WorldWideScience

Sample records for chemical composition microstructure

  1. Synthesis, Structure and Properties of Nickel-Iron-Tungsten Alloy Electrodeposits: PART I: Effect of Synthesis Parameters on Chemical Composition, Microstructure and Morphology

    National Research Council Canada - National Science Library

    N Cirovic; P Spasojevic; L Ribic-Zelenovic; P Maskovic; M Spasojevic

    2015-01-01

      Kinetic and operational electrolysis parameters determine the polarization characteristics, electrodeposition current efficiency, morphology, chemical composition and microstructure of nickel/iron...

  2. Effect of aging on the microstructure, hardness and chemical composition of dentin.

    Science.gov (United States)

    Montoya, C; Arango-Santander, S; Peláez-Vargas, A; Arola, D; Ossa, E A

    2015-12-01

    Understanding the effects of biological aging on human tissues has been a topic of extensive research. With the increase in healthy seniors and quality of life that topic is becoming increasingly important. In this investigation the effects of aging on the microstructure, chemical composition and hardness of human coronal dentin was studied from a comparison of teeth within "young" and "old" age groups. The microstructure of dentin within three regions (i.e., inner, middle and outer) was analyzed using electron and optical microscopy. The mineral-to-collagen ratio in these three regions was estimated using Raman spectroscopy and the hardness was evaluated using microindentation. Results showed that there were significant differences in tubule density, tubule diameter and peritubular cuff diameter with depth. Although there was no difference in tubule density and diameter of the tubules between the age groups, there was a significant difference in the occlusion ratio. A significant increase in hardness between young and old patients was found for middle and outer dentin. An increase in mineral-to-collagen ratio from inner to outer dentin was also found for both groups. In old patients, an increase in mineral content was found in outer coronal dentin as a consequence of tubule occlusion. An increase in occlusion ratio, hardness, and mineral content was found in the dentin of adult patients with age. This increase is most evident in the outer coronal dentin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. TEM Microstructure and Chemical Composition of Transition Zone Between Steel Tube and An Inconel 625 Weld Overlay Coating Produced by CMT Method

    National Research Council Canada - National Science Library

    M. Rozmus-Górnikowska; M. Blicharski

    2017-01-01

    The aim of this work was to investigate the microstructure and chemical composition of the transition zone between 16Mo3 steel and Inconel 625 weld overlay coating produced by the Cold Metal Transfer (CMT) method...

  4. Microstructure of C/C composites prepared by chemical vapor infiltration method with vaporized kerosene as a precursor

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jiping [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China)]. E-mail: jipingwang@gmail.com; Qian Junmin [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Jin Zhihao [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Qiao Guanjun [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China)

    2006-03-15

    The microstructures of two types of C/C composites prepared from different carbon felts by a rapid densification method, thermal gradient chemical vapor infiltration with vaporized kerosene as a precursor, at 1080-1120 deg. C for 6 h were characterized by polarized light microscopy (PLM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman micro-spectrometry techniques. The experimental results show that the fibers in the two composites are both surrounded by ring-shaped pyrocarbons with rough laminar texture, but the thickness, the surface morphology of the pyrocarbons and the graphitizability of the composites depend much on the configurations of carbon felts. The C/C composite fabricated from a higher porosity carbon felt possesses larger thickness and rougher surface of pyrocarbon, and has a lower graphitizability after heat treatment at 2300 deg. C for 2 h.

  5. TEM Microstructure and Chemical Composition of Transition Zone Between Steel Tube and An Inconel 625 Weld Overlay Coating Produced by CMT Method

    OpenAIRE

    Rozmus-Górnikowska M.; Blicharski M.

    2017-01-01

    The aim of this work was to investigate the microstructure and chemical composition of the transition zone between 16Mo3 steel and Inconel 625 weld overlay coating produced by the Cold Metal Transfer (CMT) method. Investigations were primarily carried out through transmission electron microscopy (TEM) on thin foils prepared by FIB (Focus Ion Beam).

  6. TEM Microstructure and Chemical Composition of Transition Zone Between Steel Tube and An Inconel 625 Weld Overlay Coating Produced by CMT Method

    Directory of Open Access Journals (Sweden)

    Rozmus-Górnikowska M.

    2017-06-01

    Full Text Available The aim of this work was to investigate the microstructure and chemical composition of the transition zone between 16Mo3 steel and Inconel 625 weld overlay coating produced by the Cold Metal Transfer (CMT method. Investigations were primarily carried out through transmission electron microscopy (TEM on thin foils prepared by FIB (Focus Ion Beam.

  7. Microstructure, chemical composition and mucilage exudation of chia (Salvia hispanica L.) nutlets from Argentina.

    Science.gov (United States)

    Capitani, Marianela I; Ixtaina, Vanesa Y; Nolasco, Susana M; Tomás, Mabel C

    2013-12-01

    The micromorphology and anatomy of nutlets, myxocarpy (mucilage exudation) and mucilage structure of Argentinean chia were described using scanning electron microscopy (SEM). The proximal composition of nutlets and mucilage was also studied. Chia nutlets are made up of a true seed and a pericarp enclosing the seed; they are small, glabrous, elliptic and apically rounded. The pericarp has cuticle, exocarp, mesocarp and bone cells vertically arranged and endocarp. The myxocarpy was carefully recorded by SEM. After 5 min in contact with water, the cuticle of nutlets is broken and the exocarp cell content gradually surrounds the rest of the nutlet. The proximal composition of chia nutlets was studied; fat is the major component (327 ± 8.0 g kg(-1)) followed by protein (293 ± 4.0 g kg(-1)) and fiber (276 ± 1.0 g kg(-1)). Extractions of chia nutlets with water at room temperature yielded 38 ± 1.0 g kg(-1) (dry basis) of mucilage. The fresh mucilage structure was similar to a network of open pores. The freeze-dried crude mucilage contained more ash, residual fat and protein than commercial guar and locust bean gum. The solubility of 10.0 g L(-1) w/v solution of chia freeze-dried crude mucilage in water increased with temperature, being maximal at 60 °C (870 g kg(-1)). The results obtained show a fast exudation of chia mucilage when nutlets are in contact with water. The freeze-dried crude mucilage hydrates easily in water, even at low temperatures. Chia nutlets have mucilaginous substances, with interesting functional properties from a technological and physiological point of view. © 2013 Society of Chemical Industry.

  8. Microstructure, microhardness, phase analysis and chemical composition of laser remelted FeB-Fe2B surface layers produced on Vanadis-6 steel

    Science.gov (United States)

    Bartkowska, Aneta; Swadźba, Radosław; Popławski, Mikołaj; Bartkowski, Dariusz

    2016-12-01

    The paper presents the study results of the diffusion boronized layer and their laser modification. Diffusion boronized processes were carried out on Vanadis-6 steel at 900 °C for 5 h. Boronized layers were characterized by dual-phase microstructure consisting of iron borides having a microhardness in the range from 1800 to 1400 HV. The laser heat treatment was carried out using CO2 laser after diffusion boronizing process. The research goals of this paper was analysis of microstructure, microhardness as well as phase and chemical composition of boronized layers after laser modification. Microstructure of boronized layer after laser modification consisted of remelted zone, heat affected zone and substrate. Remelted zone was characterized by microstructure consisted of boron-martensite eutectic. In this zone, the phases of borides and carbides were detected. Boronized layers after laser modification were characterized by the mild gradient of microhardness from surface to the substrate.

  9. Influence of microstructure on hydrothermal corrosion of chemically vapor processed SiC composite tubes

    Science.gov (United States)

    Kim, Daejong; Lee, Ho Jung; Jang, Changheui; Lee, Hyeon-Geun; Park, Ji Yeon; Kim, Weon-Ju

    2017-08-01

    Multi-layered SiC composites consisting of monolithic SiC and a SiCf/SiC composite are one of the accident tolerant fuel cladding concepts in pressurized light water reactors. To evaluate the integrity of the SiC fuel cladding under normal operating conditions of a pressurized light water reactor, the hydrothermal corrosion behavior of multi-layered SiC composite tubes was investigated in the simulated primary water environment of a pressurized water reactor without neutron fluence. The results showed that SiC phases with good crystallinity such as Tyranno SA3 SiC fiber and monolithic SiC deposited at 1200 °C had good corrosion resistance. However, the SiC phase deposited at 1000 °C had less crystallinity and severely dissolved in water, particularly the amorphous SiC phase formed along grain boundaries. Dissolved hydrogen did not play a significant role in improving the hydrothermal corrosion resistance of the CVI-processed SiC phases containing amorphous SiC, resulting in a significant weight loss and reduction of hoop strength of the multi-layered SiC composite tubes after corrosion.

  10. Chemical Composition

    Science.gov (United States)

    May, Willie; Cavanagh, Richard; Turk, Gregory; Winchester, Michael; Travis, John; Smith, Melody; Derose, Paul; Choquette, Steven; Kramer, Gary; Sieber, John; Greenberg, Robert; Lindstrom, Richard; Lamaze, George; Zeisler, Rolf; Schantz, Michele; Sander, Lane; Phinney, Karen; Welch, Michael; Vetter, Thomas; Pratt, Kenneth; Scott, John; Small, John; Wight, Scott; Stranick, Stephan

    Measurements of the chemical compositions of materials and the levels of certain substances in them are vital when assessing and improving public health, safety and the environment, are necessary to ensure trade equity, and are required when monitoring and improving industrial products and services. Chemical measurements play a crucial role in most areas of the economy, including healthcare, food and nutrition, agriculture, environmental technologies, chemicals and materials, instrumentation, electronics, forensics, energy, and transportation.

  11. Micro-structure and chemical composition of vateritic deformities occurring in the bivalve Corbicula fluminea (Müller, 1774).

    Science.gov (United States)

    Frenzel, Max; Harper, Elizabeth M

    2011-05-01

    Vateritic deformities occurring in the invasive heterodont bivalve Corbicula fluminea from several locations in the UK were characterised in detail for the first time using scanning electron microscopy, X-ray diffraction and different geochemical techniques (electron microprobe, ICP-AES, and mass spectrometry). Large volumes of vaterite are produced abnormally in the animals' shells in the form of yellow-green bulges. These are distinguished from the aragonitic parts of the shell by their characteristic micro-structures, content of organic material, trace elemental composition and carbon stable isotope signatures. The most commonly observed micro-structures include columnar vaterite, lamellar vaterite and different irregular structures occurring in all parts of the shell. There are indications that organic material is present largely as intracrystalline impurities or nano-scale phases and not as envelopes around microstructural units. These micro-structures are novel, nothing equivalent having yet been described for other vateritic systems. Euhedral vaterite crystals also occur occasionally. The vaterite has generally higher Mg/Ca and lower Na/Ca, K/Ca than the aragonite. In addition, δ¹³C is also always lower. Microstructural characteristics would suggest loss of biological control probably due to physiological stress(es) inducing the switch to vaterite production. The vaterite might be stabilised by its higher content of organic material and magnesium. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Effect of sintering time on structural, microstructural and chemical composition of Ni-doped lanthanum gallate perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Colomer, M.T., E-mail: tcolomer@icv.csic.es [Instituto de Cerámica y Vidrio, CSIC, C/ Kelsen no. 5, 28049 Madrid (Spain); Kilner, J.A. [Department of Materials, Imperial College, Prince Consort Road, London SW7 2BP (United Kingdom)

    2015-08-15

    This work reports the effect of two different sintering times, 6 and 48 h on the structural, microstructural, and chemical features of Ni-doped La{sub 0.90}Sr{sub 0.10}GaO{sub 3.00−δ}. Independently of the sintering time, La{sub 0.90}Sr{sub 0.10}Ga{sub 1−x}Ni{sub x}O{sub 3.00−δ} (where x=0.10, and 0.20 (mol)) presents a rhombohedral symmetry with a lattice volume that decreases when NiO dopant increases. Besides the perovskite, LaSrGa{sub 3.00}O{sub 7.00} (nominal composition) is present as second phase in all cases. When the samples are doped with NiO, the peaks of this second phase are shifted with respect to the peaks of the pure phase. These shifts suggest that this second phase could admit some Ni ions in its structure. According to the XRD patterns, the amount of the latter phase is larger when sintering time is increased. Electron probe microanalysis (EPMA) indicated that the matrix of the samples sintered for 6 h is constituted by a perovskite with an experimental composition very close to the nominal one. However, when the samples are sintered for 48 h the matrix of each sample is constituted by two perovskites; both with compositional deviations with respect to their nominal one. In particular, a significant Sr depletion compensated by a La increment in the A site is observed. Those compositional deviations could be mainly due to the diffusion of the cations in the bulk and/or from the bulk to the surface of the samples. That diffusion can favour the formation, not only, of a second perovskite with a different composition in relation with the first one formed, but also, the formation of second phases. In addition, a very slight broadening of Bragg peaks of the perovskites sintered for 48 h is observed by XRD and can be related to the presence of two different perovskites in each sample according to EPMA results. By BSEM and EPMA analyses La{sub 4.00}Ga{sub 2.00}O{sub 9.00} (nominal composition) is also observed as second phase when samples are

  13. CHEMICAL COMPOSITION AND MICROSTRUCTURE OF DEPOSITED METAL WITH FLUXES OBTAINED WITH EMPLOYMENT OF SLAG OF MnO-SiO2-CaO SYSTEM

    Directory of Open Access Journals (Sweden)

    Amado Cruz-Crespo

    2017-07-01

    Full Text Available In the works the behavior of the chemical composition and the microstructure of the deposited metal by Submerged Arc Welding (SAW, using fluxes obtained using slags of the MnO-SiO2-CaO system, generated during the welding of components with this same process is evaluated. A McLean Anderson mixtures experimental design was performed, where the quantities of FeCr, FeMn and Matrix (80 % Slag + 10 % limestone + 10 % Fluorite in the flux are the variables. With fluxes, obtained by pelletizing with sodium silicate as binder and subsequent calcinations, deposits were performed weld on sheets, making several parallel passes with overlap, and from these samples were extracted for the characterization. The chemical composition and microstructure of the weld were evaluated according to the proportions of the components on the flux mixture. It is conclude that slag recycling to use them as components of a flux for hardfacing by welding is viable and the FeCr and FeMn increasing in the flux leads to a deposited metal suitable for hardfacing of surfaces under wear conditions.

  14. Independent effects of the chemical and microstructural surface properties of polymer/ceramic composites on proliferation and osteogenic differentiation of human MSCs.

    Science.gov (United States)

    Sun, Lanying; Danoux, Charlène B; Wang, Qibao; Pereira, Daniel; Barata, David; Zhang, Jingwei; LaPointe, Vanessa; Truckenmüller, Roman; Bao, Chongyun; Xu, Xin; Habibovic, Pamela

    2016-09-15

    Within the general aim of finding affordable and sustainable regenerative solutions for damaged and diseased tissues and organs, significant efforts have been invested in developing synthetic alternatives to natural bone grafts, such as autografts. Calcium phosphate (CaP) ceramics are among widely used synthetic bone graft substitutes, but their mechanical properties and bone regenerative capacity are still outperformed by their natural counterparts. In order to improve the existing synthetic bone graft substitutes, it is imperative to understand the effects of their individual properties on a biological response, and to find a way to combine the desired properties into new, improved functional biomaterials. To this end, we studied the independent effects of the chemical composition and surface microstructure of a poly(lactic acid)/hydroxyapatite (PLA/HA) composite material on the proliferation and osteogenic differentiation of clinically relevant bone marrow-derived human mesenchymal stromal cells (hMSCs). While the molecular weight of the polymer and presence/absence of the ceramic phase were used as the chemical variables, a soft embossing technique was used to pattern the surfaces of all materials with either pits or pillars with identical microscale dimensions. The results indicated that, while cell morphology was affected by both the presence and availability of HA and by the surface microstructure, the effect of the latter parameter on cell proliferation was negligible. The osteogenic differentiation of hMSCs, and in particular the expression of bone morphogenetic protein 2 (BMP-2) and osteopontin (OP) were significantly enhanced when cells were cultured on the composite based on low-molecular-weight PLA, as compared to the high-molecular-weight PLA-based composite and the two pure polymers. The OP expression on the low-molecular-weight PLA-based composite was further enhanced when the surface was patterned with pits. Taken together, within this experimental

  15. Composite Materials for Thermal Energy Storage: Enhancing Performance through Microstructures

    Science.gov (United States)

    Ge, Zhiwei; Ye, Feng; Ding, Yulong

    2014-01-01

    Chemical incompatibility and low thermal conductivity issues of molten-salt-based thermal energy storage materials can be addressed by using microstructured composites. Using a eutectic mixture of lithium and sodium carbonates as molten salt, magnesium oxide as supporting material, and graphite as thermal conductivity enhancer, the microstructural development, chemical compatibility, thermal stability, thermal conductivity, and thermal energy storage performance of composite materials are investigated. The ceramic supporting material is essential for preventing salt leakage and hence provides a solution to the chemical incompatibility issue. The use of graphite gives a significant enhancement on the thermal conductivity of the composite. Analyses suggest that the experimentally observed microstructural development of the composite is associated with the wettability of the salt on the ceramic substrate and that on the thermal conduction enhancer. PMID:24591286

  16. Effects of supercritical fluid extraction pressure on chemical composition, microbial population, polar lipid profile, and microstructure of goat cheese.

    Science.gov (United States)

    Sánchez-Macías, D; Laubscher, A; Castro, N; Argüello, A; Jiménez-Flores, R

    2013-03-01

    The consumer trend for healthier food choices and preferences for low-fat products has increased the interest in low-fat cheese and nutraceutical dairy products. However, consumer preference is still for delicious food. Low- and reduced-fat cheeses are not completely accepted because of their unappealing properties compared with full-fat cheeses. The method reported here provides another option to the conventional cheese-making process to obtain lower fat cheese. Using CO(2) as a supercritical fluid offers an alternative to reduce fat in cheese after ripening, while maintaining the initial characteristics and flavor. The aim of this experiment was to evaluate the effect of pressure (10, 20, 30, and 40 × 10(6) Pa) of supercritical CO(2) on the amount of fat extracted, microbial population, polar lipid profile, and microstructure of 2 varieties of goat cheese: Majorero, a protected denomination of origin cheese from Spain, and goat Gouda-type cheese. The amount of fat was reduced 50 to 57% and 48 to 55% for Majorero and goat Gouda-type cheeses, respectively. Higher contents (on a fat basis) of sphingomyelin and phosphatidylcholine were found in Majorero cheese compared with control and goat Gouda-type cheeses. The microbial population was reduced after supercritical fluid extraction in both cheeses, and the lethality was higher as pressure increased in Majorero cheese, most noticeably on lactococcus and lactobacillus bacteria. The Gouda-type cheese did not contain any lactobacilli. Micrographs obtained from confocal laser scanning microscopy showed a more open matrix and whey pockets in the Majorero control cheese. This could explain the ease of extracting fat and reducing the microbial counts in this cheese after treatment with supercritical CO(2). Supercritical fluid extraction with CO(2) has great potential in the dairy industry and in commercial applications. The Majorero cheese obtained after the supercritical fluid extraction treatment was an excellent

  17. Microstructure and Behaviors of Nano Composite Coating

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xi-ying; QIAN Shi-qiang; LI Wei-hong; LI Pei-yao; LI Man-ping

    2004-01-01

    Nano composite coatings are fabricated by electro brush plating containing various nano particles (Al2O3, SiO2and ZrO2). Its surface morphology and microstructure are observed by means of S-2700 scanning electron microscopy (SEM). And the mechanical behaviors of nano composite coating are analyzed. The results show that microstructure of nano composite coating is obviously fine because of nano particles. Micro hardness at room temperature increases with the increase of nano particles content. The wear resistance and hardness at high temperature are also improved. The strengthening effect is differentiated by the type and content of nano particles. This is due to the combination of dispersion strengthening and grain size strengthening.Key Words: Nano particles, composite coating, electro brush plating, behaviors

  18. Microstructure and Behaviors of Nano Composite Coating

    Institute of Scientific and Technical Information of China (English)

    ZHOUXi-ying; QIANShi-qiang; LiWei-hong; LIPei-yao; LIMan-ping

    2004-01-01

    Nano composite coatings are fabricated by electro brash plating containing various nano particles (Al2O3, SiO2 and ZrO2). Its surface morphology and microstructure are observed by means of S-2700 scanning elect-on microscopy (SEMI, And the mechanical behaviors of nano composite coating are analyzed. The results show that microstructure of nano composite coating is obviously fine because of nano particles. Micro hardness at room temperature increases with the increase of nano particles content. The wear resistance and hardness at high temperature are also improved. The strengthening effect is differentiated by the type and content of nano particle.s, This is due to the combination of dispersion strengthening and grain size strengthening.

  19. Reactivity and Microstructure of Al2O3-Reinforced Magnesium-Matrix Composites

    National Research Council Canada - National Science Library

    Mounib, Maher; Pavese, Matteo; Badini, Claudio; Lefebvre, Williams; Dieringa, Hajo

    2014-01-01

    .... This paper presents the chemical reaction between aluminum based particles Al2O3 and Al2O3-AlOOH with magnesium alloys matrixes AZ91 and EL21, respectively, and studies the microstructure of these reinforced composites...

  20. Multiscale numerical modelling of microstructured reinforced composites

    OpenAIRE

    Otero Gruer, Fermin

    2016-01-01

    Most of the existing materials around us can be considered composite materials, since they are composed by several phases or components at certain spatial scale. The physical and chemical properties of composites, as occurs with structures composed by two or more materials, is defined by the response provided by their constituents. Therefore, a good characterization of the composite requires considering the performance of its components. In the last decades, several methods have been proposed...

  1. Chemical and microstructural diversity of steel grades

    Directory of Open Access Journals (Sweden)

    Zorc, B.

    2002-12-01

    Full Text Available The aim of the paper is to show, using theoretical and practical analyses, chemical and microstructural differences among individual types of steel grades 355 found in the market. The mechanical properties required for these steels are achieved by alloying or thermomechanical treatment. It was found that the individual types of this steel are poorly weldable, particularly those of large thickness.

    El objetivo del artículo es presentar, en base a un análisis teórico y práctico, las diferencias químicas y microestructurales entre los diferentes tipos de aceros calidad 355 que pueden encontrarse en el mercado. Las características mecánicas requeridas en estos aceros se consiguen con aleaciones, o bien a través de tratamientos termo-mecánicos.Se ha llegado a la conclusión de que determinados tipos de acero son más difíciles de soldar, en especial cuando se trata de espesores grandes.

  2. Chemical composition of Mars

    Science.gov (United States)

    Morgan, J. W.; Anders, E.

    1979-01-01

    The chemical composition of Mars is estimated from the cosmochemical model of Ganapathy and Anders (1974) with additional petrological and geophysical constraints. The model assumes that planets and chondrites underwent the same fractionation processes in the solar nebula, and constraints are imposed by the abundance of the heat-producing elements, U, Th and K, the volatile-rich component and the high density of the mantle. Global abundances of 83 elements are presented, and it is noted that the mantle is an iron-rich garnet wehrlite, nearly identical to the bulk moon composition of Morgan at al. (1978) and that the core is sulfur poor (3.5% S). The comparison of model compositions for the earth, Venus, Mars, the moon and a eucrite parent body suggests that volatile depletion correlates mainly with size rather than with radial distance from the sun.

  3. Reactivity and Microstructure of Al2O3-Reinforced Magnesium-Matrix Composites

    OpenAIRE

    Maher Mounib; Matteo Pavese; Claudio Badini; Williams Lefebvre; Hajo Dieringa

    2014-01-01

    Performances of metal matrix composites (MMCs) rely strongly on the distribution of particles within the metal matrix but also on the chemical reaction which may occur at the liquid-solid interfaces. This paper presents the chemical reaction between aluminum based particles Al2O3 and Al2O3-AlOOH with magnesium alloys matrixes AZ91 and EL21, respectively, and studies the microstructure of these reinforced composites. Different methods such as transmission electron microscopy (TEM), differentia...

  4. Novel Microstructures for Polymer-Liquid Crystal Composite Materials

    Science.gov (United States)

    Magda, Jules J.

    2004-01-01

    There are a number of interface-dominated composite materials that contain a liquid crystalline (LC) phase in intimate contact with an isotropic phase. For example, polymer- dispersed liquid crystals, used in the fabrication of windows with switchable transparency, consist of micron size LC droplets dispersed in an isotropic polymer matrix. Many other types of liquid crystal composite materials can be envisioned that might have outstanding optical properties that could be exploited in novel chemical sensors, optical switches, and computer displays. This research project was based on the premise that many of these potentially useful LC composite materials can only be fabricated under microgravity conditions where gravity driven flows are absent. In the ground-based research described below, we have focused on a new class of LC composites that we call thermotropic- lyotropic liquid crystal systems (TLLCs). TLLCs consist of nanosize droplets of water dispersed in an LC matrix, with surfactants at the interface that stabilize the structure. By varying the type of surfactant one can access almost an infinite variety of unusual LC composite microstructures. Due to the importance of the interface in these types of systems, we have also developed molecular simulation models for liquid crystals at interfaces, and made some of the first measurements of the interfacial tension between liquid crystals and water.

  5. Microstructure and electrical conductivity of Al–SiCp composites ...

    Indian Academy of Sciences (India)

    Unknown

    . The microstructural exami- nation was carried out using a Metallux-3 Optical Metal- .... spray deposition processing of particulate reinforced composites have been widely investigated (Chou and Oki. 1987; Gupta et al 1991). The results of the ...

  6. The Effect of Chemical Composition on Microstructure and Properties of Intercritically Reheated Coarse-Grained Heat-Affected Zone in X70 Steels

    Science.gov (United States)

    Zhu, Zhixiong; Kuzmikova, Lenka; Li, Huijun; Barbaro, Frank

    2013-12-01

    The current study investigates the effect of different levels of Ti, N, and Ti/N ratios on microstructure and properties in the intercritically reheated coarse-grained heat-affected zone (ICCGHAZ) of two-pass submerged arc welds in API 5L grade X70 pipe. Gleeble simulation was employed to reproduce the ICCGHAZ of actual welds. Hardness and Charpy V-notch (CVN) tests were performed on the simulated samples. The microstructure of simulated ICCGHAZ was characterized by optical microscopy and scanning electron microscopy (SEM). LePera color etching technique was employed to identify and quantify the martensitic-austenitic (M-A) constituent. Results show that the simulated ICCGHAZ exhibited extremely low toughness, but in the studied range of Ti and N, there was no correlation with Ti/N ratio. The beneficial effect of near-stoichiometric Ti/N ratio observed in coarse-grained heat-affected zone (CGHAZ) did not translate to ICCGHAZ. This was because of the negative effect of the blocky M-A constituent formed on prior austenite grain boundaries.

  7. Effect of Phenomena Accompanying Wear in Dry Corundum Abrasive on the Properties and Microstructure of Austempered Ductile Iron with Different Chemical Composition

    Directory of Open Access Journals (Sweden)

    Myszka D.

    2015-04-01

    Full Text Available The research described in this article is a fragment in the series of published works trying to determine the applicability of new materials for parts of the mining machinery. Tests were performed on two groups of austempered ductile iron - one of which contained 1.5% Ni and 0.5% Mo, while the other contained 1.9% Ni and 0.9% Cu. Each group has been heat treated according to the three different heat treatment variants and then the material was subjected to detailed testing of mechanical properties and abrasion wear resistance, measuring also hardness and magnetic properties, and conducting microstructural examinations. The results indicated that each of the tested materials was senstive to the surface hardening effect, which resulted in high wear resistance. It has been found that high temperature of austempering, i.e. 370°C, favours high wear resistance of ductile iron containing nickel and molybdenum. Low temperature of austempering, i.e. 270°C, develops high wear resistance in ductile iron containing nickel and copper. Both these materials offer completely different mechanical properties and as such can be used for different and specific applications.

  8. A study on microstructure of aluminium matrix composites

    Directory of Open Access Journals (Sweden)

    Pardeep Sharma

    2015-09-01

    Full Text Available This work focuses on the effect of graphite particles addition on the microstructure of Al6082 metal matrix composites manufactured by conventional stir casting process. The reinforcement content was varied from 0% to 12% in a step of 3%. The microstructures of the manufactured composites were analyzed by scanning electron micrographic test. Elemental mapping of the Al6082 + 12% Gr reinforced composite was carried out to see the different elements present with their amount. Different elements present in the manufactured composites were verified by X-ray diffraction technique to justify the elemental map analysis. The result of this microstructural investigation revealed that a non-uniform distribution of graphite particles takes place at all weight percentages of graphite reinforcement.

  9. Capacitance and microstructure of platinum/yttria-stabilised zirconia composites

    NARCIS (Netherlands)

    Hendriks, M.G.H.M.; van Zyl, W.E.; ten Elshof, Johan E.; Verweij, H.

    2001-01-01

    The influence of microstructure on the capacitive behavior in the dual-phase composite system platinum/cubic-yttria-stabilized zirconia (YSZ) was studied at ambient temperature. Three different synthesis methods were employed. The volume fraction of Pt metal in the composite was varied between 0 and

  10. Composition and optical microstructure of good gray cast iron

    Science.gov (United States)

    Duraisamy, Nithyadevi; Veeravazhuthi, V.

    2013-02-01

    In this Project work, the microstructure and percentage composition of gray cast iron were studied for the given specimen. In microstructure analysis, the formations of structure after and before etching were analyzed and with the use of Optical emission spectrometer, the percentage of carbon, silicon, manganese, phosphorous, sulphur, chromium, copper and titanium are about 3.55%,2.17%,0.097%,0.085%,0.15%,0.462% and 0.021%.

  11. Microstructural characterisation of electrodeposited coatings of metal matrix composite with alumina nanoparticles

    Science.gov (United States)

    Indyka, P.; Beltowska-Lehman, E.; Bigos, A.

    2012-03-01

    In the present work a nanocrystalline Ni-W metallic matrix was used to fabricate Ni-W/Al2O3 composite coatings. The MMC (metal matrix composite) coatings with inert α-Al2O3 particles (30 - 90 nm) were electrodeposited from aqueous electrolytes under direct current (DC) and controlled hydrodynamic conditions in a system with a rotating disk electrode (RDE). The chemical composition and microstructure of electrodeposited composites mainly control their functional properties; however, the particles must be uniformly dispersed to exhibit the dispersion-hardening effect. In order to increase the alumina particles incorporation as well as to promote the uniform distribution of the ceramic phase in a matrix, outer ultrasonic field was applied during electrodeposition. The influence of embedded alumina nanoparticles on structural characteristics (morphology, phase composition, residual stresses) of the resulting Ni-W/Al2O3 coatings was investigated in order to obtain a nanocomposite with high hardness and relatively low residual stresses. Surface and cross-section morphology and the chemical composition of deposits was examined in the scanning electron microscope, the EDS technique was used. Microstructure and phase composition were determined by transmission electron microscopy and X-ray diffraction. Based on microstructural and micromechanical properties of the coatings, the optimum conditions for obtaining crack-free homogeneous Ni-W/Al2O3 composite coatings have been determined.

  12. Fabrication and biocompatibility of poly(L-lactic acid) and chitosan composite scaffolds with hierarchical microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Lou, Tao, E-mail: taolou72@aliyun.com [College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071 (China); Wang, Xuejun [College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071 (China); Yan, Xu [College of Physics & Collaborative Innovation Center for Low-Dimensional Nanomaterials and Optoelectronic Devices, Qingdao University, Qingdao 266071 (China); Miao, Yu [Department of Mechanical Engineering, Columbia University, New York, NY 10027 (United States); Long, Yun-Ze, E-mail: yunzelong@163.com [College of Physics & Collaborative Innovation Center for Low-Dimensional Nanomaterials and Optoelectronic Devices, Qingdao University, Qingdao 266071 (China); Yin, Hai-Lei [Department of Osteology, No. 401 Hospital of P. L. A., Qingdao 266071 (China); Sun, Bin [College of Physics & Collaborative Innovation Center for Low-Dimensional Nanomaterials and Optoelectronic Devices, Qingdao University, Qingdao 266071 (China); Song, Guojun [College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071 (China)

    2016-07-01

    The scaffold microstructure is crucial to reconstruct tissue normal functions. In this article, poly(L-lactic acid) and chitosan fiber (PLLA/CTSF) composite scaffolds with hierarchical microstructures both in fiber and pore sizes were successfully fabricated by combining thermal induced phase separation and salt leaching techniques. The composite scaffolds consisted of a nanofibrous PLLA matrix with diameter of 50–500 nm, and chitosan fibers with diameter of about 20 μm were homogenously distributed in the PLLA matrix as a microsized reinforcer. The composite scaffolds also had high porosity (> 94%) and hierarchical pore size, which were consisted of both micropores (50 nm–10 μm) and macropores (50–300 μm). By tailoring the microstructure and chemical composition, the mechanical property, pH buffer and protein adsorption capacity of the composite scaffold were improved significantly compared with those of PLLA scaffold. Cell culture results also revealed that the PLLA/CTSF composite scaffolds supported MG-63 osteoblast proliferation and penetration. - Highlights: • Composite scaffolds fabricated by combining thermal induced phase separation and salt leaching techniques • Hierarchical microstructure both in fiber and pore sizes • The scaffold microenvironment facilitates the protein adsorption, cell proliferation and penetration.

  13. Chemically-Modified Cellulose Paper as a Microstructured Catalytic Reactor

    Directory of Open Access Journals (Sweden)

    Hirotaka Koga

    2015-01-01

    Full Text Available We discuss the successful use of chemically-modified cellulose paper as a microstructured catalytic reactor for the production of useful chemicals. The chemical modification of cellulose paper was achieved using a silane-coupling technique. Amine-modified paper was directly used as a base catalyst for the Knoevenagel condensation reaction. Methacrylate-modified paper was used for the immobilization of lipase and then in nonaqueous transesterification processes. These catalytic paper materials offer high reaction efficiencies and have excellent practical properties. We suggest that the paper-specific interconnected microstructure with pulp fiber networks provides fast mixing of the reactants and efficient transport of the reactants to the catalytically-active sites. This concept is expected to be a promising route to green and sustainable chemistry.

  14. The Compositional Dependence of the Microstructure and Properties of CMSX-4 Superalloys

    Science.gov (United States)

    Yu, Hao; Xu, Wei; Van Der Zwaag, Sybrand

    2018-01-01

    The degradation of creep resistance in Ni-based single-crystal superalloys is essentially ascribed to their microstructural evolution. Yet there is a lack of work that manages to predict (even qualitatively) the effect of alloying element concentrations on the rate of microstructural degradation. In this research, a computational model is presented to connect the rafting kinetics of Ni superalloys to their chemical composition by combining thermodynamics calculation and a modified microstructural model. To simulate the evolution of key microstructural parameters during creep, the isotropic coarsening rate and γ/ γ' misfit stress are defined as composition-related parameters, and the effect of service temperature, time, and applied stress are taken into consideration. Two commercial superalloys, for which the kinetics of the rafting process are selected as the reference alloys, and the corresponding microstructural parameters are simulated and compared with experimental observations reported in the literature. The results confirm that our physical model not requiring any fitting parameters manages to predict (semiquantitatively) the microstructural parameters for different service conditions, as well as the effects of alloying element concentrations. The model can contribute to the computational design of new Ni-based superalloys.

  15. Comparative Mineralogy, Microstructure and Compositional Trends in the Sub-Micron Size Fractions of Mare and Highland Lunar Soils

    Science.gov (United States)

    Thompson, M. S.; Christoffersen, R.; Noble, S. K.; Keller, L. P.

    2012-01-01

    The morphology, mineralogy, chemical composition and optical properties of lunar soils show distinct correlations as a function of grain size and origin [1,2,3]. In the mineralogy type, microstructure and major element compositions of grains in this important size range in lunar soils.

  16. The Mechanical Properties and Microstructure Characters of Hybrid Composite Geopolymers-Pineapple Fiber Leaves (PFL)

    Science.gov (United States)

    Amalia, N.; Hidayatullah, S.; Nurfadilla; Subaer

    2017-03-01

    The objective of this research is to study the influence of organic fibers on the mechanical properties and microstructure characters of hybrid composite geopolymers-pineapple fibers (PFL). Geopolymers were synthesized by using alkali activated of class C-fly ash added manually with short pineapple fiber leaves (PFL) and then cured at 60°C for 1 hour. The resulting composites were stored in open air for 28 days prior to mechanical and microstructure characterizations. The samples were subjected to compressive and flexural strength measurements, heat resistance as well as acid attack (1M H2SO4 solution). The microstructure of the composites were examined by using Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS). The measurement showed that the addition of pineapple fibers was able to improve the compressive and flexural strength of geopolymers. The resulting hybrid composites were able to resist fire to a maximum temperature of 1500°C. SEM examination showed the presence of good bond between geopolymer matrix and pineapple fibers. It was also found that there were no chemical constituents of geopolymers leached out during acid liquid treatment. It is concluded that hybrid composite geopolymers-pineapple fibers are potential composites for wide range applications.

  17. Microstructure and properties of pitch-based carbon composites

    Science.gov (United States)

    Blanco; Santamaria; Bermejo; Bonhomme; Menendez

    1999-11-01

    Pitches prepared in the laboratory by thermal treatment and air-blowing of a commercial coal-tar pitch were used as matrix precursors of carbon composites using granular petroleum coke, foundry coke, amorphous graphite and anthracite. Pitches were characterized by standard procedures (elemental analysis, softening point, solubility tests and carbon yield) and light microscopy (mesophase content). Pitch pyrolysis behaviour was monitored by thermogravimetric analysis and from the optical texture of cokes. Pitch wettability to the different carbons, at different temperatures, was also studied. Experimental conditions selected for the preparation of composites were based on pitch composition and properties. The main microstructural features of composites were determined by light microscopy and scanning electron microscopy. Composite properties were described in terms of their density, porosity and compressive strength, and related to composite microstructure and the characteristics of the precursors. Thermal treatment and air-blowing of pitch improved carbon composite structure and properties. The lowest porosities and best mechanical properties were observed in those composites obtained with the thermally treated pitches combined with foundry coke and anthracite.

  18. Contact problem for a composite material with nacre inspired microstructure

    Science.gov (United States)

    Berinskii, Igor; Ryvkin, Michael; Aboudi, Jacob

    2017-12-01

    Bi-material composites with nacre inspired brick and mortar microstructures, characterized by stiff elements of one phase with high aspect ratio separated by thin layers of the second one, are considered. Such microstructure is proved to provide an efficient solution for the problem of a crack arrest. However, contrary to the case of a homogeneous material, an external pressure, applied to a part of the composite boundary, can cause significant tensile stresses which increase the danger of crack nucleation. Investigation of the influence of microstructure parameters on the magnitude of tensile stresses is performed by means of the classical Flamant-like problem of an orthotropic half-plane subjected to a normal external distributed loading. Adequate analysis of this problem represents a serious computational task due to the geometry of the considered layout and the high contrast between the composite constituents. This difficulty is presently circumvented by deriving a micro-to-macro analysis in the framework of which an analytical solution of the auxiliary elasticity problem, followed by the discrete Fourier transform and the higher-order theory are employed. As a result, full scale continuum modeling of both composite constituents without employing any simplifying assumptions is presented. In the framework of the present proposed modeling, the influence of stiff elements aspect ratio on the overall stress distribution is demonstrated.

  19. AFM assessment of the surface nano/microstructure on chemically damaged historical and model glasses

    Energy Technology Data Exchange (ETDEWEB)

    Carmona, Noemi [Centro Nacional de Investigaciones Metalurgicas, CSIC, Avda. Gregorio del Amo, 8, 28040 Madrid (Spain); Kowal, Andrzej [Institute of Catalysis and Surface Chemistry, PAN, ul. Niezapominajek 8, 30239 Cracow (Poland); Rincon, Jesus-Maria [Instituto Eduardo Torroja de Ciencias de la Construccion, CSIC, C. Serrano Galvache s/n, 28033 Madrid (Spain); Villegas, Maria-Angeles, E-mail: mariangeles.villegas@cchs.csic.es [Centro Nacional de Investigaciones Metalurgicas, CSIC, Avda. Gregorio del Amo, 8, 28040 Madrid (Spain); Instituto de Historia, Centro de Ciencias Humanas y Sociales, CSIC, C. Albasanz, 26-28, 28037 Madrid (Spain)

    2010-01-15

    Surface chemical damage on selected historical glasses from 13th to 19th centuries was evaluated by means of atomic force microscopy (AFM). Nano- and microstructure, roughness and topography of ancient glass samples have been compared with those of model glasses prepared by conventional melting at the laboratory with similar compositions to those most frequently found in historical glass pieces. The results obtained allow discussing the chemical degradation mechanisms in terms of the acid and/or basic chemical attack carried out by the combination of gaseous pollutants and environmental humidity. Even though deep corrosion features escape to the observation order of magnitude of the AF microscope used, the AFM technique proves to be quite useful for the study and evaluation of the most common surface pathologies of historical glasses with different compositions once submitted to natural weathering.

  20. Reactivity and Microstructure of Al2O3-Reinforced Magnesium-Matrix Composites

    Directory of Open Access Journals (Sweden)

    Maher Mounib

    2014-01-01

    Full Text Available Performances of metal matrix composites (MMCs rely strongly on the distribution of particles within the metal matrix but also on the chemical reaction which may occur at the liquid-solid interfaces. This paper presents the chemical reaction between aluminum based particles Al2O3 and Al2O3-AlOOH with magnesium alloys matrixes AZ91 and EL21, respectively, and studies the microstructure of these reinforced composites. Different methods such as transmission electron microscopy (TEM, differential scanning calorimetry (DSC, and XRD were used to highlight these chemical reactions and to identify products. Results demonstrate the formation of MgO particles within the matrix for both composites and also the dissolution of aluminum in the eutectic region in the case of EL21.

  1. 3-D printed composites with ultrasonically arranged complex microstructure

    OpenAIRE

    Llewellyn-Jones, Tom; Trask, Richard; Allen, Robert

    2016-01-01

    This paper demonstrates the efficacy of implementing ultrasonic manipulation within a modified form of stereolithographic 3D printing to form complex microstructures in printed components. Currently 3D printed components are limited both in terms of structural performance and specialised functionality. This study aims to demonstrate a novel method for 3D printing composite materials, by arranging microparticles suspended within a photocurable resin. The resin is selectively cured by a 3-axis ...

  2. POROUS MICROSTRUCTURE OF THE INTERFACIAL TRANSITION ZONE IN GEOPOLYMER COMPOSITES

    Directory of Open Access Journals (Sweden)

    Steinerová M.

    2013-12-01

    Full Text Available The study deals with a comparison of the differences in the structure, composition and micromechanical properties of a metakaolinite geopolymer composite matrix, inside and outside of the interfacial transition zone (ITZ with quartz grains of added silica sand. The microstructure is investigated by a measurement of the mercury porosimetry, microscopy and by a measurement in SEM and AFM, completed by Raman spectroscopy. Weaker mechanical properties, micropores in the ITZ, a higher concentration of Al atoms and hydroxyl groups than in the ambient matrix were detected. The water transport is probably the reason for the micropore formation, caused by disequilibrium in the course of solid-phase building from geopolymer dispersion.

  3. Influence of the alumina microstructure and composition in thermoluminescence for using in dosimetry

    CERN Document Server

    Silva, M R

    2001-01-01

    Among its various applications alumina may be used in thermoluminescent dosimeters (TLD) to radiations. The TLD are commonly used to determine the absorbed doses of radiation received in many application fields as nuclear installations, radiodiagnostic and radiotherapy in medicine. In this work it was developed a study of the influence of the microstructure, grain size and composition on the thermoluminescent properties in alumina (pure and carbon doped). The alumina and carbon powders used as starting materials were characterized by x-ray diffraction (XRD), chemical analysis, particle size distribution and surface area were determined by and BET analysis, respectively. The Al sub 2 O sub 3 samples were sintered at 1650 deg C in air for one, three, five, seven and ten hours. The carbon doped samples were sintered using the same temperature for one hour, in a graphite resistance furnace in argon. Sintered materials were further characterised for phase composition and microstructure by XRD and scanning electron...

  4. Chemical compositions, methods of making the chemical compositions, and structures made from the chemical compositions

    Science.gov (United States)

    Yang, Lei; Cheng, Zhe; Liu, Ze; Liu, Meilin

    2015-01-13

    Embodiments of the present disclosure include chemical compositions, structures, anodes, cathodes, electrolytes for solid oxide fuel cells, solid oxide fuel cells, fuel cells, fuel cell membranes, separation membranes, catalytic membranes, sensors, coatings for electrolytes, electrodes, membranes, and catalysts, and the like, are disclosed.

  5. 3-D printed composites with ultrasonically arranged complex microstructure

    Science.gov (United States)

    Llewellyn-Jones, Thomas M.; Drinkwater, Bruce W.; Trask, Richard S.

    2016-04-01

    This paper demonstrates the efficacy of implementing ultrasonic manipulation within a modified form of stereolithographic 3D printing to form complex microstructures in printed components. Currently 3D printed components are limited both in terms of structural performance and specialised functionality. This study aims to demonstrate a novel method for 3D printing composite materials, by arranging microparticles suspended within a photocurable resin. The resin is selectively cured by a 3-axis gantry-mounted 405nm laser. Ultrasonic forces are used to arrange the microfibres into predetermined patterns within the resin, with unidirectional microfibre alignment and a hexagonal lattice structure demonstrated. An example of dynamic microstructure variation within a single print layer is also presented.

  6. Nonlinear mechanics of composite materials with periodic microstructure

    Science.gov (United States)

    Jordan, E. H.; Walker, K. P.

    1991-01-01

    This report summarizes the result of research done under NASA NAG3-882 Nonlinear Mechanics of Composites with Periodic Microstructure. The effort involved the development of non-finite element methods to calculate local stresses around fibers in composite materials. The theory was developed and some promising numerical results were obtained. It is expected that when this approach is fully developed, it will provide an important tool for calculating local stresses and averaged constitutive behavior in composites. NASA currently has a major contractual effort (NAS3-24691) to bring the approach developed under this grant to application readiness. The report has three sections. One, the general theory that appeared as a NASA TM, a second section that gives greater details about the theory connecting Greens functions and Fourier series approaches, and a final section shows numerical results.

  7. Microstructure and Mechanical Properties of Graphene Oxide/Copper Composites

    Directory of Open Access Journals (Sweden)

    HONG Qi-hu

    2016-09-01

    Full Text Available Graphene oxide/copper (GO/Cu composites were successfully synthesized through the ball milling and vacuum hot press sintering process. The morphologies of the mixture powders, and the microstructure and mechanical properties of GO/Cu composites were investigated by OM, SEM, XRD, hardness tester and electronic universal testing machine, respectively. The results show that the GO/Cu composites are compact. Graphene oxide with flake morphology is uniformly dispersed and well consolidated with copper matrix. When the mass fraction of graphene oxide is 0.5%, the microhardness and compress strength at RT reach up to 63HV and 276MPa, increased by 8.6% and 28%, respectively. The strengthening mechanism is load transfer effect, dislocation strengthening and fine crystal reinforcing.

  8. Microstructure and mechanical properties of carbon/carbon composites doped with LaCl{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Li Kezhi, E-mail: likezhi@nwpu.edu.cn [State Key Laboratory of Solidification Processing, Carbon/Carbon Composites Research Center, Northwestern Polytechnical University, Xi' an 710072 (China); Deng Hailiang; Li Hejun; Li Xin; Zhao Xueni; Luo Huijuan [State Key Laboratory of Solidification Processing, Carbon/Carbon Composites Research Center, Northwestern Polytechnical University, Xi' an 710072 (China)

    2011-11-25

    Highlights: {yields} Addition of LaCl{sub 3} decreased the densification duration of C/C composites. {yields} LaCl{sub 3} affected obviously the microstructure of intrabundle matrix. {yields} LaCl{sub 3} enhanced the toughness and strength of C/C composites. - Abstract: Carbon fiber felts with different LaCl{sub 3} contents were densified to produce carbon/carbon composites by film boiling chemical vapor infiltration from xylene pyrolysis at 1223 to 1323 K. Microstructure and mechanical properties of the composites were studied by polarized light microscopy, scanning electron microscopy, and three-point flexural test. Results showed that, the interbundle matrix of these composites was dominated by rough laminar (RL) pyrocarbon; whereas the intrabundle matrix may vary depended on the LaCl{sub 3} content. RL, smooth laminar (SL), and isotropic pyrocarbon were formed mainly when the LaCl{sub 3} content was 0, 5-10, and 15 wt%, respectively. The composites produced from the preforms with 5 and 10 wt% LaCl{sub 3} exhibited a pseudo-plastic fracture behavior combined with high flexural strength and toughness, which was attributed to the presence of lanthanum compound particles, the proper bonding of fiber-matrix interface, and the formation of SL pyrocarbon.

  9. Chemical and microstructural evolution on ODS Fe-14CrWTi steel during manufacturing stages

    Science.gov (United States)

    Olier, P.; Malaplate, J.; Mathon, M. H.; Nunes, D.; Hamon, D.; Toualbi, L.; de Carlan, Y.; Chaffron, L.

    2012-09-01

    Oxide Dispersion Strengthened (ODS) steels are promising candidate materials for fission and fusion applications thanks to their improved properties related to both their fine grained microstructure and high density of Y-Ti-O nanoscale clusters (NCs). The Fe-14Cr-1 W-0.3Ti-0.3Y2O3 ODS ferritic steel was produced by powder metallurgy: Iron-base gas atomized powders were mechanically alloyed with 0.3% Y2O3 particles in an attritor. Then, the ODS powders were encapsulated in a soft steel can, consolidated by hot extrusion and cold rolled under the shape of tube cladding. The present work investigates the evolution of the chemical composition and the microstructure after each stage of the fabrication route (i.e. mechanical alloying, extrusion and cold rolling). Chemical analysis indicates a significant increase of the carbon content and a moderate increase of oxygen and nitrogen after mechanical alloying compared to initial atomized powders. After extrusion, the measured oxygen content corresponds mainly to the oxygen coming from yttria addition during MA process. In addition, electron microprobe analyses are performed after hot extrusion to determine the concentration and the distribution of the constitutive elements (Cr, Ti, W, Y, O). The microstructure was investigated by transmission electron microscopy (TEM) and small angle neutron scattering (SANS) in order to characterize the size distribution of Y-Ti-O particles. TEM results reveal a fine microstructure (average grain size of 600 nm in the transverse direction) including Y-Ti-O NCs with a mean diameter close to 3 nm after extrusion. A slight coarsening of Y-Ti-O NCs is evidenced by SANS after cold rolling and heat treatments.

  10. Metal-Matrix Composites and Porous Materials: Constitute Models, Microstructure Evolution and Applications

    National Research Council Canada - National Science Library

    Castafieda, P

    2000-01-01

    Constitutive models were developed and implemented numerically to account for the evolution of microstructure and anisotropy in finite-deformation processes involving porous and composite materials...

  11. Microstructural Characterisation and Wear Behaviour of Diamond Composite Materials

    Directory of Open Access Journals (Sweden)

    Xing S. Li

    2010-02-01

    Full Text Available Since the initial research leading to the production of diamond composite materials, there have been several important developments leading to significant improvements in the properties of these superhard composite materials. Apart from the fact that diamonds, whether originating from natural resources or synthesised commercially, are the hardest and most wear-resistant materials commonly available, there are other mechanical properties that limit their industrial application. These include the low fracture toughness and low impact strength of diamond. By incorporating a range of binder phases into the sintering production process of these composites, these critically important properties have been radically improved. These new composites can withstand much higher operating temperatures without markedly reducing their strength and wear resistance. Further innovative steps are now being made to improve the properties of diamond composites by reducing grain and particle sizes into the nano range. This review will cover recent developments in diamond composite materials with special emphasis on microstructural characterisation. The results of such studies should assist in the design of new, innovative diamond tools as well as leading to radical improvements in the productivity of cutting, drilling and sawing operations in the exploration, mining, civil construction and manufacturing industries.

  12. Microstructure, elastic and electromagnetic properties of epoxy-graphite composites

    Science.gov (United States)

    Bellucci, S.; Micciulla, F.; Levin, V. M.; Petronyuk, Yu. S.; Chernozatonskii, L. A.; Kuzhir, P. P.; Paddubskaya, A. G.; Macutkevic, J.; Pletnev, M. A.; Fierro, V.; Celzard, A.

    2015-06-01

    A set of epoxy resin-based composites filled with 0.25 - 2.0 wt.% of commercially available exfoliated graphite (EG) and thick graphene (TG), prepared by suspending EG particles in cyclohexane, and submitting the suspension to a series of grinding and ultrasonic dispersion steps, was produced. The microstructure of such epoxy-graphite composites has been studied by the impulse acoustic microscopy technique. According to acoustic microscopy data, exfoliated graphite microparticles have been well dispersed in the epoxy matrix. TG nanoflakes demonstrated persistent tendency to clustering and formation of agglomerates. The addition of graphite particles in small amount (0.25 - 2.0 wt.%) did not influence the bulk elastic properties of epoxy-graphite composite materials. Being extremely lightweight, 0.003 g cm-3, EG had a lower percolation threshold than TG, at the level of 1-1.5 wt.% against 2.1-3.2 wt.%, respectively. As a result, epoxy composites filled with 1.0-2.0 wt.% EG provided high electromagnetic (EM) interference shielding both at microwave and THz frequencies. In contrast, no significant influence of TG loading was observed at low weight fraction (up to 2 wt.%) on the EM performance of epoxy composites.

  13. Development and properties study of microstructure silver-doped silica nanocomposites by chemical process

    Energy Technology Data Exchange (ETDEWEB)

    Duhan, Surender, E-mail: surender6561@yahoo.co.in; Tomer, Vijay K.; Sharma, A.K.; Dehiya, Brijnandan S.

    2014-01-15

    Highlights: • In this work, we successfully synthesis the silver nanoparticles by a chemical method. • The reaction temperature is controlled. • The particles we synthesis, show us an excellent. • It is so important in applications. -- Abstract: A silver-doped silica nanocomposite has been prepared from a sol–gel solution. The physical and optical properties of the prepared material were investigated by several characterization techniques such as X-ray diffraction (XRD), surface area by BET method, UV–Vis Diffuse Reflectance Spectroscopy (DRS) techniques and Photoluminescence (PL). Different silver contents (corresponding to 0.05, 0.5, 5.0, 10 wt% Ag) and reaction temperatures were investigated. XRD results revealed structural evolution in all samples, and the photoluminescence spectrums were studied with respect to the different microstructures and chemical compositions.

  14. Chemical Composition of Ceramic Tile Glazes

    Science.gov (United States)

    Anufrik, S. S.; Kurian, N. N.; Zhukova, I. I.; Znosko, K. F.; Belkov, M. V.

    2016-11-01

    We have carried out laser emission and x-ray fluorescence spectral analysis of glaze before and after its application to ceramic tile produced by Keramin JSC (Belarus). We have studied the internal microstructure of the ceramic samples. It was established that on the surface and within the bulk interior of all the samples, there are micropores of sizes ranging from a few micrometers to tens of micrometers and microcracks as long as several hundred micrometers. The presence of micropores on the surface of the ceramic tile leads to an increase in the water absorption level and a decrease in frost resistance. It was found that a decrease in the surface tension of ceramic tile coatings is promoted by substitution of sodium by potassium, silica by boric anhydride, magnesium and barium by calcium, CaO by sodium oxide, and SiO2 by chromium oxide. We carried out a comparative analysis of the chemical composition of glaze samples using S4 Pioneer and ElvaX x-ray fluorescence spectrometers and also an LIBS laser emission analyzer.

  15. Human milk fat globules from different stages of lactation: a lipid composition analysis and microstructure characterization.

    Science.gov (United States)

    Zou, Xiao-Qiang; Guo, Zheng; Huang, Jian-Hua; Jin, Qing-Zhe; Cheong, Ling-Zhi; Wang, Xing-Guo; Xu, Xue-Bing

    2012-07-25

    The physicochemical properties of human milk fat globules (MFG) at different lactation stages from Danish mothers and the microstructure changes of MFG membrane (MFGM) at varied temperatures were investigated, and the relationship between chemical composition and the microstructure of MFGM was elucidated. The fat content in MFG was found to be significantly increased as lactation progressed, and colostrum MFG had the largest mean diameter of 5.75 ± 0.81 μm and the lowest ζ potential of -5.60 ± 0.12 mV. Chemical composition analyses of MFG revealed the following: (i) Colostrum milk fat constituted higher content in PUFAs (ω-6, and long-chain ω-6 and ω-3) than transitional and mature milk fats, with the corresponding lower content of SFA in its sn-2 position. (ii) The content of polar lipids among total lipids varied during lactation course (maximized at transitional stage); however, in terms of subclasses of polar lipids, no significant change of the relative content of sphingomyelin was observed, while the content of phosphatidycholine in mature milk was higher than that in colostrum and transitional milk. (iii) Inspection of fatty acid composition in phospholipids from different lactation milk revealed no remarkable and regular changes could be generalized; and no obvious difference of the morphologies of MFGM at different lactation stages can be visualized. An investigation of the microstructure change of MFGM vs temperature demonstrated that the segregated domains became larger as temperature decreased to 4 °C, while it became smaller when increased to 37 °C. This phenomenon indicated that, in addition to sphingimyelin and cholesterol, phospholipids might also contribute to increasing the segregated domains at lower temperature, while, at elevated temperature, these domains could be diminished, most likely due to a restructuring or distributing of sphingimyelin and cholesterol.

  16. Microstructural residual stress in particle-filled dental composite.

    Science.gov (United States)

    Prejzek, Ondřej; Spaniel, Miroslav; Mareš, Tomáš

    2015-01-01

    The main goal of this study is to develop a micromechanical model of a particle-filled dental composite focused on the residual stress (RS) field developed during the curing process in its microstructure. A finite element model of a representative volume element of filler and resin was developed, and volumetric shrinkage was simulated during the curing process. Four material models (von Mises plasticity model, Drucker-Prager plasticity model, von Mises plasticity model with stress relaxation and Drucker-Prager plasticity with stress relaxation) of the polymer resin were built to assess the influence of the material model on the resulting internal stress. The relationship between the curing process and the magnitude of the stress components will be described, and an analysis of the post-curing state of the material in particular microstructure locations will be conducted in this study. Obtained RS is comparable to the stresses developed in the material under the external load. The substantial dependence on the choice of material model for resin is to be observed, and the suitability of particular models is discussed.

  17. Microstructural design in alumina-alumina/zirconia layered composites

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Herencia, A.J.; Moya, J.S. [CSIC, Madrid (Spain). Inst. de Ceramica y Vidrio; Tomsia, A.P. [Lawrence Berkeley Lab., CA (United States). Materials Sciences Div.

    1997-12-18

    Very recently several authors have pointed out the extremely important role of microstructural design in developing structural ceramic materials for long term high temperature applications. In this sense Raj has identified several boundary conditions: (1) Resistance to oxidation, (ii) Resistance to grain boundary sliding and cavitation, (iii) Good strength and toughness at room temperature. The aspiration is to eliminate grain boundaries which can act as cavitation sites, without using single crystals which typically exhibit low toughness. In this regard ceramics with single crystal-like morphologies, e.g., large elongated grains, with good fracture toughness and high bending strength have been proposed. One route to find these apparently contradictory characteristic is by building up layered microarchitectures where layers with high toughness and high bending strength coexist with layers with high creep resistance. These conditions can be met in the case of Al{sub 2}O{sub 3}/Al{sub 2}O{sub 3}-ZrO{sub 2} laminates. The present work was directed to the study of the microstructural features and properties of Al{sub 2}O{sub 3}/Al{sub 2}O{sub 3} + unstabilized ZrO{sub 2} and Al{sub 2}O{sub 3}/Al{sub 2}O{sub 3} + t-ZrO{sub 2} (3 mol% Y{sub 2}O{sub 3}) layered composites.

  18. Microstructure and mechanical properties of Mg–HAP composites

    Indian Academy of Sciences (India)

    At first the HAP powders were prepared by chemical synthesis process and synthesized powders were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). Synthesized powders contain HAP as a major phase with tricalcium phosphate (-TCP) as a minor phase. The Mg–HAP composites ...

  19. Microstructure and Properties of Composite Coatings Obtained on Aluminium Alloys

    Directory of Open Access Journals (Sweden)

    Bara M.

    2016-09-01

    Full Text Available This paper presents methods of modifying the anode surface layers of Al2O3 by introducing carbon to their microstructure. Composite coatings were prepared using two different methods. In the first, coatings were formed by means of oxidation under constant current conditions. Anodic oxidation of aluminium was conducted in a multicomponent electrolyte with the addition of organic acids and graphite. The second method was based on the formation of oxide coatings in an electrolyte without the addition of graphite or heat treatment of the layers of succinic acid. The obtained coatings were tested using SEM, TEM, and GDOES (glow discharge optical emission spectrometry and their tribological and stereometric properties were measured. The study demonstrated the beneficial effects of the methods when used to improve the tribological properties of sliding couples.

  20. Microstructure of organic–inorganic composite coatings studied by TEM and XANES

    Directory of Open Access Journals (Sweden)

    Etsuo Hamada, Masayasu Nagoshi, Kaoru Sato, Akira Matsuzaki, Takafumi Yamaji and Kotaro Kuroda

    2003-01-01

    Full Text Available Chromate coatings on Zn or Zn alloy coated steel sheets often include silica for the aim to improve corrosion resistance. In the case of dry-in-place chromate coatings containing acrylic resin (hereafter referred to as an organic–inorganic composite coating, an addition of silica, however, did not show an improvement in corrosion resistance. The microstructures of the organic–inorganic composite coatings were observed by transmission electron microscopy (TEM and the chemical states of Cr were investigated by the total electron yield X-ray absorption near edge structure (TEY-XANES method. TEM samples were successfully prepared by dry ultramicrotomy preventing water-soluble components in the coatings from dissolving out. TEY-XANES revealed the chemical states of components even in the organic matrix. Using these methods, it was found that the addition of silica changed just the morphology of the chromium compound in the organic–inorganic composite coating but not the chemical state of Cr. This is a reason for the addition of silica being not effective at improving corrosion resistance. The combination of dry ultramicrotomy-TEM and TEY-XANES spectroscopy was proven to be a powerful tool for characterizing organic–inorganic composite coatings.

  1. Microstructure of C/C Composites with Different Matrix Carbon

    Directory of Open Access Journals (Sweden)

    LIU Hao

    2016-07-01

    Full Text Available The microstructure of carbon/carbon(C/C composites with different matrix carbon was studied by polarized light microscopy (PLM, scanning electron microscopy (SEM, transmission electron microscopy (TEM and XRD techniques respectively. PLM results indicate that the different matrix carbon exhibits different optical reactivity, and the average optical reactivity is gradually enhanced from normal pitch carbon, smooth laminar of pyrocarbon, rough laminar of pyrocarbon to mesophase pitch carbon; SEM results show that the normal pitch carbon is mainly of grapy structure, the pyrocarbon exhibits like-crinkle lamellar structure, while the mesophase pitch carbon exhibits lamellar banded structure with different shapes. Under HRTEM, the lattice fringes of the mesophase pitch carbon are arranged regularly, is a long range ordered crystal structure, and the preferred orientation is high. The degree of the graphite and the interlayer spacing of the material B (mesophase pitch-based C/C composites are better than that of the material D (pyrocarbon-based C/C composites.

  2. Microstructured optical fiber sensors embedded in a laminate composite for smart material applications.

    Science.gov (United States)

    Sonnenfeld, Camille; Sulejmani, Sanne; Geernaert, Thomas; Eve, Sophie; Lammens, Nicolas; Luyckx, Geert; Voet, Eli; Degrieck, Joris; Urbanczyk, Waclaw; Mergo, Pawel; Becker, Martin; Bartelt, Hartmut; Berghmans, Francis; Thienpont, Hugo

    2011-01-01

    Fiber Bragg gratings written in highly birefringent microstructured optical fiber with a dedicated design are embedded in a composite fiber-reinforced polymer. The Bragg peak wavelength shifts are measured under controlled axial and transversal strain and during thermal cycling of the composite sample. We obtain a sensitivity to transversal strain that exceeds values reported earlier in literature by one order of magnitude. Our results evidence the relevance of using microstructured optical fibers for structural integrity monitoring of composite material structures.

