WorldWideScience

Sample records for chemical composition impact

  1. Impact of oil on groundwater chemical composition

    Science.gov (United States)

    Brakorenko, N. N.

    2015-11-01

    The objective of the paper is to characterize the chemical composition of groundwater samples from the monitoring wells drilled in the petrol station areas within the vicinity of Tomsk. The level of contamination has increased since many macro - and microcomponent concentrations (such as petroleum products, chlorine, sulphates, carbon dioxide and lead, etc.) in groundwater samples of the present study is higher than that in previous period samples.

  2. Areca Fiber Reinforced Epoxy Composites: Effect of Chemical Treatments on Impact Strength

    Directory of Open Access Journals (Sweden)

    S. Dhanalakshmi

    2015-06-01

    Full Text Available In this research work, impact strength of untreated, alkali treated, potassium permanganate treated, benzoyl chloride treated and acrylic acid treated areca fiber reinforced epoxy composites were studied under 40%, 50%, 60% and 70% fiber loadings. Impact strength increased with increase in fiber loading up to 60% and then showed a decline for all untreated and chemically treated areca fiber reinforced epoxy composites. The acrylic acid treated areca fiber reinforced epoxy composites with 60% fiber loading showed highest impact strength of 28.28 J/mm2 amongst all untreated and chemically treated areca/epoxy composites with same 60% fiber loading.

  3. Vegetation change impacts on soil organic carbon chemical composition in subtropical forests

    Science.gov (United States)

    Guo, Xiaoping; Meng, Miaojing; Zhang, Jinchi; Chen, Han Y. H.

    2016-07-01

    Changes in the chemical composition of soil organic carbon (SOC) might strongly affect the global carbon cycle as it controls the SOC decomposition rate. Vegetation change associated with long-term land use changes is known to strongly impact the chemical composition of SOC; however, data on the impacts of vegetation change following disturbance events of short durations and succession that occur frequently in forest ecosystems via diverse management objectives on SOC chemical composition are negligible. Here we examined the impacts of vegetation changes on the chemical composition of SOC by sampling soils of native broad-leaved forests, planted mixed broad-leaved and coniferous forests, and tea gardens in eastern China. We used nuclear magnetic resonance spectroscopy to quantify SOC chemical composition. We found that among all components of SOC chemical composition, alkyl carbon (C) and aryl C were more liable to change with vegetation than other SOC components. Soil pH was negatively correlated to the relative abundances of alkyl C and N-alkyl C, and Shannon’s index of overstory plant species was positively correlated to the relative abundances of phenolic C and aromaticity. Our results suggest that vegetation changes following short disturbance events and succession may strongly alter SOC chemical composition in forest ecosystems.

  4. Vegetation change impacts on soil organic carbon chemical composition in subtropical forests.

    Science.gov (United States)

    Guo, Xiaoping; Meng, Miaojing; Zhang, Jinchi; Chen, Han Y H

    2016-01-01

    Changes in the chemical composition of soil organic carbon (SOC) might strongly affect the global carbon cycle as it controls the SOC decomposition rate. Vegetation change associated with long-term land use changes is known to strongly impact the chemical composition of SOC; however, data on the impacts of vegetation change following disturbance events of short durations and succession that occur frequently in forest ecosystems via diverse management objectives on SOC chemical composition are negligible. Here we examined the impacts of vegetation changes on the chemical composition of SOC by sampling soils of native broad-leaved forests, planted mixed broad-leaved and coniferous forests, and tea gardens in eastern China. We used nuclear magnetic resonance spectroscopy to quantify SOC chemical composition. We found that among all components of SOC chemical composition, alkyl carbon (C) and aryl C were more liable to change with vegetation than other SOC components. Soil pH was negatively correlated to the relative abundances of alkyl C and N-alkyl C, and Shannon's index of overstory plant species was positively correlated to the relative abundances of phenolic C and aromaticity. Our results suggest that vegetation changes following short disturbance events and succession may strongly alter SOC chemical composition in forest ecosystems. PMID:27403714

  5. The impact of infield biomass burning on PM levels and its chemical composition.

    Science.gov (United States)

    Dambruoso, P; de Gennaro, G; Di Gilio, A; Palmisani, J; Tutino, M

    2014-12-01

    In the South of Italy, it is common for farmers to burn pruning waste from olive trees in spring. In order to evaluate the impact of the biomass burning source on the physical and chemical characteristics of the particulate matter (PM) emitted by these fires, a PM monitoring campaign was carried out in an olive grove. Daily PM10 samples were collected for 1 week, when there were no open fires, and when biomass was being burned, and at two different distances from the fires. Moreover, an optical particle counter and a polycyclic aromatic hydrocarbon (PAH) analyzer were used to measure the high time-resolved dimensional distribution of particles emitted and total PAHs concentrations, respectively. Chemical analysis of PM10 samples identified organic and inorganic components such as PAHs, ions, elements, and carbonaceous fractions (OC, EC). Analysis of the collected data showed the usefulness of organic and inorganic tracer species and of PAH diagnostic ratios for interpreting the impact of biomass fires on PM levels and on its chemical composition. Finally, high time-resolved monitoring of particle numbers and PAH concentrations was performed before, during, and after biomass burning, and these concentrations were seen to be very dependent on factors such as weather conditions, combustion efficiency, and temperature (smoldering versus flaming conditions), and moisture content of the wood burned. PMID:24310905

  6. Evolution of mechanical properties of silicate glasses: Impact of the chemical composition and effects of irradiation

    International Nuclear Information System (INIS)

    This thesis examines: (1) how the chemical composition changes the hardness, toughness, and stress corrosion cracking behavior in model pristine and (2) how external irradiation impact these properties. It is to be incorporated in the context of the storage of nuclear waste in borosilicate glass matrix, the structural integrity of which should be assessed. Eight simplified borosilicate glasses made of 3 oxides with modulated proportions (SiO2-B2O3-Na2O (SBN) have been selected and their hardness, toughness, and stress corrosion cracking behavior have been characterized prior and after irradiation. The comparative study of the non-irradiated SBN glasses provides the role played by the chemical composition. The sodium content is found to be the key parameter: As it increases, the glass plasticity increases, leading to changes in the mechanical response to strain. Hardness (Hv) and toughness (Kc) decrease since the flow under indenter increases. The analysis of the stress corrosion behavior evidences a clear shift of the SCC curves linked also to the glass plasticity. Four of the 8 simplified SBN glass systems highlight the influence of electron, light and heavy ions irradiations on the mechanical properties. Once again, the sodium content is a key parameter. It is found to inhibit the glass modification: Glasses with high sodium content are more stable. Ions irradiations highlight the predominant role of nuclear interaction in changing the glass properties. Finally, electronic interaction induced by helium and electron irradiation does not lead to the same structural/mechanical glasses variations. (author)

  7. Wildfire Ash: Chemical Composition, Ash-Soil Interactions and Environmental Impacts

    Science.gov (United States)

    Brook, Anna; Hamzi, Seham; Wittenberg, Lea

    2015-04-01

    produced ash has significant and not always constructive pedological, ecological, hydrological and geomorphological effects and impacts (Shakesby, 2011). Abundant scientific information is assembled either from control fires by collecting samples before and after wildfire event, or conducting laboratory experiments exanimating data under truly isolated conditions (Lugassi et al., 2013). However, an integration and synthesis of the knowledge about ash including deeper understanding of inter-correlation between chemical, physical and morphological compounds in open post-burn environment and its possible interactions in soil formation or impact on soil composition are highly needed. The main aim of the presented study was to advance the science of soil-fire relationship by recognizing the remains ash as a new soil-forming factor, on par with the traditionally recognized factors: parent material, topography, time, climate, organisms, and recently recognized human activity as the sixth factor. This research was conducted to develop new methods to assess impacts and quantify the contributions/influences of post-fire products, mainly ash, on soil composition and soil properties in post-burned environment. We conducted several controlled experiments using 40 soil samples (typical Mediterranean Rendzina soil, pH 6.84, a grayish-brown, humus- and free calcium carbonate- rich, intra-zonal). The samples include bare soils and different types and loads of forest litter, were exposed to different temperatures (200° C, 400° C and 600° C) in a muffle furnace for 2 hours (Pereira et al. 2011) as fire temperature plays a key role in determining ash properties. The ash produced at a low temperatures (50% carbon and retains many of the structural characteristics of the parent material. At higher temperatures, the residue ash is greyish, consisted of very fine particles that preserve almost none of the original structural characteristics of the fuel (Woods and Balfour, 2008) creating

  8. Biomass burning aerosol over the Amazon during SAMBBA: impact of chemical composition on radiative properties

    Science.gov (United States)

    Morgan, William; Allan, James; Flynn, Michael; Darbyshire, Eoghan; Hodgson, Amy; Liu, Dantong; O'shea, Sebastian; Bauguitte, Stephane; Szpek, Kate; Langridge, Justin; Johnson, Ben; Haywood, Jim; Longo, Karla; Artaxo, Paulo; Coe, Hugh

    2014-05-01

    Biomass burning represents one of the largest sources of particulate matter to the atmosphere, resulting in a significant perturbation to the Earth's radiative balance coupled with serious impacts on public health. Globally, biomass burning aerosols are thought to exert a small warming effect but with the uncertainty being 4 times greater than the central estimate. On regional scales, the impact is substantially greater, particularly in areas such as the Amazon Basin where large, intense and frequent burning occurs on an annual basis for several months. Absorption by atmospheric aerosols is underestimated by models over South America, which points to significant uncertainties relating to Black Carbon (BC) aerosol properties. Initial results from the South American Biomass Burning Analysis (SAMBBA) field experiment, which took place during September and October 2012 over Brazil on-board the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft, are presented here. Aerosol chemical composition was measured by an Aerodyne Aerosol Mass Spectrometer (AMS) and a DMT Single Particle Soot Photometer (SP2). The physical, chemical and optical properties of the aerosols across the region will be characterized in order to establish the impact of biomass burning on regional air quality, weather and climate. The aircraft sampled a range of conditions including sampling of pristine Rainforest, fresh biomass burning plumes, regional haze and elevated biomass burning layers within the free troposphere. The aircraft sampled biomass burning aerosol across the southern Amazon in the states of Rondonia and Mato Grosso, as well as in a Cerrado (Savannah-like) region in Tocantins state. This presented a range of fire conditions, both in terms of their number, intensity, vegetation-type and their combustion efficiencies. Near-source sampling of fires in Rainforest environments suggested that smouldering combustion dominated, while flaming combustion dominated

  9. 40Ar/39Ar ages of lunar impact glasses: Relationships among Ar diffusivity, chemical composition, shape, and size

    CERN Document Server

    Zellner, N E B

    2015-01-01

    Lunar impact glasses, quenched melts produced during cratering events on the Moon, have the potential to provide not only compositional information about both the local and regional geology of the Moon but also information about the impact flux over time. We present in this paper the results of 73 new 40Ar/39Ar analyses of well-characterized, inclusion-free lunar impact glasses and demonstrate that size, shape, chemical composition, fraction of radiogenic 40Ar retained, and cosmic ray exposure (CRE) ages are important for 40Ar/39Ar investigations of these samples. Specifically, analyses of lunar impact glasses from the Apollo 14, 16, and 17 landing sites indicate that retention of radiogenic 40Ar is a strong function of post-formation thermal history in the lunar regolith, size, and chemical composition. Based on the relationships presented in this paper, lunar impact glasses with compositions and sizes sufficient to have retained 90% of their radiogenic Ar during 750 Ma of cosmic ray exposure at time-integra...

  10. 40Ar/39Ar ages of lunar impact glasses: Relationships among Ar diffusivity, chemical composition, shape, and size

    Science.gov (United States)

    Zellner, N. E. B.; Delano, J. W.

    2015-07-01

    Lunar impact glasses, which are quenched melts produced during cratering events on the Moon, have the potential to provide not only compositional information about both the local and regional geology of the Moon but also information about the impact flux over time. We present in this paper the results of 73 new 40Ar/39Ar analyses of well-characterized, inclusion-free lunar impact glasses and demonstrate that size, shape, chemical composition, fraction of radiogenic 40Ar retained, and cosmic ray exposure (CRE) ages are important for 40Ar/39Ar investigations of these samples. Specifically, analyses of lunar impact glasses from the Apollo 14, 16, and 17 landing sites indicate that retention of radiogenic 40Ar is a strong function of post-formation thermal history in the lunar regolith, size, and chemical composition. This is because the Ar diffusion coefficient (at a constant temperature) is estimated to decrease by ∼3-4 orders of magnitude with an increasing fraction of non-bridging oxygens, X(NBO), over the compositional range of most lunar impact glasses with compositions from feldspathic to basaltic. Based on these relationships, lunar impact glasses with compositions and sizes sufficient to have retained ∼90% of their radiogenic Ar during 750 Ma of cosmic ray exposure at time-integrated temperatures of up to 290 K have been identified and are likely to have yielded reliable 40Ar/39Ar ages of formation. Additionally, ∼50% of the identified impact glass spheres have formation ages of ⩽500 Ma, while ∼75% of the identified lunar impact glass shards and spheres have ages of formation ⩽2000 Ma. Higher thermal stresses in lunar impact glasses quenched from hyperliquidus temperatures are considered the likely cause of poor survival of impact glass spheres, as well as the decreasing frequency of lunar impact glasses in general with increasing age. The observed age-frequency distribution of lunar impact glasses may reflect two processes: (i) diminished

  11. Impact of chabazite SSZ-13 textural properties and chemical composition on CO2 adsorption applications

    Energy Technology Data Exchange (ETDEWEB)

    Prodinger, Sebastian; Vemuri, Venkata Rama Ses; Varga, Tamas; McGrail, B. Peter; Motkuri, Radha K.; Derewinski, Miroslaw A.

    2016-04-01

    Chabazite SSZ-13 samples with varying silica content (Si/Al from 6 to 35) were synthesized in both stirring and static conditions to obtain material with changing particle size and morphology and thoroughly analysed with various characterization techniques. The role of particle size and chemical compositions of SSZ-13 chabazite on CO2 and N2 adsorption measurements was investigated. The Si/Al ratio played a major role for CO2 adsorption with Al-rich SSZ-13 showing a higher CO2 uptake than Al-poor material. This was attributed to the high density of active charged species in the chabazite cage. Particle size also played an important role in the sorption capacities with smaller particles, obtained in stirring conditions, showing enhanced CO2 uptakes compared to larger particles of same chemical composition. This was associated with an increased density of surface active sites and shorter diffusion pathways.

  12. Wildfire Ash: Chemical Composition, Ash-Soil Interactions and Environmental Impacts

    Science.gov (United States)

    Brook, Anna; Hamzi, Seham; Wittenberg, Lea

    2015-04-01

    produced ash has significant and not always constructive pedological, ecological, hydrological and geomorphological effects and impacts (Shakesby, 2011). Abundant scientific information is assembled either from control fires by collecting samples before and after wildfire event, or conducting laboratory experiments exanimating data under truly isolated conditions (Lugassi et al., 2013). However, an integration and synthesis of the knowledge about ash including deeper understanding of inter-correlation between chemical, physical and morphological compounds in open post-burn environment and its possible interactions in soil formation or impact on soil composition are highly needed. The main aim of the presented study was to advance the science of soil-fire relationship by recognizing the remains ash as a new soil-forming factor, on par with the traditionally recognized factors: parent material, topography, time, climate, organisms, and recently recognized human activity as the sixth factor. This research was conducted to develop new methods to assess impacts and quantify the contributions/influences of post-fire products, mainly ash, on soil composition and soil properties in post-burned environment. We conducted several controlled experiments using 40 soil samples (typical Mediterranean Rendzina soil, pH 6.84, a grayish-brown, humus- and free calcium carbonate- rich, intra-zonal). The samples include bare soils and different types and loads of forest litter, were exposed to different temperatures (200° C, 400° C and 600° C) in a muffle furnace for 2 hours (Pereira et al. 2011) as fire temperature plays a key role in determining ash properties. The ash produced at a low temperatures (50% carbon and retains many of the structural characteristics of the parent material. At higher temperatures, the residue ash is greyish, consisted of very fine particles that preserve almost none of the original structural characteristics of the fuel (Woods and Balfour, 2008) creating

  13. Computing Equilibrium Chemical Compositions

    Science.gov (United States)

    Mcbride, Bonnie J.; Gordon, Sanford

    1995-01-01

    Chemical Equilibrium With Transport Properties, 1993 (CET93) computer program provides data on chemical-equilibrium compositions. Aids calculation of thermodynamic properties of chemical systems. Information essential in design and analysis of such equipment as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical-processing equipment. CET93/PC is version of CET93 specifically designed to run within 640K memory limit of MS-DOS operating system. CET93/PC written in FORTRAN.

  14. Global and Regional Impacts of HONO on the Chemical Composition of Clouds and Aerosols

    Science.gov (United States)

    Elshorbany, Y. F.; Crutzen, P. J.; Steil, B.; Pozzer, A.; Tost, H.; Lelieveld, J.

    2014-01-01

    Recently, realistic simulation of nitrous acid (HONO) based on the HONO / NOx ratio of 0.02 was found to have a significant impact on the global budgets of HOx (OH + HO2) and gas phase oxidation products in polluted regions, especially in winter when other photolytic sources are of minor importance. It has been reported that chemistry-transport models underestimate sulphate concentrations, mostly during winter. Here we show that simulating realistic HONO levels can significantly enhance aerosol sulphate (S(VI)) due to the increased formation of H2SO4. Even though in-cloud aqueous phase oxidation of dissolved SO2 (S(IV)) is the main source of S(VI), it appears that HONO related enhancement of H2O2 does not significantly affect sulphate because of the predominantly S(IV) limited conditions, except over eastern Asia. Nitrate is also increased via enhanced gaseous HNO3 formation and N2O5 hydrolysis on aerosol particles. Ammonium nitrate is enhanced in ammonia-rich regions but not under ammonia-limited conditions. Furthermore, particle number concentrations are also higher, accompanied by the transfer from hydrophobic to hydrophilic aerosol modes. This implies a significant impact on the particle lifetime and cloud nucleating properties. The HONO induced enhancements of all species studied are relatively strong in winter though negligible in summer. Simulating realistic HONO levels is found to improve the model measurement agreement of sulphate aerosols, most apparent over the US. Our results underscore the importance of HONO for the atmospheric oxidizing capacity and corroborate the central role of cloud chemical processing in S(IV) formation

  15. Global and regional impacts of HONO on the chemical composition of clouds and aerosols

    Science.gov (United States)

    Elshorban, Y. F.; Crutzen, P. J.; Steil, B.; Pozzer, A.; Tost, H.; Lelieveld, J.

    2013-09-01

    Nitrous acid (HONO) photolysis can significantly increase HOx (OH+HO2) radical formation, enhancing organic and inorganic oxidation products in polluted regions, especially during winter. It has been reported that chemistry-transport models underestimate sulphate concentrations, mostly during winter. Here we show that HONO can significantly enhance aerosol sulphate (S(VI)), mainly due to the increased formation of H2SO4. Even though in-cloud aqueous phase oxidation of dissolved SO2 (S(IV)) is the main source of S(VI), it appears that HONO related enhancement of H2O2 does not significantly affect sulphate because of the predominantly S(IV) limited conditions, except over eastern Asia. Nitrate is also increased via enhanced gaseous HNO3 formation and N2O5 hydrolysis on aerosol particles. Ammonium nitrate is enhanced in ammonia-rich regions but not under ammonia-limited conditions. Furthermore, particle number concentrations are also higher, accompanied by the transfer from hydrophobic to hydrophilic aerosol modes. This implies a significant impact on the particle lifetime and cloud nucleating properties. The HONO induced enhancements of all species studied are relatively strong in winter though negligible in summer. Simulating realistic HONO levels is found to improve the model-measurement agreement of sulphate aerosols, most apparent over the US. Our results underscore the importance of HONO for the atmospheric oxidizing capacity and the central role of cloud chemical processing in aerosol formation.

  16. The effect of wetting and drying cycles on soil chemical composition and their impact on bulk density evaluation

    International Nuclear Information System (INIS)

    The gamma-ray attenuation technique has been applied successfully in several areas of knowledge such as medicine, industry, chemistry, biology, agriculture and so on. Before the technique application it is important to know the probability of gamma photons interaction with the matter. The linear attenuation coefficient (k) measures the probability per unit length of a photon to be absorbed or scattered while interacting with a sample. k represents the sum of several individual attenuation coefficients due mainly to the photoelectric absorption, coherent and incoherent scatterings and pair production. Soil is characterized as a three phase system composed by solid, liquid and gaseous phases. It is known that for a given photon energy the mass attenuation coefficient (μ) is directly related to the chemical composition of the soil. As a consequence by using the mixture rule, in which (μ) is calculated by adding the products of mass attenuation coefficients and the contents of the chemical components of the soil, it is possible to obtain a theoretical (μ) value. A possible cause of chemical composition changes in soil is the application of repeated wetting and drying (W-D) cycles. Another consequence of these changes in the chemical composition of the soil can be alterations in its (μ). This result can affect how well the gamma-ray attenuation or computed tomography (CT) techniques can determine soil bulk density (ds) or porosity (φ) when samples are submitted to W-D cycles. In this work the soil elemental (oxides) composition variation of three Brazilian soils submitted to the application of W-D cycles was measured in order to evaluate possible changes in the calculated μ as a function of the cycles. Measurements of μ by using radioactive sources of 241Am and 137Cs were also performed. Gamma-ray CT was used as a tool to evaluate the impact of changes in μ induced by the cycles in determinations of ds. The measured and calculated values of μ presented good

  17. Impact of gamma irradiation on chemical composition of Melissa officinalis L.

    OpenAIRE

    Pereira, Eliana; Koike, Amanda; Antonio, Amilcar L.; Barros, Lillian; Ferreira, Isabel C. F. R.

    2014-01-01

    Food irradiation is increasingly recognized as an effective decontamination technique that ensures the chemical and organoleptic quality of the product. This decontamination method leads to a reduction in the application of chemical fumigants and preservatives, which are currently used by the food industry in order to provide higher safety for the consumer since it does not leave chemical residues in food. Melissa officinalis L. (commonly known as lemon balm) is used in several co...

  18. Optical properties of PM2.5 and the impacts of chemical compositions in the coastal city Xiamen in China.

    Science.gov (United States)

    Deng, Junjun; Zhang, Yanru; Hong, Youwei; Xu, Lingling; Chen, Yanting; Du, Wenjiao; Chen, Jinsheng

    2016-07-01

    Continuous in situ measurements of optical properties of fine aerosols (PM2.5) were conducted in the urbanized coastal city Xiamen in Southeast China from November 2013 to January 2014. PM2.5 samples were also collected and chemical compositions including organic carbon (OC), elemental carbon (EC) and water-soluble inorganic ions were determined to investigate the impacts of chemical compositions on aerosol optical properties. Average values of scattering coefficient (bscat), absorption coefficient (babs), extinction coefficient (bext) and single scattering albedo (SSA) were 164.0Mm(-1), 22.4Mm(-1), 187.0Mm(-1) and 0.88, respectively. bscat, babs and bext showed obvious bi-modal diurnal variations with high values in the morning and at night while low value in the early afternoon, whereas SSA exhibited an opposite diurnal variation. Average bscat and babs were largest in the wind direction of southwest and were larger with slower wind. babs was mainly affected by EC, while bscat was affected by ammonium, sulfate, nitrate and OC. The IMPROVE formula was applied to estimate bext based on the chemical species. Results shows that ammonium sulfate was the largest contributor, accounting for 36.4% of bext, followed by organic matter (30.6%), ammonium nitrate (20.1%), EC (9.0%) and sea salt (3.9%). The deterioration in visibility was mainly led by increases in secondary aerosols including sulfate and nitrate. Backward trajectories analysis showed that during the sampling period Xiamen was significantly affected by the air masses originating from the Northern and Northeastern areas. Air masses from the Northern associated with relative higher bext and less relative contribution from ammonium sulfate and more relative contribution from ammonium nitrate, organic matter and sea salt. PMID:27037888

  19. Impact of chemical treatments on the mechanical and water absorption properties of coconut fibre (Cocos nucifera reinforced polypropylene composites

    Directory of Open Access Journals (Sweden)

    Isiaka O. OLADELE

    2016-07-01

    Full Text Available In this work, chemically treated coconut fibres were used to reinforce Homopolymer Polypropylene in order to ascertain the effect of the treatments on the mechanical and water absorption properties of the composites produced. Coconut fibre was first extracted from its husk by soaking it in water and was dried before it was cut into 10 mm lengths. It was then chemically treated in alkali solution of sodium hydroxide (NaOH and potassium hydroxide (KOH in a shaker water bath. The treated coconut fibres were used as reinforcements in polypropylene matrix to produce composites of varied fibre weight contents; 2, 4, 6, 8 and 10 wt.%. Tensile and flexural properties were investigated using universal testing machine while water absorption test was carried out on the samples for 7 days. It was observed from the results that, NaOH treated samples gave the best tensile properties while KOH treated samples gave the best flexural and water repellent properties.

  20. The Impact of the South Asia High Bimodality on the Chemical Composition of the Upper Troposphere and Lower Stratosphere

    Institute of Scientific and Technical Information of China (English)

    YAN Ren-Chang; BIAN Jian-Chun; FAN Qiu-Jun

    2011-01-01

    The South Asia High (SAH) is the dominant feature of the circulation in the upper troposphere and lower stratosphere (UTLS) during the boreal summer, and the upper tropospheric anticyclonic circulation extends into the lower stratosphere. The preferred locations of the center of the SAH occur in two different regions, and the center can be located over the Iranian Plateau or over the Tibetan Plateau. This bimodality has an impact on the distribution of chemical constituents in the UTLS region. We analyzed water vapor (H20), carbon monoxide (CO), and ozone (03) data derived from the Aura Microwave Limb Sounder (MLS) and total column ozone data from the Ozone Monitoring Instrument (OMI). For the Iranian Plateau mode of the SAH, the tropospheric tracers exhibited a positive anomaly over the Iranian Plateau and a negative anomaly over the Tibetan Plateau, whereas the stratospheric tracer exhibited a negative and a positive anomaly over the Iranian Plateau and the Tibetan Plateau, respectively. For the Tibetan Plateau mode, however, the distribution of the anomaly was the reverse of that found for the chemical species in the UTLS region. Furthermore, the locations of the extrema within the anomaly seemed to differ across chemical species. The anomaly extrema for H20 occurred in the vicinity of the SAH ridgeline, whereas CO and O3 exhibited a northward shift of 4-8 degrees. These impacts of the variation in the SAH on the chemical constitutes in the UTLS region can be attributed in part to the dynamical structure delineated by the tropopause field and the temperature field at 100 hPa.

  1. ECF BLEACHING WITH A FINAL HYDROGEN PEROXIDE STAGE: IMPACT ON THE CHEMICAL COMPOSITION OF Eucalyptus globulus KRAFT PULPS

    Directory of Open Access Journals (Sweden)

    Pedro E. G. Loureiro

    2010-11-01

    Full Text Available Two industrial elemental chlorine free (ECF bleaching sequences, D0(EOPD1(EPD2 and OQ(PODP, are compared with respect to the bulk content of lignin, carboxyl, hexeneuronic acids (HexA, and reducing groups after each bleaching stage. HexA groups contribute significantly to the total content of carboxyl groups, and their degradation during chlorine dioxide bleaching is reflected by a decrease of the carboxyl content. The higher degradation using an enhanced use of oxygen-based bleaching chemicals is associated with a higher fiber charge reduction, mainly due to xylan depletion. Additionally, the effect of process variables of a laboratory final hydrogen peroxide stage on the chemical composition of the fully bleached pulp (D0(EOPD1P and OQ(PODP is studied. The ability of final peroxide bleaching to raise the content of carboxyl groups is dependent on the operating conditions and pulp bleaching history. A balance between carbohydrate oxidation and dissolution of oxidized groups determines the effect on fiber charge. The effect of hydrogen peroxide stabilizers added into the final stage on the content of carboxyl groups is also reported.

  2. The Chemical Composition of Honey

    Science.gov (United States)

    Ball, David W.

    2007-01-01

    Honey is a supersaturated sugar solution, created by bees, and used by human beings as a sweetener. However, honey is more than just a supersaturated sugar solution; it also contains acids, minerals, vitamins, and amino acids in varying quantities. In this article, we will briefly explore the chemical composition of honey. (Contains 2 figures and…

  3. ROS production and gene expression in alveolar macrophages exposed to PM(2.5) from Baghdad, Iraq: Seasonal trends and impact of chemical composition.

    Science.gov (United States)

    Hamad, Samera H; Schauer, James J; Antkiewicz, Dagmara S; Shafer, Martin M; Kadhim, Ahmed Kh

    2016-02-01

    The objective of this study was to assess the impact of changes in atmospheric particulate matter (PM) composition on oxidative stress markers in an in-vitro alveolar macrophage (AM) model. Fifty-three PM2.5 samples were collected during a year-long PM sampling campaign in Baghdad, Iraq, a semi-arid region of the country. Monthly composites were analyzed for chemical composition and for biological activity using in-vitro measurements of ROS production and gene expression in the AM model. Twelve genes that were differentially expressed upon PM exposure were identified and their co-associations with the composition of PM2.5 were examined. Ten of those genes were up-regulated in January and April composites; samples which also exhibited high ROS activity and relatively high PM mass concentration. ROS production was statistically correlated with total PM2.5 mass, levoglucosan (a wood burning tracer) and several trace elements of the PM (especially V and Ni, which are associated with oil combustion). The expression of several cytokine genes was found to be moderately associated with PM mass, crustal materials (indication of dusty days or dust storms) and certain metals (e.g. V, Fe and Ni) in the PM. Thus, the ROS activity association with PM2.5, may, in part, be driven by redox-active metals. The antioxidant response genes (Nqo1 and Hmox1) were moderately associated with polyaromatic hydrocarbons (PAHs) and showed a good correlation (r-Pearson of >0.7) with metals linked to vehicle-related emissions (i.e. Cu, Zn and Sb). Examining these associations in a larger sample pool (e.g. daily samples) would improve the power of the analysis and may strengthen the implication of these chemicals in the oxidative stress of biological systems, which could aid in the development of new metrics of PM toxicity. PMID:26618301

  4. A Potential Impact on the Chemical Composition in the Marine Boundary Layer in the Arctic Ocean by Ship Emissions

    Science.gov (United States)

    Xie, Z.; Wang, X.; Blum, J. D.; Sun, L.

    2005-12-01

    Samples of aerosols in the marine boundary layer (MBL) of the Arctic Ocean were collected aboard R/V ()Xuelong during the summer on the Second Chinese Arctic Research Expedition (July-September, 2003). Chemical compositions including major and trace elements and polycyclic aromatic hydrocarbons (PAHs) in aerosol particles were analyzed. Results showed that significant amounts of S, Fe, V and Ni are emitted from ship diesel engines and contaminate the ambient air. The total amount of Fe, which plays a significant role in the ocean ()biological pump, emitted from ships in the Arctic is estimated at 4.33-A106 kg yr-1. Sulfur emitted into the atmosphere may be transformed to sulfur acid and result in a chlorine depletion in sea-salt. Because the global inventory of sulfur from ship exhausts is large and halogens may have important consequences in possible tropospheric ozone destruction, the role of ships in effecting halogen depression in sea-salt should be evaluated. For organic compounds, 17 PAHs including Fluoranthene, Phenanthrene, Chrysene, Indeno[123-cd]pyrene, Pyrene, Benzo[b]fluoranthene, Benzo[ghi]pyrene, Naphthalene, Benzo[a]anthracene, Benzo[k]fluoranthene, Coronene, Fluorene, Benzo[a]pyrene, Acenaphthene, Anthracene, Dibenzo[a,h]anthracene and Acenaphthylene were detected. The average levels of subspecies of PAHs in ambient air ranged from 0.003 to 0.089 ng/m3. Among the 17 PAHs, fluoranthene had a relative high level, while the level of acenaphthylene was relative low. The aerosols contaminated by the ship, which were commonly excluded in previous investigations, thus provide an opportunity to investigate and understand the role of ship emissions in the atmospheric chemistry of the marine boundary layer, especially in the Arctic Ocean.

  5. Chemical composition of PM10 and its in vitro toxicological impacts on lung cells during the Middle Eastern Dust (MED) storms in Ahvaz, Iran.

    Science.gov (United States)

    Naimabadi, Abolfazl; Ghadiri, Ata; Idani, Esmaeil; Babaei, Ali Akbar; Alavi, Nadali; Shirmardi, Mohammad; Khodadadi, Ali; Marzouni, Mohammad Bagherian; Ankali, Kambiz Ahmadi; Rouhizadeh, Ahmad; Goudarzi, Gholamreza

    2016-04-01

    Reports on the effects of PM10 from dust storm on lung cells are limited. The main purpose of this study was to investigate the chemical composition and in vitro toxicological impacts of PM10 suspensions, its water-soluble fraction, and the solvent-extractable organics extracted from Middle Eastern Dust storms on the human lung epithelial cell (A549). Samples of dust storms and normal days (PM10 Iran. The chemical composition and cytotoxicity were analyzed by ICP- OES and Lactase Dehydrogenase (LDH) reduction assay, respectively. The results showed that PM10 suspensions, their water-soluble fraction and solvent-extractable organics from both dust storm and normal days caused a decrease in the cell viability and an increase in LDH in supernatant in a dose-response manner. Although samples of normal days showed higher cytotoxicity than those of dust storm at the highest treated dosage, T Test showed no significant difference in cytotoxicity between normal days and dust event days (P value > 0.05). These results led to the conclusions that dust storm PM10 as well as normal day PM10 could lead to cytotoxicity, and the organic compounds (PAHs) and the insoluble particle-core might be the main contributors to cytotoxicity. Our results showed that cytotoxicity and the risk of PM10 to human lung may be more severe during dust storm than normal days due to inhalation of a higher mass concentration of airborne particles. Further research on PM dangerous fractions and the most responsible components to make cytotoxicity in exposed cells is recommended.

  6. Insights into a dust event transported through Beijing in spring 2012: Morphology, chemical composition and impact on surface aerosols.

    Science.gov (United States)

    Hu, Wei; Niu, Hongya; Zhang, Daizhou; Wu, Zhijun; Chen, Chen; Wu, Yusheng; Shang, Dongjie; Hu, Min

    2016-09-15

    Multiple approaches were used to investigate the evolution of surface aerosols in Beijing during the passage of a dust event at high altitude, which was from the Gobi areas of southern Mongolia and covered a wide range of North China. Single particle analysis with electron microscope showed that the majority of coarse particles were mineral ones, and most of them were in the size range of 1-7μm with a peak of number concentration at about 3.5μm. Based on elemental composition and morphology, the mineral particles could be classified into several groups, including Si-rich (71%), Ca-rich (15%), Fe-rich (6%), and halite-rich (2%), etc., and they were the main contributors to the aerosol optical depth as the dust occurred. The size distributions of surface aerosols were significantly affected by the dust intrusion. The average number concentration of accumulation mode particles during the event was about 400cm(-3), which was much lower than that in heavily polluted days (6300cm(-3)). At the stage of floating dust, the number concentration of accumulation mode particles decreased, and coarse particles contributed to total volume concentration of particulate matter as much as 90%. The accumulation mode particles collected in this stage were mostly in the size range of 0.2-0.5μm, and were rectangular or spherical. They were considered to be particles consisting of ammonium sulfate. New particle formation (NPF) was observed around noon in the three days during the dust event, indicating that the passage of the dust was probably favorable for NPF. PMID:27177135

  7. Chemical composition of PM10 and its in vitro toxicological impacts on lung cells during the Middle Eastern Dust (MED) storms in Ahvaz, Iran.

    Science.gov (United States)

    Naimabadi, Abolfazl; Ghadiri, Ata; Idani, Esmaeil; Babaei, Ali Akbar; Alavi, Nadali; Shirmardi, Mohammad; Khodadadi, Ali; Marzouni, Mohammad Bagherian; Ankali, Kambiz Ahmadi; Rouhizadeh, Ahmad; Goudarzi, Gholamreza

    2016-04-01

    Reports on the effects of PM10 from dust storm on lung cells are limited. The main purpose of this study was to investigate the chemical composition and in vitro toxicological impacts of PM10 suspensions, its water-soluble fraction, and the solvent-extractable organics extracted from Middle Eastern Dust storms on the human lung epithelial cell (A549). Samples of dust storms and normal days (PM10 dust storm and normal days caused a decrease in the cell viability and an increase in LDH in supernatant in a dose-response manner. Although samples of normal days showed higher cytotoxicity than those of dust storm at the highest treated dosage, T Test showed no significant difference in cytotoxicity between normal days and dust event days (P value > 0.05). These results led to the conclusions that dust storm PM10 as well as normal day PM10 could lead to cytotoxicity, and the organic compounds (PAHs) and the insoluble particle-core might be the main contributors to cytotoxicity. Our results showed that cytotoxicity and the risk of PM10 to human lung may be more severe during dust storm than normal days due to inhalation of a higher mass concentration of airborne particles. Further research on PM dangerous fractions and the most responsible components to make cytotoxicity in exposed cells is recommended. PMID:26774778

  8. Graphene composites containing chemically bonded metal oxides

    Indian Academy of Sciences (India)

    K Pramoda; S Suresh; H S S Ramakrishna Matte; A Govindaraj

    2013-08-01

    Composites of graphene involving chemically bonded nano films of metal oxides have been prepared by reacting graphene containing surface oxygen functionalities with metal halide vapours followed by exposure to water vapour. The composites have been characterized by electron microscopy, atomic force microscopy and other techniques. Magnetite particles chemically bonded to graphene dispersible in various solvents have been prepared and they exhibit fairly high magnetization.

  9. The Chemical Composition of Maple Syrup

    Science.gov (United States)

    Ball, David W.

    2007-01-01

    Maple syrup is one of several high-sugar liquids that humans consume. However, maple syrup is more than just a concentrated sugar solution. Here, we review the chemical composition of maple syrup. (Contains 4 tables and 1 figure.)

  10. Chemical Composition of Essential Oil from Akway

    OpenAIRE

    Meike Meilan Lisangan; Bimo Budi Santoso; Gino Nemesio Cepeda; Isak Silamba

    2011-01-01

    Chemical Composition of Essential Oil from Akway. Akway (Drimys piperita Hook f.) is a woody, evergreen andaromatic plan that was a member of winteraceae. This plant is used by Sougb tribe lived in Sururey village, District ofManokwari, to heal malaria and to enhance the vitality of body. The objectives of this research were to know the yieldof essential oil using water distillation of leaves and its chemical composition using gas chromatography and massspectroscopy (GC-MS). The results indic...

  11. Chemical composition of Earth-like planets

    CERN Document Server

    Ronco, M P; Marboeuf, U; Alibert, Y; de Elía, G C; Guilera, O M

    2015-01-01

    Models of planet formation are mainly focused on the accretion and dynamical processes of the planets, neglecting their chemical composition. In this work, we calculate the condensation sequence of the different chemical elements for a low-mass protoplanetary disk around a solar-type star. We incorporate this sequence of chemical elements (refractory and volatile elements) in our semi-analytical model of planet formation which calculates the formation of a planetary system during its gaseous phase. The results of the semi-analytical model (final distributions of embryos and planetesimals) are used as initial conditions to develope N-body simulations that compute the post-oligarchic formation of terrestrial-type planets. The results of our simulations show that the chemical composition of the planets that remain in the habitable zone has similar characteristics to the chemical composition of the Earth. However, exist differences that can be associated to the dynamical environment in which they were formed.

  12. Potential Impacts of Spilled Hydraulic Fracturing Fluid Chemicals on Water Resources: Types, volumes, and physical-chemical properties of chemicals

    Science.gov (United States)

    Hydraulic fracturing (HF) fluid chemicals spilled on-site may impact drinking water resources. While chemicals generally make up <2% of the total injected fluid composition by mass, spills may have undiluted concentrations. HF fluids typically consist of a mixture of base flui...

  13. Chemical composition in relation with biomass ash structure

    Science.gov (United States)

    Holubcik, Michal; Jandacka, Jozef

    2014-08-01

    Biomass combustion can be more complicated like combustion of fossil fuels because it is necessary to solve problems with lower ash melting temperature. It can cause a lot of problems during combustion process. Chemical composition of biomass ash has great impact on sinters and slags creation in ash because it affects structure of heated ash. In this paper was solved relation between chemical composition and structure of heated ash from three types of biomass (spruce wood, miscanthus giganteus and wheat straw). Amount of SiO2, CaO, MgO, Al2O3 and K2O was determined. Structure of heated ash was optically determined after heating to 1000 °C or 1200 °C. Results demonstrated that chemical composition has strong effect on structure and color of heated ash.

  14. Modification of chemical additives to elastomeric compositions

    Science.gov (United States)

    Mukhutdinov, A. A.; Grishin, B. S.

    1994-08-01

    The physicochemical principles of the modification of crystalline chemical additives to elastomeric compositions are examined. A classification of various types of modifications based on scientific principles is given. The modifications are subdivided into physical and physicochemical depending on the configuration of the molecules in the crystals, the defectiveness and dispersity of the crystalline particles, the melting points of the crystals, and the presence of necleophilic and electrophylic centres in the molecules of the components of binary and complex eutectic mixtures. The effectiveness of the modification of the chemical additives is determined by the manifestation in binary systems of these components in elastomeric compositions of physical and chemical synergism due to the occurrence of the relevant processes in such systems. A relation has been discovered between the physical and chemical phenomena accompanying the modification of the chemical additives in binary and complex eutectic mixtures, their influence on the properties of the elastomeric composition is examined, the ecological problems associated with the processing of such materials are discussed, and the relation between the structure and properties of the molecules of the additives is analysed using quantum-chemical calculations. The bibliography includes 92 references.

  15. Chemical Composition and Potential Environmental Impacts of Water-Soluble Polar Crude Oil Components Inferred from ESI FT-ICR MS.

    Directory of Open Access Journals (Sweden)

    Yina Liu

    Full Text Available Polar petroleum components enter marine environments through oil spills and natural seepages each year. Lately, they are receiving increased attention due to their potential toxicity to marine organisms and persistence in the environment. We conducted a laboratory experiment and employed state-of-the-art Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS to characterize the polar petroleum components within two operationally-defined seawater fractions: the water-soluble fraction (WSF, which includes only water-soluble molecules, and the water-accommodated fraction (WAF, which includes WSF and microscopic oil droplets. Our results show that compounds with higher heteroatom (N, S, O to carbon ratios (NSO:C than the parent oil were selectively partitioned into seawater in both fractions, reflecting the influence of polarity on aqueous solubility. WAF and WSF were compositionally distinct, with unique distributions of compounds across a range of hydrophobicity. These compositional differences will likely result in disparate impacts on environmental health and organismal toxicity, and thus highlight the need to distinguish between these often-interchangeable terminologies in toxicology studies. We use an empirical model to estimate hydrophobicity character for individual molecules within these complex mixtures and provide an estimate of the potential environmental impacts of different crude oil components.

  16. Chemical composition of selected Saudi medicinal plants

    Directory of Open Access Journals (Sweden)

    Ihsanullah Daur

    2015-05-01

    Full Text Available Medicinal plants are important in traditional medicine and modern pharmaceutical drugs; therefore, the interest in the analysis of their chemical composition is increasing. In this study, selected medicinal plants including Achillea fragrantissima (Forssk Sch., Amaranthus viridis L., Asteriscus graveolens (Forssk. Less., Chenopodium album L., and Conyza bonariensis (L. Cronquist were collected from the rangeland of western regions (Bahra and Hada areas of Saudi Arabia to study their chemical composition. Eight minerals (Mg, Ca, Cr, Mn, Fe, Co, Cu, and Zn, total phenolic contents, antioxidant activity, and free-radical scavenging ability were examined in order to evaluate the medicinal potential of these plants. All the plants were found to be rich sources of minerals and antioxidants, although there were significant differences (p < 0.05 in their chemical composition, which may provide a rationale for generating custom extracts from specific plants depending on the application. The findings of this study will thus facilitate herbalists in their efforts to incorporate these plants into various formulations based on their chemical composition.

  17. Toward a chemical reanalysis in a coupled chemistry-climate model: An evaluation of MOPITT CO assimilation and its impact on tropospheric composition

    Science.gov (United States)

    Gaubert, B.; Arellano, A. F.; Barré, J.; Worden, H. M.; Emmons, L. K.; Tilmes, S.; Buchholz, R. R.; Vitt, F.; Raeder, K.; Collins, N.; Anderson, J. L.; Wiedinmyer, C.; Martinez Alonso, S.; Edwards, D. P.; Andreae, M. O.; Hannigan, J. W.; Petri, C.; Strong, K.; Jones, N.

    2016-06-01

    We examine in detail a 1 year global reanalysis of carbon monoxide (CO) that is based on joint assimilation of conventional meteorological observations and Measurement of Pollution in The Troposphere (MOPITT) multispectral CO retrievals in the Community Earth System Model (CESM). Our focus is to assess the impact to the chemical system when CO distribution is constrained in a coupled full chemistry-climate model like CESM. To do this, we first evaluate the joint reanalysis (MOPITT Reanalysis) against four sets of independent observations and compare its performance against a reanalysis with no MOPITT assimilation (Control Run). We then investigate the CO burden and chemical response with the aid of tagged sectoral CO tracers. We estimate the total tropospheric CO burden in 2002 (from ensemble mean and spread) to be 371 ± 12% Tg for MOPITT Reanalysis and 291 ± 9% Tg for Control Run. Our multispecies analysis of this difference suggests that (a) direct emissions of CO and hydrocarbons are too low in the inventory used in this study and (b) chemical oxidation, transport, and deposition processes are not accurately and consistently represented in the model. Increases in CO led to net reduction of OH and subsequent longer lifetime of CH4 (Control Run: 8.7 years versus MOPITT Reanalysis: 9.3 years). Yet at the same time, this increase led to 5-10% enhancement of Northern Hemisphere O3 and overall photochemical activity via HOx recycling. Such nonlinear effects further complicate the attribution to uncertainties in direct emissions alone. This has implications to chemistry-climate modeling and inversion studies of longer-lived species.

  18. Chemical Composition of Essential Oil from Akway

    Directory of Open Access Journals (Sweden)

    Meike Meilan Lisangan

    2011-04-01

    Full Text Available Chemical Composition of Essential Oil from Akway. Akway (Drimys piperita Hook f. is a woody, evergreen andaromatic plan that was a member of winteraceae. This plant is used by Sougb tribe lived in Sururey village, District ofManokwari, to heal malaria and to enhance the vitality of body. The objectives of this research were to know the yieldof essential oil using water distillation of leaves and its chemical composition using gas chromatography and massspectroscopy (GC-MS. The results indicated that the yield of leaves essential oil by using water distillation was 0.2%.The essential oil composed by 49 compounds categorized by terpene and its derivatives 83.67%, derivatives of benzene4.08% and alifatic compounds 8.16%.

  19. Chemical Composition and Antibacterial Effects of

    OpenAIRE

    SS Saei Dehkordi; H Tajik; Moradi, M; A Jafari Dehkordi; Ghasemi, S.

    2009-01-01

    Introduction & Objective: Rosmarinus officinalis L. as a member of the Lamiaceae family and lysozyme as a natural antibacterial agent is important in food microbiology, because of its characteristics. The aim of the present study was to determine the chemical composition and anti-listerial activity of Rosmarinus officinalis essential oil (REO) alone and in combination with lysozyme for enhancement of anti-listerial activity of both substances. Materials & Methods: Rosmarinus officinalis ...

  20. Ostrich – yield and chemical composition

    OpenAIRE

    Naseva, Dijana; Pejkovski, Zlatko; Kuzelov, Aco

    2012-01-01

    Faced with the fact that the world’s population is increasing year over year and that it is faced with the lack of food, especially meat, the alimentary technology should necessarily consider each alimentary source. This thesis studies the quality and quantity of ostriches' meat. The results of the live weight, slaughter weight, dressing percentage and losses of weight under chilling, the content of meat and bones in the main parts (thighs, back, thorax) and the chemical composition of the ...

  1. Impact of geographic’s variation on the essential oil yield and chemical composition of three Eucalyptus species acclimated in Tunisia

    Directory of Open Access Journals (Sweden)

    Elaissi Ameur

    2015-06-01

    Full Text Available Present study has been carried out to estimate the impact of geographical distribution on the yield and chemical constitute of three Eucalyptus verities viz E. cinerea F. Muell. ex Benth., E. astringens Maiden and E. sideroxylon A.Cunn. ex Schauer-. These species were collected from six arboreta of Tunisia in January 2008. The essential oil was extracted by hydrodistillation method and estimated the essential oil yield which varies from 1.5±0.1% to 4.0±0.2%. Results of the study revealed that yield of essential oil are not only depends on the Eucalyptus species but also depends on the origin of harvest. E. sideroxylon A. Cunn. exWoolls, cultivated in jbel abderrahman arboreta and E. cinerea F. Muell. ex Benth. from choucha (sejnanae arboreta provided the lowest and the highest percentage of essential oil amongst all the studied provenances, respectively. GC (RI and GC/MS analysis showed the presence of 163 components, representing 98.8 to 99.5% of the total oil. The contents of the different samples varied according to the species and the origin of harvest. The main components of the Eucalyptus essential oil were 1,8-cineole (39.1±0.0 – 79.4±0.0%, followed by α-pinene (2.1±0.0- 30.0±0.0, trans-pinocaveol

  2. In Chemico Evaluation of Tea Tree Essential Oils as Skin Sensitizers: Impact of the Chemical Composition on Aging and Generation of Reactive Species.

    Science.gov (United States)

    Avonto, Cristina; Chittiboyina, Amar G; Wang, Mei; Vasquez, Yelkaira; Rua, Diego; Khan, Ikhlas A

    2016-07-18

    Tea tree oil (TTO) is an essential oil obtained from the leaves of Melaleuca alternifolia, M. linariifolia, or M. dissitiflora. Because of the commercial importance of TTO, substitution or adulteration with other tea tree species (such as cajeput, niaouli, manuka, or kanuka oils) is common and may pose significant risks along with perceived health benefits. The distinctive nature, qualitative and quantitative compositional variation of these oils, is responsible for the various pharmacological as well as adverse effects. Authentic TTOs (especially aged ones) have been identified as potential skin sensitizers, while reports of adverse allergic reactions to the other tea trees essential oils are less frequent. Chemical sensitizers are usually electrophilic compounds, and in chemico methods have been developed to identify skin allergens in terms of their ability to bind to biological nucleophiles. However, little information is available on the assessment of sensitization potential of mixtures, such as essential oils, due to their complexity. In the present study, 10 "tea tree" oils and six major TTO constituents have been investigated for their sensitization potential using a fluorescence in chemico method. The reactivity of authentic TTOs was found to correlate with the age of the oils, while the majority of nonauthentic TTOs were less reactive, even after aging. Further thio-trapping experiments with DCYA and characterization by UHPLC-DAD-MS led to the identification of several possible DCYA-adducts which can be used to deduce the structure of the candidate reactive species. The major TTO components, terpinolene, α-terpinene, and terpinene-4-ol, were unstable under accelerated aging conditions, which led to the formation of several DCYA-adducts. PMID:27286037

  3. Cometary Coma Chemical Composition (C4) Mission

    Science.gov (United States)

    Carle, Glenn C.; Clark, Benton C.; Knocke, Philip C.; OHara, Bonnie J.; Adams, Larry; Niemann, Hasso B.; Alexander, Merle; Veverka, Joseph; Goldstein, Raymond; Huebner, Walter; Morrison, David (Technical Monitor)

    1994-01-01

    Cometary exploration remains of great importance to virtually all of space science. Because comets are presumed to be remnants of the early solar nebula, they are expected to provide fundamental knowledge as to the origin and development of the solar system as well as to be key to understanding of the source of volatiles and even life itself in the inner solar system. Clearly the time for a detailed study of the composition of these apparent messages from the past has come. A comet rendezvous mission, the Cometary Coma Chemical Composition (C4) Mission, is now being studied as a candidate for the new Discovery program. This mission is a highly-focussed and usefully-limited subset of the Cometary Rendezvous Asteroid Flyby (CRAF) Mission. The C4 mission will concentrate on measurements that will produce an understanding of the composition and physical makeup of a cometary nucleus. The core science goals of the C4 mission are 1) to determine the chemical, elemental, and isotopic composition of a cometary nucleus and 2) to characterize the chemical and isotopic nature of its atmosphere. A related goal is to obtain temporal information about the development of the cometary coma as a function of time and orbital position. The four short-period comets -- Tempel 1, Tempel 2, Churyumov-Gerasimenko, and Wirtanen -which all appear to have acceptable dust production rates, were identified as candidate targets. Mission opportunities have been identified beginning as early as 1998. Tempel I with a launch in 1999, however, remains the baseline comet for studies of and planning the C4 mission. The C4 mission incorporates two science instruments and two engineering instruments in the payload to obtain the desired measurements. The science instruments include an advanced version of the Cometary Ice and Dust Experiment (CIDEX), a mini-CIDEX with a sample collection system, an X-ray Fluorescence Spectrometer and a Pyrolysis-Gas Chromatograph, and a simplified version of the Neutral

  4. Mechanical and Chemical Properties of Bamboo/Glass Fibers Reinforced Polyester Composites

    OpenAIRE

    K.Sudha Madhuri,; H.Raghavendra Rao

    2016-01-01

    The chemical resistance of Bamboo/Glass reinforced Polyester hybrid composites to acetic acid, Nitric acid, Hydrochloric acid, Sodium hydroxide, Sodium carbonate, Benzene, Toluene, Carbon tetrachloride and Water was studied. The tensile and impact properties of these composites were also studied. The effect of alkali treatment of bamboo fibers on these properties was studied. It was observed that the tensile and impact properties of the hybrid composites increase with glass fiber ...

  5. Chemical composition of water extracts from shungite and shungite water

    International Nuclear Information System (INIS)

    Chemical analysis of water extracts from shungite-3 of Zagozhino deposit (Karelia) and natural water contacting with shungite rocks are done. Chemical composition and bactericide properties of shungite water are studied

  6. Fatigue behaviour of impacted composite structures

    OpenAIRE

    Garnier, Christian; Pastor, Marie-Laetitia; Lorrain, Bernard; Pantalé, Olivier

    2013-01-01

    International audience The aim of this study was to compare the mechanical behavior of different impact-damaged composite materials. Three composite materials were realized using the Liquid Resin Infusion process (LRI) accord- ing to three different cycles of polymerization. Thus the temperature of the glass transition of the resin was controlled and the influence of this parameter was then determined. In accordance with the aeronautical use of composite materials, the plates were subjecte...

  7. EFFECT OF CHEMICAL COMPOSITION ON RETAINED AUSTENITE IN TRIP STEEL

    Institute of Scientific and Technical Information of China (English)

    Y. Chen; X. Chen; Q.F. Wang; G.L. Yuan; C.Y. Li; X.Y. Li; Y.X. Wang

    2002-01-01

    The systematic chemical compositions including common C, Si, Mn, Al, and micro- alloying elements of Ti and Nb were designed for high volume fraction of retained austenite as much as possible. The thermo-cycle experiments were conducted by using Gleeble 2000 thermo-dynamic test machine for finding the appropriate composition. The experimental results showed that chemical composition had a significant effect on retained austenite, and the appropriate compositions were determined for commercial production of TRIP steels.

  8. Chemical Composition and Antibacterial Effects of

    Directory of Open Access Journals (Sweden)

    SS Saei Dehkordi

    2009-10-01

    Full Text Available Introduction & Objective: Rosmarinus officinalis L. as a member of the Lamiaceae family and lysozyme as a natural antibacterial agent is important in food microbiology, because of its characteristics. The aim of the present study was to determine the chemical composition and anti-listerial activity of Rosmarinus officinalis essential oil (REO alone and in combination with lysozyme for enhancement of anti-listerial activity of both substances. Materials & Methods: Rosmarinus officinalis L. was purchased from a local grocery store at Shahrekord and was identified by the Institute of Medicinal Plants, ACECR. The air-dried aerial parts were subjected to hydrodistillation using a Clevenger apparatus to obtain essential oil and yielded oil was analyzed by GC/MS. Antibacterial activity (on basis of Minimum Inhibitory Concentration (MIC of REO was studied separately and in combination with unheated lysozyme (L and heat-treated lysozyme (HTL on Listeria monocytogenes at different pH (5, 6 and 7 by a micro-broth dilution assay. The collected data were analyzed by SPSS software. Results: In the current study, 98.05% of constituents of the essential oil were identified. The major components were α-pinene (14.06%, 1,8-cineole (13.62%, verbenone (11.2%, camphor (10.51%, borneol (7.3%, 3-octanone (7.02%, camphene (5.46% and linalool (5.07%. The inhibitory action of REO was stronger at lower pH especially 5 (MIC=225 μg/mL. Inhibition by L at pH 5 was 640 μg/mL but no inhibition was seen at pH 7. HTL resulted in more effective inhibition than L, especially at pH 5 and heat-treatment 80˚C (MIC: 160 μg/mL. Conclusion: Combination of L + REO and particularly HTL + REO was led to enhancement of bacterial inhibition. It was concluded that REO by the identified chemical composition was effective alone or in combination with L or HTL on Listeria monocytogenes as a food-borne pathogen.

  9. On-line chemical composition analyzer development

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, M.J.; Garrison, A.A.; Muly, E.C.; Moore, C.F.

    1992-02-01

    The energy consumed in distillation processes in the United States represents nearly three percent of the total national energy consumption. If effective control of distillation columns can be accomplished, it has been estimated that it would result in a reduction in the national energy consumption of 0.3%. Real-time control based on mixture composition could achieve these savings. However, the major distillation processes represent diverse applications and at present there does not exist a proven on-line chemical composition sensor technology which can be used to control these diverse processes in real-time. This report presents a summary of the findings of the second phase of a three phase effort undertaken to develop an on-line real-time measurement and control system utilizing Raman spectroscopy. A prototype instrument system has been constructed utilizing a Perkin Elmer 1700 Spectrometer, a diode pumped YAG laser, two three axis positioning systems, a process sample cell land a personal computer. This system has been successfully tested using industrially supplied process samples to establish its performance. Also, continued application development was undertaken during this Phase of the program using both the spontaneous Raman and Surface-enhanced Raman modes of operation. The study was performed for the US Department of Energy, Office of Industrial Technologies, whose mission is to conduct cost-shared R D for new high-risk, high-payoff industrial energy conservation technologies. Although this document contains references to individual manufacturers and their products, the opinions expressed on the products reported do not necessarily reflect the position of the Department of Energy.

  10. Impact damage characterization of composite materials

    Science.gov (United States)

    Korkmaz, Yesim

    2002-04-01

    Impact damage in structural composites depends on their material properties, component geometry and a variety of impact parameters and experimental determination of their detailed characteristics requires prohibitively large test matrices. The effects of some of these parameters can be understood through simulation models that complement experimental results. In this dissertation a series of finite element models are developed using MSC/NASTRAN for calculating contact laws and progressive damage (e.g., matrix cracking, delamination and fiber break) in graphite/epoxy laminates subject to low and intermediate velocity impact. The validity of the computational models is supported by theoretical calculations involving idealized cases. The effects of laminate geometry as well as the impact parameters on the nature and degree of damage are studied. The global force-time and displacement-time responses of the laminate during impact are also studied. The results of this research can be used for damage growth prediction in composite structural components subject to impact loads.

  11. Chemical composition of rainwater in Eastern France

    Science.gov (United States)

    Sanusi, Astrid; Wortham, Henri; Millet, Maurice; Mirabel, Philippe

    Rainwater sampled weekly at nine sites in eastern France from October 1991 to March 1992 has been analysed for major ions (Cl -, NO 3-, SO s2-, NH 4+, Na +, K +, Mg 2+ and Ca 2+), pH and conductivity. The major elements are SO 42- and Cl - for the anions and NH 4+ and Ca 2+ for the cations. The major ion concentrations are higher in urban areas, especially at Colmar (no.2), where rainfall amounts are low. Surprisingly, the acidity is higher at the sites in rural areas [i.e. mean pH of 4.4 for Ban sur Meurthe (no. 7)] and lower in the urban areas [mean pH of 5.0 for Strasbourg (no. 1) and pH of 5.7 for Colmar (no. 2)]. This is probably due to the presence of CaCO 3 in the "loess", which is the major constituent of soils in the upper Rhine valley. The relationship between the chemical composition of rain andair-mass trajectories for four humid weeks which presented only one rain event are also examined.

  12. Mechanical and Chemical Properties of Bamboo/Glass Fibers Reinforced Polyester Composites

    Directory of Open Access Journals (Sweden)

    K.Sudha Madhuri,

    2016-01-01

    Full Text Available The chemical resistance of Bamboo/Glass reinforced Polyester hybrid composites to acetic acid, Nitric acid, Hydrochloric acid, Sodium hydroxide, Sodium carbonate, Benzene, Toluene, Carbon tetrachloride and Water was studied. The tensile and impact properties of these composites were also studied. The effect of alkali treatment of bamboo fibers on these properties was studied. It was observed that the tensile and impact properties of the hybrid composites increase with glass fiber content. The author investigated the interfacial bonding between Glsss/Bamboo fiber composites by SEM. These properties found to be higher when alkali treated bamboo fibers were used in hybrid composites. The hybrid fiber composites showed better resistance to the chemicals mentioned above. The elimination of amorphous hemi-cellulose with alkali treatment leading to higher crystallinity of the bamboo fibers with alkali treatment may be responsible for these observations.

  13. Determining the chemical composition of cloud condensation nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Williams, A.L.; Rothert, J.E.; McClure, K.E. (Illinois State Water Survey, Champaign, IL (United States)); Alofs, D.J.; Hagen, D.E.; White, D.R.; Hopkins, A.R.; Trueblood, M.B. (Missouri Univ., Rolla, MO (USA). Cloud and Aerosol Science Lab.)

    1992-02-01

    This second progress report describes the status of the project one and one-half years after the start. The goal of the project is to develop the instrumentation to collect cloud condensation nuclei (CCN) in sufficient amounts to determine their chemical composition, and to survey the CCN composition in different climates through a series of field measurements. Our approach to CCN collection is to first form droplets on the nuclei under simulated cloud humidity conditions, which is the only known method of identifying CCN from the background aerosol. Under cloud chamber conditions, the droplets formed become larger than the surrounding aerosol, and can then be removed by inertial impaction. The residue of the evaporated droplets represents the sample to be chemically analyzed. Two size functions of CCN particles are collected by first forming droplets on the large particles are collected by first forming droplets on the large CCN in a haze chamber at 100% relative humidity, and then activating the remaining CCN at 1% supersaturation in a cloud chamber. The experimental apparatus is a serious flow arrangement consisting of an impactor to remove the large aerosol particles, a haze chamber to form droplets on the remaining larger CCN, another impactor to remove the haze droplets containing the larger CCN particles for chemical analysis, a continuous flow diffusion (CFD) cloud chamber to form droplets on the remaining smaller CCN, and a third impactor to remove the droplets for the small CCN sample. Progress is documented here on the development of each of the major components of the flow system. Chemical results are reported on tests to determine suitable wicking material for the different plates. Results of computer modeling of various impactor flows are discussed.

  14. #The #impact of mineral composition on compressibility of saturated soils

    OpenAIRE

    Dolinar, Bojana

    2012-01-01

    This article analyses the impact of soils` mineral composition on their compressibility. Physical and chemical properties of minerals which influence the quantity of intergrain water in soils and, consequently, the compressibility of soils are established by considering the previous theoretical findings. Test results obtained on artificially prepared samples are used to determine the analytical relationship between the water content and stress state, depending on the mineralogical properties ...

  15. Sensory properties and chemical composition of Sharri cheese from Kosovo

    OpenAIRE

    Agim Rysha; Frane Delaš

    2014-01-01

    Food sensory properties, analyses and chemical composition are very important because they provide information about product quality and end-user acceptance or preferences. An assessment of sensory characteristics and chemical composition of mountain sheep and cow’s-milk cheese from shepherd’s huts and industrial manufacturers in Kosovo was carried out. Consumer-oriented tests using a 9 point hedonic scale were conducted in order to determine Sharri cheese acceptability. Chemical parameters (...

  16. FOD impact testing of composite fan blades

    Science.gov (United States)

    Johns, R. H.

    1974-01-01

    The results of impact tests on large, fiber composite fan blades for aircraft turbofan engine applications are discussed. Solid composite blades of two different sizes and designs were tested. Both graphite/epoxy and boron/epoxy were evaluated. In addition, a spar-shell blade design was tested that had a boron/epoxy shell bonded to a titanium spar. All blades were tested one at a time in a rotating arm rig to simulate engine operating conditions. Impacting media included small gravel, two inch diameter ice balls, gelatin, and RTV foam-simulated birds, as well as starlings and pigeons. The results showed little difference in performance between the graphite and boron/epoxy blades. The results also indicate that composite blades may be able to tolerate ice ball and small bird impacts but need improvement to tolerate birds in the small duck and larger category.

  17. Impact testing on composite fan blades

    Science.gov (United States)

    Johns, R. H.

    1974-01-01

    The results of impact tests on large, fiber composite fan blades for aircraft turbofan engine applications are discussed. Solid composite blades of two different sizes and designs were tested. Both graphite/epoxy and boron/epoxy were evaluated. In addition, a spar-shell blade design was tested that had a boron/epoxy shell bonded to a titanium spar. All blades were tested one at a time in a rotating arm rig to simulate engine operating conditions. Impacting media included small gravel, two inch diameter ice balls, gelatin and RTV foam-simulated birds, as well as starlings and pigeons. The results showed little difference in performance between the graphite and boron/epoxy blades. The results also indicate that composite blades may be able to tolerate ice ball and small bird impacts but need improvement to tolerate birds in the small duck and larger category.

  18. Propolis chemical composition and honeybee resistance against Varroa destructor.

    Science.gov (United States)

    Popova, M; Reyes, M; Le Conte, Y; Bankova, V

    2014-01-01

    Propolis is known as honeybee chemical defence against infections and parasites. Its chemical composition is variable and depends on the specificity of the local flora. However, there are no data concerning the relationship between propolis chemical composition and honeybee colony health. We tried to answer this question, studying the chemical composition of propolis of bee colonies from an apiary near Avignon, which are tolerant to Varroa destructor, comparing it with colonies from the same apiary which are non-tolerant to the mites. The results indicated that non-tolerant colonies collected more resin than the tolerant ones. The percentage of four biologically active compounds - caffeic acid and pentenyl caffeates - was higher in propolis from tolerant colonies. The results of this study pave the way to understanding the effect of propolis in individual and social immunity of the honeybees. Further studies are needed to clarify the relationship between propolis chemical composition and honeybee colony health.

  19. Influence of Breed, Parity and Food Intake on Chemical Composition of First Colostrum in Cow

    Directory of Open Access Journals (Sweden)

    Simona Zarcula

    2010-05-01

    Full Text Available The aim of this research was to establish the influence of breed, parity and food intake on chemical composition of first colostrum. We observed that fat, proteins, lactose and dry matter were higher in cows from second and third lactation compared to those in fourth lactation. Cow's breed also influenced the colostrum composition, superior quality being obtained in case of Romanian White and Black comparing Holstein Friesian cows. The unbalanced energo-proteic ratio had a negative impact on chemical composition of first colostrum.

