WorldWideScience

Sample records for chemical decontamination process

  1. A chemical decontamination process for decontaminating and decommissioning nuclear reactors

    International Nuclear Information System (INIS)

    Five chemical decontamination processes have been developed for nuclear reactor applications. One of these processes is the cerium decontamination process (CDP). This method uses a cerium acid reagent to rapidly decontaminate surfaces, obtaining decontamination factors in excess of 300 in 6 h on pressurized water reactor specimens. Sound volume reduction and waste management techniques have been demonstrated, and solidified waste volume fractions as low as 9% experimentally obtained. The CDP method represents the hybrid decontamination technique often sought for component replacement and decommissioning operations: high effectiveness, rapid kinetics, simple waste treatment, and a low solidified waste volume

  2. Study of Chemical Decontamination Process for CRUD Removal

    International Nuclear Information System (INIS)

    Chalk River Unidentified Deposit (CRUD) is a technical term in nuclear engineering which is an accumulated material on external fuel rod cladding surfaces in nuclear power plants. It is a corrosion product which is composed of either dissolved ions or solid particles such as Ni, Fe and Co. It consists mainly of NiO and NiFe2O4. It can affect to reduce fuel lifetime, degrade heat transfer to the coolant, and threaten human health and environment. Therefore, decontamination process is essential for reducing occupational exposures, limiting potential releases and uptakes of radioactive materials, allowing the reuse of components, and facilitating waste management process. In this paper, we have conducted the synthesis of Cobalt ferrite as power foam to use for decontamination process. In dissolution test of Co ferrite and Ni ferrite, oxalic acid shows the most effective chemical decontamination reagent to remove the contaminants. Generally, the dissolved amount of cobalt and nickel increases at low pH condition and as the temperature goes higher, dissolved amount of cobalt and iron are much higher

  3. Study of Chemical Decontamination Process for CRUD Removal

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Seongsik; Kim, Won-Seok; Kim, Jungjin; Um, Wooyong [POSTECH, Pohang (Korea, Republic of)

    2015-05-15

    Chalk River Unidentified Deposit (CRUD) is a technical term in nuclear engineering which is an accumulated material on external fuel rod cladding surfaces in nuclear power plants. It is a corrosion product which is composed of either dissolved ions or solid particles such as Ni, Fe and Co. It consists mainly of NiO and NiFe{sub 2}O{sub 4}. It can affect to reduce fuel lifetime, degrade heat transfer to the coolant, and threaten human health and environment. Therefore, decontamination process is essential for reducing occupational exposures, limiting potential releases and uptakes of radioactive materials, allowing the reuse of components, and facilitating waste management process. In this paper, we have conducted the synthesis of Cobalt ferrite as power foam to use for decontamination process. In dissolution test of Co ferrite and Ni ferrite, oxalic acid shows the most effective chemical decontamination reagent to remove the contaminants. Generally, the dissolved amount of cobalt and nickel increases at low pH condition and as the temperature goes higher, dissolved amount of cobalt and iron are much higher.

  4. Chemical Gel for Surface Decontamination

    International Nuclear Information System (INIS)

    Many chemical decontamination processes operate by immersing components in aggressive chemical solutions. In these applications chemical decontamination technique produce large amounts of radioactive liquid waste. Therefore it is necessary to develop processes using chemical gels instead of chemical solutions, to avoid the well-known disadvantages of chemical decontamination techniques while retaining their high efficiency. Chemical gels decontamination process consists of applying the gel by spraying it onto the surface of large area components (floors, walls, etc) to be decontaminated. The gel adheres to any vertical or complex surface due to their thixotropic properties and operates by dissolving the radioactive deposit, along with a thin layer of the gel support, so that the radioactivity trapped at the surface can be removed. Important aspects of the gels are that small quantities can be used and they show thixitropic properties : liquid during spraying, and solid when stationary, allowing for strong adherence to surfaces. This work investigates the decontamination behaviors of organic-based chemical gel for SS 304 metallic surfaces contaminated with radioactive materials

  5. Dilute chemical decontamination process for pressurized and boiling water reactor applications

    International Nuclear Information System (INIS)

    Westinghouse Electric Corporation (WEC) has developed five chemical processes for nuclear decontamination, based on extensive experimental testing using radioactive pressurized water reactor (PWR) and boiling water reactor (BWR) samples. The dilute chemical decontamination process offers the best combination of effectiveness, low corrosion, low waste volume, and fast field implementation time. This is an alternating multistep process. For PWRs, an oxidation treatment is necessary. Projected contact decontamination factors (DFs) are about 50 on plant Inconel surfaces, with comparable results on stainless steel. Actual test DFs have exceeded 500 in the process test loop. For BWRs, an oxidation step is unnecessary, but very beneficial. DFs of 10 to 20 are achieved without an oxidation treatment. Full process DFs exceed 500 when the oxidation treatment is included. Low corrosion rates are observed, without any adverse effects. Only solid waste is produced by the process. WEC has fabricated a trailer-mounted application system for this process, and is offering it as a decontamination service to commercial customers

  6. Method of processing radioactive liquid wastes derived from organic-chemical decontaminating agents

    International Nuclear Information System (INIS)

    Purpose: To process radioactive liquid wastes of organic-chemical decontaminating agents after being used for the decontamination of tanks, pipeways, pumps or like other equipments contaminated with radioactive materials in nuclear power plants. Method: Radioactive liquid wasted derived from decontaminating agents mainly composed of organic acids such as citric acid, formic acid, oxalic acid, hydroxyl acetic acid, ascorbic acid and gluconic acid are at first processed in a filter comprising porous filtering membranes, to eliminate suspended materials containing claddings not dissolved in the liquid wastes. As the porous filtering membranes, hollow thread filtering membranes, ceramic filters, sintered metal membranes, metal mesh filters or the likes may be used, the back-wash type hollow thread porous polymeric membranes being preferred. Then, the organic mateirals are effectively decomposed into gaseous dioxide and water through photolysis while blowing ozone under the irradiation of UV-rays to thereby decrease the amount of radioactive wastes significantly. (Kamimura, M.)

  7. Corrosion surveillance of the chemical decontamination process in Kuosheng nuclear power plant

    International Nuclear Information System (INIS)

    The Piping Recirculation System (RRS) and reactor water clean-up system (RWCU) of Kuosheng Nuclear Power Plant of Taiwan Power Company were decontaminated by CORD process of Framatome ANP GmbH during the outage at October 2001. This is the first time that CORD process was adopted and applied in Taiwan Nuclear Power Plant. To verify minor corrosion damage and correct process control, the material corrosion condition was monitored during all the stages of the chemical decontamination work. Three kinds of specimen were adopted in this corrosion monitoring, including corrosion coupons for weight loss measurements, electrochemical specimens for on-line corrosion monitoring, and WOL specimens (wedge opening loaded) for stress corrosion evaluation. The measured metal losses from nine coupon materials did not reveal any unexpected or intolerable high corrosion damage from the CORD UV or CORD CS processes. The coupon materials included type 304 stainless steel (SS) with sensitized and as-received thermal history, type 308 weld filler, type CF8 cast SS, nickel base alloy 182 weld filler, Inconel 600, Stellite 6 hard facing alloy, NOREM low cobalt hard facing alloy, and A106B carbon steel (CS). The electrochemical noise (ECN) measurements from three-electrode electrochemical probe precisely depicted the metal corrosion variation with the decontamination process change. Most interestingly, the estimated trend of accumulated metal loss is perfectly corresponding to the total removed activities. The ECN measurements were also used for examining the effect of different SS oxide films pre-formed in NWC and HWC on the decontamination efficiency, and for evaluating the galvanic effect of CS with SS. The existing cracks did not propagate further during the decontamination. The average decontamination factors achieved were 50.8 and 4.2 respectively for RRS and RWCU. (authors)

  8. Processes of elimination of activated corrosion products. Chemical decontamination - fuel cleaning

    International Nuclear Information System (INIS)

    The abatement of the individual and collective dose of a PWR imposes to control the source term through different processes implemented during the plant exploitation. When the limits of these different optimization processes are reached, the abatement of dose rates requires the implementation of curative processes. The objective is thus to eliminate the contaminated oxides and deposits present on surfaces free of radiation flux, and eventually on surfaces under radiation flux and on the fuel itself. The chemical decontamination of equipments and systems is the main and universal remedy implemented at different levels. On the other hand, the ultrasonic cleaning of fuel assemblies is a promising process. This paper aims at illustrating these different techniques using concrete examples of application in France and abroad (decontamination during steam generator replacement, decontamination of primary pump scroll in hot workshop, decontamination of loop sections, ultrasonic cleaning of fuel). The description of these different operations stresses on their efficiency in terms of dosimetric gain, duration of implementation, generation of wastes, and recontamination following their implementation. (J.S.)

  9. Characterization of nuclear decontamination solutions at the Idaho Chemical Processing Plant from 1982-1990

    International Nuclear Information System (INIS)

    This report represents possibly the single largest collection of operational decontamination data from a nuclear reprocessing facility at the Idaho National Engineering Laboratory and perhaps anywhere in the world. The uniqueness of this data is due to the Idaho Chemical Processing Plant's (ICPP's) ability to process different types of highly enriched nuclear fuel. The report covers an 8-year period, during which six campaigns were conducted to dissolve nuclear fuel clad in stainless steel, aluminum, graphite, and zirconium. Each fuel type had a separate head-end process with unique dissolution chemistry, but shared the same extraction process equipment. This report presents data about decontamination activities of the ICPP's First Cycle extraction vessels, columns, piping, and aluminum dissolution vessels. Operating data from 1982 through 1990 has been collected, analyzed, and characterized. Chemicals used in the decontamination processes are documented along with quantities used. The chemical solutions are analyzed to compare effectiveness. Radioisotopic analysis is recorded, showing and quantifying what nuclides were removed by the various solutions. The original data is also provided to make it possible for researchers to address questions and test other hypotheses not discussed in this report

  10. Characterization of nuclear decontamination solutions at the Idaho Chemical Processing Plant from 1982-1990

    Energy Technology Data Exchange (ETDEWEB)

    Zohner, S.K.

    1996-03-01

    This report represents possibly the single largest collection of operational decontamination data from a nuclear reprocessing facility at the Idaho National Engineering Laboratory and perhaps anywhere in the world. The uniqueness of this data is due to the Idaho Chemical Processing Plant`s (ICPP`s) ability to process different types of highly enriched nuclear fuel. The report covers an 8-year period, during which six campaigns were conducted to dissolve nuclear fuel clad in stainless steel, aluminum, graphite, and zirconium. Each fuel type had a separate head-end process with unique dissolution chemistry, but shared the same extraction process equipment. This report presents data about decontamination activities of the ICPP`s First Cycle extraction vessels, columns, piping, and aluminum dissolution vessels. Operating data from 1982 through 1990 has been collected, analyzed, and characterized. Chemicals used in the decontamination processes are documented along with quantities used. The chemical solutions are analyzed to compare effectiveness. Radioisotopic analysis is recorded, showing and quantifying what nuclides were removed by the various solutions. The original data is also provided to make it possible for researchers to address questions and test other hypotheses not discussed in this report.

  11. In-situ chemical decontamination of a PWR primary loop large components with the MEDOC process

    International Nuclear Information System (INIS)

    Shutdown in 1987 after 25 years of operation, the BR3-PWR was selected in 1989 as one of the four pilot decommissioning projects by the European Commission, in the framework of its five-year plan of Research and Technological Development on decommissioning of nuclear installations. The dismantling of a PWR type reactor leads to the production of large masses of contaminated metallic pieces, including structural materials, primary piping, tanks and heat exchangers. One of our main objectives is to demonstrate that we can minimise the volume of radioactive waste in an economical way by privileging alternative material routes, such as the clearance of materials after thorough decontamination. Therefore the SCK-CEN has developed its own chemical decontamination process, so-called MEDOC (MEtal Decontamination by Oxidation with Cerium), based on the use of Ce(IV) as strong oxidising species in sulphuric acid, which is continuously regenerated by ozone injection at high temperature. The industrial installation, which was designed and constructed in close collaboration with Framatome-ANP (France), started operation in September 1999. Initially designed to decontaminate stainless steel pieces, the process has been easily upgraded to allow the treatment of carbon steel using simply H2SO4. Up to now, more than 30 tons of contaminated materials, including primary pipes and primary pumps housings, have been treated batch wise with success. 69% of material can be directly cleared after treatment (Activity lower than 0.1 Bq/g in 60Co) 27% will be free released after melting (activity lower than 1 Bq/g) and less than 4% have to undergo an additional physical decontamination step prior to clearance. However, the working of our process is not restricted to batch wise operations. Thanks to minor adaptations on the existing plant, the SCK-CEN has recently performed the closed loop decontamination of the large components of the primary loop, namely the steam generator and the

  12. Chemical System Decontamination at PWR Power Stations Biblis A and B by Advanced System Decontamination by Oxidizing Chemistry (ASDOC-D) Process Technology - 13081

    International Nuclear Information System (INIS)

    For chemical decontamination of PWR primary systems the so called ASDOC-D process has been developed and qualified at the German PWR power station Biblis. In comparison to other chemical decontamination processes ASDOC-D offers a number of advantages: - ASDOC-D does not require separate process equipment but is completely operated and controlled by the nuclear site installations. Feeding of chemical concentrates into the primary system is done by means of the site's dosing systems. Process control is performed by standard site instrumentation and analytics. - ASDOC-D safely prevents any formation and precipitation of insoluble constituents - Since ASDOC-D is operated without external equipment there is no need for installation of such equipment in high radioactive radiation surrounding. The radioactive exposure rate during process implementation and process performance may therefore be neglected in comparison to other chemical decontamination processes. - ASDOC-D does not require auxiliary hose connections which usually bear high leakage risk. The above mentioned technical advantages of ASDOC-D together with its cost-effectiveness gave rise to Biblis Power station to agree on testing ASDOC-D at the volume control system of PWR Biblis unit A. By involving the licensing authorities as well as expert examiners into this test ASDOC-D received the official qualification for primary system decontamination in German PWR. As a main outcome of the achieved results NIS received contracts for full primary system decontamination of both units Biblis A and B (each 1.200 MW) by end of 2012. (authors)

  13. Decontamination of radioactive corrosion products by KAERI decontamination process

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Chong-Hun; Park, Sang-Yoon; Ahn, Byung-Gil; Lee, Byung-Jik; Oh, Won-Zin [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-10-31

    A study was performed to develop the chemical decontamination process, which is effective in removing the radioactive corrosion products with large amounts of Ni and Cr. The dissolution characteristics of decontamination agents and the material integrity of disk arm holder with Type 304 stainless steel were examined in high temperature conditions and the results have been compared with low temperature decontamination process. Dissolution tests revealed that oxides on disk arm holder had a spinel-type structure in the form of Fe{sub 1.7}Ni{sub 0.5}Cr{sub 0.8}O{sub 4}. In the dissolution steps, component metals were dissolved fast from the oxide in the early stage, while were dissolved very slowly in the later stage. This might be caused by reduction in metal concentration in the near surface of the oxide and by precipitation of reaction by product, MnO{sub 2}, which prevents reactants in solution from diffusion to the oxide surface. The average DF(Decontamination Factor) after a chemical decontamination, consisting of 3 oxidation-reduction steps, was 75 and an improved DF, of 150, was observed when a ultrasonic treatment was applied after a chemical decontamination, since the corrosion oxide become soft by the dissolution of grain boundary and crack of the oxide during chemical decontamination process. High temperature decontamination process showed remarkable improvement in decontamination effectiveness compared with traditional low temperature process. An examination of corrosion rates monitored during the decontamination, using corrosion coupons, showed that all process reagents caused minimal corrosion(Type 304 stainless steel: 1.7 x 10{sup -3} mil, Inconel 600: 6.6 x 10{sup -3} mil, Stellite-6: 1.2 x 10{sup -2} mil). (author). 19 refs., 4 tabs., 9 figs.

  14. Dilute chemical decontamination program. Final report

    International Nuclear Information System (INIS)

    An evaluation of dilute chemical decontamination technology for Boiling Water Reactor (BWRs) was completed under the Dilute Chemical Decontamination Program. An integrated process was developed and demonstrated under simulated BWR decontamination chemical conditions using a 76 cm long section of 15 cm piping removed from an operating BWR. Reasonable process conditions are: 0.012 M oxalic acid and 0.005 M citric acid at pH 3.0 and 900C with a controlled dissolved oxygen concentration of 0.75 ppM. A novel reagent regeneration process using anion-exchange resin preloaded with oxalate and citrate anions was developed to remove the dissolved corrosion products, including Fe(III), from solution during the decontamination. A limited corrosion testing program was completed and no severe adverse effects were identified

  15. Recontamination following dilute chemical decontamination

    International Nuclear Information System (INIS)

    Decontamination is beneficial in reducing radiation fields before inspection, maintenance, or repair work has to be performed on reactor systems. If the fields remain low at subsequent shutdowns, further benefit is attributable to the decontamination. Conversely, if fields rapidly become as high as before the decontamination, no residual benefit derives. In the case where the field rapidly becomes higher than before the decontamination, a detriment from the decontamination is experienced at subsequent shutdowns. In this paper the recontamination data following six separate dilute chemical decontaminations are reported for surveillance periods of up to two years. Surfaces operating at low temperature hardly recontaminated at all over the two-year period; surfaces exposed to high temperatures recontaminated to about 95% of their predecontamination level over a two-year period. A rapid recontamination rate for about three months following the decontamination was followed by recontamination at a rate which is significantly below the published rates for most BWRs in the USA, and for these two plants in particular. In all six cases studied, residual benefit from the decontamination was experienced at subsequent shutdowns. (author)

  16. Decontamination and decommissioning of the Chemical Process Cell (CPC): Topical report for the period January 1985-March 1987

    International Nuclear Information System (INIS)

    To support interim storage of vitrified High-Level Waste (HLW) at the West Valley Demonstration Project, the shielded, remotely operated Chemical Process Cell (CPC) was decommissioned and decontaminated. All equipment was removed, packaged and stored for future size reduction and decontamination. Floor debris was sampled, characterized, and vacuumed into remotely handled containers. The cell walls, ceiling, and floor were decontaminated. Three 20 Mg (22.5 ton) concrete neutron absorber cores were cut with a high-pressure water/abrasive jet cutting system and packaged for disposal. All operations were performed remotely using two overhead bridge cranes which included two 1.8 Mg (2 ton) hoists, one 14.5 Mg (16 ton) hoist, and an electromechanical manipulator or an industrial robot mounted on a mobile platform. Initial general area dose rates in the cell ranged from 1 to 50 R/h. Target levels of less than 10 mR/h general area readings were established before decontamination and decommissioning was initiated; general area dose rates between 200 mR/h and 1200 mR/h were obtained at the completion of the decontamination work. 4 refs., 11 figs., 8 tabs

  17. Studies on the process aspects related to chemical decontamination of chromium-containing alloys with redox processes

    International Nuclear Information System (INIS)

    Presence of chromium in the oxide layer makes oxidative pre-treatment with oxidizing agents such as potassium permanganate (KMnO4) a must for the decontamination of stainless steels and other chromium containing alloys. The effectiveness of pre-treatment with oxidizing reagent varies with the conditions of treatment such as temperature, concentration and whether the medium is acidic or alkaline. A comparative study of the two acidic oxidizing agents, i.e., nitric acid-permanganate and permanganic acid was made. The dissolution behavior of copper and its oxide in permanganic acid was found to be comparable to that of chromium oxide. Citric acid and ascorbic acid were investigated as alternatives to oxalic acid for the reduction/decomposition of permanganate left over after the oxidizing pre-treatment step. It has been established that the reduction of chromate by citric acid is instantaneous only in presence of Mn2+ ions. It has also been established that reduction of residual permanganate can be achieved with ascorbic acid and with minimum chemical requirement. The capabilities of nitrilotriacetic acid (NTA)-ascorbic acid mixture for the dissolution of hematite have been explored. This study would help to choose the suitable oxidizing agent, the reducing agent used for decomposition of permanganate and to optimize the concentration of reducing formulation so that the process of decontamination is achieved with a minimum requirement of chemicals. The generation of radioactive ion exchange resin as waste is therefore held at a minimum. Ion exchange studies with metal ion complexes of relevance to decontamination were carried out with a view to choose a suitable type of ion exchanger. It has been established that treatment of the ion exchange resin with brine solution can solve the problem of leaching out of non-ionic organics from the resin. (orig.)

  18. Chemical cleaning, decontamination and corrosion

    International Nuclear Information System (INIS)

    Chemical cleaning of process equipments and pipings in chemical/petrochemical industries is necessitated for improving operation, for preventing premature failures and for avoiding contamination. In developing a chemical formulation for cleaning equipments, the important aspects to be considered include (i) effective removal of corrosion products and scales, (ii) minimum corrosion of the base metal, (iii) easy to handle chemicals and (iv) economic viability. As on date, a wide variety of chemical formulations are available, many of them are either proprietory or patented. For evolving an effective formulation, knowledge of the oxides of various metals and alloys on the one hand and acid concentration, complexing agents and inhibitors to be incorporated on the other, is quite essential. Organic acids like citric acid, acetic acid and formic acid are more popular ones, often used with EDTA for effective removal of corrosion products from ferrous components. The report enumerates some of the concepts in developing effective formulations for chemical cleaning of carbon steel components and further, makes an attempt to suggest simple formulations to be developed for chemical decontamination. (author). 6 refs., 3 fi gs., 4 tabs

  19. Radiation dose reduction by chemical decontamination

    International Nuclear Information System (INIS)

    The paper deals with the role of chemical decontamination for reducing radiation exposure during major maintenance activities like in-service inspection of coolant channels and EMCCR works on the Primary Heat Transport System and associated components. In order to achieve the man rem reduction, MAPS has successfully carried out six decontamination campaigns of PHT system, three for MAPS-1 and three for MAPS-2. The complexing agent EDTA used in the first four DCDs was changed over to Nitrilo Tri-Acetic acid (NTA) in the subsequent two DCDs and the beneficial effects of the same on dose reduction are detailed. With the use of Nitrilo Tri-Acetic acid (NTA) as complexing agent, the need to add during the process to augment the loss due to IX pickup and radiation decomposition was avoided as NTA displayed better radiation stability and was not getting picked up in the cation IX. Good decontamination factors were observed in the monel with NTA, as copper and nickel complexes of NTA had lower stability constants than that with EDTA. An overview of all these decontaminations along with the brief description of the process and benefits in terms of dose reduction is described. Further, the chemical decontamination procedures adopted for minimising the loose and the fixed contamination on the seal plugs of the 306 coolant channels of Unit-2 during EMCCR works is also presented. The pressure tubes are rolled into the end fittings which have got seal plugs to prevent the PHT water coming out of the system. The 612 seal plugs made of stainless steel were decontaminated using ∼ 10% diammonium hydrogen citrate maintaining a temperature of 70 to 80 deg C. All the 612 seal plugs were successfully decontaminated in 41 batches. The process details and results obtained are reviewed. (author)

  20. Electrolytic technique for the chemical decontamination process with sulfuric acid-cerium (IV) for decommissioning

    International Nuclear Information System (INIS)

    An electrolyzer with an ion-exchange membrane as the separator has been used to study the electrolytic redox reaction of Ce4+ / Ce3+ in sulfuric acid solution, which is a reagent for predismantling system decontamination. Influencing factors such as current density, cerium concentration, acidity, electrolyte flow rate, membrane type and electrode material were studied experimentally. The results indicate that the redox can be achieved with high conversion even as the cerium concentration is below 0.005 M. However, the current efficiency strongly depends on the cerium concentration. In addition, the acid content and the electrolyte flow rate show little influence on the redox reaction. Both cation and anion membrane are feasible for this process. Therefore, the operation conditions are widely applicable. Moreover, two different electrode materials, platinized titanium meshes and graphite, were used. The results show that the platinized titanium meshes is preferable to the graphite for higher current efficiency. (author)

  1. Pilot scale study of a chemical treatment process for decontamination of aqueous radioactive waste of pakistan research reactor-1

    International Nuclear Information System (INIS)

    Chemical treatment process for the low level liquid radioactive waste generated at PINSTECH was previously optimized on lab-scale making use of coprecipitation of hydrous oxides of iron in basic medium. Ferrous sulfate was used as coagulant. Batch wise application of this procedure on pilot scale has been tested on a 1200 L batch volume of typical PINSTECH liquid waste. Different parameters and unit operations have been evaluated. The required data for the construction of a small size treatment plant envisioned can be used for demonstration/teaching purpose as well as for the decontamination of the waste effluents of the Institute. The lab-scale process parameters were verified valid on pilot scale. It was observed that reagent doses can further be economized with out any deterioration of the Decontamination Factors (DF) achieved or of any other aspect of the process. This simple, cost- effective, DF-efficient and time-smart batch wise process could be coupled with an assortment of other treatment operations thus affording universal application. Observations recorded during this study are presented. (author)

  2. Chemical decontamination method for radioactive metal waste

    International Nuclear Information System (INIS)

    The invention relates to a decontamination method for radioactive metal waste products derived from equipment that handles radioactive materials whose surfaces have been contaminated; in particular it concerns a decontamination method that reduces the amount of radioactive waste by decontaminating radioactive waste substances to a level of radioactivity in line with normal waste products. In order to apply chemical decontamination to metal waste products whose surfaces are divided into carbon steel waste and stainless steel waste; the carbon steel waste is treated using only a primary process in which the waste is immersed in a sulfuric acid solution, while the stainless steel waste must be treated with both the primary process and then electrolytically reduces it for a specific length of time and a secondary process that uses a solution of sulfuric acid mixed with oxidizing metal salts. The method used to categorize metal waste into carbon steel waste and stainless steel waste involves determining the presence, or absence, of magnetism. Voltage is applied for a fixed duration; once that has stopped, electrolytic reduction repeats the operative cycle of applying, then stopping voltage until the potential of the radioactive metal waste is retained in the active region. 1 fig. 2 tabs

  3. Cost effectiveness of dilute chemical decontamination

    International Nuclear Information System (INIS)

    The basic principles of dilute chemical decontamination are described, as well as the method of application. Methods of computing savings in radiation dose and costs are presented, with results from actual experience and illustrative examples. It is concluded that dilute chemical decontamination is beneficial in many cases. It reduces radiation exposure of workers, saves money, and simplifies maintenance work

  4. Testing and evaluation of eight decontamination chemicals

    International Nuclear Information System (INIS)

    This report covers experimental work comparing eight different decontamination chemicals. Seven of these chemicals have some novelty, or are not currently in use at the ICPP. The eighth is a common ICPP decontamination reagent used as a baseline for effective comparison. Decontamination factors, waste generation values, and corrosion rates are tabulated for these chemicals. Recommendations are given for effective methods of non-sodium or low-sodium decontamination chemicals. The two most effective chemical for decontamination found in these test were a dilute hydrofluoric and nitric acid (HF/HNO3) mixture and a fluoroboric acid solution. The fluoroboric acid solution (1 molar) was by far the most effective decontamination reagent, but suffered the problem of generating significant final calcine volume. The HF/HNO3 solution performed a very good decontamination of the SIMCON coupons while generating only small amounts of calcine volume. Concentration variables were also tested, and optimized for these two solutions. Several oxidation/reduction decon chemical systems were also tested. These systems were similar to the TURCO 4502 and TURCO 4521 solutions used for general decontamination at the ICPP. A low sodium alternative, nitric acid/potassium permanganate, to the ''high sodium'' TURCO 4502 was tested extensively, optimized and recommended for general ICPP use. A reductive chemical solution, oxalic acid/nitric acid was also shown to have significant advantages

  5. Chemical decontamination for decommissioning (DFD) and DFDX

    International Nuclear Information System (INIS)

    is to design, build and implement a system for the chemical decontamination for decommissioning of larger reactor systems and components, and Full System Decontamination (FSD). The purpose of this paper is to provide a reference point for those planning future chemical decontaminations for plant decommissioning. It is based on actual experience from the work already performed to date and the planned development of the DFDX process. (author)

  6. Studies on residue-free decontaminants for chemical warfare agents.

    Science.gov (United States)

    Wagner, George W

    2015-03-17

    Residue-free decontaminants based on hydrogen peroxide, which decomposes to water and oxygen in the environment, are examined as decontaminants for chemical warfare agents (CWA). For the apparent special case of CWA on concrete, H2O2 alone, without any additives, effectively decontaminates S-2-(diisopropylamino)ethyl O-ethyl methylphosphonothioate (VX), pinacolyl methylphosphorofluoridate (GD), and bis(2-choroethyl) sulfide (HD) in a process thought to involve H2O2 activation by surface-bound carbonates/bicarbonates (known H2O2 activators for CWA decontamination). A plethora of products are formed during the H2O2 decontamination of HD on concrete, and these are characterized by comparison to synthesized authentic compounds. As a potential residue-free decontaminant for surfaces other than concrete (or those lacking adsorbed carbonate/bicarbonate) H2O2 activation for CWA decontamination is feasible using residue-free NH3 and CO2 as demonstrated by reaction studies for VX, GD, and HD in homogeneous solution. Although H2O2/NH3/CO2 ("HPAC") decontaminants are active for CWA decontamination in solution, they require testing on actual surfaces of interest to assess their true efficacy for surface decontamination. PMID:25710477

  7. Chemically reducing decontamination method for radioactive metal

    International Nuclear Information System (INIS)

    The present invention concerns a decontamination method of electrolytically reducing radioactive metal wastes, then chemically dissolving the surface thereof with a strong acid decontaminating solution. This method utilizes dissolving characteristics of stainless steels in the strong acid solution. That is, in the electrolytic reduction operation, a portion of the metal wastes is brought into contact with a strong acid decontaminating solution, and voltage and current are applied to the portion and keep it for a long period of time so as to make the potential of the immersed portion of the metal wastes to an active soluble region. Then, the electrolytic reduction operation is stopped, and the metal wastes are entirely immersed in the decontaminating solution to decontaminate by chemical dissolution. As the decontaminating solution, strong acid such as sulfuric acid, nitric acid is used. Since DC current power source capacity required for causing reaction in the active soluble region can be decreased, the decontamination facility can be minimized and simplified, and necessary electric power can be saved even upon decontamination of radioactive metal wastes made of stainless steels and having a great area. Further, chemical dissolution can be conducted without adding an expensive oxidizing agent. (N.H.)

  8. Effect of Chemical Reagents in Foam Decontamination

    International Nuclear Information System (INIS)

    The decontamination foam comprises at least one surfactant to generate the foam and one or more chemical reactants to achieve the dissolution of the contaminants at the solid surface. In order to improve the efficiency of decontamination foam, the present study attempts to find the optimum condition of chemical reagents to the foaming solution. This paper deals with understanding the effects of chemical reagents involved in foam decontamination efficiency, evaluation of side effect on foam stability and finally the improvement brought by formulation science. Basic experiments using the nanoparticle-based complex fluid decontamination foam have been performed in order to development of decontamination foam technology. Results show that in the case of coexistence of chemical reagents, for the purpose of the good foam ability and foam stability, it is necessary to increase the concentration of surfactant. In corrosion test, metal materials including carbon steel, stainless steel 304, aluminum, inconel 600 and cupper, generally corrosion solubility percent in nitric acid solution were higher than in phosphoric acid solution. Bench-scale testing was used to evaluate the efficacy of three decontamination formulations on contaminant carbon steel component of dry oven. The results shows decontamination factor was in the range of 6.1∼13.4. Results suggest that our foam formulations have a feasibility potential to removal of about 83∼93% total radioactivity in contaminant

  9. Effect of Chemical Reagents in Foam Decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Han Beom; Yoonm Inho; Jung, Chonghun; Choi, Wangkyu [Korea Atomic Energy research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The decontamination foam comprises at least one surfactant to generate the foam and one or more chemical reactants to achieve the dissolution of the contaminants at the solid surface. In order to improve the efficiency of decontamination foam, the present study attempts to find the optimum condition of chemical reagents to the foaming solution. This paper deals with understanding the effects of chemical reagents involved in foam decontamination efficiency, evaluation of side effect on foam stability and finally the improvement brought by formulation science. Basic experiments using the nanoparticle-based complex fluid decontamination foam have been performed in order to development of decontamination foam technology. Results show that in the case of coexistence of chemical reagents, for the purpose of the good foam ability and foam stability, it is necessary to increase the concentration of surfactant. In corrosion test, metal materials including carbon steel, stainless steel 304, aluminum, inconel 600 and cupper, generally corrosion solubility percent in nitric acid solution were higher than in phosphoric acid solution. Bench-scale testing was used to evaluate the efficacy of three decontamination formulations on contaminant carbon steel component of dry oven. The results shows decontamination factor was in the range of 6.1∼13.4. Results suggest that our foam formulations have a feasibility potential to removal of about 83∼93% total radioactivity in contaminant.

  10. Mechanical and chemical decontamination of surfaces

    International Nuclear Information System (INIS)

    Decontamination does not mean more than a special technique of cleaning surfaces by methods well known in the industry. The main difference consists in the facts that more than just the visible dirt is to be removed and that radioactive contamination cannot be seen. Especially, intensive mechanical and chemical carry-off methods are applied to attack the surfaces. In order to minimize damages caused to the surfaces, the decontamination method is to adapt to the material and the required degree of decontamination. The various methods, their advantages and disadvantages are described, and the best known chemical solutions are shown. (orig./RW)

  11. Cladding hull decontamination process: preliminary development studies

    Energy Technology Data Exchange (ETDEWEB)

    Griggs, B.; Bryan, G.H.

    1979-12-01

    An investigation of the chemical and radioactive properties of fuel hulls was conducted to assist in a decontamination process development effort. The removal of zirconium oxide layers from zirconium was accomplished by a treatment in 600/sup 0/C HF followed by a dilute aqueous reagent. Similar treatment in fused alkali-zirconium fluoride salt baths was examined. A remotely operated small batch facility was developed and process parameters determined. 16 figures, 9 tables.

  12. Combined decontamination processes for wastes containing PCBs

    International Nuclear Information System (INIS)

    This project has focused on the development of a complex assembly of mutually corresponding technological units:-a low temperature thermal process for the desorption of PCBs and other organics from soils and other contaminated solid wastes;-the extraction of PCBs from soils by an ecological friendly aqueous solution of selected surfactants;-the chemical decontamination of PCBs in oils and in oil-in-water emulsions by metallic sodium and potassium in polyethylene glycols in the presence of aluminum powder;-the modified alkaline catalyzed chemical decontamination of PCBs in oils and in oil-in-water dispersions in a solid-state reactor (in a film of reacting emulsion on solid carriers); and-the breakdown of PCBs in aqueous emulsions with activated hydroxyl radicals enhanced by UV radiation The processes operate in a closed loop configuration with effluents circulating among the process unit. These technologies have been verified at laboratory and pilot-plant scales

  13. Chemical Decontamination at Browns Ferry Unit 1

    International Nuclear Information System (INIS)

    In May, 2002, the Tennessee Valley Authority's (TVA) Board of Directors approved the recovery and restart of Unit 1 at Browns Ferry Nuclear Station. As an initial step in the site characterization and restart feasibility review, a majority of the primary reactor circuit was chemically decontaminated. Close cooperation between TVA and vendor personnel resulted in project completion ahead of schedule with outstanding results. The final average decontamination factors were excellent, and the final dose rates were very low, with contact readings on most points between one and three mRem/hr. In addition to allowing TVA to do a complete and thorough job of determining the feasibility of the Unit 1 restart, the decontamination effort will greatly reduce personnel exposure during plant recovery, both whole body exposure to gamma radiation and airborne exposure during pipe replacement efforts. The implementation of lessons learned from previous decontamination work performed at Browns Ferry, as well as decontamination efforts at other plants aided greatly in the success. Specific items of note are: (1) The initial leak check of the temporary decontamination system should include ancillary systems such as the spent resin system, as well as the main circulation loop. This could save time and dose exposure if leaks are discovered before the use of such systems is required. (2) Due to the quick turnaround time from the award of contract, a vendor representative was onsite early in the project to help with engineering efforts and procedures. This aided greatly in completing preparations for the decontamination. (3) The work was performed under a single maintenance activity. This resulted in great craft and plant support. (4) The constant coverage by the site's decontamination flush directors provided timely plant support and interface. (5) The FPC system isolation and back flushing to prevent residual chemicals from being left in the FPC system should have been addressed in more

  14. Aggressive chemical decontamination tests on small valves from the Garigliano BWR

    International Nuclear Information System (INIS)

    In order to check the effectiveness of direct chemical decontamination on small and complex components, usually considered for storage without decontamination because of the small amount, some tests were performed on the DECO experimental loop. Four small stainless steel valves from the primary system of the Garigliano BWR were decontaminated using mainly aggressive chemicals such as HC1, HF, HNO3 and their mixtures. On two valves, before the treatment with aggressive chemicals, a step with soft chemical (oxalic and citric acid mixture) was performed in order to see whether a softening action enhances the following aggressive decontamination. Moreover, in order to increase as much as possible the decontamination effectiveness, a decontamination process using ultrasounds jointly with aggressive chemicals was investigated. After an intensive laboratory testing programme, two smaller stainless steel valves from the primary system of the Garigliano BWR were decontaminated using ultrasounds in aggressive chemical solutions

  15. New decontamination techniques: chemical gels, electropolishing and abrasives

    International Nuclear Information System (INIS)

    The decommissioning of nuclear installations requires decontamination techniques that are efficient, simple to apply and producing a small amount of wastes, which are easy to process. With a view to this, three decontamination methods, which appear to be particularly suited to decommissioning, have been studied. These three methods are: - spraying of gels carrying chemical decontaminating agents, - electropolishing with a swab device, - abrasives blasting. After parametric tests on non-radioactive and active samples, the industrial application of these methods in the dismantling of installations was studied. These industrial applications concern: - decontamination of pieces coming from the German BWR ISAR by immersion and gel spraying, - decontamination, mainly by gel spraying, and dismantling of the BRENNILIS bituminisation plant, - decontamination of part of the cooling circuit of the graphite gas reactor G2 by gel spraying, - decontamination of a component of the FBR SuperPhenix, using dry abrasives blasting. During the first three applications, generated secondary wastes volume and form were determined. 33 tabs., 16 figs., 12 refs

  16. Decontamination by water jet, chemical and electrochemical methods

    International Nuclear Information System (INIS)

    The decontamination tests have been carried out on samples coming from representative specimens from primary circuit of the PWR and on samples coming from the emergency feed water piping of the German BWR (Isar). The oxide found in PWR primary loops can only be removed by a two steps process. The initial embrittling step is particularly effective in hot alkaline permanganate medium. Oxidation by ozone treatment is less effective. The second step involves chemical erosion of the metal in nitrofluoric acid in conjonction with ultrasonic agitation. Among the reagents used, only oxalic acid is suitable for electrolytic decontamination. Among the reagents possible for decontamination of the Isar specimens (ferritic steel lined with hematite) halogenous acid in mixture without or with oxygenated water, sulfuric acid, the formic acid/formaldehyde mixture are chosen. Metal erosion with high pressure jet as well as the decontamination efficiency on parts lined with hematite have made possible to determine the best conditions. 33 figs, 29 refs

  17. Vibratory finishing as a decontamination process

    International Nuclear Information System (INIS)

    The major objective of this research is to develop vibratory finishing into a large-scale decontamination technique that can economicaly remove transuranic and other surface contamination from large volumes of waste produced by the operation and decommissioning of retired nuclear facilities. The successful development and widespread application of this decontamination technique would substantially reduce the volume of waste requiring expensive geologic disposal. Other benefits include exposure reduction for decontamination personnel and reduced risk of environmental contamination. Laboratory-scale studies showed that vibratory finishing can rapidly reduce the contamination level of transuranic-contaminated stainless steel and Plexiglas to well below the 10-nCi/g limit. The capability of vibratory finishing as a decontamination process was demonstrated on a large scale. The first decontamination demonstration was conducted at the Hanford N-Reactor, where a vibratory finisher was installed to reduce personnel exposure during the summer outage. Items decontaminated included fuel spacers, process-tube end caps, process-tube inserts, pump parts, ball-channel inspection tools and miscellaneous hand tools. A second demonstration is currently being conducted in the decontamination facility at the Hanford 231-Z Building. During this demonstration, transuranic-contaminated material from decommissioned plutonium facilities is being decontaminated to <10 nCi/g to minimize the volume of material that will require geologic disposal. Items that are being decontaminated include entire glove boxes, process-hood structural material and panels, process tanks, process-tank shields, pumps, valves and hand tools used during the decommissioning work

  18. Application of the chemical properties of ruthenium to decontamination processes; L'application des proprietes chimiques du ruthenium a des procedes de decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Fontaine, A.; Berger, D. [Commissariat a l' Energie Atomique, Centre de Production de Plutonium, Marcoule (France). Centre d' Etudes Nucleaires

    1965-07-01

    The chemical properties of ruthenium in the form of an aqueous solution of the nitrate and of organic tributylphosphate solution are reviewed. From this data, some known examples are given: they demonstrate the processes of separation or of elimination of ruthenium from radioactive waste. (authors) [French] Les proprietes chimiques du ruthenium en solutions aqueuses nitriques et en solutions organiques de tributylphosphate, sont passees en revue. A partir de ces donnees, quelques exemples connus sont cites: ils exposent des procedes de separation ou d'elimination du ruthenium de dechets radioactifs. (auteurs)

  19. Chemical decontamination of radioactive waste

    International Nuclear Information System (INIS)

    Radioactive wastes are generated in a number of different kinds of facilities and arise in a wide range of concentrations of radioactive materials and in a variety of physical and chemical forms. There is also a variety of alternatives for treatment and conditioning of the wastes prior disposal. The importance of treatment of radioactive waste for protection of human and environment has long been recognized and considerable experience has gained in this field. Generally, the methods used for treatment of radioactive wastes can be classified into three type's biological, physical and chemical treatment this physical treatment it gives good result than biological treatment. Chemical treatment is fewer hazards and gives good result compared with biological and physical treatments. Chemical treatment is fewer hazards and gives good result compared with biological and physical treatments. In chemical treatment there are different procedures, solvent extraction, ion exchange, electro dialysis but solvent extraction is best one because high purity can be optioned on the other hand the disadvantage that it is expensive. Beside the solvent extraction technique one can be used is ion exchange which gives reasonable result, but requires pretreatment that to avoid in closing of column by colloidal and large species. Electro dialysis technique gives quite result but less than solvent extraction and ion exchange technique the advantage is a cheep.(Author)

  20. New decontamination process using foams containing particles

    International Nuclear Information System (INIS)

    One key point in the dismantling of nuclear facilities is the thorough cleaning of radiation- exposed surfaces on which radioactive deposits have formed. This cleaning step is often achieved by successive liquid rinses with specific solutions containing alkaline, acidic, or even oxidizing species depending on whether the aim is to dissolve greasy deposits (like ter-butylphosphate) or to corrode surfaces on micrometric thicknesses. An alternative process to reduce the amount of chemicals and the volume of the resulting nuclear wastes consists in using the same but foamed solutions (1). Carrying less liquid, the resulting foams still display similar kinetics of dissolution rates and their efficiency is determined by their ability to hold sufficient wetnesses during the time required for the decontamination. Classical foam decontamination process illustrated by foam pulverization or circulation in the 90 turned five years ago into a specific static process using high-lifetime viscosified foam at a steady state. One way to slow down the liquid drainage is to raise liquid viscosity by adding organic viscosifiers like xanthan gum (2). In 2005, new studies started on an innovative process proposed by S. Faure and based on triphasic foams containing particles [3]. The aim is to generate new decontamination foams containing less quantities of organics materials (surfactants and viscosifiers). Silica particles are obviously known to stabilize or destabilize foams (4). In the frame of S. Guignot Ph.D., new fundamental studies are initiated in order to clarify the role of silica solid microparticles in these foams. Our final goal is to determine whether this kind of new foam can be stable for several hours for a decontamination process. The results we will report focus on wet foams used for nuclear decontamination and incorporating fumed silica. The study is conducted on a vertical foam column in a pseudo-free drainage configuration, and aims at investigating the influence of

  1. New decontamination process using foams containing particles

    Energy Technology Data Exchange (ETDEWEB)

    Guignot, S.; Faure, S. [CEA Marcoule, Lab. des Procedes Avances de Decontamination, 30 (France)

    2008-07-01

    One key point in the dismantling of nuclear facilities is the thorough cleaning of radiation- exposed surfaces on which radioactive deposits have formed. This cleaning step is often achieved by successive liquid rinses with specific solutions containing alkaline, acidic, or even oxidizing species depending on whether the aim is to dissolve greasy deposits (like ter-butylphosphate) or to corrode surfaces on micrometric thicknesses. An alternative process to reduce the amount of chemicals and the volume of the resulting nuclear wastes consists in using the same but foamed solutions (1). Carrying less liquid, the resulting foams still display similar kinetics of dissolution rates and their efficiency is determined by their ability to hold sufficient wetnesses during the time required for the decontamination. Classical foam decontamination process illustrated by foam pulverization or circulation in the 90 turned five years ago into a specific static process using high-lifetime viscosified foam at a steady state. One way to slow down the liquid drainage is to raise liquid viscosity by adding organic viscosifiers like xanthan gum (2). In 2005, new studies started on an innovative process proposed by S. Faure and based on triphasic foams containing particles [3]. The aim is to generate new decontamination foams containing less quantities of organics materials (surfactants and viscosifiers). Silica particles are obviously known to stabilize or destabilize foams (4). In the frame of S. Guignot Ph.D., new fundamental studies are initiated in order to clarify the role of silica solid microparticles in these foams. Our final goal is to determine whether this kind of new foam can be stable for several hours for a decontamination process. The results we will report focus on wet foams used for nuclear decontamination and incorporating fumed silica. The study is conducted on a vertical foam column in a pseudo-free drainage configuration, and aims at investigating the influence of

  2. Chemical decontamination method for radioactive metal waste

    International Nuclear Information System (INIS)

    When contaminants mainly composed of copper remained on the surface of stainless steel wastes sent from an electrolytic reduction as a first step are chemically decontaminated, metal wastes are discriminated to carbon steel wastes and stainless steel wastes. Then, the carbon steel wastes are applied only with the first step of immersing in a sulfuric acid solution, and stainless steel wastes are applied with a first step of immersing into a sulfuric acid solution for electrolytic reduction for a predetermined period of time and a second step of immersing into a liquid in which an oxidative metal salt is added to sulfuric acid. The decontamination liquid which is used for immersing the stainless steel wastes in the second step and the oxidation force of which is lowered is used as the sulfuric acid solution in the first step for the carbon steel wastes. In view of the above, the decontamination liquid of the second step can be utilized most effectively, enabling to greatly decrease the secondary wastes and to improve decontamination efficiency. (T.M.)

  3. Comparison and Evaluation of Various Tritium Decontamination Techniques and Processes

    International Nuclear Information System (INIS)

    In support of fusion energy development, various techniques and processes have been developed over the past two decades for the removal and decontamination of tritium from a variety of items, surfaces, and components. Tritium decontamination, by chemical, physical, mechanical, or a combination of these methods, is driven by two underlying motivational forces. The first of these motivational forces is safety. Safety is paramount to the established culture associated with fusion energy. The second of these motivational forces is cost. In all aspects, less tritium contamination equals lower operational and disposal costs. This paper will discuss and evaluate the various processes employed for tritium removal and decontamination

  4. A survey of decontamination processes applicable to DOE nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L.; Chamberlain, D.B.; Conner, C.; Vandegrift, G.F.

    1997-05-01

    The objective of this survey was to select an appropriate technology for in situ decontamination of equipment interiors as part of the decommissioning of U.S. Department of Energy nuclear facilities. This selection depends on knowledge of existing chemical decontamination methods. This report provides an up-to-date review of chemical decontamination methods. According to available information, aqueous systems are probably the most universally used method for decontaminating and cleaning metal surfaces. We have subdivided the technologies, on the basis of the types of chemical solvents, into acid, alkaline permanganate, highly oxidizing, peroxide, and miscellaneous systems. Two miscellaneous chemical decontamination methods (electrochemical processes and foam and gel systems) are also described. A concise technical description of various processes is given, and the report also outlines technical considerations in the choice of technologies, including decontamination effectiveness, waste handing, fields of application, and the advantages and limitations in application. On the basis of this survey, six processes were identified for further evaluation. 144 refs., 2 tabs.

  5. A survey of decontamination processes applicable to DOE nuclear facilities

    International Nuclear Information System (INIS)

    The objective of this survey was to select an appropriate technology for in situ decontamination of equipment interiors as part of the decommissioning of U.S. Department of Energy nuclear facilities. This selection depends on knowledge of existing chemical decontamination methods. This report provides an up-to-date review of chemical decontamination methods. According to available information, aqueous systems are probably the most universally used method for decontaminating and cleaning metal surfaces. We have subdivided the technologies, on the basis of the types of chemical solvents, into acid, alkaline permanganate, highly oxidizing, peroxide, and miscellaneous systems. Two miscellaneous chemical decontamination methods (electrochemical processes and foam and gel systems) are also described. A concise technical description of various processes is given, and the report also outlines technical considerations in the choice of technologies, including decontamination effectiveness, waste handing, fields of application, and the advantages and limitations in application. On the basis of this survey, six processes were identified for further evaluation. 144 refs., 2 tabs

  6. A decontamination study of simulated chemical and biological agents

    International Nuclear Information System (INIS)

    A comprehensive decontamination scheme of the chemical and biological agents, including airborne agents and surface contaminating agents, is presented. When a chemical and biological attack occurs, it is critical to decontaminate facilities or equipments to an acceptable level in a very short time. The plasma flame presented here may provide a rapid and effective elimination of toxic substances in the interior air in isolated spaces. As an example, a reaction chamber, with the dimensions of a 22 cm diameter and 30 cm length, purifies air with an airflow rate of 5000 l/min contaminated with toluene, the simulated chemical agent, and soot from a diesel engine, the simulated aerosol for biological agents. Although the airborne agents in an isolated space are eliminated to an acceptable level by the plasma flame, the decontamination of the chemical and biological agents cannot be completed without cleaning surfaces of the facilities. A simulated sterilization study of micro-organisms was carried out using the electrolyzed ozone water. The electrolyzed ozone water very effectively kills endospores of Bacillus atrophaeus (ATCC 9372) within 3 min. The electrolyzed ozone water also kills the vegetative micro-organisms, fungi, and virus. The electrolyzed ozone water, after the decontamination process, disintegrates into ordinary water and oxygen without any trace of harmful materials to the environment

  7. Electrochemical decontamination system for actinide processing gloveboxes

    Energy Technology Data Exchange (ETDEWEB)

    Wedman, D.E.; Lugo, J.L.; Ford, D.K.; Nelson, T.O.; Trujillo, V.L.; Martinez, H.E.

    1998-03-01

    An electrolytic decontamination technology has been developed and successfully demonstrated at Los Alamos National Laboratory (LANL) for the decontamination of actinide processing gloveboxes. The technique decontaminates the interior surfaces of stainless steel gloveboxes utilizing a process similar to electropolishing. The decontamination device is compact and transportable allowing it to be placed entirely within the glovebox line. In this way, decontamination does not require the operator to wear any additional personal protective equipment and there is no need for additional air handling or containment systems. Decontamination prior to glovebox decommissioning reduces the potential for worker exposure and environmental releases during the decommissioning, transport, and size reduction procedures which follow. The goal of this effort is to reduce contamination levels of alpha emitting nuclides for a resultant reduction in waste level category from High Level Transuranic (TRU) to low Specific Activity (LSA, less than or equal 100 nCi/g). This reduction in category results in a 95% reduction in disposal and disposition costs for the decontaminated gloveboxes. The resulting contamination levels following decontamination by this method are generally five orders of magnitude below the LSA specification. Additionally, the sodium sulfate based electrolyte utilized in the process is fully recyclable which results in the minimum of secondary waste. The process bas been implemented on seven gloveboxes within LANL`s Plutonium Facility at Technical Area 55. Of these gloveboxes, two have been discarded as low level waste items and the remaining five have been reused.

  8. Evaluation of commercially available decontamination chemicals

    International Nuclear Information System (INIS)

    The effectiveness of commercially available decontamination solutions was compared with the effectiveness of 10% oxalic acid in controlled laboratory tests. Type 304L stainless steel and Inconel 625 specimens were used. Contamination was sludge from Savannah River Plant (SRP) high level waste tanks. Measured amounts of contamination were placed on each specimen. They were then heated to bond the contamination to the surface and cleaned according to the manufacturer's directions. The effectiveness of the product was determined by monitoring specimens before and after cleaning. Four of the 16 solutions evaluated removed all the contamination from Type 304L stainless steel. Inconel 625 was more difficult to decontaminate. Further tests are planned with the chemicals that were most effective in this test. 4 refs., 6 tabs

  9. Evaluation of commercially available decontamination chemicals

    International Nuclear Information System (INIS)

    The effectiveness of commercially available decontamination solutions was compared with the effectiveness of 10% oxalic acid in controlled lab. tests. Type 304L stainless steel and Inconel 625 specimens were used. Contamination was sludge from Savannah River Plant (SRP) high level waste tanks. Measured amounts of contamination were placed on each specimen. They were then heated to bond the contamination to the surface and cleaned according to the manufacturer's directions. The effectiveness of the produce was determined by monitoring specimens before and after cleaning. Four of the 16 solutions evaluated removed all the contamination from Type 304L stainless steel. Inconel 625 was more difficult to decontaminate. Further tests are planned with the chemicals that were most effective in this test

  10. Development of economical decontamination processes

    International Nuclear Information System (INIS)

    The activity inventary of the Nuclear Power Plant Gundremmingen (BWR, 250 MWel) had been investigated. In the turbine hall, reactor annulus and auxiliary building two years after shut down a remaining activity of 3.5 E10 Bq was found. The main nuclide was Cobalt 60 which is accounting for more than 70 % of the total activity. The different decontamination methods were proved by laboratory tests on originally contaminated pipe samples. With respect to high efficiency, minimizing secondary waste and easy handling, the electrochemical decontamination proved to be the most economical decontamination method. This decontamination procedure had been tested on primary steam valves and the feedwater pumps. 10-20 manhours were needed for the decontamination of each ton of material. The specific secondary waste amount was 95 kg per ton of steel. Those figures were evaluated for the dismantling of a 250 MWel Boiling Water Reactor (except of the containment). After the decontamination of 3400 tons of metal about 260 tons of secondary waste will remain. The dismantling will need 5.9 years. The same evaluation has been performed too for a 1300 MWel Boiling Water Reactor

  11. Controlling radiation fields in CANDU reactors using chemical decontamination technologies

    International Nuclear Information System (INIS)

    Radiation dose to personnel during major maintenance and reactor refurbishment of CANDU reactors can be controlled using chemical decontamination technologies. Technologies that have, and can be applied in CANDU reactors include; sub- and full-system decontaminations of the heat transport system using the CAN-DECON, CAN-DEREM and CAN-DEREM Plus processes, and removal of Sb-122 and Sb-124 from the reactor core using hydrogen peroxide. CAN-DECON is a dilute chemical decontamination process that employs ion-exchange technology to continuously remove dissolved metals and radionuclides and regenerate the components of the CAN-DECON formulation. Qualification of the CAN-DECON process, equipment requirements, process effectiveness, recent process improvements and future directions are discussed. Radioantimony deposited on in-core surfaces can be released into the HTS coolant by air ingress during maintenance. At Gentilly-2, where large amounts of in-core antimony are present, these releases have resulted in increased radiation fields around the reactor, making outage dose planning difficult and contributing significantly to the radiation exposure of maintenance personnel. An antimony removal process developed by KWU for PWR's and adapted to meet CANDU specific conditions, has been successfully applied at Gentilly-2. Optimization of process conditions, and improvements in the in-core antimony removal process are described. (author)

  12. Controlling radiation fields in CANDU reactors using chemical decontamination technologies

    International Nuclear Information System (INIS)

    Radiation dose to personnel during major maintenance and reactor refurbishment of CANDU reactors can be controlled using chemical decontamination technologies. Technologies that have, and can be applied in CANDU reactors include; sub- and full-system decontamination of the heat transport system using the CAN-DECON CAN-DEREM and CAN-DEREM Plus processes; and removal of Sb-122 and Sb-124 from the reactor core using hydrogen peroxide. CAN-DECON is a dilute chemical decontamination process that employs ion-exchange technology to continuously remove dissolved metals and radionuclides and regenerate the components of the CAN-DECON formulation. Qualification of the CAN-DECON process, equipment requirements, process effectiveness, recent process improvements and future directions are discussed. Radioantimony deposited on in-core surfaces can be released into the HTS coolant by air ingress during maintenance. At Gentilly-2, where large amounts of in-core antimony are present, these releases have resulted in increased radiation fields around the reactor, making outage dose planning difficult and contributing significantly to the radiation exposure of maintenance personnel. An antimony removal process developed by KWU for PWR's and adapted to meet CANDU specific conditions, has been successfully applied at Gentilly-2. Optimization of process conditions, and improvements in the in-core antimony removal process are described. (author)

  13. Surface Decontamination Using Laser Ablation Process - 12032

    International Nuclear Information System (INIS)

    A new decontamination method has been investigated and used during two demonstration stages by the Clean-Up Business Unit of AREVA. This new method is based on the use of a Laser beam to remove the contaminants present on a base metal surface. In this paper will be presented the type of Laser used during those tests but also information regarding the efficiency obtained on non-contaminated (simulated contamination) and contaminated samples (from the CEA and La Hague facilities). Regarding the contaminated samples, in the first case, the contamination was a quite thick oxide layer. In the second case, most of the contamination was trapped in dust and thin grease layer. Some information such as scanning electron microscopy (SEM), X-Ray scattering spectroscopy and decontamination factors (DF) will be provided in this paper. Laser technology appears to be an interesting one for the future of the D and D applications. As shown in this paper, the results in terms of efficiency are really promising and in many cases, higher than those obtained with conventional techniques. One of the most important advantages is that all those results have been obtained with no generation of secondary wastes such as abrasives, chemicals, or disks... Moreover, as mentioned in introduction, the Laser ablation process can be defined as a 'dry' process. This technology does not produce any liquid waste (as it can be the case with chemical process or HP water process...). Finally, the addition of a vacuum system allows to trap the contamination onto filters and thus avoiding any dissemination in the room where the process takes place. The next step is going to be a commercial use in 2012 in one of the La Hague buildings. (authors)

  14. Chemical decontamination method for radioactive metal waste

    International Nuclear Information System (INIS)

    The present invention provides a chemical decontamination method for radioactive metal wastes, which are generated from radioactive material handling facilities and the surfaces of which are contaminated by radioactive materials. That is, it has a feature of applying acid dissolution simultaneously with mechanical grinding. The radioactive metal wastes are contained in a vessel such as a barrel together with abrasives in a sulfuric acid solution and rotated at several tens rotation per minute. By such procedures for the radioactive metal wastes, (1) cruds and passive membranes are mechanically removed, (2) exposed mother metal materials are uniformly brought into contact with sulfuric acid and further (3) the mother metal materials dissolve the cruds and the passive membranes also chemically by a reducing dissolution (so-called local cell effect). According to the method of the present invention, stainless steel metal wastes having cruds and passive membranes can rapidly and efficiently be decontaminated to a radiation level equal with that of ordinary wastes. (I.S.)

  15. Field experience of chemical decontamination and waste reduction with the cord progress

    International Nuclear Information System (INIS)

    Decontamination is increasingly becoming a standard measure to reduce the radiation exposure in NPP's. Decontaminations prior to inspection, test and repair activities are aimed at reducing the personnel dose rate. While in the past, strong reservations about the application of chemical decontamination were common, nowadays these have been overcome due to the excellent decontamination results over the last few years. Essential in this context was the development of a comprehensive concept. This includes safe process engineering which can be adapted to the individual conditions in the NPP. Besides the decontamination process control and performance, this concept also includes the integration of residual waste treatment. The idea of an overall concept was accomplished by Siemens AG KWU with the AMDA/CORD technology. The synonym ''CORD'' (Chemical Oxidation Reduction Decontamination) represents the chemical decontamination process, while AMDA stands for Automatic Mobile Decontamination Appliance. In this paper, the recent field decontamination experiences using the CORD process in Europe and in Japan are presented. (authors). 3 figs., 3 refs

  16. PROCESS OF DECONTAMINATING MATERIAL CONTAMINATED WITH RADIOACTIVITY

    Science.gov (United States)

    Overholt, D.C.; Peterson, M.D.; Acken, M.F.

    1958-09-16

    A process is described for decontaminating metallic objects, such as stainless steel equipment, which consists in contacting such objects with nltric acid in a concentration of 35 to 60% to remove the major portion of the contamination; and thereafter contacting the partially decontaminated object with a second solution containing up to 20% of alkali metal hydroxide and up to 20% sodium tartrate to remove the remaining radioactive contaminats.

  17. Processing of waste solutions from electrochemical decontamination

    International Nuclear Information System (INIS)

    The use of electropolishing as a decontamination technique will be effective only if we can minimize the amount of secondary waste requiring disposal and economically recycle part of the decontamination electrolyte. Consequently, a solution purification method is needed to remove the dissolved contamination and metal in the electrolyte. This report describes the selection of a purification method for a phosphoric acid electrolyte from the following possible acid reclamation processes: ion exchange, solvent extraction, precipitation, distillation, electrolysis, and membrane separation

  18. Development and application of ozone chemical decontamination for nuclear power station

    International Nuclear Information System (INIS)

    By focusing to use gaseous ozone for an oxidant under aiming to further reduce amounts of the secondary wastes, ozone chemical decontamination technique was developed. Here were described results of investigation on a process applying ozone to oxidation process for chemical decontamination and of application to decontamination of contaminated machine. As a result carrying out the contaminated machine, it was found that , 1) temperature of ozone water processing at solution test of chromium oxide using ozone water was selected to 80 centigrade, 2) ozone concentration of ozone water using for decontamination test of metal test pieces polluted by radioactive materials was more than 1 ppm, and 3) ion-exchange resins consumed by decontamination agents could be regenerated by using a third of amounts of permanganic acid. (G.K.)

  19. Development and assessment of two decontamination processes: closed electropolishing system for decontamination of underwater surfaces -vibratory decontamination with abrasives

    International Nuclear Information System (INIS)

    Two decontamination processes have been developed to decontaminate the stainless steel components of nuclear power plants. The first process uses an underwater closed electropolishing system for the decontamination of large stainless steel surfaces in flooded systems without loss of electrolyte. Large underwater contaminated areas can be treated with an electropolishing head covering an area of 2 m2 in one step. The decontamination factors achieved with this technique range between 100 and 1000. The second process consists in the decontamination of nuclear components using vibratory equipment with self-cleaning abrasives generating a minimum quantity of waste. This technique may reach contamination factors similar to those obtained with other abrasive methods (brush abrasion, abrasive blasting, etc...). The obtained decontamination factors range between 5 and 50. Only a small quantity of waste is generated, which is treated and reduced in volume by filtration and evaporation

  20. Separation of radionuclides from chemical and electrochemical decontamination wastes

    International Nuclear Information System (INIS)

    A multistage process combining photocatalytic degradation of organic complexes and complexants followed by separation of the radionuclides by ion exchange was developed and tested for the treatment of aqueous waste from chemical or electrochemical decontamination of NPP primary circuit internals. In these solutions, both the oxalic and citric acids could be quantitatively degraded within 10-12 hours of irradiation by 254 nm UV radiation in the presence of TiO2 photocatalyst. For the group radionuclides separation, a standard cation exchanger was found to be preferable to any of the set of the tested inorganic-organic composite absorbers. (author)

  1. Background chemistry for chemical warfare agents and decontamination processes in support of delisting waste streams at the U.S. Army Dugway Proving Ground, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Rosenblatt, D.H.; Small, M.J.; Kimmell, T.A.; Anderson, A.W.