  3. Microstructure Characterization and Wear-Resistant Properties Evaluation of an Intermetallic Composite in Ni-Mo-Si System.

    Science.gov (United States)

    Huang, Boyuan; Song, Chunyan; Liu, Yang; Gui, Yongliang

    2017-02-04

    Intermetallic compounds have been studied for their potential application as structural wear materials or coatings on engineering steels. In the present work, a newly designed intermetallic composite in a Ni-Mo-Si system was fabricated by arc-melting process with commercially pure metal powders as starting materials. The chemical composition of this intermetallic composite is 45Ni-40Mo-15Si (at %), selected according to the ternary alloy diagram. The microstructure was characterized using optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS), and the wear-resistant properties at room temperature were evaluated under different wear test conditions. Microstructure characterization showed that the composite has a dense and uniform microstructure. XRD results showed that the intermetallic composite is constituted by a binary intermetallic compound NiMo and a ternary Mo₂Ni₃Si metal silicide phase. Wear test results indicated that the intermetallic composite has an excellent wear-resistance at room-temperature, which is attributed to the high hardness and strong atomic bonding of constituent phases NiMo and Mo₂Ni₃Si.

  4. Microstructure of a cement matrix composite reinforced with polypropylene fibers

    Directory of Open Access Journals (Sweden)

    Rincón, J. M.

    2004-06-01

    Full Text Available The present investigation deals with the microstructural characterization of a composite material, which is comprised of polypropylene fibers in an cement matrix, by means of environmental scanning electron microscopy (ESEM and field emission scanning electron microscopy (FESEM. The microstructure of the different phases that compose the matrix is very heterogeneous, though there is a uniform distribution of the fibers inside it. The surface of this composite is different after setting, cured and hardening depending if the zone is or not in touch with the walls of the mould. The interface between the different crystalline regions of the cement matrix and the dispersed fibers shows compatibility between the matrix and the polymeric fibers. The mechanical properties (compression and bending strength have also been evaluated. The use of melamine formaldehyde as additive leads to a reinforcement of the cement matrix and to the improvement of the mechanical properties.

    Se ha llevado a cabo una observacíón microestructural detallada de un material compuesto de fibras de polipropileno embebidas en una matriz de cemento usando los nuevos tipos de microscopía electrónica de barrido, tales como: un microscopio electrónico medioambiental (acrónimo en inglés: ESEM y uno de emisión de campo (acrónimo en inglés: FESEM. La microestructura de las diferentes fases que componen la matriz es muy heterogénea, aunque hay una distribución uniforme de las fibras dentro de ellas. La superficie de este material compuesto es diferente después del fraguado, curado y endurecimiento según qué zonas estén o no en contacto con las paredes del molde. La interfase entre las diferentes fases cristalinas de la matriz de cemento y las fibras dispersadas se ha observado a diferentes aumentos, comprobándose compatibilidad entre la matriz y las fibras poliméricas. Las propiedades de resistencia mecánica (tanto a flexión como a compresión han sido tambi

  5. One-step synthesis and microstructure of CuO-SDC composites

    Energy Technology Data Exchange (ETDEWEB)

    Firmino, H.C.T.; Araujo, A.J.M.; Dutra, R.P.S.; Macedo, D.A., E-mail: hellentorrano@hotmail.com, E-mail: allanjp1993@hotmail.com, E-mail: ricardopsd@gmail.com, E-mail: damaced@gmail.com [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil); Nascimento, R.M., E-mail: rmaribondo@ufrnet.br [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Rajesh, S., E-mail: rajeshayr@gmail.com [University of Aveiro (Portugal)

    2017-01-15

    An in situ one step synthesis route based on the polymeric precursor method was used to produce dual phase CuO-samaria doped ceria (SDC) nanocomposite powders. This chemical route allowed to obtain composite powders with reduced particle size and uniform distribution of Cu, Ce and Sm elements. The particulate material was characterized by powder X-ray diffraction (XRD) combined with Rietveld refinement. CuO-SDC sintered in air between 950 to 1050 °C and subsequently reduced to Cu-SDC cermets were further characterized by XRD and scanning electron microscopy. The open porosity was measured using the Archimedes' principle. Suitable microstructures for both charge transfer and mass transport processes (30 to 45% porosity) were attained in Cu-SDC cermets previously fired at 1000 to 1050 °C. Overall results indicated that CuO-SDC composites and Cu-SDC cermets with potential application as anodes for solid oxide fuel cells (SOFCs) can be obtained by microstructural design. An anode supported half-cell was prepared by co-pressing and co-firing gadolinia doped ceria (CGO) and the herein synthesized CuO-SDC nanocomposite powder. (author)

  6. One-step synthesis and microstructure of CuO-SDC composites

    Directory of Open Access Journals (Sweden)

    H. C. T. Firmino

    Full Text Available Abstract An in situ one step synthesis route based on the polymeric precursor method was used to produce dual phase CuO-samaria doped ceria (SDC nanocomposite powders. This chemical route allowed to obtain composite powders with reduced particle size and uniform distribution of Cu, Ce and Sm elements. The particulate material was characterized by powder X-ray diffraction (XRD combined with Rietveld refinement. CuO-SDC sintered in air between 950 to 1050 °C and subsequently reduced to Cu-SDC cermets were further characterized by XRD and scanning electron microscopy. The open porosity was measured using the Archimedes’ principle. Suitable microstructures for both charge transfer and mass transport processes (30 to 45% porosity were attained in Cu-SDC cermets previously fired at 1000 to 1050 °C. Overall results indicated that CuO-SDC composites and Cu-SDC cermets with potential application as anodes for solid oxide fuel cells (SOFCs can be obtained by microstructural design. An anode supported half-cell was prepared by co-pressing and co-firing gadolinia doped ceria (CGO and the herein synthesized CuO-SDC nanocomposite powder.

  7. Microstructure and tribological performance of self-lubricating diamond/tetrahedral amorphous carbon composite film

    Science.gov (United States)

    Chen, Xinchun; Peng, Zhijian; Yu, Xiang; Fu, Zhiqiang; Yue, Wen; Wang, Chengbiao

    2011-02-01

    In order to smooth the rough surface and further improve the wear-resistance of coarse chemical vapor deposition diamond films, diamond/tetrahedral amorphous carbon composite films were synthesized by a two-step preparation technique including hot-filament chemical vapor deposition for polycrystalline diamond (PCD) and subsequent filtered cathodic vacuum arc growth for tetrahedral amorphous carbon (ta-C). The microstructure and tribological performance of the composite films were investigated by means of various characterization techniques. The results indicated that the composite films consisted of a thick well-grained diamond base layer with a thickness up to 150 μm and a thin covering ta-C layer with a thickness of about 0.3 μm, and sp3-C fraction up to 73.93%. Deposition of a smooth ta-C film on coarse polycrystalline diamond films was proved to be an effective tool to lower the surface roughness of the polycrystalline diamond film. The wear-resistance of the diamond film was also enhanced by the self-lubricating effect of the covering ta-C film due to graphitic phase transformation. Under dry pin-on-disk wear test against Si3N4 ball, the friction coefficients of the composite films were much lower than that of the single PCD film. An extremely low friction coefficient (∼0.05) was achieved for the PCD/ta-C composite film. Moreover, the addition of Ti interlayer between the ta-C and the PCD layers can further reduce the surface roughness of the composite film. The main wear mechanism of the composite films was abrasive wear.

  8. Microstructure and abrasive wear studies of laser clad Al-Si/SiC composite coatings

    NARCIS (Netherlands)

    Anandkumar, R.; Colaco, R.; Ocelik, V.; De Hosson, J. Th. M.; Vilar, R.; Gyulai, J; Szabo, PJ

    2007-01-01

    Surface coatings of Al-Si/SiC metal-matrix composites were deposited on Al-7 wt. % Si alloy substrates by laser cladding. The microstructure of the coatings was characterized by optical microscopy, scanning electron microscopy (SEM) and X-ray diffraction (XRD). The microstructure of the coating

  9. Composition and microstructure of MTA and Aureoseal Plus: XRF, EDS, XRD and FESEM evaluation.

    Science.gov (United States)

    Cianconi, L; Palopoli, P; Campanella, V; Mancini, M

    2016-12-01

    The aim of this study was to determine the chemical composition and the phases' microstructure of Aureoseal Plus (OGNA, Italy) and ProRoot MTA (Dentsply Tulsa Dental, USA) and to compare their characteristics. Study Design: Comparing Aureoseal Plus and ProRoot MTA microstructure by means of several analyses type. The chemical analysis of the two cements was assessed following the UNI EN ISO 196-2 norm. X-Ray fluorescence (XRF) was used to determine the element composition. The crystalline structure was analysed quantitatively using x-ray diffraction (XRD). Powders morphology was evaluated using a scanning electron microscope (SEM) with backscattering detectors, and a field emission scanning electron microscope (FESEM). Elemental analysis was performed by energy dispersive x-ray analysis (EDS). The semi-quantitative XRF analysis showed the presence of heavy metal oxides in both cements. The XRD spectra of the two cements reported the presence of dicalcium silicate, tricalcium silicate, tricalcium aluminate, tetracalcium aluminoferrite, bismuth oxide and gypsum. SEM analysis showed that ProRoot MTA powder is less coarse and more homogeneous than Aureoseal. Both powders are formed by particles of different shapes: round, prismatic and oblong. The EDS analysis showed that some ProRoot MTA particles, differently from Aureoseal, contain Ca, Si, Al and Fe. Oblong particles in ProRoot and Aureoseal are rich of bismuth. The strong interest in developing new Portland cement-based endodontic sealers will create materials with increased handling characteristics and physicochemical properties. A thorough investigation on two cement powders was carried out by using XRF, XRD, SEM and EDS analysis. To date there was a lack of studies on Aureoseal Plus. This cement is similar in composition to ProRoot MTA. Despite that it has distinctive elements that could improve its characteristics, resulting in a good alternative to MTA.

  10. Microstructural and Mechanical Studies of PVA Doped with ZnO and WO3 Composites Films

    Directory of Open Access Journals (Sweden)

    N. B. Rithin Kumar

    2014-01-01

    Full Text Available Polymer composites of ZnO and WO3 nanoparticles doped polyvinyl alcohol (PVA matrix have been prepared using solvent casting method. The microstructural properties of prepared films were studied using FTIR, XRD, SEM, and EDAX techniques. In the doped PVA, many irregular shifts in the FTIR spectra have been observed and these shifts in bands can be understood on the basis of intra/intermolecular hydrogen bonding with the adjacent OH group of PVA. The chemical composition, phase homogeneity, and morphology of the polymer composites of the polymer film were studied using EDAX and SEM. These data indicate that the distribution of nanosized ZnO and WO3 dopants is uniform and confirm the presence of ZnO and WO3 in the film. The crystal structure and crystallinity of polymer composites were studied by XRD. It was found that the change in structural repositioning and crystallinity of the composites takes place due to the interaction of dopants and also due to complex formation. The mechanical studies of doped polymer films were carried out using universal testing machine (UTM at room temperature, indicating that the addition of the ZnO and WO3 with weight percentage concentration equal to 14% increases the tensile strength and Young’s modulus.

  11. Microstructural evolution and strengthening behavior in in-situ magnesium matrix composites fabricated by solidification processing

    Energy Technology Data Exchange (ETDEWEB)

    Chelliah, Nagaraj M., E-mail: cmnraj.7@gmail.com [Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab (India); Singh, Harpreet, E-mail: harpreetsingh@iitrpr.ac.in [Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab (India); Surappa, M.K., E-mail: mirle@materials.iisc.ac.in [Department of Materials Engineering, Indian Institute of Science, Bengaluru 560012, Karnataka (India)

    2017-06-15

    In-situ magnesium matrix composites with three different matrix materials (including Mg, AZ91 and AE44 Mg-alloys) were fabricated by injecting cross-linked polymer directly into the molten Mg/Mg-alloys, and having it convert to the 2.5 vol% SiCNO ceramic phase using liquid stir-casting method. In-situ chemical reaction took place within the molten slurry tending to produce 42 and 18 vol% Mg{sub 2}Si crystals in Mg and AE44 matrix composites, respectively but not in AZ91 matrix composite. Microstructural evolution of Mg{sub 2}Si crystals was discussed on the basis of availability of heterogeneous nucleation sites and amount of Al-atoms in the molten slurry. The observed micro-hardness and yield strengths are enhanced by factor of four to three as compared to their unreinforced counterparts, and Taylor strengthening was found to be the predominant strengthening mechanism in magnesium and AE44 matrix composites. Summation model predicted the yield strengths of the fabricated composites more preciously when compared to Zhang and Chen, and modified Clyne models. - Highlights: • In-situ magnesium composites were fabricated using liquid stir-casting method. • In-situ pyrolysis of cross-linked polymer has been utilized to obtain ceramic phases. • Mg{sub 2}Si crystals were formed in magnesium and AE44 matrix composites but not in AZ91 matrix composites. • The variation in size and morphology of Mg{sub 2}Si crystals with matrix materials are discussed. • Strengthening mechanisms in in-situ composites are analyzed and discussed.

  12. Microstructural and chemical changes at the Ni/YSZ interface

    DEFF Research Database (Denmark)

    Hansen, Karin Vels; Primdahl, Søren; Chorkendorff, Ib

    2001-01-01

    A bent nickel wire was pressed against a yttria-stabilised zirconia (YSZ) surface, creating a small contact area. The Ni/YSZ interface was investigated and characteristic microstructures were found to develop during 200-300 h heat treatment at 1000 degreesC in 97% H-2/3% H2O with and without pola...

  13. Chemical composition of Chinese palm fruit and chemical properties ...

    African Journals Online (AJOL)

    PO and PKO exhibited good chemical properties and could be used as edible oils and for industrial applications. There are almost no data about Chinese palm fruit now and this study systematically researched on it, which can provide useful information for Chinese oil palm industry. Key words: Chemical composition, palm ...

  14. Influence of process temperature on AZ91 matrix microstructure of composites with aluminosilicate glass cenospheres

    OpenAIRE

    J. Kamieniak; A. Żydek; K.N. Braszczyńska-Malik

    2011-01-01

    AZ91 magnesium alloy matrix composites with aluminosilicate glass cenospheres were fabricated successfully by the pressure infiltration method. Different parameters of the fabrication process, such as temperature of the mould and temperature of cenospheres were used. Influence of the temperature variation of particular parameters on the microstructure has been investigated. The microstructure of AZ91 magnesium alloy and fabricated composites have been investigated by light microscopy (LM) and...

  15. Chemical composition of Clinopodium menthifolium aqueous extract ...

    African Journals Online (AJOL)

    Chemical composition of Clinopodium menthifolium aqueous extract and its influence on antioxidant system in black nightshade (Solanum nigrum) and pepper (Capsicum annuum) seedlings and mortality rate of whitefly (Trialeurodes vaporariorum) adults.

  16. Synthesis of nanostructured and microstructured ZnO and Zn(OH)2 on activated carbon cloth by hydrothermal and microwave-assisted chemical bath deposition methods

    Science.gov (United States)

    Mosayebi, Elham; Azizian, Saeid; Hajian, Ali

    2015-05-01

    Nanostructured and microstructured ZnO and Zn(OH)2 loaded on activated carbon cloth were synthesized by microwave-assisted chemical bath deposition and hydrothermal methods. By hydrothermal method the deposited sample on carbon fiber is pure ZnO with dandelion-like nanostructures. By microwave-assisted chemical bath method the structure and composition of deposited sample depends on solution pH. At pH = 9.8 the deposited sample on carbon fiber is pure ZnO with flower-like microstructure; but at pH = 10.8 the sample is a mixture of ZnO and Zn(OH)2 with flower-like and rhombic microstructures, respectively. The mechanism of crystal grow by microwave-assisted chemical bath method was investigated by SEM method at both pH.

  17. Graphene composites containing chemically bonded metal oxides

    Indian Academy of Sciences (India)

    Abstract. Composites of graphene involving chemically bonded nano films of metal oxides have been prepared by reacting graphene containing surface oxygen functionalities with metal halide vapours followed by exposure to water vapour. The composites have been characterized by electron microscopy, atomic force ...

  18. Microstructure and mineral composition of dystrophic calcification associated with the idiopathic inflammatory myopathies.

    Science.gov (United States)

    Eidelman, Naomi; Boyde, Alan; Bushby, Andrew J; Howell, Peter G T; Sun, Jirun; Newbury, Dale E; Miller, Frederick W; Robey, Pamela G; Rider, Lisa G

    2009-01-01

    Calcified deposits (CDs) in skin and muscles are common in juvenile dermatomyositis (DM), and less frequent in adult DM. Limited information exists about the microstructure and composition of these deposits, and no information is available on their elemental composition and contents, mineral density (MD) and stiffness. We determined the microstructure, chemical composition, MD and stiffness of CDs obtained from DM patients. Surgically-removed calcinosis specimens were analyzed with fourier transform infrared microspectroscopy in reflectance mode (FTIR-RM) to map their spatial distribution and composition, and with scanning electron microscopy/silicon drift detector energy dispersive X-ray spectrometry (SEM/SDD-EDS) to obtain elemental maps. X-ray diffraction (XRD) identified their mineral structure, X-ray micro-computed tomography (microCT) mapped their internal structure and 3D distribution, quantitative backscattered electron (qBSE) imaging assessed their morphology and MD, nanoindentation measured their stiffness, and polarized light microscopy (PLM) evaluated the organic matrix composition. Some specimens were composed of continuous carbonate apatite containing small amounts of proteins with a mineral to protein ratio much higher than in bone, and other specimens contained scattered agglomerates of various sizes with similar composition (FTIR-RM). Continuous or fragmented mineralization was present across the entire specimens (microCT). The apatite was much more crystallized than bone and dentin, and closer to enamel (XRD) and its calcium/phosphorous ratios were close to stoichiometric hydroxyapatite (SEM/SDD-EDS). The deposits also contained magnesium and sodium (SEM/SDD-EDS). The MD (qBSE) was closer to enamel than bone and dentin, as was the stiffness (nanoindentation) in the larger dense patches. Large mineralized areas were typically devoid of collagen; however, collagen was noted in some regions within the mineral or margins (PLM). qBSE, FTIR-RM and SEM

  19. Epicuticular wax crystals of Wollemia nobilis: morphology and chemical composition.

    Science.gov (United States)

    Dragota, Simona; Riederer, Markus

    2007-08-01

    The morphology of the epicuticular leaf waxes of Wollemia nobilis (Araucariaceae) was studied with special emphasis on the relationship between the microstructure of epicuticular wax crystals and their chemical composition. Wollemia nobilis is a unique coniferous tree of the family Araucariaceae and is of very high scientific value as it is the sole living representative of an ancient genus, which until 1994 was known only from fossils. Scanning electron microscopy (SEM), gas chromatography (GC) combined with mass spectrometry (GC-MS) and nuclear magnetic resonance spectroscopy (NMR) were used for characterizing the morphology and the chemical structure of the epicuticular wax layer of W. nobilis needles. The main component of the leaf epicuticular wax of W. nobilis is nonacosan-10-ol. This secondary alcohol together with nonacosane diols is responsible for the tubular habit of the epicuticular wax crystals. Scanning electron micrographs revealed differences in the fine structure of adaxial and abaxial leaf surfaces that could be explained by gas chromatographic studies after selective mechanical removal of the waxes. SEM investigations established the tubular crystalline microstructure of the epicuticular wax of W. nobilis leaves. GC-MS and NMR experiments showed that nonacosan-10-ol is the major constituent of the epicuticular wax of W. nobilis leaves.

  20. Effect of welding process on microstructure, microhardness and composition chemistry of stainless steel coatings applied by welding; Efeito do processo de soldagem na microestrutura, microdureza e composicao quimica de revestimentos de aco inoxidavel aplicados por soldagem

    Energy Technology Data Exchange (ETDEWEB)

    Melo, R.H.F. de; Maciel, T.M., E-mail: raphael.engmec@gmail.com [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Programa de Pos-Graduacao em Mecanica; Costa, J.; Santa, R.A.C. [Universidade Federal de Campina Grande (UFCG), Cuite, PB (Brazil). Unidade Academica de Quimica

    2012-07-01

    This study evaluates the influence of welding parameters on the chemical composition of weld overlays of the AWS E 308-L T1 applied by the FCAW and SAW process, as well as their influence on the microstructure and microhardness of the weld overlays. The characterization of chemical composition was performed by EDX (Energy Dispersive X-ray Analysis), the microstructure was investigated by optical microscopy and Vickers microhardness. The contents of Cr, Ni, Mn, Mo, Nb and Si varied as a function of welding parameters, the microstructure and microhardness varied as a function of heat input and chemical composition. The resulting microstructure showed an austenitic matrix with lacy ferrite and ferrite FA, with an average hardness of 191.6 HV for the FCAW process and 210 HV for the SAW process. (author)

  1. Microstructural Analysis of AM50/Mg2Si Cast Magnesium Composites

    Directory of Open Access Journals (Sweden)

    M.A. Malik

    2012-12-01

    Full Text Available AM50/Mg2Si composites containing 5.7 wt. % and 9.9 wt. %. of Mg2Si reinforcing phase were prepared successfully by casting method.The microstructure of the cast AM50/Mg2Si magnesium matrix composites was investigated by light microscopy and X-ray diffractometry (XRD. The microstructure of these composites was characterized by the presence of α-phase (a solid solution of aluminium in magnesium, Mg17Al12 (γ-phase, Al8Mn5 and Mg2Si. It was demonstrated that the Mg2Si phase was formed mainly as primary dendrites and eutectic.

  2. Microstructural Analysis of AM50/Mg2Si Cast Magnesium Composites

    Directory of Open Access Journals (Sweden)

    Malik M.A.

    2012-12-01

    Full Text Available AM50/Mg2Si composites containing 5.7 wt. % and 9.9 wt. %. of Mg2Si reinforcing phase were prepared successfully by casting method. The microstructure of the cast AM50/Mg2Si magnesium matrix composites was investigated by light microscopy and X-ray diffractometry (XRD. The microstructure of these composites was characterized by the presence of α-phase (a solid solution of aluminium in magnesium, Mg17Al12 (γ-phase, Al8Mn5 and Mg2Si. It was demonstrated that the Mg2Si phase was formed mainly as primary dendrites and eutectic.

  3. Influence of process temperature on AZ91 matrix microstructure of composites with aluminosilicate glass cenospheres

    Directory of Open Access Journals (Sweden)

    J. Kamieniak

    2011-07-01

    Full Text Available AZ91 magnesium alloy matrix composites with aluminosilicate glass cenospheres were fabricated successfully by the pressure infiltration method. Different parameters of the fabrication process, such as temperature of the mould and temperature of cenospheres were used. Influence of the temperature variation of particular parameters on the microstructure has been investigated. The microstructure of AZ91 magnesium alloy and fabricated composites have been investigated by light microscopy (LM and scanning electron microscopy (SEM. The results revealed that AZ91 magnesium alloy consists of -Mg matrix and eutectic -Mg17Al12 and a small amount of discontinuous precipitates of  phase. The microstructure of matrix AZ91 in fabricated composites is characterized also by the presence of -Mg matrix and eutectic -Mg17Al12. However, in the composite fabricated byusingthe mould heated to 500 °C more discontinuous precipitates of  phase were observed.

  4. Study on Composition, Microstructure and Wear Behavior of Fe-B-C Wear-Resistant Surfacing Alloys

    Science.gov (United States)

    Zhuang, Minghui; Li, Muqin; Wang, Jun; Ma, Zhen; Yuan, Shidan

    2017-11-01

    Fe-B-C alloy layers with various microstructures were welded on Q235 steel plates using welding powders/H08Mn2Si and welding wires composite surfacing technology. The relationship existing between the chemical composition, microstructure and wear resistance of the surfacing alloy layers was investigated by scanning electron microscopy, x-ray diffraction, electron backscatter diffraction and wear tests. The results demonstrated that the volume fractions and morphologies of the microstructures in the surfacing alloy layers could be controlled by adjusting the boron and carbon contents in the welding powders, which could further regulate the wear resistance of the surfacing alloy layers. The typical microstructures of the Fe-B-C surfacing alloy layers included dendritic Fe, rod-like Fe2B, fishbone-like Fe2B and daisy-like Fe3(C, B). The wear resistance of the alloy layers with various morphologies differed. The wear resistance order of the different microstructures was: rod-like Fe2B > fishbone-like Fe2B > daisy-like Fe3(C, B) > dendritic Fe. A large number of rod-like Fe2B with high microhardness could be obtained at the boron content of 5.70 5.90 wt.% and the carbon content of 0.50 0.60wt.%. The highest wear resistance of the Fe-B-C alloy layers reached the value of 24.1 g-1, which demonstrates the main microscopic cutting wear mechanism of the Fe-B-C alloy layers.

  5. Microstructural and compositional Evolution of Compound Layers during Gaseous Nitrocarburizing

    DEFF Research Database (Denmark)

    Du, Hong; Somers, Marcel A.J.; Ågren, John

    2000-01-01

    Compound layers developed at 848 K during gaseous nitrocarburizing of iron and iron-carbon specimens were investigated for several combinations of N and C activities imposed at the specimen surface by gas mixtures of NH3, N2, CO2 and CO. The microstructural evolution of the compound layer was stu...

  6. Binary stars: Mass transfer and chemical composition

    Science.gov (United States)

    Lambert, D. L.

    1982-01-01

    It is noted that mass exchange (and mass loss) within a binary system should produce observable changes in the surface chemical composition of both the mass losing and mass gaining stars as a stellar interior exposed to nucleosyntheses is uncovered. Three topics relating mass exchange and/or mass loss to nucleosynthesis are sketched: the chemical composition of Algol systems; the accretion disk of a cataclysmic variable fed by mass from a dwarf secondary star; and the hypothesis that classical Ba II giants result from mass transfer from a more evolved companion now present as a white dwarf.

  7. Microstructure analysis of chemically synthesized wurtzite-type CdS ...

    Indian Academy of Sciences (India)

    Abstract. Microstructure of chemically synthesized wurtzite-type CdS nanocrystals have been investigated by X-ray diffraction (XRD) peak profile analysis by applying different forms of. Williamson–Hall (WH) method viz., uniform deformation model (UDM), uniform stress deforma- tion model (USDM) and uniform deformation ...

  8. Determination of a homogeneity factor for composite materials by a microstructural image analysis method.

    Science.gov (United States)

    Yakaboylu, Gunes A; Sabolsky, Edward M

    2017-06-01

    The physical properties of particle-reinforced composite materials are highly affected by the distribution of particles within a matrix material. In this study, a microstructural image analysis method with a new distribution index for quantifying the degree of distribution in composite materials was developed. The free-path spacing between particles was measured to calculate the distribution (D) index based on the coefficient of variation. The proposed method was applied to six digitally created reference patterns as representative binary composite microstructures and three actual ceramic-matrix composites, respectively. It is found that the D index increased from 0.00 to 0.67 depending on the degree of distribution or homogeneity level based on the reference patterns. The homogeneity levels for the binary composites are then classified from a perfect (maximum) to very low level (minimum) based on increasing D index values, where a high D index presents a poorer distribution. The results obtained for reference patterns and metal silicide-refractory oxide composite microstructures indicate that the proposed method is a useful tool to quantify the degree of distribution with high accuracy, and can be efficiently used for different types of composite microstructures. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  9. Enabling continuous-flow chemistry in microstructured devices for pharmaceutical and fine-chemical production.

    Science.gov (United States)

    Kockmann, Norbert; Gottsponer, Michael; Zimmermann, Bertin; Roberge, Dominique M

    2008-01-01

    Microstructured devices offer unique transport capabilities for rapid mixing, enhanced heat and mass transfer and can handle small amounts of dangerous or unstable materials. The integration of reaction kinetics into fluid dynamics and transport phenomena is essential for successful application from process design in laboratory to chemical production. Strategies to implement production campaigns up to tons of pharmaceutical chemicals are discussed, based on Lonza projects.

  10. Influence of Raw Material Composition on Microstructure and Mechanical Properties of Nodular Cast Iron

    OpenAIRE

    Alan Vaško; Juraj Belan; Lenka Hurtalová; Eva Tillová

    2016-01-01

    The aim of this study is to evaluate the influence of raw material composition on the microstructure, mechanical and fatigue properties and micromechanisms of failure of nodular cast iron. In order to evaluate the influence of charge composition, the structural analysis, mechanical and fatigue tests and microfractographic analysis were carried out on specimens of ten melts with different charge compositions. The basic charge of individual melts was formed by different ratio of pig iron and st...

  11. Effect of milling time on microstructure and mechanical properties of Cu–Ni–graphite composites

    Science.gov (United States)

    Wang, Yiran; Gao, Yimin; Li, Yefei; Zhang, Chao; Huang, Xiaoyu; Zhai, Wenyan

    2017-09-01

    Cu–Ni–graphite composites are intended for application in switch slide baseplate materials. The microstructure of the composites depends strongly on the ball milling time, and a suitable time can significantly improve the properties of the Cu–Ni–graphite composites. In this study, a two-step milling method was employed. The morphology evolution and microstructural features of the powder was characterized at different milling times. Afterwards, the Cu–Ni–graphite composites were prepared in the process of cold pressing, sintering, re-pressing and re-sintering as a function of the different milling times. Finally, both the microstructure and mechanical properties of the Cu–Ni–graphite composites are discussed. The results show that no new phase was generated during the milling process. The morphology evolution of the mixture of Cu/Ni powder changed from spherical-like to cubic-like, plate-like and flake-like with an increasing milling time. The microstructure of the composites consisted of α-phase and graphite. The boundary area and quantity of pores changed as the milling time increased. The relative density, hardness and flexural strength reached maximum values at 15 h of milling time.

  12. Chemical composition and strength of dolomite geopolymer composites

    Science.gov (United States)

    Aizat, E. A.; Al Bakri, A. M. M.; Liew, Y. M.; Heah, C. Y.

    2017-09-01

    The chemical composition of dolomite and the compressive strength of dolomite geopolymer composites were studied. The both composites prepared with mechanical mixer manufactured by with rotor speed of 350 rpm and curing in the oven for 24 hours at 80˚C. XRF analysis showThe dolomite raw materials contain fewer amounts of Si and Al but high Ca in its composition. Dolomite geopolymer composites with 20M of NaOH shows greater and optimum compressive strength compared to dolomite geopolymer with other NaOH molarity. This indicated better interaction of dolomite raw material and alkaline activator need high molarity of NaOH in order to increase the reactivity of dolomite.

  13. determination the chemical composition, the physicochemical ...

    African Journals Online (AJOL)

    DR. IDARA AKPABIO

    ... can be used in many industrial preparations such as food supplements and body cream. However sufficient information on the physicochemical properties of the oil extract and the amino acid profiles of the seeds of Telfairia occidentalis are inadequate. Therefore, in this study, the chemical composition of the seed of fluted.

  14. Chemical composition, true metabolisable energy content and ...

    African Journals Online (AJOL)

    aneldavh

    characteristics (thousand seed and hectolitre mass), chemical composition (dry matter, ash, crude protein. (CP), ether extract, acid detergent fibre, neutral detergent fibre and mineral content), energy values (nitrogen corrected true metabolisable energy content (TMEn for roosters)) as well as the lysine and methionine.

  15. Chemical composition, true metabolisable energy content and ...

    African Journals Online (AJOL)

    Chemical composition, true metabolisable energy content and amino acid availability of grain legumes for poultry. ... TS Brand, DA Brandt, CW Cruywagen ... energy values (nitrogen corrected true metabolisable energy content (TMEn for roosters)) as well as the lysine and methionine availability (with roosters) of the ...

  16. Chemical Composition, antioxidant activity, functional properties and ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-23

    Nov 23, 2011 ... Full Length Research Paper. Chemical Composition, antioxidant activity, ... 1Biochemistry Department, National Root Crops Research Institute, Umudike, Umuahia, Abia State, Nigeria. 2Department of Biochemistry, Michael ... alkaloid and 0.98 ± 0.00% flavonoid. The unripe plantain flour was found to have ...

  17. Fermentation characteristics and chemical composition of silage ...

    African Journals Online (AJOL)

    Fermentation characteristics were determined by measuring: pH, lactic acid, acetic acid, butyric acid, and ammonia-nitrogen. Effective preservation with a favourable .... Table 1 Chemical composition and in vitro dry matter digestibility of manure and maize residues used in. Replications 1 and 2. Replication 1. Replication 2.

  18. Chemical Composition and Antimicrobial Activity of Geniosporum ...

    African Journals Online (AJOL)

    Chemical Composition and Antimicrobial Activity of Geniosporum rotundifolium Briq and Haumaniastrum villosum (Bene) AJ Paton (Lamiaceae) Essential Oils from Tanzania. ... The oil of G. rotundifolium exhibited weak to moderate activity against the bacterial species but showed no activity against the test fungi. However ...

  19. Studies on the chemical composition and physicochemical ...

    African Journals Online (AJOL)

    ... establish the proximate composition and the physico-chemical characteristics of the oil and effect of storage on the oil. Results obtained showed that the saponification value (SV), iodine value (IV), peroxide value (PV), acid value (AV), percentage free fatty acid (%FFA) and refractive index of the oil are 196 ± 0.05 mg/KOH ...

  20. Determination of the chemical composition, the physicochemical ...

    African Journals Online (AJOL)

    Determination of the chemical composition, the physicochemical properties of the oil extract and the amino acid profiles of the seeds of Telfairia occidentalis ... The physicochemical properties of the seed oil show that the oil has high saponification value, low free fatty acid, low peroxide value and specific gravity of 0.87, thus ...

  1. Chemical Composition, antioxidant activity, functional properties and ...

    African Journals Online (AJOL)

    Chemical Composition, antioxidant activity, functional properties and inhibitory action of unripe plantain ( M. Paradisiacae ) flour. ... Analytical Chemists (AOAC) and the gravimetric method of Harbone showed that it contained 1.58 ± 0.04% tannin, 1.82 ± 0.05% saponin, 1.37 ± 0.05% alkaloid and 0.98 ± 0.00% flavonoid.

  2. Understanding the formidable nail barrier: A review of the nail microstructure, composition and diseases.

    Science.gov (United States)

    Baswan, Sudhir; Kasting, Gerald B; Li, S Kevin; Wickett, Randy; Adams, Brian; Eurich, Sean; Schamper, Ryan

    2017-05-01

    The topical treatment of nail fungal infections has been a focal point of nail research in the past few decades as it offers a much safer and focused alternative to conventional oral therapy. Although the current focus remains on exploring the ways of enhancing permeation through the formidable nail barrier, the understanding of the nail microstructure and composition is far from complete. This article reviews our current understanding of the nail microstructure, composition and diseases. A few of the parameters affecting the nail permeability and potential causes of the recurrence of fungal nail infection are also discussed. © 2017 Blackwell Verlag GmbH.

  3. On The Physico-Mechanics, Thermal and Microstructure Properties of Hybrid Composite Epoxy-Geopolymer for Geothermal Pipe Application

    Directory of Open Access Journals (Sweden)

    Firawati Ira

    2017-01-01

    Full Text Available The objective of this study is to determine the effect of epoxy resin on the physico-mechanics, thermal and microstructure properties of geopolymers hybrid composites for geothermal pipe application. Hybrid composite epoxy-geopolymers pipes were produced through alkali activation method of class-C fly ash and epoxy resin. The mass of epoxy-resin was varied relative to the mass of fly ash namely 0% (SPG01, 5% (SPG02, 10% (SPG03, 15% (SPG04, and 20% (SPG05. The resulting materials were stored in open air for 28 days before conducting any measurements. The densities of the product composites were measured before and after the samples immersed in boiling water for 3 hours. The mechanical strength of the resulting geothermal pipes was measured by using splitting tensile measurement. The thermal properties of the pipes were measured by means of thermal conductivity measurement, differential scanning calorimetry (DSC and fire resistance measurements. The chemical resistance was measured by immersing the samples into 1M H2SO4 solution for 4 days. The microstructure properties of the resulting materials were examined by using x-ray diffraction (XRD and Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS. The results of this study showed that hybrid composite epoxy-geopolymers SPG02 and SPG03 are suitable to be applied as geothermal pipes.

  4. Microstructural Design & Optimization of Highly Filled Epoxy Based Composites

    Science.gov (United States)

    2009-11-01

    properties of the constituents can affect the properties of particulate composites. In composites of Al2O3 particles in epoxy ( Epon 828 /Z), increasing the...composites. In composites of Al2O3 particles in epoxy ( Epon 828 /Z), increasing the particle concentration and decreasing the particle size is found...2004. 20: p. 481-495. 13. Jordan, J.L., C.R. Siviour, and J.R. Foley, Mechanical properties of Epon 826/DEA epoxy. Mechanics of Time Dependant

  5. Microstructure characterization of erosion resistant coatings on carbon-bonded carbon fibre composites.

    Science.gov (United States)

    Moskalewicz, T; Smeacetto, F; Salvo, M; Boccaccini, A R; Czyrska-Filemonowicz, A

    2010-03-01

    The microstructure of as received and surface treated carbon-bonded carbon fibre composites has been examined by light microscopy, scanning and transmission electron microscopy. The microstructure of the as received material consists of a bonded together layered carbon fiber network, identified as graphitic carbon (hexagonal close packed). To improve the erosion resistance of the carbon-bonded carbon fibre composites composite, the SiC and silicate glass-ceramic coatings from the system SiO(2)-Al(2)O(3)-Y(2)O(3) were produced on carbon-bonded carbon fibre composites composites by a low-cost slurry technique. Transmission electron microscopy investigations of cross-section thin foils allowed for detailed analysis of the coatings microstructure. It was found that the SiC coating was consisting mainly of a nanocrystalline SiC (fcc). The multilayered glass-ceramic coating showed a complex microstructure consisting of an external SiO(2)-Al(2)O(3)-Y(2)O(3) layer and an intermediate nanocrystalline SiC layer. The SiO(2)-Al(2)O(3)-Y(2)O(3) layer was composed of SiO(2) (fcc), Y(2)Si(2)O(7) (op) and Al(4.644)Si(1.357)O(9.68) (op).

  6. Assessment of elemental composition, microstructure, and hardness of stainless steel endodontic files and reamers.

    Science.gov (United States)

    Darabara, Myrsini; Bourithis, Lefteris; Zinelis, Spiros; Papadimitriou, George D

    2004-07-01

    The purpose of this study was to determine the elemental composition, microstructure, and hardness of commercially available reamers, K files, and H files. Five instruments of each type from different manufacturers (Antaeos, FKG, Maillefer, Mani, and Micromega) were embedded in epoxy resin along their longitudinal axis. After metallographic grinding and polishing, the specimens were chemically etched and their microstructure investigated under an incident light microscope. The specimens were studied under a scanning electron microscope, and their elemental compositions were determined by energy dispersive X-ray microanalysis. The same surfaces were repolished and X-ray diffraction was performed. The same specimen surface was used for the assessment of the Vickers hardness (HV200) by using a microhardness tester with a 200-g load and 20-s contact time. The hardness results were statistically analyzed with two-way ANOVA and Tukey's test (a = 0.05). All files demonstrated extensively elongated grains parallel to longitudinal file axis because of cold drawing. The elemental composition of Maillefer and Mani reamers, Antaeos K files, and Mani H files were found in the range of AISI 303 SS, whereas all the rest were determined as AISI 304 SS. Two different phases (austenite SSt and martensite SSt) were identified with X-ray diffraction for all files tested. The results of hardness classified reamers in the following decreasing order (HMV200): Micromega = 673 +/- 29, Mani = 662 +/- 24, Maillefer = 601 +/- 34, Antaeos = 586 +/- 18, FKG = 557 +/- 19, and the K files (HV200): FKG = 673 +/- 16, Mani = 647 +/- 19, Maillefer = 603 +/- 41, Antaeos = 566 +/- 21, Micromega = 555 +/- 15, and the H files (HMV200): Mani = 640 +/- 12, FKG = 583 +/- 31, Maillefer = 581 +/- 5, Antaeos = 573 +/- 3, Micromega = 546 +/- 14. Although only two stainless steel alloys were used for the production of endodontic files, the differences in hardness are independent to the alloys used, implying that

  7. Microstructural modulations enhance the mechanical properties in Al-Cu-(Si, Ga) ultrafine composites

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Man [Center for Non-Crystalline Materials, Yonsei University 120-749 Seoul (Korea, Republic of); IFW Dresden, Institute for Complex Materials D-01171 Dresden (Germany); Pauly, Simon; Mattern, Norbert [IFW Dresden, Institute for Complex Materials D-01171 Dresden (Germany); Kim, Do Hyang [Center for Non-Crystalline Materials, Yonsei University 120-749 Seoul (Korea, Republic of); Kim, Ki Buem [Department of Advanced Materials Engineering Sejong University, 143-747 Seoul (Korea, Republic of); Eckert, Juergen [IFW Dresden, Institute for Complex Materials D-01171 Dresden (Germany); Institute of Materials Science, TU Dresden D-01062 Dresden (Germany)

    2010-11-15

    Adding small amounts of Si or Ga (3 at.%) to the eutectic Al{sub 83}Cu{sub 17} alloy yields an ultrafine bimodal eutectic composite microstructure upon solidification. The as-solidified alloys exhibit a distinct microstructural length-scale hierarchy leading to a high fracture strength of around 1 GPa combined with a large compressive plastic strain of up to 30% at room temperature. The present results suggest that the mechanical properties of the ultrafine bimodal eutectic composites are strongly related to their microstructural characteristics, namely phase evolution, length-scales, and distribution of the constituent phases. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Functional chemically modified graphene film: microstructure and electrical transport behavior

    Science.gov (United States)

    Ma, Junsheng; Hou, Xueyan; Yu, Mingpeng; Hua, Jingzheng; Ren, Xinyu; Qiu, Hong; Wang, Rongming

    2017-11-01

    Graphene oxide (GO) sheets were synthesized via a modified Hummers method. GO dispersion with a high concentration of 6 mg ml-1 was chosen to form GO hydrogel, followed by chemical reduction to derive a free-standing reduced GO (rGO) film. According to the x-ray diffraction (XRD) analysis, it has a [0 0 1] crystalline orientation in the film thickness direction. The rGO film has a densely stacked laminated structure and highly anisotropic characteristic of electrical conductivities. The light-weight rGO wire also demonstrates its excellent flexible and fire-retardant characteristics. Stress-strain measurements revealed the mechanical properties of the GO film can got further improved after chemical reduction. Electrical transport measurement indicates that rGO film exhibit semiconducting behavior with negative temperature coefficient characteristic. A temperature dependence of the conductivity from 20 to 297 K reveals that the carrier transport mechanism is thermally activated band conduction above 200 K and three-dimensional (3D) Mott’s variable range hopping below 100 K. The parameters such as a density of the localized electron states and a localization length of the wave function have been determined from the plot of conductivity versus (versus) temperature.

  9. Microstructure and composition of rare earth-transition metal-aluminium-magnesium alloys

    Directory of Open Access Journals (Sweden)

    Lia Maria Carlotti Zarpelon

    2008-03-01

    Full Text Available The determination of the microstructure and chemical composition of La0.7-xPr xMg0.3Al 0.3Mn0.4Co0.5 Ni3.8 (0 < x < 0.7 metal hydride alloys has been carried out using scanning electron microscopy (SEM, energy dispersive X ray analysis (EDX and X ray diffraction analysis (XRD. The substitution of La with Pr changed the grain structure from equiaxial to columnar. The relative atomic ratio of rare earth to (Al, Mn, Co, Ni in the matrix phase was 1:5 (LaNi5-type structure. Magnesium was detected only in two other phases present. A grey phase revealed 11 at.% Mg and the concentration ratios of other elements indicated the composition to be close to PrMgNi4. A dark phase was very heterogeneous in composition, attributed to the as-cast state of these alloys. The phases identified by XRD analysis in the La0.7Mg0.3Al0.3Mn0.4Co 0.5Ni3.8 alloy were: La(Ni,Co5, LaAl(Ni,Co4, La2(Ni,Co7 and AlMn(Ni,Co2. Praseodymium favors the formation of a phase with a PuNi3-type structure. Cobalt substituted Ni in the structures and yielded phases of the type: Pr(Ni,Co5 and Pr(Ni,Co3.

  10. Microstructure and microhardness of AA1050/TiC surface composite ...

    Indian Academy of Sciences (India)

    composites which is based on the basic principles of friction stir welding (FSW). The distinct advantages of the FSP are microstructural refinement, densification, homogeneity, accurate con- trol and variable depth of the processed zone. FSP is a green and energy efficient technique without deleterious gas and does not ...

  11. Quantitative analysis of the microstructural homogeneity of zirconia-toughened alumina composites

    NARCIS (Netherlands)

    Heijman, M.J.G.W.; Heijman, M.J.G.W.; Benes, Nieck Edwin; ten Elshof, Johan E.; Verweij, H.

    2002-01-01

    The Voronoi diagram approach was applied to quantify the level of microstructural homogeneity of ceramic ZTA samples. From SEM pictures of polished cross-sections of ZTA samples a point pattern representing the distribution of the zirconia phase in the composite was generated. This point pattern was

  12. Laser cladding of Al-Si/SiC composite coatings : Microstructure and abrasive wear behavior

    NARCIS (Netherlands)

    Anandkumar, R.; Almeida, A.; Vilar, R.; Ocelik, V.; De Hosson, J.Th.M.

    2007-01-01

    Surface coatings of an Al-Si-SiC composite were produced on UNS A03560 cast Al-alloy substrates by laser cladding using a mixture of powders of Al-12 wt.% Si alloy and SiC. The microstructure of the coatings depends considerably on the processing parameters. For a specific energy of 26 MJ/m2 the

  13. Quantitative study on the statistical properties of fibre architecture of genuine and numerical composite microstructures

    DEFF Research Database (Denmark)

    Hansen, Jens Zangenberg; Brøndsted, Povl

    2013-01-01

    A quantitative study is carried out regarding the statistical properties of the fibre architecture found in composite laminates and that generated numerically using Statistical Representative Volume Elements (SRVE’s). The aim is to determine the reliability and consistency of SRVE’s for represent......A quantitative study is carried out regarding the statistical properties of the fibre architecture found in composite laminates and that generated numerically using Statistical Representative Volume Elements (SRVE’s). The aim is to determine the reliability and consistency of SRVE......’s for representation of the composite microstructure as well as investigate the effect of a varying fibre radii distribution on the fibre architecture. Based on digital image analysis, the fibre architecture of unidirectional glass fibre composites with varying fibre content is recognised. The fibre architecture found...... is compared to a numerical microstructure generator using Monte Carlo simulations. It is shown that the numerical microstructure generator produces fibre arrangements that are statistically similar to the observed, which indicates a reliable and consistent SRVE. The microstructural effects of a parametric...

  14. Effects of sintering temperatures on microstructure and wear resistance of iron-silica composite

    Science.gov (United States)

    Amir, Adibah; Mamat, Othman

    2015-07-01

    Ceramic particle reinforced into metal base matrix composite has been reported to produce higher strength and wear resistance than its alloys because the ceramic phases can strongly resist abrasion. In this study the iron matrix was reinforced with two compositions of 20 and 25 wt. % fine silica particles. The compacts were produced by using powder metallurgy fabrication technique and sintered at three sintering temperatures: 1000, 1100 and 1200°C. Effects of various sintering temperatures on microstructures and the composite's wear resistance were evaluated via optical and SEM microscopy. Both compositions were also subjected to ball-on-disk wear test. The results showed the reinforcement weight fraction of 20 wt.% of silica and sintering temperature at 1100°C exhibited better result, in all aspects. It possessed higher mechanical properties, it's microstructure revealed most intact reinforcing region and it displayed higher wear resistance during wear test.

  15. Chemical Composition of Essential Oil from Akway

    Directory of Open Access Journals (Sweden)

    Meike Meilan Lisangan

    2011-04-01

    Full Text Available Chemical Composition of Essential Oil from Akway. Akway (Drimys piperita Hook f. is a woody, evergreen andaromatic plan that was a member of winteraceae. This plant is used by Sougb tribe lived in Sururey village, District ofManokwari, to heal malaria and to enhance the vitality of body. The objectives of this research were to know the yieldof essential oil using water distillation of leaves and its chemical composition using gas chromatography and massspectroscopy (GC-MS. The results indicated that the yield of leaves essential oil by using water distillation was 0.2%.The essential oil composed by 49 compounds categorized by terpene and its derivatives 83.67%, derivatives of benzene4.08% and alifatic compounds 8.16%.

  16. Chemical composition of Pechora Sea crude oil

    Directory of Open Access Journals (Sweden)

    Derkach S. R.

    2017-03-01

    Full Text Available The physicochemical properties of the Pechora Sea shelf oil and its chemical composition have been studied using the methods of refractometry, titrimetry, viscometry, rheometry and standard methods for the analysis of oil and petroleum products. The fractionation of oil is held at atmospheric pressure, some fractions boiling at the temperature below and above 211 °C have been received. Chemical structural-group composition of oil and its components has been investigated using a Fourier infrared (IR spectroscopy method. The density of oil has been obtained, it is equal to 24.2 API. The chemical composition analysis shows that water content in the investigated oil sample is about 0.03 % (by weight. The oil sample contains hydrocarbons (including alkanes, naphthenes, arenes and asphaltenes with resins; their content is equal to 89 and 10 % (by weight respectively. Alkane content is about 66 %, including alkanes of normal structure – about 37 %. The solidification temperature of oil sample is equal to –43 °C. This low temperature testifies obliquely low content of solid alkanes (paraffin. Bearing in mind the content of asphaltenes with resins we can refer the investigated oil sample to resinous oils. On the other hand spectral coefficient values (aromaticity quotient and aliphaticity quotient show that oil sample belongs to naphthenic oils. According to the data of Fourier IR spectroscopy contents of naphthenes and arenes are 5.9 and 17.8 % respectively. Thus, the obtained data of chemical structural-group composition of crude oil and its fractions indicate that this oil belongs to the heavy resinous naphthenic oils. The rheological parameters obtained at the shear deformation conditions characterize the crude oil as a visco-plastic medium.

  17. La matière grasse du lait de dromadaire : composition, microstructure et polymorphisme. Une revue

    Directory of Open Access Journals (Sweden)

    Karray Nadia

    2005-09-01

    Full Text Available In camel milk, fat, that represents about 3.6% of the composition, is dispersed in the form of globules, enveloped in a membrane, derived from the secreting cell and constituted by phospholipidprotein complexes. This review examines the present state of knowledge of the dromedary milk fat. The topics dealt with are : composition (fatty acids and triacylglycerols, microstructure, fat globule size distribution and polymorphism (thermal and structural properties.

  18. Microstructure and mechanical properties of carbon nanotube reinforced cementitious composites developed using a novel dispersion technique

    OpenAIRE

    Parveen, Shama; Rana, Sohel; Fangueiro, Raúl; Paiva, M. C.

    2015-01-01

    The present paper reports the first attempt of developing carbon nanotube (CNT) reinforced cement composites through a short dispersion route using Pluronic F-127 as a novel dispersing agent. Optimum concentrations of Pluronic for various types of CNT were determined, and the influences of Pluronic and CNT on the microstructure and mechanical properties of cementitious composites were thoroughly investigated. Pluronic with optimized defoamer concentration significantly improved th...

  19. Effect of simultaneous ion irradiation on microstructural change of SiC/SiC composites at high temperature

    Science.gov (United States)

    Taguchi, T.; Wakai, E.; Igawa, N.; Nogami, S.; Snead, L. L.; Hasegawa, A.; Jitsukawa, S.

    2002-12-01

    The effect of simultaneous triple ion irradiation of He, H and Si on microstructural evolution of two kinds of SiC/SiC composites (HNS composite (using Hi-Nicalon type S SiC fiber) and TSA composite (using Tyranno SA SiC fiber)) at 1000 °C has been investigated. The microstructure observations of SiC/SiC composites irradiated to 10 dpa were examined by transmission electron microscopy. He bubbles were hardly formed in matrix of TSA composite, but many helium bubbles and some cracks were observed at grain boundaries of matrix of HNS composite. He bubbles and cracks were not, on the other hand, observed in the both fiber fabrics of HNS and TSA composites. Debonding between fiber and carbon layer following irradiation region was not observed in the both composites. Under these irradiation conditions, TSA composite showed the better microstructural stability against ion beams irradiation than one of HNS composite.

  20. Microstructural, Chemical and Mechanical Characterization of Polymer-Derived Hi-Nicalon Fibers with Surface Coatings

    Science.gov (United States)

    Bansal, Narottam P.; Chen, Yuan L.

    1998-01-01

    Room temperature tensile strengths of as-received Hi-Nicalon fibers and those having BN/SiC, p-BN/SiC, and p-B(Si)N/SiC surface coatings, deposited by chemical vapor deposition, were measured using an average fiber diameter of 13.5 microns. The Weibull statistical parameters were determined for each fiber. The average tensile strength of uncoated Hi-Nicalon on was 3.19 +/- 0.73 GPa with a Weibull modulus of 5.41. Strength of fibers coated with BN/SiC did not change. However, coat with p-BN/SiC and p-B(Si)N/SiC surface layers showed strength loss of approx. 10 and 35 percent, respectively, compared with as-received fibers. The elemental compositions of the fibers and the coatings were analyzed using scanning Auger microprobe and energy dispersive x-ray spectroscopy. The BN coating was contaminated with a large concentration of carbon and some oxygen. In contrast, p-BN, p-B(Si)N, and SiC coatings did not show any contamination. Microstructural analyses of the fibers and the coatings were done by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction. Hi-Nicalon fiber consists of the P-SIC nanocrystals ranging in size from 1 to 30 nm embedded in an amorphous matrix. TEM analysis of the BN coating revealed four distinct layers with turbostatic structure. The p-BN layer was turbostratic and showed considerable preferred orientation. The p-B(Si)N was glassy and the silicon and boron were uniformly distributed. The silicon carbide coating was polycrystalline with a columnar structure along the growth direction. The p-B(Si)N/SiC coatings were more uniform, less defective and of better quality than the BN/SiC or the p-BN/SiC coatings.

  1. Microstructures and properties of Cr-Cu/W-Cu bi-layer composite coatings prepared by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiaping; Feng, Xiaomei; Shen, Yifu; Chen, Cheng; Duan, Cuiyuan [Nanjing Univ. of Aeronautics and Astronautics (China). Dept. of Materials Science and Technology

    2016-06-15

    Cr-Cu/W-Cu bi-layer coatings with composite structures were fabricated by means of mechanical alloying. The Cr-Cu layer and the W-Cu layer were deposited successively and the as-synthesized bi-layer coating was made up of an inner Cr-Cu layer and an outer W-Cu layer. Microstructures, chemical and phase compositions of the as-prepared coatings were characterized. The results indicated that the bonding between the inner coating and the substrate was improved with the increase of Cu in the raw powder. The annealing treatment of the inner Cr-Cu layer was beneficial to the bonding between the inner Cr-Cu coating and the outer W-Cu coating layer. Mechanical properties such as microhardness, friction and wear resistance were tested. The as-synthesized coating could effectively improve the hardness and wear resistance of the Cu substrate.

  2. Effect of zircon on sintering, composition and microstructure of magnesia powders

    Directory of Open Access Journals (Sweden)

    Peng C.

    2009-01-01

    Full Text Available The effects of zircon on sintering, composition and microstructure of fused magnesia powders were studied by XRD, SEM and EDAX. With the increase of zircon content up to 6 wt%, the strength of sintered samples increased but the apparent porosity decreased. 6 wt% is an appropriate content of zircon to possess better properties of samples, and in this case the samples have a dense microstructure and lower content of glass phase. The presence of a liquid phase resulting from zircon addition is the main reason to improve sintering of magnesia powders.

  3. Proximate chemical composition and fatty acid profiles of ...

    African Journals Online (AJOL)

    Proximate chemical composition and fatty acid profiles of Longissimus Proximate chemical composition and fatty acid profiles of Longissimus thoracis from pasture fed LHRH immunocastrated, castrated and intact Bos indicus bulls.

  4. Fabrication of composite microstructures by capillarity-driven wetting of aligned carbon nanotubes with polymers

    Energy Technology Data Exchange (ETDEWEB)

    GarcIa, E J [Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Hart, A J [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Wardle, B L [Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Slocum, A H [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2007-04-25

    The interaction, or wetting, of long aligned carbon nanotube (CNT) forests with off-the-shelf (no solvent added) commercial thermoset polymers is investigated experimentally. A technique for creating vertically aligned CNT composite microstructures of various shapes is presented. The effective wetting of the forests, as evidenced by a lack of voids, by three polymers with widely varying viscosities supports the feasibility of using CNT forests in large-scale hybrid advanced composite architectures. Among various routes identified for the polymer to penetrate the forest, capillarity-driven wetting along the CNT axis is the preferred route. Aligned CNT microstructures are useful in many applications including test structures for direct mechanical and multifunctional property characterization of the aligned CNT-polymer composite materials.

  5. Preparation of Cement Composites with Ordered Microstructures via Doping with Graphene Oxide Nanosheets and an Investigation of Their Strength and Durability

    Directory of Open Access Journals (Sweden)

    Shenghua Lv

    2016-11-01

    Full Text Available The main problem with cement composites is that they have structural defects, including cracks, holes, and a disordered morphology, which significantly affects their strength and durability. Therefore, the construction of cement composites with defect-free structures and high strength and long durability is an important research topic. Here, by controlling the size and chemical groups of graphene oxide nanosheets (GONs used for doping, we were able to control the entire cement matrix to form an ordered microstructure consisting of polyhedron-like crystals and exhibit flower-like patterns. The cracks and holes in the cement matrix just about vanished. The compressive and flexural strengths as well as the parameters for the durability assessment of the corresponding cement composites obviously improved compared with the control samples. Thus, the formation mechanism of the cement matrix with the ordered microstructure is proposed, and a proper explanation is given to regulation action.

  6. Fractographic observations of the microstructural characteristics of flax fibre composites

    DEFF Research Database (Denmark)

    Madsen, Bo; Asian, Mustafa; Lilholt, Hans

    2016-01-01

    failure followed by longitudinal splitting. For the thermoplastic matrix, concentric rings with different points of origin are observed in the matrix regions of the composite fracture surface. The concentric rings have a microporous structure consisting of nanoscale polymer fibrils. The concentring rings...... flax fibre/thermoplastic composites are presented. The findings are presented in relation to the three operational parts in composites: fibres, matrix and fibre/matrix interface. For the flax fibres, the striated structure on the fibre surface is shown to consist of cellulose macrofibrils oriented...... form mirror zones with no riverlines, followed by repeated mist and hackle zones with distinct radiating riverlines. For the flax fibre/thermoplastic matrix interface, microscale imprints of whole fibres, and nanoscale imprints of fibre surface structures are observed on the matrix surface...

  7. Microstructure and Tribological Property of MWCNTs/Al Composites by Rotational Friction Extrusion Process

    Directory of Open Access Journals (Sweden)

    FAN Hao

    2016-10-01

    Full Text Available The aluminum matrix composites reinforced with the multi-walled carbon nanotubes (MWCNTs were fabricated by rotational friction extrusion (RFE process and the microstructure, hardness and tribological property of the composites were investigated. The results show that the bulk composites with certain dimension can be fabricated by the RFE process. The microstructure of the composites appears as fine equiaxed grain after dynamic recrystallization and the quality is good. The MWCNTs are uniformly distributed in the composites. The hardness of the composites increases firstly and then decreases with the increase of MWCNTs. When the volume fraction of MWCNTs is about 4%, its hardness is about 20% higher than that of the original Al matrix material by RFE process. The lubrication and wear resistance of the composites are changed with the addition of MWCNTs. With the increase of the MWCNTs, the wear rate of the composites is decreased at first, and when the volume fraction of MWCNTs is more than 3%, the wear rate varies little. The wear mechanism is changed, which is from adhesion wear and mild abrasive wear to the delamination wear and abrasive wear with the increase of the MWCNTs.

  8. Microstructure and mechanical properties of Mg–HAP composites

    Indian Academy of Sciences (India)

    Administrator

    The tensile strength of composites is found to decrease with the addition of HAP, whereas compressive strength increases with HAP. Keywords. Mg; HAP; biodegradable; extrusion; hardness; compressive strength. 1. Introduction. The biodegradable nature of Mg makes it a most high- lighted and interesting implant material ...

  9. Microstructure and wear behaviour of FeAl-based composites ...

    Indian Academy of Sciences (India)

    resistance of FeAl-based alloys is found to be significantly improved on addition of Ti/Zr. This is attributed to the high hardness of alloy carbides. The lower ... exhibit superior wear resistance due to higher hardness of carbides [6,12,17,18]. However ..... Also, most of the literature is on composites fabricated through PM route ...

  10. Microstructure and dielectric properties of biocarbon nanofiber composites

    National Research Council Canada - National Science Library

    Dai, Bo; Ren, Yong; Wang, Gaihua; Ma, Yongjun; Zhu, Pei; Li, Shirong

    2013-01-01

    ...; the web-like structure was destroyed at a temperature of 1,400°C. Composites of CBC impregnated with paraffin wax exhibited high complex permittivity over a frequency range of 2 to 18 GHz, depending on the carbonization temperature...

  11. Chemical Composition of Different Varieties of Linseed

    Directory of Open Access Journals (Sweden)

    M. Laiq Khan*, M. Sharif, M. Sarwar, Sameea1 and M. Ameen

    2010-04-01

    Full Text Available The present study was conducted to investigate chemical composition of six varieties of linseed (Chandni, LS-29, LS-49, LS-70, LS-75 and LS-76. Proximate composition, mineral profile and cyanogenic glycosides (linamarin were determined. Average proximate composition values for linseed i.e. crude protein, ether extract, crude fiber, ash and nitrogen free extract were 24.18, 37.77, 4.78, 3.50 and 25.86%, respectively. Higher values of crude protein, ether extract, crude fiber and nitrogen free extract were observed in varieties LS-49, LS-70, LS-29 and Chandni, respectively. Average mineral contents in linseed i.e. Ca, Mg, K, Na, Cl, P, Cu, Fe, Mn and Zn were 0.39, 0.09, 1.41, 0.05, 0.08, 0.89, 4.67, 50.56, 8.29 and 13.55 ppm, respectively. Among micro minerals, varieties LS-29 and LS-70 were higher in Cu contents; LS-75 was higher in Fe content, while LS-49 was higher in Mn and Zn contents. Among macro minerals, level of Ca was higher in LS-70, levels of Mg, K and Na were higher in Chandni, while P was higher in LS-49. Average amount of linamarin in linseed was 31.05mg/100 gm DM. The variety LS-75 had the highest (35.22 mg/100 gm linamarin content, while variety LS-70 had least (26.22 mg/100 gm amount of linamarin. In conclusion, there is significant difference in chemical composition among linseed varieties. The varieties LS-49 showed higher crude protein content, LS-70 showed greater oil content, while LS-75 had higher content of linamarin.

  12. Mechanical properties and microstructure of stir casted Al/B{sub 4}C/garnet composites

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rathinam Ashok [Chendhuran College of Engineering and Technology, Tamil Nadu (India). Mechanical Engineering Dept.; Sait, Abdullah Naveen [Chendhuran College of Engineering and Technology, Tamil Nadu (India); Subramanian, Karuppazhi [Government College of Engineering, Tamil Nadu (India). Dept. of Mechanical Engineering

    2017-05-01

    Aluminum based metal matrix composites are one of the advanced engineering materials that have been developed for low weight and high strength applications in automotive industries due to high specific strength and good wear resistance. In this context, aluminum alloy boron carbide and garnet composites were fabricated by the stir casting process. The microstructural examination was done by using a scanning electron microscope to assess the distribution of particulates in the aluminum matrix. The composites were characterized by hardness and tensile tests. The wear behavior of the composites was analyzed with the help of a pin-on-disc wear test. By increasing the amount of garnet in the composite, it has been observed that the tensile strength and hardness increase. The wear test analysis proved that the addition of reinforcements reduces the wear rate behavior of composite.