  20. Ultrasonic Imaging of Ballistically Impacted Composite Armour

    Directory of Open Access Journals (Sweden)

    S.S. Samant

    2013-12-01

    Full Text Available The ability of Kevlar-Polypropylene composite armour to withstand the impact of projectile (calibre 7.62 mm is investigated using immersion type ultrasonic c- scan method. The Kevlar polypropylene composite laminate is made of 36 Kevlar and 74 polypropylene layers having thickness 20 mm and are subjected to bullet impact with different striking velocities. At each location of the probe ultrasonic features peak amplitude and signal amplitude are extracted from digitized data and stored in controlling PC. Using UPGMA clustering technique, c-scan images of impacted zones of Kevlar polypropylene composite plate has been generated. The extent of core damage zone in the laminates correlated to the impact velocities of projectile. It is observed that areas of core damage zone are found to increase with the energy loss of the bullet. The area of core damage zone increases rapidly in case of shot lodging. Also peak amplitude and signal energy features are more reliable and sensitive for evaluation of damage in composite laminates.

  1. Analysis of changes in the chemical composition of the blast furnace coke at high temperatures

    Directory of Open Access Journals (Sweden)

    A. Konstanciak

    2012-12-01

    Full Text Available Purpose: The main purpose of this paper was to analyze the behavior of coke in the blast furnace. The analysis of changes in chemical composition of coke due to impact of inert gas and air at different temperatures was made. The impact of the application of the thermoabrasion coefficient on the porosity of coke was also analyzed.Design/methodology/approach: By applying the Computer Thermochemical Database of the TERMO system (REAKTOR1 and REAKTOR3 three groups of substances can be distinguished. The chemical composition of blast furnace coke and the results of calculations of changes of chemical composition of coke heat treated under certain conditions were compared. The structural studies of these materials were presented.Findings: The results of the analysis of ash produced from one of Polish cokes was taken for consideration. This is not the average composition of Polish coke ashes, nevertheless it is representative of most commonly occurring chemical compositions.Practical implications: Thanks to the thermochemical calculations it is possible to predict ash composition after the treatment in a blast furnace. Those information was crucial and had an actual impact on determining the coke quality.Originality/value: Presentation of the analytical methods which, according to author, can be very useful to evaluate and identify the heat treatment for blast furnaces cokes. The research pursued represents part of a larger project carried out within the framework of Department Extraction and Recycling of Metals, Czestochowa University of Technology.

  2. Impact behaviour of omega stiffened composite panels

    Science.gov (United States)

    Riccio, A.; Ricchiuto, R.; Saputo, S.; Raimondo, A.; Caputo, F.; Antonucci, V.; Lopresto, V.

    2016-02-01

    The mechanical response of reinforced composite structures under impact loads is particularly challenging owing to the rising of multiple and simultaneous failure phenomena. Indeed, low velocity impacts may produce intra-laminar damages, like fibre breakage and matrix cracking, and inter-laminar damages, such as delaminations and skin-stringer debonding. As already remarked, these failure phenomena often take place simultaneously, leading to a significant reduction in strength and stability of the composite components. In this paper, the behaviour of stiffened composite panels, with omega shaped stringers, under low velocity impacts is numerically investigated by means of non-linear explicit FEM analyses. Different impact energy levels are considered and correlation with experimental data is provided, in terms of impact force, displacement and energy. A sensitivity analysis has been performed to investigate the influence of numerical models' approximations on the accuracy of the obtained numerical results. Models with an increasing level of damage simulation details have been adopted to study the effects of combined and separated intra-laminar and inter-laminar failures providing an interesting insight on the modelling requirements for an accurate simulation of the investigated phenomena.

  3. Fiber composite fan blade impact improvement

    Science.gov (United States)

    Graff, J.; Stoltze, L.; Varholak, E. M.

    1976-01-01

    The improved foreign object damage resistance of a metal matrix advanced composite fan blade was demonstrated. The fabrication, whirl impact test and subsequent evaluation of nine advanced composite fan blades of the "QCSEE" type design were performed. The blades were designed to operate at a tip speed of 282 m/sec. The blade design was the spar/shell type, consisting of a titanium spar and boron/aluminum composite airfoils. The blade retention was designed to rock on impact with large birds, thereby reducing the blade bending stresses. The program demonstrated the ability of the blades to sustain impacts with up to 681 g slices of birds at 0.38 rad with little damage (only 1.4 percent max weight loss) and 788 g slices of birds at 0.56 rad with only 3.2 percent max weight loss. Unbonding did not exceed 1.1 percent of the post-test blade area during any of the tests. All blades in the post-test condition were judged capable of operation in accordance with the FAA guidelines for medium and large bird impacts.

  4. Essential Oils, Part III: Chemical Composition.

    Science.gov (United States)

    de Groot, Anton C; Schmidt, Erich

    2016-01-01

    Data on the chemistry of essential oils which have caused contact allergy are provided. The largest group of chemicals found in essential oils consists of terpenes. The number of identified components usually ranges from 100 to 250, but in some oils (lavender, geranium, rosemary) 450 to 500 chemicals have been found. Many chemicals are present in a large number of oils, up to 98% for β-caryophyllene and 97% for limonene. Chemicals that are important constituents of >20 oils are limonene, linalool, and α-pinene. In many essential oils, there are 2 to 5 components which together constitute over 50% to 60% of the oil. In some oils, however, there is one dominant ingredient, making up more than 50% of the oil, including (E)-anethole in aniseed and star anise oil, carvone in spearmint oil, 1,8-cineole (eucalyptol) in Eucalyptus globulus oil, and (E)-cinnamaldehyde in cassia oil. The most important chemicals in 93 individual oils are specified. PMID:27427817

  5. Chemical composition of coal and coke ash

    Energy Technology Data Exchange (ETDEWEB)

    Pluzhnikov, A.I.; Tsymbal, G.L.

    1983-05-01

    Karaganda Metals uses low sulphur coal from Karaganda and Kuzbass coalfields and is seeking ways of improving coke in terms of ash and its effect on blast furnace operations, chiefly coke rate reduction. Ash in coke has a critical effect on iron quality, slag composition and desulphurisation. The index used to demonstrate the change in coke consistency during incineration in the blast furnace is that of pyrolytic change: this closely reflects changes in coal charge composition. Control of coke ash content by suitably selecting the charge can be used to influence slag basicity and iron quality.

  6. Exploring the chemical composition of water in the Kandalaksha Bay

    Science.gov (United States)

    Mazukhina, Svetlana; Masloboev, Vladimir; Chudnenko, Konstantin; Khaitov, Vadim; Maksimova, Victoria; Belkina, Natalia

    2014-05-01

    Oil films were noted at the head of the Kandalaksha Bay as far back as in 1971, as soon as the first stage of the oil tank farm had been commissioned (the autumn of 1970). In 1997-1998 there were accidental oil spills posing a real threat to the Kandalaksha Reserve biota. In May 2011, oil spills from the Belomorsk oil tank farm resulted in a local environmental emergency. In this work we have traced the evolution of polluted water by means of hydrogeochemical monitoring and reconstructing the chemical composition of surface and near-bottom water of the Kandalaksha Bay by using physical-chemical modeling (Selector software package, Chudnenko, 2010). The surface and near-bottom water was sampled in the summer of 2012 and 2013 at the following sites: under the numbers 3 (N 67.2.673, E 32.23.753); 4 (N 67.3.349, E 32.28.152); 1 (N 67.5.907, E 32.29.779), and 2 (N 67.6.429, E 32.30.539). The monitored objects and sampling time were sensitive to both the effects of the White Sea water (high tide), fresh water, and water affected by human impact (the oil tank farm). At each site, three samples were taken. The next stage involved reconstructing of the sea water ion composition by modeling within the Al-B-Br-Ar-He-Ne-C-Ca-Cl-F-K-Mg-Mn-N-Na-P-S-Si-Sr-Cu-Zn-H-O-e system, where e is an electron. Modeling of the chemical composition of near-bottom water (site 3) has revealed high contents of carbon dioxide, hydrogen disulphide, hydrocarbonates, and no oxygen (Ehhydrocarbons that might have got to the sampling area in May 2011, or as the result of constant leakage of petroleum hydrocarbons from the oil tank farm. Sampling at site 4 in 2013 has revealed petroleum hydrocarbons both in surface (0.09 mg/l) and near-bottom (0.1 mg/l) water. Both monitoring and modeling have demonstrated that hydrobionts on areas adjoining the oil tank farm are far from prospering. Monitoring should be accompanied by express analysis of oxidizing conditions in both the soil and near-bottom water

  7. Honey: Chemical composition, stability and authenticity.

    Science.gov (United States)

    da Silva, Priscila Missio; Gauche, Cony; Gonzaga, Luciano Valdemiro; Costa, Ana Carolina Oliveira; Fett, Roseane

    2016-04-01

    The aim of this review is to describe the chemical characteristics of compounds present in honey, their stability when heated or stored for long periods of time and the parameters of identity and quality. Therefore, the chemical characteristics of these compounds were examined, such as sugars, proteins, amino acids, enzymes, organic acids, vitamins, minerals, phenolic and volatile compounds present in honey. The stability of these compounds in relation to the chemical reactions that occur by heating or prolonged storage were also discussed, with increased understanding of the behavior regarding the common processing of honey that may compromise its quality. In addition, the identity and quality standards were described, such as sugars, moisture, acidity, ash and electrical conductivity, color, 5-HMF and diastase activity, along with the minimum and maximum limits established by the Codex Alimentarius. PMID:26593496

  8. Honey: Chemical composition, stability and authenticity.

    Science.gov (United States)

    da Silva, Priscila Missio; Gauche, Cony; Gonzaga, Luciano Valdemiro; Costa, Ana Carolina Oliveira; Fett, Roseane

    2016-04-01

    The aim of this review is to describe the chemical characteristics of compounds present in honey, their stability when heated or stored for long periods of time and the parameters of identity and quality. Therefore, the chemical characteristics of these compounds were examined, such as sugars, proteins, amino acids, enzymes, organic acids, vitamins, minerals, phenolic and volatile compounds present in honey. The stability of these compounds in relation to the chemical reactions that occur by heating or prolonged storage were also discussed, with increased understanding of the behavior regarding the common processing of honey that may compromise its quality. In addition, the identity and quality standards were described, such as sugars, moisture, acidity, ash and electrical conductivity, color, 5-HMF and diastase activity, along with the minimum and maximum limits established by the Codex Alimentarius.

  9. Contributions regarding chemical composition variation in ultrasonic field overlaying welding

    Science.gov (United States)

    Amza, Gh; Petrescu, V.; Niţoi, D. F.; Amza, C. Gh; Dimitrescu, A.; Apostolescu, Z.

    2016-08-01

    Paper presents a new reconditioning method based on ultrasonic field and analyses the modificated structure composition in three zone: filler material, thermal influenced zone, and base material. Also, chemical composition variation as a result of ultrasonic wave influence is studied besides the ultrasonic wave influence on dilution process.

  10. Investigation of the chemical composition of mineral fractions of the Tsarev chondrite

    Energy Technology Data Exchange (ETDEWEB)

    Semenova, L.F.; Fisenko, A.V.; Kashkarova, V.G.; Melnikova, L.N.; Bezrogova, E.V.; Pomytkina, V.A.; Lavrukhina, A.K.

    1984-01-01

    A selective-dissolution method was used to study the chemical composition of mineral fractions of the Tsarev chondrite. Redistributions of Na, K, and P were found in mineral fractions of L-chondrites which have experienced different degrees of impact metamorphism. It is shown that the normative composition of inclusions in olivine in the Tsarev chondrite is characterized by a high content of diopside and anorthite components. 24 references.

  11. The chemical composition of the Galileian satellites

    CERN Document Server

    Celebonovic, V

    1998-01-01

    Using the semiclassical theory of dense matter proposed by P.Savic and R.Kasanin,the mean molecular masses of the Galilean satellites of Jupiter are determined.The calculated values are fitted by plausible combinations of chemical elements,and the results are in good agreement with the observations by "Galileo".Possible cosmogonical explanations are briefly discussed.

  12. Lorentz invariance violation and chemical composition of ultra high energy cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Saveliev, Andrey; Sigl, Guenter [Universitaet Hamburg, II. Institut fuer Theoretische Physik, Hamburg (Germany); Maccione, Luca [Ludwig-Maximilians-Universitaet, Fakultaet fuer Physik, Muenchen (Germany); Max-Planck-Institut fuer Physik, Werner-Heisenberg-Institut, Muenchen (Germany)

    2012-07-01

    After a general introduction to Lorentz Invariance Violation (LIV) we present constraints on Planck scale suppressed Lorentz breaking terms coming from the comparison between theoretical predictions and current observations of ultra high energy cosmic rays (UHECR). Finally, we discuss further prospects and future developments in the topic, focusing in particular on the possible impact on the chemical composition of UHECRs.

  13. Impact Loading of Composite and Sandwich Structures

    OpenAIRE

    Kazemahvazi, Sohrab

    2010-01-01

    Low weight is one of the most important factors in the design process of high speed naval ships, road vehicles and aircrafts. Lower structural weight enables the possibility of down-sizing the propulsion system and thus decrease manufacturing and operating costs as well as reducing the environmental impact. Two efficient ways of reducing the structural weight of a structure is by using high performance composite materials and by using geometrically efficient structures such as the sandwich co...

  14. Genus Mikania: chemical composition and phytotherapeutical activity

    Directory of Open Access Journals (Sweden)

    Luciane C. Rufatto

    2012-12-01

    Full Text Available The genus Mikania ranks high in the list of best-selling natural products in the world. Its main distribution is in South America, but some species are found in Asia, North America and Africa. It is used for treating fever, rheumatism, colds and respiratory diseases, as well as snake bites and scorpion stings, due to its broad spectrum of action. There are approximately 430 species of this genus and only 12% have been studied, highlighting their chemical and pharmacological diversity. The main chemical groups are: coumarins and derivatives, sesquiterpenes, sesquiterpenes lactones, diterpenes, phytosterols/terpenoids and flavonoids. This review aims to supply useful references for scientists interested in natural products and the search for new compounds, from over the 300 already described for the genus.

  15. Impact of the changes in the chemical composition of pore water on chemical and physical stability of natural clays. A review of natural cases and related laboratory experiments and the ideas on natural analogues for bentonite erosion/non-erosion

    International Nuclear Information System (INIS)

    A scientific literature survey was compiled with the specific objective to find information for smectite mobilization and/or retention in natural clay formations caused by contact with water with low ionic concentrations such as can be expected during and after an ice age. Evidence was sought if smectite particles are lost from the clay to the water and if accessory minerals that remain could form a growing filter slowing down or stopping further loss of smectite. Bentonites are present in geological layers for hundreds of millions of years. There is limited exchange with surrounding layers, eg K transported into the bentonite layer from surrounding shale layers leading to the increased illite % in smectite-illite of the bentonite. Another process is silicification of surrounding layers leading to lowered permeability of surrounding rocks. Geological literature data on historical bentonites do not consider colloid formation in low ionic strength water as relevant mechanism for smectite mobilization. However there are no studied cases where this could be a relevant mechanism (as proposed by colloid release scenario). Soil researchers have studied the mechanism of colloid release in laboratory experiments and have found that there has to be an abrupt change in infiltrating water quality leading to 'osmotic explosion'. Clogging the pores in the lower part of the soil column has followed, leading to dramatic decrease of hydraulic conductivity in vertical profile and increased surface runoff. So, although limited, there are literature evidences of clay colloids release from bentonites/smectites caused by low-ionic circumneutral water. The geological settings to look for natural analogue studies include (1) Bentonite/smectite similar to what is used in repository. (2) Water similar to the composition of glacial meltwater. (3) Scenario similar to what is proposed in the bentonite erosion project. The problem related to the study of historical bentonite profiles is the

  16. Differential effects of conifer and broadleaf litter inputs on soil organic carbon chemical composition through altered soil microbial community composition.

    Science.gov (United States)

    Wang, Hui; Liu, Shi-Rong; Wang, Jing-Xin; Shi, Zuo-Min; Xu, Jia; Hong, Pi-Zheng; Ming, An-Gang; Yu, Hao-Long; Chen, Lin; Lu, Li-Hua; Cai, Dao-Xiong

    2016-01-01

    A strategic selection of tree species will shift the type and quality of litter input, and subsequently magnitude and composition of the soil organic carbon (SOC) through soil microbial community. We conducted a manipulative experiment in randomized block design with leaf litter inputs of four native subtropical tree species in a Pinus massoniana plantation in southern China and found that the chemical composition of SOC did not differ significantly among treatments until after 28 months of the experiment. Contrasting leaf litter inputs had significant impacts on the amounts of total microbial, Gram-positive bacterial, and actinomycic PLFAs, but not on the amounts of total bacterial, Gram-negative bacterial, and fungal PLFAs. There were significant differences in alkyl/O-alkyl C in soils among the leaf litter input treatments, but no apparent differences in the proportions of chemical compositions (alkyl, O-alkyl, aromatic, and carbonyl C) in SOC. Soil alkyl/O-alkyl C was significantly related to the amounts of total microbial, and Gram-positive bacterial PLFAs, but not to the chemical compositions of leaf litter. Our findings suggest that changes in forest leaf litter inputs could result in changes in chemical stability of SOC through the altered microbial community composition. PMID:27256545

  17. Chemical Abstracts Service Chemical Registry System: History, Scope, and Impacts.

    Science.gov (United States)

    Weisgerber, David W.

    1997-01-01

    Describes the history, scope, and applications of the Chemical Abstracts Service Chemical Registry System, a computerized database that uniquely identifies chemical substances on the basis of their molecular structures. Explains searching the system is and discusses its use as an international resource. (66 references) (Author/LRW)

  18. Chemical Analysis of Emu Feather Fiber Reinforced Epoxy Composites

    Directory of Open Access Journals (Sweden)

    V.Chandra sekhar

    2015-07-01

    Full Text Available A composite is usually made up of at least two materials out of which one is binding material called as matrix and other is a reinforcement material known as fiber. For the past ten years research is going on to explore possible composites with natural fiber like plant fibers and animal fibers. The important characteristics of composites are their strength, hardness light in weight. It is also necessary to study about the resistance of the composites for deferent chemicals. In the present work, composites prepared with epoxy (Araldite LY-556 as resin and „emu‟ bird feathers as fiber have been tested for chemical resistance. The composites were prepared by varying fiber loading (P of „emu‟ feathers ranging from 1 to 5 and length (L of feather fibers from 1 to 5 cm. The composites thus prepared were subjected to various chemicals (Acids, Alkalis, solvents etc.. Observations were plotted and studied. The results reveal that there will be weight gain for the composite samples after three days, when treated with Hydrochloric acid, Sodium carbonate, Acetic acid, Sodium hydroxide, Nitric acid and Ammonium hydroxide. Weight loss was observed for all the samples including pure epoxy when treated with Benzene, Carbon tetra chloride and Toluene.

  19. The Chemical Composition of Praesepe (M44)

    CERN Document Server

    Boesgaard, Ann Merchant; Lum, Michael G

    2013-01-01

    Star clusters have long been used to illuminate both stellar evolution and Galactic evolution. They also hold clues to the chemical and nucleosynthetic processes throughout the history of the Galaxy. We have taken high signal-to-noise, high-resolution spectra of 11 solar-type stars in the Praesepe open cluster to determine the chemical abundances of 16 elements: Li, C, O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Fe, Ni, Y, and Ba. We have determined Fe from Fe I and Fe II lines and find [Fe/H] = +0.12 $\\pm$0.04. We find that Li decreases with temperature due to increasing Li depletion in cooler stars; it matches the Li-temperature pattern found in the Hyades. The [C/Fe] and [O/Fe] abundances are below solar and lower than the field star samples due to the younger age of Praesepe (0.7 Gyr) than the field stars. The alpha-elements, Mg, Si, Ca, and Ti, have solar ratios with respect to Fe, and are also lower than the field star samples. The Fe-peak elements, Cr and Ni, track Fe and have solar values. The neutron captu...

  20. Cometary coma chemical composition (C4) mission. [Abstract only

    Science.gov (United States)

    Carle, G. C.; Clark, B. C.; Niemann, H. B.; Alexander, M.; Knocke, P. C.; O'Hara, B. J.

    1994-01-01

    Cometary missions are of enormous fundamental importance for many different space science disciplines, including exobiology. Comets are presumed relics of the earliest, most primitive material in the solar nebula and are related to the planetesimals. They undoubtedly provided a general enrichment of volatiles to the inner solar system (contributing to atmospheres and oceans) and may have been key to the origin of life. A Discovery class, comet rendezvous mission, the Cometary Coma Chemical Composition (C4) Mission, was selected for further study by NASA earlier this year. The C4 Mission is a highly focused and usefully-limited subset of the Cometary Rendezvous Asteroid Flyby (CRAF) Mission, concentrating exclusively on measurements which will lead to an understanding of the chemical composition and make-up of the cometary nucleus. The scientific goals of the Cometary Coma Chemical Composition (C4) Mission are to rendezvous with a short-period comet and (1) to determine the elemental, chemical, and isotopic composition of the nucleus and (2) to characterize the chemical and isotopic nature of its atmosphere. Further, it is a goal to obtain preliminary data on the development of the coma (dust and gas composition) as a function of time and orbital position.

  1. Chemical composition analysis and authentication of whisky.

    Science.gov (United States)

    Wiśniewska, Paulina; Dymerski, Tomasz; Wardencki, Waldemar; Namieśnik, Jacek

    2015-08-30

    Whisky (whiskey) is one of the most popular spirit-based drinks made from malted or saccharified grains, which should mature for at least 3 years in wooden barrels. High popularity of products usually causes a potential risk of adulteration. Thus authenticity assessment is one of the key elements of food product marketing. Authentication of whisky is based on comparing the composition of this alcohol with other spirit drinks. The present review summarizes all information about the comparison of whisky and other alcoholic beverages, the identification of type of whisky or the assessment of its quality and finally the authentication of whisky. The article also presents the various techniques used for analyzing whisky, such as gas and liquid chromatography with different types of detectors (FID, AED, UV-Vis), electronic nose, atomic absorption spectroscopy and mass spectrometry. In some cases the application of chemometric methods is also described, namely PCA, DFA, LDA, ANOVA, SIMCA, PNN, k-NN and CA, as well as preparation techniques such SPME or SPE.

  2. Chemical composition analysis and authentication of whisky.

    Science.gov (United States)

    Wiśniewska, Paulina; Dymerski, Tomasz; Wardencki, Waldemar; Namieśnik, Jacek

    2015-08-30

    Whisky (whiskey) is one of the most popular spirit-based drinks made from malted or saccharified grains, which should mature for at least 3 years in wooden barrels. High popularity of products usually causes a potential risk of adulteration. Thus authenticity assessment is one of the key elements of food product marketing. Authentication of whisky is based on comparing the composition of this alcohol with other spirit drinks. The present review summarizes all information about the comparison of whisky and other alcoholic beverages, the identification of type of whisky or the assessment of its quality and finally the authentication of whisky. The article also presents the various techniques used for analyzing whisky, such as gas and liquid chromatography with different types of detectors (FID, AED, UV-Vis), electronic nose, atomic absorption spectroscopy and mass spectrometry. In some cases the application of chemometric methods is also described, namely PCA, DFA, LDA, ANOVA, SIMCA, PNN, k-NN and CA, as well as preparation techniques such SPME or SPE. PMID:25315338

  3. Chemical Composition of Rain Water in Lebanon

    International Nuclear Information System (INIS)

    Samples of rainfall water were collected from fifteen stations in Lebanon during the period between October 1999 and April 2000 (the rainy season in Lebanon). Nine of these stations are distributed along the urban coastal cities, from the north to the south. The remaining 6 stations which have different altitudes ranging fom 400 m to 1200 m high are distributed in the mountainous rural areas. The concentrations of major cations (H+ ,Na+, Ca2+, Mg2+ and NH+4) and major anions (Cl-, NO-3 , HCO-3 and SO2-4 are determined for the first time in Lebanon. It has been found that the rain water is not acidic, due to the presence of carbonate dust particles in the atmosphere, which arise from the natural carbonate rocks, especially predominance in the mountains and internal regions of Lebanon. The high predominance of Na+ and Cl- in the coastal investigated stations, is attributed to marine aerosol spray. The concentrations of SO-4 and NO-3 are close to the concentrations expected in typical urban areas. The correlation between the concentration of chemical species confirms the influence of natural and anthropogenic sources. (author)

  4. The chemical composition of Galactic beat Cepheids

    Science.gov (United States)

    Kovtyukh, V.; Lemasle, B.; Chekhonadskikh, F.; Bono, G.; Matsunaga, N.; Yushchenko, A.; Anderson, R. I.; Belik, S.; da Silva, R.; Inno, L.

    2016-08-01

    We determine the metallicity and detailed chemical abundances (α, iron-peak and neutron-capture elements) for the almost complete (18/24) sample of Galactic double mode Cepheids (also called beat Cepheids). Double mode Cepheids are Cepheids that pulsate in two modes simultaneously. We calibrate a new relation between their metallicity and their period ratio P1/P0. This linear relation allows to determine the metallicity of bimodal Cepheids with an accuracy of 0.03 dex in the range of [Fe/H] from +0.2 to -0.5 dex. By extrapolating the relation to Magellanic Clouds beat Cepheids, we provide their metallicity distribution function. Moreover, by using this relation, we also provide the first metallicity estimate for two double-mode F/1O Cepheids located in and beyond the Galactic bulge. Finally, we report the discovery of a super-Lithium rich double mode Cepheid V371 Per which has a Lithium abundance of logA(Li) = 3.54 ± 0.09 dex. Along with V1033 Cyg (which is an ordinary classical Cepheid), it is the second known Cepheid of such type in the Galaxy.

  5. Sensory properties and chemical composition of Sharri cheese from Kosovo

    Directory of Open Access Journals (Sweden)

    Agim Rysha

    2014-11-01

    Full Text Available Food sensory properties, analyses and chemical composition are very important because they provide information about product quality and end-user acceptance or preferences. An assessment of sensory characteristics and chemical composition of mountain sheep and cow’s-milk cheese from shepherd’s huts and industrial manufacturers in Kosovo was carried out. Consumer-oriented tests using a 9 point hedonic scale were conducted in order to determine Sharri cheese acceptability. Chemical parameters (fat content, fat content of dry matter, acidity, protein, dry matter, mineral and water content and sodium chloride content of 45-day brine cheese samples were also analyzed. Chemical and sensory assessment demonstrated large property differences. A recommendation stems from the results showing that the standardization of both artisanal and industrial production of Sharri cheese is required.

  6. Fuel options from microalgae with representative chemical compositions

    Energy Technology Data Exchange (ETDEWEB)

    Feinberg, D. A.

    1984-07-01

    Representative species of microalgae are examined with respect to their reported chemical compositions. Each species is analyzed under a variety of culture conditions, with the objective being to characterize an optimum mixture of fuel products (e.g., methane, ethanol, methylester) which should be produced by the particular species. Historically the emphasis has been on the entire algal cell mass. Using the reported chemical composition for the representative species under specific sets of growth conditions, some conclusions can be drawn about the preferred fuel product conversion routes that could be employed. 10 references, 7 figures, 12 tables.

  7. Correlation between biogas yield and chemical composition of energy crops.

    Science.gov (United States)

    Dandikas, V; Heuwinkel, H; Lichti, F; Drewes, J E; Koch, K

    2014-12-01

    The scope of this study was to investigate the influence of the chemical composition of energy crops on biogas and methane yield. In total, 41 different plants were analyzed in batch test and their chemical composition was determined. For acid detergent lignin (ADL) content below 10% of total solids, a significant negative correlation for biogas and methane yields (r≈-0.90) was observed. Based on a simple regression analysis, more than 80% of the sample variation can be explained through ADL. Based on a principal component analysis and multiple regression analysis, ADL and hemicellulose are suggested as suitable model variables for biogas yield potential predictions across plant species. PMID:25443623

  8. On the chemical composition of cosmic rays of highest energy

    CERN Document Server

    Wilk, Grzegorz

    2010-01-01

    We present arguments aiming to reconcile the apparently contradictory results concerning the chemical composition of cosmic rays of highest energy, coming recently from Auger and HiRes collaborations. In particular, we argue that the energy dependence of the mean value and root mean square fluctuation of shower maxima distributions observed by the Auger experiment are not caused by the change of nuclear composition of primary cosmic rays.

  9. Multi-energy techniques for radiographic monitoring of chemical composition

    CERN Document Server

    Naydenov, S V

    2003-01-01

    A theoretical model of multi-energy radiography (MER) are proposed. It is shown that, as distinct from the conventional radiography, MER allows identification of organic substances and control of their chemical composition. Broad prospects are noted for MER application, specifically, for detection of prohibited substances (explosives, drugs, etc.) during customs and anti-terrorist safety inspection.

  10. Probabilistic thermo-chemical analysis of a pultruded composite rod

    NARCIS (Netherlands)

    Baran, Ismet; Tutum, Cem C.; Hattel, Jesper H.

    2012-01-01

    In the present study the deterministic thermo-chemical pultrusion simulation of a composite rod taken from the literature [7] is used as a validation case. The predicted centerline temperature and cure degree profiles of the rod match well with those in the literature [7]. Following the validation c

  11. Computer program determines chemical composition of physical system at equilibrium

    Science.gov (United States)

    Kwong, S. S.

    1966-01-01

    FORTRAN 4 digital computer program calculates equilibrium composition of complex, multiphase chemical systems. This is a free energy minimization method with solution of the problem reduced to mathematical operations, without concern for the chemistry involved. Also certain thermodynamic properties are determined as byproducts of the main calculations.

  12. Composition and Thermodynamic Properties of Air in Chemical Equilibrium

    Science.gov (United States)

    Moeckel, W E; Weston, Kenneth C

    1958-01-01

    Charts have been prepared relating the thermodynamic properties of air in chemical equilibrium for temperatures to 15,000 degrees k and for pressures 10(-5) to 10 (plus 4) atmospheres. Also included are charts showing the composition of air, the isentropic exponent, and the speed of sound. These charts are based on thermodynamic data calculated by the National Bureau of Standards.

  13. Microbicidal properties and chemical composition of essential oils

    OpenAIRE

    Křůmal, K. (Kamil); Večeřa, Z. (Zbyněk)

    2014-01-01

    The microbicidal properties of 6 essential oils (EOs; Lavandula angustifolia, Cymbopogon nardus, Citrus aurantifolia, Juniperus communis, Myrtus communis and Cinnamomum zeylanicum ) for 17 microorganisms were determined using the vapour-agar contact method. The most effective EO (i.e. Lavandula angustifolia ) whose volatile components provided the sufficient microbicidal properties was chosen for detailed study of chemical composition.

  14. Microstructures and Mechanical Properties of Laser Welding Joint of a CLAM Steel with Revised Chemical Compositions

    Science.gov (United States)

    Chen, Shuhai; Huang, Jihua; Lu, Qi; Zhao, Xingke

    2016-05-01

    To suppress the tendency to form delta ferrite in weld metal (WM) of China low activation martensitic (CLAM) steel joint, a CLAM steel with revised chemical compositions was designed. Laser welding of the CLAM steel was investigated. The microstructures of the WM and heat-affected zone were analyzed. The impact toughness of the WM was evaluated by a Charpy impact test method with three V notches. The influence of temper temperature on mechanical properties was analyzed. It was found that the delta ferrite was eliminated almost completely in laser WM of CLAM steel with revised chemical compositions which has lower tendency to form delta ferrite than original chemical compositions. The joint has higher tensile strength than the parent metal. With increasing the heat input, the impact toughness of the joint is approximatively equal with that of parent metal first and then decreases obviously. Temper treatment could effectively improve mechanical property of the joint. When the temper temperature exceeds 600 °C, the impact toughness of the joint is higher than that of the parent metal.

  15. Fast, Contactless Monitoring of the Chemical Composition of Raw Materials

    Science.gov (United States)

    Ivanov, O.; Stoyanov, Zh.; Stoyanov, B.; Nadoliisky, M.; Vaseashta, Ashok

    A technique to monitor chemical composition of materials during manufacturing of ceramic products, in particular - of bricks, is investigated. The technique of monitoring is likely to offset environmental pollution and save energy. For this purpose, we use the Surface photo charge effect, which is generated for each solid body interacting with electromagnetic field. The measurement is express and can be performed in-situ in production conditions. The experimental work has shown that different samples of the investigated materials with different compositions produce different signals specific to each sample. For the same material, the signal varies with the change in chemical composition. More specifically, it is shown that for the material from which the bricks are fired, the signal is a function of the percentage of coal sludge. The results indicate that the characterization technique as a viable technique for control of incoming raw materials.

  16. Financial Crisis 2008 Impact on China Chemical Fiber Industry

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    On Jun. 10-12, 2009, The 15th China’s International Chemical Fiber Conference, with the theme of "Financial Crisis and Chemical Fiber Industry", was held at Hangzhou, Zhejiang Province. During the conference, the China Chemical Fiber Association released a speech on "The Impact of Global Financial Crisis on China Chemical Fiber Industry and Response Strategies". Here in the following part, we will focus on the part of the impact of financial crisis on Chinese chemical fiber industry. In our next issue, we will go on with the part of Response Strategies.

  17. Interpreting chemical compositions of small scale basaltic systems: A review

    Science.gov (United States)

    McGee, Lucy E.; Smith, Ian E. M.

    2016-10-01

    Small scale basaltic magmatic systems occur in all of the major tectonic environments of planet Earth and are characteristically expressed at the Earth's surface as fields of small monogenetic cones. The chemical compositions of the materials that make up these cones reflect processes of magma generation and differentiation that occur in their plumbing system. The volumes of magmas involved are very small and significantly their compositional ranges reveal remarkably complex processes which are overwhelmed or homogenized in larger scale systems. Commonly, compositions are basaltic, alkalic and enriched in light rare earth elements and large ion lithophile elements, although the spectrum extends from highly enriched nephelinites to subalkalic and tholeiitic basalts. Isotopic analyses of rocks from volcanic fields almost always display compositions which can only be explained by the interaction of two or more mantle sources. Ultimately their basaltic magmas originate by small scale melting of mantle sources. Compositional variety is testament to melting processes at different depths, a range of melting proportions, a heterogeneous source and fractionation, magma mixing and assimilation within the plumbing system that brings magmas to the surface. The fact that such a variety of compositions is preserved in a single field shows that isolation of individual melting events and their ascent is an important and possibly defining feature of monogenetic volcanism, as well as the window their chemical behavior provides into the complex process of melt generation and extraction in the Earth's upper mantle.

  18. Effect of layering sequence and chemical treatment on the mechanical properties of woven kenaf–aramid hybrid laminated composites

    International Nuclear Information System (INIS)

    Highlights: • The mechanical properties of woven kenaf/Kevlar hybrid composites were analysed. • The layering sequences affect the mechanical properties of hybrid composites. • Treated kenaf improves the mechanical properties of hybrid composites. - Abstract: This work aims to evaluate the effect of layering sequence and chemical treatment on mechanical properties of woven kenaf–Kevlar composites. Woven kenaf–aramid hybrid laminated composites fabricated through hand lay-up techniques by arranging woven kenaf and Kevlar fabrics in different layering sequences and by using treated kenaf mat. To evaluate the effect of chemical treatment on hybrid composites, the woven kenaf mat was treated with 6% sodium hydroxide (NaOH) diluted solution and compared mechanical properties with untreated kenaf hybrid composites. Results shows that the tensile properties of hybrid composites improved in 3-layer composites compared to 4-layer composites. Hybrid composite with Kevlar as outer layers display a better mechanical properties as compared to other hybrid composites. Tensile and flexural properties of treated hybrid composites are better than non-treated hybrid composites. The fractured surface of hybrid composites was investigated by scanning electron microscopy. This study is a part of exploration of potential application of the hybrid composite in high velocity impact application

  19. Chemical fractionation resulting from the hypervelocity impact process on metallic targets

    Science.gov (United States)

    Libourel, Guy; Ganino, Clément; Michel, Patrick; Nakamura, Akiko

    2016-10-01

    In a regime of hypervelocity impact cratering, the internal energy deposited in target + projectile region is large enough to melt and/or vaporize part of the material involved, which expands rapidly away from the impact site. Fast and energetic impact processes have therefore important chemical consequences on the projectile and target rock transformations during major impact events. Several physical and chemical processes occurred indeed in the short duration of the impact, e.g., melting, coating, mixing, condensation, crystallization, redox reactions, quenching, etc., all concurring to alter both projectile and target composition on the irreversible way.In order to document such hypervelocity impact chemical fractionation, we have started a program of impact experiments by shooting doped (27 trace elements) millimeter–sized basalt projectiles on metallic target using a two stages light gas gun. With impact velocity in the range from 0.25 to 7 km.s-1, these experiments are aimed i) to characterize chemically and texturally all the post-mortem materials (e.g., target, crater, impact melt, condensates, and ejectas), in order ii) to make a chemical mass balance budget of the process, and iii) to relate it to the kinetic energy involved in the hypervelocity impacts for scaling law purpose. Irrespective of the incident velocities, our preliminary results show the importance of redox processes, the significant changes in the ejecta composition (e.g., iron enrichment) and the systematic coating of the crater by the impact melt [1]. On the target side, characterizations of the microstructure of the shocked iron alloys to better constrain the shielding processes. We also show how these results have great implications in our understanding on the current surface properties of small bodies, and chiefly in the case of M-type asteroids. [1] Ganino C, Libourel G, Nakamura AM & Michel P (2015) Goldschmidt Abstracts, 2015 990.

  20. The Impact of Price on Chemical Fertilizer Demand in China

    OpenAIRE

    Huang, Wen-fang; Du, Cheng; John K. Dagsvik

    2012-01-01

    Since 1998, the national policies on chemical fertilizer in China have been concentrated in limiting price plus subsidizing, abolishing agricultural tax, giving direct subsidies to farmers, and other aspects. In order to analyze the impact of national policies on the consumption of chemical fertilizer, this article selects the consumption of chemical fertilizer per unit, chemical fertilizer price index and farmers' net income in different provinces during the period 1998-2007 as variables, to...

  1. Surface chemical composition analysis of heat-treated bamboo

    Science.gov (United States)

    Meng, Fan-dan; Yu, Yang-lun; Zhang, Ya-mei; Yu, Wen-ji; Gao, Jian-min

    2016-05-01

    In this study, the effect of heat treatment on the chemical composition of bamboo slivers was studied. The chemical properties of the samples were examined by chemical analysis. Results showed a decrease in the contents of holocellulose and α-cellulose, as well as an increase in the contents of lignin and extractives. Changes in the chemical structure of bamboo components were analyzed by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). FTIR spectroscopy results indicated that hemicellulose contents decrease, whereas lignin contents increase after heat treatment. Ester formation linked to lignin decreased the hygroscopicity of the bamboo samples and consequently improved their dimensional stability and durability. XPS spectroscopy results showed that hemicelluloses and celluloses are relatively more sensitive to the heating process than lignin. As a consequence, hemicellulose and cellulose contents decreased, whereas lignin contents increased during heat treatment. The results obtained in this study provide useful information for the future utilization of heat-treated bamboo.

  2. Composition and placement process for oil field chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Cantu, L.A.; Yost, M.E.

    1991-01-22

    This patent describes a process for the continuous release of an oil field chemical within a subterranean hydrocarbon bearing formation or wellbore penetrating such formation. It comprises placing the oil field chemical in a polymeric microcapsule; dispersing such polymeric microcapsules; introducing the wellbore fluid containing the microcapsules into a well bore or subterranean formation through a wellbore; then allowing water and temperature at formation conditions to degrade; continuously releasing the chemical from the degraded microcapsules. This patent describes a composition comprising an oil field chemical incorporated in a polymeric microcapsule comprising the condensation product of hydroxyacetic acid monomer or hydroxyacetic acid co-condensed with up to 15 percent by weight of other hydroxy-, carboxylic acid-, or hydroxycarboxylic acid- containing moieties. The product has a number average molecular weight of from about 200 to about 4000.

  3. Date fruit: chemical composition, nutritional and medicinal values, products.

    Science.gov (United States)

    Tang, Zhen-Xing; Shi, Lu-E; Aleid, Salah M

    2013-08-15

    Date fruit has served as a staple food in the Arab world for centuries. Worldwide production of date fruit has increased almost threefold over the last 40 years, reaching 7.68 million tons in 2010. Date fruit can provide many essential nutrients and potential health benefits to the consumer. Date fruit goes through four ripening stages named kimri, khalal, rutab and tamer. The main chemical components of date fruit include carbohydrates, dietary fibre, enzymes, protein, fat, minerals, vitamins, phenolic acids and carotenoids. The chemical composition of date fruit varies according to ripening stage, cultivar, growing environment, postharvest conditions, etc. The nutritional and medicinal activities of date fruit are related to its chemical composition. Many studies have shown that date fruit has antioxidant, antimutagenic, anti-inflammatory, gastroprotective, hepatoprotective, nephroprotective, anticancer and immunostimulant activities. Various date fruit-based products such as date syrup, date paste, date juice and their derived products are available. Date by-products can be used as raw materials for the production of value-added products such as organic acids, exopolysaccharides, antibiotics, date-flavoured probiotic-fermented dairy produce, bakery yeasts, etc. In this paper the chemical composition and nutritional and medicinal values of date fruit as well as date fruit-based products are reviewed.

  4. Features of a chemical composition of dry leaves of Steviavebaudiana

    Directory of Open Access Journals (Sweden)

    Irina Borisovna Krasina

    2016-05-01

    Full Text Available This work is dedicated to the study of a chemical composition of dry leaves of Stevia. Dry leaves of Stevia contain diterpene glycosides that contribute to their sweet taste, which makes possible the use of Stevia as a sugar substitute in a production of flour confectionery products. The evaluation of amino acid composition of dried leaves of Stevia showed that their composition includes 7 essential amino acids, among them the limiting amino acid is valine.During experimental researches it was established that they are containing in a sufficient quantity water-soluble and fat-soluble vitamins in their composition. We have studied the effect of processing conditions on the degree of milling of dry leaves of Stevia. It was revealed that the pressure of 5 MPa in the contact zone of the working elements do not guarantee a product with a desired degree of milling. Milling of dried leaves of Stevia at a pressure equal to 10 MPa, allows achieving a high degree of size reduction with a simultaneous formation of the main physical and chemical characteristics of amilledproduct. It was established that granulometric composition of dry leaves of Stevia, obtained by milling in a rotor-roller disintegrator, presents the highest content of particles with a size from 5 to 30 μm, ensuring high consumer properties of the obtained biologically active additives (BAA.

  5. Surface nanosegregation of the chemical composition of complex oxides

    International Nuclear Information System (INIS)

    A brief review of theoretical and experimental studies in the field of surface nanosegregation of chemical composition of oxides SrTiO3, LiNbO3, LiTaO3, Gd2(MoO4)3, KNbO3, PbFe0.5Nb0.5O3, induced by temperature and other factors, is provided. Results of experimental studies of the relevant oxide monocrystals by the methods of electron spectrometry and model presentations suggest diffusion mechanism of segregation. It proved possible to predict the character of changes in surface composition of the oxides on the basis of the models considered

  6. Chemical composition and medicinal significance of Fagonia cretica: a review.

    Science.gov (United States)

    Qureshi, Huma; Asif, Saira; Ahmed, Haroon; Al-Kahtani, Hassan A; Hayat, Khizar

    2016-01-01

    Members of the family Zygophyllaceae are distributed in arid areas of the world and are traditionally used against various health insults ranging from skin lesions to lethal cancer. Fagonia cretica Linn. is a plant having novel compounds responsive in diseases that are still considered as incurable or are curable with serious side effects. Researchers, particularly of the Asian region elaborately studied the chemical composition and pharmacological activities of this plant. But further studies are still required to evaluate this plant in clinical trials in order to save humanity from synthetic chemical drugs yet disputed as 'friends or foe'. PMID:25921950

  7. Chemical composition of material fractions in Danish household waste

    DEFF Research Database (Denmark)

    Riber, Christian; Petersen, Claus; Christensen, Thomas Højlund

    2009-01-01

    The chemical composition of Danish household waste was determined by two approaches: a direct method where the chemical composition (61 substances) of 48 material fractions was determined after hand sorting of about 20 tonnes of waste collected from 2200 households; and an indirect method where...... batches of 80-1200 tonnes of unsorted household waste was incinerated and the content of the waste determined from the content of the outputs from the incinerator. The indirect method is believed to better represent the small but highly contaminated material fractions (e,g., batteries) than the direct...... method, because of the larger quantities included and the more homogenous material to sample from. Differences between the direct and the direct methods led to corrections in the of heavy metal concentration of a few fractions. The majority of the energy content of the waste originates from organic waste...

  8. Treatment of chemical waste piassava for application in polymeric composites

    International Nuclear Information System (INIS)

    Piassava fibers were investigated with the aim of adding new business value. The surface of the fibers were treated with NaOH and H2SO4 for 1 h at room temperature. The samples were characterized by FTIR, TGA, DSC, chemical composition, XRD, SEM and tensile tests. The micrographs of the fibers showed that treatment with NaOH cleaned the fiber surface of a large amount of impurities and cause fibrillation. Chemical analysis, using the Van Soest method, showed that the palm fiber is a fiber rich in lignin, as evidenced by their brown color and with alkali treatment there was partial removal of hemicellulose and lignin, increasing the crystallinity index of the fiber, observed by XRD. The acid treatment caused no significant changes in the properties of the fiber. Therefore, the mercerisation was efficient in the fiber of palm fiber, improving their properties, enabling thus their use as reinforcement in polymer composites. (author)

  9. Chemical Composition, Antifungal and Insecticidal Activities of Hedychium Essential Oils

    OpenAIRE

    Kanniah Rajasekaran; Jian Chen; BECNEL, JAMES J.; Natasha M. Agramonte; Bernier, Ulrich R.; Maia Tsikolia; Kemal Husnu Can Baser; Betul Demirci; David E. Wedge; Nurhayat Tabanca; Sampson, Blair J.; Hamidou F. Sakhanokho; James M. Spiers

    2013-01-01

    The antimicrobial properties of essential oils have been documented, and their use as “biocides” is gaining popularity. The aims of this study were to analyze the chemical composition and assess the biological activities of Hedychium essential oils. Oils from 19 Hedychium species and cultivars were analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) techniques. The antifungal and insecticidal activities of these oils were tested against Colletotrichum acutatum...

  10. Stevia rebaudiana Bertoni – chemical composition and functional properties

    OpenAIRE

    Katarzyna Marcinek; Zbigniew Krejpcio

    2015-01-01

    Sweetleaf (Stevia rebaudiana Bertoni), currently investigated by many researchers, has been known and used for more than a thousand years indigenous tribes of South America, who called it “kaa-hee” (“sweet herb”). Thanks to its chemical composition and processability sweetleaf may be an alternative for synthetic sweeteners. Nutritional and health-promoting aspects of Stevia rebaudiana are presently being studied in many research centres. The aim of this study is to pre...

  11. Chemical Composition of Essential Oil from Marrubium Vulgare L. Leaves

    OpenAIRE

    Bayir, Burcu; Gündüz, Hatice; Usta, Tuba; Şahin, Esma; Özdemir, Zeynep; Kayır, Ömer; Sen, Özkan; Akşit, Hüseyin; Elmastaş, Mahfuz; Erenler, Ramazan

    2014-01-01

    – The essential oils are significant for pharmaceutical, food and cosmetic industries. Marrubium vulgare L. has been used as a traditional medicine to treat the various illnesses. The chemical composition of the essential oil from leaves of Marrubium vulgare L.was obtained by steam distillation using the Clevenger apparatus. The oil was analyzed by gas chromatography and mass spectrometry (GC-MS). The main constituent of the oil was α-pinene (28.85%)

  12. Chemical composition and surface charge properties of montmorillonite

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-wen; HU Min; HU Yue-hua

    2008-01-01

    The effects of the cell parameter and chemical composition on the surface charge properties of five kinds of different colour montmorillonites were studied. The results indicate that the surface isoelectric point(IEP) of the montmorillonite shows positive correlation with the mass fractions of Fe2O3 and K20, but it has little relation to the mass fractions of other chemical compositions. At around pH=6.8, the surface zeta potential of the montmorillonite shows the negative relationship with the mass fractions of Fe2O3 and MgO, but it does not linearly correlate to the mass fractions of other chemical compositions. Cell parameter(b0) of the montmofillonite expresses negative linear relationship with mass fractions of K2O and Na2O, so does c0sinβ with mass fractions of SiO2 and Fe2O3. And there is no specific relationship between bo and IEP of different montmori Uonites, but there is positive correlation between c0sinβ and IEP of different montmorillonite samples.

  13. Effect of chemical treatment of Kevlar fibers on mechanical interfacial properties of composites.

    Science.gov (United States)

    Park, Soo-Jin; Seo, Min-Kang; Ma, Tae-Jun; Lee, Douk-Rae

    2002-08-01

    In this work, the effects of chemical treatment on Kevlar 29 fibers have been studied in a composite system. The surface characteristics of Kevlar 29 fibers were characterized by pH, acid-base value, X-ray photoelectron spectroscopy (XPS), and FT-IR. The mechanical interfacial properties of the final composites were studied by interlaminar shear strength (ILSS), critical stress intensity factor (K(IC)), and specific fracture energy (G(IC)). Also, impact properties of the composites were investigated in the context of differentiating between initiation and propagation energies and ductile index (DI) along with maximum force and total energy. As a result, it was found that chemical treatment with phosphoric acid solution significantly affected the degree of adhesion at interfaces between fibers and resin matrix, resulting in improved mechanical interfacial strength in the composites. This was probably due to the presence of chemical polar groups on Kevlar surfaces, leading to an increment of interfacial binding force between fibers and matrix in a composite system.

  14. Peculiarities of chemical composition of sainfoin seeds powder

    Directory of Open Access Journals (Sweden)

    Natalia Aleksandrovna Tarasenko

    2015-09-01

    Full Text Available This paper is devoted to studying chemical composition of the powder of the seeds of non-traditional legume, sainfoin. The experimental studies showed that crushed seeds of sainfoin make a flowing fine powder of light brown color with a pleasant unpronounced specific smell with floral notes. The taste is grassy with the after-taste typical for legumes. The chemical composition of sainfoin seeds is dominated by proteins and fiber, and fat content does not exceed 8%. The total content of amino-acids is 26.94/100 g of the product, with the share of indispensable ones being 37.85%. The limiting amino acid is tryptophan (48.0 %. By the composition of essential amino acids, proteins of sainfoin seeds are slightly inferior to the proteins of soybean seeds, but are better than the proteins of peanut seeds. The composition of fatty acid of the lipid complex of sainfoin seeds is dominated by (over 40% of the total linolenic ω-3 acid with sufficiently low (less than 20% of the total content of linoleic ω-6 acid. The lipid composition of sainfoin seeds, along with triacylglycerols, contains about 40% of related lipids, which are dominated by sterols, aliphatic alcohols, phospholipids and tocopherols. All this makes the lipid complex of sainfoin seed a promising means of adjusting fatty acids composition in food products of functional and specialized purpose, dietary supplements, and a valuable raw material for creating pharmaceutical substances and preparations. Adding sainfoin seeds powder into the nutritive medium has no inhibitory effect on development of the tested organism. At the same time, 58% of the organism's physiological need for protein is satifsied, as compared to caseine.

  15. Including chemical-related impact categories in LCA on printed matter does it matter?

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred; Hansen, Morten Søes; Hauschild, Michael Zwicky

    2004-01-01

    Introduction Existing product Life Cycle Assessments (LCA¡¦s) on offset printed matter all point at paper as the overall dominating contributor to the impacts from the life-cycle of this category of products. This dominating role of paper is primarily founded in the energy-related impact categories...... global warming, acidification and nutrification. The studies focus on energy consumption including the emissions and impact categories related to energy. The chemical-related impact categories comprising ecotoxicity and human toxicity are not included at all or only to a limited degree. In this paper we...... include these chemical-related impact categories by making use of some of the newest knowledge about emissions from the production at the printing industry combined with knowledge about the composition of the printing materials used during the production of offset printed matter. This paper is based...

  16. Investigation on low velocity impact resistance of SMA composite material

    Science.gov (United States)

    Hu, Dianyin; Zhang, Long; Wang, Rongqiao; Zhang, Xiaoyong

    2016-04-01

    A method to improve low velocity impact resistance of aeroengine composite casing using shape memory alloy's properties of shape memory(SM) and super-elasticity(SE) is proposed in this study. Firstly, a numerical modeling of SMA reinforced composite laminate under low velocity impact load with impact velocity of 10 m/s is established based on its constitutive model implemented by the VUMAT subroutine of commercial software ABAQUS. Secondly, the responses of SMA composite laminate including stress and deflection distributions were achieved through transient analysis under low velocity impact load. Numerical results show that both peak stress and deflection values of SMA composite laminate are less than that without SMA, which proves that embedding SMA into the composite structure can effectively improve the low velocity impact performance of composite structure. Finally, the influence of SM and SE on low velocity impact resistance is quantitatively investigated. The values of peak stress and deflection of SMA composite based on SM property decrease by 18.28% and 9.43% respectively, compared with those without SMA, instead of 12.87% and 5.19% based on SE. In conclusion, this proposed model described the impact damage of SMA composite structure and turned to be a more beneficial method to enhance the impact resistance by utilizing SM effect.

  17. Nanograined WC-Co Composite Powders by Chemical Vapor Synthesis

    Science.gov (United States)

    Ryu, Taegong; Sohn, H. Y.; Han, Gilsoo; Kim, Young-Ugk; Hwang, Kyu Sup; Mena, M.; Fang, Zhigang Z.

    2008-02-01

    Nanograined tungsten carbide (WC) Co composite powders were prepared by a chemical vapor synthesis (CVS) process that has previously been used for preparing the aluminides of titanium and nickel and other metallic and intermetallic powders at the University of Utah. To determine the optimum condition for producing nanograined WC-Co composite powders, the effects of carburization temperature, CH4 to WCl6 ratio, CH4 to H2 ratio, CoCl2 contents, and residence time of WC on the powder composition and particle size were investigated. The reduction and carburization of the vaporized chlorides by CH4-H2 mixtures produced nanograined WC and Co composite powder, which sometimes contained small levels of W2C, W, or the η (Co3W3C) phase. The presence of these incompletely carburized phases can be tolerated because they can be fully carburized during the subsequent sintering process. These phases can also be fully carburized by a separate post-treatment. The products were characterized by using X-ray diffraction (XRD) and a transmission electron microscope (TEM). As a result, nanograined WC-Co composite with the particle size less than 30 nm was obtained.

  18. Analysis of high velocity impact on hybrid composite fan blades

    Science.gov (United States)

    Chamis, C. C.; Sinclair, J. H.

    1979-01-01

    This paper describes recent developments in the analysis of high velocity impact of composite blades using a computerized capability which consists of coupling a composites mechanics code with the direct-time integration features of NASTRAN. The application of the capability to determine the linear dynamic response of an intraply hybrid composite aircraft engine fan blade is described in detail. The predicted results agree with measured data. The results also show that the impact stresses reach sufficiently high magnitudes to cause failures in the impact region at early times of the impact event.

  19. Dust as interstellar catalyst - II. How chemical desorption impacts the gas

    CERN Document Server

    Cazaux, S; Dulieu, F; Hocuk, S

    2015-01-01

    Context. Interstellar dust particles, which represent 1% of the total mass, are recognized to be very powerful interstellar catalysts in star-forming regions. The presence of dust can have a strong impact on the chemical composition of molecular clouds. While observations show that many species that formed onto dust grains populate the gas phase, the process that transforms solid state into gas phase remains unclear. Aims. The aim of this paper is to consider the chemical desorption process, i.e. the process that releases solid species into the gas phase, in astrochemical models. These models allow determining the chemical composition of star-forming environments with an accurate treatment of the solid-phase chemistry. Methods. In paper I we derived a formula based on experimental studies with which we quantified the efficiencies of the chemical desorption process. Here we extend these results to astrophysical conditions. Results. The simulations of astrophysical environments show that the abundances of gas-p...

  20. Towards the regulation of aerosol emissions by their potential health impact: Assessing adverse effects of aerosols from wood combustion and ship diesel engine emissions by combining comprehensive data on the chemical composition and their toxicological effects on human lung cells

    Science.gov (United States)

    Zimmermann, R.; Streibel, T.; Dittmar, G.; Kanashova, T.; Buters, J.; Öder, S.; Paur, H. R.; Dilger, M.; Weiss, C.; Harndorf, H.; Stengel, B.; Hirvonen, M. R.; Jokiniemi, J.; Hiller, K.; Sapcariu, S.; Sippula, O.; Orasche, J.; Müller, L.; Rheda, A.; Passig, J.; Radischat, C.; Czech, H.; Tiita, P.; Jalava, P.; Kasurinen, S.; Schwemer, T.; Yli-Prilä, P.; Tissari, J.; Lamberg, H.; Schnelle-Kreis, J.

    2014-12-01

    Ship engine emissions are important regarding lung and cardiovascular diseases in coastal regions worldwide. Bio mass burning is made responsible for adverse health effects in many cities and rural regions. The Virtual Helmholtz Institute-HICE (www.hice-vi.eu) addresses chemical & physical properties and health effects of anthropogenic combustion emissions. Typical lung cell responses to combustion aerosols include inflammation and apoptosis, but a molecular link with the specific chemical composition in particular of ship emissions has not been established. Through an air-liquid interface exposure system (ALI), we exposed human lung cells at-site to exhaust fumes from a ship engine running on common heavy fuel oil (HFO) and cleaner-burning diesel fuel (DF) as well as to emissions of wood combustion compliances. A special field deployable ALI-exposition system and a mobile S2-biological laboratory were developed for this study. Human alveolar basal epithelial cells (A549 etc.) are ALI-exposed to fresh, diluted (1:40-1:100) combustion aerosols and subsequently were toxicologically and molecular-biologically characterized. Advanced chemical analyses of the exhaust aerosols were combined with transcriptional, proteomic and metabolomic profiling to characterise the cellular responses. The HFO ship emissions contained high concentrations of toxic compounds (transition metals, organic toxicants) and particle masses. The cellular responses included inflammation and oxidative stress. Surprisingly, the DF ship emissions, which predominantly contain rather "pure" carbonaceous soot and much less known toxicants, induced significantly broader biological effects, affecting essential cellular pathways (e.g., mitochondrial function and intracellular transport). Therefore the use of distillate fuels for shipping (this is the current emission reduction strategy of the IMO) appears insufficient for diminishing health effects. The study suggests rather reducing the particle emissions

  1. Endocrine Disrupting Chemical Impacts on Aquatic Systems

    Science.gov (United States)

    Jobling, Susan

    2014-07-01

    We often talk about the importance of water, but one area that's often overlooked is the safety of our water supply. How many people actually think about the purity of their water when they turn on the tap? We may have real reason to be concerned because our water delivery systems and treatment technology seem to be stuck in the past, relying on old water treatment and water delivery systems. While these systems still do a great job filtering out particles, parasites and bacteria, they usually fail to remove 21st century contaminants like pesticides, industrial chemicals, lead, pharmaceuticals and arsenic. Indeed our water contains already a whole plethora of things in daily commerce and pharmaceuticals are increasingly showing up in the water supply, including antibiotics, anti-convulsants, mood altering medications and sex hormones. As the world's dependence on chemicals grows, our water supplies will continue to feel the effects, which inevitably will touch every person on this planet...

  2. Chemical Composition and Antioxidant Activity of Walnut Pollen Samples

    Directory of Open Access Journals (Sweden)

    Sina COSMULESCU

    2015-12-01

    Full Text Available Chemical composition of pollen is highly varied depending on the plant species from which it comes and has been the subject of numerous comparative studies. The aim of this study was to determine chemical composition and antioxidant activity of walnut pollen samples and compare them with those of bee pollen. Total phenols content, total flavonoids content, antioxidant activity and mineral composition were studied using walnut pollen samples from three walnut genotypes cultivated in Romania. Total phenols content was determined by colorimetric assay and their amount varied between 10.8 and 17.64 mgGAE/g per genotype. Determination of flavonoids was done by aluminium nitrate colorimetric method and total flavonoid contents in walnut pollen ranged from 7.32 to 7.95 mgQE/g. The antioxidant capacity of pollen extracts was assessed through the scavenging effects on DPPH and a concentration-dependent genotype, and it varied between 13.78 and 15.04 mg Trolox/g. In terms of mineral composition, walnut pollen appears to be a good source of potassium (859.14 mg/100 g, magnesium (263.77 mg/100 g, calcium (71.72 mg/100 g, iron (27.19 mg/100 g, sodium (10.52 mg/100 g, zinc (5.69 mg/100 g, manganese (3.98 mg/100 g, copper (1.28 mg/100 g, chromium (0.39 mg/100 g and selenium (0.036 mg/100 g. The results obtained indicate that walnut pollen is an important source of total phenols showing antioxidant properties and mineral composition that could be beneficial to human health.

  3. A bootstrap estimation scheme for chemical compositional data with nondetects

    Science.gov (United States)

    Palarea-Albaladejo, J; Martín-Fernández, J.A; Olea, Ricardo A.

    2014-01-01

    The bootstrap method is commonly used to estimate the distribution of estimators and their associated uncertainty when explicit analytic expressions are not available or are difficult to obtain. It has been widely applied in environmental and geochemical studies, where the data generated often represent parts of whole, typically chemical concentrations. This kind of constrained data is generically called compositional data, and they require specialised statistical methods to properly account for their particular covariance structure. On the other hand, it is not unusual in practice that those data contain labels denoting nondetects, that is, concentrations falling below detection limits. Nondetects impede the implementation of the bootstrap and represent an additional source of uncertainty that must be taken into account. In this work, a bootstrap scheme is devised that handles nondetects by adding an imputation step within the resampling process and conveniently propagates their associated uncertainly. In doing so, it considers the constrained relationships between chemical concentrations originated from their compositional nature. Bootstrap estimates using a range of imputation methods, including new stochastic proposals, are compared across scenarios of increasing difficulty. They are formulated to meet compositional principles following the log-ratio approach, and an adjustment is introduced in the multivariate case to deal with nonclosed samples. Results suggest that nondetect bootstrap based on model-based imputation is generally preferable. A robust approach based on isometric log-ratio transformations appears to be particularly suited in this context. Computer routines in the R statistical programming language are provided. 

  4. Low velocity blunt impacts on composite aircraft structures

    OpenAIRE

    Whisler, Daniel A.

    2009-01-01

    As composites are increasingly used for primary structures in commercial aircrafts, it is necessary to understand damage initiation for composites subject to low velocity impacts from service conditions, maintenance, and other ground equipment mishaps. In particular, collisions with ground vehicles can present a wide area, blunt impact. Therefore, the effects of bluntness of an impactor are of interest as this is related to both the external visual detectability of an impact event, as well as...

  5. Analytical Scanning and Transmission Electron Microscopy of Laboratory Impacts on Stardust Aluminium Foils: Interpreting Impact Crater Morphology and the Composition of Impact Residues.

    Energy Technology Data Exchange (ETDEWEB)

    Kearsley, A T; Graham, G A; Burchell, M J; Cole, M J; Dai, Z R; Teslich, N; Chater, R; Wozniakiewicz, P A; Spratt, J; Jones, G

    2006-10-19

    The known encounter velocity (6.1kms{sup -1}) between the Stardust spacecraft and the dust emanating from the nucleus of comet Wild 2 has allowed realistic simulation of dust collection in laboratory experiments designed to validate analytical methods for the interpretation of dust impacts on the aluminium foil components of the Stardust collector. In this report we present information on crater gross morphology, the pre-existing major and trace element composition of the foil, geometrical issues for energy dispersive X-ray analysis of the impact residues in scanning electron microscopes, and the modification of dust chemical composition during creation of impact craters as revealed by analytical transmission electron microscopy. Together, these observations help to underpin the interpretation of size, density and composition for particles impacted upon the Stardust aluminium foils.

  6. Effects of air pollutants on epicuticular wax chemical composition

    International Nuclear Information System (INIS)

    There are numerous reports in the literature of modifications to epicuticular wax structure as a consequence of exposure to air pollutants. Most authors have used scanning electron microscopy (SEM) to describe changes in wax crystallite morphology or distribution. ''Erosion'' or ''weathering'' of crystalline structure into an amorphous state is the most common observation, particularly in the case of conifer needles having the characteristic tube crystallites comprised of nonacosan-10-ol. Wax structure is largely determined by its chemical composition. Therefore, many of the reported changes in wax structure due to air pollutants probably arise from direct interactions between pollutants such as ozone and wax biosynthesis. The literature describing changes in wax composition due to pollutants is briefly reviewed. New evidence is introduced in support of the hypothesis for a direct interaction between air pollutants and epicuticular wax Biosynthesis. (orig.)

  7. Chemical composition and health effects of Tartary buckwheat.

    Science.gov (United States)

    Zhu, Fan

    2016-07-15

    Tartary buckwheat (Fagopyrum tataricum) contains a range of nutrients including bioactive carbohydrates and proteins, polyphenols, phytosterols, vitamins, carotenoids, and minerals. The unique composition of Tartary buckwheat contributes to their various health benefits such as anti-oxidative, anti-cancer, anti-hypertension, anti-diabetic, cholesterol-lowering, and cognition-improving. Compared with the more widely cultivated and utilised common buckwheat (F. esculentum), Tartary buckwheat tends to contain higher amounts of certain bioactive components such as rutin, therefore, showing higher efficiency in preventing/treating various disorders. This review summarises the current knowledge of the chemical composition of Tartary buckwheat, and their bio-functions as studied by both in vitro and in vivo models. Tartary buckwheat can be further developed as a sustainable crop for functional food production to improve human health.

  8. Chemical composition and antioxidant activity of lichen Toninia candida

    Directory of Open Access Journals (Sweden)

    Nedeljko T. Manojlovic

    2012-04-01

    Full Text Available In the present investigation, methanol, chloroform and petrol ether extracts from the lichen Toninia candida (Weber Th. Fr, Catillariaceae, were assayed for their antioxidant activity. The phenolic composition of the extracts was determined by HPLC-UV analysis. The predominant phenolic compound in all the extracts was depsidone, norstictic acid. All the tested extracts of T. candida contain, besides norstictic acid, atranorin, stictic, protocetraric and usnic acid, but in different amounts and relations. The lichen extracts showed comparable and strong antioxidant activity, exhibited higher DPPH and hydroxyl radical scavengings, chelating activity and inhibitory activity towards lipid peroxidation. This is the first report of chemical composition and antioxidant antimicrobial activity of the lichen Toninia candida.

