WorldWideScience

Sample records for chemical co-precipitation method

  1. PEG capped CaS nanoparticles synthesized by wet chemical co-precipitation method

    Science.gov (United States)

    Rekha, S.; Anila, E. I.

    2018-04-01

    Calcium sulfide (CaS) nanoparticles capped with polyethyleneglycol (PEG) were synthesized using wet chemical co-precipitation method. The structural and optical properties of the prepared sample were studied by X-ray diffractogram (XRD), transmission electron microscopy (TEM), diffuse reflectance spectrum (DRS) and photoluminescence (PL) spectrum. The structure of CaS nanoparticles is cubic as demonstrated by the X-ray powder diffraction (XRD) and selected area electron diffraction (SAED) analysis. TEMimage revealed the spherical morphology of the particles with diameter in the range 15-20 nm. The optical band gap of the prepared sample was determined from the DRS and its value was found to be 4.1 eV. The PL studies showed that the relative intensity of the PEG capped CaS nanoparticles was higher than that of uncapped CaS nanoparticles. The presence of various functional groups in the capped samples were examined by Fourier Transform Infrared (FTIR) spectroscopy.

  2. Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method

    International Nuclear Information System (INIS)

    Petcharoen, K.; Sirivat, A.

    2012-01-01

    Highlights: ► Size-controlled magnetite nanoparticles were prepared via the chemical co-precipitation method in the range of 10–40 nm. ► The electrical conductivity of the smallest particle size is 1.3 × 10 −3 S/cm which belongs to the semiconductor material group. ► The surface modification of magnetite nanoparticles can provide the suspension stability over 1 week. - Abstract: Magnetite nanoparticles were synthesized via the chemical co-precipitation method using ammonium hydroxide as the precipitating agent. The size of the magnetite nanoparticles was carefully controlled by varying the reaction temperature and through the surface modification. Herein, the hexanoic acid and oleic acid were introduced as the coating agents during the initial crystallization phase of the magnetite. Their structure and morphology were characterized by the Fourier transform infrared spectroscopy (FTIR), the X-ray diffraction (XRD) and the field-emission scanning electron microscopy (FE-SEM). Moreover, the electrical and magnetic properties were studied by using a conductivity meter and a vibrating sample magnetometer (VSM), respectively. Both of the bare magnetite and the coated magnetite were of the cubic spinel structure and the spherical-shaped morphology. The reaction temperature and the surface modification critically affected the particle size, the electrical conductivity, and the magnetic properties of these particles. The particle size of the magnetite was increased through the surface modification and reaction temperature. In this study, the particle size of the magnetite nanoparticles was successfully controlled to be in the range of 10–40 nm, suitable for various biomedical applications. The electrical conductivity of the smallest particle size was 1.3 × 10 −3 S/cm, within the semi-conductive materials range, which was higher than that of the largest particle by about 5 times. All of the magnetite nanoparticles showed the superparamagnetic behavior with

  3. Preparation of palladium nanoparticles on alumina surface by chemical co-precipitation method and catalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Avvaru Praveen; Kumar, B. Prem; Kumar, A.B.V. Kiran; Huy, Bui The [Department of Chemistry, Changwon National University, Changwon 641-773 (Korea, Republic of); Lee, Yong-Ill, E-mail: yilee@changwon.ac.kr [Department of Chemistry, Changwon National University, Changwon 641-773 (Korea, Republic of)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Facile synthesis of palladium nanoparticles on alumina surface. Black-Right-Pointing-Pointer The surface morphology and properties of the nanocrystalline powders were characterized. Black-Right-Pointing-Pointer The catalytic activities of palladium nanoparticles were investigated. - Abstract: The present work reports a chemical co-precipitation process to synthesize palladium (Pd) nanoparticles using alumina as a supporting material. The optimized temperature for the formation of nanocrystalline palladium was found to be 600 Degree-Sign C. The X-ray diffraction (XRD) and Raman spectroscopy were used to study the chemical nature of the Pd in alumina matrix. The surface morphology and properties of the nanocrystalline powders were examined using thermogravimetric analysis (TG-DTA), XRD, Raman spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The calcinations in different atmospheres including in the inert medium forms the pure nano Pd{sup 0} while in the atmospheric air indicates the existence pure Pd{sup 0} along with PdO nanoparticles. The catalytic activities of the as-synthesized nanocrystalline Pd nanoparticles in the alumina matrix were investigated in Suzuki coupling, Hiyama cross-coupling, alkene and alkyne hydrogenation, and aerobic oxidation reactions.

  4. Room Temperature Gas Sensing Properties of Sn-Substituted Nickel Ferrite (NiFe2O4) Thin Film Sensors Prepared by Chemical Co-Precipitation Method

    Science.gov (United States)

    Manikandan, V.; Li, Xiaogan; Mane, R. S.; Chandrasekaran, J.

    2018-04-01

    Tin (Sn) substituted nickel ferrite (NiFe2O4) thin film sensors were prepared by a simple chemical co-precipitation method, which initially characterized their structure and surface morphology with the help of x-ray diffraction and scanning electron microscopy. Surface morphology of the sensing films reveals particles stick together with nearer particles and this formation leads to a large specific area as a large specific area is very useful for easy adsorption of gas molecules. Transmission electron microscopy and selected area electron diffraction pattern images confirm particle size and nanocrystallnity as due to formation of circular rings. Fourier transform infrared analysis has supported the presence of functional groups. The 3.69 eV optical band gap of the film was found which enabled better gas sensing. Gas sensors demonstrate better response and recovery characteristics, and the maximum response was 68.43%.

  5. Synthesis and characterization of polyethylene glycol (PEG) coated Fe3O4 nanoparticles by chemical co-precipitation method for biomedical applications.

    Science.gov (United States)

    Anbarasu, M; Anandan, M; Chinnasamy, E; Gopinath, V; Balamurugan, K

    2015-01-25

    Polyethylene glycol (PEG) coated Fe3O4 nanoparticles were synthesized by chemical co-precipitation method. With polyethylene glycol (PEG) as a stabilizer and dispersant. The X-ray diffraction and selected area electron diffraction (SAED) results show that the cubic inverse spinel structure of pure phase polycrystalline Fe3O4 was obtained. The scanning electron microscopy (SEM) and field emission transmission electron microscopy (FE-TEM) results exhibited that the resulted Fe3O4 nanoparticles were roughly spherical in shape with narrow size distribution and homogenous shape. Fourier transform infrared spectroscopy (FT-IR) results suggested that PEG indicated with Fe3O4 via its carbonyl groups. Results of vibrating sample magnetometer (VSM) indicated that the prepared Fe3O4 nanoparticles exhibit superparamagnetic behavior and high saturation magnetization at room temperature. Such Fe3O4 nanoparticles with favorable size and tunable magnetic properties are promising biomedical applications. Copyright © 2014. Published by Elsevier B.V.

  6. Structural and luminescence properties of CaTiO{sub 3}:Eu{sup 3+} phosphor synthesized by chemical co-precipitation method for the application of solid state lighting devices

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Dhananjay Kumar, E-mail: dksism89@gmail.com; Manam, J., E-mail: jairam.manam@gmail.com [Department of Applied Physics, Indian School of Mines, Dhanbad-826004 (India)

    2016-05-06

    The present work report a series of trivalent Europium (Eu{sup 3+}) doped well crystallized perovskite CaTiO{sub 3} phosphors successfully synthesized by chemical co-precipitation method. The crystal structure was confirmed by X-ray diffraction (XRD) which is in good agreement with pure orthorhombic phase with space group Pbnm, and it also indicated that the incorporation of the dopant did not affect the crystal structure. The impact of doping on the photoluminescence performances of the sample has been investigated by emission, excitation, and diffuse reflectance spectra at the room temperature. Photoluminescence spectra of Eu{sup 3+} doped CaTiO{sub 3} nanophosphor revealed the characteristic emission peak around wavelength 618 nm in the visible region upon the excitation of near-UV light at wavelength 397 nm due to {sup 5}D{sub 0} → {sup 7}F{sub 2} transition in Eu{sup 3+}. It was further proved that the dipole– dipole interactions results in the concentration quenching of Eu{sup 3+} in CaTiO{sub 3}:Eu{sup 3+} nanophosphors. The elemental composition of sample carried out by energy dispersive spectroscopy (EDS). EDS analysis reveals that the Eu{sup 3+} doped successfully into host CaTiO{sub 3}. The experimental result reveals that prepared nanophosphor can be used in the application of solid state lighting devices.

  7. Characterization of ZnS nanoparticles synthesized by co-precipitation method

    International Nuclear Information System (INIS)

    Iranmanesh Parvaneh; Nourzpoor Mohsen; Saeednia Samira

    2015-01-01

    ZnS nanoparticles are prepared by homogeneous chemical co-precipitation method using EDTA as a stabilizer and capping agent. The structural, morphological, and optical properties of as-synthesized nanoparticles are investigated using x-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, ultraviolet-visible (UV-Vis) absorption, and photoluminescence spectroscopy. The x-ray diffraction pattern exhibits a zinc-blended crystal structure at room temperature. The average particle size of the nanoparticles from the scanning electron microscopy image is about 50 nm. The ultraviolet absorption spectrum shows the blue shift in the band gap due to the quantum confinement effect. The photoluminescence spectrum of ZnS nanoparticles shows a blue visible spectrum. (paper)

  8. Development, evaluation and optimization of superparamagnetite nanoparticles prepared by co-precipitation method.

    Science.gov (United States)

    Montaseri, Hashem; Alipour, Shohreh; Vakilinezhad, Molood Alsadat

    2017-08-01

    Magnetic nanoparticles (MNPs) are of high interest due to their application in medical fields, in particular for theranostics. Specific properties required for such particles include high magnetization, appropriate size and stability. Biocompatible magnetically soft magnetite particles (Fe 3 O 4 ) have been investigated for biological purposes. The intrinsic instability of these nanoparticles and their susceptibility to the oxidization in air, are limitations for their applications. Various methods have been described for synthesis of these nanoparticles among which co-precipitation method is widely experimented. In order to illustrate the synthesis of MNPs elaborately, the effect of different factors on particle formation were studied. The particles morphology, stability, paramagnetic effect, chemical structure and cytotoxicity were evaluated. Particles of 58 and 60 nm obtained by oleic acid coated (OMNPs) and citric acid coated (CMNPs) magnetite nanoparticles respectively. Transmission electron microscopy images exhibited the real sizes are 15 and 13 nm. Magnetic saturations of these nanoparticles were 72 and 68 emu/g which is suitable for medical applications. Both OMNPs and CMNPs were non-toxic to the SK-Br-3 and MCF-7 cells in the concentrations of <2.5 μg/mL. Since these particles exhibit relatively high magnetic saturation, low dose of such material would be required; therefore, these NPs seem to be suitable for theranostics.