  13. Microstructure and Mechanical Properties of Aligned Natural Fibre Composites

    DEFF Research Database (Denmark)

    Rask, Morten

    Recently, there has been a great interest in developing and maturing natural fibre composites for structural applications. Natural fibres derived from plants such as flax and hemp have the potential to compete with traditional glass fibres as reinforcements in polymer matrices, due to good specific...... properties (stiffness-to-density ratio). The perspective of using natural fibres is to have a sustainable, biodegradable, CO2-neutral alternative to glass fibres. However, so far, it has not been possible to take full advantage of the natural fibre properties when using them for composite applications...... expected based on tests of single fibres. 3) Compared to continuous glass fibres, natural fibres are relatively short, which makes it difficult to achieve an optimized fibre architecture. 4) Natural fibres are hydrophilic, meaning that they do not bond well with standard polymer matrix systems, most...

  14. Microstructure, consolidation and mechanical behaviour of Mg/n-TiC composite

    Directory of Open Access Journals (Sweden)

    N. Vijay Ponraj

    2016-09-01

    Full Text Available In this work, the microstructure, consolidation and mechanical properties of pure magnesium, magnesium based composite containing with different fractions (5, 10, 15 wt% of Titanium carbide nanoparticles (n-TiC were fabricated via powder metallurgy technique. The fabricated composites exhibited homogeneous distribution of TiC with little porosity. Microstructure of the composite and powders was studied using X-ray diffraction, Scanning electron microscope, and Transmission electron microscope. Microstructural characterization of the materials exposed that the accumulation of nanosized titanium carbide reinforcement enhanced the homogenization during mechanical blending. The relative density, compressibility, green compressive strength, sinterability and hardness of the nanocomposites were also examined. The effect of reinforcement on the densification was studied and reported in terms of the relative density and consolidation behaviour of the Magnesium matrix with n-TiC was studied and best compacted fit obtained through the Heckel, Panelli Ambrosio Filho and Ge equations. The compressive strength of the composite significantly increases from 230 MPa to 389 MPa with content of n-TiC and sintering temperature. Experiments have been performed under different conditions of temperature, n-TiC Content, and compacting pressure.

  15. The solidification microstructure of Al-Cu-Si alloys metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Garbellini, O.; Palacio, H. [IFIMAT-CID, Tandil (Argentina); Biloni, H. [LEMIT-CIC, La Plata (Argentina)

    1998-12-31

    The relationship between solidification microstructure and fluidity in MMC was studied. The composites were fabricated by infiltration of liquid metal into a alumina SAFFIL fibers preform under a gas pressure, using alloys of the AlCuSi system as matrices. The fluidity was measured in terms of classic foundry practice (i.e., the distance of flow liquid metal into the preform, while solidifying). The characterization of solidification microstructure in the cast composite was analyzed and correlated with the results of fluidity. The attention was particularly focused on such effects as the presence or absence of selective nucleation, the refinement of certain solidifying phases in the presence of fibers and their influence on microstructure formation and segregation of certain elements present in the liquid at the fiber matrix interface. By comparing reinforced and non reinforced zones, it was shown that the presence of fibers resulted in a refinement of the dendritic arm spacing of the {alpha}Al phase, with nucleation of Si on the fibers and without nucleation of primary Al dendrites. The results were discussed and compared with the microstructures and fluidity test of the unreinforced Al-Cu-Si alloys.

  16. Influence of Powder Outgassing Conditions on the Chemical, Microstructural, and Mechanical Properties of a 14 wt% Cr Ferritic ODS Steel

    Science.gov (United States)

    Sornin, D.; Giroux, P.-F.; Rigal, E.; Fabregue, D.; Soulas, R.; Hamon, D.

    2017-11-01

    Oxide dispersion-strengthened ferritic stainless steels are foreseen as fuel cladding tube materials for the new generation of sodium fast nuclear reactors. Those materials, which exhibit remarkable creep properties at high temperature, are reinforced by a dense precipitation of nanometric oxides. This precipitation is obtained by mechanical alloying of a powder and subsequent consolidation. Before consolidation, to obtain a fully dense material, the powder is vacuumed to outgas trapped gases and species adsorbed at the surface of the powder particles. This operation is commonly done at moderate to high temperature to evacuate as much as possible volatile species. This paper focuses on the influence of outgassing conditions on some properties of the further consolidated materials. Chemical composition and microstructural characterization of different materials obtained from various outgassing cycles are compared. Finally, impact toughness of those materials is evaluated by using Charpy testing. This study shows a significant influence of the outgassing conditions on the mechanical properties of the consolidated material. However, microstructure and oxygen contents seem poorly impacted by the various outgassing conditions.

  17. Laser engineered net shaping of quasi-continuous network microstructural TiB reinforced titanium matrix bulk composites: Microstructure and wear performance

    Science.gov (United States)

    Hu, Yingbin; Ning, Fuda; Wang, Hui; Cong, Weilong; Zhao, Bo

    2018-02-01

    Titanium (Ti) and its alloys have been successfully applied to the aeronautical and biomedical industries. However, their poor tribological properties restrict their fields of applications under severe wear conditions. Facing to these challenges, this study investigated TiB reinforced Ti matrix composites (TiB-TMCs), fabricated by in-situ laser engineered net shaping (LENS) process, through analyzing parts quality, microstructure formation mechanisms, microstructure characterizations, and workpiece wear performance. At high B content areas (original B particle locations), reaction between Ti and B particles took place, generating flower-like microstructure. At low B content areas, eutectic TiB nanofibers contacted with each other with the formation of crosslinking microstructure. The crosslinking microstructural TiB aggregated and connected at the boundaries of Ti grains, forming a three-dimensional quasi-continuous network microstructure. The results show that compared with commercially pure Ti bulk parts, the TiB-TMCs exhibited superior wear performance (i.e. indentation wear resistance and friction wear resistance) due to the present of TiB reinforcement and the innovative microstructures formed inside TiB-TMCs. In addition, the qualities of the fabricated parts were improved with fewer interior defects by optimizing laser power, thus rendering better wear performance.

  18. The in vitro evolution of resorbable brushite cements: A physico-chemical, micro-structural and mechanical study.

    Science.gov (United States)

    Gallo, Marta; Tadier, Solène; Meille, Sylvain; Gremillard, Laurent; Chevalier, Jérôme

    2017-04-15

    The mechanisms by which calcium phosphate bone substitutes evolve and are resorbed in vivo are not yet fully known. In particular, the formation of intermediate phases during resorption and evolution of the mechanical properties may be of crucial interest for their clinical efficiency. The in vitro tests proposed here are the first steps toward understanding these phenomena. Microporous Dicalcium Phosphate Dihydrate (DCPD) samples were immersed in tris(hydroxymethyl)aminomethane (TRIS) and Phosphate Buffered Saline (PBS) solutions, with or without daily refresh of the medium, for time-points up to 14days. Before and after immersion, samples were extensively characterised in terms of morphology, chemistry (XRD coupled with Rietveld analysis), microstructure (X-ray tomography, SEM observations) and local mechanical properties (instrumented micro-indentation). The composition of the immersion solutions was monitored in parallel (pH, elemental analysis). The results show the influence and importance of the experimental set-up and protocol on the formation of apatite and octacalcium phosphate concurrently to DCPD dissolution; moreover, strong inter-correlations between physico-chemistry, microstructure and mechanics are demonstrated. Ideally, the resorption kinetics of biodegradable bone substitutes should be controlled to favor the healing processes of bone. Although biodegradable bone grafts are already used in surgeries, their resorption process is still partially unknown. The present work studies these resorption phenomena, their kinetics and mechanisms and their consequences on the properties of a calcium phosphate resorbable material. The original in vitro approach developed in this work couples for the first time physico-chemical, micro-structural and mechanical assessments. The dissolution of the CaP phase in body fluids and the reprecipitation of more stable phases are studied on a local scale, which has permitted to evidence and monitor the development of a

  19. The Chemical Composition of Grape Fibre

    Directory of Open Access Journals (Sweden)

    Jolana Karovičová

    2015-05-01

    Full Text Available Dietary fibres from cereals are much more used than dietary fibres from fruits; however, dietary fibres from fruits have better quality. In recent years, for economic and environmental reasons, there has been a growing pressure to recover and exploit food wastes. Grape fibre is used to fortify baked goods, because the fibre can lower blood sugar, cut cholesterol and may even prevent colon cancer. Grape pomace is a functional ingredient in bakery goods to increase total phenolic content and dietary fibre in nourishment. The aim of this study was to determine the chemical composition of commercial fibres, obtained from different Grape sources concerning their chemical properties such as moisture, ash, fat, protein, total dietary fibre. The chemical composition of Grape fibre is known to vary depending on the Grape cultivar, growth climates, and processing conditions. The obliged characteristics of the fibre product are: total dietary fibre content above 50%, moisture lower than 9%, low content of lipids, a low energy value and neutral flavour and taste. Grape pomace represents a rich source of various high-value products such as ethanol, tartrates and malates, citric acid, Grape seed oil, hydrocolloids and dietary fibre. Used commercial Grape fibres have as a main characteristic, the high content of total dietary fibre. Amount of total dietary fibre depends on the variety of Grapes. Total dietary fibre content (TDF in our samples of Grape fibre varied from 56.8% to 83.6%. There were also determined low contents of moisture (below 9%. In the samples of Grape fibre were determined higher amount of protein (8.6 - 10.8%, mineral (1.3 - 3.8% and fat (2.8 - 8.6%. This fact opens the possibility of using both initial by-products as ingredients in the food industry, due to the effects associated with the high total dietary fibre content.

  20. Microstructure and mechanical properties of stainless steel/calcium silicate composites manufactured by selective laser melting.

    Science.gov (United States)

    Zheng, Zeng; Wang, Lianfeng; Jia, Min; Cheng, Lingyu; Yan, Biao

    2017-02-01

    Selective laser melting (SLM) is raised as one kind of additive manufacturing (AM) which is based on the discrete-stacking concept. This technique can fabricate advanced composites with desirable properties directly from 3D CAD data. In this research, 316L stainless steel (316L SS) and different fractions of calcium silicate (CaSiO3) composites (weight fractions of calcium silicate are 0%, 5%,10% and 15%, respectively) were prepared by SLM technique with a purpose to develop biomedical metallic materials. The relative density, tensile, microhardness and elastic modulus of the composites were tested, their microstructures and fracture morphologies were observed using optical microscope (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). It was found that the addition of CaSiO3 particles influenced the microstructure and mechanical properties of specimens significantly. The CaSiO3 precipitates from the overlap of adjacent tracks and became the origin of the defects. The tensile strength of specimens range 320-722MPa. The microhardness and elastic modulus are around 250HV and 215GPa respectively. These composites were ductile materials and the fracture mode of the composites was mixed mode of ductile and brittle fracture. The 316L SS/CaSiO3 composites can be a potential biomedical metallic materials in the medical field. Copyright © 2016. Published by Elsevier B.V.

  1. Mechanical properties and microstructural analysis of Al–Si–Mg/carbonized maize stalk waste particulate composites

    Directory of Open Access Journals (Sweden)

    J.E. Oghenevweta

    2016-07-01

    Full Text Available The mechanical properties and morphological analysis of Al–Si–Mg/carbonized maize stalk particulate composites was investigated. The compositions of the composite include a matrix of Al–Si–Mg and the carbonized maize stalk particulates as reinforcement ranging from 2% to 10% at an interval of 2%. Properties such as mechanical behaviour of the composites were examined and these include tensile strength, tensile modulus, hardness value, impact energy, percentage elongation and percentage reduction in area. Besides, the microstructures of the developed Al–Si–Mg/carbonized maize stalk particulate composites were investigated. The results of the microstructures of the composite show a uniform dispersion of the reinforcement along the grain boundaries of the alloy. The tensile strength and hardness values increase to 85.60 N/mm2 and 24HRB at 8 and 10 wt% of carbonized maize stalk respectively, but there is a slight decrease in the impact energy values, values of percentage elongation and percentage reduction in area as the reinforcement increases. From these results of investigation, we concluded that the carbonized reinforcing maize particulates can be used to enhance the properties of Al–Si–Mg alloy for engineering applications.

  2. Process and Microstructure to Achieve Ultra-high Dielectric Constant in Ceramic-Polymer Composites

    Science.gov (United States)

    Zhang, Lin; Shan, Xiaobing; Bass, Patrick; Tong, Yang; Rolin, Terry D.; Hill, Curtis W.; Brewer, Jeffrey C.; Tucker, Dennis S.; Cheng, Z.-Y.

    2016-01-01

    Influences of process conditions on microstructure and dielectric properties of ceramic-polymer composites are systematically studied using CaCu3Ti4O12 (CCTO) as filler and P(VDF-TrFE) 55/45 mol.% copolymer as the matrix by combining solution-cast and hot-pressing processes. It is found that the dielectric constant of the composites can be significantly enhanced–up to about 10 times – by using proper processing conditions. The dielectric constant of the composites can reach more than 1,000 over a wide temperature range with a low loss (tan δ ~ 10−1). It is concluded that besides the dense structure of composites, the uniform distribution of the CCTO particles in the matrix plays a key role on the dielectric enhancement. Due to the influence of the CCTO on the microstructure of the polymer matrix, the composites exhibit a weaker temperature dependence of the dielectric constant than the polymer matrix. Based on the results, it is also found that the loss of the composites at low temperatures, including room temperature, is determined by the real dielectric relaxation processes including the relaxation process induced by the mixing. PMID:27767184

  3. Selective laser melting of carbon/AlSi10Mg composites: Microstructure, mechanical and electronical properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xiao; Song, Bo, E-mail: bosong@hust.edu.cn; Fan, Wenrui; Zhang, Yuanjie; Shi, Yusheng

    2016-04-25

    Carbon nanotubes/AlSi10Mg composites has drawn lots of attention in structural engineering and functional device applications due to its extraordinary high elastic modulus and mechanical strength as well as excellent electrical and thermal conductivities. In this study, the CNTs/AlSi10Mg composites was firstly prepared and then processed by selective laser melting. The powder preparation, SLM process, and microstructure evolution, properties were clarified. The results showed that CNTs were decomposed due to the direct interaction with the laser beam. The SLMed composites displayed a similar microstructure to that of SLMed AlSi10Mg. The common brittleness phase Al{sub 4}C{sub 3} didn't form, and the carbon dispersion strengthening was observed. The electrical resistivity of the composites was reduced significantly and the hardness was improved. - Highlights: • Carbon nanotubes/AlSi10Mg powder were prepared by slurry ball milling process. • Carbon nanotubes/AlSi10Mg composites were firstly prepared by SLM. • The electrical resistivity of the composites was significantly reduced and hardness was improved.

  4. Wave dynamics and composite mechanics for microstructured materials and metamaterials

    CERN Document Server

    2017-01-01

    This volume deals with topical problems concerning technology and design in construction of modern metamaterials. The authors construct the models of mechanical, electromechanical and acoustical behavior of the metamaterials, which are founded upon mechanisms existing on micro-level in interaction of elementary structures of the material. The empiric observations on the phenomenological level are used to test the created models. The book provides solutions, based on fundamental methods and models using the theory of wave propagation, nonlinear theories and composite mechanics for media with micro- and nanostructure. They include the models containing arrays of cracks, defects, with presence of micro- and nanosize piezoelectric elements and coupled physical-mechanical fields of different nature. The investigations show that the analytical, numerical and experimental methods permit evaluation of the qualitative and quantitative properties of the materials of this sort, with diagnosis of their effective characte...

  5. Thermal Conductivity and Microstructure of Copper Coated Graphite Composite by Spark Plasma Sintering Process

    Directory of Open Access Journals (Sweden)

    Park S.H.

    2017-06-01

    Full Text Available This study focuses on the fabrication of thermal management material for power electronics applications using graphite flake reinforced copper composites. The manufacturing route involved electroless plating of copper in the graphite flake and sintering process are optimized. The microstructures, interface, thermal properties, and relative density of graphite/Cu composites are investigated. The relative density of the composites shows 99.5% after sintering. Thermal conductivities and coefficients of thermal expansion of this composites were 400-480 Wm−1K−1 and 8 to 5 ppm k−1, respectively. Obtained graphite nanoplatelets-reinforced composites exhibit excellent thermo-physical properties to meet the heat dispersion and matching requirements of power electronic devices to the packaging materials.

  6. Microstructure and enhanced photoluminescence of ZnO/V2O5 composite

    Science.gov (United States)

    Zhan, Xinghua; Chen, Fei; Salcic, Zoran; Wong, Chee Cheong; Gao, Wei

    2017-07-01

    Submicron zinc oxide (ZnO) spheres prepared by a two-stage hydrothermal method were assembled into a layer on a substrate by vertical deposition. Vanadium pentoxide (V2O5) was deposited onto the top of ZnO spheres by magnetron sputtering followed by annealing in oxygen atmosphere at 500∘C for an hour. The microstructures and optical properties of the prepared samples were investigated. The photoluminescence (PL) results indicate that the intensity of PL in the annealed ZnO/V2O5 composite microstructures is dramatically improved compared to the constituent V2O5 and ZnO spheres. The intensity enhancement of light emission from the ZnO/V2O5 composite may be attributed to the special microstructure of ZnO particles and the coupling effect between ZnO and V2O5. This transition oxide composite may possibly be developed into a new type of high-efficiency light emitting material.

  7. Fabrication and microstructures of functional gradient SiBCN–Nb composite by hot pressing

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Min, E-mail: lcxsunmin@163.com [Beijing Institute of Control Engineering, Beijing 100190 (China); Fu, Ruoyu; Chen, Jun; Mao, Xiaofang; Zhang, Jie [Beijing Institute of Control Engineering, Beijing 100190 (China); Yang, Zhihua; Liang, Bin [Institute for Advanced Ceramics, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080 (China)

    2016-04-15

    A functional gradient material with five layers composed of SiBCN ceramic and niobium (Nb) was prepared successfully by hot pressing. The phase composition, morphology features and microstructures were investigated in each layer of the gradient material. The Nb-containing compounds involving NbC, Nb{sub 6}C{sub 5}, Nb{sub 4}C{sub 3}, Nb{sub 5}Si{sub 3} and NbN increase with the volume fraction of Nb increasing in the sub-layer. They are randomly scattered (≤ 25 vol.% Nb), then strip-like, and finally distribute continuously (≥ 75 vol.% Nb). The size of BN(C) and SiC grains in Nb-containing layers is larger than in 100% SiBCN layer due to the loss of the capsule-like structures. No distinct interfaces form in the transition regions indicating the gradual changes in phase composition and microstructures. - Highlights: • A functional gradient SiBCN–Nb material was prepared successfully by hot pressing. • Phase composition, morphology features and microstructures were investigated. • Thermodynamic calculation was used to aid in the phase analysis. • No distinct interfaces form typical of the functional gradient material.

  8. Comparing the microstructure and mechanical properties of Bombyx mori and Antheraea pernyi cocoon composites.

    Science.gov (United States)

    Guan, Juan; Zhu, Wenshu; Liu, Binghe; Yang, Kang; Vollrath, Fritz; Xu, Jun

    2017-01-01

    Silkworm cocoon material is a natural composite consisting of silk fibres and sericin glues. Both domestic and wild silkworms produce cocoons but with different functionality - one selected by man for textile manufacture whereas the other selected by Nature to provide damage-tolerant housing. To understand the structure--property relationship of cocoons, we evaluated and compared the microstructure and mechanical properties of two representative cocoon walls. It appears that a "brittle and weak" composite is produced by domestic Bombyx mori (B. mori) while a "tough and strong" composite is made by wild Antheraea pernyi (A. pernyi). The superior mechanical performance of A. pernyi cocoons can be attributed to both the material properties and the fibre network microstructures. Failure mechanisms and different failure modes for cocoon fibre composites were also proposed. A finite element model revealed qualitatively the effect of fibre properties and inter-fibre bonding strength on the mechanical properties of the fibre network. It emerged that both good mechanical properties of fibres and robust inter-fibre bonding were required for tough and strong fibre composites. The new insights could inspire new designs of synthetic fibre composites with enhanced mechanical properties. Natural cocoons are an important group of natural fibre composites with versatile functionalities. Previous studies have focused on the diversity of cocoon species and different morphological and mechanical features. It was suggested that the cocoon network structure determined the final mechanical properties of the cocoon composite. Nevertheless, the full structure-propertyfunction relationships for the cocoon composite are not understood. By studying two distinct cocoon species with specific functionalities, we prove that the mechanical properties of two cocoons are determined by both network properties and fibre properties. A robust fibre network is the prerequisite, within which the good

  9. Influence of SiO2 Particles on Microstructures and Properties of Ni-W-P-CeO2-SiO2 Nano-Composite Coatings

    Institute of Scientific and Technical Information of China (English)

    Xu Ruidong; Wang Junli; Guo Zhongcheng; Wang Hua

    2007-01-01

    Ni-W-P-CeO2-SiO2 nano-composite coatings were prepared on the carbon steel surface by pulse co-deposition of nickel, tungsten, phosphorus, nano-CeO2 and nano-SiO2 particles. The influence of nano-SiO2 particles concentrations in electrolyte on microstructures and properties of the nano-composite coatings were researched, and the characteristics were assessed by chemical compositions, element distribution, deposition rate, microhardness and microstructures. The results indicate that when nano-SiO2 particles concentrations in electrolyte are controlled at 20g·L-1, the deposition rate with 27.07μm·h-1 and the microhardness with 666 Hv of the nano-composite coatings are highest, element line scanning and area scanning analyses show that the average contents of elements W, P, Si and Ce in the nano-composite coatings are close. displaying that the distribution of every element within the nano-composite coatings is even. An increase in nano-SiO2 particles concentrations in electrolyte (when lower than 20g·L-1) leads to refinement in grain structure of nano-composite coatings, but when it improved to 30g·L-1, the crystallite sizes increase again and in the meantime there are a lot of small boss with nodulation shape appearing on the surface of nano-composite coatings.

  10. Chemical and Microstructural Changes in Metallic and Ceramic Materials Exposed to Venusian Surface Conditions

    Science.gov (United States)

    Costa, Gustavo C. C.; Jacobson, Nathan S.; Lukco, Dorothy; Hunter, Gary W.; Nakley, Leah; Radoman-Shaw, Brandon G.; Harvey, Ralph P.

    2017-01-01

    The chemical and microstructural behavior of steels (304, 310, 316, and 1018), nickel-based alloys (beta-NiAl, G30, and 625), gold, coatings (4YSZ, SilcoNert(TradeMark) 1040 (SilcoTek Co.), Dursan(TradeMark)? (SilcoTek Co.), and porcelain), and bulk ceramics (alpha-Al2O3, fused quartz, beta-SiC, and alpha-Si3N4) were probed after exposure to supercritical fluid with temperature, pressure, and composition mimicking the Venus lower atmosphere. Exposures were carried out in the Glenn Extreme Environments Rig (GEER) chamber with the Venusian gas mixture (96.5% CO2, 3.5% N2, 30 ppm H2O, 150 ppm SO2, 28 ppm CO, 15 ppm OCS, 3 ppm H2S, 0.5 ppm HCl, and 5 ppb HF) at 92 bar (1330 psi) and 467 C (873 F) for durations of 10 and 42 days. An additional 21-day exposure was done to stainless steel uncoated and coated with SilcoNert(TradeMark) and Dursan(TradeMark). Samples were characterized before and after the experiment by gravimetric analysis, X-ray diffraction, X-ray photoelectron and Auger electron spectroscopies, and cross section electron microscopy analysis. All steels exposed for 10 and 42 days formed double-layered scales consisting mainly of metal (Cr, Fe, Ni) oxides and sulfides showing different chemistry, microstructure, and crystalline phases. The alloys G30 and 625 formed double-layered scales consisting mainly of nickel sulfides. After 10 days, the beta-NiAl exhibited no detectable scale, suggesting only a very thin film was formed. The 304 and 316 stainless steels coated with 4YSZ that were exposed for 10 and 42 days exhibited no significant oxidation. Steel 1018 coated with 4YSZ exhibited a corrosion scale of iron and/or chromium oxide formed at the base of the alloy. The 304 steel coated with porcelain did not exhibit corrosion, although the coating exhibited recession. SilcoNert(TradeMark) exposed for 10 and 42 days exhibited recession, although no oxidation was found to occur at the base of the alloy. Stainless steel 316 coated with Dursan

  11. Effect of particle size on microstructure and mechanical properties of composites produced by ARB process

    Energy Technology Data Exchange (ETDEWEB)

    Jamaati, Roohollah, E-mail: r.jamaatikenari@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Amirkhanlou, Sajjad; Toroghinejad, Mohammad Reza; Niroumand, Behzad [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2011-02-25

    Research highlights: {yields} Microstructure of MMC with larger particles becomes completely uniform, sooner. {yields} When the number of cycles increased, tensile strength for both samples improved. {yields} Up to the seventh cycle, tensile strength of MMC with larger particles was bigger. {yields} First, the tensile elongation of MMCs was decreased, and then it was improved. - Abstract: In the present work, Al/10 vol.% SiC metal matrix composite (MMC) was manufactured by accumulative roll bonding (ARB) process. The silicon carbide particles with two various particle sizes of 40 and 2 {mu}m were used. Effect of particle size on microstructure (by scanning electron microscopy) and mechanical properties (tensile strength and elongation) at various ARB cycles was investigated. It was found that the microstructural evolution in MMC with 40 {mu}m particle size was more salient compared to the MMCs with 2 {mu}m particle size. Also, the composite strip with 40 {mu}m particle size became uniform with high bonding quality and without any porosity sooner than the strip of 2 {mu}m particle size. Moreover, when the number of cycles was increased, the tensile strength for both samples was improved. The tensile strength of the composite strip with 40 {mu}m particle size was more than the composite strip with 2 {mu}m up to the seventh cycle. By increasing the number of cycles after the seventh cycle, the value of tensile strength of MMC with 40 {mu}m particle size became saturated and then decreased, and its tensile strength became less than that of the composite with 2 {mu}m particle size for the ninth and eleventh cycles. Up to the seventh cycle, when the number of ARB cycles was increased, the elongation of composite strips was decreased, but after the ninth cycle, the tensile elongation for both samples was improved.

  12. Microstructure and compressive property of in situ Mg{sub 2}Si reinforced Mg-microballoon composites

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.A., E-mail: liuja@jlu.edu.cn [Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun 130025 (China); Yu, S.R., E-mail: yusr@jlu.edu.cn [Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun 130025 (China); College of Mechanical and Electronic Engineering, China University of Petroleum, Qingdao 266555 (China); Huang, Z.Q. [Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun 130025 (China); College of Materials Science and Engineering, Jiamusi University, Jiamusi 154007 (China); Ma, G.; Liu, Y. [Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun 130025 (China)

    2012-10-05

    Highlights: Black-Right-Pointing-Pointer In situ Mg{sub 2}Si reinforced AZ91-microballoon composites were fabricated. Black-Right-Pointing-Pointer The composites display a typical compressive behavior of brittle foams. Black-Right-Pointing-Pointer The failure mechanisms of the composites were presented. Black-Right-Pointing-Pointer The microballoon cracking is the primary fracture mechanism. - Abstract: The in situ Mg{sub 2}Si particles reinforced AZ91-microballoon composites were fabricated by preforming pressure-infiltrated process using hollow flyash cenospheres (FAC, 180-250 {mu}m) as the preform. The microstructure and chemical components of the composites were observed and analyzed by optical microscopy (OM), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS), respectively. The compressive properties were investigated by compression test. The fracture mechanisms of the composites were concluded by fractography observation. The experiment results show that the FAC distributed homogeneously in the composites. Many FAC were hollow, and some FAC were filled with Mg alloy matrix. The shapes of most of the Mg{sub 2}Si compounds in situ formed were polygons, and their sizes were 10-25 {mu}m. The AZ91-microballoon composites display a typical behavior of brittle foam material in the compression test. There are three main failure modes according to the fractography study: microballoon cracking, debonding of the interface between FAC microballoon and matrix and debonding of the interface between inner matrix and FAC shell. Among these modes, the microballoon cracking is the primary fracture mechanism.

  13. Microstructure design and control for improvement of thermal conductivity of SiCf/SiC composites

    Science.gov (United States)

    Yoshida, Katsumi; Kajikawa, Satoshi; Yano, Toyohiko

    2013-09-01

    We focused on microstructure design and control of SiCf/SiC composite based on our fabrication process and the simple model of thermal conductivity of the SiCf/SiC composite, and the improvement of their thermal conductivity was investigated. Submicron-sized α-SiC with coarse α-SiC particles addition was used as the starting materials for SiC matrix layers between SiC fiber cloths because it showed higher thermal conductivity. The thermal conductivity of PCS-composite, EPD-composite and Untreated-composite was 18, 45 and 56 W/m K, respectively, and these values were much higher than that of the composites reported in our previous papers. Untreated composite is simply considered as a multilayered composite consisting of the SiC fiber layers with high thermal conductivity and the SiC matrix layers with high thermal conductivity. The experimental thermal conductivity of the Untreated composite well agreed with the theoretical thermal conductivity calculated by series model. Thermal conductivity of EPD-composite was lower than that of Untreated composite. In EPD-composite, the thermal conductivity of SiC fiber layers with the SiC matrix should be lower than that of SiC fibers themselves due to the SiC matrix with slightly lower thermal conductivity in SiC fiber cloths. The SiC matrix formed in SiC fiber cloths in PCS-composite was derived from PCS, and this matrix would show much lower thermal conductivity due to its low crystallinity. PCS-composite is considered as a multilayered composite consisting of the SiC fiber layers with very low thermal conductivity and the SiC matrix layers with high thermal conductivity, and thus the PCS-composite has low thermal conductivity. In this study, higher thermal conductivity of SiCf/SiC composite was successfully achieved by EPD process and using microstructure-controlled SiC matrix and polycrystalline SiC fibers.

  14. Microstructure and dielectric properties of biocarbon nanofiber composites

    Science.gov (United States)

    2013-01-01

    A kind of web-like carbon with interconnected nanoribbons was fabricated using bacterial cellulose pyrolyzed at various temperatures, and the microwave dielectric properties were investigated. Bacterial cellulose was converted into carbonized bacterial cellulose (CBC) with a novel three-dimensional web built of entangled and interconnected cellulose ribbons when the carbonization temperature was below 1,200°C; the web-like structure was destroyed at a temperature of 1,400°C. Composites of CBC impregnated with paraffin wax exhibited high complex permittivity over a frequency range of 2 to 18 GHz, depending on the carbonization temperature. Both real and imaginary parts were the highest for CBC pyrolyzed at 1,200°C. The complex permittivity also strongly depended on CBC loadings. For 7.5 wt.% loading, the real and imaginary permittivities were about 12 and 4.3, respectively, and the minimum reflection loss was -39 dB at 10.9 GHz. For 30 wt.% loading, the real and imaginary permittivities were about 45 and 80, respectively, and the shielding efficiency was more than 24 dB in the measured frequency range and could be up to 39 dB at 18 GHz. The electromagnetic properties were assumed to correlate with both the dielectric relaxation and the novel web-like structure. PMID:23800353

  15. Statistics of Microstructure, Peak Stress and Interface Damage in Fiber Reinforced Composites

    DEFF Research Database (Denmark)

    Kushch, Volodymyr I.; Shmegera, Sergii V.; Mishnaevsky, Leon

    2009-01-01

    This paper addresses an effect of the fiber arrangement and interactions on the peak interface stress statistics in a fiber reinforced composite material (FRC). The method we apply combines the multipole expansion technique with the representative unit cell model of composite bulk, which is able...... sensitive to the fiber arrangement, particularly cluster formation. An explicit correspondence between them has been established and an analytical formula linking the microstructure and peak stress statistics in FRCs has been suggested. Application of the statistical theory of extreme values to the local...

  16. Coesite and diamond inclusions, exsolution microstructures and chemical patterns in ultrahigh pressure garnet from Ceuta (Northern Rif, Spain)

    Science.gov (United States)

    Ruiz-Cruz, M. D.; Sanz de Galdeano, C.

    2013-09-01

    Garnet from diamondiferous granulites of Ceuta (Betic-Rif cordillera, Spain and Morocco) contains a variety of inclusion types. To better understand the evolution of these rocks during the ultrahigh pressure event, two samples (1 and 2) were selected for the detailed study of garnet. Primary inclusions of apatite, quartz, coesite, rutile and retrograded pyroxene, and exsolution microstructures of rutile characterize garnet from sample 1, whereas exsolution microstructures of quartz, coesite, apatite and rutile, and inclusions formed from a melt characterize garnet from sample 2, indicating that peak metamorphic conditions were recorded by sample 2. In contrast, the chemical patterns of garnet suggest an inverse situation. Garnet from sample 1 has high Ca- and low Mn contents and high XMg, characteristic of growth at high pressure and temperature whereas garnet from sample 2 shows high Mn and low Ca contents and low XMg, characteristic of garnet formed at lower temperature and pressure. The contrasting compositions are interpreted as reflecting differences in the position of the metamorphic path followed by both samples relative to the solidus: Garnets from sample 1 are interpreted as formed below the solidus whereas garnets from sample 2 are interpreted as formed in the presence of a melt, which caused notable enrichment of garnet in Mn and depletion in Ca relative to garnet from sample 1. Due to extensive low-pressure Hercynian melting that caused generalized migmatization and melt mobilization, whole-rock composition of the samples notably changed, thus preventing the accurate estimation of the physical conditions characterizing the older ultrahigh pressure event. Estimations based on experimental determinations of the phosphorous solubility in garnet suggest that peak pressure conditions were on the order of 6-7 GPa, which put the origin of the studied crustal rocks at depths greater than 200 km.

  17. Connection between chemical zonation and microstructure as an indicator for the fabric development in eclogites

    Science.gov (United States)

    Neufeld, Kai; Kongsro Finstad, Ane; Stünitz, Holger; Konopasek, Jiri

    2017-04-01

    Eclogites are the most important piece of evidence of high pressure conditions in subduction zones. The deformation of eclogites and the driving forces for their fabric development are an interesting topic potentially allowing to determine deformation rates in subduction zones. Most previous studies suggested disclocation creep to be the principal process causing the fabric development. The viability of this process may be tested by studying the chemical zonation of garnet and omphacite in order to track and quantify texture and microstructure development in eclogites. The aim of this study is to assess the influence of crystal growth on mineral preferred orientation and therefore its role in fabric development in eclogite-facies rocks. Caledonian, Variscan and Alpine eclogites from four different locations are studied, representing a wide range of metamorphic conditions as well as different subduction and exhumation rates. Variscan eclogites from the western Bohemian Massif (Czech Republic) show elongated garnet grain shapes parallel to the rock`s extension direction. Asymmetric chemical zoning developed during prograde garnet growth together with the elongated garnet grain shape and can be related to a corresponding prograde (in terms of pressure change) chemical zoning in omphacite grains. Crystal plastic deformation of garnet can be excluded based on chemical zonation patterns. Preliminary results of chemical, microstructural and texture data indicate a direct relationship between the growth of garnet and omphacite grains with fabric development during prograde and peak metamorphic conditions. A later stage of retrogression observed along garnet and omphacite grain boundaries produces mineral phases with an orientation clearly parallel to the prograde fabric orientation. The results will be compared with those of Caledonian eclogites from the Western Gneiss Region and the Tromsø Nappe (southwestern and northern Norway, respectively), as well as with Alpine

  18. Microstructural Influence on Deformation and Fatigue Life of Composites Using the Generalized Method of Cells

    Science.gov (United States)

    Arnold, S. M.; Murthy, P.; Bednarcyk, B. A.; Pineda, E. J.

    2015-01-01

    A fully coupled deformation and damage approach to modeling the response of composite materials and composite laminates is presented. It is based on the semi-­-analytical generalized method of cells (GMC) micromechanics model as well as its higher fidelity counterpart, HFGMC, both of which provide closed-form constitutive equations for composite materials as well as the micro scale stress and strain fields in the composite phases. The provided constitutive equations allow GMC and HFGMC to function within a higher scale structural analysis (e.g., finite element analysis or lamination theory) to represent a composite material point, while the availability of the micro fields allow the incorporation of lower scale sub­-models to represent local phenomena in the fiber and matrix. Further, GMC's formulation performs averaging when applying certain governing equations such that some degree of microscale field accuracy is surrendered in favor of extreme computational efficiency, rendering the method quite attractive as the centerpiece in a integrated computational material engineering (ICME) structural analysis; whereas HFGMC retains this microscale field accuracy, but at the price of significantly slower computational speed. Herein, the sensitivity of deformation and the fatigue life of graphite/epoxy PMC composites, with both ordered and disordered microstructures, has been investigated using this coupled deformation and damage micromechanics based approach. The local effects of fiber breakage and fatigue damage are included as sub-models that operate on the microscale for the individual composite phases. For analysis of laminates, classical lamination theory is employed as the global or structural scale model, while GMC/HFGMC is embedded to operate on the microscale to simulate the behavior of the composite material within each laminate layer. A key outcome of this study is the statistical influence of microstructure and micromechanics idealization (GMC or HFGMC) on

  19. Fabrication, microstructural characterization and wear characteristics of A380 alloy-alumina composites

    KAUST Repository

    Nurani, Sheikh Jaber

    2016-03-10

    To obtain better mechanical and tribological properties than aluminium alloys aluminium is reinforced with alumina particles making aluminium metal matrix composites. In this work scrap piston A380 alloy was used as the matrix alloy. Alumina particles were added by 5%, 10% and 15% into matrix alloy respectively to form desired composites by stir casting technique. Pin on disc wear testing machine with counter surface as steel disc of hardness HRC 32 and surface roughness of 0.62 μm was used to conduct the wear test. In result composites showed superior wear resistance property over A380 alloy. The effect of load, sliding speed and sliding distance on wear behaviour were also examined in this study. Wear mechanism was identified from the worn surface. Both optical and scanning electron microscope (SEM) of the composites was performed to determine the microstructures. Optical micrograph shows grain size decreases with addition of alumina particles. EDS analysis was performed to confirm the presence of α-Al matrix, primary Si particles and intermetallic. As a general method, phase compositions were analyzed by using a scanning electron microscope (SEM) equipped with an energy dispersive spectroscopy (EDS). Optical microstructures were consistent with the SEM micrographs. © 2015 IEEE.

  20. Development of Ferrite-Coated Soft Magnetic Composites: Correlation of Microstructure to Magnetic Properties

    Science.gov (United States)

    Sunday, Katie Jo

    Soft magnetic composites (SMCs) comprised of ferrite-coated ferrous powder permit isotropic magnetic flux capabilities, lower core losses, and complex designs through the use of traditional powder metallurgy techniques. Current coating materials and methods are vastly limited by the nonmagnetic properties of organic and some inorganic coatings and their inability to withstand high heat treatments for proper stress relief of core powder after compaction. Ferrite-based coatings are ferrimagnetic, highly resistive, and boast high melting temperatures, thus providing adequate electrical barriers between metallic particles. These insulating layers are necessary for reducing eddy current losses by increasing resistivity in order to improve the overall magnetic efficiency and subsequent frequency range. The goals of this work are to correlate ferrite-coated Fe powder composites microstructure for the coating and core powder to magnetic properties such as permeability, coercivity, and core loss. We first explore the relevant concepts of SMC materials from their composition to processing steps to pertinent properties. This thesis employs a suite of characterization techniques for powder and composite properties. We use X-ray diffraction, scanning electron microscopy, and transmission electron microscopy to provide a complete understanding of the effect of processing conditions on ferrite-coated Fe-based SMCs. Magnetic, mechanical, and electrical properties are then analyzed to correlate microstructural features and determine their effect on such properties. In the second part of this thesis, we present a proof of concept study on Al2O3- and Al2O3- Fe3O4-coated Fe powder composites, illustrating magnetization is highly dependent on ferromagnetic volume. We then expand on previous work to compare an ideal, crystalline state using Fe3O 4-Fe thin film heterostructures to a highly strained state using bulk powder studies. Fe3O4-coated Fe composites are produced via mechanical

  1. Interfacial Microstructure and Enhanced Mechanical Properties of Carbon Fiber Composites Caused by Growing Generation 1-4 Dendritic Poly(amidoamine) on a Fiber Surface.

    Science.gov (United States)

    Gao, Bo; Zhang, Ruliang; Gao, Fucheng; He, Maoshuai; Wang, Chengguo; Liu, Lei; Zhao, Lifen; Cui, Hongzhi

    2016-08-23

    In an attempt to improve the mechanical properties of carbon fiber composites, propagation of poly(amidoamine) (PAMAM) dendrimers by in situ polymerization on a carbon fiber surface was performed. During polymerization processes, PAMAM was grafted on carbon fiber by repeated Michael addition and amidation reactions. The changes in surface microstructure and the chemical composition of carbon fibers before and after modification were investigated by atomic force microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. All the results indicated that PAMAM was successfully grown on the carbon fiber surface. Such propagation could significantly increase the surface roughness and introduce sufficient polar groups onto the carbon fiber surface, enhancing the surface wettability of carbon fiber. The fractured surface of carbon fiber-reinforced composites showed a great enhancement of interfacial adhesion. Compared with those of desized fiber composites, the interlaminar shear strength and interfacial shear strength of PAMAM/fiber-reinforced composites showed increases of 55.49 and 110.94%, respectively.

  2. Microstructure, Composition, and Impact Toughness Across the Fusion Line of High-Strength Bainitic Steel Weldments

    Science.gov (United States)

    Lan, Liangyun; Kong, Xiangwei; Chang, Zhiyuan; Qiu, Chunlin; Zhao, Dewen

    2017-09-01

    This paper analyzed the evolution of microstructure, composition, and impact toughness across the fusion line of high-strength bainitic steel weldments with different heat inputs. The main purpose was to develop a convenient method to evaluate the HAZ toughness quickly. The compositions of HAZ were insensitive to higher contents of alloy elements ( e.g., Ni, Mo) in the weld metal because their diffusion distance is very short into the HAZ. The weld metal contained predominantly acicular ferrite at any a heat input, whereas the main microstructures in the HAZ changed from lath martensite/bainite to upper bainite with the increasing heat input. The evolution of HAZ toughness in relation to microstructural changes can be revealed clearly combined with the impact load curve and fracture morphology, although the results of impact tests do not show an obvious change with heat input because the position of Charpy V notch contains the weld metal, HAZ as well as a part of base metal. As a result, based on the bead-on-plate welding tests, the welding parameter affecting the HAZ toughness can be evaluated rapidly.

  3. Microstructure Effects on Spall Strength of Titanium-based Bulk Metallic Glass Composites

    Science.gov (United States)

    Diaz, Rene; Hofmann, Douglas; Thadhani, Naresh; Georgia Tech Team; GT-JPL Collaboration

    2017-06-01

    The spall strength of Ti-based metallic glass composites is investigated as a function of varying volume fractions (0-80%) of in-situ formed crystalline dendrites. With increasing dendrite content, the topology changes such that neither the harder glass nor the softer dendrites dominate the microstructure. Plate-impact experiments were performed using the 80-mm single-stage gas gun over impact stresses up to 18 GPa. VISAR interferometry was used to obtain rear free-surface velocity profiles revealing the velocity pullback spall failure signals. The spall strengths were higher than for Ti-6Al-4V alloy, and remained high up to impact stress. The influence of microstructure on the spall strength is indicated by the constants of the power law fit with the decompression strain rate. Differences in fracture behavior reveal void nucleation as a dominant mechanism affecting the spall strength. The microstructure with neither 100% glass nor with very high crystalline content, provides the most tortuous path for fracture and therefore highest spall strength. The results allow projection of spall strength predictions for design of in-situ formed metallic glass composites. ARO Grant # W911NF-09 ``1-0403 NASA JPL Contract # 1492033 ``Prime # NNN12AA01C; NSF GRFP Grant #DGE-1148903; and NDSE & G.

  4. The effects of addition of La{sub 2}O{sub 3} on the microstructure and mechanical properties of carbon/carbon composites

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jinhua, E-mail: lujinhua@nwpu.edu.cn; Yang, Binke; Li, Hejun; Fu, Qiangang; Zhang, Weiben

    2014-07-29

    For the purpose of comparison, C/C composites were prepared with and without lanthanum oxide (La{sub 2}O{sub 3}) by thermal gradient chemical vapour infiltration (TCVI). Natural gas was used as the carbon source, and N{sub 2} was selected as the diluent gas and protected gas in the experiments. The effects of percentage composition of La{sub 2}O{sub 3} on the microstructure and mechanical properties were investigated. The microstructure was investigated via polarized light microscope (PLM) and scanning electron microscope (SEM). The mechanical properties were studied via three-point flexural testing. The results indicate that the addition of La{sub 2}O{sub 3} has a considerable effect on pyrocarbon texture, with the matrix of the pure C/C composite being composed of ISO and smooth laminar (SL) pyrocarbon, whereas the matrix of composites with La{sub 2}O{sub 3} was mainly dominated by SL pyrocarbon. The differences are the refinement of pyrocarbon texture and increase of the extinction angle with the increasing content of La{sub 2}O{sub 3}. Moreover, it was observed that the ultimate flexural strength of C/C composites with La{sub 2}O{sub 3} was significantly improved, from which it can be deduced that La{sub 2}O{sub 3} improves the interface roughness and interface bonding strength between carbon fibres and the pyrocarbon matrix by interfacial chemical reaction.

  5. Microstructural and Mechanical Study of Inconel 625 – Tungsten Carbide Composite Coatings Obtained by Powder Laser Cladding

    Directory of Open Access Journals (Sweden)

    Huebner J.

    2017-06-01

    Full Text Available This study focuses on the investigation of fine (~0.54 μm tungsten carbide particles effect on structural and mechanical properties of laser cladded Inconel 625-WC composite. Three powder mixtures with different Inconel 625 – WC weight ratio (10, 20 and 30 weight % of WC were prepared. Coatings were made using following process parameters: laser beam diameter ø ≈ 500 μm, powder feeder rotation speed – 7 m/min, scanning velocity – 10 m/min, laser power – 220 W changed to 320 W, distance between tracks – 1 mm changed to 0.8 mm. Microstructure and hardness were investigated. Coatings produced by laser cladding were crack and pore free, chemically and structurally homogenous. High cooling rate during cladding process resulted in fine microstructure of material. Hardness improved with addition of WC from 396.3 ±10.5 HV for pure Inconel 625, to 469.9 ±24.9 HV for 30 weight % of WC. Tungsten carbide dissolved in Inconel 625 which allowed formation of intergranular eutectic that contains TCP phases.

  6. Characterisation of Microstructure of We43 Magnesium Matrix Composites Reinforced with Carbon Fibres

    Directory of Open Access Journals (Sweden)

    Gryc A.

    2016-06-01

    Full Text Available In the paper the microstructures of WE43 matrix composites reinforced with carbon fibres have been characterised. The influence of reinforcement type and T6 heat treatment (a solution treatment at 525°C for 8 h, a hot water quench and a subsequent ageing treatment at 250°C for 16 h on microstructure have been evaluated. The light microscope and scanning electron microscope investigations have been carried out. No significant differences in samples reinforced with non-coated textiles have been reported. The substantial changes in sample reinforced with nickel-coated textile have been observed. The segregation of alloying elements to the matrix-reinforcement layer has been identified. The T6 heat treatment caused the appearance of disperse precipitates of β phase, but the process cannot be considered as satisfactory (irregular distribution, low volume fraction, relatively large size.

  7. Effect Of Milling Time On Microstructure Of AA6061 Composites Fabricated Via Mechanical Alloying

    Directory of Open Access Journals (Sweden)

    Tomiczek B.

    2015-06-01

    Full Text Available The aim of this work is to determine the effect of manufacturing conditions, especially milling time, on the microstructure and crystallite size of a newly developed nanostructural composite material with the aluminium alloy matrix reinforced with halloysite nanotubes. Halloysite, being a clayey mineral of volcanic origin, is characterized by high porosity and large specific surface area. Thus it can be used as an alternative reinforcement in metal matrix composite materials. In order to obtain this goal, composite powders with fine microstructures were fabricated using high-energy mechanical alloying, cold compacting and hot extrusion techniques. The obtained composite powders of aluminium alloy reinforced with 5, 10 and 15 wt% of halloysite nanotubes were characterized with SEM, TEM and XRD analysis. It has been proven that the use of mechanical alloying leads to a high degree of deformation, which, coupled with a decreased grain size below 100 nm and the dispersion of the refined reinforcing particles–reinforces the material very well.

  8. X-ray Tomographic Study of Chemical Vapor Infiltration Processing of Ceramic Composites.

    Science.gov (United States)

    Kinney, J H; Breunig, T M; Starr, T L; Haupt, D; Nichols, M C; Stock, S R; Butts, M D; Saroyan, R A

    1993-05-07

    The fabrication of improved ceramic-matrix composites will require a better understanding of processing variables and how they control the development of the composite microstructure. Noninvasive, high-resolution methods of x-ray tomography have been used to measure the growth of silicon carbide in a woven Nicalon-fiber composite during chemical vapor infiltration. The high spatial resolution allows one to measure the densification within individual fiber tows and to follow the closure of macroscopic pores in situ. The experiments provide a direct test of a recently proposed model that describes how the surface area available for matrix deposition changes during infiltration. The measurements indicate that this surface area is independent of the fiber architecture and location within the preform and is dominated by large-scale macroporosity during the final stages of composite consolidation. The measured surface areas are in good agreement with the theoretical model.

  9. Synthesis by aerosol assisted chemical vapor deposition and microstructural characterization of PbTiO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ramos-Cano, J.; Hurtado-Macías, A.; Antúnez-Flores, W.; Fuentes-Cobas, L.; González-Hernández, J.; Amézaga-Madrid, P.; Miki-Yoshida, M., E-mail: mario.miki@cimav.edu.mx

    2013-03-01

    Thin films of PbTiO{sub 3} were deposited onto (001) silicon single-crystal substrates by aerosol assisted chemical vapor deposition method at different temperatures, using organometallic precursors. With the objective of stabilizing and homogenizing the perovskite phase, the films were annealed at 800 °C, in a Pb-rich atmosphere, for 4 and 6 h. The evolution of compositions and microstructure of the films was characterized before and after annealing, by grazing incidence X-ray diffraction, two-dimensional detection of grazing incidence diffraction with synchrotron radiation, scanning electron microscopy and high resolution transmission electron microscopy. X-ray diffraction results showed that the crystalline structure of optimized PbTiO{sub 3} films corresponded to a tetragonal perovskite-type, with lattice parameters a = 0.387(4) nm and c = 0.406(4) nm. In addition, the inverse pole figure of the fiber texture representation, had a Gaussian (1, 1, 0) component and distribution width Ω = 15°. - Highlights: ► We report the synthesis of homogeneous PbTiO{sub 3} thin films on Si substrates. ► They were synthesized by aerosol assisted chemical vapor deposition method. ► Detailed characterization by X-ray diffraction and electron microscopy was performed. ► Crystalline structure of PbTiO{sub 3} films corresponded to a tetragonal perovskite-type. ► The fiber texture representation had a Gaussian (1, 1, 0) component.

  10. Microstructural and hardness behavior of graphene-nanoplatelets/aluminum composites synthesized by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Pérez-Bustamante, R. [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes No. 120, C.P. 31109 Chihuahua, Chih. (Mexico); Bolaños-Morales, D.; Bonilla-Martínez, J. [Universidad Autónoma de Chihuahua (UACH), Facultad de Ingeniería, Circuito No. 1 Nuevo Campus Universitario, C.P. 31125 Chihuahua, Chih. (Mexico); Estrada-Guel, I. [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes No. 120, C.P. 31109 Chihuahua, Chih. (Mexico); Martínez-Sánchez, R., E-mail: roberto.martinez@cimav.edu.mx [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes No. 120, C.P. 31109 Chihuahua, Chih. (Mexico)

    2014-12-05

    Highlights: • Pure aluminum was reinforced with graphene-platelets by using mechanical milling. • The composites were studied after sintering condition. • Milling time and graphene-platelet enhance the mechanical behavior of the composites. - Abstract: Graphene can be considered as an ideal reinforcement for the production of composites due to its outstanding mechanical properties. These characteristics offer an increased opportunity for their study in the production of metal matrix composites (MMCs). In this research, the studied composites were produced by mechanical alloying (MA). The employed milling times were of 1, 3 and 5 h. GNPs were added in 0.25, 0.50 and 1.0 wt% into an aluminum powder matrix. Milled powders were cold consolidated and subsequently sintered. Composites were microstructurally characterized with Raman spectroscopy and electron microscopy and X-ray diffraction. The hardness behavior in composites was evaluated with a Vickers micro-hardness test. A homogeneous dispersion of graphene during MA and the proper selection of sintering conditions were considered to produce optimized composites. The obtained results with electron microscopy indicate a homogeneous dispersion of GNPs into the aluminum matrix. Analyses showed GNPs edges where the structure of the graphene layers conserved after MA is observed.

  11. Microstructure, microhardness and wear resistance of VCp/Fe surface composites fabricated in situ

    Science.gov (United States)

    Ye, Fangxia; Hojamberdiev, Mirabbos; Xu, Yunhua; Zhong, Lisheng; Zhao, Nana; Li, Yaping; Huang, Xing

    2013-09-01

    The vanadium carbide particles (VCp)/Fe surface composites were in situ fabricated by a technique combining infiltration casting with subsequent heat treatment. The effects of different heat treatment times on the phase evolution, microstructure, microhardness and wear resistance of the composite were studied by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), Vickers hardness tester and wear resistance testing instrument, respectively. The results show that only graphite, α-Fe and V8C7 phases dominate in the composite after being heat treated at 1164 °C for 3 h. The amount of V8C7 decreases gradually from the top surface of the composite to the matrix mainly composed of gray cast iron. The average microhardness of the VCp/Fe surface composites varies according to the different reaction zones as follows: 505 HV0.1 (vanadium plate), 1096 HV0.1 (composite region), and 235 HV0.1 (iron matrix). The microhardness of the composite region is four times higher than that of the iron matrix and two times higher than that of the vanadium plate. This is attributed to the formation of vanadium carbide (V2C and V8C7) crystallites as reinforcement phases within the iron matrix. The VCp/Fe surface composites exhibit a good wear resistance under two-body abrasive wear test.

  12. On-line chemical composition analyzer development

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, M.J.; Garrison, A.A.; Muly, E.C.; Moore, C.F.

    1992-02-01

    The energy consumed in distillation processes in the United States represents nearly three percent of the total national energy consumption. If effective control of distillation columns can be accomplished, it has been estimated that it would result in a reduction in the national energy consumption of 0.3%. Real-time control based on mixture composition could achieve these savings. However, the major distillation processes represent diverse applications and at present there does not exist a proven on-line chemical composition sensor technology which can be used to control these diverse processes in real-time. This report presents a summary of the findings of the second phase of a three phase effort undertaken to develop an on-line real-time measurement and control system utilizing Raman spectroscopy. A prototype instrument system has been constructed utilizing a Perkin Elmer 1700 Spectrometer, a diode pumped YAG laser, two three axis positioning systems, a process sample cell land a personal computer. This system has been successfully tested using industrially supplied process samples to establish its performance. Also, continued application development was undertaken during this Phase of the program using both the spontaneous Raman and Surface-enhanced Raman modes of operation. The study was performed for the US Department of Energy, Office of Industrial Technologies, whose mission is to conduct cost-shared R D for new high-risk, high-payoff industrial energy conservation technologies. Although this document contains references to individual manufacturers and their products, the opinions expressed on the products reported do not necessarily reflect the position of the Department of Energy.

  13. Elaboration of Alumina-Zirconia Composites: Role of the Zirconia Content on the Microstructure and Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Paola Palmero

    2013-05-01

    Full Text Available Alumina-zirconia (AZ composites are attractive structural materials, which combine the high hardness and Young’s modulus of the alumina matrix with additional toughening effects, due to the zirconia dispersion. In this study, AZ composites containing different amounts of zirconia (in the range 5–20 vol % were prepared by a wet chemical method, consisting on the surface coating of alumina powders by mixing them with zirconium salt aqueous solutions. After spray-drying, powders were calcined at 600 °C for 1 h. Green bodies were then prepared by two methods: uniaxial pressing of spray-dried granules and slip casting of slurries, obtained by re-dispersing the spray dried granulates. After pressureless sintering at 1500 °C for 1 h, the slip cast samples gave rise to fully dense materials, characterized by a quite homogeneous distribution of ZrO2 grains in the alumina matrix. The microstructure, phase composition, tetragonal to monoclinic transformation behavior and mechanical properties were investigated and are here discussed as a function of the ZrO2 content. The material containing 10 vol % ZrO2 presented a relevant hardness and exhibited the maximum value of KI0, mainly imputable to the t → m transformation at the crack tip.

  14. Elaboration of Alumina-Zirconia Composites: Role of the Zirconia Content on the Microstructure and Mechanical Properties.

    Science.gov (United States)

    Naglieri, Valentina; Palmero, Paola; Montanaro, Laura; Chevalier, Jérôme

    2013-05-16

    Alumina-zirconia (AZ) composites are attractive structural materials, which combine the high hardness and Young's modulus of the alumina matrix with additional toughening effects, due to the zirconia dispersion. In this study, AZ composites containing different amounts of zirconia (in the range 5-20 vol %) were prepared by a wet chemical method, consisting on the surface coating of alumina powders by mixing them with zirconium salt aqueous solutions. After spray-drying, powders were calcined at 600 °C for 1 h. Green bodies were then prepared by two methods: uniaxial pressing of spray-dried granules and slip casting of slurries, obtained by re-dispersing the spray dried granulates. After pressureless sintering at 1500 °C for 1 h, the slip cast samples gave rise to fully dense materials, characterized by a quite homogeneous distribution of ZrO₂ grains in the alumina matrix. The microstructure, phase composition, tetragonal to monoclinic transformation behavior and mechanical properties were investigated and are here discussed as a function of the ZrO₂ content. The material containing 10 vol % ZrO₂ presented a relevant hardness and exhibited the maximum value of KI0, mainly imputable to the t → m transformation at the crack tip.

  15. Microstructural Analysis of Al/Al2O3/Gr Powder Composites Produced by Mechanical Alloying

    Directory of Open Access Journals (Sweden)

    Gheorghe Iacob

    2011-09-01

    Full Text Available Powder samples of Al/Al2O3/Gr hybrid composites with different weight percents were obtained by mechanical alloying in a high energy ball mill. The aim of this study is to investigate the effect of alumina and graphite particles content on the microstructure of Al/Al2O3/Gr hybrid composites. Results obtained using Scanning Electron Microscopy (SEM as well as Energy-Dispersive X-ray Spectroscopy (EDS show that the addition of alumina particles as the reinforcement has a drastic effect on the size and morphology of the composite powders. Also, the addition of graphite particles as one of the reinforcing components is presumed to improve tribological properties by forming a graphite-rich lubricant film between the sliding surfaces.

  16. Computation of Effective Steady-State Creep of Porous Ni–YSZ Composites with Reconstructed Microstructures

    DEFF Research Database (Denmark)

    Kwok, Kawai; Jørgensen, Peter Stanley; Frandsen, Henrik Lund

    2015-01-01

    This paper investigates the effective steady-state creep response of porous Ni–YSZ composites used in solid oxide fuel cell applications by numerical homogenization based on three-dimensional microstructural reconstructions and steadystate creep properties of the constituent phases. The Ni phase...... is found to carry insignificant stress in the composite and has a negligible role in the effective creep behavior. Thus, when determining effective creep, porous Ni–YSZ composites can be regarded as porous YSZ in which the Ni phase is counted as additional porosity. The stress exponents of porous YSZ...... are the same as that of dense YSZ, but the effective creep rate increases by a factor of 8–10 due to porosity. The relationship of creep rate and volume fraction of YSZ computed by numerical homogenization is underestimated by most existing analytical models. The Ramakrishnan–Arunchalam creep model provides...

  17. Minimal compliance design for metal–ceramic composites with lamellar microstructures

    DEFF Research Database (Denmark)

    Piat, R.; Sinchuk, Y.; Vasoya, M.

    2011-01-01

    of lamellar domains. With local ceramic volume fraction and lamella orientation chosen as the design variables, a minimum compliance optimization problem is solved based on topology optimization and finite element methods for metal–ceramic samples with different geometries and boundary conditions....... Micromechanical models are applied for the calculation of the effective elastic properties of the composites. Optimized local lamella orientations and ceramic contents are calculated, and the difference between the initial (specimen with constant ceramic content and orientation) and the optimized designs......Metal–ceramic composites produced by melt infiltration of ceramic preforms are studied in an optimal design context. The ceramic preforms are manufactured through a process of freeze-casting of Al2O3 particle suspension. The microstructure of these composites can be presented as distributions...

  18. MICROSTRUCTURE, THERMO-PHYSICAL, MECHANICAL AND WEAR PROPERTIES OF IN-SITU FORMED BORON CARBIDE - ZIRCONIUM DIBORIDE COMPOSITE

    Directory of Open Access Journals (Sweden)

    T. S. R. Ch. Murthy

    2017-12-01

    Full Text Available Microstructure, thermos-physical, mechanical and wear properties of in-situ formed B₄C- ZrB₂ composite were investigated. Coefficient of thermal expansion, thermal diffusivity and electrical resistivity of the composite were measured at different temperatures up to 1000 °C in inert atmosphere. Flexural strength was measured up to 900 °C in air. Friction and wear properties have been studied at different loads under reciprocative sliding, using a counter body (ball of cemented tungsten carbide (WC-Co at ambient conditions. X-ray diffraction (XRD and electron probe microanalysis (EPMA confirmed the formation of ZrB₂ as the reaction product in the composite. Electrical resistivity was measured as 3.02 x 10-4Ω.m at 1000°C. Thermal conductivity measured at temperatures between 25°C and 1000 °C was in the range of 8 to 10 W/m-K. Flexural strength of the composite decreased with increase in temperature and reached a value of 92 MPa at 900°C. The average value of coefficient of friction (COF was measured as 0.15 at 20 N load and 10 Hz frequency. Increase of load from 5 N to 20 N resulted in decrease in COF from 0.24 to 0.15 at 10 Hz frequency. Specific wear rate data observed was of the order of 10-6 mm³/N-m. Both abrasive and tribo-chemical reaction wear mechanisms were observed on the worn surface of flat and counter body materials. At higher loads (≥10 N a tribo-chemical reaction wear mechanism was dominant.

  19. Microstructured and Photonic Bandgap Fibers for Applications in the Resonant Bio- and Chemical Sensors

    Directory of Open Access Journals (Sweden)

    Maksim Skorobogatiy

    2009-01-01

    Full Text Available We review application of microstructured and photonic bandgap fibers for designing resonant optical sensors of changes in the value of analyte refractive index. This research subject has recently invoked much attention due to development of novel fiber types, as well as due to development of techniques for the activation of fiber microstructure with functional materials. Particularly, we consider two sensors types. The first sensor type employs hollow core photonic bandgap fibers where core guided mode is confined in the analyte filled core through resonant effect in the surrounding periodic reflector. The second sensor type employs metalized microstructured or photonic bandgap waveguides and fibers, where core guided mode is phase matched with a plasmon propagating at the fiber/analyte interface. In resonant sensors one typically employs fibers with strongly nonuniform spectral transmission characteristics that are sensitive to changes in the real part of the analyte refractive index. Moreover, if narrow absorption lines are present in the analyte transmission spectrum, due to Kramers-Kronig relation this will also result in strong variation in the real part of the refractive index in the vicinity of an absorption line. Therefore, resonant sensors allow detection of minute changes both in the real part of the analyte refractive index (10−6–10−4 RIU, as well as in the imaginary part of the analyte refractive index in the vicinity of absorption lines. In the following we detail various resonant sensor implementations, modes of operation, as well as analysis of sensitivities for some of the common transduction mechanisms for bio- and chemical sensing applications. Sensor designs considered in this review span spectral operation regions from the visible to terahertz.