  9. Chemical composition and health effects of Tartary buckwheat.

    Science.gov (United States)

    Zhu, Fan

    2016-07-15

    Tartary buckwheat (Fagopyrum tataricum) contains a range of nutrients including bioactive carbohydrates and proteins, polyphenols, phytosterols, vitamins, carotenoids, and minerals. The unique composition of Tartary buckwheat contributes to their various health benefits such as anti-oxidative, anti-cancer, anti-hypertension, anti-diabetic, cholesterol-lowering, and cognition-improving. Compared with the more widely cultivated and utilised common buckwheat (F. esculentum), Tartary buckwheat tends to contain higher amounts of certain bioactive components such as rutin, therefore, showing higher efficiency in preventing/treating various disorders. This review summarises the current knowledge of the chemical composition of Tartary buckwheat, and their bio-functions as studied by both in vitro and in vivo models. Tartary buckwheat can be further developed as a sustainable crop for functional food production to improve human health. PMID:26948610

  10. Nepheline structural and chemical dependence on melt composition

    Energy Technology Data Exchange (ETDEWEB)

    Marcial, José; Crum, Jarrod; Neill, Owen; McCloy, John

    2016-02-01

    Nepheline crystallizes upon slow-cooling in some melts concentrated in Na2O and Al2O3, which can result in a residual glass phase of low chemical durability. Nepheline can incorporate many components often found in high-level waste radioactive borosilicate glass, including glass network ions (e.g., Si, Al, Fe), alkali metals (e.g., Cs, K, Na, and possibly Li), alkaline-earth metals (e.g., Ba, Sr, Ca, Mg), and transition metals (e.g., Mn, and possibly Cr, Zn, Ni). When crystallized from melts of different compositions, nepheline chemistry varies as a function of starting glass composition. Five simulated high level nuclear waste borosilicate glasses shown to crystallize large fractions of nepheline on slow cooling, were selected for study. These melts constituted a range of Al2O3, B2O3, CaO, Na2O, K2O, Fe2O3, and SiO2 compositions. Compositional analyses of nepheline crystals in glass by electron probe micro-analysis (EPMA) indicate that boron is unlikely to be present in any significant concentration, if at all, in nepheline. Also, several models are presented for calculating the fraction of vacancies in the nepheline structure.

  11. Physical Characterization and Steam Chemical Reactivity of Carbon Fiber Composites

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, Robert Andrew; Pawelko, Robert James; Smolik, Galen Richard

    2001-05-01

    This report documents experiments and analyses that have been done at the Idaho National Engineering and Environmental Laboratory (INEEL) to measure the steam chemical reactivity of two types of carbon fiber composites, NS31 and NB31, proposed for use at the divertor strike points in an ITER-like tokamak. These materials are 3D CFCs constituted by a NOVOLTEX preform and densified by pyrocarbon infiltration and heat treatment. NS31 differs from NB31 in that the final infiltration was done with liquid silicon to reduce the porosity and enhance the thermal conductivity of the CFC. Our approach in this work was twofold: (1) physical characterization measurements of the specimens and (2) measurements of the chemical reactivity of specimens exposed to steam.

  12. Titan's lakes chemical composition: sources of uncertainties and variability

    CERN Document Server

    Cordiera, D; Luninee, J I; Lebonnoisg, S; Rannouh, P; Lavvasf, P; Loboi, L Q; Ferreirai, A G M

    2011-01-01

    Between 2004 and 2007 the instruments of the CASSINI spacecraft discovered hydrocarbon lakes in the polar regions of Titan. We have developed a lake-atmosphere equilibrium model allowing the determination of the chemical composition of these liquid areas. The model is based on uncertain thermodynamic data and precipitation rates of organic species predicted to be present in the lakes and seas that are subject to spatial and temporal variations. Here we explore and discuss the influence of these uncertainties and variations. The errors and uncertainties relevant to thermodynamic data are simulated via Monte-Carlo simulations. Global Circulation Models (GCM) are also employed in order to investigate the possibility of chemical asymmetry between the south and the north poles, due to differences in precipitation rates. We find that mole fractions of compounds in the liquid phase have a high sensitivity to thermodynamic data used as inputs, in particular molar volumes and enthalpies of vaporization. When we combin...

  13. Analysis of chemical composition of high viscous oils

    Directory of Open Access Journals (Sweden)

    Irina Germanovna Yashchenko

    2014-07-01

    Full Text Available The spatial distribution of viscous oils which are considered as an important reserve for oil-production in future were studied on base of information from global database on oil physical and chemical properties. Changes in chemical composition of viscous oils in different basins and continents were analyzed as well. It is shown, on average, viscous oils are sulfur-bearing, low paraffin, highly resinous oils with an average content of asphaltenes and low content of the fraction boiling at 200 C. Study results of viscous oils peculiarities of Canada, Russia and Venezuela are given. The analysis results can be used to determine the optimal layouts and conditions of oil transportation, to improve the search methods of geochemical exploration, and to solve other problems in the oil chemistry.

  14. Impact Performance of 3D Integrated Cellular Woven Composite Panel

    Institute of Scientific and Technical Information of China (English)

    TIAN Wei; ZHU Cheng-yan

    2006-01-01

    This paper studied the impact resistance of 3D integrated cellular woven composite panel under persudo-static impact,comprised the test result with property of typical 3D woven composites, analyzed some parameters that maybe affect composites' impact resistance and at last used SEM to observe the damage process and mechanism of samples. The result shows that the impact resistance of 3D integrated cellular woven composites is much better than the performance of typical 3D woven composites; it is an active method to improve the impact resistance of composites that developing preform with cellular on the basis of typical 3D woven structure; for different 3D integrated cellular woven structure, the value of absorbed-energy is incrensing with the hollow percentage; tiny deformation will not emerge on samples until the acting force gets to 85% of the maximum;similar with typical 3D woven composites, the delaminated phenomenon of 3D integrated cellular woven composites is also unapparent during impact process.

  15. Edge impact modeling on stiffened composite structures

    OpenAIRE

    Ostré, Benjamin; Bouvet, Christophe; Minot, Clément; Aboissière, Jacky

    2015-01-01

    Finite Element Analysis of low velocity/low energy edge impact has been carried out on carbon fiber reinforced plastic structure. Edge impact experimental results were then compared to the numerical ‘‘Discrete Ply Model’’ in order to simulate the edge impact damage. This edge impact model is inspired to out-of-plan impact model on a laminate plate with addition of new friction and crushing behaviors. From a qualitative and quantitative point of view, this edge impact model reveals a relati...

  16. Chemical composition and fatty acid contents in farmed freshwater prawns

    Directory of Open Access Journals (Sweden)

    Carolina de Gasperi Portella

    2013-08-01

    Full Text Available The objective of this work was to evaluate the chemical composition and fatty acid contents of Amazonian and giant river prawns. After four-month farming, with the same diet for both species, palmitic and stearic acids were the main saturated fatty acids. Oleic acid was the main monounsatured fatty acid, and the eicosapentaenoic and docosahexaenoic acids were the most abundant polyunsaturated acids. Amazonian prawn has higher levels of protein and polyunsaturated fatty acids than those of the giant river prawn, which shows its potential for aquaculture.

  17. Chemical composition of Eu2+ luminescence in the barium hexaaluminates

    International Nuclear Information System (INIS)

    This paper consists of two parts. In the first part the chemical composition of two kinds of barium hexaaluminate (one poor and one rich in barium) is explained using the local electroneutrality concept. In the second part a reinvestigation of the Eu2+ luminescence in these compounds is reported. The emission spectrum of each of the two compounds shows a blue and a green emission bank. The blue emission bank is ascribed to Eu2+ ions at barium sites, whereas the green emission band is identified with Eu2+ ions incorporated at aluminum sites within spinel blocks of the structure

  18. Chemical composition of acid rains in the Venezuelan savannah region

    OpenAIRE

    Sanhueza, E.; ARIAS, M. C.; Donoso, L.; GRATEROL, N.; Hermoso, M; MARTÍ, I.; Romero, J.; RONDÓN, A.; Santana, M

    2011-01-01

    The chemical composition of rain events has been determined at 6 sites in the Venezuelan savannah region. The results indicate that precipitations are little affected by anthropogenic emissions and that rain concentrations of anions and cations are similar to those observed at “remote” continental sites. At each location, the rain is acidic with average pHs ranging from 4.4 to 5.4. Over 50% of the free acidity may be due to formic and acetic acids. HNO3 and H2SO4 contribute only less than 36%...

  19. Chemical composition and quality of sweet sorghum and maize silages

    OpenAIRE

    PODKÓWKA, Zbigniew; Lucyna PODKÓWKA

    2011-01-01

    Sweet sorghum (Sorghum saccharatum) silage, maize (Zea mays) silage, and sorghum and maize (1:1) silage were investigated. The silages were analysed for chemical composition, quality and aerobic stability. Dry matter was the lowest (20.88%) in sorghum silage and the highest (37.45%) in maize silage. In sorghum silage, the concentration of crude ash and crude fibre was higher, and that of crude protein, crude fat and N-free extractives lower compared to maize silage. Neutral detergent fibre an...

  20. CHEMICAL COMPOSITIONS AND RESISTANT STARCH CONTENT IN STARCHY FOODS

    Directory of Open Access Journals (Sweden)

    Anuchita Moongngarm

    2013-01-01

    Full Text Available Resistant Starch (RS is one of nature’s most interesting bioactive compounds. There is a wide variety of starchy food plants in Thailand that are good sources of RS, but they have not been well studied. As such, this study was carried out to investigate the potential food source of RS. Twenty-two promising food plants were selected. The samples included (1 cereals comprised of five long grain rice of O. sativa L. and sweet corn, (2 six species of root and tuber crops, (3 green banana fruits (Musa sapientum L. composed of ABB group, AAB group and AAA group at the first stage of ripening and (4 legume seeds included cowpea seeds (3 different cultivars, red bean, red kidney bean and mung bean. All food plants were determined for chemical compositions, resistant starch, non-resistant starch, total starch and amylose content. The study found that the starchy foods varied in their chemical compositions. The major composition of all foods was carbohydrate ranging between 58.19 (in black speck cow pea and 87.21% (in cassava root, whilst the fat, ash and fiber were observed only in small quantities. The protein content was highest in legume seeds (20.78 to 27.22%. For the study on starch compositions, green bananas contained highest amount of resistant starch ranging between 35.14 and 45.87%, indicating that more than a half of total starch in banana RS content varying from 35.14 to 45.87%, whereas the RS content of legumes ranging from 2.33 to 10.63% and 1.16 to 4.85% in cereal grains. Most of the starchy food plants contained moderate to high level of amylose (11.45-34.85%, except the waxy rice (2.72%.

  1. Public Health Risk Conditioned by Chemical Composition of Ground Water

    Science.gov (United States)

    Yankovich, E.; Osipova, N.; Yankovich, K.; Matveenko, I.

    2016-03-01

    The article studies the public health potential risk originated from water consumption and estimated on the basis of the groundwater chemical composition. We have processed the results of chemical groundwater analysis in different aquifers of Tomsk district (Tomsk Oblast, Russia). More than 8400 samples of chemical groundwater analyses were taken during long-term observation period. Human health risk assessment of exposure to contaminants in drinking water was performed in accordance with the risk assessment guidance for public health concerning chemical pollution of the environment (Russian reference number: 2.1.10.1920-04-M, 2004). Identified potential risks were estimated for consuming water of each aquifer. The comparative analysis of water quality of different aquifers was performed on the basis of the risk coefficient of the total non-carcinogenic effects. The non-carcinogenic risk for the health of the Tomsk district population due to groundwater consumption without prior sanitary treatment was admitted acceptable. A rather similar picture is observed for all aquifers, although deeper aquifers show lower hazard coefficients.

  2. Chemical vapor deposited fiber coatings and chemical vapor infiltrated ceramic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Kmetz, M.A.

    1992-01-01

    Conventional Chemical Vapor Deposition (CVD) and Organometallic Chemical Vapor Deposition (MOCVD) were employed to deposit a series of interfacial coatings on SiC and carbon yarn. Molybdenum, tungsten and chromium hexacarbonyls were utilized as precursors in a low temperature (350[degrees]C) MOCVD process to coat SiC yarn with Mo, W and Cr oxycarbides. Annealing studies performed on the MoOC and WOC coated SiC yarns in N[sub 2] to 1,000[degrees]C establish that further decomposition of the oxycarbides occurred, culminating in the formation of the metals. These metals were then found to react with Si to form Mo and W disilicide coatings. In the Cr system, heating in N[sub 2] above 800[degrees]C resulted in the formation of a mixture of carbides and oxides. Convention CVD was also employed to coat SiC and carbon yarn with C, Bn and a new interface designated BC (a carbon-boron alloy). The coated tows were then infiltrated with SiC, TiO[sub 2], SiO[sub 2] and B[sub 4]C by a chemical vapor infiltration process. The B-C coatings were found to provide advantageous interfacial properties over carbon and BN coatings in several different composite systems. The effectiveness of these different coatings to act as a chemically inert barrier layer and their relationship to the degree of interfacial debonding on the mechanical properties of the composites were examined. The effects of thermal stability and strength of the coated fibers and composites were also determined for several difference atmospheres. In addition, a new method for determining the tensile strength of the as-received and coated yarns was also developed. The coated fibers and composites were further characterized by AES, SEM, XPS, IR and X-ray diffraction analysis.

  3. The Impact of Price on Chemical Fertilizer Demand in China

    Institute of Scientific and Technical Information of China (English)

    John K.Dagsvik

    2012-01-01

    Since 1998,the national policies on chemical fertilizer in China have been concentrated in limiting price plus subsidizing,abolishing agricultural tax,giving direct subsidies to farmers,and other aspects.In order to analyze the impact of national policies on the consumption of chemical fertilizer,this article selects the consumption of chemical fertilizer per unit,chemical fertilizer price index and farmers’net income in different provinces during the period 1998-2007 as variables,to conduct regression analysis of chemical fertilizer expenditure function,and calculate the price elasticity and income elasticity of chemical fertilizer demand in different provinces over the decade based on the regression results.The results show that at present the basic consumption of chemical fertilizer for agricultural development in China is 0.35 t/hm 2 ,and the consumption of chemical fertilizer is excessive in some provinces;the chemical fertilizer market has not been really established,and the price has little impact on demand.This indicates that the chemical fertilizer is essential for agricultural economic development,and it increases along with the increase of farmers’income; the intervention of the national policy in chemical fertilizer price is a fundamental reason for the rising demand for chemical fertilizer.This also to some extent indicates that the policy effect of merely using environmental taxes to change farmers’consumption of chemical fertilizer is limited;there is a need to transform the existing policies purely promoting agricultural economic development,toward giving different subsidies in accordance with whether the farmers’fertilization pattern is beneficial to the environment.

  4. Chemical composition and larvicidal activity of Rollinia leptopetala (Annonaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Feitosa, Edinilza M.A.; Arriaga, Angela M.C.; Lemos, Telma L.G.; Oliveira, M. Conceicao F. de; Vasnconcelos, Jackson Nunes e; Lima, Jefferson Q.; Malcher, Grazielle T. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Quimica Organica e Inorganica]. E-mail: angelamcarriaga@yahoo.com.br; Santiago, Gilvandete M.P. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Farmacia; Nascimento, Ronaldo F. do [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Quimica Analitica e Fisico-Quimica; Braz-Filho, Raimundo [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacases, RJ (Brazil). Setor de Quimica de Produtos Naturais. Lab. de Ciencias Quimicas

    2009-07-01

    The aim of present study was to describe the chemical composition of the essential oils from the leaf and stem of Rollinia leptopetala R. E. Fries (Annonaceae) and to evaluate the larvicidal activities of these essential oils, of the methanol extract from roots of this plant and of the oxoaporphine alkaloid, liriodenine (1) against the third-instar of Aedes aegypti larvae. The methanol extract from the roots showed larvicidal activity with LC{sub 50} 64.6 {+-} 1.5 ppm. Higher activity was observed for the isolated alkaloid liriodenine (1), LC{sub 50} 3.6 {+-} 0.4 ppm. The essential oils from the leaves and stems, also exhibited larvicidal activity with LC{sub 50} 104.7 {+-} 0.2 and 34.7 {+-} 0.3 ppm, respectively. These results suggest R. leptopetala as a source of natural larvicidal compounds. This is the first report about the chemical composition and larvicidal activity of the leaf and stem essential oils of R. leptopetala. (author)

  5. Chemical compositions of lavas from Myoko volcano group

    International Nuclear Information System (INIS)

    In the volcanic rocks produced in island arc and continental margin arc, the phenomena of magma mixing is observed considerably generally. The research on these phenomena has been carried out also in Japan, and the periodically refilled magma chamber model has been proposed. In this report, the results of the photon activation analysis for the volcanic rock samples of Myoko volcano, for which the magma chamber model that the supply of basalt magma is periodically received was proposed, and of which the age of eruption and the stratigraphy are clearly known, are shown, and the above model is examined together with the published data of fluorescent X-ray analysis and others. The history of activities and the rate of magma extrusion of Myoko volcano group are described. The modal compositions of the volcanic rock samples of Myoko and Kurohime volcanos, for which photon activation analysis was carried out, are shown and discussed. The results of the analysis of the chemical composition of 39 volcanic rock samples from Myoko, Kurohime and Iizuna volcanos are shown. The primary magma in Myoko volcano group, the crystallization differentiation depth and moisture content of magma in Myoko and Kurohime volcanos, the presumption of Felsic and Mafic end-members in R type andesite in Myoko volcano group, and the change of magma composition with lapse of time are described. (K.I.)

  6. STUDYING THE CHEMICAL COMPOSITION OF ALCOHOLIC EXTRACT SCHROTH RAPE

    Directory of Open Access Journals (Sweden)

    Елена Эдуардовна Чигиринец

    2014-09-01

    Full Text Available As the authors found that a promising material for a volatile atmospheric corrosion inhibitor is the use of waste generated in obtaining oil from rapeseed (family Brassicaceae, namely rapeseed meal, appropriate research was qualitative and quantitative determination of its basic compounds. Also found that the inhibition efficiency is extreme character with a maximum protective capacity for 2 hours. Why was it necessary to study changes in the composition of the extract in the evaporation process, and identification of compounds that do not take part in the formation of the film, that is remaining in the non-volatile sludge. The subject of this study is to extract 2-proрanol rapeseed cake extract . The purpose of work - a study of its component composition, namely, volatile and non-volatile compounds. The volatile chemical composition of the rapeseed cake extract involves glycosides, nucleosides, ketone, aldehyde, fatty acids, sterol and alkaloids. The most important compounds in rapeseed cake are: Guanosine , Sucrose , Xanthosine, 3',5'-Dimethoxyacetophenone Benzaldehyde, 4-hydroxy-3,5-dimethoxy, Acetic, Oleic, Linoleic and Palmitic acid and Sterols.

  7. Modelling the impact of aircraft emissions on atmospheric composition

    Science.gov (United States)

    Wasiuk, D. K.; Lowenberg, M. H.; Shallcross, D. E.

    2012-12-01

    Emissions of the trace gases CO2, CO, H2O, HC, NOx, and SOx that have the potential to perturb large scale atmospheric composition are accumulating in the atmosphere at an unprecedented rate as the demand for air traffic continues to grow. We investigate the global and regional effects of aircraft emissions on the atmosphere and climate using mathematical modelling, sensitivity simulations, and perturbation simulations and present historical and spatial distribution evolution of the global and regional number of departures, fuel burn and emissions. A comprehensive aircraft movement database spanning years 2005 - 2012, covering 225 countries and over 223 million departures on approximately 41000 unique routes serves as a basis for our investigation. We combine air traffic data with output from an aircraft performance model (fuel burn and emissions) including 80 distinct aircraft types, representing 216 of all the aircraft flown in the world in 2005 - 2012. This accounts for fuel burn and emissions for 99.5% of the total number of departures during that time. Simulations are being performed using a state of the art 3D Lagrangian global chemical transport model (CTM) CRI-STOCHEM for simulation of tropospheric chemistry. The model is applied with the CRI (Common Representative Intermediates) chemistry scheme with 220 chemical species, and 609 reactions. This allows us to study in detail the chemical cycles driven by NOx, governing the rate of formation of O3 which controls the production of OH and indirectly determines the lifetime of other greenhouse gases. We also investigate the impact of the Eyjafjallajökull eruption on the European air traffic and present a model response to the perturbation of NOx emissions that followed.

  8. Transport composite fuselage technology: Impact dynamics and acoustic transmission

    Science.gov (United States)

    Jackson, A. C.; Balena, F. J.; Labarge, W. L.; Pei, G.; Pitman, W. A.; Wittlin, G.

    1986-01-01

    A program was performed to develop and demonstrate the impact dynamics and acoustic transmission technology for a composite fuselage which meets the design requirements of a 1990 large transport aircraft without substantial weight and cost penalties. The program developed the analytical methodology for the prediction of acoustic transmission behavior of advanced composite stiffened shell structures. The methodology predicted that the interior noise level in a composite fuselage due to turbulent boundary layer will be less than in a comparable aluminum fuselage. The verification of these analyses will be performed by NASA Langley Research Center using a composite fuselage shell fabricated by filament winding. The program also developed analytical methodology for the prediction of the impact dynamics behavior of lower fuselage structure constructed with composite materials. Development tests were performed to demonstrate that the composite structure designed to the same operating load requirement can have at least the same energy absorption capability as aluminum structure.

  9. Response of the global climate to changes in atmospheric chemical composition due to fossil fuel burning

    Science.gov (United States)

    Hameed, S.; Cess, R. D.; Hogan, J. S.

    1980-01-01

    Recent modeling of atmospheric chemical processes (Logan et al, 1978; Hameed et al, 1979) suggests that tropospheric ozone and methane might significantly increase in the future as the result of increasing anthropogenic emissions of CO, NO(x), and CH4 due to fossil fuel burning. Since O3 and CH4 are both greenhouse gases, increases in their concentrations could augment global warming due to larger future amounts of atmospheric CO2. To test the possible climatic impact of changes in tropospheric chemical composition, a zonal energy-balance climate model has been combined with a vertically averaged tropospheric chemical model. The latter model includes all relevant chemical reactions which affect species derived from H2O, O2, CH4, and NO(x). The climate model correspondingly incorporates changes in the infrared heating of the surface-troposphere system resulting from chemically induced changes in tropospheric ozone and methane. This coupled climate-chemical model indicates that global climate is sensitive to changes in emissions of CO, NO(x) and CH4, and that future increases in these emissions could augment global warming due to increasing atmospheric CO2.

  10. Calculation of complex chemical equilibrium compositions of composite rocket propellants combustion products

    Directory of Open Access Journals (Sweden)

    NIKOLA KILIBARDA

    2000-11-01

    Full Text Available An adequate method for calculating chemical equilibrium in a predominantly gaseous, multi-component reactive mixture was investigated and successfully applied. This method involves the stated equilibrium reaction scheme, including, first, the formation of chemical species, of which concentrations prevail in the mixture, then the formation of gaseous atomic species by dissociation of previous ones, and, finally, the formation of complex chemical species from the atomic species. A computer program, which permits calculations of equilibrium compositions by the iteration procedure, has been developed. The results of calculations have been compared with data obtained by the programs OPHELIE, MICROPEP, and the program SPP, as documented in the NASA-Lewis Code, which is presently the world-wide standard. All comparisons gave satisfactory agreement.

  11. Effect of chemical composition of sheep’s milk on the chemical composition of Livno and Travnik cheese

    Directory of Open Access Journals (Sweden)

    Amina Hrković

    2011-06-01

    Full Text Available Bosnia and Herzegovina has a centuries-old tradition in the family dairy products, among which 2-3 types of cheeses dominate. Well known dairy products in BiH are indigenous Livno and Travnik cheese, a group of cheeses produced from thermally untreated raw sheep milk. The aim of this study was assessing the effects of certain parameters on the chemical composition of the milk composition of indigenous cheeses - Livno and Travnik. Two manufacturers within two different locations (Livno and Travnik during summer grazing of sheep, were selected for this research. The study included 117sheep (Livno 57 sheep, Travnik 60 sheep. The cheese milk was used for determination of fat, protein and lactose content. Six samples were taken from obtained cheeses: 3 samples of Livno and 3samples of Travnik cheese, which means one for each sampling period. In cheese dry matter content, water, fat, fat in dry matter and acidity (pH were determined, and then correlation between the constituents of milk and cheese ingredients content was set. The most common causes of such phenomenon is non-standard production, storage and ripening. On Travnik area, the content of fat and milk protein varied according to sampling period, which can be attributed to the already mentioned diet and stage of lactation. At the same time the protein content decreased mainly by the end of lactating period. Lactose content has proven to be the most stable parameter of milk. In both investigated cheese samples slightly higher water content was found compared to normal values for these two local cheese, while the proportion of fat and dry matter varied within the sampling period. Variation of certain parameters of the chemical composition of investigated samples of Livno and Travnik cheese, as well as their correlation with parameters of milk is primarily a consequence of changing the chemical composition of milk as the basic raw materials and/or significant variations in technology that could

  12. Computational Modeling and Impact Analysis of Textile Composite Structutres

    OpenAIRE

    Hur, Hae-Kyu

    2006-01-01

    This study is devoted to the development of an integrated numerical modeling enabling one to investigate the static and the dynamic behaviors and failures of 2-D textile composite as well as 3-D orthogonal woven composite structures weakened by cracks and subjected to static-, impact- and ballistic-type loads. As more complicated modeling about textile composite structures is introduced, some of homogenization schemes, geometrical modeling and crack propagations become more difficult problems...

  13. Laboratory analogues simulating Titan's atmospheric aerosols: Compared chemical compositions of grains and thin films

    Science.gov (United States)

    Carrasco, Nathalie; Jomard, François; Vigneron, Jackie; Etcheberry, Arnaud; Cernogora, Guy

    2016-09-01

    Two sorts of solid organic samples can be produced in laboratory experiments simulating Titan's atmospheric reactivity: grains in the volume and thin films on the reactor walls. We expect that grains are more representative of Titan's atmospheric aerosols, but films are used to provide optical indices for radiative models of Titan's atmosphere. The aim of the present study is to address if these two sorts of analogues are chemically equivalent or not, when produced in the same N2-CH4 plasma discharge. The chemical compositions of both these materials are measured by using elemental analysis, XPS analysis and Secondary Ion Mass Spectrometry. The main parameter probed is the CH4/N2 ratio to explore various possible chemical regimes. We find that films are homogeneous but significantly less rich in nitrogen and hydrogen than grains produced in the same experimental conditions. This surprising difference in their chemical compositions could be explained by the efficient etching occurring on the films, which stay in the discharge during the whole plasma duration, whereas the grains are ejected after a few minutes. The higher nitrogen content in the grains possibly involves a higher optical absorption than the one measured on the films, with a possible impact on Titan's radiative models.

  14. Anthropogenic and impact spherules: Morphological similarity and chemical distinction – A case study from India and its implications

    Indian Academy of Sciences (India)

    Ambalika Niyogi; Jayanta K Pati; Suresh C Patel; Dipak Panda; Shiv K Patil

    2011-12-01

    This paper provides first report of silica-rich anthropogenic spherules of varying colour, shape, size, surface texture and chemical composition found in road-deposited sediments (RDS) of Allahabad city, Uttar Pradesh, India. Morphological details and lithophile elemental composition of the silica-rich spherules are compared to microtektites and impact spherules from India to demonstrate their striking morphological similarities and chemical variability. This study suggests the need to use spherule data carefully while assigning an impact origin to spherule-finds or spherule-bearing lithological horizons.

  15. Probabilistic thermo-chemical analysis of a pultruded composite rod

    DEFF Research Database (Denmark)

    Baran, Ismet; Tutum, Cem Celal; Hattel, Jesper Henri

    2012-01-01

    case, the probabilistic design of the pultrusion process, which has not been considered until now, is performed. The effect of statistical variations in the material (i.e. fiber and resin) and resin kinetic properties, as well as process parameters such as pulling speed and inlet temperature...... on the product quality (degree of cure) are examined by means of Monte Carlo Simulation (MCS) with Latin Hypercube Sampling (LHS) technique. The variations in the activation energy as well as the density of the resin are found to have a strong influence on the centerline degree of cure at the exit whereas......In the present study the deterministic thermo-chemical pultrusion simulation of a composite rod taken from the literature [7] is used as a validation case. The predicted centerline temperature and cure degree profiles of the rod match well with those in the literature [7]. Following the validation...

  16. Chemical composition of volatile fraction of pakistani peanut and its

    International Nuclear Information System (INIS)

    Arachis hypogaea Linn (peanut or groundnut) is an economically important crop. Thousands of peanut cultivars are grown in the world and studies have been carried out on these but, to the best of our knowledge, no salient work has been done on Pakistani cultivar so far. Here, we report the chemical composition of volatile fraction of Pakistani cultivar of peanut and its anti radical activities using 1,I-Diphenyl-2-picrylhydrazyl radical (DPPH) scavenging and phospho molybdenum complex (PC) method. This study revealed that Pakistani cultivar exhibited an almost equal antioxidant potential to that of standard, butylated hydroxytoluene (BHT), which was obvious from their IC/sub 50/ values. The IC/sub 50/ value of peanut extract was found to be 13.42 +- 26 macro L/mL, relative to butylated hydroxytoluene, having 12.1 +- 0.92 macro/mL. (author)

  17. Levels and chemical composition of cotton gin dust.

    Science.gov (United States)

    Wesley, R A; Wall, J H

    1978-12-01

    Dust levels were determined in the three principal work areas of five high-capacity, saw-type cotton gins processing spindle-picked cotton. Dust levels measured by the vertical elutriator, OSHA personal and stationary personal samplers averaged 0.66, 0.96 and 0.87 mg/m3, respectively. Gross chemical analyses of dust samples collected indicated that the composit0n of the dust was highly variable and different for the principal work areas within each gin -- 15 to 53% ash, 2 to 5% moisture, 8 to 18% protein, 19 to 55% cellulose and 8 to 16% water-extractable constituents. Major elements were silicon, potassium, aluminum, calcium and magnesium. PMID:742599

  18. Antimicrobial activity of Iranian propolis and its chemical composition

    Directory of Open Access Journals (Sweden)

    Yaghoubi M.J.

    2007-04-01

    Full Text Available The objective of this study was to investigate the antimicrobial activity of ethanol extract of Iranian propolis on some microorganisms using disc diffusion method. The chemical composition of the propolis was also investigated using thin layer chromatography and spectrophotometric methods. Ethanol extract of propolis showed activity only against Gram-positives and fungi, whereas no activity was observed against Gram-negatives. Thin layer chromatography screening revealed the presence of pinocembrine, caffeic acid, kaempferol, phenethyl caffeate, chrysin, and galangin in Iranian propolis. The total flavonoid and phenolic contents were 7.3% and 36%, respectively, which suggests that the strong antimicrobial activity of Iranian propolis may be due to high levels of phenolic and flavonoid compounds.

  19. Chemical vapor infiltration of TiB{sub 2} composites

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, T.M. [Oak Ridge National Laboratory, TN (United States)

    1995-05-01

    This program is designed to develop a Hall-Heroult aluminum smelting cathode with substantially improved properties. The carbon cathodes in current use require significant anode-to-cathode spacing in order to prevent shorting, causing significant electrical inefficiencies. This is due to the non-wettability of carbon by aluminum which causes instability in the cathodic aluminum pad. It is suggested that a fiber reinforced-TiB{sub 2} matrix composite would have the requisite wettability, strength, strain-to-failure, cost, and lifetime to solve this problem. The approach selected to fabricate such a cathode material is chemical vapor infiltration (CVI). This program is designed to evaluate potential fiber reinforcements, fabricate test specimens, and test the materials in a static bath and lab-scale Hall cell.

  20. Rapid chemical vapor infiltration of C/C composites

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ming-yu; WANG Li-ping; HUANG Qi-zhong; CHAI Li-yuan

    2009-01-01

    With liquid petrol gas (LPG) as carbon source,carbon felt as porous perform and hydrogen as diluent,C/C composites were fast fabricated by using a multi-physics field chemical vapor infiltration (MFCVI) process in a self-made furnace.A set of orthogonal experiments were carried out to optimize parameters in terms of indices of density and graphitization degree.The results show the optimal indices can be achieved under the conditions of temperature 650 ℃,LPG concentration 80%,gas flux 60 mL/s,total pressure 20 kPa,infiltration time 15 h.The verification experiment proves the effectiveness of the orthogonal experiments.Under the optimal conditions,the graphitization degree of 75% and bulk density of 1.69 g/cm are achieved with a uniform density distribution.At the same time,a new structure is obtained.

  1. Impact resistance of composite laminated sandwich plates

    Science.gov (United States)

    Kim, Chun-Gon; Jun, Eui-Jin

    1992-01-01

    Investigated are the effects of face layup sequence and core density of a sandwich plate on the impact delamination area of the laminated facesheet. The sandwich plate is made of graphite/epoxy faces and Nomex honeycomb core. The size and shape of delamination due to impact at each interply location have been measured by the room temperature deply technique. The shape of the interply delamination under impact is, in general, found to be two-lobed. The shape exhibits very peculiar regularity under various experimental conditions. The quantitative measurement of delamination size has shown that the face layup with small relative orientation between adjacent plies and high density core are desirable in sandwich plates to reduce the impact delamination.

  2. Estimation of aerosol water and chemical composition from AERONET at Cabauw, the Netherlands

    Directory of Open Access Journals (Sweden)

    A. J. van Beelen

    2013-06-01

    Full Text Available Remote sensing of aerosols provides important information on the atmospheric aerosol abundance. However, due to the hygroscopic nature of aerosol particles observed aerosol optical properties are influenced by atmospheric humidity, and the measurements do not unambiguously characterize the aerosol dry mass and composition which complicates the comparison with aerosol models. In this study we derive aerosol water and chemical composition by a modeling approach that combines individual measurements of remotely sensed aerosol properties (e.g. optical thickness, single scattering albedo, refractive index and size distribution from an AERONET (Aerosol Robotic Network sun-photometer with radiosonde measurements of relative humidity. The model simulates water uptake by aerosols based on the chemical composition and size distribution. A minimization method is used to calculate aerosol composition and concentration, which are then compared to in situ measurements from the Intensive Measurement Campaign At the Cabauw Tower (IMPACT, May 2008, the Netherlands. Computed concentrations show reasonable agreement with surface observations and follow the day-to-day variability in observations. Total dry mass (33 ± 12 μg m−3 and black carbon concentrations (0.7 ± 0.3 μg m−3 are generally accurately computed. The uncertainty in the AERONET (real refractive index (0.025–0.05 introduces larger uncertainty in the modeled aerosol composition (e.g. sulfates, ammonium nitrate or organic matter and leads to an uncertainty of 0.1–0.25 in aerosol water volume fraction. Water volume fraction is highly variable depending on composition, up to >0.5 at 70–80% and <0.1 at 40% relative humidity.

  3. Chemical Composition of Iran's Pistacia atlantica Cold-Pressed Oil

    Directory of Open Access Journals (Sweden)

    M. Saber-Tehrani

    2013-01-01

    Full Text Available The lipid fraction of Pistacia atlantica seeds was extracted for the first time by means of cold-press technique and analyzed for its chemical composition. The fatty acids, sterols, triacylglycerols (TAG, tocopherols, polyphenols, and pigments were identified and their concentrations were determined by means of reversed-phase high-performance liquid chromatography (RP-HPLC and gas chromatography (GC. Because of its high content of unsaturated fatty acids, it might prove to be of value in diets and it may be used as edible cooking or salad oils or for margarine manufacture. Pistacia atlantica seed oil has the unique sterols and tocopherols content providing source of natural antioxidants. The main triacylglycerols were SLL + PLO, SOL + POO, OOLn + PLL, OOO, and SOO. This paper examined the phenolic fraction of Pistacia atlantica seed oil. Moreover, caffeic acid followed by cinnamic acid, pinoresinol, vanillin, p-Coumaric acid, ferulic acid, and o-Coumaric acid was also determined. This paper presents the first investigation of chlorophyll's and carotene's composition in Pistacia atlantica seed oil. Furthermore, pheophytin a was the major component, followed by luteoxanthin, neoxanthin, violaxanthin, lutein, lutein isomers, chlorophyll a, chlorophyll a′, and pheophytin a′ were also determined.

  4. Chemical composition of some wild peanut species (Arachis L.) seeds.

    Science.gov (United States)

    Grosso, N R; Nepote, V; Guzmán, C A

    2000-03-01

    Oil, protein, ash, and carbohydrate contents, iodine value, and fatty acid and sterol compositions were studied in seeds of Arachis trinitensis, A. chiquitana, A. kempff-mercadoi, A. diogoi, A. benensis, A. appressipila, A. valida, A. kretschmeri, A. helodes, A. kuhlmannii, A. williamsii, A. sylvestris, A. matiensis, A. pintoi, A. hoehnei, A. villosa, and A. stenosperma. Oil content was greatest in A.stenosperma (mean value = 51.8%). The protein level was higher in A. sylvestris (30.1%) and A. villosa (29.5%). Mean value of oleic acid varied between 30.6% (A. matiensis) and 46.8% (Arachis villosa), and linoleic acid oscillated between 34.1% (A. villosa) and 47.4% (A. appressipila). The better oleic-to-linoleic (O/L) ratio was exhibited by A. villosa (1.38). Some species showed higher concentration of behenic acid. The greatest level of this fatty acid was found in A. matiensis (6.2%). Iodine value was lower in A. valida (99.2). The sterol composition in the different peanut species showed higher concentration of beta-sitosterol (mean values oscillated between 55.7 and 60.2%) followed by campesterol (12.4-16. 5%), stigmasterol (9.7-13.3%), and Delta(5)-avenasterol (9.7-13.4%). The chemical quality and stability of oils (iodine value and O/L ratio) from wild peanut studied in this work are not better than those of cultivated peanut. PMID:10725154

  5. Laminated metals composites fracture and ballistic impact behavior

    Energy Technology Data Exchange (ETDEWEB)

    Lesuer, D.R.; Syn, C.K.; Sherby, O.D.; Wadsworth, J.

    1998-01-20

    Recent advances in the fracture and ballistic impact response of laminated metal composites (LMCs) are reviewed. The laminate structure can provide significant improvements to these properties relative to the component materials. Typical fracture and ballistic impact properties in LMCs are illustrated for systems containing Al alloys and Al matrix composites. The unique mechanisms operating in a layered structure that contribute to fracture or ballistic impact resistance are discussed. The influence of laminate architecture, component material properties and interface strength on mechanisms and properties are briefly reviewed for these Al-based LMCs.

  6. Chemical Composition and Antioxidant Capacity of Three Plum Cultivars

    Directory of Open Access Journals (Sweden)

    Sandra Voća

    2009-12-01

    Full Text Available The aim of this study was to determine the chemical composition and antioxidants capacity of three plum cultivars, namely ‘Top’, ‘Elena’ and ‘Bistrica’. Fruits were harvested and following parameters were determined: dry matter, total acids (TA, total soluble solids (TSS, pH, vitamin C, total phenols, nonflavonoids and antioxidant capacity. Differences between cultivars for most of the chemical parameters were observed. The cultivar ‘Bistrica’ showed higher values of dry matter, TSS, vitamin C and pH value, while ‘Top’ had higher total acids value and lowest TSS, dry matter, vitamin C and pH. Total phenolics content varied from 157.70 mg in ‘Elena’ to 344.10 mg in ‘Bistrica’, expressed as gallic acid equivalents (GAE, on fresh weight basis. ‘Top’ contains the highest amount of non-flavonoids among cultivars studied. Therefore, ‘Bistrica’ and ‘Top’ show the highest antioxidant capacity, as well. There were significant differences between total phenolics and non-flavonoids content between ‘Elena’ and other two cultivars, while antioxidant capacity showed no significant difference (p ≤ 0.05. Total antioxidant capacity of fruits ranged from 3.10 mmol/kg in ‘Elena’ to 3.17 mmol/kg in ‘Top’ and ‘Bistrica’.

  7. Physical properties and chemical composition of Segamat Kaolin, Johor, Malaysia

    International Nuclear Information System (INIS)

    Kaolin is a source of secondary mineral as a product of a weathering process of primary minerals. Its main component is fine grain kaolinite (< 2 μm) and it also contains other elements such as aluminium and iron phyllosilicate as the pigment. Aluminium rich kaolin is light in colour with high plasticity and is normally used in the ceramic, plastic, paint, paper, pesticide, pharmacology and cosmetic industries. The physical and chemical characteristics of kaolins are important for its potential application. In this study, about 25 kaolin samples were hand-augered from depths of 1-2 m at Buloh Kasap Segamat, Johor, Malaysia. Chemical analysis carried out included determination of oxides and types of minerals by X-ray diffraction and X-ray fluorescence. Shrinkage rate, rupture modulus and water absorption rate tests were carried out in the physical properties analysis. Plastic and liquid limits of the kaolin were also measured for plastic index. The Segamat kaolin was light in colour due to its high silicate composition. The highest mineral content in the kaolin was kaolinite and quartz occurred as impurities. The low shrinkage rate showed that the kaolin was dense with little voids, hence very suitable for use in the ceramic industry. This kaolin has low water absorption, plasticity and durable according to the rupture modulus test. (author)

  8. Cosmetics chemical composition characterization by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Brazil is in the third position in the world's cosmetics market. It is an expanding and growing market where new products and manufacturing processes are in a constant and steady expansion. Therefore, it is mandatory that the composition of the products is well known in order to guarantee safety and quality of daily used cosmetics. The Brazilian National Health Surveillance Agency (ANVISA) has issued a resolution, RDC No. 48, March 16, 2006, which defines a 'List of Substances which can not be used in personal hygiene products, cosmetics and perfumes'. In this work, samples of locally manufactured and imported cosmetics (lipsticks, eye shadows, etc.) were analyzed using the Instrumental Neutron Activation Analysis technique. The samples were irradiated in the TRIGA IPR-R1 reactor of the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN), on a 100kW thermal power, with a thermal neutron fluence rate about 8x1011ncm-2s-1. The analysis has detected the chemical elements Br, Ba, Ga, Na, K, Sc, Fe, Cr, Zn, Sm, W, La, Rb, Cs, Ta, Ge, Co, U, Ti, V, Cl, Al, Mn and Cu. The concentrations of these elements are on a range from 5 to 3000μg.g-1. Some chemical elements observed in samples (Cl, Br, Cr, U) are included at ANVISA prohibitive list. (author)

  9. The Impact of Flow Injection on Modern Chemical Analysis

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    There is no doubt that Flow Injection Analysis (FIA) has had a profound impact on the ways and means that modern analytical chemical procedures are performed. This is amply reflected in the voluminous scientific literature, which by the middle of 2004 passed more than 14,500 FIA-publications in i......There is no doubt that Flow Injection Analysis (FIA) has had a profound impact on the ways and means that modern analytical chemical procedures are performed. This is amply reflected in the voluminous scientific literature, which by the middle of 2004 passed more than 14,500 FIA...... and preconcentration procedures. In recent years, FIA has been supplemented by Sequential Injection Analysis (SIA) and the Lab-on-Valve (LOV) approach. Following a brief historic introduction and an account of the impact of FIA in academia, the lecture will describe these two new generations of FIA, accompanied...

  10. A New Mathematical Formulation of the Governing Equations for the Chemical Compositional Simulation

    CERN Document Server

    Bekbauov, Bakhbergen E; Berdyshev, Abdumauvlen

    2015-01-01

    It is the purpose of this work to develop new approach for chemical compositional reservoir simulation, which may be regarded as a sequential method. The development process can be roughly divided into the following two stages: (1) development of a new mathematical formulation for the sequential chemical compositional reservoir simulation, (2) implementation of a sequential solution approach for chemical compositional reservoir simulation based on the formulation described in this paper. This paper addresses the first stage of the development process by presenting a new mathematical formulation of the chemical compositional reservoir flow equations for the sequential simulation. The newly developed mathematical formulation is extended from the model formulation used in existing chemical compositional simulators. During the model development process, it was discovered that the currently used chemical compositional model estimates the adsorption effect on the transport of a component reasonably well but it viol...

  11. 76 FR 76935 - Impact of Implementing the Chemical Weapons Convention (CWC) on Commercial Activities Involving...

    Science.gov (United States)

    2011-12-09

    ... Bureau of Industry and Security Impact of Implementing the Chemical Weapons Convention (CWC) on... implementation of the Chemical Weapons Convention (CWC), through the Chemical Weapons Convention Implementation Act (CWCIA), and the Chemical Weapons Convention Regulations (CWCR), has had on commercial...

  12. The chemical composition of the Orion star forming region: stars, gas and dust

    CERN Document Server

    Simón-Díaz, S; Przybilla, N; Stasińska, G

    2010-01-01

    We present a summary of main results from the studies performed in the series of papers "The chemical composition of the Orion star forming region". We reinvestigate the chemical composition of B-type stars in the Orion OB1 association by means of state-of-the-art stellar atmosphere codes, atomic models and techniques, and compare the resulting abundances with those obtained from the emission line spectra of the Orion nebula (M42), and recent determinations of the Solar chemical composition.

  13. Chemical composition of olive oils of the cultivar Colombaia

    Directory of Open Access Journals (Sweden)

    Zunin, P.

    2005-12-01

    Full Text Available The chemical composition of monovarietal olive oils from the cultivar Colombaia was studied. Free acidity, peroxide value and UV absorbance attested to the good quality of the analyzed oils. Their fatty acid composition appeared to be quite different from the typical fatty acid profile of olive oils from Liguria but met the limits reported in the EC Regulations for olive oils. On the contrary, the amounts of Δ7-stigmastenol were often higher than the 0.5 % limit set by EC Regulations and total ß-sitosterol was below the minimum 93 % limit. The composition of polar compounds and of the volatile fraction was representative of the peculiar organoleptic character of these oils. Thus, the anomalous sterol composition of the monovarietal oils from the cultivar Colombaia calls for blending with other oils. Moreover, the use of these oils for the production of PDO oils “Riviera Ligure” must also be carefully controlled because it changes their nutritional and sensorial featuresEn este trabajo se ha estudiado la composición química de aceites de oliva mono-varietales de la variedad Colombaia. La acidez libre, el índice de peróxidos y la absorción UV confirmaron la buena calidad de los aceites analizados. Su composición en ácidos grasos resultó bastante diferente del perfil típico de ácidos grasos de los aceites de oliva virgen de la región de Liguria, pero se mantuvo dentro de los límites establecidos por los Reglamentos EC para aceites de oliva. Por otro lado, las cantidades de Δ7-estigmastenol resultaron normalmente superiores al 0.5 % del límite fijado por los Reglamentos EC y el ß-sitosterol total fue inferior al 93 % del límite mínimo. La composición en compuestos polares y de la fracción volátil confirmó las características organolépticas peculiares de estos aceites. Por tanto, la composición esterólica anómala de los aceites mono-varietales de la variedad Colombaia hace necesaria una mezcla con otros

  14. Testing and simulation of composite laminates under impact loading

    Science.gov (United States)

    Dang, Xinglai

    Owing to their high stiffness-to-weight and high strength-to-weight ratios, fiber-reinforced polymer-matrix composite laminates are excellent materials for high-performance structures. However, their properties in the thickness direction are very poor as they are weakly bonded by polymeric matrices through laminate interfaces. Accordingly, when a composite laminate is subjected to impact loading, high interlaminar stresses along with the low interlaminar strengths could easily result in interlaminar damage such as delamination. This thesis investigated the response of composite laminates under low-velocity impact and presented numerical techniques for impact simulation. To begin with, instrumented drop-weight impacts ranging from subperforation to perforation levels were introduced to composite laminates having various dimensions and thicknesses. Damaged composite laminates were then subjected to compression-after-impact tests for evaluations of residual properties. Experimental results revealed that perforation was an important damage milestone since impact parameters such as peak force, contact duration, maximum deflection and energy absorption, and residual properties such as compressive stiffness, strength and energy absorption all reached critical levels as perforation took place. It was also found that thickness played a more important role than in-plane dimensions in perforation process. In order to understand more about the relationship between laminate thickness and perforation resistance and to present an economical method to improve perforation resistance, thick laminated composite plates and their assembled counterparts were investigated and compared. An energy profile correlating the impact energy and absorbed energy at all energy levels for each type of composite plates investigated was established and found to be able to address the relationship between energy and damage. Experimental results concluded that increasing thickness was more efficient

  15. Chemical composition of sediments from White Sea, Russian Arctic

    Science.gov (United States)

    Gamza, Olga; Shevchenko, Vladimir; Novigatsky, Aleksandr

    2010-05-01

    The White Sea, the only Russian inland sea, is located on the north of outlying districts of the European part of Russia, belongs to Arctic Ocean. Area of water of sea occupies about 90 tousend square kilometers. The sea can be divided into some general parts: neck, funnel, basin and 4 Bays: Dvina Bay, Kandalaksha Bay, Mezen Bay and Onega Bay. The purpose of this work was geochemical mapping of the surface sediments of this area. The main tasks were: compilation data base of element composition of the surface sediments, geochemical mapping of each element, research of the anormal concentration of elements on the surface. To detect the content of chemical elements several methods were used: atomic absorption spectrometry (P.P. Shirshov Institute of Oceanology); neutron activation analysis (Vernadsky Institute of Geochemistry and Analytical Chemistry), total and organic carbon analysis, photometric method to detection Si, Al, P (P.P. Shirshov Institute of Oceanology). Bulk composition is one of the fundamental characteristics of sediments and bottom deposites of modern basins. Coarse-grained sediments with portion of pelitic component 80%). Character of elements distribution correlates with facial distribution of sediments from White Sea. According to litologic description, bottom surface of Dvina Bay is practically everywhere covered by layer of fine-grained sand. In the border area between Dvina Bay and White Sea basin on terraced subwater slope aleurite politic silts are abundant. They tend to exhange down the slope to clay silts. In Onega Bay fractions of non-deposition are observed. They are characterized by wide spread of thin blanket poorgraded sediments, which are likely to be relic. Relief of Kandalakscha Bay bottom is presented as alternation of abyssal fosses (near 300 m) with silles and elevations (depressions and in central part of the sea, which is quite wide from both places of original sedimentation and run off sources [2]. Thus, the interrelation

  16. Chemical composition and antioxidant activities of Broussonetia papyrifera fruits.

    Directory of Open Access Journals (Sweden)

    Jie Sun

    Full Text Available Fruits of Broussonetia papyrifera from South China were analyzed for their total chemical composition, and antioxidant activities in ethanol and aqueous extracts. In the fruit of this plant, the crude protein, crude fat and carbohydrates was 7.08%, 3.72% and 64.73% of dry weight, respectively. The crude protein, crude fat and carbohydrates were 15.71%, 20.51% and 36.09% of dry weight, respectively. Fatty acid and amino acid composition of the fruit were analyzed. Unsaturated fatty acid concentration was 70.6% of the total fatty acids. The percentage of the essential amino acids (EAAs was 40.60% of the total amino acids. Furthermore, B. papyrifera fruit are rich in many mineral elements and vitamins. Total phenolic content was assessed using the Folin-Ciocalteau assay, whereas antioxidant activities were assessed by measuring the ability of the two extracts to scavenge DPPH radicals, inhibit peroxidation, and chelate ferric ions. Their reducing power was also assessed. Results indicated that the aqueous extract of B. papyrifera was a more potent reducing agent and radical-scavenger than the ethanol extract. GC-MS analysis of the ethanol extract showed the presence of some acid-containing compounds. The changes in total phenolic content and antioxidant capacity in B. papyrifera from four different regions grown under normal conditions were assessed. The antioxidant activity of different extracts was positively associated with their total phenolic content. These results suggest that the fruit of B. papyrifera could be used in dietary supplement preparations, or as a food additive, for nutritional gain, or to prevent oxidation in food products.

  17. Chemical Composition of Urban Street Sediments and Its Sources

    Institute of Scientific and Technical Information of China (English)

    Cen Kuang; Hou Min; Thomas Neumann; Stefan Norra; Doris Stüben

    2004-01-01

    The distribution and the concentrations of various chemical elements in street sediments were investigated along a rural-urban boundary in Beijing, China. The statistical factor analysis of the data concerned identifies two anthropogenic sources responsible for the contamination of Beijing air. The first source is a steel factory in the western part of Beijing. From this source, Mn, Fe and Ti were emitted into the atmosphere through chimneys and by wind from coal heaps used as the primary energy source for the factory. The second source is a combination of traffic, domestic heating and some small factories in the center of Beijing urban area discharging Cu, Pb, Zn and Sn. Grain-size analyses show that most of the metals in the road dust have higher concentrations in the small grain-size fraction <0.125 mm, which is the severest case because these small particles with larger specific surface area and high heavy metal contents fly up easily and float in the air for a long time. Besides the anthropogenic contamination, such elements as Y, Zr, Nb, Ce and Rb are derived mainly both from natural soils and from the deserts. This is supported by mineral-phase analysis, which shows a clear imprint of materials in road dusts coming from the west China deserts. Our results clearly show that the chemical compositions of the urban road dusts can be used to identify distinctive sources responsible for the contamination mentioned above. The study shows that the chemistry of road dusts is an important monitor to assess the contamination in the urban environment.

  18. The chemical composition of Galactic ring nebulae around massive stars

    Science.gov (United States)

    Esteban, C.; Mesa-Delgado, A.; Morisset, C.; García-Rojas, J.

    2016-08-01

    We present deep spectra of ring nebulae associated with Wolf-Rayet (WR) and O-type stars: NGC 6888, G2.4+1.4, RCW 58, S 308, NGC 7635 and RCW 52. The data have been taken with the 10m Gran Telescopio Canarias and the 6.5m Clay Telescope. We extract spectra of several apertures in some of the objects. We derive C2+ and O2+ abundances from faint recombination lines in NGC 6888 and NGC 7635, permitting to derive their C/H and C/O ratios and estimate the abundance discrepancy factor (ADF) of O2+. The ADFs are larger than the typical ones of normal H II regions but similar to those found in the ionized gas of star-forming dwarf galaxies. We find that chemical abundances are rather homogeneous in the nebulae where we have spectra of several apertures: NGC 6888, NGC 7635 and G2.4+1.4. We obtain very high values of electron temperature in a peripheral zone of NGC 6888, finding that shock excitation can reproduce its spectral properties. We find that all the objects associated with WR stars show N enrichment. Some of them also show He enrichment and O deficiency as well as a lower Ne/O than expected, this may indicate the strong action of the ON and NeNa cycles. We have compared the chemical composition of NGC 6888, G2.4+1.4, RCW 58 and S 308 with the nucleosynthesis predicted by stellar evolution models of massive stars. We find that non-rotational models of stars of initial masses between 25 and 40 M⊙ seem to reproduce the observed abundance ratios of most of the nebulae.

  19. Concept of REACH and impact on evaluation of chemicals.

    Science.gov (United States)

    Foth, H; Hayes, Aw

    2008-01-01

    Industrial chemicals have been in use for many decades and new products are regularly invented and introduced to the market. Also for decades, many different chemical laws have been introduced to regulate safe handling of chemicals in different use patterns. The patchwork of current regulation in the European Union is to be replaced by the new regulation on industrial chemical control, REACH. REACH stands for registration, evaluation, and authorization of chemicals. REACH entered force on June 1, 2007. REACH aims to overcome limitations in testing requirements of former regulation on industrial chemicals to enhance competitiveness and innovation with regard to manufacture safer substances and to promote the development of alternative testing methods. A main task of REACH is to address data gaps regarding the properties and uses of industrial chemicals. Producers, importers, and downstream users will have to compile and communicate standard information for all chemicals. Information sets to be prepared include safety data sheets (SDS), chemical safety reports (CSR), and chemical safety assessments (CSA). These are designed to guarantee adequate handling in the production chain, in transport and in use and to prevent the substances from being released to and distributed within the environment. Another important aim is to identify the most harmful chemicals and to set incentives to substitute them with safer alternatives. On one hand, REACH will have substantial impact on the basic understanding of the evaluation of chemicals. However, the toxicological sciences can also substantially influence the workability of REACH that supports the transformation of data to the information required to understand and manage acceptable and non acceptable risks in the use of industrial chemicals. The REACH regulation has been laid down in the main document and 17 Annexes of more than 849 pages. Even bigger technical guidance documents will follow and will inform about the rules for

  20. Impact damage analysis of balsawood sandwich composite materials

    Science.gov (United States)

    Abdalslam, Suof Omran

    In this study, a new composite sandwich structure with a balsa wood core (end grain and regular balsa) in conjunction with E-glass/epoxy face sheets was proposed, fabricated, impact tested, and modeled. The behavior of the sandwich structure under low velocity impact and compression after impact was investigated. Low velocity impact tests were carried out by drop-weight impact tower at different energy levels (8J-35J) to evaluate the impact response of the sandwich structure. Visual inspection, destructive and non destructive evaluation methods have been conducted. For the sandwich plate with end grain core, the damage was very clear and can be visually detected. However, the damage in regular balsa core was not clearly visible and destructive evaluation method was used. Compression testing was done after subjecting the specimens to impact testing. Impact test results; load-time, load-deflection history and energy absorption for sandwich composites with two different cores, end grain and regular balsa were compared and they were investigated at three different impact energies. The results show that the sandwich structures with end grain core are able to withstand impact loading better than the regular balsa core because the higher stiffness of end grain core informs of sustaining higher load and higher overall energy. The results obtained from compression after impact testing show that the strengths of sandwich composites with end grain and regular balsa cores were reduced about 40% and 52%, respectively, after impact. These results were presented in terms of stress-strain curves for both damaged and undamaged specimens. Finite element analysis was conducted on the sandwich composite structure using LS-DYNA code to simulate impact test. A 3- D finite element model was developed and appropriate material properties were given to each component. The computational model was developed to predict the response of sandwich composite under dynamic loading. The experimental

  1. Chemical composition of sedimentary rocks in California and Hawaii

    Science.gov (United States)

    Hill, Thelma P.

    1981-01-01

    A compilation of published chemical analyses of sedimentary rocks of the United States was undertaken by the U.S. Geological Survey in 1952 to make available scattered data that are needed for a wide range of economic and scientific uses. About 20,000-25,000 chemical analyses of sedimentary rocks in the United States have been published. This report brings together 2,312 of these analyses from California and Hawaii. The samples are arranged by general lithologic characteristics and locality. Indexes of stratigraphy, rock name, commercial uses, and minor elements are provided. The sedimentary rocks are classified into groups and into categories according to the chemical analyses. The groups (A through F2) are defined by a system similar to that proposed by Brian Mason in 1952, in which the main parameters are the three major components of sedimentary rocks: (1) uncombined silica, (2) clay (R203 ? 3Si02 ? nH20), and (3) calcium-magnesium carbonate. The categories are based on the degree of admixture of these three major components with other components, such as sulfate, phos- phate, and iron oxide. Common-rock, mixed-rock, and special-rock categories apply to rocks consisting of 85 percent or more, 50-84 percent, and less than 49 percent, respectively, of the three major components combined. Maps show distribution of sample localities by States; triangular diagrams show the lithologic characteristics and classification groups. Cumulative-frequency curves of each constituent in each classification group of the common-rock and mixed-rock categories are also included. The numerous analyses may not adequately represent the geochemical nature of the rock types and formations of the region because of sampling bias. Maps showing distribution of sample localities indicate that many of the localities are in areas where, for economic or other reasons, special problems attracted interest. Most of the analyzed rocks tended to be fairly simple in composition - mainly mixtures of

  2. On the origin and composition of Theia: Constraints from new models of the Giant Impact

    CERN Document Server

    Meier, Matthias M M; Wieler, Rainer

    2014-01-01

    Knowing the isotopic composition of Theia, the proto-planet which collided with the Earth in the Giant Impact that formed the Moon, could provide interesting insights on the state of homogenization of the inner solar system at the late stages of terrestrial planet formation. We use the known isotopic and modeled chemical compositions of the bulk silicate mantles of Earth and Moon and combine them with different Giant Impact models, to calculate the possible ranges of isotopic composition of Theia in O, Si, Ti, Cr, Zr and W in each model. We compare these ranges to the isotopic composition of carbonaceous chondrites, Mars, and other solar system materials. In the absence of post-impact isotopic re-equilibration, the recently proposed high angular momentum models of the Giant Impact ("impact-fission", Cuk & Stewart, 2012; and "merger", Canup, 2012) allow - by a narrow margin - for a Theia similar to CI-chondrites, and Mars. The "hit-and-run" model (Reufer et al., 2012) allows for a Theia similar to enstatit...

  3. Chemical composition and antibacterial activity of Gongronema latifolium

    Institute of Scientific and Technical Information of China (English)

    ELEYINMI Afolabi F.

    2007-01-01

    Chemical composition of Gongronema latifolium leaves was determined using standard methods. Aqueous and methanol G. latifolium extracts were tested against thirteen pathogenic bacterial isolates. Crude protein, lipid extract, ash, crude fibre and nitrogen free extractives obtained are: 27.2%, 6.07%, 11.6%, 10.8% and 44.3% dry matter respectively. Potassium,sodium, calcium, phosphorus and cobalt contents are 332, 110, 115, 125 and 116 mg/kg respectively. Dominant essential amino acids are leucine, valine and phenylalanine. Aspartic acid, glutamic acid and glycine are 13.8%, 11.9% and 10.3% respectively of total amino acid. Saturated and unsaturated fatty acids are 50.2% and 39.4% of the oil respectively. Palmitic acid makes up 36% of the total fatty acid. Extracts show no activity against E. faecalis, Y. enterolytica, E. aerogenes, B. cereus and E. agglomerans.Methanol extracts were active against S. enteritidis, S. cholerasius ser typhimurium and P. aeruginosa (minimum inhibitory concentration (MIC) 1 mg; zone of growth inhibition 7, 6.5 and 7 mm respectively). Aqueous extracts show activity against E. coli (MIC 5 mg) and P. aeruginosa (MIC 1 mg) while methanol extracts are active against P. aeruginosa and L. monocytogenes. G.latifolium has potential food and antibacterial uses.

  4. Pereskia aculeata Muller (Cactaceae) Leaves: Chemical Composition and Biological Activities.

    Science.gov (United States)

    Souza, Lucèia Fàtima; Caputo, Lucia; Inchausti De Barros, Ingrid Bergman; Fratianni, Florinda; Nazzaro, Filomena; De Feo, Vincenzo

    2016-01-01

    The aims of this work were to study the chemical composition of the essential oil from the leaves of Pereskia aculeata and to evaluate some biological activities of three leaf extracts. The phenolic content, antioxidant activity, and in vitro antimicrobial and antifungal activities were determined. The methanol extract showed antioxidant activity (EC50 7.09 mg/mL) and high polyphenols content (15.04 ± 0.31 mg gallic acid equivalents (GAE)/g). The petroleum ether extract exhibited potent antibacterial activity against Escherichia coli, whereas the chloroform extract showed inhibitory activity against Bacillus cereus and Staphylococcus aureus. The petroleum ether and methanol extracts were more effective in inhibiting the growth of Aspergillus versicolor. The possible cytotoxicity of extracts on neuroblastoma SH-SY5Y cancer cell line and the influence on adenylate cyclase (ADCY) expression was also studied. P. aculeata chloroform extract showed antiproliferative activity with an IC50 value of 262.83 µg/mL. Treatments of SH-SY5Y neuroblastoma cells with 100 µg/mL of methanol extract significantly reduced ADCY1 expression. PMID:27598154

  5. Tea tree oil: contact allergy and chemical composition.

    Science.gov (United States)

    de Groot, Anton C; Schmidt, Erich

    2016-09-01

    In this article, contact allergy to, and the chemical composition of, tea tree oil (TTO) are reviewed. This essential oil is a popular remedy for many skin diseases, and may be used as neat oil or be present in cosmetics, topical pharmaceuticals and household products. Of all essential oils, TTO has caused most (published) allergic reactions since the first cases were reported in 1991. In routine testing, prevalences of positive patch test reactions have ranged from 0.1% to 3.5%. Nearly 100 allergic patients have been described in case reports and case series. The major constituents of commercial TTO are terpinen-4-ol, γ-terpinene, 1,8-cineole, α-terpinene, α-terpineol, p-cymene, and α-pinene. Fresh TTO is a weak to moderate sensitizer, but oxidation increases its allergenic potency. The major sensitizers appear to be ascaridole, terpinolene, α-terpinene, 1,2,4-trihydroxymenthane, α-phellandrene, and limonene. The clinical picture of allergic contact dermatitis caused by TTO depends on the products used. Most reactions are caused by the application of pure oil; cosmetics are the culprits in a minority of cases. Patch testing may be performed with 5% oxidized TTO. Co-reactivity to turpentine oil is frequent, and there is an overrepresentation of reactions to fragrance mix I, Myroxylon pereirae, colophonium, and other essential oils. PMID:27173437

  6. Brazilian kefir: structure, microbial communities and chemical composition

    Directory of Open Access Journals (Sweden)

    Karina Teixeira Magalhães

    2011-06-01

    Full Text Available Microbial ecology and chemical composition of Brazilian kefir beverage was performed. The microorganisms associated with Brazilian kefir were investigated using a combination of phenotypic and genotypic methods. A total of 359 microbial isolates were identified. Lactic acid bacteria (60.5% were the major isolated group identified, followed by yeasts (30.6% and acetic acid bacteria (8.9%. Lactobacillus paracasei (89 isolates, Lactobacillus parabuchneri (41 isolates, Lactobacillus casei (32 isolates, Lactobacillus kefiri (31 isolates, Lactococcus lactis (24 isolates, Acetobacter lovaniensis (32 isolates, Kluyveromyces lactis (31 isolates, Kazachstania aerobia (23 isolates, Saccharomyces cerevisiae (41 isolates and Lachancea meyersii (15 isolates were the microbial species isolated. Scanning electron microscopy showed that the microbiota was dominated by bacilli (short and curved long cells growing in close association with lemon-shaped yeasts cells. During the 24 h of fermentation, the protein content increased, while lactose and fat content decreased. The concentration of lactic acid ranged from 1.4 to 17.4 mg/ml, and that of acetic acid increased from 2.1 to 2.73 mg/ml. The production of ethanol was limited, reaching a final mean value of 0.5 mg/ml.

  7. Chemical composition and quality of sweet sorghum and maize silages

    Directory of Open Access Journals (Sweden)

    Zbigniew PODKÓWKA

    2011-10-01

    Full Text Available Sweet sorghum (Sorghum saccharatum silage, maize (Zea mays silage, and sorghum and maize (1:1 silage were investigated. The silages were analysed for chemical composition, quality and aerobic stability. Dry matter was the lowest (20.88% in sorghum silage and the highest (37.45% in maize silage. In sorghum silage, the concentration of crude ash and crude fibre was higher, and that of crude protein, crude fat and N-free extractives lower compared to maize silage. Neutral detergent fibre and acid detergent fibre were the highest in sorghum silage and the lowest in maize silage. The silages were dominated by lactic acid, with trace amounts of butyric acid. Maize silage was higher lactic acid and higher total acids than others. All silages were of very good quality according to Flieg-Zimmer scale. Silage pH ranged from 4.20 to 4.31. Sorghum silage was characterized by higher aerobic stability (81h compared to the other silages from maize (74h and sorghum and maize 1:1 (69h.