  9. Facile Synthesis and Characterization of ZrO₂ Nanoparticles via Modified Co-Precipitation Method.

    Science.gov (United States)

    Ramachandran, M; Subadevi, R; Liu, Wei-Ren; Sivakumar, M

    2018-01-01

    The crystalline Zirconium oxide (ZrO2) nano particles were synthesized using optimized content of Zirconium nitrate (Zr(NO3)2·3H2O) with varying KOH concentration (0.5, 1 and 1.5 M) by co-precipitation method. The thermal history of the precursor was carefully analyzed through Thermogravimetric (TG/DTA) measurement. The as prepared samples were characterized to ensure structural, functional, morphological, compositional, chemical composition and band gap by X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), Laser Raman, scanning electron microscopy (SEM), High resolution Transverse Electron Microscopy (HR-TEM), X-ray photo electron spectroscopy (XPS), EDX, Photo luminescence spectroscopy (PL). The monoclinic structure with space group P21/c has been confirmed from XRD (JCPDS 89-9066). The Zr-O stretching vibration and Zr-O2-Zr bending vibrations were confirmed through FTIR analysis. The well dispersed particles with spherical morphology were confirmed through SEM and TEM analysis. The oxidation states of Zr, O and C were confirmed through XPS analysis. The oxygen vacancies and band gap of the particles were investigated through PL analysis.

  10. Synthesis of highly sinterable YAG nanopowders by a modified co-precipitation method

    International Nuclear Information System (INIS)

    Chen, Zhi-Hui; Yang, Yun; Hu, Zhang-Gui; Li, Jiang-Tao; He, Shu-Li

    2007-01-01

    A hydrate precursor of yttrium aluminum garnet (YAG) was synthesized by a modified co-precipitation method, in which n-butanol was employed as a low-cost recyclable dehydration solvent. A mixed solution of ethanol and ammonia were used as precipitant. Pure YAG phase appeared after the as-prepared precursors being calcined at 850 o C for 2 h. The nanocrystalline YAG particles calcined at 1100 o C were well dispersed with average diameter of about 40 nm, which can be densified to transparency under vacuum sintering at 1700 o C for 5 h with TEOS as sintering additive

  11. Development of Hydrotalcite Based Cobalt Catalyst by Hydrothermal and Co-precipitation Method for Fischer-Tropsch Synthesis

    Directory of Open Access Journals (Sweden)

    Muhammad Faizan Shareef

    2017-10-01

    Full Text Available This paper presents the effect of a synthesis method for cobalt catalyst supported on hydrotalcite material for Fischer-Tropsch synthesis. The hydrotalcite supported cobalt (HT-Co catalysts were synthesized by co-precipitation and hydrothermal method. The prepared catalysts were characterized by using various techniques like BET (Brunauer–Emmett–Teller, SEM (Scanning Electron Microscopy, TGA (Thermal Gravimetric Analysis, XRD (X-ray diffraction spectroscopy, and FTIR (Fourier Transform Infrared Spectroscopy. Fixed bed micro reactor was used to test the catalytic activity of prepared catalysts. The catalytic testing results demonstrated the performance of hydrotalcite based cobalt catalyst in Fischer-Tropsch synthesis with high selectivity for liquid products. The effect of synthesis method on the activity and selectivity of catalyst was also discussed. Copyright © 2017 BCREC Group. All rights reserved Received: 3rd November 2016; Revised: 26th February 2017; Accepted: 9th March 2017; Available online: 27th October 2017; Published regularly: December 2017 How to Cite: Sharif, M.S., Arslan, M., Iqbal, N., Ahmad, N., Noor, T. (2017. Development of Hydrotalcite Based Cobalt Catalyst by Hydrothermal and Co-precipitation Method for Fischer-Tropsch Synthesis. Bulletin of Chemical Reaction Engineering & Catalysis, 12(3: 357-363 (doi:10.9767/bcrec.12.3.762.357-363

  12. Gas sensing properties of magnesium ferrite prepared by co-precipitation method

    International Nuclear Information System (INIS)

    Hankare, P.P.; Jadhav, S.D.; Sankpal, U.B.; Patil, R.P.; Sasikala, R.; Mulla, I.S.

    2009-01-01

    Polycrystalline magnesium ferrite (MgFe 2 O 4 ) was prepared by the co-precipitation method. The synthesized compound was characterized for their phase and morphology by X-ray diffraction and scanning electron microscopy, respectively. Conductance responses of the (MgFe 2 O 4 ) were measured towards gases like hydrogen sulfide (H 2 S), liquefied petroleum gas (LPG), ethanol vapors (C 2 H 5 OH), SO x , H 2 , NO x , NH 3, methanol, acetone and petrol. The gas sensing characterstics were obtained by measuring the sensitivity as a function of various controlling factors like operating temperatures and concentrations of gases. It was found that the sensor exhibited various responses towards these gases at different operating temperatures. Furthermore; the MgFe 2 O 4 based sensor exhibited a fast response and a good recovery towards petrol at temperature 250 deg. C. The results of the response towards petrol reveal that (MgFe 2 O 4 ) synthesized by a simple co-precipitation method, would be a suitable material for the fabrication of the petrol sensor.

  13. On preparation of nanocrystalline chromites by co-precipitation and autocombustion methods

    Energy Technology Data Exchange (ETDEWEB)

    Matulkova, Irena [Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43 Prague 2 (Czech Republic); Department of Radiation and Chemical Physics, Institute of Physics of the ASCR, v.v.i., Na Slovance 2, 182 21 Prague 8 (Czech Republic); Holec, Petr [Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43 Prague 2 (Czech Republic); Department of Materials Chemistry, Institute of Inorganic Chemistry of the ASCR, v.v i., Husinec-Rez 1001, 250 68 Rez (Czech Republic); Pacakova, Barbara; Kubickova, Simona; Mantlikova, Alice [Department of Magnetic Nanosystems, Institute of Physics of the ASCR, v.v.i., Na Slovance 2, 182 21 Prague 8 (Czech Republic); Plocek, Jiri [Department of Materials Chemistry, Institute of Inorganic Chemistry of the ASCR, v.v i., Husinec-Rez 1001, 250 68 Rez (Czech Republic); Nemec, Ivan; Niznansky, Daniel [Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43 Prague 2 (Czech Republic); Vejpravova, Jana, E-mail: vejpravo@fzu.cz [Department of Magnetic Nanosystems, Institute of Physics of the ASCR, v.v.i., Na Slovance 2, 182 21 Prague 8 (Czech Republic)

    2015-05-15

    Highlights: • ACr{sub 2}O{sub 4} nanopowders, A = Cu, Fe, Ni, Mn and Mg were obtained in high yield. • Co-precipitation and autocombustion routes were optimized for single-phase product. • The nanopowders were examined by X-ray diffraction and vibrational spectroscopy. • Formation of cubic or tetragonal phase in Jahn–Teller NiCr{sub 2}O{sub 4} can be controlled. - Abstract: We present a comprehensive study on optimization of wet preparation routes yielding well-crystalline spinel chromite, ACr{sub 2}O{sub 4} nanoparticles (A = Cu, Fe, Ni, Mn and Mg). The auto-combustion and co-precipitation methods in the presence of nitrate or chloride ions and under different atmospheres, followed by annealing of final products at different temperatures were tested. All samples were characterized by powder X-ray diffraction (PXRD) and vibrational spectroscopy in order to evaluate their phase composition, particle size and micro-strain. Selected samples were subjected to investigation by transmission electron microscopy (TEM). The degree of the particle crystallinity was estimated by relating the apparent crystallite size obtained from the PXRD analysis to the physical grain size observed by the TEM. Optimal conditions leading to single-phase and highly-crystalline chromite nanoparticles are proposed.

  14. Structural characterization of FeVO{sub 4} synthesized by co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Bera, Ganesh; Sinha, Sourav; Rambabu, P.; Das, P.; Gupta, A. K.; Turpu, G. R., E-mail: dr.tgreddy@gmail.com [Department of Pure and Applied Physics, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur 495 009 (India)

    2016-05-06

    A Low temperature method for synthesizing triclinic FeVO{sub 4} nanoparticles is manifested through co-precipitation method. Three precursor materials taken for the synthesis are Iron Nitrate, Ammonium Metavanadate and NaOH along with DI water. The attained precipitate was dried at 100°C for overnight and calcined at different temperatures ranging from 400°C - 650°C. The achieved powdered materials are studied through X-ray diffraction and found to be in pure single phase of P-1 space group symmetry. The crystallite size measured through Scherrer’s method is in found to be in the range of 40-60 nm. Raman spectroscopic studies were carried out at room temperature. Raman spectra is in agreement with the reported structural data of FeVO{sub 4}.

