke, K.W.; Dunn, W.L.

    2008-01-01

    Full text: A template-matching procedure to aid in rapid detection of improvised explosive devices (IEDs) is being investigated. Multiple photon-scattered and photon-induced positron annihilation radiation responses are being used as part of a photon-neutron signature-based radiation scanning (SBRS) approach (see companion reference for description of the neutron component), in an attempt to detect chemical explosives at safe standoff distances. Many past and present photon interrogation methods are based on imaging. Imaging techniques seek to determine at high special resolution the internal structure of a target of interest. Our technique simply seeks to determine if an unknown target contains a detectable amount of chemical explosives by comparing multiple responses (signatures) that depend on both density and composition of portions of a target. In the photon component, beams of photons are used to create back-streaming signatures, which are dependent on the density and composition of part of the target being interrogated. These signatures are compared to templates, which are collections of the same signatures if the interrogated volume contained a significant amount of explosives. The signature analysis produces a figure-of-merit and a standard deviation of the figure-of-merit. These two metrics are used to filter safe from dangerous targets. Experiments have been conducted that show that explosive surrogates (fertilizers) can be distinguished from several inert materials using these photon signatures, demonstrating that these signatures can be used effectively to help IEDs

  10. Chemical systems, chemical contiguity and the emergence of life

    Directory of Open Access Journals (Sweden)

    Terrence P. Kee

    2017-08-01

    Full Text Available Charting the emergence of living cells from inanimate matter remains an intensely challenging scientific problem. The complexity of the biochemical machinery of cells with its exquisite intricacies hints at cells being the product of a long evolutionary process. Research on the emergence of life has long been focusing on specific, well-defined problems related to one aspect of cellular make-up, such as the formation of membranes or the build-up of information/catalytic apparatus. This approach is being gradually replaced by a more “systemic” approach that privileges processes inherent to complex chemical systems over specific isolated functional apparatuses. We will summarize the recent advances in system chemistry and show that chemical systems in the geochemical context imply a form of chemical contiguity in the syntheses of the various molecules that precede modern biomolecules.

  11. Nanotechnology-Based Systems for Nuclear Radiation and Chemical Detection

    International Nuclear Information System (INIS)

    Kody Varahramyan; Pedro Derosa; Chester Wilson

    2006-01-01

    This main objectives of this effort are the development and prototyping of a small, sensitive, and low-cost multi-channel nanoparticle scintillation microdevice with integrated waveguides for alpha, beta, gamma, and neutron detection. This research effort has integrated experiments and simulation to determine the combination of process-specific materials for the achievement optimum detection conditions

  12. The Equipment of Czech Firefighters for the Detection and Field Analyses of Chemical Warfare Agents

    Directory of Open Access Journals (Sweden)

    Jana Krykorkova

    2014-05-01

    Full Text Available This paper describes the requirements for the devices of detection, chemical reconnaissance and field analyses of chemical warfare agents (CWA and divides them into simple devices of detection, universal detectors, selective analyzers, multi-component analyzers and mobile laboratories. It also describes the devices of detection available within the Fire and Rescue Service of the Czech Republic (FRS CR and compares them with some prospective trends of further development.

  13. Soil chemical sensor and precision agricultural chemical delivery system and method

    Science.gov (United States)

    Colburn, Jr., John W.

    1991-01-01

    A real time soil chemical sensor and precision agricultural chemical delivery system includes a plurality of ground-engaging tools in association with individual soil sensors which measure soil chemical levels. The system includes the addition of a solvent which rapidly saturates the soil/tool interface to form a conductive solution of chemicals leached from the soil. A multivalent electrode, positioned within a multivalent frame of the ground-engaging tool, applies a voltage or impresses a current between the electrode and the tool frame. A real-time soil chemical sensor and controller senses the electrochemical reaction resulting from the application of the voltage or current to the leachate, measures it by resistivity methods, and compares it against pre-set resistivity levels for substances leached by the solvent. Still greater precision is obtained by calibrating for the secondary current impressed through solvent-less soil. The appropriate concentration is then found and the servo-controlled delivery system applies the appropriate amount of fertilizer or agricultural chemicals substantially in the location from which the soil measurement was taken.

  14. Metric Learning Method Aided Data-Driven Design of Fault Detection Systems

    Directory of Open Access Journals (Sweden)

    Guoyang Yan

    2014-01-01

    Full Text Available Fault detection is fundamental to many industrial applications. With the development of system complexity, the number of sensors is increasing, which makes traditional fault detection methods lose efficiency. Metric learning is an efficient way to build the relationship between feature vectors with the categories of instances. In this paper, we firstly propose a metric learning-based fault detection framework in fault detection. Meanwhile, a novel feature extraction method based on wavelet transform is used to obtain the feature vector from detection signals. Experiments on Tennessee Eastman (TE chemical process datasets demonstrate that the proposed method has a better performance when comparing with existing methods, for example, principal component analysis (PCA and fisher discriminate analysis (FDA.

  15. Molecular biophysics: detection and characterization of damage in molecular, cellular, and physiological systems

    International Nuclear Information System (INIS)

    Danyluk, S.S.

    1979-01-01

    This section contains summaries of research on the detection and characterization of damage in molecular, cellular, and physiological systems. Projects under investigation in this section include: chemical synthesis of nucleic acid derivatives; structural and conformational properties of biological molecules in solution; crystallographic and chemical studies of immunoglobulin structure; instrument design and development for x-ray and neutron scattering studies of biological molecules; and chromobiology and circadian regulation

  16. Advances in chemical sensing technologies for VOCs in breath for security/threat assessment, illicit drug detection, and human trafficking activity.

    Science.gov (United States)

    Giannoukos, S; Agapiou, A; Taylor, S

    2018-01-17

    On-site chemical sensing of compounds associated with security and terrorist attacks is of worldwide interest. Other related bio-monitoring topics include identification of individuals posing a threat from illicit drugs, explosive manufacturing, as well as searching for victims of human trafficking and collapsed buildings. The current status of field analytical technologies is directed towards the detection and identification of vapours and volatile organic compounds (VOCs). Some VOCs are associated with exhaled breath, where research is moving from individual breath testing (volatilome) to cell breath (microbiome) and most recently to crowd breath metabolites (exposome). In this paper, an overview of field-deployable chemical screening technologies (both stand-alone and those with portable characteristics) is given with application to early detection and monitoring of human exposome in security operations. On-site systems employed in exhaled breath analysis, i.e. mass spectrometry (MS), optical spectroscopy and chemical sensors are reviewed. Categories of VOCs of interest include (a) VOCs in human breath associated with exposure to threat compounds, and (b) VOCs characteristic of, and associated with, human body odour (e.g. breath, sweat). The latter are relevant to human trafficking scenarios. New technological approaches in miniaturised detection and screening systems are also presented (e.g. non-scanning digital light processing linear ion trap MS (DLP-LIT-MS), nanoparticles, mid-infrared photo-acoustic spectroscopy and hyphenated technologies). Finally, the outlook for rapid and precise, real-time field detection of threat traces in exhaled breath is revealed and discussed.

  17. SQL injection detection system

    OpenAIRE

    Vargonas, Vytautas

    2017-01-01

    SQL injection detection system Programmers do not always ensure security of developed systems. That is why it is important to look for solutions outside being reliant on developers. In this work SQL injection detection system is proposed. The system analyzes HTTP request parameters and detects intrusions. It is based on unsupervised machine learning. Trained by regular request data system detects outlier user parameters. Since training is not reliant on previous knowledge of SQL injections, t...

  18. Detection of herbicides in the urine of pet dogs following home lawn chemical application

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, Deborah W., E-mail: knappd@purdue.edu [Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN (United States); Purdue University Center for Cancer Research and Purdue Oncological Sciences Center, West Lafayette, IN (United States); Peer, Wendy A.; Conteh, Abass; Diggs, Alfred R. [Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN (United States); Cooper, Bruce R. [Bindley Bioscience Center, Purdue University, West Lafayette, IN (United States); Glickman, Nita W. [Department of Emergency Medicine, University of North Carolina, Chapel Hill, NC (United States); Bonney, Patty L.; Stewart, Jane C. [Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN (United States); Glickman, Lawrence T. [Department of Emergency Medicine, University of North Carolina, Chapel Hill, NC (United States); Murphy, Angus S. [Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN (United States)

    2013-07-01

    Exposure to herbicide-treated lawns has been associated with significantly higher bladder cancer risk in dogs. This work was performed to further characterize lawn chemical exposures in dogs, and to determine environmental factors associated with chemical residence time on grass. In addition to concern for canine health, a strong justification for the work was that dogs may serve as sentinels for potentially harmful environmental exposures in humans. Experimentally, herbicides [2,4-dichlorophenoxyacetic acid (2,4-D), 4-chloro-2-methylphenoxypropionic acid (MCPP), dicamba] were applied to grass plots under different conditions (e.g., green, dry brown, wet, and recently mowed grass). Chemicals in dislodgeable residues were measured by LC-MS at 0.17, 1, 24, 48, 72 h post treatment. In a separate study, 2,4-D, MCPP, and dithiopyr concentrations were measured in the urine of dogs and in dislodgeable grass residues in households that applied or did not apply chemicals in the preceding 48 h. Chemicals were measured at 0, 24, and 48 h post application in treated households and at time 0 in untreated control households. Residence times of 2,4-D, MCPP, and dicamba were significantly prolonged (P < 0.05) on dry brown grass compared to green grass. Chemicals were detected in the urine of dogs in 14 of 25 households before lawn treatment, in 19 of 25 households after lawn treatment, and in 4 of 8 untreated households. Chemicals were commonly detected in grass residues from treated lawns, and from untreated lawns suggesting chemical drift from nearby treated areas. Thus dogs could be exposed to chemicals through contact with their own lawn (treated or contaminated through drift) or through contact with other grassy areas if they travel. The length of time to restrict a dog's access to treated lawns following treatment remains to be defined. Further study is indicated to assess the risks of herbicide exposure in humans and dogs. - Highlights: • Lawn chemicals were commonly

  19. Detection of herbicides in the urine of pet dogs following home lawn chemical application

    International Nuclear Information System (INIS)

    Knapp, Deborah W.; Peer, Wendy A.; Conteh, Abass; Diggs, Alfred R.; Cooper, Bruce R.; Glickman, Nita W.; Bonney, Patty L.; Stewart, Jane C.; Glickman, Lawrence T.; Murphy, Angus S.

    2013-01-01

    Exposure to herbicide-treated lawns has been associated with significantly higher bladder cancer risk in dogs. This work was performed to further characterize lawn chemical exposures in dogs, and to determine environmental factors associated with chemical residence time on grass. In addition to concern for canine health, a strong justification for the work was that dogs may serve as sentinels for potentially harmful environmental exposures in humans. Experimentally, herbicides [2,4-dichlorophenoxyacetic acid (2,4-D), 4-chloro-2-methylphenoxypropionic acid (MCPP), dicamba] were applied to grass plots under different conditions (e.g., green, dry brown, wet, and recently mowed grass). Chemicals in dislodgeable residues were measured by LC-MS at 0.17, 1, 24, 48, 72 h post treatment. In a separate study, 2,4-D, MCPP, and dithiopyr concentrations were measured in the urine of dogs and in dislodgeable grass residues in households that applied or did not apply chemicals in the preceding 48 h. Chemicals were measured at 0, 24, and 48 h post application in treated households and at time 0 in untreated control households. Residence times of 2,4-D, MCPP, and dicamba were significantly prolonged (P < 0.05) on dry brown grass compared to green grass. Chemicals were detected in the urine of dogs in 14 of 25 households before lawn treatment, in 19 of 25 households after lawn treatment, and in 4 of 8 untreated households. Chemicals were commonly detected in grass residues from treated lawns, and from untreated lawns suggesting chemical drift from nearby treated areas. Thus dogs could be exposed to chemicals through contact with their own lawn (treated or contaminated through drift) or through contact with other grassy areas if they travel. The length of time to restrict a dog's access to treated lawns following treatment remains to be defined. Further study is indicated to assess the risks of herbicide exposure in humans and dogs. - Highlights: • Lawn chemicals were commonly

  20. Ultrarapid mutation detection by multiplex, solid-phase chemical cleavage

    Energy Technology Data Exchange (ETDEWEB)

    Rowley, G.; Saad, S.; Giannelli, F.; Green, P.M. [Guy`s & St. Thomas`s Hospitals, London (United Kingdom)

    1995-12-10

    The chemical cleavage of mismatches in heteroduplexes formed by probe and test DNA detects and locates any sequence change in long DNA segments ({approximately}1.8 kb), and its efficiency has been well tested in the analysis of both average (e.g., coagulation factor IX) and large, complex genes (e.g., coagulation factor VIII and dystrophin). In the latter application RT/PCR products allow the examination of all essential sequences of the gene in a minimum number of reactions. We use two specific chemical reactants (hydroxylamine and osmium tetroxide) and piperidine cleavage of the above procedure to develop a very fast mutation screening method. This is based on: (1) 5{prime} or internal fluorescent labeling to allow concurrent screening of three to four DNA fragments and (2) solid-phase chemistry to use a microliter format and reduce the time required for the procedure, from amplification of sequence to gel loading inclusive, to one person-working-day. We test the two variations of the method, one entailing 5{prime} labeling of probe DNA and the other uniform labeling of both probe and target DNA, by detecting 114 known hemophilia B (coagulation factor IX) mutations and by analyzing 129 new patients. Uniform labeling of both probe and target DNA prior to formation of the heteroduplexes leads to almost twofold redundancy in the ability to detect mutations. Alternatively, the latter procedure may offer very efficient though less than 100% screening for sequence changes with only hydroxylamine. The full method with two chemical reactions (hydroxylamine and osmium tetroxide) should allow one person to screen with virtually 100% accuracy more than 300 kb of sequence in three ABI 373 gels in 1 day. 26 refs., 7 figs., 1 tab.

  1. Radon detection system, design, test and performance

    International Nuclear Information System (INIS)

    Balcazar, M.; Chavez, A.; Pina-Villalpando, G.; Navarrete, M.

    1999-01-01

    A portable radon detection system (α-Inin) has been designed and constructed for using it in adverse environmental conditions where humidity, temperature and chemical vaporous are present. The minimum integration time is in periods of 15 min during 41 days. A 12 V battery and a photovoltaic module allow the α-Inin autonomy in field measurements. Data is collected by means of a laptop computer where data processing and α-Inin programming are carried out. α-Inin performance was simultaneously tested in a controlled radon chamber, together with a commercial α-Meter

  2. CRIM-TRACK: sensor system for detection of criminal chemical substances

    Science.gov (United States)

    Munk, Jens K.; Buus, Ole T.; Larsen, Jan; Dossi, Eleftheria; Tatlow, Sol; Lässig, Lina; Sandström, Lars; Jakobsen, Mogens H.

    2015-10-01

    Detection of illegal compounds requires a reliable, selective and sensitive detection device. The successful device features automated target acquisition, identification and signal processing. It is portable, fast, user friendly, sensitive, specific, and cost efficient. LEAs are in need of such technology. CRIM-TRACK is developing a sensing device based on these requirements. We engage highly skilled specialists from research institutions, industry, SMEs and LEAs and rely on a team of end users to benefit maximally from our prototypes. Currently we can detect minute quantities of drugs, explosives and precursors thereof in laboratory settings. Using colorimetric technology we have developed prototypes that employ disposable sensing chips. Ease of operation and intuitive sensor response are highly prioritized features that we implement as we gather data to feed into machine learning. With machine learning our ability to detect threat compounds amidst harmless substances improves. Different end users prefer their equipment optimized for their specific field. In an explosives-detecting scenario, the end user may prefer false positives over false negatives, while the opposite may be true in a drug-detecting scenario. Such decisions will be programmed to match user preference. Sensor output can be as detailed as the sensor allows. The user can be informed of the statistics behind the detection, identities of all detected substances, and quantities thereof. The response can also be simplified to "yes" vs. "no". The technology under development in CRIM-TRACK will provide custom officers, police and other authorities with an effective tool to control trafficking of illegal drugs and drug precursors.

  3. Planning an Automatic Fire Detection, Alarm, and Extinguishing System for Research Laboratories

    Directory of Open Access Journals (Sweden)

    Rostam Golmohamadi

    2014-04-01

    Full Text Available Background & Objectives: Educational and research laboratories in universities have a high risk of fire, because they have a variety of materials and equipment. The aim of this study was to provide a technical plan for safety improvement in educational and research laboratories of a university based on the design of automatic detection, alarm, and extinguishing systems . Methods : In this study, fire risk assessment was performed based on the standard of Military Risk Assessment method (MIL-STD-882. For all laboratories, detection and fire alarm systems and optimal fixed fire extinguishing systems were designed. Results : Maximum and minimum risks of fire were in chemical water and wastewater (81.2% and physical agents (62.5% laboratories, respectively. For studied laboratories, we designed fire detection systems based on heat and smoke detectors. Also in these places, fire-extinguishing systems based on CO2 were designed . Conclusion : Due to high risk of fire in studied laboratories, the best control method for fire prevention and protection based on special features of these laboratories is using automatic detection, warning and fire extinguishing systems using CO2 .

  4. Sensitive and fast mutation detection by solid phase chemical cleavage

    DEFF Research Database (Denmark)

    Hansen, Lise Lotte; Justesen, Just; Kruse, Torben A

    1996-01-01

    We have developed a solid phase chemical cleavage method (SpCCM) for screening large DNA fragments for mutations. All reactions can be carried out in microtiterwells from the first amplification of the patient (or test) DNA through the search for mutations. The reaction time is significantly...... reduced compared to the conventional chemical cleavage method (CCM), and even by using a uniformly labelled probe, the exact position and nature of the mutation can be revealed. The SpCCM is suitable for automatization using a workstation to carry out the reactions and a fluorescent detection-based DNA...

  5. Development of a gas-cylinder-free plasma desorption/ionization system for on-site detection of chemical warfare agents.

    Science.gov (United States)

    Iwai, Takahiro; Kakegawa, Ken; Aida, Mari; Nagashima, Hisayuki; Nagoya, Tomoki; Kanamori-Kataoka, Mieko; Miyahara, Hidekazu; Seto, Yasuo; Okino, Akitoshi

    2015-06-02

    A gas-cylinder-free plasma desorption/ionization system was developed to realize a mobile on-site analytical device for detection of chemical warfare agents (CWAs). In this system, the plasma source was directly connected to the inlet of a mass spectrometer. The plasma can be generated with ambient air, which is drawn into the discharge region by negative pressure in the mass spectrometer. High-power density pulsed plasma of 100 kW could be generated by using a microhollow cathode and a laboratory-built high-intensity pulsed power supply (pulse width: 10-20 μs; repetition frequency: 50 Hz). CWAs were desorbed and protonated in the enclosed space adjacent to the plasma source. Protonated sample molecules were introduced to the mass spectrometer by airflow through the discharge region. To evaluate the analytical performance of this device, helium and air plasma were directly irradiated to CWAs in the gas-cylinder-free plasma desorption/ionization system and the protonated molecules were analyzed by using an ion-trap mass spectrometer. A blister agent (nitrogen mustard 3) and nerve gases [cyclohexylsarin (GF), tabun (GA), and O-ethyl S-2-N,N-diisopropylaminoethyl methylphosphonothiolate (VX)] in solution in n-hexane were applied to the Teflon rod and used as test samples, after solvent evaporation. As a result, protonated molecules of CWAs were successfully observed as the characteristic ion peaks at m/z 204, 181, 163, and 268, respectively. In air plasma, the limits of detection were estimated to be 22, 20, 4.8, and 1.0 pmol, respectively, which were lower than those obtained with helium plasma. To achieve quantitative analysis, calibration curves were made by using CWA stimulant dipinacolyl methylphosphonate as an internal standard; straight correlation lines (R(2) = 0.9998) of the peak intensity ratios (target per internal standard) were obtained. Remarkably, GA and GF gave protonated dimer ions, and the ratios of the protonated dimer ions to the protonated

  6. Temporal Control over Transient Chemical Systems using Structurally Diverse Chemical Fuels.

    Science.gov (United States)

    Chen, Jack L-Y; Maiti, Subhabrata; Fortunati, Ilaria; Ferrante, Camilla; Prins, Leonard J

    2017-08-25

    The next generation of adaptive, intelligent chemical systems will rely on a continuous supply of energy to maintain the functional state. Such systems will require chemical methodology that provides precise control over the energy dissipation process, and thus, the lifetime of the transiently activated function. This manuscript reports on the use of structurally diverse chemical fuels to control the lifetime of two different systems under dissipative conditions: transient signal generation and the transient formation of self-assembled aggregates. The energy stored in the fuels is dissipated at different rates by an enzyme, which installs a dependence of the lifetime of the active system on the chemical structure of the fuel. In the case of transient signal generation, it is shown that different chemical fuels can be used to generate a vast range of signal profiles, allowing temporal control over two orders of magnitude. Regarding self-assembly under dissipative conditions, the ability to control the lifetime using different fuels turns out to be particularly important as stable aggregates are formed only at well-defined surfactant/fuel ratios, meaning that temporal control cannot be achieved by simply changing the fuel concentration. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Portal monitoring for detecting fissile materials and chemical explosives

    International Nuclear Information System (INIS)

    Albright, D.

    1992-01-01

    The portal monitoring of pedestrians, packages, equipment, and vehicles entering or leaving areas of high physical security has been common for many years. Many nuclear facilities rely on portal monitoring to prevent the theft or diversion of plutonium and highly enriched uranium. At commercial airports, portals are used to prevent firearms and explosives from being smuggled onto airplanes. An August 1989 Federal Aviation Administration (FAA) regulation requires US airlines to screen luggage on international flights for chemical explosives. This paper reports that portal monitoring is now being introduced into arms-control agreements. Because some of the portal-monitoring equipment that would be useful in verifying arms-control agreements is already widely used as part of the physical security systems at nuclear facilities and commercial airports, the authors review these uses of portal monitoring, as well as its role in verifying the INF treaty. Then the authors survey the major types of portal-monitoring equipment that would be most useful in detecting nuclear warheads or fissile material

  8. Plasma-chemical processes and systems

    International Nuclear Information System (INIS)

    Castro B, J.

    1987-01-01

    The direct applications of plasma technology on chemistry and metallurgy are presented. The physical fundaments of chemically active non-equilibrium plasma, the reaction kinetics, and the physical chemical transformations occuring in the electrical discharges, which are applied in the industry, are analysed. Some plasma chemical systems and processes related to the energy of hydrogen, with the chemical technology and with the metallurgy are described. Emphasis is given to the optimization of the energy effectiveness of these processes to obtain reducers and artificial energetic carriers. (M.C.K.) [pt

  9. Tissue-based standoff biosensors for detecting chemical warfare agents

    Science.gov (United States)

    Greenbaum, Elias; Sanders, Charlene A.

    2003-11-18

    A tissue-based, deployable, standoff air quality sensor for detecting the presence of at least one chemical or biological warfare agent, includes: a cell containing entrapped photosynthetic tissue, the cell adapted for analyzing photosynthetic activity of the entrapped photosynthetic tissue; means for introducing an air sample into the cell and contacting the air sample with the entrapped photosynthetic tissue; a fluorometer in operable relationship with the cell for measuring photosynthetic activity of the entrapped photosynthetic tissue; and transmitting means for transmitting analytical data generated by the fluorometer relating to the presence of at least one chemical or biological warfare agent in the air sample, the sensor adapted for deployment into a selected area.

  10. Ultrasensitive detection of explosives and chemical warfare agents by low-pressure photoionization mass spectrometry.

    Science.gov (United States)

    Sun, Wanqi; Liang, Miao; Li, Zhen; Shu, Jinian; Yang, Bo; Xu, Ce; Zou, Yao

    2016-08-15

    On-spot monitoring of threat agents needs high sensitive instrument. In this study, a low-pressure photoionization mass spectrometer (LPPI-MS) was employed to detect trace amounts of vapor-phase explosives and chemical warfare agent mimetics under ambient conditions. Under 10-s detection time, the limits of detection of 2,4-dinitrotoluene, nitrotoluene, nitrobenzene, and dimethyl methyl phosphonate were 30, 0.5, 4, and 1 parts per trillion by volume, respectively. As compared to those obtained previously with PI mass spectrometric techniques, an improvement of 3-4 orders of magnitude was achieved. This study indicates that LPPI-MS will open new opportunities for the sensitive detection of explosives and chemical warfare agents. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Laser self-mixing interferometry in VCSELs - an ultra-compact and massproduceable deflection detection system for nanomechanical polymer cantilever sensors

    DEFF Research Database (Denmark)

    Larsson, David; Yvind, Kresten; Hvam, Jørn Märcher

    2008-01-01

    We have realised an ultra-compact deflection detection system based on laser self-mixing interferometry in a Vertical-Cavity Surface-Emitting Laser (VCSEL). The system can be used together with polymer nanomechanical cantilevers to form chemical sensors capable of detecting less than 1nm deflection....

  12. Chemical Exchange Saturation Transfer in Chemical Reactions: A Mechanistic Tool for NMR Detection and Characterization of Transient Intermediates.

    Science.gov (United States)

    Lokesh, N; Seegerer, Andreas; Hioe, Johnny; Gschwind, Ruth M

    2018-02-07

    The low sensitivity of NMR and transient key intermediates below detection limit are the central problems studying reaction mechanisms by NMR. Sensitivity can be enhanced by hyperpolarization techniques such as dynamic nuclear polarization or the incorporation/interaction of special hyperpolarized molecules. However, all of these techniques require special equipment, are restricted to selective reactions, or undesirably influence the reaction pathways. Here, we apply the chemical exchange saturation transfer (CEST) technique for the first time to NMR detect and characterize previously unobserved transient reaction intermediates in organocatalysis. The higher sensitivity of CEST and chemical equilibria present in the reaction pathway are exploited to access population and kinetics information on low populated intermediates. The potential of the method is demonstrated on the proline-catalyzed enamine formation for unprecedented in situ detection of a DPU stabilized zwitterionic iminium species, the elusive key intermediate between enamine and oxazolidinones. The quantitative analysis of CEST data at 250 K revealed the population ratio of [Z-iminium]/[exo-oxazolidinone] 0.02, relative free energy +8.1 kJ/mol (calculated +7.3 kJ/mol), and free energy barrier of +45.9 kJ/mol (ΔG ⧧ calc. (268 K) = +42.2 kJ/mol) for Z-iminium → exo-oxazolidinone. The findings underpin the iminium ion participation in enamine formation pathway corroborating our earlier theoretical prediction and help in better understanding. The reliability of CEST is validated using 1D EXSY-build-up techniques at low temperature (213 K). The CEST method thus serves as a new tool for mechanistic investigations in organocatalysis to access key information, such as chemical shifts, populations, and reaction kinetics of intermediates below the standard NMR detection limit.

  13. Chemiresistor Devices for Chemical Warfare Agent Detection Based on Polymer Wrapped Single-Walled Carbon Nanotubes.

    Science.gov (United States)

    Fennell, John F; Hamaguchi, Hitoshi; Yoon, Bora; Swager, Timothy M

    2017-04-28

    Chemical warfare agents (CWA) continue to present a threat to civilian populations and military personnel in operational areas all over the world. Reliable measurements of CWAs are critical to contamination detection, avoidance, and remediation. The current deployed systems in United States and foreign militaries, as well as those in the private sector offer accurate detection of CWAs, but are still limited by size, portability and fabrication cost. Herein, we report a chemiresistive CWA sensor using single-walled carbon nanotubes (SWCNTs) wrapped with poly(3,4-ethylenedioxythiophene) (PEDOT) derivatives. We demonstrate that a pendant hexafluoroisopropanol group on the polymer that enhances sensitivity to a nerve agent mimic, dimethyl methylphosphonate, in both nitrogen and air environments to concentrations as low as 5 ppm and 11 ppm, respectively. Additionally, these PEDOT/SWCNT derivative sensor systems experience negligible device performance over the course of two weeks under ambient conditions.

  14. Dietary antioxidant synergy in chemical and biological systems.

    Science.gov (United States)

    Wang, Sunan; Zhu, Fan

    2017-07-24

    Antioxidant (AOX) synergies have been much reported in chemical ("test-tube" based assays focusing on pure chemicals), biological (tissue culture, animal and clinical models), and food systems during the past decade. Tentative synergies differ from each other due to the composition of AOX and the quantification methods. Regeneration mechanism responsible for synergy in chemical systems has been discussed. Solvent effects could contribute to the artifacts of synergy observed in the chemical models. Synergy in chemical models may hardly be relevant to biological systems that have been much less studied. Apparent discrepancies exist in understanding the molecular mechanisms in both chemical and biological systems. This review discusses diverse variables associated with AOX synergy and molecular scenarios for explanation. Future research to better utilize the synergy is suggested.

  15. Intrusion detection system elements

    International Nuclear Information System (INIS)

    Eaton, M.J.; Mangan, D.L.

    1980-09-01

    This report highlights elements required for an intrusion detection system and discusses problems which can be encountered in attempting to make the elements effective. Topics discussed include: sensors, both for exterior detection and interior detection; alarm assessment systems, with the discussion focused on video assessment; and alarm reporting systems, including alarm communication systems and dislay/console considerations. Guidance on careful planning and design of a new or to-be-improved system is presented

  16. MOFs for the Sensitive Detection of Ammonia: Deployment of fcu-MOF Thin Films as Effective Chemical Capacitive Sensors.

    Science.gov (United States)

    Assen, Ayalew H; Yassine, Omar; Shekhah, Osama; Eddaoudi, Mohamed; Salama, Khaled N

    2017-09-22

    This work reports on the fabrication and deployment of a select metal-organic framework (MOF) thin film as an advanced chemical capacitive sensor for the sensing/detection of ammonia (NH 3 ) at room temperature. Namely, the MOF thin film sensing layer consists of a rare-earth (RE) MOF (RE-fcu-MOF) deposited on a capacitive interdigitated electrode (IDE). Purposely, the chemically stable naphthalene-based RE-fcu-MOF (NDC-Y-fcu-MOF) was elected and prepared/arranged as a thin film on a prefunctionalized capacitive IDE via the solvothermal growth method. Unlike earlier realizations, the fabricated MOF-based sensor showed a notable detection sensitivity for NH 3 at concentrations down to 1 ppm, with a detection limit appraised to be around 100 ppb (at room temperature) even in the presence of humidity and/or CO 2 . Distinctly, the NDC-Y-fcu-MOF based sensor exhibited the required stability to NH 3 , in contrast to other reported MOFs, and a remarkable detection selectivity toward NH 3 vs CH 4 , NO 2 , H 2 , and C 7 H 8 . The NDC-Y-fcu-MOF based sensor exhibited excellent performance for sensing ammonia for simulated breathing system in the presence of the mixture of carbon dioxide and/or humidity (water vapor), with no major alteration in the detection signal.

  17. Capacitive chemical sensor

    Science.gov (United States)

    Manginell, Ronald P; Moorman, Matthew W; Wheeler, David R

    2014-05-27

    A microfabricated capacitive chemical sensor can be used as an autonomous chemical sensor or as an analyte-sensitive chemical preconcentrator in a larger microanalytical system. The capacitive chemical sensor detects changes in sensing film dielectric properties, such as the dielectric constant, conductivity, or dimensionality. These changes result from the interaction of a target analyte with the sensing film. This capability provides a low-power, self-heating chemical sensor suitable for remote and unattended sensing applications. The capacitive chemical sensor also enables a smart, analyte-sensitive chemical preconcentrator. After sorption of the sample by the sensing film, the film can be rapidly heated to release the sample for further analysis. Therefore, the capacitive chemical sensor can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.

  18. CRIM-TRACK: Sensor System for Detection of Criminal Chemical Substances

    DEFF Research Database (Denmark)

    Munk, Jens Kristian; Buus, Ole Thomsen; Larsen, Jan

    2015-01-01

    of such technology. CRIM-TRACK is developing a sensing device based on these requirements. We engage highly skilled specialists from research institutions, industry, SMEs and LEAs and rely on a team of end users to benefit maximally from our prototypes. Currently we can detect minute quantities of drugs, explosives...... our ability to detect threat compounds amidst harmless substances improves. Different end users prefer their equipment optimized for their specific field. In an explosives-detecting scenario, the end user may prefer false positives over false negatives, while the opposite may be true in a drug...

  19. Tissue-based water quality biosensors for detecting chemical warfare agents

    Science.gov (United States)

    Greenbaum, Elias [Oak Ridge, TN; Sanders, Charlene A [Knoxville, TN

    2003-05-27

    A water quality sensor for detecting the presence of at least one chemical or biological warfare agent includes: a cell; apparatus for introducing water into the cell and discharging water from the cell adapted for analyzing photosynthetic activity of naturally occurring, free-living, indigenous photosynthetic organisms in water; a fluorometer for measuring photosynthetic activity of naturally occurring, free-living, indigenous photosynthetic organisms drawn into the cell; and an electronics package that analyzes raw data from the fluorometer and emits a signal indicating the presence of at least one chemical or biological warfare agent in the water.

  20. Standoff detection of turbulent chemical mixture plumes using a swept external cavity quantum cascade laser

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Mark C. [Pacific Northwest National Laboratory, Richland, Washington; Brumfield, Brian E. [Pacific Northwest National Laboratory, Richland, Washington

    2017-08-21

    We demonstrate standoff detection of turbulent mixed-chemical plumes using a broadly-tunable external cavity quantum cascade laser (ECQCL). The ECQCL was directed through plumes of mixed methanol/ethanol vapor to a partially-reflective surface located 10 m away. The reflected power was measured as the ECQCL was swept over its tuning range of 930-1065 cm-1 (9.4-10.8 µm) at rates up to 200 Hz. Analysis of the transmission spectra though the plume was performed to determine chemical concentrations with time resolution of 0.005 s. Comparison of multiple spectral sweep rates of 2 Hz, 20 Hz, and 200 Hz shows that higher sweep rates reduce effects of atmospheric and source turbulence, resulting in lower detection noise and more accurate measurement of the rapidly-changing chemical concentrations. Detection sensitivities of 0.13 ppm*m for MeOH and 1.2 ppm*m for EtOH are demonstrated for a 200 Hz spectral sweep rate, normalized to 1 s detection time.

  1. A Molecularly Imprinted Polymer (MIP)-Coated Microbeam MEMS Sensor for Chemical Detection

    Science.gov (United States)

    2015-09-01

    ARL-RP-0536 ● SEP 2015 US Army Research Laboratory A Molecularly Imprinted Polymer (MIP)- Coated Microbeam MEMS Sensor for...ARL-RP-0536 ● SEP 2015 US Army Research Laboratory A Molecularly Imprinted Polymer (MIP)- Coated Microbeam MEMS Sensor for Chemical...TITLE AND SUBTITLE A Molecularly Imprinted Polymer (MIP)-Coated Microbeam MEMS Sensor for Chemical Detection 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  2. Algorithmization of problems on the personnel information support in the automatic chemical control systems at NPP

    International Nuclear Information System (INIS)

    Vilkov, N.Ya.; Kryukov, Yu.V.; Cheshun, A.V.

    2001-01-01

    When elaborating software for the standard algorithms of the information support of the efficient control (keeping) of water chemistry operation (WCO) at the NPP power units one introduces an approach when the systems of chemical control are realized as the systems of quality control of in-loop physical and chemical processes gathering force in the course of time. Elaboration of algorithms to proceed data of the operational chemical control seeks for elaboration of the statistic procedures to detect anomalies of the processes at the early stages of their development more efficient in contrast to the standard procedures of control. The introduced procedure is used in the demonstration model of the system for diagnostics of some typical reasons of violation of the first circuit WCO of WWER-1000 power units [ru

  3. System for the detection of chromosomal rearrangements using Sordaria macrospora

    Energy Technology Data Exchange (ETDEWEB)

    Arnaise, S.; Leblon, G.; Lares, L. (Paris-11 Univ., 91 - Orsay (France). Lab. de Biologie Cellulaire et Genetique)

    1984-01-01

    A system is described for the detection and diagnosis of induced chromosomal rearrangement using Sordaria macrospora. The system uses the property of the rearrangement to produce defective white ascospores as meiotic progeny from heterozygous crosses. Two reconstruction experiments have shown that this system is able to give reliable quantitative measures of rearrangement frequencies. Evidence for a photoreactivation process was obtained, suggesting that pyrimidine dimers may well be an important lesion in UV-induced chromosomal rearrangement. No evidence of induction of chromosomal rearrangement was obtained in experiments with the powerful chemical mutagen N-methyl-N'-nitro-N-nitrosoguanidine.

  4. Nucleic acid detection system and method for detecting influenza

    Science.gov (United States)

    Cai, Hong; Song, Jian

    2015-03-17

    The invention provides a rapid, sensitive and specific nucleic acid detection system which utilizes isothermal nucleic acid amplification in combination with a lateral flow chromatographic device, or DNA dipstick, for DNA-hybridization detection. The system of the invention requires no complex instrumentation or electronic hardware, and provides a low cost nucleic acid detection system suitable for highly sensitive pathogen detection. Hybridization to single-stranded DNA amplification products using the system of the invention provides a sensitive and specific means by which assays can be multiplexed for the detection of multiple target sequences.

  5. Transfer of chemicals in PWR systems: secondary side

    International Nuclear Information System (INIS)

    Jonas, O.

    1978-01-01

    Transfer of chemicals in the secondary side of pressurized water reactor systems with recirculating and once-through steam generators is considered. Chemical data on water, steam and deposit chemistry of twenty-six operating units are given and major physical-chemical processes and differences between the two systems and between fossil and PWR systems are discussed. It is concluded that the limited available data show the average water and steam chemistry to be within recommended limits, but large variations of impurity concentrations and corrosion problems encountered indicate that our knowledge of the system chemistry and chemical thermodynamics, system design, sampling, analysis and operation need improvement. (author)

  6. π0 detection system

    International Nuclear Information System (INIS)

    Suzuki, Yoichiro

    1977-01-01

    A π-zero meson detection system used for the measurement of charge exchange reaction is described. The detection of π-zero is made by observing the coincidence events of two gamma-ray emission following the decay of π-zero meson. The angles of the emitted gamma-rays are detected with a wire spark chamber system, and the energies of the gamma-rays are measured with hodoscope type lead glass Cherenkov counters. In front of the π-zero counter system, a lead converter is set, and the incident gamma-rays convert to electron positron pairs, which can be detected with the wire spark chambers. The system is a multi-track detection system. The high voltage pulser of the wire spark chamber system is a charge line thyratron pulser, and the chamber itself is a transmission line type. Read-out can be made by a mag-line system. Wave forms and efficiencies were measured. The three-track efficiency was about 90% by the condenser method and 95% by the charge line method. (Kato, T.)

  7. Portable modular detection system

    Science.gov (United States)

    Brennan, James S [Rodeo, CA; Singh, Anup [Danville, CA; Throckmorton, Daniel J [Tracy, CA; Stamps, James F [Livermore, CA

    2009-10-13

    Disclosed herein are portable and modular detection devices and systems for detecting electromagnetic radiation, such as fluorescence, from an analyte which comprises at least one optical element removably attached to at least one alignment rail. Also disclosed are modular detection devices and systems having an integrated lock-in amplifier and spatial filter and assay methods using the portable and modular detection devices.

  8. Handheld and mobile hyperspectral imaging sensors for wide-area standoff detection of explosives and chemical warfare agents

    Science.gov (United States)

    Gomer, Nathaniel R.; Gardner, Charles W.; Nelson, Matthew P.

    2016-05-01

    Hyperspectral imaging (HSI) is a valuable tool for the investigation and analysis of targets in complex background with a high degree of autonomy. HSI is beneficial for the detection of threat materials on environmental surfaces, where the concentration of the target of interest is often very low and is typically found within complex scenery. Two HSI techniques that have proven to be valuable are Raman and shortwave infrared (SWIR) HSI. Unfortunately, current generation HSI systems have numerous size, weight, and power (SWaP) limitations that make their potential integration onto a handheld or field portable platform difficult. The systems that are field-portable do so by sacrificing system performance, typically by providing an inefficient area search rate, requiring close proximity to the target for screening, and/or eliminating the potential to conduct real-time measurements. To address these shortcomings, ChemImage Sensor Systems (CISS) is developing a variety of wide-field hyperspectral imaging systems. Raman HSI sensors are being developed to overcome two obstacles present in standard Raman detection systems: slow area search rate (due to small laser spot sizes) and lack of eye-safety. SWIR HSI sensors have been integrated into mobile, robot based platforms and handheld variants for the detection of explosives and chemical warfare agents (CWAs). In addition, the fusion of these two technologies into a single system has shown the feasibility of using both techniques concurrently to provide higher probability of detection and lower false alarm rates. This paper will provide background on Raman and SWIR HSI, discuss the applications for these techniques, and provide an overview of novel CISS HSI sensors focused on sensor design and detection results.

  9. Performance of two swine manure treatment systems on chemical composition and on the reduction of pathogens.

    Science.gov (United States)

    Viancelli, A; Kunz, A; Steinmetz, R L R; Kich, J D; Souza, C K; Canal, C W; Coldebella, A; Esteves, P A; Barardi, C R M

    2013-01-01

    Swine effluents must be correctly handled to avoid negative environmental impacts. In this study, the profiles of two swine manure treatment systems were evaluated: a solid-liquid separation step, followed by an anaerobic reactor, and an aerobic step (System 1); and a biodigester followed by serial lagoons (System 2). Both systems were described by the assessment of chemical, bacterial and viral parameters. The results showed that in System 1, there was reduction of chemicals (COD, phosphorus, total Kjeldhal nitrogen - TKN - and NH(3)), total coliforms and Escherichia coli; however, the same reduction was not observed for Salmonella sp. Viral particles were significantly reduced but not totally eliminated from the effluent. In System 2, there was a reduction of chemicals, bacteria and viruses with no detection of Salmonella sp., circovirus, parvovirus, and torque teno virus in the effluent. The chemical results indicate that the treated effluent can be reused for cleaning swine facilities. However, the microbiological results show a need of additional treatment to achieve a complete inactivation for cases when direct contact with animals is required. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. IMS software developments for the detection of chemical warfare agent

    Science.gov (United States)

    Klepel, ST.; Graefenhain, U.; Lippe, R.; Stach, J.; Starrock, V.

    1995-01-01

    Interference compounds like gasoline, diesel, burning wood or fuel, etc. are presented in common battlefield situations. These compounds can cause detectors to respond as a false positive or interfere with the detector's ability to respond to target compounds such as chemical warfare agents. To ensure proper response of the ion mobility spectrometer to chemical warfare agents, two special software packages were developed and incorporated into the Bruker RAID-1. The programs suppress interferring signals caused by car exhaust or smoke gases resulting from burning materials and correct the influence of variable sample gas humidity which is important for detection and quantification of blister agents like mustard gas or lewisite.

  11. Whole system chemical geothermometry

    International Nuclear Information System (INIS)

    Pang Zhonghe

    1999-01-01

    Chemical and isotopic geothermometers are equations or models based on temperature dependent chemical reactions or isotope equilibrium fractionation reactions from which equilibrium temperatures of these reactions can be calculated. The major drawback of all the conventional geothermometry methods lies in their incapability on making a judgement on the equilibrium status of the studied systems. This review will focus on two of recent approaches in this field. Zhangzhou Geothermal Field in SE China will be used as an example to demonstrate the applications

  12. Fluorescent Metal-Organic Framework (MOF) as a Highly Sensitive and Quickly Responsive Chemical Sensor for the Detection of Antibiotics in Simulated Wastewater.

    Science.gov (United States)

    Zhu, Xian-Dong; Zhang, Kun; Wang, Yu; Long, Wei-Wei; Sa, Rong-Jian; Liu, Tian-Fu; Lü, Jian

    2018-02-05

    A Zn(II)-based fluorescent metal-organic framework (MOF) was synthesized and applied as a highly sensitive and quickly responsive chemical sensor for antibiotic detection in simulated wastewater. The fluorescent chemical sensor, denoted FCS-1, exhibited enhanced fluorescence derived from its highly ordered, 3D MOF structure as well as excellent water stability in the practical pH range of simulated antibiotic wastewater (pH = 3.0-9.0). Remarkably, FCS-1 was able to effectively detect a series of sulfonamide antibiotics via photoinduced electron transfer that caused detectable fluorescence quenching, with fairly low detection limits. Two influences impacting measurements related to wastewater treatment and water quality monitoring, the presence of heavy-metal ions and the pH of solutions, were studied in terms of fluorescence quenching, which was nearly unaffected in sulfonamide-antibiotic detection. Additionally, the effective detection of sulfonamide antibiotics was rationalized by the theoretical computation of the energy bands of sulfonamide antibiotics, which revealed a good match between the energy bands of FCS-1 and sulfonamide antibiotics, in connection with fluorescence quenching in this system.

  13. Microcontroller based driver alertness detection systems to detect drowsiness

    Science.gov (United States)

    Adenin, Hasibah; Zahari, Rahimi; Lim, Tiong Hoo

    2018-04-01

    The advancement of embedded system for detecting and preventing drowsiness in a vehicle is a major challenge for road traffic accident systems. To prevent drowsiness while driving, it is necessary to have an alert system that can detect a decline in driver concentration and send a signal to the driver. Studies have shown that traffc accidents usually occur when the driver is distracted while driving. In this paper, we have reviewed a number of detection systems to monitor the concentration of a car driver and propose a portable Driver Alertness Detection System (DADS) to determine the level of concentration of the driver based on pixelated coloration detection technique using facial recognition. A portable camera will be placed at the front visor to capture facial expression and the eye activities. We evaluate DADS using 26 participants and have achieved 100% detection rate with good lighting condition and a low detection rate at night.

  14. MOFs for the Sensitive Detection of Ammonia: Deployment of fcu-MOF Thin-Films as Effective Chemical Capacitive Sensors.

    KAUST Repository

    Assen, Ayalew Hussen Assen

    2017-08-15

    This work reports on the fabrication and deployment of a select metal-organic framework (MOF) thin film as an advanced chemical capacitive sensor for the sensing/detection of ammonia (NH3) at room temperature. Namely, the MOF thin film sensing layer consists of a rare-earth (RE) MOF (RE-fcu-MOF) deposited on a capacitive interdigitated electrode (IDE). Purposely, the chemically stable naphthalene-based RE-fcu-MOF (NDC-Y-fcu-MOF) was elected and prepared/arranged as a thin film on a pre-functionalized capacitive IDE via the solvothermal growth method. Unlike earlier realizations, the fabricated MOF-based sensor showed a notable detection sensitivity for NH3 at concentrations down to 1 ppm, with a detection limit appraised to be around 100 ppb (at room temperature) even in the presence of humidity and/or CO2. Distinctly, the NDC-Y-fcu-MOF based sensor exhibited the required stability to NH3, in contract to other reported MOFs, and a remarkable detection selectivity towards NH3 vs. CH4, NO2, H2 and C7H8. The NDC-Y-fcu-MOF based sensor exhibited excellent performance for sensing ammonia for simulated breathing system in the presence of the mixture of carbon dioxide and/or humidity (water vapor), with no major alteration in the detection signal.

  15. Optimizing surface acoustic wave sensors for trace chemical detection

    Energy Technology Data Exchange (ETDEWEB)

    Frye, G.C.; Kottenstette, R.J.; Heller, E.J. [and others

    1997-06-01

    This paper describes several recent advances for fabricating coated surface acoustic wave (SAW) sensors for applications requiring trace chemical detection. Specifically, we have demonstrated that high surface area microporous oxides can provide 100-fold improvements in SAW sensor responses compared with more typical polymeric coatings. In addition, we fabricated GaAs SAW devices with frequencies up to 500 MHz to provide greater sensitivity and an ideal substrate for integration with high-frequency electronics.

  16. Evaluation of the application of chemical shift for the detection of lipid in brain lesion

    Energy Technology Data Exchange (ETDEWEB)

    Lim, C.J. [Department of Biomedical Imaging, Faculty of Medicine, University of Malaya Medical Centre, Kuala Lumpur (Malaysia); Ng, K.H., E-mail: ngkh@um.edu.m [Department of Biomedical Imaging, Faculty of Medicine, University of Malaya Medical Centre, Kuala Lumpur (Malaysia); Ramli, N.; Azman, R.R. [Department of Biomedical Imaging, Faculty of Medicine, University of Malaya Medical Centre, Kuala Lumpur (Malaysia)

    2011-02-15

    Non-invasive detection of the presence of lipids is particularly important in staging of intracranial tumours. Presence of lipid peak in aggressive intracranial tumours has been reported widely using MR spectroscopy. However this method has limitation due to long imaging time and artefacts formed by adjacent bones. Chemical shift MR imaging (with has shorter imaging time) is an alternative method that had been used to detect presence of lipid in vivo by means of signal intensity loss. The purpose of this study was to evaluate gradient echo in- and opposed-phase chemical shift pulse sequences for detection of lipid elements in brain lesion. Ten cylindered phantoms measuring 3 x 3 cm were filled with various mixtures of lipid and water: 0-90% lipid, in 10% step by weight. The gradient echo in- and opposed-phase chemical shift sequences were performed using a 1.5 T MRI (Magnetom Vision, Siemens) with a head coil. In addition, we performed MRI and chemical shift studies on 32 patients with brain lesion. We then analysed the association between out of phase intensity value and classification of the lesions. For phantom containing 50% lipid, maximum signal loss on opposed-phase images was observed. There were significant differences between in- and opposed-phase lipid-water phantom images (P = 0.0054). Most of the benign lesions fall into the positive out of phase intensity value, and malignant lesions fall into negative out of phase intensity value. We conclude that chemical shift artefact can be applied in detecting and characterising lipid elements in brain lesion.

  17. Evaluation of the application of chemical shift for the detection of lipid in brain lesion

    International Nuclear Information System (INIS)

    Lim, C.J.; Ng, K.H.; Ramli, N.; Azman, R.R.