  8. Chemical Composition, Antifungal and Insecticidal Activities of Hedychium Essential Oils

    Directory of Open Access Journals (Sweden)

    Kanniah Rajasekaran

    2013-04-01

    Full Text Available The antimicrobial properties of essential oils have been documented, and their use as “biocides” is gaining popularity. The aims of this study were to analyze the chemical composition and assess the biological activities of Hedychium essential oils. Oils from 19 Hedychium species and cultivars were analyzed by gas chromatography (GC and gas chromatography-mass spectrometry (GC-MS techniques. The antifungal and insecticidal activities of these oils were tested against Colletotrichum acutatum, C. fragariae, and C. gloeosporioides, and three insects, the azalea lace bug (Stephanitis pyrioides, the yellow fever mosquito (Aedes aegypti, and the red imported fire ant (Solenopsis invicta. Hedychium oils were rich in monoterpenes and sesquiterpenes, especially 1,8-cineole (0.1%–42%, linalool (<0.1%–56%, a-pinene (3%–17%, b-pinene (4%–31%, and (E-nerolidol (0.1%–20%. Hedychium oils had no antifungal effect on C. gloeosporioides, C. fragariae, and C. acutatum, but most Hedychium oils effectively killed azalea lace bugs. The oils also show promise as an adult mosquito repellent, but they would make rather poor larvicides or adulticides for mosquito control. Hedychium oils acted either as a fire ant repellent or attractant, depending on plant genotype and oil concentration.

  9. Anisotropy vs chemical composition at ultra-high energies

    CERN Document Server

    Lemoine, Martin

    2009-01-01

    This paper proposes and discusses a test of the chemical composition of ultra-high energy cosmic rays that relies on the anisotropy patterns measured as a function of energy. In particular, we show that if one records an anisotropy signal produced by heavy nuclei of charge Z above an energy E_{thr}, one should record an even stronger (possibly much stronger) anisotropy at energies >E_{thr}/Z due to the proton component that is expected to be associated with the sources of the heavy nuclei. This conclusion remains robust with respect to the parameters characterizing the sources and it does not depend at all on the modelling of astrophysical magnetic fields. As a concrete example, we apply this test to the most recent data of the Pierre Auger Observatory. Assuming that the anisotropy reported above 55EeV is not a statistical accident, and that no significant anisotropy has been observed at energies 10^{45}Z^{-2}erg/s. Using this bound in conjunction with the above conclusions, we argue that the current PAO data...

  10. Chemical compositions of two different Thymus species essential oils

    Directory of Open Access Journals (Sweden)

    Samira Jaberi

    2015-06-01

    Full Text Available Thymus is one of the most important members of Lamiaceae family. Aerial parts of the plant have been widely used in medicine. It has been reported that most of these effects are related to phenolic compounds especially thymol and carvacrol in Thymus essential oil. In this study, aerial parts of Thymus daenensis and Thymus lancifolius were collected from Kohgiluyeh and Boyer-Ahmad, Iran. Essential oils of aerial parts of these plants were gained by the hydrodistillation method and the chemical compositions were analyzed by gas chromatography/ Mass spectrometry (GC/MS. The major components of the essential oil of T. daenensis were thymol (39.91%, carvacrol (29.93%, linalool (5.55%, caryophyllene (3.5% and geraniol (3.09%, whereas the major components of the essential oil of T. lancifolius were: carvacrol (25.55%, thymol (20.79%, linalool (16.8%, α-terpineol (6.34%, borneol (4.00%, caryophyllene (3.98%, p-cymene (3.38% and cis-linalool oxide (3.21%. Linalool was reported as another major component in T. lancifolius

  11. Microbial population, chemical composition and silage fermentation of cassava residues.

    Science.gov (United States)

    Napasirth, Viengsakoun; Napasirth, Pattaya; Sulinthone, Tue; Phommachanh, Kham; Cai, Yimin

    2015-09-01

    In order to effectively use the cassava (Manihot esculenta Crantz) residues, including cassava leaves, peel and pulp for livestock diets, the chemical and microbiological composition, silage preparation and the effects of lactic acid bacteria (LAB) inoculants on silage fermentation of cassava residues were studied. These residues contained 10(4) to 10(5) LAB and yeasts, 10(3) to 10(4) coliform bacteria and 10(4) aerobic bacteria in colony forming units (cfu) on a fresh matter (FM) basis. The molds were consistently at or below the detectable level (10(2) cfu of FM) in three kinds of cassava residues. Dry matter (DM), crude protein (CP) and neutral detergent fiber (NDF) content of cassava residues were 17.50-30.95%, 1.30-16.41% and 25.40-52.90% on a DM basis, respectively. The silage treatments were designed as control silage without additive (CO) or with LAB inoculants Chikuso-1 (CH, Lactobacillus plantarum) and Snow Lacto (SN, Lactobacillus rhamnosus) at a rate of 5 mg/kg of FM basis. All silages were well preserved with a low pH (below 4.0) value and when cassava residues silage treated with inoculants CH and SN improved fermentation quality with a lower pH, butyric acid and higher lactic acid than control silage.

  12. Chemical compositions of precipitation and scavenging of particles in Beijing

    Institute of Scientific and Technical Information of China (English)

    HU Min; ZHANG Jing; WU Zhijun

    2005-01-01

    Totally 23 precipitation samples were collected in Beijing from May to November in 2003. In order to investigate the chemical composition of precipitation samples, pH, conductivity, concentrations of water-soluble ions and organic acids were analyzed. The average pH of precipitations is 6.18, belonging to the neutral range; the average conductivity is 52.23 (S/cm, which indicates that precipitations in Beijing are obviously polluted; are the most abundant anions with the average concentrations of 521 and 174 μeq·L-1, respectively; the average equivalent ratio is 3.1, which decreases by about 15% compared with the result of 1994; and Ca2+ are the most abundant cations with the average concentrations of 376 and 397 μeq·L-1, respectively; formic acid, acetic acid and oxalic acid are the main organic acids with the average concentrations of 4.62, 4.60 and 1.17 μeq·L-1, respectively, accounting for 2% of the overall anions. Obvious differences between concentrations before and after precipitation are also observed by SJAC (Steam Jet Aerosol Collector), which shows the removal of particles from the atmosphere by precipitation.

  13. Pereskia aculeata Muller (Cactaceae) Leaves: Chemical Composition and Biological Activities

    Science.gov (United States)

    Souza, Lucèia Fàtima; Caputo, Lucia; Inchausti De Barros, Ingrid Bergman; Fratianni, Florinda; Nazzaro, Filomena; De Feo, Vincenzo

    2016-01-01

    The aims of this work were to study the chemical composition of the essential oil from the leaves of Pereskia aculeata and to evaluate some biological activities of three leaf extracts. The phenolic content, antioxidant activity, and in vitro antimicrobial and antifungal activities were determined. The methanol extract showed antioxidant activity (EC50 7.09 mg/mL) and high polyphenols content (15.04 ± 0.31 mg gallic acid equivalents (GAE)/g). The petroleum ether extract exhibited potent antibacterial activity against Escherichia coli, whereas the chloroform extract showed inhibitory activity against Bacillus cereus and Staphylococcus aureus. The petroleum ether and methanol extracts were more effective in inhibiting the growth of Aspergillus versicolor. The possible cytotoxicity of extracts on neuroblastoma SH-SY5Y cancer cell line and the influence on adenylate cyclase (ADCY) expression was also studied. P. aculeata chloroform extract showed antiproliferative activity with an IC50 value of 262.83 µg/mL. Treatments of SH-SY5Y neuroblastoma cells with 100 µg/mL of methanol extract significantly reduced ADCY1 expression. PMID:27598154

  14. Thermodynamic Branch in the Chemical System Response to External Impact

    CERN Document Server

    Zilbergleyt, B

    2012-01-01

    The paper gives an account of a detailed investigation of the thermodynamic branch as a path of the chemical system deviation from its isolated thermodynamic equilibrium under an external impact. For a combination of direct and reverse reactions in the same chemical system, full thermodynamic branch is presented by an S-shaped curve, whose ends asymptotically achieve appropriate initial states, which, in turn, are logistic ends of the opposite reactions. The slope tangents of the steepest parts of the curves, the areas of the maximum rate of the shift growth vs. the external thermodynamic force, occurred to be directly proportional to the force and, simultaneously, linearly proportional to the thermodynamic equivalent of chemical reaction, which is the ratio between the amount in moles of any reaction participant, transformed in an isolated system, along the reaction way from its initial state to thermodynamic equilibrium, to its stoichiometric coefficient. The found linearity is valid for arbitrary combinati...

  15. The Impact of Modeling Assumptions in Galactic Chemical Evolution Models

    CERN Document Server

    Côté, Benoit; Ritter, Christian; Herwig, Falk; Venn, Kim A

    2016-01-01

    We use the OMEGA galactic chemical evolution code to investigate how the assumptions used for the treatment of galactic inflows and outflows impact numerical predictions. The goal is to determine how our capacity to reproduce the chemical evolution trends of a galaxy is affected by the choice of implementation used to include those physical processes. In pursuit of this goal, we experiment with three different prescriptions for galactic inflows and outflows and use OMEGA within a Markov Chain Monte Carlo code to recover the set of input parameters that best reproduces the chemical evolution of nine elements in the dwarf spheroidal galaxy Sculptor. Despite their different degrees of intended physical realism, we found that all three prescriptions can reproduce in an almost identical way the stellar abundance trends observed in Sculptor. While the three models have the same capacity to fit the data, the best values recovered for the parameters controlling the number of Type Ia supernovae and the strength of gal...

  16. High Velocity Impact Response of Composite Lattice Core Sandwich Structures

    Science.gov (United States)

    Wang, Bing; Zhang, Guoqi; Wang, Shixun; Ma, Li; Wu, Linzhi

    2014-04-01

    In this research, carbon fiber reinforced polymer (CFRP) composite sandwich structures with pyramidal lattice core subjected to high velocity impact ranging from 180 to 2,000 m/s have been investigated by experimental and numerical methods. Experiments using a two-stage light gas gun are conducted to investigate the impact process and to validate the finite element (FE) model. The energy absorption efficiency (EAE) in carbon fiber composite sandwich panels is compared with that of 304 stainless-steel and aluminum alloy lattice core sandwich structures. In a specific impact energy range, energy absorption efficiency in carbon fiber composite sandwich panels is higher than that of 304 stainless-steel sandwich panels and aluminum alloy sandwich panels owing to the big density of metal materials. Therefore, in addition to the multi-functional applications, carbon fiber composite sandwich panels have a potential advantage to substitute the metal sandwich panels as high velocity impact resistance structures under a specific impact energy range.

  17. Managing the impacts of endocrine disrupting chemicals in wastewater-impacted streams

    Science.gov (United States)

    Journey, Celeste A.; Bradley, Paul M.; Kolpin, Dana W.; Bradley, Paul M.

    2013-01-01

    A revolution in analytical instrumentation circa 1920 greatly improved the ability to characterize chemical substances [1]. This analytical foundation resulted in an unprecedented explosion in the design and production of synthetic chemicals during and post-World War II. What is now often referred to as the 2nd Chemical Revolution has provided substantial societal benefits; with modern chemical design and manufacturing supporting dramatic advances in medicine, increased food production, and expanding gross domestic products at the national and global scales as well as improved health, longevity, and lifestyle convenience at the individual scale [1, 2]. Presently, the chemical industry is the largest manufacturing sector in the United States (U.S.) and the second largest in Europe and Japan, representing approximately 5% of the Gross Domestic Product (GDP) in each of these countries [2]. At the turn of the 21st century, the chemical industry was estimated to be worth more than $1.6 trillion and to employ over 10 million people, globally [2]. During the first half of the 20th century, the chemical sector expanded rapidly, the chemical industry enjoyed a generally positive status in society, and chemicals were widely appreciated as fundamental to individual and societal quality of life. Starting in the 1960s, however, the environmental costs associated with the chemical industry increasingly became the focus, due in part to the impact of books like “Silent Spring” [3] and “Our Stolen Future” [4] and to a number of highly publicized environmental disasters. Galvanizing chemical industry disasters included the 1976 dioxin leak north of Milan, Italy, the Love Canal evacuations in Niagara, New York beginning in 1978, and the Union Carbide leak in Bhopal, India in 1984 [2]. Understanding the environmental impact of synthetic compounds is essential to any informed assessment of net societal benefit, for the simple reason that any chemical substance that is in

  18. Low Velocity Blunt Impact on Lightweight Composite Sandwich Panels

    Science.gov (United States)

    Chan, Monica Kar

    There is an increased desire to incorporate more composite sandwich structures into modern aircrafts. Because in-service aircrafts routinely experience impact damage during maintenance due to ground vehicle collision, dropped equipment, or foreign object damage (FOD) impact, it is necessary to understand their impact characteristics, particularly when blunt impact sources create internal damage with little or no external visibility. The objective of this investigation is to explore damage formation in lightweight composite sandwich panels due to low-velocity impacts of variable tip radius and energy level. The correlation between barely visible external dent formation and internal core damage was explored as a function of impact tip radius. A pendulum impactor was used to impact composite sandwich panels having honeycomb core while held in a 165 mm square window fixture. The panels were impacted by hardened steel tips with radii of 12.7, 25.4, 50.8, and 76.2 mm at energy levels ranging from 2 to 14 J. Experimental data showed little dependence of external dent depth on tip radius at very low energies of 2 to 6 J, and thus, there was also little variation in visibility due to tip radius. Four modes of internal core damage were identified. Internal damage span and depth were dependent on impact tip radius. Damage depth was also radius-dependent, but stabilized at constant depth independent of kinetic energy. Internal damage span increased with increasing impact energy, but not with increasing tip radius, suggesting a relationship between maximum damage tip radius with core density/size.

  19. Impact and Penetration Simulations for Composite Wing-like Structures

    Science.gov (United States)

    Knight, Norman F.

    1998-01-01

    The goal of this research project was to develop methodologies for the analysis of wing-like structures subjected to impact loadings. Low-speed impact causing either no damage or only minimal damage and high-speed impact causing severe laminate damage and possible penetration of the structure were to be considered during this research effort. To address this goal, an assessment of current analytical tools for impact analysis was performed. Assessment of the analytical tools for impact and penetration simulations with regard to accuracy, modeling, and damage modeling was considered as well as robustness, efficient, and usage in a wing design environment. Following a qualitative assessment, selected quantitative evaluations will be performed using the leading simulation tools. Based on this assessment, future research thrusts for impact and penetration simulation of composite wing-like structures were identified.

  20. Seminar for hydrocarbon detection with composite geophysical/geo-chemical techniques

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    “Seminar for hydrocarbon detection with composite geophy sical/geo-chemical techniques”,jointly organized by China petroleum Exploration & Production Company and Exploration Geophysical Committee of CGS and supported by the Composite Geophysical/geo-chemical Departement of Oriental Geophysical Company and China Exploration&Development Research Instiute,

  1. Chemical composition analysis of simulated waste glass T10-G-16A

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-01

    In this report, SRNL provides chemical composition analyses of a simulated LAW glass designated T10-G-16A.The measured chemical composition data are reported and compared with the targeted values for each component. No issues were identified in reviewing the analytical data.

  2. 40 CFR 761.292 - Chemical extraction and analysis of individual samples and composite samples.

    Science.gov (United States)

    2010-07-01

    ....61(a)(6) § 761.292 Chemical extraction and analysis of individual samples and composite samples. Use... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Chemical extraction and analysis of individual samples and composite samples. 761.292 Section 761.292 Protection of Environment...

  3. Boron carbide: Consistency of components, lattice parameters, fine structure and chemical composition makes the complex structure reasonable

    Science.gov (United States)

    Werheit, Helmut

    2016-10-01

    The complex, highly distorted structure of boron carbide is composed of B12 and B11C icosahedra and CBC, CBB and B□B linear elements, whose concentration depends on the chemical composition each. These concentrations are shown to be consistent with lattice parameters, fine structure data and chemical composition. The respective impacts on lattice parameters are estimated and discussed. Considering the contributions of the different structural components to the energy of the overall structure makes the structure and its variation within the homogeneity range reasonable; in particular that of B4.3C representing the carbon-rich limit of the homogeneity range. Replacing in B4.3C virtually the B□B components by CBC yields the hypothetical moderately distorted B4.0C (structure formula (B11C)CBC). The reduction of lattice parameters related is compatible with recently reported uncommonly prepared single crystals, whose compositions deviate from B4.3C.

  4. Effects of temperature, pressure and chemical compositions on the electrical conductivity of carbonated melts and its relationship with viscosity

    OpenAIRE

    Sifré, David; Hashim, Leïla; Gaillard, Fabrice

    2015-01-01

    International audience Carbonated melts constitute a key medium in the global deep carbon cycle: their impact on the geochemical signature of deep rocks is well studied because of their role as metasomatic agents in the deep mantle. However, their physical properties and in particular their electrical conductivity at high temperature and high pressure remain poorly constrained. In this study, we investigated the effect of chemical composition on the electrical conductivity of carbonated me...

  5. Characteristics and chemical composition of ground water in Bara basin

    International Nuclear Information System (INIS)

    In this study analysis was carried for forty five ground water samples from different areas within Bara basin, fifteen solid samples, three locally produced salt samples and one mixed rocks sample. The rocks were brought from the underground during hand digging of wells. The study include areas Um-Galgie, Bara, Saatah Shambool, Um-Sadoun El-Shareef, EI-Dair, EI-Murra, Taybah, Um-sadoun EI-Nazir, EI-Hodied Shareef, Um-Nabeg, Um-Gazira, Magror, Ma'afa, El-Kheiran, Dameerat Abdu, Sharshar East, Sharshar West, El-Gaa'a Um-Safari, and El-Gaa'a Um EL-Gora. Physical characteristics of ground water samples were determined including pH, electrical conductivity, turbidity, and total dissolved solids, using pH-meter, conductivity-meter, and ultra- meter. Many other analytical techniques were used. Spectrophotometric analysis was used for determination of nitrate(NO3''-''-), nitrite (No2''-), ammonia-nitrogen (NH3-N), fluoride(F), sulphide(S''-''-) and sulphate(SO4''-''-) ions. Chloride (Cl''-) and total alkalinity(OH''-,CO3''-''-,HCO3''-) were determined titrametrically. X-ray diffraction technique was used for determination of chemical composition of solid samples (soils,salts and rocks). X-ray fluorescence technique was used to measure the concentration of some metals in the solid samples. Radioactivity was measured using gamma-spectrometry. Atomic absorption spectrometry was used for the measurement of cations concentration in ground water samples as well as soil samples, this include macro-cations: sodium (Na), potassium (K), calcium (Ca), magnesium (Mg) and micro cations (trace): Iron (Fe), manganese (Mn), chromium (Cr), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), cadmium (Cd), silver (Ag), lead (Pb) and barium (Ba). The results obtained were statistically treated, using SPSS program, discussed and further future research was suggested. The analysis show general suitability of fresh ground water at section A and C samples from physical and chemical characteristic

  6. Determining the chemical composition of cloud condensation nuclei. Second progress report

    Energy Technology Data Exchange (ETDEWEB)

    Williams, A.L.; Rothert, J.E.; McClure, K.E. [Illinois State Water Survey, Champaign, IL (United States); Alofs, D.J.; Hagen, D.E.; White, D.R.; Hopkins, A.R.; Trueblood, M.B. [Missouri Univ., Rolla, MO (USA). Cloud and Aerosol Science Lab.

    1992-02-01

    This second progress report describes the status of the project one and one-half years after the start. The goal of the project is to develop the instrumentation to collect cloud condensation nuclei (CCN) in sufficient amounts to determine their chemical composition, and to survey the CCN composition in different climates through a series of field measurements. Our approach to CCN collection is to first form droplets on the nuclei under simulated cloud humidity conditions, which is the only known method of identifying CCN from the background aerosol. Under cloud chamber conditions, the droplets formed become larger than the surrounding aerosol, and can then be removed by inertial impaction. The residue of the evaporated droplets represents the sample to be chemically analyzed. Two size functions of CCN particles are collected by first forming droplets on the large particles are collected by first forming droplets on the large CCN in a haze chamber at 100% relative humidity, and then activating the remaining CCN at 1% supersaturation in a cloud chamber. The experimental apparatus is a serious flow arrangement consisting of an impactor to remove the large aerosol particles, a haze chamber to form droplets on the remaining larger CCN, another impactor to remove the haze droplets containing the larger CCN particles for chemical analysis, a continuous flow diffusion (CFD) cloud chamber to form droplets on the remaining smaller CCN, and a third impactor to remove the droplets for the small CCN sample. Progress is documented here on the development of each of the major components of the flow system. Chemical results are reported on tests to determine suitable wicking material for the different plates. Results of computer modeling of various impactor flows are discussed.

  7. Impact test on natural fiber reinforced polymer composite materials

    Directory of Open Access Journals (Sweden)

    D. Chandramohan

    2013-06-01

    Full Text Available In this research, natural fibers like Sisal (Agave sisalana, Banana (Musa sepientum & Roselle (Hibiscus sabdariffa , Sisal and banana (hybrid , Roselle and banana (hybrid and Roselle and sisal (hybrid are fabricated with bio epoxy resin using molding method. In this work, impact strength of Sisal and banana (hybrid, Roselle and banana (hybridand Roselle and sisal (hybrid composite at dry and wet conditions were studied. Impact test were conducted izod impact testing machine. In this work micro structure of the specimens are scanned by the Scanning Electron Microscope.

  8. Brazilian Propolis: Correlation between Chemical Composition and Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Kelly Salomão

    2008-01-01

    Full Text Available The chemical composition of ethanol extracts from samples of Brazilian propolis (EEPs determined by HPLC and their activity against Trypanosoma cruzi, Staphylococcus aureus, Streptococcus pneumoniae, Klebisiella pneumoniae, Candida albicans, Sporothrix schenckii and Paracoccidioides brasiliensis were determined. Based on the predominant botanical origin in the region of samples' collection, the 10 extracts were separated into three groups: A (B. dracunculifolia + Auraucaria spp, B (B. dracunculifolia and C (Araucaria spp. Analysis by the multiple regression of all the extracts together showed a positive correlation, higher concentrations leading to higher biological effect, of S. aureus with p-coumaric acid (PCUM and 3-(4-hydroxy-3-(oxo-butenyl-phenylacrylic acid (DHCA1 and of trypomastigotes of T. cruzi with 3,5-diprenyl-4-hydroxycinnamic acid derivative 4 (DHCA4 and 2,2-dimethyl-6-carboxyethenyl-2H-1-benzopyran (DCBEN. When the same approach was employed for each group, due to the small number of observations, the statistical test gave unreliable results. However, an overall analysis revealed for group A an association of S. aureus with caffeic acid (CAF and dicaffeoylquinic acid 3 (CAFQ3, of S. pneumoniae with CAFQ3 and monocaffeoylquinic acid 2 (CAFQ2 and of T. cruzi also with CAFQ3. For group B, a higher activity against S. pneumoniae was associated DCBEN and for T. cruzi with CAF. For group C no association was observed between the anitmicrobial effect and any component of the extracts. The present study reinforces the relevance of PCUM and derivatives, especially prenylated ones and also of caffeolyquinic acids, on the biological activity of Brazilian propolis.

  9. Chemical composition and leishmanicidal activity of Pulicaria gnaphalodes essential oil

    Directory of Open Access Journals (Sweden)

    G. Asghari

    2014-10-01

    Full Text Available Background and objectives: Several natural compounds have been identified for the treatment ofleishmaniasis. Due to a few safe drugs and the side effects caused by available chemotherapy, some new drugs for treatment of leishmaniasis are requested.  The genus Pulicaria (Asteraceae is represented in the flora of Iran by five species. Phytochemical studies on Pulicaria species have revealed some flavonoids and terpenoids with leishmanicidal activity. In the present investigation chemical composition and leishmanicidal activity of Pulicaria gnaphalodes essential oil have been studied. Methods: The essential oil of the aerial parts of the plant was obtained by Clevenger apparatus and was analyzed by GC/MS. Antileishmanil activity was assessed against promastigoes of Leishmania major. Results:The major components from P. gnaphalodes essential oil have been reported to be geraniol, 1,8-cineole, chrysanthenone, α-pinene, chrystanthenone, α-terpineol and filifolone. The alcohol monoterpenes with contribution of 25.04% constituted the major portion of the essential oil, while hydrocarbon monoterpenes and hydrocarbon sesquiterpenes with contribution of 7.08% and 2.38%, respectively occupied the next rates.In the present experiment the essential oil of P. gnaphalodes progressively inhibited Leishmania major growth in concentrations ranging from 0.125 to 50 µL/mL (parasite culture in 24 h. The essential oil at 50 µL/mL eliminated the promastigotes at the beginning of treatment. It showed antileishmanial activity in concentration of 1.06 µL/mL and destroyed all parasits in 24 h.  Conclusion: Pulicaria gnaphalodes antileishmanial activity, could suggest the species and constituents as possible lead structures for antileishmanial drug discovery.

  10. Chemical composition of buckwheat plant parts and selected buckwheat products

    Directory of Open Access Journals (Sweden)

    Petra Vojtíšková

    2014-11-01

    Full Text Available Chemical composition plant parts (roots, stalks, leaves, blossoms of common buckwheat (Fagopyrum esculentum Moench and selected products made from its seeds (peels, whole seed, wholemeal flour, broken seeds, crunchy products Natural and Cocoa, flour, and pasta was determined. Samples were dried and ground to a fine powder. All analyses were performed according to the Commission Regulation no. 152/2009, while rutin concentration was determined by the modified HPLC method. The lowest content of moisture was found in roots (4.3% and in peels (almost 8% and the highest moisture (nearly 11% was discovered in seeds. The lowest amount of crude protein (3.5% was found in peels, the highest crude protein amount (>13% in both flours and leaves (23%. The starch content (>50% in dry matter differs from one sample to another. Only in peels the content of starch was about 3.5%. From all examined samples, the lowest content of fat was found in crunchy products Cocoa, 1.7%. The lowest amount of histidine was determined in all studied samples, except peels, the highest content of glutamic acid was determined in almost all samples, except peels. Whole-meal flour is very rich source of Ca and Fe. The content of these elements was 1172 mg.kg-1 and 45.9 mg.kg-1, respectively. On the other hand, the highest content of Pb (>1 mg.kg-1 was found in broken seeds. The greatest concentration of rutin was determined in blossoms and leaves (83.6 and 69.9 mg.g-1, respectively. On the other hand, the lowest concentrations of rutin were found in buckwheat products (generally less then 1 mg.g-1, i.e. in wholemeal flour, 702 μg.kg-1, the lowest almost 10 μg.kg-1 in pasta.

  11. Chemical composition and shape of snow crystals in Antarctica

    International Nuclear Information System (INIS)

    Fresh snow samples collected in a coastal Antarctic site (Terra Nova Bay) were examined by considering both the chemical composition and ice crystal shape. Measured concentrations in snow samples show that nucleation is the dominant aerosol scavenging process. An additional contribution from phoretic forces to aerosol scavenging during growth of ice crystals can be deduced from the correlation between non sea-salt sulphate (nss-SO42-) and methanesulfonic acid (MSA) measured in snow samples. The sea-salt contribution is dominant, as usually observed in the coastal Antarctic stations. By determining sea-salt from Na+ concentration, the values of 4400 μg l-1; 2400 μgl-1; 2900 μgl-1; 650 μgl-1 were obtained for the examined samples. The NO3-/Na+ ratio in fresh snow (range 0.1-0.6), much higher than the value in sea-water (about 10-4), excludes a marine origin for NO3- ion, suggesting a continental and/or stratospheric source. Organic compounds (propionate, acetate, formate, MSA and glycolate) were in addition measured in snow samples. Ice crystal replicas were made by collecting crystals on microscope slides, previously covered with a thin layer of 2% formvar in chloroform. Samples were analyzed by a scanning electron microscope (SEM). A large variety of ice crystal habits (needles, hexagonal plates, crystals with branches, dendritic crystals, etc.) were observed. In the examined replicas of different events, cases are noted in which simple plates are prevalent, others in which prevalently complex crystal shapes are observed, and others again in which simple and complex crystal shapes are present simultaneously.

  12. Biological activities and chemical composition of lichens from Serbia.

    Science.gov (United States)

    Kosanic, Marijana; Rankovic, Branislav; Stanojkovic, Tatjana; Vasiljevic, Perica; Manojlovic, Nedeljko

    2014-01-01

    The aim of this study is to investigate chemical composition of acetone extracts of the lichens Parmelia arseneana and Acarospora fuscata and in vitro antioxidant, antimicrobial, and anticancer activities of these extracts and gyrophoric acid isolated from A. fuscata. The HPLC-UV method was used for the identification of secondary metabolites. Stictic acid, norstictic acid, gyrophoric acid, usnic acid, atranorin and chloroatranorin were identified in the A. fuscata. In P. arseneana, we detected stictic acid, norstictic acid, usnic acid and atranorin, while gyrophoric acid was not identified. Antioxidant activity was evaluated by measuring the scavenging capacity of tested samples on DPPH and superoxide anion radicals, reducing the power of samples and determination of total phenolic compounds in extracts. As a result of the study, gyrophoric acid was found to have the largest DPPH radical scavenging activity with an IC50 value of 105.75 µg/ml. Moreover, the tested samples had an effective superoxide anion radical scavenging and reducing power. The total content of phenol in extracts was determined as pyrocatechol equivalent. The antimicrobial activity was estimated by determination of the minimal inhibitory concentration by the broth microdilution method. The most active was also gyrophoric acid, with minimum inhibitory concentration values ranging from 0.019 to 1.25 mg/ml. Anticancer activity was tested against LS174 (human colon carcinoma cell line), A549 (human lung carcinoma cell line), Fem-x (malignant melanoma cell line), and a chronic myelogeneous leukaemia K562 cell line using the MTT method. Extract of P. arseneana expressed the strongest anticancer activity against all cell lines with IC50 values ranging from 11.61 to 47.06 µg/ml. PMID:26417336

  13. Chemical composition and antioxidant activity of berry fruits

    Directory of Open Access Journals (Sweden)

    Stajčić Slađana M.

    2012-01-01

    Full Text Available The main chemical composition, contents of total phenolic (TPh, total flavonoid (TF, and total monomeric anthocyianin (TMA, as well as the antioxidant activity of two raspberry cultivars (Meeker and Willamette, two blackberry cultivars (Čačanska bestrna and Thornfree and wild bilberry were studied. The raspberry cultivars had the highest total solids among fruits investigated. Bilberry fruits had the highest sugar-to-acid ratio. Blackberry fruits were richer in crude fibers (cellulose in comparison to raspberry and bilberry fruits. The content of pectic substances was highest in the bilberry. Also, bilberry had a highest content of TPh (808.12 mg GAE/100 g FW, TF (716.31 mg RE/100 g FW and TMA (447.83 mg CGE/100 g FW. The antioxidant activity was evaluated spectrophotometrically, using 2,2-diphenyl-1-picrylhydrazyl (DPPH radical scavenging activity assay. The DPPH free radical scavenging activity, expressed as the EC50 value (in mg of fresh weight of berry fruit per ml of the reaction mixture, of bilberry (0.3157 ± 0.0145 mg/ml was the highest. These results also showed that the antioxidant value of 100 g FW bilberry, raspberry - Willamette, raspberry - Meeker, blackberry - Čačanska bestrna and blackberry - Thornfree is equivalent to 576.50 mg, 282.74 mg, 191.58 mg, 222.28 mg and 272.01 mg of vitamin C, respectively. There was a significant positive correlation between the antioxidant activities and content of total phenolics (RTPh 2=0.9627, flavonoids (RTF 2=0.9598 and anthocyanins (RTMA 2=0.9496 in berry fruits. [Projekat Ministarstva nauke Republike Srbije, br. TR 31044

  14. The influence of chemical composition on the properties and structure Al-Si-Cu(Mg alloys

    Directory of Open Access Journals (Sweden)

    M. Kaczorowski

    2007-04-01

    Full Text Available The mechanical properties of different chemical composition AlSiCuMg type cast alloys after precipitation hardening are presented. The aim of the study was to find out how much the changes in chemistry of aluminum cast alloys permissible by EN-PN standards may influence the mechanical properties of these alloys. Eight AlSi5Cu3(Mg type cast alloys of different content alloying elements were selected for the study. The specimens cut form test castings were subjected to precipitation hardening heat treatment. The age hardened specimens were evaluated using tensile test, hardness measurements and impact test. Moreover, the structure investigation were carried out using either conventional light Metallography and scanning (SEM and transmission (TEM electron microscopy. The two last methods were used for fractography observations and precipitation process observations respectively. It was concluded that the changes in chemical composition which can reach even 2,5wt.% cause essential differences of the structure and mechanical properties of the alloys. As followed from quantitative evaluation and as could be predicted theoretically, copper and silicon mostly influenced the mechanical properties of AlSi5Cu3(Mg type cast alloys. Moreover it was showed that the total concentration of alloying elements accelerated and intensifies the process of decomposition of supersaturated solid solution. The increase of Cu and Mg concentration increased the density of precipitates. It increases of strength properties of the alloys which are accompanied with decreasing in ductility.

  15. Dissolution of cerium(IV)-lanthanide(III) oxides: Comparative effect of chemical composition, temperature, and acidity

    International Nuclear Information System (INIS)

    The dissolution of Ce1-xLnxO2-x/2 solid solutions was undertaken in various acid media in order to evaluate the effects of several physicochemical parameters such as chemical composition, temperature, and acidity on the reaction kinetics. The normalized dissolution rates (RL,0) were found to be strongly modified by the trivalent lanthanide incorporation rate, due to the presence of oxygen vacancies decreasing the samples cohesion. Conversely, the nature of the trivalent cation considered only weakly impacted the RL,0 values. The dependence of the normalized dissolution rates on the temperature then appeared to be of the same order of magnitude than that of chemical composition. Moreover, it allowed determining the corresponding activation energy (EA ≅ 60-85 kJ.mol-1) which accounts for a dissolution driven by surface-controlled reactions. A similar conclusion was made regarding the acidity of the solution: the partial order related to (H3O+) reaching about 0.7. Finally, the prevailing effect of the incorporation of aliovalent cations in the fluorite-type CeO2 matrix on the dissolution kinetics precluded the observation of slight effects such as those linked to the complexing agents or to the crystal structure of the samples. (authors)

  16. Structural Health Monitoring for Impact Damage in Composite Structures.

    Energy Technology Data Exchange (ETDEWEB)

    Roach, Dennis P.; Raymond Bond (Purdue); Doug Adams (Purdue)

    2014-08-01

    Composite structures are increasing in prevalence throughout the aerospace, wind, defense, and transportation industries, but the many advantages of these materials come with unique challenges, particularly in inspecting and repairing these structures. Because composites of- ten undergo sub-surface damage mechanisms which compromise the structure without a clear visual indication, inspection of these components is critical to safely deploying composite re- placements to traditionally metallic structures. Impact damage to composites presents one of the most signi fi cant challenges because the area which is vulnerable to impact damage is generally large and sometimes very dif fi cult to access. This work seeks to further evolve iden- ti fi cation technology by developing a system which can detect the impact load location and magnitude in real time, while giving an assessment of the con fi dence in that estimate. Fur- thermore, we identify ways by which impact damage could be more effectively identi fi ed by leveraging impact load identi fi cation information to better characterize damage. The impact load identi fi cation algorithm was applied to a commercial scale wind turbine blade, and results show the capability to detect impact magnitude and location using a single accelerometer, re- gardless of sensor location. A technique for better evaluating the uncertainty of the impact estimates was developed by quantifying how well the impact force estimate meets the assump- tions underlying the force estimation technique. This uncertainty quanti fi cation technique was found to reduce the 95% con fi dence interval by more than a factor of two for impact force estimates showing the least uncertainty, and widening the 95% con fi dence interval by a fac- tor of two for the most uncertain force estimates, avoiding the possibility of understating the uncertainty associated with these estimates. Linear vibration based damage detection tech- niques were investigated in the

  17. Characterization of Triaxial Braided Composite Material Properties for Impact Simulation

    Science.gov (United States)

    Roberts, Gary D.; Goldberg, Robert K.; Biniendak, Wieslaw K.; Arnold, William A.; Littell, Justin D.; Kohlman, Lee W.

    2009-01-01

    The reliability of impact simulations for aircraft components made with triaxial braided carbon fiber composites is currently limited by inadequate material property data and lack of validated material models for analysis. Improvements to standard quasi-static test methods are needed to account for the large unit cell size and localized damage within the unit cell. The deformation and damage of a triaxial braided composite material was examined using standard quasi-static in-plane tension, compression, and shear tests. Some modifications to standard test specimen geometries are suggested, and methods for measuring the local strain at the onset of failure within the braid unit cell are presented. Deformation and damage at higher strain rates is examined using ballistic impact tests on 61- by 61- by 3.2-mm (24- by 24- by 0.125-in.) composite panels. Digital image correlation techniques were used to examine full-field deformation and damage during both quasi-static and impact tests. An impact analysis method is presented that utilizes both local and global deformation and failure information from the quasi-static tests as input for impact simulations. Improvements that are needed in test and analysis methods for better predictive capability are examined.

  18. LOW VELOCITY IMPACT ANALYSIS OF LAMINATED FRP COMPOSITES

    Directory of Open Access Journals (Sweden)

    B. KRANTHI KUMAR

    2012-01-01

    Full Text Available Fiber reinforced composites have become increasingly important over the past few years and are now the first choice for fabricating structures where low weight in combination with high strength and stiffness are required. Fiber Reinforced Plastics (FRP composites are in greatest commercial use. They have been extensively used inaerospace, automotive, marine and construction industries due to their inherent advantages over conventional metals. Failure modes of such laminated structures are also different than those of conventional metallic materials. Impact is one such great design limitation criteria involved in designing new composite products.The present work is aimed at gaining an initial understanding of the impact behavior of fiberglass reinforced laminates with vinylester and is polyester resins. The purpose of this research is to characterize the damage done to fiberglass laminates subjected to low velocity, high mass impact. The effect of adding a protectivelayer of rubber to the laminates is also investigated. Finite element models are created with ANSYS/LS-DYNA onlinear finite element software. These models are used to simulate the drop tower tests and extended to thicker laminates as well as different impact speeds andimpactor mass. These models are able to predict approximate stresses and strains induced in the laminates during the impact which are compared to the damage from the drop tower tests.

  19. Surface of Lactic Acid Bacteria: Relationships between Chemical Composition and Physicochemical Properties

    OpenAIRE

    Boonaert, C J; Rouxhet, Paul

    2000-01-01

    The surface chemical composition and physicochemical properties (hydrophobicity and zeta potential) of two lactic acid bacteria, Lactococcus lactis subsp. lactis bv. diacetilactis and Lactobacillus helveticus, have been investigated using cells harvested in exponential or stationary growth phase. The surface composition determined by X-ray photoelectron spectroscopy (XPS) was converted into a molecular composition in terms of proteins, polysaccharides, and hydrocarbonlike compounds. The conce...

  20. "Human Health Impact Characterization of Toxic Chemicals for Sustainable Design and Manufacturing

    OpenAIRE

    Yuan, Chris; Dornfeld, David

    2009-01-01

    A schematic method to characterize the human health impact of toxic chemicals is presented. This schematic method uses a streamlined three-tiered hierarchy process which includes intake, toxicity and persistence of a chemical release for its impact characterization. The human health impact of a chemical is represented by its position in a two-dimensional characterization plot, which enables the benchmarking of chemicals to be easily made by comparing the relative positions of the chemicals in...

  1. Computational modeling and impact analysis of textile composite structures

    Science.gov (United States)

    Hur, Hae-Kyu

    This study is devoted to the development of an integrated numerical modeling enabling one to investigate the static and the dynamic behaviors and failures of 2-D textile composite as well as 3-D orthogonal woven composite structures weakened by cracks and subjected to static-, impact- and ballistic-type loads. As more complicated modeling about textile composite structures is introduced, some of homogenization schemes, geometrical modeling and crack propagations become more difficult problems to solve. To overcome these problems, this study presents effective mesh-generation schemes, homogenization modeling based on a repeating unit cell and sinusoidal functions, and also a cohesive element to study micro-crack shapes. This proposed research has two: (1) studying behavior of textile composites under static loads, (2) studying dynamic responses of these textile composite structures subjected to the transient/ballistic loading. In the first part, efficient homogenization schemes are suggested to show the influence of textile architectures on mechanical characteristics considering the micro modeling of repeating unit cell. Furthermore, the structures of multi-layered or multi-phase composites combined with different laminar such as a sub-laminate, are considered to find the mechanical characteristics. A simple progressive failure mechanism for the textile composites is also presented. In the second part, this study focuses on three main phenomena to solve the dynamic problems: micro-crack shapes, textile architectures and textile effective moduli. To obtain a good solutions of the dynamic problems, this research attempts to use four approaches: (I) determination of governing equations via a three-level hierarchy: micro-mechanical unit cell analysis, layer-wise analysis accounting for transverse strains and stresses, and structural analysis based on anisotropic plate layers, (II) development of an efficient computational approach enabling one to perform transient

  2. Explosive Containment Chamber Vulnerability to Chemical Munition Fragment Impact

    Energy Technology Data Exchange (ETDEWEB)

    Benham, R.A.; Fischer, S.H.; Kipp, M.E.; Martinez, R.R.

    1999-02-01

    Scenarios in which the explosive burster charge in a chemical munition accidentally detonates inside demilitarization containment chambers are analyzed. The vulnerability of an inner Auxiliary Pressure Vessel and the primary Explosive Containment Chamber to impact by fragments from the largest explosive charge expected to be placed in these chambers (M426, 8 inch, chemical, 7 lbs Comp B) is evaluated. Numerical (CTH) and empirical (ConWep) codes are used to characterize the munition fragments, and assess the consequences of their impact and penetration on the walls of these vessels. Both pristine and corroded configurations of the munition have been considered, with and without liquid agent fill. When the munition burster charge detonates, munition case fragments impact and perforate the Auxiliary Pressure Vessel wall, resulting in extensive breakup of this inner chamber and the formation of additional fragments. These residual munition case and Auxiliary Pressure Vessel fragments have sufficient mass and velocity to crater the Explosive Containment Chamber inner wall layer, with accompanying localized permanent deformation (bulging) of both the inner and outer chamber walls. The integrity of the Explosive Containment Chamber was retained under all of the APV / munition configurations considered in this study, with no evidence that primary (munition) or secondary (munition and Auxiliary Pressure Vessel) fragments will perforate the inner chamber wall. Limited analyses of munition detonation without the Auxiliary Pressure Vessel present indicate that some munition span fragments could form under those conditions that have sufficient mass and velocity to perforate the inner wall of the Explosive Containment Chamber.

  3. Compositional heterogeneity of lunar impact melts: Issues of origin and evolution

    Science.gov (United States)

    Dhingra, Deepak; Pieters, Carle

    2012-07-01

    Impact melt formation and emplacement occurs in a dynamically active environment during the excavation and modification stages of the cratering process [1]. They are typically very mobile and as a result occur in a variety of geographical settings including crater floor, walls, rim and beyond. Diverse morphologies of impact melts on the Moon have been well documented [e.g. 2, 3, 4]. Little attention however, has been given to their compositional nature [e.g. 5, 6]. Impact melts occur in diverse geological settings and display wide variability in their volume, liquid to clast ratio and degrees of crystallinity. All these factors affect their physical and chemical attributes. It is therefore necessary to study the compositional nature of impact melts in order to understand their evolution. We have initiated a global remote sensing survey of impact melts on the Moon integrating their compositional character with morphology to understand their evolution. Our initial results suggest compositional heterogeneity in impact melts at various spatial scales [7]. However, it is yet to be understood if the variation is caused by unmelted clast component, the melted target or both. Inefficient mixing of impact melts has been noted at terrestrial impact craters [8] and might be responsible for the heterogeneous composition of impact melts. We are exploring the role of these factors in different environments. In this context, craters with both homogeneous and heterogeneous targets have been selected. Data from Moon Mineralogy Mapper (M3) have been integrated with Kaguya Terrain Camera (TC) and Lunar Reconnaissance Orbiter Narrow Angle Camera (NAC). The integration of these new datasets will enable detailed study of impact melts. Acknowledgment: This research is supported by NLSI grant no. NNA09DB34A References: [1] Grieve R.A.F. et al. (1977) Impact and Expl. Cratering, Eds. D.J. Roddy et al., Pergamon Press, 791-814 [2] Howard and Wilshire (1975) J. Res. U.S. Geol. Surv., 3, 237

  4. Biogas crops grown in energy crop rotations: Linking chemical composition and methane production characteristics.

    Science.gov (United States)

    Herrmann, Christiane; Idler, Christine; Heiermann, Monika

    2016-04-01

    Methane production characteristics and chemical composition of 405 silages from 43 different crop species were examined using uniform laboratory methods, with the aim to characterise a wide range of crop feedstocks from energy crop rotations and to identify main parameters that influence biomass quality for biogas production. Methane formation was analysed from chopped and over 90 days ensiled crop biomass in batch anaerobic digestion tests without further pre-treatment. Lignin content of crop biomass was found to be the most significant explanatory variable for specific methane yields while the methane content and methane production rates were mainly affected by the content of nitrogen-free extracts and neutral detergent fibre, respectively. The accumulation of butyric acid and alcohols during the ensiling process had significant impact on specific methane yields and methane contents of crop silages. It is proposed that products of silage fermentation should be considered when evaluating crop silages for biogas production. PMID:26836846

  5. Effect of chemical composition of PM2.5 on visibility in Guangzhou, China, 2007 spring

    Institute of Scientific and Technical Information of China (English)

    Jun Tao; Kin-Fai Ho; Laiguo Chen; Lihua Zhu; Jinglei Han; Zhencheng Xu

    2009-01-01

    The object of this study was to investigate the correlation of visibility with chemical composition of PM2.5 in Guangzhou. In April 2007, 28 PM2.5 samples were collected daily at the monitoring station of the South China Institute of Environmental Sciences (SCIES), in urban Guangzhou. Water-soluble ionic species (Cl-, NO3-, SO42-, NH4+, K+, Na+, Ca2+, and Mg2+) and carbonaceous contents (OC and EC) of the PM2.5 samples were determined to characterize their impact on visibility impairment. The results showed that sulfate was the dominant species that affected both light scattering and visibility. The average percentage contributions of the visibility-degrading species to light scattering coefficient were 40% for sulfate, 16% for nitrate, 22% for organics, and 22% for elemental carbon. Because of its foremost effect on visibility, sulfate reduction in PM2.5 would effectively improve the visibility of Guangzhou.

  6. Effects of extrusion cooking on the chemical composition and functional properties of dry common bean powders.

    Science.gov (United States)

    Ai, Yongfeng; Cichy, Karen A; Harte, Janice B; Kelly, James D; Ng, Perry K W

    2016-11-15

    The impact of extrusion cooking on the chemical composition and functional properties of bean powders from four common bean varieties was investigated. The raw bean powders were extruded under eight different conditions, and the extrudates were then dried and ground (particle size⩽0.5mm). Compared with corresponding non-extruded (raw) bean powders (particle size⩽0.5mm), the extrusion treatments did not substantially change the protein and starch contents of the bean powders and showed inconsistent effects on the sucrose, raffinose and stachyose contents. The extrusion cooking did cause complete starch gelatinization and protein denaturation of the bean powders and thus changed their pasting properties and solvent-retention capacities. The starch digestibilities of the cooked non-extruded and cooked extruded bean powders were comparable. The extruded bean powders displayed functional properties similar to those of two commercial bean powders. PMID:27283664

  7. Hail Ice Impact of Lightweight Composite Sandwich Panels

    Science.gov (United States)

    Luong, Sean Dustin

    There is a growing demand for the usage of composite sandwich structures in the aircraft industry. Aircraft may suffer damage from a variety of impact sources such as ground service equipment, runway debris, bird strike, or hail ice. The damage response of hail ice impacts on composite sandwich structures is not well understood and they can often result in core damage without visually detectable surface damage. This seed damage may grow and lead to large-scale failure of the structure through repetitive operational loading, such as ground-air-ground cycles of aircraft (causes core internal pressurization). Therefore, it is necessary to understand the types of damage that can occur as a result of impacts. This study explores the effect of high velocity hail ice impact on damage formation in lightweight composite sandwich panels, particularly at a level that produces barely visible external damage. Panels consisting of two different facesheet thicknesses (1.19 and 1.87 mm) were impacted at angles of 25, 40, and 90 degrees at speeds of 25 and 50 m/s. The tests revealed three different core damage modes. Any level of measurable surface damage was an indicator of the presence of internal core damage, but internal damage could also be present without measurable surface damage. Thus, visual inspection alone was not a reliable method of damage detection. No clear relationship was found between impact energy levels and internal damage state since, for example, both 83 and 20.5 J tests produced core fracture, while a 16 J test did not produce any core damage. All core damage occurred at a depth of 3-5 mm from the impact-side facesheet.

  8. Future changes of the atmospheric composition and the impact of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Grewe, V.; Dameris, M.; Hein, R.; Sausen, R. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Wessling (Germany). Inst. fuer Physik der Atmosphaere; Steil, B. [Max-Planck-Institut fuer Chemie (Otto-Hahn-Institut), Mainz (Germany). Abt. Chemie der Atmosphaere

    1999-05-01

    The development of the future atmospheric chemical composition, with respect of NO{sub y} and O{sub 3} is investigated by means of the off-line coupled dynamic-chemical general circulation model ECHAM3/CHEM. Two time slice experiments have been performed for the years 1992 and 2015, which include changes in sea surface temperatures, greenhouse gas concentrations, emissions of CFCs, NO{sub x} and other species, i.e., the 2015 simulation accounts for changes in chemically relevant emissions and for a climate change and its impact on air chemistry. The 2015 simulation clearly shows a global increase in ozone except for large areas of the lower stratosphere, where no significant changes or even decreases in the ozone concentration are found. For a better understanding of the importance of (A) emissions like NO{sub x} and CFCs, (B) future changes of air temperature and water vapour concentration, and (C) other dynamic parameters, like precipitation and changes in the circulation, i.e. wind speed, diabatic circulation, stratosphere-troposphere-exchange, the simulation of the future atmosphere has been performed stepwise. This method requires a climate-chemistry model without interactive coupling of chemical species. Model results show that the direct effect of emissions (A) plays a major role for the composition of the future atmosphere, but they also clearly show that climate change has a significant impact and strongly reduces the NO{sub y} and ozone concentration in the lower stratosphere. (orig.)

  9. Impact damage detection in composite panels using guided ultrasonic waves

    Science.gov (United States)

    Murat, Bibi Intan Suraya; Khalili, Pouyan; Fromme, Paul

    2014-02-01

    Composite materials such as carbon fiber reinforced panels offer many advantages for aerospace applications, e.g, good strength to weight ratio. However, impact during the operation and servicing of the aircraft can lead to barely visible and difficult to detect damage. Depending on the severity of the impact, fiber breakage or delaminations can be induced which reduce the functionality of the structure. Efficient structural health monitoring of such plate-like components can be achieved using guided ultrasonic waves propagating along the structure and covering critical areas. However, the guided wave propagation in such anisotropic and inhomogeneous materials needs to be understood from theory and verified experimentally to achieve sufficient coverage of the structure. Using noncontact laser interferometer measurements the guided wave propagation in carbon fiber reinforced panels was investigated experimentally. Good agreement with calculations using a full three-dimensional Finite Element (FE) model was achieved. Impact damage was induced in the composite panels and the guided wave scattering at the damage measured and quantified. Good agreement with predictions was found and barely visible impact damage in composite panels detected.

  10. Mathematical modeling of chemical composition modification and etching of polymers under the atomic oxygen influence

    Science.gov (United States)

    Chirskaia, Natalia; Novikov, Lev; Voronina, Ekaterina

    2016-07-01

    Atomic oxygen (AO) of the upper atmosphere is one of the most important space factors that can cause degradation of spacecraft surface. In our previous mathematical model the Monte Carlo method and the "large particles" approximation were used for simulating processes of polymer etching under the influence of AO [1]. The interaction of enlarged AO particles with the polymer was described in terms of probabilities of reactions such as etching of polymer and specular and diffuse scattering of the AO particles on polymer. The effects of atomic oxygen on protected polymers and microfiller containing composites were simulated. The simulation results were in quite good agreement with the results of laboratory experiments on magnetoplasmadynamic accelerator of the oxygen plasma of SINP MSU [2]. In this paper we present a new model that describes the reactions of AO interactions with polymeric materials in more detail. Reactions of formation and further emission of chemical compounds such as CO, CO _{2}, H _{2}O, etc. cause the modification of the chemical composition of the polymer and change the probabilities of its consequent interaction with the AO. The simulation results are compared with the results of previous simulation and with the results of laboratory experiments. The reasons for the differences between the results of natural experiments on spacecraft, laboratory experiments and simulations are discussed. N. Chirskaya, M. Samokhina, Computer modeling of polymer structures degradation under the atomic oxygen exposure, WDS'12 Proceedings of Contributed Papers: Part III - Physics, Matfyzpress Prague, 2012, pp. 30-35. E. Voronina, L. Novikov, V. Chernik, N. Chirskaya, K. Vernigorov, G. Bondarenko, and A. Gaidar, Mathematical and experimental simulation of impact of atomic oxygen of the earth's upper atmosphere on nanostructures and polymer composites, Inorganic Materials: Applied Research, 2012, vol. 3, no. 2, pp. 95-101.

  11. Chemical composition and its origin in spring rainwater over Taihu Lake

    Institute of Scientific and Technical Information of China (English)

    WANG Xuemei; YANG Longyuan; QIN Boqiang; JI Lingling

    2006-01-01

    Chemical compositions of rainwater collected in three stations in Taihu Lake in Jiangsu Province, China between March and May 2003 were analyzed through numerical simulations and field observation data. In terms of average ion deposition rate in spring at the air/water interface, of all anions,that of so2-4 was the largest followed by NO-3, whereas among all cations, Ca2+ concentration and the rate was the largest, and then NH4+ was the next. The correlation of ion concentration indicated that the catchment of the lake has been artificially polluted considerably. Using backward trajectory analysis, the raining water in the stations in Taihu Lake was classified. In spring, marine-originated rain is the main contribution to this area, counting for 92.7% of the total precipitation, in which SO2-4, NO-3 and NH+4 contributed 89.2%, 88.1%, and 88.3% respectively to the total spring-rain chemicals, whereas land-originated rains contributed in a small amount. However, the ion concentration in the land-originated rain was higher and acidic, causing considerable harm to local ecosystem. The analysis of backward trajectory analysis shows that three types of air masses influenced the chemical composition of the lake water, namely, air mass from NE direction, air mass from SW direct ion, and local air mass. Although the local air masses often produced small rainfall amount, but the nature of high ion concentration and high acidity impacted the local ecosystem remarkably. The ion concentration and rainfall from long-distance boreal air mass are clearly greater than those in austral air.

  12. Chemical composition and its origin in spring rainwater over Taihu Lake

    Science.gov (United States)

    Wang, Xuemei; Yang, Longyuan; Qin, Boqiang; Ji, Lingling

    2006-12-01

    Chemical compositions of rainwater collected in three stations in Taihu Lake in Jiangsu Province, China between March and May 2003 were analyzed through numerical simulations and field observation data. In terms of average ion deposition rate in spring at the air/water interface, of all anions, that of SO{4/2-} was the largest followed by NO{3/-}, whereas among all cations, Ca2+ concentration and the rate was the largest, and then NH{4/+} was the next. The correlation of ion concentration indicated that the catchment of the lake has been artificially polluted considerably. Using backward trajectory analysis, the raining water in the stations in Taihu Lake was classified. In spring, marine-originated rain is the main contribution to this area, counting for 92.7% of the total precipitation, in which SO{4/2-}, NO{3/-} and NH{4/-} contributed 89.2%, 88.1%, and 88.3% respectively to the total spring-rain chemicals, whereas land-originated rains contributed in a small amount. However, the ion concentration in the land-originated rain was higher and acidic, causing considerable harm to local ecosystem. The analysis of backward trajectory analysis shows that three types of air masses influenced the chemical composition of the lake water, namely, air mass from NE direction, air mass from SW direction, and local air mass. Although the local air masses often produced small rainfall amount, but the nature of high ion concentration and high acidity impacted the local ecosystem rmmarkably. The ion concentration and rainfall from long-distance boreal air mass are clearly greater than those in austral air.

  13. Impact formation and microstructure characterization of thermal sprayed hydroxyapatite/titania composite coatings.

    Science.gov (United States)

    Li, H; Khor, K A; Cheang, P

    2003-03-01

    Formation mechanism of hydroxyapatite (HA)/titania (TiO(2)) composite coating deposited by high velocity oxy-fuel (HVOF) thermal spray process was studied, and its structural characterization was conducted and elaborated in this paper. The impact theory was employed to analyze the formation procedure of the HA/titania composite coatings. Results revealed that the crater caused by the impact of entirely unmelted TiO(2) particles on the HA matrix during coating formation was of smaller dimensions than the original size of the reinforcements. It was found that chemical reaction between the mechanically blended HA and TiO(2) powder took place exclusively during the impingement stage, and calcium titanate, CaTiO(3), was one notable by-product. The bonding between the HA matrix and TiO(2) reinforcement might have been achieved predominantly through a chemical bond that resulted from the mutual chemical reactions among the components. Differential scanning calorimetry analyses showed that the chemical reaction between HA and TiO(2) was at approximately 1410 degrees C. The TiO(2) addition was found to exert particular effects on the thermal behavior of HA at elevated temperatures, during both heating and cooling cycles. Transmission electron microscopy observation identified the chemical reaction zone between HA and TiO(2), which revealed an improved splats' interface. The reaction zone demonstrated some influence on the grain size of HA nearby during resolidification of the melted portion. A structural model was proposed to illustrate the location of the different phases in the HA/titania composite coating. PMID:12504516

  14. Impact of the nonvolatile wine matrix composition on the in vivo aroma release from wines.

    Science.gov (United States)

    Muñoz-González, Carolina; Martín-Álvarez, Pedro J; Moreno-Arribas, M Victoria; Pozo-Bayón, M Ángeles

    2014-01-01

    The impact of the nonvolatile wine matrix composition on the retronasal aroma release of four volatile compounds added to different types of wines has been evaluated. For this purpose, a tailor-made retronasal aroma trapping device (RATD) was used to entrap the exhaled breath of six panelists previously trained in a specific consumption procedure. Five wines of different composition (white wine, sparkling white wine, young red wine, aged red wine, and a sweet wine) were evaluated. Prior to the evaluation, with the exception of the sweet wine, the wines were adjusted to the same ethanol content and aromatized with a mixture of four target volatile compounds. Aroma release data were submitted to multivariate statistical analysis in order to relate wine chemical composition and aroma release during wine drinking. Results showed interindividual differences and a clustering of panelists among lower and higher aroma releasers, which was in agreement to the differences in their breathing capacity. A significant influence of the matrix composition in the low aroma releasers group during wine consumption was observed. The consumption of red wines provoked a significantly higher aroma release than the consumption of white and sweet wines. From the chemical composition determined in the wine samples (pH, total acidity, total polyphenols, neutral polysaccharides, residual sugar, and nitrogenous compounds), the amount of total polyphenols was better correlated with the observed effect.

  15. Designing of the chemical composition of steels basing on the hardenability of constructional steels

    International Nuclear Information System (INIS)

    The paper presents the original method of modelling of the relationships between chemical composition of alloy constructional steel and its hardenability, employing neural networks. Basing on the experimental results of the hardenability investigations, which employed Jominy method, the model of the neural networks was developed and fully verified experimentally. The model makes it possible to obtain Jominy hardenability curves basing on the steel chemical composition. The model of neural networks, making it possible to design the steel chemical composition, basing on the known Jominy hardenability curve shape, was developed also and fully verified numerically. (author)

  16. Chemical deuteration in neutron scattering: Demand, supply and impact

    International Nuclear Information System (INIS)

    Molecular deuteration significantly increases the options in structure function investigations using Neutron Scatteringand diffraction techniques. There have been limited global initiatives in the field of molecular deuteration where the majority of these programs focus on biological deuteration of proteins and lipids, while more complex deuterated small molecules haven’t been widely available to the neutron community. This has limited the experiments that can be performed, and formed a bottle-neck for advancing the applications of neutron scattering. In this paper we will discuss the recent advancements and the impact of deuteration on the research outcomes achieved by using deuterated molecules produced by the chemical deuteration laboratories at the National Deuteration Facility in the Bragg Institute, ANSTO. Recent high-impact case studies will be presented which reveal the exciting and diverse characterisation studies which are now available for the neutron community. We describe here the synthesis and application of deuterated organic molecules used to investigate complex nanoscale systems in the fields of molecular electronics, structural biology, and biotechnology. The chemical deuteration of surfactants, sugars, heterocyclic and aromatic compounds has made possible a wide range of investigations. This includes the study of (i) the localisation of sugars in lipid membranes using neutron diffraction to give insights into cryoprotective mechanisms, (ii) the pH-responsiveness of the assembly of lipid digestion products in biologically relevant systems, and (iii) the structure and host-guest properties of metal-organic frameworks (MOFs) using neutron diffraction.

  17. Chemical composition and photochemical reactivity of exhaust from aircraft turbine engines

    Directory of Open Access Journals (Sweden)

    T. F. Lyon

    Full Text Available Assessment of the environmental impact of aircraft emissions is required by planners and policy makers. Seveal areas of concern are: 1. exposure of airport workers and urban residents to toxic chemicals emitted when the engines operate at low power (idle and taxi on the ground; 2. contributions to urban photochemical air pollution of aircraft volatile organic and nitrogen oxides emissions from operations around airports; and 3. emissions of nitrogen oxides and particles during high-altitude operation. The environmental impact of chemicals emitted from jet aircraft turbine engines has not been firmly established due to lack of data regarding emission rates and identities of the compounds emitted. This paper describes an experimental study of two different aircraft turbine engines designed to determine detailed organic emissions, as well as emissions of inorganic gases. Emissions were measured at several engine power settings. Measurements were made of detailed organic composition from C1 through C17, CO, CO2, NO, NOx, and polycyclic aromatic hydrocarbons. Measurements were made using a multi-port sampling pro be positioned directly behind the engine in the exhaust exit plane. The emission measurements have been used to determine the organic distribution by carbon number and the distribution by compound class at each engine power level. The sum of the organic species was compared with an independent measurement of total organic carbon to assess the carbon mass balance. A portion of the exhaust was captured and irradiated in outdoor smog chambers to assess the photochemical reactivity of the emissions with respect to ozone formation. The reactivity of emissions from the two engines was apportioned by chemical compound class.

  18. Chemical composition of nanomodified composite binder with nano- and microsized barium silicate

    Directory of Open Access Journals (Sweden)

    KOROLEV Evgenij Valerjevich

    2014-08-01

    Full Text Available There are several possibilities to improve cement-based binders. In particular, many properties of cement stone can be enhanced by means of micro- and nanoscale modification. In a number of previous works we had shown that application of barium hydrosilicates leads to such improvement. The present article is devoted to the investigation of the chemical composition of the cement stone which is modified by means of addition of barium hydrosilicates. The modification was performed on different scales: micro- and nanoscale; the results of simultaneous multi-scale modification are also presented. The examination was carried out with help of different modern research techniques – FT IR spectroscopy, differential thermal analysis and X-ray phase analysis. Identification of the new phases and comparative quantitative assessment of their content are performed. It is found that the use of nano- and micro-sized barium hydrosilicates as additives leads to reduction of portlandite by 27...28%; by means of multi-scale modification it is possible to reduce the content of portlandite much more (by 83.3%. Due to addition of nano- and micro-sized barium-based modifiers both the amount of calcium hydrosilicates in reaction products is enlarged, and structure of the mentioned hydrosilicates is changed (the formation of a fine-grained structure of hydration products takes place. Micro-sized barium hydrosilicates are chemically active additives and promote the formation of an additional quantity of calcium hydrosilicates of type CSH (I. The use of nanoscale barium hydrosilicates promotes the formation of CSH (I and CSH (II calcium hydrosilicates, and also both riversidite and xonotlite. As a result of simultaneous application of nano- and micro-sized barium hydrosilicates the content of CSH (II increases. This can be confirmed by means of differential thermal and X-ray analysis. The amount of CSH (I, riversidite and various tobermorites is also increases. It is

  19. Numerical analysis of impact-damaged sandwich composites

    Science.gov (United States)

    Hwang, Youngkeun

    Sandwich structures are used in a wide variety of structural applications due to their relative advantages over other conventional structural materials in terms of improved stability, weight savings, and ease of manufacture and repair. Foreign object impact damage in sandwich composites can result in localized damage to the facings, core, and core-facing interface. Such damage may result in drastic reductions in composite strength, elastic moduli, and durability and damage tolerance characteristics. In this study, physically-motivated numerical models have been developed for predicting the residual strength of impact-damaged sandwich composites comprised of woven-fabric graphite-epoxy facesheets and Nomex honeycomb cores subjected to compression-after-impact loading. Results from non-destructive inspection and destructive sectioning of damaged sandwich panels were used to establish initial conditions for damage (residual facesheet indentation, core crush dimension, etc.) in the numerical analysis. Honeycomb core crush test results were used to establish the nonlinear constitutive behavior for the Nomex core. The influence of initial facesheet property degradation and progressive loss of facesheet structural integrity on the residual strength of impact-damaged sandwich panels was examined. The influence of damage of various types and sizes, specimen geometry, support boundary conditions, and variable material properties on the estimated residual strength is discussed. Facesheet strains from material and geometric nonlinear finite element analyses correlated relatively well with experimentally determined values. Moreover, numerical predictions of residual strength are consistent with experimental observations. Using a methodology similar to that presented in this work, it may be possible to develop robust residual strength estimates for complex sandwich composite structural components with varying levels of in-service damage. Such studies may facilitate sandwich

  20. Level and Chemical Composition of Cryoglobulins in Schizophrenia

    Science.gov (United States)

    Khoyetsyan, Aren; Boyajyan, Anna; Melkumova, Maya

    The blood samples of 40 schizophrenic patients were tested for the presence of cryoglobulins (Cgs) and composition of Cgs was examined. The elevated levels of type III Cgs, containing complement components, were detected in all study subjects.

  1. Chemically and Thermally Stable High Energy Density Silicone Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermal energy storage systems with 300 ? 1000 kJ/kg energy density through either phase changes or chemical heat absorption are sought by NASA. This proposed...

  2. Chemical composition and antibacterial activity of essential oils against human pathogenic bacteria

    NARCIS (Netherlands)

    Sokovic, M.; Marin, P.D.; Brkic, D.; Griensven, van L.J.L.D.

    2008-01-01

    The chemical composition and antibacterial activity of essential oils from 10 aromatic plants Matricaria chamommilla, Mentha piperita, M. spicata, Lavandula angustifolia, Ocimum basilicum, Thymus vulgaris, Origanum vulgare, Salvia officinalis, Citrus limon and C. aurantium have been determined. Anti

  3. Variation in size, morphology and chemical composition of polymetallic nodules from the Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Valsangkar, A.B.; Karisiddaiah, S.M.; Parthiban, G.

    Chemical composition of 613 polymetallic nodules from 150 stations in the Central Indian Ocean Basin (CIOB) are determined and variations in Mn, Fe, Cu, Ni, Co, Zn and moisture content are studied with respect to their size and surface texture...