    1996-04-01

    The State of Utah, Department of Environmental Quality (DEQ), Division of Solid and Hazardous Waste (DSHW), has declared residues resulting from the demilitarization, treatment, cleanup, and testing of military chemical agents to be hazardous wastes. These residues have been designated as corrosive, reactive, toxic, and acute hazardous (Hazardous Waste No. F999). The RCRA regulations (40 Code of Federal Regulations [CFR] 260-280), the Utah Administrative Code (R-315), and other state hazardous waste programs list specific wastes as hazardous but allow generators to petition the regulator to {open_quotes}delist,{close_quotes} if it can be demonstrated that such wastes are not hazardous. The U.S. Army Test and Evaluation Command (TECOM) believes that certain categories of F999 residues are not hazardous and has obtained assistance from Argonne National Laboratory (Argonne) to make the delisting demonstration. The objective of this project is to delist chemical agent decontaminated residues resulting from materials testing activities and to delist a remediation residue (e.g., contaminated soil). To delist these residues, it must be demonstrated that the residues (1) do not contain hazardous quantities of the listed agents; (2) do not contain hazardous quantities of constituents listed in 40 CFR Part 261, Appendix VIII; (3) do not exhibit other characteristics that could define the residues as hazardous; and (4) do not fail a series of acute toxicity tests. The first phase will focus on a subset of the F999 wastes generated at the U.S. Army Dugway Proving Ground (DPG), where the Army tests the effects of military chemical agents and agent-decontamination procedures on numerous military items. This effort is identified as Phase I of the Delisting Program. Subsequent phases will address other DPG chemical agent decontaminated residues and remediation wastes and similar residues at other installations.

  2. Peach Bottom 2 and 3 regenerative heat exchangers: chemical decontamination and solidification

    International Nuclear Information System (INIS)

    In 1977, Dow Nuclear Services, under contract to Philadelphia Electric Company, chemically decontaminated the regenerative heat exchangers at the Peach Bottom 2 and 3 Atomic Power Station. The purpose of the decontamination was to reduce the radiation levels associated with the subsequent heat exchanger repairs to be performed by PECO maintenance. Samples of piping from the regenerative heat exchangers were analyzed at Dow Chemical, Midland, Michigan, and solvent testing and selection was performed. Nuclear Solvent-1 was selected. Temporary equipment, piping and radiation shielding was installed to perform all necessary functions safely. All designs and procedures were approved by the Peach Bottom Plant Operations Review Committee. The chemical decontamination removed 10.6 curies of radioactive material in the case of Peach Bottom 3 and similarly at Peach Bottom 2, 6.3 curies of material was removed. Radioactive waste generated by decontamination that could not be treated by existing facilities was successfully solidified by the Dow Solidification process

  3. Electrochemical decontamination in easily processed electrolytes

    International Nuclear Information System (INIS)

    Metallic surfaces can be reduced to very low levels of residual activity by electrochemical decontamination, thus reducing decommissioning and disposal costs. Two electrolyte systems have been developed which minimize the volume for disposal of secondary waste containing the bulk of the activity. Kraftanlagen, Heidelberg has developed a system for use in an immersion tank based on a KBr solution of acetylacetone. This leads to a continuous precipitation of the insoluble acetylacetonates of ferrous substrates together with such active species as 60Co. The bath performance can be maintained by continuous acetylacetone addition. From pilot scale trials, a solids waste volume of 1.1 dm3/m2 of surface decontaminated has been determined. Harwell has developed both immersion and in-situ processes based on nitric acid, as the spent electrolyte is compatible with existing UK waste treatment philosophy - potentially yielding an immobilized product volume of 0.6 dm3/m2 area treated. Nitric acid has the additional advantage of suppressing any hydrogen production. Both processes have been developed from laboratory to microprocessor controlled pilot scale units which have been demonstrated successfully for the treatment of genuine waste. The immersion tank process uses electroetching at low current densities for the treatment of extended areas, while the in-situ technique uses electropolishing in 6M HNO3 in an engineered head connected to a service trolley by an umbilical. This has also shown potential for incorporation in an integrated monitoring/decontamination system under robotic control. (abstract)

  4. How Clean is Safe? Improving the Effectiveness of Decontamination of Structures and People Following Chemical and Biological Incidents

    Energy Technology Data Exchange (ETDEWEB)

    Vogt (Sorensen), B.M.

    2003-04-03

    This report describes a U.S. Department of Energy, (DOE) Chemical and Biological National Security Program project that sought to establish what is known about decontamination of structures, objects, and people following an exposure to chemical or biological materials. Specifically we sought to identify the procedures and protocols used to determine when and how people or buildings are considered ''clean'' following decontamination. To fulfill this objective, the study systematically examined reported decontamination experiences to determine what procedures and protocols are currently employed for decontamination, the timeframe involved to initiate and complete the decontamination process, how the contaminants were identified, the factors determining when people were (or were not) decontaminated, the problems encountered during the decontamination process, how response efforts of agencies were coordinated, and the perceived social psychological effects on people who were decontaminated or who participated in the decontamination process. Findings and recommendations from the study are intended to aid decision-making and to improve the basis for determining appropriate decontamination protocols for recovery planners and policy makers for responding to chemical and biological events.

  5. TREATABILITY STUDIES USED TO TEST FOR EXOTHERMIC REACTIONS OF PLUTONIUM DECONTAMINATION CHEMICALS

    International Nuclear Information System (INIS)

    Fluor Hanford is decommissioning the Plutonium Finishing Plant (PFP) at the Hanford site in Eastern Washington. Aggressive chemicals are commonly used to remove transuranic contaminants from process equipment to allow disposal as low level waste. Chemicals being considered for decontamination of gloveboxes in PFP include cerium(IV) nitrate in a nitric acid solution, and proprietary commercial solutions that include acids, degreasers, and sequestering agents. Fluor's decontamination procedure involves application of chemical solutions as a spray on the contaminated surfaces, followed by a wipe-down with rags. This process effectively transfers the transuranic materials to the decontamination liquids, which are then absorbed by rags and packaged for disposal as TRU waste. Concerns regarding the safety of this procedure developed following a fire at Rocky Flats in 2003. The fire occurred in a glovebox that had been treated with cerium nitrate, which is one of the decontamination chemicals that Fluor Hanford has proposed to use. The investigation of the event was hampered by the copious use of chemicals and water to extinguish the fire, and was not conclusive regarding the cause. However, the reviewers noted that rags were found in the glovebox, suggesting that the combination of rags and chemicals may have contributed to the fire. With that uncertainty, Fluor began an investigation into the potential for fire when using the chemicals and materials in the decontamination process. The focus of this work has been to develop a disposal strategy that will provide a chemically stable waste form at expected Hanford waste storage temperatures. Treatability tests under CERCLA were used to assess the use of certain chemicals and wipes during the decontamination process. Chemicals being considered for decontamination of gloveboxes at PFP include cerium (IV) nitrate in a nitric acid solution, and proprietary commercial solutions as RadPro(trademark) that include acids, degreasers

  6. Clearance of BWR steam piping by off line chemical decontamination

    International Nuclear Information System (INIS)

    This paper deals with laboratory tests that analyze the acid attack of metallic samples, contaminated by Co60 in the Caorso nuclear power plant in Italy. The main aim was to establish the working parameters of the decontamination plant for metallic components. The study took into consideration the steam piping, located in the turbine building, that is, piping from the main header to the high pressure turbine stage, as well as other steam piping, connecting different turbine stages or that had other functions. The Co60 is produced in the reactor vessel by neutron capture in the iron nuclei of the materials located in the pressure vessel. The coolant erodes the steel surfaces and deposits these products along the piping. In the first phase of the activity the chemical decontamination process was simulated in the laboratory, in particular the acid attack and the subsequent high pressure water washing. For the various parts of the piping (straight lines, bends, intersections) smear tests enabled the radioactivity distribution to be determined. Metallographic analyses of the samples, core bored by the piping, determined the composition of the deposit (crud) on the internal surface of the components and the radioactivity along the thickness of the crud, and consequently the time of the acid attack in order to obtain the Clearance. Numerical simulations of the Co60 deposition by means of CFD codes are currently being carried out in order to compare the results to those obtained experimentally. This will enable us to classify the systems from a radiological point of view by estimating ‘a priori’ the time required for decontamination

  7. Clearance of BWR steam piping by off line chemical decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Pilo, F. [Department of Mechanical Nuclear and Production Engineering, University of Pisa (Italy); Fontani, E. [Sogin Spa, Caorso Nuclear Power Plant (Italy); Aquaro, D., E-mail: aquaro@ing.unipi.it [Department of Mechanical Nuclear and Production Engineering, University of Pisa (Italy)

    2014-04-01

    This paper deals with laboratory tests that analyze the acid attack of metallic samples, contaminated by Co{sup 60} in the Caorso nuclear power plant in Italy. The main aim was to establish the working parameters of the decontamination plant for metallic components. The study took into consideration the steam piping, located in the turbine building, that is, piping from the main header to the high pressure turbine stage, as well as other steam piping, connecting different turbine stages or that had other functions. The Co{sup 60} is produced in the reactor vessel by neutron capture in the iron nuclei of the materials located in the pressure vessel. The coolant erodes the steel surfaces and deposits these products along the piping. In the first phase of the activity the chemical decontamination process was simulated in the laboratory, in particular the acid attack and the subsequent high pressure water washing. For the various parts of the piping (straight lines, bends, intersections) smear tests enabled the radioactivity distribution to be determined. Metallographic analyses of the samples, core bored by the piping, determined the composition of the deposit (crud) on the internal surface of the components and the radioactivity along the thickness of the crud, and consequently the time of the acid attack in order to obtain the Clearance. Numerical simulations of the Co{sup 60} deposition by means of CFD codes are currently being carried out in order to compare the results to those obtained experimentally. This will enable us to classify the systems from a radiological point of view by estimating ‘a priori’ the time required for decontamination.

  8. Development of suppression method for deposition of radioactive nuclides after chemical decontamination by platinum deposition treatment

    International Nuclear Information System (INIS)

    Noble metal chemical addition (NMCA) technology has been widely adopted for BWR plants in the US as a means to mitigate stress corrosion cracking (SCC). Dose rate of the reactor water recirculation system piping of some BWR plants that apply a combination of NMCA and zinc injection technology have gradually decreased. Chemical decontamination removes 60Co, but also the noble metal from the piping surfaces. Thus, effect of dose rate reduction by NMCA is decreased in the plant operating period after chemical decontamination. We considered that platinum deposition treatment just after chemical decontamination before plant operation would be effective to prevent redeposition of the 60Co. In this platinum deposition treatment process, Sodium hexahydroxyplatinate (IV), hydrazine and ammonia are used as the treatment chemicals. A 60Co deposition reduction effect of 1/2 compared to non-treatment is confirmed for up to 1,000 hours by laboratory experiments. (author)

  9. Elaboration of a chemical decontamination technology: preliminary results

    International Nuclear Information System (INIS)

    In the VVER-type pressurized water reactors, various versions of the so-called AP-CITROX method (AP: alkaline permanganate, CITROX: citric and oxalic acids) have been widely used for the chemical decontamination of the austenitic stainless steel piping of steam generators (SGs). During the period of 1993-2001 chemical decontaminations of 24 SGs in the blocks 1-3 of the Paks NPP were carried out by a non-regenerative version of AP-CITROX technology, even in 2 or 3 consecutive cycles. Based on the above decontamination procedures a database of characteristic parameters was compiled. The analysis of these data and the explanation of the corrosion effects of the technology reveal that fundamental issues of analytical chemistry and corrosion science were not taken into consideration during the elaboration of AP-CITROX procedure, suggested in steam generator manual, and utilized at Paks NPP. The non-regenerative version of the AP-CITROX technology is not an adequate method for the chemical decontamination of any reactor equipment having large steel surfaces (e.g. SGs). As a consequence of the lack of the appropriate decontamination method, a R and D project focused on the elaboration of the required technology has been initiated in 2005. The fundamental demands, which must be realized in the course of above R and D project, are as follows: (i) The decontamination method has to be suitable simultaneously for the effective removal of radionuclides (dose reduction) and for the conditioning of steel surfaces. (ii) The procedure has to provide optimal technological parameters for the homogeneous dissolution of oxide layers formed on the steel surfaces originating from both SGs never decontaminated (block 4) and SGs decontaminated earlier (blocks 1-3). The inner surfaces of the heat exchanger tubes of the latter SGs are covered by a special oxide layer ('hybrid' structure with a thickness of several micrometers). (iii) The method has to be able to utilize the technological

  10. Improvement of solvents for chemical decontamination: nickel ferrites removal

    International Nuclear Information System (INIS)

    Carboxylic acids are usually included in commercial solvents for the chemical cleaning and decontamination of metal surfaces from the oxide layers grown and/or deposited from high temperature water by corrosive process. In particular oxalic acid is included in second path of AP-Citrox method. However, in some cases, their use shows low efficiency. This fact is attributed to the special passivity of the mixed oxides as nickel ferrites. This work reports a kinetic study of dissolution of a synthetic nickel ferrite (NiFe2O4) confronted with simple oxides (NiO and Fe2O3) in mineral acids and oxalic acid. The dissolution factor and reaction rate were determined in several conditions (reactive concentrations, pH and added ferrous ions). Experimental data of dissolution (with and without Fe(II) added) show a congruent kinetic regime. Pure nickel oxide (NiO) is rather resistant to the attack by oxalic acid solutions, and ferrous ions do not accelerate dissolution. In fact, nickel oxide dissolves better by oxidative attack that takes advantage of the higher lability of Ni3+. It may be concluded that oxalic acid operates to dissolve iron, and the ensuing disruption of the solid framework accelerates the release of nickel. Our results point to use more reactive solvents in iron from mixed oxides and to the possibility of using one stage decontamination method. (author)

  11. Decontamination experience using the EMMAC process in EDF nuclear power plants

    International Nuclear Information System (INIS)

    The EMMA, EMMAC and EMMAC-PLUS decontamination processes, nondestructive tests and waste treatment are presented. The various applications of the new EMMAC soft decontamination process, used by EDF since 1995 have shown that it is a very effective tool and at the same time, is a very low corrosive process for the materials that have been treated . The improved efficiency, compared to the previous EMMA process allowed us to obtain good decontamination factors with only one cycle instead of two. At the same time, changes in chemical composition and waste treatment produced large reduction in the amount of radioactive wastes generated. Further improvements are still being sought. (authors)

  12. Decontamination of a fuel transport flask using chemical foams

    International Nuclear Information System (INIS)

    Traditional methods of flask decontamination are labour-intensive and depend on operator skills. A chemical foam technique has been evaluated as an alternative method. It is simple and effective and offers savings in manpower, and advantages in control over contamination and arisings. (U.K.)

  13. Chemical decontamination technical resources at Los Alamos National Laboratory (2008)

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Murray E [Los Alamos National Laboratory

    2008-01-01

    This document supplies information resources for a person seeking to create planning or pre-planning documents for chemical decontamination operations. A building decontamination plan can be separated into four different sections: Pre-planning, Characterization, Decontamination (Initial response and also complete cleanup), and Clearance. Of the identified Los Alamos resources, they can be matched with these four sections: Pre-planning -- Dave Seidel, EO-EPP, Emergency Planning and Preparedness; David DeCroix and Bruce Letellier, D-3, Computational fluids modeling of structures; Murray E. Moore, RP-2, Aerosol sampling and ventilation engineering. Characterization (this can include development projects) -- Beth Perry, IAT-3, Nuclear Counterterrorism Response (SNIPER database); Fernando Garzon, MPA-11, Sensors and Electrochemical Devices (development); George Havrilla, C-CDE, Chemical Diagnostics and Engineering; Kristen McCabe, B-7, Biosecurity and Public Health. Decontamination -- Adam Stively, EO-ER, Emergency Response; Dina Matz, IHS-IP, Industrial hygiene; Don Hickmott, EES-6, Chemical cleanup. Clearance (validation) -- Larry Ticknor, CCS-6, Statistical Sciences.

  14. Next Generation Non-particulate Dry Nonwoven Pad for Chemical Warfare Agent Decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Ramkumar, S S; Love, A; Sata, U R; Koester, C J; Smith, W J; Keating, G A; Hobbs, L; Cox, S B; Lagna, W M; Kendall, R J

    2008-05-01

    New, non-particulate decontamination materials promise to reduce both military and civilian casualties by enabling individuals to decontaminate themselves and their equipment within minutes of exposure to chemical warfare agents or other toxic materials. One of the most promising new materials has been developed using a needlepunching nonwoven process to construct a novel and non-particulate composite fabric of multiple layers, including an inner layer of activated carbon fabric, which is well-suited for the decontamination of both personnel and equipment. This paper describes the development of a composite nonwoven pad and compares efficacy test results for this pad with results from testing other decontamination systems. The efficacy of the dry nonwoven fabric pad was demonstrated specifically for decontamination of the chemical warfare blister agent bis(2-chloroethyl)sulfide (H or sulfur mustard). GC/MS results indicate that the composite fabric was capable of significantly reducing the vapor hazard from mustard liquid absorbed into the nonwoven dry fabric pad. The mustard adsorption efficiency of the nonwoven pad was significantly higher than particulate activated carbon (p=0.041) and was similar to the currently fielded US military M291 kit (p=0.952). The nonwoven pad has several advantages over other materials, especially its non-particulate, yet flexible, construction. This composite fabric was also shown to be chemically compatible with potential toxic and hazardous liquids, which span a range of hydrophilic and hydrophobic chemicals, including a concentrated acid, an organic solvent and a mild oxidant, bleach.

  15. Effect of Organic Solvents in Preparation of Silica-Based Chemical Gel Decontaminates for Decontamination of Nuclear Facilities

    International Nuclear Information System (INIS)

    Decontamination of nuclear facilities is necessary to reduce the radiation field during normal operations and decommissioning of complex equipment such as stainless steel components, other iron-based steel and alloys, metal surfaces, structural materials and so on. Chemical decontamination technology in particular is a highly effective method to remove the radioactive contamination through a chemical dissolution or a redox reaction. However, this method has the serious drawback due to the generation of large amounts of the radioactive liquid wastes. Recently, a few literatures have been reported for the preparation of the chemical gel decontaminants to reduce the amount of the radioactive liquid wastes and to enhance the decontamination efficiency through increasing the contact time between the gels and the radioactive contaminants. In the preparation of the chemical gels, the control of the viscosity highly depends on the amount of a coviscosifier used among the components of the chemical gels consisted of a viscosifier, a coviscosifier, and a chemical decontaminant. In this works, a new effective method for the preparation of the chemical gel was investigated by introducing the organic solvents. The mixture solution of the coviscosifier and organic solvent was more effective in the control of the viscosity compared with that of the coviscosifier only in gels. Furthermore, the decontamination efficiency of the chemical gels measured by using the multi-channel analyzer (MCA) showed the high decontamination factor for Co-60 and Cs-137 contaminated on the surface of the stainless steel 304

  16. Effect of Organic Solvents in Preparation of Silica-Based Chemical Gel Decontaminates for Decontamination of Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Suk Bon; Jung, Chong Hun; Kim, Chang Ki; Choi, Byung Seon; Lee, Kune Woo; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-10-15

    Decontamination of nuclear facilities is necessary to reduce the radiation field during normal operations and decommissioning of complex equipment such as stainless steel components, other iron-based steel and alloys, metal surfaces, structural materials and so on. Chemical decontamination technology in particular is a highly effective method to remove the radioactive contamination through a chemical dissolution or a redox reaction. However, this method has the serious drawback due to the generation of large amounts of the radioactive liquid wastes. Recently, a few literatures have been reported for the preparation of the chemical gel decontaminants to reduce the amount of the radioactive liquid wastes and to enhance the decontamination efficiency through increasing the contact time between the gels and the radioactive contaminants. In the preparation of the chemical gels, the control of the viscosity highly depends on the amount of a coviscosifier used among the components of the chemical gels consisted of a viscosifier, a coviscosifier, and a chemical decontaminant. In this works, a new effective method for the preparation of the chemical gel was investigated by introducing the organic solvents. The mixture solution of the coviscosifier and organic solvent was more effective in the control of the viscosity compared with that of the coviscosifier only in gels. Furthermore, the decontamination efficiency of the chemical gels measured by using the multi-channel analyzer (MCA) showed the high decontamination factor for Co-60 and Cs-137 contaminated on the surface of the stainless steel 304

  17. Research on decontamination of cesium contaminated soil by electrokinetic process

    International Nuclear Information System (INIS)

    In this research, electrokinetic process was applied for the decontamination of cesium contaminated soil. As a result, about 4.0 times cesium removal was achieved by applying a DC electric field of 80 V/m to comparing zero electric field in treatment for 30 days. Therefore, the electrokinetic process has a possibility to decontamination of cesium contaminated soil. (author)

  18. SAFETY STUDIES TO MEASURE EXOTHERMIC REACTIONS OF SPENT PLUTONIUM DECONTAMINATION CHEMICALS USING WET AND DRY DECONTAMINATION METHODS

    International Nuclear Information System (INIS)

    The Plutonium Finishing Plant (PFP) at the Hanford site in Eastern Washington is currently being decommissioned by Fluor Hanford. Chemicals being considered for dccontamination of gloveboxes in PFP include cerium (IV) nitrate in a nitric acid solution, and proprietary commercial solutions that include acids and sequestering agents. Aggressive chemicals are commonly used to remove transuranic contaminants from process equipment to allow disposal of the equipment as low level waste. Fluor's decontamination procedure involves application of chemical solutions as a spray on the contaminated surfaces, followed by a wipe-down with rags. Alternatively, a process of applying oxidizing Ce IV ions contained in a gel matrix and vacuuming a dry gel material is being evaluated. These processes effectively transfer the transuranic materials to rags or a gel matrix which is then packaged as TRU waste and disposed

  19. The chemical decontamination of the Callisto PWR loop

    International Nuclear Information System (INIS)

    The CALLISTO (Capability for Light water Irradiation in Steady state and Transient Operation) is a PWR experimental facility for scientific in-pile studies installed into the BR2 Material Test Reactor. Three experimental rigs, called In-Pile Sections (IPS), are installed in three reactor channels. They are connected to a common pressurized loop, which operates with representative PWR water chemistry (typically 400 ppm boron, 3,5 ppm lithium and 30 ccSTP/kg dissolved hydrogen). The IPSs can be provided with adequate instrumentation and be modified to perform valid irradiation studies in a high neutron flux and in a relevant thermos-hydraulic environment. During more than 15 years of operation, activation products have accumulated into the loop leading to a continuous increase of the dose rates at the work area. Consequently periodic maintenance and inspection operations have become more and more expensive in terms of collective dose uptake. In consultation with the internal and external safety authorities the decision has been made to proceed to the chemical closed-loop decontamination of the most important components of CALLISTO (heater, pressurizer, main and bleed flow coolers). The objective of reducing the dose rates without compromising the integrity of the operational loop has led to the combined use of known soft chemical decontamination products as KMnO4 and H2C2O4. About 10 GBq of Co-60 activity and 250 g of corrosion products were removed from the stainless steel CALLISTO loop. The systems involved had a total volume of 0,5 m3 and a surface area of 18 m2. All released activity and corrosion products were removed by ion exchange resins, leading to the generation of 2x150 liters of radioactive waste. The dose rate reduction factors in contact with the treated components varied between 2 and 12. The collective dose uptake of the entire operation (preparation - decontamination - clean-up) was about 5,5 man.mSv, and thereby in line with the ALARA estimations

  20. CORPEX{reg_sign} NORM decontamination process

    Energy Technology Data Exchange (ETDEWEB)

    Azrak, R.G.

    1997-02-01

    This paper describes a commecial process which has been developed for application to the remediation of NORM deposits on metal parts or embedded in scales on such parts. The process employs a registered chemical process, involving non-RCRA regulated chemicals, which can remove fixed {sup 226,228}Radium, {sup 210}Lead, and {sup 210}Polonium. The author describes the capabilities of the chemical process which has been developed, the way it is offered to potential customers as a practical process, and numerous examples of its application in the field.

  1. Chemical Decontamination of Metallic Waste from Uranium Conversion Plant Dismantling

    International Nuclear Information System (INIS)

    Korea Atomic Energy Research Institute (KAERI) started a decommissioning program of the uranium conversion plant. Pre-work was carried as follows; installation of the access control facility, installation of a changing room and shower room, designation of an emergency exit way and indicating signs, installation of a radiation management facility, preparation of a storage area for tools and equipments, inspection and load test of crane, distribution and packaging of existing waste, and pre-decontamination of the equipment surface and the interior. First, decommissioning work was performed in kiln room, which will be used for temporary radioactive waste storage room. Kiln room housed hydro fluorination rotary kiln for production of uranium tetra-fluoride. The kiln is about 0.8 m in diameter and 5.5 m long. The total dismantled waste was 6,690 kg, 73 % of which was metallic waste and 27 % the others such as cable, asbestos, concrete, secondary waste, etc. And effluent treatment room and filtration room were dismantled for installation of decontamination equipment and lagoon sludge treatment equipment. There were tanks and square mixer in these rooms. The total dismantled waste was 17,250 kg, 67% of which was metallic waste and 33% the others. These dismantled metallic wastes consist of stainless and carbon steel. In this paper, the stainless steel plate and pipe were decontaminated by the chemical decontamination with ultrasonic

  2. Magnetite Dissolution Performance of HYBRID-II Decontamination Process

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seonbyeong; Lee, Woosung; Won, Huijun; Moon, Jeikwon; Choi, Wangkyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In this study, we conducted the magnetite dissolution performance test of HYBRID-II (Hydrazine Based Reductive metal Ion Decontamination with sulfuric acid) as a part of decontamination process development. Decontamination performance of HYBRID process was successfully tested with the results of the acceptable decontamination factor (DF) in the previous study. While following-up studies such as the decomposition of the post-decontamination HYBRID solution and corrosion compatibility on the substrate metals of the target reactor coolant system have been continued, we also seek for an alternate version of HYBRID process suitable especially for decommissioning. Inspired by the relationship between the radius of reacting ion and the reactivity, we replaced the nitrate ion in HYBRID with bigger sulfate ion to accommodate the dissolution reaction and named HYBRID-II process. As a preliminary step for the decontamination performance, we tested the magnetite dissolution performance of developing HYBRID-II process and compared the results with those of HYBRID process. HYBRID process developed previously is known have the acceptable decontamination performance, but the relatively larger volume of secondary waste induced by anion exchange resin to treat nitrate ion is the one of the problems related in the development of HYBRID process to be applicable. Therefore we alternatively devised HYBRID-II process using sulfuric acid and tested its dissolution of magnetite in numerous conditions. From the results shown in this study, we can conclude that HYBRID-II process improves the decontamination performance and potentially reduces the volume of secondary waste. Rigorous tests with metal oxide coupons obtained from reactor coolant system will be followed to prove the robustness of HYBRID-II process in the future.

  3. Magnetite Dissolution Performance of HYBRID-II Decontamination Process

    International Nuclear Information System (INIS)

    In this study, we conducted the magnetite dissolution performance test of HYBRID-II (Hydrazine Based Reductive metal Ion Decontamination with sulfuric acid) as a part of decontamination process development. Decontamination performance of HYBRID process was successfully tested with the results of the acceptable decontamination factor (DF) in the previous study. While following-up studies such as the decomposition of the post-decontamination HYBRID solution and corrosion compatibility on the substrate metals of the target reactor coolant system have been continued, we also seek for an alternate version of HYBRID process suitable especially for decommissioning. Inspired by the relationship between the radius of reacting ion and the reactivity, we replaced the nitrate ion in HYBRID with bigger sulfate ion to accommodate the dissolution reaction and named HYBRID-II process. As a preliminary step for the decontamination performance, we tested the magnetite dissolution performance of developing HYBRID-II process and compared the results with those of HYBRID process. HYBRID process developed previously is known have the acceptable decontamination performance, but the relatively larger volume of secondary waste induced by anion exchange resin to treat nitrate ion is the one of the problems related in the development of HYBRID process to be applicable. Therefore we alternatively devised HYBRID-II process using sulfuric acid and tested its dissolution of magnetite in numerous conditions. From the results shown in this study, we can conclude that HYBRID-II process improves the decontamination performance and potentially reduces the volume of secondary waste. Rigorous tests with metal oxide coupons obtained from reactor coolant system will be followed to prove the robustness of HYBRID-II process in the future

  4. SAFETY STUDIES TO MEASURE EXOTHERMIC REACTIONS OF SPENT PLUTONIUM CONTAMINATION CHEMICALS USING WET AND DRY DECONTAMINATION METHODS

    International Nuclear Information System (INIS)

    The Plutonium Finishing Plant (PFP) at the Hanford site in Eastern Washington is currently being decommissioned by Fluor Hanford. Chemicals being considered for decontamination of gloveboxes in PFP include cerium (IV) nitrate in a nitric acid solution, and proprietary commercial solutions that include acids and sequestering agents. Aggressive chemicals are commonly used to remove transuranic contaminants from process equipment to allow disposal of the equipment as low level waste. Fluor's decontamination procedure involves application of chemical solutions as a spray on the contaminated surfaces, followed by a wipe-down with rags. Alternatively, a process of applying oxidizing Ce IV ions contained in a gel matrix and vacuuming a dry gel material is being evaluated. These processes effectively transfer the transuranic materials to rags or a gel matrix which is then packaged as TRU waste and disposed. Fluor is investigating plutonium decontamination chemicals as a result of concerns regarding the safety of chemical procedures following a fire at Rocky Flats in 2003. The fire at Rocky Flats occurred in a glovebox that had been treated with cerium nitrate, which is one of the decontamination chemicals that Fluor Hanford has proposed to use. Although the investigation of the fire was not conclusive as to cause, the reviewers noted that rags were found in the glovebox, suggesting that the combination of rags and chemicals may have contributed to the fire. Because of this underlying uncertainty, Fluor began an investigation into the potential for fire when using the chemicals and materials using wet disposition and dry disposition of the waste generated in the decontamination process and the storage conditions to which the waste drum would be exposed. The focus of this work has been to develop a disposal strategy that will provide a chemically stable waste form at expected Hanford waste storage temperatures. Hanford waste storage conditions are such that there is added

  5. Decontamination processes for low level radioactive waste metal objects

    International Nuclear Information System (INIS)

    Disposal and safe storage of contaminated nuclear waste is a problem of international scope. Although the greatest volume of such waste is concentrated in the USA and former Soviet Union, Western Europe and Japan have contaminated nuclear waste requiring attention. Japan's radioactive nuclear waste is principally generated at nuclear power plants since it has no nuclear weapons production. However, their waste reduction, storage and disposal problems may be comparable to that of the USA on an inhabited area basis when consideration is given to population density where Japan's population, half that of the USA, lives in an area slightly smaller than that of California's. If everyone's backyard was in California, the USA might have insoluble radioactive waste reduction, storage and disposal problems. Viewing Japan's contaminated nuclear waste as a national problem requiring solutions, as well as an economic opportunity, Morikawa began research and development for decontaminating low level radioactive nuclear waste seven years ago. As engineers and manufacturers of special machinery for many years Morikawa brings special electro/mechanical/pneumatic Skills and knowledge to solving these unique problems. Genden Engineering Services and Construction Company (GESC), an affiliate of Japan Atomic Power Company, recently joined with Morikawa in this R ampersand D effort to decontaminate low level radioactive nuclear waste (LLW) and to substantially reduce the volume of such nuclear waste requiring long term storage. This paper will present equipment with both mechanical and chemical processes developed over these several years by Morikawa and most recently in cooperation with GESC

  6. Decontamination as a precursor to decommissioning. Status report Task 2: process evaluation

    International Nuclear Information System (INIS)

    As part of the US Nuclear Regulatory Commission's program to reduce occupational exposure and waste volumes, the Pacific Northwest Laboratory is studying decontamination as a precursor to decommissioning. Eleven processes or solvents were examined for their behavior in decontaminating BWR carbon steel samples. The solvents included NS-1, a proprietary solvent of Dow Chemical Corporation, designed for BWR use, and AP-Citrox, a well-known, two-step process designed for PWR stainless steel; it was used to provide a reference for later comparison to other systems and processes. The decontamination factors observed in the tests performed in a small laboratory scale recirculating loop ranged from about 1 (no effect) to 222 (about 99.6% of the initial activity removed. Coordinated corrosion measurements were made using twelve chemical solvents and eight metal alloys found in a range of reactor types

  7. Chemical, biological, radiological, and nuclear decontamination: Recent trends and future perspective

    OpenAIRE

    Vinod Kumar; Rajeev Goel; Raman Chawla; Silambarasan, M.; Rakesh Kumar Sharma

    2010-01-01

    Chemical, biological, radiological, and nuclear (CBRN) decontamination is the removal of CBRN material from equipment or humans. The objective of the decontamination is to reduce radiation burden, salvage equipment, and materials, remove loose CBRN contaminants, and fix the remaining in place in preparation for protective storage or permanent disposal work activities. Decontamination may be carried out using chemical, electrochemical, and mechanical means. Like materials, humans may also be c...

  8. Decontamination of alpha contaminated metallic waste by cerium IV redox process

    International Nuclear Information System (INIS)

    Management of alpha-contaminated metallic waste is of particular concern because of its long term radio toxicity and need for its disposal in expensive deep geological repository in suitably conditioned form. A novel chemical decontamination technique is developed for decontamination of those waste based on ceric/cerous redox cyclic process in nitric acid medium. Presently, the alpha-bearing metallic wastes are kept in transit storage facilities under surveillance pending their ultimate disposal. It is highly advantageous to decontaminate these wastes into non-alpha category and dispose them off in conditioned form in NSDF. In this work a novel chemical decontamination technique based on ceric/cerous redox cyclic process in nitric acid medium is demonstrated on laboratory scale. Ozone has been employed for regeneration of cerous ions to the cyclic process. The ceric ion attacks the metal surface, layer by layer, on account of its powerful oxidizing property, thereby decontaminating the metallic surface. The actinide oxides (PuO2) dissolve in nitric medium by oxidative reaction mechanism

  9. Results of chemical decontamination of DOE`s uranium-enrichment scrap metal

    Energy Technology Data Exchange (ETDEWEB)

    Levesque, R.G.

    1997-02-01

    The CORPEX{reg_sign} Nuclear Decontamination Processes were used to decontaminate representative scrap metal specimens obtained from the existing scrap metal piles located at the Department of Energy (DOE) Portsmouth Gaseous Diffusion Plant (PORTS), Piketon, Ohio. In September 1995, under contract to Lockheed Martin Energy Systems, MELE Associates, Inc. performed the on-site decontamination demonstration. The decontamination demonstration proved that significant amounts of the existing DOE scrap metal can be decontaminated to levels where the scrap metal could be economically released by DOE for beneficial reuse. This simple and environmentally friendly process can be used as an alternative, or in addition to, smelting radiologically contaminated scrap metal.

  10. Decontamination of nuclear facilities

    International Nuclear Information System (INIS)

    Thirty-seven papers were presented at this conference in five sessions. Topics covered include regulation, control and consequences of decontamination; decontamination of components and facilities; chemical and non-chemical methods of decontamination; and TMI decontamination experience

  11. Chemical modification of a polyacrylamide. Enhanced decontamination of soils and surfaces after a nuclear accident

    International Nuclear Information System (INIS)

    This contribution concerns the decontamination of soils and surfaces polluted by cesium and strontium after a nuclear accident. The decontamination rate by means of an industrial polyacrylamide previously selected for its mechanical covering properties is studied. The characteristics of the polymer and its cation-exchange capacity (CEC) are specified. The chemical modification of the polymer, involving a crosslinking path and functional grafting, affords an improvement of its decontaminating properties. (author). 6 refs., 4 figs., 1 tab

  12. Comparison of Selected Methods for Individual Decontamination of Chemical Warfare Agents

    OpenAIRE

    Tomas Capoun; Jana Krykorkova

    2014-01-01

    This study addresses the individual decontamination of chemical warfare agents (CWA) and other hazardous substances. The individual decontamination applies to contaminated body surfaces, protective clothing and objects immediately after contamination, performed individually or by mutual assistance using prescribed or improvised devices. The article evaluates the importance of individual decontamination, security level for Fire and Rescue Service Units of the Czech Republic (FRS CR) and demons...

  13. Lessons Learned from Decontamination Experiences

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, JH

    2000-11-16

    This interim report describes a DOE project currently underway to establish what is known about decontamination of buildings and people and the procedures and protocols used to determine when and how people or buildings are considered ''clean'' following decontamination. To fulfill this objective, the study systematically examined reported decontamination experiences to determine what procedures and protocols are currently employed for decontamination, the timeframe involved to initiate and complete the decontamination process, how the contaminants were identified, the problems encountered during the decontamination process, how response efforts of agencies were coordinated, and the perceived social psychological effects on people who were decontaminated or who participated in the decontamination process. Findings and recommendations from the study are intended to aid decision-making and to improve the basis for determining appropriate decontamination protocols for recovery planners and policy makers for responding to chemical and biological events.

  14. Determination of a cleaning and decontamination process using solvents

    International Nuclear Information System (INIS)

    This work has been carried out on samples of the white cotton serge material of which most of the working overalls of the Nuclear Research Centre are made. The aims are: - to determine,from the decontamination and cleaning points of view, the efficiency of various solvents (white-spirit, trichloroethylene, perchlorethylene and tri-chloro-trifluoroethane) and the role of additives likely to improve the treatment; - to control the textile from the wear and shrinkage points of view; - to try to develop a basic cleaning and decontamination process as a function of the possibilities of each solvent considered. (authors)

  15. Concrete decontamination scoping tests

    International Nuclear Information System (INIS)

    This report details the research efforts and scoping tests performed at the Idaho Chemical Process Plant using scabbling, chemical, and electro-osmotic decontamination techniques on radiologically contaminated concrete

  16. Surface Decontamination of Chemical Agent Surrogates Using an Atmospheric Pressure Air Flow Plasma Jet

    International Nuclear Information System (INIS)

    An atmospheric pressure dielectric barrier discharge (DBD) plasma jet generator using air flow as the feedstock gas was applied to decontaminate the chemical agent surrogates on the surface of aluminum, stainless steel or iron plate painted with alkyd or PVC. The experimental results of material decontamination show that the residual chemical agent on the material is lower than the permissible value of the National Military Standard of China. In order to test the corrosion effect of the plasma jet on different material surfaces in the decontamination process, corrosion tests for the materials of polymethyl methacrylate, neoprene, polyvinyl chloride (PVC), polyethylene (PE), phenolic resin, iron plate painted with alkyd, stainless steel, aluminum, etc. were carried out, and relevant parameters were examined, including etiolation index, chromatism, loss of gloss, corrosion form, etc. The results show that the plasma jet is slightly corrosive for part of the materials, but their performances are not affected. A portable calculator, computer display, mainboard, circuit board of radiogram, and a hygrometer could work normally after being treated by the plasma jet

  17. Water-decontamination process-improvement tests and considerations

    International Nuclear Information System (INIS)

    Previous tests showed that the SDS process was suitable for removal of bulk radioactive contaminants (cesium and strontium) from the TMI-2 water. However, the polishing treatment did not provide water which could meet interim storage specifications. Further tests have identified modifications to provide sufficient decontamination and permit increased sorbent loadings

  18. Chemical, biological, radiological, and nuclear decontamination: Recent trends and future perspective

    Directory of Open Access Journals (Sweden)

    Vinod Kumar

    2010-01-01

    Full Text Available Chemical, biological, radiological, and nuclear (CBRN decontamination is the removal of CBRN material from equipment or humans. The objective of the decontamination is to reduce radiation burden, salvage equipment, and materials, remove loose CBRN contaminants, and fix the remaining in place in preparation for protective storage or permanent disposal work activities. Decontamination may be carried out using chemical, electrochemical, and mechanical means. Like materials, humans may also be contaminated with CBRN contamination. Changes in cellular function can occur at lower radiation doses and exposure to chemicals. At high dose, cell death may take place. Therefore, decontamination of humans at the time of emergency while generating bare minimum waste is an enormous task requiring dedication of large number of personnel and large amount of time. General principles of CBRN decontamination are discussed in this review with emphasis on radiodecontamination.

  19. Combined Decontamination Processes for Waste Containing PCBs

    Czech Academy of Sciences Publication Activity Database

    Kaštánek, František; Kaštánek, P.

    2005-01-01

    Roč. 117, 2-3 (2005), s. 185-205. ISSN 0304-3894 R&D Projects: GA MPO(CZ) TC 96/2/64 Institutional research plan: CEZ:AV0Z40720504 Keywords : chemical dehalogenation * contaminated soils * thermal desorption Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.544, year: 2005

  20. Chemical decontamination for decommissioning purposes. (Vigorous decontamination tests of steel samples in a special test loop)

    International Nuclear Information System (INIS)

    The aim of the research activities described was to develop vigorous decontamination techniques for decommissioning purposes, taking into account the cost of treatment of the radwaste, to achieve possibly unrestricted release of the treated components, and to obtain know-how for in situ hard decontamination. The decontamination procedures for strong decontamination have been optimized in static and dynamic tests (DECO-loop). The best values have been found for: (i) hydrochloric acid: 4 to 5% vol. at low temperature, 0.7 to 1% vol. at high temperature (800C); (ii) hydrofluoric plus nitric acid: 1.5% vol. HF + 5% vol. HNO3 at low temperature; 0.3 to 0.5% vol. HF + 2.5 to 5% vol. HNO3 at high temperature. High flow rates are not necessary, but a good re-circulation of the solution is needed. The final contamination levels, after total oxide removal, are in accordance with limits indicated for unrestricted release of materials in some countries. The arising of the secondary waste is estimated. Decontamination of a 10 m2 surface would typically produce 0.5 to 3.0 kg of dry waste, corresponding to 1.6 to 10 kg of concrete conditioned waste

  1. Development of a method to lower recontamination after chemical decontamination by depositing Pt nano particles

    International Nuclear Information System (INIS)

    The Pt coating (Pt-C) process has been developed to lower recontamination by radioactive elements after chemical decontamination of piping surfaces. In this process, a layer of fine Pt nano particles is formed in aqueous solution on the base metal of the piping following the chemical decontamination. In this study, we confirmed the suppression effect by the Pt-C toward 60Co deposition on type 316 stainless steel using a 60Co deposition test under hydrogen water chemistry. The deposition amounts of 60Co which were incorporated in oxides after 1000 h with and without the Pt-C process were about 90 and 10.2 Bq/cm2, respectively. The amount of 60Co deposition with Pt-C is about 10% that of non-coated specimens. The 60Co incorporation for the Pt-C specimen was suppressed by decreasing the formation of oxides. We considered this phenomenon from experimental results and concluded that oxides were chemically reduced by the effect of Pt and hydrogen radicals which were produced in the reaction between H2 and Pt, and then oxides were dissolved into the water. (author)

  2. Development of a suppression method for deposition of radioactive cobalt after chemical decontamination. (1) Effect of the ferrite film coating on suppression of cobalt deposition

    International Nuclear Information System (INIS)

    In the last decade, chemical decontamination at the beginning of periodical inspection has been applied to many Japanese BWR plants in order to reduce radiation exposure. However, following the chemical decontamination, a rapid dose rate increase can be seen in some plants after just a few operation cycles. Oxide film, which easily incorporates radioactivity, might be formed after the chemical decontamination. We developed a new way to reduce the recontamination after the chemical decontamination to maintain long-term continued decontamination effects without any chemical injections or chemical controls in reactor water during operation. In our approach, a fine ferrite film is formed by the Hitachi Ferrite Coat process after oxide films formed during the plant operation are removed by the chemical decontamination process. We select Fe(HCOO)2 aqueous solution, H2O2, and N2H4 as the treatment chemicals for fine ferrite film formation for suitable BWR plant application. Our laboratory experiment results confirm a 60Co deposition reduction effect of 1/5 compared with that of nontreatment for up to 3,100 hours. The fine ferrite film that was formed on the specimen before the 60Co deposition test remains as a film structure after the test. The corrosion amount of the specimen is suppressed to 1/4 through the effect of the fine ferrite film. (author)

  3. Dresden Nuclear Power Station, Unit No. 1: Primary cooling system chemical decontamination: Draft environmental statement (Docket No. 50-10)

    International Nuclear Information System (INIS)

    The staff has considered the environmental impact and economic costs of the proposed primary cooling system chemical decontamination at Dresden Nuclear Power Station, Unit 1. The staff has focused this statement on the occupational radiation exposure associated with the proposed Unit 1 decontamination program, on alternatives to chemical decontamination, and on the environmental impact of the disposal of the solid radioactive waste generated by this decontamination. The staff has concluded that the proposed decontamination will not significantly affect the quality of the human environment. Furthermore, any impacts from the decontamination program are outweighed by its benefits. 2 figs., 7 tabs

  4. Cladding hull decontamination and densification process. Part 1. The prototype cladding hull decontamination system

    International Nuclear Information System (INIS)

    A prototype system for decontaminating Zircaloy-4 cladding hulls has been assembled and tested at Pacific Northwest Laboratory. The decontamination process consists of treatment with a gaseous mixture of hydrogen fluoride (HF) and argon (Ar) followed by a dilute aqueous etch of ammonium oxalate, ammonium citrate, ammonium fluoride, and hydrogen peroxide. The continuous cleaning process described in this report successfully descaled small portions of most charges, but was unable to handle the original design capacity of 4 kg/hr because of problems in the following areas: control of HF reactor temperatures, regulation of HF and argon mixtures and flows, isolation of the HF reactor atmosphere from the aqueous washer/rinser atmosphere, regulation of undesirable side reactions, and control over hull transport through the system. Due to the limited time available to solve these problems, the system did not attain fully operational status. The work was performed with unirradiated hulls that simulated irradiated hulls. The system was not built to be remotely operable. The process chemistry and system equipment are described in this report with particular emphasis on critical operating areas. Recommendations for improved system operation are included

  5. Comprehensive investigation of the corrosion and surface chemical effects of the decontamination technologies

    International Nuclear Information System (INIS)

    Decontamination technologies are mainly developed to reduce the collective dose of the maintenance personnel at NPPs. The highest efficiency (i.e., the highest DF values) available without detrimental modification of the treated surface of structural material is the most important goal in the course of the application of a decontamination technology. A so-called 'soft' chemical decontamination technology has been developed - supported by the Paks Nuclear Power Plant - at the Institute of Radiochemistry and Radioecology of the University of Pannonia. The novel base technology can be effectively applied for the decontamination of the heat exchanger tubes of steam generators. In addition, by optimizing the main technological parameters (temperature, concentration of the liquid chemicals, flow rates, contact time, etc.) it can be utilized for specific applications such as decontamination of some dismountable devices and separable equipment or the total decontamination prior to plant dismantling (decommissioning) in the future. The aim of this work is to compare the efficiency, corrosion and surface chemical effects of some improved versions of the novel base-technology elaborated for decontamination of austenitic stainless steel surfaces. The experiments have been performed at laboratory conditions in decontamination model systems. The applied methods: γ-spectrometry, ICP-OES, voltammetry and SEM-EDX. The experimental results revealed that the efficiency of the base-technology mainly depends on the surface features of the stainless steel samples such as the chemical composition and thickness of the oxide layer, the nature (quantity, morphology and chemical composition) of the crystalline deposits. It has been documented that the improved version of the base-technology are suitable for the decontamination of both steel surfaces covered by chemically resistant large Cr-content crystals and that having compact oxide-layers (up to a thickness of 10

  6. Self-Decontaminating Fibrous Materials Reactive toward Chemical Threats.

    Science.gov (United States)

    Bromberg, Lev; Su, Xiao; Martis, Vladimir; Zhang, Yunfei; Hatton, T Alan

    2016-07-13

    Polymers that possess highly nucleophilic pyrrolidinopyridine (Pyr) and primary amino (vinylamine, VAm) groups were prepared by free-radical copolymerization of N,N-diallylpyridin-4-amine (DAAP) and N-vinylformamide (NVF) followed by acidic hydrolysis of NVF into VAm. The resulting poly(DAAP-co-VAm-co-NVF) copolymers were water-soluble and reacted with water-dispersible polyurethane possessing a high content of unreacted isocyanate groups. Spray-coating of the nylon-cotton (NYCO), rayon, and poly(p-phenylene terephthalamide) (Kevlar 119) fibers pretreated with phosphoric acid resulted in covalent bonding of the polyurethane with the hydroxyl groups on the fiber surface. A second spray-coating of aqueous solutions of poly(DAAP-co-VAm-co-NVF) on the polyurethane-coated fiber enabled formation of urea linkages between unreacted isocyanate groups of the polyurethane layer and the amino groups of poly(DAAP-co-VAm-co-NVF). Fibers with poly(DAAP-co-VAm-co-NVF) attached were compared with fibers modified by adsorption of water-insoluble poly(butadiene-co-pyrrolidinopyridine) (polyBPP) in terms of the stability against polymer leaching in aqueous washing applications. While the fibers modified by attachment of poly(DAAP-co-VAm-co-NVF) exhibited negligible polymer leaching, over 65% of adsorbed polyBPP detached and leached from the fibers within 7 days. Rayon fibers modified by poly(DAAP-co-VAm-co-NVF) were tested for sorption of dimethyl methylphosphonate (DMMP) in the presence of moisture using dynamic vapor sorption technique. Capability of the fibers modified with poly(DAAP-co-VAm-co-NVF) to facilitate hydrolysis of the sorbed DMMP in the presence of moisture was uncovered. The self-decontaminating property of the modified fibers against chemical threats was tested using a CWA simulant diisopropylfluorophosphate (DFP) in aqueous media at pH 8.7. Fibers modified with poly(DAAP-co-VAm-co-NVF) facilitated hydrolysis of DFP with the half-lives up to an order of magnitude

  7. Effects of the chemical decontamination on the component parts of the ATR fuel assembly

    International Nuclear Information System (INIS)

    The chemical decontamination technique has been developed in order to remove the crud adhering to the surface of the components constructing the primary coolant system, as a part of the measure to decrease the exposure in the annual inspection. The technique has been already applied to the prototype reactor 'Fugen', in the core of which the fuel assemblies were not loaded. The chemical decontamination, for the core in which the fuel assemblies are loaded, has been planned for the purpose of improving the utilization factor. It is necessary to confirm, through the test before putting the plan into practice, that the decontamination reagent does not exert a bad influence upon the components constructing the fuel assembly. This report describes the test results which have been carried out so as to investigate the influence of the reagent on the components constructing the fuel assembly. The outline of the results is as follows: (1) The susceptibility to stress corrosion cracking of the chemical decontamination treatment and the residual decontamination reagent on the components constructing the fuel assembly is low enough. (2) The chemical decontamination treatment and the residual decontamination reagent do not exert a bad influence upon the integrity of the fuel assembly concerning the fuel rod holding function of the spacer and the characteristics of the fretting wear caused on the fuel claddings. (author)

  8. Effects of the chemical decontamination on the component parts of the ATR fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Kodaka, Kozo; Tendo, Masayuki; Sugawara, Masayuki; Koike, Mitsutaka; Matsuda, Masanori; Endo, Kazuo; Iba, Toshi [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1996-03-01

    The chemical decontamination technique has been developed in order to remove the crud adhering to the surface of the components constructing the primary coolant system, as a part of the measure to decrease the exposure in the annual inspection. The technique has been already applied to the prototype reactor `Fugen`, in the core of which the fuel assemblies were not loaded. The chemical decontamination, for the core in which the fuel assemblies are loaded, has been planned for the purpose of improving the utilization factor. It is necessary to confirm, through the test before putting the plan into practice, that the decontamination reagent does not exert a bad influence upon the components constructing the fuel assembly. This report describes the test results which have been carried out so as to investigate the influence of the reagent on the components constructing the fuel assembly. The outline of the results is as follows: (1) The susceptibility to stress corrosion cracking of the chemical decontamination treatment and the residual decontamination reagent on the components constructing the fuel assembly is low enough. (2) The chemical decontamination treatment and the residual decontamination reagent do not exert a bad influence upon the integrity of the fuel assembly concerning the fuel rod holding function of the spacer and the characteristics of the fretting wear caused on the fuel claddings. (author)

  9. Effective responder communication improves efficiency and psychological outcomes in a mass decontamination field experiment: implications for public behaviour in the event of a chemical incident.

    Science.gov (United States)

    Carter, Holly; Drury, John; Amlôt, Richard; Rubin, G James; Williams, Richard

    2014-01-01

    The risk of incidents involving mass decontamination in response to a chemical, biological, radiological, or nuclear release has increased in recent years, due to technological advances, and the willingness of terrorists to use unconventional weapons. Planning for such incidents has focused on the technical issues involved, rather than on psychosocial concerns. This paper presents a novel experimental study, examining the effect of three different responder communication strategies on public experiences and behaviour during a mass decontamination field experiment. Specifically, the research examined the impact of social identity processes on the relationship between effective responder communication, and relevant outcome variables (e.g. public compliance, public anxiety, and co-operative public behaviour). All participants (n = 111) were asked to visualise that they had been involved in an incident involving mass decontamination, before undergoing the decontamination process, and receiving one of three different communication strategies: 1) 'Theory-based communication': Health-focused explanations about decontamination, and sufficient practical information; 2) 'Standard practice communication': No health-focused explanations about decontamination, sufficient practical information; 3) 'Brief communication': No health-focused explanations about decontamination, insufficient practical information. Four types of data were collected: timings of the decontamination process; observational data; and quantitative and qualitative self-report data. The communication strategy which resulted in the most efficient progression of participants through the decontamination process, as well as the fewest observations of non-compliance and confusion, was that which included both health-focused explanations about decontamination and sufficient practical information. Further, this strategy resulted in increased perceptions of responder legitimacy and increased identification with

  10. Effective responder communication improves efficiency and psychological outcomes in a mass decontamination field experiment: implications for public behaviour in the event of a chemical incident.

    Directory of Open Access Journals (Sweden)

    Holly Carter

    Full Text Available The risk of incidents involving mass decontamination in response to a chemical, biological, radiological, or nuclear release has increased in recent years, due to technological advances, and the willingness of terrorists to use unconventional weapons. Planning for such incidents has focused on the technical issues involved, rather than on psychosocial concerns. This paper presents a novel experimental study, examining the effect of three different responder communication strategies on public experiences and behaviour during a mass decontamination field experiment. Specifically, the research examined the impact of social identity processes on the relationship between effective responder communication, and relevant outcome variables (e.g. public compliance, public anxiety, and co-operative public behaviour. All participants (n = 111 were asked to visualise that they had been involved in an incident involving mass decontamination, before undergoing the decontamination process, and receiving one of three different communication strategies: 1 'Theory-based communication': Health-focused explanations about decontamination, and sufficient practical information; 2 'Standard practice communication': No health-focused explanations about decontamination, sufficient practical information; 3 'Brief communication': No health-focused explanations about decontamination, insufficient practical information. Four types of data were collected: timings of the decontamination process; observational data; and quantitative and qualitative self-report data. The communication strategy which resulted in the most efficient progression of participants through the decontamination process, as well as the fewest observations of non-compliance and confusion, was that which included both health-focused explanations about decontamination and sufficient practical information. Further, this strategy resulted in increased perceptions of responder legitimacy and increased

  11. Diphoterine for emergent eye/skin chemical splash decontamination: a review.

    Science.gov (United States)

    Hall, Alan H; Blomet, Joel; Mathieu, Laurence

    2002-08-01

    Eye/skin chemical splashes are a significant problem. Diphoterine is an hypertonic, polyvalent, amphoteric compound developed in France as an eye/skin chemical splash water-based decontamination solution. In vitro and in vivo, it actively decontaminates approximately 600 chemicals, including acids, alkalis, oxidizing and reducing agents, irritants, lacrimators, solvents, alkylating agents, and radionuclides. Its chemical bond energy for such agents is greater than that of tissue receptors. Its hypertonicity impedes chemical tissue penetration and may remove some amount of skin/cornea-absorbed toxicants not already bound to tissue receptors. Diphoterine chemical reactions are not exothermic. Diphoterine and its acid/alkali decontamination residues are not irritating to the eyes or skin; it is essentially nontoxic. Diphoterine can prevent eye/skin burns following chemical splashes and results in nearly immediate pain relief. PMID:12136973

  12. Comparison of Selected Methods for Individual Decontamination of Chemical Warfare Agents

    Directory of Open Access Journals (Sweden)

    Tomas Capoun

    2014-06-01

    Full Text Available This study addresses the individual decontamination of chemical warfare agents (CWA and other hazardous substances. The individual decontamination applies to contaminated body surfaces, protective clothing and objects immediately after contamination, performed individually or by mutual assistance using prescribed or improvised devices. The article evaluates the importance of individual decontamination, security level for Fire and Rescue Service Units of the Czech Republic (FRS CR and demonstrates some of the devices. The decontamination efficiency of selected methods (sorbent, glove and sponge, two-chamber foam device and wiping with alcohol was evaluated for protective clothing and painted steel plate contaminated with O-ethyl-S-(diisopropylaminoethyl-methylthiophosphonate (VX, sulfur mustard, o-cresol and acrylonitrile. The methods were assessed from an economic point of view and with regard to specific user parameters, such as the decontamination of surfaces or materials with poor accessibility and vertical surfaces, the need for a water rinse as well as toxic waste and its disposal.

  13. Cleaning of liquid LLW from decontamination processes using semipermeable membranes

    International Nuclear Information System (INIS)

    Of the three processes, which have been used extensively for liquid radioactive waste purification, evaporation and ion exchange are costly and flocculation gives a low degree of purification. By comparison to that, reverse osmosis offers intermediate purification at reasonable cost. Present research is examining the potential of using a membrane filtration system for the removal of dissolved radionuclides, but chemical treatment showed as necessary to convert soluble radionuclides, organic traces and metals to insoluble, filterable species. Liquid wastes within a CANDU station are segregated into normal and low-activity waste streams. The normal-activity waste includes wastes from the laboratories, laundries, some service-building drains, upgrade drains, and decontamination center. The drains from the reactor building, the heavy-water area, the spent-fuel pool, and the resin storage area are also directed to this normal activity wastes from showers and building drains in areas of the service building that would not normally be contaminated. The aqueous liquid wastes from the decontamination center and the other collected wastes from the chemical drain system are currently treated by the membrane plant. Generally, the liquid waste streams are effectively volume-reduced by a combination of continuous crossflow microfiltration (MF), spiral wound reverse osmosis (SWRO) and tubular reverse osmosis membrane technologies. Backwash chemical cleaning wastes from the membrane plant are further volume-reduced by evaporation. The concentrate from the membrane plant is ultimately immobilized with bitumen. The ability of the MF/SWRO technology to remove impurities non-selectively makes it suitable for the treatment of radioactive effluents from operating nuclear plants, with proper membrane selection, feed characterization, system configuration and system chemistry control. The choice of polysulfonate material for membrane was based on the high flow rates achievable with this

  14. KAERI's technology development program of chemical decontamination for nuclear power reactors

    International Nuclear Information System (INIS)

    The activated corrosion products formed on the internal surface of primary coolant system of nuclear power plants can be removed by chemical decontamination. Dilute chemical decontamination method is widely used in consideration of keeping base metal integrity and producing relatively small amount of resulting radwastes. The application of chemical decontamination to PWRs is limited at present mainly to the channel heads of steam generators, but a growing necessity of entire NSSS decontamination is expected to accelerate the development and demonstration of the technology so that the commercial application of the technology will be realized in early 1990s. In Korea, nine nuclear power plants of PWR type except one will be available by 1989. The first chemical decontamination of the steam generator channel head of this nuclear power plant was done in 1984 by a foreign technology. KAERI's chemical decontamination technology development program funded by the Ministry of Science and Technology was started in 1983 to establish the technical guidelines and criteria and to obtain the technical self reliance. It is described. (Kako, I.)

  15. Management of decontamination solution arising from Cerium redox process

    International Nuclear Information System (INIS)

    This paper describes the recovery of Pu from decontamination stream generated from Cerium Redox Process meant for decontamination of contaminated metallic wastes. Extraction of Pu is carried out using PUREX solvent after reducing it to tetravalent state which is subsequently stripped using hydroxylamine nitrate and nitric acid mixture. Raffinate from this step containing Ce3+, 241Am and corrosion products is subjected to ozonisation wherein Ce3+ is oxidized to Ce4+. Quantitative extraction of Ce is achieved by PUREX solvent in second cycle which is stripped using a mixture of NaNO2 and HNO3. Raffinate from this step contains 241Am and corrosion product which is removed by solvent extraction using TEHDGA. The final alpha lean waste can be managed by cementation. (author)

  16. Development of Decontamination Process for Soil Contaminated Uranium

    International Nuclear Information System (INIS)

    Various experiments with full-scaled electrokinetic equipment, soil washing equipment, and gravel washing equipment were performed to remove 238U from contaminated soils of below 0.4 Bq/g. The repetition number and the removal efficiencies of the soil and gravel washing equipment were evaluated. The decontamination periods by the soil and gravel electrokinetic equipment were evaluated. Finally, a work process of full-scaled decontamination equipment was developed. Contaminated soils were classified into soils and gravels using a 8.0 cm sieve. Soils were sent to the soil washing equipment, while gravels were sent to the gravel washing equipment. Soils sent to the soil washing equipment were sent to the soil electrokinetic equipment after soil washing. A repetition number of soil washing was two times. The washed gravels were sent to the gravel electrokinetic equipment. Gravel contaminated with a high concentration requires crushing after gravel washing

  17. PWR decontamination feasibility study

    International Nuclear Information System (INIS)

    The decontamination work which has been accomplished is reviewed and it is concluded that it is worthwhile to investigate further four methods for decontamination for future demonstration. These are: dilute chemical; single stage strong chemical; redox processes; and redox/chemical in combination. Laboratory work is recommended to define the agents and processes for demonstration and to determine the effect of the solvents on PWR materials. The feasibility of Indian Point 1 for decontamination demonstrations is discussed, and it is shown that the system components of Indian Point 1 are well suited for use in demonstrations

  18. Irradiation as a decontamination processing for rice paper sheet

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Michel M.; Thomaz, Fernanda S.; Fanaro, Gustavo B.; Duarte, Renato C.; Aquino, Simone; Villavicencio, Anna Lucia C.H. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mail: villavic@ipen.br; Correa, Benedito [Universidade de Sao Paulo USP, SP (Brazil). Inst. de Ciencias Biomedicas. Dept. de Micologia]. E-mail: correabe@usp.br

    2007-07-01

    Starch is one of the most important plant products to man. The major sources of this compound for man's use are the cereals, but roots and tubers are also important. The starch industry comes in recent years growing and perfecting it self, leading to the necessity products with specific characteristics that take care the requirements of the market, it makes possible through processing raw material, still seldom explored. Rice paper sheet is an edible product derived from potatoes and rice, being commonly used to cover cakes, pies, and sweets in confectioner's shop. A microbiological control is necessary to give a high quality and to guarantee the security of this food. Irradiation would be a safe alternative as a decontamination method without adverse effects on the physical properties in the final products. The aim of this study was to investigate the best dose used as a decontamination method as well as discover the most prevalent fungi found in this product and changes on physical properties. Samples of rice paper sheet were irradiated with 2.5, 5.0 and 10.0 kGy using a {sup 60}Co irradiator. Irradiation appeared as a safe alternative as a decontamination method without adverse effects on the physical properties in the final products. (author)

  19. Application of a novel decontamination process using gaseous ozone

    Energy Technology Data Exchange (ETDEWEB)

    Moat, J.; Shone, J.; Upton, M. [Manchester Univ., School of Medecine, Manchester (United Kingdom). Medical Microbiology, Translation Medicine; Cargill, J. [Old Medical School, Leeds (United Kingdom). Dept. of Microbiology

    2009-08-15

    Hospital surfaces that are touched regularly by staff carry bacterial spores and pathogens. Environmental disinfection of health care facilities is an important aspect of infection control. This paper presented a recent innovation aimed at improving hospital hygiene and decontamination of laboratory equipment. The vapour- and gas-based treatment was developed to penetrate rooms or soft furnishings and reach places inaccessible by conventional approaches. Surfaces seeded with a range of vegetative cells and spores of bacteria of clinical relevance were decontaminated using the ozone-based treatment. The efficiency of the approach for room sanitization was also evaluated. A quenching agent was used to rapidly reduce ozone concentrations to safe levels allowing treatment times of less than 1 h for most of the organisms tested. Bacteria was seeded onto agar plates and solid surfaces. Reductions in bacterial load of greater than 3 log values were then recorded for a number of organisms including Escherichia coli and methicillin-resistant Staphylococcus aureus. Application of the process in a 30 m{sup 3} room showed similar reductions in viable counts for these organisms and for Clostridium difficile spores. It was concluded that ozone-based decontamination of healthcare environments could prove to be a highly cost-effective intervention. 35 refs., 1 tab., 3 figs.