    2011-01-01

    Non-invasive detection of the presence of lipids is particularly important in staging of intracranial tumours. Presence of lipid peak in aggressive intracranial tumours has been reported widely using MR spectroscopy. However this method has limitation due to long imaging time and artefacts formed by adjacent bones. Chemical shift MR imaging (with has shorter imaging time) is an alternative method that had been used to detect presence of lipid in vivo by means of signal intensity loss. The purpose of this study was to evaluate gradient echo in- and opposed-phase chemical shift pulse sequences for detection of lipid elements in brain lesion. Ten cylindered phantoms measuring 3 x 3 cm were filled with various mixtures of lipid and water: 0-90% lipid, in 10% step by weight. The gradient echo in- and opposed-phase chemical shift sequences were performed using a 1.5 T MRI (Magnetom Vision, Siemens) with a head coil. In addition, we performed MRI and chemical shift studies on 32 patients with brain lesion. We then analysed the association between out of phase intensity value and classification of the lesions. For phantom containing 50% lipid, maximum signal loss on opposed-phase images was observed. There were significant differences between in- and opposed-phase lipid-water phantom images (P = 0.0054). Most of the benign lesions fall into the positive out of phase intensity value, and malignant lesions fall into negative out of phase intensity value. We conclude that chemical shift artefact can be applied in detecting and characterising lipid elements in brain lesion.

  18. Generalized Detectability for Discrete Event Systems

    Science.gov (United States)

    Shu, Shaolong; Lin, Feng

    2011-01-01

    In our previous work, we investigated detectability of discrete event systems, which is defined as the ability to determine the current and subsequent states of a system based on observation. For different applications, we defined four types of detectabilities: (weak) detectability, strong detectability, (weak) periodic detectability, and strong periodic detectability. In this paper, we extend our results in three aspects. (1) We extend detectability from deterministic systems to nondeterministic systems. Such a generalization is necessary because there are many systems that need to be modeled as nondeterministic discrete event systems. (2) We develop polynomial algorithms to check strong detectability. The previous algorithms are based on observer whose construction is of exponential complexity, while the new algorithms are based on a new automaton called detector. (3) We extend detectability to D-detectability. While detectability requires determining the exact state of a system, D-detectability relaxes this requirement by asking only to distinguish certain pairs of states. With these extensions, the theory on detectability of discrete event systems becomes more applicable in solving many practical problems. PMID:21691432

  19. Environmental monitoring of selected pesticides and organic chemicals in urban stormwater recycling systems using passive sampling techniques.

    Science.gov (United States)

    Page, Declan; Miotliński, Konrad; Gonzalez, Dennis; Barry, Karen; Dillon, Peter; Gallen, Christie

    2014-03-01

    Water recycling via aquifers has become a valuable tool to augment urban water supplies in many countries. This study reports the first use of passive samplers for monitoring of organic micropollutants in Managed Aquifer Recharge (MAR). Five different configurations of passive samplers were deployed in a stormwater treatment wetland, groundwater monitoring wells and a recovery tank to capture a range of polar and non-polar micropollutants present in the system. The passive samplers were analysed for a suite of pesticides, polycyclic aromatic hydrocarbons (PAHs) and other chemicals. As a result, 17 pesticides and pesticide degradation products, 5 PAHs and 8 other organic chemicals including flame retardants and fragrances were detected in urban stormwater recharging Aquifer Storage and Recovery (ASR) and an Aquifer Storage Transfer and Recovery (ASTR) system. Of the pesticides detected, diuron, metolachlor and chlorpyrifos were generally detected at the highest concentrations in one or more passive samplers, whereas chlorpyrifos, diuron, metolachlor, simazine, galaxolide and triallate were detected in multiple samplers. Fluorene was the PAH detected at the highest concentration and the flame retardant Tris(1-chloro-2-propyl)phosphate was the chemical detected in the greatest abundance at all sites. The passive samplers showed different efficiencies for capture of micropollutants with the Empore disc samplers giving the most reliable results. The results indicate generally low levels of organic micropollutants in the stormwater, as the contaminants detected were present at very low ng/L levels, generally two to four orders of magnitude below the drinking water guidelines (NHMRC, 2011). The efficiency of attenuation of these organic micropollutants during MAR was difficult to determine due to variations in the source water concentrations. Comparisons were made between different samplers, to give a field-based calibration where existing lab-based calibrations were

  20. Rapid Electrochemical Detection and Identification of Microbiological and Chemical Contaminants for Manned Spaceflight Project

    Science.gov (United States)

    Pierson, Duane; Botkin, Douglas; Gazda, Daniel

    2014-01-01

    Microbial control in the spacecraft environment is a daunting task, especially in the presence of human crew members. Currently, assessing the potential crew health risk associated with a microbial contamination event requires return of representative environmental samples that are analyzed in a ground-based laboratory. It is therefore not currently possible to quickly identify microbes during spaceflight. This project addresses the unmet need for spaceflight-compatible microbial identification technology. The electrochemical detection and identification platform is expected to provide a sensitive, specific, and rapid sample-to-answer capability for in-flight microbial monitoring that can distinguish between related microorganisms (pathogens and non-pathogens) as well as chemical contaminants. This will dramatically enhance our ability to monitor the spacecraft environment and the health risk to the crew. Further, the project is expected to eliminate the need for sample return while significantly reducing crew time required for detection of multiple targets. Initial work will focus on the optimization of bacterial detection and identification. The platform is designed to release nucleic acids (DNA and RNA) from microorganisms without the use of harmful chemicals. Bacterial DNA or RNA is captured by bacteria-specific probe molecules that are bound to a microelectrode, and that capture event can generate a small change in the electrical current (Lam, et al. 2012. Anal. Chem. 84(1): 21-5.). This current is measured, and a determination is made whether a given microbe is present in the sample analyzed. Chemical detection can be accomplished by directly applying a sample to the microelectrode and measuring the resulting current change. This rapid microbial and chemical detection device is designed to be a low-cost, low-power platform anticipated to be operated independently of an external power source, characteristics optimal for manned spaceflight and areas where power

  1. Chemical Sniffing Instrumentation for Security Applications.

    Science.gov (United States)

    Giannoukos, Stamatios; Brkić, Boris; Taylor, Stephen; Marshall, Alan; Verbeck, Guido F

    2016-07-27

    Border control for homeland security faces major challenges worldwide due to chemical threats from national and/or international terrorism as well as organized crime. A wide range of technologies and systems with threat detection and monitoring capabilities has emerged to identify the chemical footprint associated with these illegal activities. This review paper investigates artificial sniffing technologies used as chemical sensors for point-of-use chemical analysis, especially during border security applications. This article presents an overview of (a) the existing available technologies reported in the scientific literature for threat screening, (b) commercially available, portable (hand-held and stand-off) chemical detection systems, and (c) their underlying functional and operational principles. Emphasis is given to technologies that have been developed for in-field security operations, but laboratory developed techniques are also summarized as emerging technologies. The chemical analytes of interest in this review are (a) volatile organic compounds (VOCs) associated with security applications (e.g., illegal, hazardous, and terrorist events), (b) chemical "signatures" associated with human presence, and (c) threat compounds (drugs, explosives, and chemical warfare agents).

  2. A versatile transfection assay system to evaluate the biological effects of diverse industrial chemicals.

    Science.gov (United States)

    Koizumi, Shinji; Ohno, Shotaro; Otsuka, Fuminori

    2012-01-01

    Gene expression processes are now recognized as important targets of the toxic effects exerted by industrial chemicals. The transient transfection assay is a powerful tool to evaluate such effects. Thus, we developed a versatile assay system by constructing a basic reporter plasmid in which the regulatory DNA sequence to be studied can easily be substituted. To verify the performance of this system, reporter plasmids carrying any of the three distinct regulatory sequences, estrogen responsive element (ERE), glucocorticoid responsive element (GRE) and xenobiotic responsive element (XRE) were constructed. After transfection of human cells, these plasmids successfully expressed the relevant reporter genes in response to specific inducers, β-estradiol, dexamethasone and 3-methylcholanthrene, respectively. Several industrial chemicals were assayed using these reporter plasmids, and the ability of p-dimethylaminoazobenzene to elevate GRE- and XRE-mediated transcription was detected. α-Naphthylamine and o-tolidine were also observed to increase the XRE-mediated response. The transfection assay system established here will be useful to evaluate the effects of a wide variety of industrial chemicals.

  3. Detection of methyl-, dimethyl- and diethylamine using a nitrate-based chemical ionization mass spectrometer

    Science.gov (United States)

    Jokinen, T.; Smith, J. N.

    2016-12-01

    New particle formation is one of the main sources of cloud condensation nuclei (CCN) contributing approximately half of the global CCN budget. The initial steps of nucleation have been studied for decades and it is widely accepted that in most places nucleation requires presence of sulphuric acid (SA) and cluster-stabilizing vapours. Recent results from the CLOUD chamber show that only a few pptv levels of dimethylamine (DMA) with SA forms stable clusters at boundary layer conditions. Ambient sulphuric acid is typically measured using nitrate-based chemical ionization mass spectrometers. Unfortunately, because of higher volatilities and stickiness of amines to surfaces, amine measurement techniques suffer from memory effects and high detection limits. Recently it was discovered that DMA can be detected by utilizing nitrate ionization, simultaneously with sulphuric acid measurements. Here we present results of detecting methylamine, dimethylamine and diethylamine using nitrate-based chemical ionization. We conducted a series of measurements with a home-built transverse chemical ionization inlet and a high resolution time-of-flight mass spectrometer (CI-HToF). Amine vapour was produced using permeation tubes. Three stages of dilution were applied at roughly one order-of-magnitude dilution per stage. The diluted flow of selected amine was then introduced to a sample flow rate of 7 slpm, thus achieving a final amine concentration of 10 pptv. All selected amines were detected as clusters with HNO3NO3- and showed linear response with increasing concentrations (0.5-minute integration time). Zero measurements were performed using clean nitrogen gas right after injection of a selected amine. Memory effects were only observed when using high amine concentrations (ppbv levels). Our results indicate that a variety of amines can be detected using nitrate-based chemical ionization mass spectrometers. However, more experiments are required to see if this presented method will be

  4. Study of Intelligent Secure Chemical Inventory Management System

    Science.gov (United States)

    Shukran, Mohd Afizi Mohd; Naim Abdullah, Muhammad; Nazri Ismail, Mohd; Maskat, Kamaruzaman; Isa, Mohd Rizal Mohd; Shahfee Ishak, Muhammad; Adib Khairuddin, Muhamad

    2017-08-01

    Chemical inventory management system has been experiencing a new revolution from traditional inventory system which is manual to an automated inventory management system. In this paper, some review of the classic and modern approaches to chemical inventory management system has been discussed. This paper also describe about both type of inventory management. After a comparative analysis of the traditional method and automated method, it can be said that both methods have some distinctive characteristics. Moreover, the automated inventory management method has higher accuracy of calculation because the calculations are handled by software, eliminating possible errors and saving time. The automated inventory system also allows users and administrators to track the availability, location and consumption of chemicals. The study of this paper can provide forceful review analysis support for the chemical inventory management related research.

  5. Fiber optic/cone penetrometer system for subsurface heavy metals detection

    International Nuclear Information System (INIS)

    Saggese, S.; Greenwell, R.

    1995-01-01

    The objective of this project is to develop an integrated fiber optic sensor/cone penetrometer system to analyze the heavy metals content of the subsurface. This site characterization tool will use an optical fiber cable assembly which delivers high power laser energy to vaporize and excite a sample in-situ and return the emission spectrum from the plasma produced for chemical analysis. The chemical analysis technique, often referred to as laser induced breakdown spectroscopy (LIBS), has recently shown to be an effective method for the quantitative analysis of contaminants soils. By integrating the fiber optic sensor with the cone penetrometer, we anticipate that the resultant system will enable in-situ, low cost, high resolution, real-time subsurface characterization of numerous heavy metal soil contaminants simultaneously. There are several challenges associated with the integration of the LIBS sensor and cone penetrometer. One challenge is to design an effective means of optically accessing the soil via the fiber probe in the penetrometer. A second challenge is to develop the fiber probe system such that the resultant emission signal is adequate for quantitative analysis. Laboratory techniques typically use free space delivery of the laser to the sample. The high laser powers used in the laboratory cannot be used with optical fibers, therefore, the effectiveness of the LIBS system at the laser powers acceptable to fiber delivery must be evaluated. The primary objectives for this project are: (1) Establish that a fiber optic LIBS technique can be used to detect heavy metals to the required concentration levels; (2) Design and fabricate a fiber optic probe for integration with the penetrometer system for the analysis of heavy metals in soil samples; (3) Design, fabricate, and test an integrated fiber/penetrometer system; (4) Fabricate a rugged, field deployable laser source and detection hardware system; and (6) Demonstrate the prototype in field deployments

  6. A new ultrasonic method to detect chemical additives in branded milk

    Indian Academy of Sciences (India)

    Abstract. A new ultrasonic method – thermoacoustic analysis – is reported for the detection of the added chemical preservatives in branded milk. The nature of variation and shift in the thermal response of the acoustic parameters specific acoustic impedance, adiabatic compressibility and Rao's specific sound velocity for ...

  7. A system for the detection of chromosomal rearrangements using Sordaria macrospora

    International Nuclear Information System (INIS)

    Arnaise, S.; Leblon, G.; Lares, L.

    1984-01-01

    A system is described for the detection and diagnosis of induced chromosomal rearrangement using Sordaria macrospora. The system uses the property of the rearrangement to produce defective white ascospores as meiotic progeny from heterozygous crosses. Two reconstruction experiments have shown that this system is able to give reliable quantitative measures of rearrangement frequencies. Evidence for a photoreactivation process was obtained, suggesting that pyrimidine dimers may well be an important lesion in UV-induced chromosomal rearrangement. No evidence of induction of chromosomal rearrangement was obtained in experiments with the powerful chemical mutagen N-methyl-N'-nitro-N-nitrosoguanidine. (orig.)

  8. A system for the detection of chromosomal rearrangements using Sordaria macrospora.

    Science.gov (United States)

    Arnaise, S; Leblon, G; Lares, L

    1984-01-01

    A system is described for the detection and diagnosis of induced chromosomal rearrangement using Sordaria macrospora. The system uses the property of the rearrangement to produce defective white ascospores as meiotic progeny from heterozygous crosses. Two reconstruction experiments have shown that this system is able to give reliable quantitative measures of rearrangement frequencies. Evidence for a photoreactivation process was obtained, suggesting that pyrimidine dimers may well be an important lesion in UV-induced chromosomal rearrangement. No evidence of induction of chromosomal rearrangement was obtained in experiments with the powerful chemical mutagen N-methyl-N'-nitro-N-nitrosoguanidine.

  9. Design and evaluation of the ReKon : an integrated detection and assessment perimeter system.

    Energy Technology Data Exchange (ETDEWEB)

    Dabling, Jeffrey Glenn; Andersen, Jason Jann; McLaughlin, James O. [Stonewater Control Systems, Inc., Kannapolis, NC

    2013-02-01

    Kontek Industries (Kannapolis, NC) and their subsidiary, Stonewater Control Systems (Kannapolis, NC), have entered into a cooperative research and development agreement with Sandia to jointly develop and evaluate an integrated perimeter security system solution, one that couples access delay with detection and assessment. This novel perimeter solution was designed to be configurable for use at facilities ranging from high-security military sites to commercial power plants, to petro/chemical facilities of various kinds. A prototype section of the perimeter has been produced and installed at the Sandia Test and Evaluation Center in Albuquerque, NM. This prototype system integrated fiber optic break sensors, active infrared sensors, fence disturbance sensors, video motion detection, and ground sensors. This report documents the design, testing, and performance evaluation of the developed ReKon system. The ability of the system to properly detect pedestrian or vehicle attempts to bypass, breach, or otherwise defeat the system is characterized, as well as the Nuisance Alarm Rate.

  10. 29 CFR 1910.161 - Fixed extinguishing systems, dry chemical.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Fixed extinguishing systems, dry chemical. 1910.161 Section... § 1910.161 Fixed extinguishing systems, dry chemical. (a) Scope and application. This section applies to all fixed extinguishing systems, using dry chemical as the extinguishing agent, installed to meet a...

  11. Advanced photonic structures for biological and chemical detection

    CERN Document Server

    Fan, Xudong

    2009-01-01

    One of a series of books on Integrated Microanalytical Systems, this text discusses the latest applications of photonic technologies in bio/chemical sensing. The book is divided into four sections, each one being based on photonic structures.

  12. Engineered Barrier System: Physical and Chemical Environment

    International Nuclear Information System (INIS)

    Dixon, P.

    2004-01-01

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports

  13. Interior intrusion detection systems

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, J.R.; Matter, J.C. (Sandia National Labs., Albuquerque, NM (United States)); Dry, B. (BE, Inc., Barnwell, SC (United States))

    1991-10-01

    The purpose of this NUREG is to present technical information that should be useful to NRC licensees in designing interior intrusion detection systems. Interior intrusion sensors are discussed according to their primary application: boundary-penetration detection, volumetric detection, and point protection. Information necessary for implementation of an effective interior intrusion detection system is presented, including principles of operation, performance characteristics and guidelines for design, procurement, installation, testing, and maintenance. A glossary of sensor data terms is included. 36 figs., 6 tabs.

  14. Interior intrusion detection systems

    International Nuclear Information System (INIS)

    Rodriguez, J.R.; Matter, J.C.; Dry, B.

    1991-10-01

    The purpose of this NUREG is to present technical information that should be useful to NRC licensees in designing interior intrusion detection systems. Interior intrusion sensors are discussed according to their primary application: boundary-penetration detection, volumetric detection, and point protection. Information necessary for implementation of an effective interior intrusion detection system is presented, including principles of operation, performance characteristics and guidelines for design, procurement, installation, testing, and maintenance. A glossary of sensor data terms is included. 36 figs., 6 tabs

  15. Continued development of a portable widefield hyperspectral imaging (HSI) sensor for standoff detection of explosive, chemical, and narcotic residues

    Science.gov (United States)

    Nelson, Matthew P.; Gardner, Charles W.; Klueva, Oksana; Tomas, David

    2014-05-01

    Passive, standoff detection of chemical, explosive and narcotic threats employing widefield, shortwave infrared (SWIR) hyperspectral imaging (HSI) continues to gain acceptance in defense and security fields. A robust and user-friendly portable platform with such capabilities increases the effectiveness of locating and identifying threats while reducing risks to personnel. In 2013 ChemImage Sensor Systems (CISS) introduced Aperio, a handheld sensor, using real-time SWIR HSI for wide area surveillance and standoff detection of explosives, chemical threats, and narcotics. That SWIR HSI system employed a liquid-crystal tunable filter for real-time automated detection and display of threats. In these proceedings, we report on a next generation device called VeroVision™, which incorporates an improved optical design that enhances detection performance at greater standoff distances with increased sensitivity and detection speed. A tripod mounted sensor head unit (SHU) with an optional motorized pan-tilt unit (PTU) is available for precision pointing and sensor stabilization. This option supports longer standoff range applications which are often seen at checkpoint vehicle inspection where speed and precision is necessary. Basic software has been extended to include advanced algorithms providing multi-target display functionality, automatic threshold determination, and an automated detection recipe capability for expanding the library as new threats emerge. In these proceedings, we report on the improvements associated with the next generation portable widefield SWIR HSI sensor, VeroVision™. Test data collected during development are presented in this report which supports the targeted applications for use of VeroVision™ for screening residue and bulk levels of explosive and drugs on vehicles and personnel at checkpoints as well as various applications for other secure areas. Additionally, we highlight a forensic application of the technology for assisting forensic

  16. Single particle detecting telescope system

    International Nuclear Information System (INIS)

    Yamamoto, I.; Tomiyama, T.; Iga, Y.; Komatsubara, T.; Kanada, M.; Yamashita, Y.; Wada, T.; Furukawa, S.

    1981-01-01

    We constructed the single particle detecting telescope system for detecting a fractionally charged particle. The telescope consists of position detecting counters, wall-less multi-cell chambers, single detecting circuits and microcomputer system as data I/0 processor. Especially, a frequency of double particle is compared the case of the single particle detecting with the case of an ordinary measurement

  17. Rapid deployment intrusion detection system

    International Nuclear Information System (INIS)

    Graham, R.H.

    1997-01-01

    A rapidly deployable security system is one that provides intrusion detection, assessment, communications, and annunciation capabilities; is easy to install and configure; can be rapidly deployed, and is reusable. A rapidly deployable intrusion detection system (RADIDS) has many potential applications within the DOE Complex: back-up protection for failed zones in a perimeter intrusion detection and assessment system, intrusion detection and assessment capabilities in temporary locations, protection of assets during Complex reconfiguration, and protection in hazardous locations, protection of assets during Complex reconfiguration, and protection in hazardous locations. Many DOE user-need documents have indicated an interest in a rapidly deployable intrusion detection system. The purpose of the RADIDS project is to design, develop, and implement such a system. 2 figs

  18. Detection of Volatile Organics Using a Surface Acoustic Wave Array System

    International Nuclear Information System (INIS)

    ANDERSON, LAWRENCE F.; BARTHOLOMEW, JOHN W.; CERNOSEK, RICHARD W.; COLBURN, CHRISTOPHER W.; CROOKS, R.M.; MARTINEZ, R.F.; OSBOURN, GORDON C.; RICCO, A.J.; STATON, ALAN W.; YELTON, WILLIAM G.

    1999-01-01

    A chemical sensing system based on arrays of surface acoustic wave (SAW) delay lines has been developed for identification and quantification of volatile organic compounds (VOCs). The individual SAW chemical sensors consist of interdigital transducers patterned on the surface of an ST-cut quartz substrate to launch and detect the acoustic waves and a thin film coating in the SAW propagation path to perturb the acoustic wave velocity and attenuation during analyte sorption. A diverse set of material coatings gives the sensor arrays a degree of chemical sensitivity and selectivity. Materials examined for sensor application include the alkanethiol-based self-assembled monolayer, plasma-processed films, custom-synthesized conventional polymers, dendrimeric polymers, molecular recognition materials, electroplated metal thin films, and porous metal oxides. All of these materials target a specific chemical fi.mctionality and the enhancement of accessible film surface area. Since no one coating provides absolute analyte specificity, the array responses are further analyzed using a visual-empirical region-of-influence (VERI) pattern recognition algorithm. The chemical sensing system consists of a seven-element SAW array with accompanying drive and control electronics, sensor signal acquisition electronics, environmental vapor sampling hardware, and a notebook computer. Based on data gathered for individual sensor responses, greater than 93%-accurate identification can be achieved for any single analyte from a group of 17 VOCs and water

  19. Detection of Volatile Organics Using a Surface Acoustic Wave Array System

    Energy Technology Data Exchange (ETDEWEB)

    ANDERSON, LAWRENCE F.; BARTHOLOMEW, JOHN W.; CERNOSEK, RICHARD W.; COLBURN, CHRISTOPHER W.; CROOKS, R.M.; MARTINEZ, R.F.; OSBOURN, GORDON C.; RICCO, A.J.; STATON, ALAN W.; YELTON, WILLIAM G.

    1999-10-14

    A chemical sensing system based on arrays of surface acoustic wave (SAW) delay lines has been developed for identification and quantification of volatile organic compounds (VOCs). The individual SAW chemical sensors consist of interdigital transducers patterned on the surface of an ST-cut quartz substrate to launch and detect the acoustic waves and a thin film coating in the SAW propagation path to perturb the acoustic wave velocity and attenuation during analyte sorption. A diverse set of material coatings gives the sensor arrays a degree of chemical sensitivity and selectivity. Materials examined for sensor application include the alkanethiol-based self-assembled monolayer, plasma-processed films, custom-synthesized conventional polymers, dendrimeric polymers, molecular recognition materials, electroplated metal thin films, and porous metal oxides. All of these materials target a specific chemical fi.mctionality and the enhancement of accessible film surface area. Since no one coating provides absolute analyte specificity, the array responses are further analyzed using a visual-empirical region-of-influence (VERI) pattern recognition algorithm. The chemical sensing system consists of a seven-element SAW array with accompanying drive and control electronics, sensor signal acquisition electronics, environmental vapor sampling hardware, and a notebook computer. Based on data gathered for individual sensor responses, greater than 93%-accurate identification can be achieved for any single analyte from a group of 17 VOCs and water.

  20. CHEMICALS STORED IN USTS: CHARACTERISTICS AND LEAK DETECTION

    Science.gov (United States)

    The regulations Issued by the U.S. Environmental Protection Agency (EPA) In 1988 require, with several exceptions, that the Integrity of underground storage tank (UST) systems containing petroleum fuels and hazardous chemicals be routinely tested. The regulatory standards for ...

  1. Multispecies Adulteration Detection of Camellia Oil by Chemical Markers.

    Science.gov (United States)

    Dou, Xinjing; Mao, Jin; Zhang, Liangxiao; Xie, Huali; Chen, Lin; Yu, Li; Ma, Fei; Wang, Xiupin; Zhang, Qi; Li, Peiwu

    2018-01-25

    Adulteration of edible oils has attracted attention from more researchers and consumers in recent years. Complex multispecies adulteration is a commonly used strategy to mask the traditional adulteration detection methods. Most of the researchers were only concerned about single targeted adulterants, however, it was difficult to identify complex multispecies adulteration or untargeted adulterants. To detect adulteration of edible oil, identification of characteristic markers of adulterants was proposed to be an effective method, which could provide a solution for multispecies adulteration detection. In this study, a simple method of multispecies adulteration detection for camellia oil (adulterated with soybean oil, peanut oil, rapeseed oil) was developed by quantifying chemical markers including four isoflavones, trans-resveratrol and sinapic acid, which used liquid chromatography tandem mass spectrometry (LC-MS/MS) combined with solid phase extraction (SPE). In commercial camellia oil, only two of them were detected of daidzin with the average content of 0.06 ng/g while other markers were absent. The developed method was highly sensitive as the limits of detection (LODs) ranged from 0.02 ng/mL to 0.16 ng/mL and the mean recoveries ranged from 79.7% to 113.5%, indicating that this method was reliable to detect potential characteristic markers in edible oils. Six target compounds for pure camellia oils, soybean oils, peanut oils and rapeseed oils had been analyzed to get the results. The validation results indicated that this simple and rapid method was successfully employed to determine multispecies adulteration of camellia oil adulterated with soybean, peanut and rapeseed oils.

  2. Engineered Barrier System: Physical and Chemical Environment

    Energy Technology Data Exchange (ETDEWEB)

    P. Dixon

    2004-04-26

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.

  3. Monitoring and trace detection of hazardous waste and toxic chemicals using resonance Raman spectroscopy

    International Nuclear Information System (INIS)

    Sedlacek, A.J. III; Dougherty, D.R.; Chen, C.L.

    1993-01-01

    Raman scattering is a coherent, inelastic, two-photon process, which shifts the frequency of an outgoing photon according to the vibrational structure of the irradiated species, thereby providing a unique fingerprint of the molecule. When involving an allowed electronic transition (resonance Raman), this scattering cross section can be enhanced by 10 4 to 10 6 and provides the basis for a viable technique that can monitor and detect trace quantities of hazardous wastes and toxic chemicals. Resonance Raman spectroscopy (RRS) possesses many of the ideal characteristics for monitoring and detecting of hazardous waste and toxic chemicals. Some of these traits are: (1) very high selectivity (chemical specific fingerprints); (2) independence from the excitation wavelength (ability to monitor in the solar blind region); (3) chemical mixture fingerprints are the sum of its individual components (no spectral cross-talk); (4) near independence of the Raman fingerprint to its physical state (very similar spectra for gas, liquid, solid and solutions -- either bulk or aerosols); and (5) insensitivity of the Raman signature to environmental conditions (no quenching). Data from a few chemicals will be presented which illustrate these features. In cases where background fluorescence accompanies the Raman signals, an effective frequency modulation technique has been developed, which can completely eliminate this interference

  4. An environmental monitoring detection system

    International Nuclear Information System (INIS)

    Leli Yuniarsari; Istofa; Sukandar

    2015-01-01

    Is part of radiation detection of the nuclear facilities engineering activities within nuclear facilities. The system comprised of gamma-ray radiation detector and weather detection which includes anemometer to detect the wind direction and speed, as well as rain gauge to measure the rainfall in a period of time. Data acquisition of the output is processed by Arduino Uno system which transformed the data into a particular standard and then displayed online in the website. The radiation detection system uses gamma-ray detector of NaI(Tl) and GM which convert the radiation detected into electric pulse to be fed into a pre-amp and amplifier and modified into square pulse. The weather detection system on the other hand works based on switch principle. For example, the wind with a certain speed could turn on a switch in the system and produce a voltage or pulse which can be measured. This value will then be interpreted as the wind direction and speed. Likewise for the rainfall gauge, the volume of water entering the bucket will turn the switch on, at the same time producing 1 pulse. The result of the experiment shows that for radiation detection system the output is a square pulse 4 volts by using detector NaI(Tl) and 4.4 volts by using detector GM. For weather detection system, basically was able to detect the wind direction, wind speed and rainfall just to find out further research is needed accuracy and the results compared with the standard tools available in BMKG. (author)

  5. Chemical reactions in reverse micelle systems

    Science.gov (United States)

    Matson, Dean W.; Fulton, John L.; Smith, Richard D.; Consani, Keith A.

    1993-08-24

    This invention is directed to conducting chemical reactions in reverse micelle or microemulsion systems comprising a substantially discontinuous phase including a polar fluid, typically an aqueous fluid, and a microemulsion promoter, typically a surfactant, for facilitating the formation of reverse micelles in the system. The system further includes a substantially continuous phase including a non-polar or low-polarity fluid material which is a gas under standard temperature and pressure and has a critical density, and which is generally a water-insoluble fluid in a near critical or supercritical state. Thus, the microemulsion system is maintained at a pressure and temperature such that the density of the non-polar or low-polarity fluid exceeds the critical density thereof. The method of carrying out chemical reactions generally comprises forming a first reverse micelle system including an aqueous fluid including reverse micelles in a water-insoluble fluid in the supercritical state. Then, a first reactant is introduced into the first reverse micelle system, and a chemical reaction is carried out with the first reactant to form a reaction product. In general, the first reactant can be incorporated into, and the product formed in, the reverse micelles. A second reactant can also be incorporated in the first reverse micelle system which is capable of reacting with the first reactant to form a product.

  6. Design of a multi-model observer-based estimator for Fault Detection and Isolation (FDI strategy: application to a chemical reactor

    Directory of Open Access Journals (Sweden)

    Y. Chetouani

    2008-12-01

    Full Text Available This study presents a FDI strategy for nonlinear dynamic systems. It shows a methodology of tackling the fault detection and isolation issue by combining a technique based on the residuals signal and a technique using the multiple Kalman filters. The usefulness of this combination is the on-line implementation of the set of models, which represents the normal mode and all dynamics of faults, if the statistical decision threshold on the residuals exceeds a fixed value. In other cases, one Extended Kalman Filter (EKF is enough to estimate the process state. After describing the system architecture and the proposed FDI methodology, we present a realistic application in order to show the technique's potential. An algorithm is described and applied to a chemical process like a perfectly stirred chemical reactor functioning in a semi-batch mode. The chemical reaction used is an oxido reduction one, the oxidation of sodium thiosulfate by hydrogen peroxide.

  7. A review of post-column photochemical reaction systems coupled to electrochemical detection in HPLC

    International Nuclear Information System (INIS)

    Fedorowski, Jennifer; LaCourse, William R.

    2010-01-01

    Post-column photochemical reaction systems have developed into a common approach for enhancing conventional methods of detection in HPLC. Photochemical reactions as a means of 'derivatization' have a significant number of advantages over chemical reaction-based methods, and a significant effort has been demonstrated to develop an efficient photochemical reactor. When coupled to electrochemical (EC) detection, the technique allows for the sensitive and selective determination of a variety of compounds (e.g., organic nitro explosives, beta-lactam antibiotics, sulfur-containing antibiotics, pesticides and insecticides). This review will focus on developments and methods using post-column photochemical reaction systems followed by EC detection in liquid chromatography. Papers are presented in chronological order to emphasize the evolution of the approach and continued importance of the application.

  8. Chemical detection with nano/bio hybrid devices based on carbon nanotubes and graphene

    Science.gov (United States)

    Lerner, Mitchell Bryant

    Carbon nanotube field-effect transistors (NT-FETs) and graphene field effect transistors (GFETs) provide a unique transduction platform for chemical and biomolecular detection. The work presented in this thesis describes the fabrication, characterization, and investigation of operational mechanisms of carbon-based biosensors. In the first set of experiments, we used carbon nanotubes as fast, all-electronic readout elements in novel vapor sensors, suitable for applications in environmental monitoring and medicine. Molecules bound to the hybrid alter the electrical properties of the NT-FET via several mechanisms, allowing direct detection as a change in the transistor conduction properties. Vapor sensors suitable for more complex system architectures characteristic of mammalian olfaction were demonstrated using NT-FETs functionalized with mouse olfactory receptor (mOR) proteins or single stranded DNA (ssDNA). Substitution of graphene as the channel material enabled production of hundreds of electronically similar devices with high yield. Etching large scale chemical vapor deposition (CVD)-grown graphene into small channels is itself a challenging problem, and we have developed novel fabrication methods to this end without sacrificing the inherent electrical quality that makes graphene such an attractive material. Large arrays of such devices have potential utility for understanding the physics of ligand-receptor interactions and contributing to the development of a new generation of devices for electronic olfaction. Tailored and specific detection was accomplished by chemically functionalizing the NT-FET or GFET with biomolecules, such as proteins or small molecules, to create a hybrid nanostructures. Targets for detection were widely varied, indicating the utility of these techniques, such as 1) live Salmonella cells in nutrient broth, 2) a biomarker protein indicative of prostate cancer, 3) antigen protein from the bacterium that causes Lyme disease, and 4) glucose

  9. Chemical Detection using Electrically Open Circuits having no Electrical Connections

    Science.gov (United States)

    Woodward, Stanley E.; Olgesby, Donald M.; Taylor, Bryant D.; Shams, Qamar A.

    2008-01-01

    This paper presents investigations to date on chemical detection using a recently developed method for designing, powering and interrogating sensors as electrically open circuits having no electrical connections. In lieu of having each sensor from a closed circuit with multiple electrically connected components, an electrically conductive geometric pattern that is powered using oscillating magnetic fields and capable of storing an electric field and a magnetic field without the need of a closed circuit or electrical connections is used. When electrically active, the patterns respond with their own magnetic field whose frequency, amplitude and bandwidth can be correlated with the magnitude of the physical quantities being measured. Preliminary experimental results of using two different detection approaches will be presented. In one method, a thin film of a reactant is deposited on the surface of the open-circuit sensor. Exposure to a specific targeted reactant shifts the resonant frequency of the sensor. In the second method, a coating of conductive material is placed on a thin non-conductive plastic sheet that is placed over the surface of the sensor. There is no physical contact between the sensor and the electrically conductive material. When the conductive material is exposed to a targeted reactant, a chemical reaction occurs that renders the material non-conductive. The change in the material s electrical resistance within the magnetic field of the sensor alters the sensor s response bandwidth and amplitude, allowing detection of the reaction without having the reactants in physical contact with the sensor.

  10. Technological advancements for the detection of and protection against biological and chemical warfare agents.

    Science.gov (United States)

    Eubanks, Lisa M; Dickerson, Tobin J; Janda, Kim D

    2007-03-01

    There is a growing need for technological advancements to combat agents of chemical and biological warfare, particularly in the context of the deliberate use of a chemical and/or biological warfare agent by a terrorist organization. In this tutorial review, we describe methods that have been developed both for the specific detection of biological and chemical warfare agents in a field setting, as well as potential therapeutic approaches for treating exposure to these toxic species. In particular, nerve agents are described as a typical chemical warfare agent, and the two potent biothreat agents, anthrax and botulinum neurotoxin, are used as illustrative examples of potent weapons for which countermeasures are urgently needed.

  11. Functionalized gold nanoparticle supported sensory mechanisms applied in detection of chemical and biological threat agents: A review

    International Nuclear Information System (INIS)

    Upadhyayula, Venkata K.K.

    2012-01-01

    Highlights: ► Smart sensors are needed for detection of chemical and biological threat agents. ► Smart sensors detect analytes with rapid speed, high sensitivity and selectivity. ► Functionalized gold nanoparticles (GNPs) can potentially smart sense threat agents. ► Functionalized GNPs support multiple analytical methods for sensing threat agents. ► Threat agents of all types can be detected using functionalized GNPs. - Abstract: There is a great necessity for development of novel sensory concepts supportive of smart sensing capabilities in defense and homeland security applications for detection of chemical and biological threat agents. A smart sensor is a detection device that can exhibit important features such as speed, sensitivity, selectivity, portability, and more importantly, simplicity in identifying a target analyte. Emerging nanomaterial based sensors, particularly those developed by utilizing functionalized gold nanoparticles (GNPs) as a sensing component potentially offer many desirable features needed for threat agent detection. The sensitiveness of physical properties expressed by GNPs, e.g. color, surface plasmon resonance, electrical conductivity and binding affinity are significantly enhanced when they are subjected to functionalization with an appropriate metal, organic or biomolecular functional groups. This sensitive nature of functionalized GNPs can be potentially exploited in the design of threat agent detection devices with smart sensing capabilities. In the presence of a target analyte (i.e., a chemical or biological threat agent) a change proportional to concentration of the analyte is observed, which can be measured either by colorimetric, fluorimetric, electrochemical or spectroscopic means. This article provides a review of how functionally modified gold colloids are applied in the detection of a broad range of threat agents, including radioactive substances, explosive compounds, chemical warfare agents, biotoxins, and

  12. Functionalized gold nanoparticle supported sensory mechanisms applied in detection of chemical and biological threat agents: A review

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyayula, Venkata K.K., E-mail: Upadhyayula.Venkata@epa.gov [Oak Ridge Institute of Science and Education (ORISE), MC-100-44, PO Box 117, Oak Ridge, TN 37831 (United States)

    2012-02-17

    Highlights: Black-Right-Pointing-Pointer Smart sensors are needed for detection of chemical and biological threat agents. Black-Right-Pointing-Pointer Smart sensors detect analytes with rapid speed, high sensitivity and selectivity. Black-Right-Pointing-Pointer Functionalized gold nanoparticles (GNPs) can potentially smart sense threat agents. Black-Right-Pointing-Pointer Functionalized GNPs support multiple analytical methods for sensing threat agents. Black-Right-Pointing-Pointer Threat agents of all types can be detected using functionalized GNPs. - Abstract: There is a great necessity for development of novel sensory concepts supportive of smart sensing capabilities in defense and homeland security applications for detection of chemical and biological threat agents. A smart sensor is a detection device that can exhibit important features such as speed, sensitivity, selectivity, portability, and more importantly, simplicity in identifying a target analyte. Emerging nanomaterial based sensors, particularly those developed by utilizing functionalized gold nanoparticles (GNPs) as a sensing component potentially offer many desirable features needed for threat agent detection. The sensitiveness of physical properties expressed by GNPs, e.g. color, surface plasmon resonance, electrical conductivity and binding affinity are significantly enhanced when they are subjected to functionalization with an appropriate metal, organic or biomolecular functional groups. This sensitive nature of functionalized GNPs can be potentially exploited in the design of threat agent detection devices with smart sensing capabilities. In the presence of a target analyte (i.e., a chemical or biological threat agent) a change proportional to concentration of the analyte is observed, which can be measured either by colorimetric, fluorimetric, electrochemical or spectroscopic means. This article provides a review of how functionally modified gold colloids are applied in the detection of a broad

  13. Remote laser drilling and sampling system for the detection of concealed explosives

    Science.gov (United States)

    Wild, D.; Pschyklenk, L.; Theiß, C.; Holl, G.

    2017-05-01

    The detection of hazardous materials like explosives is a central issue in national security in the field of counterterrorism. One major task includes the development of new methods and sensor systems for the detection. Many existing remote or standoff methods like infrared or raman spectroscopy find their limits, if the hazardous material is concealed in an object. Imaging technologies using x-ray or terahertz radiation usually yield no information about the chemical content itself. However, the exact knowledge of the real threat potential of a suspicious object is crucial for disarming the device. A new approach deals with a laser drilling and sampling system for the use as verification detector for suspicious objects. Central part of the system is a miniaturised, diode pumped Nd:YAG laser oscillator-amplifier. The system allows drilling into most materials like metals, synthetics or textiles with bore hole diameters in the micron scale. During the drilling process, the hazardous material can be sampled for further investigation with suitable detection methods. In the reported work, laser induced breakdown spectroscopy (LIBS) is used to monitor the drilling process and to classify the drilled material. Also experiments were carried out to show the system's ability to not ignite even sensitive explosives like triacetone triperoxide (TATP). The detection of concealed hazardous material is shown for different explosives using liquid chromatography and ion mobility spectrometry.

  14. A PDMS-based cylindrical hybrid lens for enhanced fluorescence detection in microfluidic systems.

    Science.gov (United States)

    Lin, Bor-Shyh; Yang, Yu-Ching; Ho, Chong-Yi; Yang, Han-Yu; Wang, Hsiang-Yu

    2014-02-13

    Microfluidic systems based on fluorescence detection have been developed and applied for many biological and chemical applications. Because of the tiny amount of sample in the system; the induced fluorescence can be weak. Therefore, most microfluidic systems deploy multiple optical components or sophisticated equipment to enhance the efficiency of fluorescence detection. However, these strategies encounter common issues of complex manufacturing processes and high costs. In this study; a miniature, cylindrical and hybrid lens made of polydimethylsiloxane (PDMS) to improve the fluorescence detection in microfluidic systems is proposed. The hybrid lens integrates a laser focusing lens and a fluorescence collecting lens to achieve dual functions and simplify optical setup. Moreover, PDMS has advantages of low-cost and straightforward fabrication compared with conventional optical components. The performance of the proposed lens is first examined with two fluorescent dyes and the results show that the lens provides satisfactory enhancement for fluorescence detection of Rhodamine 6G and Nile Red. The overall increments in collected fluorescence signal and detection sensitivity are more than 220% of those without lens, and the detection limits of Rhodamine 6G and Nile red are lowered to 0.01 μg/mL and 0.05 μg/mL, respectively. The hybrid lens is further applied to the detection of Nile red-labeled Chlorella vulgaris cells and it increases both signal intensity and detection sensitivity by more than 520%. The proposed hybrid lens also dramatically reduces the variation in detected signal caused by the deviation in incident angle of excitation light.

  15. System Detects Vibrational Instabilities

    Science.gov (United States)

    Bozeman, Richard J., Jr.

    1990-01-01

    Sustained vibrations at two critical frequencies trigger diagnostic response or shutdown. Vibration-analyzing electronic system detects instabilities of combustion in rocket engine. Controls pulse-mode firing of engine and identifies vibrations above threshold amplitude at 5.9 and/or 12kHz. Adapted to other detection and/or control schemes involving simultaneous real-time detection of signals above or below preset amplitudes at two or more specified frequencies. Potential applications include rotating machinery and encoders and decoders in security systems.

  16. Multisensor system for toxic gases detection generated on indoor environments

    Science.gov (United States)

    Durán, C. M.; Monsalve, P. A. G.; Mosquera, C. J.

    2016-11-01

    This work describes a wireless multisensory system for different toxic gases detection generated on indoor environments (i.e., Underground coal mines, etc.). The artificial multisensory system proposed in this study was developed through a set of six chemical gas sensors (MQ) of low cost with overlapping sensitivities to detect hazardous gases in the air. A statistical parameter was implemented to the data set and two pattern recognition methods such as Principal Component Analysis (PCA) and Discriminant Function Analysis (DFA) were used for feature selection. The toxic gases categories were classified with a Probabilistic Neural Network (PNN) in order to validate the results previously obtained. The tests were carried out to verify feasibility of the application through a wireless communication model which allowed to monitor and store the information of the sensor signals for the appropriate analysis. The success rate in the measures discrimination was 100%, using an artificial neural network where leave-one-out was used as cross validation method.

  17. Temperature lowering in cryogenic chemical-synthesis techniques and system

    International Nuclear Information System (INIS)

    Martinez, H.E.; Nelson, T.O.; Vikdal, L.N.

    1993-01-01

    When evaluating a chemical synthesis process for a reaction that occurs on the cryogenically cooled walls, it is sometimes necessary to reduce the wall temperatures to enhance the chemical process. To evaluate the chemical process at lower than atmospheric boiling of liquid nitrogen, we built a system and used it to reduce the temperature of the liquid nitrogen. The technique of lowering the liquid nitrogen temperature by reducing the pressure of the boil-off is established knowledge. This paper presents the engineering aspects of the system, design features, equipment requirements, methods of control, and results of the chemical synthesis. The heat input to the system was ∼400 watts, placing a relatively large demand on the pumping system. Our system is a scale-up of the small laboratory experiment, and it provides the information needed to design an effective system. The major problem encountered was the large quantity of liquid escaping the system during the processing, placing a large gas load on the vacuum system

  18. Chemical heat pump and chemical energy storage system

    Science.gov (United States)

    Clark, Edward C.; Huxtable, Douglas D.

    1985-08-06

    A chemical heat pump and storage system employs sulfuric acid and water. In one form, the system includes a generator and condenser, an evaporator and absorber, aqueous acid solution storage and water storage. During a charging cycle, heat is provided to the generator from a heat source to concentrate the acid solution while heat is removed from the condenser to condense the water vapor produced in the generator. Water is then stored in the storage tank. Heat is thus stored in the form of chemical energy in the concentrated acid. The heat removed from the water vapor can be supplied to a heat load of proper temperature or can be rejected. During a discharge cycle, water in the evaporator is supplied with heat to generate water vapor, which is transmitted to the absorber where it is condensed and absorbed into the concentrated acid. Both heats of dilution and condensation of water are removed from the thus diluted acid. During the discharge cycle the system functions as a heat pump in which heat is added to the system at a low temperature and removed from the system at a high temperature. The diluted acid is stored in an acid storage tank or is routed directly to the generator for reconcentration. The generator, condenser, evaporator, and absorber all are operated under pressure conditions specified by the desired temperature levels for a given application. The storage tanks, however, can be maintained at or near ambient pressure conditions. In another form, the heat pump system is employed to provide usable heat from waste process heat by upgrading the temperature of the waste heat.

  19. Direct single-molecule dynamic detection of chemical reactions.

    Science.gov (United States)

    Guan, Jianxin; Jia, Chuancheng; Li, Yanwei; Liu, Zitong; Wang, Jinying; Yang, Zhongyue; Gu, Chunhui; Su, Dingkai; Houk, Kendall N; Zhang, Deqing; Guo, Xuefeng

    2018-02-01

    Single-molecule detection can reveal time trajectories and reaction pathways of individual intermediates/transition states in chemical reactions and biological processes, which is of fundamental importance to elucidate their intrinsic mechanisms. We present a reliable, label-free single-molecule approach that allows us to directly explore the dynamic process of basic chemical reactions at the single-event level by using stable graphene-molecule single-molecule junctions. These junctions are constructed by covalently connecting a single molecule with a 9-fluorenone center to nanogapped graphene electrodes. For the first time, real-time single-molecule electrical measurements unambiguously show reproducible large-amplitude two-level fluctuations that are highly dependent on solvent environments in a nucleophilic addition reaction of hydroxylamine to a carbonyl group. Both theoretical simulations and ensemble experiments prove that this observation originates from the reversible transition between the reactant and a new intermediate state within a time scale of a few microseconds. These investigations open up a new route that is able to be immediately applied to probe fast single-molecule physics or biophysics with high time resolution, making an important contribution to broad fields beyond reaction chemistry.

  20. Chemical Relationship On Detection Of Ganoderma Disease On Oil Palm Tree System

    Science.gov (United States)

    Imran, S. N. M.; Baharudin, F.; Ali, M. F.; Rahiman, M. H. F.

    2018-04-01

    Detection of fungal disease is the major issues in agricultural management and production. This disease would attack the plantation area and damaging the based root or the stem tissue of the trees. In oil palm industry, Basal Stem Rot (BSR) is the major disease in Malaysia that caused by a fungal named Ganoderma Boninense species. Since agricultural areas in Malaysia are the great factors that contribute in the economic sector, therefore the prevention and controlling this disease situation are needed to reduce the extent of the infection. These plant diseases are mostly being caused by the inflectional disease form such as viruses, viroids, bacteria, protozoa and even parasitic plants. It also could included mites and vertebrate or small insects that consume the plant tissues. Studies focused more on the breeding and relationship of the disease in the stumps, roots and soil system if oil palm trees by identifying the heavy metal; Phosphorus, copper, Iron, Manganese, Potassium and Zinc characteristic. Samples were taken from various types of physical appearance of the trees. It shows the relationship of the fungal disease breeding between oil palm trees and the heavy metals does affect the tree’s system.

  1. Culturing Security System of Chemical Laboratory in Indonesia

    Directory of Open Access Journals (Sweden)

    Eka Dian Pusfitasari

    2017-04-01

    Full Text Available Indonesia has experiences on the lack of chemical security such as: a number of bombing terrors and hazardous chemicals found in food. Bomb used in terror is a homemade bomb made from chemicals which are widely spread in the research laboratories such as a mixture of pottasium chlorate, sulphur, and alumunium. Therefore, security of chemicals should be implemented to avoid the misused of the chemicals. Although it has experienced many cases of the misuse of chemicals, and many regulations and seminars related to chemical security have been held, but the implementation of chemical security is still a new thing for Indonesian citizens. The evident is coming from the interviews conducted in this study. Questions asked in this interview/survey included: the implementation of chemical safety and chemical security in laboratory; chemical inventory system and its regulation; and training needed for chemical security implementation. Respondents were basically a researcher from Government Research Institutes, University laboratories, senior high school laboratories, and service laboratories were still ambiguous in distinguishing chemical safety and chemical security. Because of this condition, most Indonesia chemical laboratories did not totally apply chemical security system. Education is very important step to raise people awareness and address this problem. Law and regulations should be sustained by all laboratory personnel activities to avoid chemical diversion to be used for harming people and environment. The Indonesia Government could also develop practical guidelines and standards to be applied to all chemical laboratories in Indonesia. These acts can help Government’s efforts to promote chemical security best practices which usually conducted by doing seminars and workshop.