  4. Chemical composition of leaf extracts of Stevia rebaudiana Bertoni grown experimentally in Vojvodina

    OpenAIRE

    IVANA S. MARKOVIC; ZOLTAN A. DJARMATI; BILJANA F. ABRAMOVIC

    2008-01-01

    The chemical composition of leaf extracts of Stevia rebaudiana Bertoni, grown for the first time on an experimental field near Zrenjanin, was examined by GC–MS. The tested plant material was harvested in September of 2002. To analyze the chemical composition of the lipophilic components of the plant leaves, essential oils and ethyl acetate extract were isolated. Qualitative analysis of the essential oil obtained by hydrodistillation showed that among the identified 88 compounds, the majority ...

  5. Chemical composition and antioxidant activities of Jeddah corniche algae, Saudi Arabia

    OpenAIRE

    Al-Amoudi, Omar A.; Mutawie, Hawazin H.; Patel, Asmita V.; Blunden, Gerald

    2009-01-01

    The increased use of natural product in the pharmaceutical industry has led to an increase in demand for screening for bioactive compounds in marine algae. An important economic algae, through chemical composition analysis and their antioxidant activities were investigated in this study. Chemical composition analysis of three algal samples from the Chlorophyta Ulva lactuca (U), Phaeophyta Sargassum crassifolia (S) and Rhodophyta Digenea simplex (D) was tested. Main components were sugars (57....

  6. Chemical Composition and Antioxidant Activity of Essential Oils of Twelve Spice Plants

    OpenAIRE

    Politeo, Olivera; Jukić, Mila; Miloš, Mladen

    2006-01-01

    Chemical compositions and related total antioxidant capacities of twelve spice essential oils were analyzed. To enable a comparison of their relative antioxidant potentials, essential oils were extracted by hydrodistillation from selected spice plants and their chemical compositions were determined by the GC-MS system on two fused-silica capillary columns of different polarity. Antioxidant effectiveness was examined by four different methods: the 2,2'-diphenyl- 1-picrylhydrazyl (DPPH) radical...

  7. Precipitation of niobium carbonitrides in ferrite: chemical composition measurements and thermodynamic modelling

    OpenAIRE

    Perez, Michel; Courtois, E.; Acevedo, D.; T. Epicier; Maugis, Philippe

    2007-01-01

    High-resolution transmission electron microscopy and electron-energy loss spectroscopy have been used to characterize the structure and chemical composition of niobium carbonitrides in the ferrite of a Fe–Nb–C–N model alloy at different precipitation stages. Experiments seem to indicate the coexistence of two types of precipitates: pure niobium nitrides and mixed substoichiometric niobium carbonitrides. In order to understand the chemical composition of these precipitates, a thermodynamic for...

  8. The method of modelling of relationships between hardenability and chemical composition of the constructional alloy steels

    International Nuclear Information System (INIS)

    Basing on the experimental results of the hardenability investigations, which employed Jominy method, the model of the neural networks was developed and fully verified experimentally. The model makes it possible to obtain Jominy hardenability curves basing on the steel chemical composition. The model of neural networks, making it possible to design the steel chemical composition, basing on the known Jominy hardenability curve shape, was developed also and fully verified numerically. The practical usability of the models developed is presented. (author)

  9. Influence of the chemical composition on gamma ray attenuation by fatty acids.

    Science.gov (United States)

    Bhandal, G S; Singh, K

    1992-04-01

    The dependence of gamma ray attenuation on the chemical composition of fatty acids is investigated in the energy range from 10(-3) to 10(5) MeV. The mass attenuation coefficients (muF) and effective atomic numbers (Zeff) have been calculated for 27 different fatty acids. They show appreciable variation with the chemical composition of fatty acids in the region of gamma ray energies from 10(-3) to 10(5) MeV. PMID:1314792

  10. SCREENING OF CHEMICAL COMPOSITIONS OF CRUDE WATER EXTRACT OF DIFFERENT CASSAVA VARIETIES

    OpenAIRE

    Olajumoke Oke FAYINMINNU; Olubunmi Omowunmi FADINA; Alex Adeoluwa ADEDAPO

    2013-01-01

    Chemical composition of three sources of crude cassava water extract (CCWE) was evaluated in different varieties of cassava (MS6 Manihot Selection (local variety), TMS 30555 Tropical Manihot Selection (Improved variety) and Bulk (crude cassava water from cassava processing site). Crude cassava water extract from the pulp of cassava fresh roots was prepared and the chemical composition was determined in the analytical laboratory. The result of the analysis showed that, hydrocyanic acid (HCN) ...

  11. Influence of redmud on the mechanical, damping and chemical resistance properties of banana/polyester hybrid composites

    International Nuclear Information System (INIS)

    Highlights: • Redmud, an industrial waste has been used for making the composite. • Tensile strength was improved when the particle size of redmud was decreased. • The flexural and impact strength of BFRPCs were influenced by the particle size. • Reduced particle size of the redmud produced highest modal damping on the BFRPCs. - Abstract: A novel hybrid composite was developed with the addition of redmud as secondary reinforcing filler with banana fiber reinforced polyester composites (BFRPCs). The effect of varying parameters such as particle size (4, 6 and 13 μm) and weight percentage (2, 4, 6, 8 and 10 wt%) of redmud were analyzed on static mechanical, free vibration and chemical resistance properties of hybrid composites. The addition of redmud shown enhanced performance compared to the virgin BFRPCs in all the above said properties. The maximum increase of 50% in mechanical strength was observed for the BFRPCs with the addition of redmud having 4 μm particle size and 8 wt% of filler content compared to pure BFRPCs. The increased value of fundamental natural frequencies with associated modal damping characteristics of redmud filled BFRPCs were found using half-power band width method. All the fabricated composites performed well against various chemicals and it indicates that the resistance to the weight loss is due to the uniformly distributed redmud. To study the effect of redmud on interfacial bonding between the banana fiber and polyester matrix the Scanning Electron Microscope (SEM) image analysis was performed

  12. IMPACT OF POLLUTION ON THE CLAY MINERALOGICAL COMPOSITION OF SOME SOILS FROM ZLATNA AREA (ROMANIA)

    OpenAIRE

    C. Craciun; Alexandrina Manea; Laura Paulette; Marius Eftene; Victoria Mocanu

    2008-01-01

    Zlatna area is a high polluted zone with heavy metals due to industrial activity (extraction and processing of non-ferrous area). In spite of the fact that industrial activity was stoped for 2-3 years, the effect of pollution are still obvious. The aim of this paper is to make evident some aspects concerning the impact of pollution on the mineralogical composition of the clay fraction (below 2μ) from some soils belonging to dystric cambisol and luvisol type. From the chemical point of view, ...

  13. RECOGNITION OF MAIN PROCESSES FORMING CHEMICAL COMPOSITION OF THE SUPRAŚL RIVER WATER

    Directory of Open Access Journals (Sweden)

    Mirosław Skorbiłowicz

    2016-01-01

    Full Text Available The aim of the study was to identify and define the processes that affect the variability of the chemical composition of Supraśl river water at selected measuring points. One of the recognized multivariate statistical methods was used for identification. The research area covered the Suprasl river. Four measuring points were selected on the river – Michałowo, Gródek, Nowodworce, Dzikie. The measuring points were selected in such a way to take into account the impact of the most intense interaction located along the river. Changes in concentration were determined on the basis of monthly analyzes of water samples collected from the Supraśl river in 2003–2012 by the Regional Inspectorate for Environmental Protection (RIEP in Białystok. The analyses were performed in the RIEP laboratory in Bialystok, which has implemented and maintained a management system that meets the requirements of the norm PN-EN ISO/IEC 17025 + Ap.1:2007 approved by the certificate AB 165. The water samples were subject to determinations of dissolved oxygen concentration, BOD5, CODMn, CODCr, NH3, N-NH4+, NKieldahl, NO3-, N-NO3-, NO2-, N-NO2-, Ntot., PO43-, Ptot and electrical conductivity value. The monthly sum of precipitation was read based on data from the Weather Service “IMGW-PIB Monitor”. The research and analysis results allowed to identify the self-cleaning, nitrification, and de-nitrification processes, as well as enrichment affecting the variability of the chemical composition of the Supraśl river water. The results from the factor analysis showed some prevailing of enrichment processes over internal changes in the aquatic environment of the Supraśl river.

  14. Chemical Composition of Polymer Surfaces Imaged by Atomic Force Microscopy and Complementary Approaches

    NARCIS (Netherlands)

    Vancso, G. Julius; Hillborg, Henrik; Schönherr, Holger

    2005-01-01

    In this article we review the recent developments in the field of high resolution lateral mapping of the surface chemical composition of polymers by atomic force microscopy (AFM) and other complementary imaging techniques. The different AFM approaches toward nanometer scale mapping with chemical sen

  15. Rapid computation of chemical equilibrium composition - An application to hydrocarbon combustion

    Science.gov (United States)

    Erickson, W. D.; Prabhu, R. K.

    1986-01-01

    A scheme for rapidly computing the chemical equilibrium composition of hydrocarbon combustion products is derived. A set of ten governing equations is reduced to a single equation that is solved by the Newton iteration method. Computation speeds are approximately 80 times faster than the often used free-energy minimization method. The general approach also has application to many other chemical systems.

  16. Chemical erosion of different carbon composites under ITER-relevant plasma conditions

    NARCIS (Netherlands)

    Westerhout, J.; Borodin, D.; Al, R.S.; Brezinsek, S.; Hoen, Mhjt; Kirschner, A.; Lisgo, S.; van der Meiden, H. J.; Philipps, V.; van de Pol, M.J.; Shumack, A. E.; De Temmerman, G.; Vijvers, W. A. J.; Wright, G. M.; Cardozo, N. J. L.; Rapp, J.; van Rooij, G. J.

    2009-01-01

    We have studied the chemical erosion of different carbon composites in Pilot-PSI at ITER-relevant hydrogen plasma fluxes (similar to 10(24) m(-2) s(-1)) and low electron temperatures (T-e similar to 1 eV). Optical emission spectroscopy on the CH A-X band was used to characterize the chemical sputter

  17. On the Formation and Chemical Composition of Super Earths

    Science.gov (United States)

    Alessi, Matthew; Pudritz, Ralph E.; Cridland, Alex J.

    2016-09-01

    Super Earths are the largest population of exoplanets and are seen to exhibit a rich diversity of compositions as inferred through their mean densities. Here we present a model that combines equilibrium chemistry in evolving disks with core accretion that tracks materials accreted onto planets during their formation. In doing so, we aim to explain why super Earths form so frequently and how they acquire such a diverse range of compositions. A key feature of our model is disk inhomogeneities, or planet traps, that act as barriers to rapid type-I migration. The traps we include are the dead zone, which can be caused by either cosmic ray or X-ray ionization, the ice line, and the heat transition. We find that in disks with sufficiently long lifetimes (≳ 4 Myr), all traps produce Jovian planets. In these disks, planet formation in the heat transition and X-ray dead zone produces hot Jupiters while the ice line and cosmic ray dead zones produce Jupiters at roughly 1 AU. Super Earth formation takes place within short-lived disks (≲ 2 Myr), whereby the disks are photoevaporated while planets are in a slow phase of gas accretion. We find that super Earth compositions range from dry and rocky ( 30 % ice by mass). The traps play a crucial role in our results, as they dictate where in the disk particular planets can accrete from, and what compositions they are able to acquire.

  18. The Composition of 433 Eros: A Mineralogical-Chemical Synthesis

    Science.gov (United States)

    McCoy, T. J.; Gaffey, M.; Bell, J. F., III; Boynton, W. V.; Burbine, T. H.; Chapman, C. R.; Cheng, A.; Clark, P. E.; Evans, L. G.; Gorenstein, P.

    2001-01-01

    We report on an effort with the Near-Infrared Spectrometer/Multi-Spectral Imager (NIS/MSI) and X-ray/Gamma-ray Spectrometer (XGRS) teams to synthesize our data sets to constrain the relationship between Eros and meteorites; the mineralogy, abundances and compositions of Eros; and the processes that formed Eros. Additional information is contained in the original extended abstract.

  19. The molecular composition of impact-generated atmospheres on terrestrial planets during the post-accretion stage

    Science.gov (United States)

    Kuwahara, Hideharu; Sugita, Seiji

    2015-09-01

    Both geochemical measurements and theoretical calculations suggest that impact degassing from meteoritic materials after the completion of main phase of planetary accretion may have produced a large fraction of the early terrestrial atmospheres. However, the molecular compositions of such impact-generated atmospheres are not well constrained because the thermodynamic cooling path, which controls the chemical reactions in impact-induced vapor, has not been investigated extensively. In this study, we theoretically assess the chemical reactions within impact-induced vapor that cools adiabatically until the pressure equilibrates with the ambient atmosphere. The calculation results indicate that there are two primary controlling factors for the cooling path: impact entropy gain and atmospheric pressure. The former is mainly determined by both impact velocity and the presence/absence of an ocean. The degree of atmospheric effect depends on vapor plume size. For large impacts, atmospheric containment of vapor expansion is inefficient. However, the expansion of small vapor plumes is contained by the pre-existing atmosphere and their terminal molecular composition is controlled by this process. This is because whether a chemical reaction quenches during adiabatic cooling or during subsequent radiative cooling would depend on the cooling transition temperature, at which adiabatic expansion stops and radiative cooling takes over. For high atmospheric pressures and/or the vapor generated by high-velocity impacts, adiabatic expansion will cease at higher temperatures than typical quenching temperatures. Thus, the molecular composition of the vapor will not greatly depend on the impact velocity. The calculation results suggest that the molecular composition of the impact-induced vapor would vary widely (i.e., CH4/CO ratios) even if the compositions of the impactors are the same. More specifically, the impact-induced vapor generated by lower velocity impacts may be rich in CH4

  20. Chemical composition and in vitro dry matter digestibility of lichens

    Directory of Open Access Journals (Sweden)

    Torstein H. Garmo

    1986-06-01

    Full Text Available The chemical composition and in vitro dry matter digestibility of 45 samples of different species of lichen are reported. Mean content (g/100 g dry matter of the main nutrients was: crude protein 4.2, crude fat 3.2, crude fibre 16.6, ash 1.9, Ca 0.15, P 0.09, Mg 0.05, K 0.13, Na 0.035, S 0.07. The content of microminerals (mg/kg dry matter was: Cu 2.5, Mo 0.11, Zn 27.2, Se 0.12, Fe 898, Mn 154. The mean in vitro dry matter digestibility was 35%. However, the in vitro method do underestimate the dry matter digestibility of lichens. Stereocaulon spp. showed higher levels of crude protein, P, S, Cu and Mo than Cetraria spp. and Cladonia spp. Cetraria nivalis showed higher digestibility and contained more NFE, ash, Ca, Mg, but less crude fibre than Cladonia stellaris. Lichens contained less amounts of most nutrients compared with grasses (Fig. 1, exept for crude fat, NFE, Se and Fe.Kjemisk innhald og in vitro fordøyelsesgrad av lav.Abstract in Norwegian / Samandrag: Kjemisk innhald og in vitro fordøyelsesgrad av tørrstoffet er bestemt i 45 prøver av beitelav frå to stader i Sør-Noreg. Middel innhald (g/100g tørrstoff av følgjande næringsstoff var: protein 4.2, feitt 3.2, trevlar 16.6, oske 1.9, kalsium 0.15, fosfor 0.09, magnesium 0.05, kalium 0.13, natrium 0.035, svovel 0.07. Innhaldet (mg/kg tørrstoff av mikronæringsstoffa var: kopar 2.5, molybden 0.11, sink 27.2, selen 0.12, jern 898 og mangan 154. Den midlare fordøyelsesgraden av tørrstoffet i lav-prøvene var 35%, men in vitro fordøyelsesanalyser undervurderer fordøyelsesgraden av lav. Det var ein stor variasjon mellom dei ulike lavartane for dei fleste næringsstoffa og fordøyelsesgraden. Stereocaulon spp. inneheldt meir protein, fosfor, svovel, kopar og molybden enn Cetraria spp. og Cladonia spp. Gulskinn hadde høgare fordøyelsesgrad, og innehaldet av NFE, oske, kalsium og magnesium var høgre enn i kvitkrull, medan trevleinnhaldet var størst i kvitkrull. Lav inneheldt

  1. Renewable resources as reinforcement of polymeric matrices: composites based on phenolic thermosets and chemically modified sisal fibers.

    Science.gov (United States)

    Megiatto, Jackson D; Oliveira, Franciéli B; Rosa, Derval S; Gardrat, Christian; Castellan, Alain; Frollini, Elisabete

    2007-09-11

    Lignocellulosic materials can significantly contribute to the development of composites, since it is possible to chemically and/or physically modify their main components, cellulose, hemicelluloses and lignin. This may result in materials more stable and with more uniform properties. It has previously been shown that chemically modified sisal fibers by ClO(2) oxidation and reaction with FA and PFA presented a thin coating layer of PFA on their surface. FA and PFA were chosen as reagents because these alcohols can be obtained from renewable sources. In the present work, the effects of the polymeric coating layer as coupling agent in phenolic/sisal fibers composites were studied. For a more detailed characterization of the fibers, IGC was used to evaluate the changes that occurred at the sisal fibers surface after the chemical modifications. The dispersive and acid-base properties of untreated and treated sisal fibers surfaces were determined. Biodegradation experiments were also carried out. In a complementary study, another PFA modification was made on sisal fibers, using K2Cr2O(7) as oxidizing agent. In this case the oxidation effects involve mainly the cellulose polymer instead of lignin, as observed when the oxidation was carried out with ClO(2). The SEM images showed that the oxidation of sisal fibers followed by reaction with FA or PFA favored the fiber/phenolic matrix interaction at the interface. However, because the fibers were partially degraded by the chemical treatment, the impact strength of the sisal-reinforced composites decreased. By contrast, the chemical modification of fibers led to an increase of the water diffusion coefficient and to a decrease of the water absorption of the composites reinforced with modified fibers. The latter property is very important for certain applications, such as in the automotive industry. PMID:17676656

  2. High Energy Wide Area Blunt Impact on Composite Aircraft Structures

    Science.gov (United States)

    DeFrancisci, Gabriela K.

    The largest source of damage to commercial aircraft is caused by accidental contact with ground service equipment (GSE). The cylindrical bumper typically found on GSE distributes the impact load over a large contact area, possibly spanning multiple internal structural elements (frame bays) of a stiffened-skin fuselage. This type of impact can lead to damage that is widespread and difficult to detect visually. To address this problem, monolithic composite panels of various size and complexity have been modeled and tested quasi-statically and dynamically. The experimental observations have established that detectability is dependent on the impact location and immediately-adjacent internal structure of the panel, as well as the impactor geometry and total deformation of the panel. A methodology to model and predict damage caused by wide area blunt impact events was established, which was then applied to more general cases that were not tested in order to better understand the nature of this type of impact event and how it relates to the final damage state and visual detectability.

  3. Finite-element impact response of debonded composite turbine blades

    Science.gov (United States)

    Dey, Sudip; Karmakar, Amit

    2014-02-01

    This paper investigates on the transient behavior of debonded composite pretwisted rotating shallow conical shells which could be idealized as turbine blades subjected to low velocity normal impact using finite-element method. Lagrange's equation of motion is used to derive the dynamic equilibrium equation and the moderate rotational speeds are considered neglecting the Coriolis effect. An eight-noded isoparametric plate bending element is employed in the finite element formulation incorporating rotary inertia and effects of transverse shear deformation based on Mindlin's theory. The modified Hertzian contact law which accounts for permanent indentation is utilized to compute the impact parameters. The time-dependent equations are solved by using Newmark's time integration scheme. Parametric studies are performed to investigate the effects of triggering parameters like angle of twist, rotational speed, laminate configuration and location of debonding considering low velocity normal impact at the center of eight-layered graphite-epoxy composite cantilevered conical shells with bending stiff ([0o2/{±} 30o]s), torsion stiff ([45°/-45°/-45°/45°]s) and cross-ply ([0°/90°/0°/90°]s) laminate configurations.

  4. ENERGY SPECTRUM AND CHEMICAL COMPOSITION OF ULTRAHIGH ENERGY COSMIC RAYS FROM SEMI-RELATIVISTIC HYPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Liu Ruoyu; Wang Xiangyu [Department of Astronomy, Nanjing University, Nanjing 210093 (China)

    2012-02-10

    It has been suggested that hypernova remnants, with a substantial amount of energy in semi-relativistic ejecta, can accelerate intermediate mass or heavy nuclei to ultrahigh energies and provide a sufficient amount of energy in cosmic rays to account for the observed flux. We here calculate the expected energy spectrum and chemical composition of ultrahigh energy cosmic rays from such semi-relativistic hypernovae. With a chemical composition equal to that of the hypernova ejecta and a flat or hard spectrum for cosmic rays at the sources, the spectrum and composition of the propagated cosmic rays observed at the Earth can be compatible with the measurements by the Pierre Auger Observatory.

  5. Optical transmission scanning for damage quantification in impacted GFRP composites

    Science.gov (United States)

    Khomenko, Anton; Karpenko, Oleksii; Koricho, Ermias G.; Haq, Mahmoodul; Cloud, Gary L.; Udpa, Lalita

    2016-04-01

    Glass fiber reinforced polymer (GFRP) composites constitute nearly 90% of the global composites market and are extensively used in aerospace, marine, automotive and construction industries. While their advantages of lightweight and superior mechanical properties are well explored, non-destructive evaluation (NDE) techniques that allow for damage/defect detection and assessment of its extent and severity are not fully developed. Some of the conventional NDE techniques for GFRPs include ultrasonics, X-ray, IR thermography, and a variety of optical techniques. Optical methods, specifically measuring the transmission properties (e.g. ballistic optical imaging) of specimens, provide noninvasive, safe, inexpensive, and compact solutions and are commonly used in biomedical applications. In this work, this technique is adapted for rapid NDE of GFRP composites. In its basic form, the system for optical transmission scanning (OTS) consists of a light source (laser diode), a photo detector and a 2D translation stage. The proposed technique provides high-resolution, rapid and non-contact OT (optical transmittance)-scans, and does not require any coupling. The OTS system was used for inspection of pristine and low-velocity impacted (damaged) GFRP samples. The OT-scans were compared with conventional ultrasonic C-scans and showed excellent agreement but with better resolution. Overall, the work presented lays the groundwork for cost-effective, non-contact, and rapid NDE of GFRP composite structures.

  6. A rapid method for the computation of equilibrium chemical composition of air to 15000 K

    Science.gov (United States)

    Prabhu, Ramadas K.; Erickson, Wayne D.

    1988-01-01

    A rapid computational method has been developed to determine the chemical composition of equilibrium air to 15000 K. Eleven chemically reacting species, i.e., O2, N2, O, NO, N, NO+, e-, N+, O+, Ar, and Ar+ are included. The method involves combining algebraically seven nonlinear equilibrium equations and four linear elemental mass balance and charge neutrality equations. Computational speeds for determining the equilibrium chemical composition are significantly faster than the often used free energy minimization procedure. Data are also included from which the thermodynamic properties of air can be computed. A listing of the computer program together with a set of sample results are included.

  7. Behavior of Aramid Fiber/Ultrahigh Molecular Weight Polyethylene Fiber Hybrid Composites under Charpy Impact and Ballistic Impact

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The aramid fiber/UHMWPE (ultrahigh molecular weight polyethylene) fiber hybrid composites (AF/DF) were manufactured. By Charpy impact, the low velocity impact behavior of AF/DF composite was studied. And the high velocity impact behavior under ballistic impact was also investigated. The influence of hybrid ratio on the performances of low and high velocity impact was analyzed, and hybrid structures with good impact properties under low velocity impact and high velocity were optimized. For Charpy impact, the maximal impact load increased with the accretion of the AF layers for AF/DF hybrid composites. The total impact power was reduced with the decrease of DF layers and the delamination can result in the increase of total impact power. For ballistic impact, the DF ballistic performance was better than that of the AF and the hybrid ratio had a crucial influence. The failure morphology of AF/DF hybrid composite under Charpy impact and ballistic impact was analyzed. The AF/DF hybrid composites in suitable hybrid ratio could attain better performance than AF or DF composites.

  8. Mechanical behavior of chemically treated Jute/Polymer composites

    Directory of Open Access Journals (Sweden)

    Murali B

    2014-03-01

    Full Text Available Fiber which serves as a reinforcement in reinforced plastics may be synthetic or natural past studies show that only artificial fibers such as glass, carbon etc., have been used in fiber reinforced plastics. Although glass and other synthetic fiber reinforced plastics possess high specific strength, their fields of application are very limited because of their inherent higher cost of production. In this connection, an investigation has been carried out to make use of jute , a natural fiber abundantly available in India. Natural fibers are not only strong and lightweight but also relatively very cheap. In the present work, jute composites are developed and their mechanical properties are evaluated. Mechanical properties of jute/polymer and compared with glass fiber/epoxy. These results indicate that jute can be used as a potential reinforcing material for making low load bearing thermoplastic composites.

  9. Structural Intensity Characterization of Composite Laminates Subjected to Impact Load

    Institute of Scientific and Technical Information of China (English)

    WANG Dong-fang; HE Peng-fei; LIU Zi-shun

    2008-01-01

    Structural intensity (SI) characterization of composite laminates subjected to impact load was dis-cussed. The SI pattern of the laminates which have different fiber orientations and boundary conditions wasanalyzed. The resultant forces and velocities of the laminates were calculated, and the structural intensity wasevaluated. The SI streamlines of carbon fiber reinforced epoxy composite laminates and the steel plates werediscussed. The results show that the SI streamlines of the graphite/epoxy laminates are different from that ofthe steel plates, and the SI streamlines are influenced by the boundaries, the stacking sequence of the compositelaminates. The change of the historical central displacement of the graphite/epoxy laminates is fasten thanthat of the steel plates.

  10. Fabrication of fiber-reinforced composites by chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, T.M.; Matlin, W.M.; Stinton, D.P.; Liaw, P.K.

    1996-06-01

    Processing equipment for the infiltration of fiber-reinforced composite tubes is being designed that incorporates improvements over the equipment used to infiltrate disks. A computer-controlled machine-man interface is being developed to allow for total control of all processing variables. Additionally, several improvements are being made to the furnace that will reduce the complexity and cost of the process. These improvements include the incorporation of free standing preforms, cast mandrels, and simpler graphite heating elements.

  11. CHEMICAL COMPOSITION AND ANTIMICROBIAL PROPERTIES OF DIFFERENT BASIL OILS

    OpenAIRE

    H.C. Srivastava, Pankaj Shukla, Ajay Singh Maurya and Sonia Tripathi*

    2013-01-01

    ABSTRACT: The aerial parts essential oils of Ocimum basilicum (Lamiaceae) from Togo were steam-distilled and investigated for their percentage composition (GC and GC/MS) and in vitro antimicrobial activities. Five oil chemotypes were identified and classified as follows in line with their principal components: estragole type; linalool/estragole type; methyleugenol type; methyleugenol/t-anethole type; tanethole type. The in vitro microbiological experiments revealed that only the methyleugenol...

  12. Fabrication of fiber-reinforced composites by chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, T.M.; Stinton, D.P. [Oak Ridge National Lab., TN (United States); Matlin, W.M.; Liaw, P.K. [Univ. of Tennessee, Knoxville, TN (United States)

    1996-08-01

    Processing equipment for the infiltration of fiber-reinforced composite tubes is being designed that incorporates improvements over the equipment used to infiltrate disks. A computer-controlled machine-man interface is being developed to allow for total control of all processing variables. Additionally, several improvements are being made to the furnace that will reduce the complexity and cost of the process. These improvements include the incorporation of free standing preforms, cast mandrels, and simpler graphite heating elements.

  13. 75 FR 69630 - Impact of Implementation of the Chemical Weapons Convention on Commercial Activities Involving...

    Science.gov (United States)

    2010-11-15

    ... Bureau of Industry and Security Impact of Implementation of the Chemical Weapons Convention on Commercial... implementation of the Chemical Weapons Convention (CWC), through the Chemical Weapons Convention Implementation Act (CWCIA) and the Chemical Weapons Convention Regulations (CWCR), has had on commercial...

  14. 77 FR 75145 - Impact of the Implementation of the Chemical Weapons Convention (CWC) on Commercial Activities...

    Science.gov (United States)

    2012-12-19

    ... Bureau of Industry and Security Impact of the Implementation of the Chemical Weapons Convention (CWC) on... implementation of the Chemical Weapons Convention (CWC), through the Chemical Weapons Convention Implementation Act (CWCIA) and the Chemical Weapons Convention Regulations (CWCR), has had on commercial...

  15. Simaroubaceae family: botany, chemical composition and biological activities

    Directory of Open Access Journals (Sweden)

    Iasmine A.B.S. Alves

    2014-08-01

    Full Text Available The Simaroubaceae family includes 32 genera and more than 170 species of trees and brushes of pantropical distribution. The main distribution hot spots are located at tropical areas of America, extending to Africa, Madagascar and regions of Australia bathed by the Pacific. This family is characterized by the presence of quassinoids, secondary metabolites responsible of a wide spectrum of biological activities such as antitumor, antimalarial, antiviral, insecticide, feeding deterrent, amebicide, antiparasitic and herbicidal. Although the chemical and pharmacological potential of Simaroubaceae family as well as its participation in official compendia; such as British, German, French and Brazilian pharmacopoeias, and patent registration, many of its species have not been studied yet. In order to direct further investigation to approach detailed botanical, chemical and pharmacological aspects of the Simaroubaceae, the present work reviews the information regarding the main genera of the family up to 2013.

  16. Indirect Determination of Chemical Composition and Fuel Characteristics of Solid Waste

    DEFF Research Database (Denmark)

    Riber, Christian; Christensen, Thomas Højlund

    Determination of chemical composition of solid waste can be performed directly or indirectly by analysis of combustion products. The indirect methodology instrumented by a full scale incinerator is the only method that can conclude on elements in trace concentrations. These elements are of great...... interest in evaluating waste management options by for example LCA modeling. A methodology description of indirect determination of chemical composition and fuel properties of waste is provided and validated by examples. Indirect analysis of different waste types shows that the chemical composition...... is significantly dependent on waste type. And the analysis concludes that the transfer of substances in the incinerator is a function of waste chemical content, incinerator technology and waste physical properties. The importance of correct representation of rare items in the waste with high concentrations...

  17. Direct Monte Carlo simulation of the chemical equilibrium composition of detonation products

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, M.S.

    1993-06-01

    A new Monte Carlo simulation method has been developed by the author which gives the equilibrium chemical composition of a molecular fluid directly. The usual NPT ensemble (isothermal-isobaric) is implemented with N being the number of atoms instead of molecules. Changes in chemical composition are treated as correlated spatial moves of atoms. Given the interaction potentials between molecular products, ``exact`` EOS points including the equilibrium chemical composition can be determined from the simulations. This method is applied to detonation products at conditions in the region near the Chapman- Jouget state. For the example of NO, it is shown that the CJ detonation velocity can be determined to a few meters per second. A rather small change in cross potentials is shown to shift the chemical equilibrium and the CJ conditions significantly.

  18. Chemical compositions of two different Thymus species essential oils

    OpenAIRE

    Samira Jaberi; Mahmoodreza Moein; Azizolah Jafari; Forough Karami

    2015-01-01

    Thymus is one of the most important members of Lamiaceae family. Aerial parts of the plant have been widely used in medicine. It has been reported that most of these effects are related to phenolic compounds especially thymol and carvacrol in Thymus essential oil. In this study, aerial parts of Thymus daenensis and Thymus lancifolius were collected from Kohgiluyeh and Boyer-Ahmad, Iran. Essential oils of aerial parts of these plants were gained by the hydrodistillation method and the chemical...

  19. Chemical composition on cacao leaves infected by viruses

    Energy Technology Data Exchange (ETDEWEB)

    Mustafa, M.; Delilah, M.; Syafrul, L.; Suryadi

    1980-09-01

    Chemical analysis on cacao leaves that have chlorosis spots caused by cacao swollen shoot viruses were carried out. It can be shown that leaves with chlorosis spots contain less chlorophyl and lipides than those without, but both do not show any significant difference in the concentration of water, glucose, saccharides, amino acid and proteins. It can be concluded that transport systems in the infected leaves are good so that the water and saccharides distribution in them are not disturbed.

  20. The chemical composition of red giants in 47 Tucanae. I. Fundamental parameters and chemical abundance patterns

    Science.gov (United States)

    Thygesen, A. O.; Sbordone, L.; Andrievsky, S.; Korotin, S.; Yong, D.; Zaggia, S.; Ludwig, H.-G.; Collet, R.; Asplund, M.; Ventura, P.; D'Antona, F.; Meléndez, J.; D'Ercole, A.

    2014-12-01

    Context. The study of chemical abundance patterns in globular clusters is key importance to constraining the different candidates for intracluster pollution of light elements. Aims: We aim at deriving accurate abundances for a wide range of elements in the globular cluster 47 Tucanae (NGC 104) to add new constraints to the pollution scenarios for this particular cluster, expanding the range of previously derived element abundances. Methods: Using tailored 1D local thermodynamic equilibrium (LTE) atmospheric models, together with a combination of equivalent width measurements, LTE, and NLTE synthesis, we derive stellar parameters and element abundances from high-resolution, high signal-to-noise spectra of 13 red giant stars near the tip of the RGB. Results: We derive abundances of a total 27 elements (O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Ru, Ba, La, Ce, Pr, Nd, Eu, Dy). Departures from LTE were taken into account for Na, Al, and Ba. We find a mean [Fe/H] = -0.78 ± 0.07 and [ α/ Fe ] = 0.34 ± 0.03 in good agreement with previous studies. The remaining elements show good agreement with the literature, but including NLTE for Al has a significant impact on the behavior of this key element. Conclusions: We confirm the presence of an Na-O anti-correlation in 47 Tucanae found by several other works. Our NLTE analysis of Al shifts the [Al/Fe] to lower values, indicating that this may be overestimated in earlier works. No evidence of an intrinsic variation is found in any of the remaining elements. Based on observations made with the ESO Very Large Telescope at Paranal Observatory, Chile (Programmes 084.B-0810 and 086.B-0237).Full Tables 2, 5, and 9 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/572/A108Appendix A is available in electronic form at http://www.aanda.org

  1. Transient impact responses of laminated composite cylindrical shells

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The generalized ray method(GRM) has been successfully used to study the transient elastic wave transmitting in the beams,planar trusses,space frames and infinite layered media.In this letter,the GRM is extended to investigate the early short time transient responses of laminated composite cylindrical shells under impact load.By using the Laplace transformation and referring to the boundary conditions,the ray groups transmitting in the finite laminated cylindrical shells under the shock load are obtained ...

  2. Seasonality of new particle formation in Vienna, Austria - Influence of air mass origin and aerosol chemical composition

    Science.gov (United States)

    Wonaschütz, Anna; Demattio, Anselm; Wagner, Robert; Burkart, Julia; Zíková, Naděžda; Vodička, Petr; Ludwig, Wolfgang; Steiner, Gerhard; Schwarz, Jaroslav; Hitzenberger, Regina

    2015-10-01

    The impact of air mass origin and season on aerosol chemical composition and new particle formation and growth events (NPF events) in Vienna, Austria, is investigated using impactor samples from short-term campaigns and two long-term number size distribution datasets. The results suggest that air mass origin is most important for bulk PM concentrations, chemical composition of the coarse fraction (>1.5 μm) and the mass size distribution, and less important for chemical composition of the fine fraction (<1.5 μm). Continental air masses (crustal elements) were distinguished from air masses of marine origin (traces of sea salt). NPF events were most frequent in summer (22% of measurement days), and least frequent in winter (3% of measurement days). They were associated with above-average solar radiation and ozone concentrations, but were largely independent of PM2.5. Air mass origin was a secondary influence on NPF, largely through its association with meteorological conditions. Neither a strong dependence on the PM2.5 loading of the air masses, nor indications of a source area for NPF precursors outside the city were found.

  3. IMPACTS OF SMALL COLUMN ION EXCHANGE STREAMS ON DWPF GLASS FORMULATION KT07-SERIES GLASS COMPOSITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Edwards, T.

    2011-01-12

    This report is the third in a series of studies of the impacts of the addition of Crystalline Silicotitanate (CST) and Monosodium Titanate (MST) from the Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) glass waste form and the applicability of the DWPF process control models. MST from the Salt Waste Processing Facility is also considered in the study. The KT07-series glasses were selected to evaluate any potential impacts of noble metals on their properties and performance. The glasses characterized thus far for the SCIX study have not included noble metals since they are not typically tracked in sludge batch composition projections. However, noble metals can act as nucleation sites in glass melts, leading to enhanced crystallization. This crystallization can potentially influence the properties and performance of the glass, such as chemical durability, viscosity, and liquidus temperature. The noble metals Ag, Pd, Rh, and Ru were added to the KT07-series glasses in concentrations based on recent measurements of Sludge Batch 6, which was considered to contain a high concentration of noble metals. The KT04-series glasses were used as the baseline compositions. After fabrication, the glasses were characterized to determine their homogeneity, chemical composition, durability, and viscosity. Liquidus temperature measurements are also underway but were not complete at the time of this report. The liquidus temperature results for the KT07-series glasses, along with several of the earlier glasses in the SCIX study, will be documented separately. All of the KT07-series glasses, both quenched and slowly cooled, were found to be amorphous by X-ray diffraction. Chemical composition measurements showed that all of the glasses met their targeted compositions. The Product Consistency Test (PCT) results showed that all of the glasses had chemical durabilities that were far better than that of the Environmental Assessment benchmark glass

  4. Characterization of chemical composition of bee pollen in China.

    Science.gov (United States)

    Yang, Kai; Wu, Dan; Ye, Xingqian; Liu, Donghong; Chen, Jianchu; Sun, Peilong

    2013-01-23

    Bee pollen has been praised for its good nutrition and therapeutic values. China is the largest producer in the world. Twelve common varieties of monofloral bee pollen collected from China's main producing regions were selected for nutritional composition analysis, including proximate contents, dietary fibers, amino acid distribution, fatty acid composition, and mineral elements. The proximate compositions mostly met the specifications regulating pollen load quality of China. Proline and glutamic acids were found to be the predominant amino acids in the form of both total amino and free amino acids. Lysine was the relative limiting amino acid. The percentage of total essential amino acids (TEAA) to total amino acids (TAA) reached the nutrition recommendation of the Food and Agricultural Organization (FAO). The major fatty acids, presented as mean values, were C18:3 (25.1%), C16:0 (19.6%), C18:1 (17.3%), C18:2 (8.78%), C22:0 (4.07%), and C18:0 (2.96%) acids. The proportions of C18:3 were generally higher than those of C18:2, and the ratio of total unsaturated fatty acids (TUS) to total saturated fatty acids (TS) was >1.0, except for Nelumbo nucifera Gaertn. pollen for the characteristic absence of C18:3 acids. High levels of beneficial elements such as K, Ca, Mg, Zn, Fe, Mn. and Cu were observed in pollen samples. The contents of detrimental trace elements of Cd, Pb, and Hg were primarily lower or not detected. However, more attention should be paid to a large amount of Al, with a concentration of >100 mg/kg DW in most samples. There were some significant differences between samples. On the whole, the Chinese bee pollen was evaluated as a good complement to diet.

  5. Characterization of chemical composition of bee pollen in China.

    Science.gov (United States)

    Yang, Kai; Wu, Dan; Ye, Xingqian; Liu, Donghong; Chen, Jianchu; Sun, Peilong

    2013-01-23

    Bee pollen has been praised for its good nutrition and therapeutic values. China is the largest producer in the world. Twelve common varieties of monofloral bee pollen collected from China's main producing regions were selected for nutritional composition analysis, including proximate contents, dietary fibers, amino acid distribution, fatty acid composition, and mineral elements. The proximate compositions mostly met the specifications regulating pollen load quality of China. Proline and glutamic acids were found to be the predominant amino acids in the form of both total amino and free amino acids. Lysine was the relative limiting amino acid. The percentage of total essential amino acids (TEAA) to total amino acids (TAA) reached the nutrition recommendation of the Food and Agricultural Organization (FAO). The major fatty acids, presented as mean values, were C18:3 (25.1%), C16:0 (19.6%), C18:1 (17.3%), C18:2 (8.78%), C22:0 (4.07%), and C18:0 (2.96%) acids. The proportions of C18:3 were generally higher than those of C18:2, and the ratio of total unsaturated fatty acids (TUS) to total saturated fatty acids (TS) was >1.0, except for Nelumbo nucifera Gaertn. pollen for the characteristic absence of C18:3 acids. High levels of beneficial elements such as K, Ca, Mg, Zn, Fe, Mn. and Cu were observed in pollen samples. The contents of detrimental trace elements of Cd, Pb, and Hg were primarily lower or not detected. However, more attention should be paid to a large amount of Al, with a concentration of >100 mg/kg DW in most samples. There were some significant differences between samples. On the whole, the Chinese bee pollen was evaluated as a good complement to diet. PMID:23265625

  6. Testing chemical composition of highest energy comic rays

    CERN Document Server

    Nosek, D; Noskova, J; Ebr, J

    2013-01-01

    We study basic characteristics of distributions of the depths of shower maximum in air showers caused by cosmic rays with the highest energies. The consistency between their average values and widths, and their energy dependences are discussed within a simple phenomenological model of shower development independently of assumptions about detailed features of high--energy interactions. It is shown that reliable information on primary species can be derived within a partition method. We present examples demonstrating implications for the changes in mass composition of primary cosmic rays.

  7. Simulation of aerosol chemical compositions in the Western Mediterranean Sea

    Science.gov (United States)

    Chrit, Mounir; Kata Sartelet, Karine; Sciare, Jean; Marchand, Nicolas; Pey, Jorge; Sellegri, Karine

    2016-04-01

    This work aims at evaluating the chemical transport model (CTM) Polair3d of the air-quality modelling platform Polyphemus during the ChArMex summer campaigns of 2013, using ground-based measurements performed at ERSA (Cape Corsica, France), and at determining the processes controlling organic aerosol concentrations at ERSA. Simulations are compared to measurements for concentrations of both organic and inorganic species, as well as the ratio of biogenic versus anthropogenic particles, and organic aerosol properties (oxidation state). For inorganics, the concentrations of sulphate, sodium, chloride, ammonium and nitrate are compared to measurements. Non-sea-salt sulphate and ammonium concentrations are well reproduced by the model. However, because of the geographic location of the measurement station at Cape Corsica which undergoes strong wind velocities and sea effects, sea-salt sulphate, sodium, chloride and nitrate concentrations are strongly influenced by the parameterizations used for sea-salt emissions. Different parameterizations are compared and a parameterization is chosen after comparison to sodium measurements. For organics, the concentrations are well modelled when compared to experimental values. Anthropogenic particles are influenced by emission of semi-volatile organic compounds (SVOC). Measurements allow us to refine the estimation of those emissions, which are currently missing in emission inventories. Although concentrations of biogenic particles are well simulated, the organic chemical compounds are not enough oxidised in the model. The observed oxidation state of organics shows that the oligomerisation of pinonaldehyde was over-estimated in Polyphemus. To improve the oxidation property of organics, the formation of extremely low volatile organic compounds from autoxidation of monoterpenes is added to Polyphemus, using recently published data from chamber experiments. These chemical compounds are highly oxygenated and are formed rapidly, as first

  8. Effect of Rain Leaching on Chemical Composition of Alfalfa Hay

    OpenAIRE

    Garcia de Hernandez, Mercedes M.

    1981-01-01

    Yield and chemical changes of second-cutting alfalfa hay treated with artificial rain were determined in a 2 x 3 x 2 factorial experiment. Factors were 2 stages of maturity (1 late vegetative; 2 early bloom), 3 levels of artificial rain applied (1 =no rain; 2 =low or approximately 5 mm; 3 =high or approximately 20 mm), and 2 times of applying artificial rain (1 = when drying forage was 40-60% dry matter; 2 =when drying forage was 60-75% dry matter). Thirty samples of alfalfa were collected at...

  9. Fabrication of fiber-reinforced composites by chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, T.M.; McLaughlin, J.C. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.; Probst, K.J.; Anderson, T.J. [Univ. of Florida, Gainesville, FL (United States). Dept. of Chemical Engineering; Starr, T.L. [Georgia Inst. of Tech., Atlanta, GA (United States). Dept. of Materials Science and Engineering

    1997-12-01

    Silicon carbide-based heat exchanger tubes are of interest to energy production and conversion systems due to their excellent high temperature properties. Fiber-reinforced SiC is of particular importance for these applications since it is substantially tougher than monolithic SiC, and therefore more damage and thermal shock tolerant. This paper reviews a program to develop a scaled-up system for the chemical vapor infiltration of tubular shapes of fiber-reinforced SiC. The efforts include producing a unique furnace design, extensive process and system modeling, and experimental efforts to demonstrate tube fabrication.

  10. Fabrication of fiber-reinforced composites by chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Matlin, W.M. [Univ. of Tennessee, Knoxville, TN (United States); Stinton, D.P.; Besmann, T.M. [Oak Ridge National Lab., TN (United States)

    1995-08-01

    A two-step forced chemical vapor infiltration process was developed that reduced infiltration times for 4.45 cm dia. by 1.27 cm thick Nicalon{sup +} fiber preforms by two thirds while maintaining final densities near 90 %. In the first stage of the process, micro-voids within fiber bundles in the cloth were uniformly infiltrated throughout the preform. In the second stage, the deposition rate was increased to more rapidly fill the macro-voids between bundles within the cloth and between layers of cloth. By varying the thermal gradient across the preform uniform infiltration rates were maintained and high final densities achieved.

  11. Composite reweighting with Imaginary Chemical Potentials in SU(3)

    CERN Document Server

    Crompton, P R

    2002-01-01

    We review the overlap pathology of the Glasgow reweighting method for finite density QCD, and discuss the sampling bias that effects the determination of the ensemble-averaged fugacity polynomial expansion coefficients that form the Grand Canonical Partition function. The expectation of the difference in free energies between canonical partition functions generated with different measures is presented as an indicator of a systematic quark number dependent biasing in the reweighting approach. The advantages of building up an unbiased polynomial expansion for the Grand Canonical Partition function through a series of parallel ensembles generated by reweighting with imaginary chemical potentials are then contrasted with addressing the overlap pathology through a secondary reweighting.

  12. Chemical Composition of the Essential Oil, Total Phenolics, Total Flavonoids and Antioxidant Activity of Methanolic Extracts of Satureja montana L.

    Directory of Open Access Journals (Sweden)

    Avni Hajdari

    2016-05-01

    Full Text Available Aerial parts of Satureja montana L. (Lamiaceae were collected from seven growing wild populations (four populations in Kosovo, two in Albania and one in Montenegro in 2013 with the aim of assessing the natural variation in the chemical composition of the essential oils, total flavonoids, total phenolics and the antioxidant activity of their methanolic extracts. Essential oils were obtained by steam distillation and analysed using GC-FID and GC-MS, whereas total flavonoids, total phenolics and antioxidant activities were determined using spectrophotometric methods. Sixty-one volatile constituents were identified. The main constituents were myrcene, p-cymene, γ-terpinene, linalool, thymol, carvacrol and viridiflorol. Total phenolics ranged from 68.1 to 102.6 mg/g dry mass, the total flavonoid content ranged from 38.3 to 67.0 mg/g dm, and the antioxidant activity according to the DPPH assay ranged from 253.3 to 342.9 mg TE/g dm and according to the FRAP assay ranged from 8.9 to 11.4 mg TE/g dm. Hierarchical cluster analysis and principal component analyses were used to assess the geographical variations in the essential oil composition. Statistical analysis revealed that the analysed populations are grouped into four main clusters that appear to reflect the environmental impact on the chemical composition, which is influenced by differences in habitat composition, altitude and microclimatic conditions.

  13. Nanoscale chemical interaction enhances the physical properties of bioglass composites.

    Science.gov (United States)

    Ravarian, Roya; Zhong, Xia; Barbeck, Mike; Ghanaati, Shahram; Kirkpatrick, Charles James; Murphy, Ciara M; Schindeler, Aaron; Chrzanowski, Wojciech; Dehghani, Fariba

    2013-10-22

    Bioglasses are favorable biomaterials for bone tissue engineering; however, their applications are limited due to their brittleness. In addition, the early failure in the interface is a common problem of composites of bioglass and a polymer with high mechanical strength. This effect is due to the phase separation, nonhomogeneous mixture, nonuniform mechanical strength, and different degradation properties of two compounds. To address these issues, in this study a nanoscale interaction between poly(methyl methacrylate) (PMMA) and bioactive glass was formed via silane coupling agent (3-trimethoxysilyl)propyl methacrylate (MPMA). A monolith was produced at optimum composition from this hybrid by the sol-gel method at 50 °C with a rapid gelation time (hybrid. The in vivo studies in mice demonstrated that the integrity of the hybrids was maintained in subcutaneous implantation. They induced mainly a mononuclear phagocytic tissue reaction with a low level of inflammation, while bioglass provoked a tissue reaction with TRAP-positive multinucleated giant cells. These results demonstrated that the presence of a nanoscale interaction between bioglass and PMMA affects the properties of bioglass and broadens its potential applications for bone replacement.

  14. Chemical Composition and Antioxidant Capacity of Brazilian Passiflora Seed Oils.

    Science.gov (United States)

    de Santana, Fernanda Carvalho; Shinagawa, Fernanda Branco; Araujo, Elias da Silva; Costa, Ana Maria; Mancini-Filho, Jorge

    2015-12-01

    The seed oils of different varieties of 4 Passiflora species cultivated in Brazil were analyzed and compared regarding their physicochemical parameters, fatty acid composition and the presence of minor components, such as phytosterols, tocopherols, total carotenoids, and phenolic compounds. The antioxidant capacities of the oil extracts were determined using the 2,2'azinobis [3-ethylbenzothiazoline-6-sulfonic acid] and oxygen radical absorbance capacity methods. The results revealed that all studied Passiflora seed oils possessed similar physicochemical characteristics, except for color, and predominantly contained polyunsaturated fatty acids with a high percentage of linolenic acid (68.75% to 71.54%). Other than the total phytosterol content, the extracted oil from Passiflora setacea BRS Pérola do Cerrado seeds had higher quantities (% times higher than the average of all samples), of carotenoids (44%), phenolic compounds (282%) and vitamin E (215%, 56%, 398%, and 100% for the α-tocopherol, β-tocopherol, γ-tocopherol, and δ-tocopherol isomers, respectively). The methanolic extracts from Passiflora setacea BRS Pérola do Cerrado seed oil also showed higher antioxidant activity, which was positively correlated with the total phenolic, δ-tocopherol, and vitamin E contents. For the first time, these results indicate that Passiflora species have strong potential regarding the use of their seeds for oil extraction. Due to their interesting composition, the seed oils may be used as a raw material in manufacturing industries in addition to other widely used vegetable oils. PMID:26512548

  15. Nanoscale chemical interaction enhances the physical properties of bioglass composites.

    Science.gov (United States)

    Ravarian, Roya; Zhong, Xia; Barbeck, Mike; Ghanaati, Shahram; Kirkpatrick, Charles James; Murphy, Ciara M; Schindeler, Aaron; Chrzanowski, Wojciech; Dehghani, Fariba

    2013-10-22

    Bioglasses are favorable biomaterials for bone tissue engineering; however, their applications are limited due to their brittleness. In addition, the early failure in the interface is a common problem of composites of bioglass and a polymer with high mechanical strength. This effect is due to the phase separation, nonhomogeneous mixture, nonuniform mechanical strength, and different degradation properties of two compounds. To address these issues, in this study a nanoscale interaction between poly(methyl methacrylate) (PMMA) and bioactive glass was formed via silane coupling agent (3-trimethoxysilyl)propyl methacrylate (MPMA). A monolith was produced at optimum composition from this hybrid by the sol-gel method at 50 °C with a rapid gelation time (hybrid. The in vivo studies in mice demonstrated that the integrity of the hybrids was maintained in subcutaneous implantation. They induced mainly a mononuclear phagocytic tissue reaction with a low level of inflammation, while bioglass provoked a tissue reaction with TRAP-positive multinucleated giant cells. These results demonstrated that the presence of a nanoscale interaction between bioglass and PMMA affects the properties of bioglass and broadens its potential applications for bone replacement. PMID:24001050

  16. On the Formation and Chemical Composition of Super Earths

    CERN Document Server

    Alessi, Matthew; Cridland, Alex J

    2016-01-01

    Super Earths are the largest population of exoplanets and are seen to exhibit a rich diversity of compositions as inferred through their mean densities. Here we present a model that combines equilibrium chemistry in evolving disks with core accretion that tracks materials accreted onto planets during their formation. In doing so, we aim to explain why super Earths form so frequently and how they acquire such a diverse range of compositions. A key feature of our model is disk inhomogeneities, or planet traps, that act as barriers to rapid type-I migration. The traps we include are the dead zone, which can be caused by either cosmic ray or X-ray ionization, the ice line, and the heat transition. We find that in disks with sufficiently long lifetimes ($\\gtrsim$ 4 Myr), all traps produce Jovian planets. In these disks, planet formation in the heat transition and X-ray dead zone produces hot Jupiters while the ice line and cosmic ray dead zones produce Jupiters at roughly 1 AU. Super Earth formation takes place wi...

  17. An estimate of the chemical composition of Titan's lakes

    CERN Document Server

    Cordier, D; Lunine, J -I; Lavvas, P; Vuitton, V

    2009-01-01

    Hundreds of radar-dark patches interpreted as lakes have been discovered in the north and south polar regions of Titan. We have estimated the composition of these lakes by using the direct abundance measurements from the Gas Chromatograph Mass Spectrometer (GCMS) aboard the Huygens probe and recent photochemical models based on the vertical temperature profile derived by the Huygens Atmospheric Structure Instrument (HASI). Thermodynamic equilibrium is assumed between the atmosphere and the lakes, which are also considered as nonideal solutions. We find that the main constituents of the lakes are ethane (C2H6) (~76-79%), propane (C3H8) (~7-8%), methane (CH4) (~5-10%), hydrogen cyanide (HCN) (~2-3%), butene (C4H8) (~1%), butane (C4H10) (~1%) and acetylene (C2H2) (~1%). The calculated composition of lakes is then substantially different from what has been expected from models elaborated prior to the exploration of Titan by the Cassini-Huygens spacecraft.

  18. The Impact of Bonding Agent Composition on Flexural Strength of Fiber-Reinforced Composite

    Directory of Open Access Journals (Sweden)

    Sharafedin F.

    2011-08-01

    Full Text Available Statement of Problem: Bonding agent composition for impregnation of fiber may increase the flexural strength of fiber-reinforced composites by means of increasing adhesion.Purpose: Investigating the impact of filler of four commercial bonding agents with different hydrophobicity on the flexural strength of a fiber-reinforced composite.Materials and Method: In this experimental study, six groups (N=15 per group of polyethylene fiber-reinforced composite specimens were prepared. In group 1, the positive control group, the samples were prepared using composite and without fiber, whereas in group 2, as the negative group, fiber-reinforced composite without any bonding agent resination was used. The fibers in group 3 to 6 were resinated with Single bond 2, Single bond, Resist, and all bond 3, respectively. Firstly, the fiber was placed in the base of the specimen preparation mold. Then the mold was filled with composite and cured. The specimens were stored in distilled water for 24 hours. In the next step, the flexural strength was measured in Three-point bending test with Instron machine at cross- head speed of 1 mm/min. Failure mode of the specimens was observed with stereomicroscope. At last, statistical analysis was performed using ANOVA and LSD post hoc tests ( p < 0.05. Results: Ono-way ANOVA test was used for evaluating the relationship among the groups, and for pair-wise comparison, LSD post-hoc test was used. One-way ANOVA test showed a significant difference among the groups. The All bond 3 group showed a significantly higher flexural strength than the other groups ( p <0.001. Groups 3 to 6 had significantly higher flexural strength than flexural strength of the control groups ( p <0.05.Conclusion: The choice of bonding agent can have a significant impact on the flexural properties of the fiber-reinforced composite. When filled hydrophobic bonding agent was used for impregnation of the fiber, compared to negative control group, flexural

  19. Software for analysis of chemical mixtures--composition, occurrence, distribution, and possible toxicity

    Science.gov (United States)

    Scott, Jonathon C.; Skach, Kenneth A.; Toccalino, Patricia L.

    2013-01-01

    The composition, occurrence, distribution, and possible toxicity of chemical mixtures in the environment are research concerns of the U.S. Geological Survey and others. The presence of specific chemical mixtures may serve as indicators of natural phenomena or human-caused events. Chemical mixtures may also have ecological, industrial, geochemical, or toxicological effects. Chemical-mixture occurrences vary by analyte composition and concentration. Four related computer programs have been developed by the National Water-Quality Assessment Program of the U.S. Geological Survey for research of chemical-mixture compositions, occurrences, distributions, and possible toxicities. The compositions and occurrences are identified for the user-supplied data, and therefore the resultant counts are constrained by the user’s choices for the selection of chemicals, reporting limits for the analytical methods, spatial coverage, and time span for the data supplied. The distribution of chemical mixtures may be spatial, temporal, and (or) related to some other variable, such as chemical usage. Possible toxicities optionally are estimated from user-supplied benchmark data. The software for the analysis of chemical mixtures described in this report is designed to work with chemical-analysis data files retrieved from the U.S. Geological Survey National Water Information System but can also be used with appropriately formatted data from other sources. Installation and usage of the mixture software are documented. This mixture software was designed to function with minimal changes on a variety of computer-operating systems. To obtain the software described herein and other U.S. Geological Survey software, visit http://water.usgs.gov/software/.

  20. Chemical composition of fresh snowfalls at Palmer Station, Antarctica

    Science.gov (United States)

    DeFelice, T. P.

    A first time investigation was performed to establish a chemical baseline for snowfall at Palmer Station Antarctica (64°46'S, 64°05'W) since there was no such record. A chemical baseline for snow could be use to validate climate change studies based on ice core analyses. The snow samples contained (from high to low mass concentration) total organic carbon, chloride, inorganic carbon, sodium, sulfate, magnesium, calcium, potassium, fluoride, ammonium, and nitrate, excluding hydrogen and hydroxide. The pH of these samples ranged between 4.0-6.2. The relatively low nitrate and relatively high sulfate concentrations found in our samples are consistent with the results of other studies for this region of Antarctica. The ions and pH do not appear to favor a particular wind direction during this period. The total deposition of sulfate and flouride via snowfall between 10 January and 10 February is conservatively estimated to be 4.78 and 1.3 kg km -2, respectively.

  1. Shock Waves Impacting Composite Material Plates: The Mutual Interaction

    Science.gov (United States)

    Andreopoulos, Yiannis

    2013-02-01

    High-performance, fiber-reinforced polymer composites have been extensively used in structural applications in the last 30 years because of their light weight combined with high specific stiffness and strength at a rather low cost. The automotive industry has adopted these materials in new designs of lightweight vehicles. The mechanical response and characterization of such materials under transient dynamic loading caused with shock impact induced by blast is not well understood. Air blast is associated with a fast traveling shock front with high pressure across followed by a decrease in pressure behind due to expansion waves. The time scales associated with the shock front are typically 103 faster than those involved in the expansion waves. Impingement of blast waves on structures can cause a reflection of the wave off the surface of the structure followed by a substantial transient aerodynamic load, which can cause significant deformation and damage of the structure. These can alter the overpressure, which is built behind the reflected shock. In addition, a complex aeroelastic interaction between the blast wave and the structure develops that can induce reverberation within an enclosure, which can cause substantial overpressure through multiple reflections of the wave. Numerical simulations of such interactions are quite challenging. They usually require coupled solvers for the flow and the structure. The present contribution provides a physics-based analysis of the phenomena involved, a critical review of existing computational techniques together with some recent results involving face-on impact of shock waves on thin composite plates.

  2. Chemical composition distribution analysis of photoresist copolymers and influence on ArF lithographic performance

    Science.gov (United States)

    Momose, Hikaru; Yasuda, Atsushi; Ueda, Akifumi; Iseki, Takayuki; Ute, Koichi; Nishimura, Takashi; Nakagawa, Ryo; Kitayama, Tatsuki

    2007-03-01

    For getting information about the distribution of chemical composition, several model polymers were prepared under different polymerization conditions and were measured by critical adsorption point-liquid chromatography (CAP-LC). In the copolymer system of 8- and 9- (4-oxatricyclo[5.2.1.0 2,6]decane-3-one) acrylate (OTDA) and 2-ethyl-2-adamantyl methacrylate (EAdMA), the peak shapes of the CAP-LC chromatogram varied according to the polymerization condition although they indicated same molecular weight and averaged chemical composition. The difference of the CAP-LC elution curves was related to the chemical composition distribution of copolymers for CAP-LC measurement combined with proton nuclear magnetic resonance (1H-NMR). The terpolymers consisted of α-hydroxy-γ-butyrolactone methacrylate (GBLMA), 2-methyl-2-adamantyl methacrylate (MAdMA) and 1-hydroxy-3-adamantyl methacrylate (HAdMA) were prepared under various polymerization conditions. In the terpolymer system that had same molecular weight and average chemical composition, the solubility parameter (δ) and the dissolution rate were measured. The δ value and the dissolution rate curve were different among these terpolymers. It was suggested that the δ value and the chemical composition distribution of these terpolymers have a significant influence on the lithographic performance.

  3. Higgs Discovery: Impact on Composite Dynamics [Thinking Fast and Slow

    CERN Document Server

    Sannino, Francesco

    2013-01-01

    I discuss the impact of the discovery of a Higgs-like state on composite dynamics starting by critically examining the reasons in favour of either an elementary or composite nature of this state. Accepting the standard model interpretation I re-address the standard model vacuum stability within a Weyl-consistent computation. I will carefully examine the fundamental reasons why what has been discovered might not be the standard model Higgs. Dynamical electroweak breaking naturally addresses a number of the fundamental issues unsolved by the standard model interpretation. However this paradigm has been challenged by the discovery of a not-so-heavy Higgs-like state. I will therefore review the recent discovery \\cite{Foadi:2012bb} that the standard model top-induced radiative corrections naturally reduce the intrinsic non-perturbative mass of the composite Higgs state towards the desired experimental value. Not only we have a natural and testable working framework but we have also suggested specific gauge theorie...

  4. CHEMICAL COMPOSITION AND ANTIMICROBIAL PROPERTIES OF DIFFERENT BASIL OILS

    Directory of Open Access Journals (Sweden)

    H.C. Srivastava, Pankaj Shukla, Ajay Singh Maurya and Sonia Tripathi*

    2013-03-01

    Full Text Available ABSTRACT: The aerial parts essential oils of Ocimum basilicum (Lamiaceae from Togo were steam-distilled and investigated for their percentage composition (GC and GC/MS and in vitro antimicrobial activities. Five oil chemotypes were identified and classified as follows in line with their principal components: estragole type; linalool/estragole type; methyleugenol type; methyleugenol/t-anethole type; tanethole type. The in vitro microbiological experiments revealed that only the methyleugenol and methyleugenol/t-anethole chemotypes were active against tested fungi and bacteria. Their minimum inhibitory concentrations (MIC ranged from 80-150 μL/L and from 200-500 μL/L respectively. Likewise, on tested bacteria the MIC varied from 200-400 μL/L and from 250-500 μL/L respectively. These findings are supportive of the potential of both basil oil chemotypes for use as active ingredients in natural antibiotic drugs.

  5. Evaluation of Impact Damage Tolerance in Carbon Fabric/epoxy-matrix Composites by Electrical Resistance Measurement

    Institute of Scientific and Technical Information of China (English)

    LI Zhipeng; XIE Xiaolin; HONG Zhen; LU Chao; WANG Gaochao

    2012-01-01

    Impact damage tolerance is provided in intensity design on composites.The compression intensity of impacted composites requires more than 60% of its original intensity.The influence of impact on compressive intensity and electrical resistance of carbon fabric/epoxy-matrix composites was studied in this paper.The experimental results shows that impact can cause damage in composites,degenerate compressive intensity,and increase resistance.The electrical resistance change rate was used as an evaluation indicator of impact damage tolerance of composites.Impact damage,which results from the applying process of composites,can be identified in time by electrical resistance measurement.So,the safety performance of composites can also be improved.

  6. Architectural Effects on Impact Resistance of Uncoated MI SiC/SiC Composites

    Science.gov (United States)

    Bhatt, R. T.; Cosgriff, L. M.; Fox, D. S.

    2009-01-01

    Impact tests were conducted on uncoated 2D and 2.5D MI SiC/SiC composite specimens at room temperature and 1316 C in air. The specimens were analyzed before and after impact using optical microscopy, pulsed thermography (PT) and computed tomography (CT). Preliminary results indicate the following. Both 2-D and 2.5D composites show increase in surface and volumetric damages with increasing impact velocity. However, 2-D composites are prone to delamination cracks. In both 2D and 2.5D composites, the magnitude of impact damage at a fixed impact velocity is slightly greater at room temperature than at 1315 C. At a fixed projectile velocity and test temperature, the depth of penetration of the projectile into the substrate is significantly lower in 2.5D composites than in 2D composites. Fiber architecture plays a significant role controlling impact damage in MI SiC/SiC composites.

  7. A New Reference Chemical Composition for TMC-1

    CERN Document Server

    Gratier, P; Ohishi, M; Roueff, E; Loison, J -C; Hickson, K M; Wakelam, V

    2016-01-01

    Recent detections of complex organic molecules in dark clouds have rekindled interest in the astrochemical modeling of these environments. Because of its relative closeness and rich molecular complexity, TMC-1 has been extensively observed to study the chemical processes taking place in dark clouds. We use local thermodynamical equilibrium radiative transfer modeling coupled with a Bayesian statistical method which takes into account outliers to analyze the data from the Nobeyama spectral survey of TMC-1 between 8 and 50 GHz. We compute the abundance relative to molecular hydrogen of 57 molecules, including 19 isotopologues in TMC-1 along with their associated uncertainty. The new results are in general agreement with previous abundance determination from Ohishi & Kaifu and the values reported in the review from Agundez & Wakelam. However, in some cases, large opacity and low signal to noise effects allow only upper or lower limits to be derived, respectively.

  8. Chemical composition of umbu (Spondias tuberosa Arr. Cam seeds

    Directory of Open Access Journals (Sweden)

    Soraia Vilela Borges

    2007-02-01

    Full Text Available The umbu tree (Spondias tuberosa Arr. Cam is an important fruit tree the economy of the semi-arid northeastern region of Brazil. With the objective of finding use for the seeds, physical and chemical characterizations of the seeds from 2 cultivars in 2 maturation stages were carried out and their fatty acid and mineral profiles determined. The results showed no differences between the seeds analyzed. The yield was about 10% and the dimensions as follows: length from 1.48 to 2.11 cm and width from 0.76 to 1.16 cm. The average lipid content was 55% of which 69% was unsaturated and the average protein content was 24%. The seeds were a good source of the following minerals: P, K, Mg, Fe and Cu. The overall results indicated that the oil or the seeds could be used for food stuffs if no toxic agents were found.

  9. Chemical composition of streams during low flow; Fairfax County, Virginia

    Science.gov (United States)

    Larson, J.D.