  20. Irradiation as a decontamination processing for rice paper sheet

    International Nuclear Information System (INIS)

    Starch is one of the most important plant products to man. The major sources of this compound for man's use are the cereals, but roots and tubers are also important. The starch industry comes in recent years growing and perfecting it self, leading to the necessity products with specific characteristics that take care the requirements of the market, it makes possible through processing raw material, still seldom explored. Rice paper sheet is an edible product derived from potatoes and rice, being commonly used to cover cakes, pies, and sweets in confectioner's shop. A microbiological control is necessary to give a high quality and to guarantee the security of this food. Irradiation would be a safe alternative as a decontamination method without adverse effects on the physical properties in the final products. The aim of this study was to investigate the best dose used as a decontamination method as well as discover the most prevalent fungi found in this product and changes on physical properties. Samples of rice paper sheet were irradiated with 2.5, 5.0 and 10.0 kGy using a 60Co irradiator. Irradiation appeared as a safe alternative as a decontamination method without adverse effects on the physical properties in the final products. (author)

  1. The use of chemical gel for decontamination during decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    A technical research study was developed for testing the decontamination using chemical gels. The study was realized for different type of samples, systems often encountered in the VVR-S nuclear research reactor from Magurele–Romania. The results obtained in the study have demonstrated that the decontamination gels could be an efficient way to reduce or to eliminate the surface contamination of buildings or equipment’s, minimizing the potential for spreading contamination during decommissioning activities. - Highlights: • A research study was developed for testing the decontamination using chemical gels. • The purpose was realized by artificial contamination of eight types of materials. • Decontamination gels are an efficient way to reduce the surface contamination. • Minimize the potential for spreading contamination during decommissioning activities

  2. Toshiba's decontamination technologies for the decommissioning

    International Nuclear Information System (INIS)

    For the decommissioning, two types of decontamination process are necessary, 1) system decontamination before dismantling and 2) decontamination of dismantling waste. Toshiba has been developing the decontamination technologies for the both purposes from the viewpoint of minimizing the secondary waste. For the system decontamination before dismantling, chemical decontamination process, such as T-OZON, can be applicable for stainless steel or carbon steel piping. For the decontamination of dismantling waste, several types of process have been developed to apply variety of shapes and materials. For the simple shape materials, physical decontamination process, such as blast decontamination, is effective. We have developed new blast decontamination process with highly durable zirconia particle. It can be used repeatedly and secondary waste can be reduced compared with conventional blast particle. For the complex shape materials, chemical decontamination process can be applied that formic acid decontamination process for carbon steel and electrolytic reduction decontamination process with organic acid for stainless steel. These chemicals can be decomposed to carbon dioxide and water and amount of secondary waste can be small. (author)

  3. Pickering NGS heat transport system decontamination using the CAN-DECON process

    International Nuclear Information System (INIS)

    In November 1981, a decontamination of the Pickering NGS Unit 1 heat transport system using the CAN-DECON process was carried out. The primary objective of the decontamination was to establish the effectiveness of the decontamination process in order to determine optimum tooling and manpower requirements for major dose-intensive reactor maintenance work. Laboratory scale development work suggested that the CAN-DECON process could, with modifications, produce decontamination factors (DFs) of 10 or better on carbon steel. The full scale decontamination, however, did not confirm these expectations. Radiation fields on the carbon steel headers and feeders were unchanged. Radiation fields on the Monel boilers which were low to start with were reduced by a factor of 1.5. This paper discusses the decontamination, its results, and the lessons learned from the decontamination

  4. Definition of a concrete bio-decontamination process in nuclear substructures; Biodegradation de matrices cimentaires en vue de leur decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Jestin, A

    2005-05-15

    The decontamination of sub-structural materials represents a stake of high-importance because of the high volume generated. It is agreed then to propose efficient and effective processes. The process of bio-decontamination of the hydraulic binders leans on the mechanisms of biodegradation of concretes, phenomenon characterized in the 40's by an indirect attack of the material by acids stem from the microbial metabolism: sulphuric acid (produced by Thiobacillus), nitric acid (produced by Nitrosomonas and Nitrobacter) and organic acids (produced by fungi). The principle of the bio-decontamination process is to apply those micro-organisms on the surface of the contaminated material, in order to damage its surface and to retrieve the radionuclides. One of the multiple approaches of the process is the use of a bio-gel that makes possible the micro-organisms application. (author)

  5. ASSESSING CHEMICAL HAZARDS AT THE PLUTONIUM FINISHING PLANT FOR PLANNING FUTURE DECONTAMINATION AND DECOMMISSIONING

    International Nuclear Information System (INIS)

    This paper documents the fiscal year (FY) 2006 assessment to evaluate potential chemical and radiological hazards associated with vessels and piping in the former plutonium process areas at Hanford's Plutonium Finishing Plant (PFP). Evaluations by PFP engineers as design authorities for specific systems and other subject-matter experts were conducted to identify the chemical hazards associated with transitioning the process areas for the long-term layup of PFP before its eventual final decontamination and decommissioning (D and D). D and D activities in the main process facilities were suspended in September 2005 for a period of between 5 and 10 years. A previous assessment conducted in FY 2003 found that certain activities to mitigate chemical hazards could be deferred safely until the D and D of PFP, which had been scheduled to result in a slab-on-grade condition by 2009. As a result of necessary planning changes, however, D and D activities at PFP will be delayed until after the 2009 time frame. Given the extended project and plant life, it was determined that a review of the plant chemical hazards should be conducted. This review to determine the extended life impact of chemicals is called the ''Plutonium Finishing Plant Chemical Hazards Assessment, FY 2006''. This FY 2006 assessment addresses potential chemical and radiological hazard areas identified by facility personnel and subject-matter experts who reevaluated all the chemical systems (items) from the FY 2003 assessment. This paper provides the results of the FY 2006 chemical hazards assessment and describes the methodology used to assign a hazard ranking to the items reviewed

  6. Physico-Chemical Dynamics of Nanoparticle Formation during Laser Decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, M.D.

    2005-06-01

    Laser-ablation based decontamination is a new and effective approach for simultaneous removal and characterization of contaminants from surfaces (e.g., building interior and exterior walls, ground floors, etc.). The scientific objectives of this research are to: (1) characterize particulate matter generated during the laser-ablation based decontamination, (2) develop a technique for simultaneous cleaning and spectroscopic verification, and (3) develop an empirical model for predicting particle generation for the size range from 10 nm to tens of micrometers. This research project provides fundamental data obtained through a systematic study on the particle generation mechanism, and also provides a working model for prediction of particle generation such that an effective operational strategy can be devised to facilitate worker protection.

  7. Influence of Decontamination

    International Nuclear Information System (INIS)

    This paper describes the influence of several decontamination techniques on the decommissioning of nuclear facilities. There are different kinds of decontamination methods like mechanical and chemical processes. The techniques specified, and their potential to change measured characteristics like the isotope vector of the contamination is demonstrated. It is common for all these processes, that the contamination is removed from the surface. Slightly adhered nuclides can be removed more effectively than strongly sticking nuclides. Usually a mixture of these nuclides forms the contamination. Problematically any kind of decontamination will influence the nuclide distribution and the isotope vector. On the one hand it is helpful to know the nuclide distribution and the isotope vector for the radiological characterization of the nuclear facility and on the other hand this information will be changed in the decontamination process. This is important especially for free release procedures, radiation protection and waste management. Some questions on the need of decontamination have been discussed. (authors)

  8. Chemical decontamination in BWR Philippsburg 1; Chemische Dekontamination im Siedewasserreaktor Philippsburg 1

    Energy Technology Data Exchange (ETDEWEB)

    Juergensen, Micael; Bolz, Michael [EnBW Kernkraft GmbH, Philippsburg (Germany)

    2015-06-01

    After the accident in the Fukushima nuclear power plant, the Philippsburg nuclear power plant (KKP1) was shut down for good due to political decision on March 17, 2011. Following the shutdown, all power plant components must be dismantled. This includes also parts that had been radioactively contaminated during operation. In order to reduce the dose rate for personnel involved in decommissioning, it is necessary to remove active oxide layers that had been formed during passivation. The systems are decontaminated by treatment with oxidative and reductive reagents which chemically dissolve the oxide. A report is given on the experience made with the chemical decontamination system in KKP 1.

  9. Decontamination of graphite by chemical treatment; Descontaminacion de grafito por tratamiento quimico

    Energy Technology Data Exchange (ETDEWEB)

    Gascon, J. L.; Pina, G.

    2013-07-01

    This paper presents a study of decontamination of i-graphite by means of chemical treatment has been carried out within the project CARBOWASTE belonging to the 7th program of the EU (2007-2013). Decontamination through chemical treatment for i-graphite with aqueous solutions depends on the composition of the lixiviation, the temperature or the physical state in which is located the i-graphite, powder or block. In the first place was studied the influence of these factors using i-graphite powder and later graphite block.

  10. Peach Bottom 2 and 3 regenerative heat exchangers: chemical decontamination and seal ring repairs

    International Nuclear Information System (INIS)

    In 1977 and early 1978, Philadelphia Electric Company chemically decontaminated and installed seal rings into the shell to channel joints of all Reactor Water Clean-up Regenerative Heat Exchangers located in Units 2 and 3 at Peach Bottom Station. The cost to perform this work was approximately $900,000. The radiation exposure accumulated during chemical decontamination and repairs of all heat exchangers was approximately 215 man-rem. This exposure was spread among approximately 300 individuals with individual exposures ranging from 0.5 to 7 rem over a one year period

  11. A decontamination system for chemical weapons agents using a liquid solution on a solid sorbent

    International Nuclear Information System (INIS)

    A decontamination system for chemical warfare agents was developed and tested that combines a liquid decontamination reagent solution with solid sorbent particles. The components have fewer safety and environmental concerns than traditional chlorine bleach-based products or highly caustic solutions. The liquid solution, based on Decon GreenTM, has hydrogen peroxide and a carbonate buffer as active ingredients. The best solid sorbents were found to be a copolymer of ethylene glycol dimethacrylate and n-lauryl methacrylate (Polytrap 6603 Adsorber); or an allyl methacrylate cross-linked polymer (Poly-Pore E200 Adsorber). These solids are human and environmentally friendly and are commonly used in cosmetics. The decontaminant system was tested for reactivity with pinacolyl methylphosphonofluoridate (Soman, GD), bis(2-chloroethyl)sulfide (Mustard, HD), and S-(2-diisopropylaminoethyl) O-ethyl methylphosphonothioate (VX) by using NMR Spectroscopy. Molybdate ion (MoO4-2) was added to the decontaminant to catalyze the oxidation of HD. The molybdate ion provided a color change from pink to white when the oxidizing capacity of the system was exhausted. The decontaminant was effective for ratios of agent to decontaminant of up to 1:50 for VX (t1/2 ≤ 4 min), 1:10 for HD (t1/2 1/2 < 2 min). The vapor concentrations of GD above the dry sorbent and the sorbent with decontamination solution were measured to show that the sorbent decreased the vapor concentration of GD. The E200 sorbent had the additional advantage of absorbing aqueous decontamination solution without the addition of an organic co-solvent such as isopropanol, but the rate depended strongly on mixing for HD

  12. A concrete bio-decontamination process in nuclear substructures: effects of organic acids

    Energy Technology Data Exchange (ETDEWEB)

    Jestin, Aurelie [DTN/SMTM/LMTE CEN de Cadarache, Bat. 352, 13108 Saint Paul-lez-Durance (France)]|[Centre des Materiaux de Grande Diffusion, Ecole des Mines d' Ales, 6, avenue de Clavieres, 30319 Ales cedex (France); Thouvenot, Pascal [DTN/STRI/LTCD CEN de Cadarache, Bat. 352, 13108 Saint Paul-lez-Durance (France); Libert, Marie [DTN/SMTM/LMTE CEN de Cadarache, Bat. 352, 13108 Saint Paul-lez-Durance (France); Bournazel, Jean Pierre [Centre des Materiaux de Grande Diffusion, Ecole des Mines d' Ales 6, avenue de Clavieres, 30319 Ales Cedex (France)

    2004-07-01

    In the context of nuclear plants decommissioning, materials of the substructures involve important volumes of radioactive wastes. In this way, some effective and impressive processes of decontamination have to be proposed to reduce the wastes and so to reduce the costs. The phenomenon of biodegradation of concrete was characterized in the 40's, by C.D. Parker as an indirect attack of the material by acids resulting of micro-organism metabolism. Those involved micro-organisms are sulfur oxidizing bacteria producing sulfuric acid (Thiobacillus), nitrifying bacteria producing nitric acid (Nitrosomonas and Nitrobacter) and fungi producing organic acids. Mechanisms of bio-product sulfuric acid attack are well specified. Nevertheless, the presence of fungi have not really been described. The process of bio-decontamination of concrete leans on those mechanisms, it means a surface degradation which is contaminated by radionuclides. Our study concerns the effects of the three bio-product acids on three different concrete (CEM I paste and mortar and CEM V paste). First, the complexation by organic acids of calcium and radionuclides ({sup 137}Cs, Co and natural uranium) included in concrete will be shown. In a second time, the part of the bio-film formation needs to be defined. Preliminary work has concerned filamentous fungi biodegradation of non radioactive materials. Bio-film adhesion to the concrete, organic acids formation and structure (physical and chemical) of the corroded cement were characterised. The results show a thickness of degradation of more than 5 mm in 9 months and a significant penetration of the fungi filaments in the concrete. The initial content of calcium in this layer is totally leached and silica gel formation is observed. Results concerning same experiments conducted with bacteria, in order to compare their efficiency in terms of bio-decontamination, will be discussed. Some assays of modelling are also allowed, to predict the biodegradation of

  13. A concrete bio-decontamination process in nuclear substructures: effects of organic acids

    International Nuclear Information System (INIS)

    In the context of nuclear plants decommissioning, materials of the substructures involve important volumes of radioactive wastes. In this way, some effective and impressive processes of decontamination have to be proposed to reduce the wastes and so to reduce the costs. The phenomenon of biodegradation of concrete was characterized in the 40's, by C.D. Parker as an indirect attack of the material by acids resulting of micro-organism metabolism. Those involved micro-organisms are sulfur oxidizing bacteria producing sulfuric acid (Thiobacillus), nitrifying bacteria producing nitric acid (Nitrosomonas and Nitrobacter) and fungi producing organic acids. Mechanisms of bio-product sulfuric acid attack are well specified. Nevertheless, the presence of fungi have not really been described. The process of bio-decontamination of concrete leans on those mechanisms, it means a surface degradation which is contaminated by radionuclides. Our study concerns the effects of the three bio-product acids on three different concrete (CEM I paste and mortar and CEM V paste). First, the complexation by organic acids of calcium and radionuclides (137Cs, Co and natural uranium) included in concrete will be shown. In a second time, the part of the bio-film formation needs to be defined. Preliminary work has concerned filamentous fungi biodegradation of non radioactive materials. Bio-film adhesion to the concrete, organic acids formation and structure (physical and chemical) of the corroded cement were characterised. The results show a thickness of degradation of more than 5 mm in 9 months and a significant penetration of the fungi filaments in the concrete. The initial content of calcium in this layer is totally leached and silica gel formation is observed. Results concerning same experiments conducted with bacteria, in order to compare their efficiency in terms of bio-decontamination, will be discussed. Some assays of modelling are also allowed, to predict the biodegradation of concrete

  14. Development of standards for chemical and biological decontamination of buildings and structures affected by terrorism

    Energy Technology Data Exchange (ETDEWEB)

    Lumley, T.C.; Volchek, K.; Fingas, M. [Environment Canada, Ottawa, ON (Canada). Emergencies Science and Technology Division, Environmental Technology Centre, Science and Technology Branch; Hay, A.W.M. [Leeds Univ., Leeds (United Kingdom)

    2006-07-01

    Currently, there are no suitable standards for determining levels of safety when reoccupying a building that has been recommissioned following a biological or chemical attack. For that reason, this study focused on developing clean-up standards for decontaminating buildings and construction materials after acts of terrorism. Several parameters must be assessed when determining the course of action to decontaminate toxic agents and to rehabilitate facilities. First, the hazardous substance must be positively identified along with the degree of contamination and information on likely receptors. Potential exposure route is also a key consideration in the risk assessment process. A key objective of the study was to develop specific guidelines for ascertaining and defining clean. In particular, standards for chemical and biological agents that pose a real or potential risk for use as agents of terrorism will be developed. The selected agents for standards development were ammonia, fentanyl, malathion, mustard gas, potassium cyanide, ricin, sarin, hepatitis A virus, and bacillus anthracis. The standards will be developed by establishing the relationship between the amount of exposure and expected health effects; assessing real and potential risks by identifying individuals at risk and consideration of all exposure routes; and, characterizing the risk to determine the potential for toxicity or infectivity. For non-carcinogens, this was done through the analysis of other known guidelines. Cancer-slope factors will be considered for carcinogens. The standards will be assessed in the laboratory using animal models. The guidelines and standards are intended for first-responders and are scheduled for development by the end of 2006. 15 refs., 3 tabs.

  15. Distribution of radionuclides in the process of thermal decontamination of asphalt layers

    International Nuclear Information System (INIS)

    Autoradiographical analysis was used to investigate the radionuclides distribution in the process of thermal decontamination of asphalt. Cs-137 and Sr-90 were introduced in asphalt to simulate real contamination. It was found that penetration of these radionuclides is very small (about 1 mm). No significant emission of radionuclides was observed in the process of thermal decontamination

  16. Development of a suppression method for deposition of radioactive cobalt after chemical decontamination: enhancement of suppression performance for ferrite film coating

    International Nuclear Information System (INIS)

    For the last decade, chemical decontamination at the beginning of periodical inspection has been applied to many Japanese BWR plants in order to reduce radiation exposure. However, following the chemical decontamination, a rapid dose rate increase can be seen in some plants after just a few operation cycles. In the chemical decontamination, the oxides that incorporate 60Co are dissolved with reductive and oxidative chemical reagents. Therefore, some base metal of the piping appears on the surface after the decontamination. The oxide film growth rate of the piping during plant operation just after the decontamination is higher than that just before it. In addition, the concentration of radioactivity in reactor water of old plants is higher than that of new plants. Therefore, there is a possibility that the deposition amount of radioactivity on the piping when beginning an operating cycle of a just-decontaminated plant is higher than that just before the decontamination. Our objective was development of a more effective method to reduce the recontamination after the chemical decontamination. In the developed suppression method, called the Hitachi Ferrite Coat (Hi-F Coat) process, a fine ferrite coating film is formed on the base metal of the piping following the chemical decontamination. For the Hi-F Coat process, laboratory experiments confirmed a 60Co deposition reduction effect of 1/3 compared to non-coated specimens. The film structure of the ferrite coating was kept after soaking in high temperature water to simulate BWR conditions. The corrosion amount of the ferrite film-coated specimen was suppressed to about half that of a polished specimen. This ferrite film blocked diffusion of oxidants in the reactor water to the base metal and metal ions in the oxide film to the reactor water. However, the ferrite film incorporated a few dissolved 60Co ions, because ferrous ions in the ferrite film were exchangeable with 60Co ions in the simulated BWR condition water. In

  17. Critical review of advanced decontamination methods and their application and selection of methods suitable for disposal decontamination

    International Nuclear Information System (INIS)

    The report is structured as follows: (i) Critical review of advanced decontamination methods (chemical methods; electrochemical methods; mechanical methods - high-pressure water jet, abrasive methods, ultrasonic methods); (ii) Effective management of the entire decontamination process; (iii) Proposal for advanced decontamination methods suitable for disposal decontamination; and (iv) Effect of decontamination on waste management. It is concluded that (i) No single universal method exists for efficient decontamination of different materials, so a combination of methods must be used; (ii) The decontamination process should be optimised so that its cost should not exceed the cost of contaminated material handling without decontamination. The following methods were selected for additional examination: dry abrasive blasting, chemical decontamination, and ultrasonic decontamination. (P.A.)

  18. Laboratory and loop studies on chemical methodologies for decontamination of BWR coolant system surfaces

    International Nuclear Information System (INIS)

    Laboratory powder dissolution studies have been carried out on moderately sintered α-Fe2O3 (haematite) in citric acid - EDTA - ascorbic acid (CEA) mixtures of different compositions to identify the role of each component and arrive at an optimum composition to effect fast and quantitative dissolution. Experiments involving other reducing agents (in place of ascorbic acid) and chelating agents (in place of EDTA) revealed that there are no better substitutes for these two reagents. Samples prepared by heating ferrous hydroxide at different temperatures from 373 - 1073 K exhibited vastly different dissolution behaviour. chromium substituted iron oxides prepared by heating the coprecipitated mixture of the two hydroxides at high temperature in the required proportions were having low solubility in the CEA mixtures. Pretreatment of these by alkaline permanganate (AP) rendered them somewhat more soluble, particularly in CEA mixtures containing higher ascorbic acid concentrations. Comparative evaluation of the efficacy of single and multi-step AP-CEA and AP-LOMI processes has been made by carrying out experiments on decontamination of contaminated specimens of oxide coated SS-304 surfaces from the reactor water clean-up circuit piping of Tarapur Atomic Power Station (TAPS) BWRs both in one through and closed loop circulation modes. A methodology has been worked out for compaction of the radwastes arising from chemical decontaminations employing AP-CEA and AP-LOMI processes - this involves simply mixing of the AP and CEA or LOMI effluents in proper proportions and digesting at 363 K when MnO2 precipitates out carrying with it more that 99% of the radioactivity. (author)

  19. Aqueous media treatment and decontamination of hazardous chemical and biological substances by contact plasma

    International Nuclear Information System (INIS)

    Usage of non-equilibrium contact plasma for processes of decontamination and neutralization in conditions of manifestation of chemical, biological and radiation terrorism takes on special significance due to portability of equipment and its mobility in places where toxic liquid media hazardous for people's health are located. Processes of decontamination of aqueous media, seminated with pathogenic microorganisms and viruses, treatment of water containing toxic heavy metals, cyanides, surface-active substances, and heavy radioactive elements, are investigated. Examples of activation processes in infected water and toxic aqueous solutions present convincing evidence of the way, how new quality technological approach for achievement of high enough degree of the said media treatment is used in each specific case. Among new properties of water activated as a result of action of non-equilibrium contact plasma, it is necessary to mention presence of cluster structure, confirmed by well-known spectral and physical-chemical methods, presence of peroxide compounds, active particles and radicals. Anti-microbial activity which is displayed under action of plasma in aqueous media (chemically pure water, drinking water, aqueous solutions of sodium chloride, potassium iodide, as well as other inorganic compounds) towards wide range of pathogenic and conventionally pathogenic microorganisms allows use them as reliable, accessible and low-cost preparations for increasing the degree of safety of food products. Combination of such processes with known methods of filtration and ultra-filtration gives an efficient and available complex capable of withstanding any threats, which may arise for population and living organisms. Present-day level of machine-building, electrical engineering, and electronics allows predict creation of industrial plasma installations, adapted to conditions of various terrorist threats, with minimized power consumption and optimized technological parameters

  20. Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination--a review.

    Science.gov (United States)

    Oller, I; Malato, S; Sánchez-Pérez, J A

    2011-09-15

    Nowadays there is a continuously increasing worldwide concern for development of alternative water reuse technologies, mainly focused on agriculture and industry. In this context, Advanced Oxidation Processes (AOPs) are considered a highly competitive water treatment technology for the removal of those organic pollutants not treatable by conventional techniques due to their high chemical stability and/or low biodegradability. Although chemical oxidation for complete mineralization is usually expensive, its combination with a biological treatment is widely reported to reduce operating costs. This paper reviews recent research combining AOPs (as a pre-treatment or post-treatment stage) and bioremediation technologies for the decontamination of a wide range of synthetic and real industrial wastewater. Special emphasis is also placed on recent studies and large-scale combination schemes developed in Mediterranean countries for non-biodegradable wastewater treatment and reuse. The main conclusions arrived at from the overall assessment of the literature are that more work needs to be done on degradation kinetics and reactor modeling of the combined process, and also dynamics of the initial attack on primary contaminants and intermediate species generation. Furthermore, better economic models must be developed to estimate how the cost of this combined process varies with specific industrial wastewater characteristics, the overall decontamination efficiency and the relative cost of the AOP versus biological treatment. PMID:20956012

  1. Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination-A review

    International Nuclear Information System (INIS)

    Nowadays there is a continuously increasing worldwide concern for development of alternative water reuse technologies, mainly focused on agriculture and industry. In this context, Advanced Oxidation Processes (AOPs) are considered a highly competitive water treatment technology for the removal of those organic pollutants not treatable by conventional techniques due to their high chemical stability and/or low biodegradability. Although chemical oxidation for complete mineralization is usually expensive, its combination with a biological treatment is widely reported to reduce operating costs. This paper reviews recent research combining AOPs (as a pre-treatment or post-treatment stage) and bioremediation technologies for the decontamination of a wide range of synthetic and real industrial wastewater. Special emphasis is also placed on recent studies and large-scale combination schemes developed in Mediterranean countries for non-biodegradable wastewater treatment and reuse. The main conclusions arrived at from the overall assessment of the literature are that more work needs to be done on degradation kinetics and reactor modeling of the combined process, and also dynamics of the initial attack on primary contaminants and intermediate species generation. Furthermore, better economic models must be developed to estimate how the cost of this combined process varies with specific industrial wastewater characteristics, the overall decontamination efficiency and the relative cost of the AOP versus biological treatment.

  2. Corrosion resistance of welded joints of OX18H10T and 20K steels under multiple chemical decontamination conditions

    Energy Technology Data Exchange (ETDEWEB)

    Olschewski, M. (VEB Dampfkesselbau Hohenthurm bei Halle (German Democratic Republic))

    1985-07-01

    Some results of studies on the corrosion behaviour of welded joints of materials typical for nuclear power plants under multiple chemical decontamination conditions are presented and interpreted. The studies were restricted to clean unirradiated samples. Objective of this work was to specify frequency criteria for decontaminating primary circuit equipment.

  3. The first chemical decontamination system for decommissioning in italy 'Phadec Technology' in Caorso

    Energy Technology Data Exchange (ETDEWEB)

    Benvenuto, F.; Lupu, M.; Mazzoni, C.; Orlandi, S.; Ricci, C. [Nuclear System Engineering Department, Ansaldo Nucleare S.p.A., Corso Perrone 25, 16161 Genova (Italy)

    2010-07-01

    The PHADEC Process (Phosphoric Acid Decontamination Process) is designed for surface decontamination of steel scrap using phosphoric acid. It has been successfully installed at Caorso NPP (Piacenza, Italy) at the end of 2008. The decontamination of steel scrap is done by removing the radioactivity localized in a few micron thickness from the surface with an electro-polishing (Stainless Steel) or acid pickling (Carbon Steel) treatment in basins filled with 40%-Phosphoric Acid that is regenerated and recycled for reuse. (authors)

  4. Decontamination of process equipment using recyclable chelating solvent

    Energy Technology Data Exchange (ETDEWEB)

    Jevec, J.; Lenore, C.; Ulbricht, S. [Babcock & Wilcox, Co., R& DD, Alliance, OH (United States)

    1995-10-01

    The Department of Energy (DOE) is now faced with the task of meeting decontamination and decommissioning obligations at numerous facilities by the year 2019. Due to the tremendous volume of material involved, innovative decontamination technologies are being sought that can reduce the volumes of contaminated waste materials and secondary wastes requiring disposal. This report describes the results of the performance testing of chelates and solvents for the dissolution of uranium.

  5. Evaluation of six decontamination processes on actinide and fission product contamination

    International Nuclear Information System (INIS)

    In-situ decontamination technologies were evaluated for their ability to: (1) reduce equipment contamination levels to allow either free release of the equipment or land disposal, (2) minimize residues generated by decontamination, and (3) generate residues that are compatible with existing disposal technologies. Six decontamination processes were selected. tested and compared to 4M nitric acid, a traditional decontamination agent: fluoroboric acid (HBF4), nitric plus hydrofluoric acid, alkaline persulfate followed by citric acid plus oxalic acid, silver(II) plus sodium persulfate plus nitric acid, oxalic acid plus hydrogen peroxide plus hydrofluoric acid, and electropolishing using nitric acid electrolyte. The effectiveness of these solutions was tested using prepared 304 stainless steel couponds contaminated with uranium, plutonium, americium, or fission products. The decontamination factor for each of the solutions and tests conditions were determined; the results of these experiments are presented

  6. Chemical Decontamination of Campylobacter jejuni on Chicken Skin and Meat

    DEFF Research Database (Denmark)

    Riedel, Charlotte Tandrup; Brøndsted, Lone; Rosenquist, Hanne;

    2009-01-01

    This study evaluated the effectiveness of 11 chemical compounds to reduce Campylobacter jejuni on chicken skin and meat samples dipped in chemical solutions. Treatment of skin samples for 1 min using tartaric acid (2%) and caprylic acid sodium salt (5%) caused reductions of C. jejuni NCTC11168...... chlorhexidine diacetate salt hydrate (1%). The most effective compounds were cetylpyridinium chloride (0.5%) and benzalkonium chloride (1%) (>4.2 log). However, when these treated samples were stored for 24 h at 5°C, cetylpyridinium chloride, benzalkonium chloride, and grapefruit seed extract were less...... effective, indicating that some cells may recover after a 1-min treatment with these chemicals. An increase in treatment time to 15 min resulted in higher effectiveness of trisodium phosphate and formic acid. Interestingly, when reduction of the C. jejuni population was compared on chicken skin and meat...

  7. Chemical Decontamination of Campylobacter jejuni on Chicken Skin and Meat

    DEFF Research Database (Denmark)

    Riedel, Charlotte Tandrup; Brøndsted, Lone; Rosenquist, Hanne;

    2009-01-01

    This study evaluated the effectiveness of 11 chemical compounds to reduce Campylobacter jejuni on chicken skin and meat samples dipped in chemical solutions. Treatment of skin samples for 1 min using tartaric acid (2%) and caprylic acid sodium salt (5%) caused reductions of C. jejuni NCTC11168......, which were not significantly different from the reduction obtained by sterile water (0.95 log). Statistically larger reductions (1.57 to 3.81 log) were caused by formic acid (2%), lactic acid (2.5%), trisodium phosphate (10%), capric acid sodium salt (5%), grapefruit seed extract (1......, sterile water and lactic acid caused considerably larger reductions on skin than on meat, whereas the opposite was seen for caprylic acid sodium salt. In conclusion, this study has identified chemicals with substantial reduction effects on C. jejuni. The analysis has further emphasized that treatment time...

  8. Autonomous bio-chemical decontaminator (ABCD) against weapons of mass destruction

    Science.gov (United States)

    Hyacinthe, Berg P.

    2006-05-01

    The proliferation of weapons of mass destruction (WMD) and the use of such elements pose an eminent asymmetric threat with disastrous consequences to the national security of any nation. In particular, the use of biochemical warfare agents against civilians and unprotected troops in international conflicts or by terrorists against civilians is considered as a very peculiar threat. Accordingly, taking a quarantine-before-inhalation approach to biochemical warfare, the author introduces the notion of autonomous biochemical decontamination against WMD. In the unfortunate event of a biochemical attack, the apparatus proposed herein is intended to automatically detect, identify, and more importantly neutralize a biochemical threat. Along with warnings concerning a cyber-WMD nexus, various sections cover discussions on human senses and computer sensors, corroborating evidence related to detection and neutralization of chemical toxins, and cyber-assisted olfaction in stand alone, peer-to-peer, and network settings. In essence, the apparatus can be used in aviation and mass transit security to initiate mass decontamination by dispersing a decontaminant aerosol or to protect the public water supply against a potential bioterrorist attack. Future effort may involve a system-on-chip (SoC) embodiment of this apparatus that allows a safer environment for the emerging phenomenon of cyber-assisted olfaction and morph cell phones into ubiquitous sensors/decontaminators. Although this paper covers mechanisms and protocols to avail a neutralizing substance, further research will need to explore the substance's various pharmacological profiles and potential side effects.

  9. ADVANCED OXIDATION PROCESSES FOR FOOD INDUSTRIAL WASTEWATER DECONTAMINATION

    OpenAIRE

    Dorota Krzemińska; Ewa Neczaj; Gabriel Borowski

    2015-01-01

    High organic matter content is a basic problem in food industry wastewaters. Typically, the amount and composition of the effluent varies considerably. In the article four groups of advanced processes and their combination of food industry wastewater treatment have been reviewed: electrochemical oxidation (EC), Fenton’s process, ozonation of water and photocatalytic processes. All advanced oxidation processes (AOP`s) are characterized by a common chemical feature: the capability of exploiting...

  10. Development of modified electrochemical process for decontamination of radioactive metal waste

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. H.; Lim, Y. K.; Yang, H. Y.; Shin, S. W.; Song, M. J. [Korea Hydro and Nuclear Power Co., Taejon (Korea, Republic of)

    2003-07-01

    In order to develop an effective metal decontamination technique, some experiments were carried out using a modified electrochemical decontamination process. The operational parameters such as current density and reaction time in the electrolytic process were investigated to decide the optimum conditions for the decontamination of the carbon steel generated from nuclear power plants. Decontamination efficiency of the modified electrolytic process, when applied to carbon steel, was much higher than that of the conventional one. In the case of surface contamination, most of the radioactivity is localized within a 10 {mu}m thickness from the surface, in general. Through a series of experiments, 16{mu}m thickness changes were found in carbon steel with the current density and reaction time as 0.4 A/cm{sup 2} and 30 minute, respectively. Based on the results of small modified electrochemical experiments, the large lab scale electrochemical decontamination system was designed and manufactured. In particular, it is not necessary to install an extra washing tank because an ultrasonic oscillator is attached to the bottom of the electrolytic decontamination reactor. This system was also designed to decontaminate both sides of the metal waste simultaneously.

  11. Decontamination and size reduction of plutonium contaminated process exhaust ductwork and glove boxes

    International Nuclear Information System (INIS)

    The Los Alamos National Laboratory (LANL) Decommissioning Program has decontaminated and demolished two filter plenum buildings at Technical Area 21 (TA-21). During the project a former hot cell was retrofitted to perform decontamination and size reduction of highly Pu contaminated process exhaust (1,100 ft) and gloveboxes. Pu-238/239 concentrations were as high a 1 Ci per linear foot and averaged approximately 1 mCi/ft. The Project decontamination objective was to reduce the plutonium contamination on surfaces below transuranic levels. If possible, metal surfaces were decontaminated further to meet Science and Ecology Group (SEG) waste classification guidelines to enable the metal to be recycled at their facility in oak Ridge, Tennessee. Project surface contamination acceptance criteria for low-level radioactive waste (LLRW), transuranic waste, and SEG waste acceptance criteria will be presented. Ninety percent of all radioactive waste for the project was characterized as LLRW. Twenty percent of this material was shipped to SEG. Process exhaust and glove boxes were brought to the project decontamination area, an old hot cell in Building 4 North. This paper focuses on process exhaust and glovebox decontamination methodology, size reduction techniques, waste characterization, airborne contamination monitoring, engineering controls, worker protection, lessons learned, and waste minimization. Decontamination objectives are discussed in detail

  12. Lactic acid as a decontaminant in slaughter and processing procedures.

    Science.gov (United States)

    Snijders, J M; van Logtestijn, J G; Mossel, D A; Smulders, F J

    1985-10-01

    An attempt was made to interrelate the data obtained in experiments conducted by our Department along beef, veal and pig slaughter lines, using lactic acid (LA) for the decontamination of carcasses, cold and hot boned primal cuts, slaughter byproducts, and butcher's knives. First and foremost it was observed, that provided Good Manufacturing Practices are strictly followed, the microbial load of carcass surfaces will be substantially reduced. LA-decontamination may result in an additional reduction. Since in the early post-mortem period bacteria are not yet attached to the meat surface, LA-decontamination should preferably be applied to the hot carcass. It was demonstrated that, dependent on mode and duration of application, LA sprays not exceeding 1% v/v (beef), 1.25% v/v (veal) and 1.5% v/v (pork) resulted in acceptable carcass colour scores. Blood spots, which are particularly prone to discolouration by lactic acid application, should be removed at an early post-mortem stage e.g. by strong showering. The difference in surface pH between LA-treated and control carcasses disappeared within 72 hours post-mortem. Veal longissimus chops treated with LA solutions up to 2% v/v were not identified by a consumer taste panel as significantly different from controls. The 'immediate' bactericidal effect of LA-decontamination for beef, veal and pig carcasses, as well as for pig liver and veal brain, amounted to approximately 1.5 log cycles for the aerobic colony counts, strongly dependent on substrate and conditions of decontamination. In addition, a 'delayed' bacteriostatic effect was observed during storage, which is probably the result of a prolonged lag phase of acid-injured micro-organisms surviving lactic acid decontamination.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:4071948

  13. Application of a chemical ion exchange model to transport cask surface decontamination

    International Nuclear Information System (INIS)

    Radionuclide contamination of stainless steel surfaces occurs during submersion in a spent fuel storage pool, Subsequent release or desorption of these contaminants from a nuclear fuel transportation cask surface under varying environmental conditions occasionally results in the phenomenon known as contamination 'weeping'. Experiments have been conducted to determine the applicability of a chemical ion exchange model to characterise the problem of cask contamination and release. Surface charge characteristics of Cr2O3 and stainless steel (304) powders have been measured to determine the potential for ion exchange at metal oxide-aqueous interfaces. The solubility of Co and Cs electrolytes at varying pH and the absorption characteristics of these ions on Cr2O3 and stainless steel powders in aqueous slurries have been studied. Experiments show that Co ions do reversibly absorb on these powder surfaces and, more specifically, that absorption occurs in the nominal pH range (pH = 4-6) of a boric acid moderated spent fuel pool. Desorption has been demonstrated to occur at pH≤3. Cs+ ions also have been shown to have an affinity for these surfaces although the reversibility of Cs+ bonding by H+ ion exchange has not been fully demonstrated. These results have significant implications for effective decontamination and coating processes used on nuclear fuel transportation casks. (author)

  14. Application of a chemical ion exchange model to transport cask surface decontamination

    International Nuclear Information System (INIS)

    Radionuclide contamination of stainless steel surfaces occur during submersion in a spent fuel storage pool. Subsequent release or desorption of these contaminants from a nuclear fuel transportation cask surface under varying environmental conditions occasionally results in the phenomenon known as contamination ''weeping.'' Experiments have been conducted to determine the applicability of a chemical ion-exchange model to characterize the problem of cask contamination and release. Surface charge characteristics of Cr2O3 and stainless steel (304) powders have been measured to determine the potential for ion exchange at metal oxide -- aqueous interfaces. The solubility of Co and Cs electrolytes at varying pH and the absorption characteristics of these ions on Cr2O3 and stainless steel powders in aqueous slurries have been studied. Experiments show that Co ions do reversibly adsorb on these powder surfaces and, more specifically, that adsorption occurs in the nominal pH range (pH = 4--6) of a boric acid-moderated spent fuel pool. Desorption has been demonstrated to occur at pH ≤ 3. Cs ions also have been shown to have an affinity for these surfaces although the reversibility of Cs+ bonding by H+ ion exchange has not been fully demonstrated. These results have significant implications for effective decontamination and coating processes used on nuclear fuel transportation casks. 8 refs., 5 figs

  15. Chemical analysis of bleach and hydroxide-based solutions after decontamination of the chemical warfare agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX).

    Science.gov (United States)

    Hopkins, F B; Gravett, M R; Self, A J; Wang, M; Chua, Hoe-Chee; Hoe-Chee, C; Lee, H S Nancy; Sim, N Lee Hoi; Jones, J T A; Timperley, C M; Riches, J R

    2014-08-01

    Detailed chemical analysis of solutions used to decontaminate chemical warfare agents can be used to support verification and forensic attribution. Decontamination solutions are amongst the most difficult matrices for chemical analysis because of their corrosive and potentially emulsion-based nature. Consequently, there are relatively few publications that report their detailed chemical analysis. This paper describes the application of modern analytical techniques to the analysis of decontamination solutions following decontamination of the chemical warfare agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX). We confirm the formation of N,N-diisopropylformamide and N,N-diisopropylamine following decontamination of VX with hypochlorite-based solution, whereas they were not detected in extracts of hydroxide-based decontamination solutions by nuclear magnetic resonance (NMR) spectroscopy or gas chromatography-mass spectrometry. We report the electron ionisation and chemical ionisation mass spectroscopic details, retention indices, and NMR spectra of N,N-diisopropylformamide and N,N-diisopropylamine, as well as analytical methods suitable for their analysis and identification in solvent extracts and decontamination residues. PMID:24633585

  16. ADVANCED OXIDATION PROCESSES FOR FOOD INDUSTRIAL WASTEWATER DECONTAMINATION

    Directory of Open Access Journals (Sweden)

    Dorota Krzemińska

    2015-02-01

    Full Text Available High organic matter content is a basic problem in food industry wastewaters. Typically, the amount and composition of the effluent varies considerably. In the article four groups of advanced processes and their combination of food industry wastewater treatment have been reviewed: electrochemical oxidation (EC, Fenton’s process, ozonation of water and photocatalytic processes. All advanced oxidation processes (AOP`s are characterized by a common chemical feature: the capability of exploiting high reactivity of HO• radicals in driving oxidation processes which are suitable for achieving decolonization and odour reduction, and the complete mineralization or increase of bioavailability of recalcitrant organic pollutants.

  17. Experiences during the decontamination process of areas surrounding to Fukushima

    International Nuclear Information System (INIS)

    In this work the experience gained during the decontamination of areas surrounding to Fukushima NPP, rugged during the earthquake and tsunami in 2011 and caused the contamination with fission products in these areas is described. Actions taken by the Japanese government are reported and some of the techniques used, the intervention levels and the progress made and disposal techniques considered are presented. (Author)

  18. Effect of gamma irradiation on microbial decontamination, and chemical and sensory characteristic of lycium fruit

    International Nuclear Information System (INIS)

    Lycium fruit, popular traditional Chinese medicine and food supplement generally is ingested uncooked, was exposed to several doses of gamma irradiation (0-14 kGy) to evaluate decontamination efficiency, changes in chemical composition, and changes in sensory characteristic. In this study, lycium fruit specimens contained microbial counts of 3.1x103-1.7x105 CFU/g and 14 kGy was sufficient for microbial decontamination. Before irradiation, the main microbe isolated from lycium fruit was identified as a strain of yeast, Cryptococcus laurentii. After 10 kGy of irradiation, a Gram-positive spore-forming bacterium, Bacillus cereus, was the only survivor. The first 90% reduction (LD9) of C. laurentii and B. cereus was approximately 0.6 and 6.5 kGy, respectively, the D1 doses of C. laurentii and B. cereus was approximately 0.6 and 1.7 kGy, respectively. After 14 kGy irradiation, except the vitamin C content, other chemical composition (e.g., crude protein, β-carotene, riboflavin, fructose, etc.) and the sensory characteristic of lycium fruit specimens did not have significant changes. In conclusion, 14 kGy is the optimal decontamination dose for lycium fruit for retention of its sensory quality and extension of shelf life

  19. Decontamination of Beaver Valley steam generators using the CAN-DEREM process

    International Nuclear Information System (INIS)

    Three steam generator channelheads at the Beaver Valley Unit 1 Power Station were decontaminated in September and October of 1989 using the CAN-DEREM process. With system volumes of about 12 000 L for each steam generator, this was the first major application of the CAN-DEREM process, following closely after the successful 1989 April CAN-DEREM decontamination of a 1000 L Indian Point-2 recirculating heat exchanger. The Successful applications were the culmination of several years of laboratory study directed at assessing and subsequently altering the CAN-DECON formulation. The studies were initiated after the CAN-DECON process was implicated in causing intergranular attack in sensitized 304 stainless steel after the Peach Bottom-2 recirculating water cooling unit (RWCU) decontamination in early 1984. The degree of attack was similar to that observed on piping from several early Boiling Water Reactors, and this was the only instance of reactor artifacts revealing intergranular attack after a CAN-DECON decontamination. Nevertheless, utilities were reluctant to use CAN-DECON after the Peach Bottom-2 decontamination. In response the utility concerns, the CAN-DECON formulation was modified to produce the even-less-corrosive CAN-DEREM formulation. In this report, the results of the laboratory corrosion study are briefly summarized along with the results of pre-decontamination assessments using Beaver Valley specimens, and the results of the actual steam generator decontaminations. The results show quite clearly the decontamination effectiveness and the low corrosiveness of the CAN-DEREM process. As a result of the successful laboratory program and demonstrations, the CAN-DEREM process is currently being qualified for use in full heat transport systems of Pressurized Water Reactors in a major program being carried out by Westinghouse in the United States

  20. Purification of radioactive decontamination liquids from NPP Paks with reactive adsorption and ion-exchange process

    International Nuclear Information System (INIS)

    In nuclear power plant Paks, Hungary, alkaline oxidative (NaOH, KMnO4, H2O) and acidic reductive (citric- and oxalic acid, water) liquids are using for the decontamination of primary circuit equipment (main liquid circulating pumps, steam generators, pipelines etc). The above mentioned decontamination liquids are containing 110mAg, 95Nb, 54Mn, 58 Co, 60Co, 51 Cr, 124 Sb radioisotopes, summarized radioactivity is between 103-8x104 kBq/dm3 liquid. The decontamination liquid can be cleaned with reactive adsorption (active carbon) and ion-exchange process at elevated temperature (333-368 K) in multilayered columns. After purification the summarized radioactivity for 54Mn, 60Co, and 110mAg are in the outlet liquid below 1 kBq/dm3. Decontamination factor DF≅103-104, volumetric reduction factor VRF≅50-500

  1. Decontamination and disposal of PCB wastes.

    OpenAIRE

    Johnston, L E

    1985-01-01

    Decontamination and disposal processes for PCB wastes are reviewed. Processes are classed as incineration, chemical reaction or decontamination. Incineration technologies are not limited to the rigorous high temperature but include those where innovations in use of oxident, heat transfer and residue recycle are made. Chemical processes include the sodium processes, radiant energy processes and low temperature oxidations. Typical processing rates and associated costs are provided where possible.

  2. Chemical process hazards analysis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

  3. Process and device to decontaminate a nuclear reactor steam generator

    International Nuclear Information System (INIS)

    The electropolishing technique is used to decontaminate the microtubes of the tube-plate of a steam generator. The present invention proposes and describes a tool; this tool is adapted to a spider type support or another one, and, with the aid of four controled heads with mobile hollow electrode and associated pipes, allow to insert and position an electrode per head inside each of the four microtubes then to inject and extract the electrolyte, the rinsing solution and the contaminated effluents. The tool can be adapted on any handling equipment to treat the surface of any tube

  4. Electromagnetic mixed waste processing system for asbestos decontamination

    International Nuclear Information System (INIS)

    DOE sites contain a broad spectrum of asbestos materials (cloth, pipe lagging, sprayed insulation and other substances) which are contaminated with a combination of hazardous and radioactive wastes due to its use during the development of the U.S. nuclear weapons complex. These wastes consist of cutting oils, lubricants, solvents, PCB's, heavy metals and radioactive contaminants. The radioactive contaminants are the activation, decay and fission products of DOE operations. The asbestos must be converted by removing and separating the hazardous and radioactive materials to prevent the formation of mixed wastes and to allow for both sanitary disposal and effective decontamination. Currently, no technology exists that can meet these sanitary and other objectives

  5. Decontamination of surfaces contaminated by radioactivity

    International Nuclear Information System (INIS)

    The framework of the dissertation has been developed by the combination of research results at EIR/PSI and their subsequent application and further development as an entrepreneur at decontamination jobs throughout the nuclear industry. The work presented is arranged into 3 categories correpsonding to the chronological sequence of the decontamination process: 1) Decontamination process: preliminary investigations, theoretical elements about the formation of the contamination-layer and the decontamination mechanisms, analysis of activity profiles in contaminated materials, scale-up issues: laboratory-industrial project and decontamination model, method for treatment of boric acid and its use as deco-medium, economic aspects of the decontamination problem and test method for decontamination processes. 2) Description of the newly developed decontamination processes: formic acid/formaldehyd deco-process for steels. Key advantages: effective decontamination with generation of small quantities of an easily disposable secondary waste, universal DECOHA-decontamination process for metals on HBF4-basis for decommissioning. Key advantages: minimal radiation exposure for personnel, total regeneration of the deco-medium, minimal secondary waste, low-investment- and operating costs. This process was transfered to Recytec S.A. and was selected by UDSSR and, subsequently, a decontamination plant has been built in Chernobyl for the processing of 5 tons per day of stainless steel for unrestricted use, chemical decontamination process for concrete and brickwork. Key advantages: quick, economical, independent of geometry, little secondary waste, no damage to concrete surface. 3) Method for free release measurement of decontaminated materials for unrestricted use, by modification of geometry. The mentioned innovation have been applied several times in industry, for instance on the nuclear ship 'Otto Hahn', in the nuclear power plants Niederaichbach, Lingen, Juelich, in a Swiss watch

  6. Definition of a concrete bio-decontamination process in nuclear substructures

    International Nuclear Information System (INIS)

    The decontamination of sub-structural materials represents a stake of high-importance because of the high volume generated. It is agreed then to propose efficient and effective processes. The process of bio-decontamination of the hydraulic binders leans on the mechanisms of biodegradation of concretes, phenomenon characterized in the 40's by an indirect attack of the material by acids stem from the microbial metabolism: sulphuric acid (produced by Thiobacillus), nitric acid (produced by Nitrosomonas and Nitrobacter) and organic acids (produced by fungi). The principle of the bio-decontamination process is to apply those micro-organisms on the surface of the contaminated material, in order to damage its surface and to retrieve the radionuclides. One of the multiple approaches of the process is the use of a bio-gel that makes possible the micro-organisms application. (author)

  7. Demonstration and evaluation of the CORPEX trademark Nuclear Decontamination Process, Technical task plan No. SR152005. Final Report

    International Nuclear Information System (INIS)

    In June, 1995, the Decontamination and Decommissioning Focus Area funded a demonstration of the CORPEX Nuclear Decontamination Process in an Old Metallography Laboratory glovebox at the Savannah River Site. The objective of the demonstration was to prove the effectiveness of a new and innovative technology that would reduce the risks associated with future cleanups of plutonium-238 contaminated equipment in the DOE complex. After facility and vendor preparations in support of the demonstration, Westinghouse Savannah River Company (WSRC) was informed by the vendor that the chemistry proposed for use in the decontamination process was not effective on sintered plutonium, which was the form of plutonium in the selected glovebox. After further technical evaluation, the demonstration was canceled. This report describes the work performed in support of the demonstration and the present status of the project. The CORPEX chemical process is a nondestructive cleaning method that removes only the contaminant and the matrix that fixed the contaminant to the surface. It does not damage the substrate. The cleaning agent is destroyed by the addition of proprietary oxidizers, leaving water, carbon dioxide and nitrogen gases, and a sludge as waste

  8. Atmospheric pressure plasma jet for bacterial decontamination and property improvement of fruit and vegetable processing wastewater

    Science.gov (United States)

    Mohamed, Abdel-Aleam H.; Shariff, Samir M. Al; Ouf, Salama A.; Benghanem, Mohamed

    2016-05-01

    An atmospheric pressure plasma jet was tested for decontaminating and improving the characteristics of wastewater derived from blackberry, date palm, tomato and beetroot processing industries. The jet was generated by blowing argon gas through a cylindrical alumina tube while a high voltage was applied between two electrodes surrounding the tube. Oxygen gas was mixed with argon at the rate of 0.2% and the argon mass flow was fixed at 4.5 slm. Images show that the generated plasma jet penetrated the treated wastewater samples. Plasma emission spectra show the presence of O and OH radicals as well as excited molecular nitrogen and argon. Complete decontamination of wastewater derived from date palm and tomato processing was achieved after 120 and 150 s exposure to the plasma jet, respectively. The bacterial count of wastewater from blackberry and beetroot was reduced by 0.41 and 2.24 log10 colony-forming units (CFU) per ml, respectively, after 180 s. Escherichia coli was the most susceptible bacterial species to the cold plasma while Shigella boydii had the minimum susceptibility, recording 1.30 and 3.34 log10 CFU ml‑1, respectively, as compared to the 7.00 log10 initial count. The chemical oxygen demands of wastewater were improved by 57.5–93.3% after 180 s exposure to the plasma jet being tested. The endotoxins in the wastewater were reduced by up to 90.22%. The variation in plasma effectiveness is probably related to the antioxidant concentration of the different investigated wastewaters.

  9. Evaluation of a process for the decontamination of radioactive hotspots due to activated stellite particles

    International Nuclear Information System (INIS)

    Some of the Indian PHWRs which used stellite balls in the ball and screw mechanism of the adjustor rod drive mechanism in the moderator circuit encountered high radiation field in moderator system due to 60Co. Release of particulate stellite was responsible for the hotspots besides the general uniform contamination of internal surfaces with 60Co. Extensive laboratory studies have shown that it is possible to dissolve these stellite particles by adopting a three step redox process with permanganic acid as the oxidizing agent. These investigations with inactive stellite in powder form helped to optimize the process conditions. Permanganic acid was found to have the highest dissolution efficiency as compared to alkaline and nitric acid permanganate. The concentration of the permanganate was also found to be an important factor in deciding the efficiency of the dissolution of stellite. The efficiency of dissolution as a function of permanganic acid concentration showed a maximum. This process was evaluated for its effectiveness on components from nuclear power plants. Component decontamination was carried out on adjustor rod drive assemblies which had 60Co activity due to stellite particles with the radiation field ranging from 3 R/h to 20 R/h. They were subjected to decontamination with permanganic acid as oxidizing agent, followed by citric acid and a solution containing EDTA, ascorbic acid and citric acid in 4:3:3 ratio by weight (EAC) as reducing formulations. A test rig was fabricated for this purpose. In the first trial, one adjustor rod drive mechanism was subjected to decontamination. After two cycles of treatment, an average decontamination factor (DF) of 6.8, with a maximum DF of 11.7 was achieved. The same process but one cycle was repeated on eight more adjustor rod drive mechanisms. 60Co activity in the range of 13 - 93 mCi was removed from these adjustor rods. Loose contamination of the order of 30000 - 40000 dpm/cm2 observed before decontamination got

  10. Processes that contribute to radiocesium decontamination of feta cheese

    International Nuclear Information System (INIS)

    In a series of experiments, the transfer of radiocesium from ovine milk to feta cheese was investigated through modifications of the standard cheese making procedure. All variations explored showed no significant change in the percentage of radiocesium transfer and the milk-to-cheese transfer coefficient was determined as f=.79 plus/minus .04 L.kg-1. It is concluded that cesium, like the rest of the alkali metals, remains in the water phase and thus follows very closely the distribution of moisture into the products of cheese making. The possibility of radiocesium decontamination of mature feta during the customary storage of the product in brine was also explored in a second series of experiments. The theoretical model employed in the analysis of cesium transport from feta to brine is presented in the Appendix to this paper. Predictions of the model were validated by experiments. A procedure is thus proposed for decontaminating mature feta during storage through successive replacements of the storage medium. Nomograms are presented for the determination of the optimum time interval between changes of the brine and the radiocesium concentration remaining in the feta. Changes in the properties of the product induced by the proposed treatment were also investigated with respect to composition, taste, and overall quality

  11. Decontamination of radioactive process waste water by adsorbing colloid flotation

    International Nuclear Information System (INIS)

    Adsorbing colloid flotation was tested to remove 144Ce, 60Co, 65Zn, and 89Sr from radioactive process waste water. Potassium oleate was used as the collector, and Fe(III) hydroxide, Al(III) hydroxide or Co(II) hydroxide as the coprecipitant. Under optimal conditions, removals exceeding 99% could be achieved for 65Zn with any of the tested coprecipitants, for 144Ce with Fe(III) and Co(II) hydroxides and for 60Co with only Co(II) hydroxide. For 89Sr removals of 90% could be achieved only with Fe(III) hydroxide. The adsorbing colloid flotation process was compared with both chemical precipitation and ion exchange. Advantages of adsorbing colloid flotation are discussed. (author)

  12. A chemical cleaning process with Cerium (IV)-sulfuric acid

    International Nuclear Information System (INIS)

    A chemical cleaning process with a high decontamination factor (DF) is requested for decommissioning. Usually, the process should be qualified with the features, such as the feasibility of treating large or complicated form waste, the minimization of secondary waste. Therefore, a powerful technique of redox decontamination process with Ce+4/Ce+3 has been studied at INER. First, the redox of cerium ion with electrolytic method was developed. Two kinds of home-made electrolyzer were used. One is with an ion-exchange membrane, and the other one is with a ceramic separator. Second, factors influencing the decontamination efficiency, such as the concentration of Ce+4, regeneration current density, temperature, acidity of solution were all studied experimentally, and the optimum conditions were specified too. Third, the liquid waste recycling and treatment were developed with electrodialysis and ion-exchange absorption methods. Finally, the hot test was proceeded with the contaminated metals from DCR of nuclear facility. (author)

  13. Decontamination of alpha contaminated metallic waste by cerium IV redox process

    International Nuclear Information System (INIS)

    Decontamination of alpha contaminated metallic waste is an important aspect in the management of waste generated during dismantling and decommissioning of nuclear facilities. Present work on cerium redox process targets decontamination of alpha contaminated metallic waste till it qualifies for the non alpha waste category for disposal in near surface disposal facility. Recovery of the alpha radio nuclides and cerium from aqueous secondary waste streams was also studied deploying solvent extraction process and established. The alpha-lean secondary waste stream has been immobilised in cement based matrix for final disposal. (author)

  14. Electromagnetic mixed waste processing system for asbestos decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Kasevich, R.S. [KAI Technologies, Inc., Portsmouth, NH (United States); Vaux, W.G. [Westinghouse Electric Corp., Pittsburgh, PA (United States); Nocito, T. [Ohio DSI Corp., New York (United States)

    1995-10-01

    DOE sites contain a broad spectrum of asbestos materials (cloth, pipe lagging, sprayed insulation and other substances) which are contaminated with a combination of hazardous and radioactive wastes due to its use during the development of the U.S. nuclear weapons complex. These wastes consist of cutting oils, lubricants, solvents, PCB`s, heavy metals and radioactive contaminants. The radioactive contaminants are the activation, decay and fission products of DOE operations. The asbestos must be converted by removing and separating the hazardous and radioactive materials to prevent the formation of mixed wastes and to allow for both sanitary disposal and effective decontamination. Currently, no technology exists that can meet these sanitary and other objectives.

  15. Decontamination of chemical and biological warfare (CBW) agents using an atmospheric pressure plasma jet (APPJ)

    International Nuclear Information System (INIS)

    The atmospheric pressure plasma jet (APPJ) [A. Schuetze et al., IEEE Trans. Plasma Sci. 26, 1685 (1998)] is a nonthermal, high pressure, uniform glow plasma discharge that produces a high velocity effluent stream of highly reactive chemical species. The discharge operates on a feedstock gas (e.g., He/O2/H2O), which flows between an outer, grounded, cylindrical electrode and an inner, coaxial electrode powered at 13.56 MHz rf. While passing through the plasma, the feedgas becomes excited, dissociated or ionized by electron impact. Once the gas exits the discharge volume, ions and electrons are rapidly lost by recombination, but the fast-flowing effluent still contains neutral metastable species (e.g., O2*, He*) and radicals (e.g., O, OH). This reactive effluent has been shown to be an effective neutralizer of surrogates for anthrax spores and mustard blister agent. Unlike conventional wet decontamination methods, the plasma effluent does not cause corrosion and it does not destroy wiring, electronics, or most plastics, making it highly suitable for decontamination of sensitive equipment and interior spaces. Furthermore, the reactive species in the effluent rapidly degrade into harmless products leaving no lingering residue or harmful by-products. copyright 1999 American Institute of Physics

  16. Decontamination of carbonate containing process streams in a reprocessing plant by chromatography

    International Nuclear Information System (INIS)

    Results of a new procedure are presented to decontaminate carbonate process streams containing fission products and actinides occurring in burned up fuel elements combining a filtration and chromatographic step. First the unsoluble or hydrolysed plutonium and fission product species are separated by a filter mounted in front of a Bio-Rex 5 resin column which fixes all activities remaining in the filtrate. The solution passing the column is decontaminated greater than 99%. The recovery of the actinides and fission products from the resin and the filter is performed by 4 M nitric acid. (orig./PW)

  17. Decontamination of protective clothing against radioactive contamination

    International Nuclear Information System (INIS)

    The aim of this study is to describe the experimental results of external surface mechanical decontamination of the studied materials forming selected suits. Seven types of personal protective suits declaring protection against radioactive aerosol contamination in different price ranges were selected for decontamination experiments. The outcome of this study is to compare the efficiency of a double-step decontamination process on various personal protective suits against radioactive contamination. A comparison of the decontamination effectiveness for the same type of suit, but for the different chemical mixtures (140La in a water-soluble or in a water-insoluble compound), was performed. (authors)

  18. Surface decontamination as a technical and technological discipline

    International Nuclear Information System (INIS)

    The chemical and physical properties are described of the surface, the contaminant and the decontamination system, i.e., the three components of the decontamination process. A survey is presented of decontamination processes for a solid contaminant and for the decontamination of a contaminant bound to the surface. Problems of decontamination are then discussed, connected with the construction and project designing of facilities which shall operate in a radiation field. The generation of contaminants is described and the principles given of project design and design of facilities with regard to radiation hygiene, economy and disposal. (J.P.)