  2. In-source collision induced dissociation of inorganic explosives for mass spectrometric signature detection and chemical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Forbes, Thomas P., E-mail: thomas.forbes@nist.gov; Sisco, Edward

    2015-09-10

    The trace detection, bulk quantification, and chemical imaging of inorganic explosives and components was demonstrated utilizing in-source collision induced dissociation (CID) coupled with laser desorption/ionization mass spectrometry (LDI-MS). The incorporation of in-source CID provided direct control over the extent of adduct and cluster fragmentation as well as organic noise reduction for the enhanced detection of both the elemental and molecular ion signatures of fuel-oxidizer mixtures and other inorganic components of explosive devices. Investigation of oxidizer molecular anions, specifically, nitrates, chlorates, and perchlorates, identified that the optimal in-source CID existed at the transition between fragmentation of the ionic salt bonds and molecular anion bonds. The chemical imaging of oxidizer particles from latent fingerprints was demonstrated, including both cation and anion components in positive and negative mode mass spectrometry, respectively. This investigation demonstrated LDI-MS with in-source CID as a versatile tool for security fields, as well as environmental monitoring and nuclear safeguards, facilitating the detection of elemental and molecular inorganic compounds at nanogram levels. - Highlights: • In-source CID enhanced detection of elemental inorganics up to 1000-fold. • In-source CID optimization of polyatomic oxidizers enhanced detection up to 100-fold. • Optimal CID identified at transition from breaking ionic salt to molecular anion bonds. • Trace detection of inorganic explosives at nanogram levels was demonstrated. • Oxidizer particles were chemically imaged directly from latent fingerprints.

  3. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    International Nuclear Information System (INIS)

    Jarek, R.

    2004-01-01

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports

  4. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    International Nuclear Information System (INIS)

    G.H. Nieder-Westermann

    2005-01-01

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports

  5. Equilibrium Constant as Solution to the Open Chemical Systems

    OpenAIRE

    Zilbergleyt, B.

    2008-01-01

    According to contemporary views, equilibrium constant is relevant only to true thermodynamic equilibria in isolated systems with one chemical reaction. The paper presents a novel formula that ties-up equilibrium constant and chemical system composition at any state, isolated or open as well. Extending the logarithmic logistic map of the Discrete Thermodynamics of Chemical Equilibria, this formula maps the system population at isolated equilibrium into the population at any open equilibrium at...

  6. Particle detection systems and methods

    Science.gov (United States)

    Morris, Christopher L.; Makela, Mark F.

    2010-05-11

    Techniques, apparatus and systems for detecting particles such as muons and neutrons. In one implementation, a particle detection system employs a plurality of drift cells, which can be for example sealed gas-filled drift tubes, arranged on sides of a volume to be scanned to track incoming and outgoing charged particles, such as cosmic ray-produced muons. The drift cells can include a neutron sensitive medium to enable concurrent counting of neutrons. The system can selectively detect devices or materials, such as iron, lead, gold, uranium, plutonium, and/or tungsten, occupying the volume from multiple scattering of the charged particles passing through the volume and can concurrently detect any unshielded neutron sources occupying the volume from neutrons emitted therefrom. If necessary, the drift cells can be used to also detect gamma rays. The system can be employed to inspect occupied vehicles at border crossings for nuclear threat objects.

  7. Ferret Workflow Anomaly Detection System

    National Research Council Canada - National Science Library

    Smith, Timothy J; Bryant, Stephany

    2005-01-01

    The Ferret workflow anomaly detection system project 2003-2004 has provided validation and anomaly detection in accredited workflows in secure knowledge management systems through the use of continuous, automated audits...

  8. Solar system fault detection

    Science.gov (United States)

    Farrington, R.B.; Pruett, J.C. Jr.

    1984-05-14

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  9. Engineered Barrier System: Physical and Chemical Environment Model

    International Nuclear Information System (INIS)

    Jolley, D. M.; Jarek, R.; Mariner, P.

    2004-01-01

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports

  10. Sensitive and comprehensive detection of chemical warfare agents in air by atmospheric pressure chemical ionization ion trap tandem mass spectrometry with counterflow introduction.

    Science.gov (United States)

    Seto, Yasuo; Sekiguchi, Hiroshi; Maruko, Hisashi; Yamashiro, Shigeharu; Sano, Yasuhiro; Takayama, Yasuo; Sekioka, Ryoji; Yamaguchi, Shintaro; Kishi, Shintaro; Satoh, Takafumi; Sekiguchi, Hiroyuki; Iura, Kazumitsu; Nagashima, Hisayuki; Nagoya, Tomoki; Tsuge, Kouichiro; Ohsawa, Isaac; Okumura, Akihiko; Takada, Yasuaki; Ezawa, Naoya; Watanabe, Susumu; Hashimoto, Hiroaki

    2014-05-06

    A highly sensitive and specific real-time field-deployable detection technology, based on counterflow air introduction atmospheric pressure chemical ionization, has been developed for a wide range of chemical warfare agents (CWAs) comprising gaseous (two blood agents, three choking agents), volatile (six nerve gases and one precursor agent, five blister agents), and nonvolatile (three lachrymators, three vomiting agents) agents in air. The approach can afford effective chemical ionization, in both positive and negative ion modes, for ion trap multiple-stage mass spectrometry (MS(n)). The volatile and nonvolatile CWAs tested provided characteristic ions, which were fragmented into MS(3) product ions in positive and negative ion modes. Portions of the fragment ions were assigned by laboratory hybrid mass spectrometry (MS) composed of linear ion trap and high-resolution mass spectrometers. Gaseous agents were detected by MS or MS(2) in negative ion mode. The limits of detection for a 1 s measurement were typically at or below the microgram per cubic meter level except for chloropicrin (submilligram per cubic meter). Matrix effects by gasoline vapor resulted in minimal false-positive signals for all the CWAs and some signal suppression in the case of mustard gas. The moisture level did influence the measurement of the CWAs.

  11. Nuclear fuel element leak detection system

    International Nuclear Information System (INIS)

    John, C.D. Jr.

    1978-01-01

    Disclosed is a leak detection system integral with a wall of a building used to fabricate nuclear fuel elements for detecting radiation leakage from the nuclear fuel elements as the fuel elements exit the building. The leak detecting system comprises a shielded compartment constructed to withstand environmental hazards extending into a similarly constructed building and having sealed doors on both ends along with leak detecting apparatus connected to the compartment. The leak detecting system provides a system for removing a nuclear fuel element from its fabrication building while testing for radiation leaks in the fuel element

  12. Simple and fast fluorescence detection of benzoyl peroxide in wheat flour by N-methoxy rhodamine-6G spirolactam based on consecutive chemical reactions

    International Nuclear Information System (INIS)

    Chen Wei; Shi Wen; Li Zhao; Ma Huimin; Liu Yang; Zhang Jinghua; Liu Qingjun

    2011-01-01

    Graphical abstract: A simple and fast method for fluorescence detection of benzoyl peroxide in wheat flour by N-methoxy rhodamine-6G spirolactam (1) is proposed based on consecutive chemical reactions. Highlights: ► Benzoyl peroxide can oxidize Fe 2+ into Fe 3+ . ► Fe 3+ selectively induces the opening of rhodamine spirolactam ring. ► The two reactions led to the development of a new fluorescent method for benzoyl peroxide. ► The method is simple and fast, and is used to detect benzoyl peroxide in wheat flour. - Abstract: Benzoyl peroxide (BPO) as a brightener is often added to wheat flour, and excessive use of this food additive is receiving increasing concern. Herein, a simple and fast method for fluorescence detection of BPO is proposed based on consecutive chemical reactions. In this approach, BPO first oxidizes Fe 2+ into Fe 3+ and the resulting Fe 3+ then induces the opening of the spirolactam ring of a new rhodamine derivative, N-methoxy rhodamine-6G spirolactam, switching on fluorescence of the detection system. More importantly, the fluorescence response of the reaction system to BPO is rather rapid and sensitive, with a detection limit of 6 mg kg −1 (k = 3), which makes it to be of great potential use in food safety analysis. The applicability of the proposed method has been successfully demonstrated on the determination of BPO in wheat flour samples.

  13. Human exposure to endocrine disrupting chemicals: effects on the male and female reproductive systems.

    Science.gov (United States)

    Sifakis, Stavros; Androutsopoulos, Vasilis P; Tsatsakis, Aristeidis M; Spandidos, Demetrios A

    2017-04-01

    Endocrine disrupting chemicals (EDCs) comprise a group of chemical compounds that have been examined extensively due to the potential harmful effects in the health of human populations. During the past decades, particular focus has been given to the harmful effects of EDCs to the reproductive system. The estimation of human exposure to EDCs can be broadly categorized into occupational and environmental exposure, and has been a major challenge due to the structural diversity of the chemicals that are derived by many different sources at doses below the limit of detection used by conventional methodologies. Animal and in vitro studies have supported the conclusion that endocrine disrupting chemicals affect the hormone dependent pathways responsible for male and female gonadal development, either through direct interaction with hormone receptors or via epigenetic and cell-cycle regulatory modes of action. In human populations, the majority of the studies point towards an association between exposure to EDCs and male and/or female reproduction system disorders, such as infertility, endometriosis, breast cancer, testicular cancer, poor sperm quality and/or function. Despite promising discoveries, a causal relationship between the reproductive disorders and exposure to specific toxicants is yet to be established, due to the complexity of the clinical protocols used, the degree of occupational or environmental exposure, the determination of the variables measured and the sample size of the subjects examined. Future studies should focus on a uniform system of examining human populations with regard to the exposure to specific EDCs and the direct effect on the reproductive system. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. 46 CFR 108.405 - Fire detection system.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Fire detection system. 108.405 Section 108.405 Shipping... EQUIPMENT Fire Extinguishing Systems § 108.405 Fire detection system. (a) Each fire detection system and each smoke detection system on a unit must— (1) Be approved by the Commandant; and (2) Have a visual...

  15. Proximity detection system underground

    Energy Technology Data Exchange (ETDEWEB)

    Denis Kent [Mine Site Technologies (Australia)

    2008-04-15

    Mine Site Technologies (MST) with the support ACARP and Xstrata Coal NSW, as well as assistance from Centennial Coal, has developed a Proximity Detection System to proof of concept stage as per plan. The basic aim of the project was to develop a system to reduce the risk of the people coming into contact with vehicles in an uncontrolled manner (i.e. being 'run over'). The potential to extend the developed technology into other areas, such as controls for vehicle-vehicle collisions and restricting access of vehicle or people into certain zones (e.g. non FLP vehicles into Hazardous Zones/ERZ) was also assessed. The project leveraged off MST's existing Intellectual Property and experience gained with our ImPact TRACKER tagging technology, allowing the development to be fast tracked. The basic concept developed uses active RFID Tags worn by miners underground to be detected by vehicle mounted Readers. These Readers in turn provide outputs that can be used to alert a driver (e.g. by light and/or audible alarm) that a person (Tag) approaching within their vicinity. The prototype/test kit developed proved the concept and technology, the four main components being: Active RFID Tags to send out signals for detection by vehicle mounted receivers; Receiver electronics to detect RFID Tags approaching within the vicinity of the unit to create a long range detection system (60 m to 120 m); A transmitting/exciter device to enable inner detection zone (within 5 m to 20 m); and A software/hardware device to process & log incoming Tags reads and create certain outputs. Tests undertaken in the laboratory and at a number of mine sites, confirmed the technology path taken could form the basis of a reliable Proximity Detection/Alert System.

  16. Elaboration of colloidal silica sols in aqueous medium: functionalities, optical properties and chemical detection of coating

    International Nuclear Information System (INIS)

    Le Guevel, X.

    2006-03-01

    The aim of this work was to study surface reactivity of silica nanoparticles through physical and chemical properties of sols and coatings. Applications are numerous and they are illustrated in this work by optical coating preparation for laser components and chemical gas sensor development for nitroaromatics detection. On one hand, protocol synthesis of colloidal silica sols has been developed in water medium using sol-gel process (0 to 100 w%). These sols, so-called BLUESIL, are time-stable during at least one year. Homogeneous coatings having thickness fixed to 200 nm, have been prepared on silica substrate and show high porosity and high transparence. Original films have been developed using catalytic curing in gas atmosphere (ammonia curing) conferring good abrasive resistance to the coating without significant properties modification. In order to reduce film sensitivity to molecular adsorption (water, polluting agents... ), specific BLUESIL coatings have been prepared showing hydrophobic property due to apolar species grafting onto silica nanoparticles. Using this route, coatings having several functional properties such as transparence, hydrophobicity, high porosity and good abrasive resistance have been elaborated. On the other hand, we show that colloidal silica is a material specifically adapted to the detection of nitro aromatic vapors (NAC). Indeed, the use of colloidal silica as chemical gas sensor reveals very high sensitivity, selectivity to NAC compared to Volatile Organic Compound (V.O.C) and good detection performances during one year. Moreover, chemical sensors using functionalized colloidal silica have exhibited good results of detection, even in high humidity medium (≥70 %RH). (author)

  17. Chemical dosimetry system for criticality accidents.

    Science.gov (United States)

    Miljanić, Saveta; Ilijas, Boris

    2004-01-01

    Ruder Bosković Institute (RBI) criticality dosimetry system consists of a chemical dosimetry system for measuring the total (neutron + gamma) dose, and a thermoluminescent (TL) dosimetry system for a separate determination of the gamma ray component. The use of the chemical dosemeter solution chlorobenzene-ethanol-trimethylpentane (CET) is based on the radiolytic formation of hydrochloric acid, which protonates a pH indicator, thymolsulphonphthalein. The high molar absorptivity of its red form at 552 nm is responsible for a high sensitivity of the system: doses in the range 0.2-15 Gy can be measured. The dosemeter has been designed as a glass ampoule filled with the CET solution and inserted into a pen-shaped plastic holder. For dose determinations, a newly constructed optoelectronic reader has been used. The RBI team took part in the International Intercomparison of Criticality Accident Dosimetry Systems at the SILENE Reactor, Valduc, June 2002, with the CET dosimetry system. For gamma ray dose determination TLD-700 TL detectors were used. The results obtained with CET dosemeter show very good agreement with the reference values.

  18. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    R. Jarek

    2004-11-23

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports.

  19. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    G.H. Nieder-Westermann

    2005-04-07

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports.

  20. Engineered Barrier System: Physical and Chemical Environment Model

    Energy Technology Data Exchange (ETDEWEB)

    D. M. Jolley; R. Jarek; P. Mariner

    2004-02-09

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.

  1. Mobile app for chemical detection

    Science.gov (United States)

    Klunder, Gregory; Cooper, Chadway R.; Satcher, Jr., Joe H.; Tekle, Ephraim A.

    2017-07-18

    The present invention incorporates the camera from a mobile device (phone, iPad, etc.) to capture an image from a chemical test kit and process the image to provide chemical information. A simple user interface enables the automatic evaluation of the image, data entry, gps info, and maintain records from previous analyses.

  2. Automated detection of structural alerts (chemical fragments in (ecotoxicology

    Directory of Open Access Journals (Sweden)

    Ronan Bureau

    2013-02-01

    Full Text Available This mini-review describes the evolution of different algorithms dedicated to the automated discovery of chemical fragments associated to (ecotoxicological endpoints. These structural alerts correspond to one of the most interesting approach of in silico toxicology due to their direct link with specific toxicological mechanisms. A number of expert systems are already available but, since the first work in this field which considered a binomial distribution of chemical fragments between two datasets, new data miners were developed and applied with success in chemoinformatics. The frequency of a chemical fragment in a dataset is often at the core of the process for the definition of its toxicological relevance. However, recent progresses in data mining provide new insights into the automated discovery of new rules. Particularly, this review highlights the notion of Emerging Patterns that can capture contrasts between classes of data.

  3. AUTOMATED DETECTION OF STRUCTURAL ALERTS (CHEMICAL FRAGMENTS IN (ECOTOXICOLOGY

    Directory of Open Access Journals (Sweden)

    Alban Lepailleur

    2013-02-01

    Full Text Available This mini-review describes the evolution of different algorithms dedicated to the automated discovery of chemical fragments associated to (ecotoxicological endpoints. These structural alerts correspond to one of the most interesting approach of in silico toxicology due to their direct link with specific toxicological mechanisms. A number of expert systems are already available but, since the first work in this field which considered a binomial distribution of chemical fragments between two datasets, new data miners were developed and applied with success in chemoinformatics. The frequency of a chemical fragment in a dataset is often at the core of the process for the definition of its toxicological relevance. However, recent progresses in data mining provide new insights into the automated discovery of new rules. Particularly, this review highlights the notion of Emerging Patterns that can capture contrasts between classes of data.

  4. All-organic microelectromechanical systems integrating specific molecular recognition--a new generation of chemical sensors.

    Science.gov (United States)

    Ayela, Cédric; Dubourg, Georges; Pellet, Claude; Haupt, Karsten

    2014-09-03

    Cantilever-type all-organic microelectromechanical systems based on molecularly imprinted polymers for specific analyte recognition are used as chemical sensors. They are produced by a simple spray-coating-shadow-masking process. Analyte binding to the cantilever generates a measurable change in its resonance frequency. This allows label-free detection by direct mass sensing of low-molecular-weight analytes at nanomolar concentrations. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Colorimetric Sensor Arrays for the Detection and Identification of Chemical Weapons and Explosives.

    Science.gov (United States)

    Kangas, Michael J; Burks, Raychelle M; Atwater, Jordyn; Lukowicz, Rachel M; Williams, Pat; Holmes, Andrea E

    2017-03-04

    There is a significant demand for devices that can rapidly detect chemical-biological-explosive (CBE) threats on-site and allow for immediate responders to mitigate spread, risk, and loss. The key to an effective reconnaissance mission is a unified detection technology that analyzes potential threats in real time. In addition to reviewing the current state of the art in the field, this review illustrates the practicality of colorimetric arrays composed of sensors that change colors in the presence of analytes. This review also describes an outlook toward future technologies, and describes how they could possibly be used in areas such as war zones to detect and identify hazardous substances.

  6. 29 CFR 1910.164 - Fire detection systems.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Fire detection systems. 1910.164 Section 1910.164 Labor... detection systems. (a) Scope and application. This section applies to all automatic fire detection systems... detection systems and components to normal operating condition as promptly as possible after each test or...

  7. Graphene Nanoplatelet-Polymer Chemiresistive Sensor Arrays for the Detection and Discrimination of Chemical Warfare Agent Simulants.

    Science.gov (United States)

    Wiederoder, Michael S; Nallon, Eric C; Weiss, Matt; McGraw, Shannon K; Schnee, Vincent P; Bright, Collin J; Polcha, Michael P; Paffenroth, Randy; Uzarski, Joshua R

    2017-11-22

    A cross-reactive array of semiselective chemiresistive sensors made of polymer-graphene nanoplatelet (GNP) composite coated electrodes was examined for detection and discrimination of chemical warfare agents (CWA). The arrays employ a set of chemically diverse polymers to generate a unique response signature for multiple CWA simulants and background interferents. The developed sensors' signal remains consistent after repeated exposures to multiple analytes for up to 5 days with a similar signal magnitude across different replicate sensors with the same polymer-GNP coating. An array of 12 sensors each coated with a different polymer-GNP mixture was exposed 100 times to a cycle of single analyte vapors consisting of 5 chemically similar CWA simulants and 8 common background interferents. The collected data was vector normalized to reduce concentration dependency, z-scored to account for baseline drift and signal-to-noise ratio, and Kalman filtered to reduce noise. The processed data was dimensionally reduced with principal component analysis and analyzed with four different machine learning algorithms to evaluate discrimination capabilities. For 5 similarly structured CWA simulants alone 100% classification accuracy was achieved. For all analytes tested 99% classification accuracy was achieved demonstrating the CWA discrimination capabilities of the developed system. The novel sensor fabrication methods and data processing techniques are attractive for development of sensor platforms for discrimination of CWA and other classes of chemical vapors.

  8. Construction of a Linux based chemical and biological information system.

    Science.gov (United States)

    Molnár, László; Vágó, István; Fehér, András

    2003-01-01

    A chemical and biological information system with a Web-based easy-to-use interface and corresponding databases has been developed. The constructed system incorporates all chemical, numerical and textual data related to the chemical compounds, including numerical biological screen results. Users can search the database by traditional textual/numerical and/or substructure or similarity queries through the web interface. To build our chemical database management system, we utilized existing IT components such as ORACLE or Tripos SYBYL for database management and Zope application server for the web interface. We chose Linux as the main platform, however, almost every component can be used under various operating systems.

  9. A fibre optic chemical sensor for the detection of cocaine

    Science.gov (United States)

    Nguyen, T. Hien; Sun, Tong; Grattan, Kenneth T. V.; Hardwick, S. A.

    2010-09-01

    A fibre-optic chemical sensor for the detection of cocaine has been developed, based on a molecularly imprinted polymer (MIP) containing a fluorescein moiety as the signalling group. The fluorescent MIP was formed and covalently attached to the distal end of an optical fibre. The sensor exhibited an increase in fluorescence intensity in response to cocaine in the concentration range of 0 - 500 μM in aqueous acetonitrile mixtures with good reproducibility over 24 h. Selectivity for cocaine over others drugs has also been demonstrated.

  10. Development of a Persistent Chemical Agent Simulator System (PCASS)

    Science.gov (United States)

    Mcginness, W. G.

    1983-01-01

    The development of a persistent chemical agent simulation system (PCASS) is described. This PCASS is to be used for the military training of troops to simulate actual chemical warfare. The purpose of this system is to facilitate in the determination of chemical contamination and effectiveness of decontamination for training purposes. The fluorescent tracer employed has no daylight activation, but yet is easily removed with a decontaminate solution or water and surfactants. Also employed is a time delayed color developing system. When an individual is subjected to the PCASS and does not decontaminate adequately, red blotches or red coloration will develop as a function of time and temperature. The intent of this is to simulate the delayed chemical reaction of mustard contaminates.

  11. Detection of methamphetamine in the presence of nicotine using in situ chemical derivatization and ion mobility spectrometry.

    Science.gov (United States)

    Ochoa, Mariela L; Harrington, Peter B

    2004-02-15

    The detection of methamphetamine in the presence of nicotine has been successfully accomplished using in situ chemical derivatization with propyl chloroformate as the derivatization reagent and ion mobility spectrometry (IMS). The rapid detection of methamphetamine is important for forensic scientists in order to establish a chain of evidence and link criminals to the crime scene. Nicotine is pervasive in clandestine drug laboratories from cigarette smoke residue. It has been demonstrated that nicotine obscures the methamphetamine peaks in ion mobility spectrometers due to their similar charge affinities and ion mobilities, which makes their detection a challenging task. As a consequence, false positive or negative responses may arise. In situ chemical derivatization poses as a sensitive, accurate, and reproducible alternative to remove the nicotine background when detecting nanogram amounts of methamphetamine. The derivatization agent was coated onto the sample disk, and the derivatization product corresponding to propyl methamphetamine carbamate was detected. In the present study, in situ chemical derivatization was demonstrated to be a feasible method to detect methamphetamine hydrochloride as the carbamate derivative, which was baseline-resolved from the nicotine peak. Alternating least squares (ALS) was used to model the datasets. A mixture containing both compounds revealed reduced mobilities of 1.61 cm(2)/V.s and 1.54 cm(2)/V.s for methamphetamine and nicotine, respectively. The reduced mobility of propyl methamphetamine carbamate was found at 1.35 cm(2)/V.s.

  12. Fluorescence detection system for microfluidic droplets

    Science.gov (United States)

    Chen, Binyu; Han, Xiaoming; Su, Zhen; Liu, Quanjun

    2018-05-01

    In microfluidic detection technology, because of the universality of optical methods in laboratory, optical detection is an attractive solution for microfluidic chip laboratory equipment. In addition, the equipment with high stability and low cost can be realized by integrating appropriate optical detection technology on the chip. This paper reports a detection system for microfluidic droplets. Photomultiplier tubes (PMT) is used as a detection device to improve the sensitivity of detection. This system improves the signal to noise ratio by software filtering and spatial filter. The fluorescence intensity is proportional to the concentration of the fluorescence and intensity of the laser. The fluorescence micro droplets of different concentrations can be distinguished by this system.

  13. Idaho Explosives Detection System

    International Nuclear Information System (INIS)

    Reber, Edward L.; Blackwood, Larry G.; Edwards, Andrew J.; Jewell, J. Keith; Rohde, Kenneth W.; Seabury, Edward H.; Klinger, Jeffery B.

    2005-01-01

    The Idaho Explosives Detection System was developed at the Idaho National Laboratory (INL) to respond to threats imposed by delivery trucks potentially carrying explosives into military bases. A full-scale prototype system has been built and is currently undergoing testing. The system consists of two racks, one on each side of a subject vehicle. Each rack includes a neutron generator and an array of NaI detectors. The two neutron generators are pulsed and synchronized. A laptop computer controls the entire system. The control software is easily operable by minimally trained staff. The system was developed to detect explosives in a medium size truck within a 5-min measurement time. System performance was successfully demonstrated with explosives at the INL in June 2004 and at Andrews Air Force Base in July 2004

  14. Idaho Explosives Detection System

    Energy Technology Data Exchange (ETDEWEB)

    Reber, Edward L. [Idaho National Laboratory, 2525 N. Freemont Ave., Idaho Falls, ID 83415-2114 (United States)]. E-mail: reber@inel.gov; Blackwood, Larry G. [Idaho National Laboratory, 2525 N. Freemont Ave., Idaho Falls, ID 83415-2114 (United States); Edwards, Andrew J. [Idaho National Laboratory, 2525 N. Freemont Ave., Idaho Falls, ID 83415-2114 (United States); Jewell, J. Keith [Idaho National Laboratory, 2525 N. Freemont Ave., Idaho Falls, ID 83415-2114 (United States); Rohde, Kenneth W. [Idaho National Laboratory, 2525 N. Freemont Ave., Idaho Falls, ID 83415-2114 (United States); Seabury, Edward H. [Idaho National Laboratory, 2525 N. Freemont Ave., Idaho Falls, ID 83415-2114 (United States); Klinger, Jeffery B. [Idaho National Laboratory, 2525 N. Freemont Ave., Idaho Falls, ID 83415-2114 (United States)

    2005-12-15

    The Idaho Explosives Detection System was developed at the Idaho National Laboratory (INL) to respond to threats imposed by delivery trucks potentially carrying explosives into military bases. A full-scale prototype system has been built and is currently undergoing testing. The system consists of two racks, one on each side of a subject vehicle. Each rack includes a neutron generator and an array of NaI detectors. The two neutron generators are pulsed and synchronized. A laptop computer controls the entire system. The control software is easily operable by minimally trained staff. The system was developed to detect explosives in a medium size truck within a 5-min measurement time. System performance was successfully demonstrated with explosives at the INL in June 2004 and at Andrews Air Force Base in July 2004.

  15. Damage Detection and Deteriorating Structural Systems

    DEFF Research Database (Denmark)

    Long, Lijia; Thöns, Sebastian; Döhler, Michael

    2017-01-01

    This paper addresses the quantification of the value of damage detection system and algorithm information on the basis of Value of Information (VoI) analysis to enhance the benefit of damage detection information by providing the basis for its optimization before it is performed and implemented....... The approach of the quantification the value of damage detection information builds upon the Bayesian decision theory facilitating the utilization of damage detection performance models, which describe the information and its precision on structural system level, facilitating actions to ensure the structural...... detection information is determined utilizing Bayesian updating. The damage detection performance is described with the probability of indication for different component and system damage states taking into account type 1 and type 2 errors. The value of damage detection information is then calculated...

  16. Gas detection system

    International Nuclear Information System (INIS)

    Allan, C.J.; Bayly, J.G.

    1975-01-01

    The gas detection system provides for the effective detection of gas leaks over a large area. It includes a laser which has a laser line corresponding to an absorption line of the gas to be detected. A He-Xe laser scans a number of retroreflectors which are strategically located around a D 2 O plant to detect H 2 S leaks. The reflected beam is focused by a telescope, filtered, and passed into an infrared detector. The laser may be made to emit two frequencies, one of which corresponds with an H 2 S absorption line; or it may be modulated on and off the H 2 S absorption line. The relative amplitude of the absorbed light will be a measure of the H 2 S present

  17. Semiconductor radiation detection systems

    CERN Document Server

    2010-01-01

    Covers research in semiconductor detector and integrated circuit design in the context of medical imaging using ionizing radiation. This book explores other applications of semiconductor radiation detection systems in security applications such as luggage scanning, dirty bomb detection and border control.

  18. Confocal detection of Rayleigh scattering for residual stress measurement in chemically tempered glass

    Energy Technology Data Exchange (ETDEWEB)

    Hödemann, S., E-mail: siim.hodemann@ut.ee; Möls, P.; Kiisk, V.; Saar, R.; Kikas, J. [Institute of Physics, University of Tartu, Wilhelm Ostwald st., Tartu 50411 (Estonia); Murata, T. [Nippon Electric Glass Co., 7-1 Seiran 2-chome, Otsu-shi, Shiga 520-8639 (Japan)

    2015-12-28

    A new optical method is presented for evaluation of the stress profile in chemically tempered (chemically strengthened) glass based on confocal detection of scattered laser beam. Theoretically, a lateral resolution of 0.2 μm and a depth resolution of 0.6 μm could be achieved by using a confocal microscope with high-NA immersion objective. The stress profile in the 250 μm thick surface layer of chemically tempered lithium aluminosilicate glass was measured with a high spatial resolution to illustrate the capability of the method. The confocal method is validated using transmission photoelastic and Na{sup +} ion concentration profile measurement. Compositional influence on the stress-optic coefficient is calculated and discussed. Our method opens up new possibilities for three-dimensional scattered light tomography of mechanical imaging in birefringent materials.

  19. A review of chemical decontamination systems for nuclear facilities

    International Nuclear Information System (INIS)

    Chen, L.; Chamberlain, D.B.; Conner, C.; Vandegrift, G.F.

    1996-01-01

    With the downsizing of the Department of Energy (DOE) complex, many of its buildings and facilities will be decommissioned and dismantled. As part of this decommissioning, some form of decontamination will be required. To develop an appropriate technology for in situ chemical decontamination of equipment interiors in the decommissioning of DOE nuclear facilities, knowledge of the existing chemical decontamination methods is needed. This paper attempts to give an up-to-date review of chemical decontamination methods. This survey revealed that aqueous systems are the most widely used for the decontamination and cleaning of metal surfaces. We have subdivided the aqueous systems by types of chemical solvent: acid, alkaline permanganate, highly oxidizing, peroxide, and proprietary. Two other systems, electropolishing and foams and gels, are also described in this paper

  20. Nanoparticle-based optical biosensors for the direct detection of organophosphate chemical warfare agents and pesticides

    International Nuclear Information System (INIS)

    Simonian, A.L.; Good, T.A.; Wang, S.-S.; Wild, J.R.

    2005-01-01

    Neurotoxic organophosphates (OP) have found widespread use in the environment for insect control. In addition, there is the increasing threat of use of OP based chemical warfare agents in both ground based warfare and terrorist attacks. Together, these trends necessitate the development of simple and specific methods for discriminative detection of ultra low quantities of OP neurotoxins. In our previous investigations a new biosensor for the direct detection of organophosphorus neurotoxins was pioneered. In this system, the enzymatic hydrolysis of OP neurotoxins by organophosphate hydrolase (OPH) generated two protons in each hydrolytic turnover through reactions in which P-X bonds are cleaved. The sensitivity of this biosensor was limited due to the potentiometric method of detection. Recently, it was reported that a change in fluorescence properties of a fluorophore in the vicinity of gold nanoparticles might be used for detection of nanomolar concentrations of DNA oligonucleotides. The detection strategy was based on the fact that an enhancement or quenching of fluorescence intensity is a function of the distances between the gold nanoparticle and fluorophore. While these reports have demonstrated the use of nanoparticle-based sensors for the detection of target DNA, we observed that the specificity of enzyme-substrate interactions could be exploited in similar systems. To test the feasibility of this approach, OPH-gold nanoparticle conjugates were prepared, then incubated with a fluorescent enzyme inhibitor or decoy. The fluorescence intensity of the decoy was sensitive to the proximity of the gold nanoparticle, and thus could be used to indicate that the decoy was bound to the OPH. Then different paraoxon concentrations were introduced to the OPH-nanoparticle-conjugate-decoy mixtures, and normalized ratio of fluorescence intensities were measured. The greatest sensitivity to paraoxon was obtained when decoys and OPH-gold nanoparticle conjugates were present at

  1. Real-time petroleum spill detection system

    International Nuclear Information System (INIS)

    Dakin, D.T.

    2001-01-01

    A real-time autonomous oil and fuel spill detection system has been developed to rapidly detect of a wide range of petroleum products floating on, or suspended in water. The system consists of an array of spill detection buoys distributed within the area to be monitored. The buoys are composed of a float and a multispectral fluorometer, which looks up through the top 5 cm of water to detect floating and suspended petroleum products. The buoys communicate to a base station computer that controls the sampling of the buoys and analyses the data from each buoy to determine if a spill has occurred. If statistically significant background petroleum levels are detected, the system raises an oil spill alarm. The system is useful because early detection of a marine oil spill allows for faster containment, thereby minimizing the contaminated area and reducing cleanup costs. This paper also provided test results for biofouling, various petroleum product detection, water turbidity and wave tolerance. The technology has been successfully demonstrated. The UV light source keeps the optic window free from biofouling, and the electronics are fully submerged so there is no risk that the unit could ignite the vapours of a potential oil spill. The system can also tolerate moderately turbid waters and can therefore be used in many rivers, harbours, water intakes and sumps. The system can detect petroleum products with an average thickness of less than 3 micrometers floating on the water surface. 3 refs., 15 figs

  2. Thermo effect of chemical reaction in irreversible electrochemical systems

    International Nuclear Information System (INIS)

    Tran Vinh Quy; Nguyen Tang

    1989-01-01

    From first law of thermodynamics the expressions of statistical calculation of 'Fundamental' and 'Thermo-chemical' thermal effects are obtained. Besides, method of calculation of thermal effect of chemical reactions in non-equilibrium electro-chemical systems is accurately discussed. (author). 7 refs

  3. Detection and Characterization of Reactive Oxygen and Nitrogen Species in Biological Systems by Monitoring Species-Specific Products.

    Science.gov (United States)

    Hardy, Micael; Zielonka, Jacek; Karoui, Hakim; Sikora, Adam; Michalski, Radosław; Podsiadły, Radosław; Lopez, Marcos; Vasquez-Vivar, Jeannette; Kalyanaraman, Balaraman; Ouari, Olivier

    2018-05-20

    Since the discovery of the superoxide dismutase enzyme, the generation and fate of short-lived oxidizing, nitrosating, nitrating, and halogenating species in biological systems has been of great interest. Despite the significance of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in numerous diseases and intracellular signaling, the rigorous detection of ROS and RNS has remained a challenge. Recent Advances: Chemical characterization of the reactions of selected ROS and RNS with electron paramagnetic resonance (EPR) spin traps and fluorescent probes led to the establishment of species-specific products, which can be used for specific detection of several forms of ROS and RNS in cell-free systems and in cultured cells in vitro and in animals in vivo. Profiling oxidation products from the ROS and RNS probes provides a rigorous method for detection of those species in biological systems. Formation and detection of species-specific products from the probes enables accurate characterization of the oxidative environment in cells. Measurement of the total signal (fluorescence, chemiluminescence, etc.) intensity does not allow for identification of the ROS/RNS formed. It is critical to identify the products formed by using chromatographic or other rigorous techniques. Product analyses should be accompanied by monitoring of the intracellular probe level, another factor controlling the yield of the product(s) formed. More work is required to characterize the chemical reactivity of the ROS/RNS probes, and to develop new probes/detection approaches enabling real-time, selective monitoring of the specific products formed from the probes. Antioxid. Redox Signal. 28, 1416-1432.

  4. 46 CFR 108.411 - Smoke detection system.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Smoke detection system. 108.411 Section 108.411 Shipping... EQUIPMENT Fire Extinguishing Systems § 108.411 Smoke detection system. Each smoke accumulator in a smoke detection system must be located on the overhead of the compartment protected by the system in a location...

  5. Stress-induced chemical detection using flexible metal-organic frameworks.

    Science.gov (United States)

    Allendorf, Mark D; Houk, Ronald J T; Andruszkiewicz, Leanne; Talin, A Alec; Pikarsky, Joel; Choudhury, Arnab; Gall, Kenneth A; Hesketh, Peter J

    2008-11-05

    In this work we demonstrate the concept of stress-induced chemical detection using metal-organic frameworks (MOFs) by integrating a thin film of the MOF HKUST-1 with a microcantilever surface. The results show that the energy of molecular adsorption, which causes slight distortions in the MOF crystal structure, can be converted to mechanical energy to create a highly responsive, reversible, and selective sensor. This sensor responds to water, methanol, and ethanol vapors, but yields no response to either N2 or O2. The magnitude of the signal, which is measured by a built-in piezoresistor, is correlated with the concentration and can be fitted to a Langmuir isotherm. Furthermore, we show that the hydration state of the MOF layer can be used to impart selectivity to CO2. Finally, we report the first use of surface-enhanced Raman spectroscopy to characterize the structure of a MOF film. We conclude that the synthetic versatility of these nanoporous materials holds great promise for creating recognition chemistries to enable selective detection of a wide range of analytes.

  6. Conservation-dissipation structure of chemical reaction systems.

    Science.gov (United States)

    Yong, Wen-An

    2012-12-01

    In this Brief Report, we show that balanced chemical reaction systems governed by the law of mass action have an elegant conservation-dissipation structure. From this structure a number of important conclusions can be easily deduced. In particular, with the help of this structure we can rigorously justify the classical partial equilibrium approximation in chemical kinetics.

  7. Stochastic thermodynamics and entropy production of chemical reaction systems

    Science.gov (United States)

    Tomé, Tânia; de Oliveira, Mário J.

    2018-06-01

    We investigate the nonequilibrium stationary states of systems consisting of chemical reactions among molecules of several chemical species. To this end, we introduce and develop a stochastic formulation of nonequilibrium thermodynamics of chemical reaction systems based on a master equation defined on the space of microscopic chemical states and on appropriate definitions of entropy and entropy production. The system is in contact with a heat reservoir and is placed out of equilibrium by the contact with particle reservoirs. In our approach, the fluxes of various types, such as the heat and particle fluxes, play a fundamental role in characterizing the nonequilibrium chemical state. We show that the rate of entropy production in the stationary nonequilibrium state is a bilinear form in the affinities and the fluxes of reaction, which are expressed in terms of rate constants and transition rates, respectively. We also show how the description in terms of microscopic states can be reduced to a description in terms of the numbers of particles of each species, from which follows the chemical master equation. As an example, we calculate the rate of entropy production of the first and second Schlögl reaction models.

  8. Use of nuclear receptor luciferase-based bioassays to detect endocrine active chemicals in a biosolids-biochar amended soil.

    Science.gov (United States)

    Anderson, Carolyn G; Joshi, Geetika; Bair, Daniel A; Oriol, Charlotte; He, Guochun; Parikh, Sanjai J; Denison, Michael S; Scow, Kate M

    2017-08-01

    Biosolids are a potentially valuable source of carbon and nutrients for agricultural soils; however, potential unintended impacts on human health and the environment must be considered. Virtually all biosolids contain trace amounts endocrine-disrupting chemicals derived from human use of pharmaceuticals and personal care products (PPCPs). One potential way to reduce the bioavailability of PPCPs is to co-apply biosolids with biochar to soil, because biochar's chemical (e.g., aromaticity) and physical properties (e.g., surface area) give it a high affinity to bind many organic chemicals in the environment. We developed a soil-specific extraction method and utilized a luciferase-based bioassay (CALUX) to detect endocrine active chemicals in a biosolids-biochar co-amendment soil greenhouse study. Both biochar (walnut shell, 900 °C) and biosolids had positive impacts on carrot and lettuce biomass accumulation over our study period. However, the walnut shell biochar stimulated aryl hydrocarbon receptor activity, suggesting the presence of potential endocrine active chemicals in the biochar. Since the biochar rate tested (100 t ha -1 ) is above the average agronomic rate (10-20 t ha -1 ), endocrine effects would not be expected in most environmental applications. The effect of high temperature biochars on endocrine system pathways must be explored further, using both quantitative analytical tools to identify potential endocrine active chemicals and highly sensitive bioanalytical assays such as CALUX to measure the resulting biological activity of such compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Integrated multisensor perimeter detection systems

    Science.gov (United States)

    Kent, P. J.; Fretwell, P.; Barrett, D. J.; Faulkner, D. A.

    2007-10-01

    The report describes the results of a multi-year programme of research aimed at the development of an integrated multi-sensor perimeter detection system capable of being deployed at an operational site. The research was driven by end user requirements in protective security, particularly in threat detection and assessment, where effective capability was either not available or prohibitively expensive. Novel video analytics have been designed to provide robust detection of pedestrians in clutter while new radar detection and tracking algorithms provide wide area day/night surveillance. A modular integrated architecture based on commercially available components has been developed. A graphical user interface allows intuitive interaction and visualisation with the sensors. The fusion of video, radar and other sensor data provides the basis of a threat detection capability for real life conditions. The system was designed to be modular and extendable in order to accommodate future and legacy surveillance sensors. The current sensor mix includes stereoscopic video cameras, mmWave ground movement radar, CCTV and a commercially available perimeter detection cable. The paper outlines the development of the system and describes the lessons learnt after deployment in a pilot trial.

  10. Multi-scenario modelling of uncertainty in stochastic chemical systems

    International Nuclear Information System (INIS)

    Evans, R. David; Ricardez-Sandoval, Luis A.

    2014-01-01

    Uncertainty analysis has not been well studied at the molecular scale, despite extensive knowledge of uncertainty in macroscale systems. The ability to predict the effect of uncertainty allows for robust control of small scale systems such as nanoreactors, surface reactions, and gene toggle switches. However, it is difficult to model uncertainty in such chemical systems as they are stochastic in nature, and require a large computational cost. To address this issue, a new model of uncertainty propagation in stochastic chemical systems, based on the Chemical Master Equation, is proposed in the present study. The uncertain solution is approximated by a composite state comprised of the averaged effect of samples from the uncertain parameter distributions. This model is then used to study the effect of uncertainty on an isomerization system and a two gene regulation network called a repressilator. The results of this model show that uncertainty in stochastic systems is dependent on both the uncertain distribution, and the system under investigation. -- Highlights: •A method to model uncertainty on stochastic systems was developed. •The method is based on the Chemical Master Equation. •Uncertainty in an isomerization reaction and a gene regulation network was modelled. •Effects were significant and dependent on the uncertain input and reaction system. •The model was computationally more efficient than Kinetic Monte Carlo

  11. Odour detection methods: olfactometry and chemical sensors.

    Science.gov (United States)

    Brattoli, Magda; de Gennaro, Gianluigi; de Pinto, Valentina; Loiotile, Annamaria Demarinis; Lovascio, Sara; Penza, Michele

    2011-01-01

    The complexity of the odours issue arises from the sensory nature of smell. From the evolutionary point of view olfaction is one of the oldest senses, allowing for seeking food, recognizing danger or communication: human olfaction is a protective sense as it allows the detection of potential illnesses or infections by taking into account the odour pleasantness/unpleasantness. Odours are mixtures of light and small molecules that, coming in contact with various human sensory systems, also at very low concentrations in the inhaled air, are able to stimulate an anatomical response: the experienced perception is the odour. Odour assessment is a key point in some industrial production processes (i.e., food, beverages, etc.) and it is acquiring steady importance in unusual technological fields (i.e., indoor air quality); this issue mainly concerns the environmental impact of various industrial activities (i.e., tanneries, refineries, slaughterhouses, distilleries, civil and industrial wastewater treatment plants, landfills and composting plants) as sources of olfactory nuisances, the top air pollution complaint. Although the human olfactory system is still regarded as the most important and effective "analytical instrument" for odour evaluation, the demand for more objective analytical methods, along with the discovery of materials with chemo-electronic properties, has boosted the development of sensor-based machine olfaction potentially imitating the biological system. This review examines the state of the art of both human and instrumental sensing currently used for the detection of odours. The olfactometric techniques employing a panel of trained experts are discussed and the strong and weak points of odour assessment through human detection are highlighted. The main features and the working principles of modern electronic noses (E-Noses) are then described, focusing on their better performances for environmental analysis. Odour emission monitoring carried out through

  12. Hierarchically structured photonic crystals for integrated chemical separation and colorimetric detection.

    Science.gov (United States)

    Fu, Qianqian; Zhu, Biting; Ge, Jianping

    2017-02-16

    A SiO 2 colloidal photonic crystal film with a hierarchical porous structure is fabricated to demonstrate an integrated separation and colorimetric detection of chemical species for the first time. This new photonic crystal based thin layer chromatography process requires no dyeing, developing and UV irradiation compared to the traditional TLC. The assembling of mesoporous SiO 2 particles via a supersaturation-induced-precipitation process forms uniform and hierarchical photonic crystals with micron-scale cracks and mesopores, which accelerate the diffusion of developers and intensify the adsorption/desorption between the analytes and silica for efficient separation. Meanwhile, the chemical substances infiltrated to the voids of photonic crystals cause an increase of the refractive index and a large contrast of structural colors towards the unloaded part, so that the sample spots can be directly recognized with the naked eye before and after separation.

  13. Statistical fault detection in photovoltaic systems

    KAUST Repository

    Garoudja, Elyes

    2017-05-08

    Faults in photovoltaic (PV) systems, which can result in energy loss, system shutdown or even serious safety breaches, are often difficult to avoid. Fault detection in such systems is imperative to improve their reliability, productivity, safety and efficiency. Here, an innovative model-based fault-detection approach for early detection of shading of PV modules and faults on the direct current (DC) side of PV systems is proposed. This approach combines the flexibility, and simplicity of a one-diode model with the extended capacity of an exponentially weighted moving average (EWMA) control chart to detect incipient changes in a PV system. The one-diode model, which is easily calibrated due to its limited calibration parameters, is used to predict the healthy PV array\\'s maximum power coordinates of current, voltage and power using measured temperatures and irradiances. Residuals, which capture the difference between the measurements and the predictions of the one-diode model, are generated and used as fault indicators. Then, the EWMA monitoring chart is applied on the uncorrelated residuals obtained from the one-diode model to detect and identify the type of fault. Actual data from the grid-connected PV system installed at the Renewable Energy Development Center, Algeria, are used to assess the performance of the proposed approach. Results show that the proposed approach successfully monitors the DC side of PV systems and detects temporary shading.

  14. Apriori-based network intrusion detection system

    International Nuclear Information System (INIS)

    Wang Wenjin; Liu Junrong; Liu Baoxu

    2012-01-01

    With the development of network communication technology, more and more social activities run by Internet. In the meantime, the network information security is getting increasingly serious. Intrusion Detection System (IDS) has greatly improved the general security level of whole network. But there are still many problem exists in current IDS, e.g. high leak rate detection/false alarm rates and feature library need frequently upgrade. This paper presents an association-rule based IDS. This system can detect unknown attack by generate rules from training data. Experiment in last chapter proved the system has great accuracy on unknown attack detection. (authors)

  15. Homodyne detection of holographic memory systems

    Science.gov (United States)

    Urness, Adam C.; Wilson, William L.; Ayres, Mark R.

    2014-09-01

    We present a homodyne detection system implemented for a page-wise holographic memory architecture. Homodyne detection by holographic memory systems enables phase quadrature multiplexing (doubling address space), and lower exposure times (increasing read transfer rates). It also enables phase modulation, which improves signal-to-noise ratio (SNR) to further increase data capacity. We believe this is the first experimental demonstration of homodyne detection for a page-wise holographic memory system suitable for a commercial design.

  16. Systems approach to chemical spill response information needs

    Energy Technology Data Exchange (ETDEWEB)

    Parnarouskis, M.C.; Flessner, M.F.; Potts, R.G.

    1980-01-01

    The Chemical Hazards Response Information System (CHRIS) has been specifically designed to meet the emergency needs of US Coast Guard field personnel, currently providing them with information on 900 hazardous chemicals, with methods of predicting hazards resulting from accidental discharges, and with procedures for selecting and implementing response to accident discharges. The major components of CHRIS and the computerized hazard assessment models within the Hazard Assessment Computer System are described in detail.

  17. Ion chromatographic analysis of high specific activity 18FDG preparations and detection of the chemical impurity 2-deoxy-2-chloro-D-glucose

    International Nuclear Information System (INIS)

    Alexoff, D.L.; Casati, R.; Fowler, J.S.; Wolf, A.P.; Shea, C.; Schlyer, D.J.; Chyng-Yann Shiue

    1992-01-01

    Because of the widespread use of 2-deoxy-2-[ 18 F]fluoro-D-glucose(FDG) prepared by the ''Julich'' method or its variants it was decided necessary to determine the major chemical impurities present in the final product. An analytical system for quantifying FDG was developed using pulsed amperometry after separation by high-performance anion exchange chromotography. With this system a heretofore unidentified impurity, 2-deoxy-2-chloro-D-glucose(C1DG) was found in our preparation and in those from other laboratories using the ''Julich'' method. C1DG arises from C1 - ion displacement during the labeling procedure where C1 - ion comes from several sources, and C1 - ion displacement from the HC1 used in the hydrolysis step. FDG mass was present in the same preparations at a level of ca 1-40 μg. Other major chemical constituents were glucose (ca 1-6 mg) and mannose (ca 10-18 μg). Glycerol, arising from sterilizing filters, was also detected in most preparations. Although C1DG is a chemical impurity which has not been detected previously in nca FDG preparations, its biochemical and pharmacological properties are similar to FDG and 2-deoxy-D-glucose. Thus it is unlikely that the presence of small quantities of C1DG found in typical FDG preparations (ca 100 μg) would have adverse pharmacological or toxicological consequences that would limit continued application of this radiopharmaceutical in basic and clinical studies. (Author)

  18. Gas Flow Detection System

    Science.gov (United States)

    Moss, Thomas; Ihlefeld, Curtis; Slack, Barry

    2010-01-01

    This system provides a portable means to detect gas flow through a thin-walled tube without breaking into the tubing system. The flow detection system was specifically designed to detect flow through two parallel branches of a manifold with only one inlet and outlet, and is a means for verifying a space shuttle program requirement that saves time and reduces the risk of flight hardware damage compared to the current means of requirement verification. The prototype Purge Vent and Drain Window Cavity Conditioning System (PVD WCCS) Flow Detection System consists of a heater and a temperature-sensing thermistor attached to a piece of Velcro to be attached to each branch of a WCCS manifold for the duration of the requirement verification test. The heaters and thermistors are connected to a shielded cable and then to an electronics enclosure, which contains the power supplies, relays, and circuit board to provide power, signal conditioning, and control. The electronics enclosure is then connected to a commercial data acquisition box to provide analog to digital conversion as well as digital control. This data acquisition box is then connected to a commercial laptop running a custom application created using National Instruments LabVIEW. The operation of the PVD WCCS Flow Detection System consists of first attaching a heater/thermistor assembly to each of the two branches of one manifold while there is no flow through the manifold. Next, the software application running on the laptop is used to turn on the heaters and to monitor the manifold branch temperatures. When the system has reached thermal equilibrium, the software application s graphical user interface (GUI) will indicate that the branch temperatures are stable. The operator can then physically open the flow control valve to initiate the test flow of gaseous nitrogen (GN2) through the manifold. Next, the software user interface will be monitored for stable temperature indications when the system is again at

  19. Embedded Systems - Missile Detection/Interception

    Directory of Open Access Journals (Sweden)

    Luis Cintron

    2010-01-01

    Full Text Available Missile defense systems are often related to major military resources aimed at shielding a specific region from incoming attacks. They are intended to detect, track, intercept, and destruct incoming enemy missiles. These systems vary in cost, efficiency, dependability, and technology. In present times, the possession of these types of systems is associated with large capacity military countries. Demonstrated here are the mathematical techniques behind missile systems which calculate trajectories of incoming missiles and potential intercept positions after initial missile detection. This procedure involved the use of vector-valued functions, systems of equations, and knowledge of projectile motion concepts.