    1978-01-01

    Water samples were collected and stream discharges were measured at 49 sites in Fairfax County, Virginia during a period of low flow in August 1977. In addition, pesticide and metal content of residue on stream-bottom sediments from several major streams in the county were analysed. Waters from the streams in Fairfax County have generally good chemical quality during low flow. One stream in Vienna, Virginia has a high sodium chloride content, suggesting an upstream discharge of salty water. Higher concentrations of dissolved, solids reflect both the effects of geology and urbanization. Streams draining Triassic rocks in the western section of the county are characterized by the greatest natural concentration of dissolved minerals in the water. The concentrations of pesticide and metal residue associated with bottom sediments suggest a low level of pollution in the streams. One site in western Fairfax County contained above-normal levels of polychlorinated biphenyls (PCB's) in the stream sediments.

  10. A New Reference Chemical Composition for TMC-1

    Science.gov (United States)

    Gratier, P.; Majumdar, L.; Ohishi, M.; Roueff, E.; Loison, J. C.; Hickson, K. M.; Wakelam, V.

    2016-08-01

    Recent detections of complex organic molecules in dark clouds have rekindled interest in the astrochemical modeling of these environments. Because of its relative closeness and rich molecular complexity, TMC-1 has been extensively observed to study the chemical processes taking place in dark clouds. We use local thermodynamical equilibrium radiative transfer modeling coupled with a Bayesian statistical method which takes into account outliers to analyze the data from the Nobeyama spectral survey of TMC-1 between 8 and 50 GHz. We compute the abundance relative to molecular hydrogen of 57 molecules, including 19 isotopologues in TMC-1 along with their associated uncertainty. The new results are in general agreement with previous abundance determination from Ohishi & Kaifu and the values reported in the review from Agúndez & Wakelam. However, in some cases, large opacity and low signal to noise effects allow only upper or lower limits to be derived, respectively.

  11. Chemical Species in the Vapor Phase of Hanford Double-Shell Tanks: Potential Impacts on Waste Tank Corrosion Processes

    Energy Technology Data Exchange (ETDEWEB)

    Felmy, Andrew R.; Qafoku, Odeta; Arey, Bruce W.; Boomer, Kayle D.

    2010-09-22

    The presence of corrosive and inhibiting chemicals on the tank walls in the vapor space, arising from the waste supernatant, dictate the type and degree of corrosion that occurs there. An understanding of how waste chemicals are transported to the walls and the affect on vapor species from changing supernatant chemistry (e.g., pH, etc.), are basic to the evaluation of risks and impacts of waste changes on vapor space corrosion (VSC). In order to address these issues the expert panel workshop on double-shell tank (DST) vapor space corrosion testing (RPP-RPT-31129) participants made several recommendations on the future data and modeling needs in the area of DST corrosion. In particular, the drying of vapor phase condensates or supernatants can form salt or other deposits at the carbon steel interface resulting in a chemical composition at the near surface substantially different from that observed directly in the condensates or the supernatants. As a result, over the past three years chemical modeling and experimental studies have been performed on DST supernatants and condensates to predict the changes in chemical composition that might occur as condensates or supernatants equilibrate with the vapor space species and dry at the carbon steel surface. The experimental studies included research on both the chemical changes that occurred as the supernatants dried as well as research on how these chemical changes impact the corrosion of tank steels. The chemical modeling and associated experimental studies were performed at the Pacific Northwest National Laboratory (PNNL) and the research on tank steel corrosion at the Savannah River National Laboratory (SRNL). This report presents a summary of the research conducted at PNNL with special emphasis on the most recent studies conducted in FY10. An overall summary of the project results as well as their broader implications for vapor space corrosion of the DST’s is given at the end of this report.

  12. The chemical compositions of Galactic disc F and G dwarfs

    Science.gov (United States)

    Reddy, Bacham E.; Tomkin, Jocelyn; Lambert, David L.; Allende Prieto, Carlos

    2003-03-01

    Photospheric abundances are presented for 27 elements from carbon to europium in 181 F and G dwarfs from a differential local thermodynamic equilibrium (LTE) analysis of high-resolution and high signal-to-noise ratio spectra. Stellar effective temperatures (Teff) were adopted from an infrared flux method calibration of Strömgren photometry. Stellar surface gravities (g) were calculated from Hipparcos parallaxes and stellar evolutionary tracks. Adopted Teff and g values are in good agreement with spectroscopic estimates. Stellar ages were determined from evolutionary tracks. Stellar space motions (U, V, W) and a Galactic potential were used to estimate Galactic orbital parameters. These show that the vast majority of the stars belong to the Galactic thin disc. Relative abundances expressed as [X/Fe] generally confirm previously published results. We give results for C, N, O, Na, Mg, Al, Si, S, K, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Sr, Y, Zr, Ba, Ce, Nd and Eu. The α elements - O, Mg, Si, Ca and Ti - show [α/Fe] to increase slightly with decreasing [Fe/H]. Heavy elements with dominant contributions at solar metallicity from the s-process show [s/Fe] to decrease slightly with decreasing [Fe/H]. Scatter in [X/Fe] at a fixed [Fe/H] is entirely attributable to the small measurement errors, after excluding the few thick disc stars and the s-process-enriched CH subgiants. Tight limits are set on `cosmic' scatter. If a weak trend with [Fe/H] is taken into account, the composition of a thin disc star expressed as [X/Fe] is independent of the star's age and birthplace for elements contributed in different proportions by massive stars (Type II supernovae), exploding white dwarfs (Type Ia supernovae) and asymptotic red giant branch stars. By combining our sample with various published studies, comparisons between thin and thick disc stars are made. In this composite sample, thick disc stars are primarily identified by their VLSR in the range -40 to -100 km s-1. These are

  13. Impact performance of nanophased foam core sandwich composites

    International Nuclear Information System (INIS)

    In this study, sandwich panels were fabricated with neat and nanophased foam core and three-layered plain weave carbon fabric/Sc-15 epoxy composite face sheets. Neat and nanophased foam cores with Nanocor I-28E nanoclay at a loading of 0.5% and 1% by weight were prepared. Sandwich panels were then fabricated using co-injection resin transfer molding process. Samples of size 100 mm x 100 mm were then cut from the panels and subjected to low-velocity impact loading using an instrumented impact test setup. Impact response of the panels was recorded and analyzed in terms of peak load, absorbed energy, time and deflection at peak load. The tested samples were then sectioned into two halves and scanned using a scanner, optical and scanning electron microscopes to understand the failure patterns. Samples with nanophased foam sustained higher loads and had lower damage areas as compared with neat counterparts. Nanophased foam cores exhibited relatively more brittle fracture

  14. Impact performance of nanophased foam core sandwich composites

    Energy Technology Data Exchange (ETDEWEB)

    Hosur, M.V. [Center for Advanced Materials, Tuskegee University, Tuskegee, AL 36088 (United States)], E-mail: mhosur@gmail.com; Mohammed, A.A.; Zainuddin, S.; Jeelani, S. [Center for Advanced Materials, Tuskegee University, Tuskegee, AL 36088 (United States)

    2008-12-20

    In this study, sandwich panels were fabricated with neat and nanophased foam core and three-layered plain weave carbon fabric/Sc-15 epoxy composite face sheets. Neat and nanophased foam cores with Nanocor I-28E nanoclay at a loading of 0.5% and 1% by weight were prepared. Sandwich panels were then fabricated using co-injection resin transfer molding process. Samples of size 100 mm x 100 mm were then cut from the panels and subjected to low-velocity impact loading using an instrumented impact test setup. Impact response of the panels was recorded and analyzed in terms of peak load, absorbed energy, time and deflection at peak load. The tested samples were then sectioned into two halves and scanned using a scanner, optical and scanning electron microscopes to understand the failure patterns. Samples with nanophased foam sustained higher loads and had lower damage areas as compared with neat counterparts. Nanophased foam cores exhibited relatively more brittle fracture.

  15. Impact resistance of spar-shell composite fan blades

    Science.gov (United States)

    Graff, J.; Stoltze, L.; Varholak, E. M.

    1973-01-01

    Composite spar-shell fan blades for a 1.83 meter (6 feet) diameter fan stage were fabricated and tested in a whirling arm facility to evaluate foreign object damage (FOD) resistance. The blades were made by adhesively bonding boron-epoxy shells on titanium spars and then adhesively bonding an Inconel 625 sheath on the leading edge. The rotating blades were individually tested at a tip speed of 800 feet per second. Impacting media used were gravel, rivets, bolt, nut, ice balls, simulated birds, and a real bird. Incidence angles were typical of those which might be experienced by STOL aircraft. The tests showed that blades of the design tested in this program have satisfactory impact resistance to small objects such as gravel, rivets, nuts, bolts, and two inch diameter ice balls. The blades suffered nominal damage when impacted with one-pound birds (9 to 10 ounce slice size). However, the shell was removed from the spar for a larger slice size.

  16. Impact of dust storm on chemical species of S, Cl and Ca in Shanghai atmosphere particles

    International Nuclear Information System (INIS)

    Background: Dust storm originated from the northwest region of China brought dust particles for Shanghai every spring, which resulted in serious particulate pollution. However, the studies of the impact of dust storm on the Shanghai atmospheric aerosols were limited to the concentrations of ions and elements. It is considered that the chemical species of atmospheric aerosols were much more necessary for the evaluation of the impact of dust storm on the particulate pollution in Shanghai. Purpose: Based on the elements concentration variations, backward trajectories of air masses and chlorine, calcium, sulfur species in aerosols during the dust event, the impact of dust storm on the chemical species of aerosols in Shanghai was studied. Methods: Elements concentrations of the samples were analyzed by X-ray fluorescence (XRF) based on synchrotron radiation. To identify the potential importance of different source regions on aerosol composition during dust events, the air mass trajectories were calculated by using the model HYSPLIT version 4 developed by NOAA/ARL. Chemical species of S, Cl, Ca were analyzed by synchrotron radiation X-ray absorption near edge structure (XANES). Sulfur K-edge XANES is capable of distinguishing various sulfate species in a non-destructive way and we used linear combination fitting procedure to quantify the concentrations of sulfate species in PM. Results: Elements concentration variations during the dust storm period showed that crust elements (Si, Al, Ca, K, Mg, Fe, Ti) in particles increased substantially during dust storm. However, pollution elements (S, Zn, Pb, Cu, V, Cr, As) from local region decreased by the clean effect of dust storm. Combined XANES of S, Cl, Ca in particulate samples with backward trajectories, the possible sources and reasons of their chemical species were studied. During dust storm, sulfur mainly existed as CaSO4·2H2O, Cl existed as organic chloride and Cl-, Ca existed as CaCO3. In the samples of other days

  17. Chemical composition of the underutilized legume Cassia hirsuta L.

    Science.gov (United States)

    Vadivel, V; Janardhanan, K

    2000-01-01

    Seven accessions of the underutilized legume, Cassia hirsuta L., seeds collected from seven different agroclimatic regions of Tamil Nadu, India, were analyzed for proximate composition, total proteins, protein fractions, mineral profiles and selected antinutritional factors. Crude protein ranged from 15.52 to 20.74%, crude lipid 3.77-7.04%, crude fiber 4.68-6.92%, ash 3.98-6.42% and carbohydrates 62.45-70.16%. Energy values of the seeds were 1549-1634 kJ/100 g (DM), which are comparable to those of other legumes. Data on seed protein fractions revealed that globulins constituted the bulk of the seed protein as in most legumes. Mineral contents of the seeds showed greater variation. Potassium was the most abundant mineral (1029-1786 mg/100 g), whereas manganese was low (2.1-2.2 mg/100 g). Antinutritional factors such as total free phenolics, tannins, L-DOPA and lectins were analyzed. The results of the study demonstrated that the accessions of C. hirsuta seeds collected from Tamil Nadu, India, could be good sources of some important nutrients for humans. PMID:11086879

  18. Productivity and chemical composition of milk of East friesian ewes

    Directory of Open Access Journals (Sweden)

    Boro Mioč

    2004-01-01

    Full Text Available The aim of the research was to determine the milk production of EastFrisian ewes and the influence of lactation order on milk production,composition and total quantity of milk fat, proteins and lactose. For that purpose, milking ability controls were carried out in 438 ewes, out of which 190 were in the first, 131 in the second, 86 in the third, 10 in the fourth and 21 in the fifth lactation. The East Frisian ewes in the lactation period of 221 days produced an average of 364.65 kg of milk with 5.68% of fat, 4.92% of proteins and 4.59% of lactose. The total production of milk fat, proteins and lactose was 20.15; 17.66 and 14.57 kg, respectively. A significant (P<0.01 influence of the lactation order on the length of lactation, as well as on the average daily and total quantity of produced milk was determined. The greatest quantity of milk was produced in the fourth (513.50 kg, and the lowest in the first lactation (219.32 kg. The highest content of milk fat (5.93%; proteins (5.01% and lactose (4.64% were determined in the second and the lowest in the fifth lactation (5.2; 4.87 and 4.44%.

  19. Inorganic Chemical Composition of Swimming Pools in Amman-Jordan

    Directory of Open Access Journals (Sweden)

    Bety Saqarat

    2012-10-01

    Full Text Available Monitoring was carried out during summer 2011 in three types of swimming pools in Amman-Jordan. Thirty six water samples, collected from three users type of swimming pools (adults, family and infants, were examined for its major ionic composition (HCO3-, Cl-, NO3-, SO4=, Ca+2, Mg+2, Na+, K+ and PO4+4 in addition to its BOD and COD content. All of the examined samples from the swimming pools water were acceptable according to the local and WHO standards. The type and number of users as well as the maintenance of the swimming pool water influenced the water quality. The results showed that there was a noticeable increase in NO3, PO4 and Cl than other ions. All of the examined samples from the swimming pools water were acceptable according to the local and WHO standards and although the water of the infant’s users changed frequently, it showed the highest concentration of most of the parameters and Adults’ pool showed the lowest.

  20. Chemical compositions and kinematics of the Hercules stream

    CERN Document Server

    Ramya, P; Lambert, David L; Musthafa, M M

    2016-01-01

    An abundance analysis is reported of 58 K giants identified by Famaey et al. (2005) as highly probable members of the Hercules stream selected from stars north of the celestial equator in the Hipparcos catalogue. The giants have compositions spanning the interval [Fe/H] from $-$0.17 to $+$0.42 with a mean value of $+$0.15 and relative elemental abundances [El/Fe] representative of the Galactic thin disc. Selection effects may have biassed the selection from the Hipparcos catalogue against the selection of metal-poor stars. Our reconsideration of the recent extensive survey of FG dwarfs which included metal-poor stars (Bensby et al. 2014) provides a [Fe/H] distribution for the Hercules stream which is similar to that from the 58 giants. It appears that the stream is dominated by metal-rich stars from the thin disc. Suggestions in the literature that the stream includes metal-poor stars from the thick disc are discussed.

  1. Investigation on Impact Strength Properties of Kevlar Fabric using Different Shear Thickening Fluid Composition

    Directory of Open Access Journals (Sweden)

    R. Joselin

    2014-05-01

    Full Text Available Great interest has aroused in developing high impact resistant fabrics based on the incorporation of a shear thickening fluid (STF into high performance fabrics (Kevlar. This work developed a shear thickening fluid enhanced fabrics and the influence of the shear thickening fluid types against spike impact and the impact resistance performance were investigated. Silica nano-particle impregnated Kevlar fabrics exhibit significantly enhanced ballistic performance while retaining flexibility. It was found that fabrics impregnated with functionalized nanoparticles offer multiple resistance to the penetration of a sharp impactor. The improvement in protection is traced by the formation of siloxane bonds during functionalization. It exhibits significant improvement in shear stiffness and aslight increase in tensile stiffness. The impact strength properties of all samples were tested using impact testingand quasi-static testing apparatuses. Chemical compositions and microscopic structures were analyzed with Fouriertransform infrared spectroscopy and scanning electron microscopy. The current study clearly displays a significant enhancement in penetration resistance of Kevlar fabric impregnated with different combination of STF’s.Defence Science Journal, Vol. 64, No. 3, May 2014, pp. 236-243, DOI:http://dx.doi.org /10.14429/dsj.64.7322

  2. The chemical compositions of RR Lyrae type c variable stars

    Energy Technology Data Exchange (ETDEWEB)

    Govea, Jose; Gomez, Thomas; Sneden, Christopher [Department of Astronomy and McDonald Observatory, The University of Texas, Austin, TX 78712 (United States); Preston, George W., E-mail: jgovea@utexas.edu, E-mail: chris@verdi.as.utexas.edu, E-mail: iii@ociw.edu [The Observatories of the Carnegie Institution of Washington, Pasadena, CA 91101 (United States)

    2014-02-20

    We present a detailed chemical abundance study of eight RR Lyrae variable stars of subclass c (RRc). The target RRc stars chosen for study exhibit 'Blazhko-effect' period and amplitude modulations to their pulsational cycles. Data for this study were gathered with the echelle spectrograph of the 100 inch du Pont telescope at Las Campanas Observatory. Spectra were obtained throughout each star's pulsation cycle. Atmospheric parameters—effective temperature, surface gravity, microturbulent velocity, and metallicity—were derived at multiple phase points. We found metallicities and element abundance ratios to be constant within observational uncertainties over the pulsational cycles of all stars. Moreover, the α-element and Fe-group abundance ratios with respect to iron are consistent with other horizontal-branch members (RRab, blue and red non-variables). Finally, we have used the [Fe/H] values of these eight RRc stars to anchor the metallicity estimates of a large-sample RRc snapshot spectroscopic study being conducted with the same telescope and instrument combination employed here.

  3. Chemical composition, therapeutic potential and perspectives of Foeniculum vulgare

    Directory of Open Access Journals (Sweden)

    Chanchal Garga

    2009-01-01

    Full Text Available Foeniculum vulgare is a widely distributed plant in most tropical and subtropical countries and have long been used in folk medicines to treat obstruction of the liver, spleen and gall bladder and for digestive complaints such as colic, indigestion, nausea and flatulence. In recent years the interest in this plant has increased considerably with substantial progress on its chemical and pharmacological properties. This review discusses the current knowledge of its chemistry, the various compounds isolated and pharamcological studies conducted. These studies carried out with the extracts and volatile oil support most of the reports of using this plant in folk medicines. However, well controlled, double-binding clinical trials are lacking. Several compounds including trans-anethole, estragole, fenchone and polyphenolics were isolated from this plant and some of these interact with potential mechanisms of the body. Together this data strongly supports the view that this plant has potential beneficial therapeutic actions in the management of bacterial and fungal infections, colic pain and lipid peroxidation.

  4. Antimicrobial, antioxidant activities and chemical composition of selected Thai spices

    Directory of Open Access Journals (Sweden)

    Juraithip Wungsintaweekul

    2010-12-01

    Full Text Available Nine volatile oils and six methanol extracts from Ocimum americanum, O. basilicum, O. sanctum, Citrus hystrix,Alpinia galanga, Curcuma zedoaria, Kaempferia parviflora and Zingiber cassumunar were assessed for antimicrobial andantioxidant activities. The volatile oils and extracts were investigated against eight bacteria and three fungi. The resultsillustrated that O. americanum volatile oil exhibited broad spectrum activity against tested bacteria with the MICs ranging1.4-3.6 mg/ml and Candida spp. with the MICs ranging from 0.5-0.6 mg/ml. The O. sanctum volatile oil showed a considerableactivity against only Candida spp. with the MICs ranging from 0.8-1.4 mg/ml. Interestingly, growth of Mycobacteriumphlei was inhibited by the volatiles of O. americanum, C. hystrix peel, and C. zedoaria with MIC of 1.7, 3.5 and 1.2 mg/ml,respectively. For antioxidant activity evaluation, the methanol extracts of C. hystrix (leaf and peel and K. parviflora hadpotent antioxidant activity by the radical-scavenging DPPH method with IC50 of 24.6, 66.3 and 61.5 mg/ml, respectively.GC-MS analysis revealed the typical chemical profiles of the volatile oils. The major component showed the characteristicsof the volatile oils and was probably responsible for the antimicrobial effect.

  5. Conical intersection seams in polyenes derived from their chemical composition

    Science.gov (United States)

    Nenov, Artur; de Vivie-Riedle, Regina

    2012-08-01

    The knowledge of conical intersection seams is important to predict and explain the outcome of ultrafast reactions in photochemistry and photobiology. They define the energetic low-lying reachable regions that allow for the ultrafast non-radiative transitions. In complex molecules it is not straightforward to locate them. We present a systematic approach to predict conical intersection seams in multifunctionalized polyenes and their sensitivity to substituent effects. Included are seams that facilitate the photoreaction of interest as well as seams that open competing loss channels. The method is based on the extended two-electron two-orbital method [A. Nenov and R. de Vivie-Riedle, J. Chem. Phys. 135, 034304 (2011)], 10.1063/1.3608924. It allows to extract the low-lying regions for non-radiative transitions, which are then divided into small linear segments. Rules of thumb are introduced to find the support points for these segments, which are then used in a linear interpolation scheme for a first estimation of the intersection seams. Quantum chemical optimization of the linear interpolated structures yields the final energetic position. We demonstrate our method for the example of the electrocyclic isomerization of trifluoromethyl-pyrrolylfulgide.

  6. Conical intersection seams in polyenes derived from their chemical composition

    Energy Technology Data Exchange (ETDEWEB)

    Nenov, Artur; Vivie-Riedle, Regina de [Department Chemie, Ludwig-Maximilians-Univerisitaet, Muenchen Butenandtstr. 11, 81377 Muenchen (Germany)

    2012-08-21

    The knowledge of conical intersection seams is important to predict and explain the outcome of ultrafast reactions in photochemistry and photobiology. They define the energetic low-lying reachable regions that allow for the ultrafast non-radiative transitions. In complex molecules it is not straightforward to locate them. We present a systematic approach to predict conical intersection seams in multifunctionalized polyenes and their sensitivity to substituent effects. Included are seams that facilitate the photoreaction of interest as well as seams that open competing loss channels. The method is based on the extended two-electron two-orbital method [A. Nenov and R. de Vivie-Riedle, J. Chem. Phys. 135, 034304 (2011)]. It allows to extract the low-lying regions for non-radiative transitions, which are then divided into small linear segments. Rules of thumb are introduced to find the support points for these segments, which are then used in a linear interpolation scheme for a first estimation of the intersection seams. Quantum chemical optimization of the linear interpolated structures yields the final energetic position. We demonstrate our method for the example of the electrocyclic isomerization of trifluoromethyl-pyrrolylfulgide.

  7. Application of chemical vapor composites (CVC) to terrestrial thermionics

    International Nuclear Information System (INIS)

    Terrestrial flame fired thermionics took a great leap forward in the earlier 1980's with the development of reliable long-lived hot shells. These results were presented by Goodale (1981). The hot shell protects the fractory emitter from oxidizing in the combustion environment. In earlier efforts with supralloys emitters it was found that superalloys were poor thermionic emitters since they operated at too low a temperature for practical and economical use as discussed by Huffman (1978). With the development of Chemical Vapor Deposited (CVD) silicon carbide and CVD tungsten, it became possible to fabricate long-lived thermionic converters. These results were shown by Goodale (1980). Further improvements were achieved with the use of oxygen additives on the electrodes. These developments made thermionics attractive for topping a power plant or as the energy conversion part of a cogeneration plant as described by Miskolczy (1982) and Goodale (1983). The feasibility of a thermonic steam boiler and a thermionic topped gas turbine plant become a possibility, as shown by Miskolczy (1980). copyright 1995 American Institute of Physics

  8. The chemical composition of Galactic ring nebulae around massive stars

    CERN Document Server

    Esteban, C; Morisset, C; Garcia-Rojas, J

    2016-01-01

    We present deep spectra of ring nebulae associated with Wolf-Rayet (WR) and O-type stars: NGC 6888, G2.4+1.4, RCW 58, S 308, NGC 7635 and RCW 52. The data have been taken with the 10m Gran Telescopio Canarias and the 6.5m Clay Telescope. We extract spectra of several apertures in some of the objects. We derive C$^{++}$ and O$^{++}$ abundances from faint recombination lines in NGC 6888 and NGC 7635, permitting to derive their C/H and C/O ratios and estimate the abundance discrepancy factor (ADF) of O$^{++}$. The ADFs are larger than the typical ones of normal HII regions but similar to those found in the ionised gas of star-forming dwarf galaxies. We find that chemical abundances are rather homogeneous in the nebulae where we have spectra of several apertures: NGC 6888, NGC 7635 and G2.4+1.4. We obtain very high values of electron temperature in a peripheral zone of NGC 6888, finding that shock excitation can reproduce its spectral properties. We find that all the objects associated with WR stars show N enrich...

  9. Brazilian Red Propolis—Chemical Composition and Botanical Origin

    Directory of Open Access Journals (Sweden)

    Andreas Daugsch

    2008-01-01

    Full Text Available Propolis contains resinous substances collected by honey bees from various plant sources and has been used as a traditional folk medicine since ca 300 BC. Nowadays, the use of evidence-based complementary and alternative medicine (CAM is increasing rapidly and so is the use of propolis in order to treat or support the treatment of various diseases. Much attention has been focused on propolis from Populus sp. (Salicaceae and Baccharis dracunculifolia (Asteracea, but scientific information about the numerous other types of propolis is still sparse. We gathered six samples of red propolis in five states of Northeastern Brazil. The beehives were located near woody perennial shrubs along the sea and river shores. The bees were observed to collect red resinous exudates on Dalbergia ecastophyllum (L Taub. (Leguminosae to make propolis. The flavonoids of propolis and red resinous exudates were investigated using reversed-phase high-performance liquid chromatography and reversed-phase high-performance thin-layer chromatography. We conclude that the botanical origin of the reddish propolis is D. ecastophyllum. In areas where this source (D. ecastophyllum was scarce or missing, bees were collecting resinous material from other plants. Propolis, which contained the chemical constituents from the main botanical origin, showed higher antimicrobial activity.

  10. Chemical composition, fatty acid profile and bioactive compounds of guava seeds (Psidium guajava L.

    Directory of Open Access Journals (Sweden)

    Ana Maria Athayde Uchôa-thomaz

    2014-09-01

    Full Text Available This study aimed to characterize the chemical composition, determine the fatty acid profile, and quantify the bioactive compounds present in guava seed powder (Psidium guajava L.. The powder resulted from seeds obtained from guava pulp processing. The agro-industrial seeds from red guava cv. paluma were used, and they were donated by a frozen pulp fruit manufacturer. They contain varying amounts of macronutrients and micronutrients, with a high content of total dietary fiber (63.94 g/100g, protein (11.19 g/100g, iron (13.8 mg/100g, zinc (3.31 mg/100g, and reduced calorie content (182 kcal/100g. Their lipid profile showed a predominance of unsaturated fatty acids (87.06%, especially linoleic acid (n6 and oleic acid (n9. The powder obtained contained significant amounts of bioactive compounds such as ascorbic acid (87.44 mg/100g, total carotenoids (1.25 mg/100 g and insoluble dietary fiber (63.55 g/100g. With regard to their microbiological quality, the samples were found suitable for consumption. Based on these results, it can be concluded that the powder produced has favorable attributes for industrial use, and that use of these seeds would be a viable alternative to prevent various diseases and malnutrition in our country and to reduce the environmental impact of agricultural waste.

  11. Chemical composition and sources of particle pollution in affluent and poor neighborhoods of Accra, Ghana

    Science.gov (United States)

    Zhou, Zheng; Dionisio, Kathie L.; Verissimo, Thiago G.; Kerr, Americo S.; Coull, Brent; Arku, Raphael E.; Koutrakis, Petros; Spengler, John D.; Hughes, Allison F.; Vallarino, Jose; Agyei-Mensah, Samuel; Ezzati, Majid

    2013-12-01

    The highest levels of air pollution in the world now occur in developing country cities, where air pollution sources differ from high-income countries. We analyzed particulate matter (PM) chemical composition and estimated the contributions of various sources to particle pollution in poor and affluent neighborhoods of Accra, Ghana. Elements from earth’s crust were most abundant during the seasonal Harmattan period between late December and late January when Saharan dust is carried to coastal West Africa. During Harmattan, crustal particles accounted for 55 μg m-3 (37%) of fine particle (PM2.5) mass and 128 μg m-3 (42%) of PM10 mass. Outside Harmattan, biomass combustion, which was associated with higher black carbon, potassium, and sulfur, accounted for between 10.6 and 21.3 μg m-3 of fine particle mass in different neighborhoods, with its contribution largest in the poorest neighborhood. Other sources were sea salt, vehicle emissions, tire and brake wear, road dust, and solid waste burning. Reducing air pollution in African cities requires policies related to energy, transportation and urban planning, and forestry and agriculture, with explicit attention to impacts of each strategy in poor communities. Such cross-sectoral integration requires emphasis on urban environment and urban poverty in the post-2015 Development Agenda.

  12. Chemical compositions of fine particulate organic matter emitted from Chinese cooking.

    Science.gov (United States)

    Zhao, Yunliang; Hu, Min; Slanina, Sjaak; Zhang, Yuanhang

    2007-01-01

    Food cooking can be a significant source of atmospheric particulate organic matter. In this study, the chemical composition of particulate organic matter (POM) in PM2.5 emitted from four different Chinese cooking styles were examined by gas chromotography-mass spectrometry (GC-MS). The identified species are consistent in the emissions from different Chinese cooking styles and the quantified compounds account for 5-10% of total POM in PM2.5. The dominant homologue is fatty acids, constituting 73-85% of the quantified compounds. The pattern of n-alkanes and the presence of beta-sitosterol and levoglucosan indicate that vegetables are consumed during Chinese cooking operations. Furthermore, the emissions of different compounds are impacted significantly by the cooking ingredients. The candidates of organic tracers used to describe and distinguish emissions from Chinese cooking in Guangzhou are tetradecanoic acid, hexadecanoic acid, octadecanoic acid, oleic acid, levoglucosan, mannosan, galactosan, nonanal, and lactones. During the sampling period, the relative contribution of Chinese cooking to the mass concentration of atmospheric hexadecanoic acid should be less than 1.3% in Guangzhou.

  13. Chemical composition and sources of particle pollution in affluent and poor neighborhoods of Accra, Ghana

    International Nuclear Information System (INIS)

    The highest levels of air pollution in the world now occur in developing country cities, where air pollution sources differ from high-income countries. We analyzed particulate matter (PM) chemical composition and estimated the contributions of various sources to particle pollution in poor and affluent neighborhoods of Accra, Ghana. Elements from earth’s crust were most abundant during the seasonal Harmattan period between late December and late January when Saharan dust is carried to coastal West Africa. During Harmattan, crustal particles accounted for 55 μg m−3 (37%) of fine particle (PM2.5) mass and 128 μg m−3 (42%) of PM10 mass. Outside Harmattan, biomass combustion, which was associated with higher black carbon, potassium, and sulfur, accounted for between 10.6 and 21.3 μg m−3 of fine particle mass in different neighborhoods, with its contribution largest in the poorest neighborhood. Other sources were sea salt, vehicle emissions, tire and brake wear, road dust, and solid waste burning. Reducing air pollution in African cities requires policies related to energy, transportation and urban planning, and forestry and agriculture, with explicit attention to impacts of each strategy in poor communities. Such cross-sectoral integration requires emphasis on urban environment and urban poverty in the post-2015 Development Agenda. (letter)

  14. Chemical composition of inks of diverse marine molluscs suggests convergent chemical defenses.

    Science.gov (United States)

    Derby, Charles D; Kicklighter, Cynthia E; Johnson, P M; Zhang, Xu

    2007-05-01

    Some marine molluscs, notably sea hares, cuttlefish, squid, and octopus, release ink when attacked by predators. The sea hare Aplysia californica releases secretions from the ink gland and opaline gland that protect individuals from injury or death from predatory spiny lobsters through a combination of mechanisms that include chemical deterrence, sensory disruption, and phagomimicry. The latter two mechanisms are facilitated by millimolar concentrations of free amino acids (FAA) in sea hare ink and opaline, which stimulate the chemosensory systems of predators, ultimately leading to escape by sea hares. We hypothesize that other inking molluscs use sensory disruption and/or phagomimicry as a chemical defense. To investigate this, we examined concentrations of 21 FAA and ammonium in the defensive secretions of nine species of inking molluscs: three sea hares (Aplysia californica, Aplysia dactylomela, Aplysia juliana) and six cephalopods (cuttlefish: Sepia officinalis; squid: Loligo pealei, Lolliguncula brevis, Dosidicus gigas; octopus: Octopus vulgaris, Octopus bimaculoides). We found millimolar levels of total FAA and ammonium in these secretions, and the FAA in highest concentration were taurine, aspartic acid, glutamic acid, alanine, and lysine. Crustaceans and fish, which are major predators of these molluscs, have specific receptor systems for these FAA. Our chemical analysis supports the hypothesis that inking molluscs have the potential to use sensory disruption and/or phagomimicry as a chemical defense. PMID:17393278

  15. Chemical composition and content of essential oil from the bud of cultivated Turkish clove

    OpenAIRE

    Kollmannsberger, H.; Nitz, S.; Ertaş, M.; Alma, M. H.

    2007-01-01

    In this study, clove bud oil, which was cultivated in the Mediterranean region of Turkey, was provided from a private essential oil company in Turkey. Essential oil from clove (Syzygium aromaticum L.) was obtained from steam-distillation method, and its chemical composition was analyzed by GC and GC-MS. The results showed that the essential oils mainly contained about 87.00% eugenol, 8.01% eugenyl acetate and 3.56% β-Caryophyllene. The chemical composition of the Turkish clove bud oil was com...

  16. Chemical composition and antimicrobial activity of the essential oil from leaves of Algerian Melissa officinalis L.

    OpenAIRE

    Abdellatif, Fahima; Boudjella, Hadjira; Zitouni, Abdelghani; Hassani, Aicha

    2014-01-01

    The essential oil obtained from leaves of Melissa officinalis L. (Family of Lamiaceae) growing in Algeria, was investigated for its chemical composition and in vitro antimicrobial activity. The chemical composition was determined by hydro-distillation and analyzed by GC/MS and GC-FID. Sixty-three compounds were identified in the essential oil, representing 94.10 % of the total oil and the yields were 0.34 %. The major component was geranial (44.20 %). Other predominant components were neral (...

  17. The Chemical Composition and Biological Properties of Coconut (Cocos nucifera L. Water

    Directory of Open Access Journals (Sweden)

    Yan Fei Ng

    2009-12-01

    Full Text Available Coconut water (coconut liquid endosperm, with its many applications, is one of the world’s most versatile natural product. This refreshing beverage is consumed worldwide as it is nutritious and beneficial for health. There is increasing scientific evidence that supports the role of coconut water in health and medicinal applications. Coconut water is traditionally used as a growth supplement in plant tissue culture/micropropagation. The wide applications of coconut water can be justified by its unique chemical composition of sugars, vitamins, minerals, amino acids and phytohormones. This review attempts to summarise and evaluate the chemical composition and biological properties of coconut water.

  18. Chemical composition and content of essential oil from the bud of cultivated Turkish clove

    Directory of Open Access Journals (Sweden)

    Kollmannsberger, H.

    2007-05-01

    Full Text Available In this study, clove bud oil, which was cultivated in the Mediterranean region of Turkey, was provided from a private essential oil company in Turkey. Essential oil from clove (Syzygium aromaticum L. was obtained from steam-distillation method, and its chemical composition was analyzed by GC and GC-MS. The results showed that the essential oils mainly contained about 87.00% eugenol, 8.01% eugenyl acetate and 3.56% β-Caryophyllene. The chemical composition of the Turkish clove bud oil was comparable to those of trees naturally grown in their native regions.

  19. Effect of irradiation on the chemical composition of hot dogs in Syria

    International Nuclear Information System (INIS)

    Chemical composition including moisture, ash, proteins, lipids, and ph value of the hot dogs irradiated with 5, 10, 15, 20 kGy were studied in comparative with the control sample. The study shows that the changes caused by irradiation of food refer to the changes in the food itself and the effects of irradiation on the microorganism pollutants. Irradiation does not change the basic composition of food, and the chemical changes are referred to the ions coming from irradiation or to the excited molecules. (author)

  20. Chemical composition of nuts and seeds sold in Korea.

    Science.gov (United States)

    Chung, Keun Hee; Shin, Kyung Ok; Hwang, Hyo Jeong; Choi, Kyung-Soon

    2013-04-01

    Eleven types of nuts and seeds were analyzed to determine their energy (326-733 mg), moisture (1.6-18.3 mg), carbohydrate (8.8-70.9 mg), protein (4.9-30.5 mg), lipid (2.5-69.8 mg), and ash (1.2-5.5 mg) contents per 100 g of sample. Energy content was highest in pine nuts (733 mg/100 g), carbohydrate level was highest in dried figs (70.9 mg/100 g) and protein was highest in peanuts (30.5 mg/100 g). The amino acid compositions of nuts and seeds were characterized by the dominance of hydrophobic (range = 1,348.6-10,284.6 mg), hydrophilic (range = 341.1-3,244.3 mg), acidic (range = 956.1-8,426.5 mg), and basic (range = 408.6-4,738.5 mg) amino acids. Monounsaturated fatty acids (MUFA) were highest in macadamia nuts (81.3%), whereas polyunsaturated fatty acids (PUFA) were highest in the walnuts (76.7%). Macadamia nuts did not contain any vitamin E, whereas sunflower seeds contained the highest level (60.3 mg/kg). Iron (Fe) content was highest in pumpkin seeds (95.85 ± 33.01 ppm), zinc (Zn) content was highest in pistachios (67.24 ± 30.25 ppm), copper (Cu) content was greatest in walnuts (25.45 ± 21.51 ppm), and lead (Pb) content was greatest in wheat nuts (25.49 ± 4.64 ppm), significantly (P < 0.05). In conclusion, current commercial nuts and seeds have no safety concerns, although further analysis of Pb contents is necessary to ensure safety.

  1. Chemical composition and anti-inflammatory effects of essential oil from Hallabong flower

    OpenAIRE

    Kim, Min-Jin; Yang, Kyong-Wol; Kim, Sang Suk; Park, Suk Man; Park, Kyung Jin; Kim, Kwang Sik; Choi, Young Hun; Cho, Kwang Keun; Lee, Nam Ho; Hyun, Chang-Gu

    2013-01-01

    A number of essential oils derived from plants are claimed to have several medicinal functions, including anti-cancer and anti-inflammation effects. However, the chemical composition and biological activities of flower-derived components have not been sufficiently characterized. Therefore, we investigated the composition of essential oils from Hallabong flower [(Citrus unshiu Marcov × Citrus sinensis Osbeck) × Citrus reticulata Blanco] and their anti-inflammatory effects. Hydro-dist ...

  2. The Chemical Composition and Nitrogen Distribution of Chinese Yak (Maiwa) Milk

    OpenAIRE

    John Shi; Jun Xue; Jinju Cheng; Ying Ma; Qiming Li; Jiaqi Wang; Haimei Li

    2011-01-01

    The paper surveyed the chemical composition and nitrogen distribution of Maiwa yak milk, and compared the results with reference composition of cow milk. Compared to cow milk, yak milk was richer in protein (especially whey protein), essential amino acids, fat, lactose and minerals (except phosphorus). The contents of some nutrients (total protein, lactose, essential amino acids and casein) were higher in the warm season than in the cold season. Higher ratios of total essential amino acids/to...

  3. Remarks on the chemical composition of highest-energy cosmic rays

    CERN Document Server

    Wilk, Grzegorz

    2011-01-01

    We present arguments aiming to reconcile the apparently contradictory results concerning the chemical composition of cosmic rays of highest energy, coming recently from Auger and HiRes collaborations. In particular, we argue that the energy dependence of the mean value and root mean square fluctuation of shower maxima distributions observed by the Auger experiment are not necessarily caused by the change of nuclear composition of primary cosmic rays.

  4. Isotopic and chemical composition of submarine geothermal gases from the Bay of Plenty, New Zealand

    International Nuclear Information System (INIS)

    Gas samples collected from the ocean floor near Whale Island, Bay of Plenty, New Zealand, are composed of carbon dioxide, methane, hydrogen, and air. The methane has an isotopic composition of delta13C(PDB) = -280/00 and deltaD(SMOW) = -1250/00. The isotopic and chemical composition show that the gases are of geothermal origin and similar to gas evolved from Whale Island hot springs

  5. Chemical composition of atmospheric aerosols between Moscow and Vladivostok

    Directory of Open Access Journals (Sweden)

    S. Kuokka

    2007-05-01

    Full Text Available The TROICA-9 expedition (Trans-Siberian Observations Into the Chemistry of the Atmosphere was carried out at the Trans-Siberian railway between Moscow and Vladivostok in October 2005. Measurements of aerosol physical and chemical properties were made from an observatory carriage connected to a passenger train. Black carbon (BC concentrations in fine particles (PM2.5, aerodynamic diameter <2.5 μm were measured with an aethalometer using a five-minute time resolution. Concentrations of inorganic ions and some organic compounds (Cl, NO3, SO42−, Na+, NH4+, K+, Ca2+, Mg2+, oxalate and methane sulphonate were measured continuously by using an on-line system with a 15-min time resolution. In addition, particle volume size distributions were determined for particles in the diameter range 3–850 nm using a 10-min. time resolution. The continuous measurements were completed with 24-h. PM2.5 filter samples which were stored in a refrigerator and later analyzed in chemical laboratory. The analyses included mass concentrations of PM2.5, ions, monosaccharide anhydrides (levoglucosan, galactosan and mannosan and trace elements (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sb, V and Zn. The mass concentrations of PM2.5 varied in the range of 4.3–34.8 μg m−3 with an average of 21.6 μg m−3. Fine particle mass consisted mainly of BC (average 27.6%, SO42− (13.0%, NH4+ (4.1%, and NO3 (1.4%. One of the major constituents was obviously also organic carbon which was not determined. The contribution of BC was high compared with other studies made in Europe and Asia. High concentrations of ions, BC and particle volume were observed between Moscow and roughly 4000 km east of it, as well as close to

  6. Quantification of glacial till chemical composition by reflectance spectroscopy

    International Nuclear Information System (INIS)

    Chemometric modelling of soil element concentrations from diffuse visible and near-infrared (VSWIR, 350–2500 nm) reflectance spectroscopic measurements holds potential for soil element analyses. Research has demonstrated it particularly for organic agricultural soils, yet little is known about the VSWIR response of glacial tills. Soils with low organic matter content developed on unstratified glacial materials were studied at two geologically similar sites on the mafic metavolcanic rocks of the Lapland Greenstone belt in northern Finland. The till samples (n = 217) were composed primarily of quartz, plagioclase and amphibole having less than 3% of clinochlore, talc and illite. VSWIR spectra of mineral powder (2 = 0.80–0.89) of several soil chemical elements such as Al (validation RMSE 1802 mg kg−1), Ba (5.85 mg kg−1), Co (0.86 mg kg−1), Cr (6.94 mg kg−1), Cu (2.54 mg kg−1), Fe (2088 mg kg−1), Mg (449.6 mg kg−1), Mn (0.82 mg kg−1), Ni (3.24 mg kg−1), V (4.88 mg kg−1), and Zn (0.80 mg kg−1). The electronic and vibrational molecular processes causing absorption might be responsible for accurate predictions of major elements such as Al, Fe and Mg. However, the concentrations of other major and trace elements could be predicted by the PLSR because they were cross-correlated to spectrally active soil elements or extraneous soil properties. Therefore, the applicability of the results is highly sample set specific. Further, the results show that in local scale studies at geologically fairly homogenous areas the limited spread of the data may restrict the use of the spectroscopic–chemometric approach. This paper demonstrates the capability of laboratory VSWIR spectroscopy for determining element concentrations of glacial tills. Further work should focus on overcoming the issues of sampling scale and understanding the causality for cross-correlation in quantification of the elements.

  7. ANALYSIS OF THE CHEMICAL COMPOSITION AND MORPHOLOGICAL STRUCTURE OF BANANA PSEUDO-STEM

    OpenAIRE

    Kun Li; Shiyu Fu; Huaiyu Zhan; Yao Zhan; Lucian A. Lucia

    2010-01-01

    An analysis of the chemical composition and anatomical structure of banana pseudo-stem was carried out using Light Microscopy (LM), Scanning Electron Microscopy (SEM), and Confocal Laser Scanning Microscopy (CLSM). The chemical analysis indicated there is a high holocellulose content and low lignin content in banana pseudo-stem compared with some other non-wood fiber resources. These results demonstrate that the banana pseudo-stem has potential value for pulping. In addition, we report for th...

  8. Hanford enhanced waste glass characterization. Influence of composition on chemical durability

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-06-01

    This report provides a review of the complete high-level waste (HLW) and low-activity waste (LAW) data sets for the glasses recently fabricated at Pacific Northwest National Laboratory and characterized at Savannah River National Laboratory (SRNL). The review is from the perspective of relating the chemical durability performance to the compositions of these study glasses, since the characterization work at SRNL focused on chemical analysis and ASTM Product Consistency Test (PCT) performance.

  9. Chemical Composition, Antimicrobial and Antioxidant Activities of Hyssop (Hyssopus officinalis L.) Essential Oil

    OpenAIRE

    KIZIL, Süleyman; HAŞİMİ, Nesrin; TOLAN, Veysel; Ersin KILININÇ; Karataş, Hakan

    2010-01-01

    The essential oil of hyssop is widely used in food, pharmaceutical and cosmetic industries throughout the world. Therefore, it is very important to know the chemical characteristics of the oil for economic use and enhanced performance of the end products. This study was carried out to determine antimicrobial and antioxidant activities of the essential oil of Hyssopus officinalis (L.) (Lamiaceae) collected from wild in the Southeast Anatolian, Turkey. Chemical compositions of hydrodistilled es...

  10. Epigenome: A Biomarker or Screening Tool to Evaluate Health Impact of Cumulative Exposure to Chemical and Non-Chemical Stressors.

    Science.gov (United States)

    Olden, Kenneth; Lin, Yu-Sheng; Bussard, David

    2016-06-01

    Current risk assessment practices and toxicity information are hard to utilize for assessing the health impact of combined or cumulative exposure to multiple chemical and non-chemical stressors encountered in the "real world" environment. Non-chemical stressors such as heat, radiation, noise, humidity, bacterial and viral agents, and social factors, like stress related to violence and socioeconomic position generally cannot be currently incorporated into the risk assessment paradigm. The Science and Decisions report released by the National Research Council (NRC) in 2009 emphasized the need to characterize the effects of multiple stressors, both chemical and non-chemical exposures. One impediment to developing information relating such non-chemical stressors to health effects and incorporating them into cumulative assessment has been the lack of analytical tools to easily and quantitatively monitor the cumulative exposure to combined effects of stressors over the life course.

  11. Epigenome: A Biomarker or Screening Tool to Evaluate Health Impact of Cumulative Exposure to Chemical and Non-Chemical Stressors.

    Science.gov (United States)

    Olden, Kenneth; Lin, Yu-Sheng; Bussard, David

    2016-06-01

    Current risk assessment practices and toxicity information are hard to utilize for assessing the health impact of combined or cumulative exposure to multiple chemical and non-chemical stressors encountered in the "real world" environment. Non-chemical stressors such as heat, radiation, noise, humidity, bacterial and viral agents, and social factors, like stress related to violence and socioeconomic position generally cannot be currently incorporated into the risk assessment paradigm. The Science and Decisions report released by the National Research Council (NRC) in 2009 emphasized the need to characterize the effects of multiple stressors, both chemical and non-chemical exposures. One impediment to developing information relating such non-chemical stressors to health effects and incorporating them into cumulative assessment has been the lack of analytical tools to easily and quantitatively monitor the cumulative exposure to combined effects of stressors over the life course. PMID:27534725

  12. Tharsis Formation by Chemical Plume Due to Giant Impact Event

    Science.gov (United States)

    Fleck, J.; Weeraratne, D. S.; Olson, P.

    2014-12-01

    Tharsis formed early in the history of Mars, likely during the Noachian but later than the hemispheric crustal dichotomy that it partially overprints (Johnson and Phillips, 2005; Solomon et al., 2005; Wenzel et al., 2004). It has been suggested that the crustal dichotomy may have been formed by a giant impact (Andrews-Hanna et al., 2008; Marinova et al., 2008; Nimmo et al., 2008). Several models have been proposed to explain a localized orogeny, but predict multiple, evenly-spaced plumes or have instability growth and rise times which are longer than Tharsis formation. We use fluid dynamic experiments to model the differentiation process during Mars accretion using low viscosity glucose syrup solutions and an emulsion of liquid gallium for the metal-rich magma ocean and a high viscosity glucose syrup for the mantle. Our experiments demonstrate the formation of metal-silicate diapirs from metal emulsion drops that form a pond at the base of the magma ocean. The diapirs descend through the underlying mantle with trailing conduit of low viscosity silicate material. The silicate material is buoyant and eventually ascends back through the conduit. Remaining emulsion drops that do not adhere with the diapir fall through the conduit, forcing the buoyant molten silicate material to exit the conduit laterally and ascend along a new trajectory. The time elapsed between diapir formation and ascent of the chemical plume in experiments scales with the time between the formation of the crustal dichotomy on Mars and the formation of Tharsis. Our model offers an explanation for the rapid formation of Tharsis on the edge of the crustal dichotomy via a single large upwelling event followed by smaller upwellings producing and the late stages of effusive volcanism observed in the Tharsis region.

  13. Inorganic chemical composition and chemical reactivity of settled dust generated by the World Trade Center building collapse

    Science.gov (United States)

    Plumlee, Geoffrey S.; Hageman, Philip L.; Lamothe, Paul J.; Ziegler, Thomas L.; Meeker, Gregory P.; Theodorakos, Peter M.; Brownfield, Isabelle; Adams, Monique G.; Swayze, Gregg A.; Hoefen, Todd M.; Taggart, Joseph E.; Clark, Roger N.; Wilson, S.; Sutley, Stephen J.

    2009-01-01

    Samples of dust deposited around lower Manhattan by the September 11, 2001, World Trade Center (WTC) collapse have inorganic chemical compositions that result in part from the variable chemical contributions of concrete, gypsum wallboard, glass fibers, window glass, and other materials contained in the buildings. The dust deposits were also modified chemically by variable interactions with rain water or water used in street washing and fire fighting. Chemical leach tests using deionized water as the extraction fluid show the dust samples can be quite alkaline, due primarily to reactions with calcium hydroxide in concrete particles. Calcium and sulfate are the most soluble components in the dust, but many other elements are also readily leached, including metals such as Al, Sb, Mo Cr, Cu, and Zn. Indoor dust samples produce leachates with higher pH, alkalinity, and dissolved solids than outdoor dust samples, suggesting most outdoor dust had reacted with water and atmospheric carbon dioxide prior to sample collection. Leach tests using simulated lung fluids as the extracting fluid suggest that the dust might also be quite reactive in fluids lining the respiratory tract, resulting in dissolution of some particles and possible precipitation of new phases such as phosphates, carbonates, and silicates. Results of these chemical characterization studies can be used by health scientists as they continue to track and interpret health effects resulting from the short-term exposure to the initial dust cloud and the longer-term exposure to dusts resuspended during cleanup.

  14. Compaction of an Oxisol and chemical composition of palisadegrass

    Directory of Open Access Journals (Sweden)

    Eurico Lucas de Sousa Neto

    2013-08-01

    Full Text Available Compaction is an important problem in soils under pastoral land use, and can make livestock systems unsustainable. The objective of this research was to study the impact of soil compaction on yield and quality of palisade (UROCHLOA BRIZANTHA cv. Marandu. The experiment was conducted on an Oxisol in the State of Mato Grosso, Brazil. Treatments consisted of four levels of soil compaction: no compaction (NC, slight compaction (SC, medium compaction (MC and high compaction (HC. The following soil properties were evaluated (layers 0-0.05 and 0.05-0.10 m: aggregate size distribution, bulk density (BD, macroporosity, microporosity, total porosity (TP, relative compaction (RC, and the characteristics of crude protein (CP, neutral detergent fiber (NDF, acid detergent fiber (ADF and dry matter yield (DMY of the forage. Highly compacted soil had high BD and RC, and low TP (0-0.05 m. Both DMY and CP were affected by HC, and both were strongly related to BD. Higher DMY (6.96 Mg ha-1 and CP (7.8 % were observed in the MC treatment (BD 1.57 Mg m-3 and RC 0.91 Mg m-3, in 0-0.05 m. A high BD of 1.57 Mg m-3 (0-0.05 m did not inhibit plant growth. The N concentration in the palisade biomass differed significantly among compaction treatments, and was 8.72, 11.20, 12.48 and 10.98 g kg-1 in NC, SC, MC and HC treatments, respectively. Increase in DMY and CP at the MC level may be attributed to more absorption of N in this coarse-textured soil.

  15. Ballistic Impact on Glass/Epoxy Composite Laminates

    Directory of Open Access Journals (Sweden)

    R. Velmurugan

    2014-07-01

    Full Text Available Glass/epoxy composite laminates are subjected to impact loading and the energy absorbing capacity of the laminates is studied. In the present study, laminates with four different orientations and thickness values are considered. Analytical study is carried out based on energy method and results are compared with FE results obtained from Abaqus/Explicit software. Results obtained from the analytical methods are showing good agreement with the FE results. It is found that cross-ply laminates are most efficient in ballistic resistance when compared with the laminates of other orientations. It is also noticed that the energy absorbing capacity is decreasing with increase in velocity of the projectile for a given lay-up and thickness value.Defence Science Journal, Vol. 64, No. 4, July 2014, pp. 393-399, DOI:http://dx.doi.org/10.14429/dsj.64.3882 

  16. Chemical composition of particulate matter in Spain: modelling evaluation of the CALIOPE system for 2004

    Science.gov (United States)

    Pay, María. Teresa; Piot, Matthias; Jorba, Oriol; Basart, Sara; Gassó, Santiago; Dabdub, Donald; Jiménez-Guerrero, Pedro; Querol, Xavier; Pandolfi, Marco; María Baldasano, José

    2010-05-01

    In the frame of the CALIOPE project, a high-resolution air quality forecasting system, WRF-ARW/HERMES/CMAQ/BSC-DREAM8b, has been developed and applied to the European domain (12km x 12km, 1hr) as well as to the Iberian Peninsula domain (4km x 4km, 1hr) to provide air quality forecasts for Spain (http://www.bsc.es/caliope/). The vertical resolution of the CMAQ chemistry-transport model for gas-phase and aerosols has been increased from 8 to 15 layers in order to simulate vertical exchanges more accurately. Gas phase boundary conditions are provided by the LMDz-INCA2 global climate-chemistry model. The BSC-DREAM8b model simulates long-range transport of mineral dust over the domains under study. The HERMES model system, using a bottom-up approach, was adopted to estimate emissions for the Iberian Peninsula simulation at 4km x 4km horizontal resolution, every hour. The present contribution describes a thorough quantitative evaluation study performed for a reference year (2004). Model simulations are compared with ground-based measurements from the EMEP and Spanish air quality networks. The speciation of PM10 and PM2.5 from 8 stations of the CSIC-IJA network is analyzed to evaluate the model chemical composition of particulate matter. Results show that model predictions for relevant gas phase species, such as ozone, are in very good agreement (less than 25% gross error) with observations. Concerning the chemical composition of particulate matter, PM2.5 nitrate and sulphate model predictions are better simulated than for other species; good agreement between model and observations is found throughout the year (correlations around 0.6). Results also show that carbonaceous aerosol concentrations are substantially under-predicted during the entire year, most likely due to a lack of some secondary organic aerosol formation pathways in the model. Good correlation for coarse Na+ is found due to its inertness. Concentrations of fine Na+ are slightly under-predicted due to

  17. Decadal trends in aerosol chemical composition at Barrow, Alaska: 1976–2008

    Directory of Open Access Journals (Sweden)

    G. E. Shaw

    2009-11-01

    Full Text Available Aerosol measurements at Barrow, Alaska during the past 30 years have identified the long range transport of pollution associated with Arctic Haze as well as ocean-derived aerosols of more local origin. Here, we focus on measurements of aerosol chemical composition to assess (1 trends in Arctic Haze aerosol and implications for source regions, (2 the interaction between pollution-derived and ocean-derived aerosols and the resulting impacts on the chemistry of the Arctic boundary layer, and (3 the response of aerosols to a changing climate. Aerosol chemical composition measured at Barrow, AK during the Arctic haze season is compared for the years 1976–1977 and 1997–2008. Based on these two data sets, concentrations of non-sea salt (nss sulfate (SO4= and non-crustal (nc vanadium (V have decreased by about 60% over this 30 year period. Consistency in the ratios of nss SO4=/ncV and nc manganese (Mn/ncV between the two data sets indicates that, although emissions have decreased in the source regions, the source regions have remained the same over this time period. The measurements from 1997–2008 indicate that, during the haze season, the nss SO4= aerosol at Barrow is becoming less neutralized by ammonium (NH4+ yielding an increasing sea salt aerosol chloride (Cl deficit. The expected consequence is an increase in the release of Cl atoms to the atmosphere and a change in the lifetime of volatile organic compounds (VOCs including methane. In addition, summertime concentrations of biogenically-derived methanesulfonate (MSA and nss SO4= are increasing at a rate of 12 and 8% per year, respectively. Further research is required to assess the environmental factors behind the increasing concentrations of biogenic aerosol.

  18. Decadal trends in aerosol chemical composition at Barrow, AK: 1976–2008

    Directory of Open Access Journals (Sweden)

    P. K. Quinn

    2009-09-01

    Full Text Available Aerosol measurements at Barrow, AK during the past 30 years have identified the long range transport of pollution associated with Arctic Haze as well as ocean-derived aerosols of more local origin. Here, we focus on measurements of aerosol chemical composition to assess 1 trends in Arctic Haze aerosol and implications for source regions, 2 the interaction between pollution-derived and ocean-derived aerosols and the resulting impacts on the chemistry of the Arctic boundary layer, and 3 the response of aerosols to a changing climate. Aerosol chemical composition measured at Barrow, AK during the Arctic haze season is compared for the years 1976–1977 and 1997–2008. Based on these two data sets, concentrations of non-sea salt (nss sulfate (SO4= and non-crustal (nc vanadium (V have decreased by about 60% over this 30 year period. Consistency in the ratios of nss SO4=/ncV and nc manganese (Mn/ncV between the two data sets indicates that, although emissions have decreased in the source regions, the source regions have remained the same over this time period. The measurements from 1997–2008 indicate that, during the haze season, the nss SO4= aerosol at Barrow is becoming less neutralized by ammonium (NH4+ yielding an increasing sea salt aerosol chloride (Cl deficit. The expected consequence is an increase in the release of Cl atoms to the atmosphere and a change in the lifetime of volatile organic compounds (VOCs including methane. In addition, summertime concentrations of biogenically-derived methanesulfonate (MSA and nss SO4= are increasing at a rate of 12 and 8% per year, respectively. Further research is required to assess the environmental factors behind the increasing concentrations of biogenic aerosol.

  19. Incorporating Health Impacts from Exposure to Chemicals in Food Packaging in LCA

    OpenAIRE

    Ernstoff, Alexi; Trier, Xenia; Jolliet, Oliver; Fantke, Peter

    2014-01-01

    Life cycle assessments (LCA) on the environmental and public health impacts of food and beverage packaging materials have found some advantages to plastic over glass. Entirely missing from these evaluations are the health impacts of possible chemical, e.g. endocrine dis-ruptor, exposure through migration of chemicals from the packaging into the food product. We build a framework based on a life cycle perspective to predict which chemicals may be in a package that are not intentionally added i...

  20. Computed Tomography analysis of damage in composites subjected to impact loading

    OpenAIRE

    E. Guglielmino; G. Epasto; Crupi, V.

    2011-01-01

    The composites, used in the transportation engineering, include different classes with a wide range of materials and properties within each type. The following different typologies of composites have been investigated: laminated composites, PVC foam sandwiches, aluminium foam and honeycomb sandwiches.Aim of this paper was the analysis of low-velocity impact response of such composites and the investigation of their collapse modes. Low velocity impact tests were carried out by a drop test mach...

  1. DAMAGE PROGRESSIVE MODEL OF COMPRESSION OF COMPOSITE LAMINATES AFTER LOW VELOCITY IMPACT

    Institute of Scientific and Technical Information of China (English)

    CHENG Xiao-quan; LI Zheng-neng

    2005-01-01

    Compressive properties of composite laminates after low velocity impact are one of the most serious circumstances that must be taken into account in damage tolerance design of composite structures. In order to investigate compressive properties of composite laminates after low velocity impact, three dimensional dynamic finite element method (FEM) was used to simulate low-velocity impact damage of 2 kinds of composite laminates firstly. Damage distributions and projective damage areas of the laminates were predicted under two impact energy levels. The analyzed damage after impact was considered to be the initial damage of the laminates under compressive loads. Then three dimensional static FEM was used to simulate the compressive failure process and to calculate residual compressive strengths of the impact damaged laminates. It is achieved to simulate the whole process from initial low-velocity impact damage to final compressive failure of composite laminates. Compared with experimental results, it shows that the numerical predicting results agree with the test results fairly well.

  2. [Application of near infrared reflectance spectroscopy to predict meat chemical compositions: a review].

    Science.gov (United States)

    Tao, Lin-Li; Yang, Xiu-Juan; Deng, Jun-Ming; Zhang, Xi

    2013-11-01

    In contrast to conventional methods for the determination of meat chemical composition, near infrared reflectance spectroscopy enables rapid, simple, secure and simultaneous assessment of numerous meat properties. The present review focuses on the use of near infrared reflectance spectroscopy to predict meat chemical compositions. The potential of near infrared reflectance spectroscopy to predict crude protein, intramuscular fat, fatty acid, moisture, ash, myoglobin and collagen of beef, pork, chicken and lamb is reviewed. This paper discusses existing questions and reasons in the current research. According to the published results, although published results vary considerably, they suggest that near-infrared reflectance spectroscopy shows a great potential to replace the expensive and time-consuming chemical analysis of meat composition. In particular, under commercial conditions where simultaneous measurements of different chemical components are required, near infrared reflectance spectroscopy is expected to be the method of choice. The majority of studies selected feature-related wavelengths using principal components regression, developed the calibration model using partial least squares and modified partial least squares, and estimated the prediction accuracy by means of cross-validation using the same sample set previously used for the calibration. Meat fatty acid composition predicted by near-infrared spectroscopy and non-destructive prediction and visualization of chemical composition in meat using near-infrared hyperspectral imaging and multivariate regression are the hot studying field now. On the other hand, near infrared reflectance spectroscopy shows great difference for predicting different attributes of meat quality which are closely related to the selection of calibration sample set, preprocessing of near-infrared spectroscopy and modeling approach. Sample preparation also has an important effect on the reliability of NIR prediction; in particular

  3. Metal Oxide Nanoparticles: The Importance of Size, Shape, Chemical Composition, and Valence State in Determining Toxicity

    Science.gov (United States)

    Dunnick, Katherine

    Nanoparticles, which are defined as a structure with at least one dimension between 1 and 100 nm, have the potential to be used in a variety of consumer products due to their improved functionality compared to similar particles of larger size. Their small size is associated with increased strength, improved catalytic properties, and increased reactivity; however, their size is also associated with increased toxicity in vitro and in vivo. Numerous toxicological studies have been conducted to determine the properties of nanomaterials that increase their toxicity in order to manufacture new nanomaterials with decreased toxicity. Data indicates that size, shape, chemical composition, and valence state of nanomaterials can dramatically alter their toxicity profile. Therefore, the purpose of this dissertation was to determine how altering the shape, size, and chemical composition of various metal oxide nanoparticles would affect their toxicity. Metal oxides are used in variety of consumer products, from spray-sun screens, to food coloring agents; thus, understanding the toxicity of metal oxides and determining which aspects affect their toxicity may provide safe alternatives nanomaterials for continued use in manufacturing. Tungstate nanoparticles toxicity was assessed in an in vitro model using RAW 264.7 cells. The size, shape, and chemical composition of these nanomaterials were altered and the effect on reactive oxygen species and general cytotoxicity was determined using a variety of techniques. Results demonstrate that shape was important in reactive oxygen species production as wires were able to induce significant reactive oxygen species compared to spheres. Shape, size, and chemical composition did not have much effect on the overall toxicity of these nanoparticles in RAW 264.7 cells over a 72 hour time course, implicating that the base material of the nanoparticles was not toxic in these cells. To further assess how chemical composition can affect toxicity

  4. Sustainable Material Selection of Toxic Chemicals in Design and Manufacturing From Human Health Impact Perspective

    OpenAIRE

    Yuan, Chris; Dornfeld, David

    2009-01-01

    Toxic chemicals used in product design and manufacturing are grave concerns due to their significant impact on human health. Sustainable material selections are needed by industry to reduce the overall impact of toxic chemicals in both design and manufacturing. In this paper, we integrate the human health impact assessment into standard material selection process for developing a sustainable material selection metric for decision support in design and manufacturing. A schematic method is pres...

  5. Impact resistance of current design composite fan blades tested under short-haul operating conditions

    Science.gov (United States)

    Steinhagen, C. A.; Salemme, C. T.

    1973-01-01

    Boron/epoxy and graphite/epoxy composite blades were impacted in a rotating whirligig facility with conditions closely simulating those which might be experienced by a STOL engine impacted with various foreign objects. The tip speed of the rotating blades was 800 feet per second. The blades were impacted with simulated birds, real birds, ice balls, and gravel. The results of composite blade impact tests were compared with a titanium blade tested under similar conditions. Neither composite material indicated a clear superiority over the other. Blades made from both composite materials showed more damage than the titanium blades.

  6. Chemical composition and cell wall polysaccharide degradability of pith and rind tissues from mature maize internodes

    Science.gov (United States)

    Our study was undertaken to identify tissue-specific biochemical traits that may be targeted in breeding programs for improving forage digestibility. We compared cell wall chemical composition and 24- and 96-h in vitro degradabilities in separated pith and rind tissues from six maize inbred lines. A...

  7. Prediction of chemical contaminants and food compositions by near infrared spectroscopy

    Science.gov (United States)

    Prediction of Food Adulteration by Infrared Spectroscopy H. Zhuang Quality and Safety Assessment Research Unit, ARS-USDA, 950 College Station Road, Athens, GA 30605 Food adulteration, including both chemical contamination and composition alternation, has been one of major quality and/or safety c...

  8. A survey on the microbiological and chemical composition of buffalo milk in China

    NARCIS (Netherlands)

    Han, B.Z.; Meng, Y.; Li, M.; Yang, Y.; Ren, F.; Zeng, Q.; Nout, M.J.R.

    2007-01-01

    One hundred and twelve samples of raw buffalo milk were collected at four locations in China, and their microbiological and chemical composition was analyzed. Average levels of major components were: fat 7.59% (v/v), crude protein 4.86% (w/w), lactose 4.74% (w/w), total solids 18.44% (w/w), ash 0.85

  9. Control factors of chemical and isotopic composition of groundwater in Varadero- Cardenas region, Matanzas, Cuba

    International Nuclear Information System (INIS)

    Multivariate analysis was performed to isotopic and chemical composition of groundwater from the karstic aquifer of Varadero- Cardenas in order to define those factor controlling or influencing its variations in time and space. The research was part of a project sponsored by International of Atomic Energy aimed to improve aquifer management applying isotopic techniques

  10. Composite biomaterials with chemical bonding between hydroxyapatite filler particles and PEG/PBT copolymer matrix

    NARCIS (Netherlands)

    Liu, Qing; Wijn, de Joost R.; Blitterswijk, van Clemens A.