  20. Microstructure and hardness of WC-Co particle reinforced iron matrix surface composite

    Directory of Open Access Journals (Sweden)

    Zhang Peng

    2013-11-01

    Full Text Available In this study, a high Cr cast iron surface composite material reinforced with WC-Co particles 2-6 mm in size was prepared using a pressureless sand mold infiltration casting technique. The composition, microstructure and hardness were determined by means of energy dispersive spectrometry (EDS, electron probe microanalysis (EPMA, scanning electron microscope (SEM and Rockwell hardness measurements. It is determined that the obtained composite layer is about 15 mm thick with a WC-Co particle volumetric fraction of ~38%. During solidification, interface reaction takes place between WC-Co particles and high chromium cast iron. Melting and dissolving of prefabricated particles are also found, suggesting that local Co melting and diffusion play an important role in promoting interface metallurgical bonding. The composite layer is composed of ferrite and a series of carbides, such as (Cr, W, Fe23C6, WC, W2C, M6C and M12C. The inhomogeneous hardness in the obtained composite material shows a gradient decrease from the particle reinforced metal matrix composite layer to the matrix layer. The maximum hardness of 86.3 HRA (69.5 HRC is obtained on the particle reinforced surface, strongly indicating that the composite can be used as wear resistant material.

  1. Effect of Ball Milling Time on Microstructure and Hardness of Porous Magnesium/Carbon Nanofiber Composites

    Science.gov (United States)

    Xu, Huiru; Zou, Ning; Li, Qizhen

    2017-07-01

    Porous magnesium/carbon nanofiber composites were produced using a powder metallurgic method to study the effect of ball milling time on their microstructure and hardness. Three ball milling times (240 min, 320 min, and 480 min) and two carbon nanofiber concentrations (0.05% and 1%) were utilized in the production of these porous composites. The increase of ball milling time led to the gradual decrease of the average size of magnesium powders from the initial 40 µm to about 26 µm after 480 min of ball milling. The powder size range first increased with the increase of ball milling time from 240 min to 320 min, and then decreased with the further increase of ball milling time to 480 min. Among the three ball milling times, the produced porous composites from the powders after 320 min of ball milling have the largest average pore size. With the increase of ball milling time from 240 min to 320 min and then to 480 min, the average Vickers microhardness data first decreased and then increased for Mg-1%C porous composites along the cross-sections parallel to the compact processing direction, increased for the cross-sections perpendicular to the compact processing direction for Mg-1%C porous composites, first increased and then decreased for the cross-sections parallel to the compact processing direction for Mg-0.05%C porous composites, and slightly decreased for the cross-sections perpendicular to the compact processing direction for Mg-0.05%C porous composites.

  2. Chemical composition analysis and authentication of whisky.

    Science.gov (United States)

    Wiśniewska, Paulina; Dymerski, Tomasz; Wardencki, Waldemar; Namieśnik, Jacek

    2015-08-30

    Whisky (whiskey) is one of the most popular spirit-based drinks made from malted or saccharified grains, which should mature for at least 3 years in wooden barrels. High popularity of products usually causes a potential risk of adulteration. Thus authenticity assessment is one of the key elements of food product marketing. Authentication of whisky is based on comparing the composition of this alcohol with other spirit drinks. The present review summarizes all information about the comparison of whisky and other alcoholic beverages, the identification of type of whisky or the assessment of its quality and finally the authentication of whisky. The article also presents the various techniques used for analyzing whisky, such as gas and liquid chromatography with different types of detectors (FID, AED, UV-Vis), electronic nose, atomic absorption spectroscopy and mass spectrometry. In some cases the application of chemometric methods is also described, namely PCA, DFA, LDA, ANOVA, SIMCA, PNN, k-NN and CA, as well as preparation techniques such SPME or SPE. © 2014 Society of Chemical Industry.

  3. Investigation on microstructural, mechanical and electrochemical properties of aluminum composites reinforced with graphene nanoplatelets

    Directory of Open Access Journals (Sweden)

    Muhammad Rashad

    2015-10-01

    Full Text Available In present study, the microstructure, mechanical and electrochemical properties of aluminum–graphene nanoplatelets (GNPs composites were investigated before and after extrusion. The contents of graphene nanoplatelets (GNPs were varied from 0.25 to 1.0 wt.% in aluminum matrix. The composites were fabricated thorough powder metallurgy method, and the experimental results revealed that Al-0.25%GNPs composite showed better mechanical properties compared with pure Al, Al-0.50%GNPs and Al-0.1.0%GNPs composites. Before extrusion, the Al-0.25%GNPs composite showed ~13.5% improvement in ultimate tensile strength (UTS and ~50% enhancement in failure strain over monolithic matrix. On the other hand, Al-0.50%GNPs and Al-0.1.0%GNPs composites showed the tensile strength lower than monolithic matrix. No significant change was observed in 0.2% yield strength (YS of the composites. However, the extruded materials showed different trends. The 0.2%YS of composites increased with increase in GNPs filler weight fractions. Surprisingly, UTS of composites with 0.25 and 0.50% GNPs was lower than monolithic matrix. The failure strain of the baseline matrix was enhanced by ~46% with 0.25% graphene nanoplatelets. The superior mechanical properties (in terms of failure strain of the Al-0.25%GNPs composite maybe attributed to 2-D structure, high surface area and curled nature of graphene. In addition, the corrosion resistance of pure Al and its composites reinforced with 0.5 and 1.0 wt% GNPs was also investigated. It was found that the corrosion rate increased considerably by the presence of GNPs.

  4. Influence of Boron on the Creep Behavior and the Microstructure of Particle Reinforced Aluminum Matrix Composites

    Directory of Open Access Journals (Sweden)

    Steve Siebeck

    2018-02-01

    Full Text Available The reinforcement of aluminum alloys with particles leads to the enhancement of their mechanical properties at room temperature. However, the creep behavior at elevated temperatures is often negatively influenced. This raises the question of how it is possible to influence the creep behavior of this type of material. Within this paper, selected creep and tensile tests demonstrate the beneficial effects of boron on the properties of precipitation-hardenable aluminum matrix composites (AMCs. The focus is on the underlying microstructure behind this effect. For this purpose, boron was added to AMCs by means of mechanical alloying. Comparatively higher boron contents than in steel are investigated in order to be able to record their influence on the microstructure including the formation of potential new phases as well as possible. While the newly formed phase Al3BC can be reliably detected by X-ray diffraction (XRD, it is difficult to obtain information about the phase distribution by means of scanning electron microscopy (SEM and scanning transmission electron microscopy (STEM investigations. An important contribution to this is finally provided by the investigation using Raman microscopy. Thus, the homogeneous distribution of finely scaled Al3BC particles is detectable, which allows conclusions about the microstructure/property relationship.

  5. Microstructures induced by excimer laser surface melting of the SiCp/Al metal matrix composite

    Science.gov (United States)

    Qian, D. S.; Zhong, X. L.; Yan, Y. Z.; Hashimoto, T.; Liu, Z.

    2017-08-01

    Laser surface melting (LSM) was carried out on the SiCp/Al metal matrix composite (MMC) using a KrF excimer laser with a fluence of 7 J/cm2. The re-solidification microstructure was characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) equipped with energy dispersive X-ray detector, and X-ray diffraction (XRD) analysis. It was found that a 2.5 μm thick melted layer was formed in the near-surface region, in which dissolution of the intermetallics and removal of the SiC particles occurred. The thermal and material response upon laser irradiation was simulated using three models, i.e. analytical model, finite element model (FEM) and smoothed-particle hydrodynamics (SPH) model. The effect of SiC particles on the LSM process, the mechanism of the SiC removal and the re-solidification microstructures in the melted layer were discussed. The simulation results were in good agreement with the experimental results and contributed to the generic understanding of the re-solidification microstructures induced by ns-pulsed lasers.

  6. Tailoring the Microstructure of Sol–Gel Derived Hydroxyapatite/Zirconia Nanocrystalline Composites

    Directory of Open Access Journals (Sweden)

    Vasconcelos HC

    2011-01-01

    Full Text Available Abstract In this study, we tailor the microstructure of hydroxyapatite/zirconia nanocrystalline composites by optimizing processing parameters, namely, introducing an atmosphere of water vapor during sintering in order to control the thermal stability of hydroxyapatite, and a modified sol–gel process that yields to an excellent intergranular distribution of zirconia phase dispersed intergranularly within the hydroxyapatite matrix. In terms of mechanical behavior, SEM images of fissure deflection and the presence of monoclinic ZrO2 content on cracked surface indicate that both toughening mechanisms, stress-induced tetragonal to monoclinic phase transformation and deflection, are active for toughness enhancement.

  7. Modeling of nano-reinforced polymer composites: Microstructure effect on Young’s modulus

    DEFF Research Database (Denmark)

    Peng, R.D.; Zhou, H.W.; Wang, H.W.

    2012-01-01

    A computational numerical-analytical model of nano-reinforced polymer composites is developed taking into account the interface and particle clustering effects. The model was employed to analyze the interrelationships between microstructures and mechanical properties of nanocomposites. An improved...... effective interface model which is based on Mori–Tanaka approach and includes the nanoparticle geometry and clustering effects was developed. A program code for the automatic generation of two-dimensional multiparticle unit cell models of nanocomposites and finite element meshes on the basis of “grid method...... strong influence on the mechanical properties of nanocomposite....

  8. Composition and Microstructure of Commercial Full-Fat and Low-Fat Cheeses

    OpenAIRE

    Mistry, V. V.; Anderson, D. L.

    1993-01-01

    The objective of this study was to analyze the composition of commercial full-fat and low-fat cheeses and to evaluate their microstructure. Commercial cheeses evaluated included full-fat and low-fat Cheddar, Mozzarella , processed, and Swiss cheeses. Cheddar cheeses ranged from 8.2% fat and 5 1.1% moisture in the 75% low-fat product to 33.2% fat and 35.9% moisture in the full-fat cheese . Mozzarella cheeses ranged in fat from a low of 2. I% to a high of 24% with corresponding moisture content...

  9. Chemical composition and antibacterial activity of the essential oil of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-07-18

    Jul 18, 2008 ... The chemical composition of the essential oil obtained from the needles of Pinus caribaea by ... chemical compositions of essential oil of many Pinus species .... Synergistic bactericidal effect of carvacrol, cinnamaldehyde or thymol and refrigeration of inhibit Bacillus cereus in carrot broth. Food Microbiol.

  10. Fatty acid and cholesterol content, chemical composition and ...

    African Journals Online (AJOL)

    This study aimed to determine the fatty acid and chemical composition and cholesterol concentration of horsemeat, and to evaluate its taste acceptability by the Brazilian population. Horsemeat samples (M. longissimus dorsi) were obtained from a Paraná State slaughterhouse. The chemical composition revealed a low lipid ...

  11. Chemical composition of chicken meat produced in extensive indoor ...

    African Journals Online (AJOL)

    Chemical composition of chicken meat produced in extensive indoor and free range rearing systems. ... African Journal of Biotechnology ... The present study involves the analysis of the chemical composition of white meat (breast muscles) and dark meat (leg muscles) of broilers in extensive indoor and free range systems.

  12. Influence of age and formalin treatment on the chemical composition ...

    African Journals Online (AJOL)

    The chemical composition and in vitro dry-matter digestibility (IVDMD) of manure collected from steers fed ... Formalin treatment under these conditions negatively influenced the chemical composition and IVDMD of these parameters with respect to nutritive value. .... value comparable to that of heat-damaged haylage.

  13. Analysis of composition and microstructural uniformity of hybrid glass/carbon fibre composites

    DEFF Research Database (Denmark)

    Beauson, Justine; Markussen, Christen Malte; Madsen, Bo

    2013-01-01

    level are investigated. The different levels of compositions in the composites are defined and experimentally determined. The composite volume fractions are determined using an image analysis based procedure. The global fibre volume fractions are determined using a gravimetrical based method. The local...

  14. Microstructural and Mechanical Properties of In Situ WC-Fe/Fe Composites

    Science.gov (United States)

    Zhong, Lisheng; Yan, Yinglin; Ovcharenko, Vladimir E.; Cai, Xiaolong; Zhang, Xi; Xu, Yunhua

    2015-11-01

    In this study, Fe matrix reinforced with column-shaped WC-Fe composite was designed and fabricated by a novel in situ method. The WC-Fe/Fe composite exhibited a similar structure to that of reinforced concrete. The microstructure, microhardness, impact toughness, and wear resistance of the composites were characterized using scanning electron microscopy, and x-ray diffraction, as well as microhardness, impact, and wear tests. Small amounts of graphite (G), α-Fe, and WC were the predominant phases in the reinforcing bar of the composites. WC particulates improved the wear resistance of the composite, and the highest wear resistance was 96 times higher than that of gray cast iron under a load of 20 N with SiC abrasive particles. The wear resistance mechanism involved protection of the matrix behind the WC bundles by hard carbides. The excellent fracture toughness of the composite was mainly attributed to the disappearance of G flakes from the Fe matrix because of the in situ reaction, which reduced the split action to the matrix. The matrix absorbed a large amount of the crack propagation energy.

  15. Microstructural analysis using X-ray computed tomography (CT) in flax/epoxy composites

    Science.gov (United States)

    Kersani, M.; Lomov, SV; Van Vuure, AW; Bouabdallah, A.; Verpoest, I.

    2016-07-01

    Among natural fibres which have recently become attractive to researchers, flax is probably the most commonly used bast-type fibre today. Due to its properties and availability, flax fibre has potential to substitute glass in polymer composites. A flax fibre has a complex structure; it can be classified into elementary fibres, which are grouped into so-called technical fibres. These technical fibres themselves are actually composite structures. Several works [1, 2, 3] were focussed on the study of damage behaviour in unidirectional flax fibres reinforced composites, where materials were subjected to tensile loading. At the microscopic level and at low stress, microcracks arise within the material and by growing they may lead to other forms of damage such as delamination, fibre breakage, interfacial debonding...etc. In order to better understand the damage phenomena and to better control the parameters which lead to the failure, several methods and techniques have been developed on natural fibre reinforced composites [2, 3]. In the present work, X-ray computed tomography (CT) technique has been used to observe damage in flax/epoxy quasi-unidirectional woven laminates, loaded in uniaxial tension. The tensile tests show that these composites offer good mechanical properties. X-ray computed tomography technique allowed us, on the one hand to determine the microstructure parameters of the studied composites and to observe the damage occurring during loading, on the other. The inspection of the several tomography images showed cracks on interface of the yarns and technical fibres.

  16. THE STUDY OF CHEMICAL COMPOSITION FOR ANIMAL FATS DURING STORAGE

    OpenAIRE

    Flavia Pop; Cornel Laslo

    2009-01-01

    In this article the chemical composition for 3 types of animal fats (pork fat, beef tallow and buffalo tallow), following the variation of saturated and unsaturated fatty acids proportion during freezing storage was studied. Determination of chemical composition of animal fats is important in establishing organoleptic and physico-chemical parameters, the variation of them in time, nature and proportion of fatty acids conferring specific characteristics to them. For pork fat was determined the...

  17. Synergistic effect of displacement damage, helium and hydrogen on microstructural change of SiC/SiC composites fabricated by reaction bonding process

    Energy Technology Data Exchange (ETDEWEB)

    Taguchi, T.; Igawa, N.; Wakai, E.; Jitsukawa, S. [Japan Atomic Energy Agency, Naga-gun, Ibaraki-ken (Japan); Hasegawa, A. [Tohoku Univ., Dept. of Quantum Science and Energy Engr., Sendai (Japan)

    2007-07-01

    Full text of publication follows: Continuous silicon carbide (SiC) fiber reinforced SiC matrix (SiC/SiC) composites are known to be attractive candidate materials for first wall and blanket components in fusion reactors. In the fusion environment, helium and hydrogen are produced and helium bubbles can be formed in the SiC by irradiation of 14-MeV neutrons. Authors reported the synergistic effect of helium and hydrogen as transmutation products on swelling behavior and microstructural change of the SiC/SiC composites fabricated by chemical vapor infiltration (CVI) process. Authors also reported about the fabrication of high thermal conductive SiC/SiC composites by reaction bonding (RB) process. The matrix fabricated by RB process has different microstructures such as bigger grain size of SiC and including Si phase as second phase from that by CVI process. It is, therefore, investigated the synergistic effect of displacement damage, helium and hydrogen as transmutation products on the microstructure of SiC/SiC composite by RB process in this study. The SiC/SiC composites by RB process were irradiated by the simultaneous triple ion irradiation (Si{sup 2+}, He{sup +} and H{sup +}) at 800 and 1000 deg. C. The displacement damage was induced by 6.0 MeV Si{sup 2+} ion irradiation up to 10 dpa. The microstructures of irradiated SiC/SiC composites by RB process were observed by TEM. The double layer of carbon and SiC as interphase between fiber and matrix by a chemical vapor deposition (CVD) was coated on SiC fibers in the SiC/SiC composites by RB process. The TEM observation revealed that He bubbles were formed both in the matrix by RB and SiC interphase by CVD process. Almost all He bubbles were formed at the grain boundary in SiC interphase by CVD process. On the other hand, He bubbles were formed both at the grain boundary and in Si grain of the matrix by RB process. The average size of He bubbles in the matrix by RB was smaller than that in SiC interphase by CVD

  18. Micro-chemical and micro-structural investigation of archaeological bronze weapons from the Ayanis fortress (lake Van, Eastern Anatolia, Turkey)

    Science.gov (United States)

    Faraldi, F.; Çilingirǒglu, A.; Angelini, E.; Riccucci, C.; De Caro, T.; Batmaz, A.; Mezzi, A.; Caschera, D.; Cortese, B.

    2013-12-01

    Bronze weapons (VII cen BC) found during the archaeological excavation of the Ayanis fortress (lake Van, eastern Anatolia, Turkey) are investigated in order to determine their chemical composition and metallurgical features as well as to identify the micro-chemical and micro-structural nature of the corrosion products grown during long-term burial. Small fragments were sampled from the artefacts and analysed by means of the combined use of optical microscopy (OM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The results show that the bronze artefacts have been manufactured by using alloys with a controlled and refined chemical composition demonstrating the high level metallurgical competence and skill of the Urartian craftsmen and artists. Furthermore, the micro-structural and metallurgical investigations evidence the presence of equiaxed grains in the matrix, indicating that the artefact were produced by repeated cycles of mechanical shaping and thermal annealing treatments to restore the alloy ductility. From the degradation point of view, the results show the structures and the chemical composition of the stratified corrosion layers (i.e. the patina) where the copper or tin depletion phenomenon is commonly observed with the surface enrichment of some elements coming from the burial soil, mainly Cl, which is related to the high concentration of chlorides in the Ayanis soil. The results reveal also that another source of degradation is the inter-granular corrosion phenomenon likely increased by the metallurgical features of the alloys caused by the high temperature manufacturing process that induces crystallisation and segregation phenomena along the grain boundaries.

  19. High temperature conductance mapping for correlation of electrical properties with micron-sized chemical and microstructural features

    DEFF Research Database (Denmark)

    Hansen, Karin Vels; Norrman, Kion; Jacobsen, Torben

    2016-01-01

    . Secondary silicate phases formed at the edge of lanthanum strontium manganite microelectrodes are used as an example for correlation of chemical, microstructural and electrical properties with a spatial resolution of 1–2 µm to demonstrate the technique. The measurements are performed in situ in a controlled...

  20. Microstructural and frictional control of diamond-like carbon films deposited on acrylic rubber by plasma assisted chemical vapor deposition

    NARCIS (Netherlands)

    Martinez-Martinez, D.; Schenkel, M.; Pei, Y.T.; Hosson, J.Th.M. De

    2011-01-01

    In this paper we concentrate on the microstructure of diamond-like carbon films prepared by plasma assisted chemical vapor deposition on acrylic rubber. The temperature variation produced by the ion impingement during plasma cleaning and subsequent film deposition was monitored and controlled as a

  1. The Evolution of Microstructures and the Properties of Bulk Metallic Glass with Consubstantial Composition Laser Welding

    Directory of Open Access Journals (Sweden)

    Pingjun Tao

    2016-09-01

    Full Text Available A Zr55Cu30Ni5Al10 plate-like bulk metallic glass (BMG was prepared using copper mold suction casting. Additionally, alloy powders with the same nominal composition were synthesized. The alloy powders were welded or melted to the cleaned surface of the BMG with a laser beam acceleration voltage of 60 kV, a beam current range from 60 to 100 mA, a welding speed of 60 mm/s, as well as an impulse width of 3.0 ms. The effect of consubstantial composition welding on the microstructures and properties was investigated. The molten and subsequently solidified metallic mixtures remain an amorphous structure, but the enthalpy of the welded or melted position varies due to the combination of the micro-structural relaxation and nano-crystals precipitated during the energy inputs. The surface layers of the BMG can be significantly intensified after welding processes; however, the heat-affected zones (HAZs exhibit a slight degradation in mechanical properties with respect to the BMG matrix. This study has important reference value for specialists working on the promotion of applications of BMGs.

  2. Rapid sintering and microstructure evolution of composite TiC cermet

    Science.gov (United States)

    Ding, L.; Liu, X. G.; Pan, Y. L.; Wang, Y. W.; Xiang, D. P.

    2017-01-01

    Ti, Ni, activated carbon, and Mo powders were used as raw materials to prepare a composite TiC cermet in this study. The powders were mixed and prepared through high-energy ball milling and then sintered in a spark plasma sintering (SPS) system. Results revealed that ball milling time affected the raw materials. After ball milling was performed for 10 h, Ti and C particles reacted and generated TiC, meanwhile, the solid Mo solutionized in TiC and formed (Ti,Mo)C lumps. XRD results showed that the product of (Ti,Mo)C cermet with high hardness can be prepared at a low sintering temperature of 1150 °C. The microstructure of composite TiC cermet was different from the traditional core-ring structure. In particular, the developed microstructure comprises a (Ti,Mo)C-Ni dark-gray phase at the center surrounded by (Ti,Mo)C light-gray phase and dispersed Mo white phase.

  3. Microstructure-scaled active sites imaging of a solid oxide fuel cell composite cathode

    Science.gov (United States)

    Nagasawa, Tsuyoshi; Hanamura, Katsunori

    2017-11-01

    Active sites for oxygen reduction reaction in strontium-doped lanthanum manganite (LSM)/scandia-stabilized zirconia (ScSZ) composite cathode of solid oxide fuel cell (SOFC) is visualized in microstructure scale by oxygen isotope labeling. In order to quench a reaction, a SOFC power generation equipment with a nozzle for direct helium gas impinging jet to the cell is prepared. A typical electrolyte-supported cell is operated by supplying 18O2 at 1073 K and abruptly quenched to room temperature. During the quench, the temperature of the cell is decreased from 1073 K to 673 K in 1 s. The 18O concentration distribution in the cross section of the quenched cathode is obtained by secondary ion mass spectrometry (SIMS) with a spatial resolution of 50 nm. The obtained 18O mapping gives the first visualization of highly distributed active sites in the composite cathode both in macroscopic and particle scales.

  4. Alloy composition dependence of formation of porous Ni prepared by rapid solidification and chemical dealloying

    Energy Technology Data Exchange (ETDEWEB)

    Qi Zhen [Key Laboratory of Liquid Structure and Heredity of Materials, Shandong University, Jingshi Road 73, Jinan 250061 (China); Zhang Zhonghua [Key Laboratory of Liquid Structure and Heredity of Materials, Shandong University, Jingshi Road 73, Jinan 250061 (China)], E-mail: zh_zhang@sdu.edu.cn; Jia Haoling [Key Laboratory of Liquid Structure and Heredity of Materials, Shandong University, Jingshi Road 73, Jinan 250061 (China); Qu Yingjie [Shandong Labor Occupational Technology College, Jingshi Road 388, Jinan 250022 (China); Liu Guodong; Bian Xiufang [Key Laboratory of Liquid Structure and Heredity of Materials, Shandong University, Jingshi Road 73, Jinan 250061 (China)

    2009-03-20

    In this paper, the effect of alloy composition on the formation of porous Ni catalysts prepared by chemical dealloying of rapidly solidified Al-Ni alloys has been investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis and N{sub 2} adsorption experiments. The experimental results show that rapid solidification and alloy composition have a significant effect on the phase constituent and microstructure of Al-Ni alloys. The melt spun Al-20 at.% Ni alloy consists of {alpha}-Al, NiAl{sub 3} and Ni{sub 2}Al{sub 3}, while the melt spun Al-25 and 31.5 at.% Ni alloys comprise NiAl{sub 3} and Ni{sub 2}Al{sub 3}. Moreover, the formation and microstructure of the porous Ni catalysts are dependent upon the composition of the melt spun Al-Ni alloys. The morphology and size of Ni particles in the Ni catalysts inherit from those of grains in the melt spun Al-Ni alloys. Rapid solidification can extend the alloy composition of Al-Ni alloys suitable for preparation of the Ni catalysts, and obviously accelerate the dealloying process of the Al-Ni alloys.

  5. Investigating Linear and Nonlinear Viscoelastic behaviour and microstructures of Gelatine-Multiwalled carbon nanotubes composites

    KAUST Repository

    Yang, Zhi

    2015-12-01

    We have investigated the linear and nonlinear rheology of various gelatine-multiwalled carbon nanotube (gel-MWNT) composites, namely physically-crosslinked-gelatine gel-MWNT composites, chemically-crosslinked-gelatine gel-MWNT composites, and chemically-physically-crosslinked-gelatine gel-MWNT composites. Further, the internal structures of these gel-MWNT composites were characterized by ultra-small angle neutron scattering and scanning electron microscopy. The adsorption of gelatine onto the surface of MWNT is also investigated to understand gelatine-assisted dispersion of MWNT during ultrasonication. For all gelatine gels, addition of MWNT increases their complex modulus. The dependence of storage modulus with frequency for gelatine-MWNT composites is similar to that of the corresponding neat gelatine matrix. However, by incorporating MWNT, the dependence of the loss modulus on frequency is reduced. The linear viscoelastic region is decreased approximately linearly with the increase of MWNT concentration. The pre-stress results demonstrate that the addition of MWNT does not change the strain-hardening behaviour of physically-crosslinked gelatine gel. However, the addition of MWNT can increase the strain-hardening behaviour of chemically-crosslinked gelatine gel, and chemically-physically crosslinked gelatine gel. Results from light microscopy, cryo-SEM, and USANS demonstrate the hierarchical structures of MWNT, including that tens-of-micron scale MWNT agglomerates are present. Furthermore, the adsorption curve of gelatine onto the surface of MWNT follows two-stage pseudo-saturation behaviour.

  6. Microstructure and Mechanical Properties of 9Cr-1Mo Steel Weld Fusion Zones as a Function of Weld Metal Composition

    Science.gov (United States)

    Arivazhagan, B.; Prabhu, Ranganath; Albert, S. K.; Kamaraj, M.; Sundaresan, S.

    2009-11-01

    Modified 9Cr-1Mo steel, designated as P91, is widely used in the construction of power plants and other sectors involving temperatures higher than 500 °C. Although the creep strength is the prime consideration for elevated temperature applications, notch toughness is also important, especially for welded components, as it is essential to meet the pressure test and other requirements at room temperature. P91 steel weld fusion zone toughness depends on factors such as welding process, chemical composition, and flux composition. Niobium and vanadium are the main alloying elements that significantly influence the toughness as well as creep strength. In the current work, weld metals were produced with varying amounts of niobium and vanadium by dissimilar joints involving P9 and P91 base metals as well as filler materials. Microstructural studies and Charpy V-notch impact testing were carried out on welds to understand the factors influencing toughness. Based on the results, it can be concluded that by reducing vanadium and niobium weld metal toughness can be improved.

  7. Fabrication and microstructural analysis of UN-U{sub 3}Si{sub 2} composites for accident tolerant fuel applications

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Kyle D., E-mail: kylej@kth.se; Raftery, Alicia M.; Lopes, Denise Adorno; Wallenius, Janne

    2016-08-15

    In this study, U{sub 3}Si{sub 2} was synthesized via the use of arc-melting and mixed with UN powders, which together were sintered using the SPS method. The study revealed a number of interesting conclusions regarding the stability of the system – namely the formation of a probable but as yet unidentified ternary phase coupled with the reduction of the stoichiometry in the nitride phase – as well as some insights into the mechanics of the sintering process itself. By milling the silicide powders and reducing its particle size ratio compared to UN, it was possible to form a high density UN-U{sub 3}Si{sub 2} composite, with desirable microstructural characteristics for accident tolerant fuel applications. - Highlights: • U{sub 3}Si{sub 2} fabricated from elemental uranium and silicon through arc melting. • Homogeneity of the silicides assessed through densitometry, XRD, SEM and EDS, chemical etching and optical microscopy. • UN powder fabricated using hydriding-nitriding method. • No phase transformations detected when sintering using silicide particle sizes less than UN particle size. • High density composite (98%TD) fabricated with silicide grain coating using spark plasma sintering at 1450 °C.

  8. Compositional, thermal and microstructural characterization of the Nopal (opuntia ficus indica), for addition in commercial cement mixtures

    Science.gov (United States)

    Hernández Carrillo, C. G.; Gómez-Cuaspud, J. A.; E Martínez Suarez, C.

    2017-12-01

    The Nopal (opuntia ficus indica) from remote times has contributed like food and additive product in prehispanic constructions; although it grows in all the Colombian territory is very little used and its contribution in mixtures of Colombian cement is unknown. In order to evaluate the hydration characteristics of Nopal, several Thermogravimetric Analysis (TGA) were performed to evaluate the optimal temperature of dehydration. Initially, the results show that around 175°C the weight loss is approximately 95%, this mass loss corresponds to the process of physical removal, suggesting that at least a remaining amount of 5% (w/w) has the ability to retain large amounts of water which is stored in the micro-structural deposits of Nopal. The evaluation by means Scanning Electron Microscopy (SEM), confirm that the whole cactus structure enables the water storage at cellular level. The results of infrared spectroscopy (FT-IR) and Energy Dispersive X-ray (EDX) analysis allowed the qualitative and semi-quantitative evaluation of the presence of functional groups and elemental chemical composition of Nopal respectively, mainly related with polysaccharide functional groups, which corresponds to 85% of the total composition. Other functional groups, are related with protein and mineral components. This found characteristics are relevant for the water retention in process that require the decrease of water consumption and the reinforcing of mechanical properties and durability, due to ability of Nopal mucilage to restore its hydration characteristics.

  9. Tribological and microstructural comparison of HIPped PM212 and PM212/Au self-lubricating composites

    Science.gov (United States)

    Bogdanski, Michael S.; Sliney, Harold E.; Dellacorte, Christopher

    1992-01-01

    The feasibility of replacing the silver with the volumetric equivalent of gold in the chromium carbide-based self-lubricating composite PM212 (70 wt percent NiCo-Cr3C2, 15 percent BaF2/CaF2 eutectic) was studied. The new composite, PM212/Au has the following composition: 62 wt percent NiCo-Cr3C2, 25 percent Au, 13 percent BaF2/CaF2 eutectic. The silver was replaced with gold to minimize the potential reactivity of the composite with possible environmental contaminants such as sulfur. The composites were fabricated by hot isostatic pressing (HIPping) and machined into pin specimens. The pins were slid against nickel-based superalloy disks. Sliding velocities ranged from 0.27 to 10.0 m/s and temperatures from 25 to 900 C. Frictions coefficients ranged from 0.25 to 0.40 and wear factors for the pin and disk were typically low 10(exp -5) cu mm/N-m. HIPped PM212 measured fully dense, whereas PM212/Au had 15 percent residual porosity. Examination of the microstructures with optical and scanning electron microscopy revealed the presence of pores in PM212/Au that were not present in PM212. Though the exact reason for the residual porosity PM212/Au was not determined, it may be due to practice morphology differences between the gold and silver and their effect on powder metallurgy processing.

  10. Propolis chemical composition and honeybee resistance against Varroa destructor.

    Science.gov (United States)

    Popova, M; Reyes, M; Le Conte, Y; Bankova, V

    2014-01-01

    Propolis is known as honeybee chemical defence against infections and parasites. Its chemical composition is variable and depends on the specificity of the local flora. However, there are no data concerning the relationship between propolis chemical composition and honeybee colony health. We tried to answer this question, studying the chemical composition of propolis of bee colonies from an apiary near Avignon, which are tolerant to Varroa destructor, comparing it with colonies from the same apiary which are non-tolerant to the mites. The results indicated that non-tolerant colonies collected more resin than the tolerant ones. The percentage of four biologically active compounds - caffeic acid and pentenyl caffeates - was higher in propolis from tolerant colonies. The results of this study pave the way to understanding the effect of propolis in individual and social immunity of the honeybees. Further studies are needed to clarify the relationship between propolis chemical composition and honeybee colony health.

  11. Origin and chemical composition of evaporite deposits

    Science.gov (United States)

    Moore, George William

    1960-01-01

    A comparative study of marine evaporite deposits forming at the present time along the pacific coast of central Mexico and evaporite formations of Permian age in West Texas Basin was made in order to determine if the modern sediments provide a basis for understanding environmental conditions that existed during deposition of the older deposits. The field work was supplemented by investigations of artificial evaporite minerals precipitated in the laboratory and by study of the chemical composition of halite rock of different geologic ages. The environment of deposition of contemporaneous marine salt deposits in Mexico is acidic, is strongly reducing a few centimeters below the surface, and teems with microscopic life. Deposition of salt, unlike that of many other sediments, is not wholly a constructional phenomenon. Permanent deposits result only if a favorable balance exists between deposition in the dry season and dissolution in the wet season. Evaporite formations chosen for special study in the West Texas Basin are, in ascending order, the Castile, Salado, and Rustler formations, which have a combined thickness of 1200 meters. The Castile formation is largely composed of gypsum rock, the Salado, halite rock, and the Rustler, quartz and carbonate sandstone. The lower part of the Castile formation is bituminous and contains limestone laminae. The Castile and Rustler formations thicken to the south at the expense of salt of the intervening Salado formation. The clastic rocks of the Rustler formation are interpreted as the deposits of a series of barrier islands north of which halite rock of the Salado was deposited. The salt is believed to have formed in shallow water of uniform density that was mixed by the wind. Where water depth exceeded the depth of the wind mixing, density stratification developed, and gypsum was deposited. Dense water of high salinity below the density discontinuity was overlain by less dense, more normally saline water which was derived from

  12. Chemical and microstructural analyses for heavy metals removal from water media by ceramic membrane filtration.

    Science.gov (United States)

    Ali, Asmaa; Ahmed, Abdelkader; Gad, Ali

    2017-01-01

    This study aims to investigate the ability of low cost ceramic membrane filtration in removing three common heavy metals namely; Pb2+, Cu2+, and Cd2+ from water media. The work includes manufacturing ceramic membranes with dimensions of 15 by 15 cm and 2 cm thickness. The membranes were made from low cost materials of local clay mixed with different sawdust percentages of 0.5%, 2.0%, and 5.0%. The used clay was characterized by X-ray diffraction (XRD) and X-ray fluorescence analysis. Aqueous solutions of heavy metals were prepared in the laboratory and filtered through the ceramic membranes. The influence of the main parameters such as pH, initial driving pressure head, and concentration of heavy metals on their removal efficiency by ceramic membranes was investigated. Water samples were collected before and after the filtration process and their heavy metal concentrations were determined by chemical analysis. Moreover, a microstructural analysis using scanning electronic microscope (SEM) was performed on ceramic membranes before and after the filtration process. The chemical analysis results showed high removal efficiency up to 99% for the concerned heavy metals. SEM images approved these results by showing adsorbed metal ions on sides of the internal pores of the ceramic membranes.

  13. Chemical composition of Hyptis suaveolens and Ocimum ...

    African Journals Online (AJOL)

    Four medicinal plants belonging to the family Lamiaceae were chemically screened for their chemical constituents including alkaloids, tannins, saponins, flavonoids and phenols. The medicinal plants investigated were Hyptis suaveloens and three putative hybrids of Ocimum gratissimum (Hybrid A, B and C). All the plants ...

  14. Al-Ca and Al-Fe metal-metal composite strength, conductivity, and microstructure relationships

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyong June [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    Deformation processed metal-metal composites (DMMC’s) are composites formed by mechanical working (i.e., rolling, swaging, or wire drawing) of two-phase, ductile metal mixtures. Since both the matrix and reinforcing phase are ductile metals, the composites can be heavily deformed to reduce the thickness and spacing of the two phases. Recent studies have shown that heavily drawn DMMCs can achieve anomalously high strength and outstanding combinations of strength and conductivity. In this study, Al-Fe wire composite with 0.07, 0.1, and 0.2 volume fractions of Fe filaments and Al-Ca wire composite with 0.03, 0.06, and 0.09 volume fractions of Ca filaments were produced in situ, and their mechanical properties were measured as a function of deformation true strain. The Al-Fe composites displayed limited deformation of the Fe phase even at high true strains, resulting in little strengthening effect in those composites. Al-9vol%Ca wire was deformed to a deformation true strain of 13.76. The resulting Ca second-phase filaments were deformed to thicknesses on the order of one micrometer. The ultimate tensile strength increased exponentially with increasing deformation true strain, reaching a value of 197 MPa at a true strain of 13.76. This value is 2.5 times higher than the value predicted by the rule of mixtures. A quantitative relationship between UTS and deformation true strain was determined. X-ray diffraction data on transformation of Al + Ca microstructures to Al + various Al-Ca intermetallic compounds were obtained at the Advanced Photon Source at Argonne National Laboratory. Electrical conductivity was measured over a range of true strains and post-deformation heat treatment schedules.

  15. Influence of Heat-Treatment Temperature on the Physical Properties and Microstructure of Phosphoric Acid Coated Oxi-PAN Fiber/Phenolic Composites

    Energy Technology Data Exchange (ETDEWEB)

    Cho, D.H. [KUMHO NATIONAL UNIVERSITY OF TECHNOLOGY, KUMI (Korea, Republic of)

    1996-10-01

    Random OXI-PAN fiber/phenolic composites fabricated with uncoated and phosphoric acid coated OXI-PAN fibers were carbonized at various heat-treatment temperatures in an inert atmosphere. An effect of the presence or absence of phosphorous compound on the fiber surface in the composite after heat-treatment upon the physical properties and microstructure was studied. The physical properties of the two types of composite were explained in terms of microstructural behaviour and pore formation in the fiber, the matrix and the interface according to heat-treatment temperature. It was known that with increasing temperature the fiber/matrix interface becomes disappeared and shows a locally dense and indistinguishable phase due to possible chemical reaction between the fiber and the adjacent matrix. It was also noted that the phosphoric acid coating restraints the reduction of fiber diameter and increases the thermal stability under the carbonization condition so that it contributes somewhat to lower the volume shrinkage and to increase the carbon yield of the composite (author). 25 refs. figs.

  16. Microstructure of 3D-Printed Polymer Composites Investigated by Small-Angle Neutron Scattering

    Science.gov (United States)

    Kang, Tae Hui; Compton, Brett G.; Heller, William T.; Urban, Voker S.; Duty, Chad E.; Do, Changwoo

    Polymer composites printed from the large scale printer at Manufacturing Demonstration Facility at Oak Ridge National Laboratory have been investigated by small-angle neutron scattering (SANS). For the Acrylonitrile Butadiene Styrene (ABS)/Carbon Fiber (CF) composites, the microstructure of polymer domains and the alignment of CF have been characterized across the layer from the printed piece. CF shows strong anisotropic alignment along the printing direction due to the flow of polymer melt at the nozzle. Order parameter of the anisotropy which ranges from -0.11 to -0.06 exhibits strong correlation with the position within the layer: stronger alignment near the layer interface. It is also confirmed that the existence of CF reduces the polymer domain correlation length significantly and reinforces the mechanical strength of the polymer composites. For the Epoxy/nano-clay platelet composites, the effect of processing condition, nozzle size, and the addition of the another filler, Silicon Carbide (SC), have been investigated by SANS. Nano-clay platelet shows strong anisotropic alignment along the printing direction as well. Order parameter of the anisotropy varies according to nozzle size and presence of the SC, and difference disappears at high Q region. Scientific User Facilities Division and Materials Sciences and Energy Division, Office of Basic Energy Sciences, U.S. Department of Energy.

  17. Effects of neutron irradiation on microstructure and mechanical properties of carbon/carbon composites

    Science.gov (United States)

    Hamada, K.; Sato, S.; Kohyama, A.

    1994-09-01

    As an important part of the national R&D program to high performance and low cost {C}/{C} composite materials, a new manufacturing method of {C}/{C} composite with densified matrix without conventional densification process has been successfully developed. In this study, neutron irradiation effects on mechanical properties of the innovative {C}/{C} composites were examined. Materials used were one- and two-directionally reinforced composites with mesophase-pitch based carbon fibers as reinforcement and the mixture of green coke and phenolic resin as matrix precursor. Neutron irradiation was performed to 1.3 × 10 21 and 1.5 × 10 22 n/m 2 ( E > 1 MeV) at about 350 K. Mechanical properties were measured by bend tests. Flexural and shear strength were increased with increasing neutron fluence. On the contrary, fracture strain showed quite a little dependence on neutron fluence. Flexural modulus at near 0 strain was increased with increasing fluence. Stress stiffening at near 0 strain was suppressed with irradiation, while modulus drop was observed at high strain region and decreased with increasing neutron fluence. These results were interpreted in terms of microstructural change.

  18. Effect of particle size on the dynamic mechanical behaviour and deformed microstructure of SiCp/Al composites

    Energy Technology Data Exchange (ETDEWEB)

    Cao, D F; She, W C [Department of Engineering Structure and Mechanics, Wuhan University of Technology, 430070, Wuhan (China); Liu, L S; Zhai, P C; Zhang, Q J, E-mail: Liulish@whut.edu.cn [State Key Laboratory of Materials Synthesis and Processing, Wuhan University of Technology, 430070 Wuhan (China)

    2011-10-29

    In this paper, the effect of particle size on the dynamic behaviour and deformed microstructure in pure Al matrix composites reinforced with 30% ansd 40% volume fraction of 6, 13.5 and 50 {mu}m SiC particles was investigated by using split Hopkinson pressure bar (SHPB). Firstly, the dynamic compressive stress-strain curves of SiCp/Al composites with 3 different particle sizes were obtained and the effect of the particle size on the stress-strain relationship was studied by a comparison analysis. Furthermore, the microstructure characteristics after the impact were observed by the scanning electron microscopy(SEM). The microstructure of SiCp/Al composites with 3 different particle sizes after the impact was compared. The results have demonstrated that the dynamic mechanical behaviour and the microstructure after the impact strongly depends on the particle size. The cracked particles and debonding are more readily observed in the composites reinforced with large particles than those in the composites with small particles.

  19. Advancing Consumer Product Composition and Chemical ...

    Science.gov (United States)

    This presentation describes EPA efforts to collect, model, and measure publically available consumer product data for use in exposure assessment. The development of the ORD Chemicals and Products database will be described, as will machine-learning based models for predicting chemical function. Finally, the talk describes new mass spectrometry-based methods for measuring chemicals in formulation and articles. This presentation is an invited talk to the ICCA-LRI workshop "Fit-For-Purpose Exposure Assessments For Risk-Based Decision Making". The talk will share EPA efforts to characterize the components of consumer products for use in exposure assessment with the international exposure science community.

  20. Microstructural characterization and chemical compatibility of pulsed laser deposited yttria coatings on high density graphite

    Energy Technology Data Exchange (ETDEWEB)

    Sure, Jagadeesh [Corrosion Science and Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam — 603 102 (India); Mishra, Maneesha [Physical Metallurgy Group, Indira Gandhi Centre for Atomic Research, Kalpakkam-603 102 (India); Tarini, M. [SRM University, Kattankulathur-603 203 (India); Shankar, A. Ravi; Krishna, Nanda Gopala [Corrosion Science and Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam — 603 102 (India); Kuppusami, P. [Physical Metallurgy Group, Indira Gandhi Centre for Atomic Research, Kalpakkam-603 102 (India); Mallika, C. [Corrosion Science and Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam — 603 102 (India); Mudali, U. Kamachi, E-mail: kamachi@igcar.gov.in [Corrosion Science and Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam — 603 102 (India)

    2013-10-01

    Yttria coatings were deposited on high density (HD) graphite substrate by pulsed laser deposition method and subsequently annealing in vacuum at 1373 K was carried out to evaluate the thermal stability of the coatings. Yttria deposited on HD graphite samples were exposed to molten LiCl–KCl salt at 873 K for 3 h to evaluate the corrosion behavior of the coating for the purpose of pyrochemical reprocessing applications. The microstructure and the corrosion behavior of the yttria coating deposited on HD graphite in molten LiCl–KCl salt were evaluated by several characterization techniques. X-ray diffraction and Laser Raman patterns confirmed the presence of cubic phase of yttria in the coating. The surface morphology of yttria coating on HD graphite examined by scanning electron microscope and atomic force microscopy revealed the agglomeration of oxide particles and formation of clusters. After annealing at 1373 K, no appreciable grain growth of yttria particles could be observed. X-ray photoelectron spectroscopy analysis was carried out for elemental analysis before and after chemical compatibility test of the coated samples in molten LiCl–KCl salt to identify the corrosive elements present on the yttria coatings. The chemical compatibility and thermal stability of the yttria coating on HD graphite in molten LiCl–KCl salt medium have been established. - Highlights: • Y{sub 2}O{sub 3} coating was deposited on graphite by pulsed laser deposition method. • Chemical compatibility of Y{sub 2}O{sub 3} coating in LiCl–KCl salt at 873 K was studied. • Gibbs free energy change was positive for Y{sub 2}O{sub 3} reaction with Cl{sub 2}, U and UCl{sub 3}. • Y{sub 2}O{sub 3} coating exhibited better corrosion performance in molten LiCl–KCl salt.

  1. Brazed joint properties and microstructure of SCS-6/{beta}21S titanium matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, E.K.; Bird, R.K.; Dicus, D.L. [National Aeronautics and Space Administration, Hampton, VA (United States). Langley Research Center

    1995-11-01

    The properties and microstructure of brazed joints of SCS-6 SiC fiber reinforced {beta}21S (Ti-15Mo-2.7Nb-3Al-0.2Si, wt-%) titanium matrix composite (TMC) were investigated. Brazed joint specimens were fabricated from TMC using two different forms of commercially available Ti-15Cu-15Ni braze filler metal. The brazed joint specimens were tested in air at room temperature and 1,500 F (815 C) using overlap tensile shear (OLTS) tests. Metallurgical and fractographic analyses were used to characterize the microstructure, brazing filler metal/TMC interactions, and joint failure modes. The fractographic results indicated that TMC delamination is a dominant failure mode for this type of joint. At room temperature, the TMC brazed joint specimens failed by TMC delamination and TMC tensile failure, with the brazed joint remaining intact. Therefore, the performance of the brazed joint specimens at room temperature is limited by the interlaminar strength of the TMC and not by the braze strength. At 1,500 F, the TMC brazed joint specimens exhibited a combination of delamination and braze shear failure. Thus, the high-temperature performance of the brazed joint specimens may be limited by both the TMC interlaminar properties and the strength of the braze.

  2. Mechanical properties related to the microstructure of seven different fiber reinforced composite posts.

    Science.gov (United States)

    Alonso de la Peña, Víctor; Darriba, Iria L; Caserío Valea, Martín; Guitián Rivera, Francisco

    2016-12-01

    The aim of this in vitro study was to evaluate the mechanical properties (bending strength and hardness) of seven different fiber reinforced composite posts, in relation to their microstructural characteristics. Two hundred eighty posts were divided into seven groups of 40, one group for each type of post analyzed. Within each group, 15 posts were subjected to three-point bending strength test, 15 to a microhardess meter for the Knoop hardness, and 10 to Scanning Electron Microscope in order to determine the diameter of the fibers and the percentage of fibers embedded in the matrix. To compare the flexural strength in relation to the type of fiber, matrix, and the hardness of the posts, a Kruskal-Wallis H test was used. The Jonckheere-Terpstra test was used to determine if the volume percent of fibers in the post influenced the bending strength. The flexural strength and the hardness depended on the type of fibers that formed the post. The lower flexural strength of a post could be due to deficient bonding between the fiber and the resin matrix. According to the results, other factors, besides the microstructural characteristics, may also influence the mechanical properties of the post. The feature that has more influence on the mechanical properties of the posts is the type of fiber.

  3. Microstructural and Phase Composition Differences Across the Interfaces in Al/Ti/Al Explosively Welded Clads

    Science.gov (United States)

    Fronczek, Dagmara Malgorzata; Chulist, Robert; Litynska-Dobrzynska, Lidia; Lopez, Gabriel Alejandro; Wierzbicka-Miernik, Anna; Schell, Norbert; Szulc, Zygmunt; Wojewoda-Budka, Joanna

    2017-09-01

    The microstructure and phase composition of Al/Ti/Al interfaces with respect to their localization were investigated. An aluminum-flyer plate exhibited finer grains located close to the upper interface than those present within the aluminum-base plate. The same tendency, but with a higher number of twins, was observed for titanium. Good quality bonding with a wavy shape and four intermetallic phases, namely, TiAl3, TiAl, TiAl2, and Ti3Al, was only obtained at the interface closer to the explosive material. The other interface was planar with three intermetallic compounds, excluding the metastable TiAl2 phase. As a result of a 100-hour annealing at 903 K (630 °C), an Al/TiAl3/Ti/TiAl3/Al sandwich was manufactured, formed with single crystalline Al layers. A substantial difference between the intermetallic layer thicknesses was measured, with 235.3 and 167.4 µm obtained for the layers corresponding to the upper and lower interfaces, respectively. An examination by transmission electron microscopy of a thin foil taken from the interface area after a 1-hour annealing at 825 K (552 °C) showed a mixture of randomly located TiAl3 grains within the aluminum. Finally, the hardness results were correlated with the microstructural changes across the samples.

  4. An investigation into the chemical composition of alternative invertebrate prey

    NARCIS (Netherlands)

    Oonincx, D.G.A.B.; Dierenfeld, E.S.

    2012-01-01

    The aim of this study was to determine the chemical composition of eight invertebrate species and evaluate their suitability as alternative prey. The species selected were rusty red cockroaches (Blatta lateralis), six-spotted cockroaches (Eublaberus distanti), Madagascar hissing cockroaches

  5. Chemical composition and microbial load of cheese produced using ...

    African Journals Online (AJOL)

    Aframomum sceptrum) on the chemical composition and microbial load of cheese was evaluated in a Completely Randomized Design. Cheese produced with 1% bear berry (Aframomum sceptrum) had the highest (P < 0.05) crude protein content ...

  6. Studies on chemical composition and antimicrobial activities of ...

    African Journals Online (AJOL)

    Studies on chemical composition and antimicrobial activities of bioactive molecules from date palm ( Phoenix dactylifera L.) pollens and seeds. ... using different techniques, including optical density and GC/MS analyses of the natural extracts.

  7. Antimicrobial activity and chemical compositions of Turkish propolis ...

    African Journals Online (AJOL)

    negative bacteria and its chemical composition were evaluated by the method of agar-well diffusion and GC-MS, respectively. Some typical compounds samples were identified in the propolis samples. Principal component analysis revealed that the ...

  8. Chemical compositions and antimicrobial activity of twig essential ...

    African Journals Online (AJOL)

    Chemical compositions and antimicrobial activity of twig essential oils from three Xylopia (Annonaceae) species. Siti Humeirah Abdul Ghani, Nor Azah Mohamad Ali, Mailina Jamil, Mastura Mohtar, Saiful Azmi Johari, Mazurah Mohamad Isa, Mohd Faridz Zoll Patah ...

  9. Microstructure and properties of bulk copper matrix composites strengthened with various kinds of graphene nanoplatelets

    Energy Technology Data Exchange (ETDEWEB)

    Dutkiewicz, Jan, E-mail: j.dutkiewicz@imim.pl; Ozga, Piotr; Maziarz, Wojciech; Pstruś, Janusz; Kania, Bogusz; Bobrowski, Piotr; Stolarska, Justyna

    2015-03-25

    Copper matrix composites strengthened with graphene were prepared by vacuum uniaxial hot pressing of ball milled mixtures of powders. Two grades of graphene platelets were used; one with thickness of 10–20 nm and with lateral size of less than 14 μm and another with much lower thickness of platelets of 2–4 nm and in (002) plane crystallite size below 100 nm. Hot pressing in vacuum allowed obtaining composites containing 1 and 2 wt% of graphene. The addition of fine graphene led to about 50% higher hardness and about 30% lower electrical resistivity than composite with coarse graphene platelets. SEM studies of samples with fine graphene additions showed much more homogeneous microstructure than those containing coarse graphene. Based on TEM studies, copper particle size was estimated between 100 and 300 nm, and smaller in the areas of copper particle boundaries, where plastic deformation of copper particles brought about mixing nanocrystalline copper and graphene phases. Graphene conglomerates were identified using electron diffraction and often consisted of elongated platelets of thickness up to 20 nm in both graphene composites studied. Raman spectra confirmed nonhomogeneity of graphene in bulk composites and showed increase of defect density within graphene platelets, as was assessed from low intensity ratio I(2D)/I(G), in places of high graphene concentration in both kinds of samples. The weak signal in more homogeneously distributed graphene in samples with fine graphene additions confirmed similar structural features, however the lateral size of finer graphene remain unchanged in composites, contrary to that with coarser graphene additions.

  10. Microstructure and mechanical properties of carbon nanotubes reinforced aluminum matrix composites synthesized via equal-channel angular pressing

    Energy Technology Data Exchange (ETDEWEB)

    Zare, Hassan [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Jahedi, Mohammad, E-mail: mohammad.jahedi@unh.edu [Department of Mechanical Engineering, University of New Hampshire, Durham, NH 03824 (United States); Toroghinejad, Mohammad Reza; Meratian, Mahmoud [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Knezevic, Marko [Department of Mechanical Engineering, University of New Hampshire, Durham, NH 03824 (United States)

    2016-07-18

    In this work, 2 vol% carbon nanotubes (CNTs) reinforced aluminum (Al) matrix composites of superior microstructural homogeneity are successfully synthesized using Bc equal-channel angular extrusion (ECAP) route. The key step in arriving at high level of homogeneous distribution of CNTs within Al was preparation of the powder using simultaneous attrition milling and ultra-sonication processes. Microstructure as revealed by electron microscopy and absence of Vickers hardness gradients across the material demonstrate that the material reached the homogeneous state in terms of CNT distribution, porosity distribution, and grain structure after eight ECAP passes. To facilitate comparison of microstructure and hardness, samples of Al were processed under the same ECAP conditions. Significantly, the composite containing only 2 vol% exhibits 20% increase in hardness relative to the Al samples.

  11. Peculiarities of chemical composition of sainfoin seeds powder

    OpenAIRE

    Natalia Aleksandrovna Tarasenko; Elena Aleksandrovna Butina; Evgeny Olegovich Gerasimenko

    2015-01-01

    This paper is devoted to studying chemical composition of the powder of the seeds of non-traditional legume, sainfoin. The experimental studies showed that crushed seeds of sainfoin make a flowing fine powder of light brown color with a pleasant unpronounced specific smell with floral notes. The taste is grassy with the after-taste typical for legumes. The chemical composition of sainfoin seeds is dominated by proteins and fiber, and fat content does not exceed 8%. The total content of amino-...

  12. Evaluation of chemical composition of defect wine distillates

    OpenAIRE

    Mihaljević Žulj, Marin; Posavec, Barbara; Škvorc, Melanija; Tupajić, Pavica

    2016-01-01

    The aim of this study was to evaluate the chemical composition of the distillate obtained from wine with off-flavour. The chemical composition of wine distillates obtained by distillation of Chardonnay wine with oxidation off-flavour was investigated. Distillation of wine was carried out using a simple distillation pot still by double distillation and separation the different portion of the first fraction. Volatile compounds of wine and wine distillates (acetaldehyde, ethyl acetate, methanol ...

  13. Modeling of Metallic Glass Matrix Composites Under Compression: Microstructure Effect on Shear Band Evolution

    Science.gov (United States)

    Jiang, Yunpeng; Qiu, Kun; Sun, Longgang; Wu, Qingqing

    2018-01-01

    The relationship among processing, microstructure, and mechanical performance is the most important for metallic glass matrix composites (MGCs). Numerical modeling was performed on the shear banding in MGCs, and the impacts of particle concentration, morphology, agglomerate, size, and thermal residual stress were revealed. Based on the shear damage criterion, the equivalent plastic strain acted as an internal state variable to depict the nucleation, growth, and coalescence of shear bands. The element deletion technique was employed to describe the process of transformation from shear band to micro-crack. The impedance effect of particle morphology on the propagation of shear bands was discussed, whereby the toughening mechanism was clearly interpreted. The present work contributes to the subsequent strengthening and toughening design of MGCs.

  14. Influence of Phase Composition on Sintered Microstructure of Combustion Synthesized Oxides

    Directory of Open Access Journals (Sweden)

    Ibram Ganesh

    2007-01-01

    Full Text Available The effects of powders synthesis methods (urea-combustion synthesis (CS and conventional solid-state (SS reaction on the sintering ability, microstructural features, and mechanical properties of Al2O3, MgAl2O4 spinel, and 20 wt.% ZrO2–MgAl2O4 upon sintering at 1625C∘ were investigated. X-ray diffraction (XRD, scanning electron microscopy (SEM, relative density (RD, apparent porosity and water absorption capacity, hardness, fracture toughness, and three-point bend test studies revealed the superior sintering ability of CS ZrO2-MgAl2O4 composite powder as compared with one prepared by SS reaction. In contrast, single-phase powders obtained by SS reaction exhibit superior sintering ability over CS synthesized ones. The reasons for differences observed are discussed along this paper.

  15. NbTiSiMo-X Alloys-Composition, Microstructure Refinement and Properties (Preprint)

    Science.gov (United States)

    2009-03-01

    eutectic areas of homogenized samples of selected alloys using the EPMA technique. The average composition of the eutectic area was compared with...probe microanalysis ( EPMA ) technique by scanning a typical fine-microstructure area of 200µm x 100µm of teach of alloys samples (E69, DE1 and LE1...E) of E69, DE1 and LE1 Measured by EPMA Alloy-E Nb Ti Si Cr Al Hf Zr Mo E69 50.0 12.5 16.0 5.0 3.0 3.0 3.0 7.5 E69-E 49.2 12.8 16.6 4.4 2.9 3.3

  16. Microstructure and Corrosion Resistance of Aluminium and Copper Composite Coatings Deposited by LPCS Method

    Directory of Open Access Journals (Sweden)

    Winnicki M.

    2016-12-01

    Full Text Available The paper presents the study of microstructure and corrosion resistance of composite coatings (Al+Al2O3 and Cu+Al2O3 deposited by Low Pressure Cold Spraying method (LPCS. The atmospheric corrosion resistance was examined by subjecting the samples to cyclic salt spray and Kesternich test chambers, with NaCl and SO2 atmospheres, respectively. The selected tests allowed reflecting the actual working conditions of the coatings. The analysis showed very satisfactory results for copper coatings. After eighteen cycles, with a total time of 432 hours, the samples show little signs of corrosion. Due to their greater susceptibility to chloride ions, aluminium coatings have significant corrosion losses.

  17. Effect of SiC particle addition on microstructure of Mg2Si/Al composite

    Directory of Open Access Journals (Sweden)

    Zhao Yuguang

    2014-03-01

    Full Text Available In the present study, by adding SiC particles into Al-Si-Mg melt, Mg2Si and SiC particles hybrid reinforced Al matrix composites were fabricated through the Mg2Si in situ synthesis in melt combined with the SiC ex situ stir casting. The as-cast microstructure containing primary Mg2Si and SiC particles that distribute homogenously in Al matrix was successfully achieved. The effects of SiC particle addition on the microstructure of Mg2Si/Al composites were investigated by using scanning electron microscopy (SEM and XRD. The results show that, with increasing the fraction of the SiC particles from 5wt.% to 10wt.%, the morphologies of the primary Mg2Si particulates in the prepared samples remain polygonal, but the size of the primary phase decreases slightly. However, when the SiC particle addition reaches 15wt.%, the morphologies of the primary Mg2Si particulates change partially from polygonal to quadrangular with a decrease in size from 50 μm to 30 μm. The size of primary Al dendrites decreases with increasing fraction of the SiC particles from 0wt.% to 15wt.%. The morphology of the eutectic Mg2Si phase changes from a fiber-form to a short fiber-form and/or a dot-like shape with increasing fraction of the SiC particles. Furthermore, no significant change in dendrite arm spacing (DAS was observed in the presence of SiC particles.

  18. Microstructural evolution in WC-Co cermet reinforced - A17075 metal matrix composites by stir casting

    Science.gov (United States)

    Gopal Krishna, U. B.; Ranganatha, P.; Auradi, V.; Mahendra Kumar, S.; Vasudeva, B.

    2016-09-01

    Aluminium metal matrix composites (AMMCs) are preferred because of their enhanced properties like high strength to weight ratio, stiffness and wear resistance. In the present work, an attempt is made to develop cermet (WC-Co) reinforced with Al7075 metal matrix composite by stir casting technique. WC-Co cermet is reduced to an average size of 10μm through ball milling using Alumina as grinding media. Ball milled WC-Co Cermet in an amount of 6 wt. % is used as reinforcement in Al7075 matrix. Microstructural characterization of the prepared composites is carried out using SEM/EDX and XRD studies. X-ray diffraction studies have revealed the peaks corresponding to α-Al, WC, Co and minor Al5W phases. SEM/EDX characterization revealed the uniform distribution of cermet in Al matrix. Further studies also revealed that, addition of WC-Co cermet to Al7075 matrix has resulted in improvement in hardness and Densities of Al7075 matrix.

  19. Dynamic Mechanical Properties and Microstructure of Graphene Oxide Nanosheets Reinforced Cement Composites

    Directory of Open Access Journals (Sweden)

    Wu-Jian Long

    2017-11-01

    Full Text Available This paper presents an experimental investigation on the effect of uniformly dispersed graphene oxide (GO nanosheets on dynamic mechanical properties of cement based composites prepared with recycled fine aggregate (RFA. Three different amounts of GO, 0.05%, 0.10%, and 0.20% in mass of cement, were used in the experiments. The visual inspections of GO nanosheets were also carried out after ultrasonication by transmission electron microscope (TEM atomic force microscope (AFM, and Raman to characterize the dispersion effect of graphite oxide. Dynamic mechanical analyzer test showed that the maximum increased amount of loss factor and storage modulus, energy absorption was 125%, 53%, and 200% when compared to the control sample, respectively. The flexural and compressive strengths of GO-mortar increased up to 22% to 41.3% and 16.2% to 16.4% with 0.20 wt % GO at 14 and 28 days, respectively. However the workability decreased by 7.5% to 18.8% with 0.05% and 0.2% GO addition. Microstructural analysis with environmental scanning electron microscopy (ESEM/backscattered mode (BSEM showed that the GO-cement composites had a much denser structure and better crystallized hydration products, meanwhile mercury intrusion porosimetry (MIP testing and image analysis demonstrated that the incorporation of GO in the composites can help in refining capillary pore structure and reducing the air voids content.