  15. Magnetite nanoparticles prepared by co-precipitation method in different conditions

    Energy Technology Data Exchange (ETDEWEB)

    Aphesteguy, J.C., E-mail: caphestegu@fi.uba.ar [LAFMACEL-INTECIN, Facultad de Ingeniería, UBA, Paseo Colón 850, C1063EHA Buenos Aires (Argentina); Kurlyandskaya, G.V. [Universidad del País Vasco UPV-EHU, Dept. Electricidad y Electronica, 48940 Leioa (Spain); Ural Federal University, Dept. Magnetism and Magnetic Nanomaterials, 620000 Ekaterinburg (Russian Federation); Celis, J.P. de [National Technology University (UTN), Facultad Regional Avellaneda, Department of Chemistry (Argentina); Safronov, A.P. [Ural Federal University, Dept. Magnetism and Magnetic Nanomaterials, 620000 Ekaterinburg (Russian Federation); Institute of Electrophysics UD RAS, Ekaterinburg 620016 (Russian Federation); Schegoleva, N.N. [Institute of Metal Physics UD RAS, Ekaterinburg 620044 (Russian Federation)

    2015-07-01

    Magnetic nanoparticles (MNPs) of pure magnetite (Fe{sub 3}O{sub 4}) were prepared in an aqueous solution (sample M−I) and in a water-ethyl alcohol mixture (sample M−II) by the co-precipitation method. The structure and magnetic properties of both samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), magnetic (M−H) and microwave measurements (FMR). The mean average particle diameter and particle size distribution was evaluated by the Dynamic Light Scattering (DLS) and Brunauer- Emmett-Teller techniques (BET). The Quantitative chemical analysis of iron was performed by Inductively Coupled Plasma (ICP)- Atomic Emission Spectroscopy (AES) technique. The MNPs prepared in aqueous solution show a higher grain than those prepared in the water-ethyl alcohol mixture. The type of phase structure in both cases can be defined as “defective spinel”. The shape of the majority of M−I MNPs is octahedral. The shape of the majority of M−II MNPs is cubic. The specific surface area of MNPs was as high as 14.4 m{sup 2}/g for M−I sample and 77.8 m{sup 2}/g for sample M–II. The obtained saturation magnetization values of 75 emu/g (M−I) and 68 emu/g (M−II) are consistent with expected values for magnetite MNPs of observed sizes. Ferromagnetic resonance (FMR) measurements confirmed that MNPs of both types are magnetically homogeneous materials. FMR lines' position and line widths can be understood by invoking the local dipolar fields, deviations from sphericity, magnetocrystalline anisotropy and stresses. M−I sample shows sizeable zero field microwave absorption which is absent in the M−II case. The differences in microwave behaviour of M−I and M−II MNPs can be used in the design of microwave radiation absorbing multilayers. - Highlights: • Magnetite nanoparticles were prepared in two different conditions. • Specific surface area of sample prepared in water- ethanol mix is

  16. Magnetic Properties of Copper Doped Nickel Ferrite Nanoparticles Synthesized by Co Precipitation Method

    Science.gov (United States)

    Anjana, V.; John, Sara; Prakash, Pooja; Nair, Amritha M.; Nair, Aravind R.; Sambhudevan, Sreedha; Shankar, Balakrishnan

    2018-02-01

    Nickel ferrite nanoparticles with copper atoms as dopant have been prepared using co-precipitation method with general formula Ni1-xCuxFe2O4 (x=0.2, 0.4, 0.6, 0.8 and 1) and are sintered at quite ambient temperature. Structural and magnetic properties were examined using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction method (XRD) and Vibrating Sample Magnetometer (VSM) to study the influence of copper doping in nickel ferrite magnetic nanoparticles. X-ray studies proves that the particles are possessing single phase spinel structure with an average particle size calculated using Debye Scherer formula. Magnetic measurements reveal that saturation magnetization value (Ms) decreases while magnetic coercivity (Hc) increases upon doping.

  17. Synthesis of cerium oxide (CeO{sub 2}) nanoparticles using simple CO-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Farahmandjou, M.; Zarinkamar, M.; Firoozabadi, T. P., E-mail: farahamndjou@iauvaramin.ac.ir [Islamis Azad University, Varamin-Phisva Branch, Department of Physics, Varamin (Iran, Islamic Republic of)

    2016-11-01

    Synthesis of cerium oxide (CeO{sub 2}) nanoparticles was studied by new and simple co-precipitation method. The cerium oxide nanoparticles were synthesized using cerium nitrate and potassium carbonate precursors. Their physicochemical properties were characterized by high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (Sem), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (Ftir) and UV-Vis spectrophotometer. XRD pattern showed the cubic structure of the cerium oxide nanoparticles. The average particle size of CeO{sub 2} was around 20 nm as estimated by XRD technique and direct HRTEM observations. The surface morphological studies from Sem and Tem depicted spherical particles with formation of clusters. The sharp peaks in Ftir spectrum determined the existence of CeO{sub 2} stretching mode and the absorbance peak of UV-Vis spectrum showed the bandgap energy of 3.26 eV. (Author)

  18. Structural variation study of cobalt nanoparticles synthesized by co-precipitation method using 59Co NMR

    Science.gov (United States)

    Manjunatha, M.; Kumar, Rajeev; B. M., Siddesh; Sahoo, Balaram; Damle, R.; Ramesh, K. P.

    2018-04-01

    We have synthesized cobalt nanoparticles using co-precipitation method. Further, the two phases of the cobalt is monitored by varying the synthesis parameters. 59Co NMR and XRD are used as characterization tools to study the phase variation in the cobalt samples. XRD and NMR results show a remarkable correlation in the two samples (Co-1 and Co-2). Co-2 has predominant fcc and hcp phases, whereas, Co-1 has fcc phase with lower amount of hcp. Both the samples show same saturation magnetization (Ms) but there is a remarkable difference in the phase composition. Thus, 59Co NMR appears to be a good tool to identify the phase purity of the ferromagnetic cobalt samples.

  19. Superior sinterability of nano-crystalline gadolinium doped ceria powders synthesized by co-precipitation method

    International Nuclear Information System (INIS)

    Hari Prasad, D.; Kim, H.-R.; Park, J.-S.; Son, J.-W.; Kim, B.-K.; Lee, H.-W.; Lee, J.-H.

    2010-01-01

    Reduced sintering temperature of doped ceria can greatly simplify the fabrication process of solid oxide fuel cells (SOFCs) by utilizing the co-firing of all cell components with a single step. In the present study, nano-crystalline gadolinium doped ceria (GDC) powders of high sinterability at lower sintering temperature has been synthesized by co-precipitation at room temperature. The successful synthesis of nano-crystalline GDC was confirmed by XRD, TEM and Raman spectroscopy analysis. Dilatometry studies showed that GDC prepared by this method can be fully densified (97% relative density) at a sintering temperature of 950 o C which is fairly lower than ever before. It has also been found that the sintered samples have a higher ionic conductivity of 1.64 x 10 -2 S cm -1 at 600 o C which is suitable for the intermediate temperature SOFC application.

  20. Magnetic and electrical properties of the La doped Mn-Zn ferrite nanoparticles synthesized by the co-precipitation method

    International Nuclear Information System (INIS)

    Chandel, Vipin; Vijeta; Thakur, Atul; Thakur, Preeti

    2013-01-01

    In the present study, nano crystalline Mn-Zn-La ferrite with chemical formula Mn 0.4 Zn 0.6 La 0.3 Fe 1.7 O 4 was successfully synthesized by a co-precipitation method. The prepared powders were presintered at 700℃. The pallets formed were finally sintered at 700℃, 800℃ and 900℃ for 3h reach. The structural and morphological behavior was investigated by the X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD confirms the formation of the expected spinel structure. Scanning Electron Microscopy (SEM) was used to characterize the microstructure of the ferrite samples i.e. grain morphology, grain size, grain size distribution and shape. Fourier transform infrared spectroscopy (FTIR) confirms the peaks of different molecules in the given sample. Electrical and magnetic properties were studied by using dc resistivity set up and vibrating sample magnetometer (VSM). (author)

  1. Photoluminescence and magnetic properties of Fe-doped ZnS nano-particles synthesized by chemical co-precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Nie Eryong; Liu Donglai; Zhang Yunsen; Bai Xue; Yi Liang; Jin Yong; Jiao Zhifeng [School of Materials Science and Engineering, Sichuan University, Chengdu 610064, Sichuan (China); Sun Xiaosong, E-mail: sunxs@scu.edu.cn [School of Materials Science and Engineering, Sichuan University, Chengdu 610064, Sichuan (China)

    2011-08-15

    This paper is focusing on the synthesis of Zn{sub 1-x}Fe{sub x}S nano-particles with x = 0, 0.1 and 0.2 by chemical co-precipitation method, the prepared of which are characterized by XRD, EDS, TEM, PL, magnetization versus field behavior and M-T curve. In the XRD patterns, Zn{sub 1-x}Fe{sub x}S nano-particles are shown of cubic zinc blende structure, and the broadening diffraction peaks consistent with the small-size characteristic of nano-materials. The diameter of nano-particles is between 3.3 and 5.5 nm according to the HR-TEM images. The EDS data confirm the existence of Fe ions in Fe-doped ZnS nanoparticles. There we found that Fe-doping did not import new energy bands or defect states, but reduced the intensity of PL peaks. The magnetization versus field behaviors were illustrated by the M-H curves at both 5 K and 300 K, respectively, where no remanence or coercive force was observed. This phenomenon indicates that the Zn{sub 1-x}Fe{sub x}S (x = 0.1) nano-particles are superparamagnetic. The zero-field-cooled (ZFC) and field-cooled (FC) magnetization curves further reveal that the blocking temperature (T{sub B}) of the superparamagnetic behavior might be below 5 K.

  2. Electrochemical performance of multi-element doped α-nickel hydroxide prepared by supersonic co-precipitation method

    International Nuclear Information System (INIS)

    Zhang, Z.J.; Zhu, Y.J.; Bao, J.; Lin, X.R.; Zheng, H.Z.

    2011-01-01

    Highlights: → The α-nickel hydroxides doped with several elements were prepared by supersonic co-precipitation method. → Cyclic voltammetry and electrochemical impedance spectroscopy show sample C has the best electrochemical performance. → The charge/discharge tests show that the 0.5 C discharge capacity (346 mAh/g) of sample C is even larger than that (337 mAh/g) at 0.1 C rate, while the discharge capacity at 0.5 C rate is much lower than that at 0.1 C rate for samples A and B. - Abstract: The multi-element doped α-nickel hydroxides have been prepared by supersonic co-precipitation method. Three kinds of samples A, B, C were prepared by chemically coprecipitating Ni, Al, Co, Y, Zn. It was found that sample C produced better performance than the others. The cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements indicated that sample C has better electrochemical performance, such as better reaction reversibility, higher proton diffusion coefficient and lower charge-transfer resistance, than those of samples A and B. The charge-discharge tests showed that the discharge capacity (346 mA h/g) of sample C is even larger at 0.5 C rate than that (337mAh/g) at 0.1 C rate, while the discharge capacity at 0.5 C rate is much lower than that at 0.1 C rate for samples A and B. It indicates that all doped elements can produce the synergic effect and further improve the electrochemical properties of the active materials.

  3. Comparison of the properties of simulated synroc synthesized by sol-gel and a novel co - precipitation method

    International Nuclear Information System (INIS)

    Potdar, H.S.; Vijayanand, S.; Khaja Mohaideen, K.; Joy, P.A.; Raja Madhavan, R.; Kutty, K.V.G.; Ambashta, R.D.; Wattal, P.K.