    1998-01-01

    In an effort to make composites from hydroxyapatite and a PEG/PBT copolymer (PolyactiveTM 70/30), chemical linkages were introduced between the filler particles and polymer matrix using hexamethylene diisocyanate as a coupling agent. Infrared spectra (IR) and thermal gravimetric analysis (TGA) confi

  11. Size-Resolved Volatility and Chemical Composition of Aged European Aerosol Measured During FAME-2008

    Science.gov (United States)

    Hildebrandt, L.; Mohr, C.; Lee, B.; Engelhart, G. J.; Decarlo, P. F.; Prevot, A. S.; Baltensperger, U.; Donahue, N. M.; Pandis, S. N.

    2008-12-01

    We present first results on the volatility and chemical composition of aged organic aerosol measured during the Finokalia Aerosol Measurement Experiment - 2008 (FAME-2008). Finokalia is located in the Southeast of Crete, Greece, and this remote site allows for the measurement of aged European aerosol as it is transported from Central to Southeastern Europe. We measured the volatility of the aerosol at Finokalia as a function of its size by combining several instruments. We used an Aerodyne quadrupole aerosol mass spectrometer (Q-AMS) to measure the size-resolved chemical composition of the particles, a scanning mobility particle sizer (SMPS) to measure the volume distribution of particles, and a thermodenuder system to induce changes in size and composition via moderate heating of the particles. The largest fraction of the non-refractory material in the aerosol sampled was ammonium sulfate and ammonium bisulfate, followed by organic material and a small contribution from nitrate. Most of the organic aerosol was highly oxidized, even after only a few days of transport over continental Europe. These highly oxidized organics had lower volatility than fresh primary or secondary aerosol measured in the laboratory. Significant changes in air-parcel trajectories and wind direction led to changes in the chemical composition of the sampled aerosol and corresponding changes of the volatility. These results allow the quantification of the effect of atmospheric processing on organic aerosol volatility and can be used as constraints for atmospheric Chemical Transport Models that predict the aerosol volatility.

  12. Lantana montevidensis Essential Oil: Chemical Composition and Mosquito Repellent Activity against Aedes aegypti

    Science.gov (United States)

    The essential oil (EO) of Lantana montevidensis (Spreng.) Briq. (L. sellowiana Link & Otto) was investigated for its chemical composition and mosquito repellent activity. The essential oil obtained by hydrodistillation of aerial plant parts was analyzed by GC-FID and GC-MS. The major constituents we...

  13. Discerning the Chemical Composition and Mutagenic Effects of Soy Biodiesel PM

    Science.gov (United States)

    Discerning the Chemical Composition and Mutagenic Effects of Soy Biodiesel PM David G. Nashab, Esra Mutluc, William T. Prestond, Michael D. Haysb, Sarah H. Warrenc, Charly Kingc, William P. Linakb, M. lan Gilmourc, and David M. DeMarinic aOak Ridge Institute for Science and Ed...

  14. Impact of aerosol composition on cloud condensation nuclei activity

    Directory of Open Access Journals (Sweden)

    Q. Zhang

    2012-04-01

    Full Text Available The impact of aerosol composition on cloud condensation nuclei (CCN activity were analyzed in this study based on field experiments carried out at downtown Tianjin, China in September 2010. In the experiments, the CCN measurements were performed at supersaturation (SS of 0.1%, 0.2% and 0.4% using a thermal-gradient diffusion chamber (DMT CCNC, whereas the aerosol size distribution and composition were simultaneously measured with a TSI SMPS and an Aerodyne Aerosol Mass Spectrometer (AMS, respectively. The results show that the influence of aerosol composition on CCN activity is notable under low SS (0.1%, and their influence decreased with increasing SS. For example, under SS of 0.1%, the CCN activity increases from 4.5±2.6% to 12.8±6.1% when organics fraction decrease from 30–40% to 10–20%. The rate of increase reached up to 184%. While under SS of 0.4%, the CCN activity increases only from 35.7±19.0% to 46.5±12.3% correspondingly. The calculated NCCN based on the size-resolved activation ratio and aerosol number size distribution correlated well with observed NCCN at high SS (0.4%, but this consistence decreased with the falling of SS. The slopes of linear fitted lines between calculated and observed NCCN are 0.708, 0.947, and 0.995 at SS of 0.1%, 0.2% and 0.4% respectively. Moreover, the stand deviation (SD of calculated NCCN increased with the decreasing of SS. A case study of CCN closure analyses indicated that the calculated error of NCCN could reach up to 34% at SS of 0.1% if aerosol composition were not included, and the calculated error decreased with the raising of SS. It is decreased to 9% at SS of 0.2%, and further decreased to 4% at SS of 0.4%.

  15. Impact of aerosol composition on cloud condensation nuclei activity

    Directory of Open Access Journals (Sweden)

    Q. Zhang

    2012-01-01

    Full Text Available The impact of aerosol composition on cloud condensation nuclei (CCN activity was analyzed in this study based on field experiments carried out at downtown Tianjin, China, in September 2010. In the experiments, the CCN measurements were performed at supersaturation (SS of 0.1%, 0.2% and 0.4% using a thermal-gradient diffusion chamber (DMT CCNC, whereas the aerosol size distribution and composition were simultaneously measured with a TSI SMPS and an Aerodyne Aerosol Mass Spectrometer (AMS, respectively. The results show that the influence of aerosol composition on CCN activity is notable under low SS (0.1%, and their influence decreased with increasing SS. For example, under SS of 0.1%, the CCN activity increases from 4.5 ± 2.6% to 12.8 ± 6.1% when organics fraction decrease from 30–40% to 10–20%. The rate of increase reaches up to 184%. While under SS of 0.4%, the CCN activity increases only from 35.7 ± 19.0% to 46.5 ± 12.3%, correspondingly. The calculated NCCN based on the size-resolved activation ratio and aerosol number size distribution correlates well with observed NCCN at high SS (0.4%, but this correlation decreases with the falling of SS. The slopes of linear fitted lines between calculated and observed NCCN are 0.708, 0.947, and 0.995 at SS of 0.1%, 0.2% and 0.4%, respectively. Moreover, the standard deviation (SD of calculated NCCN increases with the decreasing of SS. A case study of CCN closure analyses indicates that the calculated error of NCCN can reach up to 34% at SS of 0.1% if aerosol composition is not included, and the calculated error decreases with the raising of SS. It decreases to 9% at SS of 0.2%, and further decreases to 4% at SS of 0.4%.

  16. [Chemical Composition of the Single Particle Aerosol in Winter in Nanning Using SPAMS].

    Science.gov (United States)

    Liu, Hui-lin; Song, Hong-jun; Chen, Zhi-ming; Huang, Jiong-li; Yang, Jun-chao; Mao, Jing-ying; Li, Hong; Liang, Gui-yun; Mo, Zhao-yu

    2016-02-15

    Single Particle Aerosol Mass Spectrometry (SPAMS) was performed to characterize the PM2.5 in Nanning from 15 to 24 February 2015. The correlation (R2) between the PM2.5 number concentration and the mass concentration of PM2.5 obtained using SPAMS was 0.76. The particle number concentration could reflect the atmospheric pollution situation to some degree. The Art-2a classification method was used to classify the chemical composition of PM2.5. The results showed that the principal chemical constituents were elemental carbon, organic elements carbon hybrid particles, organic carbon, rich potassium particles, mineral substance, rich sodium particles, second inorganic particles, levoglucosan and other heavy metals. Among them, the composition of elemental carbon was the highest, followed by organic carbon and rich potassium particles. The particle size of 80% of PM2.5 was mainly concentrated in the range of 0.2 microm to 1.0 microm with a peak value occurring at 0. 62 microm. The particle size distribution characteristics of different chemical components were similar. The number concentration of the chemical components in PM2.5 had the same variation tread with the mass concentration of PM2.5 over time. To a certain extent, the change in chemical composition could reflect the instantaneous pollution source. PMID:27363128

  17. CHEMICAL COMPOSITION VARIABILITY IN THE Uncaria tomentosa (cat’s claw WILD POPULATION

    Directory of Open Access Journals (Sweden)

    Evelyn Maribel Condori Peñaloza

    2015-03-01

    Full Text Available Uncaria tomentosa (cat's claw is a vine widely distributed throughout the South-American rainforest. Many studies investigating the chemical composition of cat's claw have focused on the pentacyclic (POA and tetracyclic oxindole alkaloids (TOA, quinovic acid glycosides (QAG, and polyphenols (PPH. Nevertheless, it is still uncertain how environmental factors affect chemical groups. The aim of this work was to better understand the influence of environmental factors (geographic origin, altitude, and season on cat's claw chemical composition. Stem bark, branches and leaf samples were extracted and analyzed by HPLC-PDA. The data obtained were explored by multivariate analysis (HCA and PCA. Higher amounts of oxindole alkaloids and PPH were found in leaves, followed by stem bark and branches. No clear relationship was verified among geographic origin or altitude and chemical composition, which remained unchanged regardless of season (dry or rainy. However, three oxindole alkaloid chemotypes were clearly recognized: chemotype I (POA with cis D/E ring junction; chemotype II (POA with trans D/E ring junction; and chemotype III (TOA. Thus, environmental factors appear to have only a minor influence on the chemical heterogeneity of the cat's claw wild population. Nevertheless, the occurrence of different chemotypes based on alkaloid profiles seems to be clear.

  18. EFFECT OF THERMAL TREATMENT ON THE CHEMICAL COMPOSITION AND MECHANICAL PROPERTIES OF BIRCH AND ASPEN

    Directory of Open Access Journals (Sweden)

    Duygu Kocaefe

    2008-05-01

    Full Text Available The high temperature treatment of wood is one of the alternatives to chemical treatment. During this process, the wood is heated to higher temperatures than those of conventional drying. The wood structure changes due to decomposition of hemicelluloses, ramification of lignin, and crystallization of cellulose. The wood becomes less hygroscopic. These changes improve the dimensional stability of wood, increase its resistance to micro-organisms, darken its color, and modify its hardness. However, wood also might loose some of its elasticity. Consequently, the heat treatment conditions have to be optimized. Therefore, it is important to understand the transformation of the chemical structure of wood caused by the treatment. In this study, the modification of the surface composition of the wood was followed with Fourier transform infrared spectroscopy (FTIR and inverse gas chromatography (IGC under different experimental conditions. The effect of maximum treatment temperatures on the chemical composition of Canadian birch and aspen as well as the correlations between their chemical transformation and different mechanical properties are presented. FTIR analysis results showed that the heat treatment affected the chemical composition of birch more compared to that of aspen. The results of IGC tests illustrated that the surfaces of the aspen and birch became more basic with heat treatment. The mechanical properties were affected by degradation of hemicellulose, ramification of lignin and cellulose crystallization.

  19. Impact of the material composition on proton range variation - A Monte Carlo study

    Science.gov (United States)

    Wu, S. W.; Tung, C. J.; Lee, C. C.; Fan, K. H.; Huang, H. C.; Chao, T. C.

    2015-11-01

    In this study, we used the Geant4 toolkit to demonstrate the impacts of the material composition of tissues on proton range variation. Bragg curves of different materials subjected to a 250 MeV mono-energy proton beam were simulated and compared. These simulated materials included adipose, heart, brain, cartilage, cortical bone and water. The results showed that there was significant proton range deviation between Bragg curves, especially for cortical bone. The R50 values for a 250 MeV proton beam were approximately 39.55 cm, 35.52 cm, 37.00 cm, 36.51 cm, 36.72 cm, 22.53 cm, and 38.52 cm in the phantoms that were composed completely of adipose, cartilage, tissue, heart, brain, cortical bone, and water, respectively. Mass density and electron density were used to scale the proton range for each material; electron density provided better range scaling. In addition, a similar comparison was performed by artificially setting all material density to 1.0 g/cm3 to evaluate the range deviation due to chemical components alone. Tissue heterogeneity effects due to density variation were more significant, and less significant for chemical composition variation unless the Z/A was very different.

  20. The effect of biological and chemical additives on the chemical composition and fermentation process of Dactylis glomerata silage

    Directory of Open Access Journals (Sweden)

    Jhonny E. Alba-Mejía

    2016-06-01

    Full Text Available This study was carried out to determine the chemical composition, silage quality and ensilability of ten cocksfoot cultivars using biological and chemical silage additives. The plant material was harvested from the first and second cut, cultivated at the Research Station of Fodder Crops in Vatín, Czech Republic. Wilted forage was chopped and ensiled in mini-silos with 3 replicates per treatment. The treatments were: 1 without additives, used as a control; 2 with bacterial inoculants; and 3 with chemical preservatives. The results indicated that the year factor (2012-2013 influenced significantly the chemical composition of the silage in both cuts. The use of biological inoculants reduced the content of crude fibre and acid detergent fibre; but it did not influence the content of neutral detergent fibre, in comparison with the control silage in both cuts. Furthermore, the application of biological inoculants reduced the concentration of lactic acid (LA and acetic acid (AA in contrast to the control silage in the first cut. Moreover, in the second cut the same values tended to be the opposite. Interestingly, ‘Amera’ was the unique variety that presented a high concentration of butyric acid (0.2% in comparison with other varieties in the first cut. In conclusion, the biological inoculants had a favourable effect on silage fermentation. Notably, only ‘Greenly’ and ‘Starly’ varieties from the first cut; and ‘Greenly’, ‘Sw-Luxor’, and ‘Otello’ varieties from the second cut were appropriate for ensiling because their pH-values; LA and AA concentrations were ideal according to the parameters of the fermentation process.

  1. Chemical composition and antibacterial activity of Opuntia ficus-indica f. inermis (cactus pear) flowers.

    Science.gov (United States)

    Ennouri, Monia; Ammar, Imene; Khemakhem, Bassem; Attia, Hamadi

    2014-08-01

    Opuntia ficus-indica f. inermis (cactus pear) flowers have wide application in folk medicine. However, there are few reports focusing on their biological activity and were no reports on their chemical composition. The nutrient composition and hexane extracts of Opuntia flowers at 4 flowering stages and their antibacterial and antifungal activities were investigated. The chemical composition showed considerable amounts of fiber, protein, and minerals. Potassium (K) was the predominant mineral followed by calcium (Ca), magnesium (Mg), sodium (Na), iron (Fe), and zinc (Zn). The main compounds in the various hexane extracts were 9.12-octadecadienoic acid (29-44%) and hexadecanoic acid (8.6-32%). The antibacterial activity tests showed that O. inermis hexane extracts have high effectiveness against Escherichia coli and Staphylococcus aureus, making this botanical source a potential contender as a food preservative or food control additive. PMID:24650181

  2. Chemical composition and antibacterial activity of Opuntia ficus-indica f. inermis (cactus pear) flowers.

    Science.gov (United States)

    Ennouri, Monia; Ammar, Imene; Khemakhem, Bassem; Attia, Hamadi

    2014-08-01

    Opuntia ficus-indica f. inermis (cactus pear) flowers have wide application in folk medicine. However, there are few reports focusing on their biological activity and were no reports on their chemical composition. The nutrient composition and hexane extracts of Opuntia flowers at 4 flowering stages and their antibacterial and antifungal activities were investigated. The chemical composition showed considerable amounts of fiber, protein, and minerals. Potassium (K) was the predominant mineral followed by calcium (Ca), magnesium (Mg), sodium (Na), iron (Fe), and zinc (Zn). The main compounds in the various hexane extracts were 9.12-octadecadienoic acid (29-44%) and hexadecanoic acid (8.6-32%). The antibacterial activity tests showed that O. inermis hexane extracts have high effectiveness against Escherichia coli and Staphylococcus aureus, making this botanical source a potential contender as a food preservative or food control additive.

  3. IMPROVEMENTS IN WOOD THERMOPLASTIC MATRIX COMPOSITE MATERIALS PROPERTIES BY PHYSICAL AND CHEMICAL TREATMENTS

    Directory of Open Access Journals (Sweden)

    Irena Zivkovic

    2016-03-01

    Full Text Available This paper presents a short overview of the developments made in the field of wood thermoplastic composites in terms of surface treatment, flammability, matrix/reinforcement model, properties and application of recycled polymer matrices. The usage of lignocellulosic fibers as reinforcement in composite materials demands well formed interface between the fiber and the matrix. Because of the different nature of reinforcement and matrix components some physical and chemical treatment methods which improve the fiber matrix adhesion were introduced, as well as the improvements of lignocellulosic fibers and thermoplastic polymer matrix based composites flammability characteristics. These physical and chemical treatments influence the hydrophilic character of the lignocellulosic fibers, and therefore change their physical and mechanical properties.

  4. Chemical composition measurements of the low activity waste (LAW) EPA-Series glasses

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-01

    In this report, the Savannah River National Laboratory provides chemical analysis results for a series of simulated low activity waste glasses provided by Pacific Northwest National Laboratory as part of an ongoing development task. The measured chemical composition data are reported and compared with the targeted values for each component for each glass. A detailed review showed no indications of errors in the preparation or measurement of the study glasses. All of the measured sums of oxides for the study glasses fell within the interval of 100.2 to 100.8 wt %, indicating recovery of all components. Comparisons of the targeted and measured chemical compositions showed that the measured values for the glasses met the targeted concentrations within 10% for those components present at more than 5 wt %.

  5. Toxicological characterization of chemicals produced from laser irradiation of graphite composite materials

    International Nuclear Information System (INIS)

    One of the major potential hazards associated with laser machining of graphite composite materials is the toxic fumes and gases that are generated. When exposed to the intense energy of the laser beam, the organic polymer matrix of the composite material may decompose into various toxic by-products. To advance the understanding of the laser machining process from a health and safety viewpoint, this particular study consisted of the following steps: collect and analyze gaseous by-products generated during laser machining; collect particulates generated during laser machining and chemically extract them to determine the chemical species that may have absorbed or recondensed onto these particles; and review and evaluate the toxicity of the identified chemical species

  6. Chemical composition measurements of the low activity waste (LAW) EPA-Series glasses

    International Nuclear Information System (INIS)

    In this report, the Savannah River National Laboratory provides chemical analysis results for a series of simulated low activity waste glasses provided by Pacific Northwest National Laboratory as part of an ongoing development task. The measured chemical composition data are reported and compared with the targeted values for each component for each glass. A detailed review showed no indications of errors in the preparation or measurement of the study glasses. All of the measured sums of oxides for the study glasses fell within the interval of 100.2 to 100.8 wt %, indicating recovery of all components. Comparisons of the targeted and measured chemical compositions showed that the measured values for the glasses met the targeted concentrations within 10% for those components present at more than 5 wt %.

  7. Impact of in-vitro aging on mechanical and optical properties of veneering composites

    OpenAIRE

    Egli, R E

    2010-01-01

    State of Problem: Flexural strength, hardness, surface roughness, discoloration and abrasion stability are important properties of veneering composites. The second-generation of veneering composite systems are said to have enhanced mechanical properties due to their composition. Purpose of study: This study tested and compared the impact of aging on three different veneering composites. Material and methods: Indirect composites: GC Gradia, VITA VM LC and Sinfony, were prepared for flexural st...

  8. Differences in chemical composition of soil organic carbon resulting from long-term fertilization strategies.

    Science.gov (United States)

    Li, Zengqiang; Zhao, Bingzi; Wang, Qingyun; Cao, Xiaoyan; Zhang, Jiabao

    2015-01-01

    Chemical composition of soil organic carbon (SOC) is central to soil fertility. We hypothesize that change in SOC content resulting from various long-term fertilization strategies accompanies the shift in SOC chemical structure. This study examined the effect of fertilization strategies along with the time of fertilizer application on the SOC composition by 13C nuclear magnetic resonance (NMR) spectroscopy. The soils (Aquic Inceptisol) subjected to seven fertilizer treatments were collected in 1989, 1999 and 2009, representing 0, 10 and 20 years of fertilization, respectively. The seven fertilizer treatments were (1-3) balanced fertilization with application of nitrogen (N), phosphorus (P) and potassium (K) including organic compost (OM), half organic compost plus half chemical fertilizer (1/2OM), and pure chemical NPK fertilizer (NPK); (4-6) unbalanced chemical fertilization without application of one of the major elements including NP fertilizer (NP), PK fertilizer (PK), and NK fertilizer (NK); and (7) an unamended control (CK). The SOC content in the balanced fertilization treatments were 2.3-52.6% and 9.4-64.6% higher than in the unbalanced fertilization/CK treatments in 1999 and 2009, respectively, indicating significant differences in SOC content with time of fertilizer application between the two treatment groups. There was a significantly greater proportion of O-alkyl C and a lower proportion of aromatic C in the balanced fertilization than in unbalanced fertilization/CK treatments in 1999, but not in 2009, because their proportions in the former treatments approached the latter in 2009. Principal component analysis further showed that the C functional groups from various fertilization strategies tended to become compositionally similar with time. The results suggest that a shift in SOC chemical composition may be firstly dominated by fertilization strategies, followed by fertilization duration.

  9. Differences in chemical composition of soil organic carbon resulting from long-term fertilization strategies.

    Science.gov (United States)

    Li, Zengqiang; Zhao, Bingzi; Wang, Qingyun; Cao, Xiaoyan; Zhang, Jiabao

    2015-01-01

    Chemical composition of soil organic carbon (SOC) is central to soil fertility. We hypothesize that change in SOC content resulting from various long-term fertilization strategies accompanies the shift in SOC chemical structure. This study examined the effect of fertilization strategies along with the time of fertilizer application on the SOC composition by 13C nuclear magnetic resonance (NMR) spectroscopy. The soils (Aquic Inceptisol) subjected to seven fertilizer treatments were collected in 1989, 1999 and 2009, representing 0, 10 and 20 years of fertilization, respectively. The seven fertilizer treatments were (1-3) balanced fertilization with application of nitrogen (N), phosphorus (P) and potassium (K) including organic compost (OM), half organic compost plus half chemical fertilizer (1/2OM), and pure chemical NPK fertilizer (NPK); (4-6) unbalanced chemical fertilization without application of one of the major elements including NP fertilizer (NP), PK fertilizer (PK), and NK fertilizer (NK); and (7) an unamended control (CK). The SOC content in the balanced fertilization treatments were 2.3-52.6% and 9.4-64.6% higher than in the unbalanced fertilization/CK treatments in 1999 and 2009, respectively, indicating significant differences in SOC content with time of fertilizer application between the two treatment groups. There was a significantly greater proportion of O-alkyl C and a lower proportion of aromatic C in the balanced fertilization than in unbalanced fertilization/CK treatments in 1999, but not in 2009, because their proportions in the former treatments approached the latter in 2009. Principal component analysis further showed that the C functional groups from various fertilization strategies tended to become compositionally similar with time. The results suggest that a shift in SOC chemical composition may be firstly dominated by fertilization strategies, followed by fertilization duration. PMID:25884713

  10. Wood chemical composition in species of Cactaceae: the relationship between lignification and stem morphology.

    Directory of Open Access Journals (Sweden)

    Jorge Reyes-Rivera

    Full Text Available In Cactaceae, wood anatomy is related to stem morphology in terms of the conferred support. In species of cacti with dimorphic wood, a unique process occurs in which the cambium stops producing wide-band tracheids (WBTs and produces fibers; this is associated with the aging of individuals and increases in size. Stem support and lignification have only been studied in fibrous tree-like species, and studies in species with WBTs or dimorphic wood are lacking. In this study, we approach this process with a chemical focus, emphasizing the role of wood lignification. We hypothesized that the degree of wood lignification in Cactaceae increases with height of the species and that its chemical composition varies with wood anatomy. To test this, we studied the chemical composition (cellulose, hemicellulose, and lignin content in 13 species (2 WBTs wood, 3 dimorphic, and 8 fibrous with contrasting growth forms. We also analyzed lignification in dimorphic and fibrous species to determine the chemical features of WBTs and fibers and their relationship with stem support. The lignin contents were characterized by Fourier transform infrared spectroscopy and high performance liquid chromatography. We found that 11 species have a higher percentage (>35% of lignin in their wood than other angiosperms or gymnosperms. The lignin chemical composition in fibrous species is similar to that of other dicots, but it is markedly heterogeneous in non-fibrous species where WBTs are abundant. The lignification in WBTs is associated with the resistance to high water pressure within cells rather than the contribution to mechanical support. Dimorphic wood species are usually richer in syringyl lignin, and tree-like species with lignified rays have more guaiacyl lignin. The results suggest that wood anatomy and lignin distribution play an important role in the chemical composition of wood, and further research is needed at the cellular level.

  11. Assessment of chemical emissions in life cycle impact assessment - focus on low substance data availability and

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred

    2004-01-01

    a low data demand ecotoxicity effect indicator to be used together with a fate indicator, when estimating the potential impact of chemical emissions. The results of the case study document that for LCAs on printed matter, the inclusion of chemical-related impact categories can be decisive...... for the outcome, and it shows that chemical-related impact categories are poorly or not at all included in previous studies. The share for the total environmental impact of for example the printing process in the case study is reduced from 41% to 10%, if the chemical-related impact categories are excluded. So...... associated selection methods EDIP-selection (revised version) and Priofactor. A statistical test of correlation in ranking between EDIP97, Priofactor, CPM and EURAM shows significant correlation in all cases. The main reason for this result is that a common perception of what makes a substance...

  12. FY98 Final Report Initial Interfacial Chemical Control for Enhancement of Composite Material Strength; TOPICAL

    International Nuclear Information System (INIS)

    The U.S. Army Armament Research Development and Engineering Center (ARDEC) sponsored this research project to support the development of new self-assembled monolayer fiber coatings. These coatings can greatly increase the bond strength between the fiber and the resin matrix of a composite material. Composite ammunition components molded from such materials will exhibit higher strength than current materials, and will provide a major improvement in the performance of composites in military applications. Use of composite materials in military applications is desirable because of the lighter weight of the materials and their high strengths. The FY97 project investigated initial interfacial chemical control for enhancement of composite material strength. The core of the project was to modify the covalent interface of glass fibers (or other reinforcing fibers) to induce strong, uniform, defect-free adhesion between the fibers' surfaces and the polymer matrix. Installing a self-assembled monolayer tailored to the specific matrix resin accomplished this. Simply, the self-assembled monolayer modifies the fiber to make it appear to have the same chemical composition as the resin matrix. The self-assembled monolayer creates a receptive, hydrophobic interface that the thermoset resin (or polymer precursors) would wet more effectively, leading to a higher contact surface area and more efficient adhesion. The FY97 work phase demonstrated that it is possible to increase the adhesive strength, as well as increase the heat deflection temperature through the use of self-assembled monolayer

  13. Effect of chemical degradation followed by toothbrushing on the surface roughness of restorative composites

    Directory of Open Access Journals (Sweden)

    Fernanda Regina Voltarelli

    2010-12-01

    Full Text Available OBJECTIVES: The aim of the present study was to assess the effect of the exposure to food-simulating liquids prior to brushing simulation on the surface roughness of five composite materials (Quixfil, Filtek Supreme, Esthet-X, Filtek Z250, Tetric Ceram. Material and METHODS: Twenty cylinders (5 mm diameter and 4 mm height of each composite were randomly allocated to 4 groups (n=5, according to the food-simulating liquid in which they were immersed for 7 days at 37°C: artificial saliva, heptane, citric acid, and ethanol. After this period, the top surface of composite cylinders was submitted to 7,500 brushing cycles (200 g load. Measurements of the surface roughness (Ra, ¼m were carried out before and after the exposure to the chemicals/brushing simulation. Changes on the morphology of composite surfaces were observed through scanning electron microscopy (SEM. RESULTS: The statistical analysis (ANOVA with cofactor / Tukey's test, α=5% detected a significant interaction between solutions and composite resins. Esthet-X, Filtek Z250 and Tetric Ceram were not affected by the food-simulating liquids/toothbrushing. Citric acid and ethanol increased the surface roughness of Quixfil and Filtek Supreme, respectively. SEM images corroborate the surface roughness findings, demonstrating the negative effect from chemical solutions and mechanical abrasion. CONCLUSIONS: The surface roughness of composite resin materials are differently affected by the food-simulating solutions, depending on the immersion media.

  14. Chemically aged and mixed aerosols over the Central Atlantic Ocean - Potential impacts

    NARCIS (Netherlands)

    Astitha, M.; Kallos, G.; Spyrou, C.; O'Hirok, W.; Lelieveld, J.; Denier Gon, H.A.C. van der

    2010-01-01

    Detailed information on the chemical and physical properties of aerosols is important for assessing their role in air quality and climate. This work explores the origin and fate of continental aerosols transported over the Central Atlantic Ocean, in terms of chemical composition, number and size dis

  15. Modelling the chemically aged and mixed aerosols over the eastern central Atlantic Ocean-potential impacts

    NARCIS (Netherlands)

    Astitha, M.; Kallos, G.; Spyrou, C.; O'Hirok, W.; Lelieveld, J.; Denier Gon, H.A.C. van der

    2010-01-01

    Detailed information on the chemical and physical properties of aerosols is important for assessing their role in air quality and climate. This work explores the origin and fate of continental aerosols transported over the Central Atlantic Ocean, in terms of chemical composition, number and size dis

  16. Raman spectra of Martian glass analogues: A tool to approximate their chemical composition

    Science.gov (United States)

    Di Genova, Danilo; Kolzenburg, Stephan; Vona, Alessandro; Chevrel, Magdalena Oryaëlle; Hess, Kai-Uwe; Neuville, Daniel R.; Ertel-Ingrisch, Werner; Romano, Claudia; Dingwell, Donald B.

    2016-05-01

    Raman spectrometers will form a key component of the analytical suite of future planetary rovers intended to investigate geological processes on Mars. In order to expand the applicability of these spectrometers and use them as analytical tools for the investigation of silicate glasses, a database correlating Raman spectra to glass composition is crucial. Here we investigate the effect of the chemical composition of reduced silicate glasses on their Raman spectra. A range of compositions was generated in a diffusion experiment between two distinct, iron-rich end-members (a basalt and a peralkaline rhyolite), which are representative of the anticipated compositions of Martian rocks. Our results show that for silica-poor (depolymerized) compositions the band intensity increases dramatically in the regions between 550-780 cm-1 and 820-980 cm-1. On the other hand, Raman spectra regions between 250-550 cm-1 and 1000-1250 cm-1 are well developed in silica-rich (highly polymerized) systems. Further, spectral intensity increases at ~965 cm-1 related to the high iron content of these glasses (~7-17 wt % of FeOtot). Based on the acquired Raman spectra and an ideal mixing equation between the two end-members we present an empirical parameterization that enables the estimation of the chemical compositions of silicate glasses within this range. The model is validated using external samples for which chemical composition and Raman spectra were characterized independently. Applications of this model range from microanalysis of dry and hydrous silicate glasses (e.g., melt inclusions) to in situ field investigations and studies under extreme conditions such as extraterrestrial (i.e., Mars) and submarine volcanic environments.

  17. Prediction of aged red wine aroma properties from aroma chemical composition. Partial least squares regression models.

    Science.gov (United States)

    Aznar, Margarita; López, Ricardo; Cacho, Juan; Ferreira, Vicente

    2003-04-23

    Partial least squares regression (PLSR) models able to predict some of the wine aroma nuances from its chemical composition have been developed. The aromatic sensory characteristics of 57 Spanish aged red wines were determined by 51 experts from the wine industry. The individual descriptions given by the experts were recorded, and the frequency with which a sensory term was used to define a given wine was taken as a measurement of its intensity. The aromatic chemical composition of the wines was determined by already published gas chromatography (GC)-flame ionization detector and GC-mass spectrometry methods. In the whole, 69 odorants were analyzed. Both matrixes, the sensory and chemical data, were simplified by grouping and rearranging correlated sensory terms or chemical compounds and by the exclusion of secondary aroma terms or of weak aroma chemicals. Finally, models were developed for 18 sensory terms and 27 chemicals or groups of chemicals. Satisfactory models, explaining more than 45% of the original variance, could be found for nine of the most important sensory terms (wood-vanillin-cinnamon, animal-leather-phenolic, toasted-coffee, old wood-reduction, vegetal-pepper, raisin-flowery, sweet-candy-cacao, fruity, and berry fruit). For this set of terms, the correlation coefficients between the measured and predicted Y (determined by cross-validation) ranged from 0.62 to 0.81. Models confirmed the existence of complex multivariate relationships between chemicals and odors. In general, pleasant descriptors were positively correlated to chemicals with pleasant aroma, such as vanillin, beta damascenone, or (E)-beta-methyl-gamma-octalactone, and negatively correlated to compounds showing less favorable odor properties, such as 4-ethyl and vinyl phenols, 3-(methylthio)-1-propanol, or phenylacetaldehyde.

  18. Behavior of composite and polycarbonate plate under impact

    Directory of Open Access Journals (Sweden)

    Viot P.

    2010-06-01

    Full Text Available The use of filled composite materials in passive safety structure has significantly increased recently because of their low specific mass, stiffness and energy absorption capacities. However those new light weight materials are supposed to exhibit equal or higher performances than classical ones. Therefore interesting applications by using those materials can be thought about like in the manufacturing of aeronautical helmets. Constituted of an outer shell and an inner foam structure, helmet must protect pilots from an impact by absorbing energy as much as possible and avoid contact between head and impactor. Nowadays different standards describe the minimum required performance for shock attenuation and penetration resistance of helmets [1]. These standards are based on acceleration time history measurements recorded from an accelerometer located at the headform center of mass. For aeronautical standard, acceleration peak value is the only one parameter concerning shock attenuation. Its value must not exceed 300 g, where g = 9.81 m.s-2. Concerning penetration resistance, no contact can be accepted between the penetrating striker and the headform. The outer shell of the helmet has to resist penetration in order to absorb and to extend the input energy over the foam. The most important part of energy is dissipated by polymeric foam through collapse processes under impact [2]. Nevertheless a significant part of energy (one third [3, 4] can be dissipated by the plastic deformation of the shell and the occurrence of damage mechanisms. To obtain different dissipative phenomena, various materials were studied: a Three different kinds of polycarbonate were used. This type of material is well known for its large viscoplastic deformations without any significant hardening. In other words it is a very good candidate for helmet application because of high specific energy dissipation and a stress cut-off effect. Moreover a larger affected zone is expected

  19. Carbon and glass hierarchical fibers: Influence of carbon nanotubes on tensile, flexural and impact properties of short fiber reinforced composites

    International Nuclear Information System (INIS)

    Highlights: ► Dense CNT were grown on carbon fiber and glass fiber by use of floating catalyst CVD method. ► CNT showed different growing mechanism on carbon and glass fiber. ► Short fiber-CNT-composites showed enhanced mechanical properties. ► CNT coating enhanced fiber–matrix interaction and acted as additional reinforcement. -- Abstract: Dense carbon nanotubes (CNTs) were grown uniformly on the surface of carbon fibers and glass fibers to create hierarchical fibers by use of floating catalyst chemical vapor deposition. Morphologies of the CNTs were investigated using scanning electronic microscope (SEM) and transmission electron microscope (TEM). Larger diameter dimension and distinct growing mechanism of nanotubes on glass fiber were revealed. Short carbon and glass fiber reinforced polypropylene composites were fabricated using the hierarchical fibers and compared with composites made using neat fibers. Tensile, flexural and impact properties of the composites were measured, which showed evident enhancement in all mechanical properties compared to neat short fiber composites. SEM micrographs of composite fracture surface demonstrated improved adhesion between CNT-coated fiber and the matrix. The enhanced mechanical properties of short fiber composites was attributed to the synergistic effects of CNTs in improving fiber–matrix interfacial properties as well as the CNTs acting as supplemental reinforcement in short fiber-composites.

  20. Chemical composition and physico-chemical properties of meat from capons as affected by breed and age

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, O.; Rodriguez, L.; Torres, A.; Cobos, A.

    2010-07-01

    The influence of the breed [Mos (Spanish indigenous breed), Sasso T-44 and X-44 (commercial strains)] and the age (5, 6, 7 and 8 months) of capons (castrated male cockerels) on some qualitative traits of breast and drumstick meat were studied. The chemical composition (dry matter, protein, lipid and ash contents), pH, water holding capacity, drip loss, cooking loss, colour and texture (compression test and shear force) were measured. In breast meat, the Mos capon showed lower water holding capacity, higher drip loss and was lighter than the other breeds. In drumstick meat, the Mos capon showed lower lipid content, lower water holding capacity and was lighter and less red than the other breeds. Chemical composition, pH, water holding capacity, drip loss, colour and texture of the meat were significantly influenced by the age of the capons. The meat of the youngest animals showed higher ash content, higher pH, lower water holding capacity, higher drip loss, higher lightness and lower shear test values, than that of the older ones. In conclusion, the capon meat quality is influenced by breed and age of the capons. (Author) 36 refs.

  1. Modification of Chemically Exfoliated Graphene to Produce Efficient Piezoresistive Polystyrene-Graphene Composites

    Science.gov (United States)

    Nasirpouri, Farzad; Pourmahmoudi, Hassan; Abbasi, Farhang; Littlejohn, Samuel; Chauhan, Ashok S.; Nogaret, Alain

    2015-10-01

    We report the chemical exfoliation of grapheneoxide from graphite and its subsequent reduction to graphene nanosheets (GN) to obtain highly conducting composites of graphene sheets in a polymer matrix. The effect of using graphite nanoparticles or flakes as precursors, and different drying methods, was investigated to obtain multilayer graphene sheets of atomically controlled thickness, which was essential to optimizing their dispersion in a polystyrene (PS) polymer matrix. In situ emulsion polymerization of the styrene monomer in the presence of GN was performed to obtain thin composite films with highly uniform dispersion and fewer graphene layers when GN were obtained from graphite flakes then freeze drying. The highest electrical conductivity of PS-GN composites was ~0.01 S/m for a graphene filling fraction of 2%. The piezoresistance of the PS-GN composites was evaluated and used in pressure sensor arrays with pressure field imaging capability.

  2. The chemical composition of red giants in 47 Tucanae I: Fundamental parameters and chemical abundance patterns

    CERN Document Server

    Thygesen, A O; Andrievsky, S; Korotin, S; Yong, D; Zaggia, S; Ludwig, H -G; Collet, R; Asplund, M; D'Antona, F; Meléndez, J; D'Ercole, A

    2014-01-01

    Context: The study of chemical abundance patterns in globular clusters is of key importance to constrain the different candidates for intra-cluster pollution of light elements. Aims: We aim at deriving accurate abundances for a large range of elements in the globular cluster 47 Tucanae (NGC 104) to add new constraints to the pollution scenarios for this particular cluster, expanding the range of previously derived element abundances. Methods: Using tailored 1D LTE atmospheric models together with a combination of equivalent width measurements, LTE, and NLTE synthesis we derive stellar parameters and element abundances from high-resolution, high signal-to-noise spectra of 13 red giant stars near the tip of the RGB. Results: We derive abundances of a total 27 elements (O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Ru, Ba, La, Ce, Pr, Nd, Eu, Dy). Departures from LTE were taken into account for Na, Al and Ba. We find a mean [Fe/H] = $-0.78\\pm0.07$ and $[\\alpha/{\\rm Fe}]=0.34\\pm0.03$ in...

  3. The chemical composition of organic nitrogen in marine rainwater and aerosols

    Science.gov (United States)

    Altieri, K. E.; Hastings, M. G.; Peters, A.; Sigman, D. M.

    2010-12-01

    The current state of knowledge on organic nitrogen in the atmosphere is very limited. Atmospheric water soluble organic nitrogen (WSON) is a subset of the complex water soluble organic matter measured in atmospheric aerosols and rainwater; as such, it impacts cloud condensation processes and aerosol chemical and optical properties. In marine and continental atmospheric deposition, the organic N fraction can be 20-80% of total N potentially influencing receiving ecosystems. Therefore, atmospheric WSON plays an important role in both atmospheric chemistry and the global biogeochemical N cycle. However, the sources (i.e., anthropogenic vs. terrestrial vs. marine), composition (e.g., reduced or oxidized N), potential connections to inorganic N (NO3- and NH4+), and spatio-temporal variability of atmospheric WSON are largely unknown. Samples were collected on or near the island of Bermuda (32.27°N, 64.87°W), which is located in the western North Atlantic and experiences seasonal changes in transport that allow for study of both anthropogenically and primarily marine influenced air masses. Rainwater samples (n=7) and aqueous extracted aerosol samples (n=4) were analyzed by positive ion ultra-high resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) to characterize the chemical composition of the water soluble organic N on a per compound level. We found ~ 800 N containing compounds in 8 compound classes. The CHON+ compound class contained the largest number of N compounds (~ 460). Compared to continental rainwater [Altieri et al., ES&T, 2009], the CHON+ compounds in the marine samples are as dominant in number, yet have less regular patterns and lower O:C ratios for comparable N:C ratios. In fact, average O:C ratios of all N containing compound classes were lower in the marine samples than in continental rainwater samples. No organosulfates or nitrooxy-organosulfates were detected in the marine samples, both of

  4. Morphological and chemical composition characteristics of summertime atmospheric particles collected at Tokchok Island, Korea

    Science.gov (United States)

    Geng, Hong; Jung, Hae-Jin; Park, YooMyung; Hwang, HeeJin; Kim, HyeKyeong; Kim, Yoo Jung; Sunwoo, Young; Ro, Chul-Un

    Determination of the chemical compositions of atmospheric single particles in the Yellow Sea region is critical for evaluating the environmental impact caused by air pollutants emitted from mainland China and the Korean peninsula. After ambient aerosol particles were collected by the Dekati PM10 cascade impactor on July 17-23, 2007 at Tokchok Island (approximately 50 km west of the Korean coast nearby Seoul), Korea, overall 2000 particles (on stage 2 and 3 with cut-off diameters of 2.5-10 μm and 1.0-2.5 μm, respectively) in 10 samples were determined by using low- Z particle electron probe X-ray microanalysis. X-ray spectral and secondary electron image (SEI) data showed that soil-derived and sea-salt particles which had reacted or were mixed with SO 2 and NO x (or their acidic products) outnumbered the primary and "genuine" ones (59.2% vs. 19.2% in the stage 2 fraction and 41.3% vs. 9.9% in the stage 3 fraction). Moreover, particles containing nitrate in the secondary soil-derived species greatly outnumbered those containing sulfate. Organic particles, mainly consisting of marine biogenic species, were more abundant in the stage 2 fraction than in the stage 3 fraction (11.6% vs. 5.1%). Their relative abundance was greater than the sum of carbon-rich, K-containing, Fe-containing, and fly ash particles, which exhibited low frequencies in all the samples. In addition, many droplets rich in C, N, O, and S were observed. They tended to be small, exhibiting a dark round shape on SEI, and generally included 8-20 at.% C, 0-12 at.% N, 60-80 at.% O, and 4-10 at.% S (sometimes with secondary aerosol particles.

  5. Chemical composition dispersion in bi-metallic nanoparticles: semi-automated analysis using HAADF-STEM

    Energy Technology Data Exchange (ETDEWEB)

    Epicier, T., E-mail: thierry.epicier@insa-lyon.fr [INSA-Lyon, MATEIS CNRS UMR5510, Bat. Blaise Pascal (France); Sato, K. [Institute for Materials Research, Tohoku University, Material Processing and Characterization Division (Japan); Tournus, F. [Universite Lyon 1, LPMCN, UMR 5586 CNRS and Universite de Lyon (France); Konno, T. [Institute for Materials Research, Tohoku University, Material Processing and Characterization Division (Japan)

    2012-09-15

    We present a method using high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) to determine the chemical composition of bi-metallic nanoparticles. This method, which can be applied in a semi-automated way, allows large scale analysis with a statistical number of particles (several hundreds) in a short time. Once a calibration curve has been obtained, e.g., using energy-dispersive X-ray spectroscopy (EDX) measurements on a few particles, the HAADF integrated intensity of each particle can indeed be directly related to its chemical composition. After a theoretical description, this approach is applied to the case of iron-palladium nanoparticles (expected to be nearly stoichiometric) with a mean size of 8.3 nm. It will be shown that an accurate chemical composition histogram is obtained, i.e., the Fe content has been determined to be 49.0 at.% with a dispersion of 10.4 %. HAADF-STEM analysis represents a powerful alternative to fastidious single particle EDX measurements, for the compositional dispersion in alloy nanoparticles.

  6. Texture Profile Analysis of Sliced Cheese in relation to Chemical Composition and Storage Temperature

    Directory of Open Access Journals (Sweden)

    Yuanrong Zheng

    2016-01-01

    Full Text Available The quantitative relationships among chemical composition, storage temperature, and texture of cheese were not fully understood. In this study, the effects of composition and temperature on textural properties of eight common varieties of sliced cheese were examined. The textural properties of sliced cheeses, including firmness, cohesiveness, adhesiveness, springiness, chewiness, and resilience, were measured by texture profile analysis after storage at 4 and 25°C for 4 h. Multivariate logistic regression models were established to describe the quantitative relationships of textural properties (dependent variables to chemical composition and storage temperature (independent variables of sliced cheeses. Results showed that protein, fat, moisture, and sodium chloride contents as well as storage temperature significantly affected the texture of sliced cheeses (P<0.05. In particular, fat in the dry matter and moisture in the nonfat substances were negatively correlated with firmness of sliced cheeses (P<0.05. As storage temperature rose from 4 to 25°C, the average values of firmness, chewiness, and resilience substantially declined by 42%, 45%, and 17%, respectively (P<0.05. This study provided reference data for adjusting chemical composition and storage temperature of common cheese products to obtain favorable texture for Chinese consumers, which thereby facilitated the localization of cheese industry in Chinese market.

  7. Enamels in stained glass windows: Preparation, chemical composition, microstructure and causes of deterioration

    International Nuclear Information System (INIS)

    Stained glass windows incorporating dark blue and purple enamel paint layers are in some cases subject to severe degradation while others from the same period survived the ravages of time. A series of dark blue, green-blue and purple enamel glass paints from the same region (Northwestern Europe) and from the same period (16-early 20th centuries) has been studied by means of a combination of microscopic X-ray fluorescence analysis, electron probe micro analysis and transmission electron microscopy with the aim of better understanding the causes of the degradation. The chemical composition of the enamels diverges from the average chemical composition of window glass. Some of the compositions appear to be unstable, for example those with a high concentration of K2O and a low content of CaO and PbO. In other cases, the deterioration of the paint layers was caused by the less than optimal vitrification of the enamel during the firing process. Recipes and chemical compositions indicate that glassmakers of the 16-17th century had full control over the color of the enamel glass paints they made. They mainly used three types of coloring agents, based on Co (dark blue), Mn (purple) and Cu (light-blue or green-blue) as coloring elements. Blue-purple enamel paints were obtained by mixing two different coloring agents. The coloring agent for red-purple enamel, introduced during the 19th century, was colloidal gold embedded in grains of lead glass.

  8. Nanoscale Mineralogy and Composition of Experimental Regolith Agglutinates Produced under Asteroidal Impact Conditions

    Science.gov (United States)

    Christoffersen, Roy; Cintala, M. J.; Keller, L. P.; See, T. H.; Horz, F.

    2013-01-01

    On the Moon, the energetics of smaller impactors and the physical/chemical characteristics of the granular regolith target combine to form a key product of lunar space weathering: chemically reduced shock melts containing optically-active nanophase Fe metal grains (npFe0) [1]. In addition to forming the optically dark glassy matrix phase in lunar agglutinitic soil particles [1], these shock melts are becoming increasingly recognized for their contribution to optically active patina coatings on a wide range of exposed rock and grain surfaces in the lunar regolith [2]. In applying the lessons of lunar space weathering to asteroids, the potential similarities and differences in regolith-hosted shock melts on the Moon compared to those on asteroids has become a topic of increasing interest [3,4]. In a series of impact experiments performed at velocities applicable to the asteroid belt [5], Horz et al. [6] and See and Horz [7] have previously shown that repeated impacts into a gabbroic regolith analog target can produce melt-welded grain aggregates morphologically very similar to lunar agglutinates [6,7]. Although these agglutinate-like particles were extensively analyzed by electron microprobe and scanning electron microscopy (SEM) as part of the original study [7], a microstructural and compositional comparison of these aggregates to lunar soil agglutinates at sub-micron scales has yet to be made. To close this gap, we characterized a representative set of these aggregates using a JEOL 7600 field-emission scanning electron microscope (FE-SEM), and JEOL 2500SE field-emission scanning transmission electron microscope (FE-STEM) both optimized for energy dispersive X-ray spectroscopy (EDX) compositional spectrum imaging at respective analytical spatial resolutions of 0.5 to 1 micron, and 2 to 4 nm.

  9. Physico-chemical properties of Brazilian cocoa butter and industrial blends. Part I Chemical composition, solid fat content and consistency

    Directory of Open Access Journals (Sweden)

    Ribeiro, A. P. B.

    2012-03-01

    Full Text Available A comparative study of the primary properties of six cocoa butter samples, representative of industrial blends and cocoa butter extracted from fruits cultivated in different geographical areas in Brazil is presented. The samples were evaluated according to fatty acid composition, triacylglycerol composition, regiospecific distribution, melting point, solid fat content and consistency. The results allowed for differentiating the samples according to their chemical compositions, thermal resistance properties, hardness characteristics, as well as technological adequacies and potential use in regions with tropical climates.

    En este trabajo se presenta un estudio comparativo de las propiedades primarias de mantecas de cacao, representativas de las mezclas industriales, y de la manteca de cacao original de diferentes zonas geográficas de Brasil. Las muestras fueron evaluadas de acuerdo a la composición de ácidos grasos, composición de triglicéridos, distribución de los ácidos grasos en las moléculas de triglicéridos, punto de fusión, contenido de grasa sólida y consistencia. Los resultados permitieron diferenciar las muestras por su composición química, propiedades de resistencia térmica, características de dureza, así como en materia de adecuaciones tecnológicas y los usos potenciales en las regiones de clima tropical.

  10. Climate Extreme Effects on the Chemical Composition of Temperate Grassland Species under Ambient and Elevated CO2: A Comparison of Fructan and Non-Fructan Accumulators

    OpenAIRE

    Hamada AbdElgawad; Darin Peshev; Gaurav Zinta; Wim Van den Ende; Janssens, Ivan A; Han Asard

    2014-01-01

    Elevated CO2 concentrations and extreme climate events, are two increasing components of the ongoing global climatic change factors, may alter plant chemical composition and thereby their economic and ecological characteristics, e.g. nutritional quality and decomposition rates. To investigate the impact of climate extremes on tissue quality, four temperate grassland species: the fructan accumulating grasses Lolium perenne, Poa pratensis, and the nitrogen (N) fixing legumes Medicago lupulina a...

  11. Composite resonances and their impact on the EW chiral Lagrangian

    CERN Document Server

    Sanz-Cillero, J J

    2015-01-01

    In this talk we study the low-energy effective couplings generated by strongly-coupled electroweak models that contain heavy composite resonances. Invariance under $SU(2)_L\\times SU(2)_R$ is a key ingredient in the construction of the resonance action. For simplicity, in these proceedings we focus our attention on the impact of a heavy colourless vector V, which transforms as a triplet under the custodial group. More precisely, we study the couplings that are relevant for the vector form-factors of the L+R current into two electroweak Goldstones and into two Standard Model fermions, which contribute to the oblique parameters S and T and the anomalous $Z\\to f\\bar{f}$ couplings, respectively. Our predictions are compatible with bounds from direct and indirect searches for Mv > 1.5 TeV. Finally, although we consider an antisymmetric tensor formalism to describe the vector resonance, we derive the equivalent action in the Proca four-vector representation and show that the predictions for low-energy couplings and ...

  12. Surface chemical composition of human maxillary first premolar as assessed by X-ray photoelectron spectroscopy (XPS)

    International Nuclear Information System (INIS)

    The surface chemical composition of dental enamel has been postulated as a contributing factor in the variation of bond strength of brackets bonded to teeth, and hence, the probability of bracket failure during orthodontic treatment. This study systematically investigated the chemical composition of 98 bonding surfaces of human maxillary premolars using X-ray photoelectron spectroscopy (XPS) to ascertain compositional differences between right and left first premolars. The major elements detected in all samples were calcium, phosphorus, oxygen, nitrogen and carbon. Surface compositions were highly variable between samples and several elements were found to be highly correlated. No statistical significant difference in the chemical composition of the maxillary right and left first premolars was found (p > 0.05). Knowledge of the chemical composition of enamel surfaces will facilitate future studies that relate this information to the variations in dental enamel bond strength

  13. Relating particle hygroscopicity and CCN activity to chemical composition during the HCCT-2010 field campaign

    Directory of Open Access Journals (Sweden)

    Z. J. Wu

    2013-03-01

    Full Text Available Particle hygroscopic growth at RH =90%, cloud condensation nuclei (CCN activity, and size-resolved chemical composition were concurrently measured in the Thüringer Wald mid-level mountain range in central Germany in fall season of 2010. The median hygroscopicity parameter values, κ, of 50, 75, 100, 150, 200, and 250 nm particles derived from hygroscopicity measurements are respectively 0.14, 0.14, 0.17, 0.21, 0.24, and 0.28 during the sampling period. The closure between HTDMA-measured (κHTDMA and chemical composition-derived (κchem hygroscopicity parameters was performed based on the Zdanovskii–Stokes–Robinson (ZSR mixing rule. Using size-averaged chemical composition, the κ values are substantially overpredicted (30% and 40% for 150 and 100 nm particles. Introducing size-resolved chemical composition substantially improved closure, and the differences between κHTDMA and κchem are within 10%. We found that the evaporation of NH4NO3, which may happen in H-TDMA system, could lead to a discrepancy in predicted and measured particle hygroscopic growth. The hygroscopic parameter of the organic fraction, κorg is positively correlated with the O : C ratio (κorg =0.19 · (O : C−0.03. Such correlation is helpful to define the κorg value in the closure study. κ derived from CCN measurement was around 30% (varied with particle diameters higher than that determined from particle hygroscopic growth measurements (here, hydrophilic mode is considered only. This difference might be explained by the surface tension effects, solution non-ideality, and the partial solubility of constituents or non-dissolved particle matter. However, due to these effects being included in HTDMA-derived κ calculations, we could not distinguish the specific roles of these effects in creating this gap. Therefore, extrapolating from HTDMA data to properties at the point of activation should be done with great care. Finally, closure study between CCNc-measured (κ

  14. Theoretical Prediction of Dynamic Composite Material Properties for Hypervelocity Impact Simulations

    OpenAIRE

    Ryan, S; Wicklein, M.; Mouritz, A.; Riedel , W.; Schäfer, F.; Thoma, K

    2009-01-01

    Abstract Recent advances in the description of fibre-reinforced polymer composite material behaviour under extreme loading rates provide a significant extension in capabilities for numerical simulation of hypervelocity impact on composite satellite structures. Given the complexity of the material model, extensive material characterisation is required, however, as the properties of composite materials are commonly tailored for a specific application, experimental characterisation is...

  15. Incorporating Health Impacts from Exposure to Chemicals in Food Packaging in LCA

    DEFF Research Database (Denmark)

    Ernstoff, Alexi; Trier, Xenia; Jolliet, Oliver;

    2014-01-01

    Life cycle assessments (LCA) on the environmental and public health impacts of food and beverage packaging materials have found some advantages to plastic over glass. Entirely missing from these evaluations are the health impacts of possible chemical, e.g. endocrine dis-ruptor, exposure through...... migration of chemicals from the packaging into the food product. We build a framework based on a life cycle perspective to predict which chemicals may be in a package that are not intentionally added ingredients, and we apply this approach to the US EPA’s CPCAT database. In total we find 1,154 chemicals...... within the CPCAT database related to food-contact materials; out of these 107 are potential endocrine disruptors according to the TEDX list of endocrine disruptors. We also build a framework in an effort to begin harmonizing LCA to include health impacts of chemical exposure related to food packaging...

  16. Diffusion in plasma: the Hall effect, compositional waves, and chemical spots

    CERN Document Server

    Urpin, Vadim

    2016-01-01

    We consider diffusion caused by a combined influence of the electric current and the Hall effect, and argue that such diffusion can form inhomogeneities of the chemical composition in plasma. The considered mechanism can be responsible for a formation of element spots in laboratory and astrophysical plasmas. This current-driven diffusion can be accompanied by propagation of a particular type waves in which the impurity number density oscillate alone. These compositional waves exist if the magnetic pressure in plasma is much greater than the gas pressure,

  17. Processing–structure–property relations of chemically bonded phosphate ceramic composites

    Indian Academy of Sciences (India)

    H A Colorado; C Hiel; H T Hahn

    2011-07-01

    Mechanical properties and microstructures of a chemically bonded phosphate ceramic (CBPC) and its composite with 1.0 wt% graphite nanoplatelets (GNPs) reinforcement have been investigated. Microstructure was identified by using optical and scanning electron microscopes, X-ray tomography, and X-ray diffraction. In addition, weight loss of the resin at room temperature was studied. The microstructure characterization shows that CBPC is itself a composite with several crystalline (wollastonite and brushite) and amorphous phases. SEM and micro tomography show a homogeneous distribution of crystalline phases. Bending and compression strength of the CBPC was improved by reducing bubbles via preparation in vacuum.

  18. Thermo-chemical simulation of a composite offshore vertical axis wind turbine blade

    DEFF Research Database (Denmark)

    Baran, Ismet; Tutum, Cem Celal; Hattel, Jesper Henri

    2012-01-01

    In the present study three dimensional steady state thermo-chemical simulation of a pultrusion process is investigated by using the finite element/nodal control volume (FE/NCV) technique. Pultrusion simulation of a composite having a C-shaped cross section is performed as a validation case. The...... obtained cure degree profiles for specific points match well with those in the literature. Following the validation case, the proposed numerical technique is applied to the modelling of the pultrusion of a composite blade which has a NACA0018 airfoil cross section. The effects of pulling speed and various...

  19. Effect of chemical composition and superheat on macrostructure of high Cr white iron castings

    Energy Technology Data Exchange (ETDEWEB)

    Dogan, Omer N.

    2005-08-01

    White cast irons are frequently used in applications requiring high wear resistance. High Cr white cast irons have a composite microstructure composed of hard (Fe,Cr)7C3 carbides in a steel matrix. Previous research has indicated that the equiaxed region of these high Cr white iron castings is much more wear resistant under high stress abrasive conditions than the columnar region, when the carbides are oriented perpendicular to the wear surface. In the present study, the effect of both the chemical composition, particularly carbon content, and the pouring superheat of the melt on the macrostructure of high Cr white iron castings is investigated.

  20. Spectroscopic Observation of Chemical Interaction Between Impact-induced Vapor Clouds and the Ambient Atmosphere

    Science.gov (United States)

    Sugita, S.; Heineck, J. T.; Schultz, P. H.

    2000-01-01

    Chemical reactions within impact-induced vapor clouds were observed in laboratory experiments using a spectroscopic method. The results indicate that projectile-derived carbon-rich vapor reacts intensively with atmospheric nitrogen.

  1. Collisions of small ice particles under microgravity conditions (II): Does the chemical composition of the ice change the collisional properties?

    CERN Document Server

    Hill, C R; Blum, J; Fraser, H J

    2015-01-01

    Context: Understanding the collisional properties of ice is important for understanding both the early stages of planet formation and the evolution of planetary ring systems. Simple chemicals such as methanol and formic acid are known to be present in cold protostellar regions alongside the dominant water ice; they are also likely to be incorporated into planets which form in protoplanetary disks, and planetary ring systems. However, the effect of the chemical composition of the ice on its collisional properties has not yet been studied. Aims: Collisions of 1.5 cm ice spheres composed of pure crystalline water ice, water with 5% methanol, and water with 5% formic acid were investigated to determine the effect of the ice composition on the collisional outcomes. Methods: The collisions were conducted in a dedicated experimental instrument, operated under microgravity conditions, at relative particle impact velocities between 0.01 and 0.19 m s^-1, temperatures between 131 and 160 K and a pressure of around 10^-5...

  2. Application of Chemically Accelerated Biotreatment to Reduce Risk in Oil-Impacted Soils

    Energy Technology Data Exchange (ETDEWEB)

    Paterek, J.R.; Bogan, W.W.; Sirivedhin; Tanita

    2003-03-06

    Research was conducted in six major focus areas: (1) Evaluation of the process using 6 test soils with full chemical and physical characteristics to determine controlling factors for biodegradation and chemical oxidation; (2) Determination of the sequestration time on chemical treatment suspectability; (3) Risk factors, i.e. toxicity after chemical and biological treatment; (4) Impact of chemical treatment (Fenton's Reagent) on the agents of biodegradation; (5) Description of a new genus and its type species that degrades hydrocarbons; and (6) Intermediates generate from Fenton's reagent treatment of various polynuclear aromatic hydrocarbons.

  3. The chemical composition of carbon stars: The R-type stars

    OpenAIRE

    Zamora, Olga; Abia, Carlos; PLEZ, Bertrand; Dominguez, Inmaculada; Cristallo, Sergio

    2009-01-01

    The aim of this work is to shed some light on the problem of the formation of carbon stars of R-type from a detailed study of their chemical composition. We use high-resolution and high signal-to-noise optical spectra of 23 R-type stars selected from the Hipparcos catalogue. The chemical analysis is made using spectral synthesis in LTE and state-of-the-art carbon-rich spherical model atmospheres. We derive their CNO content (including the carbon isotopic ratio), average metallicity, lithium, ...

  4. Chemical Composition and Antimicrobial Activity of Echinophora spinosa L. (Apiaceae Essential Oil

    Directory of Open Access Journals (Sweden)

    Jasmina M. Glamočlija

    2011-01-01

    Full Text Available The present study was undertaken to investigate the chemical composition and effectiveness of the essential oil isolated from Echinophora spinosa on different bacterial and fungal species. Chemical analysis (GC/MS showed that δ³-carene (60,86 %, α-phellandrene (7,12%, p-cymene (6,22 %, myrcene (4,82 % and β-phellandrene (2,73 % were dominant components in this oil. Essential oil tested showed good antimicrobial activity. Antimicrobial potential of this oil was higher than potential of commercial antimicrobial drugs tested, streptomycin, bifonozole and ketoconazole.

  5. Chemical Composition and Biological Activities of Essential Oil from Salvia sclarea Plants Regenerated in vitro

    OpenAIRE

    Marzena Więckowska-Szakiel; Halina Wysokińska; Urszula Krajewska; Marek Różalski; Barbara Różalska; Danuta Kalemba; Łukasz Kuźma

    2009-01-01

    The essential oils obtained by hydrodistillation of dried aerial parts of Salvia sclarea L. plants, regenerated in vitro and reproduced from seeds, were analyzed by GC and GC-MS. The oils from in vitro and in vivo plants were compared in respect to their chemical composition as well as antimicrobial and cytotoxic activities. The chemical profiles of both oils were very similar, although the yield of essential oil from in vitro plants was lower (0.1%, v/w) than the oil yield isolated from in v...

  6. Prediction of physical and chemical body compositions of purebred and crossbred Nellore cattle using the composition of a rib section.

    Science.gov (United States)

    Marcondes, M I; Tedeschi, L O; Valadares Filho, S C; Chizzotti, M L

    2012-04-01

    The goal of this research was to develop empirical equations to predict chemical and physical compositions of the carcass and the body using the composition of the 9th- to 11th-rib section (rib(9-11)) and other measurements. A database (n = 246) from 6 studies was developed and comprised 37 bulls (BU), 115 steers (STR), and 94 heifers (HF), of which 132 were Nellore (NEL), 76 were NEL × Angus crossbreds (NA), and 38 were NEL × Simmental crossbreds (NS). The right half carcass and the rib(9-11) from the left half carcass were analyzed for ether extract (EE), CP, and water. The remaining components were chemically analyzed to determine the composition of the body. A stepwise procedure was used to determine the variable inclusion in the regression models. The variables included were EE in the rib(9-11) (EER; %), CP in the rib(9-11) (CPR; %), water in the rib(9-11) (WR; %), visceral fat (VF; %; KPH and mesenteric fats), organs plus viscera (OV; %), carcass dressing percentage (CD; %), cold carcass weight (kg), and empty BW (EBW; kg). No sex or breed effects were found on EE and CP compositions of the carcass (C(EE) and C(CP), respectively; %); the equations were as follows: C(EE) = 4.31 + 0.31 × EER + 1.37 × VF [n = 241; R(2) = 0.83; mean square error (MSE) = 4.53] and C(CP) = 17.92 + 0.60 × CPR - 0.17 × CD (n = 238; R(2) = 0.50; MSE = 1.58). Breed affected water content in the carcass (C(W), %); the equations were as follows: C(W) = 48.74 + 0.28 × WR - 0.017 × EBW for NEL; C(W) = 46.69 + 0.32 × WR - 0.017 × EBW for NA; and C(W) = 38.06 + 0.48 × WR - 0.017 × EBW for NS (n = 243; R(2) = 0.67; MSE = 5.17). A sex effect was found on body chemical EE composition (BW(EE)); the equations were as follows: BW(EE) = 2.75 + 0.33 × EER + 1.80 × VF for BU; BW(EE) = 1.84 + 0.33 × EER + 1.91 × VF for STR; and BW(EE) = 4.77 + 0.33 × EER + 1.28 × VF for HF (n = 243; R(2) = 0.89; MSE = 3.88). No sex or breed effects were found on CP composition in the body (BW

  7. Tropical deep convection and its impact on composition in global and mesoscale models - Part 1: Meteorology and comparison with observations.

    Directory of Open Access Journals (Sweden)

    M. R. Russo

    2010-08-01

    Full Text Available Tropical convection is a very important atmospheric process acting on the water cycle, radiative budget of the atmosphere and air composition of the upper troposphere and lower stratosphere (UTLS, and it affects a broad range of spatial and temporal scales. The fast vertical transport in convective plumes can efficiently redistribute water vapour and pollutants up to the Tropical Tropopause Layer (TTL, and therefore affect the composition of the lower stratosphere. Chemistry Climate Models and Chemistry Transport Models are routinely used to study chemical processes in the atmosphere. In these models convection and convective transport of tracers are parameterised, and due to the interplay of chemical and dynamical processes, it has proven difficult to evaluate the convective transport of chemical species by comparison with observed chemical fields.

    In this work we investigate different characteristics of tropical convection by using convective proxies from many independent observational datasets (including surface precipitation rates, cloud top pressure and OLR. We use observations to analyse the seasonal cycle and geographical preferences of convection, and its impact on water vapour. Using highly temporally resolved cloud top data we calculate the frequency distribution of high clouds in three tropical regions. The observational data is used as a benchmark for a number of numerical models, with a view to assess the ability of models to reproduce the seasonality, preferential location and vertical extent of tropical convection. Finally we discuss the implications of our findings on modelling the composition of the upper troposphere and lower stratosphere.

  8. IMPACTS OF SMALL COLUMN ION EXCHANGE STREAMS ON DWPF GLASS FORMULATION: KT05- AND KT06-SERIES GLASS COMPOSITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Edwards, T.