  20. Microstructure and Damping Property of Polyurethane Composites Hybridized with Ultraviolet Absorbents

    Directory of Open Access Journals (Sweden)

    Jiang Chang

    2018-01-01

    Full Text Available This article investigated the microstructure and damping property of TPU composites with different contents of ultraviolet absorbents. It can be found that the ultraviolet absorbents formed fiber-shaped precipitations in the TPU matrix. The UV-328 was randomly distributed in the matrix and exhibited a weak interfacial bonding with the matrix. In comparison, the UV-329 was well embedded in the matrix and formed a relatively better interfacial bonding and compatibility with the TPU matrix. The damping factor tanδ of both 328-composites and 329-composites had been reduced gradually with increasing content of ultraviolet absorbents at the glass transition temperature range due to the fact that the ultraviolet absorbents were in the crystalline state which decreased the volume content of the viscoelastic TPU matrix. But the tanδ increased at the temperature range of higher than the glass transition temperature, which should be related to the dominance of interfacial frictions between the ultraviolet absorbents and the matrix on the energy absorption.

  1. Exploration of microstructure and wear behaviour of laser metal deposited Ti6Al4V/Cu composites

    CSIR Research Space (South Africa)

    Erinosho, MF

    2016-01-01

    Full Text Available This paper presents the explorations conducted on the evolving microstructures and the dry sliding wear of the laser deposited Ti6Al4V/Cu composites. The laser powers between 1300 W and 1600 W; scanning speeds between 0.30 and 0.72 m/min were...

  2. A Review on Nanomaterial Dispersion, Microstructure, and Mechanical Properties of Carbon Nanotube and Nanofiber Reinforced Cementitious Composites

    Directory of Open Access Journals (Sweden)

    Shama Parveen

    2013-01-01

    Full Text Available Excellent mechanical, thermal, and electrical properties of carbon nanotubes (CNTs and nanofibers (CNFs have motivated the development of advanced nanocomposites with outstanding and multifunctional properties. After achieving a considerable success in utilizing these unique materials in various polymeric matrices, recently tremendous interest is also being noticed on developing CNT and CNF reinforced cement-based composites. However, the problems related to nanomaterial dispersion also exist in case of cementitious composites, impairing successful transfer of nanomaterials' properties into the composites. Performance of cementitious composites also depends on their microstructure which is again strongly influenced by the presence of nanomaterials. In this context, the present paper reports a critical review of recent literature on the various strategies for dispersing CNTs and CNFs within cementitious matrices and the microstructure and mechanical properties of resulting nanocomposites.

  3. Honey: Chemical composition, stability and authenticity.

    Science.gov (United States)

    da Silva, Priscila Missio; Gauche, Cony; Gonzaga, Luciano Valdemiro; Costa, Ana Carolina Oliveira; Fett, Roseane

    2016-04-01

    The aim of this review is to describe the chemical characteristics of compounds present in honey, their stability when heated or stored for long periods of time and the parameters of identity and quality. Therefore, the chemical characteristics of these compounds were examined, such as sugars, proteins, amino acids, enzymes, organic acids, vitamins, minerals, phenolic and volatile compounds present in honey. The stability of these compounds in relation to the chemical reactions that occur by heating or prolonged storage were also discussed, with increased understanding of the behavior regarding the common processing of honey that may compromise its quality. In addition, the identity and quality standards were described, such as sugars, moisture, acidity, ash and electrical conductivity, color, 5-HMF and diastase activity, along with the minimum and maximum limits established by the Codex Alimentarius. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Chemical composition of hulled, dehulled and naked oat grains ...

    African Journals Online (AJOL)

    In grain samples of hulled (5 samples), dehulled (5 samples) and naked (4 samples) oats, the following components were determined: chemical composition (ash, crude protein, crude fat, crude fibre and its components) and amino acids and fatty acid composition. The grain of naked and dehulled oats contained ...

  5. Chemical composition and nutritional value of boiled Christmas ...

    African Journals Online (AJOL)

    A study was conducted to determine the chemical composition and the nutritive value of boiled Christmas bush (Alchornea cordifolia) for starter broiler chickens. Dried Christmas bush fruits (Capsules + seed) were boiled for 30 minutes, sundried and ground into meal. The meal was analyzed for proximate composition and ...

  6. Chemical composition of the clays as indicator raw material sources

    OpenAIRE

    Khramchenkova Rezida Kh.

    2014-01-01

    The paper presents the results of study on the chemical composition of unglazed pottery from the excavations of the Bulgar fortified settlement site and the clay, selected from the modern deposits of ceramic raw materials located near the medieval settlement sites. Significant differences in macro- and microelement composition of different groups of ceramics have been revealed. The difference in the macroelemental composition is largely determined by the ceramic fabric recipe. Thus, the high ...

  7. Microstructure and property evolutions of titanium/nano-hydroxyapatite composites in-situ prepared by selective laser melting.

    Science.gov (United States)

    Han, Changjun; Wang, Qian; Song, Bo; Li, Wei; Wei, Qingsong; Wen, Shifeng; Liu, Jie; Shi, Yusheng

    2017-07-01

    Titanium (Ti)-hydroxyapatite (HA) composites have the potential for orthopedic applications due to their favorable mechanical properties, excellent biocompatibility and bioactivity. In this work, the pure Ti and nano-scale HA (Ti-nHA) composites were in-situ prepared by selective laser melting (SLM) for the first time. The phase, microstructure, surface characteristic and mechanical properties of the SLM-processed Ti-nHA composites were studied by X-ray diffraction, transmission electron microscope, atomic force microscope and tensile tests, respectively. Results show that SLM is a suitable method for fabricating the Ti-nHA composites with refined microstructure, low modulus and high strength. A novel microstructure evolution can be illustrated as: Relatively long lath-shaped grains of pure Ti evolved into short acicular-shaped and quasi-continuous circle-shaped grains with the varying contents of nHA. The elastic modulus of the Ti-nHA composites is 3.7% higher than that of pure Ti due to the effect of grain refinement. With the addition of 2% nHA, the ultimate tensile strength significantly reduces to 289MPa but still meets the application requirement of bone implants. The Ti-nHA composites exhibit a remarkable improvement of microhardness from 336.2 to 600.8 HV and nanohardness from 5.6 to 8.3GPa, compared to those of pure Ti. Moreover, the microstructure and property evolution mechanisms of the composites with the addition of HA were discussed and analyzed. It provides some new knowledge to the design and fabrication of biomedical material composites for bone implant applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Chemical composition, true metabolisable energy content and ...

    African Journals Online (AJOL)

    aneldavh

    Erickson, J.P., 1985. Lupins show potential as protein source for livestock. Feedstuffs 57, 22–23. Evans, A.J. & Cheung, P.C.K., 1993. The carbohydrate composition of cotyledons and hulls of cultivars of. Lupinus angustifolius from Western Australia. J. Sci. Food Agric. 61, 189–194. Garrido, A., Gomez-Cabrera, A., Guerrero, ...

  9. Chemical composition of the early universe

    NARCIS (Netherlands)

    Harwit, M; Spaans, M

    2003-01-01

    A prediction of standard inflationary cosmology is that the elemental composition of the medium out of which the earliest stars and galaxies condensed consisted primarily of hydrogen and helium (4)He, with small admixtures of deuterium, lithium (7)Li, and (3)He. The most redshifted quasars,

  10. Proximate, chemical compositions and sulphur concentrations on ...

    African Journals Online (AJOL)

    0, 10, 20, 50, 100, 150, 200, 250 and 300 ppm) on the nutritional value and the proximate composition of six selected mango cultivars (Tommy Atkins, Peach, Saber, Sunshine, Keitt and Vhavenda) grown in South Africa. The study shows that ...

  11. Chemical composition and mutagenic assessment of petrochemical ...

    African Journals Online (AJOL)

    Aghomotsegin

    was first introduced by Levan (1938) and later was proposed as a standard method for the testing of chemicals, in environmental monitoring and in toxicity screening of wastewater and river water (Fiskesjö,. 1985a; 1985b; 1993). The Allium genetic material has been widely exploited for such purpose because of its excellent ...

  12. Chemical composition and physical characteristics of cowpea ...

    African Journals Online (AJOL)

    Unknown

    The main aim of this research was to determine the effect of variety on physical and chemical characteristics of straws of long season cowpeas and also to determine if haulms of varieties that retain greenness longer will have a better nutritional value than those that dry early. Materials and Methods. Sixteen forages used in ...

  13. Chemical Composition, Resistant, Total Starch Content and ...

    African Journals Online (AJOL)

    This study is aimed at the potential use of cowpea starch (CS) as resistant starch in the production of noodle as a functional food and its overall acceptability. Alkaline noodle was prepared from a mixture of 100% wheat flour and varying substitution of wheat flour (2, 4% and 6%) with cowpea starch (CS). Chemical analysis ...

  14. Relationship between chemical composition and magnetic ...

    Indian Academy of Sciences (India)

    younger (Quaternary) caldera forming lava dome/flows (e.g., tephriphonolite, trachyte) and pyro- ... rocks. In this paper, it is aimed (i) to present geo- chemical content of the volcanic rocks from the. Isparta area (SW Turkey), and (ii) to discuss the relationship between ..... highly oxidized magma during crystallization and cool-.

  15. Compositional, morphological, structural, microstructural, optical, and magnetic properties of Fe, Co, and Ni doped ZnS nanoparticles

    Science.gov (United States)

    Poornaprakash, B.; Chalapathi, U.; Vattikuti, S. V. Prabhakar

    2017-04-01

    We present the compositional, morphological, structural, microstructural, optical, and magnetic properties of undoped, Fe, Co, and Ni doped ZnS diluted magnetic semiconductor nanoparticles (NPs) synthesized by chemical refluxing technique at 80 °C using Polyvinylpyrrolidone (PVP) as a stabilizer. EDS spectra confirmed the presence of Zn, Fe, Co, Ni, and S in the samples with expected stoichiometry. XRD and Raman studies revealed that all the samples exhibited cubic structure without any impurity phases. The average diameter of the particles confirmed by HRTEM studies was in the range 5-8 nm. From DRS, the estimated band-gap values were 3.92, 3.70, 3.98, and 3.76 eV for undoped, Ni, Fe, and Co doped ZnS samples, respectively. Photoluminescence studies indicated that the undoped and doped samples exhibited broad and asymmetric PL peaks covering a wide visible range. Room temperature magnetisation studies revealed that the undoped, Fe, Co, and Ni doped samples exhibited diamagnetic, paramagnetic, and ferromagnetic behaviors, respectively. The use of these ions with magnetic properties in systems doped by an innovative method and thus creating a quantum confinement effect.

  16. Tribological Property of C/C-SiC Composites Fabricated by Isothermal Chemical Vapor Infiltration

    Directory of Open Access Journals (Sweden)

    WANG Yueming

    2017-08-01

    Full Text Available Four kinds of C/C-SiC composites were fabricated by isothermal chemical vapor infiltration (ICVI, and the 2.5D needle-punching carbon felt was taken as the preform. The volume fraction of carbon fiber in felt is 30%. The density of C/C-SiC composites is similar (1.87-1.91 g/cm3, while the weight ratio of SiC is decreased from 56% to 15%. The microstructure and phase composition of C/C-SiC composites were observed by SEM and XRD respectively. Friction and wear behavior of the C/C-SiC composites were investigated with the MM-1000 friction machine. The results show that the average macro hardness of matrix is decreased from 98.2HRA to 65.1HRA with the decrease of SiC content from 56% to 15%, and uniformity of hardness distribution is significantly decreased. Finally, by the analysis of microtopography of friction surface and wear debris, it is found that the superficial hardness has an obvious influence on mechanism of wear during braking process. The wear mechanism of the C/C-SiC composites transforms from grain wear to the combination of grain wear and adherent wear with the decrease of surface hardness. At the same time, the average friction coefficient and mass wear rate is increased obviously during breaking process.

  17. Investigation of Micro Hardness, Cooling Rate and Microstructure of ATIG Welded samples of Al-SiC composite

    Directory of Open Access Journals (Sweden)

    Pichumani Sivachidambaram

    2018-01-01

    Full Text Available Activated TIG welding has been performed on Al – 8% SiC composite 5mm plate with various fluxes such as Al2O3, MnO2, CaO, MgO, SiO2 & TiO2, to study & analyze the Microstructure, Micro hardness and cooling rate. Correlation study between micro hardness, microstructure and cooling rate for Constant Current TIG welding and Activated TIG welding on Al-SiC composite are also carried out to analyze the relation between the effect of cooling rate on microstructure & the effect of microstructure on micro hardness. The experimental results of ATIG welding on Al-SiC composite shows fine grain weld microstructure on ATIG – SiO2 & ATIG – TiO2, which results in higher micro hardness. Micro hardness values are taken in different locations of weld surface at 1mm, 2mm & 3mm below the weld surface and the same is also observed along the weld zone to heat affected zone upto 12mm for the center of the weldment. Minimum micro hardness values found in ATIG – MnO2, ATIG – CaO & ATIG – MgO are due to intermediate micro structure between coarse and fine in heat affected zone. ATIG – Al2O3 weld zone & heat affected zone and heat affected zone of ATIG – MnO2, ATIG – CaO & ATIG – MgO shows coarse microstructure leading to reduction in micro hardness value. Cooling rate for the different CCTIG & ATIG welding are recorded and correlation between the micro structures are studied. Coarse micro structure in weld zone and heat affected zone have least cooling rate whereas fine micro structure in weld zone resulted at higher cooling rate. Heat affected zone strongly depends on temperature gradient between the weld center and weldment’s heat affected zone.

  18. The effect of microstructural features on the mechanical properties of LZSA glass-ceramic matrix composites

    Directory of Open Access Journals (Sweden)

    F. M. Bertan

    2013-09-01

    Full Text Available This work reports on the characterization of ZrSiO4 particulate-reinforced Li2O-ZrO2-SiO2-Al2O3 (LZSA glass-ceramic matrix composites. The typical physical/mechanical and chemical properties of the glass batches and the composites were measured. A composition with 60 wt.% ZrSiO4 was preliminarily selected because it demonstrated the highest values of bending strength (190 MPa and deep abrasion resistance (51 mm³. To this same composition was given a 7 wt.% bentonite addition in order to obtain plasticity behavior suitable for extrusion. The sintered samples (1150 ºC for 10 min presented a thermal linear shrinkage of 14% and bending strength values of 220 MPa.

  19. Microstructure and chemical data of the thermoelectric ZnSb material after joining to metallic electrodes and heat treatment

    DEFF Research Database (Denmark)

    Malik, Safdar Abbas; Le, Thanh Hung; Van Nong, Ngo

    2017-01-01

    The data presented in this article are related to the research article entitled: “Solder free joining as a highly effective method for making contact between thermoelectric materials and metallic electrodes” (Malik et al., 2017) [1]. This article presents microstructure obtained by scanning elect...... electron microscopy (SEM) and chemical analysis by energy dispersive X-ray spectroscopy (EDX) point measurements of the thermoelectric ZnSb legs after joining to metallic electrodes using solder (Zn-2Al) and free-soldering methods....

  20. Genus Mikania: chemical composition and phytotherapeutical activity

    Directory of Open Access Journals (Sweden)

    Luciane C. Rufatto

    2012-12-01

    Full Text Available The genus Mikania ranks high in the list of best-selling natural products in the world. Its main distribution is in South America, but some species are found in Asia, North America and Africa. It is used for treating fever, rheumatism, colds and respiratory diseases, as well as snake bites and scorpion stings, due to its broad spectrum of action. There are approximately 430 species of this genus and only 12% have been studied, highlighting their chemical and pharmacological diversity. The main chemical groups are: coumarins and derivatives, sesquiterpenes, sesquiterpenes lactones, diterpenes, phytosterols/terpenoids and flavonoids. This review aims to supply useful references for scientists interested in natural products and the search for new compounds, from over the 300 already described for the genus.

  1. Genus Mikania: chemical composition and phytotherapeutical activity

    Directory of Open Access Journals (Sweden)

    Luciane C. Rufatto

    2012-08-01

    Full Text Available The genus Mikania ranks high in the list of best-selling natural products in the world. Its main distribution is in South America, but some species are found in Asia, North America and Africa. It is used for treating fever, rheumatism, colds and respiratory diseases, as well as snake bites and scorpion stings, due to its broad spectrum of action. There are approximately 430 species of this genus and only 12% have been studied, highlighting their chemical and pharmacological diversity. The main chemical groups are: coumarins and derivatives, sesquiterpenes, sesquiterpenes lactones, diterpenes, phytosterols/terpenoids and flavonoids. This review aims to supply useful references for scientists interested in natural products and the search for new compounds, from over the 300 already described for the genus.

  2. Yield, chemical composition, in vitro digestibility and

    African Journals Online (AJOL)

    reza

    Feed Sci. Technol. 94,. 15-27. Ammar, H., 2002. Compositión química, digestibilidad y cinética de fermentacion ruminal in vitro de arbustos. PhD tesi, Universidad de León, Spain. Anderson, T.P. & Hoffman, P., 2006. Nutrient composition of straw used in dairy cattle diets. University of. Wisconsin Extension Focus on Forage.

  3. Microstructuring of glasses

    CERN Document Server

    Hülsenberg, Dagmar; Bismarck, Alexander

    2008-01-01

    As microstructured glass becomes increasingly important for microsystems technology, the main application fields include micro-fluidic systems, micro-analysis systems, sensors, micro-actuators and implants. And, because glass has quite distinct properties from silicon, PMMA and metals, applications exist where only glass devices meet the requirements. The main advantages of glass derive from its amorphous nature, the precondition for its - theoretically - direction-independent geometric structurability. Microstructuring of Glasses deals with the amorphous state, various glass compositions and their properties, the interactions between glasses and the electromagnetic waves used to modify it. Also treated in detail are methods for influencing the geometrical microstructure of glasses by mechanical, chemical, thermal, optical, and electrical treatment, and the methods and equipment required to produce actual microdevices.

  4. Microstructure and mechanical properties of MgO-stabilized ZrO₂-Al₂O₃ dental composites.

    Science.gov (United States)

    Abi, C B; Emrullahoğlu, O F; Said, G

    2013-02-01

    The aim of the present study was to investigate the production of tetragonal zirconia (t-ZrO(2)) particles (experimental t-ZrO(2)) from monoclinic zirconia (m-ZrO(2)) and to evaluate the effect of the t-ZrO(2) content on the fracture toughness of alumina-zirconia composites by conducting ASTM E399 standard test. In the laboratory study, t-ZrO(2) powder was produced by heat treating m-ZrO(2) containing 10wt.% MgO. Alumina and alumina-zirconia composite powders containing various types and amounts of m-ZrO(2) and t-ZrO(2) were prepared (0-20 wt.%), shaped by slip casting to achieve a uniform distribution and homogeneous microstructure in accordance with the dimensions of ASTM E399 standards, dried, sintered at three different temperatures: 1400, 1500 and 1600 °C for two hours, and characterized. The results of the XRD analysis showed that t-ZrO(2) was produced at 1400 °C. In t-ZrO(2)-doped alumina composites, t-ZrO(2) partially transformed to m-ZrO(2) after sintering, whereas commercial t-ZrO(2) (Tosoh TZ-3Y) remained intact. SEM studies on samples sintered at 1600 °C revealed that the addition of zirconia inhibited abnormal grain growth of alumina, leading to a homogeneous and equiaxed grain structure, especially at high concentrations of zirconia. ZrO(2)-doping enhanced the fracture toughness of the composites, which increased with an increase in the t-ZrO(2) content. The maximum fracture toughness was 11.5 MPam(1/2) and was observed when the t-ZrO(2) content was equal to 20 wt.%. Alternatively, the maximum fracture toughness for pure alumina was 5.9 MPam(1/2). Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Evolution of microstructure and mechanical properties of SUS430/C11000/SUS430 composites during the laser-forming process

    Science.gov (United States)

    Abazari, Hamed Delfan; Seyedkashi, Seyed Mohammad Hossein; Gollo, Mohammad Hoseinpour; Moon, Young Hoon

    2017-09-01

    Multilayered sheet metals have been widely used to achieve a wide range of favorable mechanical, physical, thermal and electrical properties. Laser beam irradiation over these materials creates extreme temperature changes that can lead to changes in the microstructural properties. Microstructure plays a very crucial role in determining the mechanical property of the irradiated region, thus determining the optimum laser processing conditions. In this study, metallographic studies, as well as tensile, fatigue and hardness tests, are undertaken on SUS430/C11000/SUS430 laminated composites that have been exposed to laser irradiation with different number of passes. This composite can be used in the microelectronics industry since it has the anti-corrosion and strength capability of stainless steel, and the electrical superiority of copper. Ytterbium fiber laser is used in such a way that the governing mechanism of the process is the temperature gradient mechanism. Evolution of the microstructure is revealed by metallography, and the fracture levels of tension and fatigue test specimens are further evaluated by SEM. This study illustrates the significant effects of successive laser irradiation on the evolution of microstructure and mechanical properties, which lead to some suggestions for improving the properties of laser-formed SUS430/C11000/SUS430 composites.

  6. Microstructure and Mechanical Properties of Two Kinds of Dual-matrix C/C Composites

    Directory of Open Access Journals (Sweden)

    LIU Hao

    2017-08-01

    Full Text Available The microstructure and mechanical properties of two kinds of dual-matrix C/C composites were studied by polarized light microscopy (PLM, scanning electron microscopy (SEM and mechanical properties tests techniques respectively. PLM results indicate that the matrix carbon exhibits the smooth laminar structure of the pyrocarbon, the isotropic, mosaics and flow domains of the pitch carbon. The TEM results show the normal pitch carbon is the grape structure; the mesophase pitch carbon is the lamellar banded structure. Materials with multi-interface structure can improve the flexural strength and fracture toughness, the load-displacement curve shows the load drop is decreased for step type, the composites show a pseudo-plastic fracture characteristics. The flexural strengths of the material A and material B are 206.68MPa and 243.66MPa, the fracture toughness are 8.06MPa·m1/2 and 9.66MPa·m1/2, respectively. The flexural strength and fracture toughness of material B are both superior than that of material A.

  7. Facile synthesis and strongly microstructure-dependent electrochemical properties of graphene/manganese dioxide composites for supercapacitors

    Science.gov (United States)

    2014-01-01

    Graphene has attracted much attention since it was firstly stripped from graphite by two physicists in 2004, and the supercapacitor based on graphene has obtained wide attention and much investment as well. For practical applications of graphene-based supercapacitors, however, there are still many challenges to solve, for instance, to simplify the technological process, to lower the fabrication cost, and to improve the electrochemical performance. In this work, graphene/MnO2 composites are prepared by a microwave sintering method, and we report here a relatively simple method for the supercapacitor packaging, i.e., dipping Ni-foam into a graphene/MnO2 composite solution directly for a period of time to coat the active material on a current collector. It is found that the microwave reaction time has a significant effect on the microstructure of graphene/MnO2 composites, and consequently, the electrochemical properties of the supercapacitors based on graphene/MnO2 composites are strongly microstructure dependent. An appropriately longer microwave reaction time, namely, 15 min, facilitates a very dense and homogeneous microstructure of the graphene/MnO2 composites, and thus, excellent electrochemical performance is achieved in the supercapacitor device, including a high specific capacitance of 296 F/g and a high capacitance retention of 93% after 3,000 times of charging/discharging cycles. PACS 81.05.ue; 78.67.Sc; 88.80.fh PMID:25258609

  8. Chemical composition of Lake Orta sediments

    Directory of Open Access Journals (Sweden)

    Monica BELTRAMI

    2001-08-01

    Full Text Available Lake Orta (18.2 km2, 1.3 km3, 143 m max. depth has been severely polluted since industrialisation of its watershed began in 1926, at which time the lake began to receive industrial effluents containing high concentrations of copper and ammonia. Chromium-, nickel-, and zinc-rich effluents from plating factories have also contributed to pollution levels, and pH -levels dropped below 4.0 as a result of the oxidation of ammonia to nitrates. More than 60 papers have documented the evolution of the chemical characteristics of both water and sediment, and the sudden decline of plankton, as well as benthos and fish. As a remedial action the lake was limed from May 1989 to June 1990 with 10,900 tons of CaCO3. The treatment was immediately effective in raising the pH and decreasing the metal concentrations in the water column, and plankton and fish communities quickly rebounded. However, the chemical characteristics of sediments were influenced by the liming to a much lesser extent. Since 900 tons of copper and the same amount of chromium were contained in the top 10 cm of sediment, it appears likely that the sediment could potentially act as a current and future source of these metals to the water column. This observation has resulted in the implementation of a vigorous monitoring regime to track the post-liming recovery of Lake Orta.

  9. Microstructural and Chemical Characterization of the Tribolayer Formation in Highly Loaded Cylindrical Roller Thrust Bearings

    Directory of Open Access Journals (Sweden)

    Carsten Gachot

    2016-06-01

    Full Text Available Zinc dithiophosphates (ZDDP have been widely applied in automobile industry for over 70 years as a lubricant additive for wear protection. Tribolayers have been described as blue- and brown-colored layers on surfaces observed by microscopical observation or even bare eye presumably as a consequence of layer thickness or chemical composition. However, the reaction pathways of ZDDP tribolayers are still not yet fully understood. In the present study, the difference between the blue- and brown-colored tribolayers has been revealed by high resolution methods in cylindrical roller thrust bearings at relatively high contact pressures of around 1.92 GPa. After running a FE8 standard bearing test with a normal load of 80 kN and a temperature of 60 °C, said tribolayers could be identified on the bearing surfaces. By using Raman spectroscopy, it could be shown that the blue-colored layers are enriched by FeS and ZnS whereas the brown-colored layers show a significant amount of Fe3O4. This is an interesting finding as it clearly shows a correlation between the color appearance of the films and the chemical composition besides potential film thickness variations. Finally, transmission electron microscopy verified the amorphous nature of the formed tribolayer which is in a good agreement with literature.

  10. Microstructure and wettability of root canal dentine and root canal filling materials after different chemical irrigation

    Energy Technology Data Exchange (ETDEWEB)

    Antonijevic, Djordje; Milovanovic, Petar [Laboratory for Anthropology, Institute for Anatomy, Faculty of Medicine, University of Belgrade, Belgrade (Serbia); Brajkovic, Denis [Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac (Serbia); Ilic, Dragan [Department of Restorative Medicine, School of Dental Medicine, University of Belgrade, Belgrade (Serbia); Hahn, Michael; Amling, Michael [Department of Osteology and Biomechanics (IOBM), University Medical Center Hamburg-Eppendorf, Lottestr. 55A, 22529 Hamburg (Germany); Rakocevic, Zlatko [Laboratory for Atomic Physics, Institute for Nuclear Science “Vinca”, University of Belgrade, Belgrade (Serbia); Djuric, Marija [Laboratory for Anthropology, Institute for Anatomy, Faculty of Medicine, University of Belgrade, Belgrade (Serbia); Busse, Björn, E-mail: b.busse@uke.uni-hamburg.de [Department of Osteology and Biomechanics (IOBM), University Medical Center Hamburg-Eppendorf, Lottestr. 55A, 22529 Hamburg (Germany)

    2015-11-15

    Graphical abstract: - Highlights: • Different irrigation solutions and disinfectants were used for treatment of root canal dentine and gutta-percha points. • Materials surface characteristics were assessed using quantitative backscattered electron imaging, reference point indentation, and contact angle analyzer. • The most significant differences in mineralization, indentation, and adhesive outcomes were observed after ethylenediaminetetraacetic acid treatment. • Irrigation solutions confer to superior sealing ability of endodontic filling materials. • Micromechanical characteristics of dentine after irrigation are considerable reduced. - Abstract: The objective of this study was to determine the effects of various irrigation solutions on root canal dentine and gutta-percha surface properties. In addition, the effects of disinfectant chemicals on the wettability and surface morphological properties of the filling materials were evaluated. Ethylenediaminetetraacetic acid (EDTA), citric acid, and ozone were employed as irrigation solutions for dentine and gutta-percha treatment. Thereafter, the samples’ microstructure, degree of mineralization, and mechanical properties were assessed by means of quantitative backscattered electron imaging (qBEI) and reference point indentation (RPI). A contact angle analyzer was used to measure adhesion on the tested materials. Here, EDTA had the most significant affect on both the mechanical properties and the adhesive behavior of dentine. Citric acid did not affect dentine wettability, whereas the indentation properties and the mineralization were reduced. Similar effects were observed when ozone was used. The dentinal tubules were significantly widened in citric acid compared to the ozone group. EDTA causes considerable micromechanical surface alteration of dentine and gutta-percha, but represents the best option in clinical cases where a high adhesiveness of the filling materials is desired.

  11. Effect of chemical composition and welding parameters on microstructure and hardness of API 5I X60 steel weld metals; Efeito da composicao quimica e dos parametros de soldagem sobre a microestrutura e dureza de metais de solda de acos API 5I X60

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Kleber Eduardo Siqueira; Maciel, Theophilo Moura; Albuquerque, Maria Clea Soares de; Almeida, Daisy Martins de [Universidade Federal de Campina Grande, PB (Brazil). Dept. de Engenharia de Materiais

    2004-12-15

    In this work the influence of the variation of the welding parameters and chemical composition of weld metal obtained with different filler metals and b different welding process on the microhardness values and on the acicular ferrite (AF) and primary ferrite (PF) percentiles from the columnar grain region were evaluated. Thee welding processes used were Shielded Manual Metal Arc Welding (SMAW) and semiautomatic processes, such as Flux Cored Arc Welding (FCAW), with protection of CO{sub 2} and inner shield, process MGAW with protection of CO{sub 2} and of CO{sub 2} + Argon and process MGAW with protection of argon. The obtained results indicated that the percentile of AF and PF vary from 48 to 61 per cent and from 28 to 44 per cent respectively. The weld metals that obtained the higher values of A F were those welded by process FCAW inner shield and MGAW with higher values of Equivalent Carbon and with lower heat input. (author)

  12. Chemical composition of polluted mist droplets

    Science.gov (United States)

    Igawa, Manabu; Kamijo, Kosuke; Nanzai, Ben; Matsumoto, Kiyoshi

    2017-12-01

    Mist events occur frequently worldwide, but the chemical characteristics of the mist droplets has never been investigated because of very low liquid water contents of them. We estimated the concentrations of the mist water, the average concentration of the mist droplets, via the determination of water-soluble components of the coarse aerosol and the observation of the imprints of the droplets on a MgO-coated glass slide. The pH of the mist water was estimated from the equilibrium calculation with the data of the Gran plot of the solution of the dissolved coarse particles, the inorganic ion concentrations of aerosol larger than 10 μm, and the estimated volume of mist water. The mist water was measured as about 1 eq/L total concentration for typical inorganic ions and about pH 4.5 in Yokohama. Such highly concentrated mist droplets may have intense environmental effects.

  13. Unraveling the chemical composition of caramel.

    Science.gov (United States)

    Golon, Agnieszka; Kuhnert, Nikolai

    2012-03-28

    Caramel is one of mankind's best known dietary materials obtained from carbohydrates by heating. Much effort has been expended toward the chemical characterization of the components of caramel but impeded by a lack of suitable analytical techniques sufficiently powerful for providing insight into an extraordinarily complex material. This paper reports the characterization of caramel formed by heating from glucose, fructose, and saccharose using a conceptually novel combination of mass spectrometrical techniques. The analytical strategy employed uses high-resolution mass spectrometry (MS) followed by targeted liquid chromatography-tandem MS experiments. Caramel is composed from several thousand compounds formed by a small number of unselective and chemoselective reactions. Caramelization products include oligomers with up to six carbohydrate units formed through unselective glycosidic bond formation, dehydration products of oligomers losing up to a maximum of eight water molecules, hydration products of sugar oligomers, disproportionation products, and colored aromatic products.

  14. Microstructures induced by excimer laser surface melting of the SiC{sub p}/Al metal matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Qian, D.S., E-mail: Daishu.qian@postgrad.manchester.ac.uk; Zhong, X.L.; Yan, Y.Z.; Hashimoto, T.; Liu, Z.

    2017-08-01

    Highlights: • Microstructural analysis of the excimer laser-melted SiC{sub p}/AA2124;. • Analytical, FEM, and SPH simulation of the laser-material interaction;. • Mechanism of the formation of the laser-induced microstructure. - Abstract: Laser surface melting (LSM) was carried out on the SiC{sub p}/Al metal matrix composite (MMC) using a KrF excimer laser with a fluence of 7 J/cm{sup 2}. The re-solidification microstructure was characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) equipped with energy dispersive X-ray detector, and X-ray diffraction (XRD) analysis. It was found that a 2.5 μm thick melted layer was formed in the near-surface region, in which dissolution of the intermetallics and removal of the SiC particles occurred. The thermal and material response upon laser irradiation was simulated using three models, i.e. analytical model, finite element model (FEM) and smoothed-particle hydrodynamics (SPH) model. The effect of SiC particles on the LSM process, the mechanism of the SiC removal and the re-solidification microstructures in the melted layer were discussed. The simulation results were in good agreement with the experimental results and contributed to the generic understanding of the re-solidification microstructures induced by ns-pulsed lasers.

  15. Microstructural study by XPS and GISAXS of surface layers formed via phase separation and percolation in polystyren/tetrabutyl titanate/alumina composite films

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Yanwei [School of Materials Science and Engineering, Nanjing University of Technology, Nanjing 210009 (China)]. E-mail: zengyanwei@tom.com; Tian Changan [School of Materials Science and Engineering, Nanjing University of Technology, Nanjing 210009 (China); Liu Junliang [School of Materials Science and Engineering, Nanjing University of Technology, Nanjing 210009 (China)

    2006-03-15

    The XPS and GISAXS have been employed as useful tools to probe the chemical compositional and microstructural evolutions in the surface layers formed via phase separation and percolation in polystyren/Ti(OBut){sub 4}/alumina composite thick films. The surface enrichment of Ti species due to the migration of Ti(OBut){sub 4} molecules in the films was found to show an incubation period of {approx}15 h while the samples were treated at 100 deg. C before a remarkable progress can be identified. According to the XPS and GISAXS data, Key mechanism to govern this surface process is phenomenologically considered to be the specific phase separation behavior in Ti(OBut){sub 4}/PS blend and the subsequent percolating process. The extended thermal treatment was found to make the surface layer microstructure evolve from local phase separation featured with an increasing population of individual microbeads of Ti(OBut){sub 4} ({approx}1.5 nm in radius) to the formation of large size clusters of microbeads due to their interconnections, accompanied by the growth of every microbead itself to {approx}10 nm on the average, which provokes and then enhances the surface enrichment of Ti(OBut){sub 4} since these clusters act as a fast diffusion network due to percolation effect.

  16. Sensory properties and chemical composition of Sharri cheese from Kosovo

    Directory of Open Access Journals (Sweden)

    Agim Rysha

    2014-11-01

    Full Text Available Food sensory properties, analyses and chemical composition are very important because they provide information about product quality and end-user acceptance or preferences. An assessment of sensory characteristics and chemical composition of mountain sheep and cow’s-milk cheese from shepherd’s huts and industrial manufacturers in Kosovo was carried out. Consumer-oriented tests using a 9 point hedonic scale were conducted in order to determine Sharri cheese acceptability. Chemical parameters (fat content, fat content of dry matter, acidity, protein, dry matter, mineral and water content and sodium chloride content of 45-day brine cheese samples were also analyzed. Chemical and sensory assessment demonstrated large property differences. A recommendation stems from the results showing that the standardization of both artisanal and industrial production of Sharri cheese is required.

  17. Inorganic chemical composition of native trees of the Atlantic Forest.

    Science.gov (United States)

    De França, E J; De Nadai Fernandes, E A; Bacchi, M A; Rodrigues, R R; Verburg, T G

    2005-03-01

    The Atlantic Forest with its exuberant vegetation of high level of biodiversity is classified as one hotspot of the world. Chemical composition of leaves from native trees and underlying soils was evaluated by INAA. The predominant species Euterpe edulis, Bathysa meridionalis, Hyeronima alchorneoides, Marlierea tomentosa, Gomidesia flagellaris, and Gomidesia spectabilis belonging to the diverse plant families were studied. Euterpe edulis, the most abundant understory specie, presented the lowest element concentrations except for Zn. Some variation in chemical composition was noted, however, the chemical specificity of tree species can be more predominant than the soil variability for the obtained leaf concentrations. Factor values obtained through the Monte-Carlo assisted factor analysis were used for species discrimination, The results indicate that chemical investigation of native trees is a quite promising tool for biodiversity studies in the Atlantic Forest.

  18. The Influence of Nano-Fe3O4 on the Microstructure and Mechanical Properties of Cementitious Composites

    Science.gov (United States)

    Sikora, Pawel; Horszczaruk, Elzbieta; Cendrowski, Krzysztof; Mijowska, Ewa

    2016-04-01

    In the last decade, nanotechnology has been gathering a spectacular amount of attention in the field of building materials. The incorporation of nanosized particles in a small amount to the building materials can influence their properties significantly. And it can contribute to the creation of novel and sustainable structures. In this work, the effect of nano-Fe3O4 as an admixture (from 1 to 5 wt.% in mass of the cement) on the mechanical and microstructural properties of cementitious composites has been characterised. The study showed that Fe3O4 nanoparticles acted as a filler which improved the microstructure of a cementitious composite and reduced its total porosity, thus increasing the density of the composite. The presence of nanomagnetite did not affect the main hydration products and the rate of cement hydration. In addition, the samples containing nanomagnetite exhibited compressive strength improvement (up to 20 %). The study showed that 3 wt.% of nano-Fe3O4 in the cementitious composite was the optimal amount to improve both its mechanical and microstructural properties.

  19. Chemical food composition: implications for atherosclerosis prevention.

    Science.gov (United States)

    Scherr, Carlos; Ribeiro, Jorge Pinto

    2011-01-01

    To compare the fatty acid and cholesterol content in food acquired in Brazil with the composition found in the most frequently used reference tables in the country. The fatty acid and cholesterol content in 41 food items frequently used in our country and the various directions to prepare them were reviewed by using specific methodology and the information was compared to the tables adopted by Unicamp and UNIFESP. According to Unicamp table, the cholesterol content found in parmesan cheese was 100.7 mg/100 g, while it was 68 mg/100 g in UNIFESP table, that is, a 48% (p cholesterol content 31% lower (94 mg/100 g vs. 123 mg/100 g, p cheese. For whole milk, we found a 52% difference regarding cholesterol content, while the difference for saturated fat ranged from 1.4 g/100 g in Unicamp table to 2.130 g/100 g in our study table (p cholesterol content formally analyzed and the content shown on commonly used tables, and this can compromise our recommendations on preventing atherosclerosis. One possible explanation for the differences would be the fact that the UNIFESP table is American in origin.

  20. Application of pulse acoustic microscopy technique for 3D imaging bulk microstructure of carbon fiber-reinforced composites.

    Science.gov (United States)

    Liu, Songping; Guo, Enming; Levin, V M; Liu, Feifei; Petronyuk, Yu S; Zhang, Qianlin

    2006-12-22

    Impulse acoustic microscopy technique is applied for 3D imaging of bulk microstructure of composite materials. Short pulses of focused high-frequency ultrasound have been employed for layer-by-layer imaging of internal microstructure of carbon fiber-reinforced composite (CFRC) laminates. The method provides spatial resolution of 60 microm and in-depth resolution of 80 microm, approximately. Echo signals reflected from structural units--plies, fiber bundles; and microflaws form acoustic images of microstructure at different depth inside samples. The images make it possible to see ply arrays, packing of bundles in plies; binding material distribution over the specimen body. They reveal failure of interply adhesion, buckling of single plies and fiber bundles, internal defoliations and disbonds, voids in the specimen body. The series of successive images offer outstanding possibilities to reconstruct the bulk structure, to estimate local variations of properties, topological and geometrical characteristics of structural components. The imaging technique has been applied to study different types of fiber packing--unidirectional, cross-ply and woven laminates. Mechanisms of ultrasonic contrast for diverse elements in acoustic images of CFRC laminate bulk microstructure and structural defects are discussed.

  1. Relationships between phase transformations, microstructure and properties in Ti and Pb-free alloys

    Energy Technology Data Exchange (ETDEWEB)

    Servant, Colette [Centre National de la Recherche Scientifique (C.N.R.S.), Laboratoire de Physico-Chimie de l' Etat Solide, ICMMO, Universite de Paris-Sud, 91405 Orsay (France)

    2010-10-15

    The mechanical or use properties of alloys are determined by their chemical composition and microstructure history. The microstructure changes during phase transformations occurring during solidification, thermomechanical processing and subsequent heat treatments. The best mechanical properties for the chosen application need optimized parameters of the microstructure. Tailored microstructures: can a dream come true. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Thermal ageing on the microstructure and mechanical properties of Al–Cu–Mg alloy/bagasse ash particulate composites

    Directory of Open Access Journals (Sweden)

    V.S. Aigbodion

    2014-07-01

    Full Text Available Thermal ageing on the microstructure and mechanical properties of Al–Cu–Mg alloy/bagasse ash(BAp particulate composites was investigated. The composites were produced by a double stir-casting method by varying bagasse ash from 2 to 10 wt.%. After casting the samples were solution heat-treated at a temperature of 500 °C in an electrically heated furnace, soaked for 3 h at this temperature and then rapidly quenched in water and thermal aged at temperatures of 100, 200 and 300 °C. The ageing characteristics of these grades of composites were evaluated using scanning electron microscopy (SEM, hardness and tensile test samples obtained from solution heat-treated composites samples subjected to the temperature conditions mentioned above. The results show that the uniform distribution of the bagasse ash particles in the microstructure of both the as-cast and age-hardened Al–Cu–Mg/BAp composites is the major factor responsible for the improvement in mechanical properties. The presence of the bagasse ash particles in the matrix alloy results in a much smaller grain size in the cast composites compared to the matrix alloy. The addition of bagasse ash particles to Al–Cu–Mg (A2009 does not alter the thermal ageing sequence, but it alters certain aspects of the precipitation reaction. Although thermal ageing is accelerated in the composites the presence of bagasse ash particles in A2009 reduces the peak temperatures.

  3. Evaluation of crack-tip stress fields on microstructural-scale fracture in Al-Al2O3 interpenetrating network composites

    Science.gov (United States)

    Robert J. Moon; Mark Hoffman; Jurgen Rödel; Shigemi Tochino; Giuseppe Pezzotti

    2009-01-01

    The influence of local microstructure on the fracture process at the crack tip in a ceramic–metal composite was assessed by comparing the measured stress at a microstructural level and analogous finite element modelling (FEM). Fluorescence microprobe spectroscopy was used to investigate the influence of near-crack-tip stress fields on the resulting crack propagation at...

  4. Pressure dependence of in situ boron-doped silicon films prepared by low-pressure chemical vapor deposition. I. Microstructure

    Science.gov (United States)

    Joubert, P.; Sarret, M.; Haji, L.; Hamedi, L.; Loisel, B.

    1989-11-01

    In situ boron-doped silicon films have been deposited by the low-pressure chemical vapor deposition technique in the pressure and temperature ranges of 1-2.5×10-3 Torr and 515-700 °C, respectively. These films have been investigated by means of x-ray diffraction and transmission electron microscopy in order to study the influence of the silane partial pressure and deposition temperature on the microstructure of the doped films. X-ray experiments combined with gradual etching were performed in order to check the in-depth distribution of the crystallite textures. The microstructure of the boron-doped and undoped polysilicon films are compared.

  5. Assessment of radio frequency heating on composition, microstructure, flowability and rehydration characteristics of milk powder

    Directory of Open Access Journals (Sweden)

    Yu ZHONG

    2017-10-01

    Full Text Available Abstract Radio frequency heating (RFH provides higher efficiency and more uniform heating zone compared with conventional method. The aim of present work is to evaluate the effect of RFH (at 90 °C for 5 or 10 min on the changes in composition (protein oxidation and fat distribution, microstructure, flow characteristic and rehydration property of infant milk powder. The results indicate that the concentration of protein dityrosine was slightly enhanced, more free fat appeared on powder surfaces (> 50% increase, and porosity in powder matrix as tested by SEM was increased after RFH treatment. For powder flowability, raw sample had low cohesiveness (specific energy = 4.39 mJ/g, and RFH provided better flowability and decreased compressibility. Moreover, RFH had some negative impacts on wettability and solubility of powder particles with contact angle increase at least 5% and solubility decrease of 2%~4%, indicating worse rehydration abilities. Guggenheim-Anderson-de Boer (GAB model was applied to fit moisture vapor sorption isotherms, and longer RFH duration leading to higher c values (about 63% increase at 10 min. In addition, the RFH initiated browning reaction as CIE a* values increased from -1.8 to -1.3.

  6. Effect of Dynamic Composite Refinement and Modification on Microstructure of A356 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    WANG Zheng-jun

    2017-01-01

    Full Text Available To make up for the inadequacy of Sr modification,Al-5Ti-1B-1RE master alloy refiner was prepared,then were used together with Al-10Sr master alloy for dynamic composite refinement and modification of A356 alloy.The A356 alloy microstructure of modification was studied and compared with the theoretical calculating results.The results show that the melt is fiercely stirred and vibrated by the JJ-1 laboratory electric stirrer;the refining effect of α-Al phase is excellent;the coarse and needle-like eutectic Si phase transforms into tiny,widely dispersed spherical particles and well-distributed at the grain boundaries.And mechanical property of the A356 alloy increases obviously.The grain size control study results are consistent with Johnson-Mehl equation theory.At the same time,the contents of gases of the A356 alloy are significantly reduced,which can not be achieved by Sr alone.Quantitative calculating results of degassing mechanism are consistent with the approximate calculating equations of thermodynamics and Stokes Law.

  7. Phase, microstructural analysis, and humidity-sensing properties of orange dye and cuprous-oxide composite

    Science.gov (United States)

    Karimov, Khasan S.; Saleem, Muhammad; Iqbal, Yaseen; Fatima, Noshin; Gohar, Rashid

    2017-12-01

    The effect of humidity on the phase, microstructure, and electrical properties of an organic compound orange dye (C17H17N5O2) and cuprous-oxide (Cu2O) micro-composite thin film has been investigated. 5 wt% commercially available orange dye and 30-40 wt% Cu2O were used to prepare an aqueous solution. The solution was layered in the form of a thin film on a pre-deposited copper glass substrate using a drop-casting technique under normal gravity conditions. A gap was made in the middle of the surface to get ohmic type electrodes at the ends of the glass substrate. In this way, a Cu/Cu2O-OD/Cu humidity sensor was fabricated. A self-made setup was used to carry out the experiment. Impedance of these samples was observed to decrease by 57-84 times and capacitance increased by 20-26 times with an increase in humidity from 62 to 98% RH. These observations demonstrated that impedance was more sensitive to the variations in humidity as compared to capacitance.

  8. Effects of returns on composition, microstructure and mechanical properties of GH4169 superalloy

    Directory of Open Access Journals (Sweden)

    Yong-liang Pu

    2017-07-01

    Full Text Available To recycle the returned alloy effectively, effects of returns proportion on alloy composition, microstructure and compression properties of superalloy GH4169 were studied by means of scanning electron microscopy (SEM, energy dispersive spectroscopy (EDS and thermal-mechanical simulator. The results show that returns addition has no significant effect on the main alloy elements content and the principle precipitates, but increases the volume fraction of Al2O3 inclusions, resulting in the increase of oxygen level of GH4169 alloy. Returns addition does not change the elastic and plastic deformation process at room temperature or at 1,150 °C, but high returns proportion GH4169 alloy shows improved compression strength and yield strength. The alloy with 100% returns shows a maximum compression strength 1,153.45 MPa at room temperature, while the alloy with 80% returns has a maximum value 69.3 MPa at 1,150 °C. Returns addition increases fluctuation range and reduces the stability of yield strength and compression strength of GH4169 alloy at room temperature. It is noted that the volume fraction and the size of Al2O3, and the fraction of Laves phase reach their maximum values in the GH4169 alloy with 60% returns, which exhibits maximum yield strength of 516.65 MPa at room temperature and 62.17 MPa at 1,150 °C.

  9. Simulation for Carbon Nanotube Dispersion and Microstructure Formation in CNTs/AZ91D Composite Fabricated by Ultrasonic Processing

    Science.gov (United States)

    Yang, Yuansheng; Zhao, Fuze; Feng, Xiaohui

    2017-10-01

    The dispersion of carbon nanotubes (CNTs) in AZ91D melt by ultrasonic processing and microstructure formation of CNTs/AZ91D composite were studied using numerical and physical simulations. The sound field and acoustic streaming were predicted using finite element method. Meanwhile, optimal immersion depth of the ultrasonic probe and suitable ultrasonic power were obtained. Single-bubble model was used to predict ultrasonic cavitation in AZ91D melt. The relationship between sound pressure amplitude and ultrasonic cavitation was established. Physical simulations of acoustic streaming and ultrasonic cavitation agreed well with the numerical simulations. It was confirmed that the dispersion of carbon nanotubes was remarkably improved by ultrasonic processing. Microstructure formation of CNTs/AZ91D composite was numerically simulated using cellular automation method. In addition, grain refinement was achieved and the growth of dendrites was changed due to the uniform dispersion of CNTs.

  10. Strain Rate Dependent Deformation of a Polymer Matrix Composite with Different Microstructures Subjected to Off-Axis Loading

    Directory of Open Access Journals (Sweden)

    Xiaojun Zhu

    2014-01-01

    Full Text Available This paper aims to investigate the comprehensive influence of three microstructure parameters (fiber cross-section shape, fiber volume fraction, and fiber off-axis orientation and strain rate on the macroscopic property of a polymer matrix composite. During the analysis, AS4 fibers are considered as elastic solids, while the surrounding PEEK resin matrix exhibiting rate sensitivities are described using the modified Ramaswamy-Stouffer viscoplastic state variable model. The micromechanical method based on generalized model of cells has been used to analyze the representative volume element of composites. An acceptable agreement is observed between the model predictions and experimental results found in the literature. The research results show that the stress-strain curves are sensitive to the strain rate and the microstructure parameters play an important role in the behavior of polymer matrix.

  11. Evolution of the microstructure in carbon nanotube reinforced Nickel matrix composites processed by high-pressure torsion

    Science.gov (United States)

    Aristizabal, K.; Suárez, S.; Katzensteiner, A.; Bachmaier, A.; Mücklich, F.

    2017-10-01

    Carbon nanotube (CNT)-reinforced nickel matrix composites were processed using high-pressure torsion (HPT) at room temperature (RT). Different CNT weight fractions were used in order to study the behavior of the composites in the “as sintered” and the “as deformed” conditions and to determine the effect of the amounts of CNT added on the different processing methods. The samples were analyzed by means of Vickers microhardness and electron microscopy. According to the results, increasing the CNT content in the “as sintered” condition increases the agglomerate size but decreases only slightly the grain size. Regarding the “as deformed” condition it showed little to negligible effect in further refining the microstructure. By means of HPT the hardness was increased up to 800%. It was concluded that the microstructure could be further improved in terms of grain size and agglomerate size and distribution by means of HPT.

  12. Microstructure, a limiting parameter for determining the engineering range of compositions for light alloys: The Al-Cu-Si system

    Energy Technology Data Exchange (ETDEWEB)

    Plaza, D.; Pero-Sanz, J.A. [Univ. Politecnica, Madrid (Spain); Asensio, J.; Verdeja, J.I. [Univ. de Oviedo (Spain)

    1998-03-01

    Twelve as-cast alloys of the Al-Cu-Si ternary system were investigated. In all the cases, the microstructural phases observed were: {alpha} solid solution of Cu and Si in Al, CuAl{sub 2} ({theta} phase), and silicon crystals. The morphology and distribution of the {theta} and Si brittle constituents limit the percentages of Cu and Si added in the composition ranges of these commercial alloys.

  13. Microstructural, chemical and textural characterization of ZnO nanorods synthesized by aerosol assisted chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Sáenz-Trevizo, A.; Amézaga-Madrid, P.; Fuentes-Cobas, L.; Pizá-Ruiz, P.; Antúnez-Flores, W.; Ornelas-Gutiérrez, C. [Centro de Investigación en Materiales Avanzados, S.C., Chihuahua, Chihuahua 31109 (Mexico); Pérez-García, S.A. [Centro de Investigación en Materiales Avanzados, S.C., Unidad Monterrey, Apodaca, Nuevo León 66600 (Mexico); Miki-Yoshida, M., E-mail: mario.miki@cimav.edu.mx [Centro de Investigación en Materiales Avanzados, S.C., Chihuahua, Chihuahua 31109 (Mexico)

    2014-12-15

    ZnO nanorods were synthesized by aerosol assisted chemical vapor deposition onto TiO{sub 2} covered borosilicate glass substrates. Deposition parameters were optimized and kept constant. Solely the effect of different nozzle velocities on the growth of ZnO nanorods was evaluated in order to develop a dense and uniform structure. The crystalline structure was characterized by conventional X-ray diffraction in grazing incidence and Bragg–Brentano configurations. In addition, two-dimensional grazing incidence synchrotron radiation diffraction was employed to determine the preferred growth direction of the nanorods. Morphology and growth characteristics analyzed by electron microscopy were correlated with diffraction outcomes. Chemical composition was established by X-ray photoelectron spectroscopy. X-ray diffraction results and X-ray photoelectron spectroscopy showed the presence of wurtzite ZnO and anatase TiO{sub 2} phases. Morphological changes noticed when the deposition velocity was lowered to the minimum, indicated the formation of relatively vertically oriented nanorods evenly distributed onto the TiO{sub 2} buffer film. By coupling two-dimensional X-ray diffraction and computational modeling with ANAELU it was proved that a successful texture determination was achieved and confirmed by scanning electron microscopy analysis. Texture analysis led to the conclusion of a preferred growth direction in [001] having a distribution width Ω = 20° ± 2°. - Highlights: • Uniform and pure single-crystal ZnO nanorods were obtained by AACVD technique. • Longitudinal and transversal axis parallel to the [001] and [110] directions, respectively. • Texture was determined by 2D synchrotron diffraction and electron microscopy analysis. • Nanorods have its [001] direction distributed close to the normal of the substrate. • Angular spread about the preferred orientation is 20° ± 2°.

  14. The Compositional Dependence of the Microstructure and Properties of CMSX-4 Superalloys

    NARCIS (Netherlands)

    Yu, H.; Xu, W.; van der Zwaag, S.

    2017-01-01

    The degradation of creep resistance in Ni-based single-crystal superalloys is essentially ascribed to their microstructural evolution. Yet there is a lack of work that manages to predict (even qualitatively) the effect of alloying element concentrations on the rate of microstructural degradation.

  15. Microstructure, Hardness, and Corrosion Behavior of TiC-Duplex Stainless Steel Composites Fabricated by Spark Plasma Sintering

    Science.gov (United States)

    Han, Ying; Zhang, Wei; Sun, Shicheng; Chen, Hua; Ran, Xu

    2017-08-01

    Duplex stainless steel composites with various weight fractions of TiC particles are prepared by spark plasma sintering. Ferritic 434L and austenitic 316L stainless steel powders are premixed in a 50:50 weight ratio and added with 3-9 wt.% TiC. The compacts are sintered in the solid state under vacuum conditions at 1223 K for 5 min. The effects of TiC content on the microstructure, hardness, and corrosion resistance of duplex stainless steel composites fabricated by powder metallurgy are evaluated. The results indicate that the TiC particulates as reinforcements can be distributed homogeneously in the steel matrix. Densification of sintered composites decreases with increasing TiC content. M23C6 carbide precipitates along grain boundary, and its neighboring Cr-Mo-depleted region is formed in the sintered microstructure, which can be eliminated subsequently with appropriate heat treatment. With the addition of TiC, the hardness of duplex stainless steel fabricated by powder metallurgy can be markedly enhanced despite increased porosity in the composites. However, TiC particles increase the corrosion rate and degrade the passivation capability, particularly for the composite with TiC content higher than 6 wt.%. Weakened metallurgical bonding in the composite with high TiC content provides the preferred sites for pitting nucleation and/or dissolution.

  16. Microstructure and mechanical properties of Mg-nano/micro hydroxy apatite composites made by powder metallurgy method

    Science.gov (United States)

    Saremi, Mohsen; Kavosi, Nasim

    2017-10-01

    In this study Magnesium-Hydroxyapatite (Mg-HA) composites were prepared by powder metallurgy method using pure magnesium and synthesized hydroxyapatite powders. HA was synthesized in nano and micro scales powder by wet chemistry precipitation method and Mg-HA composites made in ; 1, 3, 5 and 10 wt. % nano and 1, 5, 10 and 15 wt. % micro scale HA powders. The effects of particle size and amount of HA on microstructure and mechanical behavior of composites were investigated. Significant improvement in mechanical properties was observed by using nano HA for reinforcing Mg matrix because the HA distribution were better in nano-scale composites than the micro scale. The theoretical density of the composite prepared by adding 3 wt. % HA nano particles reached to 96 %, with 80.88 V hardness, and 131.52 MPa Ultimate shear stress, as optimum mechanical properties.

  17. Anti-inflammation activity and chemical composition of flower ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... tonic, excitant and anti-rheumatic in the Ayurvedic system of traditional Indian medicine (Jain et al., 1995). Studies on the chemical composition of the rhizome and flower of H. coronarium resulted in the isolation of several labdane-type diterpenes and farnesane-type sesquiterpenes (Itokawa et al., 1988a,b; ...

  18. Carcass properties, chemical content and fatty acid composition of ...

    African Journals Online (AJOL)

    The aim of this study was to examine carcass properties and variability in chemical content and fatty acid composition in the musculus longissimus lumborum et thoracis (MLLT) of different genotypes of pigs. Of 36 male castrated animals used in the trial, 24 were from two strains of Mangalitsa pigs (12 Swallow - bellied ...

  19. The chemical composition and in vitro dry matter digestibility of ...

    African Journals Online (AJOL)

    Leendert Snynan

    The chemical composition and in vitro dry matter digestibility (IVDMD) of untreated and ammoniated ... IVDMD of maize residues obtained by means of a whole plant maize harvester was found to be relatively high .... This value is high when compared with in vitro organic matter digestibility values reported for wheat straw.

  20. Chemical composition and larvicidal activity of Zanthoxylum gilletii ...

    African Journals Online (AJOL)

    In this study, larvicidal potential of essential oil from Zanthoxylum gilletii was evaluated against malaria vector mosquito, A. gambiae. The essential oil was extracted by hydro-distillation, and its chemical compositions determined by gas chromatography mass spectrometry. The oil was dominated by sesquiterpenes and ...

  1. Microbial Quality and Chemical Composition of Raw Whole Milk ...

    African Journals Online (AJOL)

    A study of the microbial quality and chemical composition of raw milk from Horro cows raised at rural farm households was conducted in Guto Wayu and Bila Sayo districts of East Wolloga. Thirty willing households owning one or more cows were randomly selected from Guto Wayu and Bila Sayo districts of East Wollega.

  2. Chemical composition of essential oils of Eugenia caryophylla and ...

    African Journals Online (AJOL)

    The chemical composition was assigned by GC and GC/SM and showed that E. caryophylla was mainly composed of eugenol (80.0 %), E-caryophyllene (8.3%), and eugenol acetate (6.7%) while Mentha sp cf piperita was characterized by piperitone (67.5 %), menthol (10.0 %) and ß-phellandrene (5.8%). The result ...

  3. Chemical composition of essential oil of exudates of Dryobalanops ...

    African Journals Online (AJOL)

    Purpose: To identify the chemical composition of essential oil from the exudates of Dryobalanops aromatica from Malaysia. Methods: Exudate was collected from D. aromatica and subjected to fractional distillation to obtain essential oil. Gas chromatography-mass spectrometry (GC-MS) was used to characterize the ...

  4. Chemical Composition and Antifungal Properties of Essential Oil of ...

    African Journals Online (AJOL)

    Purpose: To evaluate the effect of the essential oil of Origanum vulgare Linnaeus (Lamiaceae) on the growth of Sporothrix schenckii and Sporothrix brasiliensis. Methods: The chemical composition of the essential oil was investigated by gas chromatography/flame ionization detector (GC-FID). The minimum inhibitory ...

  5. Variation of the chemical composition of four forage shrubs ( Albizia ...

    African Journals Online (AJOL)

    Methodology and results: The leaves of each species were harvested at the beginning, at mid-season and at the end of dry season. They were dried and crushed to determine their chemical composition. The results showed that, with A. lebbeck, the levels of DM obtained at mid-season and the end that one, were higher ...

  6. Preliminary Studies of the Chemical Composition and Sensory ...

    African Journals Online (AJOL)

    Preliminary studies of chemical composition and sensory properties of instant noodles from blends of wheat flour and sweet potato starch were carried out. Sweet potato starch was used to replace wheat flour at 30, 40, 50, 60 and 70%. Proximate, vitamin A, mineral analysis and sensory evaluation were carried out by ...

  7. Chemical composition, in vitro digestibility and palatability of nine ...

    African Journals Online (AJOL)

    This work studied the chemical composition of plants, and their digestibility and palatability to camels, selecting plants most eaten by camels from the Iranian desert of the province of Semnan. The results indicated that the order of usefulness, from the most useful, was: Salsola arbuscula, Seidlitzia rosmarinus, Suaeda ...

  8. Distribution and Chemical Composition of Browse Plants of Egbado ...

    African Journals Online (AJOL)

    Four herds of cattle were used to investigate the distribution and chemical composition of browse plants in Egbado North of Ogun State. The results showed that a wide variety of browse plants abound-trees and shrubs. Glyricidia sepium and Ficus exasperata were the most frequent trees while Manihot utilissima was the ...

  9. Chemical composition and anti-diabetic properties of Jatropha ...

    African Journals Online (AJOL)

    This study evaluates the chemical composition and anti-diabetic properties of fresh and shade dried Jatropha curcas aqueous leaves extracts (JCLE) on alloxan induced diabetic female wistar rats. Seven (7) kg of J. curcas leaves were pulverized and aqueous extracts produced. Thirty five (35) mature female rats were ...

  10. Chemical composition of essential oil from the leaves of Premna ...

    African Journals Online (AJOL)

    In this study, the chemical composition of the essential oil of Premna coriacea leaves was investigated. Extraction by hydrodistillation followed by gas chromatography and mass spectrometry (GC-MS) yielded 27 compounds representing 99.89% of the oil. The major volatile components of the oil were aromadendrene ...

  11. Chemical composition and volatile compounds in the artisanal ...

    African Journals Online (AJOL)

    Chemical composition and volatile compounds in the artisanal fermentation of mezcal in Oaxaca, Mexico. ... ethyl acetate, and acetic acid production, and this practice is more convenient in fall than in spring. Key words: Fermentation, ammonium sulfate, volatile compounds, higher alcohol, gas chromatography, mezcal.

  12. Chemical composition and antifungal activity of essential oils of ...

    African Journals Online (AJOL)

    Their chemical composition and antifungal activity against four phytopathogenic fungi (Fusarium oxysporum f.sp., albedinis sp, Penicelium sp., Alternaria sp. and Fusarium sp.) were studied. The inhibiting minimal concentration (CMI) effect was also given for four oils. Ten compounds were recorded jointly among the 51 ...

  13. Chemical composition and nutritive value of irrigated tall fescue ...

    African Journals Online (AJOL)

    and produce less milk than ruminants that eat forages of similar chemical composition (Lassiter el ai., 1956; Seath el ai., 1956; Jacobson el ai., 1970; Warren el at., 1974; Smith el ai., 1975; Reid et ai., 1975; Nichols et ai., 1976), prompted this investigation into the nutritive value and potential of fescue for dairy production in ...

  14. Chemical composition of Opuntia ficus-indica (L.) fruit | Salim ...

    African Journals Online (AJOL)

    Chemical composition of pulp, skin and seeds of fruit of Opuntia ficus-indica was investigated. Results showed high amount of water in the pulp (84.14%) and skin (90.33%). Glucose and fructose (29 and 24%, respectively) in the pulp were greater than in the skin (14 and 2.29%, respectively), whereas saccharose was very ...

  15. The chemical composition and potential nutritive value of the foliage ...

    African Journals Online (AJOL)

    The chemical composition and potential nutritive value of the foliage of four subtropical tree species in southern Africa for ruminants. ... The foliage contained relatively low levels of sodium (Na), 0.041 g/kg DM, based on beef cattle standards. The IVOMD ranged from 53% for C. mopane to 64% C. apiculatum and the rumen ...