  20. Hybrid Intrusion Detection System for DDoS Attacks

    Directory of Open Access Journals (Sweden)

    Özge Cepheli

    2016-01-01

    Full Text Available Distributed denial-of-service (DDoS attacks are one of the major threats and possibly the hardest security problem for today’s Internet. In this paper we propose a hybrid detection system, referred to as hybrid intrusion detection system (H-IDS, for detection of DDoS attacks. Our proposed detection system makes use of both anomaly-based and signature-based detection methods separately but in an integrated fashion and combines the outcomes of both detectors to enhance the overall detection accuracy. We apply two distinct datasets to our proposed system in order to test the detection performance of H-IDS and conclude that the proposed hybrid system gives better results than the systems based on nonhybrid detection.

  1. Towards an integrated biosensor array for simultaneous and rapid multi-analysis of endocrine disrupting chemicals

    International Nuclear Information System (INIS)

    Scognamiglio, Viviana; Pezzotti, Italo; Pezzotti, Gianni; Cano, Juan; Manfredonia, Ivano; Buonasera, Katia; Arduini, Fabiana; Moscone, Danila; Palleschi, Giuseppe; Giardi, Maria Teresa

    2012-01-01

    Highlights: ► A multitask biosensor for the detection of endocrine disrupting chemicals is proposed. ► The sensing system employ an array of biological recognition elements. ► Amperometric and optical transduction methods are provided in an integrated biosensor together with flow control systems. ► The biosensing device results in an integrated, automatic and portable system for environmental and agrifood application. - Abstract: In this paper we propose the construction and application of a portable multi-purpose biosensor array for the simultaneous detection of a wide range of endocrine disruptor chemicals (EDCs), based on the recognition operated by various enzymes and microorganisms. The developed biosensor combines both electrochemical and optical transduction systems, in order to increase the number of chemical species which can be monitored. Considering to the maximum residue level (MRL) of contaminants established by the European Commission, the biosensor system was able to detect most of the chemicals analysed with very high sensitivity. In particular, atrazine and diuron were detected with a limit of detection of 0.5 nM, with an RSD% less than 5%; paraoxon and chlorpyrifos were revealed with a detection of 5 μM and 4.5 μM, respectively, with an RSD% less than 6%; catechol and bisphenol A were identified with a limit of detection of 1 μM and 35 μM respectively, with an RSD% less than 5%.

  2. A novel mobile system for radiation detection and monitoring

    Science.gov (United States)

    Biafore, Mauro

    2014-05-01

    evolving needs and budget constraints. On 24th September 2013, REWARD project received a prize as the best Innovative project related to the Not Conventional Threat (NCT) Chemical Biological Radiological Nuclear explosives (CBRNe) products. A highly distinguished jury stated that "the developed detection and surveillance system offers a perfect solution for end-users to enhance crucial capabilities in RN analysis, risk communication and surveillance in case of a radiation incident". A demonstration of the REWARD system is planned in Naples on September 2014. More information about the REWARD project can be found at www.reward-project.eu.

  3. Enzymatic Decontamination of Chemical Warfare Agents

    National Research Council Canada - National Science Library

    Raushel, Frank

    2000-01-01

    The primary objective of this research program is the development of a versatile enzyme-based system that is fully optimized for the decontamination, destruction, and detection of know chemical warfare agents...

  4. Nanosensors-Cellphone Integration for Extended Chemical Sensing Network

    Science.gov (United States)

    Li, Jing

    2011-01-01

    This poster is to present the development of a cellphone sensor network for extended chemical sensing. The nanosensors using carbon nanotubes and other nanostructures are used with low power and high sensitivity for chemical detection. The sensing module has been miniaturized to a small size that can plug in or clip on to a smartphone. The chemical information detected by the nanosensors are acquired by a smartphone and transmitted via cellphone 3g or WiFi network to an internet server. The whole integrated sensing system from sensor to cellphone to a cloud will provide an extended chemical sensing network that can cover nation wide and even cover global wide for early warning of a hazardous event.

  5. Flat Surface Damage Detection System (FSDDS)

    Science.gov (United States)

    Williams, Martha; Lewis, Mark; Gibson, Tracy; Lane, John; Medelius, Pedro; Snyder, Sarah; Ciarlariello, Dan; Parks, Steve; Carrejo, Danny; Rojdev, Kristina

    2013-01-01

    The Flat Surface Damage Detection system (FSDDS} is a sensory system that is capable of detecting impact damages to surfaces utilizing a novel sensor system. This system will provide the ability to monitor the integrity of an inflatable habitat during in situ system health monitoring. The system consists of three main custom designed subsystems: the multi-layer sensing panel, the embedded monitoring system, and the graphical user interface (GUI). The GUI LABVIEW software uses a custom developed damage detection algorithm to determine the damage location based on the sequence of broken sensing lines. It estimates the damage size, the maximum depth, and plots the damage location on a graph. Successfully demonstrated as a stand alone technology during 2011 D-RATS. Software modification also allowed for communication with HDU avionics crew display which was demonstrated remotely (KSC to JSC} during 2012 integration testing. Integrated FSDDS system and stand alone multi-panel systems were demonstrated remotely and at JSC, Mission Operations Test using Space Network Research Federation (SNRF} network in 2012. FY13, FSDDS multi-panel integration with JSC and SNRF network Technology can allow for integration with other complementary damage detection systems.

  6. Chemical sensor

    Science.gov (United States)

    Rauh, R. David (Inventor)

    1990-01-01

    A sensor for detecting a chemical substance includes an insertion element having a structure which enables insertion of the chemical substance with a resulting change in the bulk electrical characteristics of the insertion element under conditions sufficient to permit effective insertion; the change in the bulk electrical characteristics of the insertion element is detected as an indication of the presence of the chemical substance.

  7. Chemistry integrated circuit: chemical system on a complementary metal oxide semiconductor integrated circuit.

    Science.gov (United States)

    Nakazato, Kazuo

    2014-03-28

    By integrating chemical reactions on a large-scale integration (LSI) chip, new types of device can be created. For biomedical applications, monolithically integrated sensor arrays for potentiometric, amperometric and impedimetric sensing of biomolecules have been developed. The potentiometric sensor array detects pH and redox reaction as a statistical distribution of fluctuations in time and space. For the amperometric sensor array, a microelectrode structure for measuring multiple currents at high speed has been proposed. The impedimetric sensor array is designed to measure impedance up to 10 MHz. The multimodal sensor array will enable synthetic analysis and make it possible to standardize biosensor chips. Another approach is to create new functional devices by integrating molecular systems with LSI chips, for example image sensors that incorporate biological materials with a sensor array. The quantum yield of the photoelectric conversion of photosynthesis is 100%, which is extremely difficult to achieve by artificial means. In a recently developed process, a molecular wire is plugged directly into a biological photosynthetic system to efficiently conduct electrons to a gold electrode. A single photon can be detected at room temperature using such a system combined with a molecular single-electron transistor.

  8. Microfluidics for chemical processing

    NARCIS (Netherlands)

    Gardeniers, Johannes G.E.

    2006-01-01

    Microfluidic systems, and more specifically, microfluidic chips, have a number of features that make them particularly useful for the study of chemical reactions on-line. The present paper will discuss two examples, the study of fluidic behaviour at high pressures and the excitation and detection of

  9. [Prospects in getting accordance between chemical analytic control means and medical technical requirements to safety system concerning chemical weapons destruction].

    Science.gov (United States)

    Rembovskiĭ, V R; Mogilenkova, L A; Savel'eva, E I

    2005-01-01

    The major unit monitoring chemical weapons destruction objects is a system of chemical analyticcontrol over the technologic process procedures and possibility of environment and workplace pollution withtoxicchemicals and their destruction products. At the same time, physical and chemical control means meet sanitary and hygienic requirements incompletely. To provide efficient control, internationally recognized approaches should be adapted to features of Russian system monitoring pollution of chemical weapons destruction objects with toxic chemicals.

  10. Novel Magnetic and Chemical Micro Sensors for In-situ, Real-time, and Unattended Use

    International Nuclear Information System (INIS)

    Datskou, I.

    2001-01-01

    There exists a need to develop novel, advanced, unattended magnetic and chemical micro-sensor systems for successful detection, localization, classification and tracking of ground time critical targets of interest. Consistent with the underlying long-term objectives of the development of unattended ground sensors (UGS) program they have investigated the use of a new planted ground sensor platform based on Micro-Electro-Mechanical Systems (MEMS) that can offer magnetic, chemical and possibly acoustic detection. The envisioned micro-system will be low-power and low-cost and will be built around a single type of microstructure element integrating a monolithic optical system and electronics package. This micro sensor can also incorporate burst telemetry to transmit the information, a renewable power source and will be capable of operating under field conditions, with sufficient sensitivity to permit high detection rates, and with sufficient chemical selectivity to prevent high false alarm rates. Preliminary studies, initial designs, and key predicted performance parameters will be presented. Possible applications of such a system include sensitive perimeter monitoring such as minefields and military/nuclear bases, vehicle detection, and aircraft navigation systems, and drug enforcement operations. The results of the present work demonstrate that the microcalorimetric spectroscopy technique can be applied to detect and identify chemicals in the ppm level and the studied microcantilever-based magnetometer can provide sensitivities in the order of 1(micro)T

  11. Nanotextured thin films for detection of chemicals by surface enhanced Raman scattering

    Science.gov (United States)

    Korivi, Naga; Jiang, Li; Ahmed, Syed; Nujhat, Nabila; Idrees, Mohanad; Rangari, Vijaya

    2017-11-01

    We report on the development of large area, nanostructured films that function as substrates for surface enhanced Raman scattering (SERS) detection of chemicals. The films are made of polyethylene terephthalate layers partially embedded with multi-walled carbon nanotubes and coated with a thin layer of gold. The films are fabricated by a facile method involving spin-coating, acid dip, and magnetron sputtering. The films perform effectively as SERS substrates when used in the detection of dye pollutants such as Congo red dye, with an enhancement factor of 1.1  ×  106 and a detection limit of 10-7 M which is the lowest reported for CR detection by freestanding SERS film substrates. The films have a long shelf life, and cost US0.20 per cm2 of active area, far less than commercially available SERS substrates. This is the first such work on the use of a polymer layer modified with carbon nanotubes to create a nano-scale texture and arbitrary ‘hot-spots’, contributing to the SERS effect.

  12. Chemical point detection using differential fluorescence from molecularly imprinted polymers

    Science.gov (United States)

    Pestov, Dmitry; Anderson, John E.; Nelson, Jean; Tepper, Gary C.

    2004-12-01

    Fluorescence represents one of the most attractive approaches for chemical sensing due to the abundant light produced by most fluorophores, resulting in excellent detection sensitivity. However, the broad and overlapping emission spectra of target and background species have made it difficult to perform species identification in a field instrument because of the need to perform spectral decomposition and analysis. This paper describes a new chemical sensing strategy based on differential fluorescence measurements from molecularly imprinted polymers, which eliminates the need to perform any spectral analysis. Species identification is accomplished by measuring the differential light output from a pair of polymers-one imprinted to a target species and the other identical, but not imprinted. The imprinted polymer selectively concentrates the target molecule and controls the energy (wavelength) of the emitted fluorescence signal and the differential output eliminates common mode signals associated with non-specific background interference. Because no spectral analysis is required, the sensors can be made extremely small and require very little power. Preliminary performance parameters from a prototype sensor are presented and discussed.

  13. Detection technique of targets for missile defense system

    Science.gov (United States)

    Guo, Hua-ling; Deng, Jia-hao; Cai, Ke-rong

    2009-11-01

    Ballistic missile defense system (BMDS) is a weapon system for intercepting enemy ballistic missiles. It includes ballistic-missile warning system, target discrimination system, anti-ballistic-missile guidance systems, and command-control communication system. Infrared imaging detection and laser imaging detection are widely used in BMDS for surveillance, target detection, target tracking, and target discrimination. Based on a comprehensive review of the application of target-detection techniques in the missile defense system, including infrared focal plane arrays (IRFPA), ground-based radar detection technology, 3-dimensional imaging laser radar with a photon counting avalanche photodiode (APD) arrays and microchip laser, this paper focuses on the infrared and laser imaging detection techniques in missile defense system, as well as the trends for their future development.

  14. Blaptica dubia as sentinels for exposure to chemical warfare agents - a pilot study.

    Science.gov (United States)

    Worek, Franz; Seeger, Thomas; Neumaier, Katharina; Wille, Timo; Thiermann, Horst

    2016-11-16

    The increased interest of terrorist groups in toxic chemicals and chemical warfare agents presents a continuing threat to our societies. Early warning and detection is a key component for effective countermeasures against such deadly agents. Presently available and near term solutions have a number of major drawbacks, e.g. lack of automated, remote warning and detection of primarily low volatile chemical warfare agents. An alternative approach is the use of animals as sentinels for exposure to toxic chemicals. To overcome disadvantages of vertebrates the present pilot study was initiated to investigate the suitability of South American cockroaches (Blaptica dubia) as warning system for exposure to chemical warfare nerve and blister agents. Initial in vitro experiments with nerve agents showed an increasing inhibitory potency in the order tabun - cyclosarin - sarin - soman - VX of cockroach cholinesterase. Exposure of cockroaches to chemical warfare agents resulted in clearly visible and reproducible reactions, the onset being dependent on the agent and dose. With nerve agents the onset was related to the volatility of the agents. The blister agent lewisite induced signs largely comparable to those of nerve agents while sulfur mustard exposed animals exhibited a different sequence of events. In conclusion, this first pilot study indicates that Blaptica dubia could serve as a warning system to exposure of chemical warfare agents. A cockroach-based system will not detect or identify a particular chemical warfare agent but could trigger further actions, e.g. specific detection and increased protective status. By designing appropriate boxes with (IR) motion sensors and remote control (IR) camera automated off-site warning systems could be realized. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Surface with two paint strips for detection and warning of chemical warfare and radiological agents

    Science.gov (United States)

    Farmer, Joseph C.

    2013-04-02

    A system for warning of corrosion, chemical, or radiological substances. The system comprises painting a surface with a paint or coating that includes an indicator material and monitoring the surface for indications of the corrosion, chemical, or radiological substances.

  16. Ferromagnetic Objects Magnetovision Detection System.

    Science.gov (United States)

    Nowicki, Michał; Szewczyk, Roman

    2013-12-02

    This paper presents the application of a weak magnetic fields magnetovision scanning system for detection of dangerous ferromagnetic objects. A measurement system was developed and built to study the magnetic field vector distributions. The measurements of the Earth's field distortions caused by various ferromagnetic objects were carried out. The ability for passive detection of hidden or buried dangerous objects and the determination of their location was demonstrated.

  17. Odour Detection Methods: Olfactometry and Chemical Sensors

    Directory of Open Access Journals (Sweden)

    Sara Lovascio

    2011-05-01

    Full Text Available The complexity of the odours issue arises from the sensory nature of smell. From the evolutionary point of view olfaction is one of the oldest senses, allowing for seeking food, recognizing danger or communication: human olfaction is a protective sense as it allows the detection of potential illnesses or infections by taking into account the odour pleasantness/unpleasantness. Odours are mixtures of light and small molecules that, coming in contact with various human sensory systems, also at very low concentrations in the inhaled air, are able to stimulate an anatomical response: the experienced perception is the odour. Odour assessment is a key point in some industrial production processes (i.e., food, beverages, etc. and it is acquiring steady importance in unusual technological fields (i.e., indoor air quality; this issue mainly concerns the environmental impact of various industrial activities (i.e., tanneries, refineries, slaughterhouses, distilleries, civil and industrial wastewater treatment plants, landfills and composting plants as sources of olfactory nuisances, the top air pollution complaint. Although the human olfactory system is still regarded as the most important and effective “analytical instrument” for odour evaluation, the demand for more objective analytical methods, along with the discovery of materials with chemo-electronic properties, has boosted the development of sensor-based machine olfaction potentially imitating the biological system. This review examines the state of the art of both human and instrumental sensing currently used for the detection of odours. The olfactometric techniques employing a panel of trained experts are discussed and the strong and weak points of odour assessment through human detection are highlighted. The main features and the working principles of modern electronic noses (E-Noses are then described, focusing on their better performances for environmental analysis. Odour emission monitoring

  18. Deep Recurrent Neural Networks for seizure detection and early seizure detection systems

    Energy Technology Data Exchange (ETDEWEB)

    Talathi, S. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-06-05

    Epilepsy is common neurological diseases, affecting about 0.6-0.8 % of world population. Epileptic patients suffer from chronic unprovoked seizures, which can result in broad spectrum of debilitating medical and social consequences. Since seizures, in general, occur infrequently and are unpredictable, automated seizure detection systems are recommended to screen for seizures during long-term electroencephalogram (EEG) recordings. In addition, systems for early seizure detection can lead to the development of new types of intervention systems that are designed to control or shorten the duration of seizure events. In this article, we investigate the utility of recurrent neural networks (RNNs) in designing seizure detection and early seizure detection systems. We propose a deep learning framework via the use of Gated Recurrent Unit (GRU) RNNs for seizure detection. We use publicly available data in order to evaluate our method and demonstrate very promising evaluation results with overall accuracy close to 100 %. We also systematically investigate the application of our method for early seizure warning systems. Our method can detect about 98% of seizure events within the first 5 seconds of the overall epileptic seizure duration.

  19. Towards an integrated biosensor array for simultaneous and rapid multi-analysis of endocrine disrupting chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Scognamiglio, Viviana, E-mail: viviana.scognamiglio@mlib.ic.cnr.it [IC-CNR Istituto di Cristallografia, AdR1 Dipartimento Agroalimentare - Via Salaria Km 29.3 00015, Rome (Italy); Pezzotti, Italo; Pezzotti, Gianni; Cano, Juan; Manfredonia, Ivano [Biosensor S.r.l. - Via degli Olmetti 44 00060 Formello, Rome (Italy); Buonasera, Katia [IC-CNR Istituto di Cristallografia, AdR1 Dipartimento Agroalimentare - Via Salaria Km 29.3 00015, Rome (Italy); Arduini, Fabiana; Moscone, Danila; Palleschi, Giuseppe [Universita di Roma Tor Vergata, Dipartimento di Scienze e Tecnologie Chimiche - Via della Ricerca Scientifica 00133, Rome (Italy); Giardi, Maria Teresa [IC-CNR Istituto di Cristallografia, AdR1 Dipartimento Agroalimentare - Via Salaria Km 29.3 00015, Rome (Italy)

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer A multitask biosensor for the detection of endocrine disrupting chemicals is proposed. Black-Right-Pointing-Pointer The sensing system employ an array of biological recognition elements. Black-Right-Pointing-Pointer Amperometric and optical transduction methods are provided in an integrated biosensor together with flow control systems. Black-Right-Pointing-Pointer The biosensing device results in an integrated, automatic and portable system for environmental and agrifood application. - Abstract: In this paper we propose the construction and application of a portable multi-purpose biosensor array for the simultaneous detection of a wide range of endocrine disruptor chemicals (EDCs), based on the recognition operated by various enzymes and microorganisms. The developed biosensor combines both electrochemical and optical transduction systems, in order to increase the number of chemical species which can be monitored. Considering to the maximum residue level (MRL) of contaminants established by the European Commission, the biosensor system was able to detect most of the chemicals analysed with very high sensitivity. In particular, atrazine and diuron were detected with a limit of detection of 0.5 nM, with an RSD% less than 5%; paraoxon and chlorpyrifos were revealed with a detection of 5 {mu}M and 4.5 {mu}M, respectively, with an RSD% less than 6%; catechol and bisphenol A were identified with a limit of detection of 1 {mu}M and 35 {mu}M respectively, with an RSD% less than 5%.

  20. Detection and identification of alkylating agents by using a bioinspired "chemical nose".

    Science.gov (United States)

    Hertzog-Ronen, Carmit; Borzin, Elena; Gerchikov, Yulia; Tessler, Nir; Eichen, Yoav

    2009-10-12

    Alkylating agents are simple and reactive molecules that are commonly used in many and diverse fields such as organic synthesis, medicine, and agriculture. Some highly reactive alkylating species are also being used as blister chemical-warfare agents. The detection and identification of alkylating agents is not a trivial issue because of their high reactivity and simple structure. Herein, we report on a new multispot luminescence-based approach to the detection and identification of alkylating agents. In order to demonstrate the potential of the approach, seven pi-conjugated oligomers and polymers bearing nucleophilic pyridine groups, 1-7, were adsorbed onto a solid support and exposed to vapors of alkylators 8-15. The alkylation-induced color-shift patterns of the seven-spot array allow clear discrimination of the different alkylators. The spots are sensitive to minute concentrations of alkylators and, because the detection is based on the formation of new covalent bonds, these spots saturate at about 50 ppb.

  1. Improved biosensor-based detection system

    DEFF Research Database (Denmark)

    2015-01-01

    Described is a new biosensor-based detection system for effector compounds, useful for in vivo applications in e.g. screening and selecting of cells which produce a small molecule effector compound or which take up a small molecule effector compound from its environment. The detection system...... comprises a protein or RNA-based biosensor for the effector compound which indirectly regulates the expression of a reporter gene via two hybrid proteins, providing for fewer false signals or less 'noise', tuning of sensitivity or other advantages over conventional systems where the biosensor directly...

  2. Ferromagnetic Objects Magnetovision Detection System

    Directory of Open Access Journals (Sweden)

    Michał Nowicki

    2013-12-01

    Full Text Available This paper presents the application of a weak magnetic fields magnetovision scanning system for detection of dangerous ferromagnetic objects. A measurement system was developed and built to study the magnetic field vector distributions. The measurements of the Earth’s field distortions caused by various ferromagnetic objects were carried out. The ability for passive detection of hidden or buried dangerous objects and the determination of their location was demonstrated.

  3. Potency of Purple Sweet Potato’s Anthocyanin as Biosensor for Detection of Chemicals in Food Products

    Science.gov (United States)

    Wulandari, A.; Sunarti, TC; Fahma, F.; Noor, E.

    2018-05-01

    Bioactive compounds such as anthocyanin are a natural ingredient that produces color with typical specificity. Anthocyanin from Ayamurasaki purple sweet potato (Ipomoea batatas L.) was extracted in ethanol and used as crude anthocyanin extracts. The color of bioactive anthocyanin can be used as a biosensor to detect chemical of food products because it provides a unique color change. However, the each bioactive has a particular sensitivity and selectivity to a specific chemical, so it is necessary to select and test the selectivity. Six chemicals, which were sodium nitrite, sodium benzoate, sodium cyclamate (food additives), formalin, borax (illegal food preservatives), and residue fertilizer (urea) were tested and observed for its color change. The results showed that the bioactive anthocyanin of purple sweet potato with the concentration of ± 42.65 ppm had better selectivity and sensitivity to sodium nitrite with a detection limit of 100 ppm, where the color change response time ranged from 15-20 minutes. The selectivity and sensitivity of this bioactive can be used as the basic information for the development of biosensor.

  4. Introducing DAE Systems in Undergraduate and Graduate Chemical Engineering Curriculum

    Science.gov (United States)

    Mandela, Ravi Kumar; Sridhar, L. N.; Rengaswamy, Raghunathan

    2010-01-01

    Models play an important role in understanding chemical engineering systems. While differential equation models are taught in standard modeling and control courses, Differential Algebraic Equation (DAE) system models are not usually introduced. These models appear naturally in several chemical engineering problems. In this paper, the introduction…

  5. Trace Detection of Organophosphorus Chemical Warfare Agents in Wastewater and Plants by Luminescent UIO-67(Hf) and Evaluating the Bioaccumulation of Organophosphorus Chemical Warfare Agents.

    Science.gov (United States)

    Lian, Xiao; Yan, Bing

    2018-05-02

    Organophosphorus chemical warfare agents (OPCWAs) are a group of organic pollutants characterized by high toxicity and chemical stability, and they are very difficult to be degraded. The trace quality of OPCWAs in water and food will cause great harm to the human body. Therefore, the detection of OPCWAs is a difficult challenge, which has become the research hotspot over the world. In this work, a Hf-based luminescent metal-organic framework (Eu@1) is prepared, and the reactivity of Hf 12 results in a methanephosphonic acid (MPA)-induced luminescence quenching and the charge transfer from MPA to Hf(IV) and generated exciplexes which are responsible for this quenching effect. The excellent performance of Eu@1 in the detection of MPA, with its finer selectivity, high sensitivity (LOD = 0.4 ppm), and large linear range (10 -7 to 10 -3 M), is encouraging for application in wastewater detection. Importantly, MPA is a pollutant that can be absorbed by plants and causes the bioaccumulation effect, and thus, the detection of MPA in real plant samples is a purposeful topic. Eu@1 also achieved satisfactory results in actual plant sample testing, and the bioaccumulation of MPA in onions, turnips, and cabbages is determined via our sensor. This fabricated detector provides a feasible path for the detection of ppm-level OPCWAs in a complex environment, which will help humans to avoid OPCWA-contaminated foods.

  6. Fusion of Heterogeneous Intrusion Detection Systems for Network Attack Detection

    Directory of Open Access Journals (Sweden)

    Jayakumar Kaliappan

    2015-01-01

    Full Text Available An intrusion detection system (IDS helps to identify different types of attacks in general, and the detection rate will be higher for some specific category of attacks. This paper is designed on the idea that each IDS is efficient in detecting a specific type of attack. In proposed Multiple IDS Unit (MIU, there are five IDS units, and each IDS follows a unique algorithm to detect attacks. The feature selection is done with the help of genetic algorithm. The selected features of the input traffic are passed on to the MIU for processing. The decision from each IDS is termed as local decision. The fusion unit inside the MIU processes all the local decisions with the help of majority voting rule and makes the final decision. The proposed system shows a very good improvement in detection rate and reduces the false alarm rate.

  7. Chemical Cell Lysis System Applicable to Lab-on-a-Disc.

    Science.gov (United States)

    Lim, Dayeseul; Yoo, Jae Chern

    2017-09-01

    The design and fabrication of a heating system has been a significant challenge in implementing chemical lysis on a lab-on-a-disc (LOD). The proposed system contains a sample inlet, phase change material (PCM) array, heating chamber, and valve in a single disc, providing cost-effective, rapid, and fully automated chemical cell lysis. Compared to the conventional cell lysis system, our cell lysis system has many advantages, such as a compact structure that is easily integrated into the LOD and reduced processing time and labor. The experiments are conducted with Salmonella typhimurium strains to demonstrate the performance. The experimental results show that the proposed approach is greatly effective in realizing a chemical cell lysis system on an LOD with higher throughput in terms of purity and yield of DNA.

  8. Smart aircraft fastener evaluation (SAFE) system: a condition-based corrosion detection system for aging aircraft

    Science.gov (United States)

    Schoess, Jeffrey N.; Seifert, Greg; Paul, Clare A.

    1996-05-01

    The smart aircraft fastener evaluation (SAFE) system is an advanced structural health monitoring effort to detect and characterize corrosion in hidden and inaccessible locations of aircraft structures. Hidden corrosion is the number one logistics problem for the U.S. Air Force, with an estimated maintenance cost of $700M per year in 1990 dollars. The SAFE system incorporates a solid-state electrochemical microsensor and smart sensor electronics in the body of a Hi-Lok aircraft fastener to process and autonomously report corrosion status to aircraft maintenance personnel. The long-term payoff for using SAFE technology will be in predictive maintenance for aging aircraft and rotorcraft systems, fugitive emissions applications such as control valves, chemical pipeline vessels, and industrial boilers. Predictive maintenance capability, service, and repair will replace the current practice of scheduled maintenance to substantially reduce operational costs. A summary of the SAFE concept, laboratory test results, and future field test plans is presented.

  9. Minimum detectable gas concentration performance evaluation method for gas leak infrared imaging detection systems.

    Science.gov (United States)

    Zhang, Xu; Jin, Weiqi; Li, Jiakun; Wang, Xia; Li, Shuo

    2017-04-01

    Thermal imaging technology is an effective means of detecting hazardous gas leaks. Much attention has been paid to evaluation of the performance of gas leak infrared imaging detection systems due to several potential applications. The minimum resolvable temperature difference (MRTD) and the minimum detectable temperature difference (MDTD) are commonly used as the main indicators of thermal imaging system performance. This paper establishes a minimum detectable gas concentration (MDGC) performance evaluation model based on the definition and derivation of MDTD. We proposed the direct calculation and equivalent calculation method of MDGC based on the MDTD measurement system. We build an experimental MDGC measurement system, which indicates the MDGC model can describe the detection performance of a thermal imaging system to typical gases. The direct calculation, equivalent calculation, and direct measurement results are consistent. The MDGC and the minimum resolvable gas concentration (MRGC) model can effectively describe the performance of "detection" and "spatial detail resolution" of thermal imaging systems to gas leak, respectively, and constitute the main performance indicators of gas leak detection systems.

  10. The Theory of Thermodynamics for Chemical Reactions in Dispersed Heterogeneous Systems

    Science.gov (United States)

    Yongqiang; Baojiao; Jianfeng

    1997-07-01

    In this paper, the expressions of Gibbs energy change, enthalpy change, entropy change, and equilibrium constant for chemical reactions in dispersed heterogeneous systems are derived using classical thermodynamics theory. The thermodynamical relations for the same reaction system between the dispersed and the block state are also derived. The effects of degree of dispersion on thermodynamical properties, reaction directions, and chemical equilibria are discussed. The results show that the present equation of thermodynamics for chemical reactions is only a special case of the above-mentioned formulas and that the effect of the dispersity of a heterogeneous system on the chemical reaction obeys the Le Chatelier principle of movement of equilibria.

  11. On microscopic simulations of systems with model chemical reactions

    International Nuclear Information System (INIS)

    Gorecki, J.; Gorecka, J.N.

    1998-01-01

    Large scale computer simulations of model chemical systems play the role of idealized experiments in which theories may be tested. In this paper we present two applications of microscopic simulations based on the reactive hard sphere model. We investigate the influence of internal fluctuations on an oscillating chemical system and observe how they modify the phase portrait of it. Another application, we consider, is concerned with the propagation of a chemical wave front associated with a thermally activated reaction. It is shown that the nonequilibrium effects increase the front velocity if compared with the velocity of the front generated by a nonactivated process characterized by the same rate constant. (author)

  12. Accelerated detection of brown-rot decay : comparison of soil block test, chemical analysis, mechanical properties, and immunodetection

    Science.gov (United States)

    C. A. Clausen; S. N. Kartal

    2003-01-01

    Early detection of wood decay is critical because decay fungi can cause rapid structural failure. The objective of this study was to compare the sensitivity of different methods purported to detect brown-rot decay in the early stages of development. The immunodiagnostic wood decay (IWD)test, soil block test/cake pan test, mechanical property tests, and chemical...

  13. The design method and research status of vehicle detection system based on geomagnetic detection principle

    Science.gov (United States)

    Lin, Y. H.; Bai, R.; Qian, Z. H.

    2018-03-01

    Vehicle detection systems are applied to obtain real-time information of vehicles, realize traffic control and reduce traffic pressure. This paper reviews geomagnetic sensors as well as the research status of the vehicle detection system. Presented in the paper are also our work on the vehicle detection system, including detection algorithms and experimental results. It is found that the GMR based vehicle detection system has a detection accuracy up to 98% with a high potential for application in the road traffic control area.

  14. Chemical cleavage reactions of DNA on solid support: application in mutation detection

    Directory of Open Access Journals (Sweden)

    Cotton Richard GH

    2003-05-01

    Full Text Available Abstract Background The conventional solution-phase Chemical Cleavage of Mismatch (CCM method is time-consuming, as the protocol requires purification of DNA after each reaction step. This paper describes a new version of CCM to overcome this problem by immobilizing DNA on silica solid supports. Results DNA test samples were loaded on to silica beads and the DNA bound to the solid supports underwent chemical modification reactions with KMnO4 (potassium permanganate and hydroxylamine in 3M TEAC (tetraethylammonium chloride solution. The resulting modified DNA was then simultaneously cleaved by piperidine and removed from the solid supports to afford DNA fragments without the requirement of DNA purification between reaction steps. Conclusions The new solid-phase version of CCM is a fast, cost-effective and sensitive method for detection of mismatches and mutations.

  15. Enhanced chemical sensing organic thin-film transistors

    Science.gov (United States)

    Tanese, M. C.; Torsi, L.; Farinola, G. M.; Valli, L.; Hassan Omar, O.; Giancane, G.; Ieva, E.; Babudri, F.; Palmisano, F.; Naso, F.; Zambonin, P. G.

    2007-09-01

    Organic thin film transistor (OTFT) sensors are capable of fast, sensitive and reliable detection of a variety of analytes. They have been successfully tested towards many chemical and biological "odor" molecules showing high selectivity, and displaying the additional advantage of being compatible with plastic technologies. Their versatility is based on the possibility to control the device properties, from molecular design up to device architecture. Here phenylene-thiophene based organic semiconductors functionalized with ad hoc chosen side groups are used as active layers in sensing OTFTs. These materials, indeed, combine the detection capability of organic molecules (particularly in the case of bio-substituted systems) with the electronic properties of the conjugated backbone. A new OTFT structure including Langmuir-Schäfer layer by layer organic thin films is here proposed to perform chemical detection of organic vapors, including vapor phase chiral molecules such as citronellol vapors, with a detection limit in the ppm range. Thermally evaporated α6T based OTFT sensors are used as well to be employed as standard system in order to compare sensors performances.

  16. Network Intrusion Detection System using Apache Storm

    Directory of Open Access Journals (Sweden)

    Muhammad Asif Manzoor

    2017-06-01

    Full Text Available Network security implements various strategies for the identification and prevention of security breaches. Network intrusion detection is a critical component of network management for security, quality of service and other purposes. These systems allow early detection of network intrusion and malicious activities; so that the Network Security infrastructure can react to mitigate these threats. Various systems are proposed to enhance the network security. We are proposing to use anomaly based network intrusion detection system in this work. Anomaly based intrusion detection system can identify the new network threats. We also propose to use Real-time Big Data Stream Processing Framework, Apache Storm, for the implementation of network intrusion detection system. Apache Storm can help to manage the network traffic which is generated at enormous speed and size and the network traffic speed and size is constantly increasing. We have used Support Vector Machine in this work. We use Knowledge Discovery and Data Mining 1999 (KDD’99 dataset to test and evaluate our proposed solution.

  17. Enhanced dynamic data-driven fault detection approach: Application to a two-tank heater system

    KAUST Repository

    Harrou, Fouzi

    2018-02-12

    Principal components analysis (PCA) has been intensively studied and used in monitoring industrial systems. However, data generated from chemical processes are usually correlated in time due to process dynamics, which makes the fault detection based on PCA approach a challenging task. Accounting for the dynamic nature of data can also reflect the performance of the designed fault detection approaches. In PCA-based methods, this dynamic characteristic of the data can be accounted for by using dynamic PCA (DPCA), in which lagged variables are used in the PCA model to capture the time evolution of the process. This paper presents a new approach that combines the DPCA to account for autocorrelation in data and generalized likelihood ratio (GLR) test to detect faults. A DPCA model is applied to perform dimension reduction while appropriately considering the temporal relationships in the data. Specifically, the proposed approach uses the DPCA to generate residuals, and then apply GLR test to reveal any abnormality. The performances of the proposed method are evaluated through a continuous stirred tank heater system.

  18. Road Anomalies Detection System Evaluation.

    Science.gov (United States)

    Silva, Nuno; Shah, Vaibhav; Soares, João; Rodrigues, Helena

    2018-06-21

    Anomalies on road pavement cause discomfort to drivers and passengers, and may cause mechanical failure or even accidents. Governments spend millions of Euros every year on road maintenance, often causing traffic jams and congestion on urban roads on a daily basis. This paper analyses the difference between the deployment of a road anomalies detection and identification system in a “conditioned” and a real world setup, where the system performed worse compared to the “conditioned” setup. It also presents a system performance analysis based on the analysis of the training data sets; on the analysis of the attributes complexity, through the application of PCA techniques; and on the analysis of the attributes in the context of each anomaly type, using acceleration standard deviation attributes to observe how different anomalies classes are distributed in the Cartesian coordinates system. Overall, in this paper, we describe the main insights on road anomalies detection challenges to support the design and deployment of a new iteration of our system towards the deployment of a road anomaly detection service to provide information about roads condition to drivers and government entities.

  19. Transistor-based particle detection systems and methods

    Science.gov (United States)

    Jain, Ankit; Nair, Pradeep R.; Alam, Muhammad Ashraful

    2015-06-09

    Transistor-based particle detection systems and methods may be configured to detect charged and non-charged particles. Such systems may include a supporting structure contacting a gate of a transistor and separating the gate from a dielectric of the transistor, and the transistor may have a near pull-in bias and a sub-threshold region bias to facilitate particle detection. The transistor may be configured to change current flow through the transistor in response to a change in stiffness of the gate caused by securing of a particle to the gate, and the transistor-based particle detection system may configured to detect the non-charged particle at least from the change in current flow.

  20. Contraband Detection with Nuclear Resonance Fluorescence: Feasibility and Impact

    International Nuclear Information System (INIS)

    Pruet, J; Lange, D

    2007-01-01

    In this report they show that cargo interrogation systems developed to thwart trafficking of illicit nuclear materials could also be powerful tools in the larger fight against contraband smuggling. In particular, in addition to detecting special nuclear materials, cargo scanning systems that exploit nuclear resonance fluorescence to detect specific isotopes can be used to help find: chemical weapons; some drugs as well as some chemicals regulated under the controlled substances act; precious metals; materials regulated under export control laws; and commonly trafficked fluorocarbons

  1. Remote detection system

    International Nuclear Information System (INIS)

    Nixon, K.V.; France, S.W.; Garcia, C.; Hastings, R.D.

    1981-05-01

    A newly designed remote detection system has been developed at Los Alamos that allows the collection of high-resolution gamma-ray spectra and neutron data from a remote location. The system consists of the remote unit and a command unit. The remote unit collects data in a potentially hostile environment while the operator controls the unit by either radio or wire link from a safe position. Both units are battery powered and are housed in metal carrying cases

  2. 30 CFR 75.1101-15 - Construction of dry powder chemical systems.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Construction of dry powder chemical systems. 75.1101-15 Section 75.1101-15 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...-15 Construction of dry powder chemical systems. (a) Each self-contained dry powder system shall be...

  3. Laboratory and Field Testing of Commercially Available Detectors for the Identification of Chemicals of Interest in the Nuclear Fuel Cycle for the Detection of Undeclared Activities

    Energy Technology Data Exchange (ETDEWEB)

    Carla Miller; Mary Adamic; Stacey Barker; Barry Siskind; Joe Brady; Warren Stern; Heidi Smartt; Mike McDaniel; Mike Stern; Rollin Lakis

    2014-07-01

    Traditionally, IAEA inspectors have focused on the detection of nuclear indicators as part of infield inspection activities. The ability to rapidly detect and identify chemical as well as nuclear signatures can increase the ability of IAEA inspectors to detect undeclared activities at a site. Identification of chemical indicators have been limited to use in the analysis of environmental samples. Although IAEA analytical laboratories are highly effective, environmental sample processing does not allow for immediate or real-time results to an IAEA inspector at a facility. During a complementary access inspection, under the Additional Protocol, the use of fieldable technologies that can quickly provide accurate information on chemicals that may be indicative of undeclared activities can increase the ability of IAEA to effectively and efficiently complete their mission. The Complementary Access Working Group (CAWG) is a multi-laboratory team with members from Brookhaven National Laboratory, Idaho National Laboratory, Los Alamos National Laboratory, and Sandia National Laboratory. The team identified chemicals at each stage of the nuclear fuel cycle that may provide IAEA inspectors with indications that proliferation activities may be occurring. The group eliminated all indicators related to equipment, technology and training, developing a list of by-products/effluents, non-nuclear materials, nuclear materials, and other observables. These proliferation indicators were prioritized based on detectability from a conduct of operations (CONOPS) perspective of a CA inspection (for example, whether an inspector actually can access the S&O or whether it is in process with no physical access), and the IAEA’s interest in the detection technology in conjunction with radiation detectors. The list was consolidated to general categories (nuclear materials from a chemical detection technique, inorganic chemicals, organic chemicals, halogens, and miscellaneous materials). The team

  4. Combustion flame-plasma hybrid reactor systems, and chemical reactant sources

    Science.gov (United States)

    Kong, Peter C

    2013-11-26

    Combustion flame-plasma hybrid reactor systems, chemical reactant sources, and related methods are disclosed. In one embodiment, a combustion flame-plasma hybrid reactor system comprising a reaction chamber, a combustion torch positioned to direct a flame into the reaction chamber, and one or more reactant feed assemblies configured to electrically energize at least one electrically conductive solid reactant structure to form a plasma and feed each electrically conductive solid reactant structure into the plasma to form at least one product is disclosed. In an additional embodiment, a chemical reactant source for a combustion flame-plasma hybrid reactor comprising an elongated electrically conductive reactant structure consisting essentially of at least one chemical reactant is disclosed. In further embodiments, methods of forming a chemical reactant source and methods of chemically converting at least one reactant into at least one product are disclosed.

  5. Advanced Ultrafast Spectroscopy for Chemical Detection of Nuclear Fuel Cycle Materials

    International Nuclear Information System (INIS)

    Villa-Aleman, E.; Houk, A.; Spencer, W.

    2017-01-01

    The development of new signatures and observables from processes related to proliferation activities are often related to the development of technologies. In our physical world, the intensity of observables is linearly related to the input drivers (light, current, voltage, etc.). Ultrafast lasers with high peak energies, opens the door to a new regime where the intensity of the observables is not necessarily linear with the laser energy. Potential nonlinear spectroscopic applications include chemical detection via remote sensing through filament generation, material characterization and processing, chemical reaction specificity, surface phenomena modifications, X-ray production, nuclear fusion, etc. The National Security Directorate laser laboratory is currently working to develop new tools for nonproliferation research with femtosecond and picosecond lasers. Prior to this project, we could only achieve laser energies in the 5 nano-Joule range, preventing the study of nonlinear phenomena. To advance our nonproliferation research into the nonlinear regime we require laser pulses in the milli-Joule (mJ) energy range. We have procured and installed a 35 fs-7 mJ laser, operating at one-kilohertz repetition rate, to investigate elemental and molecular detection of materials in the laboratory with potential applications in remote sensing. Advanced, nonlinear Raman techniques will be used to study materials of interest that are in a matrix of many materials and currently with these nonlinear techniques we can achieve greater than three orders of magnitude signal enhancement. This work studying nuclear fuel cycle materials with nonlinear spectroscopies will advance SRNL research capabilities and grow a core capability within the DOE complex.

  6. Advanced Ultrafast Spectroscopy for Chemical Detection of Nuclear Fuel Cycle Materials

    Energy Technology Data Exchange (ETDEWEB)

    Villa-Aleman, E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Houk, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Spencer, W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-29

    The development of new signatures and observables from processes related to proliferation activities are often related to the development of technologies. In our physical world, the intensity of observables is linearly related to the input drivers (light, current, voltage, etc.). Ultrafast lasers with high peak energies, opens the door to a new regime where the intensity of the observables is not necessarily linear with the laser energy. Potential nonlinear spectroscopic applications include chemical detection via remote sensing through filament generation, material characterization and processing, chemical reaction specificity, surface phenomena modifications, X-ray production, nuclear fusion, etc. The National Security Directorate laser laboratory is currently working to develop new tools for nonproliferation research with femtosecond and picosecond lasers. Prior to this project, we could only achieve laser energies in the 5 nano-Joule range, preventing the study of nonlinear phenomena. To advance our nonproliferation research into the nonlinear regime we require laser pulses in the milli-Joule (mJ) energy range. We have procured and installed a 35 fs-7 mJ laser, operating at one-kilohertz repetition rate, to investigate elemental and molecular detection of materials in the laboratory with potential applications in remote sensing. Advanced, nonlinear Raman techniques will be used to study materials of interest that are in a matrix of many materials and currently with these nonlinear techniques we can achieve greater than three orders of magnitude signal enhancement. This work studying nuclear fuel cycle materials with nonlinear spectroscopies will advance SRNL research capabilities and grow a core capability within the DOE complex.

  7. Pothole Detection System Using a Black-box Camera

    Directory of Open Access Journals (Sweden)

    Youngtae Jo

    2015-11-01

    Full Text Available Aging roads and poor road-maintenance systems result a large number of potholes, whose numbers increase over time. Potholes jeopardize road safety and transportation efficiency. Moreover, they are often a contributing factor to car accidents. To address the problems associated with potholes, the locations and size of potholes must be determined quickly. Sophisticated road-maintenance strategies can be developed using a pothole database, which requires a specific pothole-detection system that can collect pothole information at low cost and over a wide area. However, pothole repair has long relied on manual detection efforts. Recent automatic detection systems, such as those based on vibrations or laser scanning, are insufficient to detect potholes correctly and inexpensively owing to the unstable detection of vibration-based methods and high costs of laser scanning-based methods. Thus, in this paper, we introduce a new pothole-detection system using a commercial black-box camera. The proposed system detects potholes over a wide area and at low cost. We have developed a novel pothole-detection algorithm specifically designed to work with the embedded computing environments of black-box cameras. Experimental results are presented with our proposed system, showing that potholes can be detected accurately in real-time.

  8. Chemical decontamination method in nuclear facility system

    International Nuclear Information System (INIS)

    Takahashi, Ryota; Sakai, Hitoshi; Oka, Shigehiro.

    1996-01-01

    Pumps and valves in a closed recycling loop system incorporating materials to be chemically decontaminated are decomposed, a guide plate having the decomposed parts as an exit/inlet of a decontaminating liquid is formed, and a decontaminating liquid recycling loop comprising a recycling pump and a heater is connected to the guide plate. Decontaminating liquid from a decontaminating liquid storage tank is supplied to the decontaminating liquid recycling loop. With such constitutions, the decontaminating liquid is filled in the recycling closed loop system incorporating materials to be decontaminated, and the materials to be decontaminated are chemically decontaminated. The decontaminating liquid after the decontamination is discharged and flows, if necessary, in a recycling system channel for repeating supply and discharge. After the decontamination, the guide plate is removed and returned to the original recycling loop. When pipelines of a reactor recycling system are decontaminated, the amount of decontaminations can be decreased, and reforming construction for assembling the recycling loop again, which requires cutting for pipelines in the system is no more necessary. Accordingly, the amount of wastes can be decreased, and therefore, the decontamination operation is facilitated and radiation dose can be reduced. (T.M.)

  9. Endocrine Disrupting Chemical Impacts on Aquatic Systems

    Science.gov (United States)

    Jobling, Susan

    2014-07-01

    We often talk about the importance of water, but one area that's often overlooked is the safety of our water supply. How many people actually think about the purity of their water when they turn on the tap? We may have real reason to be concerned because our water delivery systems and treatment technology seem to be stuck in the past, relying on old water treatment and water delivery systems. While these systems still do a great job filtering out particles, parasites and bacteria, they usually fail to remove 21st century contaminants like pesticides, industrial chemicals, lead, pharmaceuticals and arsenic. Indeed our water contains already a whole plethora of things in daily commerce and pharmaceuticals are increasingly showing up in the water supply, including antibiotics, anti-convulsants, mood altering medications and sex hormones. As the world's dependence on chemicals grows, our water supplies will continue to feel the effects, which inevitably will touch every person on this planet...

  10. Safe Detection System for Hydrogen Leaks

    Energy Technology Data Exchange (ETDEWEB)

    Lieberman, Robert A. [Intelligent Optical Systems, Inc., Torrance, CA (United States); Beshay, Manal [Intelligent Optical Systems, Inc., Torrance, CA (United States)

    2012-02-29

    Hydrogen is an "environmentally friendly" fuel for future transportation and other applications, since it produces only pure ("distilled") water when it is consumed. Thus, hydrogen-powered vehicles are beginning to proliferate, with the total number of such vehicles expected to rise to nearly 100,000 within the next few years. However, hydrogen is also an odorless, colorless, highly flammable gas. Because of this, there is an important need for hydrogen safety monitors that can warn of hazardous conditions in vehicles, storage facilities, and hydrogen production plants. To address this need, IOS has developed a unique intrinsically safe optical hydrogen sensing technology, and has embodied it in detector systems specifically developed for safety applications. The challenge of using light to detect a colorless substance was met by creating chemically-sensitized optical materials whose color changes in the presence of hydrogen. This reversible reaction provides a sensitive, reliable, way of detecting hydrogen and measuring its concentration using light from low-cost LEDs. Hydrogen sensors based on this material were developed in three completely different optical formats: point sensors ("optrodes"), integrated optic sensors ("optical chips"), and optical fibers ("distributed sensors") whose entire length responds to hydrogen. After comparing performance, cost, time-to-market, and relative market need for these sensor types, the project focused on designing a compact optrode-based single-point hydrogen safety monitor. The project ended with the fabrication of fifteen prototype units, and the selection of two specific markets: fuel cell enclosure monitoring, and refueling/storage safety. Final testing and development of control software for these markets await future support.