  19. A Decontamination Process to Remove Metals and Stabilise Montreal Sewage Sludge

    Directory of Open Access Journals (Sweden)

    G. Mercier

    2002-01-01

    Full Text Available The Montreal Urban Community (MUC treatment plant produces approximately 270 tons of dry sludge daily (tds/day during physicochemical wastewater treatment. The sludges are burned and contribute to the greenhouse effect by producing atmospheric CO2. Moreover, the sludge emanates a nauseating odour during its thermal stabilisation and retains unpleasant odours for the part (25% that is dried and granulated. To solve this particular problem, the treatment plant authorities are currently evaluating an acidic chemical leaching (sulfuric or hydrochloric acid process at a pH between 2 and 3, using an oxidizing agent such as ferric chloride or hydrogen peroxide (METIX-AC technology, patent pending; [20]. They could integrate it to a 70 tds/day granulated sludge production process. Verification of the application of METIX-AC technology was carried out in a pilot plant set up near the sludge production plant of the MUC. The tests showed that METIX-AC technology can be advantageously integrated to the process used at the MUC. The residual copper (274 ± 58 mg/kg and cadmium (5.6 ± 2.9 mg/kg concentrations in the treated sludge meet legislation standards. The results have also shown that odours have been significantly eliminated for the dewatered, decontaminated, and stabilized biosolids (> 97% compared to the non-decontaminated biosolids. A high rate of odour elimination also was obtained for the liquid leached biosolids (> 93%, compared to the untreated liquid biosolids. The fertilising value (N and P is well preserved by the METIX-AC process. Dissolved organic carbon measurements have showed that little organic matter is brought in solution during the treatment. In fact, the average concentration of dissolved organic carbon measured in the treated liquid phase is 966 ± 352 mg/l, whereas it is 1190 ± 325 mg/l in untreated sludge. The treated sludge was first conditioned with an organic polymer and a coagulant aid. It was successfully dewatered with

  20. Decontamination process applied to radioactive solid wastes from nuclear power plants

    International Nuclear Information System (INIS)

    The process of decontamination is an important step in the economic operation of nuclear facilities. A large number of protective clothing, metallic parts and equipment get contaminated during the handling of radioactive materials in laboratory, plants and reactors. Safe and economic operation of these nuclear facilities will have a bearing on the extent to which these materials are reclaimed by the process of decontamination. The most common radioactive contaminants are fission products, corrosion products, uranium and thorium. The principles involved in decontamination are the same as those for an industrial cleaning process. However, the main difference is in the degree of cleaning required and at times special techniques have to be employed for removing even trace quantities of radioactive materials. This paper relate decontaminations experiences using acids and acids mixtures (HCl, HF, HNO3, KMnO4, C2H2O4, HBF4) in several kinds of radioactive solid wastes from nuclear power plants. The result solutions were monitored by nuclear analytical techniques, in order to contribute for radiochemical characterization of these wastes. (author)

  1. Evaluation of a process for the decontamination of radioactive hotspots due to activated stellite particles

    International Nuclear Information System (INIS)

    Some of the Indian pressurized heavy water reactors (PHWRs) which use Stellite balls in the ball and screw mechanism of the adjustor rod drive mechanism in the moderator circuit have encountered high radiation fields in the moderator system due to 60Co. Release of particulate Stellite is responsible for the hotspots in addition to the general uniform contamination of internal surfaces with 60Co. Extensive laboratory studies have shown that it is possible to dissolve these Stellite particles by adopting a three-step redox process with permanganic acid as the oxidizing agent. These investigations with inactive Stellite in powder form helped to optimize the process conditions. Permanganic acid was found to have the highest dissolution efficiency as compared to alkaline and nitric acid permanganate. The susceptibility of Stellite to corrode or dissolve was found to depend on the concentration of the permanganate, pH and temperature of the process and microstructure of the Stellite alloy. This process was evaluated for its effectiveness on components from nuclear power plants. Component decontamination was carried out on adjustor rod drive assemblies which had 60Co activity due to Stellite particles with the radiation field ranging from 3 R . h-1 to 20 R . h-1. They were subjected to decontamination with permanganic acid as the oxidizing agent, followed by citric acid and a solution containing ethylenediaminetetraacetic acid, ascorbic acid and citric acid in a 4:3:3 ratio by weight as the reducing formulation. In the first trial, one adjustor rod drive mechanism was subjected to decontamination. After two cycles of treatment, an average decontamination factor (DF) of 6.8, with a maximum DF of 11.7, was achieved. The same process but with one cycle was repeated on eight more adjustor rod drive mechanisms. 60Co activity in the range of 13-93 mCi was removed from these adjustor rods. Loose contamination of the order of 30 000-40 000 decays per min and cm2 observed before

  2. Lasers in chemical processing

    International Nuclear Information System (INIS)

    The high cost of laser energy is the crucial issue in any potential laser-processing application. It is expensive relative to other forms of energy and to most bulk chemicals. We show those factors that have previously frustrated attempts to find commercially viable laser-induced processes for the production of materials. Having identified the general criteria to be satisfied by an economically successful laser process and shown how these imply the laser-system requirements, we present a status report on the uranium laser isotope separation (LIS) program at the Lawrence Livermore National Laboratory

  3. Investigation of gas-phase decontamination of internally radioactively contaminated gaseous diffusion process equipment and piping

    International Nuclear Information System (INIS)

    Construction of the gaseous diffusion plants (GDPs) was begun during World War 2 to produce enriched uranium for defense purposes. These plants, which utilized UF6 gas, were used primarily for this purpose through 1964. From 1959 through 1968, production shifted primarily to uranium enrichment to supply the nuclear power industry. Additional UF6-handling facilities were built in feed and fuel-processing plants associated with the uranium enrichment process. Two of the five process buildings at Oak ridge were shut down in 1964. Uranium enrichment activities at Oak Ridge were discontinued altogether in 1985. In 1987, the Department of Energy (DOE) decided to proceed with a permanent shutdown of the Oak Ridge Gaseous Diffusion Plant (ORGDP). DOE intends to begin decommissioning and decontamination (D ampersand D) of ORGDP early in the next century. The remaining two GDPs are expected to be shut down during the next 10 to 40 years and will also require D ampersand D, as will the other UF6-handling facilities. This paper presents an investigation of gas- phase decontamination of internally radioactively contaminated gaseous diffusion process equipment and piping using powerful fluorinating reagents that convert nonvolatile uranium compounds to volatile UF6. These reagents include ClF3, F2, and other compounds. The scope of D ampersand D at the GDPs, previous work of gas-phase decontamination, four concepts for using gas-phase decontamination, plans for further study of gas-phase decontamination, and the current status of this work are discussed. 13 refs., 15 figs

  4. Microbial decontamination of polluted soil in a slurry process

    International Nuclear Information System (INIS)

    Oil-contaminated soil (2.3--17 g/kg), even soil with high clay and silt content, was remediated microbiologically in a slurry reactor. The presence of soil, however, limits the degradation rate of oil. In contrast with results form experiments using oil dispersed in water, the relative composition of the oil components in a soil slurry after degradation was about the same as that of the original oil. Thus the composition of the degraded oil is the same as that of the original oil, which is indicative for a physical, rather than a (bio)chemical, limitation on the oil degradation rate. About 70% of the contaminant was readily available and was degraded in less than eight days. The dual injected turbulent suspension (DITS) reactor is able to combine remediation of part of the contaminated (polydisperse) soil with separation of the soil into a heavily and a lightly polluted fraction. In continuous operation, lowering the overall soil residence time from 200 to 100 h did not significantly increase the oil concentration in the effluent soil. Therefore a soil residence time of less than 100 h is feasible. With a residence time of 100 h, overall oil degradation rates at the steady state were more than 70 times faster than in a comparable land farm. After treatment in a DITS reactor, the remaining oil in the contaminated soil fraction is slowly released from the soil. From a batch experiment it was found that another 10 weeks were needed to reach the Dutch reference level of 50 mg/kg. This can be done in a process with a low energy input, such as a landfarm

  5. Development of major process improvements for decontamination of large, complex, highly radioactive mixed waste items at the Hanford Site T Plant

    International Nuclear Information System (INIS)

    As part of the decontamination/treatment mission at the Hanford Site, Westinghouse Hanford Company, under contract to the US Department of Energy, conducts decontamination activities at the T Plant complex. Currently, the 221-T canyon High-Level Waste Decontamination Facility and the 2706-T Low-Level Waste Decontamination Facility capabilities are limited because upgrades are needed. Major process improvements must be developed to decontaminate large, complex, highly radioactive mixed-waste items. At the T Plant complex, an engineering team process was used to project possible solid mixed-waste feed streams and develop a preconceptual system to decontaminate and treat the waste. Treatment objectives and benefits were identified. Selected technologies were reviewed and improvements required to implement a preconceptual system at T Plant were considered. Decontamination facility alternatives were discussed in conjunction with ongoing and future decontamination activities at the Hanford Site, including efforts to enhance overall decontamination operations and capabilities

  6. Separation of technetium and rare earth metals for co-decontamination process

    Energy Technology Data Exchange (ETDEWEB)

    Riddle, Catherine; Martin, Leigh

    2015-05-01

    Poster. In the US there are several technologies under consideration for the separation of the useful components in used nuclear fuel. One such process is the co-decontamination process to separate U, Np and Pu in a single step and produce a Np/ Pu and a U product stream. Although the behavior of the actinide elements is reasonably well defined in this system, the same is not true for the fission products, mainly Zr, Mo, Ru and Tc. As these elements are cationic and anionic they may interact with each other to extract in a manner not predicted by empirical models such as AMUSE. This poster presentation will discuss the initial results of batch contact testing under flowsheet conditions and as a function of varying acidity and flowsheet conditions to optimize recovery of Tc and minimize extraction of Mo, Zr and Ru with the goal of developing a better understanding of the behavior of these elements in the co-decontamination process.

  7. Pilot-plant study of wastewater sludge decontamination using a ferrous sulfate bioleaching process.

    Science.gov (United States)

    Mercier, Guy; Drogui, Patrick; Blais, Jean-François; Chartier, Myriam

    2006-08-01

    The objective of this research was to investigate the performance of the ferrous sulfate bioleaching (FSBL) process in a pilot plant for decontamination and stabilization of wastewater sludge. Batch and continuous experiments, conducted with two 4-m3 bioreactors using indigenous iron-oxidizing bacteria (20% v/v of inoculum) with addition of 4.0 g ferrous sulfate heptahydrate per liter of sludge initially acidified to pH 4.0, were sufficient for effective heavy metal (cadmium, copper, manganese, zinc, and lead) removal yields. The average metal removal yields during the FSBL process were as follows: cadmium (69 to 75%), copper (68 to 70%), manganese (72 to 73%), zinc (65 to 66%), and lead (16%). The FSBL process was also found to be effective in removing both fecal and total coliforms (abatement > 5 to 6 log units). The nutrients content (nitrogen, phosphorus, and magnesium) were also preserved in decontaminated sludge. PMID:17059142

  8. Development of a new process for radioactive decontamination of painted carbon steel structures by molten salt stripping

    International Nuclear Information System (INIS)

    The main practical difficulty associated to the task of the dismantling and decommissioning of the old Nuclear Fuel Cycle facilities of the IPEN has been the large amount of radioactive waste generated in the dismantling operations. The waste is mainly in the form of contaminated carbon steel structures. In the IPEN, the presence of contamination in the equipment, structures and buildings, although restricted to low and average activity levels, constituted an important concern due, on one hand, to the great volume of radioactive wastes generated during the operations. On the other hand, it should be outstanding that the capacity of stockpiling the radioactive wastes in IPEN found been exhausted. Basically, for the dismantling operations of the units, the main radionuclides of interest, from the radioprotection point of view, are U of natural isotopic composition and the thorium-232. Some attempts were done to reduce the volume of those wastes. Nevertheless, the only decontamination available methods were chemical methods such as pickling/rinsing treatments employing acid solutions (with nitric or citric acids) and alkaline solutions (sodium hydroxide). Different concentrations of such solutions were tested. The results obtained in the employed processes were not satisfactory. Ultrasonic equipment available was also employed in an attempt to increase the efficiency of decontamination. The choice of a coating removal process for radioactive material in the form of carbon steel pieces must have into account, among other factors, that it is not necessary a high quality of finishing, since the main objective is the release of the material as iron scrap. This paper describes the development of a new method for surface decontamination by immersion in molten salt baths. (author)

  9. Electromagnetic mixed waste processing system for asbestos decontamination

    International Nuclear Information System (INIS)

    The overall objective of this three-phase program is to develop an integrated process for treating asbestos-containing material that is contaminated with radioactive and hazardous constituents. The integrated process will attempt to minimize processing and disposal costs. The objectives of Phase 1 were to establish the technical feasibility of asbestos decomposition, inorganic radionuclide nd heavy metal removal, and organic volatilization. Phase 1 resulted in the successful bench-scale demonstration of the elements required to develop a mixed waste treatment process for asbestos-containing material (ACM) contaminated with radioactive metals, heavy metals, and organics. Using the Phase 1 data, a conceptual process was developed. The Phase 2 program, currently in progress, is developing an integrated system design for ACM waste processing. The Phase 3 program will target demonstration of the mixed waste processing system at a DOE facility. The electromagnetic mixed waste processing system employs patented technologies to convert DOE asbestos to a non-hazardous, radionuclide-free, stable waste. The dry, contaminated asbestos is initially heated with radiofrequency energy to remove organic volatiles. Second,the radionuclides are removed by solvent extraction coupled with ion exchange solution treatment. Third, the ABCOV method converts the asbestos to an amorphous silica suspension at low temperature (100 degrees C). Finally the amorphous silica is solidified for disposal

  10. Ion exchange characteristics of decontaminating formulations as suited to nuclear reactors

    International Nuclear Information System (INIS)

    Ion exchangers are employed in the chemical decontamination process for metal ion removal, regeneration of decontaminants and removal of the formulation chemicals from the coolant. Decontaminants can interact with both strong base and acid ion exchangers leading to a loss of the required chemical concentrations in the liquid phase for effectively decontaminating the radioactive deposits. In order to understand these interactions, adsorption of EDTA, HEEDTA, DTPA and NTA on strong cation exchanger was studied under dynamic conditions. Selective retention of decontaminant formulation on anion exchanger, pickup of metals by preequilibrated anion exchanger and the effect of temperature on the cation exchanger were studied. (author)

  11. Radioactive decontamination

    International Nuclear Information System (INIS)

    This Code of Practice covers: (a) the decontamination of plant items, buildings and associated equipment; (b) decontamination of protective clothing; (c) simple personal decontamination; and (d) the basic mechanisms of contamination and their influence on decontaminability. (author)

  12. Electromagnetic mixed-waste processing system for asbestos decontamination

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The first phase of a program to develop and demonstrate a cost-effective, integrated process for remediation of asbestos-containing material that is contaminated with organics, heavy metals, and radioactive compounds was successfully completed. Laboratory scale tests were performed to demonstrate initial process viability for asbestos conversion, organics removal, and radionuclide and heavy metal removal. All success criteria for the laboratory tests were met. (1) Ohio DSI demonstrated greater than 99% asbestos conversion to amorphous solids using their commercial process. (2) KAI demonstrated 90% removal of organics from the asbestos suspension. (3) Westinghouse STC achieved the required metals removal criteria on a laboratory scale (e.g., 92% removal of uranium from solution, resin loadings of 0.6 equivalents per liter, and greater than 50% regeneration of resin in a batch test.) Using the information gained in the laboratory tests, the process was reconfigured to provide the basis for the mixed waste remediation system. An integrated process is conceptually developed, and a Phase 2 program plan is proposed to provide the bench-scale development needed in order to refine the design basis for a pilot processing system.

  13. Electromagnetic mixed-waste processing system for asbestos decontamination

    International Nuclear Information System (INIS)

    The first phase of a program to develop and demonstrate a cost-effective, integrated process for remediation of asbestos-containing material that is contaminated with organics, heavy metals, and radioactive compounds was successfully completed. Laboratory scale tests were performed to demonstrate initial process viability for asbestos conversion, organics removal, and radionuclide and heavy metal removal. All success criteria for the laboratory tests were met. (1) Ohio DSI demonstrated greater than 99% asbestos conversion to amorphous solids using their commercial process. (2) KAI demonstrated 90% removal of organics from the asbestos suspension. (3) Westinghouse STC achieved the required metals removal criteria on a laboratory scale (e.g., 92% removal of uranium from solution, resin loadings of 0.6 equivalents per liter, and greater than 50% regeneration of resin in a batch test.) Using the information gained in the laboratory tests, the process was reconfigured to provide the basis for the mixed waste remediation system. An integrated process is conceptually developed, and a Phase 2 program plan is proposed to provide the bench-scale development needed in order to refine the design basis for a pilot processing system

  14. PROCESS FOR DECONTAMINATING THORIUM AND URANIUM WITH RESPECT TO RUTHENIUM

    Science.gov (United States)

    Meservey, A.A.; Rainey, R.H.

    1959-10-20

    The control of ruthenium extraction in solvent-extraction processing of neutron-irradiated thorium is presented. Ruthenium is rendered organic-insoluble by the provision of sulfite or bisulfite ions in the aqueous feed solution. As a result the ruthenium remains in the aqueous phase along with other fission product and protactinium values, thorium and uranium values being extracted into the organic phase. This process is particularly applicable to the use of a nitrate-ion-deficient aqueous feed solution and to the use of tributyl phosphate as the organic extractant.

  15. Decontamination of airborne bacteria in meat processing plants

    Science.gov (United States)

    Air has been established as a source of bacterial contamination in meat processing facilities. Airborne bacteria may affect product shelf life, and have food safety implications. The effectiveness of reactive oxygen species (ROS) generating AirOcare equipment on the reduction of airborne bacteria in...

  16. Decontamination of airborne bacteria in meat processing plants

    Science.gov (United States)

    The effectiveness of reactive oxygen species (ROS) generating AirOcare equipment on the reduction of airborne bacteria in a meat processing environment was determined. Bacterial strains found in ground beef were used to artificially contaminate the air using a 6-jet Collison nebulizer. Airborne bact...

  17. Oxidative degradation of anion exchange resin in chloride form during purification of reactor coolant after alkaline permanganate treatment in dilute chemical decontamination

    International Nuclear Information System (INIS)

    In boiling water reactors, primary system piping is contaminated by radioactive species like 51Cr and 60Co, resulting in high radiation fields. Dilute Chemical Decontamination (DCD) is a preferred choice to reduce the radiation field. In DCD process, oxidation step involving alkaline permanganate or acid permanganate is employed for effective dissolution of oxides (rich in chromium), from the metal surfaces of reactor components. After completion of the oxidation step, removal of the unused chemicals is carried out by the use of ion exchange process. This poses a problem of possible degradation of ion exchange resin by the oxidative chemicals during the removal. In this paper, this aspect has been investigated and the results obtained are discussed. (author)

  18. Mass Casualty Decontamination in a Chemical or Radiological/Nuclear Incident with External Contamination: Guiding Principles and Research Needs

    OpenAIRE

    Cibulsky, Susan M; Sokolowski, Danny; Lafontaine, Marc; Gagnon, Christine; Blain, Peter G.; RUSSELL, David; Kreppel, Helmut; Biederbick, Walter; Shimazu, Takeshi; Kondo, Hisayoshi; Saito, Tomoya; Jourdain, Jean- René; Paquet, Francois; Li, ChunSheng; Akashi, Makoto

    2015-01-01

    Hazardous chemical, radiological, and nuclear materials threaten public health in scenarios of accidental or intentional release which can lead to external contamination of people.  Without intervention, the contamination could cause severe adverse health effects, through systemic absorption by the contaminated casualties as well as spread of contamination to other people, medical equipment, and facilities.  Timely decontamination can prevent or interrupt absorption into the body and minimize...

  19. Development of a suppression method for deposition of radioactive cobalt after chemical decontamination. (2) Consideration of Fe3O4 plating mechanism on stainless steel in aqueous solution at 363 K

    International Nuclear Information System (INIS)

    Recently, chemical decontamination at the beginning of periodical inspection has been applied to many Japanese boiling water reactors in order to reduce radiation exposure. However, following the chemical decontamination, a dose rate increase can be seen in some plants after just a few operation cycles. The Hitachi ferrite coating (Hi-F Coat) process has been developed to reduce the recontamination by radioactive cobalt after the chemical decontamination. In this process, a fine Fe3O4 coating film is formed on the stainless steel base metal of the piping following the chemical decontamination in aqueous solution at 363 K. In this study, we investigated a Fe3O4 plating mechanism on the base metal in aqueous solution at 363 K by measurements using a quartz crystal microbalance. We found that the Fe3O4 film grew in three steps. First, the Fe3O4 particles were produced on a stainless steel surface. Second, the Fe3O4 particles grew as dome shapes and the converged domes became filmlike. Third, the film grew and became a closely packed Fe3O4 film. Furthermore, we determined the equation of the time dependence of the Fe3O4 film amount using crystal growth theory. The equation predicted the film amount at 10,000 s within a margin of error of 5%. (author)

  20. IMPROVED DECONTAMINATION: INTERFACIAL, TRANSPORT, AND CHEMICAL PROPERTIES OF AQUEOUS SURFACTANT CLEANERS

    Science.gov (United States)

    This investigation is focused on decontamination using environmentally benign aqueous solutions, specifically the removal of organics and associated radionuclide and heavy metal contaminants by synthetic surfactants. Aqueous-based solutions promise several advantages for deconta...

  1. Communication during mass casualty decontamination: highlighting the gaps

    OpenAIRE

    Carter, Holly; Drury, John; Rubin, G James; Williams, Richard; Amlot, Richard

    2013-01-01

    Following the World Trade Centre attacks of September 2001, there has been an increased focus in the emergency planning community on methods of managing chemical, biological, radiological and nuclear (CBRN) incidents. This has, necessarily, included consideration of methods and processes for rapid decontamination of large numbers of potentially contaminated people. Real-life decontamination incidents have suggested that some contaminated casualties may not comply with decontamination protocol...

  2. Fate of the chemical warfare agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX) on soil following accelerant-based fire and liquid decontamination.

    Science.gov (United States)

    Gravett, M R; Hopkins, F B; Self, A J; Webb, A J; Timperley, C M; Riches, J R

    2014-08-01

    In the event of alleged use of organophosphorus nerve agents, all kinds of environmental samples can be received for analysis. These might include decontaminated and charred matter collected from the site of a suspected chemical attack. In other scenarios, such matter might be sampled to confirm the site of a chemical weapon test or clandestine laboratory decontaminated and burned to prevent discovery. To provide an analytical capability for these contingencies, we present a preliminary investigation of the effect of accelerant-based fire and liquid decontamination on soil contaminated with the nerve agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX). The objectives were (a) to determine if VX or its degradation products were detectable in soil after an accelerant-based fire promoted by aviation fuel, including following decontamination with Decontamination Solution 2 (DS2) or aqueous sodium hypochlorite, (b) to develop analytical methods to support forensic analysis of accelerant-soaked, decontaminated and charred soil and (c) to inform the design of future experiments of this type to improve analytical fidelity. Our results show for the first time that modern analytical techniques can be used to identify residual VX and its degradation products in contaminated soil after an accelerant-based fire and after chemical decontamination and then fire. Comparison of the gas chromatography-mass spectrometry (GC-MS) profiles of VX and its impurities/degradation products from contaminated burnt soil, and burnt soil spiked with VX, indicated that the fire resulted in the production of diethyl methylphosphonate and O,S-diethyl methylphosphonothiolate (by an unknown mechanism). Other products identified were indicative of chemical decontamination, and some of these provided evidence of the decontaminant used, for example, ethyl 2-methoxyethyl methylphosphonate and bis(2-methoxyethyl) methylphosphonate following decontamination with DS2. Sample preparation

  3. Cleaning the magnesium oxide contaminated stainless steel system using a high temperature decontamination process

    International Nuclear Information System (INIS)

    A high pressure and high temperature (HTHP) system made of stainless steel-316, that simulates the reactor coolant systems of pressurized water reactors has been constructed for carrying out experimental investigations on power reactor water chemistry. After two months of operation at 280 C, magnesium was observed in the coolant. This was attributed to the failure of some heater pins that contained magnesium oxide as insulator. This magnesium oxide got distributed over the entire system. In order to remove the magnesium that had deposited and reacted over the oxide film formed over the stainless steel surfaces, the system was chemically cleaned using a mixture of nitrilo-tri-acetic-acid (NTA) and N2H4 at high temperature. The chromium containing oxide film formed over the stainless steel surfaces are normally removed using oxidizing pretreatment followed by treatment with reducing formulation. A minimum of three such cycles are required to complete the dissolution of contaminated oxide film. It has been proved elsewhere that chromium-containing oxides can be dissolved by simple chelating agents but at a relatively higher temperature (150-180 C) with NTA. Thus, NTA based process was tested for its capability to remove the magnesium contaminated oxide film formed over stainless steel. In addition to stainless steel, the system has few carbon steel areas. Hence, the compatibility of stainless steel and carbon steel to the NTA-N2H4 mixture was determined. Tests were carried out at different concentrations of NTA and at different pH. It was observed that carbon steel corrosion rates were quite high at low pH. With increasing pH, the corrosion rate decreased. The surface roughening observed at low pH was not observed at pH 8.0. Hence, it was decided to carry out the cleaning at pH 7.0 and with NTA concentration of 5 mM. Visual examination of the test flanges after the cleaning indicated complete removal of the oxide film. Results of chemical analysis indicated that

  4. Development of a suppression method for deposition of radioactive cobalt after chemical decontamination. (3) The suppression mechanism with preoxidized ferrite film for deposition of radioactive cobalt

    International Nuclear Information System (INIS)

    The Hitachi ferrite coating film process (Hi-F) has been developed to lower recontamination after chemical decontamination. In this process, the chemical decontamination process is carried out, and a fine Fe3O4 coating film is formed on the surface of stainless steel piping in an aqueous solution. In order to improve the suppression of 60Co deposition further, we combined the original Hi-F with a preoxidation step. We found the deposited amount of 60Co with preoxidized Hi-F coating film (OHi-FC) was 1/10 of that for non-coated specimens. In this study, we investigated the suppression mechanism of 60Co for the OHi-FC. The composition of OHi-FC was changed from Fe3O4 to Fe2O3 and then the crystals in the OHi-FC grew three times larger than those of the original Hi-F coating film. Consequently the corrosion amount of the stainless steel base metal was reduced by getting larger grains in the coating film. Because 60Co was incorporated into the corrosion oxide, the suppression effect of 60Co deposition by preoxidation was attributed to the suppression of the formation of the corrosion oxide by the OHi-FC. (author)

  5. Decontamination and demolition of a former plutonium processing facility's process exhaust system, firescreen, and filter plenum buildings

    International Nuclear Information System (INIS)

    The Los Alamos National Laboratory (LANL) Decommissioning Project has decontaminated, demolished, and decommissioned a process exhaust system, two filter plenum buildings, and a firescreen plenum structure at Technical Area 21 (TA-2 1). The project began in August 1995 and was completed in January 1996. These high-efficiency particulate air (HEPA) filter plenums and associated ventilation ductwork provided process exhaust to fume hoods and glove boxes in TA-21 Buildings 2 through 5 when these buildings were active plutonium and uranium processing and research facilities. This paper summarizes the history of TA-21 plutonium and uranium processing and research activities and provides a detailed discussion of integrated work process controls, characterize-as-you-go methodology, unique engineering controls, decontamination techniques, demolition methodology, waste minimization, and volume reduction. Also presented in detail are the challenges facing the LANL Decommissioning Project to safely and economically decontaminate and demolish surplus facilities and the unique solutions to tough problems. This paper also shows the effectiveness of the integrated work package concept to control work through all phases

  6. Reducing the Risks. In the aftermath of a terrorist attack, wastewater utilities may have to contend with decontamination water containing chemical, biological, or radiological substances

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Linda P.; Hornback, Chris; Strom, Daniel J.

    2006-08-01

    In the aftermath of a chemical, biological, or radiological (CBR) attack, decontamination of people and infrastructure will be needed. Decontamination inevitably produces wastewater, and wastewater treatment plants (WTPs) need to know how to handle decontamination wastewater. This article describes CBR substances; planning, coordinating, and communicating responses across agencies; planning within a utility; coordination with local emergency managers and first responders; mitigating effects of decontamination wastewater; and mitigating effects on utility personnel. Planning for Decontamination Wastewater: A Guide for Utilities, the document on which this article is based, was developed under a cooperative agreement from the U.S. Environmental Protection Agency by the National Association of Clean Water Agencies (NACWA) and its contractor, CH2MHILL, Inc.

  7. Overview of NORM and activities by a NORM licensed permanent decontamination and waste processing facility

    Energy Technology Data Exchange (ETDEWEB)

    Mirro, G.A. [Growth Resources, Inc., Lafayette, LA (United States)

    1997-02-01

    This paper presents an overview of issues related to handling NORM materials, and provides a description of a facility designed for the processing of NORM contaminated equipment. With regard to handling NORM materials the author discusses sources of NORM, problems, regulations and disposal options, potential hazards, safety equipment, and issues related to personnel protection. For the facility, the author discusses: description of the permanent facility; the operations of the facility; the license it has for handling specific radioactive material; operating and safety procedures; decontamination facilities on site; NORM waste processing capabilities; and offsite NORM services which are available.

  8. Process of zirconium decontamination for recovering uranium and molybdenum contained in sulphuric mineral lixivia

    International Nuclear Information System (INIS)

    A process of zirconium decontamination for recovering uranium and molybdenum contained in sulphuric mineral lixivia, is presented. The process consists in uranium and molybdenum joint extraction using an aqueous solution of long chain alkyl amine in inert diluent, under controlled flow conditions, doing selective washing of rich uranium and molybdenum solvent with sulfuric solution containing zirconium complexant agent. The selective reextraction of uranium using sodium chloride sulfuric solution, and the molybdenum final reextraction using sodium carbonate aqueous solution are done, obtaining uranium and molybdenum final concentrates by precipitation. The final concentrates are obtained with purity grades adjusted to commercial specifications. (M.C.K.)

  9. Criteria and evaluation of three decontamination techniques

    International Nuclear Information System (INIS)

    Past decontamination and solvent recovery activities at the Idaho Chemical Processing Plant (ICPP), which is part of the Idaho National Engineering Laboratory (INEL), have resulted in the accumulation of 1.5 million gallons of radioactively contaminated sodium-bearing liquid waste. Future decontamination activities at the ICPP could result in the production of 5 million gallons or more of sodium-bearing waste using the current decontamination techniques of chemical/water flushes and steam jet cleaning. This waste requires a large amount of cold chemical additive to process because the low melting temperatures of sodium and potassium salts cause agglomeration in the bed of the calciner vessel. Criteria have been established for evaluating methods and technologies available for decontaminating equipment and facilities. The criteria were weighted according to their relative importance using a Kepner-Tregoe Problem Solving process. These criteria were used to rank three decontamination techniques new to the ICPP: laser ablation, liquid abrasive blasting and CO2 pellet blasting, against the standard decontamination techniques of sodium-based chemical cleaning and water/steam jets used

  10. Chemical decontamination studies on aluminium brass condenser tubes of a BWR

    International Nuclear Information System (INIS)

    activity levels to background values. The two BWRs of Tarapur atomic power station (TAPS) have been in operation for the past 40 years. The aluminum brass condenser tubes of these stations have been removed and replaced with new tubes of the same material. The decontamination methodologies for effective removal of activities from these used condenser tubes were evaluated. Seven aluminum brass condenser tube specimens were initially evaluated by gamma spectrometry and the dissolution efficiency in various decontamination formulations was subsequently evaluated. The predominant presence of Cs-137 and Co-60 isotopes was shown by gamma spectrometry. Two step oxidative-complexing dissolution was carried out. Oxidative pretreatment of acidic permanganate with varying concentrations was followed by treatment with formulations containing EDTA reagent. Around 75 % of Cs was removed during the pretreatment step while Co was removed to the extent of 40 %. Major amount of Co-60 came out during EDTA complexing dissolution step. The cycles were repeated to improve the decontamination factor (DF). An average cumulative DF of 190 with 95 - 99.5 % activity removal could be achieved by the decontamination. Selective leaching of Zn over Cu to the extent of 25 μm base metal thickness (assuming uniform dissolution over the surface) could be seen by the elemental analysis of the spent decontamination formulation. Spent decontamination formulation handling methodology was also studied. The possibility of single step dissolution was also explored by dissolving synthetic cuprous oxide in permanganate solutions. An oxidative acidic dissolution was observed with fast dissolution kinetics. Base metal attack in this formulation was also evaluated. The average corrosion rate in this formulation was found to be 70 mpy. There was also sign of pitting on the coupons exposed in this formulation. Elemental analysis of the solution after treatment has shown preferential dissolution of copper from

  11. Decontamination Technology Development for Nuclear Research Facilities

    International Nuclear Information System (INIS)

    Technology development of surface decontamination in the uranium conversion facility before decommissioning, technology development of component decontamination in the uranium conversion facility after decommissioning, uranium sludge treatment technology development, radioactive waste soil decontamination technology development at the aim of the temporary storage soil of KAERI, Optimum fixation methodology derivation on the soil and uranium waste, and safety assessment methodology development of self disposal of the soil and uranium waste after decontamination have been performed in this study. The unique decontamination technology applicable to the component of the nuclear facility at room temperature was developed. Low concentration chemical decontamination technology which is very powerful so as to decrease the radioactivity of specimen surface under the self disposal level was developed. The component decontamination technology applicable to the nuclear facility after decommissioning by neutral salt electro-polishing was also developed. The volume of the sludge waste could be decreased over 80% by the sludge waste separation method by water. The electrosorption method on selective removal of U(VI) to 1 ppm of unrestricted release level using the uranium-containing lagoon sludge waste was tested and identified. Soil decontamination process and equipment which can reduce the soil volume over 90% were developed. A pilot size of soil decontamination equipment which will be used to development of real scale soil decontamination equipment was designed, fabricated and demonstrated. Optimized fixation methodology on soil and uranium sludge was derived from tests and evaluation of the results. Safety scenario and safety evaluation model were development on soil and uranium sludge aiming at self disposal after decontamination

  12. Process for contamination of radioactively decontaminated iron and/or steel scrap

    International Nuclear Information System (INIS)

    The invention concerns a decontamination process by melting the scrap in the presence of a means of slagging the iron/steel melt. In order to reduce the residual radioactivity further, additional inactive isotopes of the radioactive elements present in the melt are added and are also melted. This ensures that the radioactive isotopes of the elements are displaced from the melt according to their specific solubilities and pass into the slag, which is separated from the melt. In this way, one obtains an iron or steel melt with such small residual radioactivity that the iron or steel can be re-used. (orig./HP)

  13. Chemical processing of lunar materials

    Science.gov (United States)

    Criswell, D. R.; Waldron, R. D.

    1979-01-01

    The paper highlights recent work on the general problem of processing lunar materials. The discussion covers lunar source materials, refined products, motivations for using lunar materials, and general considerations for a lunar or space processing plant. Attention is given to chemical processing through various techniques, including electrolysis of molten silicates, carbothermic/silicothermic reduction, carbo-chlorination process, NaOH basic-leach process, and HF acid-leach process. Several options for chemical processing of lunar materials are well within the state of the art of applied chemistry and chemical engineering to begin development based on the extensive knowledge of lunar materials.

  14. Decontamination Technology Development for Nuclear Research Facilities

    International Nuclear Information System (INIS)

    The originative CO2 pellet blasting equipment was developed by improving additional components such as feed screw, idle roller and air-lock feeder to clear up the problems of freezing and discontinuity of blasting and by adopting pneumatically operated vacuum suction head and vacuum cup to prevent recontamination by collecting contaminant particulates simultaneously with the decontamination. The optimum decontamination process was established according to the kind of materials such as metal, concrete and plastic and the type of contaminants such as particulate, fixed chemical compound and oil. An excellent decontamination performances were verified by means of the lab-scale hot test with radioactive specimen and the technology demonstration in IMEF hot cell. The PFC dry decontamination equipment applicable to the surface contaminated with high radioactive particulate was developed. This equipment consists of the unit processes such as spray, collection, filtration and dry distillation designed originatively applicable to inside of dry hot cell. Through the demonstration of PFC spray decontamination process in IMEF hot cell, we secured on-site applicability and the decontamination efficiency more than 90 %. We investigated the characteristics of dismantled metal waste melting and the radionuclide(Co, Cs, U) distribution into ingot and slag by melting decontamination experiments using electric arc melter. We obtained the decontamination factors greater than 100 for Cs and of 10∼100 for uranium. The pilot scale(200 kg/batch) demonstration for melting decontamination was carried out successfully using high temperature melting facility at KAERI. The volume reduction factor of 1/7 and the economical feasibility of the melting decontamination were verified.

  15. Impact of decontamination on LWR radioactive waste treatment systems

    International Nuclear Information System (INIS)

    Only at N-Reactor is there a means to accommodate radwaste produced during decontamination. The Dresden system is expected to be ready to accommodate such solutions by the summer of 1979. Solidification of the processed decontamination waste may be a significant problem. There is doubt that the materials in current radwaste treatment systems can handle chemicals from a concentrated process. The total storage volume, for concentrated decontamination, is not sufficient in existing radwaste treatment systems. Greater attention should be placed on designing reactors and radwaste treatment systems for decontamination. A means of handling waste material resulting from leaks in the primary system during the decontamination must be developed. On-site storage of solidified decontamination wastes may be a viable option, but license amendments will be necessary

  16. Decontamination of metal surface contaminated by uranyl solution

    International Nuclear Information System (INIS)

    Decontamination degrees was measured for the metallic equipments in the uranium conversion plant by a chemical decontamination and contamination degrees also measured. Most equipments was made of stainless steel and contacted with uranium(VI) and nitric acid solution. So, metallic surfaces was contaminated with uranium(VI) materials. And decontamination degrees can be expressed by alpha activity measurements. For the alpha activity measurements, metallic specimens were selected in the three representative processes, dissolution process, solvent extraction, and Ammonium Uranyl Carbonate(AUC) precipitation and were prepared to rectangular parallelepipeds with 18mm width and 18mm length and 5mm height. The metallic surfaces can be decontaminated under 10 Bq/cm2 alpha activity due to uranium by only water decontamination, and under 0.04 Bq/cm2 alpha activity by 10% nitric acid decontamination that is ground activity level

  17. Examples of processing problematic waste and material. A-3. Processing of lead by mechanical decontamination at UKAEA Harwell

    International Nuclear Information System (INIS)

    The UKAEA and its contractor (NNC) have decontaminated lead blocks arising from the decommissioning of a metallurgical site that comprised three concrete shielded remote handling cells and 36 lead shielded enclosures. The primary decommissioning and dismantling work entailed the dismantling of the 36 lead enclosures, which were expected to yield over 1000 t of lead shielding bricks as waste. During the initial dismantling of the lead shielded enclosures, all the lead bricks were monitored for radioactive contamination; clean items were segregated and set aside for detailed clearance and assurance checks. The contaminated blocks were sent for assessment and decontamination treatment, as necessary. The decontamination process utilized a purpose built partitioned containment tent, ventilated with a HEPA filtration system, so that the receipt, decontamination and radiological monitoring of individual items could be segregated in order to minimize any cross-contamination. The dismantled lead blocks comprised a range of standard thicknesses (2, 4, 9 and 10 in, or 3, 8, 13 and 15 cm) and incorporated a variety of chevron, concave and convex shapes, which are utilized to avoid weaknesses within the assembled shielding. The primary technical issues for the mechanical processing of the contaminated lead blocks were consideration of the individual lead brick shapes (i.e. the bricks were contoured) and the individual weight of the bricks, which had a range of 10-75 kg. The preferred option was a manual dry cutting technique using a handheld rotary industrial planer (the selected planer is normally associated with the joinery trade). The dry cutting option considered the malleability of the lead, which under certain circumstances during dry cutting could give rise to localized heating effects, leading to melted lead over the cutting surface, resulting in limited effectiveness in the removal of the contaminated layer. To mitigate this effect the planer was set to take cuts

  18. Preliminary evaluation of military, commercial and novel skin decontamination products against a chemical warfare agent simulant (methyl salicylate).

    Science.gov (United States)

    Matar, Hazem; Guerreiro, Antonio; Piletsky, Sergey A; Price, Shirley C; Chilcott, Robert P

    2016-06-01

    Rapid decontamination is vital to alleviate adverse health effects following dermal exposure to hazardous materials. There is an abundance of materials and products which can be utilised to remove hazardous materials from the skin. In this study, a total of 15 products were evaluated, 10 of which were commercial or military products and five were novel (molecular imprinted) polymers. The efficacies of these products were evaluated against a 10 µl droplet of (14)C-methyl salicylate applied to the surface of porcine skin mounted on static diffusion cells. The current UK military decontaminant (Fuller's earth) performed well, retaining 83% of the dose over 24 h and served as a benchmark to compare with the other test products. The five most effective test products were Fuller's earth (the current UK military decontaminant), Fast-Act® and three novel polymers [based on itaconic acid, 2-trifluoromethylacrylic acid and N,N-methylenebis(acrylamide)]. Five products (medical moist-free wipes, 5% FloraFree™ solution, normal baby wipes, baby wipes for sensitive skin and Diphotérine™) enhanced the dermal absorption of (14)C-methyl salicylate. Further work is required to establish the performance of the most effective products identified in this study against chemical warfare agents. PMID:26339920

  19. DECONTAMINATION OF PLUTONIUM FOR FLUORIDE AND CHLORIDE DURING OXALATE PRECIPITATION, FILTRATION AND CALCINATION PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    Kyser, E.

    2012-07-25

    Due to analytical limitations for the determination of fluoride (F) and chloride (Cl) in a previous anion exchange study, an additional study of the decontamination of Pu from F and Cl by oxalate precipitation, filtration and calcination was performed. Anion product solution from the previous impurity study was precipitated as an oxalate, filtered, and calcined to produce an oxide for analysis by pyrohydrolysis for total Cl and F. Analysis of samples from this experiment achieved the purity specification for Cl and F for the proposed AFS-2 process. Decontamination factors (DF's) for the overall process (including anion exchange) achieved a DF of {approx}5000 for F and a DF of {approx}100 for Cl. Similar experiments where both HF and HCl were spiked into the anion product solution to a {approx}5000 {micro}g /g Pu concentration showed a DF of 5 for F and a DF of 35 for Cl across the combined precipitation-filtration-calcination process steps.

  20. Environmental decontamination

    International Nuclear Information System (INIS)

    The record of the proceedings of the workshop on environmental decontamination contains twenty-seven presentations. Emphasis is placed upon soil and surface decontamination, the decommissioning of nuclear facilities, and assessments of instrumentation and equipment used in decontamination

  1. Environmental decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Cristy, G.A.; Jernigan, H.C. (eds.)

    1981-02-01

    The record of the proceedings of the workshop on environmental decontamination contains twenty-seven presentations. Emphasis is placed upon soil and surface decontamination, the decommissioning of nuclear facilities, and assessments of instrumentation and equipment used in decontamination. (DLS)

  2. Decontamination techniques for BWR power generation plant

    International Nuclear Information System (INIS)

    The present report describes various techniques used for decontamination in BWR power generation plants. Objectives and requirements for decontamination in BWR power plants are first discussed focusing on reduction in dose, prevention of spread of contamination, cleaning of work environments, exposure of equipment parts for inspection, re-use of decontaminated resources, and standards for decontamination. Then, the report outlines major physical, chemical and electrochemical decontamination techniques generally used in BWR power generation plants. The physical techniques include suction of deposits in tanks, jet cleaning, particle blast cleaning, ultrasonic cleaning, coating with special paints, and flushing cleaning. The chemical decontamination techniques include the use of organic acids etc. for dissolution of oxidized surface layers and treatment of secondary wastes such as liquids released from primary decontamination processes. Other techniques are used for removal of penetrated contaminants, and soft and hard cladding in and on equipment and piping that are in direct contact with radioactive materials used in nuclear power generation plants. (N.K.)

  3. Reduced weight decontamination formulation for neutralization of chemical and biological warfare agents

    Science.gov (United States)

    Tucker, Mark D.

    2014-06-03

    A reduced weight DF-200 decontamination formulation that is stable under high temperature storage conditions. The formulation can be pre-packed as an all-dry (i.e., no water) or nearly-dry (i.e., minimal water) three-part kit, with make-up water (the fourth part) being added later in the field at the point of use.

  4. Behaviour of bituminized waste under gamma irradiation. Effect of STE3 decontamination process components

    International Nuclear Information System (INIS)

    Liquid wastes of light and medium activity are treated by chemical co-precipitation and sludge are mixed with bitumen. Irradiation is responsible of gas production and potential swelling of the embedded. It prevails on limitation of filling of storage containers and activity to 140 Ci. The aim of this work is the study of influence of the components of the decontamination process on the behaviour of bituminous wastes, in order to control swelling and to state radiolysis mechanisms, both for production and storage of wastes. For pure bitumen, mechanism of production of H2 and CH4 are specified. Oxygen consumption, localised on the surface of samples, leads to conversion of aromatic oils and resins to asphaltenes, by a chain reaction mechanism. CO2 et CO are reaction products of gaseous oxygen, respectively with bitumen and light hydrocarbons. The composition of bitumen is slightly modified to heavier and higher polarity products, with parallel hardening. NaNO3, Na2SO4, BaSO4, PPFNi, K2SO4, NiSO4, et diatoms DIT3R et DIC3 have strictly a dilution effect towards gas generation. CoS, above 1% embedded, strongly inhibits production of H2, CH4 and light hydrocarbons. Degradation of bitumen being reduced, a radical mechanism with both radicals H· et R· might exist. Kinetic shows that a bi-radicals mechanism (or more) is probable. In the same way, Raney's nickel induces a important decrease of production of H2, CH4 et C2, with a capacity of 7,7 ml/g. Swelling depends on dimension of sample gas production and dose rate. Solid content and particle size are not determining parameters. Low swelling is obtained for penetrability higher than 70 1/10 mm, This can be realised by addition of a solvent as TBP and by increasing temperature above 40 deg C. Rheological characterizations (oscillation and creeping mode) have not been successful to correlate swelling with a physical parameter. (author)

  5. Report on the Behavior of Fission Products in the Co-decontamination Process

    International Nuclear Information System (INIS)

    This document was prepared to meet FCT level 3 milestone M3FT-15IN0302042, 'Generate Zr, Ru, Mo and Tc data for the Co-decontamination Process.' This work was carried out under the auspices of the Lab-Scale Testing of Reference Processes FCT work package. This document reports preliminary work in identifying the behavior of important fission products in a Co-decontamination flowsheet. Current results show that Tc, in the presence of Zr alone, does not behave as the Argonne Model for Universal Solvent Extraction (AMUSE) code would predict. The Tc distribution is reproducibly lower than predicted, with Zr distributions remaining close to the AMUSE code prediction. In addition, it appears there may be an intricate relationship between multiple fission product metals, in different combinations, that will have a direct impact on U, Tc and other important fission products such as Zr, Mo, and Rh. More extensive testing is required to adequately predict flowsheet behavior for these variances within the fission products.

  6. Report on the Behavior of Fission Products in the Co-decontamination Process

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Leigh Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States); Riddle, Catherine Lynn [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-30

    This document was prepared to meet FCT level 3 milestone M3FT-15IN0302042, “Generate Zr, Ru, Mo and Tc data for the Co-decontamination Process.” This work was carried out under the auspices of the Lab-Scale Testing of Reference Processes FCT work package. This document reports preliminary work in identifying the behavior of important fission products in a Co-decontamination flowsheet. Current results show that Tc, in the presence of Zr alone, does not behave as the Argonne Model for Universal Solvent Extraction (AMUSE) code would predict. The Tc distribution is reproducibly lower than predicted, with Zr distributions remaining close to the AMUSE code prediction. In addition, it appears there may be an intricate relationship between multiple fission product metals, in different combinations, that will have a direct impact on U, Tc and other important fission products such as Zr, Mo, and Rh. More extensive testing is required to adequately predict flowsheet behavior for these variances within the fission products.

  7. Decontamination by fractional distillation of a radioactive mixture of perchlorethylene, bitumen, and sludges from chemical co-precipitations; Decontamination par distillation fractionnee d'un melange radioactif constitue par du perchlorethylene, du bitume et des boues de coprecipitation chimique

    Energy Technology Data Exchange (ETDEWEB)

    Lefillatre, G.; Hullo, R. [Commissariat a l' Energie Atomique, Chusclan (France). Centre de Production de Plutonium de Marcoule

    1969-07-01

    It is not possible to incinerate the contaminated organic waste containing chlorine, produced at the Marcoule Centre. The only valid method for these solvents of average activity is fractional distillation. This report presents a pilot fractional distillation plant designed for decontaminating the residual solvents produced by the Centre's Waste Processing Station. These contaminated solvents come from the decontamination of a screw extrusion apparatus with perchlorethylene; this equipment is used for coating the radioactive sludges with bitumen. The pilot plant operates discontinuously and is used to decontaminate the perchlorethylene, to separate the perchlorethylene from the water, and to process the distillation residue. The electrically heated boiler is fitted with a removable base in the form of a disposable container. The installations decontamination factor is 3.4 x 10{sup 6} when solvents with a specific activity of 0.23 Ci/m{sup 3} are used. The average flow-rate for a distillation run is 10 l/hr at atmospheric pressure, and 21 l/hr at a residual pressure of 40 torr. The decontamination factor for the installation is better at atmospheric pressure than in a vacuum. (authors) [French] Les effluents organiques contamines chlores du Centre de Marcoule ne peuvent etre incineres. Le seul mode de traitement qui s'impose pour ces solvants de moyenne activite s'avere etre la distillation fractionnee. Ce rapport presente une installation pilote de distillation fractionnee qui a ete concue pour decontaminer des solvants residuaires provenant de la Station de Traitement des Effluents du Centre. Ces solvants contamines resultent de la decontamination au moyen de perchlorethylene d'une extrudeuse a vis servant a l'enrobage par le bitume des boues radioactives de cette station. L'installation pilote fonctionne en discontinu et assure a la fois la decontamination du perchlorethylene, la separation du perchlorethylene et de l'eau et le

  8. Development of gas-carrying abrasive decontamination technique for metal wastes

    International Nuclear Information System (INIS)

    When decommissioning a nuclear power plant is accomplished by dismantlement, decontamination for cooling system before dismantling and for components after dismantling is very effective in reducing both the occupational radiation exposure and the generation of radioactive waste. For the development of decontamination methods and their application, however, adequate consideration must be given to the chemical composition of the radioactive corrosion products (CRUD) and the characteristics of the components and systems because of their great influence on decontamination. JAERI had developed a wet flowing abrasive decontamination method in FY1985, and already applied it in addition to a conventional chemical decontamination methods to the reactor primary coolant system of JPDR. The wet flowing abrasive decontamination method was consequently proved to have significant advantages compared with conventional chemical methods, since the decontamination efficiency is little affected by the chemical composition of CRUD, the decontamination system is simple, and the liquid waste generated in the decontamination process can be easily treated and handled. On the other hand, the wet flowing abrasive decontamination method was pointed out to have some disadvantages, since a relatively large capacity of circulation pump is needed to obtain a sufficient flow rate for the circulation of abrasive, an active counterplan is needed against the trapping of abrasive during decontamination, particularly, when the system line to be decontaminated has a complicated structure. The JAERI, therefore, has been performing a practical tests to improve the wet flowing abrasive decontamination method since FY1993 under a contract with STA. This paper describes a developed process of the dry flowing abrasive decontamination method, namely, gas-carrying abrasive decontamination technique. (J.P.N.)

  9. Gross decontamination experiment report

    Energy Technology Data Exchange (ETDEWEB)

    Mason, R.; Kinney, K.; Dettorre, J.; Gilbert, V.

    1983-07-01

    A Gross Decontamination Experiment was conducted on various levels and surfaces of the TMI - Unit 2 reactor building in March 1982. The polar crane, D-rings, missile shields, refueling canals, refueling bridges, equipment, and elevations 305' and 347'-6'' were flushed with low pressure water. Additionally, floor surfaces on elevation 305' and floor surfaces and major pieces of equipment on elevation 347'-6'' were sprayed with high pressure water. Selective surfaces were decontaminated with a mechanical scrubber and chemicals. Strippable coating was tested and evaluated on equipment and floor surfaces. The effectiveness, efficiency, and safety of several decontamination techniques were established for the large, complex decontamination effort. Various decontamination equipment was evaluated and its effectiveness was documented. Decontamination training and procedures were documented and evaluated, as were the support system and organization for the experiment.

  10. Gross decontamination experiment report

    International Nuclear Information System (INIS)

    A Gross Decontamination Experiment was conducted on various levels and surfaces of the TMI - Unit 2 reactor building in March 1982. The polar crane, D-rings, missile shields, refueling canals, refueling bridges, equipment, and elevations 305' and 347'-6'' were flushed with low pressure water. Additionally, floor surfaces on elevation 305' and floor surfaces and major pieces of equipment on elevation 347'-6'' were sprayed with high pressure water. Selective surfaces were decontaminated with a mechanical scrubber and chemicals. Strippable coating was tested and evaluated on equipment and floor surfaces. The effectiveness, efficiency, and safety of several decontamination techniques were established for the large, complex decontamination effort. Various decontamination equipment was evaluated and its effectiveness was documented. Decontamination training and procedures were documented and evaluated, as were the support system and organization for the experiment

  11. Licensing documentation and licensing process for dismantling and decontamination projects in Lithuania

    Energy Technology Data Exchange (ETDEWEB)

    Uspuras, Eugenijus; Rimkevicius, Sigitas; Babilas, Egidijus [Lithuanian Energy Institute (LEI), Kaunas (Lithuania)

    2013-07-01

    One of the main tasks of any decommissioning project is the licensing process which allows implementation of developed strategies in real NPP. The Lithuanian laws on nuclear energy and on radioactive waste management require that the dismantling and decontamination (D and D) projects shall be licensed by the Lithuanian State Nuclear Power Safety Inspectorate (VATESI) and other Authorities. Licensing is an inseparable part of the Lithuania regulatory and supervisory system for safety of nuclear facilities. The licensing process starts when NPP submits the first licensing document(s) to the Authorities. It is completed when all the licensing documents are approved by the Authorities and authorization to start D and D works is received by NPP. Current paper will discuss one of the main steps in D and D projects implementation process - Licensing and will provide information about D and D licensing approach used in Lithuania. (orig.)

  12. Licensing documentation and licensing process for dismantling and decontamination projects in Lithuania

    International Nuclear Information System (INIS)

    One of the main tasks of any decommissioning project is the licensing process which allows implementation of developed strategies in real NPP. The Lithuanian laws on nuclear energy and on radioactive waste management require that the dismantling and decontamination (D and D) projects shall be licensed by the Lithuanian State Nuclear Power Safety Inspectorate (VATESI) and other Authorities. Licensing is an inseparable part of the Lithuania regulatory and supervisory system for safety of nuclear facilities. The licensing process starts when NPP submits the first licensing document(s) to the Authorities. It is completed when all the licensing documents are approved by the Authorities and authorization to start D and D works is received by NPP. Current paper will discuss one of the main steps in D and D projects implementation process - Licensing and will provide information about D and D licensing approach used in Lithuania. (orig.)

  13. Pickering NGS decontaminations

    International Nuclear Information System (INIS)

    In early 1984, decontaminations of the Pickering NGS Units 1 and 2 heat transport systems were carried out. These decontaminations reduced radiation fields in front of the reactor face by up to a factor of 10, and resulted in radiation fields of 50 to 140 mR/h. These decontaminations were carried out using an improved version of the CAN-DECON process. This paper describes the development of the process and its successful applications at Pickering NGS

  14. Development of a suppression method for deposition of radioactive cobalt after chemical decontamination: Confirmation of the Suppression Mechanism with Preoxidized Ferrite Film for Deposition of Radioactive Cobalt

    International Nuclear Information System (INIS)

    Recently, chemical decontamination at the beginning of a periodical inspection is applied to many Japanese boiling water reactor (BWR) plants in order to reduce radiation exposure. In the chemical decontamination, the oxides that have incorporated 60Co are dissolved using reductive and oxidative chemical reagents. Some of the piping stainless steel (SS) base metal is exposed to the reactor water after this decontamination. The oxide film growth rate of the piping during plant operation just after the decontamination is higher than that just before it. Therefore, there is a possibility that the deposition amount of 60Co on the piping just after decontamination is higher than that just before the chemical decontamination. The Hi-F Coat (Hitachi ferrite coating) process has been developed to lower recontamination after the chemical decontamination. In this process, a fine Fe3O4 coating film is formed on the piping SS base metal in aqueous solution at 363 K using three chemical reagents: ferrous ion, oxidant, and pH adjuster. The growth rate of the corrosion oxide film that incorporated 60Co on the piping during plant operation is suppressed by the fine ferrite film that blocks both diffusion of oxidant in the reactor water to the SS base metal and metal ions in the oxide film to the reactor water. As a result, the amount of 60Co deposition is suppressed by the Hi-F coating film. In a previous report, we found that the Hi-F Coat process lowered the amount of 60Co to 1/3 that for non-coated specimens. To improve the suppression of 60Co deposition further, we combined the Hi-F Coat process with a pre-oxidation step which we named the pre-oxidized Hi-F Coat process. In laboratory experiments, using the pre-oxidized Hi-F Coat process we found the deposited amount of 60Co was 1/10 that for non-coated specimens. By combining the Hi-F Coat process with the pre-oxidation step, the suppression effect of 60Co deposition was three times higher than that of the Hi-F Coat process

  15. Development of strippable gel for surface decontamination applications

    International Nuclear Information System (INIS)

    Strippable gels are an attractive option for decontamination of surfaces particularly when materials are to be reused after decontamination. The process in general results in good decontamination performance with minimal secondary waste generation. This paper reports on development of strippable gel formulation using polyvinyl alcohol as the gel former. Peeling behavior of the gel film improved when glycerol was used as plasticizer. Incorporation of decontaminating agents is essential for the gel to be effective, so a number of decontaminating agents were screened based on their miscibility with the gel, smooth peeling, and good decontamination performance. Based on this study, a strippable gel, ‘INDIGEL’ was formulated as a potential candidate for surface decontamination applications. Extensive trials on evaluation of decontamination performance of Indigel were done on simulated surfaces like stainless steel tray, stainless steel fume hood, PVC floor, granite and ceramic table tops. Results show that Indigel is highly effective for decontamination of surfaces contaminated with all types of radionuclides. Simplicity of its use coupled with good decontamination ability will find application in nuclear and other chemical industries. (author)

  16. SUPERFUND TREATABILITY CLEARINGHOUSE: TECHNOLOGY DEMONSTRATION OF A THERMAL DESORPTION/UV PHOTOLYSIS PROCESS FOR DECONTAMINATING SOILS CONTAINING HERBICIDE ORANGE

    Science.gov (United States)

    This treatability study report presents the results of laboratory and field tests on the effectiveness of a new decontamination process for soils containing 2,4-D/2,4,5-T and traces of dioxin. The process employs three operations, thermal desorption, condensation and absorp...

  17. Effectiveness of different chemical agents in rapid decontamination of gutta-percha cones

    Directory of Open Access Journals (Sweden)

    Cardoso Celso Luíz

    2000-01-01

    Full Text Available The effectiveness of seven disinfectant compounds used in dentistry for a rapid decontamination of 32 gutta-percha cones adhered with Staphylococcus aureus, Enterococcus faecalis, Escherichia coli strains or Bacillus subtilis spores was compared. Cones were treated with 2% glutaraldehyde, 1% sodium hypochlorite, 70% ethyl alcohol, 1% and 0.3% iodine alcohol, 2% chlorhexidine, 6% hydrogen peroxide, and 10% polyvinylpyrrolidone-iodine, for 1, 5, 10, and 15 minutes. After treatment, each cone was transferred to thioglycollate broth and incubated at 37ºC for 7 days. The products were bactericidal after 1 to 5 minutes and, with exception of ethyl alcohol and iodine-alcohol, sporicidal after 1 to 15 minutes of exposure. Results suggest that chlorhexidine, sodium hypochlorite, polyvinylpyrrolidone-iodine, hydrogen peroxide, and glutaraldehyde were the most effective products in the decontamination of gutta-percha cones.

  18. Decontamination and decommissioning plan for processing contaminated NaK at the INEL

    Energy Technology Data Exchange (ETDEWEB)

    LaRue, D.M.; Dolenc, M.R.

    1986-09-01

    This decontamination and decommissioning (D&D) plan describes the work elements and project management plan for processing four containers of contaminated sodium/potassium (NaK) and returning the Army Reentry Vehicle Facility Site (ARVFS) to a reusable condition. The document reflects the management plan for this project before finalizing the conceptual design and preliminary prototype tests of the reaction kinetics. As a result, the safety, environmental, and accident analyses are addressed as preliminary assessments before completion at a later date. ARVFS contains an earth-covered bunker, a cylindrical test pit and metal shed, and a cable trench connecting the two items. The bunker currently stores the four containers of NaK from the meltdown of the EBR-1 Mark II core. The D&D project addressed in this plan involves processing the contaminated NaK and returning the ARVFS to potential reuse after cleanup.

  19. Decontamination and decommissioning plan for processing contaminated NaK at the INEL

    Energy Technology Data Exchange (ETDEWEB)

    LaRue, D.M.; Dolenc, M.R.

    1986-09-01

    This decontamination and decommissioning (D D) plan describes the work elements and project management plan for processing four containers of contaminated sodium/potassium (NaK) and returning the Army Reentry Vehicle Facility Site (ARVFS) to a reusable condition. The document reflects the management plan for this project before finalizing the conceptual design and preliminary prototype tests of the reaction kinetics. As a result, the safety, environmental, and accident analyses are addressed as preliminary assessments before completion at a later date. ARVFS contains an earth-covered bunker, a cylindrical test pit and metal shed, and a cable trench connecting the two items. The bunker currently stores the four containers of NaK from the meltdown of the EBR-1 Mark II core. The D D project addressed in this plan involves processing the contaminated NaK and returning the ARVFS to potential reuse after cleanup.