    2011-01-03

    This report is the second in a series of studies of the impacts of the addition of Crystalline Silicotitanate (CST) and Monosodium Titanate (MST) from the Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) glass waste form and the applicability of the DWPF process control models. The KT05-series glasses were selected, fabricated, and characterized to further study glass compositions where iron titanate crystals had been previously found to form. The intent was to better understand the mechanisms and compositions that favored the formation of crystals containing titanium. Formation of these crystalline phases was confirmed. Increased Na{sub 2}O concentrations had little if any impact on reducing the propensity for the formation of the iron titanate crystalline phases. Other physical properties of these glasses were not measured since the intent was to focus on crystallization. Additional studies are suggested to investigate the potential impacts of Al{sub 2}O{sub 3} and K{sub 2}O on crystallization in glasses with high TiO{sub 2} concentrations. The KT06-series glasses were selected, fabricated, and characterized to further study glass compositions that, while broader than the current projections for DWPF feeds with SCIX material, are potential candidates for future processing (i.e., the compositions are acceptable for processing by the Product Composition Control System (PCCS) with the exception of the current TiO{sub 2} concentration constraint). The chemical compositions of these glasses matched well with the target values. The chemical durabilities of all the glasses were acceptable relative to the Environmental Assessment (EA) benchmark. Minor crystallization was identified in some of the slowly cooled glasses, although this crystallization did not impact chemical durability. Several of the KT06-series compositions had durability values that, while acceptable, were not accurately predicted by the current durability models

  9. Chemical Footprint Method for Improved Communication of Freshwater Ecotoxicity Impacts in the Context of Ecological Limits

    DEFF Research Database (Denmark)

    Bjørn, Anders; Diamond, Miriam; Birkved, Morten;

    2014-01-01

    The ecological footprint method has been successful in communicating environmental impacts of anthropogenic activities in the context of ecological limits. We introduce a chemical footprint method that expresses ecotoxicity impacts from anthropogenic chemical emissions as the dilution needed...... capacity was likely exceeded for most European countries and all landlocked metropolitan areas. The second case study indicated that peak application of pesticides alone was likely to exceed Denmark's freshwater dilution capacity in 1999-2011. The uncertainty assessment showed that better spatially...

  10. Curaua fiber reinforced high-density polyethylene composites: effect of impact modifier and fiber loading

    Directory of Open Access Journals (Sweden)

    Jaqueline Albano de Morais

    2016-01-01

    Full Text Available Abstract Short fibers are used in thermoplastic composites to increase their tensile and flexural resistance; however, it often decreases impact resistance. Composites with short vegetal fibers are not an exception to this behavior. The purpose of this work is to produce a vegetal fiber reinforced composite with improved tensile and impact resistance in relation to the polymer matrix. We used poly(ethylene-co-vinyl acetate, EVA, to recover the impact resistance of high density polyethylene, HDPE, reinforced with Curauá fibers, CF. Blends and composites were processed in a corotating twin screw extruder. The pure polymers, blends and composites were characterized by differential scanning calorimetry, thermogravimetry, infrared spectroscopy, scanning electron microscopy, tensile mechanical properties and Izod impact resistance. EVA used as impact modifier in the HDPE matrix exhibited a co-continuous phase and in the composites the fibers were homogeneously dispersed. The best combination of mechanical properties, tensile, flexural and impact, were obtained for the formulations of composites with 20 wt. % of CF and 20 to 40 wt. % of EVA. The composite prepared with 20 wt. % EVA and containing 30 wt. % of CF showed impact resistance comparable to pure HDPE and improved tensile and flexural mechanical properties.

  11. Effects of chemical composition and test conditions on the dynamic tensile response of Zr-based metallic glasses

    Science.gov (United States)

    Wang, F.; Laws, K. J.; Trujillo, C. P.; Brown, A. D.; Cerreta, E. K.; Hazell, P. J.; Quadir, M. Z.; Ferry, M.; Escobedo, J. P.

    2015-06-01

    The effects of impact velocity and temperature on the dynamic mechanical behavior of two bulk metallic glasses (BMG) with slightly different elemental compositions (Zr55Cu30Ni5Al30 and Zr46Cu38Ag8Al38) have been investigated. Bullet-shaped samples were accelerated by a gas gun to speeds in the 400 ~ 600m/s range and tested at room temperature and 250 °C. The specimens impacted a steel extrusion die which subjected them to high strains at high strain-rates. The extruded samples were subsequently soft recovered by using low density foams. The deformed specimens were examined by optical and electron microscopy, x-ray diffraction and hardness measurements. The characterization results aided to assess the effect of chemical composition on the microstructural evolution, i.e. phase changes or crystallization, which might influence the ductility on the nominally brittle amorphous BMGs. The most significant results from this study will be presented. School of Engineering and Information Technology, UNSW Canberra.

  12. Low Velocity Impact Response Analysis of Shape Memory Alloy Reinforced Composite Beam

    Institute of Scientific and Technical Information of China (English)

    WU Yongdong; ZHONG Weifang; WU Guorong; ZOU Jing

    2005-01-01

    The low velocity impact responses of shape memory alloy ( SMA ) reinforced composite beams were analyzed by employing the finite element method. The finite element dynamic equation was solved by the Newmark direct integration method, the impact contact force was determined using the Hertzian contact law, and the influence of SMA fibers on stiffness matrix is studied. Numerical results show that the SMA fibers can effectively improve the low velocity impact response property of composite beam.

  13. Effects of the manufacturing parameter and chemical composition on properties of HANA-4 cladding tube

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Yong; Kim, Yoon Ho; Jang, Hun; Choi, Min Young; Mok, Yong Kyoon [KEPCO Nuclear Fuel, Daejeon (Korea, Republic of)

    2015-05-15

    KEPCO NF conducted some researches to improve workability of HANA-4 cladding tube. It was changed to TREX outer diameter for increase Q-factor in first pilgering process related to the workability of cladding tube. In general, a increasing Q-factor leads to improvement yield of tubing manufacture in zirconium alloys. And decreasing of amount of alloying element changed cladding properties. The secondary phase particle analysis, the corrosion behavior and the texture were examined for HANA-4 alloys with adjustments of chemical compositions and TREX outer diameter for the purpose of enhancement formability. The precipitate type, size, and distribution of HANA-4 alloy were not changed as the chemical composition and the manufacturing parameters. The corrosion weight gain was decreased with reducing alloying elements, which considered the beneficial effect of reduced tin.

  14. Evaluation of the Chemical Composition of Brazilian Commercial Cymbopogon citratus (D.C. Stapf Samples

    Directory of Open Access Journals (Sweden)

    Evandro de Castro Melo

    2008-08-01

    Full Text Available Abstract: The concentration and the chemical composition of the essential oils obtained from different samples of Cymbopogon citratus were evaluated. Among the 12 samples investigated (11 dried leaf samples and fresh plant leaves, seven presented essential oil concentrations within the threshold established by the Brazilian legislation. The moisture content was also determined and the majority of the samples presented humidity contents near 12%. The GC and GC/MS analyses of the essential oils led to identification of 22 compounds, with neral and geranial as the two major components. The total percentage of these two compounds varied within the investigated sample oils from 40.7% to 75.4%. In addition, a considerable variation in the chemical composition of the analyzed samples was observed. The process of grinding the leaves significantly decreased (by up to 68% the essential oil content, as well as the percentage of myrcene in the oils.

  15. Effects of the manufacturing parameter and chemical composition on properties of HANA-4 cladding tube

    International Nuclear Information System (INIS)

    KEPCO NF conducted some researches to improve workability of HANA-4 cladding tube. It was changed to TREX outer diameter for increase Q-factor in first pilgering process related to the workability of cladding tube. In general, a increasing Q-factor leads to improvement yield of tubing manufacture in zirconium alloys. And decreasing of amount of alloying element changed cladding properties. The secondary phase particle analysis, the corrosion behavior and the texture were examined for HANA-4 alloys with adjustments of chemical compositions and TREX outer diameter for the purpose of enhancement formability. The precipitate type, size, and distribution of HANA-4 alloy were not changed as the chemical composition and the manufacturing parameters. The corrosion weight gain was decreased with reducing alloying elements, which considered the beneficial effect of reduced tin

  16. Ultra high energy cosmic rays: implications of Auger data for source spectra and chemical composition

    CERN Document Server

    Aloisio, R; Blasi, P

    2013-01-01

    We use a kinetic-equation approach to propagation of ultra high energy cosmic ray protons and nuclei to infer possible implications of the data on spectrum and chemical composition collected by the Pierre Auger Observatory. Using a homogeneous source distribution, we show that a simultaneous fit to the spectrum, elongation rate $X_{max}(E)$ and dispersion $\\sigma(X_{max})$ implies the injection of nuclei with very hard spectra. This leads however to underestimate the flux at energies $E\\leq 5\\times 10^{18}$ eV, thereby implying that an additional cosmic ray component is required, which needs to be of extragalactic origin. We discuss the nature of this additional component in terms of the recent findings of KASCADE-Grande on fluxes and chemical composition, which allows to describe the transition from Galactic to extragalactic cosmic rays.

  17. Surge-Resistant Nanocomposite Enameled Wire Using Silica Nanoparticles with Binary Chemical Compositions on the Surface

    Directory of Open Access Journals (Sweden)

    Jeseung Yoo

    2015-01-01

    Full Text Available We developed polyesterimide (PEI nanocomposite enameled wires using surface-modified silica nanoparticles with binary chemical compositions on the surface. The modification was done using silanes assisted by ultrasound, which facilitated high density modification. Two different trimethoxysilanes were chosen for the modification on the basis of resemblance of chemical compositions on the silica surface to PEI varnish. The surface-modified silica was well dispersed in PEI varnish, which was confirmed by optical observation and viscosity measurement. The glass transition temperature of the silica-PEI nanocomposite increased with the silica content. The silica-dispersed PEI varnish was then used for enameled wire fabrication. The silica-PEI nanocomposite enameled wire exhibited a much longer lifetime compared to that of neat PEI enameled wire in partial discharge conditions.

  18. Chemical Composition and Fatty Acids of Glodok Fish by High Thermal Processing

    Directory of Open Access Journals (Sweden)

    Sri Purwaningsih

    2014-11-01

    Full Text Available Glodok is an economically underrated fish with a high nutrient content. The research aims to study the changes on chemical composition, fatty acids, omega-6 and omega-3 ratio in glodok muscle after processing with different methods of boiling, steaming, and boiling with addition of salt (3%. The results showed that the treatment (boiling, steaming, and boiling with addition of salt gives a significant effect (α=0.05 in water content, ash, lipid content, nervonat acid, linoleic acid, arachidonic acid, EPA, and DHA. The best processing method was steaming. The ratio of omega-3 and omega-6 in fresh glodok fish was 2,1:1, which is higher than WHO recommendation of 0,6:1,7.Keywords: chemical composition, fatty acid, glodok fish, processing

  19. Chemical composition and in vitro antioxidative potential of essential oil isolated from Curcuma longa L. leaves

    Institute of Scientific and Technical Information of China (English)

    R. Priya; A. Prathapan; K.G Raghu; A. Nirmala Menon

    2012-01-01

    Objective: To determine the chemical composition and antioxidant potential of essential oil isolated from the leaves of Curcuma longa (turmeric). Methods: Chemical composition of the oil was analyzed using GC-MS. Antiperoxidative potential was evaluated using linoliec acid emulsion system. Free radical scavenging activity was evaluated using stable DPPH and ABTS free radicals. Results: GC-MS analyses showed that major compound present in the turmeric leaf oil is b-sesquiphellandrene (22.8%) followed by terpinolene (9.5%). Essential oil also exhibited reductive potential and antioxidant potential in linoleic acid emulsion system along with DPPH and ABTS free radical scavenging potential. Conclusions: The overall result suggests that turmeric leaf oil is capable of retarding oxidation reaction and free radical mediated damage and can be developed as a potent natural antioxidant.

  20. Chemical composition and antimicrobial activity of the essential oils of Pinus pinaster

    Institute of Scientific and Technical Information of China (English)

    Nouara Ait Mimoune; Djouher Ait Mimoune; Aziza Yataghene

    2013-01-01

    Objective: To investigate the antimicrobial activity and chemical composition of essential oils ofPinus pinaster. Methods: Essential oils were extracted from the needles by hydrodistillation. The chemical composition of the obtained essential oils was analyzed using GC-MS technique. The antimicrobial potential has been tested against six microorganisms performing the disc diffusion assay.Results:Twenty-three components have been identified. β-caryophyllene (30.9%) and β-selinene (13.45%) were predominant compounds. The essential oil exhibited a moderate activity againstStaphylococcus aureus, Bacillus subtilis and Escherichia coli, but did not affect the growth of Erwinia amylovora. Aspergillus flavus and Aspergillus niger were not inhibited by maritime pine essential oils.Conclusions:The essential oils from Pinus pinaster can be used as an antibacterial agent.

  1. Effect of enzyme addition to forage at ensiling on silage chemical composition and NDF degradation characteristics

    DEFF Research Database (Denmark)

    Dehghani, Mohammad Reza; Weisbjerg, Martin Riis; Hvelplund, Torben;

    2012-01-01

    The effect of different exogenous fibrolytic enzymes added to forages at ensiling was examined for effect on chemical composition and in vitro NDF degradability characteristics of the resulting silage. Maize stover and lucerne were used to study effect on chemical composition in experiment 1......-glucanase and pectinase activity increased lactic acid and decreased butyric acid, ammonia and pH compared with control silage, and increased glucose concentration in lucerne silage. NDF concentration generally decreased due to enzyme treatment with glucanase, β-glucanase and xylanase activity and in vitro organic matter...... with treatment with individual enzymes. Enzyme mix with xylanase, glucanase and β-glucanase activities was effective for maize stover, whereas a mix containing pectinase activity was most effective for reducing pH in lucerne. Data from this study suggest that adding fibrolytic enzymes to forages at ensiling can...

  2. Chemical composition and variability of the volatile components from inflorescences of Cirsium species.

    Science.gov (United States)

    Kozyra, Małgorzata; Mardarowicz, Marek; Kochmańska, Joanna

    2015-01-01

    The present study aimed to investigate the chemical composition of the essential oils of inflorescences Cirsium spp. (Asteraceae) by GC/MS method. Essential oils were extracted from the inflorescences of Cirsium pannonicum (Link), Cirsium ligulare Boiss., Cirsium heterophyllum (L.) Hill., Cirsium acaule (L.) Scop., Cirsium oleraceum (L.) Scop., Cirsium dissectum (L.) Hill., Cirsium decussatum (Janka) and Cirsium eriophorum (L.) Scop., using the steam distillation method. A gas chromatography-mass spectrometry method was employed for the analysis of essential oils. Our study shows the differences in chemical composition of volatile oils in the inflorescences of Cirsium spp. The main components of the essential oil were ketones and aldehydes with a long carbon side-chain. Volatile oils also contained small amounts of terpenes: thymol, β-linalool, eugenol, carvacrol and fatty acids with odd number of carbon atoms-waxes. The compounds in the essential oils obtained from inflorescences Cirsium L. species have been identified for the first time. PMID:25674834

  3. Chemical composition, phytotoxic and antifungal properties of Ruta chalepensis L. essential oils.

    Science.gov (United States)

    Bouabidi, Wafa; Hanana, Mohsen; Gargouri, Samia; Amri, Ismail; Fezzani, Tarek; Ksontini, Mustapha; Jamoussi, Bassem; Hamrouni, Lamia

    2015-01-01

    The chemical composition, and phytotoxic and antifungal activities of the essential oils isolated by using hydrodistillation from the aerial parts of Tunisian rue were evaluated. Significant variations were observed among harvest periods. The analysis of the chemical composition by gas chromatography/mass spectrometry showed that 2-undecanone (33.4-49.8%), 2-heptanol acetate (13.5-15.4%) and α-pinene (9.8-11.9%) were the main components. The antifungal ability of rue essential oils was tested by using disc agar diffusion against ten plant pathogenic fungi. A high antifungal activity was observed for the essential oil isolated at flowering developmental phase. Furthermore, rue essential oils showed high level of herbicidal activity against several weeds.

  4. Chemical composition, digestibility and antinutritional factors content of two wild legumes: Styphonolobium burseroides and Acacia bilimekii.

    Science.gov (United States)

    Sotelo, A; Migliaro, P; Toledo, A; Contreras, J

    1999-01-01

    The chemical composition, digestibility and toxin contents of two wild legumes: Styphnolobium burseroides and Acacia bilimekii, collected in a semi-arid zone of Mexico, were determined. Both legumes had a high fiber content. The seeds of Styphnolobium burseroides had a low protein content (14%), and the pod a high content of reducing sugars. However the seeds of Acacia bilimekii had a high protein concentration (35%). The seed proteins were low in sulphur amino acids and tryptophan in both legumes but were rich in lysine. Trypsin inhibitors and lectins were present in low concentrations; alkaloids and cyanogenic glucosides were not detected. The in vitro digestibility for monogastric animals was low but the same test with ruminal juice showed a high digestibility for both legumes. Based on their chemical composition and digestibility, these legumes could be a good alternative source in the feeding of ruminants. PMID:10646630

  5. Effect of Crossbreed on the Muscle Quality (Chemical Composition) in Yun-Ling Black Goats

    Institute of Scientific and Technical Information of China (English)

    JIA Jun-jing; TIAN Yun-bo; ZHANG Xi; HUANG Qi-chao; WEN Sheng-ping; GU Feng-ying; GE Chang-rong; CAO Zhen-hui; CHENG Zhi-bin; M. Jois

    2009-01-01

    Twenty castrated male goats, each of Yun-Ling Black goats (YLB goat), N×YLB hybrid goats (Nubian ♂×Yun-Ling Black goats ♀) and B×YLB hybrid goats (Boer ♂×Yun-Ling Black goats ♀), were used to evaluate the effect of crossbreeding on the meat chemical composition in the YLB goats of China. After weaning of 90 days, all the experimental goats were reared on natural pasture when they were slaughtered at an age of 730 days. The longissimus dorsi (LD) and biceps femoris (BF) muscles were sampled from each carcass to determine chemical compositions. Both hybrid goats had higher protein content (P0.05). The YLB goats had significantly higher (P0.05). In contrast, the proportion of poly-unsaturated in the YLB goats was significantly lower (P<0.05) than that in the hybrid goats.

  6. Expected gamma ray emission spectra from the lunar surface as a function of chemical composition.

    Science.gov (United States)

    Reedy, R. C.; Arnold, J. R.; Trombka, J. I.

    1973-01-01

    The gamma rays emitted from the moon or any similar body carry information on the chemical composition of the surface layer. The elements most easily measured are K, U, Th, and major elements such as O, Si, Mg, and Fe. The expected fluxes of gamma ray lines are calculated for four lunar compositions and one chondritic chemistry from a consideration of the important emission mechanisms: natural radioactivity, inelastic scatter, neutron capture, and induced radioactivity. The models used for cosmic ray interactions are those of Reedy and Arnold (1972) and Lingenfelter et al. (1972). The areal resolution of the experiment is calculated to be around 70-140 km under the conditions of the Apollo 15 and 16 experiments. Finally, a method is described for recovering the chemical information from the observed scintillation spectra obtained in these experiments.

  7. Expected gamma-ray emission spectra from the lunar surface as a function of chemical composition

    Science.gov (United States)

    Reedy, R. C.; Arnold, J. R.; Trombka, J. I.

    1973-01-01

    The gamma rays emitted from the moon or any similar body carry information on the chemical composition of the surface layer. The elements most easily measured are K, U, Th and major elements such as O, Si, Mg, and Fe. The expected fluxes of gamma ray lines were calculated for four lunar compositions and one chondritic chemistry from a consideration of the important emission mechanisms: natural radioactivity, inelastic scatter, neutron capture, and induced radioactivity. The models used for cosmic ray interactions were those of Reedy and Arnold and Lingenfelter. The areal resolution of the experiment was calculated to be around 70 to 140 km under the conditions of the Apollo 15 and 16 experiments. Finally, a method was described for recovering the chemical information from the observed scintillation spectra obtained in these experiments.

  8. Instrumental neutron activation analysis applied to the chemical composition of steel

    International Nuclear Information System (INIS)

    In the technological application of steel, the knowledge of its chemical composition is of fundamental importance as it is directly related to various properties, such as, mechanical properties, corrosion resistance, temperability and others. Instrumental Neutron Activation Analysis, INAA, is an appropriate technique in the evaluation of the chemical composition of steel and other metallurgical materials due to the possibility of simultaneous determination of a great number of elements without the inconvenience of sample dissolution. Element determination is achieved with good accuracy and precision for major and minor constituents as well as for trace elements. In this paper, INAA was used in the determination of As, Co, Cu, Mn, Mo, V and W in steel and iron samples and in certified reference materials. The obtained accuracy and precision were less than 10% for most of the elements confirming the possibility of its use in the study of metallic samples and in the certification of new reference materials. (author)

  9. Chemical Composition and Antibacterial Activity of Essential Oils of Two Species of Lamiaceae against Phytopathogenic Bacteria.

    Science.gov (United States)

    Gormez, Arzu; Bozari, Sedat; Yanmis, Derya; Gulluce, Medine; Sahin, Fikrettin; Agar, Guleray

    2015-01-01

    In this study, we aimed to determine chemical composition and antibacterial activities of Satureja hortensis and Calamintha nepeta against to 20 phytopathogenic bacteria causing serious crop loss. The essential oils of S. hortensis and C. nepeta were isolated by the hydrodistillation method and the chemical composition of the essential oils were analyzed by GC-MS. The antibacterial properties of the essential oils were evaluated against 20 phytopathogenic bacteria through Disc diffusion assay and micro dilution assay. The results revealed that the essential oils of S. hortensis and C. nepeta have significant antibacterial activity. Furthermore, the findings of the study are valuable for future investigations focusing on the alternative natural compounds to control plant diseases. PMID:26373171

  10. Chemical composition shape form and size of suspended solids in the atmosphere carried by rain water

    International Nuclear Information System (INIS)

    The interest of this work is to know about shape form, size and chemical composition of the suspended solids in the atmosphere of Toluca city and which are carried by the rains. The harvest of the samples was carried out during january to november 1999. The separation of the particulate matter from the rain water was realized through centrifugation. The solids were analysed by Scanning Electron Microscopy to know the shape form and size and the chemical composition was determined by X-ray dispersive energy in general form and of some particles individually analysed. The p H was measured to the solutions and the quantification of some dissolved ions by the Icp technique was realized. The results of the solids showed C, O, Na, Mg, Al, Si, S, P, K, Ca, Ti and Fe. Moreover they present sizes which varying from a ten of nanometers until some tens of microns. (Author)

  11. Chemical composition and antimicrobial activity of the essential oils of Pinus pinaster

    Directory of Open Access Journals (Sweden)

    Nouara Ait Mimoune

    2013-08-01

    Full Text Available Objective: To investigate the antimicrobial activity and chemical composition of essential oils of Pinus pinaster. Methods: Essential oils were extracted from the needles by hydrodistillation. The chemical composition of the obtained essential oils was analyzed using GC-MS technique. The antimicrobial potential has been tested against six microorganisms performing the disc diffusion assay. Results: Twenty-three components have been identified. β-caryophyllene (30.9% and β-selinene (13.45% were predominant compounds. The essential oil exhibited a moderate activity against Staphylococcus aureus, Bacillus subtilis and Escherichia coli, but did not affect the growth of Erwinia amylovora. Aspergillus flavus and Aspergillus niger were not inhibited by maritime pine essential oils. Conclusions: The essential oils from Pinus pinaster can be used as an antibacterial agent.

  12. Chemically Modified Ordered Mesoporous Carbon/Polyaniline Composites for Electrochemical Capacitors

    Institute of Scientific and Technical Information of China (English)

    KONG Ling-bin; ZHANG Jing; CAI Jian-jun; YANG Zhen-sheng; LUO Yong-chun; KANG Long

    2011-01-01

    Chemically modified ordered mesoporous carbon CMK-3 materials were prepared by means of an easy wet-oxidative method in 2 mol/L nitric acid aqueous solution. A large amount of oxygen-containing functional groups were introduced onto the CMK-3 surface. Modified CMK-3(m-CMK-3) and aniline monomer were polymerized via an in situ chemical oxidative polymerization method. Morphological characterizations of m-CMK-3/PANI (polyaniline) composites were carried out via field emission scanning electron microscopy(SEM). Their electrochemical properties were investigated with cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy. The m-CMK-3/PANI composites have excellent properties in capacitance, and the highest specific capacitance(SC) value was up to 489 F/g, suggesting their potential application in the electrode material for electrochemical capacitors.

  13. Numerical modeling of chemical spills and assessment of their environmental impacts

    Science.gov (United States)

    Chemical spills in surface water bodies often occur in modern societies, which cause significant impacts on water quality, eco-environment and drinking water safety. In this paper, chemical spill contamination in water resources was studied using a depth-integrated computational model, CCHE2D, for p...

  14. Role of primary substrate composition and concentration on attenuation of trace organic chemicals in managed aquifer recharge systems

    KAUST Repository

    Alidina, Mazahirali

    2014-11-01

    This study was undertaken to investigate the role of primary substrate composition and concentration on the attenuation of biodegradable emerging trace organic chemicals (TOrCs) in simulated managed aquifer recharge (MAR) systems. Four sets of soil columns were established in the laboratory, each receiving synthetic feed solutions comprising different ratios and concentrations of peptone-yeast and humic acid as the primary substrate to investigate the effect on removal of six TOrCs (atenolol, caffeine, diclofenac, gemfibrozil, primidone, and trimethoprim). Based on abiotic control experiments, adsorption was not identified as a significant attenuation mechanism for primidone, gemfibrozil and diclofenac. Caffeine, atenolol and trimethoprim displayed initial adsorptive losses, however, adsorption coefficients derived from batch tests confirmed that adsorption was limited and in the long-term experiment, biodegradation was the dominant attenuation process. Within a travel time of 16h, caffeine - an easily degradable compound exhibited removal exceeding 75% regardless of composition or concentration of the primary substrate. Primidone - a poorly degradable compound, showed no removal in any column regardless of the nature of the primary substrate. The composition and concentration of the primary substrate, however, had an effect on attenuation of moderately degradable TOrCs, such as atenolol, gemfibrozil and diclofenac, with the primary substrate composition seeming to have a larger impact on TOrC attenuation than its concentration. When the primary substrate consisted mainly of refractory substrate (humic acid), higher removal of the moderately degradable TOrCs was observed. The microbial communities in the columns receiving more refractory carbon, were noted to be more diverse and hence likely able to express a wider range of enzymes, which were more suitable for TOrC transformation. The effect of the primary substrate on microbial community composition, diversity

  15. Chemical Composition and Antifungal Activity of Ocimum basilicum L. Essential Oil

    OpenAIRE

    Neveen Helmy Abou El-Soud; Mohamed Deabes; Lamia Abou El-Kassem; Mona Khalil

    2015-01-01

    BACKGROUND: The leaves of Ocimum basilicum L. (basil) are used in traditional cuisine as spices; its essential oil has found a wide application in perfumery, dental products as well as antifungal agents. AIM: To assess the chemical composition as well as the in vitro antifungal activity of O. basilicum L. essential oil against Aspergillus flavus fungal growth and aflatoxin B1 production. MATERIAL AND METHODS: The essential oil of O. basilicum was obtained by hydrodistillation and anal...

  16. Assessment of Water and Sediment Physical-Chemical Composition in the West Coast of Maracaibo Lake

    OpenAIRE

    Jorge Moronta-Riera; Beatriz Riverón-Zaldívar

    2016-01-01

    The objective of this investigation was to determine the physical and chemical composition of the water streams and sediments of the Maracaibo Lake in three sampling areas located in Tía Juana, Lagunillas and Ceuta in order to know the level of contamination and assess water quality based on permissible values established by the 883 Decree. The results indicate that the overall hydrocarbon concentrations in the water and sediments are above permissible levels. It is concluded that petroleum p...

  17. Chemical Composition and Biological Activities of Fragrant Mexican Copal (Bursera spp.).

    Science.gov (United States)

    Gigliarelli, Giulia; Becerra, Judith X; Curini, Massimo; Marcotullio, Maria Carla

    2015-12-12

    Copal is the Spanish word used to describe aromatic resins from several genera of plants. Mexican copal derives from several Bursera spp., Protium copal, some Pinus spp. (e.g., P. pseudostrobus) and a few Fabaceae spp. It has been used for centuries as incense for religious ceremonies, as a food preservative, and as a treatment for several illnesses. The aim of this review is to analyze the chemical composition and biological activity of commercial Mexican Bursera copal.

  18. CHEMICAL COMPOSITION, ANTIOXIDANT AND ANTIMICROBIAL PROPERTIES OF THREE ESSENTIAL OILS FROM PORTUGUESE FLORA

    OpenAIRE

    Martins, M. Rosário; Tinoco, M. Teresa; Almeida, A. S.; J. Cruz-Morais

    2012-01-01

    The present work reports on the evaluation of chemical composition and antioxidant and antimicrobial activities of essential oils of three aromatic herbs, growing wild in the south of Portugal, used in traditional food preparations: Foeniculum vulgare, Mentha spicata and Rosmarinus officinalis. The principal components of essential oils were anethole (41.2%) for F. vulgare, carvone (41.1%) for M. spicata and myrcene (23.7%) for R. officinalis. Essential oils showed antioxidant activity eit...

  19. Chemical composition and antibacterial activity of essential oils against human pathogenic bacteria

    OpenAIRE

    M. Sokovic; Marin, P.D.; Brkic, D.; Griensven, van, L.J.L.D.

    2008-01-01

    The chemical composition and antibacterial activity of essential oils from 10 aromatic plants Matricaria chamommilla, Mentha piperita, M. spicata, Lavandula angustifolia, Ocimum basilicum, Thymus vulgaris, Origanum vulgare, Salvia officinalis, Citrus limon and C. aurantium have been determined. Antibacterial activity of these oils and their components; i.e. linalyl acetate, linalool, limonene, pinene, ß-pinene, 1,8-cineole, camphor, carvacrol, thymol and menthol were assayed against a variety...

  20. The Chemical Compositions of Thermal Waters at Ciarinem and Cilayu, Pameungpeuk, West Java - Indonesia

    Directory of Open Access Journals (Sweden)

    N.R. Herdianita

    2008-03-01

    Full Text Available Thermal waters at Ciarinem and Cilayu, Pameungpeuk, West Java, Indonesia have different characteristics: Ciarinem water is a steam heated sulfate type and occurs as hot springs, whereas Cilayu water discharges as hot pools and is a chloride water type. Their chemical compositions indicate that the thermal waters are outflows of a volcanic–magmatic associated geothermal system. The solute geothermometers calculate that the subsurface reservoir temperatures range from 150o to 200ºC.

  1. Chemical composition and antimicrobial activity of Hedyosmum brasiliense Miq., Chloranthaceae, essential oil

    OpenAIRE

    Karoline Kirchner; Alberto Wisniewski Jr; Alexandre Bella Cruz; Maique W. Biavatti; Netz, Daisy J. A.

    2010-01-01

    Hedyosmum brasiliense Miq., Chloranthaceae, is an endemic species of Brazil, locally known as "cidrão". Although H. brasiliense is popularly used as sedative, chemical constituents of this species remains uncharacterized. This work presents the essential oil composition, obtained by distillation of the fresh leaves and from a stored sample for three months, analysed by GC-FID and GC-MS. The inhibitory effects of essential oil were tested by the agar dilution method against six bacterial speci...

  2. Neem cake: chemical composition and larvicidal activity on Asian tiger mosquito.

    Science.gov (United States)

    Nicoletti, Marcello; Mariani, Susanna; Maccioni, Oliviero; Coccioletti, Tiziana; Murugan, Kardaray

    2012-07-01

    New pesticides based on natural products are urgently needed, in consideration of their environmental care and lower collateral effects. Neem oil, the main product obtained from Azadiractha indica A. Juss, commonly known as neem tree, is mainly used in medical devices, cosmetics and soaps, as well as important insecticide. Manufacturing of neem oil first includes the collection of the neem seeds as raw material used for the extraction. Neem cake is the waste by-product remaining after extraction processes. The quality of the oil, as that of the cake, strictly depends from the quality of seeds as well as from the type of extraction processes used, which strongly influences the chemical composition of the product. Currently, the different types of commercial neem cake on the market are roughly identified as oiled and deoiled cake, but several other differences can be detected. The differences are relevant and must be determined, to obtain the necessary correlation between chemical constitution and larvicidal activities. Six different batches of neem cake, marketed by several Indian and European companies, were analyzed by HPLC and HPTLC, and their fingerprints compared, obtaining information about the different compositions, focusing in particular on nortriterpenes, considered as the main active components of neem oil. Therefore, the chemical composition of each cake was connected with the biological activitiy, i.e., the effects of the extracts of the six neem cakes were tested on eggs and larvae of Aedes albopictus (Stegomyia albopicta) (Diptera: Culicidae), commonly known as Asian tiger mosquito. The results confirmed the previously reported larvicide effects of neem cake that, however, can now be related to the chemical composition, in particular with nortriterpenes, allowing in that way to discriminate between the quality of the various marketed products, as potential domestic insecticides. PMID:22422292

  3. Modelling chemical composition in electric systems ? implications to the dynamics of dye-sensitised solar cells

    OpenAIRE

    Kovanen, T.; Tarhasaari, T.; Kettunen, L.; Korppi-Tommola, J.

    2010-01-01

    Abstract Classical electromagnetism provides limited means to model electric generators. To extend the classical theory in this respect, additional information on microscopic processes is required. In semiconductor devices and electrochemical generators such information may be obtained by modelling chemical composition. Here we use this approach for the modelling of dye-sensitised solar cells. We simulate the steady-state current-voltage characteristics of such a cell, as well as i...

  4. Progress of Chemical Composition and Pharmacological Effects of Meretrix meretrix Linnaeus

    Institute of Scientific and Technical Information of China (English)

    Du; Zhengcai; Hou; Xiaotao; Huang; Qing; Deng; Jiagang; Fanshi; Fangcao

    2014-01-01

    Meretrix meretrix Linnaeus is a traditional marine drug. There are more than two thousand years of history using clamshell as a component of medicine.After a review of relevant literature at home and abroad for nearly 20 years,the author summarized chemical composition and pharmacological effects of M. meretrix,in order to provide a scientific basis for further development and utilization of M. meretrix.

  5. Essential-oil composition and chemical variability of Senecio vulgaris L. from Corsica.

    Science.gov (United States)

    Andreani, Stéphane; Paolini, Julien; Costa, Jean; Muselli, Alain

    2015-05-01

    The chemical composition of the essential oils isolated from the aerial parts of Senecio vulgaris plants collected in 30 Corsican localities was characterized using GC-FID and GC/MS analyses. Altogether, 54 components, which accounted for 95.2% of the total oil composition, were identified in the 30 essential-oil samples. The main compounds were α-humulene (1; 57.3%), (E)-β-caryophyllene (2; 5.6%), terpinolene (3; 5.3%), ar-curcumene (4; 4.3%), and geranyl linalool (5; 3.4%). The chemical composition of the essential oils obtained from separate organs and during the complete vegetative cycle of the plants were also studied, to gain more knowledge about the plant ecology. The production of monoterpene hydrocarbons, especially terpinolene, seems to be implicated in the plant-flowering process and, indirectly, in the dispersal of this weed species. Comparison of the present results with the literature highlighted the originality of the Corsican S. vulgaris essential oils and indicated that α-humulene might be used as taxonomical marker for the future classification of the Senecio genus. A study of the chemical variability of the 30 S. vulgaris essential oils using statistical analysis allowed the discrimination of two main clusters according to the soil nature of the sample locations. These results confirmed that there is a relation between the soil nature, the chemical composition of the essential oils, and morphological plant characteristics. Moreover, they are of interest for commercial producers of essential oil in selecting the most appropriate plants. PMID:26010664

  6. Chemical composition analysis of raw materials used in iron ore sinter plants in Poland

    Directory of Open Access Journals (Sweden)

    D. Burchart-Korol

    2014-07-01

    Full Text Available The main goal of the study was the analysis of the chemical compositions of raw materials used in iron ore sinter plants in Poland. The iron ore sintering process is the largest source of emissions of dust and gas pollution in the iron and steel industry. Hematite ores, magnetite concentrates, admixtures (dolomite, limestone and burnt lime, fuels (coke breeze, anthracite and by-products are used in Poland to produce the sinter mixture.

  7. Neem cake: chemical composition and larvicidal activity on Asian tiger mosquito.

    Science.gov (United States)

    Nicoletti, Marcello; Mariani, Susanna; Maccioni, Oliviero; Coccioletti, Tiziana; Murugan, Kardaray

    2012-07-01

    New pesticides based on natural products are urgently needed, in consideration of their environmental care and lower collateral effects. Neem oil, the main product obtained from Azadiractha indica A. Juss, commonly known as neem tree, is mainly used in medical devices, cosmetics and soaps, as well as important insecticide. Manufacturing of neem oil first includes the collection of the neem seeds as raw material used for the extraction. Neem cake is the waste by-product remaining after extraction processes. The quality of the oil, as that of the cake, strictly depends from the quality of seeds as well as from the type of extraction processes used, which strongly influences the chemical composition of the product. Currently, the different types of commercial neem cake on the market are roughly identified as oiled and deoiled cake, but several other differences can be detected. The differences are relevant and must be determined, to obtain the necessary correlation between chemical constitution and larvicidal activities. Six different batches of neem cake, marketed by several Indian and European companies, were analyzed by HPLC and HPTLC, and their fingerprints compared, obtaining information about the different compositions, focusing in particular on nortriterpenes, considered as the main active components of neem oil. Therefore, the chemical composition of each cake was connected with the biological activitiy, i.e., the effects of the extracts of the six neem cakes were tested on eggs and larvae of Aedes albopictus (Stegomyia albopicta) (Diptera: Culicidae), commonly known as Asian tiger mosquito. The results confirmed the previously reported larvicide effects of neem cake that, however, can now be related to the chemical composition, in particular with nortriterpenes, allowing in that way to discriminate between the quality of the various marketed products, as potential domestic insecticides.

  8. Chemical composition, antitumor and antimicrobial activity of Thymus vulgaris and T. algeriensis essential oils

    OpenAIRE

    Nikolic, Milos; Glamočlija, Jasmina; Ćirić, Ana; Ferreira, Isabel C.F.R.; Ricardo C. Calhelha; Perić, Tamara; Marković, Dejan; Giweli, Abdulhamed; Soković, Marina

    2013-01-01

    Plants from genus Thymus are often used in traditional medicine. Some of these species are important medicinal plants that are used in ethnomedicine. In this work, analysis of phytochemicals and bioactivity evaluation of Thymus vulgaris and T. algericnsis essential oils were done. The chemical composition of oils were evaluated using GC/MS; cytotoxic activity was tested against five human tumor cell lines MCF-7 (breast adenocarcinoma), NCI-H460 (non-small cell lung cancer), ...

  9. Chemical Compositions, Antioxidant and Antimicrobial Activities of Essential Oils of Piper caninum Blume

    OpenAIRE

    Hasnah Mohd Sirat; Khong Heng Yen; Farediah Ahmad; Wan Mohd Nuzul Hakimi Wan Salleh

    2011-01-01

    Chemical composition, antioxidant and antimicrobial activities of the fresh leaves and stems oils of Piper caninum were investigated. A total of forty eight constituents were identified in the leaves (77.9%) and stems (87.0%) oil which were characterized by high proportions of phenylpropanoid, safrole with 17.1% for leaves and 25.5% for stems oil. Antioxidant activities were evaluated by using β-carotene/linoleic acid bleaching, DPPH radical scavenging and total phenolic content. Stems oil sh...

  10. The genetic code degeneracy and the amino acids chemical composition are connected

    OpenAIRE

    Negadi, Tidjani

    2009-01-01

    We show that our recently published Arithmetic Model of the genetic code based on Godel Encoding is robust against symmetry transformations, specially Rumer s one U > G, A > C, and constitutes a link between the degeneracy structure and the chemical composition of the 20 canonical amino acids. As a result, several remarkable atomic patterns involving hydrogen, carbon, nucleon and atom numbers are derived. This study has no obvious practical application(s) but could, we hope, add some new know...

  11. Effect of the chemical composition of slag on its foamability in an electric arc furnace

    Science.gov (United States)

    Kozhukhov, A. A.

    2015-06-01

    The problems of foaming electric furnace slags are considered. The role of the physicochemical properties of slag during its foaming in electric arc furnaces is studied. The regions of slag foaming in an electric arc furnace are determined. Based on the derived relations between the chemical composition of slag and its foamability, one can choose a rational path of slag formation to ensure good slag foaming in the course of electrosmelting of steel.

  12. Chemical composition and antibacterial activity of essential oil of Pulicaria odora L.

    Science.gov (United States)

    Hanbali, Fadwa E L; Akssira, Mohamed; Ezoubeiri, Aicha; Gadhi, Chems Eddoha A; Mellouki, Fouad; Benherraf, Ahmed; Blazquez, Amparo M; Boira, Herminio

    2005-07-14

    The chemical composition of the volatile oil constituent from Pulicaria odora L. roots has been analyzed by GC/MS. Twenty-seven components were identified, being thymol (47.83%) and its derivative isobutyrate (30.05%) the main constituents in the oil. Furthermore, the oil was tested against seven bacteria at different concentrations. Results showed that the oil exhibited a significant antibacterial activity.

  13. Chemical Composition and Biological Activities of Fragrant Mexican Copal (Bursera spp.

    Directory of Open Access Journals (Sweden)

    Giulia Gigliarelli

    2015-12-01

    Full Text Available Copal is the Spanish word used to describe aromatic resins from several genera of plants. Mexican copal derives from several Bursera spp., Protium copal, some Pinus spp. (e.g., P. pseudostrobus and a few Fabaceae spp. It has been used for centuries as incense for religious ceremonies, as a food preservative, and as a treatment for several illnesses. The aim of this review is to analyze the chemical composition and biological activity of commercial Mexican Bursera copal.

  14. Physical and chemical composition and in situ degradability of macauba palm cake and leaves

    OpenAIRE

    Vanda Patrícia Barros Ferreira; Rosana Aparecida Possenti; Patrícia Brás; Ailton Marques Piza; Joaquim Adelino Azevedo Filho

    2013-01-01

    Macauba palm coconuts are rich in essential nutrients for animal feed formulation and after oil extraction, a large amount of residual biomass is produced, which must be used rationally to environmental preservation. This study aimed to determine the nutritional value of macauba palm (Acrocomia aculeata), cake and leaves, for its physical and chemical composition, dry matter (DM) in vitro digestibility (IVD) and in situ degradability. The test of in situ degradability was done using three rum...

  15. An assessment of nutritional quality of hybryd maize grain based on chemical composition

    OpenAIRE

    Stevanović Milan; Mladenović-Drinić Snežana; Dragičević Vesna; Camdžija Zoran; Filipović Milomir; Veličković Nevena; Stanković Goran

    2012-01-01

    The aim of this study was to investigate chemical composition of grain of 20 maize hybrids, from different maturity groups, to define their nutritional quality from the point of main grain constituents: starch, total proteins, soluble proteins, oil, phytate, inorganic phosphorus, and soluble phenolics, as well as mass of 1.000 grains. A set of 20 ZP hybrids, FAO 400-800, were grown in a randomized complete block design (RCBD) at Zemun Polje (Serbia), during...

  16. Chemical composition and antimicrobial activity of peppermint (Mentha piperita L.) Essential oil

    OpenAIRE

    Mohaddese Mahboubi; Nastaran Kazempour

    2014-01-01

    Peppermint with antiseptic and known healing properties is a plant from the Labiatae family. In this study, we analyzed the chemical composition of essential oil from the flowering aerial part of peppermint by GC and GC/MS. Its antimicrobial activity was evaluated against bacteria, fungi and yeast by micro broth dilution assay. The fractional inhibitory concentration (FIC) and FIC Index (FICI) and related isobologram curve were determined by check board micro titer assay. The results...

  17. Characterization of Anticancer, Antimicrobial, Antioxidant Properties and Chemical Compositions of Peperomia Pellucida Leaf Extract

    OpenAIRE

    Desy Fitrya Syamsumir; Julius Yong Fu Siong; Wendy Wee; Lee Seong Wei

    2011-01-01

    Peperomia pellucida leaf extract was characterized for its anticancer, antimicrobial, antioxidant activities, and chemical compositions. Anticancer activity of P. pellucida leaf extract was determined through Colorimetric MTT (tetrazolium) assay against human breast adenocarcinoma (MCF-7) cell line and the antimicrobial property of the plant extract was revealed by using two-fold broth micro-dilution method against 10 bacterial isolates. Antioxidant activity of the plant extract was then char...

  18. Factors affecting the microbial and chemical composition of silage. IV. Effect of wilting on maize silage.

    Science.gov (United States)

    Mahmoud, S A; Abdel-Hafez, A; Zaki, M M; Saleh, E A

    1979-01-01

    The effect of wilting on the microbial and chemical composition of ensiled maize plants was studied. Wilting stimulated high densities of lactic acid bacteria, with the decrease in counts of undesirable flora, i.e., yeasts, moulds, proteolytic and saccharolytic anaerobes, causing spoilage of silage. Moreover, wilting decreased the losses of dry matter, total acidity, and butyric acid content of silage. Accordingly, wilting proved to be a favourable treatment for the production of good quality silage from maize plants. PMID:38606

  19. Chemical Composition and Bioactivities of the Essential Oil from Etlingera yunnanensis against Two Stored Product Insects

    OpenAIRE

    Shan-Shan Guo; Chun-Xue You; Jun-Yu Liang; Wen-Juan Zhang; Zhu-Feng Geng; Cheng-Fang Wang; Shu-Shan Du; Ning Lei

    2015-01-01

    The chemical composition of the essential oil of Etlingera yunnanensis rhizomes and its contact and repellent activities against Tribolium castaneum (Herbst) and Liposcelis bostrychophila (Badonnel) were investigated. The essential oil obtained from E. yunnanensis rhizomes with hydrodistillation was performed by gas chromatography-flame ionization detection and gas chromatography-mass spectrometry. The main components of the essential oil were identified to be estragole (65.2%), β-caryophylle...

  20. Effect of different alkali treatments on the chemical composition, physical properties, and microstructure of pidan white

    OpenAIRE

    Zhang, Xianwei; Jiang, Aimin; Chen, Mingtsao; Ockerman, Herbert W.; Chen, Jiaojiao

    2013-01-01

    Changes in chemical composition, physical property and microstructure of pidan white treated with 4.5 % NaOH or 5.5 % KOH were monitored during pickling up to 4 weeks, and followed by aging for another 2 weeks. As the pickling and ageing times increased, moisture content of pidan white decreased and salt content increased for both (4.5 % NaOH and 5.5 % KOH) treatments (P 

  1. Metabolism and chemical composition of marine pelagic amphipods: synthesis toward a global bathymetric model

    OpenAIRE

    Ikeda, Tsutomu

    2013-01-01

    Respiration and ammonia excretion data and chemical composition data [water content, ash, carbon (C), nitrogen (N) and C:N ratios] of 18–32 amphipods (hyperiids and gammarids) from the epipelagic through bathypelagic zones of the world’s oceans were compiled. The independent variables including body mass, habitat temperature and mid-sampling depth were all significant predictors of respiration, accounting for 65–83 % of the variance in the data, while the former two variables were significant...

  2. Chemical composition, antioxidative and antimicrobial activity of essential oil Ocimum sanctum L.

    OpenAIRE

    Beatović Damir V.; Jelačić Slavica Ć.; Oparnica Čedo D.; Krstić-Milošević Dijana B.; Glamočlija Jasmina M.; Ristić Mihailo S.; Šiljegović Jovana D.

    2013-01-01

    Ocimum sanctum L. (Lamiaceae) sin. Ocimum tenuiflorum L. or Tulsi basil is a plant originating from tropical and subtropical areas of India. It is used in both the traditional and official medicine in India. Tulsi is a type of basil that is insufficiently explored and studied in Europe. The goal of this paper is to determine the chemical composition, antioxidative, and antimicrobial activity of the essential oil Ocimum sanctum L. grown in Serbia. The quantity of essential oil in 100 g o...

  3. Comparison of different methods for extraction from Tetraclinis articulata: Yield, chemical composition and antioxidant activity

    OpenAIRE

    Herzi, Nejia; Bouajila, Jalloul; Camy, Séverine; Romdhane, Mehrez; Condoret, Jean-Stéphane

    2013-01-01

    International audience In the present study, three techniques of extraction: hydrodistillation (HD), solvent extraction (conventional 'Soxhlet' technique) and an innovative technique, i.e., the supercritical fluid extraction (SFE), were applied to ground Tetraclinis articulata leaves and compared for extraction duration, extraction yield, and chemical composition of the extracts as well as their antioxidant activities. The extracts were analyzed by GC-FID and GC-MS. The antioxidant activit...

  4. Chemical composition of soils and biosolid by X-ray fluorescence technique

    International Nuclear Information System (INIS)

    The objective of the present work was to investigate the chemical composition of biosolid and soil treated with biosolid using the energy dispersive X-ray fluorescence. The elements Br, Co, Cr, Cu, Fe, Ga, Mn, Ni, Pb, Se, Sr, Ti and Zn were quantified and the results had been compared with Brazilian legislation. The Ni, Cu, Cr and Zn amounts were below the maximum values allowed. (author)

  5. Chemical composition of Kiscellian silty sediment (sivica from the Trobni Dol area, Eastern Slovenia

    Directory of Open Access Journals (Sweden)

    Miha Mišič

    2003-06-01

    Full Text Available Kiscellian marine silt termed »sivica« is widely developed in Tertiary basins of Eastern Slovenia. Chemical composition is rather uniform and reflects the dominance of filosilicates (mainly illite/muscovite, chlorite and montmorillonite and carbonates. PAAS normalised REE and Y abundances are slightly depleted for La, Ce, Pr and Nd, very close to PAAS for Sm, Eu, Gd and Tb, and depleted for Y, Ho, Er, Tm, Yb and Lu.

  6. Study of postharvest changes in the chemical composition of persimmon by HPLC

    OpenAIRE

    BALTACIOĞLU, Hande; Nevzat ARTIK

    2013-01-01

    Chemical composition, total phenolic content, phenolic compounds, sugars, and L-ascorbic acid content of persimmon fruits of 6 different persimmon cultivars obtained from Ordu, Turkey, were evaluated in this study. Four astringent persimmon cultivars (Türkay, Hachiya, 07 TH 13, and Moralı) and 2 nonastringent persimmon cultivars (Tozlayıcı and Fuyu) were used for analysis. In order to determine total phenolic content in persimmon fruits, the Folin-Ciocalteu colorimetric method was used. High-...

  7. Determination of antibacterial, antifungal activity and chemical composition of essential oil portion of unani formulation kulzam

    OpenAIRE

    K Ashok Kumar; Ram Kumar Choudhary; Bheemachari Joshi; V.Ramya; V Sahithi; Veena, P.

    2011-01-01

    Kulzam is a popular unani, liquid formulation; indicated for several minor ailments like cough, cold, running nose, sore throat, insect bites, earache, tooth ache, etc. by the manufacturer. However, this over the counter formulation has not been scientifically evaluated for its claimed uses. Hence in the present study an attempt has been to check the chemical composition, antibacterial and antifungal activity as most of the above-mentioned conditions are underpinned by microbial activity. The...

  8. Phenotypical signs and chemical composition of Saccharomyces cerevisiae – mannoprotein producers

    Directory of Open Access Journals (Sweden)

    Agafia USATII

    2012-11-01

    Full Text Available Phenotypical signs and chemical composition of Saccharomyces cerevisiae CNMN-Y-18 and Saccharomyces cerevisiae CNMN-Y-19 yeast strains are described in this article. The presence of protein complexes with high content of irreplaceable amino acids and antioxidant enzymes, as well as polysaccharides with predominance of mannoproteins allow to recommend these yeast strains for the utilization in biotechnology. Results are of interest for the standard description of yeast strains offered as object for industrial appointment.

  9. Concentration of mycotoxins and chemical composition of corn silage: a farm survey using infrared thermography.

    Science.gov (United States)

    Schmidt, P; Novinski, C O; Junges, D; Almeida, R; de Souza, C M

    2015-09-01

    This work evaluated the chemical composition and mycotoxin incidence in corn silage from 5 Brazilian dairy-producing regions: Castro, in central-eastern Paraná State (n=32); Toledo, in southwestern Paraná (n=20); southeastern Goiás (n=14); southern Minas Gerais (n=23); and western Santa Catarina (n=20). On each dairy farm, an infrared thermography camera was used to identify 3 sampling sites that exhibited the highest temperature, a moderate temperature, and the lowest temperature on the silo face, and 1 sample was collected from each site. The chemical composition and concentrations of mycotoxins were evaluated, including the levels of aflatoxins B1, B2, G1, and G2; zearalenone; ochratoxin A; deoxynivalenol; and fumonisins B1 and B2. The corn silage showed a highly variable chemical composition, containing, on average, 7.1±1.1%, 52.5±5.4%, and 65.2±3.6% crude protein, neutral detergent fiber, and total digestible nutrients, respectively. Mycotoxins were found in more than 91% of the samples, with zearalenone being the most prevalent (72.8%). All samples from the Castro region contained zearalenone at a high average concentration (334±374µg/kg), even in well-preserved silage. The incidence of aflatoxin B1 was low (0.92%). Silage temperature and the presence of mycotoxins were not correlated; similarly, differences were not observed in the concentration or incidence of mycotoxins across silage locations with different temperatures. Infrared thermography is an accurate tool for identifying heat sites, but temperature cannot be used to predict the chemical composition or the incidence of mycotoxins that have been analyzed, within the silage. The pre-harvest phase of the ensiling process is most likely the main source of mycotoxins in silage.

  10. Hail ice impact on composite structures at glancing angles

    OpenAIRE

    Funai, Sho

    2012-01-01

    Aircraft structures are susceptible to damage due to high velocity hail ice impact. These impacts can create nonvisible damage in the structure, jeopardizing its structural integrity. Experiments were completed with simulated hail ice (SHI) impacting T800/3900-2 carbon/ epoxy tape laminates and aluminum panels at various angles. The angled impacts were similar to the normal impacts in the failure propagation of ice as well as the size and shape of the delaminations. Experimental failure thres...

  11. Microfluidic encapsulation for self-healing material and investigation of its impacts on composite performance

    Science.gov (United States)

    Lemmens, Ryan J.

    Encapsulation is a key enabling technology of self-healing materials for which incorporation of reactive materials into a composite, without loss of functionality, is required for damage repair. The functionalized particles resulting from such processes must be readily incorporable into a composite and have minimal detrimental impact on its undamaged properties. At the same time, their morphology must preferentially promote the release of their content during a damage event. However, there is still a need for new techniques capable of fine tuning particle properties for the controlled design of composite performance. To introduce superior processing control, two microfluidics based encapsulation processes have been developed, one each for the individual components of a two-part chemical healing system, namely dicyclopentadiene and Grubb's catalyst. These processes have enabled significantly enhanced performance of self-healing epoxy composites by introducing unprecedented control over particle morphology. The microfluidics based encapsulation platform is first demonstrated by emulsification, using droplet microfluidics, and subsequent encapsulation of dicyclopentadiene. The reported approach allows for facile control of mean microcapsule diameter thru variation of fluid flow rates. The microcapsules exhibit coefficients of variation (CV) of diameter in the range 1-3 (i.e. monodisperse is typically defined as CV smaller than 5), an order of magnitude reduction when compared with conventional batch emulsification methods whose typical CV is 20-40. This control over microcapsule uniformity has led to significant improvement in self-healing composite performance as exemplified by ˜25% higher undamaged fracture toughness. A microfluidic solution spinning process is then developed to encapsulate Grubb's catalyst, the most expensive component of this particular material system, in a novel fibrous morphology. The continuous, on-chip fiber production allows for

  12. Phylogenetic or environmental control on the organo-chemical composition of Sphagnum mosses?

    Science.gov (United States)

    Limpens, Juul; Nilsson, Mats

    2014-05-01

    Decomposition of organic material is one of the key processes that determines the size of the soil-feedback to global warming, but it is also a process surrounded with one of the largest uncertainties, making understanding its mechanistic drivers of crucial importance. In organic soils decomposition is closely determined by the organo-chemical composition of the litter entering the soil. But what, in turn drives the organo-chemical composition? Is it an emergent feature of the environment the species producing the litter grow in, or is it an evolutionary trait that can be tracked through the species' phylogeny? We set out to answer this question for one of the most import peat-forming plants on earth: the genus Sphagnum. We sampled 18 Sphagnum species, about equally distributed over 6 sites spanning a wide range of environmental conditions: most species were collected at multiple sites. For all species we characterised the chemical composition, focussing on three functional chemistry groups: (i) mineral elements, (ii) carbohydrate polymers (iii) non-carbohydrate polymers (aromatic and aliphatic compounds) . For each group of compounds we used multivariate statistical techniques to derive the degree of variation explained by environment: (site, position within site) and phylogeny (sections within genus Sphagnum). We found that the variation in mineral element concentrations was mostly explained by environment, with the biggest differences in the concentrations of basic cat-ions calcium and magnesium. In contrast, the variation in carbohydrates was mostly explained by phylogeny, with clear associations between sections and monosaccharides. The monosaccharide rhamnose was associated with species from the Acutifolia section known for their poor degradability, whereas xylose and galactose were closely associated with degradable species from the Cuspidata section. The composition non-carbohydrate polymers took an intermediate position: both environment and phylogeny

  13. EFFECT OF CHEMICAL TREATMENT ON RICE HUSK (RH REINFORCED POLYETHYLENE (PE COMPOSITES

    Directory of Open Access Journals (Sweden)

    Md. Rezaur Rahman

    2010-05-01

    Full Text Available In this study rice husk reinforced polyethylene composites and their test specimens were manufactured using a single screw extruder and an injection molding machine, respectively. Raw rice husk was chemically treated with benzene diazonium salt in alkali, acidic, and neutral media, in order to improve in the mechanical properties. The mechanical properties of the composites prepared from alkaline media treated rice husk were found to increase substantially compared to those of acidic media, neutral media, and untreated ones. However, the values for the alkaline media treated rice husk-PE composites at all mixing ratios were found to be higher than those of treated acidic media, treated neutral media, and untreated rice husk composites respectively. The SEM micrographs reveal that interfacial bonding between the treated filler and the matrix has significantly improved, suggesting that better dispersion of the filler into the matrix was achieved upon treatment of rice husk. Based on filler loading, 35% filler reinforced composites had the optimum set of mechanical properties among all composites manufactured.

  14. Chemical composition of the volatile oil from Zanthoxylum avicennae and antimicrobial activities and cytotoxicity

    Directory of Open Access Journals (Sweden)

    Yin Lin

    2014-01-01

    Full Text Available Background: Through literature retrieval, there has been no report on the research of the chemical components in Zanthoxylum avicennae (Lam. DC. This paper extracted and determined the chemical components of the volatile oil in Z. avicennae, and at the same time, measured and evaluated the bioactivity of the volatile oil in Z. avicennae. Materials and Methods: We extract the volatile oil in Z. avicennae by steam distillation method, determined the chemical composition of the volatile oil by GC-MS coupling technique, and adopt the peak area normalization method to measured the relative percentage of each chemical composition in the volatile oil. Meanwhile, we use the Lethal-to-prawn larva bioactivity experiment to screen the cytotoxicity activities of the volatile oil in Z. avicennae, and using the slanting test-tube experiment to determine and evaluate its antibacterial activities in vitro for the eight kinds of plant pathogenic fungi in the volatile oil of the Z. avicennae. Results: The results show that 68 kinds of compounds are determined from the volatile oil of Z. avicennae. The determined part takes up 97.89% of the total peak area. The main ingredients in the volatile oil of Z. avicennae are sesquiterpenoids and monoterpene. The test results show that the volatile oil in Z. avicennae has strong antibacterial activities and cytotoxicity, with the strongest antibacterial activity against the Rhizoctonia solani AG1-1A. Conclusion: This research results will provide reference data for understanding the chemical composition of the volatile oil in the aromatic plant of Z. avicennae and its bioactivity, and for its further development and application.

  15. Differential characteristics in the chemical composition of bananas from Tenerife (Canary Islands) and Ecuador.

    Science.gov (United States)

    Forster, Markus Paul; Rodríguez Rodríguez, Elena; Díaz Romero, Carlos

    2002-12-18

    The contents of moisture, protein, ash, ascorbic acid, glucose, fructose, total sugars, and total and insoluble fiber were determined in cultivars of bananas (Gran Enana and Pequeña Enana) harvested in Tenerife and in bananas (Gran Enana) from Ecuador. The chemical compositions in the bananas from Tenerife and from Ecuador were clearly different. The cultivar did not influence the chemical composition, except for insoluble fiber content. Variations of the chemical composition were observed in the bananas from Tenerife according to cultivation method (greenhouse and outdoors), farming style (conventional and organic), and region of production (north and south). A highly significant (r = 0.995) correlation between glucose and fructose was observed. Correlations of ash and protein contents tend to separate the banana samples according to origin. A higher content of protein, ash, and ascorbic acid was observed as the length of the banana decreased. Applying factor analysis, the bananas from Ecuador were well separated from the bananas produced in Tenerife. An almost total differentiation (91.7%) between bananas from Tenerife and bananas from Ecuador was obtained by selecting protein, ash, and ascorbic acid content and applying stepwise discriminant analysis. By selecting the bananas Pequeña Enana and using discriminant analysis, a clear separation of the samples according to the region of production and farming style was observed.

  16. GC-MS studies of the chemical composition of two inedible mushrooms of the genus Agaricus

    Directory of Open Access Journals (Sweden)

    Gjosheva Melania

    2007-12-01

    Full Text Available Abstract Background Mushrooms in the genus Agaricus have worldwide distribution and include the economically important species A. bisporus. Some Agaricus species are inedible, including A. placomyces and A. pseudopratensis, which are similar in appearance to certain edible species, yet are known to possess unpleasant odours and induce gastrointestinal problems if consumed. We have studied the chemical composition of these mushrooms using GC-MS. Results Our GC-MS studies on the volatile fractions and butanol extracts resulted in the identification of 44 and 34 compounds for A. placomyces and A. pseudopratensis, respectively, including fatty acids and their esters, amino acids, and sugar alcohols. The most abundant constituent in the volatiles and butanol were phenol and urea respectively. We also identified the presence of ergosterol and two Δ7-sterols. In addition, 5α,8α-Epidioxi-24(ξ-methylcholesta-6,22-diene-3β-ol was isolated for the first time from both mushrooms. Our study is therefore the first report on the chemical composition of these two species. Conclusion The results obtained contribute to the knowledge of the chemical composition of mushrooms belonging to the Agaricus genus, and provide some explanation for the reported mild toxicity of A. placomyces and A. pseudopratensis, a phenonomenon that can be explained by a high phenol content, similar to that found in other Xanthodermatei species.

  17. Composition and Physico-Chemical Properties of Meat from Capons Fed Cereals

    Institute of Scientific and Technical Information of China (English)

    Olga Díaz; Luisana Rodríguez; Alexandr Torres; Ángel Cobos

    2013-01-01

    Chemical composition, physico-chemical properties and fatty acid composition of breast and drumstick meat from capons (castrated male cockerels) fed cereals were studied. Three groups of capons were reared. One group was fed ad libitum the same commercial diet until the 4th mon of life. The last month of its life, the capons of this group were fed corn. The second and third group of capons were fed the same diet from caponization. The second group was fed mixture of corn (50%) and wheat (50%). The third group of capons was fed 2/3 corn and 1/3 mixture of corn (50%) and barley (50%). Capons were reared under free-range conditions and slaughtered at 150 d of age. Caponization was performed at 48 d. No signiifcant effects of feeding in chemical composition, pH, water holding capacity, drip and cooking losses and texture of the meat were observed. The meat of the third group (capons fed 83%corn) was more yellow and showed higher content of C18:2 than that of the other capons.

  18. Behaviour of -glass fibre reinforced vinylester resin composites under impact fatigue

    Indian Academy of Sciences (India)

    Rita Roy; B K Sarkar; N R Bose

    2001-04-01

    An impact fatigue study has been made for the first time on 63.5% glass fibre reinforced vinylester resin notched composites. The study was conducted in a pendulum type repeated impact apparatus especially designed and fabricated for determining single and repeated impact strengths. A well-defined impact fatigue (S–N) behaviour, having a progressive endurance below the threshold single cycle impact fracture stress with decreasing applied stress has been demonstrated. Fractographic analysis revealed fracture by primary debonding having fibre breakage and pullout at the tensile zone, but a shear fracture of fibre bundles at the compressive zone of the specimen. The residual strength, modulus and toughness showed retention of the properties at high impact stress levels up to 1000 impacts followed by a sharp drop. Cumulative residual stresses with each number of impacts not withstanding the static fatigue failure at long endurances have been ascribed for the composite failures under the repeated impact stresses.

  19. Chemical composition of the essential oil from Croton kimosorum, an endemic species to Madagascar.

    Science.gov (United States)

    Rabehaja, Delphin J R; Ihandriharison, Harilala; Ramanoelina, Panja A R; Benja, Rakotonirina; Ratsimamanga-Urverg, Suzanne; Bighelli, Ange; Casanova, Joseph; Tomi, Félix

    2014-01-01

    Croton kimosorum Leandri is an endemic species to Madagascar. The chemical composition of aerial parts, leaf and stem oils is reported for the first time. Analysis was carried out by combination of chromatographic (CC, GC), spectroscopic and spectrometric (MS, 13C NMR) techniques. In total, 76 compounds have been identified. Essential oil isolated from aerial parts contained mainly linalool (21.6%), sabinene (10.4%), 1,8-cineole (6.3%), beta-pinene (6.2%), (E)-beta-caryophyllene (5.9%), terpinen-4-ol (4.8%), geraniol (4,5%) and germacrene D (2.3%). In comparison with the first sample, the composition of leaf and stem oils varied slightly, while essential oil isolated by vapor distillation from a semi-industrial still exhibited similar composition. PMID:24660481

  20. Chemical composition of the essential oil from Croton kimosorum, an endemic species to Madagascar.

    Science.gov (United States)

    Rabehaja, Delphin J R; Ihandriharison, Harilala; Ramanoelina, Panja A R; Benja, Rakotonirina; Ratsimamanga-Urverg, Suzanne; Bighelli, Ange; Casanova, Joseph; Tomi, Félix

    2014-01-01

    Croton kimosorum Leandri is an endemic species to Madagascar. The chemical composition of aerial parts, leaf and stem oils is reported for the first time. Analysis was carried out by combination of chromatographic (CC, GC), spectroscopic and spectrometric (MS, 13C NMR) techniques. In total, 76 compounds have been identified. Essential oil isolated from aerial parts contained mainly linalool (21.6%), sabinene (10.4%), 1,8-cineole (6.3%), beta-pinene (6.2%), (E)-beta-caryophyllene (5.9%), terpinen-4-ol (4.8%), geraniol (4,5%) and germacrene D (2.3%). In comparison with the first sample, the composition of leaf and stem oils varied slightly, while essential oil isolated by vapor distillation from a semi-industrial still exhibited similar composition.