  11. Chemical, Biological, and Explosive Sensors for Field Measurements

    International Nuclear Information System (INIS)

    Kyle, Kevin; Manard, Manuel; Weeks, Stephan

    2009-01-01

    Special Technologies Laboratory (STL) is developing handheld chemical, biological, and explosive (CBE) detection systems and sensor motes for wireless networked field operations. The CBE sensors are capable of detecting and identifying multiple targeted toxic industrial chemicals (TICs) and high-explosive vapor components. The CBE devices are based on differential mobility spectrometry (DMS) coupled with fast gas chromatography (GC) or mass spectrometry. The systems all include the concepts of: (1) Direct air/particulate 'smart' sampling; (2) Selective, continuous real-time (∼1 sec) alert monitoring using DMS; and (3) Highly selective, rapid dual technology separation/verification analysis The biosensor technology is based on Raman aerosol particle flow cytometry for target detection and identification. Monitoring and identifying trace level chemical vapors directly from ambient air will allow First Responders to quickly adapt situational response strategies and personal protective equipment needs to the specific response scenario being encountered. First Responders require great confidence in the measurements and ability of a given system to detect CBE below threshold levels without interferences. The concept of determining the background matrix in near real-time to allow subsequent automated field-programmable method selection and cueing of high-value assets in a wide range of environs will be presented. This provides CBE information for decisions prior to First Responders entering the response site or sending a portable mobile unit for a remote site survey of the hazards. The focus is on real-time information needed by those responsible for emergency response and national security

  12. Radiolytic production of chemical fuels in fusion reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Fish, J D

    1977-06-01

    Miley's energy flow diagram for fusion reactor systems is extended to include radiolytic production of chemical fuel. Systematic study of the economics and the overall efficiencies of fusion reactor systems leads to a criterion for evaluating the potential of radiolytic production of chemical fuel as a means of enhancing the performance of a fusion reactor system. The ecumenicity of the schema is demonstrated by application to (1) tokamaks, (2) mirror machines, (3) theta-pinch reactors, (4) laser-heated solenoids, and (5) inertially confined, laser-pellet devices. Pure fusion reactors as well as fusion-fission hybrids are considered.

  13. Radiolytic production of chemical fuels in fusion reactor systems

    International Nuclear Information System (INIS)

    Fish, J.D.

    1977-06-01

    Miley's energy flow diagram for fusion reactor systems is extended to include radiolytic production of chemical fuel. Systematic study of the economics and the overall efficiencies of fusion reactor systems leads to a criterion for evaluating the potential of radiolytic production of chemical fuel as a means of enhancing the performance of a fusion reactor system. The ecumenicity of the schema is demonstrated by application to (1) tokamaks, (2) mirror machines, (3) theta-pinch reactors, (4) laser-heated solenoids, and (5) inertially confined, laser-pellet devices. Pure fusion reactors as well as fusion-fission hybrids are considered

  14. A low-cost, portable optical sensing system with wireless communication compatible of real-time and remote detection of dissolved ammonia

    Science.gov (United States)

    Deng, Shijie; Doherty, William; McAuliffe, Michael AP; Salaj-Kosla, Urszula; Lewis, Liam; Huyet, Guillaume

    2016-06-01

    A low-cost and portable optical chemical sensor based ammonia sensing system that is capable of detecting dissolved ammonia up to 5 ppm is presented. In the system, an optical chemical sensor is designed and fabricated for sensing dissolved ammonia concentrations. The sensor uses eosin as the fluorescence dye which is immobilized on the glass substrate by a gas-permeable protection layer. A compact module is developed to hold the optical components, and a battery powered micro-controller system is designed to read out and process the data measured. The system operates without the requirement of laboratory instruments that makes it cost effective and highly portable. Moreover, the calculated results in the system can be transmitted to a PC wirelessly, which allows the remote and real-time monitoring of dissolved ammonia.

  15. Investigation of Raman chemical imaging for detection of Lycopene changes in tomatoes during postharvest ripening

    Science.gov (United States)

    Lycopene is a major carotenoid in tomatoes and detecting changes in lycopene content can be used to monitor the ripening of tomatoes. Raman chemical imaging is a new technique that shows promise for mapping constituents of interest in complex food matrices. In this study, a benchtop point-scanning...

  16. A universal DNA-based protein detection system.

    Science.gov (United States)

    Tran, Thua N N; Cui, Jinhui; Hartman, Mark R; Peng, Songming; Funabashi, Hisakage; Duan, Faping; Yang, Dayong; March, John C; Lis, John T; Cui, Haixin; Luo, Dan

    2013-09-25

    Protein immune detection requires secondary antibodies which must be carefully selected in order to avoid interspecies cross-reactivity, and is therefore restricted by the limited availability of primary/secondary antibody pairs. Here we present a versatile DNA-based protein detection system using a universal adapter to interface between IgG antibodies and DNA-modified reporter molecules. As a demonstration of this capability, we successfully used DNA nano-barcodes, quantum dots, and horseradish peroxidase enzyme to detect multiple proteins using our DNA-based labeling system. Our system not only eliminates secondary antibodies but also serves as a novel method platform for protein detection with modularity, high capacity, and multiplexed capability.

  17. The quench detection system of Wendelstein 7-X

    International Nuclear Information System (INIS)

    Birus, Dietrich; Schneider, Matthias; Rummel, Thomas; Fricke, Marko

    2011-01-01

    The Quench Detection System of Wendelstein W7-X has been developed, pretested and manufactured during the last four years. This safety subsystem of the superconducting magnet power supply will guarantee the safe operating of the whole magnet system. The main targets of the Quench Detection System are the complete data acquisition of all the voltages along the superconducting components, i.e. non planar and planar coils, and bus bars, the evaluation of this data and the control of the magnet system safety discharges. The Quench Detection System is generating control commands for the magnet power supply control system and the electrical status of the superconducting components of W7-X. The Quench Detection System consists of nearly 580 Quench Detection Units (QDU) located in 10 QD-subsystems, 8 racks in each, one host system and two special interfaces for evaluation of the quench control commands and the failure signals. The operating software suite of the QD System allows the configuration, the operation and the maintenance of the whole system.

  18. 46 CFR 154.1350 - Flammable gas detection system.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Flammable gas detection system. 154.1350 Section 154... Equipment Instrumentation § 154.1350 Flammable gas detection system. (a) The vessel must have a fixed flammable gas detection system that has sampling points in: (1) Each cargo pump room; (2) Each cargo...

  19. Comprehensive sample analysis using high performance liquid chromatography with multi-detection

    International Nuclear Information System (INIS)

    Pravadali, Sercan; Bassanese, Danielle N.; Conlan, Xavier A.; Francis, Paul S.; Smith, Zoe M.; Terry, Jessica M.; Shalliker, R. Andrew

    2013-01-01

    Graphical abstract: -- Highlights: •Detection selectivity was assessed with 6 detection modes. •Natural samples show great diversity in detection selectivity. •Complex samples require evaluation using a multifaceted approach to detection. •23/30 known compounds (detected by MS) detected by chemiluminescence, DPPH and UV. -- Abstract: Herein we assess the separation space offered by a liquid chromatography system with an optimised uni-dimensional separation for the determination of the key chemical entities in the highly complex matrix of a tobacco leaf extract. Multiple modes of detection, including UV–visible absorbance, chemiluminescence (acidic potassium permanganate, manganese(IV), and tris(2,2′-bipyridine)ruthenium(III)), mass spectrometry and DPPH radical scavenging were used in an attempt to systematically reduce the data complexity of the sample whilst obtaining a greater degree of molecule-specific information. A large amount of chemical data was obtained, but several limitations in the ability to assign detector responses to particular compounds, even with the aid of complementary detection systems, were observed. Thirty-three compounds were detected via MS on the tobacco extract and 12 out of 32 compounds gave a peak height ratio (PHR) greater than 0.33 on one or more detectors. This paper serves as a case study of these limitations, illustrating why multidimensional chromatography is an important consideration when developing a comprehensive chemical detection system

  20. Comprehensive sample analysis using high performance liquid chromatography with multi-detection

    Energy Technology Data Exchange (ETDEWEB)

    Pravadali, Sercan [Australian Centre for Research on Separation Sciences (ACROSS), School of Science and Health, University of Western Sydney (Parramatta), NSW 1797 (Australia); Bassanese, Danielle N.; Conlan, Xavier A.; Francis, Paul S.; Smith, Zoe M.; Terry, Jessica M. [Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Victoria 3216 (Australia); Shalliker, R. Andrew, E-mail: R.Shalliker@uws.edu.au [Australian Centre for Research on Separation Sciences (ACROSS), School of Science and Health, University of Western Sydney (Parramatta), NSW 1797 (Australia)

    2013-11-25

    Graphical abstract: -- Highlights: •Detection selectivity was assessed with 6 detection modes. •Natural samples show great diversity in detection selectivity. •Complex samples require evaluation using a multifaceted approach to detection. •23/30 known compounds (detected by MS) detected by chemiluminescence, DPPH and UV. -- Abstract: Herein we assess the separation space offered by a liquid chromatography system with an optimised uni-dimensional separation for the determination of the key chemical entities in the highly complex matrix of a tobacco leaf extract. Multiple modes of detection, including UV–visible absorbance, chemiluminescence (acidic potassium permanganate, manganese(IV), and tris(2,2′-bipyridine)ruthenium(III)), mass spectrometry and DPPH radical scavenging were used in an attempt to systematically reduce the data complexity of the sample whilst obtaining a greater degree of molecule-specific information. A large amount of chemical data was obtained, but several limitations in the ability to assign detector responses to particular compounds, even with the aid of complementary detection systems, were observed. Thirty-three compounds were detected via MS on the tobacco extract and 12 out of 32 compounds gave a peak height ratio (PHR) greater than 0.33 on one or more detectors. This paper serves as a case study of these limitations, illustrating why multidimensional chromatography is an important consideration when developing a comprehensive chemical detection system.

  1. Stress-induced chemical detection using flexible metal-organic frameworks.

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, Mark D.; Hesketh, Peter J. (Georgia Institute of Technology, Atlanta, GA); Gall, Kenneth A. (Georgia Institute of Technology, Atlanta, GA); Choudhury, A. (Georgia Institute of Technology, Atlanta, GA); Pikarsky, J. (Georgia Institute of Technology, Atlanta, GA); Andruszkiewicz, Leanne (Georgia Institute of Technology, Atlanta, GA); Houk, Ronald J. T.; Talin, Albert Alec (National Institute of Standards & Technology, Gaithersburg, MD)

    2009-09-01

    In this work we demonstrate the concept of stress-induced chemical detection using metal-organic frameworks (MOFs) by integrating a thin film of the MOF HKUST-1 with a microcantilever surface. The results show that the energy of molecular adsorption, which causes slight distortions in the MOF crystal structure, can be efficiently converted to mechanical energy to create a highly responsive, reversible, and selective sensor. This sensor responds to water, methanol, and ethanol vapors, but yields no response to either N{sub 2} or O{sub 2}. The magnitude of the signal, which is measured by a built-in piezoresistor, is correlated with the concentration and can be fitted to a Langmuir isotherm. Furthermore, we show that the hydration state of the MOF layer can be used to impart selectivity to CO{sub 2}. We also report the first use of surface-enhanced Raman spectroscopy to characterize the structure of a MOF film. We conclude that the synthetic versatility of these nanoporous materials holds great promise for creating recognition chemistries to enable selective detection of a wide range of analytes. A force field model is described that successfully predicts changes in MOF properties and the uptake of gases. This model is used to predict adsorption isotherms for a number of representative compounds, including explosives, nerve agents, volatile organic compounds, and polyaromatic hydrocarbons. The results show that, as a result of relatively large heats of adsorption (> 20 kcal mol{sup -1}) in most cases, we expect an onset of adsorption by MOF as low as 10{sup -6} kPa, suggesting the potential to detect compounds such as RDX at levels as low as 10 ppb at atmospheric pressure.

  2. Release mitigation spray safety systems for chemical demilitarization applications.

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, Jonathan; Tezak, Matthew Stephen; Brockmann, John E.; Servantes, Brandon; Sanchez, Andres L.; Tucker, Mark David; Allen, Ashley N.; Wilson, Mollye C.; Lucero, Daniel A.; Betty, Rita G.

    2010-06-01

    Sandia National Laboratories has conducted proof-of-concept experiments demonstrating effective knockdown and neutralization of aerosolized CBW simulants using charged DF-200 decontaminant sprays. DF-200 is an aqueous decontaminant, developed by Sandia National Laboratories, and procured and fielded by the US Military. Of significance is the potential application of this fundamental technology to numerous applications including mitigation and neutralization of releases arising during chemical demilitarization operations. A release mitigation spray safety system will remove airborne contaminants from an accidental release during operations, to protect personnel and limit contamination. Sandia National Laboratories recently (November, 2008) secured funding from the US Army's Program Manager for Non-Stockpile Chemical Materials Agency (PMNSCMA) to investigate use of mitigation spray systems for chemical demilitarization applications. For non-stockpile processes, mitigation spray systems co-located with the current Explosive Destruction System (EDS) will provide security both as an operational protective measure and in the event of an accidental release. Additionally, 'tented' mitigation spray systems for native or foreign remediation and recovery operations will contain accidental releases arising from removal of underground, unstable CBW munitions. A mitigation spray system for highly controlled stockpile operations will provide defense from accidental spills or leaks during routine procedures.

  3. Toxicity tests with crustaceans for detecting sublethal effects of potential endocrine disrupting chemicals

    DEFF Research Database (Denmark)

    Wollenberger, Leah

    /antagonistic activity with the ecdysteroid-responsive Drosophila melanogaster BII cell line 6) to draft an OECD guideline proposal for testing of chemicals based on the experimental work performed within this study In preliminary investigations with A. tonsa were studied various parameters related to processes......New and updated test methods to detect and characterise endocrine disrupting chemicals are urgently needed for the purpose of environmental risk assessment. Although endocrine disruption in invertebrates has not been studied as extensive as in vertebrates, in particular in fish, numerous reports...... of the present Ph.D. project were: 1) to develop a fully synthetic saltwater medium suitable for laboratory culturing of marine copepods including their feeding organism as well as for toxicity testing 2) to identify sensitive endpoints related to growth, development and reproduction of the pelagic calanoid...

  4. Computational singular perturbation analysis of stochastic chemical systems with stiffness

    Science.gov (United States)

    Wang, Lijin; Han, Xiaoying; Cao, Yanzhao; Najm, Habib N.

    2017-04-01

    Computational singular perturbation (CSP) is a useful method for analysis, reduction, and time integration of stiff ordinary differential equation systems. It has found dominant utility, in particular, in chemical reaction systems with a large range of time scales at continuum and deterministic level. On the other hand, CSP is not directly applicable to chemical reaction systems at micro or meso-scale, where stochasticity plays an non-negligible role and thus has to be taken into account. In this work we develop a novel stochastic computational singular perturbation (SCSP) analysis and time integration framework, and associated algorithm, that can be used to not only construct accurately and efficiently the numerical solutions to stiff stochastic chemical reaction systems, but also analyze the dynamics of the reduced stochastic reaction systems. The algorithm is illustrated by an application to a benchmark stochastic differential equation model, and numerical experiments are carried out to demonstrate the effectiveness of the construction.

  5. Three-dimensional chemical structure of the INEL aquifer system near the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    McCurry, M.; Estes, M.; Fromm, J.; Welhan, J.; Barrash, W.

    1994-01-01

    Sampling and analysis from the Snake River Plain aquifer using a stainless-steel and teflon constructed straddle-packer system has established detailed vertical profiles of aquifer chemistry from three wells near a major source of low-level waste injection at the Idaho Chemical Processing Plant. Multiple intervals, varying from 4.6 to 6.1 m in length, were sampled between the water table (140.5 mbls - meters below land surface), and approximately 200 mbls to obtain a wide spectrum of metals, anions, radiological and organic components analyses. Measurements were also made at the well sites of important transient parameters (T, Eh, Fe 3+ , Fe 2+ , DO and SC). The principal purpose of this ongoing work is to improve our understanding of the third (i.e. vertical) dimension of aquifer chemistry at the INEL as a basis for critically evaluating site-wide monitoring procedures, and, ultimately, for improving fate and transport models for aquifer contaminants within basalt-hosted aquifers. Chemical and radiological data indicates that substantial systematic vertical and lateral variations occur in the aquifer hydrochemistry - in particular for conservative radiological nuclide concentrations. Radiological data define a three-layered zonation. Ground water within upper and lower zones contain up to 10 times higher concentrations of H-3 and I-129 than in the middle zone. Sr-90 activity is decoupled from H-3 and I-129-relatively high activity was detected within the upper zone nearest the ICPP, but activities elsewhere are very low. 27 refs., 4 figs., 1 tab

  6. Tape Cassette Bacteria Detection System

    Science.gov (United States)

    1973-01-01

    The design, fabrication, and testing of an automatic bacteria detection system with a zero-g capability and based on the filter-capsule approach is described. This system is intended for monitoring the sterility of regenerated water in a spacecraft. The principle of detection is based on measuring the increase in chemiluminescence produced by the action of bacterial porphyrins (i.e., catalase, cytochromes, etc.) on a luminol-hydrogen peroxide mixture. Since viable as well as nonviable organisms initiate this luminescence, viable organisms are detected by comparing the signal of an incubated water sample with an unincubated control. Higher signals for the former indicate the presence of viable organisms. System features include disposable sealed sterile capsules, each containing a filter membrane, for processing discrete water samples and a tape transport for moving these capsules through a processing sequence which involves sample concentration, nutrient addition, incubation, a 4 Molar Urea wash and reaction with luminol-hydrogen peroxide in front of a photomultiplier tube. Liquids are introduced by means of a syringe needle which pierces a rubber septum contained in the wall of the capsule. Detection thresholds obtained with this unit towards E. coli and S. marcescens assuming a 400 ml water sample are indicated.

  7. Mass transfer with chemical reaction in multiphase systems

    International Nuclear Information System (INIS)

    Alper, E.

    1983-01-01

    These volumes deal with the phenomenon of 'mass transfer with chemical reaction' which is of industrial, biological and physiological importance. In process engineering, it is encountered both in separation processes and in reaction engineering and both aspects are covered here in four sections: introduction; gas-liquid system; liquid-liquid system; and gas-liquid-solid system

  8. Fully automatic AI-based leak detection system

    Energy Technology Data Exchange (ETDEWEB)

    Tylman, Wojciech; Kolczynski, Jakub [Dept. of Microelectronics and Computer Science, Technical University of Lodz in Poland, ul. Wolczanska 221/223, Lodz (Poland); Anders, George J. [Kinectrics Inc., 800 Kipling Ave., Toronto, Ontario M8Z 6C4 (Canada)

    2010-09-15

    This paper presents a fully automatic system intended to detect leaks of dielectric fluid in underground high-pressure, fluid-filled (HPFF) cables. The system combines a number of artificial intelligence (AI) and data processing techniques to achieve high detection capabilities for various rates of leaks, including leaks as small as 15 l per hour. The system achieves this level of precision mainly thanks to a novel auto-tuning procedure, enabling learning of the Bayesian network - the decision-making component of the system - using simulated leaks of various rates. Significant new developments extending the capabilities of the original leak detection system described in and form the basis of this paper. Tests conducted on the real-life HPFF cable system in New York City are also discussed. (author)

  9. A stereo vision-based obstacle detection system in vehicles

    Science.gov (United States)

    Huh, Kunsoo; Park, Jaehak; Hwang, Junyeon; Hong, Daegun

    2008-02-01

    Obstacle detection is a crucial issue for driver assistance systems as well as for autonomous vehicle guidance function and it has to be performed with high reliability to avoid any potential collision with the front vehicle. The vision-based obstacle detection systems are regarded promising for this purpose because they require little infrastructure on a highway. However, the feasibility of these systems in passenger car requires accurate and robust sensing performance. In this paper, an obstacle detection system using stereo vision sensors is developed. This system utilizes feature matching, epipoplar constraint and feature aggregation in order to robustly detect the initial corresponding pairs. After the initial detection, the system executes the tracking algorithm for the obstacles. The proposed system can detect a front obstacle, a leading vehicle and a vehicle cutting into the lane. Then, the position parameters of the obstacles and leading vehicles can be obtained. The proposed obstacle detection system is implemented on a passenger car and its performance is verified experimentally.

  10. Toward the development of the direct and selective detection of nitrates by a bioinspired Mo-Cu system.

    Science.gov (United States)

    Marom, Hanit; Popowski, Yanay; Antonov, Svetlana; Gozin, Michael

    2011-10-21

    The development of a new platform for the direct and selective detection of nitrates is described. Two thioether-based chemosensors and the corresponding sulfoxides and sulfones were prepared, and their photophysical properties were evaluated. Upon selective sulfoxidation of these thioethers with nitrates via an oxygen-transfer reaction promoted by a bioinspired Mo-Cu system, significant fluorescence shifts were measured. A selective response of these systems, discriminating between nitrate salts and H(2)O(2), was also shown. © 2011 American Chemical Society

  11. Automatic Emergence Detection in Complex Systems

    Directory of Open Access Journals (Sweden)

    Eugene Santos

    2017-01-01

    Full Text Available Complex systems consist of multiple interacting subsystems, whose nonlinear interactions can result in unanticipated (emergent system events. Extant systems analysis approaches fail to detect such emergent properties, since they analyze each subsystem separately and arrive at decisions typically through linear aggregations of individual analysis results. In this paper, we propose a quantitative definition of emergence for complex systems. We also propose a framework to detect emergent properties given observations of its subsystems. This framework, based on a probabilistic graphical model called Bayesian Knowledge Bases (BKBs, learns individual subsystem dynamics from data, probabilistically and structurally fuses said dynamics into a single complex system dynamics, and detects emergent properties. Fusion is the central element of our approach to account for situations when a common variable may have different probabilistic distributions in different subsystems. We evaluate our detection performance against a baseline approach (Bayesian Network ensemble on synthetic testbeds from UCI datasets. To do so, we also introduce a method to simulate and a metric to measure discrepancies that occur with shared/common variables. Experiments demonstrate that our framework outperforms the baseline. In addition, we demonstrate that this framework has uniform polynomial time complexity across all three learning, fusion, and reasoning procedures.

  12. Development of the environmental neutron detection system

    International Nuclear Information System (INIS)

    Kume, Kyo

    2002-03-01

    Environmental neutron detection system was proposed and developed. The main goal of this system was set to detect fast and thermal neutrons with the identical detectors setup without degraders. This system consists of a 10 B doped liquid scintillator for n detection and CsI scintillators for simultaneous γ emission from 10 B doped in the liquid scintillator after the n capture reaction. The first setup was optimized for the thermal n detection, while the second setup was for the fast n detection. It was shown that the thermal n flux was obtained in the first setup by using the method of the γ coincidence method with the help of the Monte Carlo calculation. The second setup was designed to improve the detection efficiency for the fast n, and was shown qualitatively that both the pulse shape discrimination and the coincidence methods are efficient. There will be more improvements, particularly for the quantitative discussion. (author)

  13. Development of a wireless, self-sustaining damage detection sensor system based on chemiluminescence for structural health monitoring

    Science.gov (United States)

    Kuang, K. S. C.

    2014-03-01

    A novel application of chemiluminescence resulting from the chemical reaction in a glow-stick as sensors for structural health monitoring is demonstrated here. By detecting the presence of light emitting from these glow-sticks, it is possible to develop a low-cost sensing device with the potential to provide early warning of damage in a variety of engineering applications such as monitoring of cracks or damage in concrete shear walls, detecting of ground settlement, soil liquefaction, slope instability, liquefaction-related damage of underground structure and others. In addition, this paper demonstrates the ease of incorporating wireless capability to the sensor device and the possibility of making the sensor system self-sustaining by means of a renewable power source for the wireless module. A significant advantage of the system compared to previous work on the use of plastic optical fibre (POF) for damage detection is that here the system does not require an electrically-powered light source. Here, the sensing device, embedded in a cement host, is shown to be capable of detecting damage. A series of specimens with embedded glow-sticks have been investigated and an assessment of their damage detection capability will be reported. The specimens were loaded under flexure and the sensor responses were transmitted via a wireless connection.

  14. System chemical biology studies of endocrine disruptors

    DEFF Research Database (Denmark)

    Taboureau, Olivier; Oprea, Tudor I.

    Endocrine disrupting chemicals (EDCs) alter hormonal balance and other physiological systems through inappropriate developmental or adult exposure, perturbing the reproductive function of further generations. While disruption of key receptors (e.g., estrogen, androgen, and thyroid) at the ligand...

  15. Developing chemical information system; Henbosuru kagaku joho -intanetto no sekai

    Energy Technology Data Exchange (ETDEWEB)

    Chihara, H.

    1999-12-01

    With the internet's popularization, the chemical information system greatly changes. In this paper, recent development of a chemical information system using the internet is summarized. To begin with, the kinds of online information systems using WWW and how to use them are described. Next, features of the electronic journals and how to use them are described. Next, CAS and STN as internet editions of the secondary information are introduced. Next, the Scifinder and the SciFinder Scholar which CAS developed as information retrieval tools for researcher are explained well. Next, ISI and DIALOG are introduced as information retrieval services of the other web editions. Finally, realization of retrieval and display of the English database by Japanese and preparation of a fact database such as density, boiling point, spectra, etc. and the offer of them by the internet are mentioned as a future image of chemical information systems. (NEDO)

  16. Chemical modeling of irreversible reactions in nuclear waste-water-rock systems

    International Nuclear Information System (INIS)

    Wolery, T.J.

    1981-02-01

    Chemical models of aqueous geochemical systems are usually built on the concept of thermodynamic equilibrium. Though many elementary reactions in a geochemical system may be close to equilibrium, others may not be. Chemical models of aqueous fluids should take into account that many aqueous redox reactions are among the latter. The behavior of redox reactions may critically affect migration of certain radionuclides, especially the actinides. In addition, the progress of reaction in geochemical systems requires thermodynamic driving forces associated with elementary reactions not at equilibrium, which are termed irreversible reactions. Both static chemical models of fluids and dynamic models of reacting systems have been applied to a wide spectrum of problems in water-rock interactions. Potential applications in nuclear waste disposal range from problems in geochemical aspects of site evaluation to those of waste-water-rock interactions. However, much further work in the laboratory and the field will be required to develop and verify such applications of chemical modeling

  17. Effects of sample injection amount and time-of-flight mass spectrometric detection dynamic range on metabolome analysis by high-performance chemical isotope labeling LC-MS.

    Science.gov (United States)

    Zhou, Ruokun; Li, Liang

    2015-04-06

    The effect of sample injection amount on metabolome analysis in a chemical isotope labeling (CIL) liquid chromatography-mass spectrometry (LC-MS) platform was investigated. The performance of time-of-flight (TOF) mass spectrometers with and without a high-dynamic-range (HD) detection system was compared in the analysis of (12)C2/(13)C2-dansyl labeled human urine samples. An average of 1635 ± 21 (n = 3) peak pairs or putative metabolites was detected using the HD-TOF-MS, compared to 1429 ± 37 peak pairs from a conventional or non-HD TOF-MS. In both instruments, signal saturation was observed. However, in the HD-TOF-MS, signal saturation was mainly caused by the ionization process, while in the non-HD TOF-MS, it was caused by the detection process. To extend the MS detection range in the non-HD TOF-MS, an automated switching from using (12)C to (13)C-natural abundance peaks for peak ratio calculation when the (12)C peaks are saturated has been implemented in IsoMS, a software tool for processing CIL LC-MS data. This work illustrates that injecting an optimal sample amount is important to maximize the metabolome coverage while avoiding the sample carryover problem often associated with over-injection. A TOF mass spectrometer with an enhanced detection dynamic range can also significantly increase the number of peak pairs detected. In chemical isotope labeling (CIL) LC-MS, relative metabolite quantification is done by measuring the peak ratio of a (13)C2-/(12)C2-labeled peak pair for a given metabolite present in two comparative samples. The dynamic range of peak ratio measurement does not need to be very large, as only subtle changes of metabolite concentrations are encountered in most metabolomic studies where relative metabolome quantification of different groups of samples is performed. However, the absolute concentrations of different metabolites can be very different, requiring a technique to provide a wide detection dynamic range to allow the detection of as

  18. An FPGA-Based People Detection System

    Directory of Open Access Journals (Sweden)

    James J. Clark

    2005-05-01

    Full Text Available This paper presents an FPGA-based system for detecting people from video. The system is designed to use JPEG-compressed frames from a network camera. Unlike previous approaches that use techniques such as background subtraction and motion detection, we use a machine-learning-based approach to train an accurate detector. We address the hardware design challenges involved in implementing such a detector, along with JPEG decompression, on an FPGA. We also present an algorithm that efficiently combines JPEG decompression with the detection process. This algorithm carries out the inverse DCT step of JPEG decompression only partially. Therefore, it is computationally more efficient and simpler to implement, and it takes up less space on the chip than the full inverse DCT algorithm. The system is demonstrated on an automated video surveillance application and the performance of both hardware and software implementations is analyzed. The results show that the system can detect people accurately at a rate of about 2.5 frames per second on a Virtex-II 2V1000 using a MicroBlaze processor running at 75 MHz, communicating with dedicated hardware over FSL links.

  19. Systems analysis of past, present, and future chemical terrorism scenarios.

    Energy Technology Data Exchange (ETDEWEB)

    Hoette, Trisha Marie

    2012-03-01

    Throughout history, as new chemical threats arose, strategies for the defense against chemical attacks have also evolved. As a part of an Early Career Laboratory Directed Research and Development project, a systems analysis of past, present, and future chemical terrorism scenarios was performed to understand how the chemical threats and attack strategies change over time. For the analysis, the difficulty in executing chemical attack was evaluated within a framework of three major scenario elements. First, historical examples of chemical terrorism were examined to determine how the use of chemical threats, versus other weapons, contributed to the successful execution of the attack. Using the same framework, the future of chemical terrorism was assessed with respect to the impact of globalization and new technologies. Finally, the efficacy of the current defenses against contemporary chemical terrorism was considered briefly. The results of this analysis justify the need for continued diligence in chemical defense.

  20. 46 CFR 108.413 - Fusible element fire detection system.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Fusible element fire detection system. 108.413 Section... UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.413 Fusible element fire detection system. (a) A fusible element fire detection system may be installed. (b) The arrangements for the system...

  1. Portable reconfigurable detection and assessment system

    International Nuclear Information System (INIS)

    Blattman, D.A.

    1991-01-01

    Rapidly changing geopolitical issues throughout the world have made the ability to effectively respond to political, military, terrorist and peace-keeping requirements increasingly important. Recent Middle East events indicate a continuing escalation in these activities. These activities are defining the requirements for a rapidly deployable, portable, real-time detection and assessment operational security system that is reconfigurable to site specific threats. This paper describes such a system Mobile Operational Detection and Assessment system (MODAS); a commercially-off-the shelf (COTS) integrated and reconfigurable hardware/software system solution for the ever-changing geopolitical security issues of the Nineties

  2. Developing nucleic acid-based electrical detection systems

    Directory of Open Access Journals (Sweden)

    Gabig-Ciminska Magdalena

    2006-03-01

    Full Text Available Abstract Development of nucleic acid-based detection systems is the main focus of many research groups and high technology companies. The enormous work done in this field is particularly due to the broad versatility and variety of these sensing devices. From optical to electrical systems, from label-dependent to label-free approaches, from single to multi-analyte and array formats, this wide range of possibilities makes the research field very diversified and competitive. New challenges and requirements for an ideal detector suitable for nucleic acid analysis include high sensitivity and high specificity protocol that can be completed in a relatively short time offering at the same time low detection limit. Moreover, systems that can be miniaturized and automated present a significant advantage over conventional technology, especially if detection is needed in the field. Electrical system technology for nucleic acid-based detection is an enabling mode for making miniaturized to micro- and nanometer scale bio-monitoring devices via the fusion of modern micro- and nanofabrication technology and molecular biotechnology. The electrical biosensors that rely on the conversion of the Watson-Crick base-pair recognition event into a useful electrical signal are advancing rapidly, and recently are receiving much attention as a valuable tool for microbial pathogen detection. Pathogens may pose a serious threat to humans, animal and plants, thus their detection and analysis is a significant element of public health. Although different conventional methods for detection of pathogenic microorganisms and their toxins exist and are currently being applied, improvements of molecular-based detection methodologies have changed these traditional detection techniques and introduced a new era of rapid, miniaturized and automated electrical chip detection technologies into pathogen identification sector. In this review some developments and current directions in

  3. An Experimental Framework for Generating Evolvable Chemical Systems in the Laboratory

    Science.gov (United States)

    Baum, David A.; Vetsigian, Kalin

    2017-12-01

    Most experimental work on the origin of life has focused on either characterizing the chemical synthesis of particular biochemicals and their precursors or on designing simple chemical systems that manifest life-like properties such as self-propagation or adaptive evolution. Here we propose a new class of experiments, analogous to artificial ecosystem selection, where we select for spontaneously forming self-propagating chemical assemblages in the lab and then seek evidence of a response to that selection as a key indicator that life-like chemical systems have arisen. Since surfaces and surface metabolism likely played an important role in the origin of life, a key experimental challenge is to find conditions that foster nucleation and spread of chemical consortia on surfaces. We propose high-throughput screening of a diverse set of conditions in order to identify combinations of "food," energy sources, and mineral surfaces that foster the emergence of surface-associated chemical consortia that are capable of adaptive evolution. Identification of such systems would greatly advance our understanding of the emergence of self-propagating entities and the onset of adaptive evolution during the origin of life.

  4. Currently Commercially Available Chemical Sensors Employed for Detection of Volatile Organic Compounds in Outdoor and Indoor Air

    OpenAIRE

    Bartosz Szulczyński; Jacek Gębicki

    2017-01-01

    The paper presents principle of operation and design of the most popular chemical sensors for measurement of volatile organic compounds (VOCs) in outdoor and indoor air. It describes the sensors for evaluation of explosion risk including pellistors and IR-absorption sensors as well as the sensors for detection of toxic compounds such as electrochemical (amperometric), photoionization and semiconductor with solid electrolyte ones. Commercially available sensors for detection of VOCs and their ...

  5. Development of 19F-NMR chemical shift detection of DNA B-Z equilibrium using 19F-NMR.

    Science.gov (United States)

    Nakamura, S; Yang, H; Hirata, C; Kersaudy, F; Fujimoto, K

    2017-06-28

    Various DNA conformational changes are in correlation with biological events. In particular, DNA B-Z equilibrium showed a high correlation with translation and transcription. In this study, we developed a DNA probe containing 5-trifluoromethylcytidine or 5-trifluoromethylthymidine to detect DNA B-Z equilibrium using 19 F-NMR. Its probe enabled the quantitative detection of B-, Z-, and ss-DNA based on 19 F-NMR chemical shift change.

  6. Detection of biological molecules using chemical amplification and optical sensors

    Science.gov (United States)

    Van Antwerp, William Peter; Mastrototaro, John Joseph

    2000-01-01

    Methods are provided for the determination of the concentration of biological levels of polyhydroxylated compounds, particularly glucose. The methods utilize an amplification system that is an analyte transducer immobilized in a polymeric matrix, where the system is implantable and biocompatible. Upon interrogation by an optical system, the amplification system produces a signal capable of detection external to the skin of the patient. Quantitation of the analyte of interest is achieved by measurement of the emitted signal.

  7. Virtual Exploration of the Ring Systems Chemical Universe.

    Science.gov (United States)

    Visini, Ricardo; Arús-Pous, Josep; Awale, Mahendra; Reymond, Jean-Louis

    2017-11-27

    Here, we explore the chemical space of all virtually possible organic molecules focusing on ring systems, which represent the cyclic cores of organic molecules obtained by removing all acyclic bonds and converting all remaining atoms to carbon. This approach circumvents the combinatorial explosion encountered when enumerating the molecules themselves. We report the chemical universe database GDB4c containing 916 130 ring systems up to four saturated or aromatic rings and maximum ring size of 14 atoms and GDB4c3D containing the corresponding 6 555 929 stereoisomers. Almost all (98.6%) of these ring systems are unknown and represent chiral 3D-shaped macrocycles containing small rings and quaternary centers reminiscent of polycyclic natural products. We envision that GDB4c can serve to select new ring systems from which to design analogs of such natural products. The database is available for download at www.gdb.unibe.ch together with interactive visualization and search tools as a resource for molecular design.

  8. Recent advances in chemical imaging technology for the detection of contaminants for food safety and security

    Science.gov (United States)

    Priore, Ryan J.; Olkhovyk, Oksana; Drauch, Amy; Treado, Patrick; Kim, Moon; Chao, Kaunglin

    2009-05-01

    The need for routine, non-destructive chemical screening of agricultural products is increasing due to the health hazards to animals and humans associated with intentional and unintentional contamination of foods. Melamine, an industrial additive used to increase flame retardation in the resin industry, has recently been used to increase the apparent protein content of animal feed, of infant formula, as well as powdered and liquid milk in the dairy industry. Such contaminants, even at regulated levels, pose serious health risks. Chemical imaging technology provides the ability to evaluate large volumes of agricultural products before reaching the consumer. In this presentation, recent advances in chemical imaging technology that exploit Raman, fluorescence and near-infrared (NIR) are presented for the detection of contaminants in agricultural products.

  9. EUROmediCAT signal detection

    DEFF Research Database (Denmark)

    Given, Joanne E; Loane, Maria; Luteijn, Johannes Michiel

    2016-01-01

    AIMS: To evaluate congenital anomaly (CA)-medication exposure associations produced by the new EUROmediCAT signal detection system and determine which require further investigation. METHODS: Data from 15 EUROCAT registries (1995-2011) with medication exposures at the chemical substance (5th level...

  10. Hyperchaos and chaotic hierarchy in low-dimensional chemical systems

    Science.gov (United States)

    Baier, Gerold; Sahle, Sven

    1994-06-01

    Chemical reaction chains with feedback of one of the products on the source of the chain are considered. A strategy is presented in terms of ordinary differential equations which creates one, two, and three positive Lyapunov exponents as the finite dimension of the system is increased. In particular, a nonlinear inhibition loop in a chemical reaction sequence controls the type of chaos. The bifurcation scenarios are studied and chaos and hyperchaos are found for broad regions of bifurcation parameter. Some implications for the occurrence of higher chaos in real systems are discussed.

  11. Lung nodule detection on chest CT: evaluation of a computer-aided detection (CAD) system

    International Nuclear Information System (INIS)

    Lee, In Jae; Gamsu, Gordon; Czum, Julianna; Johnson, Rebecca; Chakrapani, Sanjay; Wu, Ning

    2005-01-01

    To evaluate the capacity of a computer-aided detection (CAD) system to detect lung nodules in clinical chest CT. A total of 210 consecutive clinical chest CT scans and their reports were reviewed by two chest radiologists and 70 were selected (33 without nodules and 37 with 1-6 nodules, 4-15.4 mm in diameter). The CAD system (ImageChecker CT LN-1000) developed by R2 Technology, Inc. (Sunnyvale, CA) was used. Its algorithm was designed to detect nodules with a diameter of 4-20 mm. The two chest radiologists working with the CAD system detected a total of 78 nodules. These 78 nodules form the database for this study. Four independent observers interpreted the studies with and without the CAD system. The detection rates of the four independent observers without CAD were 81% (63/78), 85% (66/78), 83% (65/78), and 83% (65/78), respectively. With CAD their rates were 87% (68/78), 85% (66/78), 86% (67/78), and 85% (66/78), respectively. The differences between these two sets of detection rates did not reach statistical significance. In addition, CAD detected eight nodules that were not mentioned in the original clinical radiology reports. The CAD system produced 1.56 false-positive nodules per CT study. The four test observers had 0, 0.1, 0.17, and 0.26 false-positive results per study without CAD and 0.07, 0.2, 0.23, and 0.39 with CAD, respectively. The CAD system can assist radiologists in detecting pulmonary nodules in chest CT, but with a potential increase in their false positive rates. Technological improvements to the system could increase the sensitivity and specificity for the detection of pulmonary nodules and reduce these false-positive results

  12. Proceedings of the DOE chemical energy storage and hydrogen energy systems contracts review

    Energy Technology Data Exchange (ETDEWEB)

    1980-02-01

    Sessions were held on electrolysis-based hydrogen storage systems, hydrogen production, hydrogen storage systems, hydrogen storage materials, end-use applications and system studies, chemical heat pump/chemical energy storage systems, systems studies and assessment, thermochemical hydrogen production cycles, advanced production concepts, and containment materials. (LHK)

  13. Multi-sensor explosive detection system

    International Nuclear Information System (INIS)

    Gozani, T.; Shea, P.M.; Sawa, Z.P.

    1992-01-01

    This patent describes an explosive detection system. It comprises a source of neutrons; a detector array comprising a plurality of gamma ray detectors, each of the gamma ray detectors providing a detection signal in the event a gamma ray is captured by the detector, and at least one neutron detector, the neutron detector providing a neutron detection signal in the event a neutron is captured by the neutron detector; means for irradiating an object being examined with neutrons from the neutron source and for positioning the detector array relative to the object so that gamma rays emitted from the elements within the object as a result of the neutron irradiation are detected by the gamma ray detectors of the detector array; and parallel distributed processing means responsive to the detection signals of the detector array for discriminating between objects carrying explosives and objects not carrying explosives, the parallel distributed processing means including an artificial neural system (ANS), the ANS having a parallel network of processors, each processor of the parallel network of processors, each processor of the parallel network of processors including means for receiving at least one input signal, and means for generating an output signal as a function of the at least one input signal

  14. Heterodyne lidar for chemical sensing

    International Nuclear Information System (INIS)

    Oldenborg, Richard C.; Tiee, Joe J.; Shimada, Tsutomu; Wilson, Carl W.; Remelius, Dennis K.; Fox, Jay; Swim, Cynthia

    2004-01-01

    The overall objective is to assess the detection performance of LWIR (long wavelength infrared) coherent Lidar systems that potentially possess enhanced effluent detection capabilities. Previous work conducted by Los Alamos has demonstrated that infrared DIfferential Absorption Lidar (DIAL) is capable of detecting chemicals in plumes from long standoff ranges. Our DIAL approach relied on the reflectivity of topographical targets to provide a strong return signal. With the inherent advantage of applying heterodyne transceivers to approach single-photon detection in LWIR, it is projected that marked improvements in detection range or in spatial coverage can be attained. In some cases, the added photon detection sensitivity could be utilized for sensing 'soft targets', such as atmospheric and threat aerosols where return signal strength is drastically reduced, as opposed to topographical targets. This would allow range resolved measurements and could lead to the mitigation of the limiting source of noise due to spectral/spatial/temporal variability of the ground scene. The ability to distinguish normal variations in the background from true chemical signatures is crucial to the further development of sensitive remote chemical sensing technologies. One main difficulty in demonstrating coherent DIAL detection is the development of suitable heterodyne transceivers that can achieve rapid multi-wavelength tuning required for obtaining spectral signature information. LANL has recently devised a novel multi-wavelength heterodyne transceiver concept that addresses this issue. A 5-KHz prototype coherent CO 2 transceiver has been constructed and is being now used to help address important issues in remote CBW agent standoff detection. Laboratory measurements of signal-to-noise ratio (SNR) will be reported. Since the heterodyne detection scheme fundamentally has poor shot-to-shot signal statistics, in order to achieve sensitive detection limits, favorable averaging statistics

  15. CHEMTRAN and the Interconversion of Chemical Substructure Systems

    Science.gov (United States)

    Granito, Charles E.

    1973-01-01

    The need for the interconversion of chemical substructure systems is discussed and CHEMTRAN, a new service, designed especially for creating interconversion programs, is introduced. (7 references) (Author)

  16. Rapid and sensitive reporter gene assays for detection of antiandrogenic and estrogenic effects of environmental chemicals

    DEFF Research Database (Denmark)

    Vinggaard, Anne; Jørgensen, E.C.B.; Larsen, John Christian

    1999-01-01

    Reports on increasing incidences in developmental abnormalities of the human male reproductive tract and the recent identifications of environmental chemicals with antiandrogenic activity necessitate the screening of a larger number of compounds in order to get an overview of potential antiandrog......Reports on increasing incidences in developmental abnormalities of the human male reproductive tract and the recent identifications of environmental chemicals with antiandrogenic activity necessitate the screening of a larger number of compounds in order to get an overview of potential...... antiandrogenic chemicals present in our environment. Thus, there is a great need for an effective in vitro screening method for (anti)androgenic chemicals. We have developed a rapid, sensitive, and reproducible reporter gene assay for detection of antiandrogenic chemicals. Chinese Hamster Ovary cells were...... calcium phosphate transfection method, this method has the advantage of being more feasible, as the assay can be scaled down to the microtiter plate format. Furthermore, the transfection reagent is noncytotoxic, allowing its addition together with the test compounds thereby reducing the hands...

  17. Versatile Dual Photoresponsive System for Precise Control of Chemical Reactions.

    Science.gov (United States)

    Xu, Can; Bing, Wei; Wang, Faming; Ren, Jinsong; Qu, Xiaogang

    2017-08-22

    A versatile method for photoregulation of chemical reactions was developed through a combination of near-infrared (NIR) and ultraviolet (UV) light sensitive materials. This regulatory effect was achieved through photoresponsive modulation of reaction temperature and pH values, two prominent factors influencing reaction kinetics. Photothermal nanomaterial graphene oxide (GO) and photobase reagent malachite green carbinol base (MGCB) were selected for temperature and pH regulation, respectively. Using nanocatalyst- and enzyme-mediated chemical reactions as model systems, we demonstrated the feasibility and high efficiency of this method. In addition, a photoresponsive, multifunctional "Band-aid"-like hydrogel platform was presented for programmable wound healing. Overall, this simple, efficient, and reversible system was found to be effective for controlling a wide variety of chemical reactions. Our work may provide a method for remote and sustainable control over chemical reactions for industrial and biomedical applications.

  18. Compensated intruder-detection systems

    Science.gov (United States)

    McNeilly, David R.; Miller, William R.

    1984-01-01

    Intruder-detection systems in which intruder-induced signals are transmitted through a medium also receive spurious signals induced by changes in a climatic condition affecting the medium. To combat this, signals received from the detection medium are converted to a first signal. The system also provides a reference signal proportional to climate-induced changes in the medium. The first signal and the reference signal are combined for generating therefrom an output signal which is insensitive to the climatic changes in the medium. An alarm is energized if the output signal exceeds a preselected value. In one embodiment, an acoustic cable is coupled to a fence to generate a first electrical signal proportional to movements thereof. False alarms resulting from wind-induced movements of the fence (detection medium) are eliminated by providing an anemometer-driven voltage generator to provide a reference voltage proportional to the velocity of wind incident on the fence. An analog divider receives the first electrical signal and the reference signal as its numerator and denominator inputs, respectively, and generates therefrom an output signal which is insensitive to the wind-induced movements in the fence.

  19. Hydrogen detection systems leak response codes

    International Nuclear Information System (INIS)

    Desmas, T.; Kong, N.; Maupre, J.P.; Schindler, P.; Blanc, D.

    1990-01-01

    A loss in tightness of a water tube inside a Steam Generator Unit of a Fast Reactor is usually monitored by hydrogen detection systems. Such systems have demonstrated in the past their ability to detect a leak in a SGU. However, the increase in size of the SGU or the choice of ferritic material entails improvement of these systems in order to avoid secondary leak or to limit damages to the tube bundle. The R and D undertaken in France on this subject is presented. (author). 11 refs, 10 figs

  20. DEVELOPMENT OF DEPOSIT DETECTION SYSTEM IN PIPELINES OF THE STEELWORKS USING CS-137 GAMMA-RAY

    International Nuclear Information System (INIS)

    Song, Won-Joon; Lee, Seung-Hee; Jeong, Hee-Dong

    2008-01-01

    The deposit is built up in the pipeline of the steelworks by the chemical reaction among COG (coke oven gas), BFG (blast furnace gas), moisture, and steel in the high temperature environment and obstructs the smooth gas flow. In this study a gamma-ray system is developed to detect the deposit accumulated in pipelines and calculate the accumulation rate with respect to the cross section area of pipes. Cs-137 is used as the gamma-ray source and the system is designed to apply to pipes of various diameters. This system also includes the DB for storage and display of the measurement results so that it can be used for the efficient management of the pipelines

  1. 46 CFR 108.404 - Selection of fire detection system.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Selection of fire detection system. 108.404 Section 108... DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.404 Selection of fire detection system. (a) If a... space. (b) The fire detection system must be designed to minimize false alarms. ...

  2. Thermocouple-based Temperature Sensing System for Chemical Cell Inside Micro UAV Device

    Science.gov (United States)

    Han, Yanhui; Feng, Yue; Lou, Haozhe; Zhang, Xinzhao

    2018-03-01

    Environmental temperature of UAV system is crucial for chemical cell component inside. Once the temperature of this chemical cell is over 259 °C and keeps more than 20 min, the high thermal accumulation would result in an explosion, which seriously damage the whole UAV system. Therefore, we develop a micro temperature sensing system for monitoring the temperature of chemical cell thermally influenced by UAV device deployed in a 300 °C temperature environment, which is quite useful for insensitive munitions and UAV safety enhancement technologies.