    2009-01-01

    Synroc is a multiphase dense titanate based ceramic designed for the incorporation of high-level waste (HLW) from the reprocessing of spent nuclear fuel. Synroc or synthetic rock consists of four main titanate phases - zirconolite (CaZrTi 2 O 7 ), hollandite (BaAlO 2 Ti 6 O 16 ), perovskite (CaTiO 3 ) and rutile (TiO 2 ), with the matrix composition as shown in Table 1. It is known that these phases have the capacity to incorporate most of the elements into their crystal structures which are present in the HLW derived from the reprocessing of spent nuclear fuel from power reactors. Synroc is considered as the most effective and durable means of immobilising various forms of high-level radioactive wastes for disposal. Synroc is also considered as a low-risk, tailored waste form, offering higher waste loading and over all cost savings. Simulated synroc precursor powders are typically produced by advanced wet chemical methods such as alkoxide hydrolysis and sol-gel routes. These routes were developed to produce powders with well defined physical and chemical characteristics such as correct chemical composition, high degree of homogeneity, reactivity and readily densifiable material to 99% of theoretical density during hot isostatic pressing. However, the reported alkoxide hydrolysis and hydroxide routes suffer from several disadvantages such as use of large quantities of organic solvents and their disposal as effluent, difficulty in maintaining exact chemical composition, use of costly alkoxide precursors which are moisture sensitive and require critical processing conditions to control their rate of hydrolysis, etc. In the present work we report a comparative study the characteristics of synroc-C (14% waste loading) powders and sintered pellets synthesized by the known alkoxide hydrolysis method and a simple chemical co-precipitation route developed by us. The advantages of the co-precipitation route are its simplicity, ease of handling and utilization of cheaper raw

  4. Effect of Calcination at Synthesis of Mg-Al Hydrotalcite Using co-Precipitation Method

    Directory of Open Access Journals (Sweden)

    Niar Kurnia Julianti

    2017-01-01

    Full Text Available The use of hydrotalcite in catalysis has wide attention in academic research and industrial parties. Based on its utilization, hydrotalcite can be active catalyst or support. This research is focused on the investigation of characteristic like spesific surface area of Mg-Al hydrotalcite which is prepared with different temperature of calcination. Synthesis of Mg-Al hydrotalcites with Mg/Al molar ratio 3:1 were prepared by co-precipitation method. Mg(NO33.6H2O and Al(NO33.9H2O as precursors of Mg-Al hydrotalcite. Na2CO3 was used as precipitant agent and NaOH was used as buffer solution. The solution was mixed and aging for 5 hours at 650oC. The dried precipitate was calcined at 2500oC, 3500oC, 4500oC, 5500oC and 6500oC. The characterization of functional group was determined by Fourier Transform Infra Red (FT-IR. The Identical peaks diffractogram were analyzed by X-Ray Diffraction (XRD. The spesific surface area was determined by adsorption-desorption of nitrogen. The largest surface area that obtained from the calcination temperature of 650oC is 156.252 m2/g.

  5. Effect of synthesis conditions on the preparation of YIG powders via co-precipitation method

    International Nuclear Information System (INIS)

    Rashad, M.M.; Hessien, M.M.; El-Midany, A.; Ibrahim, I.A.

    2009-01-01

    Yttrium iron garnet (YIG) (Y 3 Fe 5 O 12 ) powders have been synthesized through a co-precipitation method in the presence of sodium bis(2-ethylhexylsulfosuccinate), AOT as an anionic surfactant. The garnet precursors produced were obtained from aqueous iron and yttrium nitrates mixtures using 5 M sodium hydroxide at pH 10. A statistical Box-Behnken experimental design was used to investigate the effect of the main parameters (i.e. AOT surfactant concentration, annealing time and temperature) on YIG powder formation, crystallite size, morphology and magnetic properties. YIG particles were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), and vibrating sample magnetometer. XRD revealed that the formation of single cubic phase of YIG was temperature dependent and increased by increasing the annealing temperature from 800 to 1200 o C. SEM micrographs showed that the addition of AOT surfactant promoted the microstructure of YIG in crystalline cubic-like structure. The magnetic properties were sensitive to the synthesis variables of annealing temperature, time and AOT surfactant concentration. The maximum saturation magnetization (28.13 emu/g), remanence magnetization (21.57 emu/g) and coercive force (703 Oe) were achieved at an annealing temperature of 1200 o C, time 2 h and 500 ppm of AOT surfactant concentration.

  6. Preparation of Fe3O4/Bentonite Nanocomposite from Natural Iron Sand by Co-precipitation Method for Adsorbents Materials

    Science.gov (United States)

    Sebayang, Perdamean; Kurniawan, Candra; Aryanto, Didik; Arief Setiadi, Eko; Tamba, Konni; Djuhana; Sudiro, Toto

    2018-03-01

    An adsorption method is one of the effective ways to filter the heavy metals wastes in aqueous system. In this paper, the Fe3O4/bentonite nanocomposites were successfully prepared from natural iron sand by co-precipitation method. The chemical process was carried out by dissolving and hot stirring the milled iron sand and bentonite in acid solution and precipitating it by NH4OH. The sediment was then washed using distilled water to neutralize pH and dried at 100 °C for 5 hours to produce Fe3O4/bentonite powders. The samples were characterized by XRD, FTIR, BET, TEM, VSM and AAS. All samples were composed by Fe3O4 single phase with a spinnel structure and lattice parameter of 8.373 Å. The transmittance peak of FTIR curve proved that the Fe3O4 particles and bentonite had a molecular bonding. The addition of bentonite to Fe3O4 nanoparticles generally reduced the magnetic properties of Fe3O4/bentonite nanocomposites. The optimum condition of 30 wt% bentonite resulted 105.9 m2/g in surface area, 14 nm in an average particle size and 3.2 nm in pore size. It can be used as Cu and Pb adsorbent materials.

  7. Removal of some Fission Products from Low Level Liquid Radioactive Waste by Chemical Precipitation liquid/Co-precipitation / Phosphate Coagulant

    International Nuclear Information System (INIS)

    Borai, E.H.; Attallah, M.F.; Hilal, M.A.; Abo-Aly, M.M.; Shehata, F.A.

    2008-01-01

    In Egypt radioactive waste has been generated from various uses of radioactive materials. Presence of cesium demonstrated a major problem from the removal point of view even by conventional and advanced technologies. Selective chemical precipitation has been oriented for removal of some fission products including 137 Cs from low level liquid radioactive waste (LLLRW). The aim of the present study was focused to investigate the effectiveness of various phosphate compounds that improved the precipitation process and hence the decontamination factor. The results showed that, maximum removal of 137 Cs reaching 46.4 % using di-sodium hydrogen phosphate as a selective coagulant. It was found that significant enhancement of co-precipitation of 137 Cs (62.5 %) was obtained due to presence of Nd 3+ in the LLLRW

  8. Effect of Gallium and Indium Co-Substituting on Upconversion Properties of Er/Yb:Yttrium Aluminum Garnet Powders Prepared by the Co-Precipitation Method.

    Science.gov (United States)

    Zhang, Wei; Liang, Yun-Ling; Hu, Zheng-Fa; Feng, Zu-Yong; Lun, Ma; Zhang, Xiu-ping; Sheng, Xia; Liu, Qian; Luo, Jie

    2016-04-01

    Gallium and Indium co-substituted Yb, Er:YAG was fabricated through the chemical co-precipitation method. The formation process and structure of the Ga3+ and In3+ substituted phosphor powders were characterized by the X-ray diffraction, thermo-gravimetry analyzer, infrared spectra, and X-ray photoelectron spectroscopy, and the effects of Ga3+ and In3+ concentration on the luminescence properties were investigated by spectrum. The results showed that the blue shift occurred after the substitution of Ga3+ and In3+ for Al3+ in matrix, and the intensity of emission spectrum was affected by the concentration of Ga3+ and In3+.

  9. Characterization of γ- Al2O3 nanopowders synthesized by Co-precipitation method

    International Nuclear Information System (INIS)

    Jbara, Ahmed S.; Othaman, Zulkafli; Ati, Ali A.; Saeed, M.A.

    2017-01-01

    Co-precipitation technique has been used to synthesize gamma-Al 2 O 3 (γ-Al 2 O 3 ) nanopowders under annealing temperature effect. The crystalline phase and purity for the prepared powder were characterized by different spectroscopy techniques. XRD analysis confirms the gamma phase of alumina nanopowders with particle diameter ranging from 6 to 24 nm, which confirms the quantum dots formation, which is also supported by the BET measurement. The surface area of the prepared nanopowders is in the range of 109–367 m 2 /g. Morphology analysis indicates that γ-Al 2 O 3 nanopowders are consisted of grains almost spherical in shape. Some agglomeration of nanoparticles occurs, which become more regular hexagonal shaped with the increasing annealing temperature. The small nanoparticles size and the high surface area from a simple procedure for preparing γ-Al 2 O 3 may make it more suitable for use as an adsorbent for malachite green. - Highlights: • Co-precipitation technique is used to synthesize gamma- Al 2 O 3 nanopowders. • Pure gamma- Al 2 O 3 phase was obtained having maximum nanoparticle size is 24 nm. • The quantum dots were formed inside powder. • High surface area of nanopowders at the low annealing temperature. • Increasing annealing temperature causes the hexagonal agglomeration shape.

  10. Synthesis of InGaZnO{sub 4} nanoparticles using low temperature multistep co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ming-Chung, E-mail: mingchungwu@mail.cgu.edu.tw; Hsiao, Kai-Chi; Lu, Hsin-Chun

    2015-07-15

    Indium gallium zinc oxide (InGaZnO{sub 4}, IGZO) has attracted explosive growth in investigations over the last decades as an important material in the thin-film transistor. In this study, the various nitrate precursors, including indium nitrate, gallium nitrate, and zinc nitrate, were prepared from the various metals dissolved in nitric acid. Then, we used these nitrate precursors to synthesize the IGZO precursor powder by the multistep co-precipitation method. The synthesis parameters of the co-precipitation method, such as reaction temperature, pH value and reaction time, were controlled precisely to prepare the high quality IGZO precursor powder. Finally, IGZO precursor powder was calcined at 900 °C. Then, the microstructure, the crystalline structure, the particle size distribution and specific surface area of calcined IGZO precursor powder were characterized by electron transmission microscopy, X-ray diffraction technique, dynamic light scattering method and the surface area and porosimetry analyzer, respectively. The relative density of IGZO tablet sintered at 1200 °C for 12 h is as high as 97.30%, and it showed highly InGaZnO{sub 4} crystalline structure and the large grain size. The IGZO nanoparticles developed in our study has the potential for the high quality target materials used in the application of electronic devices. - Graphical abstract: Display Omitted - Highlights: • InGaZnO{sub 4} (IGZO) nanoparticle was synthesized by multistep co-precipitation method. • The synthesis parameters were controlled precisely to prepare high quality powder. • The relative density of highly crystalline IGZO tablet is as high as 97.30%. • IGZO tablet exhibited highly crystalline structure and the large grain size.