  20. Decontamination operations

    International Nuclear Information System (INIS)

    Paper presents the chronological description of the undertaken measures with decontamination in case of the elimination of the Chernobyl accident consequences. Attention is focused on decontamination of the NPP site and of Pripyat river, on decontamination of the habitations, of equipment, clothes, shoes, sanitary treatment of people, as well as, on the decontamination of roads and dust suppression. 4 figs.; 2 tabs

  1. Chemical precipitation processes for the treatment of aqueous radioactive waste

    International Nuclear Information System (INIS)

    Chemical precipitation by coagulation-flocculation and sedimentation has been commonly used for many years to treat liquid (aqueous) radioactive waste. This method allows the volume of waste to be substantially reduced for further treatment or conditioning and the bulk of the waste to de discharged. Chemical precipitation is usually applied in combination with other methods as part of a comprehensive waste management scheme. As with any other technology, chemical precipitation is constantly being improved to reduce cost to increase the effectiveness and safety on the entire waste management system. The purpose of this report is to review and update the information provided in Technical Reports Series No. 89, Chemical Treatment of Radioactive Wastes, published in 1968. In this report the chemical methods currently in use for the treatment of low and intermediate level aqueous radioactive wastes are described and illustrated. Comparisons are given of the advantages and limitations of the processes, and it is noted that good decontamination and volume reduction are not the only criteria according to which a particular process should be selected. Emphasis has been placed on the need to carefully characterize each waste stream, to examine fully the effect of segregation and the importance of looking at the entire operation and not just the treatment process when planning a liquid waste treatment facility. This general approach includes local requirements and possibilities, discharge authorization, management of the concentrates, ICRP recommendations and economics. It appears that chemical precipitation process and solid-liquid separation techniques will continue to be widely used in liquid radioactive waste treatment. Current research and development is showing that combining different processes in one treatment plant can provide higher decontamination factors and smaller secondary waste arisings. Some of these processes are already being incorporated into new and

  2. Advances in PCB decontamination technologies

    International Nuclear Information System (INIS)

    Since 1985 several million kilograms of PCB equipment and millions of litres of PCB contaminated oil have been processed in Canada for reduction of PCB concentrations below government guidelines. Advances in extraction and metal recovery from electrical equipment, chemical dechlorination and distillation of PCB-contaminated oils were the significant technological options utilized. For example, using the Decontaksolv technology owners of PCB equipment in Canada have decontaminated three million kilograms of electrical equipment, which resulted in the reintegration of 2.7 million kilograms of useful metals (steel, copper, aluminium) into the economic circuit. The equipment decontaminated included transformers, electromagnets, relays, radiators, circuit breakers, tanks, pipes, valves, and drums. The most recent advances in this technology include improvements that makes the economical processing of capacitors, possible. Chemical dechlorination has virtually eliminated PCB-contaminated oils which are normally present in large transformers, to the point where some service companies have curtailed or discontinued their oil decontamination activities in Canada. Recent advances in this technology center around techniques for the decontamination of waste hydrocarbons, and to a lesser extent, dielectric fluids. Two example projects to illustrate recent advances have been briefly described

  3. The Effects of Food Processing and direct Decontamination Techniques on the Radionuclide Content of Foodstuffs: A Literature Review

    International Nuclear Information System (INIS)

    This article reviews the literature describing the transfer of radionuclides from whole milk to milk products. The principal nuclides of interest are radiocaesium. The behaviour of these and other nuclides during milk processing is considered in some detail. The effectiveness of techniques specifically designed to decontaminate whole milk is also examined. It is clear that a considerable reduction in the contamination of the final product relative to that of the raw milk may be achieved. In general 50 % and, in some cases, greater than 90 % decontamination may be realised

  4. Foam Decontamination of Metals

    International Nuclear Information System (INIS)

    The foam decontamination is quite promising method for purifying radioactive contaminated surfaces. Foam decontamination solutions allow creating the necessary volume of deactivating medium and forming a relatively small amount of secondary liquid waste so that this method may be applicable to bulky objects. Also it should be noted that foam compositions can be effective for objects with a complex geometry. Despite the numerous advantages the well known foam decontamination methods are unpopular today due to their low efficiency and difficulties of recycling waste decontamination solutions. We have made some attempts to improve the attractiveness of foam decontamination process. Currently two compositions (acidic and alkaline) for foam decontamination have been tested. The main advantage of both tested compositions is that they are based on easily degradable surfactants. At the same time the acidic composition has a very low salt content. The preliminary results of tests carried out in real production conditions showed that such approach for metal decontamination was very promising. Metal decontamination factors over 2500 were achieved for consequent treating of metal surfaces with acidic and alkali foam solutions in industrial conditions. The total flow rate of foam generating solutions was 1 L/m2 and processing time was 1 hour. Presently we are trying to modify the foam physical properties to improve the process of decontamination of vertical, inclined and inverted surfaces. Also methods and scheme of spent foam generating solutions treatment are under development. (authors)

  5. Decontamination method for radioactive metal waste

    International Nuclear Information System (INIS)

    Upon processing of contaminated materials, dusts containing radioactive materials are deposited to portions such as which are considered not to have been contaminated during use, and cause secondary wastes. Then, as a means for reducing the secondary wastes as less as possible, paints are coated to the portions of the decontaminated materials which are considered not to have been contaminated during use and, then chemical decontamination is applied to suppress dissolution of metals in the portions and then the paints are removed. Any of paints may be used optionally except for aqueous paints having an affinity with decontaminating liquids. This can prevent unnecessary dissolution of metals and, accordingly, the volume of secondary wastes can be reduced as less as possible, to extend the life time of the decontaminating liquids as long as possible. (T.M.)

  6. Surface decontamination by photo-catalysis - 16068

    International Nuclear Information System (INIS)

    Currently in the nuclear industry, surface contamination in the form of radioactive metal or metal oxide deposits is most commonly removed by chemical decontamination, electrochemical decontamination or physical attrition. Physical attrition techniques are generally used on structural materials (concrete, plaster), with (electro)chemical methods being used to decontaminate metallic or painted surfaces. The most common types of (electro)chemical decontamination are the use of simple mineral acids such as nitric acid or cerium (IV) oxidation (MEDOC). Use of both of these reagents frequently results in the dissolution of a layer of the substrate surface increasing the percentage of secondary waste which leads to burdens on downstream effluent treatment and waste management plants. In this context, both mineral acids and MEDOC can be indiscriminate in the surfaces attacked during deployment, e.g. attacking in transit through a pipe system to the site of contamination resulting in both diminished effect of the decontaminating reagent upon arrival at its target site and an increased secondary waste management requirement. This provides two main requirements for a more ideal decontamination reagent: Improved area specificity and a dissolution power equal to or greater than the previously mentioned current decontaminants. Photochemically promoted processes may provide such a decontamination technique. Photochemical reduction of metal ion valence states to aid in heavy metal deposition has already been extensively studied [1], with reductive manipulation also being achieved with uranium and plutonium simulants (Ce) [2]. Importantly photooxidation of a variety of metals, including neptunium [3], has also been achieved. Here we report on the potential application of this technology to metal dissolution. (authors)

  7. Decontamination method for radioactive waste

    International Nuclear Information System (INIS)

    Metallic radioactive wastes are immersed in a liquid nitrogen vessel above a freezing crusher and they are frozen to about -196degC. Then, impact shocks are applied to crush the radioactive wastes frozen by a rotary shearing shock crusher disposed below the freezing crusher. The thus obtained crushed materials are sent to a decontamination device and decontaminated. In this case, since the objective materials are crushed, any of a blast decontamination method, an electrolytic polishing decontamination method, a redox decontamination method and a chemical agent immersion decontamination method can be applied. Thereafter, the dose of remaining radioactivity of the decontaminated crushed materials is measured. With such procedures, the decontamination and the subsequent measurement for the radiation contamination dose can easily and certainly be conducted for metallic radioactive wastes such as pipes of a small diameter and complicated structures. (I.N.)

  8. EDF guide book for decontamination at power plant

    International Nuclear Information System (INIS)

    This paper addresses EDF quality organization in the decontamination field: policy includes: decontamination activities, how to reach quality, who is doing what, qualification of decontamination personnel, and acceptance and qualification of a decontamination process. Implementation includes: why planning a decontamination? Responsibility of the initiator, responsibility of the planner, and responsibility of the decontamination crew leader

  9. Decontamination chamber for the maintenance of DUPIC nuclear fuel fabrication and process equipment

    International Nuclear Information System (INIS)

    This report presents the decontamination chamber of being capable of decontaminating and maintaining DUPIC nuclear fuel fabrication equipment contaminated in use. The decontamination chamber is a closed room in which contaminated equipment can be isolated from a hot-cell, be decontaminated and be reparired. This chamber can prevent contamination from spreading over the hot-cell, and it can also be utilized as a part of the hot-cell after maintenance work. The developed decontamination chamber has mainly five sub-modules - a horizontal module for opening and closing a ceil of the chamber, a vertical module for opening and closing a side of the chamber, a subsidiary door module for enforcing the vertical opening/closing module, a rotary module for rotating contaminated equipment, and a grasping module for holding a decontamination device. Such sub-modules were integrated and installed in the M6 hot-cell of the IMEF at the KAERI. The mechanical design considerations of each modules and the arrangement with hot-cell facility, remote operation and manipulation of the decontamination chamber are also described

  10. Decontamination chamber for the maintenance of DUPIC nuclear fuel fabrication and process equipment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. H.; Park, J. J.; Yang, M. S.; Lee, H. H.; Shin, J. M

    2000-10-01

    This report presents the decontamination chamber of being capable of decontaminating and maintaining DUPIC nuclear fuel fabrication equipment contaminated in use. The decontamination chamber is a closed room in which contaminated equipment can be isolated from a hot-cell, be decontaminated and be reparired. This chamber can prevent contamination from spreading over the hot-cell, and it can also be utilized as a part of the hot-cell after maintenance work. The developed decontamination chamber has mainly five sub-modules - a horizontal module for opening and closing a ceil of the chamber, a vertical module for opening and closing a side of the chamber, a subsidiary door module for enforcing the vertical opening/closing module, a rotary module for rotating contaminated equipment, and a grasping module for holding a decontamination device. Such sub-modules were integrated and installed in the M6 hot-cell of the IMEF at the KAERI. The mechanical design considerations of each modules and the arrangement with hot-cell facility, remote operation and manipulation of the decontamination chamber are also described.

  11. Malonic acid: A potential reagent in decontamination processes for Ni-rich alloy surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, D.; Bruyere, V.I.E. [Gerencia Quimica, Comision Nacional de Energia Atomica, Centro Atomico Constituyentes, Av. Gral Paz 1499, 1650 San Martin, Prov. de Buenos Aires, Republica Argentina (Argentina); Instituto de Tecnologia, Prof. Jorge Sabato, Universidad Nacional de General San Martin, CNEA, CAC (Argentina); Bordoni, R.; Olmedo, A.M. [Gerencia Quimica, Comision Nacional de Energia Atomica, Centro Atomico Constituyentes, Av. Gral Paz 1499, 1650 San Martin, Prov. de Buenos Aires, Republica Argentina (Argentina); Morando, P.J., E-mail: morando@cnea.gov.ar [Gerencia Quimica, Comision Nacional de Energia Atomica, Centro Atomico Constituyentes, Av. Gral Paz 1499, 1650 San Martin, Prov. de Buenos Aires, Republica Argentina (Argentina); Instituto de Tecnologia, Prof. Jorge Sabato, Universidad Nacional de General San Martin, CNEA, CAC (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (Argentina)

    2011-05-01

    The ability of malonic acid as a dissolution agent toward synthetic Ni ferrite and Alloy 600 and 800 corrosion products was explored. Its performance in the dissolution kinetics of Ni ferrite powders was compared with the one of oxalic acid. Kinetic parameters were obtained and the dependency on external Fe(II) was modelled. Oxidized samples used in descaling tests were prepared by exposure of coupons of both alloys to lithiated aqueous solutions, under hydrothermal conditions and hydrogen overpressure, simulating PHWR conditions. Oxide layer morphology, the influence of exposure time to corrosive medium and LiOH concentration on its thickness were characterized. Descaling tests consisting on a two-stage method (a first oxidizing step with alkaline permanganate followed by a reducing step with oxalic or malonic acid were carried out). Results were compared to those obtained with a well known chemical cleaning formulation (APAC: Alkaline Permanganate Ammonium Citrate) used in decontamination of several reactors and loops and the competitiveness of malonic acid was demonstrated.

  12. Malonic acid: A potential reagent in decontamination processes for Ni-rich alloy surfaces

    International Nuclear Information System (INIS)

    The ability of malonic acid as a dissolution agent toward synthetic Ni ferrite and Alloy 600 and 800 corrosion products was explored. Its performance in the dissolution kinetics of Ni ferrite powders was compared with the one of oxalic acid. Kinetic parameters were obtained and the dependency on external Fe(II) was modelled. Oxidized samples used in descaling tests were prepared by exposure of coupons of both alloys to lithiated aqueous solutions, under hydrothermal conditions and hydrogen overpressure, simulating PHWR conditions. Oxide layer morphology, the influence of exposure time to corrosive medium and LiOH concentration on its thickness were characterized. Descaling tests consisting on a two-stage method (a first oxidizing step with alkaline permanganate followed by a reducing step with oxalic or malonic acid were carried out). Results were compared to those obtained with a well known chemical cleaning formulation (APAC: Alkaline Permanganate Ammonium Citrate) used in decontamination of several reactors and loops and the competitiveness of malonic acid was demonstrated.

  13. Application of a CCA-treated wood waste decontamination process to other copper-based preservative-treated wood after disposal

    Energy Technology Data Exchange (ETDEWEB)

    Janin, Amelie, E-mail: amelie.janin@ete.inrs.ca [University of Toronto, Faculty of Forestry, 33, Willcocks St., Toronto, ON, M5S 3B3 (Canada); Coudert, Lucie, E-mail: lucie.coudert@ete.inrs.ca [Institut national de la recherche scientifique (Centre Eau, Terre et Environnement), Universite du Quebec, 490 rue de la Couronne, Quebec, QC, G1K 9A9 (Canada); Riche, Pauline, E-mail: pauline.riche@ete.inrs.ca [Institut national de la recherche scientifique (Centre Eau, Terre et Environnement), Universite du Quebec, 490 rue de la Couronne, Quebec, QC, G1K 9A9 (Canada); Mercier, Guy, E-mail: guy_mercier@ete.inrs.ca [Institut national de la recherche scientifique (Centre Eau, Terre et Environnement), Universite du Quebec, 490 rue de la Couronne, Quebec, QC, G1K 9A9 (Canada); Cooper, Paul, E-mail: p.cooper@utoronto.ca [University of Toronto, Faculty of Forestry, 33, Willcocks St., Toronto, ON, M5S 3B3 (Canada); Blais, Jean-Francois, E-mail: blaisjf@ete.inrs.ca [Institut national de la recherche scientifique (Centre Eau, Terre et Environnement), Universite du Quebec, 490 rue de la Couronne, Quebec, QC, G1K 9A9 (Canada)

    2011-02-28

    Research highlights: {yields} This paper describes a process for the metal removal from treated (CA-, ACQ- or MCQ-) wood wastes. {yields} This sulfuric acid leaching process is simple and economic. {yields} The remediated wood could be recycled in the industry. - Abstract: Chromated copper arsenate (CCA)-treated wood was widely used until 2004 for residential and industrial applications. Since 2004, CCA was replaced by alternative copper preservatives such as alkaline copper quaternary (ACQ), copper azole (CA) and micronized copper quaternary (MCQ), for residential applications due to health concerns. Treated wood waste disposal is becoming an issue. Previous studies identified a chemical process for decontaminating CCA-treated wood waste based on sulfuric acid leaching. The potential application of this process to wood treated with the copper-based preservatives (alkaline copper quaternary (ACQ), copper azole (CA) and micronized copper quaternary (MCQ)) is investigated here. Three consecutive leaching steps with 0.1 M sulfuric acid at 75 deg, C for 2 h were successful for all the types of treated wood and achieved more than 98% copper solubilisation. The different acidic leachates produced were successively treated by coagulation using ferric chloride and precipitation (pH = 7) using sodium hydroxide. Between 94 and 99% of copper in leachates could be recovered by electrodeposition after 90 min using 2 A electrical current. Thus, the process previously developed for CCA-treated wood waste decontamination could be efficiently applied for CA-, ACQ- or MCQ-treated wood.

  14. Characterization of decontamination and decommissioning wastes expected from the major processing facilities in the 200 Areas

    Energy Technology Data Exchange (ETDEWEB)

    Amato, L.C.; Franklin, J.D.; Hyre, R.A.; Lowy, R.M.; Millar, J.S.; Pottmeyer, J.A. [Los Alamos Technical Associates, Kennewick, WA (United States); Duncan, D.R. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-08-01

    This study was intended to characterize and estimate the amounts of equipment and other materials that are candidates for removal and subsequent processing in a solid waste facility when the major processing and handling facilities in the 200 Areas of the Hanford Site are decontaminated and decommissioned. The facilities in this study were selected based on processing history and on the magnitude of the estimated decommissioning cost cited in the Surplus Facilities Program Plan; Fiscal Year 1993 (Winship and Hughes 1992). The facilities chosen for this study include B Plant (221-B), T Plant (221-T), U Plant (221-U), the Uranium Trioxide (UO{sub 3}) Plant (224-U and 224-UA), the Reduction Oxidation (REDOX) or S Plant (202-S), the Plutonium Concentration Facility for B Plant (224-B), and the Concentration Facility for the Plutonium Finishing Plant (PFP) and REDOX (233-S). This information is required to support planning activities for current and future solid waste treatment, storage, and disposal operations and facilities.

  15. Characterization of decontamination and decommissioning wastes expected from the major processing facilities in the 200 Areas

    International Nuclear Information System (INIS)

    This study was intended to characterize and estimate the amounts of equipment and other materials that are candidates for removal and subsequent processing in a solid waste facility when the major processing and handling facilities in the 200 Areas of the Hanford Site are decontaminated and decommissioned. The facilities in this study were selected based on processing history and on the magnitude of the estimated decommissioning cost cited in the Surplus Facilities Program Plan; Fiscal Year 1993 (Winship and Hughes 1992). The facilities chosen for this study include B Plant (221-B), T Plant (221-T), U Plant (221-U), the Uranium Trioxide (UO3) Plant (224-U and 224-UA), the Reduction Oxidation (REDOX) or S Plant (202-S), the Plutonium Concentration Facility for B Plant (224-B), and the Concentration Facility for the Plutonium Finishing Plant (PFP) and REDOX (233-S). This information is required to support planning activities for current and future solid waste treatment, storage, and disposal operations and facilities

  16. Control of Aeromonas on minimally processed vegetables by decontamination with lactic acid, chlorinated water, or thyme essential oil solution.

    Science.gov (United States)

    Uyttendaele, M; Neyts, K; Vanderswalmen, H; Notebaert, E; Debevere, J

    2004-02-01

    Aeromonas is an opportunistic pathogen, which, although in low numbers, may be present on minimally processed vegetables. Although the intrinsic and extrinsic factors of minimally processed prepacked vegetable mixes are not inhibitory to the growth of Aeromonas species, multiplication to high numbers during processing and storage of naturally contaminated grated carrots, mixed lettuce, and chopped bell peppers was not observed. Aeromonas was shown to be resistant towards chlorination of water, but was susceptible to 1% and 2% lactic acid and 0.5% and 1.0% thyme essential oil treatment, although the latter provoked adverse sensory properties when applied for decontamination of chopped bell peppers. Integration of a decontamination step with 2% lactic acid in the processing line of grated carrots was shown to have the potential to control the overall microbial quality of the grated carrots and was particularly effective towards Aeromonas. PMID:14751681

  17. Stability of Decontamination Foam Containing Silica Nanoparticles and Viscosifier

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, In Ho; Jung, Chong Hun; Yoon, Suk Bon; Kim, Chorong; Jung, Jun Young; Park, Sang Yoon; Moon, Jei Kwon; Choi, Wang Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    This formulation can significantly decrease the amounts of chemical reagents and secondary waste. The advantage of decontamination foam is its potentially wide application for metallic walls, overhead surfaces, and the elements of complex components and facilities. In addition, foam is a good material for in situ decontamination because it generates low final waste volumes owing to its volume expansion. The application of foam allows for remote decontamination processing using only an injection nozzle and the equipment to generate the decontamination foam, which reduces operator exposure to high radioactivity. The decontamination efficiency can be enhanced by improving the contact time between chemical reagents and a contaminated surface through the addition of surfactants and viscosifiers into the decontamination foam. The objective of this study is to investigate the effect of silica nanoparticles and a viscosifier on the foam stability and the dissolution behaviors of corroded specimens using a non-ionic surfactant. This study showed the effect of viscosifiers and nanoparticles on the foam stability when developing new formulations of decontamination foam. The addition of xanthan gum and the mixture of xanthan gum and silica nanoparticles (M-5) significantly increased the foam stability, compared to the surfactant solution alone. This result indicates that both the viscosifier and nanoparticles have a synergistic effect on the foam stability. As the contact time increased, the dissolution rate increased to become similar to the dissolution that contained decontamination liquid.

  18. Stability of Decontamination Foam Containing Silica Nanoparticles and Viscosifier

    International Nuclear Information System (INIS)

    This formulation can significantly decrease the amounts of chemical reagents and secondary waste. The advantage of decontamination foam is its potentially wide application for metallic walls, overhead surfaces, and the elements of complex components and facilities. In addition, foam is a good material for in situ decontamination because it generates low final waste volumes owing to its volume expansion. The application of foam allows for remote decontamination processing using only an injection nozzle and the equipment to generate the decontamination foam, which reduces operator exposure to high radioactivity. The decontamination efficiency can be enhanced by improving the contact time between chemical reagents and a contaminated surface through the addition of surfactants and viscosifiers into the decontamination foam. The objective of this study is to investigate the effect of silica nanoparticles and a viscosifier on the foam stability and the dissolution behaviors of corroded specimens using a non-ionic surfactant. This study showed the effect of viscosifiers and nanoparticles on the foam stability when developing new formulations of decontamination foam. The addition of xanthan gum and the mixture of xanthan gum and silica nanoparticles (M-5) significantly increased the foam stability, compared to the surfactant solution alone. This result indicates that both the viscosifier and nanoparticles have a synergistic effect on the foam stability. As the contact time increased, the dissolution rate increased to become similar to the dissolution that contained decontamination liquid

  19. Decontamination of acid waste water from uranium mining by chemical precipitation

    International Nuclear Information System (INIS)

    The aim of the required cleaning process is to reduce the hardness lowering of the SO4 and Fe concentrations, raising the pH value to about 6.5 to 9.0 with simultaneous reduction of the uranium content. Complete precipitation reactions occur, which are affected by composition of the untreated water, changes in the untreated water by storage, chemical dosing etc., so that one specific consumption cannot be stated. The consumption of lime depends on the pH value, the Fe and Mg content of the solution. Other means of precipitation than lime are not suitable, partly for technological reasons and partly from the economic point of view. (orig./HP)

  20. Long lasting decontamination foam

    Science.gov (United States)

    Demmer, Ricky L.; Peterman, Dean R.; Tripp, Julia L.; Cooper, David C.; Wright, Karen E.

    2010-12-07

    Compositions and methods for decontaminating surfaces are disclosed. More specifically, compositions and methods for decontamination using a composition capable of generating a long lasting foam are disclosed. Compositions may include a surfactant and gelatin and have a pH of less than about 6. Such compositions may further include affinity-shifting chemicals. Methods may include decontaminating a contaminated surface with a composition or a foam that may include a surfactant and gelatin and have a pH of less than about 6.

  1. Low corrosive chemical decontamination method using pH control. 2. Decomposition of reducing agent by using catalyst with hydrogen peroxide

    International Nuclear Information System (INIS)

    In the development of a new chemical decontamination method which provides a high decontamination effect, less corrosion of base metal, and less radioactive waste generation, we developed a decomposition method for oxalic acid coexisting with hydrazine to decrease the amount of radioactive waste. Using a catalyst of 0.5wt% Ru supported by activated carbon grains, we decomposed oxalic acid and hydrazine, simultaneously and efficiently, with a stoichiometric concentration of H2O2. The decomposition ratios were decreased by the deposition of oxides. But even if the simulated reducing agent solution with high concentrations of coexisting Fe and K ions, which negatively effect decomposition ratio, was decomposed, the decomposition ratios of oxalic acid and hydrazine were kept high during decomposition of the amount of reducing agent used in actual chemical decontamination. Additionally, we examined the deposition ratios of metal ions on the catalyst as metal oxides. These results indicated about 2% of the radioactive species which were removed by the chemical decontamination were deposited on the catalyst column. 59Fe and 51Cr were estimated to be about 90% of the total deposited amount of radioactive species and about 60% of the dose equivalent in the model calculation. But this problem should be easily dealt with by using shielding. (author)

  2. Crowd behaviour in chemical, biological, radiological and nuclear (CBRN) emergencies: behavioural and psychological responses to incidents involving emergency decontamination

    OpenAIRE

    Carter, Holly Elisabeth

    2014-01-01

    Planning for incidents involving mass decontamination has focused almost exclusively on technical aspects of decontamination, with little attempt to understand public experiences and behaviour. This thesis aimed to examine relevant theory and research, in order to understand public behaviour during incidents involving mass decontamination, and to develop theoretically-derived recommendations for emergency responders. As these incidents involve groups, it was expected that social identity proc...

  3. Reduced weight decontamination formulation utilizing a solid peracid compound for neutralization of chemical and biological warfare agents

    Science.gov (United States)

    Tucker, Mark D.

    2011-09-20

    A reduced weight decontamination formulation that utilizes a solid peracid compound (sodium borate peracetate) and a cationic surfactant (dodecyltrimethylammonium chloride) that can be packaged with all water removed. This reduces the packaged weight of the decontamination formulation by .about.80% (as compared to the "all-liquid" DF-200 formulation) and significantly lowers the logistics burden on the warfighter. Water (freshwater or saltwater) is added to the new decontamination formulation at the time of use from a local source.

  4. Decontamination and decommissioning technology development of nuclear facilities

    International Nuclear Information System (INIS)

    Removal behaviour of an oxide which is similar in structure and composition to that on internal system of steam generator were investigated in low concentration chemical decontamination process [KAERI process]. In the AP solution (oxidative dissolution step), Cr dissolved fastly from the oxide in early stage and then dissolved very slowly in later stage. Dissolution behaviours of Fe from the oxides in the reductive dissolution process were similar to those of Cr in the oxidative dissolution process. Oxide dissolution behaviour in each process were discussed. In twice cyclic application of the oxidative and the reductive dissolution process(KAERI decontamination process), about 50% of the oxide was removed by chemical dissolution, about 40% by particulate detachment. The rest 10% oxide could be completely removed by ultrasonic decontamination. Corrosion acceptance guideline was established for the decontamination of domestic PWRs' steam generator. In the KAERI decontamination process, general corrosion to an Inconel-600 and 304 stainless steel was about 2.4 and 1.0% of general corrosion limit, respectively. And localized corrosion was not observed. Those results indicated that the KAERI decontamination process assured integrity of KNUs' steam generator. To evaluate the radioactive inventory for the decommissioning of nuclear facilities, general calculation methods of radioactive inventory, calculation and measurement of contact exposure rate, and confirmation of those results were reviewed. Feasibility for application of the above methods was examined by taking examples of radioactive inventory estimation in the Shippingport nuclear reactor vessel. (Author)

  5. Potential Process for the Decontamination of Pyro-electrometallurgical LiCl-KCl Eutectic Salt Electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Christopher S.; Sizgek, Erden; Sizgek, Devlet; Luca, Vittorio [Australian Nuclear Science and Technology Organisation (ANSTO), Institute of Materials Engineering, New Illawarra Road, Lucas Heights, New South Wales, 2234 (Australia)

    2008-07-01

    Presented here is a potential option with experimental validation for the decontamination of LiCl-KCl eutectic salt electrolyte from a pyro-electrometallurgical process by employing already developed inorganic ion exchange materials. Adsorbent materials considered include titano-silicates and molybdo- and tungstophosphates for Cs extraction, Si-doped antimony pyrochlore for Sr extraction and hexagonal tungsten bronzes for lanthanide (LN) and minor actinide (MA) polishing. Encouraging results from recent investigations on the removal of target elements (Cs, Sr and LN) from aqueous solutions containing varying concentrations of alkali and alkali metal contaminants which would be akin to a solution formed from the dissolution of spent LiCl-KCl eutectic salt electrolyte are presented. Further investigations have also shown that the saturated adsorbents can be treated at relatively low temperatures to afford potential waste forms for the adsorbed elements. Efficient evaporation and drying of a solution of dissolved LiCl-KCl eutectic salt electrolyte (50 L, 5 L.h{sup -1}) has been demonstrated using a Microwave-Heated Mechanical Fluidized Bed (MWMFB) apparatus. (authors)

  6. Potential Process for the Decontamination of Pyro-electrometallurgical LiCl-KCl Eutectic Salt Electrolyte

    International Nuclear Information System (INIS)

    Presented here is a potential option with experimental validation for the decontamination of LiCl-KCl eutectic salt electrolyte from a pyro-electrometallurgical process by employing already developed inorganic ion exchange materials. Adsorbent materials considered include titano-silicates and molybdo- and tungstophosphates for Cs extraction, Si-doped antimony pyrochlore for Sr extraction and hexagonal tungsten bronzes for lanthanide (LN) and minor actinide (MA) polishing. Encouraging results from recent investigations on the removal of target elements (Cs, Sr and LN) from aqueous solutions containing varying concentrations of alkali and alkali metal contaminants which would be akin to a solution formed from the dissolution of spent LiCl-KCl eutectic salt electrolyte are presented. Further investigations have also shown that the saturated adsorbents can be treated at relatively low temperatures to afford potential waste forms for the adsorbed elements. Efficient evaporation and drying of a solution of dissolved LiCl-KCl eutectic salt electrolyte (50 L, 5 L.h-1) has been demonstrated using a Microwave-Heated Mechanical Fluidized Bed (MWMFB) apparatus. (authors)

  7. Decontamination of radioactive process waste water by foam separation. Vol. 3

    International Nuclear Information System (INIS)

    On the basis of new studies and previous work from this laboratory, several foam separation techniques are considered feasible methods to carry out the separation of radioactive nuclides from simulated radioactive process waste water. Anionic or cationic collectors were used depending on the type of charge on the ion or precipitate to be removed. Sodium lauryl sulphate, aerosol-18 potassium oleate, acetyl trimethyl ammonium bromide, dodecyl pyridinium chloride and gelation were examined as the collector. Aluminium hydroxide, iron (III) oxyhydroxide and hydrous manganese dioxide were studied as the adsorbing floc adsorbing colloid flotation and copper ferrocyanide as the co precipitating agent in co precipitate flotation. The effects of varying the collector, the adsorbing colloid floc, co precipitant and metal ion concentrations, the PH, the gas flow rate, the ionic strength, length of the flotation column and multistage separation on the percentage removal, volume reduction and enrichment ratio were investigated. According to experimental results, adsorbing colloid flotation, whenever applicable, is the preferred method for decontamination. Radionuclide removal up to 100% were obtained. 4 figs., 13 tabs

  8. Effect of Cerium(IV)-Surfactant Reaction in Foam Decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Han Beom; Jung, Chong-Hun; Yoon, In-Ho; Kim, Chorong; Choi, Wang-Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Using foams allows the decommissioning of complex shaped facilities. The decontamination foam comprises at least one surfactant to generate the foam and one or more chemical reactants to achieve the dissolution of the contaminants at the solid surface. In order to improve the efficiency of decontamination foam, the present study attempts to find the optimum condition of chemical reagents to the foaming solution. The corrosion rate of radioactive nuclides contaminated stainless steel metal is very important factor for the foam decontamination process. The goal of this study is to develop the decontamination process for contaminated stainless steel in medium of nitric acid. Stainless steel needs a strong oxidizing agent such as Ce(IV) ion and the effects of cerium(IV). Surfactant interaction involved in foam decontamination and finally the improvement brought by formulation science. The formulation of foams loaded with strong oxidizing reagents such as Ce(IV) is an important factor. The enhanced decontamination properties of nitric acid with Ce(IV) additive on stainless steel is well known in liquid mediums. stainless steel metal is an important aspect in the foam decontamination process.

  9. Planning guidance for nuclear-power-plant decontamination. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Munson, L.F.; Divine, J.R.; Martin, J.B.

    1983-06-01

    Direct and indirect costs of decontamination are considered in the benefit-cost analysis. A generic form of the benefit-cost ratio is evaluated in monetary and nonmonetary terms, and values of dollar per man-rem are cited. Federal and state agencies that may have jurisiction over various aspects of decontamination and waste disposal activities are identified. Methods of decontamination, their general effectiveness, and the advantages and disadvantages of each are outlined. Dilute or concentrated chemical solutions are usually used in-situ to dissolve the contamination layer and a thin layer of the underlying substrate. Electrochemical techniques are generally limited to components but show high decontamination effectiveness with uniform corrosion. Mechanical agents are particularly appropriate for certain out-of-system surfaces and disassembled parts. These processes are catagorized and specific concerns are discussed. The treatment, storage, and disposal or discharge or discharge of liquid, gaseous, and solid wastes generated during the decontamination process are discussed. Radioactive and other hazardous chemical wastes are considered. The monitoring, treatment, and control of radioactive and nonradioactive effluents, from both routine operations and possible accidents, are discussed. Protecting the health and safety of personnel onsite during decontamination is of prime importance and should be considered in each facet of the decontamination process. The radiation protection philosophy of reducing exposure to levels as low as reasonably achievable should be stressed. These issues are discussed.

  10. Effect of Cerium(IV)-Surfactant Reaction in Foam Decontamination

    International Nuclear Information System (INIS)

    Using foams allows the decommissioning of complex shaped facilities. The decontamination foam comprises at least one surfactant to generate the foam and one or more chemical reactants to achieve the dissolution of the contaminants at the solid surface. In order to improve the efficiency of decontamination foam, the present study attempts to find the optimum condition of chemical reagents to the foaming solution. The corrosion rate of radioactive nuclides contaminated stainless steel metal is very important factor for the foam decontamination process. The goal of this study is to develop the decontamination process for contaminated stainless steel in medium of nitric acid. Stainless steel needs a strong oxidizing agent such as Ce(IV) ion and the effects of cerium(IV). Surfactant interaction involved in foam decontamination and finally the improvement brought by formulation science. The formulation of foams loaded with strong oxidizing reagents such as Ce(IV) is an important factor. The enhanced decontamination properties of nitric acid with Ce(IV) additive on stainless steel is well known in liquid mediums. stainless steel metal is an important aspect in the foam decontamination process

  11. Decontamination tests on tritium-contaminated materials

    International Nuclear Information System (INIS)

    These tests are designed to try out various processes liable to be applied to the decontamination of a material contaminated with tritium. The samples are thin stainless- steel slabs contaminated in the laboratory with elements extracted from industrial installations. The measurement of the initial and residual activities is carried out using an open-window BERTHOLD counter. The best results are obtained by passing a current of pre-heated (300 deg. C) air containing water vapour. This process makes it possible to reach a decontamination factor of 99.5 per cent in 4 hours. In a vacuum, the operation has to be prolonged to 100 hours in order to obtain a decontamination factor of 99.2 per cent. Wet-chemical or electrolytic treatments are efficient but their use is limited by the inherent corrosion risks. A study of the reappearance of the contamination has made it possible to observe that this phenomenon occurs whatever the process used. (authors)

  12. Planning and execution of decontamination prior to decommissioning 30 years experience with cord family and AMDA for decontamination in operating plants and prior to decommissioning

    International Nuclear Information System (INIS)

    This paper presents AREVA NP's 30 year experience in the field of decontamination. This paper is focused on decontamination prior to decommissioning and the highlights of the performed projects and results will be outlined. Advantages of the FSD short after final shutdown will be described. Since 1986 AREVA NP has been working regularly on the decontaminations prior to decommissioning and our decommissioning experience in this cover all main NPP designs. 1 application in a heavy water PWR of Siemens Design. 1 application in PWR of VVER design. 3 applications in PWR of Siemens design. 3 applications in PWR of Westinghouse design. 5 applications in BWR of GE design. It will be demonstrated that decontaminations can be performed with CORD Family and AMDA even after 20 years of safe enclosure (see FSD Lingen and MZFR). Decontaminations can be performed either by using NPP systems/components or completely by using external decon equipment AMDA. In this context, CORD (Chemical Oxidation Reduction Decontamination) represents the chemical decontamination process while AMDA stands for Automated Mobile Decontamination Appliance. HP is used for permanganic acid as an oxidizing agent and UV for the in-situ decomposition of the decontamination chemicals with ultraviolet light. (author)

  13. Radioactive decontamination

    International Nuclear Information System (INIS)

    It discusses radioactive decontamination from the practical point of view with aim of contributions to safety control of radioisotopes. As general knowledges, contamination forms are explained from physical states of solid materials' surfaces and classification of contaminative mechanism are conducted in each contamination form. Furthermore, the decontaminants selcted for each classified contaminative mechanism are indicated from pH-effect and concentration effect. Decontamination on laboratory, using wet method generally as a decontamination technic includes irrigation method by decontaminant solution and scrubbing method. Decontamination of machinery and tools includes scrubbing method and the methods using ultrasonic decontamination equipment and semiautomatic decontamination equipment of which flow-diagram is illustrated. The methods of decontamination of clothing include its disposal or the use of tightly-closed full automatic washing machine. The general irrigation method are indicated as decontamination of skin. Furthermore, neutral cleaning material method for elimination of short-term elapsed contamination and Titanium oxide paste method for elimination of long-term elapsed contamination are explained. (Kanao, N.)

  14. Liquid abrasive grit blasting literature search and decontamination scoping tests report

    International Nuclear Information System (INIS)

    Past decontamination and solvent recovery activities at the Idaho Chemical Processing Plant (ICPP) have resulted in the accumulation of 1.5 million gallons of radioactively contaminated sodium-bearing liquid waste. Future decontamination activities at the ICPP could result in the production of 5 million gallons or more of sodium-bearing waste using the current decontamination techniques of chemical/water flushes and steam jet cleaning. With the curtailment of reprocessing at the ICPP, the focus of decontamination is shifting from maintenance for continued operation of the facilities to decommissioning. As decommissioning plans are developed, new decontamination methods must be used which result in higher decontamination factors and generate lower amounts of sodium-bearing secondary waste. The primary initiative of the WINCO Decontamination Development Program is the development of methods to eliminate/minimize the use of sodium-bearing decontamination chemicals. One method that was chosen for cold scoping studies during FY-93 was abrasive grit blasting. Abrasive grit blasting has been used in many industries and a vast amount of research and development has already been conducted. However, new grits, process improvements and ICPP applicability was investigated. This evaluation report is a summary of the research efforts and scoping tests using the liquid abrasive grit blasting decontamination technique. The purpose of these scoping tests was to determine the effectiveness of three different abrasive grits: plastic beads, glass beads and alumina oxide

  15. Assessment of an electro-kinetic decontamination process for cementitious materials

    International Nuclear Information System (INIS)

    In nuclear facilities more than 80% of the volume of contaminated materials is part of the concrete structures, mainly treated by mechanical abrasion and blasting techniques. However, contaminants such as cesium and strontium are transported through the porous material (> 6 cm) and cannot be treated by mechanical techniques. An electro-kinetic remediation process is still under assessment and development as a specific method for deeply contaminated structures. It consists in using the reinforcing steel as an anode and placing a cathode at the surface of the structure, immersed in a conductive electrolyte. The cathode-electrolyte ensures the conduction of electric currents within the material, and imposes an electric field between the two electrodes. The contaminant ions within the pore solution migrate toward the electrolyte. Experiments are performed on mortar cylinders artificially contaminated by nonradioactive cesium to estimate the efficiency of the process at small scale (about 10 cm) on reinforced mortar cylinders. Electrolyte samples are analyzed by ion chromatography to measure the cesium fluxes and decontamination rate. Characterization experiments have been performed to determine the main diffusion and porosity parameters. A model has been developed to describe ion transport under an electrical field. Natural diffusion and ion migration are taken into account, osmosis and convection are neglected. The governing equations are obtained by combining the fluxes expressions with the mass balance equations. Electric and transport phenomena are coupled using the electro-neutrality equation. The numerical outcomes give the evolution of the cesium concentration within the porous media. Electric field and potential iso-lines are calculated for different times. Remaining quantities of ionic species are obtained by integration of mass fluxes. (authors)

  16. Idaho Chemical Processing Plant Process Efficiency improvements

    Energy Technology Data Exchange (ETDEWEB)

    Griebenow, B.

    1996-03-01

    In response to decreasing funding levels available to support activities at the Idaho Chemical Processing Plant (ICPP) and a desire to be cost competitive, the Department of Energy Idaho Operations Office (DOE-ID) and Lockheed Idaho Technologies Company have increased their emphasis on cost-saving measures. The ICPP Effectiveness Improvement Initiative involves many activities to improve cost effectiveness and competitiveness. This report documents the methodology and results of one of those cost cutting measures, the Process Efficiency Improvement Activity. The Process Efficiency Improvement Activity performed a systematic review of major work processes at the ICPP to increase productivity and to identify nonvalue-added requirements. A two-phase approach was selected for the activity to allow for near-term implementation of relatively easy process modifications in the first phase while obtaining long-term continuous improvement in the second phase and beyond. Phase I of the initiative included a concentrated review of processes that had a high potential for cost savings with the intent of realizing savings in Fiscal Year 1996 (FY-96.) Phase II consists of implementing long-term strategies too complex for Phase I implementation and evaluation of processes not targeted for Phase I review. The Phase II effort is targeted for realizing cost savings in FY-97 and beyond.

  17. Idaho Chemical Processing Plant Process Efficiency improvements

    International Nuclear Information System (INIS)

    In response to decreasing funding levels available to support activities at the Idaho Chemical Processing Plant (ICPP) and a desire to be cost competitive, the Department of Energy Idaho Operations Office (DOE-ID) and Lockheed Idaho Technologies Company have increased their emphasis on cost-saving measures. The ICPP Effectiveness Improvement Initiative involves many activities to improve cost effectiveness and competitiveness. This report documents the methodology and results of one of those cost cutting measures, the Process Efficiency Improvement Activity. The Process Efficiency Improvement Activity performed a systematic review of major work processes at the ICPP to increase productivity and to identify nonvalue-added requirements. A two-phase approach was selected for the activity to allow for near-term implementation of relatively easy process modifications in the first phase while obtaining long-term continuous improvement in the second phase and beyond. Phase I of the initiative included a concentrated review of processes that had a high potential for cost savings with the intent of realizing savings in Fiscal Year 1996 (FY-96.) Phase II consists of implementing long-term strategies too complex for Phase I implementation and evaluation of processes not targeted for Phase I review. The Phase II effort is targeted for realizing cost savings in FY-97 and beyond

  18. Effect of different technological processes on the decontamination of meat contaminated with radiocesium

    International Nuclear Information System (INIS)

    The decontamination effect of curing along with the determination of the radioactivities of brine and salt concentrations in pork and mutton contaminated with Cs-137 were examined. The obtained results showed that curing pork and mutton in 5 and 10% brine, respectively, for 7 d proved to be the best method if effectiveness and the concentration of salt in cured meat were taken into consideration. The decontamination effectiveness of curing was 78.7 and 80.3%, respectively. (author). 8 refs, 3 tabs

  19. High temperature decontamination of stainless steel surfaces

    International Nuclear Information System (INIS)

    Dilute Chemical Decontamination process that is carried out at low temperatures (<90 °C) is effective in obtaining good decontamination factors (DFs) on carbon steel (CS) system surfaces of PHWRs as the formulation is efficient in dissolving magnetite present on CS surfaces. However, this low temperature dilute chemical decontamination process is not effective in achieving appreciable DFs on stainless steel (SS) surfaces of nuclear power reactors as it is not efficient in dissolving Cr and Ni substituted oxides present on these surfaces. Hence, a high temperature process was evaluated for the effective decontamination of SS surfaces. Among the various formulations evaluated, formulation consisting of 5 mM NTA and 10 mM N2H4 at 160 °C was found to be appropriate for high temperature decontamination application. Dissolution of various oxides like, magnetite (Fe3O4), mixed ferrites (NiFe2O4, ZnFe2O4, MgFe2O4 etc), Cr oxide (Cr2O3), bonaccordite (Ni2FeBO5) etc. was carried out in NTA at 160 °C. Significant increase in dissolution rate was observed for these oxides at 160 °C. On increasing the temperature from 80 to 180 °C, the dissolution rate of Fe3O4 increased about 6 fold. The optimised formulation (5 mM NTA with 10 mM N2H4) was employed for removing the oxide formed on SS-304, SS-316, SS-403 and SS-410 under simulated reactor water chemistry conditions. Oxide deposits from all the above surfaces could be completely removed by this high temperature process. This paper gives the summary of the results from the laboratory experiments and a simulated high temperature decontamination process. (author)

  20. Surface decontamination

    International Nuclear Information System (INIS)

    The general methods of surface decontamination used in laboratory and others nuclear installations areas, as well as the procedures for handling radioactive materials and surfaces of work are presented. Some methods for decontamination of body external parts are mentioned. The medical supervision and assistance are required for internal or external contamination involving or not lesion in persons. From this medical radiation protection decontamination procedures are determined. (M.C.K.)

  1. Electro-Mechanical Manipulator for Use in the Remote Equipment Decontamination Cell at the Defense Waste Processing Facility, Savannah River Site - 12454

    International Nuclear Information System (INIS)

    One of the legacies of the cold war is millions of liters of radioactive waste. One of the locations where this waste is stored is at the Savannah River Site (SRS) in South Carolina. A major effort to clean up this waste is on-going at the defense waste processing facility (DWPF) at SRS. A piece of this effort is decontamination of the equipment used in the DWPF to process the waste. The remote equipment decontamination cell (REDC) in the DWPF uses electro-mechanical manipulators (EMM) arms manufactured and supplied by PaR Systems to decontaminate DWPF process equipment. The decontamination fluid creates a highly corrosive environment. After 25 years of operational use the original EMM arms are aging and need replacement. To support continued operation of the DWPF, two direct replacement EMM arms were delivered to the REDC in the summer of 2011. (authors)

  2. Personal Simulator of Chemical Process

    Institute of Scientific and Technical Information of China (English)

    吴重光

    2002-01-01

    The Personal Simulator of chemical process (PS) means that fully simulationsoftware can be run on one personal computer. This paper describes the kinds of PSprograms, its features, the graphic functions and three examples. PS programs are allbased on one object-oriented and real-time simulation software environment. Authordevelops this simulation software environment. An example of the batch reaction kineticsmodel is also described. Up to now a lot of students in technical schools and universitieshave trained on PS. The training results are very successful.

  3. Health physics and industrial hygiene aspects of decontamination as a precursor to decommissioning

    International Nuclear Information System (INIS)

    The Pacific Northwest Laboratory is conducting a comprehensive study of the impacts, benefits and effects of decontamination as a precursor to decommissioning for the U.S. Nuclear Regulatory Commission. A major section of this study defines the health physics and industrial hygiene and safety concerns during decontamination operations. Health physics concerns include providing adequate protection for workers from radiation sources which are transported by the decontamination processes, estimating and limiting radioactive effluents to the environment, and maintaining operations in accordance with the ALARA philosophy. Locating and identifying the areas of contamination and measuring the radiation exposure rates throughout the reactor primary system are fundamental to implementing these goals. The principal industrial hygiene and safety concerns stem from the fact that a nuclear power plant is being converted for a time to a chemical plant. The resulting industrial hazards include dangerous obstructions caused by insufficient storage space for decontamination equipment and chemicals, problems created because workers employed for the decontamination are not familiar with the plant layout and equipment, and the problems associated with handling toxic and highly reactive decontamination chemicals. The operation of decontamination equipment also involves risks to the decontamination worker from electrical shock, noise, airborne particulates and toxic gases. Careful planning of operations, training of the crew, and familiarization with the reactor systems significantly reduce the risks of decontamination prior to decommissioning

  4. Chemical dynamics of acidity and heavy metals in a mine water-polluted soil during decontamination using clean water.

    Science.gov (United States)

    Chen, A; Lin, C; Lu, W; Ma, Y; Bai, Y; Chen, H; Li, J

    2010-03-15

    A column leaching experiment was conducted to investigate the chemical dynamics of the percolating water and washed soil during decontamination of an acidic mine water-polluted soil. The results show that leaching of the contaminated soil with clean water rapidly reduced soluble acidity and ion concentrations in the soils. However, only <20% of the total actual acidity in the soil column was eliminated after 30 leaching cycles. It is likely that the stored acidity continues to be released to the percolating water over a long period of time. During the column leaching, dissolved Cu and Pb were rapidly leached out, followed by mobilization of colloidal Cu and Pb from the exchangeable and the oxide-bound fractions as a result of reduced ionic strength in the soil solution. The soluble Fe contained in the soil was rare, probably because the soil pH was not sufficiently low; marked mobility of colloidal Fe took place after the ionic strength of the percolating water was weakened and the mobilized Fe was mainly derived from iron oxides. In contrast with Cu, Pb and Fe, the concentration of leachate Zn and Mn showed a continuously decreasing trend during the entire period of the experiment. PMID:19913356

  5. Broad-Spectrum Liquid- and Gas-Phase Decontamination of Chemical Warfare Agents by One-Dimensional Heteropolyniobates.

    Science.gov (United States)

    Guo, Weiwei; Lv, Hongjin; Sullivan, Kevin P; Gordon, Wesley O; Balboa, Alex; Wagner, George W; Musaev, Djamaladdin G; Bacsa, John; Hill, Craig L

    2016-06-20

    A wide range of chemical warfare agents and their simulants are catalytically decontaminated by a new one-dimensional polymeric polyniobate (P-PONb), K12 [Ti2 O2 ][GeNb12 O40 ]⋅19 H2 O (KGeNb) under mild conditions and in the dark. Uniquely, KGeNb facilitates hydrolysis of nerve agents Sarin (GB) and Soman (GD) (and their less reactive simulants, dimethyl methylphosphonate (DMMP)) as well as mustard (HD) in both liquid and gas phases at ambient temperature and in the absence of neutralizing bases or illumination. Three lines of evidence establish that KGeNb removes DMMP, and thus likely GB/GD, by general base catalysis: a) the k(H2 O)/k(D2 O) solvent isotope effect is 1.4; b) the rate law (hydrolysis at the same pH depends on the amount of P-PONb present); and c) hydroxide is far less active against the above simulants at the same pH than the P-PONbs themselves, a critical control experiment. PMID:27061963

  6. Effective Responder Communication Improves Efficiency and Psychological Outcomes in a Mass Decontamination Field Experiment: Implications for Public Behaviour in the Event of a Chemical Incident

    OpenAIRE

    Carter, Holly; Drury, John; Amlôt, Richard; Rubin, G James; Williams, Richard

    2014-01-01

    The risk of incidents involving mass decontamination in response to a chemical, biological, radiological, or nuclear release has increased in recent years, due to technological advances, and the willingness of terrorists to use unconventional weapons. Planning for such incidents has focused on the technical issues involved, rather than on psychosocial concerns. This paper presents a novel experimental study, examining the effect of three different responder communication strategies on public ...

  7. Application of indigenous inorganic sorbents in combination with membrane technology for treatment of radioactive liquid waste from decontamination processes

    International Nuclear Information System (INIS)

    The purpose of the work was to improve the process for treatment of liquid radioactive waste containing complexing agents, which are generated during the decontamination operations. We performed some experiments using simulated waste solutions like secondary waste from the modified CANDEREM process (Canadian Decontamination and Remediation Process) and secondary waste from the modified CANDECON process (Canadian Decontamination Process). To improve efficiency and economics of the process it was proposed to treat the waste by combining the sorption of radionuclides on natural inorganic sorbents (zeolites) with membrane filtration. Standard procedures are applied to compare the sorption of radionuclides on different sorbent forms-determination of the ion exchange capacity, construction of sorption isotherms, determination of the distribution coefficients, and kinetics experiments. To check the influence of converting the sorbents to various cationic forms on their sorption properties, distribution coefficients of 137Cs and 57Co on natural zeolites from local deposits converted to NH4+, Na+ or H+ forms were determined. The results obtained show that the distribution coefficients of 137Cs on the materials converted to Na+ form are higher than for the remaining forms studied. The parameters of Langmuir, Freundlich and Dubinin-Radushkevich adsorption isotherms have been determined using sorption data. The Dubinin-Radushkevich model shows better correlation between the theoretical and experimental data for 137Cs sorption on natural zeolites from local deposits converted to NH4+ and H+ forms than Langmuir and Freundlich equations. Kinetic studies were carried out with various zeolite forms. The sorbents studied are natural zeolites from local deposits (Marsid-Romania). The batch sorption kinetics has been tested for pseudo-second order reaction. The pseudo-second order model fits the experimental data well for all of the systems studied. (orig.)

  8. Effect of the temperature of the dipping solution on the antimicrobial effectiveness of various chemical decontaminants against pathogenic and spoilage bacteria on poultry.

    Science.gov (United States)

    Alonso-Hernando, Alicia; Guevara-Franco, José Alfredo; Alonso-Calleja, Carlos; Capita, Rosa

    2013-05-01

    The influence of the temperature of the dipping solution on the antimicrobial effectiveness of several chemical poultry decontaminants was assessed. A total of 765 poultry legs were inoculated with gram-positive bacteria (Listeria monocytogenes, Staphylococcus aureus, Bacillus cereus, or Brochothrix thermosphacta) or gram-negative bacteria (Salmonella enterica serotype Enteritidis, Escherichia coli, Yersinia enterocolitica, or Pseudomonas fluorescens). Samples were dipped for 15 min in solutions (wt/vol) of trisodium phosphate (12%), acidified sodium chlorite (1,200 ppm), citric acid (2%), peroxyacids (220 ppm), chlorine dioxide (50 ppm), or tap water or were left untreated (control). The temperatures of the dipping solutions were 4, 20, or 50°C. Microbiological analyses and pH determinations were carried out after 0, 1, 3, and 5 days of storage at 4°C. In comparison with the control samples, all chemical solutions were effective for reducing microbial loads. The temperature of treatment affected the microbial reductions caused by all chemicals (P chlorine dioxide were observed at 4 and 50°C, respectively. These results may be of use to meat processors for selecting the best conditions for decontamination treatments and may help the European Regulatory Authorities make their decisions for authorization of poultry decontamination treatments. PMID:23643125

  9. Electrokinetic decontamination of concrete

    International Nuclear Information System (INIS)

    Concrete structures which have been contaminated with uranium and other radioisotopes may be decontaminated using in-situ electrokinetic remediation. By placing an electrode cell on the concrete surface and using the concrete's rebar, a ground rod, or another surface cell as the counter electrode, the radioisotopes may be migrated from the concrete into this cell. The process is highly dependent upon the chemical parameters of the species involved; namely, the concrete, the contaminants, and the solubilizers used to mobilize the contaminants. In a preliminary study conducted at the K-25 Site of the Oak Ridge National Labs, an estimated removal of >40 percent of uranium has been observed for a short duration run. This removal occurred using traditional uranium solubilizers in contact with the contaminated surface

  10. Use of citric acid for large parts decontamination

    International Nuclear Information System (INIS)

    Laboratory and field studies have been performed to identify and evaluate chemical decontamination agents to replace ammonium carbonate, an environmentally unacceptable compound, in the decontamination facility for large process equipment at the Portsmouth Gaseous Diffusion Plant. Preliminary screening of over 40 possible decontamination agents on the basis of efficiency, availability, toxicity, cost, corrosiveness, and practicality indicated sodium carbonate and citric acid to be the most promising. Extensive laboratory studies were performed with these two reagents. Corrosion rates, decontamination factors, uranium recovery efficiencies, technetium (99Tc)/ion exchange removal effects, and possible environmental impacts were determined or investigated. Favorable results were found in all areas. Detailed monitoring and analysis during two-week trial periods in which sodium carbonate and citric acid were used in the large parts decontamination facility resulted in similar evaluation and conclusions. Because it has cleaning properties not possessed by sodium carbonate, and because it eliminated several operational problems by incorporating two acidic decontamination reagents (citric and nitric acids) instead of one basic reagent (sodium or ammonium carbonate) and one acidic reagent (nitric acid), citric acid was selected for one-year field testing. On the basis of its excellent performance in the field tests, citric acid is recommended as a permanent replacement for ammonium carbonate in the decontamination facility for large process equipment

  11. Idaho Chemical Processing Plant safety document ICPP hazardous chemical evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Harwood, B.J.

    1993-01-01

    This report presents the results of a hazardous chemical evaluation performed for the Idaho Chemical Processing Plant (ICPP). ICPP tracks chemicals on a computerized database, Haz Track, that contains roughly 2000 individual chemicals. The database contains information about each chemical, such as its form (solid, liquid, or gas); quantity, either in weight or volume; and its location. The Haz Track database was used as the primary starting point for the chemical evaluation presented in this report. The chemical data and results presented here are not intended to provide limits, but to provide a starting point for nonradiological hazards analysis.

  12. Foam decontamination containing silica nanoparticles of various structures

    International Nuclear Information System (INIS)

    A process is needed to decrease the amounts of chemical reagents and secondary waste produced during the decontamination process. Decontamination foam is a non-stable, two-phase fluid with aqueous and gas phases representing not more than 10% and 90% of the total volume, respectively. The application of foam allows for remote decontamination processing using only an injection nozzle and the equipment to generate the decontamination foam, which reduces operator exposure to high radioactivity. Solid colloidal particles increase the foam stability in the foam formulation. These particles can be specifically hydrophobized for optimal adsorption at the liquid/gas interface, which creates armor for the bubbles and prevents coalescence by reducing the internal gas transfer. Conversely, hydrophilic particles remain confined in the liquid phase, and to enhance the foam stability. In addition, the silica nanoparticles (NPs) were synthesized with various structures and used for the stabilizer of decontamination foam. In this study, we aimed to synthesize silica nanoparticles (NPs) with various structures such as porous, core-shell, and non-porous using methods proposed in previous literatures. We also investigated the effect of silica NPs with various structures for the foam stability and oxide dissolution rate with chemical reagents. This study showed the effect of the silica NPs with various structures on the decontamination foam. The result indicates that porous NPs have a significant effect on the foam stability and oxide dissolution rate because of lower density and smaller size owing to high specific surface area, large pore volume, and porosity

  13. Foam decontamination containing silica nanoparticles of various structures

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Inho; Kim, Chorong; Jung, Chonghun; Yang, Hanbeom; Park, Sang Yoon; Moon, Jeikwon; Choi, Wangkyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Yoon, Suk Bon [Korea Hydro and Nuclear Power Co., Ltd., Daejeon (Korea, Republic of)

    2014-05-15

    A process is needed to decrease the amounts of chemical reagents and secondary waste produced during the decontamination process. Decontamination foam is a non-stable, two-phase fluid with aqueous and gas phases representing not more than 10% and 90% of the total volume, respectively. The application of foam allows for remote decontamination processing using only an injection nozzle and the equipment to generate the decontamination foam, which reduces operator exposure to high radioactivity. Solid colloidal particles increase the foam stability in the foam formulation. These particles can be specifically hydrophobized for optimal adsorption at the liquid/gas interface, which creates armor for the bubbles and prevents coalescence by reducing the internal gas transfer. Conversely, hydrophilic particles remain confined in the liquid phase, and to enhance the foam stability. In addition, the silica nanoparticles (NPs) were synthesized with various structures and used for the stabilizer of decontamination foam. In this study, we aimed to synthesize silica nanoparticles (NPs) with various structures such as porous, core-shell, and non-porous using methods proposed in previous literatures. We also investigated the effect of silica NPs with various structures for the foam stability and oxide dissolution rate with chemical reagents. This study showed the effect of the silica NPs with various structures on the decontamination foam. The result indicates that porous NPs have a significant effect on the foam stability and oxide dissolution rate because of lower density and smaller size owing to high specific surface area, large pore volume, and porosity.

  14. Decontamination of surfaces, contaminated with radioisotopes

    International Nuclear Information System (INIS)

    A classification is given of processes taking place during decontamination. The effect of surfaces of various geometry and materials on the rate of decontamination is discussed. The factors influencing the choice of the decontamination method and the main requirements laid to decontaminating agents are reviewed. The decontaminating processes of synthetic washing igredients, detergents, complex-making compounds, caustic solutions, acids, and other compounds, their advantageous and detrimental properties at decontaminating are summarized. The indices of suspectibility to contamination and decontaminability are given. Various measuring methods for decontamination of stains produced by dropping 0.1 ml of isotope solutions on plates of 4x4 cm made of several materials gave different results of the same tendency. It was the heaviest to decontaminate iron plates. According to the investigations a satisfactory combination of surface and agents can be found for each isotope. (K.A.)

  15. Atmospheric cold plasma process for vegetable leaf decontamination: A feasibility study on radicchio (red chicory, Cichorium intybus L.)

    OpenAIRE

    Pasquali, Frederique; Stratakos, Alexandros Ch; Koidis, Anastasios; Berardinelli, Annachiara; Cevoli, Chiara; Ragni, Luigi; Mancusi, Rocco; Manfreda, Gerardo; Trevisani, Marcello

    2016-01-01

    Cold plasma is an emerging non-thermal processing technology that could be used for large scale leaf decontamination as an alternative to chlorine washing. In this study the effect of an atmospheric cold plasma apparatus (air DBD, 15 kV) on the safety, antioxidant activity and quality of radicchio (red chicory, Cichorium intybus L.) was investigated after 15 and 30 min of treatment (in afterglow at 70 mm from the discharge, at 22 °C and 60% of RH) and during storage. Escherichia coli O157:H7 ...

  16. Decontamination and decommissioning technology tree and the current status of the technologies

    International Nuclear Information System (INIS)

    A technology tree diagram was developed on the basis of the necessary technologies applicable to the decontamination and decommissioning of nuclear facilities. The technology tree diagram is consist of 6 main areas such as characterization, decontamination, decommissioning and remote technology, radwaste management, site restoration, and decommissioning plan and engineering. Characterization is divided into 4 regions such as sampling and data collection, general characterization, chemical analysis and radiological analysis. Decontamination is also divided into 4 regions such as chemical decontamination, mechanical decontamination, the other decontamination technologies and new decontamination technologies. Decommissioning and remote technology area is divided into 4 regions such as cutting techniques, decommissioning technologies, new developing technologies and remote technologies. Radwaste management area is divided into 5 regions such as solid waste treatment, sludge treatment, liquid waste treatment, gas waste treatment and thermal treatment. Site restoration area is divided into 3 regions such as the evaluation of site contamination, soil decontamination and ground water decontamination. Finally, permission, decommissioning process, cost evaluation, quality assurance and the estimation of radionuclide inventory were mentioned in the decommissioning plan and engineering area. The estimated items for each technology are applicable domestic D and D facilities, D and D problem area and contamination/requirement, classification of D and D technology, similar technology, principle and overview of technology, status, science technology needs, implementation needs, reference and contact point

  17. Decontamination and decommissioning technology tree and the current status of the technologies

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Zin; Won, H.J.; Kim, G.N.; Lee, K.W.; Chol, W.K.; Jung, C.H.; Kim, C.J.; Kim, S.H.; Kwon, S.O.; Chung, C.M

    2001-03-01

    A technology tree diagram was developed on the basis of the necessary technologies applicable to the decontamination and decommissioning of nuclear facilities. The technology tree diagram is consist of 6 main areas such as characterization, decontamination, decommissioning and remote technology, radwaste management, site restoration, and decommissioning plan and engineering. Characterization is divided into 4 regions such as sampling and data collection, general characterization, chemical analysis and radiological analysis. Decontamination is also divided into 4 regions such as chemical decontamination, mechanical decontamination, the other decontamination technologies and new decontamination technologies. Decommissioning and remote technology area is divided into 4 regions such as cutting techniques, decommissioning technologies, new developing technologies and remote technologies. Radwaste management area is divided into 5 regions such as solid waste treatment, sludge treatment, liquid waste treatment, gas waste treatment and thermal treatment. Site restoration area is divided into 3 regions such as the evaluation of site contamination, soil decontamination and ground water decontamination. Finally, permission, decommissioning process, cost evaluation, quality assurance and the estimation of radionuclide inventory were mentioned in the decommissioning plan and engineering area. The estimated items for each technology are applicable domestic D and D facilities, D and D problem area and contamination/requirement, classification of D and D technology, similar technology, principle and overview of technology, status, science technology needs, implementation needs, reference and contact point.

  18. Manual on decontamination of surfaces

    International Nuclear Information System (INIS)

    The manual is intended for those who are responsible for the organization and implementation of decontamination programmes for facilities where radioactive materials are handled mainly on a laboratory scale. It contains information and guidelines on practical methods for decontaminating working spaces, equipment, laboratory benches and protective clothing. Useful information is also provided on the removal of loose skin contamination from personnel by mild, non-medical processes. Methods of removing skin contamination needing medical supervision, or of internal decontamination, which is entirely a medical process, are not covered in this manual. Large-scale decontamination of big nuclear facilities is also considered as outside its scope

  19. Stochastic processes in chemical physics

    CERN Document Server

    Shuler, K E

    2009-01-01

    The Advances in Chemical Physics series provides the chemical physics and physical chemistry fields with a forum for critical, authoritative evaluations of advances in every area of the discipline. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series serves as the perfect supplement to any advanced graduate class devoted to the study of chemical physics.