  16. The chemical composition and in vitro dry matter digestibility of ...

    African Journals Online (AJOL)

    The chemical composition and in vitro dry matter digestibility of untreated and ammoniated crop residues. ... high (IVDMD = 55.6±7.0%) while the crude protein (CP) (46±10 g/kg dry matter (DM)) and phosphorus (P) (1.2±0.5 g/kg DM) concentrations were below the maintenance requirement for dry gestating beef cows.

  17. Effect of Chemical and Mineralogical Composition of Rocks on the ...

    African Journals Online (AJOL)

    The study was conducted in Hewanie and its surrounding areas of 169.82 km2 with a major objective of identifying the effect of chemical and mineralogical composition of rocks on the chemistry of the groundwater quality. This was conducted by taking 11 groundwater and 5 rock samples from the main geological units of ...

  18. effect of chemical and mineralogical composition of rocks

    African Journals Online (AJOL)

    Osondu

    The study was conducted in Hewanie and its surrounding areas of 169.82 km2 with a major objective of identifying the effect of chemical and mineralogical composition of rocks on the chemistry of the groundwater quality. This was conducted by taking 11 groundwater and 5 rock samples from the main geological units of ...

  19. Chemical composition and biological studies of the essential oil of ...

    African Journals Online (AJOL)

    Chemical composition and biological studies of the essential oil of Thymus decussatus benth growing in Egypt. A A El-Hela. Abstract. The essential oil of Thymus decussatus Benth herb growing in Egypt was prepared by hydro distillation of the dried herb and analyzed by GC/ MS. It revealed the presence of 12 peaks, which ...

  20. Effect of fungal treatment on chemical composition and in vitro ...

    African Journals Online (AJOL)

    ajl yemi

    2011-12-28

    Dec 28, 2011 ... This study was conducted to investigate the effects of Trichoderma harzianum isolate T.447 (T.447) on the chemical composition and in vitro ruminal digestibility of treated maize, wheat, rapeseed and soybean straws. Preparation of each straw was divided into two equal parts and was treated with a.

  1. Effect of Trichoderma spp. inoculation on the chemical composition ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-06-28

    Jun 28, 2010 ... To evaluate the cultural ability of some Trichoderma isolates on wheat straw and the influence of their exogenous enzyme activities on chemical compositions as well as in vitro digestibility and upgrading of the nutritive value of lignocellulolytic materials, sterilized and non sterilized wheat straw were.

  2. Chemical composition and in vitro gas production of vetch ( Vicia ...

    African Journals Online (AJOL)

    Chemical composition and in vitro gas production of vetch (Vicia sativa) and some browse and grass species from northern Ethiopia were investigated. Vetch (fresh cut) was sampled in September and vetch hay samples were taken in October both during the early dry period. Samples of the browse and grass species were ...

  3. Chemical composition and antimicrobial activity of the essential oil ...

    African Journals Online (AJOL)

    Chemical composition and antimicrobial activity of the essential oil of Ocimum gratissimum L. growing in Eastern Kenya. ... aeruginosae, Salmonella typhi, Klebisiella pneumoniae, Proteus mirabilis) bacteria and a pathogenic fungus Candida albicans. The oil had pronounced antibacterial and antifungal activities on all the

  4. Effect of maturity stage and processing on chemical composition, in ...

    African Journals Online (AJOL)

    Effect of maturity stage and processing on chemical composition, in vitro gas production and preference of Panicum maximum and Pennisetum purpureum. ... It is concluded that in order to optimize DM intake farmers should consider the type of grasses and their age at harvest particularly for Muturu. Pelleting improves ...

  5. Chemical composition profiling and antifungal activity of the ...

    African Journals Online (AJOL)

    Minimum inhibitory activity was compared with four other different crude extracts of hexane, acetone, ethanol and aqueous samples from the same plant. The chemical composition of the essential oil, hexane, acetone and ethanol extracts was determined using GC-MS. Result: GC/MS analysis of the essential oil resulted in ...

  6. Comparative Analysis on Chemical Composition of Bentonite Clays ...

    African Journals Online (AJOL)

    2017-09-12

    Sep 12, 2017 ... Abdullahi and Audu. 35. Comparative Analysis on Chemical Composition of Bentonite Clays. Obtained from Ashaka and Tango Deposits in Gombe State, Nigeria. Abdullahi S.L1 and Audu A.A2. 1Kano State Polytechnic, Kano - Nigeria. 2Department of Pure and Industrial Chemistry, Bayero University Kano ...

  7. The chemical composition of silages produced in a Mediterranean ...

    African Journals Online (AJOL)

    Unknown

    chemical composition of silages was also determined. Material and Methods. About 120 samples of seven silage crops were collected during 1996 on five farms in the Piketberg-. Eendekuil area of the Swartland. Samples were randomly collected from silage crops made in big bales, sealed in plastic bags and kept in cooler ...

  8. The chemical composition and industrial quality of Barite ...

    African Journals Online (AJOL)

    ... that the mineralization is of high industrial quality and compares favourably with the Azara barite deposits of the Benue Trough. The quality of the barite meets American Petroleum institute (API) requirements for use as drilling mud. KEYWORDS: Barite, mineralization, quality, chemical composition, southeastern Nigeria.

  9. Chemical Composition, in situ Degradability and in vitro Gas ...

    African Journals Online (AJOL)

    This study investigated the quality profile of tagasaste forage harvested at different re-growth stages by measuring the chemical composition, in situ degradability and in vitro gas production. Tagasaste re-growths after one year of establishment was harvested and the re-growths starting from the main rainy season (July) was ...

  10. Analysis of physical and chemical composition of honey samples in ...

    African Journals Online (AJOL)

    The study analyzed the physical and chemical compositions of seven honey samples, which were obtained from selected markets in Ibadan metropolis. Seven samples of honey were obtained namely from sample A (Forestry honey Ibadan), Sample B (Pure honey), Sample C (Mr. honey), Sample D (Taraba honey), sample ...

  11. Probabilistic thermo-chemical analysis of a pultruded composite rod

    NARCIS (Netherlands)

    Baran, Ismet; Tutum, Cem C.; Hattel, Jesper H.

    2012-01-01

    In the present study the deterministic thermo-chemical pultrusion simulation of a composite rod taken from the literature [7] is used as a validation case. The predicted centerline temperature and cure degree profiles of the rod match well with those in the literature [7]. Following the validation

  12. Chemical composition changes of post-harvest coconut ...

    African Journals Online (AJOL)

    Coconut inflorescence sap (CIS) is sweet, oyster-white and translucent and was reported to be highly nutritive and a good digestive agent. The chemical composition changes including total sugar, reducing sugar, ethanol, total acidity, volatile acid, amino acid, vitamin C and total phenolic contents of postharvest coconut ...

  13. Proximate and chemical composition of three species of snails in ...

    African Journals Online (AJOL)

    This trial was conducted to determine the proximate and chemical composition of three common species of snails in Nigeria. The species were Archachatina marginata (T1), Achatina achatina (T2), and Achatina fulica (T3). The three species constituted the three treatments and thirty-six adult snails were used for this trial ...

  14. Chemical Composition and Insecticidal Activity of the Essential Oil of ...

    African Journals Online (AJOL)

    Purpose: To investigate the chemical composition and insecticidal activity of the essential oil of the aerial parts of Ostericum grosseserratum against the maize weevil, Sitophilus zeamaisD. Methods: Steam distillation of the aerial parts of O. grosseserratum during the flowering stage was carried out using a Clavenger ...

  15. Seasonal chemical composition of wall barley ( Hodreum murinum L ...

    African Journals Online (AJOL)

    Wall barley (Hodreum murinum L.) is an annual cool-season grass species that grows in areas with a Mediterranean climate. It has potential as a forage source in Jordan. The objective was to determine seasonal chemical composition of wall barley grown under sub-humid Mediterranean conditions. A field trial

  16. Genesis of some tertiary Indian coals from the chemical composition ...

    Indian Academy of Sciences (India)

    Vassilev S V, Vassileva C G, Baxter D and Andersen. L K 2010b Relationship between chemical and min- eral composition of coal and their potential appli- cation as genetic indicators. Part 2. Mineral classes, groups and species; Geologica Balcanica 39.3 Sofia. 43–67. Yudovich Ya E 1978 Geochemistry of Fossil Coals; ...

  17. Chemical Composition and Effect of Processing and Flour Particle ...

    African Journals Online (AJOL)

    This work investigated the chemical composition of cocoyam corms and cormels and the effect of processing and particle size on the physicochemical and organoleptic properties of the flours for use as soup thickener. Fresh cocoyam corms and cormels were peeled, sliced, washed, divided into four parts that were variously ...

  18. Effect of Trichoderma spp. inoculation on the chemical composition ...

    African Journals Online (AJOL)

    To evaluate the cultural ability of some Trichoderma isolates on wheat straw and the influence of their exogenous enzyme activities on chemical compositions as well as in vitro digestibility and upgrading of the nutritive value of lignocellulolytic materials, sterilized and non sterilized wheat straw were inoculated with ...

  19. Antimicrobial properties and chemical compositions of the petroleum ...

    African Journals Online (AJOL)

    The study was designed to investigate the antimicrobial and chemical compositions of the petroleum ether extract of theaerial parts of Rauvolfia vomitoria. The aerial parts of the plant were air dried under shade, pounded using wooden mortar and pestle into coarse powder. The coarse powder was extracted in aSoxhlet ...

  20. Qualitative determination of chemical and nutritional composition of ...

    African Journals Online (AJOL)

    Qualitative determination of chemical and nutritional composition of Parkia biglobosa seeds an underexploited crop seed in Nigeria was carried out. Seeds of P. biglobosa were found to be rich in lipid, protein, carbohydrate, soluble sugars and ascorbic acid. The cotyledon was very nutritious, has less fibre and ash contents ...

  1. Comparative chemical composition of 24-hour fermented sweet ...

    African Journals Online (AJOL)

    Comparative chemical composition of 24-hour fermented sweet orange fruit ( Citrus sinensis ) peel meal and maize and effect on performance response of starting pullet ... Substitution of maize with SOFPM significantly (p<0.05) reduced feed cost/25kg, feed cost/bird and cost of production while decreasing efficiency of feed ...

  2. effects of heat input on the chemical composition and hardness

    African Journals Online (AJOL)

    2012-07-02

    Jul 2, 2012 ... This study examines the thermochemical reactions which alter weld metal chemistry by applying the arc heat ... Keywords: alloying element, brinell hardness number (BHN), chemical composition, heat input, thermochemical reaction ..... national Journal of Advances in Science and Tech- nology, Vol.

  3. Chemical composition of essential oil from Psidium cattleianum var.

    African Journals Online (AJOL)

    rajuc

    2012-04-24

    Apr 24, 2012 ... The aim of this study was to investigate the essential oil composition of Psidium cattleianum var. lucidum from South Africa. The essential oils were extracted by hydrodistillation and the components were identified by gas chromatography coupled to mass spectrometry (GC-MS) to determine the chemical ...

  4. Chemical composition and anti-diabetic properties of Jatropha ...

    African Journals Online (AJOL)

    Joy

    This study evaluates the chemical composition and anti-diabetic properties of fresh and shade dried. Jatropha curcas aqueous leaves extracts ... urgent health care intervention. Jatropha curcas is a drought resistant shrub or tree ..... Ipomea batata (11.10%) and Moringa oleifera (15.09%. DW) (Antia et al., 2006; Lockeett et ...

  5. Study on the chemical composition and extraction technology ...

    African Journals Online (AJOL)

    The chemical composition of hydro-distilled oil from the ground aerial parts of Wedelia trilobata (L.) Hitchc. was analysed by gas chromatography/gas chromatography–mass spectrometry (GC/GC–MS). 18 compounds ... The study offers theoretic basis for utilization of the medicinal herb W. trilobata. Key words: Wedelia ...

  6. Comparative analysis of the chemical composition of three spices ...

    African Journals Online (AJOL)

    Comparative analysis of the chemical composition of three spices – Allium sativum L. Zingiber officinale Rosc. and Capsicum frutescens L. commonly consumed in Nigeria. ... Phytochemical screening indicated that these spices are also rich in phytonutrients including alkaloid, tannin, carotenoids, saponin and flavonoids.

  7. Chemical Composition, Dry Matter Intake by West African Dwarf ...

    African Journals Online (AJOL)

    The experiment was conducted to determine dry matter intake (DMI) by West African dwarf (WAD) goats, chemical composition, in vitro gas production and dry matter digestibility of Panicum maximum (common name: Guinea grass or Panicum) with graded levels of palm kernel cake (PKC). Five diets were evaluated: ...

  8. Seasonal and species variation in chemical composition of five ...

    African Journals Online (AJOL)

    ABUBAKER

    Association of Official Analytical Chemists,. International ®. AOAC International, Gaithersburg, Maryland. Batista, A.M.V., Mustafa, A.F., Santos, G.R.A., de Carvalho, F.F.R., Dubeux Jr, J.C.B., Lira, M.A. &. Barbosa, S.B.P., 2003. Chemical composition and ruminal dry matter and crude protein degradability of spineless cactus.

  9. Changes in chemical composition and bioassay assessment of ...

    African Journals Online (AJOL)

    Dr. J. T. Ekanem

    2005-03-20

    Mar 20, 2005 ... Changes in chemical composition upon processing and bioassay assessment of nutritional potentials of almond fruit waste as an alternative feedstuff were conducted using day-old- cockerels. Proximate analyses revealed that AFW contained valuable nutrients, carbohydrate/dry matter, protein, fat, fiber, ...

  10. Chemical composition and anti-biofilm activity of burdock ( Arctium ...

    African Journals Online (AJOL)

    Purpose: To determine the chemical composition and anti-biofilm activity of burdock leaf fractions against Staphylococcus aureus. Methods: The anti-biofilm activity of burdock leaf fractions obtained by column chromatography against S. aureus was determined by minimum inhibitory concentration (MIC). Scanning electron ...

  11. Effect of chemical composition and alumina content on structure and ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 37; Issue 2. Effect of chemical composition and alumina content on structure and properties of ceramic insulators. Arman Sedghi Nastaran Riahi-Noori Naser Hamidnezhad Mohammad Reza Salmani. Electronic Supplementary Material Volume 37 Issue 2 April 2014 pp ...

  12. Microstructure and Properties of W-Cu Composite/Fe-Based Powder Alloy Vacuum Brazed Joint with Different Filler Metals

    Science.gov (United States)

    Xia, C. Z.; Yang, J.; Xu, X. P.; Zou, J. S.

    2017-05-01

    W-Cu composite and Fe-based powder alloy were brazed with filler metals of Ag-Cu and Cu-Mn-Co alloys in a vacuum furnace. Both of filler metals can join W-Cu composite with Fe-based powder alloy directly in the experiment process. Microstructure, distribution of elements and fracture morphology were observed and analyzed using scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) methods, and phase composition of bonding area was analyzed by X-ray diffraction (XRD). The obtained results indicated that the smooth faying surface and dense microstructure of brazed joint were formed and the primary microstructure of brazing seam were, respectively, Ag(Cu) solid solution and Cu(Mn) solid solution, which ensured forming the stable connection of brazed joint. The bending strength of Ag-based and Cu-based brazed joint can, respectively, reach to 317 and 704 MPa, where fracture showed a typical ductile fracture characteristic. The fracture of Cu-based brazed joint located at brazing seam area, and the fracture of Ag-based brazed joint occurred in Fe-based powder alloy side.

  13. Influence of leaching on surface composition, microstructure, and valence band of single grain icosahedral Al-Cu-Fe quasicrystal

    Science.gov (United States)

    Lowe, M.; Yadav, T. P.; Fournée, V.; Ledieu, J.; McGrath, R.; Sharma, H. R.

    2015-03-01

    The use of quasicrystals as precursors to catalysts for the steam reforming of methanol is potentially one of the most important applications of these new materials. To develop application as a technology requires a detailed understanding of the microscopic behavior of the catalyst. Here, we report the effect of leaching treatments on the surface microstructure, chemical composition, and valence band of the icosahedral (i-) Al-Cu-Fe quasicrystal in an attempt to prepare a model catalyst. The high symmetry fivefold surface of a single grain i-Al-Cu-Fe quasicrystal was leached with NaOH solution for varying times, and the resulting surface was characterized by x-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The leaching treatments preferentially remove Al producing a capping layer consisting of Fe and Cu oxides. The subsurface layer contains elemental Fe and Cu in addition to the oxides. The quasicrystalline bulk structure beneath remains unchanged. The subsurface gradually becomes Fe3O4 rich with increasing leaching time. The surface after leaching exhibits micron sized dodecahedral cavities due to preferential leaching along the fivefold axis. Nanoparticles of the transition metals and their oxides are precipitated on the surface after leaching. The size of the nanoparticles is estimated by high resolution transmission microscopy to be 5-20 nm, which is in agreement with the AFM results. Selected area electron diffraction (SAED) confirms the crystalline nature of the nanoparticles. SAED further reveals the formation of an interface between the high atomic density lattice planes of nanoparticles and the quasicrystal. These results provide an important insight into the preparation of model catalysts of nanoparticles for steam reforming of methanol.

  14. Electromagnetic response of the composites containing chemically modified carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Nemilentsau, A M; Shuba, M V; D' yachkov, P N; Slepyan, G Y A; Kuzhir, P P; Maksimenko, S A, E-mail: andrei.nemilentsau@gmail.co

    2010-11-01

    We demonstrate theoretically that the chemical modification of the bundles and composites containing mixture of semiconducting and metallic single-wall carbon nanotubes (SWNTs) leads to the substantial enhancement of the characteristics of their electromagnetic response in the terahertz (THz) frequency range. Boron and nitrogen doping is used to illustrate the effect. In particular, frequencies of antenna resonances in the bundles containing doped SWNTs are shifted to the blue in comparison to the ones in the bundles containing the same number of pristine SWNTs. Moreover, doping increases the resonant values of the bundles polarizability. Enhancement of the conductivity of the composite containing doped SWNTs is also demonstrated. The origin of the behavior is the metallization of the chemically modified semiconducting SWNTs in the bundles and composites due to the injection of the additional charge carriers.

  15. High dose neutron irradiation of Hi-Nicalon Type S silicon carbide composites, Part 1: Microstructural evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Bergquist, Alejandro G., E-mail: perezbergqag@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN (United States); University of Tennessee, Knoxville, TN (United States); Nozawa, Takashi [Japan Atomic Energy Agency, Rokkasho, Aomori-ken (Japan); Shih, Chunghao; Leonard, Keith J.; Snead, Lance L.; Katoh, Yutai [Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2015-07-15

    Highlights: • Hi-Nicalon SiC fiber composites were neutron irradiated to >70 dpa at 300–800 °C. • Minimal changes were observed in samples irradiated at 800 °C. • 300 °C samples exhibited substantial microstructural changes in interphase layers. • Growth of and phase changes in carbonaceous particles in the fibers were observed. - Abstract: Over the past decade, significant progress has been made in the development of silicon carbide (SiC) composites, composed of near-stoichiometric SiC fibers embedded in a crystalline SiC matrix, to the point that such materials can now be considered nuclear grade. Recent neutron irradiation studies of Hi-Nicalon Type S SiC composites showed excellent radiation response at damage levels of 30–40 dpa at temperatures of 300–800 °C. However, more recent studies of these same fiber composites irradiated to damage levels of >70 dpa at similar temperatures showed a marked decrease in ultimate flexural strength, particularly at 300 °C. Here, electron microscopy is used to analyze the microstructural evolution of these irradiated composites in order to investigate the cause of the degradation. While minimal changes were observed in Hi-Nicalon Type S SiC composites irradiated at 800 °C, substantial microstructural evolution is observed in those irradiated at 300 °C. Specifically, carbonaceous particles in the fibers grew by 25% compared to the virgin case, and severe cracking occurred at interphase layers.

  16. Microstructural Improvement of Hydroxyapatite-ZrO2 Composite Ceramics via Thermal Precipitation Techniques.

    Science.gov (United States)

    Sangmala, A.; Limsuwan, P.; Kaewwiset, W.; Naemchanthara, K.

    2017-09-01

    Hydroxyapatite-ZrO2 composite ceramic were synthesized using a thermal precipitation techniques. The chemical precursors were prepared from di-ammonium hydrogen orthophosphate, calcium oxide (CaO) derived from chicken eggshell, zirconium dioxide (ZrO2) and distilled water. The mixture were heated at the various temperatures from 100 to 700 °C in the furnace with an incremental temperature of 100 °C. The ZrO2 contents in the composite ceramic were varied from 0 to 15 percent weight of CaO. The prepared composites were then annealed at 300, 600 and 700 °C for 4 h in air. The crystal structure, function group and morphology of all samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM) and universal testing machine (UTM), respectively. The results indicated that the undoped-ZrO2 samples hydroxyapatite phase with a hexagonal structure. However, the hydroxyapatite was transformed to the tri-calcium phosphate after thermal treatment at 700 °C. For the doped-ZrO2 samples, the hydroxyapatite and ZrO2 phases were found. Moreover, the result showed that the compressive strength of hydroxyapatite-ZrO2 composite ceramic increased with increasing the ZrO2 content.

  17. Efeito da modificação da composição química na sinterização e microestrutura de porcelanas de ossos bovinos Effect of chemical composition modification on sinterability and microstructure of bone china

    Directory of Open Access Journals (Sweden)

    D. Gouvêa

    2010-12-01

    porosimetry, scanning electron microscopy, X-ray fluorescence and dilatometry. All samples sintered at temperatures lower than that of original bone china and the 60:20:20 composition presented complete densification at 1200 ºC, 80 ºC lower than the British pottery, and show a homogeneous microstructure.

  18. Role of composition and oxygen partial pressure on microstructural and crystalline phase evolution in aluminosilicate derived aggregates

    Science.gov (United States)

    Luscher, Walter G.

    Spherical aggregates, approximately 1mm in diameter, derived from either kaolinite or bauxite are used in tonnage quantities to aid the extraction of oil and natural gas. Aggregates intended for this application are referred to as proppants and key characteristics include low density and high strength, which are influenced by processing temperature and variation in raw ore chemistry. Kaolinite and bauxite ores doped with varying concentrations of K2O and Fe2O3 were sintered at different temperatures to elucidate composition-processing-property relationships. The dopants are known to form low temperature ternary eutectics with Al2O3 and SiO2 and are anticipated to facilitate low temperature densification and enhance mullite formation. In addition, proppants doped with Fe2 O3 were studied under varying oxygen partial pressures to further enhance low temperature densification by manipulating the valence state of iron. Microstructure and crystalline phase assemblage were evaluated by scanning electron microscopy and X-ray diffraction, respectively, and correlated with results of density and strength measurements obtained by gas pycnometry and diametral compression, respectively. Results indicate that dopant enhanced densification can simultaneously improve strength and processing economy of proppants by lowering sintering temperatures up to 100°C. Controlled atmosphere studies revealed that manipulating the valence of iron produces unique microstructures that may be useful in a number of different applications. These microstructures include aggregates with metallic coatings and aggregates with core-shell microstructures, which exhibit a porous core enclosed by a relatively dense outer shell.

  19. Cationic surfactant-assisted hydrothermal synthesis of few-layer molybdenum disulfide/graphene composites: Microstructure and electrochemical lithium storage

    Science.gov (United States)

    Ma, Lin; Huang, Guochuang; Chen, Weixiang; Wang, Zhen; Ye, Jianbo; Li, Haiyang; Chen, Dongyun; Lee, Jim Yang

    2014-10-01

    Few-layer molybdenum disulfide/graphene (FL-MoS2/GNS) composites are fabricated by a facile hydrothermal route and a post-annealing with the assistance of various cationic surfactants (dodecyltrimethylammonium bromide, DTAB; octyltrimethylammonium bromide, OTAB; and tetrabutylammonium bromide, TBAB), which have different alkyl-chain lengths and stereo configurations. The effects of these cationic surfactants on the microstructures and electrochemical performances of the FL-MoS2/GNS for lithium storage are investigated. It is demonstrated the cationic surfactants show some ability to control the microstructure (layer number) of FL-MoS2 in composites. The electrochemical performances of FL-MoS2/GNS composites for lithium storage are greatly improved compared to the bare MoS2. Especially, FL-MoS2/GNS with ∼6 MoS2 layers prepared with the assistance of OTAB exhibits very high reversible capacity of ∼1200 mAh g-1 with excellent cycle stability and enhanced rate capability. Electrochemical impedance spectrum also confirms that the FL-MoS2/GNS composite electrodes exhibit much lower electron-transfer resistance than the MoS2. The remarkable electrochemical performances of FL-MoS2/GNS composites can be attributed to the synergistic interaction between FL-MoS2 and graphene and their quasi-3D architectures, which promote lithium diffusion, electron transfer and electrolyte access.

  20. Investigation on microstructural and mechanical properties of B4C–aluminum matrix composites prepared by microwave sintering

    Directory of Open Access Journals (Sweden)

    Ehsan Ghasali

    2015-10-01

    Full Text Available B4C reinforced aluminum composites were fabricated by microwave heating of the mixture of B4C (10, 15 and 20 wt% and aluminum powders at 650, 750, 850 and 950 °C. The effect of different amounts of B4C on the microstructure and mechanical properties of aluminum matrix was examined. The maximum bending (238 ± 10 MPa and compressive strength (330 ± 10 MPa values were measured for composites sintered at 950 and 750 °C, respectively. The maximum hardness (112 Vickers was measured for Al–20 wt% B4C composite sintered at 850 °C. XRD investigations showed the decomposition of boron carbide and also the formation of Al3BC by heating the composites at 850 °C. SEM micrographs showed uniform distribution of reinforcement particles in Al matrix.

  1. Effect of HNT on the Microstructure, Thermal and Mechanical Properties of Al/FACS-HNT Composites Produced by GPI

    Science.gov (United States)

    Siewiorek, A.; Malczyk, P.; Sobczak, N.; Sobczak, J. J.; Czulak, A.; Kozera, R.; Gude, M.; Boczkowska, A.; Homa, M.

    2016-08-01

    To develop an optimised manufacturing method of fly ash-reinforced metal matrix composites, the preliminary tests were performed on the cenospheres selected from fly ash (FACS) with halloysite nanotubes (HNTs) addition. The preform made out of FACS with and without the addition of HNT (with 5 and 10 wt.%) has been infiltrated by the pure aluminium (Al) via adapted gas pressure infiltration process. This paper reveals the influence of HNT addition on the microstructure (analysis was done by computed tomography and scanning electron microscopy combined with energy-dispersive x-ray spectroscopy), thermal properties (thermal expansion coefficient, thermal conductivity and specific heat) and the mechanical properties (hardness and compression test) of manufactured composites. The analysis of structure-property relationships for Al/FACS-HNT composites produced shows that the addition of 5 wt.% of HNT to FACS preform contributes to receiving of the best mechanical and structural properties of investigated composites.

  2. VOPcPhO:P3HT composite micro-structures with nano-porous surface morphology

    Energy Technology Data Exchange (ETDEWEB)

    Azmer, Mohamad Izzat [Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Ahmad, Zubair, E-mail: zubairtarar@qu.edu.qa [Center for Advanced Materials (CAM), Qatar University, P. O. Box 2713, Doha (Qatar); Sulaiman, Khaulah, E-mail: khaulah@um.edu.my [Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Touati, Farid [Department of Electrical Engineering, College of Engineering, Qatar University, P. O. Box 2713, Doha (Qatar); Bawazeer, Tahani M. [Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah (Saudi Arabia); Alsoufi, Mohammad S. [Mechanical Engineering Department, College of Engineering and Islamic Architecture, Umm Al-Qura University, Makkah (Saudi Arabia)

    2017-03-31

    Highlights: • VOPcPhO:P3HT micro-structures with nano-porous surface morphology have been formed. • Multidimensional structures have been formed by electro-spraying technique. • The electro-sprayed films are very promising for the humidity sensors. - Abstract: In this paper, composite micro-structures of Vanadyl 2,9,16,23-tetraphenoxy-29H,31H-phthalocyanine) (VOPcPhO) and Poly (3-hexylthiophene-2,5-diyl) (P3HT) complex with nano-porous surface morphology have been developed by electro-spraying technique. The structural and morphological characteristics of the VOPcPhO:P3HT composite films have been studied by field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). The multidimensional VOPcPhO:P3HT micro-structures formed by electro-spraying with nano-porous surface morphology are very promising for the humidity sensors due to the pore sizes in the range of micro to nano-meters scale. The performance of the VOPcPhO:P3HT electro-sprayed sensor is superior in term of sensitivity, hysteresis and response/recovery times as compared to the spin-coated one. The electro-sprayed humidity sensor exhibits ∼3 times and 0.19 times lower hysteresis in capacitive and resistive mode, respectively, as compared to the spin-coated humidity sensor.

  3. Microstructural characterization of HIP consolidated NiTi–nano Al{sub 2}O{sub 3} composites

    Energy Technology Data Exchange (ETDEWEB)

    Farvizi, M., E-mail: mmfarvizi@yahoo.com [Ceramic Division, Materials and Energy Research Center, P.O. Box 14155-4777, Tehran (Iran, Islamic Republic of); Ebadzadeh, T. [Ceramic Division, Materials and Energy Research Center, P.O. Box 14155-4777, Tehran (Iran, Islamic Republic of); Vaezi, M.R. [Nanotechnology and Advanced Materials Division, Materials and Energy Research Center, P.O. Box 14155-4777, Tehran (Iran, Islamic Republic of); Yoon, E.Y.; Kim, Y-J. [Korea Institute of Materials Science, Changwon 642-831 (Korea, Republic of); Kim, H.S. [Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Simchi, A. [Department of Materials Science and Engineering and Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 11365-9466, Tehran (Iran, Islamic Republic of)

    2014-09-01

    Highlights: • NiTi–6 wt.% nano α-Al{sub 2}O{sub 3} composites have been produced using a HIP method. • Both elemental and prealloyed powders were used for the fabrication of composites. • Generation of mismatch stress and intermetallics affected martensitic transformation. • Nanoparticles partially inhibited thermally induced martensitic transformation. • An interwoven austenite–martensite structure was observed in the composite samples. - Abstract: The microstructure and phase transformational behavior of NiTi-based composites reinforced with 6 wt.% of α-alumina nanoparticles have been investigated. Two kinds of starting materials, elemental Ni–Ti and prealloyed austenitic NiTi, were used to prepare the composites. The samples were consolidated using a hot isostatic pressing method. The X-ray diffraction results showed that while unreinforced NiTi mainly contained B2 phase at room temperature, martensitic B19′ phase appeared in the microstructure after addition of the α-alumina nanoparticles. The differential scanning calorimetry measurements indicated that the martensitic transformation temperatures were elevated in the composite samples, but the transformational enthalpy was reduced in comparison with the NiTi sample. It is believed that the generation of thermal mismatch stress during the sintering and the formation of small contents of NiTi{sub 2}/Ni{sub 3}Ti intermetallics in the composite samples are responsible for this increment of the martensitic transformation temperatures. Also, due to the nanometric size of α-Al{sub 2}O{sub 3}, a larger fraction of the matrix is disturbed by the presence of the nanoparticles, which yields the formation of effective barriers to the thermally induced martensitic transformation in the nanocomposite samples. The high-resolution transmission electron microscopy studies of the samples confirmed the higher defect density and partial microplastic deformation in the composite samples.

  4. The Brittleness and Chemical Stability of Optimized Geopolymer Composites.

    Science.gov (United States)

    Steinerova, Michaela; Matulova, Lenka; Vermach, Pavel; Kotas, Jindrich

    2017-04-09

    Geopolymers are known as high strength and durable construction materials but have a brittle fracture. In practice, this results in a sudden collapse at ultimate load, without any chance of preventing the breakdown of parts or of withstanding the stress for some time. Glass fiber usage as a total anisotropic shape acting as a compact structure component should hinder the fracture mechanism. The optimized compositions in this study led to a significant reinforcement, especially in the case of flexural strength, but also in terms of the compressive strength and notch toughness. The positive and negative influence of the fibers on the complex composite properties provided chemical stability.

  5. Chemical Composition and Antimicrobial Activity of Royal Jelly - Review

    Directory of Open Access Journals (Sweden)

    Lavinia Ioana Bărnuţiu

    2011-10-01

    Full Text Available The present paper presents the literature data regarding the chemical composition and antimicrobial activity of RoyalJelly. Royal Jelly is a secretion from the hypofaringeal glands of worker bees which serves as a food for queen beeand to the growing up larvae. Having biological properties already proven, Royal Jelly has considerable commercialappeal and is today used in many sectors (pharmaceutical, food industries and cosmetic products. Thephysicochemical composition of pure royal jelly are analyzed by determining moisture, ash, lipids, proteins,vitamins,aminoacids, carbohydrates, 10-HDA; RJ is the key substance in the antimicrobial function of the system Apismellifera. The intact Royal Jelly exhibited the highest antibacterial activity.

  6. Mechanical properties dependency on chemical composition of spheroidal graphite cast iron; Dependencia de las propiedades mecanicas y de la composicion quimica en la fundicion de grafito esferoidal

    Energy Technology Data Exchange (ETDEWEB)

    Gonzaga-Cinco, R.; Fernandez-Carrasquilla, J.

    2006-07-01

    With this work, we try to study the chemical composition of four specimens in form of stair of ductile cast iron to determine the influence of the chemical composition of different alloying elements on microstructure and on mechanical properties. The dimensions of each specimens are 200 x 100 x 50 mm. Cooling rate has been considered to be different for each one of the four stairs when determining the mechanical properties, therefore, grain size varies in each case. In this analysis, the different microstructures of the stairs have been considered. Influence of the thickness on hardness of each specimen has been taken into account. Heat treatments are not used. Yield and tensile strength are determined. Charpy tests have been done. Rockwell and Brinell hardness are determined. (Author)

  7. Impact of Cutting Forces and Chip Microstructure in High Speed Machining of Carbon Fiber – Epoxy Composite Tube

    Directory of Open Access Journals (Sweden)

    Roy Y. Allwin

    2017-09-01

    Full Text Available Carbon fiber reinforced polymeric (CFRP composite materials are widely used in aerospace, automobile and biomedical industries due to their high strength to weight ratio, corrosion resistance and durability. High speed machining (HSM of CFRP material is needed to study the impact of cutting parameters on cutting forces and chip microstructure which offer vital inputs to the machinability and deformation characteristics of the material. In this work, the orthogonal machining of CFRP was conducted by varying the cutting parameters such as cutting speed and feed rate at high cutting speed/feed rate ranges up to 346 m/min/ 0.446 mm/rev. The impact of the cutting parameters on cutting forces (principal cutting, feed and thrust forces and chip microstructure were analyzed. A significant impact on thrust forces and chip segmentation pattern was seen at higher feed rates and low cutting speeds.

  8. Microstructure of fly ash cenosphere/AZ91D composite during solution treatment at 380-420℃

    Directory of Open Access Journals (Sweden)

    Huang Zhiqiu

    2011-02-01

    Full Text Available The fly ash cenosphere/AZ91D (FAC/AZ91D composites containing 5 wt.% and 100 µm in size of fly-ash cenosphere particles were fabricated by means of the compcasting method. The microstructures of the as-cast samples and the effect of the solution treatment at 380℃, 400℃, and 420℃ for 16 h on the microstructures of the samples were investigated by using of OM, SEM, XRD and EDS. The results showed that the cenospheres distributed homogeneously in the Mg alloy, and were almost filled with Mg alloy. The main interfacial phase between the cenospheres and AZ91D Mg alloy was identified as MgAl2O4 according to XRD, EDS and thermodynamic analysis. Mg2Si particles tended to be spheroidized via the solution treatment and the β phase (Mg17Al12 dissolved completely at 400℃.

  9. Chemical Composition and Bioactive Compounds of Some Wild Edible Mushrooms

    Directory of Open Access Journals (Sweden)

    Melinda NAGY

    2017-05-01

    Full Text Available Over the last decades, the consumption of mushrooms has significantly increased due to the scientific evidence of their ability to help the organism in the combat and prevention of several diseases (Kalac, 2009. Fruiting bodies of mushrooms are consumed as a delicacy for their texture and flavour, but also for their nutritional properties that makes them even more attractable (Heleno S. 2015. In this paper data were collected from several scientific studies with the aim to characterize the chemical composition and content of bioactive compounds of various mushrooms species: Agaricus bisporus, Boletus edulis, Cantharellus cibarius, Pleurotus ostreatus, Lactarius piperatus. The chemical composition of 5 wild edible studied mushrooms, including moisture, ash, total carbohydrates, total sugars, crude fat, crude protein and energy were determined according to AOAC procedures.

  10. The Influence of Chemical Composition on LNG Pool Vaporization

    OpenAIRE

    Yu Zhidong

    2017-01-01

    A model is used to examine the influence of chemical composition on the vaporization rate of LNG during spreading. Calculations have been performed whereby the vaporization rate of the LNG mixtures has been compared to the vaporization of pure methane under the initial conditions. The detailed results indicate that the vaporization rate LNG mixture is different to that of pure methane. LNG as the liquid mixture gets rich in ethane and isobaric latent heat increases rapidly, leading to the rat...

  11. Chemical Composition of Essential Oil from Marrubium Vulgare L. Leaves

    OpenAIRE

    Bayir, Burcu; Gündüz, Hatice; Usta, Tuba; Şahin, Esma; Özdemir, Zeynep; Kayır, Ömer; Sen, Özkan; Akşit, Hüseyin; Elmastaş, Mahfuz; Erenler, Ramazan

    2015-01-01

    – The essential oils are significant for pharmaceutical, food and cosmetic industries. Marrubium vulgare L. has been used as a traditional medicine to treat the various illnesses. The chemical composition of the essential oil from leaves of Marrubium vulgare L.was obtained by steam distillation using the Clevenger apparatus. The oil was analyzed by gas chromatography and mass spectrometry (GC-MS). The main constituent of the oil was α-pinene (28.85%)

  12. Chemical composition of the flower oil of Cinnamomum zeylanicum blume.

    Science.gov (United States)

    Jayaprakasha, G K; Jagan Mohan Rao, L; Sakariah, K K

    2000-09-01

    The steam-distilled oil of cinnamon (Cinnamomum zeylanicum) flowers was analyzed by GC and GC-MS. It consists of 23% hydrocarbons and 74% oxygenated compounds. A total of 26 compounds constituting approximately 97% of the oil were characterized. (E)-Cinnamyl acetate (41.98%), trans-alpha-bergamotene (7.97%), and caryophyllene oxide (7.2%) are found to be major compounds. This is the first report on the chemical composition of the flower oil of Cinnamomum zeylanicum.

  13. Chemical composition and mineral elements of edible insects (at ...

    African Journals Online (AJOL)

    The Chemical Composition and Mineral Elements of two edible insects' larvae and termite soldiers were assayed. Their ash content were between 1.01% and 7.50%. The legless larva (LS) had 28.52% fat, while the solider ant had 7.14% and the Legged larva (LG) had 1.50%. The white ant (SA) had 15.61% protein while ...

  14. Influence of Chemical Composition on Porosity in Aluminium Alloys

    OpenAIRE

    Kucharčík L.; Brůna M.; Sládek A.

    2014-01-01

    Porosity is one of the major defects in aluminum castings, which results is a decrease of a mechanical properties. Porosity in aluminum alloys is caused by solidification shrinkage and gas segregation. The final amount of porosity in aluminium castings is mostly influenced by several factors, as amount of hydrogen in molten aluminium alloy, cooling rate, melt temperature, mold material, or solidification interval. This article deals with effect of chemical composition on porosity in Al-Si alu...

  15. Chemical composition of silica-based biocidal modifier

    Directory of Open Access Journals (Sweden)

    Grishina Anna Nikolaevna

    2016-11-01

    Full Text Available Increase of the amount of fungi spores and micotixines causes the increase in the number of different diseases. Because of this, ensuring the biological safety in buildings is becoming more and more important today. The preferred way to guarantee the biological safety of a building is to employ modern building materials that prevent the settlement of the fungi colonies on the inner surfaces of walls. Such building materials can be produced using novel biocidal modifiers that allow controlling the number of microorganisms on the surface and in the bulk of a composite construction. The precipitation product of zinc hydrosilicates and sodium sulfate is one of the mentioned modifiers. Till now, the exact chemical composition of such precipitation product is controversial; it is obvious, though, that the efficacy of the biocidal modifier is mostly determined by the type of the copper compounds. In the present work an integrated approach is used for the investigation of the chemical composition of the biocidal modifier. Such an approach consists in the examination of the modifier’s composition by means of different, yet complementary, research methods: X-ray diffraction, infrared spectroscopy and DTA. It is shown that the chemical composition of the modifier mainly depends on the amount of precipitant. X-ray diffraction reveals that the major part of the modifier is represented by amorphous phase. Along with the increase of the precipitant’s amount the crystalline phase Zn4SO4(OH6•xH2O formation takes place. Such a crystalline phase is not appropriate as a component of the biocidal modifier. Another two methods - DTA and IR spectroscopy - reveal that the amorphous phase consists essentially of zinc hydrosilicates.

  16. Chemical composition of the clays as indicator raw material sources

    Directory of Open Access Journals (Sweden)

    Khramchenkova Rezida Kh

    2014-06-01

    Full Text Available The paper presents the results of study on the chemical composition of unglazed pottery from the excavations of the Bulgar fortified settlement site and the clay, selected from the modern deposits of ceramic raw materials located near the medieval settlement sites. Significant differences in macro- and microelement composition of different groups of ceramics have been revealed. The difference in the macroelemental composition is largely determined by the ceramic fabric recipe. Thus, the high calcium content corresponds to the addition of river shells, the high content of silicon results from sand addition. A more interesting picture has been revealed in the course of studies of the so-called “trace elements” (microelements. Nine groups of ceramics with different elemental set have been distinguished. The first two groups consist of imported ceramics; other groups have demonstrated a rather pronounced elemental composition. The most notable variations are observed in chromium, vanadium and nickel content. Similar microelement composition variety has been observed in clays from deposits of different localization, while the concentration of the mentioned elements in a variety of clays also differs considerably. Therefore, marker elements typical of different clays have been identified. A comparative analysis of the data obtained for clay raw materials and ceramics has been conducted. The results demonstrate the potential of studying the elemental composition in order to determine the localization of the raw material sources for ceramic production.

  17. Preliminary study of chemical compositional data from Amazon ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Toyota, Rosimeiri G.; Munita, Casimiro S.; Luz, Fabio A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: rosimeiritoy@yahoo.com.br; Neves, Eduardo G. [Museu de Arqueologia e Etnolgia, Sao Paulo, SP (Brazil)]. E-mail: egneves@usp.br; Oliveira, Paulo M.S. [Sao Paulo Univ., SP (Brazil). Escola Politecnica. Inst. de Matematica e Estatistica]. E-mail: poliver@usp.br

    2005-07-01

    Eighty seven ceramic samples from Acutuba, Lago Grande and Osvaldo archaeological sites located in the confluence of the rivers Negro and Solimoes were submitted to chemical analysis using instrumental neutron activation analysis to determine As, Ba, Ce, Co, Cr, Cs, Eu, Fe, Hf, K, La, Lu, Rb, Na, Nd, Sb, Sc, Sm, Ta, Tb, Th, Yb, Zn, and U. The database were studied using the Mahalanobis distance, and discriminant analysis. The results showed that the ceramics of each site differ from each other in chemical composition and that they form three different groups. Chemical classification of the ceramics suggests that vessels were made locally, as only ceramics from the same area show homogeneity of data. (author)

  18. Analysis of composition and microstructures of Ge grown on porous silicon using Raman spectroscopy and transmission electron microscopy

    Science.gov (United States)

    Aouassa, Mansour; Jadli, Imen; Hassayoun, Latifa Slimen; Maaref, Hassen; Panczer, Gerard; Favre, Luc; Ronda, Antoine; Berbezier, Isabelle

    2017-12-01

    Composition and microstructure of Ge grown on porous silicon (PSi) by Molecular Beam Epitaxy (MBE) at different temperatures are examined using High Resolution Transmission Electron Microscopy (HRTEM) and Raman spectroscopy. Ge grown at 400 °C on PSi buffer produces a planar Ge film with high crystalline quality compared to Ge grown on bulk Si. This result is attributed to the compliant nature of PSi. Increasing growth temperature >600 °C, changes the PSi morphology, increase the Ge/Si intermixing in the pores during Ge growth and lead to obtain a composite SiGe/Si substrate. Ge content in the composite SiGe substrate can controlled via growth temperature. These substrates serve as low cost virtual substrate for high efficiency III-V/Si solar cells.

  19. Multi-scale Characterisation of the 3D Microstructure of a Thermally-Shocked Bulk Metallic Glass Matrix Composite.

    Science.gov (United States)

    Zhang, Wei; Bodey, Andrew J; Sui, Tan; Kockelmann, Winfried; Rau, Christoph; Korsunsky, Alexander M; Mi, Jiawei

    2016-01-04

    Bulk metallic glass matrix composites (BMGMCs) are a new class of metal alloys which have significantly increased ductility and impact toughness, resulting from the ductile crystalline phases distributed uniformly within the amorphous matrix. However, the 3D structures and their morphologies of such composite at nano and micrometre scale have never been reported before. We have used high density electric currents to thermally shock a Zr-Ti based BMGMC to different temperatures, and used X-ray microtomography, FIB-SEM nanotomography and neutron diffraction to reveal the morphologies, compositions, volume fractions and thermal stabilities of the nano and microstructures. Understanding of these is essential for optimizing the design of BMGMCs and developing viable manufacturing methods.

  20. Aluminium–copper–nickel thin film compositional spread: Nickel influence on fundamental alloy properties and chemical stability of copper

    Energy Technology Data Exchange (ETDEWEB)

    Hafner, Martina; Burgstaller, Wolfgang; Mardare, Andrei Ionut; Hassel, Achim Walter

    2015-04-01

    An Al–Cu–Ni thin film compositional spread was deposited by thermal evaporation and investigated in order to study the Ni influence on the overall properties. The chemical composition was detected by energy dispersive X-ray spectroscopy and showed a compositional spread of approximately 20 at.% Ni. Decreasing the Ni content in the Al–Cu–Ni thin films resulted in an increased grain size and characteristic surface microstructure evolution. Scanning Kelvin probe measurements were performed to investigate the surface potential variation along the compositional gradient, and a distinct surface potential drop was observed between Al–Cu–7 at.% Ni and Al–Cu–13 at.% Ni. The results of the X-ray photoelectron spectroscopy surface analysis and Auger electron spectroscopy as well as the electrochemical investigations by cyclic voltammetry evidenced mainly the presence of Al{sub 2}O{sub 3} but also CuO and Cu{sub 2}O together with metallic Cu were clearly identified along the compositional gradient. Chemical dissolution experiments have shown that Ni is enhancing the chemical stability of Cu, excepting inside the compositional region between 7 and 13 at.% Ni. - Highlights: • Properties of Al–Cu–Ni thin film combinatorial library (5–25 at.% Ni) were mapped. • A surface potential drop was found between AlCu–7 at.% Ni and AlCu–13 at.% Ni. • CuO, Cu{sub 2}O and Cu were found along the Al–Cu–Ni library by cyclic voltammetry. • Downstream analytics probed the corrosion behaviour of Al–Cu–Ni alloys. • Ni enhanced Cu chemical stability excepting the compositional range 7–13 at.% Ni.

  1. Rate & Microstructure Influence on Fracture of WC-Co/Ni Composites

    Science.gov (United States)

    Lamberson, Leslie

    2017-06-01

    Tungsten carbide metal matrix composites contain ceramic grains of tungsten carbide within a binder of cobalt (Co) or nickel (Ni), allowing the material to have advantageous properties of both metals and ceramics including higher resistance to fracture than most structural ceramics, and higher resistance to permanent deformation than most engineering metals. Due to these performance advantages, WC composites are of interest in drilling, manufacturing tools, and defense penetrator applications, to name a few. Under quasi-static conditions, these hardmetals have been shown to generally exhibit an increase in fracture toughness with an increase in mean free path in the binder phase, and an increase in hardness and wear resistance with a decrease in WC grain size; yet relatively little is known in regards to their dynamic response. Here we present the fracture behavior of WC metal matrix composites under three extreme loading conditions: (1) a single-strike acceleration loading to characterize classical dynamic crack tip energetics via stress intensity factors (SIFs) (2) the impact fatigue, or sub-catastrophic repetitive strikes to failure, and (3) the dynamic crack interactions with normal impact over 1 km/s using an in-house combustionless two-stage light-gas gun. All investigations are conducted using ultra high-speed imaging with full-field measurements from digital image correlation (DIC), and post-mortem scanning electron microscopy. Preliminary results for (1) show that the dynamic fracture toughness increases by a factor of 1.22 to 1.65 over quasi-static, regardless of the binder or grain size investigated. Supported by the American Chemical Society Petroleum Research Fund No. 55860-ND10.

  2. A microstructure-composition map of a ternary liquid/liquid/particle system with partially-wetting particles.

    Science.gov (United States)

    Yang, Junyi; Roell, David; Echavarria, Martin; Velankar, Sachin S

    2017-11-22

    We examine the effect of composition on the morphology of a ternary mixture comprising two molten polymeric liquid phases (polyisobutylene and polyethylene oxide) and micron-scale spherical silica particles. The silica particles were treated with silanes to make them partially wetted by both polymers. Particle loadings up to 30 vol% are examined while varying the fluid phase ratios across a wide range. Numerous effects of particle addition are catalogued, stabilization of Pickering emulsions and of interfacially-jammed co-continuous microstructures, meniscus-bridging of particles, particle-induced coalescence of the dispersed phase, and significant shifts in the phase inversion composition. Many of the effects are asymmetric, for example particle-induced coalescence is more severe and drop sizes are larger when polyisobutylene is the continuous phase, and particles promote phase continuity of the polyethylene oxide. These asymmetries are likely attributable to a slight preferential wettability of the particles towards the polyethylene oxide. A state map is constructed which classifies the various microstructures within a triangular composition diagram. Comparisons are made between this diagram vs. a previous one constructed for the case when particles are fully-wetted by polyethylene oxide.

  3. Fabrication of AZ31/MWCNTs Surface Metal Matrix Composites by Friction Stir Processing: Investigation of Microstructure and Mechanical Properties

    Science.gov (United States)

    Arab, Seyed Mohammad; Zebarjad, Seyed Mojtaba; Jahromi, Seyed Ahmad Jenabali

    2017-11-01

    The surface metal matrix composites of AZ31 Mg alloy reinforced with multiwall carbon nanotubes (MWCNTs) have been fabricated through the friction stir processing by a conventional and two stepped tools. The microstructure and mechanical properties of fabricated composites were studied by optical and electron microscopy, microhardness and tensile tests, respectively. The processing has developed a fine-grain structure along with good distribution of reinforcements. The hardness and tensile strength of fabricated MWCNT/AZ31 composites are generally higher than as-received and FSPed samples. The accumulative effect of grain refinement and reinforcing nanotubes is assumed to be the reason for increasing the ductility after friction stir processing. The hardness is nearly doubled for FSPed samples and some more for nanocomposites compared with the as-received sample. The elongation of nanocomposites is about two times greater than that of the as-rolled sample. The speed ratio, pass number and CNT amount are three important factors influencing the resulting microstructure and mechanical properties. The stepped tools also give a more uniform distribution of reinforcement and higher grain refinement.

  4. Chemical Composition Measurements of LAWA44 Glass Samples

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Riley, W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-11-15

    DOE is building the Hanford Tank Waste Treatment and Immobilization Plant (WTP) at the Hanford Site in Washington to remediate 55 million gallons of radioactive waste that is temporarily stored in 177 underground tanks. Both low-activity and high-level wastes will then be vitrified into borosilicate glass using Joule-heated ceramic melters. Efforts are being made to increase the loading of Hanford tank wastes in the glass. One area of work is enhancing waste glass composition/property models and broadening the compositional regions over which those models are applicable. In this report, the Savannah River National Laboratory provides chemical analysis results for several samples of a simulated low-activity waste glass, LAWA44, provided by the Pacific Northwest National Laboratory as part of an ongoing development task. The measured chemical composition data are reported and compared with the targeted values for each component for each glass. A detailed review showed no indications of errors in the preparation or measurement of the study glasses. All of the measured sums of oxides for the study glasses fell within the interval of 97.9 to 102.6 wt %, indicating acceptable recovery of the glass components. Comparisons of the targeted and measured chemical compositions showed that the measured values for the glasses met the targeted concentrations within 10% for those components present at more than 5 wt %. It was noted that the measured B2O3 concentrations are somewhat above the targeted values for the study glasses. No obvious trends were observed with regard to the multiple melting steps used to prepare the study glasses, indicating that any potential effects of volatility were below measurable thresholds.

  5. Influence of ceramic particulate type on microstructure and tensile strength of aluminum matrix composites produced using friction stir processing

    Directory of Open Access Journals (Sweden)

    I. Dinaharan

    2016-06-01

    Full Text Available Friction stir processing (FSP was applied to produce aluminum matrix composites (AMCs. Aluminum alloy AA6082 was used as the matrix material. Various ceramic particles, such as SiC, Al2O3, TiC, B4C and WC, were used as reinforcement particle. AA6082 AMCs were produced using a set of optimized process parameters. The microstructure was studied using optical microscopy, filed emission scanning electron microscopy and electron back scattered diagram. The results indicated that the type of ceramic particle did not considerably vary the microstructure and ultimate tensile strength (UTS. Each type of ceramic particle provided a homogeneous dispersion in the stir zone irrespective of the location and good interfacial bonding. Nevertheless, AA6082/TiC AMC exhibited superior hardness and wear resistance compared to other AMCs produced in this work under the same set of experimental conditions. The strengthening mechanisms and the variation in the properties are correlated to the observed microstructure. The details of fracture mode are further presented.

  6. Effect of braze processing on the microstructure and mechanical properties of SCS-6/beta21S titanium matrix composites

    Science.gov (United States)

    Hoffman, Eric K.; Bird, R. K.; Dicus, Dennis L.

    1992-01-01

    An investigation is conducted of the effects of braze processing on the microstructure and tensile properties of SiC fiber-reinforced Ti-15Mo-2.7Nb-3Al-0.25Si-matrix composite (TMC) laminates; the brazing alloy was the commercial Ti-15Cu-15Ni, in both its conventional and metglass forms. Tensile tests conducted at room temperature, 1200 F, and 1500 F showed that the braze processes (1) had little effect on tensile properties, and (2) appeared to degrade neither the reinforcing fibers not the fiber/matrix interfacial bondline.

  7. Microstructure Characteristics and Properties of HVOF Sprayed Ni-Based Alloy Nano-h-BN Self-Lubricating Composite Coatings

    OpenAIRE

    Xiaofeng Zhang; Long Zhang; Zhenyi Huang

    2015-01-01

    A Ni-based alloy/nano-h-BN self-lubricating composite coating was produced on medium carbon steel by high velocity oxygen fuel (HVOF) spraying technique. The powder feedstocks for HVOF spraying were prepared by ball milling and agglomerated the nano-h-BN with Ni-based alloy powders. The microstructure and mechanical properties of coatings have been investigated. With the increasing of h-BN contents, some delaminations appeared gradually in the coatings and a continuous network with h-BN phase...

  8. Microstructure of laser-clad SiC-(Ni alloy) composite coating

    OpenAIRE

    Pei, Y.T.; Ouyang, J.H.; Lei, T.C.; Zhou, Y.

    1995-01-01

    The laser cladding technique was used to produce Ni alloy coatings with different SiC particle (SiCp) contents on steel 1045. The complete dissolution of SiCp took place during laser melting and led to a microstructural evolution of the coatings associated with the SiCp content. M7X3 or M23X6-type carboborides and Ni-base solid solution are found as the main microstructural constituents of the clad layers, and the volume fraction of the carboborides increases with increasing SiCp content. Whe...

  9. Bioactive carbon-PEEK composites prepared by chemical surface treatment.

    Science.gov (United States)

    Miyazaki, Toshiki; Matsunami, Chisato; Shirosaki, Yuki

    2017-01-01

    Polyetheretherketone (PEEK) has attracted much attention as an artificial intervertebral spacer for spinal reconstruction. Furthermore, PEEK plastic reinforced with carbon fiber has twice the bending strength of pure PEEK. However, the PEEK-based materials do not show ability for direct bone bonding, i.e., bioactivity. Although several trials have been conducted for enabling PEEK with bioactivity, few studies have reported on bioactive surface modification of carbon-PEEK composites. In the present study, we attempted the preparation of bioactive carbon-PEEK composites by chemical treatments with H2SO4 and CaCl2. Bioactivity was evaluated by in vitro apatite formation in simulated body fluid (SBF). The apatite formation on the carbon-PEEK composite was compared with that of pure PEEK. Both pure PEEK and carbon-PEEK composite formed the apatite in SBF when they were treated with H2SO4 and CaCl2; the latter showed higher apatite-forming ability than the former. It is conjectured that many functional groups able to induce the apatite nucleation, such as sulfo and carboxyl groups, are incorporated into the dispersed carbon phase in the carbon-PEEK composites. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Synthesis, microstructural and mechanical properties of ex situ zircon particles (ZrSiO4 reinforced Metal Matrix Composites (MMCs: a review

    Directory of Open Access Journals (Sweden)

    Satish Kumar Thandalam

    2015-07-01

    This review article details the current development on the synthesis, microstructure and mechanical properties of zircon reinforced MMCs, with specific attention on the abrasive wear behavior of the composites. This review also summarizes the work done by various research groups on zircon reinforced MMCs in achieving higher hardness and wear resistance in these composites.

  11. Zirconium influence on microstructure of aluminide coatings ...

    Indian Academy of Sciences (India)

    Influence of Zr on the microstructure and phase characteristics of aluminide diffusion coatings deposited on the nickel substrate has been investigated in this study. The coatings with and without zirconium were deposited by CVD method. The cross-section chemical composition investigations revealed that during the ...

  12. Microstructural Characterization of Red Mud as Affected by Inorganic and Organic Chemicals Permeation

    Science.gov (United States)

    Rubinos, David A.; Valcárcel, Víctor; Spagnoli, Giovanni; Barral, María Teresa

    2017-09-01

    The microstructural characteristics of red mud (RM), especially specific surface area (SSA) and mesoporosity, and the effects of various representative fluids, namely methanol (80% v/v), trichloroethylene (TCE) (1100 mg/L), acetic acid (pH 2), and CaCl2 (5% w/v) aqueous solutions, were studied using N2-gas adsorption. The effect of compaction was also assessed. RM powder exhibited a moderate Brunauer-Emmet-Teller (BET)-SSA and is mostly a mesoporous (large mesopores, 200-500 Å) and a macroporous material. Compaction affected the macro and large, but not the fine, mesopores. Among the fluids, CaCl2 and acetic acid induced notable and opposing changes in RM microstructural characteristics. CaCl2 decreased SSA and suppressed fine mesoporosity, whereas acetic acid greatly enhanced them. Fractal analysis further indicated increasing surface roughness and heterogeneity of pore structure during acid exposure, altogether envisaging an improvement of adsorption capacity and a decrease of permeability of the RM.

  13. Chemical Composition of Rainwater in Córdoba City, Argentina

    Science.gov (United States)

    López, M. L.; Asar, M. L.; Ceppi, S.; Bürgesser, R. E.; Avila, E.

    2013-05-01

    Sampling and chemical analysis of rainwater has proved to be a useful technique for studying its chemical composition and provides a greater understanding of local and regional dispersion of pollutants and their potential impacts to ecosystems through deposition processes. Samples of rainwater were collected during 2009-2012, in Córdoba city, Argentina. Two kind of sampling were performed: event-specific and sequential. The objective of the first of these was to determine the chemical concentration of the total rain, while the objective of the second one was to analyze the variability of the chemical concentration during an individual rain event. The total volume of each sample was divided in halves. One half was filtered through 0.45 μm membrane filter. After this, all the samples were reduced by evaporation to a final volume of 10 ml. The non-filtered samples were acidified and digested in accordance to the method 3050B of the Environmental Protection Agency (EPA) for acid digestion of sediments. Multi-elemental standard solutions in different concentrations were prepared by adequate dilutions. Gallium was added as an internal standard in all standard solutions and samples. Exactly 5 μL of these solutions were deposited on acrylic supports. When these droplets were dried, Synchrotron Radiation Total Reflection X-Ray Fluorescence technique was used for determining the chemical elements. Spectra were analyzed with the AXIL package for spectrum analysis. Due to the intrinsic characteristics of the total reflection technique, the background of the measurements is significantly reduced and there are no matrix effects, therefore quantification can be obtained from the linear correlation between fluorescence intensity and the concentration of the element of interest. The elements quantified were S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, and Pb. For all of them a calibration curve was performed in order to quantify their concentrations on the

  14. Acoustic Imaging of Microstructure and Evaluation of the Adhesive's Physical, Mechanical and Chemical Properties Changes at Different Cure States

    Science.gov (United States)

    Severina, I. A.; Fabre, A. J.; Maeva, E. Yu.

    Epoxy thermoset adhesives transform during cure from liquid state into the highly cross-linked solid. Cure state of the material depends on condition of the reaction (temperature, pressure, time etc.) and resin/hardener ratio. It is known that the cure degree of the adhesive correlates with adhesion strength, which is critical for structural adhesives used in automotive, aerospace and marine industries. In this work, characterization of cure process of the adhesive with acoustic methods is presented. Evolution of the acoustic and elastic properties (attenuation, sound velocity, density, elastic moduli) during cure reaction was monitored in relation to the substantial physical and chemical changes of the material. These macro parameters of the adhesive were compared with the material's microstructure obtained by high-resolution acoustic microscopy technique in frequencies range of 50-400 MHz. Development of the microstructure of the adhesive as it cures at different conditions has been investigated. Appearance and development of the granular structure on the adhesive interface during cure reaction has been demonstrated. Acoustic images were analyzed by mathematical method to quantitatively characterize distribution of the adhesive's components. Statistical analysis of such images provides an accurate quantitative measure of the degree of cure of such samples. Research results presented in this paper can be useful as a basis for non-destructive evaluation of the adhesive materials

  15. A bootstrap estimation scheme for chemical compositional data with nondetects

    Science.gov (United States)

    Palarea-Albaladejo, J; Martín-Fernández, J.A; Olea, Ricardo A.

    2014-01-01

    The bootstrap method is commonly used to estimate the distribution of estimators and their associated uncertainty when explicit analytic expressions are not available or are difficult to obtain. It has been widely applied in environmental and geochemical studies, where the data generated often represent parts of whole, typically chemical concentrations. This kind of constrained data is generically called compositional data, and they require specialised statistical methods to properly account for their particular covariance structure. On the other hand, it is not unusual in practice that those data contain labels denoting nondetects, that is, concentrations falling below detection limits. Nondetects impede the implementation of the bootstrap and represent an additional source of uncertainty that must be taken into account. In this work, a bootstrap scheme is devised that handles nondetects by adding an imputation step within the resampling process and conveniently propagates their associated uncertainly. In doing so, it considers the constrained relationships between chemical concentrations originated from their compositional nature. Bootstrap estimates using a range of imputation methods, including new stochastic proposals, are compared across scenarios of increasing difficulty. They are formulated to meet compositional principles following the log-ratio approach, and an adjustment is introduced in the multivariate case to deal with nonclosed samples. Results suggest that nondetect bootstrap based on model-based imputation is generally preferable. A robust approach based on isometric log-ratio transformations appears to be particularly suited in this context. Computer routines in the R statistical programming language are provided. 