  11. Synthesis of InGaZnO4 nanoparticles using low temperature multistep co-precipitation method

    International Nuclear Information System (INIS)

    Wu, Ming-Chung; Hsiao, Kai-Chi; Lu, Hsin-Chun

    2015-01-01

    Indium gallium zinc oxide (InGaZnO 4 , IGZO) has attracted explosive growth in investigations over the last decades as an important material in the thin-film transistor. In this study, the various nitrate precursors, including indium nitrate, gallium nitrate, and zinc nitrate, were prepared from the various metals dissolved in nitric acid. Then, we used these nitrate precursors to synthesize the IGZO precursor powder by the multistep co-precipitation method. The synthesis parameters of the co-precipitation method, such as reaction temperature, pH value and reaction time, were controlled precisely to prepare the high quality IGZO precursor powder. Finally, IGZO precursor powder was calcined at 900 °C. Then, the microstructure, the crystalline structure, the particle size distribution and specific surface area of calcined IGZO precursor powder were characterized by electron transmission microscopy, X-ray diffraction technique, dynamic light scattering method and the surface area and porosimetry analyzer, respectively. The relative density of IGZO tablet sintered at 1200 °C for 12 h is as high as 97.30%, and it showed highly InGaZnO 4 crystalline structure and the large grain size. The IGZO nanoparticles developed in our study has the potential for the high quality target materials used in the application of electronic devices. - Graphical abstract: Display Omitted - Highlights: • InGaZnO 4 (IGZO) nanoparticle was synthesized by multistep co-precipitation method. • The synthesis parameters were controlled precisely to prepare high quality powder. • The relative density of highly crystalline IGZO tablet is as high as 97.30%. • IGZO tablet exhibited highly crystalline structure and the large grain size

  12. Fe-based soft magnetic composites coated with NiZn ferrite prepared by a co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Yuandong; Yi, Yi; Li, Liya; Ai, Hengyu; Wang, Xiaoxu [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Chen, Lulu [Jiangsu Eagle-globe Group Co., Ltd., Nantong 226600 (China)

    2017-04-15

    Fe powder was coated with NiZn ferrite by a co-precipitation method using chlorate as the raw material. Soft magnetic composites were manufactured via compaction and heat treatment of the coated powder. The coated powder and heat treated powder were analysed using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and Raman spectroscopy. Their magnetic properties were determined using a Quantum Design-Vibrating Sample Magnetometer (QD-VSM). The composites were analysed with SEM and EDS. The permeability and magnetic loss of the composites were measured with a B-H curve analyzer. The results show that, using the co-precipitation method, the raw precipitate was successfully prepared and coated the pure Fe powder and turned into spinel NiZn ferrite treated at 600 ℃ for 1 h. After heat treatment at 500 ℃ under air, the insulation coating layer of soft magnetic composite (SMC) was not destroyed and containing Fe, Ni, Zn and oxygen. The permeabilities of the SMC are stable at edge of the 2–200 kHz frequency range and the total loss was lower. - Graphical abstract: Scanning electron microscopy (SEM) images of Fe/(NiZn)Fe{sub 2}O{sub 4} composite powder heated at 600 ℃ for 1 h. - Highlights: • Fe particles were coated with (NiZn)Fe{sub 2}O{sub 4} via a co-precipitation and calcined method. • Coating layers were uniform and dense. • The permeabilities of the SMC are stable at edge of the 2–200 kHz frequency range.

  13. Study of UO2-10WT%Gd2O3 fuel pellets obtained by seeding method using AUC co-precipitation and mechanical mixing processes

    International Nuclear Information System (INIS)

    Lima, M.M.F.; Ferraz, W.B.A.; Santos, M.M. dos; Pinto, L.C.M.; Santos, A.

    2008-01-01

    The use of gadolinium and uranium mixed oxide as a nuclear fuel aims to obtain a fuel with a performance better than that of UO 2 fuel. In this work, seeding method was used to improve ionic diffusivity during sintering to produce high density pellets containing coarse grains by co-precipitation and mechanical mixing processes. Sintered UO 2 -10 wt% Gd 2 O 3 pellets were obtained using the reference processes with 2 wt% and 5 wt% UO 2 seeds with two granulometries, less than 20 μm and between 20 and 38 μm. Characterisation was carried out by chemical analysis, surface area, X-ray diffraction, SEM, WDS, image analysis, and densitometry. The seeding method using mechanical mixing process was more effective than the co-precipitation method. Furthermore, mechanical mixing process resulted in an increase in density of UO 2 -10wt% Gd 2 O 3 with seeds in relation to that of UO 2 -10wt% Gd 2 O 3 without seeds. (author)

  14. Phase pure synthesis of BiFeO3 nanopowders using diverse precursor via co-precipitation method

    International Nuclear Information System (INIS)

    Shami, M. Yasin; Awan, M.S.; Anis-ur-Rehman, M.

    2011-01-01

    Highlights: → Synthesized phase pure BiFeO 3 using diverse precursor by co-precipitation method. → Optimized synthesis and processing parameters. → Thermal behavior, structure and microstructure were analyzed. → Resistivity vs temperature and dielectric constant vs frequency were measured. → Multiferroicity at room temperature was confirmed by M-H and P-E loops. - Abstract: Amorphous powder of BiFeO 3 (BFO) was synthesized at low-temperature (80 deg. C) by co-precipitation method. Optimal synthesis conditions for phase pure BFO were obtained. Powders were calcined in the temperature range from 400 to 600 deg. C for 1 h. Iso-statically pressed powder was sintered at 500 deg. C for 2 h. Differential scanning calorimetric thermo-gram guided for phase transition, crystallization and melting temperatures. X-ray diffraction confirmed the amorphous nature of as synthesized powder and phase formation of calcined powders. Calcination at temperature ≥400 deg. C resulted in nano crystalline powders with perovskite structure. Average crystallite size increased with the increase in calcination temperature. Scanning electron microscopic studies revealed dense granular microstructure of the sintered samples. The sintered samples exhibited high dc resistivity at room temperature which decreased with the increase in temperature. Dielectric constant, dielectric loss tangent and ac conductivity measurements were carried out in the frequency range (10 Hz to 2 MHz). The samples responded weak electric and magnetic polarization at room temperature with unsaturated and hysteresis free loops, respectively.

  15. Synthesis, Characterization, and Atenolol Delivery Application of Functionalized Mesoporous Hydroxyapatite Nanoparticles Prepared by Microwave-Assisted Co-precipitation Method.

    Science.gov (United States)

    Mortazavi-Derazkola, Sobhan; Naimi-Jamal, Mohammad Reza; Ghoreishi, Seyedeh Masoumeh

    2016-01-01

    Atenolol has been used to treat angina and hypertension, either alone or with other antihypertensives. Despite its usefulness, it shows some side effects such as diarrhea and nausea in some patients. A method for slow release of atenolol in intestine is helpful to prevent such side effects. A facile co-precipitation microwave-assisted method was used to fabricate mesoporous hydroxyapatite nanoparticles (mHAp). It was then functionalized to have SO3H groups. The synthesized material was used for storage/slow release study of atenolol. Atenolol loaded mHAp shows immediate release of atenolol in pH 8, whileafter functionalizing shows up to ca. 30% release at the beginning. In pH 1, 50% of drug was released after 10 h from AT@mHAp and after 18h the drug was almost completely released.The drug release profiles of functionalized HAp at pH value 1 and 8reveals the complete release of atenolol in intestine pH, while no complete release is observed in stomach environment. The aims of this work were synthesis and characterization of mesoporous HAp through the microwave-assisted co-precipitation method and elucidate the underlying drug release capability of mesoporous HAp nanoparticles. The SO3H group was incorporated into the mesoporous HAp and then used as drug delivery carriers using atenolol as a model drug to investigate their drug storage/release properties in simulated body fluid (SBF). Increasing pH value to 8 causes increase in the drug release.

  16. Upconversion emission study of Er3+/Yb3+ doped barium titanate phosphor prepared by co-precipitation method

    International Nuclear Information System (INIS)

    Mahata, M.K.; Dey, R.; Kumar, K.; Rai, V.K.; Rai, S.B.

    2012-01-01

    In the present work we have successfully synthesized the Er 3+ , Yb 3+ doped barium titanate phosphor via co-precipitation synthesis method. Under 980 nm excitation, tri-color upconversion fluorescence has been observed. The Fourier Transform Infrared measurement was done to check the presence of organic impurities. In order to find out how many photons are involved in each emission band, the variation of UC emission intensity of the codoped phosphor is studied with increase in excitation power. Upconversion emission spectra show that as the annealing temperature of the powder is increased, intensity of red emission decreases and intensity of green emission increases due to the decrease in maximum phonon frequency of the host material. (author)

  17. Structure and electrochemical properties of Mg2SnO4 nanoparticles synthesized by a facile co-precipitation method

    International Nuclear Information System (INIS)

    Tang, Hao; Cheng, Cuixia; Yu, Gaige; Liu, Haowen; Chen, Weiqing

    2015-01-01

    Nanosized Mg 2 SnO 4 has been synthesized by a facile co-precipitation method. The structure and morphology of the as-prepared samples are characterized by X-ray diffraction (XRD), X-ray photoelectron spectrometer (XPS), fourier Transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). It is found that Mg 2 SnO 4 sample is very sensitive to the aging time of the precursor. The single phase Mg 2 SnO 4 nanoparticles with ∼23 nm can be obtained at 900 °C using the aging 35 min percusor as source. The electrochemical properties of the powder obtained at 900 °C are investigated by galvanostatic discharge-charge tests and cyclic voltammograms (CVs). The initial specific discharge capacity reaches as high as 927.7 mAh g −1 at 0.2 mA cm −2 in 0.05–3.0 V, which indicates that Mg 2 SnO 4 nanoparticles could be a promising candidate of anode material for Li-ion batteries. - Highlights: • Nanosized Mg 2 SnO 4 has been synthesized by a facile co-precipitation method. • We find that Mg 2 SnO 4 sample is very sensitive to the ageing time of the precursor. • The single phase Mg 2 SnO 4 nanoparticles with about 23 nm can be obtained by calcining the ageing 35 min percusor at 900 °C. • The obtained powders show a better electrochemical performance

  18. Synthesis of layered double hydroxides containing Mg2+, Zn2+, Ca2+ and Al3+ layer cations by co-precipitation methods-A review

    Science.gov (United States)

    Theiss, Frederick L.; Ayoko, Godwin A.; Frost, Ray L.