  3. Comprehensive sample analysis using high performance liquid chromatography with multi-detection.

    Science.gov (United States)

    Pravadali, Sercan; Bassanese, Danielle N; Conlan, Xavier A; Francis, Paul S; Smith, Zoe M; Terry, Jessica M; Shalliker, R Andrew

    2013-11-25

    Herein we assess the separation space offered by a liquid chromatography system with an optimised uni-dimensional separation for the determination of the key chemical entities in the highly complex matrix of a tobacco leaf extract. Multiple modes of detection, including UV-visible absorbance, chemiluminescence (acidic potassium permanganate, manganese(IV), and tris(2,2'-bipyridine)ruthenium(III)), mass spectrometry and DPPH radical scavenging were used in an attempt to systematically reduce the data complexity of the sample whilst obtaining a greater degree of molecule-specific information. A large amount of chemical data was obtained, but several limitations in the ability to assign detector responses to particular compounds, even with the aid of complementary detection systems, were observed. Thirty-three compounds were detected via MS on the tobacco extract and 12 out of 32 compounds gave a peak height ratio (PHR) greater than 0.33 on one or more detectors. This paper serves as a case study of these limitations, illustrating why multidimensional chromatography is an important consideration when developing a comprehensive chemical detection system. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Explosives and chemical warfare agents - detection and analysis with PTR-MS

    Energy Technology Data Exchange (ETDEWEB)

    Sulzer, Philipp; Juerschik, Simone; Jaksch, Stefan; Jordan, Alfons; Hanel, Gernot; Hartungen, Eugen; Seehauser, Hans; Maerk, Lukas; Haidacher, Stefan; Schottkowsky, Ralf [IONICON Analytik GmbH, Innsbruck (Austria); Petersson, Fredrik [Institut fuer Ionenphysik und Angewandte Physik, Leopold-Franzens Universitaet Innsbruck (Austria); Maerk, Tilmann [IONICON Analytik GmbH, Innsbruck (Austria); Institut fuer Ionenphysik und Angewandte Physik, Leopold-Franzens Universitaet Innsbruck (Austria)

    2010-07-01

    We utilized a recently developed high sensitivity PTR-MS instrument equipped with a high resolution time-of-flight mass analyzer for detailed investigations on explosives and chemical warfare agents (CWAs). We show that with this so called PTR-TOF 8000 it is possible to identify solid explosives (RDX, TNT, HMX, PETN and Semtex A) by analyzing the headspace above small quantities of samples at room temperature and from trace quantities not visible to the naked eye placed on surfaces. As the mentioned solid explosives possess very low vapor pressures, the main challenge for detecting them in the gas phase is to provide an instrument with a sufficient sensitivity. CWAs on the other side have very high vapor pressures but are difficult to identify unambiguously as their nominal molecular masses are usually comparably small and therefore hard to distinguish from harmless everyday-compounds (e.g. mustard gas: 159 g/mol). In the present work we demonstrate that we can detect a broad range of dangerous substances, ranging from the CWA mustard gas to the explosive HMX.

  5. Active fault detection in MIMO systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2014-01-01

    The focus in this paper is on active fault detection (AFD) for MIMO systems with parametric faults. The problem of design of auxiliary inputs with respect to detection of parametric faults is investigated. An analysis of the design of auxiliary inputs is given based on analytic transfer functions...... from auxiliary input to residual outputs. The analysis is based on a singular value decomposition of these transfer functions Based on this analysis, it is possible to design auxiliary input as well as design of the associated residual vector with respect to every single parametric fault in the system...... such that it is possible to detect these faults....

  6. Detection device for off-gas system accidents

    International Nuclear Information System (INIS)

    Kubota, Ryuji; Tsuruoka, Ryozo; Yamanari, Shozo.

    1984-01-01

    Purpose: To rapidly isolate the off-gas system by detecting the off-gas system failure accident in a short time. Constitution: Radiation monitors are disposed to ducts connecting an exhaust gas area and an air conditioning system as a portion of a turbine building. The ducts are disposed independently such that they ventilate only the atmosphere in the exhaust gas area and do not mix the atmosphere in the turbine building. Since radioactivity issued upon off-gas accidents to the exhaust gas area is sucked to the duct, it can be detected by radiation detection monitors in a short time after the accident. Further, since the operator judges it as the off-gas system accident, the off-gas system can be isolated in a short time after the accident. (Moriyama, K.)

  7. A Survey on Anomaly Based Host Intrusion Detection System

    Science.gov (United States)

    Jose, Shijoe; Malathi, D.; Reddy, Bharath; Jayaseeli, Dorathi

    2018-04-01

    An intrusion detection system (IDS) is hardware, software or a combination of two, for monitoring network or system activities to detect malicious signs. In computer security, designing a robust intrusion detection system is one of the most fundamental and important problems. The primary function of system is detecting intrusion and gives alerts when user tries to intrusion on timely manner. In these techniques when IDS find out intrusion it will send alert massage to the system administrator. Anomaly detection is an important problem that has been researched within diverse research areas and application domains. This survey tries to provide a structured and comprehensive overview of the research on anomaly detection. From the existing anomaly detection techniques, each technique has relative strengths and weaknesses. The current state of the experiment practice in the field of anomaly-based intrusion detection is reviewed and survey recent studies in this. This survey provides a study of existing anomaly detection techniques, and how the techniques used in one area can be applied in another application domain.

  8. Moving Sources Detection System

    International Nuclear Information System (INIS)

    Coulon, Romain; Kondrasovs, Vladimir; Boudergui, Karim; Normand, Stephane

    2013-06-01

    To monitor radioactivity passing through a pipe or in a given container such as a train or a truck, radiation detection systems are commonly employed. These detectors could be used in a network set along the source track to increase the overall detection efficiency. However detection methods are based on counting statistics analysis. The method usually implemented consists in trigging an alarm when an individual signal rises over a threshold initially estimated in regards to the natural background signal. The detection efficiency is then proportional to the number of detectors in use, due to the fact that each sensor is taken as a standalone sensor. A new approach is presented in this paper taking into account the temporal periodicity of the signals taken by all distributed sensors as a whole. This detection method is not based only on counting statistics but also on the temporal series analysis aspect. Therefore, a specific algorithm is then developed in our lab for this kind of applications and shows a significant improvement, especially in terms of detection efficiency and false alarms reduction. We also plan on extracting information from the source vector. This paper presents the theoretical approach and some preliminary results obtain in our laboratory. (authors)

  9. Sensitive detection of rutin based on {beta}-cyclodextrin-chemically reduced graphene/Nafion composite film

    Energy Technology Data Exchange (ETDEWEB)

    Liu Kunping; Wei Jinping [School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); Wang Chunming, E-mail: wangcm@lzu.edu.cn [School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China)

    2011-05-30

    Highlights: > {beta}-CD-graphene composite obtained via a simple sonication-induced assembly. > Accelerating electron transfer on electrode to amplify the electrochemical signal. > A highly sensitive electrochemical sensor for rutin detection. > Good selectivity and reproducibility for the detection of rutin in real samples. - Abstract: An electrochemical sensor based on chemically reduced graphene (CRG) was developed for the sensitive detection of rutin. To construct the base of the sensor, a novel composite was initially fabricated and used as the substrate material by combining CRG and {beta}-cyclodextrin ({beta}-CD) via a simple sonication-induced assembly. Due to the high rutin-loading capacity on the electrode surface and the upstanding electric conductivity of graphene, the electrochemical response of the fabricated sensor was greatly enhanced and displayed excellent analytical performance for rutin detection from 6.0 x 10{sup -9} to 1.0 x 10{sup -5} mol L{sup -1} with a low detection limit of 2.0 x 10{sup -9} mol L{sup -1} at 3{sigma}. Moreover, the proposed electrochemical sensor also exhibited good selectivity and acceptable reproducibility and could be used for the detection of rutin in real samples. Therefore, the present work offers a new way to broaden the analytical applications of graphene in pharmaceutical analysis.

  10. 46 CFR 28.830 - Fire detection system.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Fire detection system. 28.830 Section 28.830 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY UNINSPECTED VESSELS REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.830 Fire detection system. (a) Each accommodation space...

  11. Revisiting Anomaly-based Network Intrusion Detection Systems

    NARCIS (Netherlands)

    Bolzoni, D.

    2009-01-01

    Intrusion detection systems (IDSs) are well-known and widely-deployed security tools to detect cyber-attacks and malicious activities in computer systems and networks. A signature-based IDS works similar to anti-virus software. It employs a signature database of known attacks, and a successful match

  12. Trace level detection of compounds related to the chemical weapons convention by 1H-detected 13C NMR spectroscopy executed with a sensitivity-enhanced, cryogenic probehead.

    Science.gov (United States)

    Cullinan, David B; Hondrogiannis, George; Henderson, Terry J

    2008-04-15

    Two-dimensional 1H-13C HSQC (heteronuclear single quantum correlation) and fast-HMQC (heteronuclear multiple quantum correlation) pulse sequences were implemented using a sensitivity-enhanced, cryogenic probehead for detecting compounds relevant to the Chemical Weapons Convention present in complex mixtures. The resulting methods demonstrated exceptional sensitivity for detecting the analytes at trace level concentrations. 1H-13C correlations of target analytes at chemical shift information could be derived quickly and simultaneously from the resulting spectra. The fast-HMQC pulse sequences generated magnitude mode spectra suitable for detailed analysis in approximately 4.5 h and can be used in experiments to efficiently screen a large number of samples. The HSQC pulse sequences, on the other hand, required roughly twice the data acquisition time to produce suitable spectra. These spectra, however, were phase-sensitive, contained considerably more resolution in both dimensions, and proved to be superior for detecting analyte 1H-13C correlations. Furthermore, a HSQC spectrum collected with a multiplicity-edited pulse sequence provided additional structural information valuable for identifying target analytes. The HSQC pulse sequences are ideal for collecting high-quality data sets with overnight acquisitions and logically follow the use of fast-HMQC pulse sequences to rapidly screen samples for potential target analytes. Use of the pulse sequences considerably improves the performance of NMR spectroscopy as a complimentary technique for the screening, identification, and validation of chemical warfare agents and other small-molecule analytes present in complex mixtures and environmental samples.

  13. COMPUTER SUPPORT SYSTEMS FOR ESTIMATING CHEMICAL TOXICITY: PRESENT CAPABILITIES AND FUTURE TRENDS

    Science.gov (United States)

    Computer Support Systems for Estimating Chemical Toxicity: Present Capabilities and Future Trends A wide variety of computer-based artificial intelligence (AI) and decision support systems exist currently to aid in the assessment of toxicity for environmental chemicals. T...

  14. Basis UST leak detection systems

    International Nuclear Information System (INIS)

    Silveria, V.

    1992-01-01

    This paper reports that gasoline and other petroleum products are leaking from underground storage tanks (USTs) at an alarming rate, seeping into soil and groundwater. Buried pipes are an even greater culprit, accounting for most suspected and detected leaks according to Environmental Protection Agency (EPA) estimates. In response to this problem, the EPA issued regulations setting standards for preventing, detecting, reporting, and cleaning up leaks, as well as fiscal responsibility. However, federal regulations are only a minimum; some states have cracked down even harder Plant managers and engineers have a big job ahead of them. The EPA estimates that there are more than 75,000 fuel USTs at US industrial facilities. When considering leak detection systems, the person responsible for making the decision has five primary choices: inventory reconciliation combined with regular precision tightness tests; automatic tank gauging; groundwater monitoring; interstitial monitoring of double containment systems; and vapor monitoring

  15. Efficient Mining and Detection of Sequential Intrusion Patterns for Network Intrusion Detection Systems

    Science.gov (United States)

    Shyu, Mei-Ling; Huang, Zifang; Luo, Hongli

    In recent years, pervasive computing infrastructures have greatly improved the interaction between human and system. As we put more reliance on these computing infrastructures, we also face threats of network intrusion and/or any new forms of undesirable IT-based activities. Hence, network security has become an extremely important issue, which is closely connected with homeland security, business transactions, and people's daily life. Accurate and efficient intrusion detection technologies are required to safeguard the network systems and the critical information transmitted in the network systems. In this chapter, a novel network intrusion detection framework for mining and detecting sequential intrusion patterns is proposed. The proposed framework consists of a Collateral Representative Subspace Projection Modeling (C-RSPM) component for supervised classification, and an inter-transactional association rule mining method based on Layer Divided Modeling (LDM) for temporal pattern analysis. Experiments on the KDD99 data set and the traffic data set generated by a private LAN testbed show promising results with high detection rates, low processing time, and low false alarm rates in mining and detecting sequential intrusion detections.

  16. Self-regulating chemo-mechano-chemical systems

    Science.gov (United States)

    Aizenberg, Joanna; He, Ximin; Aizenberg, Michael

    2017-05-16

    A chemo-mechano-chemical (C.sub.1-M-C.sub.2) system includes a base supporting an actuatable structure, said structure comprising a functionalized portion and being embedded in an environmentally responsive gel capable of volume change in response to an environmental stimulus; a first fluid layer disposed over the base and in contact with the actuatable structure, said first fluid layer comprising the environmentally responsive gel; and a second fluid layer in contact with the actuatable structure, wherein the layers are positioned such that the functionalized portion is in contact with the second layer in a first relaxed state and in contact with the first layer in a second actuated state and wherein the functionalized portion interacts with at least one of the layers to provide a chemical or physical response.

  17. 46 CFR 28.325 - Fire detection systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Fire detection systems. 28.325 Section 28.325 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY UNINSPECTED VESSELS REQUIREMENTS FOR COMMERCIAL FISHING... Operate With More Than 16 Individuals on Board § 28.325 Fire detection systems. (a) Each accommodation...

  18. FTIR gas analysis with improved sensitivity and selectivity for CWA and TIC detection

    Science.gov (United States)

    Phillips, Charles M.; Tan, Huwei

    2010-04-01

    This presentation describes the use of an FTIR (Fourier Transform Infrared)-based spectrometer designed to continuously monitor ambient air for the presence of chemical warfare agents (CWAs) and toxic industrial chemicals (TICs). The necessity of a reliable system capable of quickly and accurately detecting very low levels of CWAs and TICs while simultaneously retaining a negligible false alarm rate will be explored. Technological advancements in FTIR sensing have reduced noise while increasing selectivity and speed of detection. These novel analyzer design characteristics are discussed in detail and descriptions are provided which show how optical throughput, gas cell form factor, and detector response are optimized. The hardware and algorithms described here will explain why this FTIR system is very effective for the simultaneous detection and speciation of a wide variety of toxic compounds at ppb concentrations. Analytical test data will be reviewed demonstrating the system's sensitivity to and selectivity for specific CWAs and TICs; this will include recent data acquired as part of the DHS ARFCAM (Autonomous Rapid Facility Chemical Agent Monitor) project. These results include analyses of the data from live agent testing for the determination of CWA detection limits, immunity to interferences, detection times, residual noise analysis and false alarm rates. Sensing systems such as this are critical for effective chemical hazard identification which is directly relevant to the CBRNE community.

  19. Reliability considerations of electronics components for the deep underwater muon and neutrino detection system

    International Nuclear Information System (INIS)

    Leskovar, B.

    1980-02-01

    The reliability of some electronics components for the Deep Underwater Muon and Neutrino Detection (DUMAND) System is discussed. An introductory overview of engineering concepts and technique for reliability assessment is given. Component reliability is discussed in the contest of major factors causing failures, particularly with respect to physical and chemical causes, process technology and testing, and screening procedures. Failure rates are presented for discrete devices and for integrated circuits as well as for basic electronics components. Furthermore, the military reliability specifications and standards for semiconductor devices are reviewed

  20. Security Enrichment in Intrusion Detection System Using Classifier Ensemble

    Directory of Open Access Journals (Sweden)

    Uma R. Salunkhe

    2017-01-01

    Full Text Available In the era of Internet and with increasing number of people as its end users, a large number of attack categories are introduced daily. Hence, effective detection of various attacks with the help of Intrusion Detection Systems is an emerging trend in research these days. Existing studies show effectiveness of machine learning approaches in handling Intrusion Detection Systems. In this work, we aim to enhance detection rate of Intrusion Detection System by using machine learning technique. We propose a novel classifier ensemble based IDS that is constructed using hybrid approach which combines data level and feature level approach. Classifier ensembles combine the opinions of different experts and improve the intrusion detection rate. Experimental results show the improved detection rates of our system compared to reference technique.

  1. GammaScorpion: mobile gamma-ray tomography system for early detection of basal stem rot in oil palm plantations

    Science.gov (United States)

    Abdullah, Jaafar; Hassan, Hearie; Shari, Mohamad Rabaie; Mohd, Salzali; Mustapha, Mahadi; Mahmood, Airwan Affendi; Jamaludin, Shahrizan; Ngah, Mohd Rosdi; Hamid, Noor Hisham

    2013-03-01

    Detection of the oil palm stem rot disease Ganoderma is a major issue in estate management and production in Malaysia. Conventional diagnostic techniques are difficult and time consuming when using visual inspection, and destructive and expensive when based on the chemical analysis of root or stem tissue. As an alternative, a transportable gamma-ray computed tomography system for the early detection of basal stem rot (BSR) of oil palms due to Ganoderma was developed locally at the Malaysian Nuclear Agency, Kajang, Malaysia. This system produces high quality tomographic images that clearly differentiate between healthy and Ganoderma infected oil palm stems. It has been successfully tested and used to detect the extent of BSR damage in oil palm plantations in Malaysia without the need to cut down the trees. This method offers promise for in situ inspection of oil palm stem diseases compared to the more conventional methods.

  2. Practical use of chemical probes for reactive oxygen species produced in biological systems by {gamma}-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min Hee; Moon, Yu Ran; Chung, Byung Yeoup; Kim, Jae-Sung [Radiation Research Division for Bio-technology, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of); Lee, Kang-Soo [Crop Production and Technology Major, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Cho, Jae-Young [Bio-environmental Science Major, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Kim, Jin-Hong [Radiation Research Division for Bio-technology, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of)], E-mail: jhongkim@kaeri.re.kr

    2009-05-15

    Application of chemical probes, for detection of reactive oxygen species (ROS), was tested during {gamma}-irradiation. The ethanol/{alpha}-(4-pyridyl-1-oxide)-N-tert-butylnitrone (4-POBN) and 3,3'-diaminobenzidine (DAB) were structurally stable enough to detect {sup {center_dot}}OH and H{sub 2}O{sub 2}, increasingly generated by {gamma}-irradiation up to 1000 Gy. Interestingly, the production rate of H{sub 2}O{sub 2}, but not {sup {center_dot}}OH, during {gamma}-irradiation, was significantly different between in vitro systems of lettuce and spinach. These results suggest that 4-POBN and DAB could be utilized as a semi-quantitative probe to quantify {sup {center_dot}}OH and H{sub 2}O{sub 2}, produced by {gamma}-irradiation up to 1000 Gy.

  3. Detection of chemical interfaces in coherent anti-Stokes Raman scattering microscopy: Dk-CARS. I. Axial interfaces.

    Science.gov (United States)

    Gachet, David; Rigneault, Hervé

    2011-12-01

    We develop a full vectorial theoretical investigation of the chemical interface detection in conventional coherent anti-Stokes Raman scattering (CARS) microscopy. In Part I, we focus on the detection of axial interfaces (i.e., parallel to the optical axis) following a recent experimental demonstration of the concept [Phys. Rev. Lett. 104, 213905 (2010)]. By revisiting the Young's double slit experiment, we show that background-free microscopy and spectroscopy is achievable through the angular analysis of the CARS far-field radiation pattern. This differential CARS in k space (Dk-CARS) technique is interesting for fast detection of interfaces between molecularly different media. It may be adapted to other coherent and resonant scattering processes.

  4. Fourier transform infrared spectra applications to chemical systems

    CERN Document Server

    Ferraro, John R

    1978-01-01

    Fourier Transform Infrared Spectroscopy: Applications to Chemical Systems presents the chemical applications of the Fourier transform interferometry (FT-IR).The book contains discussions on the applications of FT-IR in the fields of chromatography FT-IR, polymers and biological macromolecules, emission spectroscopy, matrix isolation, high-pressure interferometry, and far infrared interferometry. The final chapter is devoted to the presentation of the use of FT-IR in solving national technical problems such as air pollution, space exploration, and energy related subjects.Researc

  5. 75 FR 5009 - Proximity Detection Systems for Underground Mines

    Science.gov (United States)

    2010-02-01

    ... Proximity Detection Systems for Underground Mines AGENCY: Mine Safety and Health Administration, Labor... information regarding whether the use of proximity detection systems would reduce the risk of accidents where... . Information on MSHA-approved proximity detection systems is available on the Internet at http://www.msha.gov...

  6. Remote Voice Detection System

    National Research Council Canada - National Science Library

    Blackmon, Fletcher A

    2007-01-01

    A device and system to remotely detect vocalizations of speech. The skin located on the throat region of a speaking person or a reflective layer on the skin on the throat region vibrates in response to vocalizations of speech by the person...

  7. Design of detection module for smart ligthting system

    OpenAIRE

    Matveev, I. G.; Goponenko, A. S.

    2015-01-01

    The paper considers a smart lighting system based on Beaglebone microcomputer. The analysis of existing motion and presence sensors was carried out and then used as a basis for design of a detection system. The detection system and the corresponding connection solution for a smart lighting system were developed. Using the designed smart lighting system, experimental studies were carried out.

  8. Development of a Wireless and Passive SAW-Based Chemical Sensor for Organophosphorous Compound Detection

    Directory of Open Access Journals (Sweden)

    Fang-Qian Xu

    2015-12-01

    Full Text Available A new wireless and passive surface acoustic wave (SAW-based chemical sensor for organophosphorous compound (OC detection is presented. A 434 MHz reflective delay line configuration composed by single phase unidirectional transducers (SPUDTs and three shorted reflectors was fabricated on YZ LiNbO3 piezoelectric substrate as the sensor element. A thin fluoroalcoholpolysiloxane (SXFA film acted as the sensitive interface deposited onto the SAW propagation path between the second and last reflectors of the SAW device. The first reflector was used for the temperature compensation utilizing the difference method. The adsorption between the SXFA and OC molecules modulates the SAW propagation, especially for the time delay of the SAW, hence, the phase shifts of the reflection peaks from the corresponding reflectors can be used to characterize the target OC. Prior to the sensor fabrication, the coupling of modes (COM and perturbation theory were utilized to predict the SAW device performance and the gas adsorption. Referring to a frequency-modulated continuous wave (FMCW-based reader unit, the developed SAW chemical sensor was wirelessly characterized in gas exposure experiments for dimethylmethylphosphonate (DMMP detection. Sensor performance parameters such as phase sensitivity, repeatability, linearity, and temperature compensation were evaluated experimentally.

  9. Full system chemical decontamination used in nuclear decommissioning

    International Nuclear Information System (INIS)

    Elder, George; Rottner, Bernard; Braehler, Georg

    2012-01-01

    The decommissioning of nuclear power stations at the end of the operational period of electricity generation offers technical challenges in the safe dismantling of the facility and the minimization of radioactive waste arising from the decommissioning activities. These challenges have been successfully overcome as demonstrated by decommissioning of the first generation of nuclear power plants. One of the techniques used in decommissioning is that of chemical decontamination which has a number of functions and advantages as given here: 1. Removal of contamination from metal surfaces in the reactors cooling systems. 2. Reduction of radioactive exposure to decommissioning workers 3. Minimization of metal waste by decontamination and recycling of metal components 4. Control of contamination when dismantling reactor and waste systems 5. Reduction in costs due to lower radiation fields, lower contamination levels and minimal metal waste volume for disposal. One such chemical decontamination technology was developed for the Electric Power Research Institute (EPRI) by Bradtec (Bradtec is an ONET Technologies subsidiary) and is known as the EPRI DFD system. This paper gives a description of the EPRI DFD system, and highlights the experience using the system. (orig.)

  10. Statistical fault detection in photovoltaic systems

    KAUST Repository

    Garoudja, Elyes; Harrou, Fouzi; Sun, Ying; Kara, Kamel; Chouder, Aissa; Silvestre, Santiago

    2017-01-01

    and efficiency. Here, an innovative model-based fault-detection approach for early detection of shading of PV modules and faults on the direct current (DC) side of PV systems is proposed. This approach combines the flexibility, and simplicity of a one-diode model

  11. Biomimetic chemical sensors using bioengineered olfactory and taste cells.

    Science.gov (United States)

    Du, Liping; Zou, Ling; Zhao, Luhang; Wang, Ping; Wu, Chunsheng

    2014-01-01

    Biological olfactory and taste systems are natural chemical sensing systems with unique performances for the detection of environmental chemical signals. With the advances in olfactory and taste transduction mechanisms, biomimetic chemical sensors have achieved significant progress due to their promising prospects and potential applications. Biomimetic chemical sensors exploit the unique capability of biological functional components for chemical sensing, which are often sourced from sensing units of biological olfactory or taste systems at the tissue level, cellular level, or molecular level. Specifically, at the cellular level, there are mainly two categories of cells have been employed for the development of biomimetic chemical sensors, which are natural cells and bioengineered cells, respectively. Natural cells are directly isolated from biological olfactory and taste systems, which are convenient to achieve. However, natural cells often suffer from the undefined sensing properties and limited amount of identical cells. On the other hand, bioengineered cells have shown decisive advantages to be applied in the development of biomimetic chemical sensors due to the powerful biotechnology for the reconstruction of the cell sensing properties. Here, we briefly summarized the most recent advances of biomimetic chemical sensors using bioengineered olfactory and taste cells. The development challenges and future trends are discussed as well.

  12. Possibility of the development of a Serbian protection system against chemical accidents

    Directory of Open Access Journals (Sweden)

    Dejan R. Inđić

    2012-10-01

    Full Text Available The paper presents a draft of a system model for responding in case of chemical accidents in accordance with the current legislation regarding the environment protection, the structure and elements of the existing response system in case of chemical accidents, other works dealing with the issue as well as the prospects planned by those responsible for the environmental protection. The paper discuss the possibilities of different institutions and agencies of the Republic of Serbia to engage in specialized methods of cooperation and protection against chemical hazards in accordance with Article X of the Convention on the Prohibition of Chemical Weapons.

  13. Formal modeling of a system of chemical reactions under uncertainty.

    Science.gov (United States)

    Ghosh, Krishnendu; Schlipf, John

    2014-10-01

    We describe a novel formalism representing a system of chemical reactions, with imprecise rates of reactions and concentrations of chemicals, and describe a model reduction method, pruning, based on the chemical properties. We present two algorithms, midpoint approximation and interval approximation, for construction of efficient model abstractions with uncertainty in data. We evaluate computational feasibility by posing queries in computation tree logic (CTL) on a prototype of extracellular-signal-regulated kinase (ERK) pathway.

  14. 49 CFR 1544.213 - Use of explosives detection systems.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Use of explosives detection systems. 1544.213...: AIR CARRIERS AND COMMERCIAL OPERATORS Operations § 1544.213 Use of explosives detection systems. (a... explosives detection system approved by TSA to screen checked baggage on international flights. (b) Signs and...

  15. Active Detection for Exposing Intelligent Attacks in Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Weerakkody, Sean [Carnegie Mellon Univ., Pittsburgh, PA (United States); Ozel, Omur [Carnegie Mellon Univ., Pittsburgh, PA (United States); Griffioen, Paul [Carnegie Mellon Univ., Pittsburgh, PA (United States); Sinopoli, Bruno [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2017-07-01

    In this paper, we consider approaches for detecting integrity attacks carried out by intelligent and resourceful adversaries in control systems. Passive detection techniques are often incorporated to identify malicious behavior. Here, the defender utilizes finely-tuned algorithms to process information and make a binary decision, whether the system is healthy or under attack. We demonstrate that passive detection can be ineffective against adversaries with model knowledge and access to a set of input/output channels. We then propose active detection as a tool to detect attacks. In active detection, the defender leverages degrees of freedom he has in the system to detect the adversary. Specifically, the defender will introduce a physical secret kept hidden from the adversary, which can be utilized to authenticate the dynamics. In this regard, we carefully review two approaches for active detection: physical watermarking at the control input, and a moving target approach for generating system dynamics. We examine practical considerations for implementing these technologies and discuss future research directions.

  16. Endocrine disruptive effects of chemicals eluted from nitrile-butadiene rubber gloves using reporter gene assay systems.

    Science.gov (United States)

    Satoh, Kanako; Nonaka, Ryouichi; Ohyama, Ken-ichi; Nagai, Fumiko; Ogata, Akio; Iida, Mitsuru

    2008-03-01

    Disposable gloves made of nitrile-butadiene rubber (NBR) are used for contact with foodstuffs rather than polyvinyl chloride gloves containing di(2-ethylhexyl)phthalate (DEHP), because endocrine-disruptive effects are suspected for phthalate diesters including DEHP. However, 4,4'-butylidenebis(6-t-butyl-m-cresol) (BBBC), 2,4-di-t-butylphenol, and 2,2,4-trimetyl-1,3-pentanediol diisobutyrate can be eluted from NBR gloves, and possibly also detected in food. In this study, we examined the endocrine-disrupting effects of these chemicals via androgen receptor (AR) and estrogen receptor (ER)-mediated pathways using stably transfected reporter gene cell lines expressing AR (AR-EcoScreen system) and ER (MVLN cells), respectively. We also examined the binding activities of these chemicals to AR and ER. The IC50 value of BBBC for antagonistic androgen was in the range of 10(-6)M. The strength of inhibition was about 5 times that of a known androgen antagonist, 1,1'-(2,2-dichloroethylidene)bis[4-chlorobenzene] (p,p'-DDE), and similar to that of bisphenol A. The IC50 value of BBBC for antagonistic estrogen was in the range of 10(-6)M. These results suggest that BBBC and its structural homologue, 4,4'-thiobis(6-t-butyl-m-cresol) are androgen and estrogen antagonists. It is therefore necessary to study these chemicals in vivo, and clarify their effect on the endocrine system.

  17. ANALYTICAL SYNTHESIS OF CHEMICAL REACTOR CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    Alexander Labutin

    2017-02-01

    Full Text Available The problem of the analytical synthesis of the synergetic control system of chemical reactor for the realization of a complex series-parallel exothermal reaction has been solved. The synthesis of control principles is performed using the analytical design method of aggregated regulators. Synthesized nonlinear control system solves the problem of stabilization of the concentration of target component at the exit of reactor and also enables one to automatically transfer to new production using the equipment.

  18. A constrained approach to multiscale stochastic simulation of chemically reacting systems

    KAUST Repository

    Cotter, Simon L.; Zygalakis, Konstantinos C.; Kevrekidis, Ioannis G.; Erban, Radek

    2011-01-01

    Stochastic simulation of coupled chemical reactions is often computationally intensive, especially if a chemical system contains reactions occurring on different time scales. In this paper, we introduce a multiscale methodology suitable to address

  19. Piezoelectric microelectromechanical resonant sensors for chemical and biological detection.

    Science.gov (United States)

    Pang, Wei; Zhao, Hongyuan; Kim, Eun Sok; Zhang, Hao; Yu, Hongyu; Hu, Xiaotang

    2012-01-07

    Piezoelectric microelectromechanical systems (MEMS) resonant sensors, known for their excellent mass resolution, have been studied for many applications, including DNA hybridization, protein-ligand interactions, and immunosensor development. They have also been explored for detecting antigens, organic gas, toxic ions, and explosives. Most piezoelectric MEMS resonant sensors are acoustic sensors (with specific coating layers) that enable selective and label-free detection of biological events in real time. These label-free technologies have recently garnered significant attention for their sensitive and quantitative multi-parameter analysis of biological systems. Since piezoelectric MEMS resonant sensors do more than transform analyte mass or thickness into an electrical signal (e.g., frequency and impedance), special attention must be paid to their potential beyond microweighing, such as measuring elastic and viscous properties, and several types of sensors currently under development operate at different resonant modes (i.e., thickness extensional mode, thickness shear mode, lateral extensional mode, flexural mode, etc.). In this review, we provide an overview of recent developments in micromachined resonant sensors and activities relating to biochemical interfaces for acoustic sensors.

  20. System tuning and measurement error detection testing

    International Nuclear Information System (INIS)

    Krejci, Petr; Machek, Jindrich

    2008-09-01

    The project includes the use of the PEANO (Process Evaluation and Analysis by Neural Operators) system to verify the monitoring of the status of dependent measurements with a view to early measurement fault detection and estimation of selected signal levels. At the present stage, the system's capabilities of detecting measurement errors was assessed and the quality of the estimates was evaluated for various system configurations and the formation of empiric models, and rules were sought for system training at chosen process data recording parameters and operating modes. The aim was to find a suitable system configuration and to document the quality of the tuned system on artificial failures

  1. Currently Commercially Available Chemical Sensors Employed for Detection of Volatile Organic Compounds in Outdoor and Indoor Air

    Directory of Open Access Journals (Sweden)

    Bartosz Szulczyński

    2017-03-01

    Full Text Available The paper presents principle of operation and design of the most popular chemical sensors for measurement of volatile organic compounds (VOCs in outdoor and indoor air. It describes the sensors for evaluation of explosion risk including pellistors and IR-absorption sensors as well as the sensors for detection of toxic compounds such as electrochemical (amperometric, photoionization and semiconductor with solid electrolyte ones. Commercially available sensors for detection of VOCs and their metrological parameters—measurement range, limit of detection, measurement resolution, sensitivity and response time—were presented. Moreover, development trends and prospects of improvement of the metrological parameters of these sensors were highlighted.

  2. Detection and Characterization of Chemicals Present in Tank Waste - Final Report - 09/15/1998 - 09/14/2001

    International Nuclear Information System (INIS)

    Datskos, Panos G.; Sepaniak, Michael J.

    2001-01-01

    DOE has a strong commitment to the efficient and safe remediation of waste (high level radioactive waste, mixed waste, and hazardous waste) present in underground waste storage tanks. Safety issues arise from the presence of organic chemicals and oxidizers and concerns are raised about the flammability, explosivity, and the possible corrosion of storage tanks due to presence of nitrates and nitrites. Knowledge of the physical parameters and chemical and radioactive composition of waste is necessary for effective and safe tank remediation. New and improved characterization and monitoring of waste present in storage tanks is necessary. The overall goal of this project has been to develop and demonstrate novel multi-parameter micro-electro-mechanical system (MEMS) sensors based on Si and SiNx microcantilever (MC) structures that are robust and can be used to simultaneously detect the presence of target chemicals (analytes) in a mixture, radiation emitted from radioactive materials, an d the heat generated by the absorption of photons of specific wavelength by the target analytes. The mechanisms by which adsorption, photophysical, photothermal processes cause stress in MC surfaces are better understood. Methods of applying a wide variety of chemically selective coatings have been developed specifically for miniaturized MC surfaces, and the response characteristic of the cantilever were shown to be altered dramatically and predictably through incorporation of these phases on the surfaces. By addressing sensitivity and liquid matrix issues, the spectroscopic approach promises to provide an essential element of specificity for integrated sensors. We discovered early in these studies that fundamental limitations exist regarding the degree to which adsorption of analytes on smooth surfaces cause stress and this significantly limits chemi-mechanical response. To circumvent this limitation a concerted effort was made to devise and test ways to nanostructure cantilever

  3. Process Control Systems in the Chemical Industry: Safety vs. Security

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey Hahn; Thomas Anderson

    2005-04-01

    Traditionally, the primary focus of the chemical industry has been safety and productivity. However, recent threats to our nation’s critical infrastructure have prompted a tightening of security measures across many different industry sectors. Reducing vulnerabilities of control systems against physical and cyber attack is necessary to ensure the safety, security and effective functioning of these systems. The U.S. Department of Homeland Security has developed a strategy to secure these vulnerabilities. Crucial to this strategy is the Control Systems Security and Test Center (CSSTC) established to test and analyze control systems equipment. In addition, the CSSTC promotes a proactive, collaborative approach to increase industry's awareness of standards, products and processes that can enhance the security of control systems. This paper outlines measures that can be taken to enhance the cybersecurity of process control systems in the chemical sector.

  4. Chemically Functionalized Arrays Comprising Micro and Nano-Etro-Mechanizal Systems for Reliable and Selective Characterization of Tank Waste

    International Nuclear Information System (INIS)

    Sepaniak, Michael J.

    2008-01-01

    Innovative technology of sensory and selective chemical monitoring of hazardous wastes present in storage tanks are of continued importance to the environment. This multifaceted research program exploits the unique characteristics of micro and nano-fabricated cantilever-based, micro-electro-mechanical systems (MEMES) and nano-electro-mechanical systems (NEMS) in chemical sensing. Significant progress was made in tasks that were listed in the work plan for DOE EMSP project 'Hybrid Micro-Electro-Mechanical Systems for Highly Reliable and Selective Characterization of Tank Waste'. These tasks are listed below in modified form followed by the report on progress. (1) Deposit chemically selective phases on model MEMS devices with nanostructured surface layers to identify optimal technological approaches. (2) Monitor mechanical (deflection) and optical (SERS) responses of the created MEMS to organic and inorganic species in aqueous environments. (3) Explore and compare different approaches to immobilization of selective phases on the thermal detectors. (4) Demonstrate improvements in selectivity and sensitivity to model pollutants due to implemented technologies of nanostructuring and multi-mode read-out. (5) Demonstrate detection of different analytes on a single hybrid MEMS (6) Implement the use of differential pairs of cantilever sensors (coated and reference) with the associated detector electronics which is expected to have an enhanced sensitivity with a low-noise low-drift response. (7) Development of methods to create differential arrays and test effectiveness at creating distinctive differential responses.

  5. Fast-neutron detecting system with n, γ discrimination

    International Nuclear Information System (INIS)

    Ouyang Xiaoping; Huang Bao; Cao Jinyun

    1997-11-01

    In the present work, a new type neutron detecting system is reported, which can absolutely measure neutron parameters in n + γ mixed fields and has a long continuance of static high vacuum of 10 -4 Pa. The detecting system, with middle neutron-detecting sensitivity, short time response and big linear current output, has applied successfully in pulsed neutron beam measurement

  6. Atmospheric Pressure Chemical Ionization Sources Used in The Detection of Explosives by Ion Mobility Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Waltman, Melanie J. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States)

    2010-05-01

    Explosives detection is a necessary and wide spread field of research. From large shipping containers to airline luggage, numerous items are tested for explosives every day. In the area of trace explosives detection, ion mobility spectrometry (IMS) is the technique employed most often because it is a quick, simple, and accurate way to test many items in a short amount of time. Detection by IMS is based on the difference in drift times of product ions through the drift region of an IMS instrument. The product ions are created when the explosive compounds, introduced to the instrument, are chemically ionized through interactions with the reactant ions. The identity of the reactant ions determines the outcomes of the ionization process. This research investigated the reactant ions created by various ionization sources and looked into ways to manipulate the chemistry occurring in the sources.

  7. Device for detecting failure of reactor system

    International Nuclear Information System (INIS)

    Miyazawa, Tatsuo.

    1979-01-01

    Purpose: To make it possible to rapidly detect any failure in a reactor system prior to the leakage of coolants. Constitution: The dose of beta line is computed from the difference between the power of a detector for reacting with both beta and gamma lines and a detector for reacting only with gamma line to detect the failure of a reactor system, thereby to raise the detection speed and improve the detection accuracy. More specifically, a radiation detector A detects gamma and beta lines by means of piezoelectric elements. A radiation detector B caused the opening of the detector A to be covered with a metal, and detects only gamma line. The detected values of detectors A and B are amplified by an amplifier and applied to a rate meter and a counter, the values being converted into DC and introduced into a comparison circuit, where the outputs of the rate meter are compared with each other. When the difference is more than the predetermined range, it is supplied as output to an alarm circuit where an alarm signal is produced. (Nakamura, S.)

  8. Integrating physically based simulators with Event Detection Systems: Multi-site detection approach.

    Science.gov (United States)

    Housh, Mashor; Ohar, Ziv

    2017-03-01

    The Fault Detection (FD) Problem in control theory concerns of monitoring a system to identify when a fault has occurred. Two approaches can be distinguished for the FD: Signal processing based FD and Model-based FD. The former concerns of developing algorithms to directly infer faults from sensors' readings, while the latter uses a simulation model of the real-system to analyze the discrepancy between sensors' readings and expected values from the simulation model. Most contamination Event Detection Systems (EDSs) for water distribution systems have followed the signal processing based FD, which relies on analyzing the signals from monitoring stations independently of each other, rather than evaluating all stations simultaneously within an integrated network. In this study, we show that a model-based EDS which utilizes a physically based water quality and hydraulics simulation models, can outperform the signal processing based EDS. We also show that the model-based EDS can facilitate the development of a Multi-Site EDS (MSEDS), which analyzes the data from all the monitoring stations simultaneously within an integrated network. The advantage of the joint analysis in the MSEDS is expressed by increased detection accuracy (higher true positive alarms and fewer false alarms) and shorter detection time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Chemical cleaning the service water system at a nuclear power plant

    International Nuclear Information System (INIS)

    Brice, T.O.; Glover, W.A.

    1994-01-01

    Chemical cleaning a large cooling water system in a nuclear power plant presented many unique problems. The selection, qualification, and performance of the cleaning process were done using a phased approach. The piping was inspected to determine the extent of the problem. Deposit samples were removed from the service water system pipe and tested in the laboratory to determine the most effective cleaning solvent for deposit removal. An engineering study was performed to define the design parameters required to implement the system-wide chemical cleaning

  10. Evaluation of the efficacy of a portable LIBS system for detection of CWA on surfaces.

    Science.gov (United States)

    L'Hermite, D; Vors, E; Vercouter, T; Moutiers, G

    2016-05-01

    Laser-induced breakdown spectroscopy (LIBS) is a laser-based optical technique particularly suited for in situ surface analysis. A portable LIBS instrument was tested to detect surface chemical contamination by chemical warfare agents (CWAs). Test of detection of surface contamination was carried out in a toxlab facility with four CWAs, sarin (GB), lewisite (L1), mustard gas (HD), and VX, which were deposited on different substrates, wood, concrete, military green paint, gloves, and ceramic. The CWAs were detected by means of the detection of atomic markers (As, P, F, Cl, and S). The LIBS instrument can give a direct response in terms of detection thanks to an integrated interface for non-expert users or so called end-users. We have evaluated the capability of automatic detection of the selected CWAs. The sensitivity of our portable LIBS instrument was confirmed for the detection of a CWA at surface concentrations above 15 μg/cm(2). The simultaneous detection of two markers may lead to a decrease of the number of false positive.

  11. A reliable control system for measurement on film thickness in copper chemical mechanical planarization system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongkai; Qu, Zilian; Zhao, Qian; Tian, Fangxin; Zhao, Dewen; Meng, Yonggang; Lu, Xinchun [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China)

    2013-12-15

    In recent years, a variety of film thickness measurement techniques for copper chemical mechanical planarization (CMP) are subsequently proposed. In this paper, the eddy-current technique is used. In the control system of the CMP tool developed in the State Key Laboratory of Tribology, there are in situ module and off-line module for measurement subsystem. The in situ module can get the thickness of copper film on wafer surface in real time, and accurately judge when the CMP process should stop. This is called end-point detection. The off-line module is used for multi-points measurement after CMP process, in order to know the thickness of remained copper film. The whole control system is structured with two levels, and the physical connection between the upper and the lower is achieved by the industrial Ethernet. The process flow includes calibration and measurement, and there are different algorithms for two modules. In the process of software development, C++ is chosen as the programming language, in combination with Qt OpenSource to design two modules’ GUI and OPC technology to implement the communication between the two levels. In addition, the drawing function is developed relying on Matlab, enriching the software functions of the off-line module. The result shows that the control system is running stably after repeated tests and practical operations for a long time.

  12. A Suspicious Action Detection System Considering Time Series

    Science.gov (United States)

    Kozuka, Noriaki; Kimura, Koji; Hagiwara, Masafumi

    The paper proposes a new system that can detect suspicious actions such as a car break-in and surroundings in an open space parking, based on image processing. The proposed system focuses on three points of “order”, “time”, and “location” of human actions. The proposed system has the following features: it 1) deals time series data flow, 2) estimates human actions and the location, 3) extracts suspicious action detection rules automatically, 4) detects suspicious actions using the suspicious score. We carried out experiments using real image sequences. As a result, we obtained about 7.8% higher estimation rate than the conventional system.

  13. Radiation detection system

    International Nuclear Information System (INIS)

    Haeuszer, F.A.

    1976-01-01

    A circuit is disclosed that detects radiation transients and provides a clamping signal in response to each transient. The clamping signal is present from the time the transient rises above a given threshold level and for a known duration thereafter. The system includes radiation sensors, a blocking oscillator that generates a pulse in response to each sensor signal, and an output pulse duration control circuit. The oscillator pulses are fed simultaneously to the output pulse duration control circuit and to an OR gate, the output of which comprises the system output. The output pulse duration is controlled by the time required to magnetize a magnetic core to saturation in first one direction and then the other

  14. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    International Nuclear Information System (INIS)

    R. Jarek

    2005-01-01

    The purpose of this model report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The resulting seepage evaporation and gas abstraction models are used in the total system performance assessment for the license application (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2005 [DIRS 173782], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports. To be consistent with other project documents that address features, events, and processes (FEPs), Table 6.14.1 of the current report includes updates to FEP numbers and FEP subjects for two FEPs identified in the technical work plan (TWP) governing this report (BSC 2005 [DIRS 173782]). FEP 2.1.09.06.0A (Reduction-oxidation potential in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.06.0B (Reduction-oxidation potential in Drifts; see Table 6.14-1). FEP 2.1.09.07.0A (Reaction kinetics in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.07.0B (Reaction kinetics in Drifts; see Table 6.14-1). These deviations from the TWP are justified because they improve integration with FEPs documents. The updates

  15. Magnetic and/or electric label assisted detection system and method

    NARCIS (Netherlands)

    2008-01-01

    A detection system is described for detecting analytes in a fluid sample. The detection system comprises a transporting means for transporting magnetic and/or elec. labels after interaction between the sample fluid and the reagents towards a detection receptacle. The detection receptacle is

  16. Lightning Protection and Detection System

    Science.gov (United States)

    Dudley, Kenneth L. (Inventor); Szatkowski, George N. (Inventor); Woodard, Marie (Inventor); Nguyen, Truong X. (Inventor); Ely, Jay J. (Inventor); Wang, Chuantong (Inventor); Mielnik, John J. (Inventor); Koppen, Sandra V. (Inventor); Smith, Laura J. (Inventor)

    2017-01-01

    A lightning protection and detection system includes a non-conductive substrate material of an apparatus; a sensor formed of a conductive material and deposited on the non-conductive substrate material of the apparatus. The sensor includes a conductive trace formed in a continuous spiral winding starting at a first end at a center region of the sensor and ending at a second end at an outer corner region of the sensor, the first and second ends being open and unconnected. An electrical measurement system is in communication with the sensor and receives a resonant response from the sensor, to perform detection, in real-time, of lightning strike occurrences and damage therefrom to the sensor and the non-conductive substrate material.

  17. Profilographic detection system for single-track scanning device

    International Nuclear Information System (INIS)

    Silar, J.; Kula, J.

    1988-01-01

    A profilographic detection system is claimed for diagnosing the renal function by isotope nephrography, and the bladder filling in small children and infants. The configuration described guarantees good position resolution and sensitivity of the detection system. (E.J.). 2 figs

  18. Multisignal detecting system of pile integrity testing

    Science.gov (United States)

    Liu, Zuting; Luo, Ying; Yu, Shihai

    2002-05-01

    The low strain reflection wave method plays a principal rule in the integrating detection of base piles. However, there are some deficiencies with this method. For example, there is a blind area of detection on top of the tested pile; it is difficult to recognize the defects at deep-seated parts of the pile; there is still the planar of 3D domino effect, etc. It is very difficult to solve these problems only with the single-transducer pile integrity testing system. A new multi-signal piles integrity testing system is proposed in this paper, which is able to impulse and collect signals on multiple points on top of the pile. By using the multiple superposition data processing method, the detecting system can effectively restrain the interference and elevate the precision and SNR of pile integrity testing. The system can also be applied to the evaluation of engineering structure health.

  19. Intrusion Detection amp Prevention Systems - Sourcefire Snort

    Directory of Open Access Journals (Sweden)

    Rajesh Vuppala

    2015-08-01

    Full Text Available Information security is a challenging issue for all business organizations today amidst increasing cyber threats. While there are many alternative intrusion detection amp prevention systems available to choose from selecting the best solution to implement to detect amp prevent cyber-attacks is a difficult task. The best solution is of the one that gets the best reviews and suits the organizations needs amp budget. In this review paper we summarize various classes of intrusion detection and prevention systems compare features of alternative solutions and make recommendation for implementation of one as the best solution for business organization in Fiji.

  20. MOFs for the Sensitive Detection of Ammonia: Deployment of fcu-MOF Thin-Films as Effective Chemical Capacitive Sensors.

    KAUST Repository

    Assen, Ayalew Hussen Assen; Yassine, Omar; Shekhah, Osama; Eddaoudi, Mohamed; Salama, Khaled N.

    2017-01-01

    This work reports on the fabrication and deployment of a select metal-organic framework (MOF) thin film as an advanced chemical capacitive sensor for the sensing/detection of ammonia (NH3) at room temperature. Namely, the MOF thin film sensing layer

  1. 46 CFR 161.002-15 - Sample extraction smoke detection systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Sample extraction smoke detection systems. 161.002-15..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL ELECTRICAL EQUIPMENT Fire-Protective Systems § 161.002-15 Sample extraction smoke detection systems. The smoke detecting system must consist of a means for...