  20. Dilute chemical decontamination program. Quarterly report 3, April 1-June 30, 1978. Report NEDC-12705-3

    Energy Technology Data Exchange (ETDEWEB)

    Anstine, L.D.

    1978-11-01

    The by-products generated by the radiolytic decomposition of oxalic acid, ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), citric acid, and ascorbic acid were determined by exposing 0.01 M solutions of the metal-ion-free acids to a dose of 4 x 10/sup 7/ rad at 90/sup 0/C with an inert gas atmosphere. The radiolytic decomposition rates of oxalic acid, NTA, and EDTA were investigated. The dissolution rates of unirradiated UO/sub 2/ pellets in 0.01 M solutions of oxalic acid, EDTA, and NTA at 90/sup 0/C were acceptably low. The general corrosion rates of unirradiated production-line Zircaloy-2 fuel cladding in 0.01 M solutions of oxalic acid and EDTA at 90/sup 0/C were acceptably low. The radionuclides absorbed on the regeneration and purification ion-exchange resins during a dilute chemical decontamination of a 5-year-old BWR will not cause significant radiation damage to the resins. At filter loadings below 10% of the filter matrix weight and flow rates below 40 liters/sec/m/sup 2/, the removal efficiency for Fe/sub 2/O/sub 3/ of the SALA-HGMS magnetic filter (Model 10-15-5) with SALA medium-grade Type-430 stainless steel wool was 80%. Preoperational testing of the VNC test loop was successfully completed and all instrumentation was calibrated. General corrosion tests were conducted under static conditions to provide data on the general corrosiveness of the potential reagents. Additional general corrosion tests were conducted to evaluate the effects of several additives and corrosion inhibitors on the corrosion rate of a low alloy steel in 0.01 M NTA.

  1. Decontamination method

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, Hiroshi; Ono, Shigeki; Tada, Nobuo; Tamai, Yasumasa; Okada, Masaya; Kurihara, Masayuki [Hitachi Ltd., Tokyo (Japan); Onuki, Toyomitsu; Toyota, Seiichi

    1998-10-27

    Before contamination of materials to be decontaminated, a surface of a region where a strippable paint is to be coated is smoothed by an epoxy resin previously. Then, a waterproof sheet is extended to the material to be decontaminated, and the strippable paint is applied to the periphery or the entire surface of the sheet. In order to facilitate peeling, the strippable paint is not applied to a portion of the outer circumference of the sheet. Even if the contaminating circumstance is an air atmosphere or a liquid such as reactor water, since the sheet itself has waterproofness and the strippable paint excellent in gas and water tightness is applied to the periphery, contamination is eliminated. When decontaminating the material to be decontaminated having contaminated surfaces, if the sheet for the start of peeling is picked up and the sheet is peeled, the strippable paint at the periphery thereof can be peeled off together with the sheet. (N.H.)

  2. Industrial scale application of optimized segmenting, decontamination and acid regeneration processes

    International Nuclear Information System (INIS)

    The aim of the R and D work was to test new techniques and to apply efficient segmenting, decontamination and acid regeneration procedures on 300 tons of representative selected components within the framework of the decommissioning of the turbine house of KRB A. By applying well-suited decommissioning techniques to different plant parts, such as pipes and valves, tube bundles of feedwater preheaters, components of the high and low pressure turbine and of the main condenser, a series of useful data concerning costs, personal dose and waste quantities have been collected

  3. Chemical surety material decontamination and decommissioning of Los Alamos National Laboratory Chemical Surety Material Laboratory area TA-3, building SM-29, room 4009

    International Nuclear Information System (INIS)

    From 1982 through 1987, Los Alamos National Laboratory (LANL) performed surety laboratory operations for the U.S. Army Medical Research and Development Command (MRDC). Room 4009 in building SM-29, TA-3, was used as the laboratory for work with the following chemical surety material (CSM) agents: sarin (GB), soman (GD), lewisite (L), and distilled mustard (HD) radio-labelled with H3 or C14. The work was confined to three CSM-certified fume hoods, located in room 4009 (see diagram in Appendix C). The laboratory ceased all active operations during the late 1986 and early 1987 period. From 1987 until 1993 the laboratory was secured and the ventilation system continued to operate. During late 1992, the decision was made to utilize this laboratory space for other operations, thus a decision was made to dismantle and reconfigure this room. LANL sub-contracted Battelle Memorial Institute (BMI) to draw upon the CSM experience of the technical staff from the Hazardous Materials Research Facility (HMRF) to assist in developing a decontamination and decommissioning plan. BMI was subcontracted to devise a CSM safety training course, and a sampling and air monitoring plan for CSM material to ensure personnel safety during all disassembly operations. LANL subcontracted Johnson Controls personnel to perform all disassembly operations. Beginning in early 1993 BMI personnel from the HMRF visited the laboratory to develop both the safety plan and the sample and air monitoring plan. Execution of that plan began in September 1993 and was completed in January 1994

  4. Decontamination of used pesticide packaging using advanced oxidation process by ionizing radiation

    International Nuclear Information System (INIS)

    The discharge of empty plastic packaging of pesticides can be an environmental concern causing problems to human health, animals and plants if done without inspection and monitoring. Among the commercial pesticides, chloropyrifos has significant importance because of its wide distribution and extensive use and persistence. The hydroxyl OH attack is the most efficient process of chemical oxidation. The radiation-induced degradation of chloropyrifos in liquid samples and in polyethylene pack was studied by gamma-radiolysis. Packaging of high density polyethylene tree layer co extruded, named COEX, and water samples contaminated with chloropyrifos, were irradiated using both, a multipurpose Co-60 gamma irradiator and a gamma source with 5,000 Ci total activity, Gamma cell type. The chemical analysis of the chloropyrifos and by-products were made using a gas chromatography associated to the mass spectrometry. Gamma radiation was efficient for removing chloropyrifos from the plastic packaging in all studied cases. (author)

  5. Irradiation as an alternative environment friendly method for microbiological decontamination of herbal raw material

    International Nuclear Information System (INIS)

    Microbiological contamination of herbal raw materials is a serious problem in the production of therapeutical preparations. A good quality of the product, according to the pharmaceutical requirements may be achieved by applying suitable methods of decontamination. The decontamination treatments should be fast and effective against all microorganisms. It should ensure the decontamination of both packaging and the product in order to act effectively against all the microorganisms present and must not reduce the sensory and technological qualities of the commodities. In the paper, the results of comparative investigations on the microbiological decontamination of herbal raw materials by chemical (ethylene oxide, methyl bromide) and physical method (irradiation) are presented. Decontamination of herbal raw materials by irradiation is a method by choice. It is because chemical methods have been recognized recently as not safe to the consumer. Irradiation, in turn, is technically feasible, very effective and friendly enough to environment process

  6. Microbial decontamination by low dose gamma irradiation and its impact on the physico-chemical quality of peppermint (Mentha piperita)

    Science.gov (United States)

    Machhour, Hasna; El Hadrami, Ismail; Imziln, Boujamaa; Mouhib, Mohamed; Mahrouz, Mostafa

    2011-04-01

    Peppermint was inoculated with Escherichia coli and its decontamination was carried out by gamma irradiation at low irradiation doses (0.5, 1.0 and 2.66 kGy). The efficiency of this decontamination method was evaluated and its impact on the quality parameters of peppermint, such as the color and ash content, as well as the effect on fingerprint components such as phenols and essential oils, was studied. Gas chromatography coupled to mass spectrometry (GC/MS) and High Performance Liquid Chromatography (HPLC) were used to characterize essential oils and phenolic compounds, respectively. The results indicated a complete decontamination of peppermint after the low dose gamma irradiation without a significant loss in quality attributes.

  7. Microbial decontamination by low dose gamma irradiation and its impact on the physico-chemical quality of peppermint (Mentha piperita)

    Energy Technology Data Exchange (ETDEWEB)

    Machhour, Hasna [Valorization of the Agro-Ressources and Food Chemistry, Department of Chemistry, Cadi Ayyad University, B.P. 2390, Marrakesh 40000 (Morocco); Laboratory of Biotechnology, Protection and Valorization of the Vegetable Resources, Cadi Ayyad University, B.P 2390, Marrakesh 40000 (Morocco); El Hadrami, Ismail [Laboratory of Biotechnology, Protection and Valorization of the Vegetable Resources, Cadi Ayyad University, B.P 2390, Marrakesh 40000 (Morocco); Imziln, Boujamaa [Laboratory of Biology and Biotechnology of Microorganisms, Environmental Microbiology and Toxicology Team ((mu)BioToxE, Department of Biology), Cadi Ayyad University, P.O. Box no. 2390, Marrakech 40000 (Morocco); Mouhib, Mohamed [Institut National de la Recherche Agronomique (INRA), Centre Regional de la Recherche Agronomique de Tanger, Unite de Recherche sur les Techniques Nucleaires, l' Environnement et la Qualite (URTNEQ), 78 Boulevard Sidi Mohamed Ben Abdellah, Tanger 90000 (Morocco); Mahrouz, Mostafa, E-mail: mahrouz10@yahoo.f [Valorization of the Agro-Ressources and Food Chemistry, Department of Chemistry, Cadi Ayyad University, B.P. 2390, Marrakesh 40000 (Morocco)

    2011-04-15

    Peppermint was inoculated with Escherichia coli and its decontamination was carried out by gamma irradiation at low irradiation doses (0.5, 1.0 and 2.66 kGy). The efficiency of this decontamination method was evaluated and its impact on the quality parameters of peppermint, such as the color and ash content, as well as the effect on fingerprint components such as phenols and essential oils, was studied. Gas chromatography coupled to mass spectrometry (GC/MS) and High Performance Liquid Chromatography (HPLC) were used to characterize essential oils and phenolic compounds, respectively. The results indicated a complete decontamination of peppermint after the low dose gamma irradiation without a significant loss in quality attributes.

  8. AREVA NP decontamination concept for decommissioning. A comprehensive approach based on over 30 years experience

    International Nuclear Information System (INIS)

    Decontamination prior to Decommissioning and Dismantlement is imperative. Not only does it provide for minimization of personnel dose exposure but also maximization of the material volume available for free release. Since easier dismantling techniques in lower dose areas can be applied, the licensing process is facilitated and the scheduling and budgeting effort is more reliable. The most internationally accepted approach for Decontamination prior to Decommissioning projects is the Full System Decontamination (FSD). FSD is defined as the chemical decontamination of the primary cooling circuit, in conjunction with the main auxiliary systems. AREVA NP has long-term experience with Full System Decontamination for return to service of operating nuclear power plants as well as for decommissioning after shutdown. Since 1976, AREVA NP has performed over 500 decontamination applications and, from 1986, Decontaminations prior to Decommissioning projects which comprise virtually all NPP designs and plant conditions were performed: NPP designs: HPWR, PWR, and BWR by AREVA, Westinghouse, ABB and GE. Decontaminations performed shortly after final shutdown or several years later, and even after re-opening Safe Enclosure. High Alpha inventory and or low gamma/alpha ratio. Main Coolant chemistry (e.g., with and without Zn injection during operation). Fifteen Decontaminations prior to Decommissioning Projects have been performed successfully to date and the sixteenth FSD is now in the detailed engineering phase and is scheduled to commence late 2010. AREVA NP has developed a fully comprehensive approach for decontamination based on the CORD® (Chemical Oxidation Reduction Decontamination) Family, applied using the in-house designed decontamination equipment AMDATM (Automatic Modular Decontamination Appliance). Based on the vast experience of AREVA NP in the field of decontamination, the Decontamination Concept for Decommissioning was developed. This concept ensures that the

  9. Experiments To Demonstrate Chemical Process Safety Principles.

    Science.gov (United States)

    Dorathy, Brian D.; Mooers, Jamisue A.; Warren, Matthew M.; Mich, Jennifer L.; Murhammer, David W.

    2001-01-01

    Points out the need to educate undergraduate chemical engineering students on chemical process safety and introduces the content of a chemical process safety course offered at the University of Iowa. Presents laboratory experiments demonstrating flammability limits, flash points, electrostatic, runaway reactions, explosions, and relief design.…

  10. Presolidification treatment of decontamination wastes

    International Nuclear Information System (INIS)

    Unsatisfactory leaching performance of several solidified decontamination solutions indicated a need for presolidification treatments to reduce the water sensitivity of the active chemicals. Chemical treatments examined in this work include pH adjustment, precipitation and oxidation-reduction reactions. The reactions involved in these treatments are discussed. The most suitable presolidification treatment for each decontamination solution has been identified. Further research is needed to test the effectivenss of these treatments

  11. New decontamination technologies for environmental applications

    International Nuclear Information System (INIS)

    The technologies discussed represent a versatile collection of tools and approaches for environmental decontamination applications. The fixatives provide a means for gaining and maintaining control of large contaminated areas, for decontaminating large surface areas, and for protecting equipment and supplies used in decontamination operations. The other decontamination techniques together provide a method for removing loose surface contamination from almost all classes of materials and surfaces. These techniques should have wide application both as direct decontamination processes and for the cleaning of tools and equipment used in the decontamination operations

  12. Evaluation of the Three Mile Island Unit 2 reactor building decontamination process

    International Nuclear Information System (INIS)

    Decontamination activities from the cleanup of the Three Mile Island Unit 2 Reactor Building are generating a variety of waste streams. Solid wastes being disposed of in commercial shallow land burial include trash and rubbish, ion-exchange resins (Epicor-II) and strippable coatings. The radwaste streams arising from cleanup activities currently under way are characterized and classified under the waste classification scheme of 10 CFR Part 61. It appears that much of the Epicor-II ion-exchange resin being disposed of in commerical land burial will be Class B and require stabilization if current radionuclide loading practices continue to be followed. Some of the trash and rubbish from the cleanup of the reactor building so far would be Class B. Strippable coatings being used at TMI-2 were tested for leachability of radionuclides and chelating agents, thermal stability, radiation stability, stability under immersion and biodegradability. Actual coating samples from reactor building decontamination testing were evaluated for radionuclide leaching and biodegradation

  13. Chemical reagent and process for refuse disposal

    International Nuclear Information System (INIS)

    A process for treating refuse by mixing them with a reactive chemical and a puzzolana-type material. Said chemical includes a retarding agent which modifies the viscosity and an accelerating agent. (author)

  14. Electrochemical Decontamination of Painted and Heavily Corroded Metals

    Energy Technology Data Exchange (ETDEWEB)

    Marczak, S.; Anderson, J.; Dziewinski, J.

    1998-09-08

    The radioactive metal wastes that are generated from nuclear fuel plants and radiochemical laboratories are mainly contaminated by the surface deposition of radioactive isotopes. There are presently several techniques used in removing surface contamination involving physical and chemical processes. However, there has been very little research done in the area of soiled, heavily oxidized, and painted metals. Researchers at Los Alamos National Laboratory have been developing electrochemical procedures for the decontamination of bare and painted metal objects. These methods have been found to be effective on highly corroded as well as relatively new metals. This study has been successful in decontaminating projectiles and shrapnel excavated during environmental restoration projects after 40+ years of exposure to the elements. Heavily corroded augers used in sampling activities throughout the area were also successfully decontaminated. This process has demonstrated its effectiveness and offers several advantages over the present metal decontamination practices of media blasting and chemical solvents. These advantages include the addition of no toxic or hazardous chemicals, low operating temperature and pressure, and easily scaleable equipment. It is in their future plans to use this process in the decontamination of gloveboxes destined for disposal as TRU waste.

  15. Development of suppression method for deposition of radioactive nuclides after decontamination

    International Nuclear Information System (INIS)

    Chemical decontamination is applied to many Japanese nuclear power plants. However, after the chemical decontamination a rapid dose rate increase can be seen in some plants during just a few operation cycles. Oxide film, which easily incorporates radioactivity, might be formed after the chemical decontamination. So, our objective is finding a way to reduce the recontamination after the chemical decontamination. We concentrate on long-term continued decontamination effects without any chemical injections and chemical controls in reactor water during operation. Oxide films formed during the plant operation are removed by the HOP (Hydrazine, Oxalic acid and Potassium permanganate) decontamination process and a fine ferrite film is formed by the Hi-F Coat (Hitachi Ferrite Coat) process. In this method, Fe(HCOO)2, H2O2, and H2H4 are used as the treatment chemicals. A cobalt-60 deposition reduction effect of 1/5 compared to non-treatment is confirmed for up to 3,100 hours by laboratory experiments. (author)

  16. Decontamination of a radioactive process waste water by adsorbing colloid flotation

    International Nuclear Information System (INIS)

    As a part of a research programme on the treatment of a radioactive process waste water by foam separation techniques, adsorbing colloid flotation was tested to remove 144Ce, 60Co, 65Zn and 89Sr from the waste water. Potassium oleate was used as the collector, and Fe(III) hydroxide, Al(III) hydroxide or Co(II) hydroxide as the coprecipitant. Under the optimal conditions; removals exceeding 99% could be achieved for 65Zn with any of the tested coprecipitants, for 144Ce with Fe(III) and Co(II) hydroxides and for 60Co with only Co(II) hydroxide. For 89Sr removals > 90% could be achieved with only Fe(III) hydroxide. The adsorbing colloid flotation process was compared with both chemical precipitation and ion exchange, and advantages of adsorbing colloid flotation were enumerated. (author)

  17. Decontaminating method

    International Nuclear Information System (INIS)

    Purpose: To enable to decontaminate an object having a complicate surface and also remove hard cruds by a simple device. Method: An object to be decontaminated is placed in a water vessel and steams jetted out from a steam nozzle are condensated at the surface of the object to be decontaminated and decontamination is conducted by impact shocks upon elimination of bubbles. The inside of the water vessel is filled with liquid and steams jetted out from the steam nozzle are cooled by the liquid and condensated. The steams are supplied with a steam supply device by way of steam supply pipeways to the steam nozzle. Since the temperature of the liquid in the water vessel is elevated upon condensation of the jetted steams, the liquids are cooled by the cooling device. Further, since the steams condensated at the surface of the decontaminated object forms water of condensation to increase the water level in the water vessel, the water corresponding to the elevated level is discharged from an overflow pipe. (Kawakami, Y.)

  18. Decontaminating method

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, Mikio; Hayashi, Tsutomu; Izumi, Masayuki; Sasaki, Hiroshi; Sato, Toru; Owada, Kazuo.

    1987-11-21

    Purpose: To enable to decontaminate an object having a complicate surface and also remove hard cruds by a simple device. Method: An object to be decontaminated is placed in a water vessel and steams jetted out from a steam nozzle are condensated at the surface of the object to be decontaminated and decontamination is conducted by impact shocks upon elimination of bubbles. The inside of the water vessel is filled with liquid and steams jetted out from the steam nozzle are cooled by the liquid and condensated. The steams are supplied with a steam supply device by way of steam supply pipeways to the steam nozzle. Since the temperature of the liquid in the water vessel is elevated upon condensation of the jetted steams, the liquids are cooled by the cooling device. Further, since the steams condensated at the surface of the decontaminated object forms water of condensation to increase the water level in the water vessel, the water corresponding to the elevated level is discharged from an overflow pipe. (Kawakami, Y.).

  19. Decontamination of CAGR gas circulator components

    International Nuclear Information System (INIS)

    This paper describes the development and full-scale trial of two methods for removal of radioactive contamination on the surfaces of CAGR gas circulator components. The two methods described are a particle impact cleaning (PIC) decontamination technique and an electrochemical technique, 'electro-swabbing', which is based on the principle of decontamination by electro-polishing. In developing these techniques it was necessary to take account of the physical and chemical nature of the surface deposits on the gas circulator components; these were shown to consist of magnetite-type oxide and carbonaceous material. In order to follow the progress of the decontamination it was also necessary to develop a surface sampling technique which was effective and precise under these conditions; an electrochemical technique, employing similar principles to the electro-swabbing process, was developed for this purpose. The full-scale trial of the PIC decontamination technique was carried out on an inlet guide vane (IGV) assembly, this having been identified as the component from the gas circulator which contributes most to the radiation dose accumulated during routine circulator maintenance. The technique was shown to be practically viable and some 99% of the radioactive contamination was readily removed from the treated surfaces with only negligible surface damage being caused. The full-scale trial of the electro-swabbing decontamination technique was carried out on a gas circulator impeller. High decontamination factors were again achieved with ≥ 99% of the radioactive contamination being removed from the treated surfaces. The technique has practical limitations in terms of handling and treatment of waste-arisings. However, the use of specially-designed swabbing electrodes may allow the treatment of constricted geometries inaccessible to techniques such as PIC. The technique is also highly suitable for the treatment of soft-finish materials and of components fabricated from a

  20. Colloid stabilization by polyelectrolytes. Application to decontamination processes of nuclear reactors

    International Nuclear Information System (INIS)

    Sodium salts of the following anionic polyelectrolytes were evaluated as particle stabilizers: polyacrylic acid, polymethacrylic acid, poly (methyl vinyl ether/maleic anhydride), sulfonated polymers. A cationic polyelectrolyte, a polyamine, was also evaluated. An active and an inactive oxidized carbon steel sample were treated in the same experimental set-up with the decontaminating reagent and with or without the polyelectrolyte. Activity pick-up by the inactive sample was measured. When no polyelectrolyte was added, 15% of the Co-60 activity was redeposited. With polyelectrolyte addition in the 5-450 mg kg-1 range, the Co60 activity redeposition ranged from 8.5 down to 0.8%. Polyacrylic acid was the most effective reagent. The transfer of the magnetite outer oxide crystals from the active to the inactive surfaces was identified on SEM micrographs. (author)

  1. Process for improving the effectiveness of decontamination of a nuclear fuel and/or breeding material solution of zirconium

    International Nuclear Information System (INIS)

    The purpose of the invention is to improve the removal of zirconium from reprocessing solutions and simultaneously to simplify the process. The decontamination of the uranium and plutonium product should be improved with simultaneous reduction of the cost. According to the invention, this problem is solved by the zirconium being changed from the dissolved state to a solid phase which can be filtered or centrifuged in a first stage of the process before the first extraction of the nuclear fuel and/or breeding material, by using a means of adsorption from the group of inorganic ion exchangers and by the zirconium being removed from the aquaeous solution together with the means of adsorption. (orig./RB)

  2. Decontamination apparatus

    International Nuclear Information System (INIS)

    The apparatus for decontaminating radioactive components consists of an attachment mechanism for completely suspending the apparatus from the tube sheet of a nuclear steam generator, a first drive mechanism for moving the apparatus in a first direction, a second drive mechanism for pivoting the apparatus in a second direction, and a third drive mechanism for moving the apparatus in a third independent direction. The apparatus also has a dual nozzle arrangement attached to the third drive mechanism for directing a water-grit mixture toward the component to be decontaminated. The apparatus provides a mechanism for remotely decontaminating the channel head of a nuclear steam generator so as to allow working personnel to enter therein. It is likely that less than 0.001 inches of metal surface will be removed from the steam generator using alumina or magnetite grit

  3. Decontamination glass

    International Nuclear Information System (INIS)

    Glass for the decontamination of the furnace for vitrification of radioactive wastes contains 50 to 60 wt.% of waste glass, 15 to 30 wt.% of calcium oxide, 1 to 6 wt.% sodium oxide, 1 to 5 wt.% phosphorus pentoxide and 5 to 20 wt.% boron oxide. The melting furnace is flushed with the glass such that it melts in the furnace for at least 60 mins and is then poured out of the furnace. After the furnace has cooled down the settled glass spontaneously cracks and peels off the walls leaving a clean surface. The glass may be used not only for decontamination of the furnace but also for decontamination of melting crucibles and other devices contaminated with radioactive glass. (J.B.)

  4. MERCURY CONTAMINATED MATERIAL DECONTAMINATION METHODS: INVESTIGATION AND ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian, Ph.D.

    2001-01-01

    Over the years mercury has been recognized as having serious impacts on human health and the environment. This recognition has led to numerous studies that deal with the properties of various mercury forms, the development of methods to quantify and speciate the forms, fate and transport, toxicology studies, and the development of site remediation and decontamination technologies. This report reviews several critical areas that will be used in developing technologies for cleaning mercury from mercury-contaminated surfaces of metals and porous materials found in many DOE facilities. The technologies used for decontamination of water and mixed wastes (solid) are specifically discussed. Many technologies that have recently appeared in the literature are included in the report. Current surface decontamination processes have been reviewed, and the limitations of these technologies for mercury decontamination are discussed. Based on the currently available technologies and the processes published recently in the literature, several processes, including strippable coatings, chemical cleaning with iodine/iodide lixiviant, chemisorbing surface wipes with forager sponge and grafted cotton, and surface/pore fixation through amalgamation or stabilization, have been identified as potential techniques for decontamination of mercury-contaminated metal and porous surfaces. Their potential merits and applicability are discussed. Finally, two processes, strippable coatings and chemical cleaning with iodine/iodide lixiviant, were experimentally investigated in Phase II of this project.

  5. Laser decontamination of the radioactive lightning rods

    International Nuclear Information System (INIS)

    Between 1970 and 1980 Brazil experienced a significant market for radioactive lightning rods (RLR). The device consists of an air terminal with one or more sources of americium-241 attached to it. The sources were used to ionize the air around them and to increase the attraction of atmospheric discharges. Because of their ineffectiveness, the nuclear regulatory authority in Brazil suspended the license for manufacturing, commerce and installation of RLR in 1989, and determined that the replaced RLR were to be collected to a centralized radioactive waste management facility for treatment. The first step for RLR treatment is to remove the radioactive sources. Though they can be easily removed, some contaminations are found all over the remaining metal scrap that must decontaminated for release, otherwise it must be treated as radioactive waste. Decontamination using various chemicals has proven to be inefficient and generates large amounts of secondary wastes. This work shows the preliminary results of the decontamination of 241Am-contaminated metal scrap generated in the treatment of radioactive lightning rods applying laser ablation. A Nd:YAG nanoseconds laser was used with 300 mJ energy leaving only a small amount of secondary waste to be treated. - Highlights: • The process generates minimal additional secondary waste. • The effectiveness of this technique may allow certain materials to be recycled reducing radioactive waste volumes. • The process allows reuse of decontaminated metals

  6. Decontamination Efficacy and Skin Toxicity of Two Decontaminants against Bacillus anthracis

    OpenAIRE

    Chad W Stratilo; Crichton, Melissa K. F.; Sawyer, Thomas W.

    2015-01-01

    Decontamination of bacterial endospores such as Bacillus anthracis has traditionally required the use of harsh or caustic chemicals. The aim of this study was to evaluate the efficacy of a chlorine dioxide decontaminant in killing Bacillus anthracis spores in solution and on a human skin simulant (porcine cadaver skin), compared to that of commonly used sodium hypochlorite or soapy water decontamination procedures. In addition, the relative toxicities of these decontaminants were compared in ...

  7. Formerly utilized MED/AEC sites Remedial Action Program. Report of the decontamination of Jones Chemical Laboratory, Ryerson Physical Laboratory, and Eckhart Hall, the University of Chicago, Chicago, Illinois

    International Nuclear Information System (INIS)

    The US Department of Energy (DOE) has implemented a program to decontaminate radioactively contaminated sites that were formerly utilized by the Manhattan Engineer District (MED) and/or the Atomic Energy Commission (AEC) for activities that included handling of radioactive material. This program is referred to as the ''Formerly Utilized Sites Remedial Action Program'' (FUSRAP). Among these sites are Jones Chemical Laboratory, Ryerson Physical Laboratory, Kent Chemical Laboratory, and Eckhart Hall of The University of Chicago, Chicago, Illinois. Since 1977, the University of Chicago decontaminated Kent Chemical Laboratory as part of a facilities renovation program. All areas of Eckhart Hall, Ryerson Physical Laboratory, and Jones Chemical Laboratory that had been identified as contaminated in excess of current guidelines in the 1976-1977 surveys were decontaminated to levels where no contamination could be detected relative to natural backgrounds. All areas that required defacing to achieve this goal were restored to their original condition. The radiological evaluation of the sewer system, based primarily on the radiochemical analyses of sludge and water samples, indicated that the entire sewer system is potentially contaminated. While this evaluation was defined as part of this project, the decontamination of the sewer system was not included in the purview of this effort. The documentation included in this report substantiates the judgment that all contaminated areas identified in the earlier reports in the three structures included in the decontamination effort (Eckhart Hall, Ryerson Physical Laboratory, and Jones Chemical Laboratory) were cleaned to levels commensurate with release for unrestricted use

  8. Chemical Processing Department monthly report, January 1961

    Energy Technology Data Exchange (ETDEWEB)

    1961-02-21

    This report, from the Chemical Processing Department at HAPO for January 1961, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations, facilities engineering; research; employee relations; and special separation processing and auxiliaries operation.

  9. Comparison of thorough decontamination techniques on dismantled pieces of a PWR reactor

    International Nuclear Information System (INIS)

    The decontamination experience gained during the BR3 dismantling project is developed. This started with the full system decontamination of the primary loop and was followed by R and D on thorough decontamination projects. First, a wet abrasive installation has been installed and is now in operation for the thorough cleaning of metallic pieces of simple geometry. Afterwards, the chemical cerium process has been developed. The results of the regeneration with ozone and with electrochemistry are presented in detail. The ozone regeneration process has been selected for the industrial installation of which the construction is foreseen in 1998. (author)

  10. Basic experience from the development of technologies and equipment for the decontamination of selected facilities of WWER-440 primary circuits

    International Nuclear Information System (INIS)

    The research is going on in four basic areas, viz., the collection and analysis of data on the contamination of the primary circuit inner surfaces; monitoring of the effect of the surface quality on the decontamination efficiency and of the effect of repeated decontamination on the material; the development and testing of simple reliable devices for decontamination and the development of suitable decontamination technologies. An electrochemical method was developed for removing the corrosion layer based on anodic dissolution. Several methods were developed for testing the decontamination process, viz., the corrosion loss determination; surface examination by light and electron microscopy, Auger electron spectrometry and X-ray microanalysis; and mechanical tests. Equipment was developed and tested for the decontamination of valves, of the main circulating pump shells and various surfaces. A device will soon be completed for the decontamination of the pressure vessel branches and the pressurizer branches. Research in chemical decontamination was focused on the so-called soft decontamination of the entire primary coolant circuit and on half-dry methods or electrochemical decontamination with solutions. The equipment and the methods were tested in the actual situation of Czechoslovak nuclear power plants. (M.D.). 10 refs

  11. Minimal impact, waterless decontamination technologies for improving food safety

    Science.gov (United States)

    Pathogen contamination of produce, meats, poultry, shellfish, and other foods remains an ongoing concern. Chemical sanitizers are widely employed for foods and food contact surfaces. However, there is growing interest in the development of minimal impact, waterless decontamination processes that wil...

  12. Physicochemical characteristics of PFC surfactants for dry decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Jin; Lee, Chi Woo [Korea University, Seoul (Korea)

    2001-04-01

    Even the trace amount of the used nuclear fuels of high radioactivity are hazardous to the earth and humans. Perfluorocarbons and perfluorocarbon surfactants are emerging to be efficient chemicals in the dry decontamination process of the used fuels of high radioactivity. The theme was undertaken to increase the knowledge on perfluorocarbon surfactants to develop the perfluorocarbon system in the dry decontamination process in Korea. Several cationic and anionic pfc surfactants were synthesized. Effects of pfc surfactants on electrochemical etching of silicon were investigated to form porous silicons. Forces were measured between silicon surfaces and AFM tip in the absence and presence of pfc surfactants. 7 refs., 10 figs. (Author)

  13. Effect of different technological processes on decontamination of meat contaminated with radiocesium Pt. 1. Use of boiling

    International Nuclear Information System (INIS)

    The decontamination effect of boiling of pork and mutton contaminated with Cs 137 was investigated. The results of the study indicate that the decontamination effectiveness of boiling pork and mutton for 2 hours to about 80 and 76 per cent respectively. (author). 10 refs, 2 tabs

  14. Contamination of stainless steel process piping with radioactive cobalt colloids and methods for decontamination

    International Nuclear Information System (INIS)

    Significant deposits of activity can occur on the internal surface of pipework carrying aqueous radioactive liquid. This paper describes experimental work to contaminate stainless steel piping with colloidal particles of Co60 and considers decontamination methods. The effects on steel contamination of varying cobalt concentration and aqueous liquor pH were investigated. Deposition increased with increasing cobalt concentration and the ''plate-out'' increased markedly with increasing liquid pH. Low deposition occurred at pH ∼ 2 increasing by orders of magnitude at pH ∼ 10. Steel type had an effect on activity picked up. It was shown that liquid turbulence, on the surface, reduced activity deposition. Since the extent of contamination to be removed depends on deposition or ''plate-out'' kinetics, the factors affecting the rate of activity deposition are considered. Specimens of steel piping were treated by contacting with acid, electroetching or abrasion with emery cloth. Surface treatment was shown to delay deposition, in certain instances, but did not have much effect on overall equilibrium level of surface activity. The surface activity could be reduced by treatment with dilute nitric acid: however significant activity remained. Most of the remaining activity could be removed by treatment with nitric acid in an ultrasonic bath. (Author)

  15. The decontamination of bleaching effluent by pilot-scale solar Fenton process.

    Science.gov (United States)

    Wang, Zhaojiang; Chen, Kefu; Li, Jun; Mo, Lihuan

    2011-01-01

    A solar Fenton process was applied as post-treatment to selectively eliminate organic pollutants and toxicants in bleaching effluents of kraft pulp mills. Experiments were conducted to study the effect of system parameters (pH, initial concentration of H2O2, molar ratio of Fe2+/H2O2 and solar-UV irradiance) on the removals of chemical oxygen demand and colour. The results showed 92.8% of COD and 99.6% of colour were removed at pH 3.5, H2O2 30 mM/ L, Fe2+/H2O2 1:100, solar-UV irradiance 11070 mW/m2, reaction time 120 min. The first-order kinetic model was used to study the dependence of the reaction rate on solar-UV irradiance: a linear relationship was shown to exist between reaction rate constants and solar-UV irradiance. The results of gas chromatography mass spectrometry analysis showed that the toxicity of the bleaching effluents was mainly derived from the presence of mononuclear aromatics, polycyclic aromatic hydrocarbons and organochlorides, which were all degraded into harmless organic acids under the attack of hydroxyl radicals generated from the solar Fenton reaction. PMID:21879547

  16. Plasma-chemical processes and systems

    International Nuclear Information System (INIS)

    The direct applications of plasma technology on chemistry and metallurgy are presented. The physical fundaments of chemically active non-equilibrium plasma, the reaction kinetics, and the physical chemical transformations occuring in the electrical discharges, which are applied in the industry, are analysed. Some plasma chemical systems and processes related to the energy of hydrogen, with the chemical technology and with the metallurgy are described. Emphasis is given to the optimization of the energy effectiveness of these processes to obtain reducers and artificial energetic carriers. (M.C.K.)

  17. Use of laser ablation in nuclear decontamination

    International Nuclear Information System (INIS)

    The development and the use of clean decontamination process appear to be one of the main priorities for industries especially for nuclear industries. This is especially due to the fact of wastes minimization which is one of the principal commitments. One answer would be to use a photonic process such as the LASER process. The principle of this process is based on the absorption, by the contaminant, of the photon's energy. This energy then will propagate into the material and create some mechanical waves responsible of the interfaces embrittlement and de-cohesion. As we can see, this process so called LASER ablation does not use any chemicals and allows us to avoid any production of liquid waste. Since now a couple of years, the Clean-Up Business Unit of AREVA group (BE/CL) investigates this new decontamination technology. Many tests have been done in inactive conditions on various simulants such as paints, inks, resins, metallic oxides firstly in order to estimate its efficiency but also to fully qualify it. After that, we decided to move on hot tests to fully validate this new process and to show its interest for the nuclear industry. Those hot tests have been done on two kinds of contaminated material (on tank pieces covered with a thick metallic oxide layer and on metallic pieces covered with grease). Some information such as Scanning Electron Microscopy (SEM), X-Ray scattering spectroscopy and decontamination factors (DF) will be provided in this paper. (authors)

  18. Low level radioactive liquid waste decontamination by electrochemical way

    International Nuclear Information System (INIS)

    As part of the work on decontamination treatments for low level radioactive aqueous liquid wastes, the study of an electro-chemical process has been chosen by the C.E.A. at the Cadarache research centre. The first part of this report describes the main methods used for the decontamination of aqueous solutions. Then an electro-deposition process and an electro-dissolution process are compared on the basis of the decontamination results using genuine radioactive aqueous liquid waste. For ruthenium decontamination, the former process led to very high yields (99.9 percent eliminated). But the elimination of all the other radionuclides (antimony, strontium, cesium, alpha emitters) was only favoured by the latter process (90 percent eliminated). In order to decrease the total radioactivity level of the waste to be treated, we have optimized the electro-dissolution process. That is why the chemical composition of the dissolved anode has been investigated by a mixture experimental design. The radionuclides have been adsorbed on the precipitating products. The separation of the precipitates from the aqueous liquid enabled us to remove the major part of the initial activity. On the overall process some operations have been investigated to minimize waste embedding. Finally, a pilot device (laboratory scale) has been built and tested with genuine radioactive liquid waste. (author). 77 refs., 41 tabs., 55 figs., 4 appendixes

  19. Chemical production processes and systems

    Science.gov (United States)

    Holladay, Johnathan E; Muzatko, Danielle S; White, James F; Zacher, Alan H

    2015-04-21

    Hydrogenolysis systems are provided that can include a reactor housing an Ru-comprising hydrogenolysis catalyst and wherein the contents of the reactor is maintained at a neutral or acidic pH. Reactant reservoirs within the system can include a polyhydric alcohol compound and a base, wherein a weight ratio of the base to the compound is less than 0.05. Systems also include the product reservoir comprising a hydrogenolyzed polyhydric alcohol compound and salts of organic acids, and wherein the moles of base are substantially equivalent to the moles of salts or organic acids. Processes are provided that can include an Ru-comprising catalyst within a mixture having a neutral or acidic pH. A weight ratio of the base to the compound can be between 0.01 and 0.05 during exposing.

  20. Chemical production processes and systems

    Science.gov (United States)

    Holladay, Johnathan E.; Muzatko, Danielle S.; White, James F.; Zacher, Alan H.

    2014-06-17

    Hydrogenolysis systems are provided that can include a reactor housing an Ru-comprising hydrogenolysis catalyst and wherein the contents of the reactor is maintained at a neutral or acidic pH. Reactant reservoirs within the system can include a polyhydric alcohol compound and a base, wherein a weight ratio of the base to the compound is less than 0.05. Systems also include the product reservoir comprising a hydrogenolyzed polyhydric alcohol compound and salts of organic acids, and wherein the moles of base are substantially equivalent to the moles of salts or organic acids. Processes are provided that can include an Ru-comprising catalyst within a mixture having a neutral or acidic pH. A weight ratio of the base to the compound can be between 0.01 and 0.05 during exposing.

  1. Surface decontamination using a teleoperated vehicle and Kelly spray/vacuum system

    International Nuclear Information System (INIS)

    A commercial teleoperated wheeled vehicle was fitted with a modified commercial spray/vacuum decontamination system to allow floor and wall decontamination of an existing process room in one of the chemical separations areas at the Savannah River Site (SRS). Custom end-of-arm tooling was designed to provide sufficient compliance for routine cleaning operations. An operator console was designed to allow complete control of the vehicle base and are movements as well as viewing operations via multiple television monitors. 3 refs

  2. Chemical Processing Department monthly report, June 1958

    Energy Technology Data Exchange (ETDEWEB)

    1958-07-22

    This report for June 1958, from the Chemical Processing Department at HAPO, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations; facilities engineering; research; and employee relations.

  3. Molecular Thermodynamics for Chemical Process Design

    Science.gov (United States)

    Prausnitz, J. M.

    1976-01-01

    Discusses that aspect of thermodynamics which is particularly important in chemical process design: the calculation of the equilibrium properties of fluid mixtures, especially as required in phase-separation operations. (MLH)

  4. Chemical Processing Department monthly report, October 1963

    Energy Technology Data Exchange (ETDEWEB)

    Young, J. F.; Johnson, W. E.; Reinker, P. H.; Warren, J. H.; McCullugh, R. W.; Harmon, M. K.; Gartin, W. J.; LaFollette, T. G.; Shaw, H. P.; Frank, W. S.; Grim, K. G.; Warren, J. H.

    1963-11-21

    This report, for October 1963 from the Chemical Processing Department at HAPO, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations; facilities engineering; research; employee relations; weapons manufacturing operation; and safety and security.

  5. Chemical Processing Department monthly report, October 1962

    Energy Technology Data Exchange (ETDEWEB)

    1962-11-21

    This report, from the Chemical Processing Department at HAPO, for October, 1962 discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations; facilities engineering; research; employee relations; and weapons manufacturing operation.

  6. Chemical Processing Department monthly report, February 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-03-21

    This report, for February 1963 from the Chemical Processing Department at HAPO, discusses the following: Production operation; Purex and Redox operation; Finished products operation; maintenance; Financial operations; facilities engineering; research; employee relations; weapons manufacturing operation; and safety and security.

  7. Chemical Processing Department monthly report, October 1965

    Energy Technology Data Exchange (ETDEWEB)

    1965-11-22

    This report, from the Chemical Processing Department at HAPO, discusses the following: production operation; purex and redox operation; finished products operation; maintenance; financial operations; facilities engineering; research; and employee relations.

  8. Criteria for the evaluation of a dilute decontamination demonstration

    International Nuclear Information System (INIS)

    This document provides the prerequisite technical information required to evaluate and/or develop a project to demonstrate the dilute chemical decontamination of the primary coolant system of light water reactors. The document focuses on five key areas: the basis for establishing programmatic prerequisites and the key decision points that are required for proposal evaluation and/or RFP (Request for Proposal) issuance; a technical review of the state-of-the-art to identify the potential impacts of a reactor's primary-system decontamination on typical BWR and PWR plants; a discussion of the licensing, recertification, fuel warranty, and institutional considerations and processes; a preliminary identification and development of the selection criteria for the reactor and the decontamination process; and a preliminary identification of further research and development that might be required

  9. Criteria for the evaluation of a dilute decontamination demonstration

    Energy Technology Data Exchange (ETDEWEB)

    FitzPatrick, V.F.; Divine, J.R.; Hoenes, G.R.; Munson, L.F.; Card, C.J.

    1981-12-01

    This document provides the prerequisite technical information required to evaluate and/or develop a project to demonstrate the dilute chemical decontamination of the primary coolant system of light water reactors. The document focuses on five key areas: the basis for establishing programmatic prerequisites and the key decision points that are required for proposal evaluation and/or RFP (Request for Proposal) issuance; a technical review of the state-of-the-art to identify the potential impacts of a reactor's primary-system decontamination on typical BWR and PWR plants; a discussion of the licensing, recertification, fuel warranty, and institutional considerations and processes; a preliminary identification and development of the selection criteria for the reactor and the decontamination process; and a preliminary identification of further research and development that might be required.

  10. Attapulgite, a decontaminating medium, research tool in the radioprotection field

    International Nuclear Information System (INIS)

    Gels based on attapulgite, obtained by mixing attapulgite, a clay, with water or chemicals have been used as decontaminating agents. The method has been optimized through extensive scale laboratory experiments carried out under standard conditions. A wide variety of materials, used in nuclear technologies, and significant radionuclides have been tested. Gels obtained with water only in some cases allow full decontamination, when acids are added to clay, complete contamination removal, is possible except for extreme pHs radionuclides solution and on non-passivated or porous surfaces. The optimized decontaminating technique has successively been set up and applied on materials contaminated by routine or accident. Laboratory scale results have been confirmed through practical use. Process data are reported. This method is simple to perform and requires no special equipment. No liquid radioactive waste arises from the process and the resulting solid waste can be conditioned with cement

  11. Microbiological decontamination of natural honey by irradiation

    International Nuclear Information System (INIS)

    Degree of microbiological decontamination, organoleptic and physico-chemical properties of natural honeys were investigated after radiation treatment. Seven kinds of honeys were irradiated with the beams of 10 MeV electrons from a 10 kW linear accelerator ''Elektronika 10-10'' at the dose 10 kGy. It was shown, that after irradiation, the total count of aerobic and anaerobic bacteria and moulds decrease by 99%. The antibiotic value in investigated honeys increased in turn from 1.67 to 2.67 after irradiation. Such factors and parameters of investigated honeys as their consistency, content of water and saccharose, acidity, the diastase and 5-HMF values were not changed significantly after irradiation. Decontamination by irradiation is a process which allows us to obtain high microbiological purity of honeys. It is especially needed, when honeys are used in surgical treatment of injuries and in nutrition of babies with food deficiency

  12. Microbiological decontamination of natural honey by irradiation

    Science.gov (United States)

    Migdał, W.; Owczarczyk, H. B.; K ȩdzia, B.; Hołderna-K ȩdzia, E.; Madajczyk, D.

    2000-03-01

    Degree of microbiological decontamination, organoleptic and physico-chemical properties of natural honeys were investigated after radiation treatment. Seven kinds of honeys were irradiated with the beams of 10 MeV electrons from a 10 kW linear accelerator "Elektronika 10-10" at the dose 10 kGy. It was shown, that after irradiation, the total count of aerobic and anaerobic bacteria and moulds decrease by 99%. The antibiotic value in investigated honeys increased in turn from 1.67 to 2.67 after irradiation. Such factors and parameters of investigated honeys as their consistency, content of water and saccharose, acidity, the diastase and 5-HMF values were not changed significantly after irradiation. Decontamination by irradiation is a process which allows us to obtain high microbiological purity of honeys. It is especially needed, when honeys are used in surgical treatment of injuries and in nutrition of babies with food deficiency.

  13. Synthesis of novel complexing macromolecular surfactants and study of their interactions with cobalt for the development of a decontamination process of textiles in dense CO2 medium

    International Nuclear Information System (INIS)

    This study is about textile decontamination in dense CO2 (liquid CO2 or supercritical CO2). The study is carried out in the framework of decontamination of textile used in the nuclear industry. The dense CO2 offers an alternative to aqueous medium used in the current process which generates a huge quantity of contaminated aqueous effluent requiring a post-treatment. Cobalt is the targeted contamination and can be found as ionic species or particles. The cobalt extraction in dense CO2 is achieved with an additive: a complexing CO2-philic/CO2-phobic macromolecular surfactant. Several types of additives were synthesized by controlled free radical polymerization: gradient copolymers made with CO2-philic groups (silicone-based or fluorinated moieties) and CO2-phobic complexing groups (aceto acetoxy, di-ethylphosphonate or phosphonic acid moieties). The copolymer behavior in dense CO2 was determined by phase diagram measurements (cloud point method) and their self-assembly in dense CO2 was investigated by small angle neutron scattering. The fluorinated copolymers were found advantageous in terms of solubility. Nevertheless, the silicone-based copolymers showed solubilities which are compatible with the process, therefore they are a good alternative to avoid fluorinated compounds which are unwanted in the conditioning of nuclear wastes. The study of cobalt complexation by the copolymers (UV-vis spectroscopy and inductively coupled plasma-mass spectroscopy) established relations between the type of complexing group and the affinity with the cobalt. The solubility of copolymer-cobalt complexes in dense CO2 is similar to those of copolymers. Moreover, the self-assembly study of the complex revealed a low aggregation. Finally, the synthesized copolymers were used in particle or ionic decontamination processes. In the case of ionic decontamination process, a rate of 70% of decontamination was reached with the use of gradient copolymer poly(1,1,2,2-tetrahydroperfluoro

  14. Psychosocial considerations for mass decontamination

    International Nuclear Information System (INIS)

    Mass exposure to explosions, infectious agents, food-borne illnesses, chemicals or radiological materials may require mass decontamination that have critical psychosocial implications for the public and for both traditional and non-traditional responders in terms of impact and of response. Five main issues are common to mass decontamination events: (i) perception, (ii) somatisation, (iii) media role and communication, (iv) information sharing, (v) behavioural guidance and (vi) organisational issues. Empirical evidence is drawn from a number of cases, including Chernobyl; Goiania, Brazil; the sarin gas attack in Tokyo; the anthrax attacks in the USA; Three Mile Island; and by features of the 2003 severe acute respiratory syndrome pandemic. In this paper, a common platform for mass casualty management is explored and suggestions for mass interventions are proposed across the complete event timeline, from pre-event threat and warning stages through to the impact and reconstruction phases. Implication for responders, health care and emergency infrastructure, public behaviour, screening processes, risk communication and media management are described. (authors)

  15. Decontamination Planning and Approach to its Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Park, Geun-young; Kim, Chang-Lak [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2014-10-15

    The research of the approach to the decontamination is required since Korea doesn't have the NPP decommissioning experience. In this paper, the process flow of decontamination is described throughout the foreign case study. And, factors needed to be considered to progress decontamination smoothly are introduced. For the planning of the decontamination, there are several important decisions to be made as follows : - whether the large components are included in the decontamination items or not - whether there are a delay factors like the fuel failure - what items applied to before/after decontamination - applied technologies - using what equipment. The decontamination plan is not fixed. It can be changed by the circumstances of progress. The schedule can be shortened by the good efficiency.

  16. Decontamination Planning and Approach to its Methodology

    International Nuclear Information System (INIS)

    The research of the approach to the decontamination is required since Korea doesn't have the NPP decommissioning experience. In this paper, the process flow of decontamination is described throughout the foreign case study. And, factors needed to be considered to progress decontamination smoothly are introduced. For the planning of the decontamination, there are several important decisions to be made as follows : - whether the large components are included in the decontamination items or not - whether there are a delay factors like the fuel failure - what items applied to before/after decontamination - applied technologies - using what equipment. The decontamination plan is not fixed. It can be changed by the circumstances of progress. The schedule can be shortened by the good efficiency

  17. Wavelengths effect on mass ablation of laser decontamination on aluminum surface

    International Nuclear Information System (INIS)

    Laser decontamination technology has advantages such as very high decontamination efficiency and very low secondary waste generation even though it has some disadvantages as high initial equipment cost and a little bit slow decontamination speed. Tam et al. reported the laser cleaning techniques for the removal of surface particulates. The existing decontamination methods such as chemical process using an organic solvent or inorganic acid, and a physical method using blasting or brushing generate secondary wastes due to chemicals and abrasives The coolant system of the research reactor in Korea and equipment in hot cells of nuclear facilities are made of aluminum. In the present study, we investigate the effect of wavelength of Q-switched Nd:YAG laser on the removal of Cs, Co, Eu, and Ce on an aluminum surface. Correlation between alumina ablation mass and the laser fluence was evaluated to find the effect of laser fluence on the removal of contaminants on the aluminum surface

  18. Wavelengths effect on mass ablation of laser decontamination on aluminum surface

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Sun Hee; Won, Hui Jun; Choi, Byung Seon; Jung, Chong Hun; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Laser decontamination technology has advantages such as very high decontamination efficiency and very low secondary waste generation even though it has some disadvantages as high initial equipment cost and a little bit slow decontamination speed. Tam et al. reported the laser cleaning techniques for the removal of surface particulates. The existing decontamination methods such as chemical process using an organic solvent or inorganic acid, and a physical method using blasting or brushing generate secondary wastes due to chemicals and abrasives The coolant system of the research reactor in Korea and equipment in hot cells of nuclear facilities are made of aluminum. In the present study, we investigate the effect of wavelength of Q-switched Nd:YAG laser on the removal of Cs, Co, Eu, and Ce on an aluminum surface. Correlation between alumina ablation mass and the laser fluence was evaluated to find the effect of laser fluence on the removal of contaminants on the aluminum surface

  19. New technologies for PCB [polychlorinated biphenyl] decontamination

    International Nuclear Information System (INIS)

    Polychlorinated biphenyls (PCB) were mixed with chlorobenzenes to reduce viscosity and provide for both electrical insulation and convective heat transfers. These mixtures were known as askarels, and ca 99.8% of PCBs used in electrical applications are contained in askarel-filled transformers and capacitors. It is estimated that there are ca 180 million gal of PCB-contaminated oil distributed through over 3 million transformers in the USA. Technology used for decontaminating these transformers depends on the concentration of the PCB contamination. At low PCB concentrations of up to ca 2,000 ppM, chemical methods can be used; at higher concentrations, alternative disposal options become more attractive. For chemical treatment, a small mobile unit using quick-reacting reagents has been developed for on-site decontamination. For highly contaminated transformers, retrofilling is very attractive since the owner's liability is minimized at minimum cost. Conventional flush/drain procedures have such drawbacks as the inability to remove oil trapped in windings and the leaching of trapped PCBs back into the uncontaminated retrofill oil over time. A new process has been developed to solve the leaching problem and to decontaminate the drained askarel at room temperature using a catalyst. An alternative disposal strategy involves dismantling the transformer carcass, incinerating non-recyclable materials, and cleaning the metals and wire with solvent. 8 figs

  20. Decontamination of Some Cosmetic Products and Raw Materials by Irradiation and its Effect on Their Organoleptic, Chemical and Physical Properties

    International Nuclear Information System (INIS)

    This study was achieved to use gamma irradiation for decontamination of some available cosmetic products and raw materials in Egypt in order to reduce their microbial counts to the acceptable limits. The total bacterial counts of the tested samples ranged between 7 CFU/g or ml and the total fungal and yeast count ranged between 10 - 4x103 CFU/g or ml. Irradiation dose of 7.5 kGy was effective in eliminating the radioresistant Bacillus cereus from the tested samples. Irradiation dose of 5, 7.5, 10 and 12 kGy had no changes in the organoleptic properties of the tested samples. Electron paramagnetic resonance (EPR) study was carried out on the most heavily contaminated samples before and after irradiation at 7.5 kGy and no by-products was detected. Also, the transmission electron microscopy of irradiated raw materials indicated that there were no significant changes in their mean particle size.

  1. Decontamination Data - Blister Agents

    Data.gov (United States)

    U.S. Environmental Protection Agency — Decontamination efficacy data for blister agents on various building materials using various decontamination solutions This dataset is associated with the following...

  2. Soil decontamination with Extraksol

    International Nuclear Information System (INIS)

    The Extraksol process is a mobile decontamination technology which treats unconsolidated materials by solvent extraction. Treatment with Extraksol involves material washing, drying and solvent regeneration. Contaminant removal is achieved through desorption/dissolution mechanisms. The treated material is dry and acceptable to be reinstalled in its original location. The process provides a fast, efficient and versatile alternative for decontamination of soil and sludge. The organic contaminants extracted from the matrix are transferred to the extraction fluids. These are thereafter concentrated in the residues of distillation after solvent regeneration. Removal and concentration of the contaminants ensures an important waste volume reduction. This paper presents the process is operational principles and the steps involved in Extraksol's development with results of the pilot tests and full-scale demonstrations

  3. Decontamination of FAST (CPP-666) fuel storage area stainless steel fuel storage racks

    International Nuclear Information System (INIS)

    The purpose of this report was to identify and evaluate alternatives for the decontamination of the RSM stainless steel that will be removed from the Idaho Chemical Processing plant (ICPP) fuel storage area (FSA) located in the FAST (CPP-666) building, and to recommend decontamination alternatives for treating this material. Upon the completion of a literature search, the review of the pertinent literature, and based on the review of a variety of chemical, mechanical, and compound (both chemical and mechanical) decontamination techniques, the preliminary results of analyses of FSA critically barrier contaminants, and the data collected during the FSA Reracking project, it was concluded that decontamination and beneficial recycle of the FSA stainless steel produced is technically feasible and likely to be cost effective as compared to burying the material at the RWMC. It is recommended that an organic acid, or commercial product containing an organic acid, be used to decontaminate the FSA stainless steel; however, it is also recommended that other surface decontamination methods be tested in the event that this method proves unsuitable. Among the techniques that should be investigated are mechanical techniques (CO2 pellet blasting and ultra-high pressure water blasting) and chemical techniques that are compatible with present ICPP waste streams

  4. Modelling Mass Casualty Decontamination Systems Informed by Field Exercise Data

    Directory of Open Access Journals (Sweden)

    Richard Amlôt

    2012-10-01

    Full Text Available In the event of a large-scale chemical release in the UK decontamination of ambulant casualties would be undertaken by the Fire and Rescue Service (FRS. The aim of this study was to track the movement of volunteer casualties at two mass decontamination field exercises using passive Radio Frequency Identification tags and detection mats that were placed at pre-defined locations. The exercise data were then used to inform a computer model of the FRS component of the mass decontamination process. Having removed all clothing and having showered, the re-dressing (termed re-robing of casualties was found to be a bottleneck in the mass decontamination process during both exercises. Computer simulations showed that increasing the capacity of each lane of the re-robe section to accommodate 10 rather than five casualties would be optimal in general, but that a capacity of 15 might be required to accommodate vulnerable individuals. If the duration of the shower was decreased from three minutes to one minute then a per lane re-robe capacity of 20 might be necessary to maximise the throughput of casualties. In conclusion, one practical enhancement to the FRS response may be to provide at least one additional re-robe section per mass decontamination unit.

  5. Chemical Processing Department monthly report, November 1956

    Energy Technology Data Exchange (ETDEWEB)

    1956-12-21

    The November 1956 monthly report for the Chemical Processing Department of Hanford Atomic Products Operation includes information regarding research and engineering efforts with respect to the Purex and Redox process technology. Also discussed was the production operation, finished product operation, power and general maintenance, financial operation, engineering and research operations, and employee operations. (MB)

  6. Chemical Processing Department monthly report, May 1958

    Energy Technology Data Exchange (ETDEWEB)

    1958-06-20

    The May, 1956 monthly report for the Chemical Processing Department of Hanford Atomic Products Operation includes information regarding research and engineering efforts with respect to the Purex and Redox process technology. Also discussed is the production operation, finished products operation, power and general maintenance, financial operation, engineering and research operations, and employee operations. (MB)

  7. Chemical Processing Department monthly report, July 1958

    Energy Technology Data Exchange (ETDEWEB)

    1958-08-22

    The July, 1958 monthly report for the Chemical Processing Department of the Hanford Atomic Products Operation includes information regarding research and engineering efforts with respect to the Purex and Redox process technology. Also discussed is the production operation, finished product operation, power and general maintenance, financial operation, engineering and research operations, and employee operation. (MB)

  8. Chemical Processing Department monthly report, May 1957

    Energy Technology Data Exchange (ETDEWEB)

    1957-06-21

    The May, 1957 monthly report for the Chemical Processing Department of the Hanford Atomic Products Operation includes information regarding research and engineering efforts with respect to the Purex and Redox process technology. Also discussed is the production operation, finished product operation, power and general maintenance, financial operation, engineering and research operations, and employee operation.(MB)

  9. Optimization of decontamination strategy for CANDU-PHW reactors

    International Nuclear Information System (INIS)

    Theoretical models of the decontamination process are developed and combined with an existing model of 60Co production in CANDU PHW reactors to predict the effects of decontamination on long term 60Co build-up in reactor primary heat transport systems. The effects of decontamination interval, decontamination factor, and post-decontamination corrosion release are calculated. An optimum decontamination strategy for a Pickering G.S. type reactor is developed on the basis of a cost-benefit analysis. This study indicates that the optimum decontamination interval is approximately six years. This optimum interval is relatively insensitive to variations in the costs of personnel exposure, the cost of a decontamination, the decontamination factor, and the post-decontamination corrosion model used. (author)

  10. Process safety management for highly hazardous chemicals

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    Purpose of this document is to assist US DOE contractors who work with threshold quantities of highly hazardous chemicals (HHCs), flammable liquids or gases, or explosives in successfully implementing the requirements of OSHA Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119). Purpose of this rule is to prevent releases of HHCs that have the potential to cause catastrophic fires, explosions, or toxic exposures.

  11. Contamination with radioactive materials and decontamination

    International Nuclear Information System (INIS)

    The content of the monograph mainly designed for personnel in nuclear power plants, radiochemical laboratories and laboratories of nuclear medicine departments is basically divided into two parts. In the general part, the contamination of persons and objects with radioactive substances is discussed and the physico-chemical principles of decontamination are presented. The main part of the publication is devoted to concrete practical decontamination procedures. Special attention is devoted to the decontamination of components of nuclear power plants with WWER reactors and to the decontamination of the equipment of radiochemical and radiological laboratories (in-service, after accidents and during decommissioning). Also described is the decontamination of garments, underwear, protective aids, rooms, buildings, terrain and water. Also included is a chapter on the disposal of radioactive wastes generated during decontamination. (A.K.)

  12. Specific decontamination methods: water nozzle, cavitation erosion

    International Nuclear Information System (INIS)

    The erosion and decontamination tests carried out in the framework of this study, allowed to specify the fields favourable to the use of the high pressure jet taking into account the determinant parameters that are the pressure and the target-nozzle distance. The previous spraying of gels with chemical reagents (sulfuric acid anf hydrazine) allows to get better decontamination factors. Then, the feasibility study of a decontamination method by cavitation erosion is presented. Gelled compounds for decontamination have been developed; their decontamination quality has been evaluated by comparative contamination tests in laboratory and decontamination tests of samples of materials used in nuclear industry; this last method is adapted to remote handling devices and produces a low quantity of secondary effluents, so it allows to clean high contaminated installation on the site without additional exposure of the personnel

  13. Chemicals Industry New Process Chemistry Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2000-08-01

    The Materials Technology I workshop was held in November 1998 to address future research needs for materials technology that will support the chemical industry. Areas covered included disassembly, recovery, reuse and renewable technology; new materials; and materials measurement and characterization. The Materials Technology II workshop was held in September 1999 and covered additives, modeling and prediction and an additional segment on new materials. Materials Technology Institute (MTI) for the Chemical Process Industries, Inc. and Air Products & Chemicals lead the workshops. The Materials Technology Roadmap presents the results from both workshops.