    2016-10-01

    Co-precipitation is a common method for the preparation of layered double hydroxides (LDHs) and related materials. This review article is aimed at providing newcomers to the field with some examples of the types of co-precipitation reactions that have been reported previously and to briefly investigate some of the properties of the products of these reactions. Due to the sheer volume of literature on the subject, the authors have had to limit this article to the synthesis of Mg/Al, Zn/Al and Ca/Al LDHs by co-precipitation and directly related methods. LDHs have been synthesised from various reagents including metal salts, oxides and hydroxides. Co-precipitation is also useful for the direct synthesis of LDHs with a wide range of interlayer anions and various bases have been successfully employed to prepare LDHs. Examples of other synthesis techniques including the urea method, hydrothermal synthesis and various mechanochemical methods that are undoubtedly related to co-precipitation have also been included in this review. The effect of post synthesis hydrothermal has also been summarised.

  19. Synthesis of YAG nanopowder by the co-precipitation method: Influence of pH and study of the reaction mechanisms

    Science.gov (United States)

    Marlot, Caroline; Barraud, Elodie; Le Gallet, Sophie; Eichhorn, Marc; Bernard, Frédéric

    2012-07-01

    YAG nanopowders with an average grain size of 30 nm have been successfully synthesized by the co-precipitation method using nitrates with precipitant of ammonium hydrogen carbonate. The influence of precipitation conditions such as pH, aging time and calcination temperature on the formation of secondary phases has been studied. The accurate control of pH value at every stage of precipitation process is crucial to avoid the presence of YAM (Yttrium Aluminium Monoclinic, Y4Al2O9) and yttrium oxide (Y2O3) after calcination. The reaction mechanisms have been investigated using different techniques such as infrared spectroscopy, x-ray diffraction and thermal analyses. The YAG phase is formed around 1050 °C passing through an intermediate phase called YAP (Yttrium Aluminium Perovskite, YAlO3). Local chemical heterogeneities are responsible for the deviation of the Y:Al ratio and the formation of YAP during heat treatment.

  20. Preparation of magnetic albumin nanoparticles via a simple and one-pot desolvation and co-precipitation method for medical and pharmaceutical applications.

    Science.gov (United States)

    Nosrati, Hamed; Salehiabar, Marziyeh; Manjili, Hamidreza Kheiri; Danafar, Hossein; Davaran, Soodabeh

    2018-03-01

    In this study, iron oxide magnetic bovine serum albumin core-shell nanoparticles (BSA coated IONPs) with narrow particle size distribution were synthesized under one-pot reaction via the desolvation and chemical co-precipitation method. Functionalized IONPs were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM) techniques. Furthermore, vibrating sample magnetometer (VSM) analysis show these nanoparticles (NPs) have an excellent magnetic properties. Cellular toxicity of IONPs was also investigated on HFF2 cell lines. Additionally, a hemolysis test of as prepared core-shell NPs were performed. The presence of albumin as a biomolecule coating on the surface of IONPs showed an improving effect to reduce the cytotoxicity. The properties of the designed NPs propose the BSA coated IONPs as a promising candidate for multifunctional biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Structure and magnetic properties of Mg0.35Cu0.2Zn0.45Fe2O4 ferrite synthesized by co-precipitation method

    Directory of Open Access Journals (Sweden)

    Bo Yang

    2017-05-01

    Full Text Available Mg0.35Cu0.2Zn0.45Fe2O4 nanosize particles have been synthesized by chemical co-precipitation method and characterized by X-ray diffraction (XRD and vibrating sample magnetometry (VSM. The XRD patterns confirmed the single phase spinel structure of the synthesized powder. The average crystallite size of the powder varied from 14 to 55 nm by changing annealing temperature. The activation energy for crystal growth was estimated as about 18.61KJ/mol. With the annealing temperature increasing, saturation magnetization (MS was successively increased while the coercivity (HC was first increased, passed through a maximum and then declined. The sintering temperature has significant influence on bulk density, initial permeability and Curie temperature of Mg0.35Cu0.2Zn0.45Fe2O4 ferrite.

  2. Thermoluminescence and photoluminescence properties of NaCl:Mn, NaCL:Cu nano-particles produced using co-precipitation and sono-chemistry methods

    Energy Technology Data Exchange (ETDEWEB)

    Mehrabi, M. [Faculty of Physics, University of Kashan, Kashan (Iran, Islamic Republic of); Zahedifar, M. [Faculty of Physics, University of Kashan, Kashan (Iran, Islamic Republic of); Institute of Nanosince and Nanotechnology, University of Kashan, Kashan (Iran, Islamic Republic of); Saeidi-Sogh, Z. [Institute of Nanosince and Nanotechnology, University of Kashan, Kashan (Iran, Islamic Republic of); Ramazani-Moghaddam-Arani, A., E-mail: ramazmo@kashanu.ac.ir [Institute of Nanosince and Nanotechnology, University of Kashan, Kashan (Iran, Islamic Republic of); Sadeghi, E. [Faculty of Physics, University of Kashan, Kashan (Iran, Islamic Republic of); Institute of Nanosince and Nanotechnology, University of Kashan, Kashan (Iran, Islamic Republic of); Harooni, S. [Institute of Nanosince and Nanotechnology, University of Kashan, Kashan (Iran, Islamic Republic of)

    2017-02-21

    The NaCl: Cu and NaCl: Mn nanoparticles (NPs) were produced by co-precipitation and sono-chemistry methods and their thermoluminescence (TL) and photoluminescence (PL) properties were studied. By decreasing the particles size a considerable increase in sensitivity of the samples to high dose gamma radiation was observed. The NPs produced by sono-chemistry method have smaller size, homogeneous structure, more sensitivity to high gamma radiation and less fading than of those produced by co-precipitation method.

  3. Synthesis and characterization of La(Cr,Fe,Mn)O{sub 3} nanoparticles obtained by co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Fabian, F.A., E-mail: fernandafabianro@gmail.com [Universidade Federal de Sergipe, Campus Prof. Aluísio Campos, Departamento de Física, 49100-000 São Cristóvão, SE (Brazil); Pedra, P.P.; Filho, J.L.S. [Universidade Federal de Sergipe, Campus Prof. Aluísio Campos, Departamento de Física, 49100-000 São Cristóvão, SE (Brazil); Duque, J.G.S.; Meneses, C.T. [Universidade Federal de Sergipe, Campus Prof. Alberto Carvalho, Departamento de Física, 49500-000 Itabaiana, SE (Brazil)

    2015-04-01

    Magnetic and structural properties have been investigated in La(Cr,Fe,Mn)O{sub 3} nanoparticles obtained by co-precipitation method. The X-ray diffraction measurements allied to Rietveld method confirm the formation of LaCrO{sub 3}, LaFeO{sub 3} and LaMnO{sub 3} nanoparticles with crystal structure orthorhombic (Pbnm), orthorhombic (Pnma) and rhombohedral (R-3c), respectively. We also verified an decreasing in the average crystallite size from 73 to 26 nm, depending of the transition metal. The magnetic measurements reveal an antiferromagnetic behavior for the LaCrO{sub 3} sample with T{sub N}~289 K, and a weak ferromagnetic ordering for the LaMnO{sub 3} sample with T{sub c}~200 K. - Highlights: • La(Cr,Fe,Mn)O{sub 3} nanoparticles were synthesized by coprecipitation method. • XRD results confirm the formation single phase in the compounds studied. • Magnetic property in the La(Fe,Cr,Mn)O{sub 3} nanoparticles dependent on the TM. • La(Cr,Fe)O{sub 3} nanoparticles presented behavior antiferromagnetic and LaMnO{sub 3} ferromagnetic.

  4. One-step synthesis and characterizations of cerium oxide nanoparticles in an ambient temperature via Co-precipitation method

    Science.gov (United States)

    Pujar, Malatesh S.; Hunagund, Shirajahammad M.; Desai, Vani R.; Patil, Shivaprasadgouda; Sidarai, Ashok H.

    2018-04-01

    We report the simple Co-precipitation method for the synthesis of Cerium oxide (CeO2) nanoparticles (NPs) in an ambient temperature. We have taken the Cerium (III) nitrate hexahydrate (Ce(NO3)3.6H2O) and Sodium hydroxide (NaOH) as the precursors. The obtained NPs were analyzed using the UV-Vis spectrophotometer, Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The obtained results signify that UV-Vis spectrum exhibited a well-defined absorption peak at 274 nm and the estimated energy gap (Eg) is 4.05 eV. The FT-IR analysis provides the supporting evidence for the presence of bonding of O-H, nitrates, alcohols and O-Ce-O vibrations. The XRD result reveals that the synthesized CeO2 NPs was crystallite with cubic phase structure and the estimated average crystallite size of CeO2 NPs using Scherer's and W-H method was significantly different due to their assumptions. Further, it is purposed to study their photocatalytic biological activities.