  2. Farmers' preferences for automatic lameness-detection systems in dairy cattle.

    Science.gov (United States)

    Van De Gucht, T; Saeys, W; Van Nuffel, A; Pluym, L; Piccart, K; Lauwers, L; Vangeyte, J; Van Weyenberg, S

    2017-07-01

    As lameness is a major health problem in dairy herds, a lot of attention goes to the development of automated lameness-detection systems. Few systems have made it to the market, as most are currently still in development. To get these systems ready for practice, developers need to define which system characteristics are important for the farmers as end users. In this study, farmers' preferences for the different characteristics of proposed lameness-detection systems were investigated. In addition, the influence of sociodemographic and farm characteristics on farmers' preferences was assessed. The third aim was to find out if preferences change after the farmer receives extra information on lameness and its consequences. Therefore, a discrete choice experiment was designed with 3 alternative lameness-detection systems: a system attached to the cow, a walkover system, and a camera system. Each system was defined by 4 characteristics: the percentage missed lame cows, the percentage false alarms, the system cost, and the ability to indicate which leg is lame. The choice experiment was embedded in an online survey. After answering general questions and choosing their preferred option in 4 choice sets, extra information on lameness was provided. Consecutively, farmers were shown a second block of 4 choice sets. Results from 135 responses showed that farmers' preferences were influenced by the 4 system characteristics. The importance a farmer attaches to lameness, the interval between calving and first insemination, and the presence of an estrus-detection system contributed significantly to the value a farmer attaches to lameness-detection systems. Farmers who already use an estrus detection system were more willing to use automatic detection systems instead of visual lameness detection. Similarly, farmers who achieve shorter intervals between calving and first insemination and farmers who find lameness highly important had a higher tendency to choose for automatic

  3. An intelligent detecting system for permeability prediction of MBR.

    Science.gov (United States)

    Han, Honggui; Zhang, Shuo; Qiao, Junfei; Wang, Xiaoshuang

    2018-01-01

    The membrane bioreactor (MBR) has been widely used to purify wastewater in wastewater treatment plants. However, a critical difficulty of the MBR is membrane fouling. To reduce membrane fouling, in this work, an intelligent detecting system is developed to evaluate the performance of MBR by predicting the membrane permeability. This intelligent detecting system consists of two main parts. First, a soft computing method, based on the partial least squares method and the recurrent fuzzy neural network, is designed to find the nonlinear relations between the membrane permeability and the other variables. Second, a complete new platform connecting the sensors and the software is built, in order to enable the intelligent detecting system to handle complex algorithms. Finally, the simulation and experimental results demonstrate the reliability and effectiveness of the proposed intelligent detecting system, underlying the potential of this system for the online membrane permeability for detecting membrane fouling of MBR.

  4. System and Method for Multi-Wavelength Optical Signal Detection

    Science.gov (United States)

    McGlone, Thomas D. (Inventor)

    2017-01-01

    The system and method for multi-wavelength optical signal detection enables the detection of optical signal levels significantly below those processed at the discrete circuit level by the use of mixed-signal processing methods implemented with integrated circuit technologies. The present invention is configured to detect and process small signals, which enables the reduction of the optical power required to stimulate detection networks, and lowers the required laser power to make specific measurements. The present invention provides an adaptation of active pixel networks combined with mixed-signal processing methods to provide an integer representation of the received signal as an output. The present invention also provides multi-wavelength laser detection circuits for use in various systems, such as a differential absorption light detection and ranging system.

  5. Distributed Fault Detection for a Class of Nonlinear Stochastic Systems

    Directory of Open Access Journals (Sweden)

    Bingyong Yan

    2014-01-01

    Full Text Available A novel distributed fault detection strategy for a class of nonlinear stochastic systems is presented. Different from the existing design procedures for fault detection, a novel fault detection observer, which consists of a nonlinear fault detection filter and a consensus filter, is proposed to detect the nonlinear stochastic systems faults. Firstly, the outputs of the nonlinear stochastic systems act as inputs of a consensus filter. Secondly, a nonlinear fault detection filter is constructed to provide estimation of unmeasurable system states and residual signals using outputs of the consensus filter. Stability analysis of the consensus filter is rigorously investigated. Meanwhile, the design procedures of the nonlinear fault detection filter are given in terms of linear matrix inequalities (LMIs. Taking the influence of the system stochastic noises into consideration, an outstanding feature of the proposed scheme is that false alarms can be reduced dramatically. Finally, simulation results are provided to show the feasibility and effectiveness of the proposed fault detection approach.

  6. The use of a photoionization detector to detect harmful volatile chemicals by emergency personnel

    Science.gov (United States)

    Patel, Neil D; Fales, William D; Farrell, Robert N

    2009-01-01

    Objective The objective of this investigation was to determine if a photoionization detector (PID) could be used to detect the presence of a simulated harmful chemical on simulated casualties of a chemical release. Methods A screening protocol, based on existing radiation screening protocols, was developed for the purposes of the investigation. Three simulated casualties were contaminated with a simulated chemical agent and two groups of emergency responders were involved in the trials. The success–failure ratio of the participants was used to judge the performance of the PID in this application. Results A high success rate was observed when the screening protocol was properly adhered to (97.67%). Conversely, the success rate suffered when participants deviated from the protocol (86.31%). With one exception, all failures were noted to have been the result of a failure to correctly observe the established screening protocol. Conclusions The results of this investigation indicate that the PID may be an effective screening tool for emergency responders. However, additional study is necessary to both confirm the effectiveness of the PID and refine the screening protocol if necessary. PMID:27147829

  7. Chemicapacitive microsensors for detection of explosives and TICs

    Science.gov (United States)

    Patel, Sanjay V.; Hobson, Stephen T.; Cemalovic, Sabina; Mlsna, Todd E.

    2005-10-01

    Seacoast Science develops chemical sensors that use polymer-coated micromachined capacitors to measure the dielectric permittivity of an array of selectively absorbing materials. We present recent results demonstrating the sensor technology's capability to detect components in explosives and toxic industrial chemicals. These target chemicals are detected with functionalized polymers or network materials, chosen for their ability to adsorb chemicals. When exposed to vapors or gases, the permittivity of these sorbent materials changes depending on the strength of the vapor-sorbent interaction. Sensor arrays made of ten microcapacitors on a single chip have been previously shown to detect vapors of organic compounds (chemical warfare agents, industrial solvents, fuels) and inorganic gases (SO2, CO2, NO2). Two silicon microcapacitor structures were used, one with parallel electrode plates and the other with interdigitated "finger-like" electrodes. The parallel-plates were approximately 300 μm wide and separated by 750 nm. The interdigitated electrodes were approximately 400 μm long and were elevated above the substrate to provide faster vapor access. Eight to sixteen of these capacitors are fabricated on chips that are 5 x 2 mm and are packaged in less than 50 cm3 with supporting electronics and batteries, all weighing less than 500 grams. The capacitors can be individually coated with different materials creating a small electronic nose that produces different selectivity patterns in response to different chemicals. The resulting system's compact size, low-power consumption and low manufacturing costs make the technology ideal for integration into various systems for numerous applications.

  8. Intrinsic Fiber Optic Chemical Sensors for Subsurface Detection of CO2

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, Jesus [Intelligent Optical Systems, Inc., Torrance, CA (United States)

    2016-01-01

    Intelligent Optical Systems, Inc. has developed distributed intrinsic fiber optic sensors to directly quantify the concentration of dissolved or gas-phase CO2 for leak detection or plume migration in carbon capture and sequestration (CCS). The capability of the sensor for highly sensitive detection of CO2 in the pressure and temperature range of 15 to 2,000 psi and 25°C to 175°C was demonstrated, as was the capability of operating in highly corrosive and contaminated environments such as those often found in CO2 injection sites. The novel sensor system was for the first time demonstrated deployed in a deep well, detecting multiple CO2 releases, in real time, at varying depths. Early CO2 release detection, by means of a sensor cable integrating multiple sensor segments, was demonstrated, as was the capability of quantifying the leak. The novel fiber optic sensor system exhibits capabilities not achieved by any other monitoring technology. This project represents a breakthrough in monitoring capabilities for CCS applications.

  9. Evaluation of pipeline leak detection systems

    International Nuclear Information System (INIS)

    Glauz, W.D.; Flora, J.D.; Hennon, G.J.

    1993-01-01

    Leaking underground storage tank system presents an environmental concern and a potential health hazard. It is well known that leaks in the piping associated with these systems account for a sizeable fraction of the leaks. EPA has established performance standards for pipeline leak detection systems, and published a document presenting test protocols for evaluating these systems against the standards. This paper discusses a number of facets and important features of evaluating such systems, and presents results from tests of several systems. The importance of temperature differences between the ground and the product in the line is shown both in theory and with test data. The impact of the amount of soil moisture present is addressed, along with the effect of frozen soil. These features are addressed both for line tightness test systems, which must detect leaks of 0.10 gal/h (0.38 L/h) at 150% of normal line pressure, or 0.20 gal/h (0.76 L/h) at normal line pressure, and for automatic line leak detectors that must detect leaks of 3 gal/h (11 L/h) at 10 psi (69 kPa) within an hour of the occurrence of the leak. This paper also addresses some statistical aspects of the evaluation of these systems. Reasons for keeping the evaluation process ''blind'' to the evaluated company are given, along with methods for assuring that the tests are blind. Most importantly, a test procedure is presented for evaluating systems that report a flow rate (not just a pass/fail decision) that is much more efficient than the procedure presented in the EPA protocol, and is just as stringent

  10. Event-Triggered Fault Detection of Nonlinear Networked Systems.

    Science.gov (United States)

    Li, Hongyi; Chen, Ziran; Wu, Ligang; Lam, Hak-Keung; Du, Haiping

    2017-04-01

    This paper investigates the problem of fault detection for nonlinear discrete-time networked systems under an event-triggered scheme. A polynomial fuzzy fault detection filter is designed to generate a residual signal and detect faults in the system. A novel polynomial event-triggered scheme is proposed to determine the transmission of the signal. A fault detection filter is designed to guarantee that the residual system is asymptotically stable and satisfies the desired performance. Polynomial approximated membership functions obtained by Taylor series are employed for filtering analysis. Furthermore, sufficient conditions are represented in terms of sum of squares (SOSs) and can be solved by SOS tools in MATLAB environment. A numerical example is provided to demonstrate the effectiveness of the proposed results.

  11. 46 CFR 38.15-10 - Leak detection systems-T/ALL.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Leak detection systems-T/ALL. 38.15-10 Section 38.15-10... Requirements § 38.15-10 Leak detection systems—T/ALL. (a) A detection system shall be permanently installed to... exempt from the requirements of this paragraph. (b) The indicating instruments for the detection system...

  12. Research on IPv6 intrusion detection system Snort-based

    Science.gov (United States)

    Shen, Zihao; Wang, Hui

    2010-07-01

    This paper introduces the common intrusion detection technologies, discusses the work flow of Snort intrusion detection system, and analyzes IPv6 data packet encapsulation and protocol decoding technology. We propose the expanding Snort architecture to support IPv6 intrusion detection in accordance with CIDF standard combined with protocol analysis technology and pattern matching technology, and present its composition. The research indicates that the expanding Snort system can effectively detect various intrusion attacks; it is high in detection efficiency and detection accuracy and reduces false alarm and omission report, which effectively solves the problem of IPv6 intrusion detection.

  13. Upconverting nanoparticles for optimizing scintillator based detection systems

    Science.gov (United States)

    Kross, Brian; McKisson, John E; McKisson, John; Weisenberger, Andrew; Xi, Wenze; Zom, Carl

    2013-09-17

    An upconverting device for a scintillation detection system is provided. The detection system comprises a scintillator material, a sensor, a light transmission path between the scintillator material and the sensor, and a plurality of upconverting nanoparticles particles positioned in the light transmission path.

  14. A multi-attribute Systemic Risk Index for comparing and prioritizing chemical industrial areas

    International Nuclear Information System (INIS)

    Reniers, G.L.L.; Sörensen, K.; Dullaert, W.

    2012-01-01

    Measures taken to decrease interdependent risks within chemical industrial areas should be based on quantitative data from a holistic (cluster-based) point of view. Therefore, this paper examines the typology of networks representing industrial areas to formulate recommendations to more effectively protect a chemical cluster against existing systemic risks. Chemical industrial areas are modeled as two distinct complex networks and are prioritized by computing two sub-indices with respect to existing systemic safety and security risks (using Domino Danger Units) and supply chain risks (using units from an ordinal expert scale). Subsequently, a Systemic Risk Index for the industrial area is determined employing the Borda algorithm, whereby the systemic risk index considers both a safety and security network risk index and a supply chain network risk index. The developed method allows decreasing systemic risks within chemical industrial areas from a holistic (inter-organizational and/or inter-cluster) perspective. An illustrative example is given.

  15. Detection of semi-volatile organic compounds in permeable ...

    Science.gov (United States)

    Abstract The Edison Environmental Center (EEC) has a research and demonstration permeable parking lot comprised of three different permeable systems: permeable asphalt, porous concrete and interlocking concrete permeable pavers. Water quality and quantity analysis has been ongoing since January, 2010. This paper describes a subset of the water quality analysis, analysis of semivolatile organic compounds (SVOCs) to determine if hydrocarbons were in water infiltrated through the permeable surfaces. SVOCs were analyzed in samples collected from 11 dates over a 3 year period, from 2/8/2010 to 4/1/2013.Results are broadly divided into three categories: 42 chemicals were never detected; 12 chemicals (11 chemical test) were detected at a rate of less than 10% or less; and 22 chemicals were detected at a frequency of 10% or greater (ranging from 10% to 66.5% detections). Fundamental and exploratory statistical analyses were performed on these latter analyses results by grouping results by surface type. The statistical analyses were limited due to low frequency of detections and dilutions of samples which impacted detection limits. The infiltrate data through three permeable surfaces were analyzed as non-parametric data by the Kaplan-Meier estimation method for fundamental statistics; there were some statistically observable difference in concentration between pavement types when using Tarone-Ware Comparison Hypothesis Test. Additionally Spearman Rank order non-parame

  16. SIP threats detection system

    OpenAIRE

    Vozňák, Miroslav; Řezáč, Filip

    2010-01-01

    The paper deals with detection of threats in IP telephony, the authors developed a penetration testing system that is able to check up the level of protection from security threats in IP telephony. The SIP server is a key komponent of VoIP infrastructure and often becomes the aim of attacks and providers have to ensure the appropriate level of security. We have developed web-based penetration system which is able to check the SIP server if can face to the most common attacks.The d...

  17. 46 CFR 108.407 - Detectors for electric fire detection system.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Detectors for electric fire detection system. 108.407... DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.407 Detectors for electric fire detection system. (a) Each detector in an electric fire detection system must be located where— (1) No...

  18. A cyber-physical system for senior collapse detection

    Science.gov (United States)

    Grewe, Lynne; Magaña-Zook, Steven

    2014-06-01

    Senior Collapse Detection (SCD) is a system that uses cyber-physical techniques to create a "smart home" system to predict and detect the falling of senior/geriatric participants in home environments. This software application addresses the needs of millions of senior citizens who live at home by themselves and can find themselves in situations where they have fallen and need assistance. We discuss how SCD uses imagery, depth and audio to fuse and interact in a system that does not require the senior to wear any devices allowing them to be more autonomous. The Microsoft Kinect Sensor is used to collect imagery, depth and audio. We will begin by discussing the physical attributes of the "collapse detection problem". Next, we will discuss the task of feature extraction resulting in skeleton and joint tracking. Improvements in error detection of joint tracking will be highlighted. Next, we discuss the main module of "fall detection" using our mid-level skeleton features. Attributes including acceleration, position and room environment factor into the SCD fall detection decision. Finally, how a detected fall and the resultant emergency response are handled will be presented. Results in a home environment will be given.

  19. Automated system for crack detection using infrared thermograph

    International Nuclear Information System (INIS)

    Starman, Stanislav

    2009-01-01

    The objective of this study was the development of the automated system for crack detection on square steel bars used in the automotive industry for axle and shaft construction. The automated system for thermographic crack detection uses brief pulsed eddy currents to heat steel components under inspection. Cracks, if present, will disturb the current flow and so generate changes in the temperature profile in the crack area. These changes of temperature are visualized using an infrared camera. The image acquired by the infrared camera is evaluated through an image processing system. The advantages afforded by the system are its inspection time, its excellent flaw detection sensitivity and its ability to detect hidden, subsurface cracks. The automated system consists of four IR cameras (each side of steel bar is evaluated at a time), coil, high frequency generator and control place with computers. The system is a part of the inspection line where the subsurface and surface cracks are searched. If the crack is present, the cracked place is automatically marked. The components without cracks are then deposited apart from defective blocks. The system is fully automated and its ability is to evaluate four meter blocks within 20 seconds. This is the real reason for using this system in real industrial applications. (author)

  20. Temporal cross-correlation asymmetry and departure from equilibrium in a bistable chemical system.

    Science.gov (United States)

    Bianca, C; Lemarchand, A

    2014-06-14

    This paper aims at determining sustained reaction fluxes in a nonlinear chemical system driven in a nonequilibrium steady state. The method relies on the computation of cross-correlation functions for the internal fluctuations of chemical species concentrations. By employing Langevin-type equations, we derive approximate analytical formulas for the cross-correlation functions associated with nonlinear dynamics. Kinetic Monte Carlo simulations of the chemical master equation are performed in order to check the validity of the Langevin equations for a bistable chemical system. The two approaches are found in excellent agreement, except for critical parameter values where the bifurcation between monostability and bistability occurs. From the theoretical point of view, the results imply that the behavior of cross-correlation functions cannot be exploited to measure sustained reaction fluxes in a specific nonlinear system without the prior knowledge of the associated chemical mechanism and the rate constants.

  1. Development of a Mechanical Analysis System Considering Chemical Transitions of Barrier Materials

    International Nuclear Information System (INIS)

    Sahara, F.; Murakami, T.; Ito, H.; Kobayashi, I.; Yokozeki, K.

    2006-01-01

    An analysis system for the long-term mechanical behavior of barrier materials (MACBECE: Mechanical Analysis system considering Chemical transitions of Bentonite-based and Cement-based materials) was developed in order to improve the reliability of the evaluation of the hydraulic field that is one of the important environmental conditions in the safety assessment of the TRU waste disposal in Japan. The MACBECE is a system that calculates the deformation of barrier materials using their chemical property changes as inputs, and subsequently their hydraulic conductivity taking both their chemical property changes and deformation into consideration. This paper provides a general description of MACBECE and the results of experimental analysis carried out using MACBECE. (authors)

  2. Chemical Engineering Education in a Bologna Three Cycle Degree System

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    For the purpose of harmonization of European higher education, Europe’s education system has been going through major changes under what is commonly known as the ”Bologna Process”. The Bologna declaration in 1999 was the start of the introduction of a three cycle degree system in higher education...... in Europe. To date, many European universities have adopted this degree structure. The Working Party on Education (WPE) of the European Federation of Chemical Engineering (EFCE) carried out research to determine the contents of higher education in chemical engineering (ChE) and related disciplines...... such as applied chemistry and process engineering throughout Europe. The result has been a set of recommendations for the first (BS), second (MS) and third (PhD) cycle chemical engineering education aligned to the Bologna Process. They recommend that students studying towards bachelor and masters qualifications...

  3. A New Protection System for Islanding Detection in LV Distribution Systems

    Directory of Open Access Journals (Sweden)

    Anna Rita Di Fazio

    2015-04-01

    Full Text Available The growth of penetration of Distributed Generators (DGs is increasing the risk of unwanted islanded operation in Low Voltage (LV distribution systems. In this scenario, the existing anti-islanding protection systems, installed at the DG premises and based on classical voltage and frequency relays, are no longer effective, especially in the cases of islands characterized by a close match between generation and load. In this paper, a new protection system for islanding detection in LV distribution systems is proposed. The classical voltage and frequency relays in the DG interface protections are enriched with an innovative Smart Islanding Detector, which adopts a new passive islanding detection method. The aim is to keep the advantages of the classical relays while overcoming the problem of their limited sensitivity in detecting balanced islands. In the paper, to define the requirements of the anti-islanding protection system, the events causing the islanded operation of the LV distribution systems are firstly identified and classified. Then, referring to proposed protection system, its architecture and operation are described and, eventually, its performance is analyzed and validated by experimental laboratory tests, carried out with a hardware-in-the-loop technique.

  4. Automatic Emboli Detection System for the Artificial Heart

    Science.gov (United States)

    Steifer, T.; Lewandowski, M.; Karwat, P.; Gawlikowski, M.

    In spite of the progress in material engineering and ventricular assist devices construction, thromboembolism remains the most crucial problem in mechanical heart supporting systems. Therefore, the ability to monitor the patient's blood for clot formation should be considered an important factor in development of heart supporting systems. The well-known methods for automatic embolus detection are based on the monitoring of the ultrasound Doppler signal. A working system utilizing ultrasound Doppler is being developed for the purpose of flow estimation and emboli detection in the clinical artificial heart ReligaHeart EXT. Thesystem will be based on the existing dual channel multi-gate Doppler device with RF digital processing. A specially developed clamp-on cannula probe, equipped with 2 - 4 MHz piezoceramic transducers, enables easy system setup. We present the issuesrelated to the development of automatic emboli detection via Doppler measurements. We consider several algorithms for the flow estimation and emboli detection. We discuss their efficiency and confront them with the requirements of our experimental setup. Theoretical considerations are then met with preliminary experimental findings from a) flow studies with blood mimicking fluid and b) in-vitro flow studies with animal blood. Finally, we discuss some more methodological issues - we consider several possible approaches to the problem of verification of the accuracy of the detection system.

  5. NIST Special Publication on Intrusion Detection Systems

    National Research Council Canada - National Science Library

    Bace, Rebecca Gurley

    2001-01-01

    Intrusion detection systems (IDSs) are software or hardware systems that automate the process of monitoring the events occurring in a computer system or network, analyzing them for signs of security problems...

  6. Conversion factors from counts to chemical ratios for the EURITRACK tagged neutron inspection system

    International Nuclear Information System (INIS)

    El Kanawati, W.; Perot, B.; Carasco, C.; Eleon, C.; Valkovic, V.; Sudac, D.; Obhodas, J.

    2011-01-01

    The EURopean Illicit TRAfficking Countermeasures Kit (EURITRACK) uses 14 MeV neutrons produced by the 3 H(d,n) 4 H fusion reaction to detect explosives and narcotics in cargo containers. Reactions induced by fast neutrons produce gamma rays, which are detected in coincidence with the associated alpha particle to determine the neutron direction. In addition, the neutron path length is obtained from a time-of-flight measurement, thus allowing the origin of the gamma rays inside the container to be determined. Information concerning the chemical composition of the target material is obtained from the analysis of the energy spectrum. The carbon, oxygen, and nitrogen relative count contributions must be converted to chemical proportions to distinguish illicit and benign organic materials. An extensive set of conversion factors based on Monte Carlo numerical simulations has been calculated, taking into account neutron slowing down and photon attenuation in the cargo materials. An experimental validation of the method is presented by comparing the measured chemical fractions of known materials, in the form of bare samples or hidden in a cargo container, to their real chemical composition. Examples of application to real cargo containers are also reported, as well as simulated data with explosives and illicit drugs.

  7. Conversion factors from counts to chemical ratios for the EURITRACK tagged neutron inspection system

    Energy Technology Data Exchange (ETDEWEB)

    El Kanawati, W. [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 Saint-Paul-lez-Durance (France); Perot, B., E-mail: bertrand.perot@cea.fr [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 Saint-Paul-lez-Durance (France); Carasco, C.; Eleon, C. [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 Saint-Paul-lez-Durance (France); Valkovic, V. [A.C.T.d.o.o., Prilesje 4, 10000 Zagreb (Croatia); Sudac, D.; Obhodas, J. [Ruder Boskovic Institute, Bijenicka c. 54, 10000 Zagreb (Croatia)

    2011-10-21

    The EURopean Illicit TRAfficking Countermeasures Kit (EURITRACK) uses 14 MeV neutrons produced by the {sup 3}H(d,n){sup 4}H fusion reaction to detect explosives and narcotics in cargo containers. Reactions induced by fast neutrons produce gamma rays, which are detected in coincidence with the associated alpha particle to determine the neutron direction. In addition, the neutron path length is obtained from a time-of-flight measurement, thus allowing the origin of the gamma rays inside the container to be determined. Information concerning the chemical composition of the target material is obtained from the analysis of the energy spectrum. The carbon, oxygen, and nitrogen relative count contributions must be converted to chemical proportions to distinguish illicit and benign organic materials. An extensive set of conversion factors based on Monte Carlo numerical simulations has been calculated, taking into account neutron slowing down and photon attenuation in the cargo materials. An experimental validation of the method is presented by comparing the measured chemical fractions of known materials, in the form of bare samples or hidden in a cargo container, to their real chemical composition. Examples of application to real cargo containers are also reported, as well as simulated data with explosives and illicit drugs.

  8. Fast analysis of narcotic drugs by optical chemical imaging

    International Nuclear Information System (INIS)

    Fisher, Michal; Bulatov, Vallery; Schechter, Israel

    2003-01-01

    A new technique is proposed for fast detection, identification and imaging of narcotic drugs in their solid phase. This technique, which requires only a tiny sample of a few microns, is based on microscopic chemical imaging. Minor sample preparation is required, and results are obtained within seconds. As far as we know, this is the most sensitive detection system available today for solid drugs. The technique can be applied for fast analysis of minute drug residues, and therefore is of considerable importance for forensic applications. It is shown that identification of drug traces in realistic matrixes is possible. Two main methods were applied in this study for detection of drugs and drug derivatives. The first method was based on direct detection and chemical imaging of the auto-fluorescence of the analyzed drugs. This method is applicable when the analyzed drug emits fluorescence under the experiment conditions, such as lysergic acid diethylamide (known as LSD). The second method was used for obtaining chemical imaging of drugs that do not fluoresce under the experiment conditions. In these cases fluorescent labeling dyes were applied to the examined samples (including the drug and the matrix). Both methods are simple and rapid, and require minor or no sample preparation at all. Detection limits are very low in the picogram range

  9. Development of Contaminant Detection System using HTS SQUIDs

    International Nuclear Information System (INIS)

    Ohtani, T.; Tanaka, S.; Narita, Y.; Ariyoshi, S.; Suzuki, S.

    2015-01-01

    In terms of food safety, mixture of contaminants in food is a serious problem for not only consumers but also manufacturers. In general, the target size of the metallic contaminant to be removed is 0.5 mm. However, it is a difficult task for manufacturers to achieve this target, because of lower system sensitivity. Therefore, we developed a food contaminant detection system based on high-Tc RF superconducting quantum interference devices (SQUIDs), which are highly sensitive magnetic sensors. This study aims to improve the signal to noise ratio (SNR) of the system and detect a 0.5 mm diameter steel ball. Using a real time digital signal processing technique along with analog band-pass filters, we improved the SNR of the system. Owing to the improved SNR, a steel ball with a diameter as small as 0.3 mm, with stand-off distance of 117 mm was successfully detected. These results suggest that the proposed system is a promising candidate for the detection of metallic contaminants in food products

  10. Underwater electric field detection system based on weakly electric fish

    Science.gov (United States)

    Xue, Wei; Wang, Tianyu; Wang, Qi

    2018-04-01

    Weakly electric fish sense their surroundings in complete darkness by their active electric field detection system. However, due to the insufficient detection capacity of the electric field, the detection distance is not enough, and the detection accuracy is not high. In this paper, a method of underwater detection based on rotating current field theory is proposed to improve the performance of underwater electric field detection system. First of all, we built underwater detection system based on the theory of the spin current field mathematical model with the help of the results of previous researchers. Then we completed the principle prototype and finished the metal objects in the water environment detection experiments, laid the foundation for the further experiments.

  11. The development of the globally harmonized system (GHS) of classification and labelling of hazardous chemicals

    International Nuclear Information System (INIS)

    Winder, Chris; Azzi, Rola; Wagner, Drew

    2005-01-01

    The hazards of chemicals can be classified using classification criteria that are based on physical, chemical and ecotoxicological endpoints. These criteria may be developed be iteratively, based on scientific or regulatory processes. A number of national and international schemes have been developed over the past 50 years, and some, such as the UN Dangerous Goods system or the EC system for hazardous substances, are in widespread use. However, the unnecessarily complicated multiplicity of existing hazard classifications created much unnecessary confusion at the user level, and a recommendation was made at the 1992 Rio Earth summit to develop a globally harmonized chemical hazard classification and compatible labelling system, including material safety data sheets and easily understandable symbols, that could be used for manufacture, transport, use and disposal of chemical substances. This became the globally harmonized system for the Classification and Labelling of Chemicals (GHS). The developmental phase of the GHS is largely complete. Consistent criteria for categorising chemicals according to their toxic, physical, chemical and ecological hazards are now available. Consistent hazard communication tools such as labelling and material safety data sheets are also close to finalisation. The next phase is implementation of the GHS. The Intergovernmental Forum for Chemical Safety recommends that all countries implement the GHS as soon as possible with a view to have the system fully operational by 2008. When the GHS is in place, the world will finally have one system for classification of chemical hazards

  12. Development of Abnormality Detection System for Bathers using Ultrasonic Sensors

    Science.gov (United States)

    Ohnishi, Yosuke; Abe, Takehiko; Nambo, Hidetaka; Kimura, Haruhiko; Ogoshi, Yasuhiro

    This paper proposes an abnormality detection system for bather sitting in bathtub. Increasing number of in-bathtub drowning accidents in Japan draws attention. Behind this large number of bathing accidents, Japan's unique social and cultural background come surface. For majority of people in Japan, bathing serves purpose in deep warming up of body, relax and enjoyable time. Therefore it is the custom for the Japanese to soak in bathtub. However overexposure to hot water may cause dizziness or fainting, which is possible to cause in-bathtub drowning. For drowning prevention, the system detects bather's abnormal state using an ultrasonic sensor array. The array, which has many ultrasonic sensors, is installed on the ceiling of bathroom above bathtub. The abnormality detection system uses the following two methods: posture detection and behavior detection. The function of posture detection is to estimate the risk of drowning by monitoring bather's posture. Meanwhile, the function of behavior detection is to estimate the risk of drowning by monitoring bather's behavior. By using these methods, the system detects bathers' different state from normal. As a result of experiment with a subject in the bathtub, the system was possible to detect abnormal state using subject's posture and behavior. Therefore the system is useful for monitoring bather to prevent drowning in bathtub.

  13. Leakage evaluation in the PCV (Primary Containment Vessel) using chemical and radiochemical data

    International Nuclear Information System (INIS)

    Maeda, Katsuji; Nagasawa, Katsumi

    1998-01-01

    Keeping the reliability of nuclear power plant operation, the primary coolant leakage in the PCV is strictly restricted by the Technical Specifications. It is very important to detect an indication of leakage and estimate the source of leakage to provide countermeasures. Usually the indication of leakage will be detected by increase of drain flow in the PCV sump. There are some possibilities of leakage sources in the PCV, such as reactor water, main steam, condensate, feedwater and closed cooling water. The leakage source contain different chemical and radiochemical species. This means that the leakage source can be presumed and detected by using chemical information from the PCV atmosphere and sump water. To detect the leakage indication and the source quickly and exactly, the PCV Leakage Detection Expert System has been developed. This paper describes how to evaluate the leakage indication and source in the PCV by using chemical and radiochemical data. (author)

  14. 46 CFR 161.002-10 - Automatic fire detecting system control unit.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Automatic fire detecting system control unit. 161.002-10...-10 Automatic fire detecting system control unit. (a) General. The fire detecting system control unit... and the battery to be charged. (h) Automatic fire detecting system, battery charging and control—(1...

  15. A novel peak detection approach with chemical noise removal using short-time FFT for prOTOF MS data.

    Science.gov (United States)

    Zhang, Shuqin; Wang, Honghui; Zhou, Xiaobo; Hoehn, Gerard T; DeGraba, Thomas J; Gonzales, Denise A; Suffredini, Anthony F; Ching, Wai-Ki; Ng, Michael K; Wong, Stephen T C

    2009-08-01

    Peak detection is a pivotal first step in biomarker discovery from MS data and can significantly influence the results of downstream data analysis steps. We developed a novel automatic peak detection method for prOTOF MS data, which does not require a priori knowledge of protein masses. Random noise is removed by an undecimated wavelet transform and chemical noise is attenuated by an adaptive short-time discrete Fourier transform. Isotopic peaks corresponding to a single protein are combined by extracting an envelope over them. Depending on the S/N, the desired peaks in each individual spectrum are detected and those with the highest intensity among their peak clusters are recorded. The common peaks among all the spectra are identified by choosing an appropriate cut-off threshold in the complete linkage hierarchical clustering. To remove the 1 Da shifting of the peaks, the peak corresponding to the same protein is determined as the detected peak with the largest number among its neighborhood. We validated this method using a data set of serial peptide and protein calibration standards. Compared with MoverZ program, our new method detects more peaks and significantly enhances S/N of the peak after the chemical noise removal. We then successfully applied this method to a data set from prOTOF MS spectra of albumin and albumin-bound proteins from serum samples of 59 patients with carotid artery disease compared to vascular disease-free patients to detect peaks with S/N> or =2. Our method is easily implemented and is highly effective to define peaks that will be used for disease classification or to highlight potential biomarkers.

  16. Construction of a risk assessment system for chemical residues in agricultural products.

    Science.gov (United States)

    Choi, Shinai; Hong, Jiyeon; Lee, Dayeon; Paik, Minkyoung

    2014-01-01

    Continuous monitoring of chemical residues in agricultural and food products has been performed by various government bodies in South Korea. These bodies have made attempts to systematically manage this information by creating a monitoring database system as well as a system based on these data with which to assess the health risk of chemical residues in agricultural products. Meanwhile, a database system is being constructed consisting of information about monitoring and, following this, a demand for convenience has led to the need for an evaluation tool to be constructed with the data processing system. Also, in order to create a systematic and effective tool for the risk assessment of chemical residues in foods and agricultural products, various evaluation models are being developed, both domestically and abroad. Overseas, systems such as Dietary Exposure Evaluation Model: Food Commodity Intake Database and Cumulative and Aggregate Risk Evaluation System are being used; these use the US Environmental Protection Agency as a focus, while the EU has developed Pesticide Residue Intake Model for assessments of pesticide exposure through food intake. Following this, the National Academy of Agricultural Science (NAAS) created the Agricultural Products Risk Assessment System (APRAS) which supports the use and storage of monitoring information and risk assessments. APRAS efficiently manages the monitoring data produced by NAAS and creates an extraction feature included in the database system. Also, the database system in APRAS consists of a monitoring database system held by the NAAS and food consumption database system. Food consumption data is based on Korea National Health and Nutrition Examination Survey. This system is aimed at exposure and risk assessments for chemical residues in agricultural products with regards to different exposure scenarios.

  17. Development of a HIV-1 Virus Detection System Based on Nanotechnology

    Directory of Open Access Journals (Sweden)

    Jin-Ho Lee

    2015-04-01

    Full Text Available Development of a sensitive and selective detection system for pathogenic viral agents is essential for medical healthcare from diagnostics to therapeutics. However, conventional detection systems are time consuming, resource-intensive and tedious to perform. Hence, the demand for sensitive and selective detection system for virus are highly increasing. To attain this aim, different aspects and techniques have been applied to develop virus sensor with improved sensitivity and selectivity. Here, among those aspects and techniques, this article reviews HIV virus particle detection systems incorporated with nanotechnology to enhance the sensitivity. This review mainly focused on four different detection system including vertically configured electrical detection based on scanning tunneling microscopy (STM, electrochemical detection based on direct electron transfer in virus, optical detection system based on localized surface plasmon resonance (LSPR and surface enhanced Raman spectroscopy (SERS using plasmonic nanoparticle.

  18. Development of a HIV-1 Virus Detection System Based on Nanotechnology.

    Science.gov (United States)

    Lee, Jin-Ho; Oh, Byung-Keun; Choi, Jeong-Woo

    2015-04-27

    Development of a sensitive and selective detection system for pathogenic viral agents is essential for medical healthcare from diagnostics to therapeutics. However, conventional detection systems are time consuming, resource-intensive and tedious to perform. Hence, the demand for sensitive and selective detection system for virus are highly increasing. To attain this aim, different aspects and techniques have been applied to develop virus sensor with improved sensitivity and selectivity. Here, among those aspects and techniques, this article reviews HIV virus particle detection systems incorporated with nanotechnology to enhance the sensitivity. This review mainly focused on four different detection system including vertically configured electrical detection based on scanning tunneling microscopy (STM), electrochemical detection based on direct electron transfer in virus, optical detection system based on localized surface plasmon resonance (LSPR) and surface enhanced Raman spectroscopy (SERS) using plasmonic nanoparticle.

  19. Chemical vapor deposition diamond based multilayered radiation detector: Physical analysis of detection properties

    International Nuclear Information System (INIS)

    Almaviva, S.; Marinelli, Marco; Milani, E.; Prestopino, G.; Tucciarone, A.; Verona, C.; Verona-Rinati, G.; Angelone, M.; Pillon, M.; Dolbnya, I.; Sawhney, K.; Tartoni, N.

    2010-01-01

    Recently, solid state photovoltaic Schottky diodes, able to detect ionizing radiation, in particular, x-ray and ultraviolet radiation, have been developed at the University of Rome 'Tor Vergata'. We report on a physical and electrical properties analysis of the device and a detailed study of its detection capabilities as determined by its electrical properties. The design of the device is based on a metal/nominally intrinsic/p-type diamond layered structure obtained by microwave plasma chemical vapor deposition of homoepitaxial single crystal diamond followed by thermal evaporation of a metallic contact. The device can operate in an unbiased mode by using the built-in potential arising from the electrode-diamond junction. We compare the expected response of the device to photons of various energies calculated through Monte Carlo simulation with experimental data collected in a well controlled experimental setup i.e., monochromatic high flux x-ray beams from 6 to 20 keV, available at the Diamond Light Source synchrotron in Harwell (U.K.).

  20. Some Sensitivity Studies of Chemical Transport Simulated in Models of the Soil-Plant-Litter System

    Energy Technology Data Exchange (ETDEWEB)

    Begovich, C.L.

    2002-10-28

    Fifteen parameters in a set of five coupled models describing carbon, water, and chemical dynamics in the soil-plant-litter system were varied in a sensitivity analysis of model response. Results are presented for chemical distribution in the components of soil, plants, and litter along with selected responses of biomass, internal chemical transport (xylem and phloem pathways), and chemical uptake. Response and sensitivity coefficients are presented for up to 102 model outputs in an appendix. Two soil properties (chemical distribution coefficient and chemical solubility) and three plant properties (leaf chemical permeability, cuticle thickness, and root chemical conductivity) had the greatest influence on chemical transport in the soil-plant-litter system under the conditions examined. Pollutant gas uptake (SO{sub 2}) increased with change in plant properties that increased plant growth. Heavy metal dynamics in litter responded to plant properties (phloem resistance, respiration characteristics) which induced changes in the chemical cycling to the litter system. Some of the SO{sub 2} and heavy metal responses were not expected but became apparent through the modeling analysis.

  1. Efficacy of computer-aided detection system for screening mammography

    International Nuclear Information System (INIS)

    Saito, Mioko; Ohnuki, Koji; Yamada, Takayuki; Saito, Haruo; Ishibashi, Tadashi; Ohuchi, Noriaki; Takahashi, Shoki

    2002-01-01

    A study was conducted to evaluate the efficacy of a computer-aided detection (CAD) system for screening mammography (MMG). Screening mammograms of 2,231 women aged over 50 yr were examined. Medio-lateral oblique (MLO) images were obtained, and two expert observers interpreted the mammograms by consensus. First, each mammogram was interpreted without the assistance of CAD, followed immediately by a re-evaluation of areas marked by the CAD system. Data were recorded to measure the effect of CAD on the recall rate, cancer detection rate and detection rate of masses, microcalcifications and other findings. The CAD system increased the recall rate from 2.3% to 2.6%. Six recalled cases were diagnosed as breast cancer pathologically, and CAD detected all of these lesions. Seven additional cases in which CAD detected abnormal findings had no malignancy. The detection rate of CAD for microcalcifications was high (95.0%). However, the detection rate for mass lesions and other findings was low (29.2% and 25.0% respectively). The false positivity rate was 0.13/film for microcalcifications, and 0.25/film for mass lesions. The efficacy of the CAD system for detecting microcalcifications on screening mammograms was confirmed. However, the low detection rate of mass lesions and relatively high rate of false positivity need to be further improved. (author)

  2. Wide range neutron detection system

    International Nuclear Information System (INIS)

    Todt, W.H. Sr.

    1978-01-01

    A neutron detection system for reactor control is described which is operable over a wide range of neutron flux levels. The system includes a fission type ionization chamber neutron detector, means for gamma and alpha signal compensation, and means for operating the neutron detector in the pulse counting mode for low neutron flux levels, and in the direct current mode for high neutron flux levels

  3. Configuration of electro-optic fire source detection system

    Science.gov (United States)

    Fabian, Ram Z.; Steiner, Zeev; Hofman, Nir

    2007-04-01

    The recent fighting activities in various parts of the world have highlighted the need for accurate fire source detection on one hand and fast "sensor to shooter cycle" capabilities on the other. Both needs can be met by the SPOTLITE system which dramatically enhances the capability to rapidly engage hostile fire source with a minimum of casualties to friendly force and to innocent bystanders. Modular system design enable to meet each customer specific requirements and enable excellent future growth and upgrade potential. The design and built of a fire source detection system is governed by sets of requirements issued by the operators. This can be translated into the following design criteria: I) Long range, fast and accurate fire source detection capability. II) Different threat detection and classification capability. III) Threat investigation capability. IV) Fire source data distribution capability (Location, direction, video image, voice). V) Men portability. ) In order to meet these design criteria, an optimized concept was presented and exercised for the SPOTLITE system. Three major modular components were defined: I) Electro Optical Unit -Including FLIR camera, CCD camera, Laser Range Finder and Marker II) Electronic Unit -including system computer and electronic. III) Controller Station Unit - Including the HMI of the system. This article discusses the system's components definition and optimization processes, and also show how SPOTLITE designers successfully managed to introduce excellent solutions for other system parameters.

  4. Image-Based Pothole Detection System for ITS Service and Road Management System

    Directory of Open Access Journals (Sweden)

    Seung-Ki Ryu

    2015-01-01

    Full Text Available Potholes can generate damage such as flat tire and wheel damage, impact and damage of lower vehicle, vehicle collision, and major accidents. Thus, accurately and quickly detecting potholes is one of the important tasks for determining proper strategies in ITS (Intelligent Transportation System service and road management system. Several efforts have been made for developing a technology which can automatically detect and recognize potholes. In this study, a pothole detection method based on two-dimensional (2D images is proposed for improving the existing method and designing a pothole detection system to be applied to ITS service and road management system. For experiments, 2D road images that were collected by a survey vehicle in Korea were used and the performance of the proposed method was compared with that of the existing method for several conditions such as road, recording, and brightness. The results are promising, and the information extracted using the proposed method can be used, not only in determining the preliminary maintenance for a road management system and in taking immediate action for their repair and maintenance, but also in providing alert information of potholes to drivers as one of ITS services.

  5. Resilient Control and Intrusion Detection for SCADA Systems

    Science.gov (United States)

    2014-05-01

    Lowe. The myths and facts behind cyber security risks for industrial control systems . VDE Congress, 2004. [45] I. S. C37.1-1994. Ieee standard...Resilient Control and Intrusion Detection for SCADA Systems Bonnie Xia Zhu Electrical Engineering and Computer Sciences University of California at...3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Resilient Control and Intrusion Detection for SCADA Systems 5a. CONTRACT

  6. Coaxial direct-detection lidar-system

    DEFF Research Database (Denmark)

    2014-01-01

    The invention relates to a coaxial direct-detection LIDAR system for measuring velocity, temperature and/or particulate density. The system comprises a laser source for emitting a laser light beam having a lasing center frequency along an emission path. The system further comprises an optical....... Finally, the system comprises a detector system arranged to receive the return signal from the optical delivery system, the detector system comprising a narrowband optical filter and a detector, the narrowband optical filter having a filter center frequency of a pass-band, wherein the center lasing...... frequency and/or the center filter frequency may be scanned. The invention further relates to an aircraft airspeed measurement device, and a wind turbine airspeed measurement device comprising the LIDAR system....

  7. Fault Detection for Shipboard Monitoring and Decision Support Systems

    DEFF Research Database (Denmark)

    Lajic, Zoran; Nielsen, Ulrik Dam

    2009-01-01

    In this paper a basic idea of a fault-tolerant monitoring and decision support system will be explained. Fault detection is an important part of the fault-tolerant design for in-service monitoring and decision support systems for ships. In the paper, a virtual example of fault detection...... will be presented for a containership with a real decision support system onboard. All possible faults can be simulated and detected using residuals and the generalized likelihood ratio (GLR) algorithm....

  8. Applications of a morphological scene change detection (MSCD) for visual leak and failure identification in process and chemical engineering

    Science.gov (United States)

    Tickle, Andrew J.; Harvey, Paul K.; Smith, Jeremy S.

    2010-10-01

    Morphological Scene Change Detection (MSCD) is a process typically tasked at detecting relevant changes in a guarded environment for security applications. This can be implemented on a Field Programmable Gate Array (FPGA) by a combination of binary differences based around exclusive-OR (XOR) gates, mathematical morphology and a crucial threshold setting. The additional ability to set up the system in virtually any location due to the FPGA makes it ideal for insertion into an autonomous mobile robot for patrol duties. However, security is not the only potential of this robust algorithm. This paper details how such a system can be used for the detection of leaks in piping for use in the process and chemical industries and could be deployed as stated in the above manner. The test substance in this work was water, which was pumped either as a liquid or as low pressure steam through a simple pipe configuration with holes at set points to simulate the leaks. These holes were situated randomly at either the center of a pipe (in order to simulate an impact to it) or at a joint or corner (to simulate a failed weld). Imagery of the resultant leaks, which were visualised as drips or the accumulation of steam, which where analysed using MATLAB to determine their pixel volume in order to calibrate the trigger for the MSCD. The triggering mechanism is adaptive to make it possible in theory for the type of leak to be determined by the number of pixels in the threshold of the image and a numerical output signal to state which of the leak situations is being observed. The system was designed using the DSP Builder package from Altera so that its graphical nature is easily comprehensible to the non-embedded system designer. Furthermore, all the data from the DSP Builder simulation underwent verification against MATLAB comparisons using the image processing toolbox in order to validate the results.

  9. An automated computer misuse detection system for UNICOS

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, K.A.; Neuman, M.C.; Simmonds, D.D.; Stallings, C.A.; Thompson, J.L.; Christoph, G.G.

    1994-09-27

    An effective method for detecting computer misuse is the automatic monitoring and analysis of on-line user activity. This activity is reflected in the system audit record, in the system vulnerability posture, and in other evidence found through active testing of the system. During the last several years we have implemented an automatic misuse detection system at Los Alamos. This is the Network Anomaly Detection and Intrusion Reporter (NADIR). We are currently expanding NADIR to include processing of the Cray UNICOS operating system. This new component is called the UNICOS Realtime NADIR, or UNICORN. UNICORN summarizes user activity and system configuration in statistical profiles. It compares these profiles to expert rules that define security policy and improper or suspicious behavior. It reports suspicious behavior to security auditors and provides tools to aid in follow-up investigations. The first phase of UNICORN development is nearing completion, and will be operational in late 1994.

  10. Molecular detection with terahertz waves based on absorption-induced transparency metamaterials

    Science.gov (United States)

    G. Rodrigo, Sergio; Martín-Moreno, L.

    2016-10-01

    A system for the detection of spectral signatures of chemical compounds at the Terahertz regime is presented. The system consists on a holey metal film whereby the presence of a given substance provokes the appearance of spectral features in transmission and reflection induced by the molecular specimen. These induced effects can be regarded as an extraordinary optical transmission phenomenon called absorption-induced transparency (AIT). The phenomenon consist precisely in the appearance of peaks in transmission and dips in reflection after sputtering of a chemical compound onto an initially opaque holey metal film. The spectral signatures due to AIT occur unexpectedly close to the absorption energies of the molecules. The presence of a target, a chemical compound, would be thus revealed as a strong drop in reflectivity measurements. We theoretically predict the AIT based system would serve to detect amounts of hydrocyanic acid (HCN) at low rate concentrations.

  11. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    R. Jarek

    2005-08-29

    The purpose of this model report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The resulting seepage evaporation and gas abstraction models are used in the total system performance assessment for the license application (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2005 [DIRS 173782], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports. To be consistent with other project documents that address features, events, and processes (FEPs), Table 6.14.1 of the current report includes updates to FEP numbers and FEP subjects for two FEPs identified in the technical work plan (TWP) governing this report (BSC 2005 [DIRS 173782]). FEP 2.1.09.06.0A (Reduction-oxidation potential in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.06.0B (Reduction-oxidation potential in Drifts; see Table 6.14-1). FEP 2.1.09.07.0A (Reaction kinetics in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.07.0B (Reaction kinetics in Drifts; see Table 6.14-1). These deviations from the TWP are justified because they improve integration with FEPs

  12. A survey of chemicals inducing lipid peroxidation in biological systems.

    Science.gov (United States)

    Kappus, H

    1987-01-01

    A great number of drugs and chemicals are reviewed which have been shown to stimulate lipid peroxidation in any biological system. The underlying mechanisms, as far as known, are also dealt with. Lipid peroxidation induced by iron ions, organic hydroperoxides, halogenated hydrocarbons, redox cycling drugs, glutathione depleting chemicals, ethanol, heavy metals, ozone, nitrogen dioxide and a number of miscellaneous compounds, e.g. hydrazines, pesticides, antibiotics, are mentioned. It is shown that lipid peroxidation is stimulated by many of these compounds. However, quantitative estimates cannot be given yet and it is still impossible to judge the biological relevance of chemical-induced lipid peroxidation.

  13. Assessing the chemical contamination dynamics in a mixed land use stream system

    DEFF Research Database (Denmark)

    Sonne, Anne Thobo; McKnight, Ursula S.; Rønde, Vinni

    2017-01-01

    Traditionally, the monitoring of streams for chemical and ecological status has been limited to surface water concentrations, where the dominant focus has been on general water quality and the risk for eutrophication. Mixed land use stream systems, comprising urban areas and agricultural production......, are challenging to assess with multiple chemical stressors impacting stream corridors. New approaches are urgently needed for identifying relevant sources, pathways and potential impacts for implementation of suitable source management and remedial measures. We developed a method for risk assessing chemical...... stressors in these systems and applied the approach to a 16-km groundwater-fed stream corridor (Grindsted, Denmark). Three methods were combined: (i) in-stream contaminant mass discharge for source quantification, (ii) Toxic Units and (iii) environmental standards. An evaluation of the chemical quality...