  16. Chemical composition and antioxidant activity of Algerian propolis.

    Science.gov (United States)

    Piccinelli, Anna Lisa; Mencherini, Teresa; Celano, Rita; Mouhoubi, Zina; Tamendjari, Azeddine; Aquino, Rita Patrizia; Rastrelli, Luca

    2013-05-29

    Chemical composition of propolis samples from north Algeria was characterized by chromatographic and spectroscopic analyses. High-performance liquid chromatorgaphy with diode-array detection (HPLC-DAD) fingerprint of the methanol extracts allowed the definition of two main types of Algerian propolis (AP) directly related to their secondary metabolite composition. Investigation of two representative types of AP by preparative chromatographic procedure and mass spectrometric (MS) and NMR techniques led to the identification of their main constituents: caffeate esters and flavonoids from an AP type rich in phenolic compounds (PAP) and labdane and clerodane diterpenes, together with a polymethoxyflavonol, from an AP type containing mainly diterpenes (DAP). Subsequently, two specific HPLC-MS/MS methods for detection of PAP and DAP markers were developed to study the chemical composition of propolis samples of different north Algerian regions. Antioxidant activity of AP samples was evaluated by 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) assay, and a significant free-radical scavenging effect was observed for propolis of the PAP series rich in polyphenols.

  17. Values below detection limit in compositional chemical data.

    Science.gov (United States)

    Palarea-Albaladejo, J; Martín-Fernández, J A

    2013-02-18

    Samples representing part of a whole, usually called compositional data in statistics, are commonplace in analytical chemistry--say chemical data in percentage, ppm, or μg g(-1). Their distinctive feature is that there is an inherent relationship between all the analytes constituting a chemical sample as they only convey relative information. Some compositional data analysis principles and the log-ratio based methodology are outlined here in practical terms. Besides, one often finds that some analytes are not present in sufficient concentration in a sample to allow the measuring instruments to effectively detect them. These non-detects are usually labelled as "data set, indicating that the values are below known detection limits. Many data analysis techniques require complete data sets. Thus, there is a need of sensible replacement strategies for less-thans. The peculiar nature of compositional data determines any data analysis and demands for a specialised treatment of less-thans that, unfortunately, is not usually covered in chemometrics. Some well-founded statistical methods are revisited in this paper aiming to prevent practitioners from relying on popular but untrustworthy approaches. A new proposal to estimate less-thans combining a log-normal probability model and a multiplicative modification of the samples is also introduced. Their performance is illustrated and compared on a real data set, and guidelines are provided for practitioners. Matlab and R code implementing the methods are made available for the reader. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Chemical composition of the sediment from Lake 20 (Antarctica

    Directory of Open Access Journals (Sweden)

    Daria ROSSI

    2000-02-01

    Full Text Available Lake 20 (19,000 m2 is located on the coast of the Ross Sea, in the North-Central part of Victoria Land, and its surface is ice-free between the end of December and early February. Within the framework of the Italian National Research Programme in Antarctica, a study was made of the chemical composition of sediments from the lake, with the intention of using this information to contribute to a better understanding of the processes involved in the long range transport of pollutants and their role in global changes. A sediment core from Lake 20 (Antarctica, 18 cm long, was collected in 1994, sliced into 2 cm sections and analysed using X Ray fluorescence spectrometry for 17 elements (Si, Al, Ca, K, Fe, Mg, Ti, S, P, Pb, Zn, Cu, Ni, Mn, Cr, Na, Cl, by CHN Elemental Analyser for C and N, by Flameless Atomic Absorption Spectrometry for As, and by Cold Vapour Atomic Absorption Spectrometry for Hg. The chemical composition of the sediments is consistent with the known geochemical characteristics of the drainage basin. While the chemical analyses reveal that sedimentation in Lake 20 has changed through time, the variations along the core are most probably related to the climatic evolution of the area, to the consequent changes in weathering processes, and possibly to an increase in the primary productivity of the lake, rather than to anthropogenic influences on the biogeochemical cycles of the elements.

  19. Towards long lasting zirconia-based composites for dental implants. Part I: innovative synthesis, microstructural characterization and in vitro stability.

    Science.gov (United States)

    Palmero, Paola; Fornabaio, Marta; Montanaro, Laura; Reveron, Helen; Esnouf, Claude; Chevalier, Jérôme

    2015-05-01

    In order to fulfill the clinical requirements for strong, tough and stable ceramics used in dental applications, we designed and developed innovative zirconia-based composites, in which equiaxial α-Al2O3 and elongated SrAl12O19 phases are dispersed in a ceria-stabilized zirconia matrix. The composite powders were prepared by an innovative surface coating route, in which commercial zirconia powders were coated by inorganic precursors of the second phases, which crystallize on the zirconia particles surface under proper thermal treatment. Samples containing four different ceria contents (in the range 10.0-11.5 mol%) were prepared by carefully tailoring the amount of the cerium precursor during the elaboration process. Slip cast green bodies were sintered at 1450 °C for 1 h, leading to fully dense materials. Characterization of composites by SEM and TEM analyses showed highly homogeneous microstructures with an even distribution of both equiaxial and elongated-shape grains inside a very fine zirconia matrix. Ce content plays a major role on aging kinetics, and should be carefully controlled: sample with 10 mol% of ceria were transformable, whereas above 10.5 mol% there is negligible or no transformation during autoclave treatment. Thus, in this paper we show the potential of the innovative surface coating route, which allows a perfect tailoring of the microstructural, morphological and compositional features of the composites; moreover, its processing costs and environmental impacts are limited, which is beneficial for further scale-up and real use in the biomedical field. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Studying microstructure and phase composition of a new complex calcium containing alloy

    Directory of Open Access Journals (Sweden)

    I. Bartenev

    2016-10-01

    Full Text Available In the given article there are presented the results of studying the microstructure and phase structure of a complex alloy of alumosilicon with calcium. It is established that in the studied CAMS alloy active elements are present at a type of difficult intermetallid that positively influences quality of both ordinary, and qualitative brands of steel.

  1. Microstructure of laser-clad SiC-(Ni alloy) composite coating

    NARCIS (Netherlands)

    Pei, Y.T.; Ouyang, J.H.; Lei, T.C.; Zhou, Y.

    1995-01-01

    The laser cladding technique was used to produce Ni alloy coatings with different SiC particle (SiCp) contents on steel 1045. The complete dissolution of SiCp took place during laser melting and led to a microstructural evolution of the coatings associated with the SiCp content. M7X3 or M23X6-type

  2. Microstructure and microhardness of AA1050/TiC surface composite ...

    Indian Academy of Sciences (India)

    A tool made of HCHCr steel, oil hardened to 62 HRC, having a cylindrical profile was used in this study. The microstructure and microhardness of the fabricated AMC were analysed. Scanning Electron Microscope (SEM) micrographs revealed a uniform distribution of TiC particles which were well-bonded to the matrix alloy.

  3. Development of a Cast Al-Mg2Si-Si In Situ Composite: Microstructure, Heat Treatment, and Mechanical Properties

    Science.gov (United States)

    Georgatis, E.; Lekatou, A.; Karantzalis, A. E.; Petropoulos, H.; Katsamakis, S.; Poulia, A.

    2013-03-01

    An Al-11Mg2Si-Si in situ composite was prepared by a modified investment casting technique that employs sub-pressure for castability improvement and immersion of ceramic shell molds in fluidized beds of silica sand and iron particles for heat extraction improvement. The microstructure of the as-cast composite is explained according to the pseudoeutectic Al-Mg2Si phase diagram. The positive effect of a decreased number of mold investment layers and cooling assisted by immersion of the mold in a metallic bed on the tensile strength and hardness of the heat treated composite is noted. A minor presence of Fe in the master alloys constitutes an essential factor for the brittleness of the composite. Solution treatment notably improves the tensile strength of the composite; however, prolonged treatment deteriorates its ductility. The effect of time and temperature of the aging treatment on the hardness of the composite is investigated. The positive influence of cooling assisted by a metallic fluidized bed on the effectiveness of the aging treatment is noticed.

  4. Effect of inulin on physico-chemical, sensory, fatty acid profile and microstructure of processed cheese spread.

    Science.gov (United States)

    Giri, Apurba; Kanawjia, Suresh Kumar; Singh, Mukesh Pratap

    2017-07-01

    To develop a functional processed cheese spread (PCS) different levels of inulin (0, 4, 6 and 8%) addition into PCS was studied with its physico-chemical, sensory and fatty acid profile and micro-structural quality. As the level of inulin addition increased moisture, aw and titratable acidity, decreased. At the highest level of inulin addition (8%) sensory panelists reported a significant decrease in total sensory score. PCS with 6% insulin was found to have optimum from quantity. The addition of inulin in cheese spread decreased both total saturated fatty acid and unsaturated fatty acid and in unsaturated fatty acid, mono unsaturated fatty acid decreased; however, polyunsaturated fatty acids increased as compared to the control. Scanning Electron Micrograph of PCS containing insulin showed uniform distribution of insulin with diameter ranged 4-10 µm in the protein matrix.

  5. Chemical composition of cold pressed Brazilian grape seed oil

    Directory of Open Access Journals (Sweden)

    Fernanda Branco SHINAGAWA

    2017-10-01

    Full Text Available Abstract Grape seed oil (GSO is an important by-product of the wine-making industry which has received attention as an alternative source of vegetable oils; its chemical compounds can be influenced by agricultural practices and industrial processing. Knowledge of the composition of Brazilian GSO is scarce; thus, this study aimed to analyze the chemical characteristics, as well as the antioxidant activity of these oils. GSO samples were obtained from Brazilian markets and showed significantly high amounts of phenolic, γ-tocotrienol and phytosterols as well as, the presence of several volatile compounds. Based on these results, is possible to show that oils exhibited good antioxidant activity. Therefore, it can be inferred that Brazilian GSO had a considerable content of phytochemical compounds with biological activity, which allows its association with other vegetable oils.

  6. Physical Characterization and Steam Chemical Reactivity of Carbon Fiber Composites

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, Robert Andrew; Pawelko, Robert James; Smolik, Galen Richard

    2001-05-01

    This report documents experiments and analyses that have been done at the Idaho National Engineering and Environmental Laboratory (INEEL) to measure the steam chemical reactivity of two types of carbon fiber composites, NS31 and NB31, proposed for use at the divertor strike points in an ITER-like tokamak. These materials are 3D CFCs constituted by a NOVOLTEX preform and densified by pyrocarbon infiltration and heat treatment. NS31 differs from NB31 in that the final infiltration was done with liquid silicon to reduce the porosity and enhance the thermal conductivity of the CFC. Our approach in this work was twofold: (1) physical characterization measurements of the specimens and (2) measurements of the chemical reactivity of specimens exposed to steam.

  7. Processing, microstructure and mechanical properties of bimodal size SiCp reinforced AZ31B magnesium matrix composites

    Directory of Open Access Journals (Sweden)

    M.J. Shen

    2015-06-01

    Full Text Available The bimodal size SiC particulates (SiCp reinforced magnesium matrix composites with different ratios of micron SiCp and nano SiCp (M-SiCp:N-SiCp = 14.5:0.5, 14:1, and 13.5:1.5 were prepared by semisolid stirring assisted ultrasonic vibration method. The AZ31B alloy and all as-cast SiCp/AZ31B composites were extruded at 350 °C with the ratio of 12:1. Microstructural characterization of the extruded M14 + N1 (M-SiCp:N-SiCp = 14:1 composite revealed the uniform distribution of bimodal size SiCp and significant grain refinement. Optical Microscopy(OM observation showed that, compared with the M14.5 + N0.5 (M-SiCp:N-SiCp = 14.5:0.5 composite, there are more recrystallized grains in M14 + N1 (M-SiCp:N-SiCp = 14:1 and M13.5 + N1.5 (M-SiCp:N-SiCp = 13.5:1.5 composites, but in comparison to the M13.5 + N1.5 composite, the average grain size of the M14 + N1 composite is slightly decreased. The evaluation of mechanical properties indicated that the yield strength and ultimate tensile strength of the M14 + N1 composite were obviously increased compared with other composites.

  8. Evaluating the Whitening and Microstructural Effects of a Novel Whitening Strip on Porcelain and Composite Dental Materials.

    Science.gov (United States)

    Takesh, Thair; Sargsyan, Anik; Lee, Matthew; Anbarani, Afarin; Ho, Jessica; Wilder-Smith, Petra

    2017-08-01

    The aim of this project was to evaluate the effects of 2 different whitening strips on color, microstructure and roughness of tea stained porcelain and composite surfaces. 54 porcelain and 72 composite chips served as samples for timed application of over-the-counter (OTC) test or control dental whitening strips. Chips were divided randomly into three groups of 18 porcelain and 24 composite chips each. Of these groups, 1 porcelain and 1 composite set served as controls. The remaining 2 groups were randomized to treatment with either Oral Essentials® Whitening Strips or Crest® 3D White Whitestrips™. Sample surface structure was examined by light microscopy, profilometry and Scanning Electron Microscopy (SEM). Additionally, a reflectance spectrophotometer was used to assess color changes in the porcelain and composite samples over 24 hours of whitening. Data points were analyzed at each time point using ANOVA. In the light microscopy and SEM images, no discrete physical defects were observed in any of the samples at any time points. However, high-resolution SEM images showed an appearance of increased surface roughness in all composite samples. Using profilometry, significantly increased post-whitening roughness was documented in the composite samples exposed to the control bleaching strips. Composite samples underwent a significant and equivalent shift in color following exposure to Crest® 3D White Whitestrips™ and Oral Essentials® Whitening Strips. A novel commercial tooth whitening strip demonstrated a comparable beaching effect to a widely used OTC whitening strip. Neither whitening strip caused physical defects in the sample surfaces. However, the control strip caused roughening of the composite samples whereas the test strip did not.

  9. Nepheline structural and chemical dependence on melt composition

    Energy Technology Data Exchange (ETDEWEB)

    Marcial, José; Crum, Jarrod; Neill, Owen; McCloy, John

    2016-02-01

    Nepheline crystallizes upon slow-cooling in some melts concentrated in Na2O and Al2O3, which can result in a residual glass phase of low chemical durability. Nepheline can incorporate many components often found in high-level waste radioactive borosilicate glass, including glass network ions (e.g., Si, Al, Fe), alkali metals (e.g., Cs, K, Na, and possibly Li), alkaline-earth metals (e.g., Ba, Sr, Ca, Mg), and transition metals (e.g., Mn, and possibly Cr, Zn, Ni). When crystallized from melts of different compositions, nepheline chemistry varies as a function of starting glass composition. Five simulated high level nuclear waste borosilicate glasses shown to crystallize large fractions of nepheline on slow cooling, were selected for study. These melts constituted a range of Al2O3, B2O3, CaO, Na2O, K2O, Fe2O3, and SiO2 compositions. Compositional analyses of nepheline crystals in glass by electron probe micro-analysis (EPMA) indicate that boron is unlikely to be present in any significant concentration, if at all, in nepheline. Also, several models are presented for calculating the fraction of vacancies in the nepheline structure.

  10. Heat and Mass Transfer in the Chemical Vapor Deposition of Silicon Carbide in a Porous Carbon-Carbon Composite Material for a Heat Shield

    Science.gov (United States)

    Reznik, S. V.; Mikhailovskii, K. V.; Prosuntsov, P. V.

    2017-03-01

    Physical and mathematical simulations of the chemical vapor deposition of silicon carbide in a porous carbon-carbon composite material in a chemical vapor deposition reactor for formation of a matrix of a carbon-ceramic composite material for a heat shield of an aerospace aircraft have been performed. Results of parametric calculations of the heat and mass transfer at the macro- and microlevels in representative elements of the microstructure of carbon-carbon composite materials different in residual porosity at different temperatures in the reaction zone of the reactor are presented. Features of compaction of the pore space of a carbon-carbon composite material by a silicon-carbide matrix depending on the technological parameters of the reaction medium were analyzed.

  11. Chemical composition and temperature influence on honey texture properties.

    Science.gov (United States)

    Oroian, Mircea; Paduret, Sergiu; Amariei, Sonia; Gutt, Gheorghe

    2016-01-01

    The aim of this study is to evaluate the chemical composition and temperatures (20, 30, 40, 50 and 60 °C) influence on the honey texture parameters (hardness, viscosity, adhesion, cohesiveness, springiness, gumminess and chewiness). The honeys analyzed respect the European regulation in terms of moisture content and inverted sugar concentration. The texture parameters are influenced negatively by the moisture content, and positively by the °Brix concentration. The texture parameters modelling have been made using the artificial neural network and the polynomial model. The polynomial model predicted better the texture parameters than the artificial neural network.

  12. Chemical composition of volatile oil from Cinnamomum zeylanicum buds.

    Science.gov (United States)

    Jayaprakasha, Guddadarangavvanahally K; Rao, Lingamallu Jaganmohan; Sakariah, Kunnumpurath K

    2002-01-01

    The hydro-distilled volatile oil of the Cinnamomum zeylanicum (C. zeylanicum) buds was analyzed using GC and GC-MS for the first time. Thirty-four compounds representing approximately 98% of the oil was characterized. It consists of terpene hydrocarbons (78%) and oxygenated terpenoids (9%). alpha-Bergamotene (27.38%) and alpha-copaene (23.05%) are found to be the major compounds. A comparison of the chemical composition of the oil was made with that of flowers and fruits.

  13. Stevia rebaudiana Bertoni - chemical composition and functional properties.

    Science.gov (United States)

    Marcinek, Katarzyna; Krejpcio, Zbigniew

    2015-01-01

    Sweetleaf (Stevia rebaudiana Bertoni), currently investigated by many researchers, has been known and used for more than a thousand years indigenous tribes of South America, who called it "kaa-hee" ("sweet herb"). Thanks to its chemical composition and processability sweetleaf may be an alternative for synthetic sweeteners. Nutritional and health-promoting aspects of Stevia rebaudiana are presently being studied in many research centres. The aim of this study is to present nutritional and health-promoting value of the still-little known sweetleaf.

  14. Chemical composition and fatty acid contents in farmed freshwater prawns

    Directory of Open Access Journals (Sweden)

    Carolina de Gasperi Portella

    2013-08-01

    Full Text Available The objective of this work was to evaluate the chemical composition and fatty acid contents of Amazonian and giant river prawns. After four-month farming, with the same diet for both species, palmitic and stearic acids were the main saturated fatty acids. Oleic acid was the main monounsatured fatty acid, and the eicosapentaenoic and docosahexaenoic acids were the most abundant polyunsaturated acids. Amazonian prawn has higher levels of protein and polyunsaturated fatty acids than those of the giant river prawn, which shows its potential for aquaculture.

  15. Chemical vapor deposited fiber coatings and chemical vapor infiltrated ceramic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Kmetz, M.A.

    1992-01-01

    Conventional Chemical Vapor Deposition (CVD) and Organometallic Chemical Vapor Deposition (MOCVD) were employed to deposit a series of interfacial coatings on SiC and carbon yarn. Molybdenum, tungsten and chromium hexacarbonyls were utilized as precursors in a low temperature (350[degrees]C) MOCVD process to coat SiC yarn with Mo, W and Cr oxycarbides. Annealing studies performed on the MoOC and WOC coated SiC yarns in N[sub 2] to 1,000[degrees]C establish that further decomposition of the oxycarbides occurred, culminating in the formation of the metals. These metals were then found to react with Si to form Mo and W disilicide coatings. In the Cr system, heating in N[sub 2] above 800[degrees]C resulted in the formation of a mixture of carbides and oxides. Convention CVD was also employed to coat SiC and carbon yarn with C, Bn and a new interface designated BC (a carbon-boron alloy). The coated tows were then infiltrated with SiC, TiO[sub 2], SiO[sub 2] and B[sub 4]C by a chemical vapor infiltration process. The B-C coatings were found to provide advantageous interfacial properties over carbon and BN coatings in several different composite systems. The effectiveness of these different coatings to act as a chemically inert barrier layer and their relationship to the degree of interfacial debonding on the mechanical properties of the composites were examined. The effects of thermal stability and strength of the coated fibers and composites were also determined for several difference atmospheres. In addition, a new method for determining the tensile strength of the as-received and coated yarns was also developed. The coated fibers and composites were further characterized by AES, SEM, XPS, IR and X-ray diffraction analysis.

  16. VOPcPhO:P3HT composite micro-structures with nano-porous surface morphology

    Science.gov (United States)

    Azmer, Mohamad Izzat; Ahmad, Zubair; Sulaiman, Khaulah; Touati, Farid; Bawazeer, Tahani M.; Alsoufi, Mohammad S.

    2017-03-01

    In this paper, composite micro-structures of Vanadyl 2,9,16,23-tetraphenoxy-29H,31H-phthalocyanine) (VOPcPhO) and Poly (3-hexylthiophene-2,5-diyl) (P3HT) complex with nano-porous surface morphology have been developed by electro-spraying technique. The structural and morphological characteristics of the VOPcPhO:P3HT composite films have been studied by field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). The multidimensional VOPcPhO:P3HT micro-structures formed by electro-spraying with nano-porous surface morphology are very promising for the humidity sensors due to the pore sizes in the range of micro to nano-meters scale. The performance of the VOPcPhO:P3HT electro-sprayed sensor is superior in term of sensitivity, hysteresis and response/recovery times as compared to the spin-coated one. The electro-sprayed humidity sensor exhibits ∼3 times and 0.19 times lower hysteresis in capacitive and resistive mode, respectively, as compared to the spin-coated humidity sensor.

  17. Influence of MgO particles on Microstructural and Mechanical Behaviour of AA7068 Metal Matrix Composites

    Science.gov (United States)

    Joshua, K. John; Vijay, S. J.; Selvaraj, D. Philip; Ramkumar, P.

    2017-10-01

    Present work deals with the fabrication of AA7068 metal matrix composites reinforced with different weight percentages of MgO (0%, 1%, 2%, and 5%) produced using powder metallurgy route. A low pressure of 318 MPa was applied for compacting the composites and sintered at a temperature of 560°C for one hour. Optical microscopy was done to study the microstructural behavior. Wear test has been conducted for a sliding distance of 3 km with a sliding velocity of 1.2 m/s of load 5N.,7.5N and 10N. Vickers micro hardness test has been conducted and the maximum value of 68 VHN was obtained by adding a weight percentage of 5% MgO particles. The wear resistance has been improved by adding MgO particles in the matrix material. EDAX analysis was done to ensure the presence of MgO particles.

  18. The Influence of the Dispersion Method on the Microstructure and Properties of MWCNTs/AA6061 Composites

    Directory of Open Access Journals (Sweden)

    Dobrzański L. A.

    2016-06-01

    Full Text Available The aim of this work was to study the effect of different methods of multi-walled carbon nanotubes (MWCNTs dispersion, and their influence on the microstructure and properties of aluminium alloy matrix composites produced using the powder metallurgy techniques, such as powder milling/mixing and hot extrusion. The main problem in the manufacturing of nanocomposites is the homogeneous distribution of MWCNTs in the metal matrix. To achieve their proper distribution a high-energy and low-energy mechanical milling, using a planetary ball mill, and mixing, using a turbulent mixer, were applied. Studies have shown that composite materials prepared using milling and extrusion have a much better dispersion of the reinforcing phase, which leads to better mechanical properties of the obtained rods. The low-energy mechanical mixing and mixing using the turbulent mixer neither change the powder morphology nor lead to adequate dispersion of the carbon nanotubes, which directly affects the resulting properties.

  19. Microstructure and mechanical behavior of stir-cast Zn–27Al based composites reinforced with rice husk ash, silicon carbide, and graphite

    Directory of Open Access Journals (Sweden)

    Kenneth Kanayo Alaneme

    2017-04-01

    Full Text Available The microstructure and mechanical properties of Zn–27Al based composites reinforced with rice husk ash (RHA, silicon carbide (SiC, and graphite (Cg particles have been investigated. The Zn–27Al composites consisting of varied weight ratios of the reinforcing materials were produced using the stir casting process. Hardness test, tensile properties evaluation, fracture toughness determination, and microstructural examination, were used to characterize the composites produced. Results show that the microstructures of the composites are similar, consisting of the dendritic structure of the Zn–27Al alloy matrix with fine dispersion of the reinforcing particles. The hardness of the composites decreased with increase in the weight percent of RHA (and corresponding decrease in SiC weight percent in the reinforcement. The tensile strength and yield strength decreased slightly with increase in the weight ratio of RHA in the composites with a maximum of 8.5% and 9.6% reductions respectively observed for as much as 40% RHA (corresponding to 40% reduction in SiC in the hybrid reinforcement. Although some of the composite compositions containing RHA had slightly higher % elongation values compared with those without RHA, it was generally observed that the % elongation was invariant to the composite RHA content. The fracture toughness of the composites increases with increase in the weight percent of RHA with as much as a 20% increase obtained for as much as 40% RHA (corresponding to 40% reduction in SiC in the hybrid reinforcement.

  20. EFFECTS OF CU AND SOLUTION HEAT TREATMENT ON THE MICROSTRUCTURE AND HARDNESS OF IN-SITU ALUMINIUM MATRIX COMPOSITE CONTAINING AL4SR PHASE

    Directory of Open Access Journals (Sweden)

    K. Tavighi

    2014-12-01

    Full Text Available This study was undertaken to investigate the effects of Cu and solution heat treatment on the microstructure and hardness of cast Al-Al4Sr metal matrix composite. Different amounts of Cu (0.3, 0.5, 1, 3 and 5 wt.% were added to the composite. Specimens were heat treated at 500 °C for 4 hours followed by water quenching. Microstructural studies were assessed by the use of optical microscope, scanning electron microscope (SEM and x-ray diffractometry (XRD. The results showed that addition of 5 wt.% Cu reduces the length of large needle-like Al4Sr phase and refines the microstructure. In addition, the presence of Cu-intermetallics increases hardness of the composite. Cu mainly forms θ phase which segregates at the grain boundaries. Heat treatment partially dissolves Cu-intermetallics and homogenizes the distribution of θ phase in the matrix.

  1. Karakteristik Kimia dan Mikrostruktur Otot Longissimus Dorsi dan Biceps Femoris dari Sapi Glonggong (Chemical Characteristics and Microstructure of Longissimus Dorsi and Biceps Femoris Muscle of Glonggong Beef Cattle

    Directory of Open Access Journals (Sweden)

    Amrih Prasetyo

    2012-02-01

    Full Text Available The study was conducted to evaluate chemical and microstructure characteristics of glonggong (excessive drink meat compared with the normal meat. The meat samples were taken from Boyolali Regency, came from five glonggong male Ongole grade cattle, and from five normal cattle with the average life weight of 250–300 kg. The chemical data were analyzed by using analysis of variance of 2x2 factorial patterns. The microstructure characteristics were also analyzed descriptively. The water content of glonggong meat was higher compared with that of normal meat on BF and LD muscle, average water content was 80.64% and 80.14% vs 78.60% and 74.57%, respectively. The protein contents of BF (15.98% and LD (16.17% was lower than the protein contents normal meat of BF (21.08% and LD (21.07%, respectively. The Result of statistical analyzed shows significant pengglonggongan of cattle before slaughtered (P<0.05 to meat fat value at every muscle. The meat lactic acid value of glonggong meat of LD muscle was lower than that of normal meat of LD muscle (2815.891 vs 6827.77 ppm. There was a damage of glonggong meat microstructure of LD, BF muscle and also of liver organ. In conclusion, glonggong meat had a lower chemical characteristics compared with the normal meat. (Key words: Chemical, Microstructure, Meat, Glonggong

  2. CHEMICAL COMPOSITION AND SENSORY EVALUATION OF PLUM FRUITS

    Directory of Open Access Journals (Sweden)

    Valentina BOZHKOVA

    2015-08-01

    Full Text Available Plum fruits (Prunus domestica L. have long been known as food for people since ancient times. They are consumed fresh, dried or processed. The increasing consumers’ demand for quality of fruit is a relevant reason to present information about the differences in the chemical composition and the sensory characteristics between the widely spread and newly studied plum cultivars. The present study was carried out in the period 2009 - 2012 at the Fruit-Growing Institute – Plovdiv, Bulgaria on 12 plum cultivars. The results of chemical composition analysis showed that the fruits of ‘Jojo’, ‘Topking’, ‘Topfive’ and ‘Mirabelle de Nancy’ have a total soluble solid above 20 0Brix. The highest sugar content was found in the fruits of ‘Jojo’. Fruits of ‘Pacific’ have the highest titratable acids content (1.28% compared to the other cultivars. The highest vitamin C content (11.92 mg/100 g was determined in the fruits of ‘Stanley’ cultivar. According to the sensory data, fruits of the cultivars ‘Bellamira’, ‘President’ and ‘Tuleu Timpuriu’ were grouped as the most delicious fruits and were regarded as suitable for fresh consumption. The general sensory evaluation showed that the fruits of ‘Bellamira’, ‘Haganta’, ‘President’ and ‘Tuleu Timpuriu’ are excellent in quality and they could be recommended to consumers and traders.

  3. Chemical Composition of Sea Buckthorn Leaves, Branches and Bark

    Directory of Open Access Journals (Sweden)

    Gradt Ina

    2017-06-01

    Full Text Available Sea buckthorn leaves and branches presently create waste-/by-products of harvesting after pruning the plants. It is already known that sea buckthorn berries are important for their chemical composition and based on this occupy a wide field in nutrition. We raised the idea that sea buckthorn leaves, branches, and especially the bark, have also an extraordinary chemical composition like the berries. The aim of this study was to describe these by-products. For this purpose, detailed full analyses of corresponding samples from Russia (seven varieties and Germany (four varieties were performed. Especially the dry mass, fat content, proteins, carbohydrates, starch content, and crude fiber were investigated to obtain an overview. Minor components like total phenol content, metals, and water- and fat-soluble vitamins were also studied. All analytical parameters were based on an official collection of analysis methods (German ASU - amtliche Sammlung von Untersuchungsverfahren. The results of the full analysis of leaves and branches show some interesting aspects about the differences between male and female plants. Furthermore, we observed differences between Russian and German sea buckthorn varieties. Investigation of minor components showed that vitamins were present in very low amount (< 0.1 %.

  4. Methods of chemical and phase composition analysis of gallstones

    Science.gov (United States)

    Suvorova, E. I.; Pantushev, V. V.; Voloshin, A. E.

    2017-11-01

    This review presents the instrumental methods used for chemical and phase composition investigation of gallstones. A great body of data has been collected in the literature on the presence of elements and their concentrations, obtained by fluorescence microscopy, X-ray fluorescence spectroscopy, neutron activation analysis, proton (particle) induced X-ray emission, atomic absorption spectroscopy, high-resolution gamma-ray spectrometry, electron paramagnetic resonance. Structural methods—powder X-ray diffraction, infrared spectroscopy, Raman spectroscopy—provide information about organic and inorganic phases in gallstones. Stone morphology was studied at the macrolevel with optical microscopy. Results obtained by analytical scanning and transmission electron microscopy with X-ray energy dispersive spectrometry are discussed. The chemical composition and structure of gallstones determine the strategy of removing stone from the body and treatment of patients: surgery or dissolution in the body. Therefore one chapter of the review describes the potential of dissolution methods. Early diagnosis and appropriate treatment of the disease depend on the development of clinical methods for in vivo investigation, which gave grounds to present the main characteristics and potential of ultrasonography (ultrasound scanning), magnetic resonance imaging, and X-ray computed tomography.

  5. Chemical composition and larvicidal activity of Rollinia leptopetala (Annonaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Feitosa, Edinilza M.A.; Arriaga, Angela M.C.; Lemos, Telma L.G.; Oliveira, M. Conceicao F. de; Vasnconcelos, Jackson Nunes e; Lima, Jefferson Q.; Malcher, Grazielle T. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Quimica Organica e Inorganica]. E-mail: angelamcarriaga@yahoo.com.br; Santiago, Gilvandete M.P. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Farmacia; Nascimento, Ronaldo F. do [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Quimica Analitica e Fisico-Quimica; Braz-Filho, Raimundo [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacases, RJ (Brazil). Setor de Quimica de Produtos Naturais. Lab. de Ciencias Quimicas

    2009-07-01

    The aim of present study was to describe the chemical composition of the essential oils from the leaf and stem of Rollinia leptopetala R. E. Fries (Annonaceae) and to evaluate the larvicidal activities of these essential oils, of the methanol extract from roots of this plant and of the oxoaporphine alkaloid, liriodenine (1) against the third-instar of Aedes aegypti larvae. The methanol extract from the roots showed larvicidal activity with LC{sub 50} 64.6 {+-} 1.5 ppm. Higher activity was observed for the isolated alkaloid liriodenine (1), LC{sub 50} 3.6 {+-} 0.4 ppm. The essential oils from the leaves and stems, also exhibited larvicidal activity with LC{sub 50} 104.7 {+-} 0.2 and 34.7 {+-} 0.3 ppm, respectively. These results suggest R. leptopetala as a source of natural larvicidal compounds. This is the first report about the chemical composition and larvicidal activity of the leaf and stem essential oils of R. leptopetala. (author)

  6. Microstructure and Composition of Full Fat Cheddar Cheese Made with Ultrafiltered Milk Retentate

    Science.gov (United States)

    Ong, Lydia; Dagastine, Raymond R.; Kentish, Sandra E.; Gras, Sally L.

    2013-01-01

    Milk protein is often standardised prior to cheese-making using low concentration factor ultrafiltration retentate (LCUFR) but the effect of LCUFR addition on the microstructure of full fat gel, curd and Cheddar cheese is not known. In this work, Cheddar cheeses were made from cheese-milk with or without LCUFR addition using a protein concentration of 3.7%–5.8% w/w. The fat lost to sweet whey was higher in cheese made from cheese-milk without LCUFR or from cheese-milk with 5.8% w/w protein. At 5.8% w/w protein concentration, the porosity of the gel increased significantly and the fat globules within the gel and curd tended to pool together, which possibly contributed to the higher fat loss in the sweet whey. The microstructure of cheese from cheese-milk with a higher protein concentration was more compact, consistent with the increased hardness, although the cohesiveness was lower. These results highlight the potential use of LCUFR for the standardization of protein concentration in cheese-milk to 4%–5% w/w (equivalent to a casein to total protein ratio of 77%–79% w/w) to increase yield. Beyond this concentration, significant changes in the gel microstructure, cheese texture and fat loss were observed. PMID:28239117

  7. Microstructure and Composition of Full Fat Cheddar Cheese Made with Ultrafiltered Milk Retentate

    Directory of Open Access Journals (Sweden)

    Lydia Ong

    2013-07-01

    Full Text Available Milk protein is often standardised prior to cheese-making using low concentration factor ultrafiltration retentate (LCUFR but the effect of LCUFR addition on the microstructure of full fat gel, curd and Cheddar cheese is not known. In this work, Cheddar cheeses were made from cheese-milk with or without LCUFR addition using a protein concentration of 3.7%–5.8% w/w. The fat lost to sweet whey was higher in cheese made from cheese-milk without LCUFR or from cheese-milk with 5.8% w/w protein. At 5.8% w/w protein concentration, the porosity of the gel increased significantly and the fat globules within the gel and curd tended to pool together, which possibly contributed to the higher fat loss in the sweet whey. The microstructure of cheese from cheese-milk with a higher protein concentration was more compact, consistent with the increased hardness, although the cohesiveness was lower. These results highlight the potential use of LCUFR for the standardization of protein concentration in cheese-milk to 4%–5% w/w (equivalent to a casein to total protein ratio of 77%–79% w/w to increase yield. Beyond this concentration, significant changes in the gel microstructure, cheese texture and fat loss were observed.

  8. Galactic Archaeology: The Chemical Composition of a Fossil Stellar Stream

    Science.gov (United States)

    Ivans, I. I.

    2001-12-01

    Mounting evidence suggests that the Milky Way may have formed by an ``assembly'' process. Star formation and chemical enrichment possibly took place in proto-galactic fragments (subsystems possibly resembling small irregular galaxies) prior to and during their assembly into the Galaxy. Clear evidence of an ancient galactic merger has been uncovered in the local solar neighbourhood (in a statistically significant clumping of stars in angular momentum phase space, along with an additional trail of stars). These stars, possibly the debris originating from the accretion of a dwarf galaxy system, could have experienced an entirely different chemical history from those born within the Milky Way. Equally interesting is the prospect of discovering that the smaller and less massive dwarf galaxy or proto-galactic fragment could have produced abundance patterns indistinguishable from those of ``normal'' halo field stars. I have employed high resolution stellar spectra to analyze the abundances of important elements which are required (i) to help unravel the nucleosynthetic history of these stars and (ii) that could set further constraints on the evolution of low-mass dwarf galaxies as they existed at the time of the merger. At this meeting, I will report initial chemical composition results which were derived in order to infer the mass function and star formation history of the merger object, as well as to test the ``universality'' of the heavy element r-process production mechanism.

  9. Dynamic competitive adsorption of bone-related proteins on calcium phosphate ceramic particles with different phase composition and microstructure.

    Science.gov (United States)

    Wang, Jing; Zhang, Huijie; Zhu, Xiangdong; Fan, Hongsong; Fan, Yujiang; Zhang, Xingdong

    2013-08-01

    The biocompatibility and bioactivity of biomaterials used for hard tissue repair are closely related to their adsorption capacities for bone-related proteins. In the present study, three types of calcium phosphate (CaP) ceramic particles with different phase composition or microstructure were fabricated, and their protein adsorption abilities were investigated by a self-made device under the simulated dynamic physiological circumstance. The results of X-ray diffraction, field emission scanning electron microscopy, mercury penetration test, and nitrogen sorption test showed that the irregular hydroxyapatite (HA) ceramic particles obtained by conventional drying and sintering (named as HA-C) had fewer micropores and lower specific surface area (SSA) than did the spherical HA or biphasic calcium phosphate (BCP) ceramic particles made by spray drying and sintering (named as HA-S and BCP-S, respectively). The dynamic protein adsorption study proved that both the phase composition and microstructure of CaP ceramic particles affected their adsorption capacities for those bone-related proteins. The spherical HA-S and BCP-S particles with abundant micropores and high SSA showed higher adsorption of serum proteins, including fibronectin and vitronectin, than the irregular HA-C did. On the other hand, in spite of the relatively high concentration of bovine serum albumin (BSA) in the binary bone morphogenetic protein 2 (BMP-2)/BSA solution, BMP-2 adsorption on the three CaP ceramic particles increased with the increase in its initial concentration. Similarly, HA-S and BCP-S particles had a larger amount of the adsorbed BMP-2 per gram solid than HA-C did. Therefore, it could be believed that the difference of various CaP ceramics in the phase composition and microporous structure would affect their binding capacity for those bone-related proteins and thus lead to their difference in osteoinduction. Copyright © 2013 Wiley Periodicals, Inc.

  10. Thermal stability and microstructure of catalytic alumina composite support with lanthanum species

    Energy Technology Data Exchange (ETDEWEB)

    Ozawa, Masakuni, E-mail: ozawa@numse.nagoya-u.ac.jp; Nishio, Yoshitoyo

    2016-09-01

    Highlights: • Thermal stability of La-modified γ-Al{sub 2}O{sub 3} with nanometer-scaled structure. • LaAlO{sub 3} particles are dispersed in the aggregated particles of alumina. • Increase of the surface basicity of La modified alumina using CO{sub 2}-TPD. - Abstract: Lanthanum (La) modified γ-alumina composite was examined for application toward thermostable catalytic support at elevated temperature. La added alumina was prepared through an aqueous process using lanthanum (III) nitrate and then characterized by surface area measurement, X-ray powder diffraction (XRD), differential thermal analysis (DTA), scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoemission spectroscopy (XPS) and surface desorption of CO{sub 2}. It was found that the properties depended on the La content and heat treatment temperatures. The characterization of the surface, structural and chemical properties of La-Al{sub 2}O{sub 3} showed the existence of a strong interaction between the La species and alumina via formation of new phase and modified surface in Al{sub 2}O{sub 3} samples. LaAlO{sub 3} nanoparticle formed among alumina particles by the solid phase reaction of Al{sub 2}O{sub 3} and La{sub 2}O{sub 3}. The increase of the surface basicity of La modified alumina was demonstrated using CO{sub 2} temperature programmed desorption experiments. The controlled surface interaction between La oxide and alumina provide the unique surface and structural properties of the resulting mixed oxides as catalysts and catalytic supports.

  11. Microstructure and electrical conductivity of Al–SiC p composites ...

    Indian Academy of Sciences (India)

    The grain size of the composite materials was observed to be lower than that of the base Al-alloy. The composite materials invariably indicated their lower electrical conductivity compared to that of the monolithic Al-alloy. The electrical conductivity of composites decreased with increase in the volume fraction and decrease in ...

  12. Effect of reinforcement of AL-6063 with SiC on mechanical behavior and microstructure of metal matrix composites

    Directory of Open Access Journals (Sweden)

    M. K. Aravindan

    2014-03-01

    Full Text Available A phrase heard often in recent years, advanced composite materials like Al/SiC metal matrix composite is gradually becoming very important materials in auto and aerospace industries due to their superior properties. The present study examines the mechanical properties of aluminum (Al-6063/SiC Silicon carbide reinforced particles metal-matrix composites (MMCs by varying weight fractions of SiC. For this (Al-6063/SiC reinforced particles MMCs are fabricated by stir casting method at air atmosphere . The MMCs are prepared in the form of bars with varying the reinforced particles by weight fraction ranging from 2 %, 4 %, 6 %, 8 % and 10 %. The reinforced particles size of SiC is varying between 25-40 microns. The microstructure study shows that the distribution of particles becomes better with increasing weight fraction of SiC. The Mechanical properties like, Ultimate tensile strength (MPa, % Elongation, Hardness (HRB, Yield Strength (N.m are investigated on prepared specimens of MMCs. It was observed that the hardness of the composite is increased gradually from 2-6 % and drastically from 8-10%. The tensile strength and ultimate break load are increased with rising of reinforced weight fraction and the improvement varies between 15.8- 27 % and 2-15 % respectively.

  13. The effect of different chemical compositions caused by the variation of deposition potential on properties of Ni-Co films

    Energy Technology Data Exchange (ETDEWEB)

    Karpuz, Ali, E-mail: alikarpuz@bau.edu.tr [Physics Department, Science and Literature Faculty, Balikesir University, Balikesir (Turkey); Kockar, Hakan [Physics Department, Science and Literature Faculty, Balikesir University, Balikesir (Turkey); Alper, Mursel [Physics Department, Science and Literature Faculty, Uludag University, Bursa (Turkey)

    2011-02-01

    The magnetic and microstructural properties of Ni-Co films electrodeposited at different cathode potentials were investigated. The compositional analysis revealed that the Ni content increases from 13 at.% to 44 at.% in the films with increasing deposition potential. Magnetic measurements showed that the saturation magnetization, M{sub s} of the films decreased with increase of Ni content as the deposition potential increased. M{sub s} values changed between 1160 emu/cm{sup 3} and 841 emu/cm{sup 3}. The X-ray diffraction revealed that the crystalline structure of the films is a mixture of the predominant face-centered cubic (fcc) and hexagonal closed packed. However, the mixture phase turns to the fcc because of increasing Ni content up to 44 at.% at the highest (-1.9 V) potential by enhancing the intensity of reflections from the fcc phase. The changes observed in the magnetic and microstructural properties were ascribed to the changes observed in the chemical composition caused by the applied different deposition potentials.

  14. Calculation of complex chemical equilibrium compositions of composite rocket propellants combustion products

    Directory of Open Access Journals (Sweden)

    NIKOLA KILIBARDA

    2000-11-01

    Full Text Available An adequate method for calculating chemical equilibrium in a predominantly gaseous, multi-component reactive mixture was investigated and successfully applied. This method involves the stated equilibrium reaction scheme, including, first, the formation of chemical species, of which concentrations prevail in the mixture, then the formation of gaseous atomic species by dissociation of previous ones, and, finally, the formation of complex chemical species from the atomic species. A computer program, which permits calculations of equilibrium compositions by the iteration procedure, has been developed. The results of calculations have been compared with data obtained by the programs OPHELIE, MICROPEP, and the program SPP, as documented in the NASA-Lewis Code, which is presently the world-wide standard. All comparisons gave satisfactory agreement.

  15. Prebiotic Potential and Chemical Composition of Seven Culinary Spice Extracts

    Science.gov (United States)

    Lu, Qing‐Yi; Summanen, Paula H.; Lee, Ru‐Po; Huang, Jianjun; Henning, Susanne M.; Heber, David; Finegold, Sydney M.

    2017-01-01

    Abstract The objective of this study was to investigate prebiotic potential, chemical composition, and antioxidant capacity of spice extracts. Seven culinary spices including black pepper, cayenne pepper, cinnamon, ginger, Mediterranean oregano, rosemary, and turmeric were extracted with boiling water. Major chemical constituents were characterized by RP‐HPLC‐DAD method and antioxidant capacity was determined by measuring colorimetrically the extent to scavenge ABTS radical cations. Effects of spice extracts on the viability of 88 anaerobic and facultative isolates from intestinal microbiota were determined by using Brucella agar plates containing serial dilutions of extracts. A total of 14 phenolic compounds, a piperine, cinnamic acid, and cinnamaldehyde were identified and quantitated. Spice extracts exhibited high antioxidant capacity that correlated with the total amount of major chemicals. All spice extracts, with the exception of turmeric, enhanced the growth of Bifidobacterium spp. and Lactobacillus spp. All spices exhibited inhibitory activity against selected Ruminococcus species. Cinnamon, oregano, and rosemary were active against selected Fusobacterium strains and cinnamon, rosemary, and turmeric were active against selected Clostridium spp. Some spices displayed prebiotic‐like activity by promoting the growth of beneficial bacteria and suppressing the growth of pathogenic bacteria, suggesting their potential role in the regulation of intestinal microbiota and the enhancement of gastrointestinal health. The identification and quantification of spice‐specific phytochemicals provided insight into the potential influence of these chemicals on the gut microbial communities and activities. Future research on the connections between spice‐induced changes in gut microbiota and host metabolism and disease preventive effect in animal models and humans is needed. PMID:28678344

  16. Prebiotic Potential and Chemical Composition of Seven Culinary Spice Extracts.

    Science.gov (United States)

    Lu, Qing-Yi; Summanen, Paula H; Lee, Ru-Po; Huang, Jianjun; Henning, Susanne M; Heber, David; Finegold, Sydney M; Li, Zhaoping

    2017-08-01

    The objective of this study was to investigate prebiotic potential, chemical composition, and antioxidant capacity of spice extracts. Seven culinary spices including black pepper, cayenne pepper, cinnamon, ginger, Mediterranean oregano, rosemary, and turmeric were extracted with boiling water. Major chemical constituents were characterized by RP-HPLC-DAD method and antioxidant capacity was determined by measuring colorimetrically the extent to scavenge ABTS radical cations. Effects of spice extracts on the viability of 88 anaerobic and facultative isolates from intestinal microbiota were determined by using Brucella agar plates containing serial dilutions of extracts. A total of 14 phenolic compounds, a piperine, cinnamic acid, and cinnamaldehyde were identified and quantitated. Spice extracts exhibited high antioxidant capacity that correlated with the total amount of major chemicals. All spice extracts, with the exception of turmeric, enhanced the growth of Bifidobacterium spp. and Lactobacillus spp. All spices exhibited inhibitory activity against selected Ruminococcus species. Cinnamon, oregano, and rosemary were active against selected Fusobacterium strains and cinnamon, rosemary, and turmeric were active against selected Clostridium spp. Some spices displayed prebiotic-like activity by promoting the growth of beneficial bacteria and suppressing the growth of pathogenic bacteria, suggesting their potential role in the regulation of intestinal microbiota and the enhancement of gastrointestinal health. The identification and quantification of spice-specific phytochemicals provided insight into the potential influence of these chemicals on the gut microbial communities and activities. Future research on the connections between spice-induced changes in gut microbiota and host metabolism and disease preventive effect in animal models and humans is needed. © 2017 The Authors. Journal of Food Science published by Wiley Periodicals, Inc. on behalf of Institute of

  17. Effect of chemical composition of sheep’s milk on the chemical composition of Livno and Travnik cheese

    Directory of Open Access Journals (Sweden)

    Amina Hrković

    2011-06-01

    Full Text Available Bosnia and Herzegovina has a centuries-old tradition in the family dairy products, among which 2-3 types of cheeses dominate. Well known dairy products in BiH are indigenous Livno and Travnik cheese, a group of cheeses produced from thermally untreated raw sheep milk. The aim of this study was assessing the effects of certain parameters on the chemical composition of the milk composition of indigenous cheeses - Livno and Travnik. Two manufacturers within two different locations (Livno and Travnik during summer grazing of sheep, were selected for this research. The study included 117sheep (Livno 57 sheep, Travnik 60 sheep. The cheese milk was used for determination of fat, protein and lactose content. Six samples were taken from obtained cheeses: 3 samples of Livno and 3samples of Travnik cheese, which means one for each sampling period. In cheese dry matter content, water, fat, fat in dry matter and acidity (pH were determined, and then correlation between the constituents of milk and cheese ingredients content was set. The most common causes of such phenomenon is non-standard production, storage and ripening. On Travnik area, the content of fat and milk protein varied according to sampling period, which can be attributed to the already mentioned diet and stage of lactation. At the same time the protein content decreased mainly by the end of lactating period. Lactose content has proven to be the most stable parameter of milk. In both investigated cheese samples slightly higher water content was found compared to normal values for these two local cheese, while the proportion of fat and dry matter varied within the sampling period. Variation of certain parameters of the chemical composition of investigated samples of Livno and Travnik cheese, as well as their correlation with parameters of milk is primarily a consequence of changing the chemical composition of milk as the basic raw materials and/or significant variations in technology that could

  18. Influence of buttermilk powder or buttermilk addition on phospholipid content, chemical and bio-chemical composition and bacterial viability in Cheddar style-cheese.

    Science.gov (United States)

    Hickey, C D; Diehl, B W K; Nuzzo, M; Millqvist-Feurby, A; Wilkinson, M G; Sheehan, J J

    2017-12-01

    The effect of buttermilk powder addition post-curd formation or buttermilk addition to cheese milk on total and individual phospholipid content, chemical composition, enzyme activity, microbial populations and microstructure within Cheddar-style cheese was investigated. Buttermilk or buttermilk powder addition resulted in significant increases in total phospholipid content and their distribution throughout the cheese matrix. Addition of 10% buttermilk powder resulted in higher phospholipid content, moisture, pH and salt in moisture levels, and lower fat, fat in dry matter, L. helveticus and non-starter bacteria levels in cheeses. Buttermilk powder inclusion resulted in lower pH4.6/Soluble Nitrogen (SN) levels and significantly lower free amino acid levels in 10% buttermilk powder cheeses. Buttermilk addition provided a more porous cheese microstructure with greater fat globule coalescence and increased free fat pools, while also increasing moisture and decreasing protein, fat and pH levels. Addition of buttermilk in liquid or powdered form offers potential for new cheeses with associated health benefits. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Microstructure Evolution and Mechanical Response of Nanolaminate Composites Irradiated with Helium at Elevated Temperatures

    Science.gov (United States)

    Li, Nan; Demkowicz, Michael J.; Mara, Nathan A.

    2017-11-01

    We summarize recent work on helium (He) interaction with various heterophase boundaries under high temperature irradiation. We categorize the ion-affected material beneath the He-implanted surface into three regions of depth, based on the He/vacancy ratio. The differing defect structures in these three regions lead to the distinct temperature sensitivity of He-induced microstructure evolution. The effect of He bubbles or voids on material mechanical performance is explored. Overall design guidelines for developing materials where He-induced damage can be mitigated in materials are discussed.

  20. Fatigue Life and Microstructure after Multiple Remelting of A359 Matrix Composites Reinforced with SiC Particles

    Directory of Open Access Journals (Sweden)

    Klasik A.

    2016-12-01

    Full Text Available The article presents the results of fatigue life tests and microstructure examinations of A359 alloy matrix composites (F3S.10S and F3S.30S containing 10 and 30wt% of SiC particles, subjected to multiple remelting by conventional gravity casting. Mechanical characteristics were determined in a modified low cycle fatigue (MLCF test, enabling rapid estimation of fatigue life and other mechanical parameters in practice of any material. Qualitative and quantitative metallographic examinations were also carried out. The quantitative evaluation of microstructure was performed by computer image analysis. A set of geometrical parameters of the reinforcing particles, pores and eutectic precipitates present in the metal matrix was determined. The relationships between the mechanical parameters, structural characteristics and the number of remelting operations were presented. It was found that up to the fourth remelting, the mechanical characteristics, including fatigue life, are slightly deteriorated but decrease gradually in the subsequent operations of remelting. The observed effect is mainly due to the shrinkage porosity occurring as a result of gravity casting. To eliminate this defect, the use of squeeze casting process was recommended. It has also been shown that multiple remelting can be an easy and economically well-founded alternative to other more expensive recycling methods.

  1. Chemical and microstructural characterizations of plasma polymer films by time-of-flight secondary ion mass spectrometry and principal component analysis

    Science.gov (United States)

    Cossement, Damien; Renaux, Fabian; Thiry, Damien; Ligot, Sylvie; Francq, Rémy; Snyders, Rony

    2015-11-01

    It is accepted that the macroscopic properties of functional plasma polymer films (PPF) are defined by their functional density and their crosslinking degree (χ) which are quantities that most of the time behave in opposite trends. If the PPF chemistry is relatively easy to evaluate, it is much more challenging for χ. This paper reviews the recent work developed in our group on the application of principal component analysis (PCA) to time-of-flight secondary ion mass spectrometric (ToF-SIMS) positive spectra data in order to extract the relative cross-linking degree (χ) of PPF. NH2-, COOR- and SH-containing PPF synthesized in our group by plasma enhanced chemical vapor deposition (PECVD) varying the applied radiofrequency power (PRF), have been used as model surfaces. For the three plasma polymer families, the scores of the first computed principal component (PC1) highlighted significant differences in the chemical composition supported by X-Ray photoelectron spectroscopy (XPS) data. The most important fragments contributing to PC1 (loadings > 90%) were used to compute an average C/H ratio index for samples synthesized at low and high PRF. This ratio being an evaluation of χ, these data, accordingly to the literature, indicates an increase of χ with PRF excepted for the SH-PPF. These results have been cross-checked by the evaluation of functional properties of the plasma polymers namely a linear correlation with the stability of NH2-PPF in ethanol and a correlation with the mechanical properties of the COOR-PPF. For the SH-PPF family, the peculiar evolution of χ is supported by the understanding of the growth mechanism of the PPF from plasma diagnostic. The whole set of data clearly demonstrates the potential of the PCA method for extracting information on the microstructure of plasma polymers from ToF-SIMS measurements.

  2. Greener synthesis of electrospun collagen/hydroxyapatite composite fibers with an excellent microstructure for bone tissue engineering

    Science.gov (United States)

    Zhou, Yuanyuan; Yao, Hongchang; Wang, Jianshe; Wang, Dalu; Liu, Qian; Li, Zhongjun

    2015-01-01

    In bone tissue engineering, collagen/hydroxyapatite (HAP) fibrous composite obtained via electrospinning method has been demonstrated to support the cells’ adhesion and bone regeneration. However, electrospinning of natural collagen often requires the use of cytotoxic organic solvents, and the HAP crystals were usually aggregated and randomly distributed within a fibrous matrix of collagen, limiting their clinical potential. Here, an effective and greener method for the preparation of collagen/HAP composite fibers was developed for the first time, and this green product not only had 40 times higher mechanical properties than that previously reported, but also had an excellent microstructure similar to that of natural bone. By dissolving type I collagen in environmentally friendly phosphate buffered saline/ethanol solution instead of the frequently-used cytotoxic organic solvents, followed with the key step of desalination, co-electrospinning the collagen solution with the HAP sol, generates a collagen/HAP composite with a uniform and continuous fibrous morphology. Interestingly, the nano-HAP needles were found to preferentially orient along the longitudinal direction of the collagen fibers, which mimicked the nanostructure of natural bones. Based on the characterization of the related products, the formation mechanism for this novel phenomenon was proposed. After cross-linking with 1-ethyl-3-(3-dimethyl-aminopropyl)-1-carbodiimide hydrochloride/N-hydroxysuccinimide, the obtained composite exhibited a significant enhancement in mechanical properties. In addition, the biocompatibility of the obtained composite fibers was evaluated by in vitro culture of the human myeloma cells (U2-OS). Taken together, the process outlined herein provides an effective, non-toxic approach for the fabrication of collagen/HAP composite nanofibers that could be good candidates for bone tissue engineering. PMID:25995630

  3. Thymus vulgaris essential oil: chemical composition and antimicrobial activity.

    Science.gov (United States)

    Borugă, O; Jianu, C; Mişcă, C; Goleţ, I; Gruia, A T; Horhat, F G

    2014-01-01

    The study was designed to determine the chemical composition and antimicrobial properties of the essential oil of Thymus vulgaris cultivated in Romania. The essential oil was isolated in a yield of 1.25% by steam distillation from the aerial part of the plant and subsequently analyzed by GC-MS. The major components were p-cymene (8.41%), γ-terpinene (30.90%) and thymol (47.59%). Its antimicrobial activity was evaluated on 7 common food-related bacteria and fungus by using the disk diffusion method. The results demonstrate that the Thymus vulgaris essential oil tested possesses strong antimicrobial properties, and may in the future represent a new source of natural antiseptics with applications in the pharmaceutical and food industry.

  4. Martensitic zirconium alloys: Influence of chemical composition on creep characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Pahutova, M.; Kucharova, K.; Cadek, J. (Ceskoslovenska Akademie Ved, Brno. Ustav Fyzikalni Metalurgie)

    1985-03-01

    Results of an extensive investigation of creep in martensitic zirconium alloys are summarized with the aim to show the influence of chemical composition on the main creep characteristics - the steady state creep rate and the time and strain to fracture. The activation energy of creep and the parameter of stress sensitivity of steady state creep rate are determined and possible creep mechanisms as well as creep strenghtening mechanisms are discussed. The time to fracture tsub(f) is related to the steady state creep rate epsilonsub(s) through the Monkman-Grant relation as modified by Dobes and Milicka. The creep fracture shows features different from those of ''classical'' intergranular cavitation creep fracture. Most probably the creep fracture is controlled by the same deformation mechanism as the creep.

  5. Influence of Chemical Composition on Porosity in Aluminium Alloys

    Directory of Open Access Journals (Sweden)

    Kucharčík L.

    2014-06-01

    Full Text Available Porosity is one of the major defects in aluminum castings, which results is a decrease of a mechanical properties. Porosity in aluminum alloys is caused by solidification shrinkage and gas segregation. The final amount of porosity in aluminium castings is mostly influenced by several factors, as amount of hydrogen in molten aluminium alloy, cooling rate, melt temperature, mold material, or solidification interval. This article deals with effect of chemical composition on porosity in Al-Si aluminum alloys. For experiment was used Pure aluminum and four alloys: AlSi6Cu4, AlSi7Mg0, 3, AlSi9Cu1, AlSi10MgCu1.

  6. Antimicrobial activity of Iranian propolis and its chemical composition

    Directory of Open Access Journals (Sweden)

    Yaghoubi M.J.

    2007-04-01

    Full Text Available The objective of this study was to investigate the antimicrobial activity of ethanol extract of Iranian propolis on some microorganisms using disc diffusion method. The chemical composition of the propolis was also investigated using thin layer chromatography and spectrophotometric methods. Ethanol extract of propolis showed activity only against Gram-positives and fungi, whereas no activity was observed against Gram-negatives. Thin layer chromatography screening revealed the presence of pinocembrine, caffeic acid, kaempferol, phenethyl caffeate, chrysin, and galangin in Iranian propolis. The total flavonoid and phenolic contents were 7.3% and 36%, respectively, which suggests that the strong antimicrobial activity of Iranian propolis may be due to high levels of phenolic and flavonoid compounds.

  7. Chemical composition and mosquito larvicidal activities of Salvia essential oils.

    Science.gov (United States)

    Mathew, Jija; Thoppil, John E

    2011-05-01

    Vector control is facing a threat due to the emergence of resistance to synthetic insecticides. In this context, essential oils have received much attention as potentially useful bioactive compounds against insects. Therefore, our present study aimed to evaluate the efficacy of essential oils from the aerial parts of Salvia elegans Vahl, Salvia dorisiana Standl., Salvia splendens Sello ex J.A. Schult Blue Ribbon, and S. splendens Sello ex J.A. Schult Scarlet Sage Red (Lamiaceae) against the fourth instar larvae of Aedes albopictus Skuse (Diptera: Culicidae). The mosquito larvicidal activities of the essential oils and chemical composition of four taxa of Salvia are investigated in this article for the first time. Chemical compositions of essential oils obtained from four taxa of Salvia were analyzed by gas chromatography-mass spectrometry (GC-MS), GC-FID, and the effects of essential oils on fourth instar larvae of A. albopictus were investigated. The main components identified from each Salvia essential oils were as follows: spathulenol (38.73%) and caryophyllene (10.32%) from S. elegans; ledol (45.8%) and 4,4'-[(p-phenylene)diisopropylidene]diphenol (17.38%) from S. dorisiana; β-cubebene (22.9%), and caryophyllene (12.99%) from S. splendens Blue Ribbon; phytol (41.46%) and cyclooctasulfur (24.88%) from S. splendens Scarlet Sage Red. The essential oils of S. elegans and S. splendens Blue Ribbon had excellent inhibitory larvicidal effect against A. albopictus larvae, and their LC(50) values in 24 h were 46.4 ppm (LC(90) = 121.8 ppm) and 59.2 ppm (LC(90) = 133.0 ppm), respectively. These findings demonstrate that the essential oils of these Salvia species could be considered as the powerful candidates to bring about useful botanicals so as to prevent the resurgence of mosquito vectors.

  8. Microstructural characterization of multiphase chocolate using X-ray microtomography.

    Science.gov (United States)

    Frisullo, Pierangelo; Licciardello, Fabio; Muratore, Giuseppe; Del Nobile, Matteo Alessandro

    2010-09-01

    In this study, X-ray microtomography (μCT) was used for the image analysis of the microstructure of 12 types of Italian aerated chocolate chosen to exhibit variability in terms of cocoa mass content. Appropriate quantitative 3-dimensional parameters describing the microstructure were calculated, for example, the structure thickness (ST), object structure volume ratio (OSVR), and the percentage object volume (POV). Chemical analysis was also performed to correlate the microstructural data to the chemical composition of the samples. Correlation between the μCT parameters acquired for the pore microstructure evaluation and the chemical analysis revealed that the sugar crystals content does not influence the pore structure and content. On the other hand, it revealed that there is a strong correlation between the POV and the sugar content obtained by chemical analysis. The results from this study show that μCT is a suitable technique for the microstructural analysis of confectionary products such as chocolates and not only does it provide an accurate analysis of the pores and microstructure but the data obtained could also be used to aid in the assessment of its composition and consistency with label specifications. X-ray microtomography (μCT) is a noninvasive and nondestructive 3-D imaging technique that has several advantages over other methods, including the ability to image low-moisture materials. Given the enormous success of μCT in medical applications, material science, chemical engineering, geology, and biology, it is not surprising that in recent years much attention has been focused on extending this imaging technique to food science as a useful technique to aid in the study of food microstructure. X-ray microtomography provides in-depth information on the microstructure of the food product being tested; therefore, a better understanding of the physical structure of the product and from an engineering perspective, knowledge about the microstructure of

  9. Electrochemical properties of proton exchange membranes: the role of composition and microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Holdcroft, S.; Beattie, P.D.; Basura, V.I.; Schmeisser, J.; Chuy, C.; Orfino, F.; Ding, J. [Simon Fraser Univ., Burnaby, BC (Canada). Dept. of Chemistry

    2001-06-01

    To measure electrochemical and proton conduction properties of a large variety of different polyelectrolyte membranes that possess a wide array of equivalent weights and water contents, a number of analytical techniques were employed and the results presented in this paper. At the electrocatalyst/polymer electrolyte interface, kinetic and mass transport parameters play an important role in fuel cell operation, the authors used microelectrodes to study the effects of temperature and pressure on the electrochemical reduction of oxygen at platinum/solid polymer electrolyte interfaces in solid polymer electrolytes under controlled humidity. Under conditions of controlled humidity and temperature, proton conductivity was measured transverse and normal to the membrane surface using an alternate current (a.c.) impedance spectroscopy. A wide array of membranes were investigated, including those based on sulfonated polystyrene-block-hydrogenated butadiene, polystyrenesulfonic acid grafted onto ethylenetetrafluoroethylene, sulfonated trifluorostyrene-copolymers, and a novel series of membranes where the internal biphasic morphology is controlled to yield materials with low water and high conductivity and prepared in house. Transmission electron microscopy and small angle X-ray scattering was used for the analysis of the microstructure of selected membranes. Modelling the scattered intensities was used to quantify aspects of the microstructure.