  5. Preparation of LuAG Powders with Single Phase and Good Dispersion for Transparent Ceramics Using Co-Precipitation Method

    Science.gov (United States)

    Pan, Liangjie; Jiang, Benxue; Fan, Jintai; Yang, Qiuhong; Zhou, Chunlin; Zhang, Pande; Mao, Xiaojian; Zhang, Long

    2015-01-01

    The synthesis of pure and well dispersed lutetium aluminum garnet (LuAG) powder is crucial and important for the preparation of LuAG transparent ceramics. In this paper, high purity and well dispersed LuAG powders have been synthesized via co-precipitation method with lutetium nitrate and aluminum nitrate as raw materials. Ammonium hydrogen carbonate (AHC) was used as the precipitant. The influence of aging time, pH value, and dripping speed on the prepared LuAG powders were investigated. It showed that long aging duration (>15 h) with high terminal pH value (>7.80) resulted in segregation of rhombus Lu precipitate and Al precipitate. By decreasing the initial pH value or accelerating the dripping speed, rhombus Lu precipitate was eliminated and pure LuAG nano powders were synthesized. High quality LuAG transparent ceramics with transmission >75% at 1064 nm were fabricated using these well dispersed nano LuAG powders. PMID:28793510

  6. Preparation and characterization of polyol assisted ultrafine Cu–Ni–Mg–Ca mixed ferrite via co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Boobalan, T. [Park College of Engineering and Technology, Coimbatore (India); Pavithradevi, S. [Department of Physics, Government College of Technology, Coimbatore (India); Suriyanarayanan, N., E-mail: nsuri22@gmail.com [Department of Physics, PSG Polytechnic College, Coimbatore (India); Manivel Raja, M. [Defence Metallurgical Research Laboratory, Ministry of Defence, Govt. of India, Hyderabad (India); Ranjith Kumar, E., E-mail: ranjueaswar@gmail.com [Dr. NGP Institute of Technology, Coimbatore (India)

    2017-04-15

    Nanocrystalline spinel ferrite of composition Cu{sub 0.2}Ni{sub 0.2}Mg{sub 0.2}Ca{sub 0.4}Fe{sub 2}O{sub 4} is synthesized by wet hydroxyl co-precipitation method in ethylene glycol as chelating agent and sodium hydroxide as precipitator at pH 8. Ethylene glycol is utilized as the medium which serves as the dissolvable and in addition a complexing specialist. The synthesized particles are annealed at various temperatures. Thermogravimetric investigation affirms that at 280 °C ethylene glycol is dissipated totally and stable phase arrangement happens over 680 °C. FTIR spectra of as synthesized and annealed at 1050 °C recorded between 400 cm{sup −1} and 4000 cm{sup −1}. Structural characterizations of all the samples are carried out by X-ray diffraction (XRD) technique. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) affirm that the particles are spherical and cubic shape with the crystallite size of 12 nm to 32 nm. Magnetic measurements are performed utilizing vibrating sample magnetometer at room temperature. - Highlights: • Polyol improves purity of the spinel ferrite. • TG curves confirm the single phase ferrite is obtained above 680 °C. • Super paramagnetic behavior is seen at lower annealing temperature. • Soft ferromagnetic behavior is obtained at 1050 °C.

  7. Preparation of LuAG Powders with Single Phase and Good Dispersion for Transparent Ceramics Using Co-Precipitation Method

    Directory of Open Access Journals (Sweden)

    Liangjie Pan

    2015-08-01

    Full Text Available The synthesis of pure and well dispersed lutetium aluminum garnet (LuAG powder is crucial and important for the preparation of LuAG transparent ceramics. In this paper, high purity and well dispersed LuAG powders have been synthesized via co-precipitation method with lutetium nitrate and aluminum nitrate as raw materials. Ammonium hydrogen carbonate (AHC was used as the precipitant. The influence of aging time, pH value, and dripping speed on the prepared LuAG powders were investigated. It showed that long aging duration (>15 h with high terminal pH value (>7.80 resulted in segregation of rhombus Lu precipitate and Al precipitate. By decreasing the initial pH value or accelerating the dripping speed, rhombus Lu precipitate was eliminated and pure LuAG nano powders were synthesized. High quality LuAG transparent ceramics with transmission >75% at 1064 nm were fabricated using these well dispersed nano LuAG powders.

  8. Structural, Optical, Morphological and Microbial Studies on SnO₂ Nanoparticles Prepared by Co-Precipitation Method.

    Science.gov (United States)

    Arularasu, M V; Anbarasu, M; Poovaragan, S; Sundaram, R; Kanimozhi, K; Magdalane, C Maria; Kaviyarasu, K; Thema, F T; Letsholathebe, D; Mola, Genene T; Maaza, M

    2018-05-01

    Nanoparticles of tin oxide (SnO2) powders were prepared by co-precipitation method at 500 °C, 700 °C and 900 °C temperature. The sintered SnO2 nanoparticles, structural, optical, magnetic, morphological properties and microbial activity have been studied. XRD studies reveals that sintered powder which exhibits tetragonal crystal structure and both crystallinity as well as crystal size increase with increase in temperature. The morphological studies reveal randomly arranged grains with compact nature grain size increases with sintering temperature. The compositional analyses of SnO2 nanoparticles have been studied using X-ray photoelectron spectroscopy analysis. The optical band gap values of SnO2 nanoparticles were calculated to be about 4.3 eV in the temperature 500 °C, comparing with that of the bulk SnO2 3.78 eV, by optical absorption measurement. Room temperature M-H curve for pure SnO2 nanoparticles exhibits ferromagnetic behaviour. The tin oxide nanoparticles are acted as potential candidate material for bacterial and fungal activity.

  9. Application of Carrier Element-Free Co-precipitation Method for Ni(II), Cu(II) and Zn(II) Ions Determination in Water Samples Using Chrysin

    International Nuclear Information System (INIS)

    Layth Imad Abd Ali; Wan Aini Wan Ibrahim; Azli Sulaiman; Mohd Marsin Sanagi

    2015-01-01

    A co-precipitation method was developed to separate and pre-concentrate Ni(II), Cu(II) and Zn(II) ions using an organic co precipitant, chrysin without adding any carrier element termed as carrier element-free co-precipitation (CEFC). Analytes were determined using flame atomic absorption spectrometry (FAAS). The influence of analytical conditions, such as pH of the solution, quantity of co-precipitant, standing time, centrifugation rate and time, sample volume, and interference of concomitant ions were investigated over the recovery yields of the trace metals. The limit of detection, the limit of quantification and linearity range obtained from the FAAS measurements were found to be in the range of 0.64 to 0.86 μg L -1 , 2.13 to 2.86 μg L -1 and 0.9972 to 0.9989 for Ni(II), Cu(III) and Zn(II) ions, respectively. The precision of the method, evaluated as the relative standard deviation (RSD) obtained after analyzing a series of 10 replicates, was between 2.6 % to 3.9 % for the trace metal ions. The proposed procedure was applied and validated by analyzing river water reference material for trace metals (SLRS-5) and spiking trace metal ions in some water samples. The recoveries of the analyte metal ions were between 94.7-101.2 %. (author)

  10. Synthesis and magnetic properties of (Eu–Ni) substituted Y-type hexaferrite by surfactant assisted co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Irshad, E-mail: irshadalibzu@gmail.com [Department of Physics, BahauddinZakariya University, Multan, P.O# 60800 (Pakistan); Islam, M.U. [Department of Physics, BahauddinZakariya University, Multan, P.O# 60800 (Pakistan); Sadiq, Imran [Department of Physics, BahauddinZakariya University, Multan, P.O# 60800 (Pakistan); Centre of Excellence in Solid State Physics, University of The Punjab, Lahore (Pakistan); Karamat, Nazia [Institute of Chemical Science, Bahauddin Zakariya University, Multan 60800 (Pakistan); Iftikhar, Aisha [Department of Physics, BahauddinZakariya University, Multan, P.O# 60800 (Pakistan); Khan, M. Azhar [Department of Physics, Islamia University of Bahawalpur, 63100 Pakistan (Pakistan); Shah, Afzal [Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Athar, Muhammad [Institute of Chemical Science, Bahauddin Zakariya University, Multan 60800 (Pakistan); Shakir, Imran [Sustainable Energy Technologies (SET) Center, College of Engineering, King Saud University (Saudi Arabia); Ashiq, Muhammad Naeem, E-mail: naeemashiqqau@yahoo.com [Institute of Chemical Science, Bahauddin Zakariya University, Multan 60800 (Pakistan)

    2015-07-01

    A series of (Eu–Ni) substituted Y-type hexaferrite with composition Sr{sub 2}Co{sub (2−x)}Ni{sub x}Eu{sub y}Fe{sub (12−y)}O{sub 22} (x=0.0–1, Y=0.0–0.1) were prepared by the surfactant assisted co-precipitation method. The present samples were sintered at 1050 °C for 8 h. The shape of the particles is plate-like which is very advantageous for various applications and the grain size varies from 73 to 269 nm. The values of saturation magnetization (M{sub s}), remanent magnetization (M{sub r}) and magnetic moment (n{sub B}) were found to decrease which are attributed to the weakening of super exchange interactions. The values of in-plane Squareness ratios (M{sub r}/M{sub s}) ranging from 0.41 to 0.65 whereas in case of out of plane measurement it varies from 0.30 to 0.62.The investigated samples can be used in perpendicular recording media (PRM) due to high value of coercivity 2300 Oe which is analogous to the those of M-type and W-type hard magnetic. - Highlights: • The present samples sintered at 1050 °C for 8 h. • The grain size varies from 73 to 269 nm. • The magnetic moment varies from 15.27 to 6.07. • The shape of grains is plate like for microwave devices. • The present samples can be used in PRM due to high value of coercivity i.e. 2300 Oe.

  11. Characterization of γ- Al{sub 2}O{sub 3} nanopowders synthesized by Co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Jbara, Ahmed S., E-mail: ahmedsbhe@yahoo.com [Center for Sustainable Nanomaterials, Universiti Teknologi Malaysia, Skudai - 81310, Johor Bahru (Malaysia); Physics Department, Science College, Al-Muthanna University, Samawah - 66001 (Iraq); Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai - 81310, Johor Bahru (Malaysia); Othaman, Zulkafli [Center for Sustainable Nanomaterials, Universiti Teknologi Malaysia, Skudai - 81310, Johor Bahru (Malaysia); Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai - 81310, Johor Bahru (Malaysia); Ati, Ali A. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai - 81310, Johor Bahru (Malaysia); Saeed, M.A., E-mail: moalsd@gmail.com [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai - 81310, Johor Bahru (Malaysia); Division of Science and Technology, University of Education, Township, Lahore - 54770 (Pakistan)

    2017-02-15

    Co-precipitation technique has been used to synthesize gamma-Al{sub 2}O{sub 3} (γ-Al{sub 2}O{sub 3}) nanopowders under annealing temperature effect. The crystalline phase and purity for the prepared powder were characterized by different spectroscopy techniques. XRD analysis confirms the gamma phase of alumina nanopowders with particle diameter ranging from 6 to 24 nm, which confirms the quantum dots formation, which is also supported by the BET measurement. The surface area of the prepared nanopowders is in the range of 109–367 m{sup 2}/g. Morphology analysis indicates that γ-Al{sub 2}O{sub 3} nanopowders are consisted of grains almost spherical in shape. Some agglomeration of nanoparticles occurs, which become more regular hexagonal shaped with the increasing annealing temperature. The small nanoparticles size and the high surface area from a simple procedure for preparing γ-Al{sub 2}O{sub 3} may make it more suitable for use as an adsorbent for malachite green. - Highlights: • Co-precipitation technique is used to synthesize gamma- Al{sub 2}O{sub 3} nanopowders. • Pure gamma- Al{sub 2}O{sub 3} phase was obtained having maximum nanoparticle size is 24 nm. • The quantum dots were formed inside powder. • High surface area of nanopowders at the low annealing temperature. • Increasing annealing temperature causes the hexagonal agglomeration shape.