  14. Stand-off detection of chemicals by UV Raman spectroscopy

    International Nuclear Information System (INIS)

    Wu, Ming; Ray, Mark; Hang Fung, K.; Ruckman, Mark W.; Harder, David; Sedlacek, Arthur J. III

    2000-01-01

    Experimental results are reported on a mobile, stand-alone, solar-blind ultraviolet (UV) Raman lidar system for the stand-off detection and identification of liquid and solid targets at ranges of hundreds of meters. The lidar is a coaxial system capable of performing range-resolved measurements of gases and aerosols, as well as solids and liquids. The transmitter is a flash lamp pumped 30 Hz Nd:YAG laser with quadrupled output at 266 nm. The receiver subsystem is comprised of a 40 cm Cassegrain telescope, a holographic UV edge filter for suppressing the elastic channel, a 0.46 m Czerny-Turner spectrometer, and a time gated intensified charge-coupled device (CCD) detector. The rejection of elastic light scattering by the edge filter is better than one part in 10 5 , while the transmittance 500 cm-1 to the red of the laser line is greater than 50%. Raman data are shown for selected solids, neat liquids, and mixtures down to the level of 1% volume ratio. On the basis of the strength of the Raman returns, a stand-off detection limit of ∼500 g/m2 for liquid spills of common solvents at the range of one half of a kilometer is possible. (c) 2000 Society for Applied Spectroscopy

  15. Characterizing chemical systems with on-line computers and graphics

    International Nuclear Information System (INIS)

    Frazer, J.W.; Rigdon, L.P.; Brand, H.R.; Pomernacki, C.L.

    1979-01-01

    Incorporating computers and graphics on-line to chemical experiments and processes opens up new opportunities for the study and control of complex systems. Systems having many variables can be characterized even when the variable interactions are nonlinear, and the system cannot a priori be represented by numerical methods and models. That is, large sets of accurate data can be rapidly acquired, then modeling and graphic techniques can be used to obtain partial interpretation plus design of further experimentation. The experimenter can thus comparatively quickly iterate between experimentation and modeling to obtain a final solution. We have designed and characterized a versatile computer-controlled apparatus for chemical research, which incorporates on-line instrumentation and graphics. It can be used to determine the mechanism of enzyme-induced reactions or to optimize analytical methods. The apparatus can also be operated as a pilot plant to design control strategies. On-line graphics were used to display conventional plots used by biochemists and three-dimensional response-surface plots

  16. A constrained approach to multiscale stochastic simulation of chemically reacting systems

    KAUST Repository

    Cotter, Simon L.

    2011-01-01

    Stochastic simulation of coupled chemical reactions is often computationally intensive, especially if a chemical system contains reactions occurring on different time scales. In this paper, we introduce a multiscale methodology suitable to address this problem, assuming that the evolution of the slow species in the system is well approximated by a Langevin process. It is based on the conditional stochastic simulation algorithm (CSSA) which samples from the conditional distribution of the suitably defined fast variables, given values for the slow variables. In the constrained multiscale algorithm (CMA) a single realization of the CSSA is then used for each value of the slow variable to approximate the effective drift and diffusion terms, in a similar manner to the constrained mean-force computations in other applications such as molecular dynamics. We then show how using the ensuing Fokker-Planck equation approximation, we can in turn approximate average switching times in stochastic chemical systems. © 2011 American Institute of Physics.

  17. Microfluidic photoinduced chemical oxidation for Ru(bpy)33+ chemiluminescence - A comprehensive experimental comparison with on-chip direct chemical oxidation.

    Science.gov (United States)

    Kadavilpparampu, Afsal Mohammed; Al Lawati, Haider A J; Suliman, Fakhr Eldin O

    2017-08-05

    For the first time, the analytical figures of merit in detection capabilities of the very less explored photoinduced chemical oxidation method for Ru(bpy) 3 2+ CL has been investigated in detail using 32 structurally different analytes. It was carried out on-chip using peroxydisulphate and visible light and compared with well-known direct chemical oxidation approaches using Ce(IV). The analytes belong to various chemical classes such as tertiary amine, secondary amine, sulphonamide, betalactam, thiol and benzothiadiazine. Influence of detection environment on CL emission with respect to method of oxidation was evaluated by changing the buffers and pH. The photoinduced chemical oxidation exhibited more universal nature for Ru(bpy) 3 2+ CL in detection towards selected analytes. No additional enhancers, reagents, or modification in instrumental configuration were required. Wide detectability and enhanced emission has been observed for analytes from all the chemical classes when photoinduced chemical oxidation was employed. Some of these analytes are reported for the first time under photoinduced chemical oxidation like compounds from sulphonamide, betalactam, thiol and benzothiadiazine class. On the other hand, many of the selected analytes including tertiary and secondary amines such as cetirizine, azithromycin fexofenadine and proline did not produced any analytically useful CL signal (S/N=3 or above for 1μgmL -1 analyte) under chemical oxidation. The most fascinating observations was in the detection limits; for example ofloxacin was 15 times more intense with a detection limit of 5.81×10 -10 M compared to most lowest ever reported 6×10 -9 M. Earlier, penicillamine was detected at 0.1μgmL -1 after derivatization using photoinduced chemical oxidation, but in this study, we improved it to 5.82ngmL -1 without any prior derivatization. The detection limits of many other analytes were also found to be improved by several orders of magnitude under photoinduced

  18. Microfluidic photoinduced chemical oxidation for Ru(bpy)33 + chemiluminescence - A comprehensive experimental comparison with on-chip direct chemical oxidation

    Science.gov (United States)

    Kadavilpparampu, Afsal Mohammed; Al Lawati, Haider A. J.; Suliman, Fakhr Eldin O.

    2017-08-01

    For the first time, the analytical figures of merit in detection capabilities of the very less explored photoinduced chemical oxidation method for Ru(bpy)32 + CL has been investigated in detail using 32 structurally different analytes. It was carried out on-chip using peroxydisulphate and visible light and compared with well-known direct chemical oxidation approaches using Ce(IV). The analytes belong to various chemical classes such as tertiary amine, secondary amine, sulphonamide, betalactam, thiol and benzothiadiazine. Influence of detection environment on CL emission with respect to method of oxidation was evaluated by changing the buffers and pH. The photoinduced chemical oxidation exhibited more universal nature for Ru(bpy)32 + CL in detection towards selected analytes. No additional enhancers, reagents, or modification in instrumental configuration were required. Wide detectability and enhanced emission has been observed for analytes from all the chemical classes when photoinduced chemical oxidation was employed. Some of these analytes are reported for the first time under photoinduced chemical oxidation like compounds from sulphonamide, betalactam, thiol and benzothiadiazine class. On the other hand, many of the selected analytes including tertiary and secondary amines such as cetirizine, azithromycin fexofenadine and proline did not produced any analytically useful CL signal (S/N = 3 or above for 1 μgmL- 1 analyte) under chemical oxidation. The most fascinating observations was in the detection limits; for example ofloxacin was 15 times more intense with a detection limit of 5.81 × 10- 10 M compared to most lowest ever reported 6 × 10- 9 M. Earlier, penicillamine was detected at 0.1 μg mL- 1 after derivatization using photoinduced chemical oxidation, but in this study, we improved it to 5.82 ng mL- 1 without any prior derivatization. The detection limits of many other analytes were also found to be improved by several orders of magnitude under

  19. On Emulation-Based Network Intrusion Detection Systems

    NARCIS (Netherlands)

    Abbasi, Ali; Wetzel, Jos; Bokslag, Wouter; Zambon, Emmanuele; Etalle, Sandro

    2014-01-01

    Emulation-based network intrusion detection systems have been devised to detect the presence of shellcode in network traffic by trying to execute (portions of) the network packet payloads in an in- strumented environment and checking the execution traces for signs of shellcode activity.

  20. On emulation-based network intrusion detection systems

    NARCIS (Netherlands)

    Abbasi, A.; Wetzels, J.; Bokslag, W.; Zambon, E.; Etalle, S.; Stavrou, A.; Bos, H.; Portokalidis, G.

    2014-01-01

    Emulation-based network intrusion detection systems have been devised to detect the presence of shellcode in network traffic by trying to execute (portions of) the network packet payloads in an instrumented environment and checking the execution traces for signs of shellcode activity.

  1. Systems and Methods for Automated Water Detection Using Visible Sensors

    Science.gov (United States)

    Rankin, Arturo L. (Inventor); Matthies, Larry H. (Inventor); Bellutta, Paolo (Inventor)

    2016-01-01

    Systems and methods are disclosed that include automated machine vision that can utilize images of scenes captured by a 3D imaging system configured to image light within the visible light spectrum to detect water. One embodiment includes autonomously detecting water bodies within a scene including capturing at least one 3D image of a scene using a sensor system configured to detect visible light and to measure distance from points within the scene to the sensor system, and detecting water within the scene using a processor configured to detect regions within each of the at least one 3D images that possess at least one characteristic indicative of the presence of water.

  2. Video-based real-time on-street parking occupancy detection system

    Science.gov (United States)

    Bulan, Orhan; Loce, Robert P.; Wu, Wencheng; Wang, YaoRong; Bernal, Edgar A.; Fan, Zhigang

    2013-10-01

    Urban parking management is receiving significant attention due to its potential to reduce traffic congestion, fuel consumption, and emissions. Real-time parking occupancy detection is a critical component of on-street parking management systems, where occupancy information is relayed to drivers via smart phone apps, radio, Internet, on-road signs, or global positioning system auxiliary signals. Video-based parking occupancy detection systems can provide a cost-effective solution to the sensing task while providing additional functionality for traffic law enforcement and surveillance. We present a video-based on-street parking occupancy detection system that can operate in real time. Our system accounts for the inherent challenges that exist in on-street parking settings, including illumination changes, rain, shadows, occlusions, and camera motion. Our method utilizes several components from video processing and computer vision for motion detection, background subtraction, and vehicle detection. We also present three traffic law enforcement applications: parking angle violation detection, parking boundary violation detection, and exclusion zone violation detection, which can be integrated into the parking occupancy cameras as a value-added option. Our experimental results show that the proposed parking occupancy detection method performs in real-time at 5 frames/s and achieves better than 90% detection accuracy across several days of videos captured in a busy street block under various weather conditions such as sunny, cloudy, and rainy, among others.

  3. Combining Host-based and network-based intrusion detection system

    African Journals Online (AJOL)

    These attacks were simulated using hping. The proposed system is implemented in Java. The results show that the proposed system is able to detect attacks both from within (host-based) and outside sources (network-based). Key Words: Intrusion Detection System (IDS), Host-based, Network-based, Signature, Security log.

  4. Wide area surveillance real-time motion detection systems

    CERN Document Server

    2014-01-01

    The book describes a system for visual surveillance using intelligent cameras. The camera uses robust techniques for detecting and tracking moving objects. The real time capture of the objects is then stored int he database. The tracking data stored in the database is analysed to study the camera view, detect and track objects, and study object behavior. These set of models provide a robust framework for coordinating the tracking of objects between overlapping and non-overlapping cameras, and recording the activity of objects detected by the system.

  5. Building an R&D chemical registration system.

    Science.gov (United States)

    Martin, Elyette; Monge, Aurélien; Duret, Jacques-Antoine; Gualandi, Federico; Peitsch, Manuel C; Pospisil, Pavel

    2012-05-31

    Small molecule chemistry is of central importance to a number of R&D companies in diverse areas such as the pharmaceutical, nutraceutical, food flavoring, and cosmeceutical industries. In order to store and manage thousands of chemical compounds in such an environment, we have built a state-of-the-art master chemical database with unique structure identifiers. Here, we present the concept and methodology we used to build the system that we call the Unique Compound Database (UCD). In the UCD, each molecule is registered only once (uniqueness), structures with alternative representations are entered in a uniform way (normalization), and the chemical structure drawings are recognizable to chemists and to a cartridge. In brief, structural molecules are entered as neutral entities which can be associated with a salt. The salts are listed in a dictionary and bound to the molecule with the appropriate stoichiometric coefficient in an entity called "substance". The substances are associated with batches. Once a molecule is registered, some properties (e.g., ADMET prediction, IUPAC name, chemical properties) are calculated automatically. The UCD has both automated and manual data controls. Moreover, the UCD concept enables the management of user errors in the structure entry by reassigning or archiving the batches. It also allows updating of the records to include newly discovered properties of individual structures. As our research spans a wide variety of scientific fields, the database enables registration of mixtures of compounds, enantiomers, tautomers, and compounds with unknown stereochemistries.

  6. Building an R&D chemical registration system

    Directory of Open Access Journals (Sweden)

    Martin Elyette

    2012-05-01

    Full Text Available Abstract Small molecule chemistry is of central importance to a number of R&D companies in diverse areas such as the pharmaceutical, nutraceutical, food flavoring, and cosmeceutical industries. In order to store and manage thousands of chemical compounds in such an environment, we have built a state-of-the-art master chemical database with unique structure identifiers. Here, we present the concept and methodology we used to build the system that we call the Unique Compound Database (UCD. In the UCD, each molecule is registered only once (uniqueness, structures with alternative representations are entered in a uniform way (normalization, and the chemical structure drawings are recognizable to chemists and to a cartridge. In brief, structural molecules are entered as neutral entities which can be associated with a salt. The salts are listed in a dictionary and bound to the molecule with the appropriate stoichiometric coefficient in an entity called “substance”. The substances are associated with batches. Once a molecule is registered, some properties (e.g., ADMET prediction, IUPAC name, chemical properties are calculated automatically. The UCD has both automated and manual data controls. Moreover, the UCD concept enables the management of user errors in the structure entry by reassigning or archiving the batches. It also allows updating of the records to include newly discovered properties of individual structures. As our research spans a wide variety of scientific fields, the database enables registration of mixtures of compounds, enantiomers, tautomers, and compounds with unknown stereochemistries.

  7. Nanoplatforms for Detection, Remediation and Protection Against Chem-Bio Warfare

    Science.gov (United States)

    Denkbaş, E. B.; Bayram, C.; Kavaz, D.; Çirak, T.; Demirbilek, M.

    Chemical and biological substances have been used as warfare agents by terrorists by varying degree of sophistication. It is critical that these agents be detected in real-time with high level of sensitively, specificity, and accuracy. Many different types of techniques and systems have been developed to detect these agents. But there are some limitations in these conventional techniques and systems. Limitations include the collection, handling and sampling procedures, detection limits, sample transfer, expensive equipment, personnel training, and detection materials. Due to the unique properties such as quantum effect, very high surface/volume ratio, enhanced surface reactivity, conductivity, electrical and magnetic properties of the nanomaterials offer great opportunity to develop very fast, sensitive, accurate and cost effective detection techniques and systems to detect chemical and biological (chem.-bio) warfare agents. Furthermore, surface modification of the materials is very easy and effective way to get functional or smart surfaces to be used as nano-biosensor platform. In that respect many different types of nanomaterials have been developed and used for the detection, remediation and protection, such as gold and silver nanoparticles, quantum dots, Nano chips and arrays, fluorescent polymeric and magnetic nanoparticles, fiber optic and cantilever based nanobiosensors, nanofibrillar nanostructures etc. This study summarizes preparation and characterization of nanotechnology based approaches for the detection of and remediation and protection against chem.-bio warfare agents.

  8. An intrusion detection system based on fiber hydrophone

    Science.gov (United States)

    Liu, Junrong; Qiu, Xiufen; Shen, Heping

    2017-10-01

    This paper provides a new intrusion detection system based on fiber hydrophone, focusing beam forming figure positioning according to the near field and high precision sound source location algorithm which can accurately position the intrusion; obtaining its behavior path , obtaining the intrusion events related information such as speed form tracking intrusion trace; And analyze identification the detected intrusion behavior. If the monitor area is larger, the algorithm will take too much time once, and influence the system response time, for reduce the calculating time. This paper provides way that coarse location first, and then scanned for accuracy, so as to realize the intrusion events (such as car, etc.) the remote monitoring of positioning. The system makes up the blank in process capture of the fiber optic intrusion detection technology, and improves the understanding of the invasion. Through the capture of the process of intrusion behavior, and the fusion detection of intrusion behavior itself, thus analysis, judgment, identification of the intrusion information can greatly reduce the rate of false positives, greatly improved the reliability and practicability of the perimeter security system.

  9. Design of a decentralized detection of interacting LTI systems

    Directory of Open Access Journals (Sweden)

    Shankar Shamanth

    2002-01-01

    Full Text Available In this paper, the problem of designing a decentralized detection filter for a large homogeneous collection of LTI systems is considered. The collection of systems considered here draws inspiration from platoons of vehicles, and the considered interactions amongst systems in the collection are banded and lower triangular, mimicking the typical “look-ahead” nature of interactions in a platoon of vehicles. A fault in a system propagates to other systems in the collection via such interactions. The decentralized detection filter for the collection is composed of interacting detection filters, one for each system. The feasibility of communicating the state estimates to other systems in the collection is assumed here. An important concern is the propagation of state estimation errors. In order that the state estimation errors not amplify as they propagate, a ℋ ∞ constraint on the state estimation error propagation dynamics is imposed. A sufficient condition for constructing a decentralized detection filter for the collection is presented. An example is provided to illustrate the design procedure.

  10. A new digital correlation flaw detection system

    International Nuclear Information System (INIS)

    Lee, B.B.; Furgason, E.S.

    1981-01-01

    A new portable digital random signal flaw detection system is described which uses a digital delay line to replace the acoustic delay line of the original random signal system. Using this new system, a comparison was made between the two types of transmit signals which have been used in previous systems--m-sequences and random signals. This comparison has not been possible with these previous correlation flaw detection systems. Results indicated that for high-speed short code operation, the m-sequences produced slightly lower range sidelobes than typical samples of a clipped random signal. For normal long code operation, results indicated that system performance is essentially equivalent in resolution and signal-to-noise ratio using either m-sequences or clipped and sampled random signals. Further results also showed that for normal long code operation, the system produces outputs equivalent in resolution to pulse-echo systems, but with the added benefit of signal-to-noise ratio enhancement

  11. Intelligent Agent-Based Intrusion Detection System Using Enhanced Multiclass SVM

    Science.gov (United States)

    Ganapathy, S.; Yogesh, P.; Kannan, A.

    2012-01-01

    Intrusion detection systems were used in the past along with various techniques to detect intrusions in networks effectively. However, most of these systems are able to detect the intruders only with high false alarm rate. In this paper, we propose a new intelligent agent-based intrusion detection model for mobile ad hoc networks using a combination of attribute selection, outlier detection, and enhanced multiclass SVM classification methods. For this purpose, an effective preprocessing technique is proposed that improves the detection accuracy and reduces the processing time. Moreover, two new algorithms, namely, an Intelligent Agent Weighted Distance Outlier Detection algorithm and an Intelligent Agent-based Enhanced Multiclass Support Vector Machine algorithm are proposed for detecting the intruders in a distributed database environment that uses intelligent agents for trust management and coordination in transaction processing. The experimental results of the proposed model show that this system detects anomalies with low false alarm rate and high-detection rate when tested with KDD Cup 99 data set. PMID:23056036

  12. Chemical equilibrium in the GaP-HCl and InP-HCl systems

    International Nuclear Information System (INIS)

    Goliusov, V.A.; Voronin, V.A.; Chuchmarev, S.K.

    1983-01-01

    Chemical equilibrium in the GaP-HCl and InP-HCl systems is investigated experimentally, polynomial dependence of the total pressure on temperature (800-1100 K) and hydrochloric aci concntration under the experimental conditions is obtained. The technique for equilibrium calculation in hydrogencontaining chemical systems based on the tensimetric investigation results is suggested. The equilibrium gas phase composition in the GaP(InP)-HCl systems and self consistent, within the framework of the designed equilibrium model thermodynamic characteristics are determined. The effectiveness of gas-phase indium- and gallium phosphides precipitation in the GaP(InP)-HCl systems is calculated

  13. Ultra-Trace Chemical Sensing with Long-Wave Infrared Cavity-Enhanced Spectroscopic Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Taubman, Matthew S.; Myers, Tanya L.; Cannon, Bret D.; Williams, Richard M.; Schultz, John F.

    2003-02-20

    are offset by the superior performance, ma-turity, and robustness of SWIR lasers, detectors, and other components, while the reverse is true for the MWIR and LWIR bands. PNNL's research activities include identification of signature chemicals and quantification of their spectroscopy, exploration of novel sensing techniques, and experimental sensor system construction and testing. In FY02, experimental QC laser systems developed with DARPA funding were used to explore continuous-wave (cw) CES in various forms culminating in the NICE-OHMS technique [1-3] discussed below. In FY02 PNNL also built an SWIR sensor to validate utility of the SWIR spectral region for chemical sensing, and explore the science and engineering of CES in field environments. The remainder of this report is devoted to PNNL's LWIR CES research. During FY02 PNNL explored the performance and limitations of several detection tech-niques in the LWIR including direct cavity-enhanced absorption, cavity-dithered phase-sensitive detection and resonant sideband cavity-enhanced detection. This latter tech-nique is also known as NICE-OHMS, which stands for Noise-Immune Cavity-Enhanced Optical Heterodyne Molecular Spectroscopy. This technique, pioneered in the near infra-red (NIR) by Dr J. Hall and coworkers at the University of Colorado, is one of the most sensitive spectroscopic techniques currently known. In this report, the first demonstra-tion of this technique in the LWIR is presented.

  14. Arc fault detection system

    Science.gov (United States)

    Jha, Kamal N.

    1999-01-01

    An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard.

  15. Arc fault detection system

    Science.gov (United States)

    Jha, K.N.

    1999-05-18

    An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard. 1 fig.

  16. Thermal History Devices, Systems For Thermal History Detection, And Methods For Thermal History Detection

    KAUST Repository

    Caraveo Frescas, Jesus Alfonso; Alshareef, Husam N.

    2015-01-01

    Embodiments of the present disclosure include nanowire field-effect transistors, systems for temperature history detection, methods for thermal history detection, a matrix of field effect transistors, and the like.

  17. Thermal History Devices, Systems For Thermal History Detection, And Methods For Thermal History Detection

    KAUST Repository

    Caraveo Frescas, Jesus Alfonso

    2015-05-28

    Embodiments of the present disclosure include nanowire field-effect transistors, systems for temperature history detection, methods for thermal history detection, a matrix of field effect transistors, and the like.

  18. Integrated hydraulic and organophosphate pesticide injection simulations for enhancing event detection in water distribution systems.

    Science.gov (United States)

    Schwartz, Rafi; Lahav, Ori; Ostfeld, Avi

    2014-10-15

    As a complementary step towards solving the general event detection problem of water distribution systems, injection of the organophosphate pesticides, chlorpyrifos (CP) and parathion (PA), were simulated at various locations within example networks and hydraulic parameters were calculated over 24-h duration. The uniqueness of this study is that the chemical reactions and byproducts of the contaminants' oxidation were also simulated, as well as other indicative water quality parameters such as alkalinity, acidity, pH and the total concentration of free chlorine species. The information on the change in water quality parameters induced by the contaminant injection may facilitate on-line detection of an actual event involving this specific substance and pave the way to development of a generic methodology for detecting events involving introduction of pesticides into water distribution systems. Simulation of the contaminant injection was performed at several nodes within two different networks. For each injection, concentrations of the relevant contaminants' mother and daughter species, free chlorine species and water quality parameters, were simulated at nodes downstream of the injection location. The results indicate that injection of these substances can be detected at certain conditions by a very rapid drop in Cl2, functioning as the indicative parameter, as well as a drop in alkalinity concentration and a small decrease in pH, both functioning as supporting parameters, whose usage may reduce false positive alarms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Determining airborne concentrations of spatial repellent chemicals in mosquito behavior assay systems.

    Directory of Open Access Journals (Sweden)

    Nicholas J Martin

    Full Text Available BACKGROUND: Mosquito behavior assays have been used to evaluate the efficacy of vector control interventions to include spatial repellents (SR. Current analytical methods are not optimized to determine short duration concentrations of SR active ingredients (AI in air spaces during entomological evaluations. The aim of this study was to expand on our previous research to further validate a novel air sampling method to detect and quantitate airborne concentrations of a SR under laboratory and field conditions. METHODOLOGY/PRINCIPAL FINDINGS: A thermal desorption (TD gas chromatography-mass spectrometry (GC-MS method was used to determine the amount of dichlorodiphenyltrichloroethane (DDT in samples of air. During laboratory experiments, 1 L volumes of air were collected over 10 min intervals from a three-chamber mosquito behavior assay system. Significantly higher levels of airborne DDT were measured in the chamber containing textiles treated with DDT compared to chambers free of AI. In the field, 57 samples of air were collected from experimental huts with and without DDT for onsite analysis. Airborne DDT was detected in samples collected from treated huts. The mean DDT air concentrations in these two huts over a period of four days with variable ambient temperature were 0.74 µg/m(3 (n = 17; SD = 0.45 and 1.42 µg/m(3 (n = 30; SD = 0.96. CONCLUSIONS/SIGNIFICANCE: The results from laboratory experiments confirmed that significantly different DDT exposure conditions existed in the three-chamber system establishing a chemical gradient to evaluate mosquito deterrency. The TD GC-MS method addresses a need to measure short-term (<1 h SR concentrations in small volume (<100 L samples of air and should be considered for standard evaluation of airborne AI levels in mosquito behavior assay systems. Future studies include the use of TD GC-MS to measure other semi-volatile vector control compounds.

  20. Optimization of a quench detection system for superconducting magnets

    International Nuclear Information System (INIS)

    Borlein, M.

    2004-12-01

    Subject of this report is the detection of a quench in a superconducting magnet. For the safe operation of superconducting magnets one of the most important issues is the quench detection system which controls the superconducting state of the magnet and triggers a safety discharge if necessary. If it comes to a breakdown of the superconductivity (quench), the magnet has to be discharged very quickly to avoid any damage or danger for the magnet or its environment. First an introducing overview is given. Next different methods of quench detection will be presented, partially on the basis of existing quench detection systems and the applicability of these methods in different states of the magnet operation will be shown. The different quench detection methods are compared and evaluated partially by using test experiments described in the appendix. As an application example this report contains a proposal for the quench detection system for the Wendelstein 7-X facility, actually built by the Institute for Plasma Physics, Garching [de

  1. A hybrid solar chemical looping combustion system with a high solar share

    International Nuclear Information System (INIS)

    Jafarian, Mehdi; Arjomandi, Maziar; Nathan, Graham J.

    2014-01-01

    Highlights: • A novel hybrid solar chemical looping combustion system is presented. • This hybrid CLC system integrates a CLC plant with a solar thermal energy plant. • The oxygen carrier particles are used for chemical and sensible thermal energy storage. • A solar cavity reactor is proposed for fuel reactor. • The calculations show a total solar share of around 60% can be achieved. - Abstract: A novel hybrid solar chemical looping combustion (Hy-Sol-CLC) is presented, in which the oxygen carrier particles in a CLC system are employed to provide thermal energy storage for concentrated solar thermal energy. This hybrid aims to take advantage of key features of a chemical looping combustion (CLC) system that are desirable for solar energy systems, notably their inherent chemical and sensible energy storage systems, the relatively low temperature of the “fuel” reactor (to which the concentrated solar thermal energy is added in a hybrid) relative to that of the final temperature of the product gas and the potential to operate the fuel reactor at a different pressure to the heated gas stream. By this approach, it is aimed to achieve high efficiency of the solar energy, infrastructure sharing, economic synergy, base load power generation and a high solar fraction of the total energy. In the proposed Hy-Sol-CLC system, a cavity solar receiver has been chosen for fuel reactor while for the storage of the oxygen carrier particles two reservoirs have been added to a conventional CLC. A heat exchanger is also proposed to provide independent control of the temperatures of the storage reservoirs from those of solar fuel and air reactors. The system is simulated using Aspen Plus software for the average diurnal profile of normal irradiance for Port Augusta, South Australia. The operating temperature of the fuel reactor, solar absorption efficiency, solar share, fraction of the solar thermal energy stored within the solar reactor, the fractions of sensible and

  2. Fiber optic distributed chemical sensor for the real time detection of hydrocarbon fuel leaks

    Science.gov (United States)

    Mendoza, Edgar; Kempen, C.; Esterkin, Yan; Sun, Sunjian

    2015-09-01

    With the increase worldwide demand for hydrocarbon fuels and the vast development of new fuel production and delivery infrastructure installations around the world, there is a growing need for reliable hydrocarbon fuel leak detection technologies to provide safety and reduce environmental risks. Hydrocarbon leaks (gas or liquid) pose an extreme danger and need to be detected very quickly to avoid potential disasters. Gas leaks have the greatest potential for causing damage due to the explosion risk from the dispersion of gas clouds. This paper describes progress towards the development of a fast response, high sensitivity, distributed fiber optic fuel leak detection (HySense™) system based on the use of an optical fiber that uses a hydrocarbon sensitive fluorescent coating to detect the presence of fuel leaks present in close proximity along the length of the sensor fiber. The HySense™ system operates in two modes, leak detection and leak localization, and will trigger an alarm within seconds of exposure contact. The fast and accurate response of the sensor provides reliable fluid leak detection for pipelines, storage tanks, airports, pumps, and valves to detect and minimize any potential catastrophic damage.

  3. Potential detection systems for monitoring UF6 releases

    International Nuclear Information System (INIS)

    Beck, D.E.; Bostick, W.D.; Armstrong, D.P.; McNeely, J.R.; Stockdale, J.A.D.

    1994-09-01

    In the near future, the Nuclear Regulatory Commission (NRC) will begin to regulate the gaseous diffusion plants. Them is a concern that the smoke detectors currently used for uranium hexafluoride (UF 6 ) release detection will not meet NRC safety system requirements such as high reliability and rapid response. The NRC's position is that licensees should utilize state-of-the-art equipment such as hydrogen fluoride (HF) detectors that would provide more dependable detection of a UF 6 release. A survey of the literature and current vendor information was undertaken to define the state-of-the-art and commercial availability of HF (or other appropriate) detection systems. For the purpose of this report, classification of the available HF detection systems is made on the basis of detection principle (e.g., calorimetric, electrochemical, separational, or optical). Emphasis is also placed on whether the device is primarily sensitive to response from a point source (e.g., outleakage in the immediate vicinity of a specific set of components), or whether the device is potentially applicable to remote sensing over a larger area. Traditional HF point source monitoring typically uses gas sampling tubes or coated paper tapes with color developing indicator, portable and small area HF monitors are often based upon electrochemical or extractive/separational systems; and remote sensing by optical systems holds promise for indoor and outdoor large area monitoring (including plant boundary/ambient air monitoring)

  4. Enhanced chemical weapon warning via sensor fusion

    Science.gov (United States)

    Flaherty, Michael; Pritchett, Daniel; Cothren, Brian; Schwaiger, James

    2011-05-01

    Torch Technologies Inc., is actively involved in chemical sensor networking and data fusion via multi-year efforts with Dugway Proving Ground (DPG) and the Defense Threat Reduction Agency (DTRA). The objective of these efforts is to develop innovative concepts and advanced algorithms that enhance our national Chemical Warfare (CW) test and warning capabilities via the fusion of traditional and non-traditional CW sensor data. Under Phase I, II, and III Small Business Innovative Research (SBIR) contracts with DPG, Torch developed the Advanced Chemical Release Evaluation System (ACRES) software to support non real-time CW sensor data fusion. Under Phase I and II SBIRs with DTRA in conjunction with the Edgewood Chemical Biological Center (ECBC), Torch is using the DPG ACRES CW sensor data fuser as a framework from which to develop the Cloud state Estimation in a Networked Sensor Environment (CENSE) data fusion system. Torch is currently developing CENSE to implement and test innovative real-time sensor network based data fusion concepts using CW and non-CW ancillary sensor data to improve CW warning and detection in tactical scenarios.

  5. Model-based fault detection algorithm for photovoltaic system monitoring

    KAUST Repository

    Harrou, Fouzi; Sun, Ying; Saidi, Ahmed

    2018-01-01

    Reliable detection of faults in PV systems plays an important role in improving their reliability, productivity, and safety. This paper addresses the detection of faults in the direct current (DC) side of photovoltaic (PV) systems using a

  6. Through-container, extremely low concentration detection of multiple chemical markers of counterfeit alcohol using a handheld SORS device.

    Science.gov (United States)

    Ellis, David I; Eccles, Rebecca; Xu, Yun; Griffen, Julia; Muhamadali, Howbeer; Matousek, Pavel; Goodall, Ian; Goodacre, Royston

    2017-09-21

    Major food adulteration incidents occur with alarming frequency and are episodic, with the latest incident, involving the adulteration of meat from 21 producers in Brazil supplied to 60 other countries, reinforcing this view. Food fraud and counterfeiting involves all types of foods, feed, beverages, and packaging, with the potential for serious health, as well as significant economic and social impacts. In the spirit drinks sector, counterfeiters often 'recycle' used genuine packaging, or employ good quality simulants. To prove that suspect products are non-authentic ideally requires accurate, sensitive, analysis of the complex chemical composition while still in its packaging. This has yet to be achieved. Here, we have developed handheld spatially offset Raman spectroscopy (SORS) for the first time in a food or beverage product, and demonstrate the potential for rapid in situ through-container analysis; achieving unequivocal detection of multiple chemical markers known for their use in the adulteration and counterfeiting of Scotch whisky, and other spirit drinks. We demonstrate that it is possible to detect a total of 10 denaturants/additives in extremely low concentrations without any contact with the sample; discriminate between and within multiple well-known Scotch whisky brands, and detect methanol concentrations well below the maximum human tolerable level.

  7. Planet Detectability in the Alpha Centauri System

    Science.gov (United States)

    Zhao, Lily; Fischer, Debra A.; Brewer, John; Giguere, Matt; Rojas-Ayala, Bárbara

    2018-01-01

    We use more than a decade of radial-velocity measurements for α {Cen} A, B, and Proxima Centauri from the High Accuracy Radial Velocity Planet Searcher, CTIO High Resolution Spectrograph, and the Ultraviolet and Visual Echelle Spectrograph to identify the M\\sin i and orbital periods of planets that could have been detected if they existed. At each point in a mass–period grid, we sample a simulated, Keplerian signal with the precision and cadence of existing data and assess the probability that the signal could have been produced by noise alone. Existing data places detection thresholds in the classically defined habitable zones at about M\\sin i of 53 {M}\\oplus for α {Cen} A, 8.4 {M}\\oplus for α {Cen} B, and 0.47 {M}\\oplus for Proxima Centauri. Additionally, we examine the impact of systematic errors, or “red noise” in the data. A comparison of white- and red-noise simulations highlights quasi-periodic variability in the radial velocities that may be caused by systematic errors, photospheric velocity signals, or planetary signals. For example, the red-noise simulations show a peak above white-noise simulations at the period of Proxima Centauri b. We also carry out a spectroscopic analysis of the chemical composition of the α {Centauri} stars. The stars have super-solar metallicity with ratios of C/O and Mg/Si that are similar to the Sun, suggesting that any small planets in the α {Cen} system may be compositionally similar to our terrestrial planets. Although the small projected separation of α {Cen} A and B currently hampers extreme-precision radial-velocity measurements, the angular separation is now increasing. By 2019, α {Cen} A and B will be ideal targets for renewed Doppler planet surveys.

  8. Invariant boxes and stability of some systems from biomathematics and chemical reactions

    International Nuclear Information System (INIS)

    Pavel, N.H.

    1984-08-01

    A general theorem on the flow-invariance of a time-dependent rectangular box with respect to a differential system is first recalled [''Analysis of some non-linear problems'' in Banach Spaces and Applications, Univ. of Iasi (Romania) (1982)]. Then a theorem applicable to the study of some differential systems from biomathematics and chemical reactions is given and proved. The theorem can be applied to enzymatic reactions, the chemical mechanism in the Belousov reaction, and the kinetic system for the chemical scheme of Hanusse of two processes with three intermediate species [in Pavel, N.H., Differential Equations, Flow-invariance and Applications, Pitman Publishing, Ltd., London (to appear)]. Next, the matrices A for which the corresponding linear system x'=Ax is component-wise positive asymptotically stable are characterized. In the Appendix a partial answer to an open problem regarding the preservation of both continuity and dissipativity in the extension of functions to a Banach space is given

  9. Modelling of the chemical state in groundwater infiltration systems

    International Nuclear Information System (INIS)

    Zysset, A.

    1993-01-01

    Groundwater is replenished by water stemming either from precipitations, lakes or rivers. The area where such an infiltration occurs is characterized by a change in the environmental conditions, such as a decrease of the flow velocity and an increase in the solid surface marking the boundary of the flow field. With these changes new chemical processes may become relevant to the transport behavior of contaminants. Since the rates of chemical processes usually are a function of the concentrations of several species, an understanding of infiltration sites may require a multicomponent approach. The present study aims at formulating a mathematical model together with its numerical solution for groundwater infiltration sites. Such a model should improve the understanding of groundwater quality changes related to infiltrating contaminants. The groundwater quality is of vital interest to men because at many places most of the drinking water originates from groundwater. In the first part of the present study two partial models are formulated: one accounting for the transport in a one-dimensional, homogeneous and saturated porous medium, the other accounting for chemical reactions. This second model is initially stated for general kinetic systems. Then, it is specified for two systems, namely for a system governed only by reactions which are fast compared to the transport processes and for a system with biologically mediated redox reactions of dissolved substrates. In the second part of the study a numerical solution to the model is developed. For this purpose, the two partial models are coupled. The coupling is either iterative as in the case of a system with fast reactions or sequential as in all other cases. The numerical solutions of simple test cases are compared to analytical solutions. In the third part the model is evaluated using observations of infiltration sites reported in the literature. (author) figs., tabs., 155 refs

  10. Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering

    DEFF Research Database (Denmark)

    Cho, Changhee; Choi, So Young; Luo, Zi Wei

    2015-01-01

    The advent of various systems metabolic engineering tools and strategies has enabled more sophisticated engineering of microorganisms for the production of industrially useful fuels and chemicals. Advances in systems metabolic engineering have been made in overproducing natural chemicals...... and producing novel non-natural chemicals. In this paper, we review the tools and strategies of systems metabolic engineering employed for the development of microorganisms for the production of various industrially useful chemicals belonging to fuels, building block chemicals, and specialty chemicals......, in particular focusing on those reported in the last three years. It was aimed at providing the current landscape of systems metabolic engineering and suggesting directions to address future challenges towards successfully establishing processes for the bio-based production of fuels and chemicals from renewable...

  11. Miniature Laboratory for Detecting Sparse Biomolecules

    Science.gov (United States)

    Lin, Ying; Yu, Nan

    2005-01-01

    A miniature laboratory system has been proposed for use in the field to detect sparsely distributed biomolecules. By emphasizing concentration and sorting of specimens prior to detection, the underlying system concept would make it possible to attain high detection sensitivities without the need to develop ever more sensitive biosensors. The original purpose of the proposal is to aid the search for signs of life on a remote planet by enabling the detection of specimens as sparse as a few molecules or microbes in a large amount of soil, dust, rocks, water/ice, or other raw sample material. Some version of the system could prove useful on Earth for remote sensing of biological contamination, including agents of biological warfare. Processing in this system would begin with dissolution of the raw sample material in a sample-separation vessel. The solution in the vessel would contain floating microscopic magnetic beads coated with substances that could engage in chemical reactions with various target functional groups that are parts of target molecules. The chemical reactions would cause the targeted molecules to be captured on the surfaces of the beads. By use of a controlled magnetic field, the beads would be concentrated in a specified location in the vessel. Once the beads were thus concentrated, the rest of the solution would be discarded. This procedure would obviate the filtration steps and thereby also eliminate the filter-clogging difficulties of typical prior sample-concentration schemes. For ferrous dust/soil samples, the dissolution would be done first in a separate vessel before the solution is transferred to the microbead-containing vessel.

  12. Damage Detection and Verification System (DDVS) for In-Situ Health Monitoring

    Science.gov (United States)

    Williams, Martha K.; Lewis, Mark; Szafran, J.; Shelton, C.; Ludwig, L.; Gibson, T.; Lane, J.; Trautwein, T.

    2015-01-01

    Project presentation for Game Changing Program Smart Book Release. Detection and Verification System (DDVS) expands the Flat Surface Damage Detection System (FSDDS) sensory panels damage detection capabilities and includes an autonomous inspection capability utilizing cameras and dynamic computer vision algorithms to verify system health. Objectives of this formulation task are to establish the concept of operations, formulate the system requirements for a potential ISS flight experiment, and develop a preliminary design of an autonomous inspection capability system that will be demonstrated as a proof-of-concept ground based damage detection and inspection system.

  13. Investigation of contactless detection using a giant magnetoresistance sensor for detecting prostate specific antigen.

    Science.gov (United States)

    Sun, Xuecheng; Zhi, Shaotao; Lei, Chong; Zhou, Yong

    2016-08-01

    This paper presents a contactless detection method for detecting prostate specific antigen with a giant magnetoresistance sensor. In contactless detection case, the prostate specific antigen sample preparation was separated from the sensor that prevented the sensor from being immersed in chemical solvents, and made the sensor implementing in immediately reuse without wash. Experimental results showed that applied an external magnetic field in a range of 50 Oe to 90 Oe, Dynabeads with a concentration as low as 0.1 μg/mL can be detected by this system and could give an approximate quantitation to the logarithmic of Dynabeads concentration. Sandwich immunoassay was employed for preparing PSA samples. The PSA capture was implemented on a gold film modified with a self-assembled monolayer and using biotinylated secondary antibody against PSA and streptavidinylated Dynabeads. With DC magnetic field in the range of 50 to 90 Oe, PSA can be detected with a detection limit as low as 0.1 ng/mL. Samples spiked with different concentrations of PSA can be distinguished clearly. Due to the contactless detection method, the detection system exhibited advantages such as convenient manipulation, reusable, inexpensive, small weight. So, this detection method was a promising candidate in biomarker detection, especially in point of care detection.

  14. Detection of Azo Dyes in Curry Powder Using a 1064-nm Dispersive Point-Scan Raman System

    Directory of Open Access Journals (Sweden)

    Sagar Dhakal

    2018-04-01

    Full Text Available Curry powder is extensively used in Southeast Asian dishes. It has been subject to adulteration by azo dyes. This study used a newly developed 1064 nm dispersive point-scan Raman system for detection of metanil yellow and Sudan-I contamination in curry powder. Curry powder was mixed with metanil yellow and (separately with Sudan-I, at concentration levels of 1%, 3%, 5%, 7%, and 10% (w/w. Each sample was packed into a nickel-plated sample container (25 mm × 25 mm × 1 mm. One Raman spectral image of each sample was acquired across the 25 mm × 25 mm surface area. Intensity threshold value was applied to the spectral images of Sudan-I mixtures (at 1593 cm−1 and metanil yellow mixtures (at 1147 cm−1 to obtain binary detection images. The results show that the number of detected adulterant pixels is linearly correlated with the sample concentration (R2 = 0.99. The Raman system was further used to obtain a Raman spectral image of a curry powder sample mixed together with Sudan-I and metanil yellow, with each contaminant at equal concentration of 5% (w/w. The multi-component spectra of the mixture sample were decomposed using self-modeling mixture analysis (SMA to extract pure component spectra, which were then identified as matching those of Sudan-I and metanil yellow using spectral information divergence (SID values. The results show that the 1064 nm dispersive Raman system is a potential tool for rapid and nondestructive detection of multiple chemical contaminants in the complex food matrix.

  15. Numerical prediction of flow and mixing characteristics in CVCS chemical addition system

    International Nuclear Information System (INIS)

    Chang, K.S.

    1999-01-01

    A numerical result of the flow and mixing characteristics is presented for the flow field created by water injected into a cylindrical tank with an initially stationary fluid. The flow is relevant to the operation of the chemical addition system in the chemical and volume control system (CVCS) of nuclear power plants. This study was undertaken to provide a basis for modification of the previous design which gave a number of difficulties in installation and operation of the chemical addition system because it needs a special reciprocating pump with a high actual head. For the tank of length-to-diameter ratios (L/D) of 1, 2 and 3, each with and without a baffle inside, calculation results were obtained by solving the unsteady laminar two-dimensional elliptic forms of governing equations for the mass, momentum and species concentration. Finite-difference method was used to obtain discretization equations, and the SIMPLER solution algorithm was employed for the calculation procedure. Results showed that the baffle was very effective in enhancing the mixing in the tank, and that a baffle should be installed near the tank entrance in order to inject chemicals into the reactor coolant system (RCS) within the operating time required. (orig.)

  16. Rapid detection and identification of energetic materials with surface enhanced raman spectrometry (SERS)

    Science.gov (United States)

    Han, Thomas Yong-Jin; Valdez, Carlos A; Olson, Tammy Y; Kim, Sung Ho; Satcher, Jr., Joe H

    2015-04-21

    In one embodiment, a system includes a plurality of metal nanoparticles functionalized with a plurality of organic molecules tethered thereto, wherein the plurality of organic molecules preferentially interact with one or more analytes when placed in proximity therewith. According to another embodiment, a method for detecting analytes includes contacting a fluid having one or more analytes of interest therein with a plurality of metal nanoparticles, each metal nanoparticle having a plurality of organic molecules tethered thereto, and detecting Raman scattering from an analyte of interest from the fluid, the analyte interacting with one or more of the plurality of organic molecules. In another embodiment, a method includes chemically modifying a plurality of cyclodextrin molecules at a primary hydroxyl moiety to create a chemical handle, and tethering the plurality of cyclodextrin molecules to a metal nanoparticle using the chemical handle. Other systems and methods for detecting analytes are also described.

  17. Chemical and Metallurgy Research (CMR) Sample Tracking System Design Document

    International Nuclear Information System (INIS)

    Bargelski, C. J.; Berrett, D. E.

    1998-01-01

    The purpose of this document is to describe the system architecture of the Chemical and Metallurgy Research (CMR) Sample Tracking System at Los Alamos National Laboratory. During the course of the document observations are made concerning the objectives, constraints and limitations, technical approaches, and the technical deliverables

  18. Concise and Efficient Fluorescent Probe via an Intromolecular Charge Transfer for the Chemical Warfare Agent Mimic Diethylchlorophosphate Vapor Detection.

    Science.gov (United States)

    Yao, Junjun; Fu, Yanyan; Xu, Wei; Fan, Tianchi; Gao, Yixun; He, Qingguo; Zhu, Defeng; Cao, Huimin; Cheng, Jiangong

    2016-02-16

    Sarin, used as chemical warfare agents (CWAs) for terrorist attacks, can induce a number of virulent effects. Therefore, countermeasures which could realize robust and convenient detection of sarin are in exigent need. A concise charge-transfer colorimetric and fluorescent probe (4-(6-(tert-butyl)pyridine-2-yl)-N,N-diphenylaniline, TBPY-TPA) that could be capable of real-time and on-site monitoring of DCP vapor was reported in this contribution. Upon contact with DCP, the emission band red-shifted from 410 to 522 nm upon exposure to DCP vapor. And the quenching rate of TBPY-TPA reached up to 98% within 25 s. Chemical substances such as acetic acid (HAc), dimethyl methylphosphonate (DMMP), pinacolyl methylphosphonate (PAMP), and triethyl phosphate (TEP) do not interfere with the detection. A detection limit for DCP down to 2.6 ppb level is remarkably achieved which is below the Immediately Dangerous to Life or Health concentration. NMR data suggested that a transformation of the pyridine group into pyridinium salt via a cascade reaction is responsible for the sensing process which induced the dramatic fluorescent red shift. All of these data suggest TBPY-TPA is a promising fluorescent sensor for a rapid, simple, and low-cost method for DCP detection, which could be easy to prepare as a portable chemosensor kit for its practical application in real-time and on-site monitoring.

  19. Detection system of capillary array electrophoresis microchip based on optical fiber

    Science.gov (United States)

    Yang, Xiaobo; Bai, Haiming; Yan, Weiping

    2009-11-01

    To meet the demands of the post-genomic era study and the large parallel detections of epidemic diseases and drug screening, the high throughput micro-fluidic detection system is needed urgently. A scanning laser induced fluorescence detection system based on optical fiber has been established by using a green laser diode double-pumped solid-state laser as excitation source. It includes laser induced fluorescence detection subsystem, capillary array electrophoresis micro-chip, channel identification unit and fluorescent signal processing subsystem. V-shaped detecting probe composed with two optical fibers for transmitting the excitation light and detecting induced fluorescence were constructed. Parallel four-channel signal analysis of capillary electrophoresis was performed on this system by using Rhodamine B as the sample. The distinction of different samples and separation of samples were achieved with the constructed detection system. The lowest detected concentration is 1×10-5 mol/L for Rhodamine B. The results show that the detection system possesses some advantages, such as compact structure, better stability and higher sensitivity, which are beneficial to the development of microminiaturization and integration of capillary array electrophoresis chip.

  20. Alternatives to in vivo tests to detect endocrine disrupting chemicals (EDCs) in fish and amphibians--screening for estrogen, androgen and thyroid hormone disruption.

    Science.gov (United States)

    Scholz, S; Renner, P; Belanger, S E; Busquet, F; Davi, R; Demeneix, B A; Denny, J S; Léonard, M; McMaster, M E; Villeneuve, D L; Embry, M R

    2013-01-01

    Endocrine disruption is considered a highly relevant hazard for environmental risk assessment of chemicals, plant protection products, biocides and pharmaceuticals. Therefore, screening tests with a focus on interference with estrogen, androgen, and thyroid hormone pathways in fish and amphibians have been developed. However, they use a large number of animals and short-term alternatives to animal tests would be advantageous. Therefore, the status of alternative assays for endocrine disruption in fish and frogs was assessed by a detailed literature analysis. The aim was to (i) determine the strengths and limitations of alternative assays and (ii) present conclusions regarding chemical specificity, sensitivity, and correlation with in vivo data. Data from 1995 to present were collected related to the detection/testing of estrogen-, androgen-, and thyroid-active chemicals in the following test systems: cell lines, primary cells, fish/frog embryos, yeast and cell-free systems. The review shows that the majority of alternative assays measure effects directly mediated by receptor binding or resulting from interference with hormone synthesis. Other mechanisms were rarely analysed. A database was established and used for a quantitative and comparative analysis. For example, a high correlation was observed between cell-free ligand binding and cell-based reporter cell assays, between fish and frog estrogenic data and between fish embryo tests and in vivo reproductive effects. It was concluded that there is a need for a more systematic study of the predictive capacity of alternative tests and ways to reduce inter- and intra-assay variability.