  14. Evaluation of an integrated approach involving chemical and biological processes for the detoxification of gold tailings effluent in Ghana

    International Nuclear Information System (INIS)

    Chemical and bio-remediation measures for the detoxification of pollutants such as cyanide and heavy metals in mine tailings effluent have been developed over the years. The study sought to evaluate the decrease in the concentrations of Cu, Zn, Fe, Cd, As and Pb through the integration of the processes involving photo-oxidation, activated carbon, hydrogen peroxide and bacterial degradation to decontaminate wastewater from the gold ore treatment plant until release into the environment in Ghana. The levels of trace metals Cu (0.345 mg l-1), Zn (0.07 mg l-1) and Fe (0.146 mg l-1 ) in treated effluent released into natural water bodies after bacterial degradation was generally within international and local standards for effluent discharges. Except for As, the levels of Cd and Pb which are hazardous heavy metals that may pose adverse health and environmental effects were within acceptable limits. The toxicity of these metals were in the increasing order Pb < Cd < As. The anthropogenic source of As in the chemically processed arseno-pyritic rock ores of the study area and the marginal 14–49% efficiency of As of the different detoxification processes could have contributed to the high levels of As in the effluent. If optimal conditions are attained for the decontamination processes used, the multi-remediation approach could be an effective solution for the decontamination of mine tailings effluent. (au)

  15. Decontamination for free release

    International Nuclear Information System (INIS)

    Many countries are seeking to treat radioactive waste in ways which meet the local regulatory requirements, but yet are cost effective when all contributing factors are assessed. In some countries there are increasing amounts of waste, arising from nuclear plant decommissioning, which are categorized as low level waste: however with suitable treatment a large part of such wastes might become beyond regulatory control and be able to be released as non-radioactive. The benefits and disadvantages of additional treatment before disposal need to be considered. Several processes falling within the overall description of decontamination for free release have been developed and applied, and these are outlined. In one instance the process seeks to take advantage of techniques and equipment used for decontaminating water reactor circuits intermittently through reactor life. (author). 9 refs, 1 fig., 3 tabs

  16. Transuranic decontamination of nitric acid solutions by the TRUEX solvent extraction process: preliminary development studies

    International Nuclear Information System (INIS)

    This report summarizes the work that has been performed to date at Argonne National Laboratory on the development of the TRUEX process, a solvent extraction process employing a bifunctional organophosphorous reagent in a PUREX process solvent (tributyl phosphate-normal paraffinic hydrocarbons). The purpose of this extraction process is to separate and concentrate transuranic (TRU) elements from nuclear waste. Assessments were made of the use of two TRUEX solvents: one incorporating the well-studied dihexyl-N,N-diethylcarbamoylmethylphosphonate (DHDECMP) and a second incorporating an extractant with superior properties for a 1M HNO3 acid feed, octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (O/sub phi/D[IB]CMPO). In this report, conceptual flowsheets for the removal of soluble TRUs from high-level nuclear wastes using these two TRUEX proces solvents are presented, and flowsheet features are discussed in detail. The conceptual flowsheet for TRU-element removal from a PUREX waste by the O/sub phi/D[IB]CMPO-TRUEX process solvent was tested in a bench-scale countercurrent experiment, and results of that experiment are presented and discussed. The conclusion of this study is that the TRUEX process is able to separate TRUs from high-level wastes so that the major portion of the solid waste (approx. 99%) can be classified as non-TRU. Areas where more experimentation is needed are listed at the end of the report. 45 references, 17 figures, 56 tables

  17. Foam and gel methods for the decontamination of metallic surfaces

    Science.gov (United States)

    Nunez, Luis; Kaminski, Michael Donald

    2007-01-23

    Decontamination of nuclear facilities is necessary to reduce the radiation field during normal operations and decommissioning of complex equipment. In this invention, we discuss gel and foam based diphosphonic acid (HEDPA) chemical solutions that are unique in that these solutions can be applied at room temperature; provide protection to the base metal for continued applications of the equipment; and reduce the final waste form production to one step. The HEDPA gels and foams are formulated with benign chemicals, including various solvents, such as ionic liquids and reducing and complexing agents such as hydroxamic acids, and formaldehyde sulfoxylate. Gel and foam based HEDPA processes allow for decontamination of difficult to reach surfaces that are unmanageable with traditional aqueous process methods. Also, the gel and foam components are optimized to maximize the dissolution rate and assist in the chemical transformation of the gel and foam to a stable waste form.

  18. Recent advances in Canadian decontamination technologies

    International Nuclear Information System (INIS)

    From 1973 to 1994, 15 full- and one sub-system decontaminations of CANDU®reactors were carried out using CAN-DECON™ and CAN-DEREM Plus™ processes. The CAN-DECON™ process was developed in the late 1960s and was initially applied in Nuclear Power Demonstration Reactor and Gentilly-1 Nuclear Generating Station on a trial basis, before it was applied as full-system decontamination at Douglas Point in 1975. The decontaminations of the CANDU® reactors, although successful, did highlight some short-comings of the process, and the CAN-DEREM™ and CAN-DEREM Plus™ processes were developed to address these. This paper presents a brief review of the previous decontamination of CANDU® reactors, discussing some key process issues (e.g., carbon steel corrosion, waste volume and low decontamination factors). The paper reviews advances in these decontamination processes, focusing on several major improvements to the process. These include the development of CAN-DEREM™ and CAN-DEREM Plus™ processes to improve process effectiveness, reduction in carbon steel corrosion by use of an effective corrosion inhibitor and the development of a reducing agent to improve process effectiveness. The paper also provides an overview of some of the recent application of the decontamination processes at Chalk River Laboratories, and recent decontamination process qualification for a CANDU® reactor. (author)

  19. Granulated decontamination formulations

    Science.gov (United States)

    Tucker, Mark D.

    2007-10-02

    A decontamination formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a sorbent additive, and water. A highly adsorbent sorbent additive (e.g., amorphous silica, sorbitol, mannitol, etc.) is used to "dry out" one or more liquid ingredients into a dry, free-flowing powder that has an extended shelf life, and is more convenient to handle and mix in the field.

  20. Decontamination Strategy for Large Area and/or Equipment Contaminated with Chemical and Biological Agents using a High Energy Arc Lamp (HEAL)

    Energy Technology Data Exchange (ETDEWEB)

    Schoske, Richard [ORNL; Kennedy, Patrick [ORNL; Duty, Chad E [ORNL; Smith, Rob R [ORNL; Huxford, Theodore J [ORNL; Bonavita, Angelo M [ORNL; Engleman, Greg [ORNL; Vass, Arpad Alexander [ORNL; Griest, Wayne H [ORNL; Ilgner, Ralph H [ORNL; Brown, Gilbert M [ORNL

    2009-04-01

    A strategy for the decontamination of large areas and or equipment contaminated with Biological Warfare Agents (BWAs) and Chemical Warfare Agents (CWAs) was demonstrated using a High Energy Arc Lamp (HEAL) photolysis system. This strategy offers an alternative that is potentially quicker, less hazardous, generates far less waste, and is easier to deploy than those currently fielded by the Department of Defense (DoD). For example, for large frame aircraft the United States Air Force still relies on the combination of weathering (stand alone in environment), air washing (fly aircraft) and finally washing the aircraft with Hot Soapy Water (HSW) in an attempt to remove any remaining contamination. This method is laborious, time consuming (upwards of 12+ hours not including decontamination site preparation), and requires large amounts of water (e.g., 1,600+ gallons for a single large frame aircraft), and generates large amounts of hazardous waste requiring disposal. The efficacy of the HEAL system was demonstrated using diisopropyl methyl phosphonate (DIMP) a G series CWA simulant, and Bacillus globigii (BG) a simulant of Bacillus anthracis. Experiments were designed to simulate the energy flux of a field deployable lamp system that could stand-off 17 meters from a 12m2 target area and uniformly expose a surface at 1360 W/m2. The HEAL system in the absence of a catalyst reduced the amount of B. globigii by five orders of magnitude at a starting concentration of 1.63 x 107 spores. In the case of CWA simulants, the HEAL system in the presence of the catalyst TiO2 effectively degraded DIMP sprayed onto a 100mm diameter Petri dish in 5 minutes.

  1. Synthesis and characterization of NiCrx Fe2-xO4 oxides (simulated corrosion products) for chemical decontamination

    International Nuclear Information System (INIS)

    Water-cooled nuclear power reactors such as Boiling Water Reactors (BWR), Pressurized light Water Reactors (PWR/VVER) and Pressurized Heavy Water Reactors (PHWR) face the problems of increasing radiation field on the out of core surfaces of primary systems over a period of operation. The radiation field is attributed to the activation of corrosion products by neutron flux. The main source of corrosion products are the structural material like carbon steel, stainless steel, and high nickel alloys and the oxides formed on these material surfaces also act as host for the radionuclides leading to radiation build-up due to deposition of activated corrosion products. Type of water chemistry regimes followed and the composition of the structural materials in the primary circuits lead to the formation of different type of oxides. In the case of BWRs reactor coolant circuits outer most oxide film is haematite (Fe2O3), followed by magnetite (Fe3O4), nickel and chromium substituted magnetite (NiFe2-xCrxO4) and inner film contains chromite spinels. Recently, sol-gel combustion synthesis has emerged as an attracting technique for the production of high purity and crystalline oxide powders at significantly lower temperatures compared to the conventional solid state synthetic methods. In order to understand the mechanistic aspects of decontamination, a series of chromium substituted nickel ferrites were chosen for preparation, characterization and its dissolution studies

  2. Decontamination of synthetic textile wastewater by electrochemical processes: energetic and toxicological evaluation.

    Science.gov (United States)

    Mountassir, Y; Benyaich, A; Rezrazi, M; Berçot, P; Gebrati, L

    2012-01-01

    The treatment of a synthetic textile wastewater, prepared with several compounds used in the finishing of textile materials, was comparatively studied by electrochemical methods such as electrooxidation (EO) (titanium electrode) and electrocoagulation (EC) (with aluminum and iron electrodes). The influence of pH, current density and operating time on the treatment was assessed by the parameters used to measure the level of organic contaminants in the wastewater; i.e. color, toxicity and chemical oxygen demand (COD). The experimental results showed that an effective electrochemical oxidation was achieved in which the wastewater was decolorized and 92% of COD was completely eliminated. In particular, the mineralization took place by indirect oxidation, mediated by active chlorine, and the treatment efficiency was enhanced by the addition of NaCl to the wastewater and by increasing the applied current density. The toxicity, still higher than the toxicity of the raw effluent, indicated a presence of toxic products after EO. Good results were obtained with the Al and Fe electrodes, mainly with respect to the removal of color and toxicity. EC is more economical than EO and the toxicity evaluation with the Daphnia magna test shows a significant reduction after EC. PMID:23109574

  3. DECONTAMINATION TECHNOLOGIES FOR FACILITY REUSE

    Energy Technology Data Exchange (ETDEWEB)

    Bossart, Steven J.; Blair, Danielle M.

    2003-02-27

    As nuclear research and production facilities across the U.S. Department of Energy (DOE) nuclear weapons complex are slated for deactivation and decommissioning (D&D), there is a need to decontaminate some facilities for reuse for another mission or continued use for the same mission. Improved technologies available in the commercial sector and tested by the DOE can help solve the DOE's decontamination problems. Decontamination technologies include mechanical methods, such as shaving, scabbling, and blasting; application of chemicals; biological methods; and electrochemical techniques. Materials to be decontaminated are primarily concrete or metal. Concrete materials include walls, floors, ceilings, bio-shields, and fuel pools. Metallic materials include structural steel, valves, pipes, gloveboxes, reactors, and other equipment. Porous materials such as concrete can be contaminated throughout their structure, although contamination in concrete normally resides in the top quarter-inch below the surface. Metals are normally only contaminated on the surface. Contamination includes a variety of alpha, beta, and gamma-emitting radionuclides and can sometimes include heavy metals and organic contamination regulated by the Resource Conservation and Recovery Act (RCRA). This paper describes several advanced mechanical, chemical, and other methods to decontaminate structures, equipment, and materials.

  4. Chemical Processes in Astrophysical Radiation Fields

    International Nuclear Information System (INIS)

    The effects of stimulated photon emission on chemical processes in a radiation field are considered and their influence on the chemistry of the early universe and other astrophysical environments is investigated. Spontaneous and stimulated radiative attachment rate coefficients for H(-), Li(-) and C(-) are presented

  5. Safety Considerations in the Chemical Process Industries

    Science.gov (United States)

    Englund, Stanley M.

    There is an increased emphasis on chemical process safety as a result of highly publicized accidents. Public awareness of these accidents has provided a driving force for industry to improve its safety record. There has been an increasing amount of government regulation.

  6. A Novel Chemical Nitrate Destruction Process

    Energy Technology Data Exchange (ETDEWEB)

    Dziewinski, J.; Marczak, S.

    1999-03-01

    Nitrates represent one of the most significant pollutant discharged to the Baltic Sea by the Sliiamae hydrometallurgical plant. This article contains a brief overview of the existing nitrate destruction technologies followed by the description of a new process developed by the authors. The new chemical process for nitrate destruction is cost effective and simple to operate. It converts the nitrate to nitrogen gas which goes to the atmosphere.

  7. Desulphurization of exhaust gases in chemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, K.; Wischnewski, W.

    1981-01-01

    The sulfur content of exhaust gases can be reduced by: desulphurization of fuels; modification of processes; or treatment of resultant gases. In this paper a few selected examples from the chemical industry in the German Democratic Republic are presented. Using modified processes and treating the resultant gases, the sulphuric content of exhaust gases is effectively reduced. Methods to reduce the sulfur content of exhaust gases are described in the field of production of: sulphuric acid; viscose; fertilizers; and paraffin.

  8. Synthesis and optimization of integrated chemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Barton, Paul I.; Evans, Lawrence B.

    2002-04-26

    This is the final technical report for the project titled ''Synthesis and optimization of integrated chemical processes''. Progress is reported on novel algorithms for the computation of all heteroazeotropic compositions present in complex liquid mixtures; the design of novel flexible azeotropic separation processes using middle vessel batch distillation columns; and theory and algorithms for sensitivity analysis and numerical optimization of hybrid discrete/continuous dynamic systems.

  9. Surfaces: processing, coating, decontamination, pollution, etc. Surface mastering to prevent component corrosion

    International Nuclear Information System (INIS)

    In the primary and secondary circuits of nuclear Pressurized Water Reactors, AREVA uses several nickel-based alloys or austenitic stainless steels for the manufacture of safety components. The experience feedback of the last twenty years allows us to point out the major role hold by the component surface state in their life duration. In this paper, we present four examples of problem encountered and solved by a surface study and the definition and implementation of processes for the surface control of the repaired components. Then, we propose some ideas about the present needs in term of analysis means to improve the surface knowledge and control of the manufactured components. (author)

  10. Environmental and occupational hazards associated with decontamination solutions (a)

    International Nuclear Information System (INIS)

    Some of the reagents employed in the decontamination of reactor coolant systems are potentially hazardous. Potential exposure to decontamination agents by operating personnel, or members of the general population, could occur during use, processing, transportation to, or disposal at a low-level waste site. Federal and state agencies have promulgated regulations relevant to the disposal of decontamination solution waste to prevent acute or chronic exposures. In particular, the Nuclear Regulatory Commission (NRC), U.S. Environmental Protection Agency (EPA), Department of Transportation (DOT), Department of Labor - Occupational Safety and Health Administration (OSHA), State of South Carolina, State of Nevada, and the State of Washington have such regulations. These regulations may impact on the choice of decontamination solutions, operations procedures, processing methods, or disposal methods. Laws and regulations relate to both chemically hazardous, or toxic materials and to radioactive hazards. Laws which regulate the exposure of workers and the general public to effluents and emissions during processing, disposal and transport have been abstracted. As a result of these regulations, utilities are required to obtain permits to perform monitoring and sampling of personnel and the on-site and off-site environment, provide proper protective clothing and ventilation, make certain the solutions are properly contained during use, storage and processing, and destroy and/or properly immobilize the residues for disposal. Waste treatment processes such as neutralization, ion exchange, evaporation, incineration, etc., must not produce, nor result in hazardous emissions, effluents, residues, or hazards to workers. The laws also stipulate record keeping and documentation

  11. Decontamination of Anthrax spores in critical infrastructure and critical assets.

    Energy Technology Data Exchange (ETDEWEB)

    Boucher, Raymond M.; Crown, Kevin K.; Tucker, Mark David; Hankins, Matthew Granholm

    2010-05-01

    Decontamination of anthrax spores in critical infrastructure (e.g., subway systems, major airports) and critical assets (e.g., the interior of aircraft) can be challenging because effective decontaminants can damage materials. Current decontamination methods require the use of highly toxic and/or highly corrosive chemical solutions because bacterial spores are very difficult to kill. Bacterial spores such as Bacillus anthracis, the infectious agent of anthrax, are one of the most resistant forms of life and are several orders of magnitude more difficult to kill than their associated vegetative cells. Remediation of facilities and other spaces (e.g., subways, airports, and the interior of aircraft) contaminated with anthrax spores currently requires highly toxic and corrosive chemicals such as chlorine dioxide gas, vapor- phase hydrogen peroxide, or high-strength bleach, typically requiring complex deployment methods. We have developed a non-toxic, non-corrosive decontamination method to kill highly resistant bacterial spores in critical infrastructure and critical assets. A chemical solution that triggers the germination process in bacterial spores and causes those spores to rapidly and completely change to much less-resistant vegetative cells that can be easily killed. Vegetative cells are then exposed to mild chemicals (e.g., low concentrations of hydrogen peroxide, quaternary ammonium compounds, alcohols, aldehydes, etc.) or natural elements (e.g., heat, humidity, ultraviolet light, etc.) for complete and rapid kill. Our process employs a novel germination solution consisting of low-cost, non-toxic and non-corrosive chemicals. We are testing both direct surface application and aerosol delivery of the solutions. A key Homeland Security need is to develop the capability to rapidly recover from an attack utilizing biological warfare agents. This project will provide the capability to rapidly and safely decontaminate critical facilities and assets to return them to

  12. Progress in chemical treatment of LEU targets by the modified Cintichem process

    International Nuclear Information System (INIS)

    Presented here are recent experimental results on tests of a modified Cintichem process for producing 99Mo from low enriched uranium (LEU). Studies were focused in three areas: (1) testing the effects on 99Mo recovery and purity of dissolving LEU foil in nitric acid alone, rather than in the sulfuric/nitric acid mixture currently used, (2) measuring decontamination factors for radionuclide impurities in each purification step, and (3) testing the effects on processing of adding barrier materials to the LEU metal-foil target. The experimental results show that switching from dissolving the target in the sulfuric/nitric mixture to using nitric acid alone should cause no significant difference in 99Mo product yield or purity. Further, the results show that overall decontamination factors for gamma emitters in the LEU target processing are high enough to meet the purity requirements for the 99Mo product. The results also show that the selected barrier materials, Cu, Fe, and Ni, do not interfere with 99Mo recovery and can be removed during chemical processing of the LEU target. (author)

  13. Methods of decontaminating metal surfaces

    International Nuclear Information System (INIS)

    Decontamination methods are discussed for internal and external surfaces of facilities and spaces in nuclear power plants. The problem area is divided into mechanical, chemical, electrochemical, steam emulsion and dry methods. For each group of methods the principle, most suitable application and effectiveness are given. (B.S.)

  14. Chemical computing with reaction-diffusion processes.

    Science.gov (United States)

    Gorecki, J; Gizynski, K; Guzowski, J; Gorecka, J N; Garstecki, P; Gruenert, G; Dittrich, P

    2015-07-28

    Chemical reactions are responsible for information processing in living organisms. It is believed that the basic features of biological computing activity are reflected by a reaction-diffusion medium. We illustrate the ideas of chemical information processing considering the Belousov-Zhabotinsky (BZ) reaction and its photosensitive variant. The computational universality of information processing is demonstrated. For different methods of information coding constructions of the simplest signal processing devices are described. The function performed by a particular device is determined by the geometrical structure of oscillatory (or of excitable) and non-excitable regions of the medium. In a living organism, the brain is created as a self-grown structure of interacting nonlinear elements and reaches its functionality as the result of learning. We discuss whether such a strategy can be adopted for generation of chemical information processing devices. Recent studies have shown that lipid-covered droplets containing solution of reagents of BZ reaction can be transported by a flowing oil. Therefore, structures of droplets can be spontaneously formed at specific non-equilibrium conditions, for example forced by flows in a microfluidic reactor. We describe how to introduce information to a droplet structure, track the information flow inside it and optimize medium evolution to achieve the maximum reliability. Applications of droplet structures for classification tasks are discussed. PMID:26078345

  15. Decontamination of media filters in a groundwater treatment plant by dissolution processes using organic acid solutions

    International Nuclear Information System (INIS)

    Ground water was collected from a depth of 1,200 m in the Al-Qasim area in mid-Saudi Arabia. This underground water contains minerals, mainly Fe and Mn and radio-nuclides like radium and other ionic materials. This water was filtered through a sand bed, which contains layers of sands of different sizes in order to remove those impurities from water. Mn and Fe were deposited on outer layer of each sand granule during filtration and radium was adsorbed on surfaces of these minerals. Ra was separated from these minerals by dissolving them in various acids such as ascorbic acid, citric acid, tannic acid, salicylic acid, tartaric acid and lactic acid under different experimental conditions like acid concentration, contact time, shaking speed, particle size, temperature and liquid/solid ratio. The effectiveness of these acids on radium removal was found as follows: ascorbic acid ∼ citric acid > tartaric acid > tannic acid > lactic acid > salicylic acid. Various reaction parameters were also optimized. Reaction kinetic and mechanism parameters of dissolution process were studied and compared with other published data. (author)

  16. Decontaminating products for routine decontamination in nuclear power plants

    International Nuclear Information System (INIS)

    Routine decontamination work that has to be carried out in practical operation includes the cleaning of all kinds of surfaces such as floors, walls and apparatus, the decontamination of professional clothes and of the personnel. In order to ensure a trouble-free functioning of plants for the treatment of waste water and concentrate in nuclear power plants, radioactive liquid wastes appearing in the controlled area should be compatible with the treatment methods in practice. Radioactive concentrates and resides obtained from the treatment methods are mixed with matrix materials like cement or bitumen or treated by roller frame drying and thus are conditioned for intermediate or final storage. Several requirements should be made on decontaminating agents used in the controlled area. Some of these physical-chemical criteria will be described in detail. (R.P.)

  17. Idaho Chemical Processing Plant product denitrator upgrade

    International Nuclear Information System (INIS)

    The uranium product denitrator at the Idaho Chemical Processing Plant has had serious operating problems since 1970, including inadequate contamintion control, fluidized bed caking, frequent bed heater failure, product overflow plugging, and poor feed control. These problems were minimized through selective redesign and upgrade of the process equipment as part of a process upgrade program completed in March 1981. Following startup and testing of the rebuilt product denitrator, 1044 kg of enriched uranium was processed in three weeks while demonstrating greater reliability, ease of operation, and improved contamination control. To maximize personnel safety in the future, the denitrator vessel should be made critically safe by geometry and process instrumentation isolated from the process for semi-remote operation

  18. Supporting chemical process design under uncertainty

    Directory of Open Access Journals (Sweden)

    A. Wechsung

    2010-09-01

    Full Text Available A major challenge in chemical process design is to make design decisions based on partly incomplete or imperfect design input data. Still, process engineers are expected to design safe, dependable and cost-efficient processes under these conditions. The complexity of typical process models limits intuitive engineering estimates to judge the impact of uncertain parameters on the proposed design. In this work, an approach to quantify the effect of uncertainty on a process design in order to enhance comparisons among different designs is presented. To facilitate automation, a novel relaxation-based heuristic to differentiate between numerical and physical infeasibility when simulations do not converge is introduced. It is shown how this methodology yields more details about limitations of a studied process design.

  19. THE DEACTIVATION DECONTAMINATION & DECOMMISSIONING OF THE PLUTONIUM FINISHING PLANT (PFP) A FORMER PLUTONIUM PROCESSING FACILITY AT DOE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    CHARBONEAU, S.L.

    2006-02-01

    The Plutonium Finishing Plant (PFP) was constructed as part of the Manhattan Project during World War II. The Manhattan Project was developed to usher in the use of nuclear weapons to end the war. The primary mission of the PFP was to provide plutonium used as special nuclear material (SNM) for fabrication of nuclear devices for the war effort. Subsequent to the end of World War II, the PFP's mission expanded to support the Cold War effort through plutonium production during the nuclear arms race and later the processing of fuel grade mixed plutonium-uranium oxide to support DOE's breeder reactor program. In October 1990, at the close of the production mission for PFP, a shutdown order was prepared by the Department of Energy (DOE) in Washington, DC and issued to the Richland DOE field office. Subsequent to the shutdown order, a team from the Defense Nuclear Facilities Safety Board (DNFSB) analyzed the hazards at PFP associated with the continued storage of certain forms of plutonium solutions and solids. The assessment identified many discrete actions that were required to stabilize the different plutonium forms into stable form and repackage the material in high integrity containers. These actions were technically complicated and completed as part of the PFP nuclear material stabilization project between 1995 and early 2005. The completion of the stabilization project was a necessary first step in deactivating PFP. During stabilization, DOE entered into negotiations with the U.S. Environmental Protection Agency (EPA) and the State of Washington and established milestones for the Deactivation and Decommissioning (D&D) of the PFP. The DOE and its contractor, Fluor Hanford (Fluor), have made great progress in deactivating, decontaminating and decommissioning the PFP at the Hanford Site as detailed in this paper. Background information covering the PFP D&D effort includes descriptions of negotiations with the State of Washington concerning consent

  20. THE DEACTIVATION, DECONTAMINATION AND DECOMMISSIONING OF THE PLUTONIUM FINISHING PLANT, A FORMER PLUTONIUM PROCESSING FACILITY AT DOE'S HANFORD SITE

    International Nuclear Information System (INIS)

    The Plutonium Finishing Plant (PFP) was constructed as part of the Manhattan Project during World War II. The Manhattan Project was developed to usher in the use of nuclear weapons to end the war. The primary mission of the PFP was to provide plutonium used as special nuclear material (SNM) for fabrication of nuclear devices for the war effort. Subsequent to the end of World War II, the PFP's mission expanded to support the Cold War effort through plutonium production during the nuclear arms race and later the processing of fuel grade mixed plutonium-uranium oxide to support DOE's breeder reactor program. In October 1990, at the close of the production mission for PFP, a shutdown order was prepared by the Department of Energy (DOE) in Washington,; DC--and issued to the Richland DOE field office. Subsequent to the shutdown order, a team from the Defense Nuclear Facilities Safety Board (DNFSB) analyzed the hazards at PFP associated with the continued storage of certain forms of plutonium solutions and solids. The assessment identified many discrete actions that were required to stabilize the different plutonium forms into stable form and repackage the material in high integrity containers. These actions were technically complicated and completed as part of the PFP nuclear material stabilization project between 1995 and early 2005. The completion of the stabilization project was a necessary first step in deactivating PFP. During stabilization, DOE entered into negotiations with the U.S. Environmental Protection Agency (EPA) and the State of Washington and established milestones for the Deactivation and Decommissioning (DandD) of the PFP. The DOE and its contractor, Fluor Hanford (Fluor), have made great progress in deactivating, decontaminating and decommissioning the PFP at the Hanford Site as detailed in this paper. Background information covering the PFP DandD effort includes descriptions of negotiations with the State of Washington concerning consent

  1. Study of a nuclear graphite waste 14C decontamination process by CO2 gasification

    International Nuclear Information System (INIS)

    The decommissioning of French gas cooled nuclear reactors (UNGG), all arrested since 1994, will generate 23,000 tons of graphite waste classified Low Level and Long Lived and notably containing 14C. The aim of this thesis is to study a new method for selective extraction of this radionuclide by CO2 gasification.The multi-scale organization of virgin and irradiated graphite has been studied by a coupling between microspectrometry Raman and transmission electron microscopy. With the neutron fluence, the structure degrades and the nano-structure can be greatly changed. In extreme cases, the lamellar nano-structure nuclear graphite has become nano-porous. Furthermore, these damages are systematically heterogeneous. An orientation effect of 'crystallites', shown experimentally by ion implantation, could be a cause of these heterogeneities.This study also showed that from a specific fluence, there is an important development of nano-porous zones coinciding with a dramatic 14C concentration increase. This radionuclide could be preferentially concentrated in the nano-porous areas which are potentially more reactive than the remaining laminar areas which could be less rich in 14C. This process by CO2 gasification was firstly tested on 'analogous' non-radioactive materials (mechanically milled graphite). These tests confirmed, for temperatures between 950 and 1000 C, the selective and complete elimination of nano-porous areas.Tests were then carried out on graphite waste from Saint-Laurent-des-Eaux A2 and G2 reactors. The results are promising with notably the quarter of 14C inventory extracted for a weight loss of only few percent. Up to 68 % of 14C inventory was extracted, but with an important gasification. Thus, this treatment could allow extracting selectively a share of 14C inventory (mobile or linked to nano-porous areas) and allows imagining alternative scenarios for graphite waste managing. (author)

  2. Evaluation of abrasive grit - high-pressure water decontamination. Final report

    International Nuclear Information System (INIS)

    This report is associated with a comprehensive review of various chemical and mechanical decontamination methods being conducted by the Electric Power Research Institute. The primary goal of this review is to identify potential state-of-the-art methods for use in decontamination of fluid systems at the Three Mile Island Unit 2 (TMI-2) facility. The particular method addressed in this study is an abrasive grit/high-pressure water technique developed primarily for decontamination of steam generator channel heads. Included in the report is a description of the system and summaries of field experience to date. Also included are general guidelines, criteria, and pertinent parameters which must be considered in the application of this decontamination method as well as a general assessment of the applicability of this process to various components and systems

  3. Decontamination manual of RI handling laboratory

    International Nuclear Information System (INIS)

    Based on experiences in Japan Atomic Energy Research Institute (JAERI), the essential and practical knowledge of radioactive contamination and its decontamination, and the method and procedure of floor decontamination are described for researcher and managing person in charge of handling radioisotopes (RI) in RI handling laboratories. Essential knowledge concerns the uniqueness of solid surface contamination derived from RI half lives and quantities, surface contamination density limit, and mode/mechanism of contamination. The principle of decontamination is a single conduct with recognition of chemical form of the RI under use. As the practical knowledge, there are physical and chemical methods of solid surface decontamination. The latter involves use of inorganic acids, chelaters and surfactants. Removal and replacement of contaminated solid like floor material are often effective. Distribution mapping of surface contamination can be done by measuring the radioactivity in possibly contaminated areas, and is useful for planning of effective decontamination. Floor surface decontamination is for the partial and spread areas of the floor. It is essential to conduct the decontamination with reagent from the highly to less contaminated areas. Skin decontamination with either neutral detergent or titanium oxide is also described. (N.I.)

  4. Energy conversion technology by chemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Oh, I.W.; Yoon, K.S.; Cho, B.W. [Korea Inst. of Science and Technology, Seoul (Korea, Republic of)] [and others

    1996-12-01

    The sharp increase in energy usage according to the industry development has resulted in deficiency of energy resources and severe pollution problems. Therefore, development of the effective way of energy usage and energy resources of low pollution is needed. Development of the energy conversion technology by chemical processes is also indispensable, which will replace the pollutant-producing and inefficient mechanical energy conversion technologies. Energy conversion technology by chemical processes directly converts chemical energy to electrical one, or converts heat energy to chemical one followed by heat storage. The technology includes batteries, fuel cells, and energy storage system. The are still many problems on performance, safety, and manufacturing of the secondary battery which is highly demanded in electronics, communication, and computer industries. To overcome these problems, key components such as carbon electrode, metal oxide electrode, and solid polymer electrolyte are developed in this study, followed by the fabrication of the lithium secondary battery. Polymer electrolyte fuel cell, as an advanced power generating apparatus with high efficiency, no pollution, and no noise, has many applications such as zero-emission vehicles, on-site power plants, and military purposes. After fabricating the cell components and operating the single cells, the fundamental technologies in polymer electrolyte fuel cell are established in this study. Energy storage technology provides the safe and regular heat energy, irrespective of the change of the heat energy sources, adjusts time gap between consumption and supply, and upgrades and concentrates low grade heat energy. In this study, useful chemical reactions for efficient storage and transport are investigated and the chemical heat storage technology are developed. (author) 41 refs., 90 figs., 20 tabs.

  5. Decontaminating radioactive lead solids

    International Nuclear Information System (INIS)

    Lead has been and continues to be used extensively at nuclear facilities and DOE/DOD sites to shield workers from ionizing radiation. Because it is often used in highly contaminated areas, the lead itself often becomes radioactively contaminated, thus creating a Mixed Waste. If the lead is contaminated above specified limits, it must be decontaminated prior to release for unrestricted use. In most cases, where the lead cannot be decontaminated using conventional methods, the lead is stored until a viable decontamination method and/or disposal alternative is determined. At many facilities, large quantities of stored lead are creating a significant problem. The U.S. EPA treatment standard for radioactive lead is, 'Macroencapsulafion with surface coating materials such as polymeric organics (e.g. resins and plastics) or with a jacket of inert inorganic materials to substantially reduce surface exposure to potential leaching media'. Since the Toxicity Characteristic Leaching Procedure (TCLP) requires size reduction to less than 9.5 mm particles for solid waste, macroencapsulation is not a practical or economically feasible option for processing lead. The U.S. EPA originally proposed 'Surface Deactivation' as the treatment standard. Because there exists no demonstrated available technology, this method was dropped from the final treatment standard. (author)

  6. Analysis of decontamination methods used at nuclear power plants and in other facilities. Research report

    International Nuclear Information System (INIS)

    Methods used in the Czech Republic and in other countries are described. The following topics are treated: Introduction into decontamination; Chemical methods; Foam methods; Electrochemical methods; Mechanical methods; Other methods; Decontamination of civil engineering structures; Technologies suitable for disposal decontamination; and Effect of decontamination on waste management. (P.A.)

  7. Effects of Ultrasound Power, Temperature and Flow Rate of Solvent on Decontamination of Sensitive Equipment by Extraction

    OpenAIRE

    Marek Andrle; František Opluštil; Josef Čáslavský

    2014-01-01

    The solvent extraction process is regarded amongst other known methods to be applicable for decontamination of sensitive equipment components, especially in cases the components are contaminated in-depth with chemical warfare agents. Viability of the solvent extraction method was evaluated on coupons of butadiene rubber contaminated by sulphur mustard before decontamination by the solvent extraction. The contaminated coupons were extracted in a flow cell, which the solvent (ethoxynonafluorobu...

  8. Chemical cleaning processes - present and future

    International Nuclear Information System (INIS)

    Corrosion products and impurities can accumulate in the secondary side of steam generators causing accelerated corrosion, steam flow disruption and heat transfer loss. Traditionally, chemical cleaning processes have been performed using multi-step processes that employ relatively concentrated reagents (e.g. EPRI-SGOG, 10-20 wt.%), that are applied at elevated temperatures. The use of such reagents dictates the use of large and relatively complex reagent handling systems for both reagent preparation and disposal. The significant duration and cost of each chemical clean has dictated that these cleaning processes are only applied on a remedial basis. An assessment of existing technology was carried out and improvements to the EPRI-SGOG processes are being developed. Results of these assessments are reported. Advanced processes are being developed by Atomic Energy of Canada Limited that use lower concentrations of reagents, require shorter application times and generate lower amounts of waste. This technology can be used on a preventive basis to keep steam generators clean. Included are: A dilute regenerative process that is applied during shutdown. The dilute reagent is continuously recirculated and regenerated during the cleaning process, resulting in shorter application times using modular and portable equipment. The low reagent concentration results in a significantly reduced waste volume. For deposits containing both magnetite and copper a pseudo one-step process (using the same base electrolyte and pH) is used with alternate addition of oxidizing or reducing agents; A dilute on-line process that can be used while the reactor is operating. Such a process would be used on a periodic basis and dislodged oxides removed by blowdown or by mechanical means; Additives that can be used to keep steam generators clean. A demonstration of this technology is currently being planned. Details of these technologies will be described. (author)

  9. The effects of food processing and direct decontamination techniques on the radionuclide content of foodstuffs: A literature review. Part 1: Milk and Milk Products

    International Nuclear Information System (INIS)

    This article is the second part of review describing the transfer of radionuclides from raw food materials to the final product during the various processes applied to the major food groups. Milk and milk products were reviewed in part 1. Meat, fruit, vegetables, cereals and drinks are dealt with in part 2. The principal nuclides of interest are radiocesium and radiostrontium. The behaviour of these and other nuclides during culinary preparation and larger scale processing of these food groups is detailed. The effects of techniques specifically designed to decontaminate food materials are also examined. (Author) 7 tabs., 76 refs

  10. Utilization of chemical looping strategy in coal gasification processes

    Institute of Scientific and Technical Information of China (English)

    Liangshih Fan; Fanxing Li; Shwetha Ramkumar

    2008-01-01

    Three chemical looping gasification processes, i. e. Syngas Chemical Looping (SCL) process, Coal Direct Chemical Looping (CDCL) process, and Calcium Looping process (CLP), are being developed at the Ohio State University (OSU). These processes utilize simple reaction schemes to convert carbonaceous fuels into products such as hydrogen, electricity, and synthetic fuels through the transformation of a highly reactive, highly recyclable chemical intermediate. In this paper, these novel chemical looping gasification processes are described and their advantages and potential challenges for commercialization are discussed.

  11. Design criteria for the new waste calcining facility at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    The New Waste Calcining Facility (NWCF) at the Idaho Chemical Processing Plant (ICPP) is being built to replace the existing fluidized-bed, high-level waste calcining facility (WCF). Performance of the WCF is reviewed, equipment failures in WCF operation are examined, and pilot-plant studies on calciner improvements are given in relation to NWCF design. Design features of the NWCF are given with emphasis on process and equipment improvements. A major feature of the NWCF is the use of remote maintenance facilities for equipment with high maintenance requirements, thereby reducing personnel exposures during maintenance and reducing downtime resulting from plant decontamination. The NWCF will have a design net processing rate of 11.36 m3 of high-level waste per day, and will incorporate in-bed combustion of kerosene for heating the fluidized bed calciner. The off-gas cleaning system will be similar to that for the WCF

  12. Surfaces: processing, coating, decontamination, pollution, etc. Surface mastering to prevent component corrosion; Surfaces: traitement, revetements, decontamination, pollution, etc. Maitrise de la surface pour prevenir la corrosion des composants

    Energy Technology Data Exchange (ETDEWEB)

    Foucault, M. [Departement Corrosion Chimie, AREVA Centre Technique, BP 181, 71205 Le Creusot (France)

    2012-07-01

    In the primary and secondary circuits of nuclear Pressurized Water Reactors, AREVA uses several nickel-based alloys or austenitic stainless steels for the manufacture of safety components. The experience feedback of the last twenty years allows us to point out the major role hold by the component surface state in their life duration. In this paper, we present four examples of problem encountered and solved by a surface study and the definition and implementation of processes for the surface control of the repaired components. Then, we propose some ideas about the present needs in term of analysis means to improve the surface knowledge and control of the manufactured components. (author)

  13. Strippable gel for decontamination of contaminated metallic surfaces

    International Nuclear Information System (INIS)

    Periodic decontamination of radioactive laboratories including fume hoods, glove boxes and all surfaces used for handling, processing and transporting radioactive materials is mandatory in all nuclear installations as this reduces spread of contamination and decreases total man rem exposure. Conventionally, chemical decontaminating agents or surfactant solutions are used for this purpose. However, this approach leads to generation of large volume of secondary radioactive waste. The use of strippable gel is an attractive alternative with low secondary waste generation particularly where removal of loose or weakly fixed contamination is necessary and also when the decontaminated material are to be reused, for e.g. decontamination of fume hoods, glove boxes, transport casks, spent fuel storage racks, control rod drive transport containers etc. Literature on gel formulations is scarce and mostly in the patent form. The sustained effort on gel formulation development has resulted in a basic gel formulation. The gel is a highly viscous water-based organic polymer, particularly suitable for application on vertical surfaces including difficult to reach metallic surfaces of complex geometry and not just limited to horizontal surfaces. The gel can be easily applied on contaminated surfaces by brushing or spraying. Curing of the gel is complete within 16-24 hours under ambient conditions and can then be removed by peeling as a dry sheet. While curing, the contaminants are trapped in gel either physically or chemically depending upon the nature of the contaminant. Salient features of cured gel include that it is water soluble and can be disposed off after immobilization in cement. Decontamination performance of the gel was initially evaluated by applying it on SS planchettes contaminated with known amount of radionuclides such as Cs(I), Co(II) and Ce(III). The measured decontamination factor was found to be in the range of 50-500, lowest for Ce(III) and highest for Co

  14. Chemical Processing Department monthly report for April 1958

    Energy Technology Data Exchange (ETDEWEB)

    Warren, J.H.

    1958-05-21

    The separations plants operated on schedule, and Pu production exceeded commitment. UO{sub 3} production and shipments were also ahead of schedule. Purex operation under pseudo two-cycle conditions (elimination of HS and 1A columns, co-decontamination cycle concentrator HCP) was successful. Final U stream was 3{times} lower in Pu than ever before; {gamma} activity in recovered HNO{sub 3} was also low. Four of 6 special E metal batches were processed through Redox and analyzed. Boric acid is removed from solvent extraction process via aq waste. The filter in Task II hydrofluorinator was changed from carbon to Poroloy. Various modifications to equipment were made.

  15. Radioisotope decontamination of X-ray detector. Photostimulable phosphor plate

    International Nuclear Information System (INIS)

    We tried to remove contamination of radioisotope (RI) for an X-ray detector (photostimulable phosphor plate; IP) and verified that our procedure suggested by Nishihara et al. was effective for decontamination. The procedure was as follows. First, the IP was kept for approximately twelve hours, and then it was processed [image (A)] as well as a clinical processing mode. Second, using a wet-type chemical wiper, we scavenged the IP to remove the adhered RI on its surface. Then, once again, the IP was kept for approximately fifteen hours and processed [image (B)] in order to check an effect of decontamination. Finally, the two images of (A) and (B) were analyzed using ImageJ, which can be downloaded as a free software, and a percentage of removal was calculated. The procedure was applied to two IPs using the Fuji computed tomography (FCR) 5501 plus. In the present case, the percentage of removal was approximately 96%. The removed radioisotopes in the chemical wipers were analyzed by Ge detector. Then, 134Cs and 137Cs were found with activities of 2.9 4.3 Bq and 3.5 5.2 Bq, respectively. For three months after that, we cannot see black spots on the IPs owing to the contamination of the RI and there are no defects caused by decontamination using a wet-type chemical wiper. (author)

  16. Catalysis questions in chemical processing of coal

    Energy Technology Data Exchange (ETDEWEB)

    Paal, Z.

    1980-01-01

    A brief review is given of the literature in the field of catalytic problems related to the chemical processing of coal. As is known, these processes have become especially significant due to the energy crisis. Existing problems can be divided into two groups: one group is connected with catalytic processing of liquid products of coal destructive hydrogenation (for example, by hydrogenation of coal at high pressures, or by extraction); the other groups is connected with catalytic reactions occurring during the destructive hydrogenation or gasification of coal. Extensive basic research is required in both fields, since certain basic properties of the systems examined are still unknown. The article also gives a brief review of certain new results obtained when studying Fisher-Tropsh reactions and MeOH synthesis.

  17. Decontamination of discharged aluminum brass condenser tubes of a BWR. Evolving the chemical formulation for copper oxide dissolution

    International Nuclear Information System (INIS)

    Chemical formulations for copper oxide dissolution have been evaluated primarily for the minimum ionic load resulting in the spent formulation along with other desirable qualities. Peroxydisulfuric acid prepared freshly through ion exchange route has shown almost stoichiometric dissolution of the copper oxide as per the acidic oxidative action with efficient kinetics. Stability of the prepared formulation for its application and its effective oxidizing behaviour and aqueous cupric ion stabilizing by its redox product has been established experimentally. (author)

  18. Study on the Decontamination of Radionuclides in Spent Phosphogypsum

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Chong Hun; Won, H. J.; Moon, J. K.

    2010-01-15

    The objective of the study is to confirm the possibility of further R and D thru pre-study on the decontamination technology for the safe, high decontamination factor, low waste arising and cost effective removal of radionuclide in spent phosphogypsum. The following contents were studied. 1) Decontamination of Radionuclide in Phosphogypsum - Effect of decontamination chemical formulation on Ra removal - Effect of H{sub 2}O{sub 2} concentration on Ra removal - Effect of Sr concentration on Ra removal 2) Removal of Radionuclide in Liquid Waste from Decontamination of Phosphogypsum - Ra removal by chromate treatment - Ra removal by zeolite and ACF treatment

  19. Decontamination techniques for radioactive metal waste using a neutral electrolyte and a sulfuric acid solution

    International Nuclear Information System (INIS)

    Two decontamination techniques were developed for reducing the contamination of metal wastes generated in nuclear power plants to the background level: an alternating electrolysis method using a Na2SO4 electrolyte, and a chemical method using a H2SO4 solution. Generally, the former is suitable for decontamination of simple-shaped metal wastes, while the latter is suitable for complex-shaped ones. Further, secondary wastes from the decontamination process can be minimized for the subsequent disposal; the once-used electrolyte can be recycled by separating migrated-radioactive sludge from the original electrolyte, and the volume of radioactive sludge can be reduced to 1/7 through a freeze-thaw process. Regarding the chemical method, stainless steel requires a two-step process (H2SO4 and H2SO4 containing Ce4+), while carbon steel requires a single-step process (H2SO4 only). By combining these two decontamination techniques, most radioactive metal wastes can be decontaminated. (author)

  20. Integrating nano- and microparticles in practical decontamination processes for water and sediments in a green technology approach

    Science.gov (United States)

    Eggen, Trine; Soran, Maria-Loredana

    2015-12-01

    Historically, pollution has been associated with heavy metals and hydrophobic persistent organic pollutants (POPs). This has changed. Today, legacy or emerging contaminants cover a vast number of compounds including industrial man-made chemicals, pesticides and pharmaceuticals in addition to inorganic elements and nanomaterials. These compounds are transferred to the environment via wastewater effluents and leachates and via sludge/biosolids such as fertilizers or soil amendments. Compared to previous POPs, today's legacy and emerging contaminants cover a broader spectrum of structures and properties, including a high number of persistent medium to highly water. For most emerging contaminants, neither the environmental transfer and residue nor the short- and long ecotoxicological and human adverse effects are known. Thus, it's time for precautionary acting and to replace conventional treatment processes originally designed for removal of organic matter and nutrients with processes suitable for removal of hazardous chemicals with a wide range of properties before entering water and terrestrial recipients.

  1. Decontamination of transuranic contaminated metals by melt refining

    International Nuclear Information System (INIS)

    Melt refining of transuranic contaminated metals is a possible decontamination process with the potential advantages of producing metal for reuse and of simplifying chemical analyses. By routinely achieving the 10 nCi/g( about0.1ppm) level by melt refining, scrap metal can be removed from the transuranic waste category. (To demonstrate the effectiveness of this melt refining process, mild steel, stainless steel, nickel, and copper were contaminated with 500 ppm (μg/g) PuO2 and melted with various fluxes. The solidified slags and metals were analyzed for their plutonium contents, and corresponding partition ratios for plutonium were calculated. Some metals were double refined in order to study the effect of secondary slag treatment. The initial weight of the slags was also varied to investigate the effect of slag weight on the degree of plutonium removal. In general, all four metals could be decontaminated below 1 ppm (μg/g) Pu ( about100 nCi/g) by a single slag treatment. Doubling the slag weight did not improve decontamination significantly; however, double slag treatment using 5 wt.% slag did decontaminate the metals to below 0.1 ppm (μg/g) Pu (10 nCi/g).)

  2. Decontamination of latex gloves

    International Nuclear Information System (INIS)

    Initially the latex gloves used in controlled zones were processed after use as radioactive waste. In view of the continually increasing number used, however, the persons in charge of the SPRAR have considered the possibility of decontaminating the gloves and using them again after control. The recovery installations which have been developed were initially designed rather crudely and operated irregularly; they have been progressively improved as a result of the experience acquired; today they are more really an industrial concern, equipped with automatic machinery. In 1967 it has been possible with this set-up to recover 247000 pairs of gloves, representing nearly 70 per cent of the number treated. (author)

  3. Researches on skin decontamination

    International Nuclear Information System (INIS)

    Living 4∼6 week-aged San Yuan white pigs (Suzhou, China) were used in skin decontamination experiments. Following a standard procedure, SM series of decontamination agents were used for decontamination of liquid nuclides. The results of immediate decontamination were as follows: K(decontamination efficiency) = 97.7% (decontamination factor DF = 43.5) for 131I; K>99% (DF>100) for 90Sr/90Y, MFP and U + TRU; K = 99.9% (DF 1000) for 137Cs. In 3 h-delayed decontamination, DF = 27∼67 (K 96.3%∼98.5) for the nuclides mentioned above. When the initiatory MFP contamination increased from 20 to 300 s-1·cm-2, the value of DF by immediate decontamination increased from 20 to 173 with the remaining activity not higher than 10 Bq·cm-2, and no additional decontamination was needed. For radioactive ash contamination of skin, DF 57∼1000 (K = 98.2%∼99.9%) in 4 h-delayed decontamination. SM series of decontamination agents are neutral liquid or cream without any irritative effect on skin. They are effective and easy to use in skin decontamination. (5 refs., 4 figs., 3 tabs.)

  4. Intelligent Controller Design for a Chemical Process

    Directory of Open Access Journals (Sweden)

    Mr. Glan Devadhas G

    2010-12-01

    Full Text Available Chemical process control is a challenging problem due to the strong on*line non*linearity and extreme sensitivity to disturbances of the process. Ziegler – Nichols tuned PI and PID controllers are found to provide poor performances for higher*order and non–linear systems. This paper presents an application of one*step*ahead fuzzy as well as ANFIS (adaptive*network*based fuzzy inference system tuning scheme for an Continuous Stirred Tank Reactor CSTR process. The controller is designed based on a Mamdani type and Sugeno type fuzzy system constructed to model the dynamics of the process. The fuzzy system model can take advantage of both a priori linguistic human knowledge through parameter initialization, and process measurements through on* line parameter adjustment. The ANFIS, which is a fuzzy inference system, is implemented in the framework of adaptive networks. The proposed ANFIS can construct an input*output mapping based on both human knowledge (in the form of fuzzy if*then rules and stipulated input*output data pairs. In this method, a novel approach based on tuning of fuzzy logic control as well as ANFIS for a CSTR process, capable of providing an optimal performance over the entire operating range of process are given. Here Fuzzy logic control as well as ANFIS for obtaining the optimal design of the CSTR process is explained. In this approach, the development of rule based and the formation of the membership function are evolved simultaneously. The performance of the algorithm in obtaining the optimal tuning values has been analyzed in CSTR process through computer simulation.

  5. Decontaminating lead bricks and shielding

    International Nuclear Information System (INIS)

    Lead used for shielding is often surface contaminated with radionuclides and is therefore a Resource Conservation and Recovery Act (RCRA) D008 mixed waste. The technology-based standard for treatment is macroencapsulation. However, decontaminating and recycling the clean lead is a more attractive solution. Los Alamos National Lab. decontaminates material and equipment contaminated with radioisotopes. Decontaminating lead poses special problems because of the RCRA hazard classification and the size of the inventory, now about 100 metric tons and likely to grow substantially because of planned decommissioning operations. This lead, in the form of bricks and other shield shapes, is surface contaminated with fission products. One of the best methods for decontaminating lead is removing the thin superficial layer of contamination with an abrasive medium under pressure. For lead, a mixture of alumina with water and air at about 280 kPa (40 psig) rapidly and effectively decontaminates the lead. The abrasive medium is sprayed onto the lead in a sealed-off area. The slurry of abrasive and particles of lead falls through a floor grating and is collected in a pump. A pump sends the slurry mixture back to the spray gun, creating a continuous process

  6. Idaho Chemical Processing Plant Site Development Plan

    International Nuclear Information System (INIS)

    The Idaho Chemical Processing Plant (ICPP) mission is to receive and store spent nuclear fuels and radioactive wastes for disposition for Department of Energy (DOE) in a cost-effective manner that protects the safety of Idaho National Engineering Laboratory (INEL) employees, the public, and the environment by: Developing advanced technologies to process spent nuclear fuel for permanent offsite disposition and to achieve waste minimization. Receiving and storing Navy and other DOE assigned spent nuclear fuels. Managing all wastes in compliance with applicable laws and regulations. Identifying and conducting site remediation consistent with facility transition activities. Seeking out and implementing private sector technology transfer and cooperative development agreements. Prior to April 1992, the ICPP mission included fuel reprocessing. With the recent phaseout of fuel reprocessing, some parts of the ICPP mission have changed. Others have remained the same or increased in scope

  7. Decontamination of radioactive cesium in soil

    International Nuclear Information System (INIS)

    Agricultural soil containing radioactive cesium was decontaminated using an extraction method involving aqueous potassium solutions. Results demonstrated that the potassium solution could extract radioactive cesium from soil artificially contaminated with 137Cs, although extraction rate decreased as time after contamination increased. However, visual examination of radioactivity distribution in soil samples significantly contaminated by the accident at the Fukushima Daiichi nuclear power plant showed that radioactive cesium also existed as insoluble particles. Therefore, reducing the volume of radioactive wastes generated from soil decontamination requires a physical decontamination method combined with chemical treatment. (author)

  8. Contamination and decontamination of fabrics

    International Nuclear Information System (INIS)

    An analysis is made of the problems of contamination and decontamination of clothes and underwear. Possible ways are described of contamination of fabrics (dry, wet) and in this connection the contaminant-fabric binding is underlined (in dry state, at different relative air humidity, in wet conditions in an environment of polar solvents). A survey is presented of decontamination methods and their importance. Dry methods include beatino., brushing and vacuum cleaning, wet methods include soaking and washing, dry cleaning in non-polar solvents, and the Intensol and Dual methods which combine dry cleaning and washing in one process. (B.S.)

  9. Ontario Hydro decontamination experience

    International Nuclear Information System (INIS)

    Ontario Hydro currently operates 18 nuclear electric generating units of the CANDU design with a net capacity of 12,402 MW(e). An additional 1,762 MW(e) is under construction. The operation of these facilities has underlined the need to have decontamination capability both to reduce radiation fields, as well as to control and reduce contamination during component maintenance. This paper presents Ontario Hydro decontamination experience in two key areas - full heat transport decontamination to reduce system radiation fields, and component decontamination to reduce loose contamination particularly as practised in maintenance and decontamination centres. (author)

  10. Fighting Ebola through Novel Spore Decontamination Technologies for the Military

    Directory of Open Access Journals (Sweden)

    Christopher J. Doona

    2015-08-01

    Full Text Available AbstractRecently, global public health organizations such as Doctors without Borders (MSF, the World Health Organization (WHO, Public Health Canada, National Institutes of Health (NIH, and the U.S. government developed and deployed Field Decontamination Kits (FDKs, a novel, lightweight, compact, reusable decontamination technology to sterilize Ebola-contaminated medical devices at remote clinical sites lacking infra-structure in crisis-stricken regions of West Africa (medical waste materials are placed in bags and burned. The basis for effectuating sterilization with FDKs is chlorine dioxide (ClO2 produced from a patented invention developed by researchers at the US Army – Natick Soldier RD&E Center (NSRDEC and commercialized as a dry mixed-chemical for bacterial spore decontamination. In fact, the NSRDEC research scientists developed an ensemble of ClO2 technologies designed for different applications in decontaminating fresh produce; food contact and handling surfaces; personal protective equipment; textiles used in clothing, uniforms, tents, and shelters; graywater recycling; airplanes; surgical instruments; and hard surfaces in latrines, laundries, and deployable medical facilities. These examples demonstrate the far-reaching impact, adaptability, and versatility of these innovative technologies. We present herein the unique attributes of NSRDEC’s novel decontamination technologies and a Case Study of the development of FDKs that were deployed in West Africa by international public health organizations to sterilize Ebola-contaminated medical equipment. FDKs use bacterial spores as indicators of sterility. We review the properties and structures of spores and the mechanisms of bacterial spore inactivation by ClO2. We also review mechanisms of bacterial spore inactivation by novel, emerging, and established nonthermal technologies for food preservation, such as high pressure processing, irradiation, cold plasma, and chemical sanitizers

  11. Chemical Processing Department monthly report, July 1959

    Energy Technology Data Exchange (ETDEWEB)

    1959-08-21

    Pu production from separation plants was only 65% of the monthly commitment owing to Purex difficulties. UO{sub 3} production and shipments both met schedules. Although unfabricated Pu metal production was reduced, all shipping commitments were met on schedule. Purex equipment responded satisfactorily to decontamination. 860,000 Ci of Ce{sup 144} were recovered from Purex Conc. IWW. The all-Ti L-3 concentrator loop was installed in the Redox Pu Concentrator. The safety of the slag and crucible dissolver in Finished Products Operation was improved by adding cadmium to each batch. Engineering studies of Palmolive facilities are reported. An emergency water supply for the Purex 241-A waste storage tank farm will be installed. A study was made on casks for NPR fuel shipment. (DLC)

  12. The Portable Chemical Sterilizer (PCS), D-FENS, and D-FEND ALL: novel chlorine dioxide decontamination technologies for the military.

    Science.gov (United States)

    Doona, Christopher J; Feeherry, Florence E; Setlow, Peter; Malkin, Alexander J; Leighton, Terrence J

    2014-01-01

    There is a stated Army need for a field-portable, non-steam sterilizer technology that can be used by Forward Surgical Teams, Dental Companies, Veterinary Service Support Detachments, Combat Support Hospitals, and Area Medical Laboratories to sterilize surgical instruments and to sterilize pathological specimens prior to disposal in operating rooms, emergency treatment areas, and intensive care units. The following ensemble of novel, 'clean and green' chlorine dioxide technologies are versatile and flexible to adapt to meet a number of critical military needs for decontamination(6,15). Specifically, the Portable Chemical Sterilizer (PCS) was invented to meet urgent battlefield needs and close critical capability gaps for energy-independence, lightweight portability, rapid mobility, and rugged durability in high intensity forward deployments(3). As a revolutionary technological breakthrough in surgical sterilization technology, the PCS is a Modern Field Autoclave that relies on on-site, point-of-use, at-will generation of chlorine dioxide instead of steam. Two (2) PCS units sterilize 4 surgical trays in 1 hr, which is the equivalent throughput of one large steam autoclave (nicknamed "Bertha" in deployments because of its cumbersome size, bulky dimensions, and weight). However, the PCS operates using 100% less electricity (0 vs. 9 kW) and 98% less water (10 vs. 640 oz.), significantly reduces weight by 95% (20 vs. 450 lbs, a 4-man lift) and cube by 96% (2.1 vs. 60.2 ft(3)), and virtually eliminates the difficult challenges in forward deployments of repairs and maintaining reliable operation, lifting and transporting, and electrical power required for steam autoclaves. PMID:24998679

  13. Selective Decontamination Effect of Metal Ions in Soil Using Supercritical CO2 and TBP Complex

    International Nuclear Information System (INIS)

    Decontamination of soil pollution is difficult because the type of contamination largely depends on the characteristics of the pollutant and the area. Also, existing soil decontamination methods generate large quantities of secondary waste and additional process costs. For this reason, new decontamination methods are always under active investigation. A method involving the use of supercritical carbon dioxide with excellent permeability in place of chemical solvents is currently being studied. Unlike other heavy metals in fission products, uranium is used as fuel, and must be handled carefully. Therefore, in this paper, we studied a supercritical carbon dioxide method for decontaminating heavy metal ions in soil using tri-n-butyl phosphate(TBP), which is well known as a ligand for the extraction of metal ions of actinium. We investigated the decontamination effect of heavy metal ions in the soil using TBP-HNO3 Complex and supercritical carbon dioxide. The study results showed that when heavy metals in soil are extracted using supercritical carbon dioxide, the extraction efficiency is different according to the type of pollutant metal ions in the soil. When TBP-HNO3 Complex is used with an extractant, uranium extraction is very effective, but lithium, strontium, and cesium extraction is not effective. Therefore, in the case of a mixture of uranium and other metals such as lithium, strontium, cesium, and so on in soil contaminated by fission product leaks from nuclear power plants, we can selectively decontaminate uranium with supercritical carbon dioxide and TBP-HNO3 Complex

  14. Susceptibility of Microsporum canis arthrospores to a mixture of chemically defined essential oils: a perspective for environmental decontamination.

    Science.gov (United States)

    Nardoni, Simona; Tortorano, Annamaria; Mugnaini, Linda; Profili, Greta; Pistelli, Luisa; Giovanelli, Silvia; Pisseri, Francesca; Papini, Roberto; Mancianti, Francesca

    2015-01-01

    The zoophilic dermatophyte Microsporum canis has cats as natural reservoir, but it is able to infect a wide range of hosts, including humans, where different clinical features of the so-called ringworm dermatophytosis have been described. Human infections are increasingly been reported in Mediterranean countries. A reliable control program against M. canis infection in cats should include an antifungal treatment of both the infected animals and their living environment. In this article, a herbal mixture composed of chemically defined essential oils (EOs) of Litsea cubeba (1%), Illicium verum, Foeniculum vulgare, and Pelargonium graveolens (0.5% each) was formulated and its antifungal activity assessed against M. canis arthrospores which represent the infective environmental stage of M. canis. Single compounds present in higher amounts in the mixture were also separately tested in vitro. Litsea cubeba and P. graveolens EOs were most effective (minimum inhibitory concentration (MIC) 0.5%), followed by EOs of I. verum (MIC 2%) and F. vulgare (MIC 2.5%). Minimum fungicidal concentrations (MFC) values were 0.75% (L. cubeba), 1.5% (P. graveolens), 2.5% (I. verum) and 3% (F. vulgare). MIC and MFC values of the mixture were 0.25% and 0.5%, respectively. The daily spray of the mixture (200 μL) directly onto infected hairs inhibited fungal growth from the fourth day onwards. The compounds present in higher amounts exhibited variable antimycotic activity, with MIC values ranging from >10% (limonene) to 0.1% (geranial and neral). Thus, the mixture showed a good antifungal activity against arthrospores present in infected hairs. These results are promising for a further application of the mixture as an alternative tool or as an adjuvant in the environmental control of feline microsporosis. PMID:25854840

  15. Supplement to investigation of technology process of cesium-134,137 decontamination of beef and lamb meet

    International Nuclear Information System (INIS)

    We tried in our investigation to modify certain methods of contamination of meat, contaminated by feeding with radioactive grass and hay. We present data concerning the decontamination of the fresh meat of animal fed on radioactive foods, and the follow up of the 134Cs - 137Cs mixture. The contamination procedure of lamb meat was performed in the different manners, namely by external salting of the fresh meat with the sea salt during 4 hours on the temperature of 40 C, and by pressure cooking lasting 15 minutes, followed by the buillon extraction. The decontamination procedure of veal was performed by the sinking of the meat samples in a 4% acetic acid, with meat-acid ratio being 1:3 on 80 C during the period of 4 days. Pressure cooking was performed on the temperature of 1200 C with the pressure of 2,02.105 N/m2 (2 Atu) lasting 15 minutes after which the buillon was extracted and split. Data analysis shows that the salting of the lamb meat produced the 83% activity loss in 134Cs and 137Cs and the pressure cooking even larger effect of over 90%. The veal meat after acetic acid treatment lost more than 80% 134Cs and 137Cs. Pressurized cooking increase the contamination effect to 95%. 2 refs., 4 tabs. (nev)

  16. Leach studies on cement-solidified ion exchange resins from decontamination processes at operating nuclear power stations

    International Nuclear Information System (INIS)

    The effects of varying pH and leachant compositions on the physical stability and leachability of radionuclides and chelating agents were determined for cement-solidified decontamination ion-exchange resin wastes collected from two operating commercial light water reactors. Small scale waste-form specimens were collected during waste solidifications performed at the Brunswick Steam Electric Plant Unit 1 and at the James A. FitzPatrick Nuclear Power Station. The collected specimens were leach tested, and their compressive strength was measured in accordance with the Nuclear Regulatory Commission's ''Technical Position on Waste Form'' (Revision 1), from the Low-Level Waste Management Branch. Leachates from these studies were analyzed for radionuclides, selected transition metals, and chelating agents to assess the leachability of these waste form constituents. Leachants used for the study were deionized water, simulated seawater, and groundwater compositions similar to those found at Barnwell, South Carolina and Hanford, Washington. Results of this study indicate that initial leachant pH does not affect leachate pH or releases from cement-solidified decontamination ion-exchange resin waste forms. However, differences in leachant composition and the presence of chelating agents may affect the releases of radionuclides and chelating agents. In addition, results from this study indicate that the cumulative releases of radionuclides and chelating agents observed for forms that disintegrated were similar to those for forms that maintained their general physical integrity

  17. Idaho Chemical Processing Plant failure rate database

    International Nuclear Information System (INIS)

    This report represents the first major upgrade to the Idaho Chemical Processing Plant (ICPP) Failure Rate Database. This upgrade incorporates additional site-specific and generic data while improving on the previous data reduction techniques. In addition, due to a change in mission at the ICPP, the status of certain equipment items has changed from operating to standby or off-line. A discussion of how this mission change influenced the relevance of failure data also has been included. This report contains two data sources: the ICPP Failure Rate Database and a generic failure rate database. A discussion is presented on the approaches and assumptions used to develop the data in the ICPP Failure Rate Database. The generic database is included along with a short discussion of its application. A brief discussion of future projects recommended to strengthen and lend credibility to the ICPP Failure Rate Database also is included

  18. Thermodynamics principles characterizing physical and chemical processes

    CERN Document Server

    Honig, Jurgen M

    1999-01-01

    This book provides a concise overview of thermodynamics, and is written in a manner which makes the difficult subject matter understandable. Thermodynamics is systematic in its presentation and covers many subjects that are generally not dealt with in competing books such as: Carathéodory''s approach to the Second Law, the general theory of phase transitions, the origin of phase diagrams, the treatment of matter subjected to a variety of external fields, and the subject of irreversible thermodynamics.The book provides a first-principles, postulational, self-contained description of physical and chemical processes. Designed both as a textbook and as a monograph, the book stresses the fundamental principles, the logical development of the subject matter, and the applications in a variety of disciplines. This revised edition is based on teaching experience in the classroom, and incorporates many exercises in varying degrees of sophistication. The stress laid on a didactic, logical presentation, and on the relat...