  10. EFFECT OF NICKEL AND COBALT ADDITIONS ON INFILTRATION BEHAVIOR, MICROSTRUCTURE AND HARDNESS OF W-AG COMPOSITES

    Directory of Open Access Journals (Sweden)

    N Parvin

    2014-12-01

    Full Text Available In this research, infiltration behavior of W-Ag composite compacts with Nickel and Cobalt as additives has been investigated. Nickel and Cobalt were added to Tungsten powder by two distinct methods: mixing elementally and reduction of salt solution. The coated Tungsten powders were compacted under controlled pressures to make porous skeleton with 32-37 vol. % porosity. Infiltration process was carried out at 1100 ̊C under a reducing atmosphere for 1h. The effect of additives on infiltration of Ag and density were evaluated by SEM and Archimedes methods. Properties of the specimens were compared following two distinct processes namely: I sintering simultaneously with infiltration process and II sintering prior to infiltration (pre-sintering process. It was found that specimens which were pre-sintered and then infiltrated with molten silver represent higher hardness and finer microstructure than the specimens infiltrated simultaneously with sintering.

  11. Phase Composition and Microstructure of Hot-Pressing Sintered Ti2AlN Metal-Ceramic Bulk Material

    Directory of Open Access Journals (Sweden)

    LIANG Suying

    2017-06-01

    Full Text Available Ti2AlN metal-ceramic bulk material was fabricated by hot-pressing sintering (HPS using TiN, Ti and Al powder in a stoichiometric ratio of 1:1:1.03 after mechanical mixing. XRD, SEM and TEM were employed to investigate the phase composition and microstructures of the products. The results show that the high purity Ti2AlN can be obtained by HPS at 1300 ℃ for 2.5 h. The sintered Ti2AlN presented a hexagonal system layered structure with an anisotropy. Twins are found in the Ti2AlN. There were a few nano-scale TiN particles in the products.

  12. Fabrication and microstructural analysis of UN-U3Si2 composites for accident tolerant fuel applications

    Science.gov (United States)

    Johnson, Kyle D.; Raftery, Alicia M.; Lopes, Denise Adorno; Wallenius, Janne

    2016-08-01

    In this study, U3Si2 was synthesized via the use of arc-melting and mixed with UN powders, which together were sintered using the SPS method. The study revealed a number of interesting conclusions regarding the stability of the system - namely the formation of a probable but as yet unidentified ternary phase coupled with the reduction of the stoichiometry in the nitride phase - as well as some insights into the mechanics of the sintering process itself. By milling the silicide powders and reducing its particle size ratio compared to UN, it was possible to form a high density UN-U3Si2 composite, with desirable microstructural characteristics for accident tolerant fuel applications.

  13. Microstructure, phase composition and corrosion resistance of Ni2O3 coatings produced using laser alloying method

    Science.gov (United States)

    Bartkowska, Aneta; Przestacki, Damian; Chwalczuk, Tadeusz

    2016-12-01

    The paper presents the studies' results of microstructure, microhardness, cohesion, phase composition and the corrosion resistance analysis of C45 steel after laser alloying with nickel oxide (Ni2O3). The aim of the laser alloying was to obtain the surface layer with new properties through covering C45 steel by precoat containing modifying compound, and then remelting this precoat using laser beam. As a result of this process the surface layer consisting of remelted zone and heat affected zone was obtained. In the remelted zone an increased amount of modifying elements was observed. It was also found that the surface layer formed during the laser alloying with Ni2O3 was characterized by good corrosion resistance. This property has changed depending on the thickness of the applied precoat. It was observed that the thickness increase of nickel oxides precoat improves corrosion resistance of produced coatings.

  14. Microstructure Characteristics and Properties of HVOF Sprayed Ni-Based Alloy Nano-h-BN Self-Lubricating Composite Coatings

    Directory of Open Access Journals (Sweden)

    Xiaofeng Zhang

    2015-01-01

    Full Text Available A Ni-based alloy/nano-h-BN self-lubricating composite coating was produced on medium carbon steel by high velocity oxygen fuel (HVOF spraying technique. The powder feedstocks for HVOF spraying were prepared by ball milling and agglomerated the nano-h-BN with Ni-based alloy powders. The microstructure and mechanical properties of coatings have been investigated. With the increasing of h-BN contents, some delaminations appeared gradually in the coatings and a continuous network with h-BN phase embedded formed in the metallic matrix. The average microhardness of the self-lubricating coating was a little lower for the addition of soft solid lubricant. The friction coefficient of coatings is in the ranges of 0.38–0.48 and 0.38–0.52 at ambient temperature and 400°C, respectively. The maximum bonding strength of coatings reached 23.83 MPa.

  15. Microstructure, phase composition and corrosion resistance of Ni2O3 coatings produced using laser alloying method

    Directory of Open Access Journals (Sweden)

    Bartkowska Aneta

    2016-12-01

    Full Text Available The paper presents the studies' results of microstructure, microhardness, cohesion, phase composition and the corrosion resistance analysis of C45 steel after laser alloying with nickel oxide (Ni2O3. The aim of the laser alloying was to obtain the surface layer with new properties through covering C45 steel by precoat containing modifying compound, and then remelting this precoat using laser beam. As a result of this process the surface layer consisting of remelted zone and heat affected zone was obtained. In the remelted zone an increased amount of modifying elements was observed. It was also found that the surface layer formed during the laser alloying with Ni2O3 was characterized by good corrosion resistance. This property has changed depending on the thickness of the applied precoat. It was observed that the thickness increase of nickel oxides precoat improves corrosion resistance of produced coatings.

  16. Effect of Cryogenic Treatment on Microstructure and Micro Hardness of Aluminium (LM25 - SiC Metal Matrix Composite

    Directory of Open Access Journals (Sweden)

    G Elango

    2014-06-01

    Full Text Available The basic aim of this paper is to increase awareness amongst the researchers and to draw their attention towards the present approach to deal with the cryogenic treatment for the nonferrous metals. Cryogenic treated nonferrous metals will exhibit longer wear and more durability. During metal making process, when solidification takes place, some molecules get caught in a random pattern. The molecules do move about at subzero and deep cryogenic treatment slowly. In this experimental study, the effect of cryogenic treatment on microstructure changes and the hardness properties varies for LM25 alloy and LM25-SiC metal matrix composite at -196°C. It is analyzed for different durations. The execution of cryogenic treatment on both alloy and MMCs changed the distribution of

  17. Linking Remotely Sensed Aerosol Types to Their Chemical Composition

    Science.gov (United States)

    Dawson, Kyle William; Kacenelenbogen, Meloe S.; Johnson, Matthew S.; Burton, Sharon P.; Hostetler, Chris A.; Meskhidze, Nicholas

    2016-01-01

    Aerosol types measured during the Ship-Aircraft Bio-Optical Research (SABOR) experiment are related to GEOS-Chem model chemical composition. The application for this procedure to link model chemical components to aerosol type is desirable for understanding aerosol evolution over time. The Mahalanobis distance (DM) statistic is used to cluster model groupings of five chemical components (organic carbon, black carbon, sea salt, dust and sulfate) in a way analogous to the methods used by Burton et al. [2012] and Russell et al. [2014]. First, model-to-measurement evaluation is performed by collocating vertically resolved aerosol extinction from SABOR High Spectral Resolution LiDAR (HSRL) to the GEOS-Chem nested high-resolution data. Comparisons of modeled-to-measured aerosol extinction are shown to be within 35% +/- 14%. Second, the model chemical components are calculation into five variables to calculate the DM and cluster means and covariances for each HSRL-retrieved aerosol type. The layer variables from the model are aerosol optical depth (AOD) ratios of (i) sea salt and (ii) dust to total AOD, mass ratios of (iii) total carbon (i.e. sum of organic and black carbon) to the sum of total carbon and sulfate (iv) organic carbon to black carbon, and (v) the natural log of the aerosol-to-molecular extinction ratio. Third, the layer variables and at most five out of twenty SABOR flights are used to form the pre-specified clusters for calculating DM and to assign an aerosol type. After determining the pre-specified clusters, model aerosol types are produced for the entire vertically resolved GEOS-Chem nested domain over the United States and the model chemical component distributions relating to each type are recorded. Resulting aerosol types are Dust/Dusty Mix, Maritime, Smoke, Urban and Fresh Smoke (separated into 'dark' and 'light' by a threshold of the organic to black carbon ratio). Model-calculated DM not belonging to a specific type (i.e. not meeting a threshold

  18. Linking remotely sensed aerosol types to their chemical composition

    Science.gov (United States)

    Dawson, K. W.; Kacenelenbogen, M. S.; Johnson, M. S.; Burton, S. P.; Hostetler, C. A.; Meskhidze, N.

    2016-12-01

    Aerosol types measured during the Ship-Aircraft Bio-Optical Research (SABOR) experiment are related to GEOS-Chem model chemical composition. The application for this procedure to link model chemical components to aerosol type is desirable for understanding aerosol evolution over time. The Mahalanobis distance (DM) statistic is used to cluster model groupings of five chemical components (organic carbon, black carbon, sea salt, dust and sulfate) in a way analogous to the methods used by Burton et al. [2012] and Russell et al. [2014]. First, model-to-measurement evaluation is performed by collocating vertically resolved aerosol extinction from SABOR High Spectral Resolution LiDAR (HSRL) to the GEOS-Chem nested high-resolution data. Comparisons of modeled-to-measured aerosol extinction are shown to be within 35% ± 14%. Second, the model chemical components are calculation into five variables to calculate the DM and cluster means and covariances for each HSRL-retrieved aerosol type. The layer variables from the model are aerosol optical depth (AOD) ratios of (i) sea salt and (ii) dust to total AOD, mass ratios of (iii) total carbon (i.e. sum of organic and black carbon) to the sum of total carbon and sulfate (iv) organic carbon to black carbon, and (v) the natural log of the aerosol-to-molecular extinction ratio. Third, the layer variables and at most five out of twenty SABOR flights are used to form the pre-specified clusters for calculating DM and to assign an aerosol type. After determining the pre-specified clusters, model aerosol types are produced for the entire vertically resolved GEOS-Chem nested domain over the United States and the model chemical component distributions relating to each type are recorded. Resulting aerosol types are Dust/Dusty Mix, Maritime, Smoke, Urban and Fresh Smoke (separated into `dark' and `light' by a threshold of the organic to black carbon ratio). Model-calculated DM not belonging to a specific type (i.e. not meeting a threshold

  19. Microstructure and Microsegregation of an Inconel 625 Weld Overlay Produced on Steel Pipes by the Cold Metal Transfer Technique

    National Research Council Canada - National Science Library

    M. Rozmus-Górnikowska; Ł. Cieniek; M. Blicharski; J. Kusiński

    2014-01-01

    The aim of this work was to investigate the development of microstructure and variations in chemical composition in commercial Inconel 625 coatings on a ferritic-pearlitic steel overlaid by the CMT method...

  20. Microstructure and Microsegregation of an Inconel 625 Weld Overlay Produced on Steel Pipes by the Cold Metal Transfer Technique

    OpenAIRE

    Rozmus-Górnikowska M.; Cieniek Ł.; Blicharski M.; Kusiński J.

    2014-01-01

    The aim of this work was to investigate the development of microstructure and variations in chemical composition in commercial Inconel 625 coatings on a ferritic-pearlitic steel overlaid by the CMT method.

  1. Microstructure and Microsegregation of an Inconel 625 Weld Overlay Produced on Steel Pipes by the Cold Metal Transfer Technique

    Directory of Open Access Journals (Sweden)

    Rozmus-Górnikowska M.

    2014-10-01

    Full Text Available The aim of this work was to investigate the development of microstructure and variations in chemical composition in commercial Inconel 625 coatings on a ferritic-pearlitic steel overlaid by the CMT method.

  2. Chemical Composition of Iran's Pistacia atlantica Cold-Pressed Oil

    Directory of Open Access Journals (Sweden)

    M. Saber-Tehrani

    2013-01-01

    Full Text Available The lipid fraction of Pistacia atlantica seeds was extracted for the first time by means of cold-press technique and analyzed for its chemical composition. The fatty acids, sterols, triacylglycerols (TAG, tocopherols, polyphenols, and pigments were identified and their concentrations were determined by means of reversed-phase high-performance liquid chromatography (RP-HPLC and gas chromatography (GC. Because of its high content of unsaturated fatty acids, it might prove to be of value in diets and it may be used as edible cooking or salad oils or for margarine manufacture. Pistacia atlantica seed oil has the unique sterols and tocopherols content providing source of natural antioxidants. The main triacylglycerols were SLL + PLO, SOL + POO, OOLn + PLL, OOO, and SOO. This paper examined the phenolic fraction of Pistacia atlantica seed oil. Moreover, caffeic acid followed by cinnamic acid, pinoresinol, vanillin, p-Coumaric acid, ferulic acid, and o-Coumaric acid was also determined. This paper presents the first investigation of chlorophyll's and carotene's composition in Pistacia atlantica seed oil. Furthermore, pheophytin a was the major component, followed by luteoxanthin, neoxanthin, violaxanthin, lutein, lutein isomers, chlorophyll a, chlorophyll a′, and pheophytin a′ were also determined.

  3. Cosmetics chemical composition characterization by instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Ana Paula; Pereira, Gustavo Jose; Amaral, Angela Maria; Ferreira, Andrea Vidal, E-mail: ana_allves2008@hotmail.co [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2009-07-01

    Brazil is in the third position in the world's cosmetics market. It is an expanding and growing market where new products and manufacturing processes are in a constant and steady expansion. Therefore, it is mandatory that the composition of the products is well known in order to guarantee safety and quality of daily used cosmetics. The Brazilian National Health Surveillance Agency (ANVISA) has issued a resolution, RDC No. 48, March 16, 2006, which defines a 'List of Substances which can not be used in personal hygiene products, cosmetics and perfumes'. In this work, samples of locally manufactured and imported cosmetics (lipsticks, eye shadows, etc.) were analyzed using the Instrumental Neutron Activation Analysis technique. The samples were irradiated in the TRIGA IPR-R1 reactor of the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN), on a 100kW thermal power, with a thermal neutron fluence rate about 8x10{sup 11}ncm{sup -2}s{sup -1}. The analysis has detected the chemical elements Br, Ba, Ga, Na, K, Sc, Fe, Cr, Zn, Sm, W, La, Rb, Cs, Ta, Ge, Co, U, Ti, V, Cl, Al, Mn and Cu. The concentrations of these elements are on a range from 5 to 3000mug.g{sup -1}. Some chemical elements observed in samples (Cl, Br, Cr, U) are included at ANVISA prohibitive list. (author)

  4. Chemical composition of precipitation and its sources in Hangzhou, China.

    Science.gov (United States)

    Xu, Hong; Bi, Xiao-Hui; Feng, Yin-Chang; Lin, Feng-Mei; Jiao, Li; Hong, Sheng-Mao; Liu, Wen-Gao; Zhang, Xiao-Yong

    2011-12-01

    To understand the origin and chemical characteristics of precipitation in Hangzhou, rainwater samples were collected from June 2006 to May 2008. All samples were analyzed for pH, electrical conductivity, and major ions (NH⁴⁺, Ca²⁺, Mg²⁺, Na⁺, K⁺, SO₄²⁻, NO₃⁻, F⁻, and Cl⁻). Acidification of precipitation in Hangzhou was serious with volume-weighted mean pH value of 4.5, while frequency of acid rain was 95%. The calculated SO₄²⁻/NO₃⁻ ratio in Hangzhou precipitation was 2.87, which indicated that the precipitation of Hangzhou belonged to sulfate-based acid rain. The results of acid neutralization analysis showed that not all the acidity in the precipitation of Hangzhou was neutralized by alkaline constituents. The results of sea salt contribution analysis showed that nearly all SO₄²⁻, Ca²⁺, and Mg²⁺ and 33.7% of K⁺ were of non-sea origins, while all Na⁺ and Cl⁻ and 66.3% of K⁺ originated from sea sources. The principal component analysis which was used to analyze the sources of various ions indicated that chemical compositions of precipitation in Hangzhou mainly came from terrestrial sources, factory emissions, fuel wood burning, and marine sources.

  5. Chemical Composition and Hypotensive Effect of Campomanesia xanthocarpa

    Directory of Open Access Journals (Sweden)

    Liane Santariano Sant’Anna

    2017-01-01

    Full Text Available Campomanesia xanthocarpa is known in Brazil as Guabiroba and is popularly used for various diseases, such as inflammatory, renal, and digestive diseases and dyslipidemia. The aim of the study was to analyze the chemical composition and investigate the effects of aqueous extract of C. xanthocarpa on the blood pressure of normotensive rats, analyzing the possible action mechanism using experimental and in silico procedures. The extract was evaluated for total phenolic compounds and total flavonoid content. The chemical components were determined by HPLC analyses. Systolic and diastolic blood pressure and heart rate were measured with extract and drugs administration. The leaves of C. xanthocarpa presented the relevant content of phenolics and flavonoids, and we suggested the presence of chlorogenic acid, gallic acid, quercetin, and theobromine. The acute administration of aqueous extract of C. xanthocarpa has a dose-dependent hypotensive effect in normotensive rats, suggesting that the action mechanism may be mediated through the renin-angiotensin system by AT1 receptor blockade and sympathetic autonomic response. Docking studies showed models that indicated an interaction between chlorogenic acid and quercetin with the AT1 receptor (AT1R active site. The findings of these docking studies suggest the potential of C. xanthocarpa constituents for use as preventive agents for blood pressure.

  6. Chemical Composition and Bioactivity of Essential Oil from Blepharocalyx salicifolius

    Directory of Open Access Journals (Sweden)

    Fabiana Barcelos Furtado

    2018-01-01

    Full Text Available Natural products represent a source of biologically active molecules that have an important role in drug discovery. The aromatic plant Blepharocalyx salicifolius has a diverse chemical constitution but the biological activities of its essential oils have not been thoroughly investigated. The aims of this paper were to evaluate in vitro cytotoxic, antifungal and antibacterial activities of an essential oil from leaves of B. salicifolius and to identify its main chemical constituents. The essential oil was extracted by steam distillation, chemical composition was determined by gas chromatography/mass spectrometry, and biological activities were performed by a microdilution broth method. The yield of essential oil was 0.86% (w/w, and the main constituents identified were bicyclogermacrene (17.50%, globulol (14.13%, viridiflorol (8.83%, γ-eudesmol (7.89% and α-eudesmol (6.88%. The essential oil was cytotoxic against the MDA-MB-231 (46.60 μg·mL−1 breast cancer cell line, being more selective for this cell type compared to the normal breast cell line MCF-10A (314.44 μg·mL−1. Flow cytometry and cytotoxicity results showed that this oil does not act by inducing cell death, but rather by impairment of cellular metabolism specifically of the cancer cells. Furthermore, it presented antifungal activity against Paracoccidioides brasiliensis (156.25 μg·mL−1 but was inactive against other fungi and bacteria. Essential oil from B. salicifolius showed promising biological activities and is therefore a source of molecules to be exploited in medicine or by the pharmaceutical industry.

  7. Chemical Composition and Bioactivity of Essential Oil from Blepharocalyx salicifolius.

    Science.gov (United States)

    Furtado, Fabiana Barcelos; Borges, Bruna Cristina; Teixeira, Thaise Lara; Garces, Hans Garcia; Almeida Junior, Luiz Domingues de; Alves, Fernanda Cristina Bérgamo; Silva, Claudio Vieira da; Fernandes Junior, Ary

    2018-01-04

    Natural products represent a source of biologically active molecules that have an important role in drug discovery. The aromatic plant Blepharocalyx salicifolius has a diverse chemical constitution but the biological activities of its essential oils have not been thoroughly investigated. The aims of this paper were to evaluate in vitro cytotoxic, antifungal and antibacterial activities of an essential oil from leaves of B. salicifolius and to identify its main chemical constituents. The essential oil was extracted by steam distillation, chemical composition was determined by gas chromatography/mass spectrometry, and biological activities were performed by a microdilution broth method. The yield of essential oil was 0.86% (w/w), and the main constituents identified were bicyclogermacrene (17.50%), globulol (14.13%), viridiflorol (8.83%), γ-eudesmol (7.89%) and α-eudesmol (6.88%). The essential oil was cytotoxic against the MDA-MB-231 (46.60 μg·mL-1) breast cancer cell line, being more selective for this cell type compared to the normal breast cell line MCF-10A (314.44 μg·mL-1). Flow cytometry and cytotoxicity results showed that this oil does not act by inducing cell death, but rather by impairment of cellular metabolism specifically of the cancer cells. Furthermore, it presented antifungal activity against Paracoccidioides brasiliensis (156.25 μg·mL-1) but was inactive against other fungi and bacteria. Essential oil from B. salicifolius showed promising biological activities and is therefore a source of molecules to be exploited in medicine or by the pharmaceutical industry.

  8. Development of in-Situ Al-Si/CuAl₂ Metal Matrix Composites: Microstructure, Hardness, and Wear Behavior.

    Science.gov (United States)

    Tash, Mahmoud M; Mahmoud, Essam R I

    2016-06-02

    In the present work, in-situ metal matrix composites were fabricated through squeeze casting. The copper particles were dispersed with different weight percentages (3%, 6%, 10%, and 15%) into Al-12% Si piston alloy. Also, heat treatments were performed at 380 °C and 450 °C for holding times of 6 and 18 h. The microstructures, X-ray diffractometer (XRD) pattern, hardness, and wear characteristics were evaluated. The results showed that these copper particles have reacted with the aluminum under all of the aforementioned processing conditions resulting in the formation of fine copper aluminide intermetallics. Most of the intermetallics were CuAl₂, while AlCu appeared in a small ratio. Additionally, these intermetallics were homogenously distributed within the alloy matrix with up to 6% Cu addition. The amounts of those intermetallics increased after performing heat treatment. Most of these intermetallics were CuAl₂ at 380 °C, while the Cu-rich intermetallics appeared at 450 °C. Increasing the holding time to 18 h, however, led to grain coarsening and resulted in the formation of some cracks. The hardness of the resulting composite materials was improved. The hardness value reached to about 170 HV after heat treating at 380 °C for 8 h. The wear resistance of the resulting composite materials was remarkably improved, especially at lower additions of Cu and at the lower heat treatment temperature.

  9. Microstructure, mechanical properties and texture of an AA6061/AA5754 composite fabricated by cross accumulative roll bonding

    Energy Technology Data Exchange (ETDEWEB)

    Verstraete, K., E-mail: kevin.verstraete@u-psud.fr [Université Paris-Sud, SP2M, ICMMO, UMR CNRS 8182, 91405 Orsay Cedex (France); Helbert, A.L. [Université Paris-Sud, SP2M, ICMMO, UMR CNRS 8182, 91405 Orsay Cedex (France); Brisset, F. [Université Paris-Sud, ICMMO, UMR CNRS 8182, 91405 Orsay Cedex (France); Benoit, A.; Paillard, P. [Institut des Matériaux Jean Rouxel (IMN), UMR 6502, Polytech’Nantes, Nantes Cedex (France); Baudin, T. [Université Paris-Sud, SP2M, ICMMO, UMR CNRS 8182, 91405 Orsay Cedex (France)

    2015-07-29

    AA6061 alloy is a widely used material in the automotive and aerospace industries, but is prone to hot cracking, which limits its weldability. To prevent this phenomenon, the AA6061/AA5754 composite was formed using a severe plastic deformation technique, Cross Accumulative Roll Bonding (CARB), at an elevated temperature (350 °C) to ensure good bonding between layers. This technique was efficient to maintain a small grain size, even under the process temperature conditions, and consequently, preserve good mechanical properties. The composite had better mechanical properties than the initial aluminium alloys. Microstructure and texture remained stable after two cycles and yield stress tended towards an equal value in the rolling and the transverse directions. After two cycles, the main component was the {001}〈110〉 rotated Cube, which was maintained for up to 10 cycles. Diffusion was more effective as the strain increased. Finally, a tungsten inert gas (TIG) welding process was performed on the composite and confirmed resistance to hot cracking.

  10. Effect of CuO addition on microstructure and properties of aluminum composites produced by quick spontaneous infiltration process

    Directory of Open Access Journals (Sweden)

    Zhang Jingjing

    2014-05-01

    Full Text Available Al matrix composites with a high volume fraction of reinforcements were fabricated with a compact of Al-Ti-B4C powder mixtures by quick spontaneous infiltration (QSI process in an aluminum melt. Given the exothermal nature of the reaction between CuO and Al, a certain amount of CuO addition to the Al-Ti-B4C system dramatically increases the adiabatic temperature and thereby enables the complete combustion reaction in an aluminum melt (about 1,173 K. After the QSI process, the compact fabricated with CuO retains its original shape and the obtained composite exhibits sound microstructure containing reaction products of TiB2, Al3BC and B4C. The formation of such reinforcements when adding CuO contributes to enhancing the properties of the composites that show far superior hardness and elastic modulus of 3.03 GPa and 158.9 GPa, respectively, with lower coefficient of thermal expansion (9.44 ppm-1 compared to those with no CuO addition.

  11. Effects of heat treatment on mechanical properties and microstructure of tungsten fi ber reinforced grey cast iron matrix composites

    Directory of Open Access Journals (Sweden)

    Peng jianHong

    2009-11-01

    Full Text Available In this study, grey cast iron matrix composites reinforced by different volume fractions of tungsten fibers (Vr = 0.95 %, 1.90 %, 2.85 %, 3.80 % were investigated in as-cast and under the heat treatment temperatures of 1,000℃ and 1,100℃. The microstructure and mechanical properties of the composites were analyzed and tested by means of SEM, micro-hardness tester and three-point bend testing. The results show that with increasing of the volume fraction of tungsten fibers, the composites reinforced by the tungsten fiber have higher fl exural strength and modulus than that of cast iron without reinforcement, and the fl exural strength increases with the increasing of heat treatment temperatures. Due to diffusion reaction between matrix and reinforcing phases, the process of heat treatment, the number of graphite fl akes in the matrix seemingly becomes lower; and some hard carbide particles are formed around the residual tungsten fi bers. Not only does the hardness of both matrix and reinforcement change tremendously, but also the region of reinforcement is also extended from the original 0.11 mm to 0.19 mm in radius.

  12. Ni-based composite microstructures fabricated by femtosecond laser reductive sintering of NiO/Cr mixed nanoparticles

    Science.gov (United States)

    Tamura, Kenki; Mizoshiri, Mizue; Sakurai, Junpei; Hata, Seiichi

    2017-06-01

    Ni-based composite micropatterns were fabricated by the femtosecond laser reductive sintering of NiO/Cr mixed nanoparticles. A NiO/Cr mixed nanoparticle solution including ethylene glycol and polyvinylpyrrolidone was irradiated with focused femtosecond laser pulses. The X-ray diffraction spectra of the fabricated micropatterns indicated that NiO nanoparticles were well reduced under atmospheric conditions in the laser scanning speed range of 5-15 mm/s. In contrast, micropatterns including NiO were formed at a laser scanning speed of 1 mm/s, indicating that the reduced Ni was reoxidized by overheating. These results were supported by those of energy-dispersive X-ray spectrometry analysis and the electrical resistivity of the micropatterns. The compositions such as Ni, NiO, Cr2O3, and Ni-Cr in the fabricated micropatterns depended on laser scanning speed. The selective fabrication of a ferromagnetic free microgear from the substrate and an axis fixed on the substrate was demonstrated by controlling the laser scanning speed. The fabrication process for Ni-based composite microstructures is useful for the fabrication of ferromagnetic microdevices.

  13. A Comparative Study on Permanent Mold Cast and Powder Thixoforming 6061 Aluminum Alloy and Sicp/6061Al Composite: Microstructures and Mechanical Properties.

    Science.gov (United States)

    Zhang, Xuezheng; Chen, Tijun; Qin, He; Wang, Chong

    2016-05-24

    Microstructural and mechanical characterization of 10 vol% SiC particles (SiCp) reinforced 6061 Al-based composite fabricated by powder thixoforming (PTF) was investigated in comparison with the PTF and permanent mold cast (PMC) 6061 monolithic alloys. The results reveal that the microstructure of the PMC alloy consists of coarse and equiaxed α dendrites and interdendritic net-like eutectic phases. However, the microstructure of the PTF composite, similar to that of the PTF alloy, consists of near-spheroidal primary particles and intergranular secondarily solidified structures except SiCp, which are distributed in the secondarily solidified structures. The eutectics amount in the PTF materials is distinctly lower than that in the PMC alloy, and the microstructures of the former materials are quite compact while that of the latter alloy is porous. Therefore, the PTF alloy shows better tensile properties than the PMC alloy. Owing to the existence of the SiC reinforcing particles, the PTF composite attains an ultimate tensile strength and yield strength of 230 MPa and 128 MPa, representing an enhancement of 27.8% and 29.3% than those (180 MPa and 99 MPa) of the PTF alloy. A modified model based on three strengthening mechanisms was proposed to calculate the yield strength of the PTF composite. The obtained theoretical results were quite consistent with the experimental data.

  14. A Comparative Study on Permanent Mold Cast and Powder Thixoforming 6061 Aluminum Alloy and Sicp/6061Al Composite: Microstructures and Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Xuezheng Zhang

    2016-05-01

    Full Text Available Microstructural and mechanical characterization of 10 vol% SiC particles (SiCp reinforced 6061 Al-based composite fabricated by powder thixoforming (PTF was investigated in comparison with the PTF and permanent mold cast (PMC 6061 monolithic alloys. The results reveal that the microstructure of the PMC alloy consists of coarse and equiaxed α dendrites and interdendritic net-like eutectic phases. However, the microstructure of the PTF composite, similar to that of the PTF alloy, consists of near-spheroidal primary particles and intergranular secondarily solidified structures except SiCp, which are distributed in the secondarily solidified structures. The eutectics amount in the PTF materials is distinctly lower than that in the PMC alloy, and the microstructures of the former materials are quite compact while that of the latter alloy is porous. Therefore, the PTF alloy shows better tensile properties than the PMC alloy. Owing to the existence of the SiC reinforcing particles, the PTF composite attains an ultimate tensile strength and yield strength of 230 MPa and 128 MPa, representing an enhancement of 27.8% and 29.3% than those (180 MPa and 99 MPa of the PTF alloy. A modified model based on three strengthening mechanisms was proposed to calculate the yield strength of the PTF composite. The obtained theoretical results were quite consistent with the experimental data.

  15. Microstructure/processing relationships in high-energy high-rate consolidated powder composites of Nb-stabilized Ti3Al+TiAl

    Energy Technology Data Exchange (ETDEWEB)

    Persad, C.; Lee, B.; Hou, C.; Eliezer, Z.; Marcus, H.L.

    1989-01-01

    A new approach to powder processing is employed in forming titanium aluminide composites. The processing consists of internal heating of a customized powder blend by a fast electrical discharge of a homopolar generator. The high-energy high-rate '1MJ in 1s' pulse permits rapid heating of an electrically conducting powder mixture in a cold wall die. This short time at temperature approach offers the opportunity to control phase transformations and the degree of microstructural coarsening not readily possible with standard powder-processing approaches. This paper describes the consolidation results of titanium aluminide-based powder-composite materials. The focus of this study was the definition of microstructure/processing relationships for each of the composite constituents, first as monoliths and then in composite forms. Non-equilibrium phases present in rapidly solidified TiAl powders are transformed to metastable intermediates en route to the equilibrium gamma phase.

  16. Microstructure and Mechanical Behaviour of Stir-Cast Al-Mg-Sl Alloy Matrix Hybrid Composite Reinforced with Corn Cob Ash and Silicon Carbide

    Directory of Open Access Journals (Sweden)

    Oluwagbenga Babajide Fatile

    2014-10-01

    Full Text Available In this present study, the microstructural and mechanical behaviour of Al-Mg-Si alloy matrix composites reinforced with silicon carbide (SiC and Corn cob ash (An agro‑waste was investigated. This research work was aimed at assessing the suitability of developing low cost- high performance Al-Mg-Si hybrid composite. Silicon carbide (SiC particulates added with 0,1,2,3 and 4 wt% Corn cob ash (CCA were utilized to prepare 10 wt% of the reinforcing phase with Al-Mg-Si alloy as matrix using two-step stir casting method. Microstructural characterization, density measurement, estimated percent porosity, tensile testing, and micro‑hardness measurement were used to characterize the composites produced. From the results obtained, CCA has great potential to serve as a complementing reinforcement for the development of low cost‑high performance aluminum hybrid composites.

  17. Plasma-Sprayed Hydroxylapatite-Based Coatings: Chemical, Mechanical, Microstructural, and Biomedical Properties

    Science.gov (United States)

    Heimann, Robert B.

    2016-06-01

    This contribution discusses salient properties and functions of hydroxylapatite (HA)-based plasma-sprayed coatings, including the effect on biomedical efficacy of coating thickness, phase composition and distribution, amorphicity and crystallinity, porosity and surface roughness, cohesion and adhesion, micro- and nano-structured surface morphology, and residual coating stresses. In addition, it will provide details of the thermal alteration that HA particles undergo in the extremely hot plasma jet that leads to dehydroxylated phases such as oxyhydroxylapatite (OHA) and oxyapatite (OA) as well as thermal decomposition products such as tri-(TCP) and tetracalcium phosphates (TTCP), and quenched phases such as amorphous calcium phosphate (ACP). The contribution will further explain the role of ACP during the in vitro interaction of the as-deposited coatings with simulated body fluid resembling the composition of extracellular fluid (ECF) as well as the in vivo responses of coatings to the ECF and the host tissue, respectively. Finally, it will briefly describe performance profiles required to fulfill biological functions of osteoconductive bioceramic coatings designed to improve osseointegration of hip endoprostheses and dental root implants. In large parts, the content of this contribution is a targeted review of work done by the author and his students and coworkers over the last two decades. In addition, it is considered a stepping stone toward a standard operation procedure aimed at depositing plasma-sprayed bioceramic implant coatings with optimum properties.

  18. The simulation method of chemical composition of vermicular graphite iron on the basis of genetic algorithm

    Science.gov (United States)

    Yusupov, L. R.; Klochkova, K. V.; Simonova, L. A.

    2017-09-01

    The paper presents a methodology of modeling the chemical composition of the composite material via genetic algorithm for optimization of the manufacturing process of products. The paper presents algorithms of methods based on intelligent system of vermicular graphite iron design

  19. Chemical composition of atmospheric aerosols resolved via positive matrix factorization

    Science.gov (United States)

    Äijälä, Mikko; Junninen, Heikki; Heikkinen, Liine; Petäjä, Tuukka; Kulmala, Markku; Worsnop, Douglas; Ehn, Mikael

    2017-04-01

    Atmospheric particulate matter is a complex mixture of various chemical species such as organic compounds, sulfates, nitrates, ammonia, chlorides, black carbon and sea salt. As aerosol chemical composition strongly influences aerosol climate effects (via cloud condensation nucleus activation, hygroscopic properties, aerosol optics, volatility and condensation) as well as health effects (toxicity, carcinogenicity, particle morphology), detailed understanding of atmospheric fine particle composition is widely beneficial for understanding these interactions. Unfortunately the comprehensive, detailed measurement of aerosol chemistry remains difficult due to the wide range of compounds present in the atmosphere as well as for the miniscule mass of the particles themselves compared to their carrier gas. Aerosol mass spectrometer (AMS; Canagaratna et al., 2007) is an instrument often used for characterization of non-refractive aerosol types: the near-universal vaporization and ionisation technique allows for measurement of most atmospheric-relevant compounds (with the notable exception of refractory matter such as sea salt, black carbon, metals and crustal matter). The downside of the hard ionisation applied is extensive fragmentation of sample molecules. However, the apparent loss of information in fragmentation can be partly offset by applying advanced statistical methods to extract information from the fragmentation patterns. In aerosol mass spectrometry statistical analysis methods, such as positive matrix factorization (PMF; Paatero, 1999) are usually applied for aerosol organic component only, to keep the number of factors to be resolved manageable, to retain the inorganic components for solution validation via correlation analysis, and to avoid inorganic species dominating the factor model. However, this practice smears out the interactions between organic and inorganic chemical components, and hinders the understanding of the connections between primary and

  20. Mechanical properties of uniaxial natural fabric Grewia tilifolia reinforced epoxy based composites: Effects of chemical treatment

    CSIR Research Space (South Africa)

    Jayaramudu, J

    2014-07-01

    Full Text Available The effects of chemical treatment on the mechanical, morphological, and chemical resistance properties of uniaxial natural fabrics, Grewia tilifolia/epoxy composites, were studied. In order to enhance the interfacial bonding between the epoxy matrix...

  1. Chemical composition of olive oils of the cultivar Colombaia

    Directory of Open Access Journals (Sweden)

    Zunin, P.

    2005-12-01

    Full Text Available The chemical composition of monovarietal olive oils from the cultivar Colombaia was studied. Free acidity, peroxide value and UV absorbance attested to the good quality of the analyzed oils. Their fatty acid composition appeared to be quite different from the typical fatty acid profile of olive oils from Liguria but met the limits reported in the EC Regulations for olive oils. On the contrary, the amounts of Δ7-stigmastenol were often higher than the 0.5 % limit set by EC Regulations and total ß-sitosterol was below the minimum 93 % limit. The composition of polar compounds and of the volatile fraction was representative of the peculiar organoleptic character of these oils. Thus, the anomalous sterol composition of the monovarietal oils from the cultivar Colombaia calls for blending with other oils. Moreover, the use of these oils for the production of PDO oils “Riviera Ligure” must also be carefully controlled because it changes their nutritional and sensorial featuresEn este trabajo se ha estudiado la composición química de aceites de oliva mono-varietales de la variedad Colombaia. La acidez libre, el índice de peróxidos y la absorción UV confirmaron la buena calidad de los aceites analizados. Su composición en ácidos grasos resultó bastante diferente del perfil típico de ácidos grasos de los aceites de oliva virgen de la región de Liguria, pero se mantuvo dentro de los límites establecidos por los Reglamentos EC para aceites de oliva. Por otro lado, las cantidades de Δ7-estigmastenol resultaron normalmente superiores al 0.5 % del límite fijado por los Reglamentos EC y el ß-sitosterol total fue inferior al 93 % del límite mínimo. La composición en compuestos polares y de la fracción volátil confirmó las características organolépticas peculiares de estos aceites. Por tanto, la composición esterólica anómala de los aceites mono-varietales de la variedad Colombaia hace necesaria una mezcla con otros

  2. Effects of lithium doping on microstructure, electrical properties, and chemical bonds of sol-gel derived NKN thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chun-Cheng [Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Department of Mathematic and Physical Sciences, R.O.C. Air Force Academy, Kaohsiung 820, Taiwan (China); Chen, Chan-Ching; Weng, Chung-Ming [Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Chu, Sheng-Yuan, E-mail: chusy@mail.ncku.edu.tw [Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China); Hong, Cheng-Shong [Department of Electronic Engineering, National Kaohsiung Normal University, Kaohsiung 802, Taiwan (China); Tsai, Cheng-Che [Department of Digital Game and Animation Design, Tung-Fang Design University, Kaohsiung 829, Taiwan (China)

    2015-02-28

    Highly (100/110) oriented lead-free Li{sub x}(Na{sub 0.5}K{sub 0.5}){sub 1−x}NbO{sub 3} (LNKN, x = 0, 0.02, 0.04, and 0.06) thin films are fabricated on Pt/Ti/SiO{sub 2}/Si substrates via a sol-gel processing method. The lithium (Li) dopants modify the microstructure and chemical bonds of the LNKN films, and therefore improve their electrical properties. The optimal values of the remnant polarization (P{sub r} = 14.3 μC/cm{sup 2}), piezoelectric coefficient (d{sub 33} = 48.1 pm/V), and leakage current (<10{sup −5} A/cm{sup 2}) are obtained for a lithium addition of x = 0.04 (i.e., 4 at. %). The observation results suggest that the superior electrical properties are the result of an improved crystallization, a larger grain size, and a smoother surface morphology. It is shown that the ion transport mechanism is dominated by an Ohmic behavior under low electric fields and the Poole-Frenkel emission effect under high electric fields.

  3. The Relationship of Culture Media Composition and Chemical Composition on Spirulina sp for Metal Ion Adsorbent

    Directory of Open Access Journals (Sweden)

    Hilda Zulkifli

    2016-12-01

    Full Text Available The analysis relationship of Spirulina sp medium with chemical composition has been conducted. Chemical analysis was performed using X-Ray Fluorescence analysis. Furthermore, potention of Spirulina sp as adsorbent of metal ions was analyzed using FTIR spectroscopy. The results showed that metals such as Zn, Fe, Mn, Ca, Cu, and Mo were mainly metals in Spirulina sp. These metals were not correlated with cultivated medium of Spirulina sp. Analysis of potention Spirulina sp as metal ions adsorbent showed that Spirulina sp has functional groups –C=O and –OH as ligand. Intercation of metal ions Cu(II and Cr(III with Spirulina sp indicated that metal ions bond to –C=O functional group.

  4. Physical Nature of the Processes in Structure Forming, Phase and Chemical Composition of pipe Permanent Joints when MMA Welding

    Science.gov (United States)

    Il'yaschenko, D. P.; Chinakhov, D. A.; Danilov, V. I.; Sadykov, I. D.

    2016-04-01

    The paper outlines peculiarities of structure formation, phase and chemical composition in regard to heat content in molten electrode metal beads when pipe steel (steel 09G2S) welding using power sources with various energy characteristics. Mathematical calculations indicate an inverter power source provides minor heat content into the bead of electrode metal when welding. Experimental research has pointed at 4-9 % increase in impact strength of joints produced using an inverter power source in comparison with samples produced applying a diode rectifier. The following factors can possibly give rise to the increasing impact strength: difference in microstructures of weld joints, up to 50% shortening ferritic plates in metal of weld joint, change in dimensions of ferritic grains in the heat-affected zone by as much as 17.5 %, and decrease in the extent of heat-affected zone by 50%.

  5. Vector diagram of the chemical compositions of tektites and earth lavas

    Science.gov (United States)

    Kvasha, L. G.; Gorshkov, G. S.

    1978-01-01

    The chemical compositions of tektites and various volcanic glasses, similar in composition to tektites are compared by a petrochemical method. The advantage of the method is that a large number of chemical analyses of igneous rocks can be graphically compared with the help of vectors, plotted in relation to six parameters. These parameters, calculated from ratios of the main oxides given by silicate analysis, reflect the chief characteristics of igneous rock. Material for the study was suppled by data from chemical analysis characterizing tektites of all known locations and data from chemical analyses of obsidians similar in chemical composition to tektites of various petrographical provinces.

  6. Innovative Fly Ash Geopolymer-Epoxy Composites: Preparation, Microstructure and Mechanical Properties.

    Science.gov (United States)

    Roviello, Giuseppina; Ricciotti, Laura; Tarallo, Oreste; Ferone, Claudio; Colangelo, Francesco; Roviello, Valentina; Cioffi, Raffaele

    2016-06-09

    The preparation and characterization of composite materials based on geopolymers obtained from fly ash and epoxy resins are reported for the first time. These materials have been prepared through a synthetic method based on the concurrent reticulation of the organic and inorganic components that allows the formation of hydrogen bonding between the phases, ensuring a very high compatibility between them. These new composites show significantly improved mechanical properties if compared to neat geopolymers with the same composition and comparable performances in respect to analogous geopolymer-based composites obtained starting from more expensive raw material such as metakaolin. The positive combination of an easy synthetic approach with the use of industrial by-products has allowed producing novel low cost aluminosilicate binders that, thanks to their thixotropicity and good adhesion against materials commonly used in building constructions, could be used within the field of sustainable building.

  7. Innovative Fly Ash Geopolymer-Epoxy Composites: Preparation, Microstructure and Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Giuseppina Roviello

    2016-06-01

    Full Text Available The preparation and characterization of composite materials based on geopolymers obtained from fly ash and epoxy resins are reported for the first time. These materials have been prepared through a synthetic method based on the concurrent reticulation of the organic and inorganic components that allows the formation of hydrogen bonding between the phases, ensuring a very high compatibility between them. These new composites show significantly improved mechanical properties if compared to neat geopolymers with the same composition and comparable performances in respect to analogous geopolymer-based composites obtained starting from more expensive raw material such as metakaolin. The positive combination of an easy synthetic approach with the use of industrial by-products has allowed producing novel low cost aluminosilicate binders that, thanks to their thixotropicity and good adhesion against materials commonly used in building constructions, could be used within the field of sustainable building.

  8. Exploring the chemical composition of water in the Kandalaksha Bay

    Science.gov (United States)

    Mazukhina, Svetlana; Masloboev, Vladimir; Chudnenko, Konstantin; Khaitov, Vadim; Maksimova, Victoria; Belkina, Natalia

    2014-05-01

    Oil films were noted at the head of the Kandalaksha Bay as far back as in 1971, as soon as the first stage of the oil tank farm had been commissioned (the autumn of 1970). In 1997-1998 there were accidental oil spills posing a real threat to the Kandalaksha Reserve biota. In May 2011, oil spills from the Belomorsk oil tank farm resulted in a local environmental emergency. In this work we have traced the evolution of polluted water by means of hydrogeochemical monitoring and reconstructing the chemical composition of surface and near-bottom water of the Kandalaksha Bay by using physical-chemical modeling (Selector software package, Chudnenko, 2010). The surface and near-bottom water was sampled in the summer of 2012 and 2013 at the following sites: under the numbers 3 (N 67.2.673, E 32.23.753); 4 (N 67.3.349, E 32.28.152); 1 (N 67.5.907, E 32.29.779), and 2 (N 67.6.429, E 32.30.539). The monitored objects and sampling time were sensitive to both the effects of the White Sea water (high tide), fresh water, and water affected by human impact (the oil tank farm). At each site, three samples were taken. The next stage involved reconstructing of the sea water ion composition by modeling within the Al-B-Br-Ar-He-Ne-C-Ca-Cl-F-K-Mg-Mn-N-Na-P-S-Si-Sr-Cu-Zn-H-O-e system, where e is an electron. Modeling of the chemical composition of near-bottom water (site 3) has revealed high contents of carbon dioxide, hydrogen disulphide, hydrocarbonates, and no oxygen (Eh<0). All this suggests a transformation of hydrocarbons that might have got to the sampling area in May 2011, or as the result of constant leakage of petroleum hydrocarbons from the oil tank farm. Sampling at site 4 in 2013 has revealed petroleum hydrocarbons both in surface (0.09 mg/l) and near-bottom (0.1 mg/l) water. Both monitoring and modeling have demonstrated that hydrobionts on areas adjoining the oil tank farm are far from prospering. Monitoring should be accompanied by express analysis of oxidizing conditions

  9. Composite-Material Tanks with Chemically Resistant Liners

    Science.gov (United States)

    DeLay, Thomas K.

    2004-01-01

    Lightweight composite-material tanks with chemically resistant liners have been developed for storage of chemically reactive and/or unstable fluids . especially hydrogen peroxide. These tanks are similar, in some respects, to the ones described in gLightweight Composite-Material Tanks for Cryogenic Liquids h (MFS-31379), NASA Tech Briefs, Vol. 25, No. 1 (January, 2001), page 58; however, the present tanks are fabricated by a different procedure and they do not incorporate insulation that would be needed to prevent boil-off of cryogenic fluids. The manufacture of a tank of this type begins with the fabrication of a reusable multisegmented aluminum mandrel in the shape and size of the desired interior volume. One or more segments of the mandrel can be aluminum bosses that will be incorporated into the tank as end fittings. The mandrel is coated with a mold-release material. The mandrel is then heated to a temperature of about 400 F (approximately equal to 200 C) and coated with a thermoplastic liner material to the desired thickness [typically approxiamtely equal to 15 mils (approximately equal to 0.38 mm)] by thermal spraying. In the thermal-spraying process, the liner material in powder form is sprayed and heated to the melting temperature by a propane torch and the molten particles land on the mandrel. The sprayed liner and mandrel are allowed to cool, then the outer surface of the liner is chemically and/or mechanically etched to enhance bonding of a composite overwrap. The etched liner is wrapped with multiple layers of an epoxy resin reinforced with graphite fibers; the wrapping can be done either by manual application of epoxy-impregnated graphite cloth or by winding of epoxy-impregnated filaments. The entire assembly is heated in an autoclave to cure the epoxy. After the curing process, the multisegmented mandrel is disassembled and removed from inside, leaving the finished tank. If the tank is to be used for storing hydrogen peroxide, then the liner material

  10. The mechanical and microstructural behaviour of calcite-dolomite composites: An experimental investigation

    OpenAIRE

    Kushnir, Alexandra R. l.; Kennedy, L. A.; Misra, Santanu; Benson, Philip; White, J. C.

    2015-01-01

    The styles and mechanisms of deformation associated with many variably dolomitized limestone shear systems are strongly controlled by strain partitioning between dolomite and calcite. Here, we present experimental results from the deformation of four composite materials designed to address the role of dolomite on the strength of limestone. Composites were synthesized by hot isostatic pressing mixtures of dolomite (Dm) and calcite powders (% Dm: 25%-Dm, 35%-Dm, 51%-Dm, and 75%-Dm). In all comp...

  11. Microstructure Evolution and Composition Control during the Processing of Thin-gage Metallic Foil (Preprint)

    Science.gov (United States)

    2012-02-01

    the target composition tended to be on the low side for aluminum, tantalum, and tungsten and on the high side for chromium and cobalt . The use of...desired product composition or electron-beam physical vapor deposition (EBPVD) of separate targets of the specific alloying elements. Thin deposits of...magnetron sputtering, electron-beam physical vapor deposition, superalloys, gamma-titanium-aluminide alloys 16. SECURITY CLASSIFICATION OF: 17

  12. Microstructure and mechanical properties of SiO2-BN ceramic and Invar alloy joints brazed with Ag–Cu–Ti+TiH2+BN composite filler

    OpenAIRE

    Y. Wang; Z.W. Yang; L.X. Zhang; D.P. Wang; J.C. Feng

    2016-01-01

    Ag–Cu–Ti + TiH2+BN composite filler was prepared to braze SiO2-BN ceramic and Invar alloy. The interfacial microstructure, mechanical properties, and residual stress distribution of the brazed joints were investigated. The results show that a wave-like Fe2Ti–Ni3Ti structure appears in the Invar substrate and a thin TiN–TiB2 reaction layer forms adjacent to the SiO2-BN ceramic. The added BN particles react with Ti to form TiN–TiB fine-particles, which is beneficial to refine the microstructure...

  13. Copper-Carbon Nanoforms Composites – Processing, Microstructure and Thermal Properties

    Directory of Open Access Journals (Sweden)

    Pietrzak K.

    2017-06-01

    Full Text Available The main current of publication is focused around the issues and problems associated with the formation of composite materials with Cu matrix and reinforcing phases in the various carbon nanoforms. The core of the research has been focused on thermal conductivity of these composites types. This parameter globally reflects the state of the structure, quality of raw materials and the technology used during the formation of composite materials. Vanishingly low affinity of copper for carbon, multilayered forms of graphene, the existence of critical values of graphene volume in the composite are not conducive to the classic procedures of composites designing. As a result, the expected, significant increase in thermal conductivity of composites is not greater than for pure copper matrix. Present paper especially includes: (i data of obtaining procedure of copper/graphene mixtures, (ii data of sintering process, (iii the results of structure investigations and of thermal properties. Structural analysis revealed the homogenous distribution of graphene in copper matrix, the thermal analysis indicate the existence of carbon phase critical concentration, where improvement of thermal diffusivity to pure copper can occur.

  14. Chemical, Structural, and Microstructural Changes in Metallic and Silicon-Based Coating Materials Exposed to Iodine Vapor

    Science.gov (United States)

    Costa, Gustavo C. C.; Benavides, Gabriel F.; Smith, Timothy D.

    2017-01-01

    The chemical, structural and microstructural behavior of steels (304, 316 and A36), titanium-aluminum alloy (Ti-Al, (6Al-4V)), aluminum-magnesium alloy (Al-Mg, 6061), and coatings (Silcolloy and Dursan (SilcoTek Corporation)) were probed after exposure to iodine laminar flow. Exposures were carried out in a custom-built Iodine Vapor RIG (IVR) at 300 degrees C to an iodine laminar vapor flow of 1 mg min(exp. -1), carried by 145 mL-min(exp. -1) argon gas, for 5, 15 and 30 days. Samples were characterized before and after the experiment by gravimetric analysis, X-ray diffraction (XRD) and cross section electron microscopy analysis coupled with energy dispersive X-ray spectroscopy (EDS). All steels exposed for 30 days formed scales consisting mainly of metal (Cr, Fe, Ni) oxides showing different chemistry, microstructure and crystalline phases. Elemental iodine was only detected by EDS analysis in the scales of stainless steels 304 and 316. After 30 days, the Ti-Al exhibited no detectable scale, suggesting only a very thin film was formed. A scale consisting mainly of aluminum, iodine, and oxygen formed on the Al-Mg sample exposed to 30 days. Some pockets rich in magnesium, iodine and oxygen also formed in this Al-Mg alloy. Stainless steel 316, low carbon steel A36 and Ti-Al alloy coated with Silcolloy and stainless steel 304 coated with Dursan that were exposed for 30 days exhibited no oxidation. Stainless steel 304 coated with Silcolloy exposed for 30 days did not exhibit corrosion although the sample gained weight and the coating exhibited expansion. The weight gain per area performance of the materials exposed in iodine lamina flow containing oxygen at impurity level for 10, 15 and 30 days are reported from the lowest to the highest weight gain per area as follows: Steels: Less than 316 less than 304 less than A36; Ti-Al-Mg based alloys: Al-Mg less than Ti-Al: Considering the experimental uncertainties, no weight change was observed for Stainless steel 316, low

  15. Chemical composition of sediments from White Sea, Russian Arctic

    Science.gov (United States)

    Gamza, Olga; Shevchenko, Vladimir; Novigatsky, Aleksandr

    2010-05-01

    The White Sea, the only Russian inland sea, is located on the north of outlying districts of the European part of Russia, belongs to Arctic Ocean. Area of water of sea occupies about 90 tousend square kilometers. The sea can be divided into some general parts: neck, funnel, basin and 4 Bays: Dvina Bay, Kandalaksha Bay, Mezen Bay and Onega Bay. The purpose of this work was geochemical mapping of the surface sediments of this area. The main tasks were: compilation data base of element composition of the surface sediments, geochemical mapping of each element, research of the anormal concentration of elements on the surface. To detect the content of chemical elements several methods were used: atomic absorption spectrometry (P.P. Shirshov Institute of Oceanology); neutron activation analysis (Vernadsky Institute of Geochemistry and Analytical Chemistry), total and organic carbon analysis, photometric method to detection Si, Al, P (P.P. Shirshov Institute of Oceanology). Bulk composition is one of the fundamental characteristics of sediments and bottom deposites of modern basins. Coarse-grained sediments with portion of pelitic component 80%). Character of elements distribution correlates with facial distribution of sediments from White Sea. According to litologic description, bottom surface of Dvina Bay is practically everywhere covered by layer of fine-grained sand. In the border area between Dvina Bay and White Sea basin on terraced subwater slope aleurite politic silts are abundant. They tend to exhange down the slope to clay silts. In Onega Bay fractions of non-deposition are observed. They are characterized by wide spread of thin blanket poorgraded sediments, which are likely to be relic. Relief of Kandalakscha Bay bottom is presented as alternation of abyssal fosses (near 300 m) with silles and elevations (depressions and in central part of the sea, which is quite wide from both places of original sedimentation and run off sources [2]. Thus, the interrelation

  16. The rheo-Raman microscope: Simultaneous chemical, conformational, mechanical, and microstructural measures of soft materials

    Science.gov (United States)

    Kotula, Anthony P.; Meyer, Matthew W.; De Vito, Francesca; Plog, Jan; Hight Walker, Angela R.; Migler, Kalman B.

    2016-10-01

    The design and performance of an instrument capable of simultaneous Raman spectroscopy, rheology, and optical microscopy are described. The instrument couples a Raman spectrometer and optical microscope to a rotational rheometer through an optically transparent base, and the resulting simultaneous measurements are particularly advantageous in situations where flow properties vary due to either chemical or conformational changes in molecular structure, such as in crystallization, melting, gelation, or curing processes. Instrument performance is demonstrated on two material systems that show thermal transitions. First, we perform steady state rotational tests, Raman spectroscopy, and polarized reflection microscopy during a melting transition in a cosmetic emulsion. Second, we perform small amplitude oscillatory shear measurements along with Raman spectroscopy and polarized reflection microscopy during crystallization of a high density polyethylene. The instrument can be applied to study structure-property relationships in a variety of soft materials including thermoset resins, liquid crystalline materials, colloidal suspensions undergoing sol-gel processes, and biomacromolecules. Official contribution of the National Institute of Standards and Technology; not subject to copyright in the United States.

  17. Chemical composition of bioactive pressurized extracts of Romanian aromatic plants.

    Science.gov (United States)

    Miron, T L; Plaza, M; Bahrim, G; Ibáñez, E; Herrero, M

    2011-07-29

    In this contribution, pressurized liquid extraction (PLE) has been employed to isolate bioactive compounds from three native Romanian plants, oregano (Origanum vulgare), tarragon (Artemisia dracunculus) and wild thyme (Thymus serpyllum). Different PLE conditions have been tested including extraction with water, ethanol and their mixtures in a wide range of extraction temperatures (50-200°C), and the antioxidant capacity of the extracts was measured using different assays (DPPH radical scavenging, TEAC assay and Folin-Ciocalteau assay to measure total phenols). Moreover, a complete chemical characterization by using LC-MS/MS was carried out to be able to correlate the bioactivity with the particular chemical composition of each extract and plant. The use of PLE with water as a solvent at the highest temperature tested (200°C) always provided the highest extraction yields for the three studied plants, being maximum for oregano (>60%). Besides, oregano's pressurized water extracts at lower temperatures (50°C) presented the highest content on total phenols (184.9 mg gallic acid/g extract) and the best antioxidant activities (EC(50) 6.98 μg/ml). In general, oregano extracts were the most active, followed by wild thyme extracts. The antioxidant capacity measured by DPPH assay was highly correlated with the amount of total phenols. Moreover, the use of a LC-MS/MS method allowed the identification of 30 different phenolic compounds in the different extracts, including phenolic acids, flavones, flavanones and flavonols, which have an important influence on the total antioxidant capacity of the different extracts. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Microstructural Origins of Cement Paste Degradation by External Sulfate Attack.

    Science.gov (United States)

    Feng, Pan; Garboczi, Edward J; Miao, Changwen; Bullard, Jeffrey W

    2015-10-15

    A microstructure model has been applied to simulate near-surface degradation of portland cement paste in contact with a sodium sulfate solution. This new model uses thermodynamic equilibrium calculations to guide both compositional and microstructure changes. It predicts localized deformation and the onset of damage by coupling the confined growth of new solids with linear thermoelastic finite element calculations of stress and strain fields. Constrained ettringite growth happens primarily at the expense of calcium monosulfoaluminate, carboaluminate and aluminum-rich hydrotalcite, if any, respectively. Expansion and damage can be mitigated chemically by increasing carbonate and magnesium concentrations or microstructurally by inducing a finer dispersion of monosulfate.

  19. Microstructural and mechanical characterization of Nb-based in situ composites from Nb-Si-Ti ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z. [Department of Mechanics and Mechanical Engineering, CAS Key Laboratory for Mechanical Behavior and Design of Materials, School of Engineering Science, University of Science and Technology of China, Hefei 230026, Anhui (China); Peng, L.M. [Department of Mechanics and Mechanical Engineering, CAS Key Laboratory for Mechanical Behavior and Design of Materials, School of Engineering Science, University of Science and Technology of China, Hefei 230026, Anhui (China)], E-mail: penglm@ustc.edu.cn

    2007-11-15

    This study deals with the Nb-niobium silicide-based composites developed by the hot-pressing of Nb-Si-Ti ternary powder mixtures with a fixed Ti addition (6 at.%) and Si content ranging from hypereutectic (11 at.%) to near-eutectic compositions (18 at.%). The effects of Si content, Ti addition and strain rates on the sample microstructural characterization, flexural strength, fracture toughness, quasi-static compressive deformation and failure processes were investigated. It was revealed that the volume fraction of silicides increased with increasing Si content, and most of the Ti atoms dissolved into the niobium silicides to form (Nb,Ti){sub 5}Si{sub 3} solid solutions instead of binary titanium silicides. The experimental evidence showed that a moderate improvement in the flexural strength, fracture toughness and compressive yield stress of the composites was achieved by the addition of Ti. Higher Si additions produced a much more remarkable enhancement in the compressive yield stress and bulk hardness, whereas both the flexural strength and fracture toughness decreased with increasing Si content owing to the existence of residual porosities in the samples. The composites showed remarkable superiority to the arc-melted Nb-Si alloys and monolithic niobium silicides in fracture toughness (8.3-13.0MPa{radical}(m) vs. 4.5MPa{radical}(m)), where the toughening effect was attributed mainly to crack bridging and crack deflection by the remaining ductile Nb phase. Moreover, quasi-static uniaxial compression tests at strain rates between 10{sup -5} and 10{sup -3} s{sup -1} indicated that the deformation behavior and failure processes were significantly affected by Si content and strain rates. The strain-rate-hardening behavior for all the strain rates was observed in the composite materials and the strain-rate sensitivity decreased with increasing Si content. At a lower strain rate, the composite materials with a hypoeutectic Si composition failed with a pseudoplastic

  20. Processing, Microstructure and Mechanical Behavior of Ultrasonic Assisted Cast Magnesium 1wt% Silicon Carbide Nano-Composites

    Science.gov (United States)

    Erman, Ari

    The goal of this dissertation is to establish an understanding of processing -- microstructure -- mechanical behavior relationship in Mg-1wt% SiC metal matrix nano-composites fabricated via an ultrasonic assisted casting process, with the emphasis on the effect of the distribution of nanoparticles on this relationship. Ultrasonic assisted casting has been proved as an effective technique to distribute nanoparticles in Mg metal matrix nano-composites (MMNCs). Mg MMNCs reinforced with 1 wt% SiC nanoparticles, were cast by ultrasonic cavitation-based dispersion methods. Microstructural analyses of as cast specimens were conducted to characterize the grain size, shape and distribution, SiC nanoparticle size and distribution, and nanoparticle-matrix interface. Average grain size for the ultrasonic assisted cast composite specimens was 72 mum compared to 181 mum for pure Mg samples prepared by the same method. The average measured SiC nanoparticle size was 66 nm. TEM studies showed good local dispersion of SiC nanoparticles, with only a few small, widely spaced clusters. HRTEM showed a clean interface between SiC nanoparticles and the Mg matrix, with no evidence of secondary phases. The yield strength of Mg-1 wt% SiC nanocomposites was 67 MPa, which showed improvement from 47 MPa for the pure Mg samples. This extra strengthening is due to Orowan and Hall-Petch effects. Fatigue experiments were conducted to characterize the cyclic stress-strain response of pure Mg and Mg-1wt% SiC samples at 0.2%, 0.4% and 0.6% plastic strain amplitudes. The analyses of the cyclic stress response curves and hysteresis loops, combined with post failure TEM analyses provided an understanding of the role of twinning, and twin-particle interactions on the cyclic deformation behavior of Mg MMNCs. Tensile twinning and basal slip are the main forms of deformation mechanisms under compression, followed by detwinning and basal slip in subsequent tension. Fatigue lives of Mg MMNCs are comparable to