  19. Decontamination of paint-coated concrete in nuclear plants using laser technology

    Energy Technology Data Exchange (ETDEWEB)

    Anthofer, Anton; Lippmann, Wolfgang; Hurtado, Antonio [Technische Univ. Dresden (Germany). Chair of Hydrogen and Nuclear Technology

    2013-07-01

    A review of the state of the art shows the technical novelty of the combined project. The development of an all-in-one process for treatment hazard chemical contamination on concrete structures with online monitoring method reduces the laborious mechanic decontamination and post-treatment. For safe experimental investigations, a three-barrier-system was constructed and can be used for tests with - first - epoxy paint in order to analyze and optimize the process. Simulation models help to formulate a mathematic scheme of the decontamination process by laser technology. The goal is a decontamination system with an online analyzing system of the flue gas for a mobile and extensive component in nuclear and conventional decommission. (orig.)

  20. Skin contamination - prevention and decontaminating

    International Nuclear Information System (INIS)

    A detailed examination is made of the structure of human skin. Measures were drawn up to prevent skin contamination in nuclear installations as well as contaminated skin was decontaminated from the personnel. By systematically applying these measures a significant level of success was achieved in preventing contamination in nuclear installations. Cases where more far-reaching chemical methods had to be used were kept to a minimum. (R.P.)

  1. Electrochemical investigation of the two-stage decomposition of oxide deposits on a high-alloy chromium nickel steel by the MOPAC decontamination process

    International Nuclear Information System (INIS)

    The dissertation explains the application of the MOPAC technique for decomposition of oxide layers deposited under PWR conditions on an austenitic, high-alloy chromium nickel steel (DIN material number 1.4550). The examinations were mainly done by impedance spectrometry. With this technique, Cr(III)-oxide is oxidized to chromate in a first step, in 'oxidation solution', and the remaining oxide deposit is then dissolved in 'decontamination solution'. The various specimens used for the examinations were pre-treated ('oxidized') in water in an autoclave at 300deg C and 160 bar, remaining there for either one, two, three, six, or eight months. Extensive pre-experiments were carried out with polished sections of the same material. Comparison of the impedance spectra of these specimens with those of specimens from the autoclave were expected to yield data allowing assignment of impedance spectra to specific transformations in the oxide layers produced in the autoclave. It was found out that the treatment in oxidation solution is the decisive step for oxide decomposition, and hence for the entire result of the decontamination process. (orig.)

  2. Project W-026, Waste Receiving and Processing (WRAP) Facility Module 1: Maximum possible fire loss (MPFL) decontamination and cleanup estimates. Revision 1

    International Nuclear Information System (INIS)

    Project W-026, Waste Receiving and Processing (WRAP) Facility Module 1, a 1991 Line Item, is planned for completion and start of operations in the spring of 1997. WRAP Module 1 will have the capability to characterize and repackage newly generated, retrieved and stored transuranic (TRU), TRU mixed, and suspect TRU waste for shipment to the Waste isolation Pilot Plant (WIPP). In addition, the WRAP Facility Module 1 will have the capability to characterize low-level mixed waste for treatment in WRAP Module 2A. This report documents the assumptions and cost estimates for decontamination and clean-up of a maximum possible fire loss (MPFL) as defined by DOE Order 5480.7A, FIRE PROTECTION. The Order defines MPFL as the value of property, excluding land, within a fire area, unless a fire hazards analysis demonstrates a lesser (or greater) loss potential. This assumes failure of both automatic fire suppression systems and manual fire fighting efforts. Estimates were developed for demolition, disposal, decontamination, and rebuilding. Total costs were estimated to be approximately $98M

  3. 21 CFR 570.19 - Pesticide chemicals in processed foods.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Pesticide chemicals in processed foods. 570.19... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES General Provisions § 570.19 Pesticide chemicals in processed foods. When pesticide chemical residues occur in processed foods due to the use...

  4. 21 CFR 170.19 - Pesticide chemicals in processed foods.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Pesticide chemicals in processed foods. 170.19... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES General Provisions § 170.19 Pesticide chemicals in processed foods. When pesticide chemical residues occur in processed foods due to the use...

  5. Study on skin decontamination

    International Nuclear Information System (INIS)

    Chinese San-Yuan white pigs 4∼6 weeks old were used in skin decontamination experiments. The decontamination agents used were the SM series of decontamination agents. In immediate decontamination test, K 97.7% (DF = 43.5) was obtained for 131I, K>99%(DF>100) for 90Sr/90Y, MFP and U + TRU, K = 99.9%(DF = 1000) for 137Cs. DF = 27∼67 (K 96.3%∼98.5%) was obtained for the nuclides mentioned above in 3 h delayed decontamination test. When the initial contamination level of MFP increased from 200 to 3000 cps/10 cm2, the remained activity was still lower than 10 Bq/cm2 after decontamination, and no additional decontamination is needed. For radioactive ashes contamination, DF = 57∼1000 (K 98.2%∼99.9%) was reached in 4 h-delayed decontamination. The SM series of decontamination agents are neutral liquid or cream having no stimulating effect to skin. It is effective and easy to use in skin decontamination

  6. Summary of decontamination cover manufacturing experience

    Energy Technology Data Exchange (ETDEWEB)

    Ulrich, G.B.; Berry, H.W.

    1995-02-01

    Decontamination cover forming cracks and vent cup assembly leaks through the decontamination covers were early manufacturing problems. The decontamination cover total manufacturing process yield was as low as 55%. Applicable tooling and procedures were examined. All manufacturing steps from foil fabrication to final assembly leak testing were considered as possible causes or contributing factors to these problems. The following principal changes were made to correct these problems: (1) the foil annealing temperature was reduced from 1375{degrees} to 1250{degrees}C, (2) the decontamination cover fabrication procedure (including visual inspection for surface imperfections and elimination of superfluous operations) was improved, (3) the postforming dye penetrant inspection procedure was revised for increased sensitivity, (4) a postforming (prewelding) 1250{degrees}C/1 h vacuum stress-relief operation was added, (5) a poststress relief (prewelding) decontamination cover piece-part leak test was implemented, (6) the hold-down fixture used during the decontamination cover-to-cup weld was modified, and concomitantly, and (7) the foil fabrication process was changed from the extruding and rolling of 63-mm-diam vacuum arc-remelted ingots (extrusion process) to the rolling of 19-mm-square arc-melted drop castings (drop cast process). Since these changes were incorporated, the decontamination cover total manufacturing process yield has been 91 %. Most importantly, more than 99% of the decontamination covers welded onto vent cup assemblies were acceptable. The drastic yield improvement is attributed primarily to the change in the foil annealing temperature from 1375{degrees} to 1250{degrees}C and secondarily to the improvements in the decontamination cover fabrication procedure.

  7. Summary of decontamination cover manufacturing experience

    International Nuclear Information System (INIS)

    Decontamination cover forming cracks and vent cup assembly leaks through the decontamination covers were early manufacturing problems. The decontamination cover total manufacturing process yield was as low as 55%. Applicable tooling and procedures were examined. All manufacturing steps from foil fabrication to final assembly leak testing were considered as possible causes or contributing factors to these problems. The following principal changes were made to correct these problems: (1) the foil annealing temperature was reduced from 1375 degrees to 1250 degrees C, (2) the decontamination cover fabrication procedure (including visual inspection for surface imperfections and elimination of superfluous operations) was improved, (3) the postforming dye penetrant inspection procedure was revised for increased sensitivity, (4) a postforming (prewelding) 1250 degrees C/1 h vacuum stress-relief operation was added, (5) a poststress relief (prewelding) decontamination cover piece-part leak test was implemented, (6) the hold-down fixture used during the decontamination cover-to-cup weld was modified, and concomitantly, and (7) the foil fabrication process was changed from the extruding and rolling of 63-mm-diam vacuum arc-remelted ingots (extrusion process) to the rolling of 19-mm-square arc-melted drop castings (drop cast process). Since these changes were incorporated, the decontamination cover total manufacturing process yield has been 91 %. Most importantly, more than 99% of the decontamination covers welded onto vent cup assemblies were acceptable. The drastic yield improvement is attributed primarily to the change in the foil annealing temperature from 1375 degrees to 1250 degrees C and secondarily to the improvements in the decontamination cover fabrication procedure

  8. Decontamination of aquatic vegetable leaves by removing trace toxic metals during pickling process with acetic acid solution.

    Science.gov (United States)

    Wu, Wenbiao; Yang, Yixing

    2011-01-01

    The heavy-metal content of aquatic plants is mainly dependent upon their ecological system. This study indicated that although the toxic heavy-metal contents could be above the recommended maximum levels depending upon their concentrations in growing water, they can be decontaminated by pickling with 5% acetic acid solution. Almost all Cd, Hg, Ba, or Sb and 99.5% Pb, 96.7% Ag, or 97.1% Al were removed from Water Spinach leaves by soaking in acetic acid solution. For Water-Shield leaves, almost all Cd, Hg, Pb, Ba, or Sb and 95.0% Ag or 96.1% Al were removed. For Watercress leaves, almost all Cd, Hg, Ba, or Sb and 99.0% Pb or 99.7% Ag were removed. For Water Hyacinth leaves, almost all Cd, Ba, or Sb and 99.0% Hg, 98.5% Pb, 95.0% Ag, or 98.7% Al were removed. PMID:21888602

  9. Enhanced toxic cloud knockdown spray system for decontamination applications

    Science.gov (United States)

    Betty, Rita G.; Tucker, Mark D.; Brockmann, John E.; Lucero, Daniel A.; Levin, Bruce L.; Leonard, Jonathan

    2011-09-06

    Methods and systems for knockdown and neutralization of toxic clouds of aerosolized chemical or biological warfare (CBW) agents and toxic industrial chemicals using a non-toxic, non-corrosive aqueous decontamination formulation.

  10. Decontamination Efficacy and Skin Toxicity of Two Decontaminants against Bacillus anthracis.

    Directory of Open Access Journals (Sweden)

    Chad W Stratilo

    Full Text Available Decontamination of bacterial endospores such as Bacillus anthracis has traditionally required the use of harsh or caustic chemicals. The aim of this study was to evaluate the efficacy of a chlorine dioxide decontaminant in killing Bacillus anthracis spores in solution and on a human skin simulant (porcine cadaver skin, compared to that of commonly used sodium hypochlorite or soapy water decontamination procedures. In addition, the relative toxicities of these decontaminants were compared in human skin keratinocyte primary cultures. The chlorine dioxide decontaminant was similarly effective to sodium hypochlorite in reducing spore numbers of Bacillus anthracis Ames in liquid suspension after a 10 minute exposure. After five minutes, the chlorine dioxide product was significantly more efficacious. Decontamination of isolated swine skin contaminated with Bacillus anthracis Sterne with the chlorine dioxide product resulted in no viable spores sampled. The toxicity of the chlorine dioxide decontaminant was up to two orders of magnitude less than that of sodium hypochlorite in human skin keratinocyte cultures. In summary, the chlorine dioxide based decontaminant efficiently killed Bacillus anthracis spores in liquid suspension, as well as on isolated swine skin, and was less toxic than sodium hypochlorite in cultures of human skin keratinocytes.

  11. Studying chemical vapor deposition processes with theoretical chemistry

    OpenAIRE

    Pedersen, Henrik; Elliott, Simon D.

    2014-01-01

    In a chemical vapor deposition (CVD) process, a thin film of some material is deposited onto a surface via the chemical reactions of gaseous molecules that contain the atoms needed for the film material. These chemical reactions take place on the surface and in many cases also in the gas phase. To fully understand the chemistry in the process and thereby also have the best starting point for optimizing the process, theoretical chemical modeling is an invaluable tool for providing atomic-scale...

  12. Modelling Mass Casualty Decontamination Systems Informed by Field Exercise Data

    OpenAIRE

    Richard Amlôt; Egan, Joseph R.

    2012-01-01

    In the event of a large-scale chemical release in the UK decontamination of ambulant casualties would be undertaken by the Fire and Rescue Service (FRS). The aim of this study was to track the movement of volunteer casualties at two mass decontamination field exercises using passive Radio Frequency Identification tags and detection mats that were placed at pre-defined locations. The exercise data were then used to inform a computer model of the FRS component of the mass decontamination proces...

  13. Urban Decontamination Experience at Pripyat Ukraine - 13526

    Energy Technology Data Exchange (ETDEWEB)

    Paskevych, Sergiy [Institute for Safety Problems of Nuclear Power Plants, National Academy of Sciences of Ukraine, 36 a Kirova str. Chornobyl, Kiev region, 07200 (Ukraine); Voropay, Dmitry [Federal State Unitary Enterprise ' Russian State Center of Inventory and Registration and Real Estate - Federal Bureau of Technical Inventory' , 37-2 Bernadsky Prospekt, Moscow Russia 119415 (Russian Federation); Schmieman, Eric [Battelle Memorial Institute, PO Box 999 MSIN K6-90, Richland, WA 99352 (United States)

    2013-07-01

    This paper describes the efficiency of radioactive decontamination activities of the urban landscape in the town of Pripyat, Ukraine. Different methods of treatment for various urban infrastructure and different radioactive contaminants are assessed. Long term changes in the radiation condition of decontaminated urban landscapes are evaluated: 1. Decontamination of the urban system requires the simultaneous application of multiple methods including mechanical, chemical, and biological. 2. If a large area has been contaminated, decontamination of local areas of a temporary nature. Over time, there is a repeated contamination of these sites due to wind transport from neighboring areas. 3. Involvement of earth-moving equipment and removal of top soil by industrial method achieves 20-fold reduction in the level of contamination by radioactive substances, but it leads to large amounts of waste (up to 1500 tons per hectare), and leads to the re-contamination of treated areas due to scatter when loading, transport pollutants on the wheels of vehicles, etc.. (authors)

  14. Chemical precipitation processes for the treatment of low- and medium-level liquid waste

    International Nuclear Information System (INIS)

    New applications of chemical precipitation processes for the treatment of various radioactive low and medium level liquid waste have been investigated. For reducing the overall management cost and improving the long-term safety of disposal, partitioning of the reprocessing concentrate into different streams for separate conditioning, packaging and disposal has been studied through chemical precipitation of the whole activity (actinides + main gamma emitters) or the actinides only. Results achieved on testing of real sample of reprocessing concentrate (lab-scale) are presented and discussed. In order to comply with the ALARA principle, an industrial flocculator prototype has been constructed and successfully operated for the treatment of utility liquid waste arising at the Chooz PWR site. Combination of chemical precipitation with ultrafiltration seems quite promising for improving both decontamination and volume reduction factors for the treatment of various radwastes. On the basis of experimental tests performed successively on lab and technical scales, a pilot plant has been designed, constructed and commissioned for the treatment of Harwell low and medium level liquid wastes. First active runs confirm the merits of the process

  15. DECONTAMINATION/DESTRUCTION TECHNOLOGY DEMONSTRATION FOR ORGANICS IN TRANSURANIC WASTE

    Energy Technology Data Exchange (ETDEWEB)

    Chris Jones; Javier Del Campo; Patrick Nevins; Stuart Legg

    2002-08-01

    The United States Department of Energy's Savannah River Site has approximately 5000 55-gallon drums of {sup 238}Pu contaminated waste in interim storage. These may not be shipped to WIPP in TRUPACT-II containers due to the high rate of hydrogen production resulting from the radiolysis of the organic content of the drums. In order to circumvent this problem, the {sup 238}Pu needs to be separated from the organics--either by mineralization of the latter or by decontamination by a chemical separation. We have conducted ''cold'' optimization trials and surrogate tests in which a combination of a mediated electrochemical oxidation process (SILVER II{trademark}) and ultrasonic mixing have been used to decontaminate the surrogate waste materials. The surrogate wastes were impregnated with copper oxalate for plutonium dioxide. Our process combines both mineralization of reactive components (such cellulose, rubber, and oil) and surface decontamination of less reactive materials such as polyethylene, polystyrene and polyvinylchloride. By using this combination of SILVER II and ultrasonic mixing, we have achieved 100% current efficiency for the destruction of the reactive components. We have demonstrated that: The degree of decontamination achieved would be adequate to meet both WIPP waste acceptance criteria and TRUPACT II packaging and shipping requirements; The system can maintain near absolute containment of the surrogate radionuclides; Only minimal pre-treatment (coarse shredding) and minimal waste sorting are required; The system requires minimal off gas control processes and monitoring instrumentation; The laboratory trials have developed information that can be used for scale-up purposes; The process does not produce dioxins and furans; Disposal routes for secondary process arisings have already been demonstrated in other programs. Based on the results from Phase 1, the recommendation is to proceed to Phase 2 and use the equipment at Savannah

  16. Decontamination of body surface

    International Nuclear Information System (INIS)

    There are two important points for an effective application of decontamination procedures. One is the organizing method of responsible decontamination teams. The team should be directed by medical doctor with the knowledge of decontamination of radionuclides. The other point is the place of application of the decontamination. Hospitals and clinics, especially with a department of nuclear medicine, or specialized units such as an emergency medical center are preferable. Before decontamination procedures are initiated, adequate monitoring of the body surface should be undertaken by a competent person in order to demarcate the areas which are contaminated. There are fundamental principles which are applicable to all decontamination procedures. (1) Precautions must always be taken to prevent further spread of contamination during decontamination operations. (2) Mild decontamination methods should be tried before resorting to treatment which can damage the body surface. The specific feature of each contamination varies widely in radionuclides involved, place and area of the contamination, condition of the contaminated skin such as whether the skin is wounded or not, and others. Soap and water are usually good detergents in most cases. If they fail, orange oil cream (SUPERDECONCREAM, available from Tokyo Engineering Co.) specially prepared for decontamination of radionuclides of most fission and corrosion products may be used. Contaminated hair should be washed several times with an efficient shampoo. (author)

  17. Chemical, microbiological and physical processes in polluted groundwater

    International Nuclear Information System (INIS)

    Inorganic and organic pollutants issuing from solid waste deposits cause a groundwater deterioration which depends in its nature and extent on the distance between the base of waste material and the groundwater surface, the quality and quantity of the leachates, the nature of groundwater and its flow velocity and the nature of the aquifer. The contaminants are diluted or decontaminated by biogeochemical, geochemical and physical effects as the groundwater flows downstream. The self-purification processes may be summarized by biogeochemical degradation, precipitation and co-precipitation, sorption at soil particles, at bacterial slimes and at colloidal hydroxides, ion exchange, mechanical filtration and gas exchange. The effect of dilution may be treated with help of the concept of hydrodynamic dispersion. A discussion of the relative importance of self-purification processes and dilution may use anomalous distribution of stable isotopes in the polluted groundwater. (author)

  18. URANIUM DECONTAMINATION

    Science.gov (United States)

    Buckingham, J.S.; Carroll, J.L.

    1959-12-22

    A process is described for reducing the extractability of ruthenium, zirconium, and niobium values into hexone contained in an aqueous nitric acid uranium-containing solution. The solution is made acid-deficient, heated to between 55 and 70 deg C, and at that temperature a water-soluble inorganic thiosulfate is added. By this, a precipitate is formed which carries the bulk of the ruthenium, and the remainder of the ruthenium as well as the zirconium and niobium are converted to a hexone-nonextractable form. The rutheniumcontaining precipitate can either be removed from the solu tion or it can be dissolved as a hexone-non-extractable compound by the addition of sodium dichromate prior to hexone extraction.

  19. ADVANCED OXIDATION PROCESSES (AOP'S FOR THE TREATMENT OF CCL CHEMICALS

    Science.gov (United States)

    Research on treatment of Contaminant Candidate List (CCL) chemicals is being conducted. Specific groups of contaminants on the CCL will be evaluated using numerous advanced oxidation processes (AOPs). Initially, these CCL contaminants will be evaluated in groups based on chemical...

  20. Examination of corrosion specimens from the full reactor coolant system decontamination at Indian Point Unit 2

    International Nuclear Information System (INIS)

    The first full-system chemical decontamination (FSD) of a nuclear power reactor in the United States was performed at Consolidated Edison's Indian Point 2 (IP-2) PWR in March 1995. This National Demonstration of a full reactor coolant system (RCS) decontamination was performed using a five-step decontamination process. To evaluate the effects of the decontamination on materials in the IP-2 RCS, and to ensure the integrity of these materials, several types of corrosion specimens were installed in the decontamination process system (DPS). Corrosion coupons were fabricated from: major RCS materials of construction - Alloy 600, type 304 stainless steel (SS), sensitized 304 SS, 316 SS, 410 SS; Cr-and Ni-plated materials; Co-, Ni- and Fe-based hard-facing alloys; and Stressed specimens were included for materials that could possibly be susceptible to inter-granular attack and stress corrosion cracking. The metallographic examination of the corrosion specimens did not reveal any materials compatibility issues that would have an impact on operation of the IP-2 PWR following the FSD. IP-2 was successfully returned to service without problems, and is now into the second cycle of operation following the FSD. A key result from the Scanning Auger Microscopy (SAM) examination of 304 SS and Alloy 600 artifacts from IP-2 was that a thin, Cr-rich film remains on the specimens after the decontamination. The presence of a Cr-rich oxide may serve to passivate surfaces and minimize recontamination rates during subsequent reactor operation. At the conclusion of the FSD in 1995, the radiation fields had been reduced by an average of 87%. Radiation field measurements taken by Consolidated Edison during the 1997 refueling outage (25 months following the FSD) indicated that the radiation fields had increased by less than 10 % across the plant and were 84% lower than the 1995 pre-decontamination levels; recontamination rates are significantly lower than expected

  1. Decontamination of HEPA filters

    International Nuclear Information System (INIS)

    Mound Facility, during many years of plutonium-238 experience, has recovered over 150 kg of plutonium-238. Much of this material was recovered from HEPA filters or from solid wastes such as sludge and slag. The objective of this task was to modify and improve the existing nitric acid leaching process used at Mound so that filters from the nuclear fuel cycle could be decontaminated effectively. Various leaching agents were tested to determine their capability for dissolving PuO2, UO2, U3O8, AmO2, NpO2, CmO2, and ThO2 in mixtures of the following: HNO3-HF; HNO3-HF-H2SO4; and HNO3-(NH4)2Ce(NO3)6. Adsorption isotherms were obtained for two leaching systems. In some tests simulated contaminated HEPA filter material was used, while in others actual spent glovebox filters were used. The maximum decontamination factor of 833 was achieved in the recovery of plutonium-238 from actual filters. The dissolution was accomplished by using a six-stage process with 4N HNO3-0.23M (NH4)2Ce(NO3)6 as the leaching agent. Thorium oxide was also effectively dissolved from filter media using a mixture of nitric acid and ceric ammonium nitrate. Sodium carbonate and Na2CO3-KNO3 fusion tests were performed using simulated PuO2-contaminated filter media at various temperatures. Approximately 70 wt% of the PuO2 was soluble in a mixture composed of 70 wt% Na2CO3-30 wt% KNO3 (heated for 1 h at 9500C). 23 figs., 14 tables

  2. Surface Decontamination of System Components in Uranium Conversion Plant at KAERI

    International Nuclear Information System (INIS)

    A chemical decontamination process using nitric acid solution was selected as in-situ technology for recycle or release with authorization of a large amount of metallic waste including process system components such as tanks, piping, etc., which is generated by dismantling a retired uranium conversion plant at Korea Atomic Energy Research Institute (KAERI). The applicability of nitric acid solution for surface decontamination of metallic wastes contaminated with uranium compounds was evaluated through the basic research on the dissolution of UO2 and ammonium uranyl carbonate (AUC) powder. Decontamination performance was verified by using the specimens contaminated with such uranium compounds as UO2 and AUC taken from the uranium conversion plant. Dissolution rate of UO2 powder is notably enhanced by the addition of H2O2 as an oxidant even in the condition of a low concentration of nitric acid and low temperature compared with those in a nitric acid solution without H2O2. AUC powders dissolve easily in nitric acid solutions until the solution pH attains about 2.5 ∼ 3. Above that solution pH, however, the uranium concentration in the solution is lowered drastically by precipitation as a form of U3(NH3)4O9 . 5H2O. Decontamination performance tests for the specimens contaminated with UO2 and AUC were quite successful with the application of decontamination conditions obtained through the basic studies on the dissolution of UO2 and AUC powders

  3. Chemical Processing Department monthly report for May 1960

    Energy Technology Data Exchange (ETDEWEB)

    1960-06-20

    Production of Pu nitrate from separations plants during May was below forecast. A Np recovery campaign in Purex yielded 1.5 kg. Production and shipments of UO{sub 3} met schedules. Unfabricated Pu metal production was below forecast, but all shipments were on schedule. Decontamination efficiency was low in Purex solvent extraction around the time of the Np recovery. The damaged Redox B-2 dissolver is being restored; processing of enriched metal in A and C dissolvers was continued. A spectrograph for inclusions in Pu metal was installed. 4 kg Pu oxide was produced in a continuous direct calciner. Scope design on Purex Np recovery and purification facilities was completed. Other design and contracts are discussed.

  4. An appraisal of existing decontamination technology used in the United States of America

    International Nuclear Information System (INIS)

    This report is a review of decontamination technology applied by industry to radioactively contaminated components in the U.S.A. In addition some newer techniques under development or recently emerging are discussed. Mechanical, chemical, manual and other techniques such as electropolishing and ultrasonics are reviewed. Whilst the emphasis is mainly on non-destructive techniques for components some discussion of segmentation is included as this is inevitable during concrete decontamination; and also when decontamination of components occurs as part of a decommissioning programme the use of segmentation techniques may facilitate the process. A bibliography has been included to facilitate further reading. It is important to consider the relevance of the US data in this report to the United Kingdom both to the learning curve of development and the different nuclear reactor systems in the respective countries. The authors have therefore listed some conclusions and recommendations which have become apparent to them whilst undertaking the study. (U.K.)

  5. Collection of lectures delivered at decontamination course

    International Nuclear Information System (INIS)

    The collection contains 10 lectures read at the decontamination workshop DEK '85 held between 29-31 Oct 1985 at the Nuclear Research Institute at Rez, all of which fall under the INIS Subject Scope. The workshop, whose first course was held in 1975, is destined for personnel of various institutions who are decontamination process users but also for designers of nuclear installations, personnel of safety of work inspectorates, hygiene services, etc. (Z.M.)

  6. Fighting Ebola with novel spore decontamination technologies for the military.

    Science.gov (United States)

    Doona, Christopher J; Feeherry, Florence E; Kustin, Kenneth; Olinger, Gene G; Setlow, Peter; Malkin, Alexander J; Leighton, Terrance

    2015-01-01

    Recently, global public health organizations such as Doctors without Borders (MSF), the World Health Organization (WHO), Public Health Canada, National Institutes of Health (NIH), and the U.S. government developed and deployed Field Decontamination Kits (FDKs), a novel, lightweight, compact, reusable decontamination technology to sterilize Ebola-contaminated medical devices at remote clinical sites lacking infra-structure in crisis-stricken regions of West Africa (medical waste materials are placed in bags and burned). The basis for effectuating sterilization with FDKs is chlorine dioxide (ClO2) produced from a patented invention developed by researchers at the US Army Natick Soldier RD&E Center (NSRDEC) and commercialized as a dry mixed-chemical for bacterial spore decontamination. In fact, the NSRDEC research scientists developed an ensemble of ClO2 technologies designed for different applications in decontaminating fresh produce; food contact and handling surfaces; personal protective equipment; textiles used in clothing, uniforms, tents, and shelters; graywater recycling; airplanes; surgical instruments; and hard surfaces in latrines, laundries, and deployable medical facilities. These examples demonstrate the far-reaching impact, adaptability, and versatility of these innovative technologies. We present herein the unique attributes of NSRDEC's novel decontamination technologies and a Case Study of the development of FDKs that were deployed in West Africa by international public health organizations to sterilize Ebola-contaminated medical equipment. FDKs use bacterial spores as indicators of sterility. We review the properties and structures of spores and the mechanisms of bacterial spore inactivation by ClO2. We also review mechanisms of bacterial spore inactivation by novel, emerging, and established non-thermal technologies for food preservation, such as high pressure processing, irradiation, cold plasma, and chemical sanitizers, using an array of Bacillus

  7. Fighting Ebola with novel spore decontamination technologies for the military

    Science.gov (United States)

    Doona, Christopher J.; Feeherry, Florence E.; Kustin, Kenneth; Olinger, Gene G.; Setlow, Peter; Malkin, Alexander J.; Leighton, Terrance

    2015-01-01

    Recently, global public health organizations such as Doctors without Borders (MSF), the World Health Organization (WHO), Public Health Canada, National Institutes of Health (NIH), and the U.S. government developed and deployed Field Decontamination Kits (FDKs), a novel, lightweight, compact, reusable decontamination technology to sterilize Ebola-contaminated medical devices at remote clinical sites lacking infra-structure in crisis-stricken regions of West Africa (medical waste materials are placed in bags and burned). The basis for effectuating sterilization with FDKs is chlorine dioxide (ClO2) produced from a patented invention developed by researchers at the US Army Natick Soldier RD&E Center (NSRDEC) and commercialized as a dry mixed-chemical for bacterial spore decontamination. In fact, the NSRDEC research scientists developed an ensemble of ClO2 technologies designed for different applications in decontaminating fresh produce; food contact and handling surfaces; personal protective equipment; textiles used in clothing, uniforms, tents, and shelters; graywater recycling; airplanes; surgical instruments; and hard surfaces in latrines, laundries, and deployable medical facilities. These examples demonstrate the far-reaching impact, adaptability, and versatility of these innovative technologies. We present herein the unique attributes of NSRDEC’s novel decontamination technologies and a Case Study of the development of FDKs that were deployed in West Africa by international public health organizations to sterilize Ebola-contaminated medical equipment. FDKs use bacterial spores as indicators of sterility. We review the properties and structures of spores and the mechanisms of bacterial spore inactivation by ClO2. We also review mechanisms of bacterial spore inactivation by novel, emerging, and established non-thermal technologies for food preservation, such as high pressure processing, irradiation, cold plasma, and chemical sanitizers, using an array of Bacillus

  8. Comparison between conventional chemical processes and bioprocesses in cotton fabrics

    OpenAIRE

    Mojsov, Kiro

    2015-01-01

    Textile processing is a growing industry that traditionally has used a lot of water, energy and harsh chemicals. They are also not easily biodegradable. Biotechnology in textiles is one of the revolutionary ways to promote the textile field. Bio-processing were accompanied by a significant lower demand of energy, water, chemicals, time and costs. Due to the ever growing costs for water and energy worldwide investigations are carried out to substitute conventional chemical textile processes by...

  9. Total chemical management in photographic processing

    Science.gov (United States)

    Luden, Charles; Schultz, Ronald

    1985-01-01

    The mission of the U. S. Geological Survey's Earth Resources Observation Systems (EROS) Data Center is to produce high-quality photographs of the earth taken from aircraft and Landsat satellite. In order to meet the criteria of producing research-quality photographs, while at the same time meeting strict environmental restrictions, a total photographic chemical management system was installed. This involved a three-part operation consisting of the design of a modern chemical analysis laboratory, the implementation of a chemical regeneration system, and the installation of a waste treatment system, including in-plant pretreatment and outside secondary waste treatment. Over the last ten years the result of this program has yielded high-quality photographs while saving approximately 30,000 per year and meeting all Environmental Protection Agency (EPA) restrictions.

  10. Decontamination of the contaminated water on severe nuclear accidents by titanium oxide adsorption

    International Nuclear Information System (INIS)

    In order to establish a decontamination process for contaminated water that generated in a severe nuclear power plant accident such as the Fukushima accident, we proposed a new decontamination process. A new decontamination process is composed of co-decontamination of radioactive transition metals and Cs with hexacyanoferrate(II) ion, and decontamination of radioactive metals including Sr with titanium oxide adsorption. This study discussed the adsorptivity of a new titanium oxide and its applicability to the radioactive water after co-decontamination of transition metals and Cs. (author)

  11. Pickering emulsions for skin decontamination.

    Science.gov (United States)

    Salerno, Alicia; Bolzinger, Marie-Alexandrine; Rolland, Pauline; Chevalier, Yves; Josse, Denis; Briançon, Stéphanie

    2016-08-01

    This study aimed at developing innovative systems for skin decontamination. Pickering emulsions, i.e. solid-stabilized emulsions, containing silica (S-PE) or Fuller's earth (FE-PE) were formulated. Their efficiency for skin decontamination was evaluated, in vitro, 45min after an exposure to VX, one of the most highly toxic chemical warfare agents. Pickering emulsions were compared to FE (FE-W) and silica (S-W) aqueous suspensions. PE containing an oil with a similar hydrophobicity to VX should promote its extraction. All the formulations reduced significantly the amount of VX quantified on and into the skin compared to the control. Wiping the skin surface with a pad already allowed removing more than half of VX. FE-W was the less efficient (85% of VX removed). The other formulations (FE-PE, S-PE and S-W) resulted in more than 90% of the quantity of VX removed. The charge of particles was the most influential factor. The low pH of formulations containing silica favored electrostatic interactions of VX with particles explaining the better elimination from the skin surface. Formulations containing FE had basic pH, and weak interactions with VX did not improve the skin decontamination. However, these low interactions between VX and FE promote the transfer of VX into the oil droplets in the FE-PE. PMID:27021875

  12. Applications of Process Synthesis: Moving from Conventional Chemical Processes towards Biorefinery Processes

    DEFF Research Database (Denmark)

    Yuan, Zhihong; Chen, Bingzhen; Gani, Rafiqul

    2013-01-01

    , biorefinery processes for converting biomass-derived carbohydrates into transportation fuels and chemicals are now gaining more and more attention from both academia and industry. Process synthesis, which has played a vital role for the development, design and operation of (petro) chemical processes, can be......Concerns about diminishing petroleum reserves, enhanced worldwide demand for fuels and fluctuations in the global oil market, together with climate change and national security have promoted many initiatives for exploring alternative, non-petroleum based processes. Among these initiatives...

  13. Bacterial infections: antibiotics and decontamination.

    Science.gov (United States)

    Gould, Dinah

    Infectious disease is caused by bacteria, viruses, fungi, protozoa and micro-organisms including the mycoplasmas, rickettsiae and chlamydiae. Most of the infections commonly encountered in the UK are caused either by bacteria or viruses. This article describes bacterial structure and function to explain how antibiotics work and the processes of decontamination such as cleaning, disinfection and sterilisation, which are important in infection control. PMID:15224613

  14. An extremely radioresistant green eukaryote for radionuclide bio-decontamination in the nuclear industry

    International Nuclear Information System (INIS)

    Nuclear activities generate radioactive elements which require processes for their decontamination. Although biological remediation has proved to be efficient in industrial applications, no biotechnology solution is currently operational for highly radioactive media. Such a solution requires organisms that accumulate radionuclides while withstanding radioactivity. This paper describes the potentialities of an extremophile autotrophic eukaryote, Coccomyxa actinabiotis nov. sp., that we isolated from a nuclear facility and which withstands huge ionizing radiation doses, up to 20 000 Gy. Half the population survives 10 000 Gy, which is comparable to the hyper-radioresistant well-known prokaryote Deinococcus radiodurans. The cell metabolic profile investigated by nuclear magnetic resonance was hardly affected by radiation doses of up to 10 000 Gy. Cellular functioning completely recovered within a few days. This outstanding micro-alga also strongly accumulates radionuclides, including 238U, 137Cs, 110mAg, 60Co, 54Mn, 65Zn, and 14C (decontamination above 85% in 24 h, concentration factor, 1000-450 000 mL g-1 fresh weight). In 1 h, the micro-alga revealed as effective as the conventional physico-chemical ion exchangers to purify nuclear effluents. Using this organism, an efficient real-scale radionuclide bio-decontamination process was performed in a nuclear fuel storage pool with an important reduction of waste volume compared to the usual physico-chemical process. The feasibility of new decontamination solutions for the nuclear industry and for environmental clean-up operations is demonstrated. (authors)

  15. Decontamination formulation with sorbent additive

    Science.gov (United States)

    Tucker; Mark D. , Comstock; Robert H.

    2007-10-16

    A decontamination formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a bleaching activator, a sorbent additive, and water. The highly adsorbent, water-soluble sorbent additive (e.g., sorbitol or mannitol) is used to "dry out" one or more liquid ingredients, such as the liquid bleaching activator (e.g., propylene glycol diacetate or glycerol diacetate) and convert the activator into a dry, free-flowing powder that has an extended shelf life, and is more convenient to handle and mix in the field.

  16. Metal Decontamination, Magnox, United Kingdom

    International Nuclear Information System (INIS)

    Ultra high pressure (UHP) water blasting was a successful technique deployed at Hinkley Point A, in the United Kingdom, for an isolated population of pond skips. UHP blasting achieved levels that allowed the skips to be routed via metal melt to the Energy Solutions Bear Creek facility, in the United States of America, which allowed the beneficial reuse of metal in accordance with the waste hierarchy. However, owing to higher levels of 90Sr in the remaining Magnox skips, metal melt was not an acceptable option for the skips. Decontamination trials were conducted on a representative population of remaining Magnox skips using UHP blasting and UHP blasting with abrasive. The trials demonstrated that for the remaining population of Magnox skips, and skips shared between sites via Sellafield and existing fuel routes, UHP blasting (and other techniques) could not deliver a consistent decontamination factor, or a high enough decontamination factor to significantly and reliably reduce intermediate level waste (ILW) skips to LLW or LLW skips to metal melt acceptance criteria. Based on the trial results, there was a significant risk that many ILW skips would remain ILW after decontamination with UHP blasting, along with the creation of a secondary wet ILW arising. This, coupled with a significant amount of worker dose expended for no apparent benefit, made direct disposal of the skips as LLW the only viable option. It also demonstrated that a significant amount of the radioactivity was in the base metal, or driven into the base metal by the decontamination processes. This left disposal as the only remaining option. The skips were combined with other low activity waste streams and disposed of as LLW, using averaging techniques. This technique was viable until recent restrictive guidance was received from the LLW repository regarding methods of averaging the activity of discrete waste items over a waste consignment. The added restrictions from the guidance eliminated the

  17. Idaho Chemical Processing Plant low-level waste grout stabilization development program FY-96 status report

    International Nuclear Information System (INIS)

    The general purpose of the Grout Stabilization Development Program is to solidify and stabilize the liquid low-level wastes (LLW) generated at the Idaho Chemical Processing Plant (ICPP). It is anticipated that LLW will be produced from the following: (1) chemical separation of the tank farm high-activity sodium-bearing waste; (2) retrieval, dissolution, and chemical separation of the aluminum, zirconium, and sodium calcines; (3) facility decontamination processes; and (4) process equipment waste. The main tasks completed this fiscal year as part of the program were chromium stabilization study for sodium-bearing waste and stabilization and solidification of LLW from aluminum and zirconium calcines. The projected LLW will be highly acidic and contain high amounts of nitrates. Both of these are detrimental to Portland cement chemistry; thus, methods to precondition the LLW and to cure the grout were explored. A thermal calcination process, called denitration, was developed to solidify the waste and destroy the nitrates. A three-way blend of Portland cement, blast furnace slag, and fly ash was successfully tested. Grout cubes were prepared at various waste loadings to maximize loading while meeting compressive strength and leach resistance requirements. For the sodium LLW, a 25% waste loading achieves a volume reduction of 3.5 and a compressive strength of 2,500 pounds per square inch while meeting leach, mix, and flow requirements. It was found that the sulfur in the slag reduces the chromium leach rate below regulatory limits. For the aluminum LLW, a 15% waste loading achieves a volume reduction of 8.5 and a compressive strength of 4,350 pounds per square inch while meeting leach requirements. Likewise for zirconium LLW, a 30% waste loading achieves a volume reduction of 8.3 and a compressive strength of 3,570 pounds per square inch

  18. Selective Decontamination Effect of Metal Ions in Soil Using Supercritical CO{sub 2} and TBP Complex

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jihye; Park, Kwangheon; Jung, Wonyoung [Kyunghee Univ., Yongin (Korea, Republic of)

    2014-10-15

    Decontamination of soil pollution is difficult because the type of contamination largely depends on the characteristics of the pollutant and the area. Also, existing soil decontamination methods generate large quantities of secondary waste and additional process costs. For this reason, new decontamination methods are always under active investigation. A method involving the use of supercritical carbon dioxide with excellent permeability in place of chemical solvents is currently being studied. Unlike other heavy metals in fission products, uranium is used as fuel, and must be handled carefully. Therefore, in this paper, we studied a supercritical carbon dioxide method for decontaminating heavy metal ions in soil using tri-n-butyl phosphate(TBP), which is well known as a ligand for the extraction of metal ions of actinium. We investigated the decontamination effect of heavy metal ions in the soil using TBP-HNO{sub 3} Complex and supercritical carbon dioxide. The study results showed that when heavy metals in soil are extracted using supercritical carbon dioxide, the extraction efficiency is different according to the type of pollutant metal ions in the soil. When TBP-HNO{sub 3} Complex is used with an extractant, uranium extraction is very effective, but lithium, strontium, and cesium extraction is not effective. Therefore, in the case of a mixture of uranium and other metals such as lithium, strontium, cesium, and so on in soil contaminated by fission product leaks from nuclear power plants, we can selectively decontaminate uranium with supercritical carbon dioxide and TBP-HNO{sub 3} Complex.

  19. Ionic Liquids: Green Solvents for Chemical Processing

    OpenAIRE

    Antonia Pérez de los Ríos; Angel Irabien; Frank Hollmann; Francisco José Hernández Fernández

    2013-01-01

    Ionic liquids are organic salts, usually consisting of an organic cation and a polyatomic inorganic anion, which are liquid under 100∘ C. The most relevant properties of ionic liquids are their almost negligible vapour pressure. Furthermore, their physical and chemical properties can be fine-tuned by the adequate selection of the cation and anion constituents. Ionic liquids have been recognized as environmental benign alternative to volatile organic solvents. Applicati...

  20. Effect of decontamination on nuclear power plant primary circuit materials

    International Nuclear Information System (INIS)

    The effect of repeated decontamination on the properties of structural materials of the WWER-440 primary coolant circuit was examined. Three kinds of specimens of 08Kh18Ni10T steel were used for radioactivity-free laboratory experiments; they included material obtained from assembly additions to the V-2 nuclear power plant primary piping, and a sheet of the CSN 17247 steel. Various chemical, electrochemical and semi-dry electrochemical decontamination procedures were tested. Chemical decontamination was based on the conventional AP(20/5)-CITROX(20/20) procedure and its variants; NP-CITROX type procedures with various compositions were also employed. Solutions based on oxalic acid were tested for the electrochemical and semi-dry electrochemical decontamination. The results of measurements of mass losses of the surfaces, of changes in the corrosion resistance and in the mechanical properties of the materials due to repeated decontamination are summarized. (Z.S.). 12 figs., 1 tab., 8 refs

  1. Stereodynamics: From elementary processes to macroscopic chemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Kasai, Toshio [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Graduate School of Science, Department of Chemistry, Osaka University, Toyonaka, 560-0043 Osaka (Japan); Che, Dock-Chil [Graduate School of Science, Department of Chemistry, Osaka University, Toyonaka, 560-0043 Osaka (Japan); Tsai, Po-Yu [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Lin, King-Chuen [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Palazzetti, Federico [Scuola Normale Superiore, Pisa (Italy); Dipartimento di Chimica Biologia e Biotecnologie, Università di Perugia, 06123 Perugia (Italy); Aquilanti, Vincenzo [Dipartimento di Chimica Biologia e Biotecnologie, Università di Perugia, 06123 Perugia (Italy); Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Roma (Italy); Instituto de Fisica, Universidade Federal da Bahia, Salvador (Brazil)

    2015-12-31

    This paper aims at discussing new facets on stereodynamical behaviors in chemical reactions, i.e. the effects of molecular orientation and alignment on reactive processes. Further topics on macroscopic processes involving deviations from Arrhenius behavior in the temperature dependence of chemical reactions and chirality effects in collisions are also discussed.

  2. Stereodynamics: From elementary processes to macroscopic chemical reactions

    International Nuclear Information System (INIS)

    This paper aims at discussing new facets on stereodynamical behaviors in chemical reactions, i.e. the effects of molecular orientation and alignment on reactive processes. Further topics on macroscopic processes involving deviations from Arrhenius behavior in the temperature dependence of chemical reactions and chirality effects in collisions are also discussed

  3. Chemical process safety management within the Department of Energy

    International Nuclear Information System (INIS)

    Although the Department of Energy (DOE) is not well known for its chemical processing activities, the DOE does have a variety of chemical processes covered under OSHA's Rule for Process Safety Management of Highly Hazardous Chemicals (the PSM Standard). DOE, like industry, is obligated to comply with the PSM Standard. The shift in the mission of DOE away from defense programs toward environmental restoration and waste management has affected these newly forming process safety management programs within DOE. This paper describes the progress made in implementing effective process safety management programs required by the PSM Standard and discusses some of the trends that have supported efforts to reduce chemical process risks within the DOE. In June of 1994, a survey of chemicals exceeding OSHA PSM or EPA Risk Management Program threshold quantities (TQs) at DOE sites found that there were 22 processes that utilized toxic or reactive chemicals over TQs; there were 13 processes involving flammable gases and liquids over TQs; and explosives manufacturing occurred at 4 sites. Examination of the survey results showed that 12 of the 22 processes involving toxic chemicals involved the use of chlorine for water treatment systems. The processes involving flammable gases and liquids were located at the Strategic Petroleum Reserve and Naval petroleum Reserve sites

  4. News: Good chemical manufacturing process criteria

    Science.gov (United States)

    This news column covers topics relating to manufacturing criteria, machine to machine technology, novel process windows, green chemistry indices, business resilience, immobilized enzymes, and Bt crops.

  5. Development of high-level radioactive waste treatment and conversion technologies 'Dry decontamination technology development for highly radioactive contaminants'

    International Nuclear Information System (INIS)

    The followings were studied through the project entitled 'Dry Decontamination Technology Development for Highly Radioactive Contaminants'. 1.Contaminant Characteristics Analysis of Domestic Nuclear Fuel Cycle Projects(NFCP) and Applicability Study of the Unit Dry-Decontamination Techniques A. Classification of contaminated equipments and characteristics analysis of contaminants B. Applicability study of the unit dry-decontamination techniques 2.Performance Evaluation of Unit Dry Decontamination Technique A. PFC decontamination technique B. CO2 decontamination technique C. Plasma decontamination technique 3.Development of Residual Radiation Assessment Methodology for High Radioactive Facility Decontamination A. Development of radioactive nuclide diffusion model on highly radioactive facility structure B. Obtainment of the procedure for assessment of residual radiation dose 4.Establishment of the Design Concept of Dry Decontamination Process Equipment Applicable to Highly Radioactive Contaminants 5.TRIGA soil unit decontamination technology development A. Development of soil washing and flushing technologies B. Development of electrokinetic soil decontamination technology

  6. Fluid flow for chemical and process engineers

    CERN Document Server

    Holland, F

    1995-01-01

    This major new edition of a popular undergraduate text covers topics of interest to chemical engineers taking courses on fluid flow. These topics include non-Newtonian flow, gas-liquid two-phase flow, pumping and mixing. It expands on the explanations of principles given in the first edition and is more self-contained. Two strong features of the first edition were the extensive derivation of equations and worked examples to illustrate calculation procedures. These have been retained. A new extended introductory chapter has been provided to give the student a thorough basis to understand the methods covered in subsequent chapters.

  7. Effect of ultrasonic treatment on heavy metal decontamination in milk.

    Science.gov (United States)

    Porova, Nataliya; Botvinnikova, Valentina; Krasulya, Olga; Cherepanov, Pavel; Potoroko, Irina

    2014-11-01

    Ultrasound has been found useful in increasing the efficiency and consumer safety in food processing. Removal of heavy metal (lead, mercury, and arsenic) contamination in milk is extremely important in regions of poor ecological environment - urban areas with heavy motor traffic or well established metallurgical/cement industry. In this communication, we report on the preliminary studies on the application of low frequency (20kHz) ultrasound for heavy metal decontamination of milk without affecting its physical, chemical, and microbiological properties. PMID:24746508

  8. FY13 GLYCOLIC-NITRIC ACID FLOWSHEET DEMONSTRATIONS OF THE DWPF CHEMICAL PROCESS CELL WITH SIMULANTS

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D.; Zamecnik, J.; Best, D.

    2014-03-13

    Savannah River Remediation is evaluating changes to its current Defense Waste Processing Facility flowsheet to replace formic acid with glycolic acid in order to improve processing cycle times and decrease by approximately 100x the production of hydrogen, a potentially flammable gas. Higher throughput is needed in the Chemical Processing Cell since the installation of the bubblers into the melter has increased melt rate. Due to the significant maintenance required for the safety significant gas chromatographs and the potential for production of flammable quantities of hydrogen, eliminating the use of formic acid is highly desirable. Previous testing at the Savannah River National Laboratory has shown that replacing formic acid with glycolic acid allows the reduction and removal of mercury without significant catalytic hydrogen generation. Five back-to-back Sludge Receipt and Adjustment Tank (SRAT) cycles and four back-to-back Slurry Mix Evaporator (SME) cycles were successful in demonstrating the viability of the nitric/glycolic acid flowsheet. The testing was completed in FY13 to determine the impact of process heels (approximately 25% of the material is left behind after transfers). In addition, back-to-back experiments might identify longer-term processing problems. The testing was designed to be prototypic by including sludge simulant, Actinide Removal Product simulant, nitric acid, glycolic acid, and Strip Effluent simulant containing Next Generation Solvent in the SRAT processing and SRAT product simulant, decontamination frit slurry, and process frit slurry in the SME processing. A heel was produced in the first cycle and each subsequent cycle utilized the remaining heel from the previous cycle. Lower SRAT purges were utilized due to the low hydrogen generation. Design basis addition rates and boilup rates were used so the processing time was shorter than current processing rates.

  9. Decontamination of liquid radioactive waste by thorium phosphate

    International Nuclear Information System (INIS)

    In the field of the complete reexamination of the chemistry of thorium phosphate and of the improvement of the homogeneity of Thorium Phosphate Diphosphate (TPD, Th4(PO4)4P2O7) prepared at high temperature, several crystallized compounds were prepared as initial powdered precursors. Due to the very low solubility products associated to these phases, their use in the field of the efficient decontamination of high-level radioactive liquid waste containing actinides (An) was carefully considered. Two main processes (called 'oxalate' and 'hydrothermal' chemical routes) were developed through a new concept combining the decontamination of liquid waste and the immobilization of the actinides in a ceramic matrix (TPD). In phosphoric media ('hydrothermal route'), the key-precursor was the Thorium Phosphate Hydrogen Phosphate hydrate (Th2(PO4)2(HPO4). H2O, TPHP, solubility product log(KS,00) ∼ - 67). The replacement of thorium by other tetravalent actinides (U, Np, Pu) in the structure, leading to the preparation of Th2-x/2Anx/2(PO4)2(HPO4). H2O solid solutions, was examined. A second method was also considered in parallel to illustrate this concept using the more well-known precipitation of oxalate as the initial decontamination step. For this method, the final transformation to single phase TPD containing actinides was purchased by heating a mixture of phosphate ions with the oxalate precipitate at high temperature. (authors)

  10. Use of irradiation for chemical and microbial decontamination of water, wastewater and sludge. Final report of a co-ordinated research project 1995-1999

    International Nuclear Information System (INIS)

    The co-ordinated research project (CRP) was established in order to focus the attention of appropriate technical experts in integrating the effects of ionizing radiation on refractory organic pollutants and pathogenic microorganisms and parasites in the treatment of water, waste water and sewage sludge. This publication describes the findings of the CRP in three subject areas: ground water remediation, decontamination of industrial and municipal waste water and sewage sludge hygienization. This publication contains 11 individual papers from participants; each of the papers was indexed separately

  11. Food decontamination using nanomaterials

    Science.gov (United States)

    The research indicates that nanomaterials including nanoemulsions are promising decontamination media for the reduction of food contaminating pathogens. The inhibitory effect of nanoparticles for pathogens could be due to deactivate cellular enzymes and DNA; disrupting of membrane permeability; and/...

  12. Chemical Sensing for Buried Landmines - Fundamental Processes Influencing Trace Chemical Detection

    Energy Technology Data Exchange (ETDEWEB)

    PHELAN, JAMES M.

    2002-05-01

    Mine detection dogs have a demonstrated capability to locate hidden objects by trace chemical detection. Because of this capability, demining activities frequently employ mine detection dogs to locate individual buried landmines or for area reduction. The conditions appropriate for use of mine detection dogs are only beginning to emerge through diligent research that combines dog selection/training, the environmental conditions that impact landmine signature chemical vapors, and vapor sensing performance capability and reliability. This report seeks to address the fundamental soil-chemical interactions, driven by local weather history, that influence the availability of chemical for trace chemical detection. The processes evaluated include: landmine chemical emissions to the soil, chemical distribution in soils, chemical degradation in soils, and weather and chemical transport in soils. Simulation modeling is presented as a method to evaluate the complex interdependencies among these various processes and to establish conditions appropriate for trace chemical detection. Results from chemical analyses on soil samples obtained adjacent to landmines are presented and demonstrate the ultra-trace nature of these residues. Lastly, initial measurements of the vapor sensing performance of mine detection dogs demonstrates the extreme sensitivity of dogs in sensing landmine signature chemicals; however, reliability at these ultra-trace vapor concentrations still needs to be determined. Through this compilation, additional work is suggested that will fill in data gaps to improve the utility of trace chemical detection.

  13. Facility decontamination technology workshop

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-01

    Purpose of the meeting was to provide a record of experience at nuclear facilities, other than TMI-2, of events and incidents which have required decontamination and dose reduction activities, and to furnish GPU and others involved in the TMI-2 cleanup with the results of that decontamination and dose reduction technology. Separate abstracts were prepared for 24 of the 25 papers; the remaining paper had been previously abstracted. (DLC)

  14. Decommissioning and Decontamination

    International Nuclear Information System (INIS)

    The objectives of SCK-CEN's decommissioning and decontamination programme are (1) to develop, test and optimise the technologies and procedures for decommissioning and decontamination of nuclear installations in order to minimise the waste arising and the distributed dose; (2) to optimise the environmental impact; (3) to reduce the cost of the end-of-life of the installation; (4) to make these new techniques available to the industry; (5) to share skills and competences. The programme and achievements in 1999 are summarised

  15. Tritium contamination and decontamination

    International Nuclear Information System (INIS)

    Establishment of tritium safe handling technology is required with the development of fusion reactor research. Tritium is contained by multiple-barriers containment due to the difficulty in perfect containment of hydrogen isotopes. Tritium contamination of materials and subsequent desorption are one of the critical issues in tritium containment. And the development of tritium decontamination technology is also a critical issue in tritium safe handling. The status of tritium contamination study and tritium decontamination technology are reviewed. (author)

  16. Decontamination of HEPA filters

    Energy Technology Data Exchange (ETDEWEB)

    Koenst, J.W. Jr.; Lewis, E.L.; Luthy, D.F.

    1978-01-01

    Mound Facility, during many years of plutonium-238 experience, has recovered over 150 kg of plutonium-238. Much of this material was recovered from HEPA filters or from solid wastes such as sludge and slag. The objective of this task was to modify and improve the existing nitric acid leaching process used at Mound so that filters from the nuclear fuel cycle could be decontaminated effectively. Various leaching agents were tested to determine their capability for dissolving PuO/sub 2/, UO/sub 2/, U/sub 3/O/sub 8/, AmO/sub 2/, NpO/sub 2/, CmO/sub 2/, and ThO/sub 2/ in mixtures of the following: HNO/sub 3/-HF; HNO/sub 3/-HF-H/sub 2/SO/sub 4/; and HNO/sub 3/-(NH/sub 4/)/sub 2/Ce(NO/sub 3/)/sub 6/. Adsorption isotherms were obtained for two leaching systems. In some tests simulated contaminated HEPA filter material was used, while in others actual spent glovebox filters were used. The maximum decontamination factor of 833 was achieved in the recovery of plutonium-238 from actual filters. The dissolution was accomplished by using a six-stage process with 4N HNO/sub 3/-0.23M (NH/sub 4/)/sub 2/Ce(NO/sub 3/)/sub 6/ as the leaching agent. Thorium oxide was also effectively dissolved from filter media using a mixture of nitric acid and ceric ammonium nitrate. Sodium carbonate and Na/sub 2/CO/sub 3/-KNO/sub 3/ fusion tests were performed using simulated PuO/sub 2/-contaminated filter media at various temperatures. Approximately 70 wt% of the PuO/sub 2/ was soluble in a mixture composed of 70 wt% Na/sub 2/CO/sub 3/-30 wt% KNO/sub 3/ (heated for 1 h at 950/sup 0/C). 23 figs., 14 tables.

  17. Loop cleanup with redox decontamination technique

    International Nuclear Information System (INIS)

    The corrosion rate of stainless steel in nitric acid solution will be enhanced by existence of Ce4+. The goal of this study is to develop a circular decontamination process in medium of nitric acid, in order to use it in a loop clean up. That needs a specially designed electrolytic cell to oxidize the Ce3+ into Ce4+. This regenerator's structure should be simple and easy to operate, and can meet the requirements of practical decontamination operation. The concentration of Ce4+ in the nitric acid solution was selected to provide a suitable corrosion rate to contaminated stainless steel. The total concentration of cerium (III+IV) was also optimized to ensure that the regeneration rate of Ce4+ could satisfy the consumption rate of Ce4+ during decontaminating process. The operation parameters were selected strictly on the basis of our experimental results, so that the regeneration rate of Ce4+ can be higher reasonably in proper operation conditions and not arise any problem related to safety of operation and nuclear aspects. It is considered that this decontamination process could be applied into either decommissioning or maintenance stage of nuclear facilities. The concentration of Ce4+ and temperature are the main factors for corrosion rate, other factors should also be considered during decision of decontamination process. With the regenerator developed under contract No 7959/RB could obtain sufficient decontamination factors, when use following conditions: concentration of Ce4+ is higher than 0.2 mol/1, the total concentration of cerium (III+IV) is higher than 0.4 mol/1, concentration of nitric acid is higher than 2 mol/1, temperature of decontamination operation is within 25 deg. C - 40 deg. C and temperature of regeneration is within 40 deg C - 50 deg.C

  18. Decontamination of radionuclides on construction materials

    International Nuclear Information System (INIS)

    A wide variety of materials can become contaminated by radionuclides, either from a terrorist attack or an industrial or nuclear accident. The final disposition of these materials depends, in large part, on the effectiveness of decontamination measures. This study reports on investigations into the decontamination of a selection of building materials. The aim has been to find an effective, easy-to-use and inexpensive decontamination system for radionuclides of cesium and cobalt, considering both the chemical and physical nature of these potential contaminants. The basic method investigated was surface washing, due to its ease and simplicity. In the present study, a basic decontamination formulation was modified by adding isotope-specific sequestering agents, to enhance the removal of cesium(I) and cobalt(II) from such construction materials as concrete, marble, aluminum and painted steel. Spiking solutions contained 134Cs or 60Co, which were prepared by neutron activation in the SLOWPOKE-2 nuclear reactor facility at the Royal Military College of Canada. Gamma spectroscopy was used to determine the decontamination efficiency. The results showed that the addition of sequestering agents generally improved the radiological decontamination. Although the washing of both cesium and cobalt from non-porous materials, such as aluminum and painted steel, achieved a 90-95 % removal, the decontamination of concrete and marble was more challenging, due to the porous nature of the materials. Nevertheless, the removal efficiency from 6-year-old concrete increased from 10 % to approximately 50 % for cobalt(II), and from 18 to 55 % for cesium(I), with the use of isotope binding agents, as opposed to a simple water wash. (author)

  19. The ultrasonic copper and brass decontamination study

    International Nuclear Information System (INIS)

    The use of ultra-sounds as a decontamination technic does not bring an absolute solution. As a function of the materials it seemed necessary to find what was the optimum conditions for using the ultra-sounds and to define not only the ultra-sonic factors but also the chemical solutions which bring some appreciable decontamination factors without bringing any too important corrosion processus. This report gives the results of this study applied to copper and brass. This study allowed to select some effective treatment baths on the two types of contamination: plutonium and fission products. (authors)

  20. BEHAVIOR OF MERCURY DURING DWPF CHEMICAL PROCESS CELL PROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, J.; Koopman, D.

    2012-04-09

    The Defense Waste Processing Facility has experienced significant issues with the stripping and recovery of mercury in the Chemical Processing Cell (CPC). The stripping rate has been inconsistent, often resulting in extended processing times to remove mercury to the required endpoint concentration. The recovery of mercury in the Mercury Water Wash Tank has never been high, and has decreased significantly since the Mercury Water Wash Tank was replaced after the seventh batch of Sludge Batch 5. Since this time, essentially no recovery of mercury has been seen. Pertinent literature was reviewed, previous lab-scale data on mercury stripping and recovery was examined, and new lab-scale CPC Sludge Receipt and Adjustment Tank (SRAT) runs were conducted. For previous lab-scale data, many of the runs with sufficient mercury recovery data were examined to determine what factors affect the stripping and recovery of mercury and to improve closure of the mercury material balance. Ten new lab-scale SRAT runs (HG runs) were performed to examine the effects of acid stoichiometry, sludge solids concentration, antifoam concentration, form of mercury added to simulant, presence of a SRAT heel, operation of the SRAT condenser at higher than prototypic temperature, varying noble metals from none to very high concentrations, and higher agitation rate. Data from simulant runs from SB6, SB7a, glycolic/formic, and the HG tests showed that a significant amount of Hg metal was found on the vessel bottom at the end of tests. Material balance closure improved from 12-71% to 48-93% when this segregated Hg was considered. The amount of Hg segregated as elemental Hg on the vessel bottom was 4-77% of the amount added. The highest recovery of mercury in the offgas system generally correlated with the highest retention of Hg in the slurry. Low retention in the slurry (high segregation on the vessel bottom) resulted in low recovery in the offgas system. High agitation rates appear to result in lower