  12. Modification the Oxalic Co-precipitation Method on a Novel Catalyst Cu/Zn/Al2O3/Cr2O3 for Autothermal Reforming Reaction of Methanol

    Directory of Open Access Journals (Sweden)

    Cheng- Hsin Kuo

    2013-12-01

    Full Text Available This study addresses the catalytic performance of Cu/ZnO/Al2O3/Cr2O3 in low-temperature of autothermal reforming (ATR reaction. Various operating conditions were used to decide the optimum reaction conditions: type of promoter (ZrO2, CeO2, and Cr2O3, precipitation temperature, precipitation pH, operation temperature, molar ratio of O2/CH3OH (O/C, and weight hourly space velocity (WHSV. The catalysts were prepared using the oxalic coprecipitation method. Characterization of the catalyst was conducted using a porosity analyzer, XRD, and SEM. The methanol conversion and volumetric percentage of hydrogen using the best catalyst (Cu/ZnO/Al2O3/Cr2O3 exceeded 93% and 43%, respectively. A catalyst prepared by precipitation at -5 oC and at pH of 1 converted methanol to 40% H2 and less than 3000 ppm CO at reaction temperature of 200 oC. The size and dispersion of copper and the degradation rate and turnover frequency of the catalyst was also calculated. Deactivation of the Cu catalyst at a reaction temperature of 200 oC occurred after 30 h. © 2013 BCREC UNDIP. All rights reservedReceived: 8th May 2013; Revised: 10th August 2013; Accepted: 18th August 2013[How to Cite: Cheng, H.K., Lesmana, D., Wu, H.S. (2013. Modification the Oxalic Co-precipitation Method on a Novel Catalyst Cu/Zn/Al2O3/Cr2O3 for Autothermal Reforming Reaction of Methanol. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (2: 110-124. (doi:10.9767/bcrec.8.2.4844.110-124][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.2.4844.110-124

  13. Properties of Er{sub 2}O{sub 3} nanoparticles synthesized by a modified co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Castaneda C, J.; Maranon R, V. F.; Perez Ladron de G, H.; Rodriguez R, R. A.; Chiu Z, R. [Universidad de Guadalajara, Centro Universitario de los Lagos, Av. Enrique Diaz de Leon s/n, Lagos de Moreno 47460, Jalisco (Mexico); Meneses N, M. A., E-mail: jcc050769@yahoo.com.mx [Centro de Investigaciones en Optica, A. C., Apdo. Postal 1-948, Leon, Guanajuato (Mexico)

    2015-07-01

    Er{sub 2}O{sub 3} nanoparticles were synthesized by co-precipitation with the addition of ascorbate as stabilizing agent. The nanoparticles had spherical shapes with a mean diameter of 32 nm and were allocated in clusters, as determined by X-ray diffraction, atomic force microscopy and optical microscopy. Characteristic green and red emissions from Er{sup 3+} were recorded by pumping the nanoparticles at 525 nm, 805 nm and 975 nm. However, the luminescence spectra show an enhancement of red emission for Nir pump wavelengths. We proposed this behavior was due to phonon-assisted depopulation mechanisms and energy transfer processes related to the different excitation schemes. (Author)

  14. Structural, electrical, magnetic and dielectric properties of rare-earth substituted cobalt ferrites nanoparticles synthesized by the co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Nikumbh, A.K., E-mail: aknik@chem.unipune.ac.in; Pawar, R.A.; Nighot, D.V.; Gugale, G.S.; Sangale, M.D.; Khanvilkar, M.B.; Nagawade, A.V.

    2014-04-15

    Pure nanoparticles of the rare-earth substituted cobalt ferrites CoRE{sub x}Fe{sub 2−x}O{sub 4} (where RE=Nd, Sm and Gd and x=0.1 and 0.2) were prepared by the chemical co-precipitation method. X-ray diffraction, Transmission electron microscopy (TEM), d.c. electrical conductivity, Magnetic hysteresis and Thermal analysis are utilized in order to study the effect of variation in the rare-earth substitution and its impact on particle size, magnetic properties like M{sub S}, H{sub C} and Curie temperature. The phase identification of the materials by X-ray diffraction reveals the single-phase nature of the materials. The lattice parameter increased with rare-earth content for x≤0.2. The Transmission electron micrographs of Nd-, Sm- and Gd-substituted CoFe{sub 2}O{sub 4} exhibit the particle size 36.1 to 67.8 nm ranges. The data of temperature variation of the direct current electrical conductivity showed definite breaks, which corresponds to ferrimagnetic to paramagnetic transitions. The thermoelectric power for all compound are positive over the whole range of temperature. The dielectric constant decreases with frequency and rare-earth content for the prepared samples. The magnetic properties of rare-earth substituted cobalt ferrites showed a definite hysteresis loop at room temperature. The reduction of coercive force, saturation magnetization, ratio M{sub R}/M{sub S} and magnetic moments may be due to dilution of the magnetic interaction.

  15. Superior Photocatalytic Performance of CeO₂ Nanoparticles and Reduced Graphene Oxide Nanocomposite Prepared by Low Cost Co-Precipitation Method.

    Science.gov (United States)

    Jayanthi, Mani; Lavanya, Thirugnanam; Saradha, Nagarajan Anbil; Satheesh, Kaveri; Chenthamarai, SriRangarajan; Jayavel, Ramasamy

    2018-05-01

    In this article, cerium oxide nanoparticles (CeO2 NPs) and reduced graphene oxide nanocomposite have been fabricated through simple, easy and cost effective co-precipitation method. The structural, optical and morphological characterization provides the evidence of successful synthesis of CeO2 NPs and nanocomposite. X-ray photoelectron spectroscopic characterization provides useful information about the concentrations and proportions of Ce3+ and Ce4+ ions in nanoparticles as well as in nanocomposite. These studies provide an insight to understand enhanced photocatalytic activity of nanocomposite. The nanocomposite produces 81% photocatalytic degradation of methyl orange compared to only 45% degradation by CeO2 NPs alone.

  16. Effect of preparation conditions on Nickel Zinc Ferrite nanoparticles: A comparison between sol–gel auto combustion and co-precipitation methods

    Directory of Open Access Journals (Sweden)

    Manju Kurian

    2016-09-01

    Full Text Available The experimental conditions used in the preparation of nano crystalline mixed ferrite materials play an important role in the particle size of the product. In the present work a comparison is made on sol–gel auto combustion methods and co-precipitation methods by preparing Nickel Zinc Ferrite (Ni0.5Zn0.5Fe2O4 nano particles. The prepared ferrite samples were calcined at different temperatures and characterized by using standard methods. X-ray diffraction analysis indicated the formation of single phase ferrite nanoparticles for samples calcined at 500 °C. The lattice parameter range of 8.32–8.49 Å confirmed the cubic spinel structure. Average crystallite size estimated from X-ray diffractogram was found to be between 17 and 40 nm. The IR spectra showed two main absorption bands, the high frequency band ν1 around 600 cm−1 and the low frequency band ν2 around 400 cm−1 arising from tetrahedral (A and octahedral (B interstitial sites in the spinel lattice. TEM pictures showed particles in the nanometric range confirming the XRD data. The studies revealed that the sol–gel auto combustion method was superior to the co-precipitation method for producing single phase nano particles with smaller crystallite size.

  17. Synthesis, Optical and Electrochemical Properties of Y2O3 Nanoparticles Prepared by Co-Precipitation Method.

    Science.gov (United States)

    Saravanan, Thulasingam; Raj, Srinivasan Gokul; Chandar, Nagamuthu Raja Krishna; Jayavel, Ramasamy

    2015-06-01

    Y2O3 nanoparticles were synthesized by co-precipitation route using yttrium nitrate hexahydrate and ammonium hydroxide as precursors. The prepared sample was calcined at 500 degrees C and subjected to various characterization studies like thermal analysis (TG/DTA), X-ray diffraction (XRD), transmission electron microscope (TEM), UV-visible (UV-Vis) and photoluminescence (PL) spectroscopy. The XRD pattern showed the cubic fluorite structure of Y2O3 without any impurity peaks, revealing high purity of the prepared sample. TEM images revealed that the calcined Y2O3 nanoparticles consist of spherical-like morphology with an average particle size of 12 nm. The absorption spectrum of calcined samples shows blue-shift compared to the as-prepared sample, which was further confirmed by PL studies. The possible formation mechanism of Y2O3 nanoparticles has been discussed based on the experimental results. Electrochemical behavior of Y2O3 nanoparticles was studied by cyclic voltammetry to assess their suitability for supercapacitor applications.

  18. Investigating the effect of Mn-doped CeO2 nanoparticles by co-precipitation method

    International Nuclear Information System (INIS)

    Prabaharan, D.D.M.; Sadaiyandi, K.; Mahendran, M.; Sagadevan, Suresh

    2018-01-01

    The paper exhibits a detailed study about the synthesis and characterization in analysis of structural, morphological, optical and electrical investigations of pure and Mn-doped Cerium oxide (CeO 2 ) nanoparticles which were synthesized by co-precipitation technique. Phase formation of the prepared sample was analyzed with powder X-ray diffraction (PXRD) examines, scanning electron microscopy (SEM) examination. The PXRD comes about affirmed partial crystallinity having cubic phases and the crystallite sizes of the pure and Mn-doped Cerium oxide (CeO 2 ) were estimated by utilizing Debye-Scherrer's formula and they were calculated to be 12 and 14 nm individually. SEM pictures revealed that the particles were profoundly accumulated and were of permeable nature. The optical properties of pure and Mn-doped CeO 2 were ascertained by using UV-visible absorption spectrum. The estimated band gap values for the pure and the Mn-doped CeO 2 nanoparticles were observed to be 2.7 and 2.6 eV, respectively, utilizing UV-Vis spectroscopy. At different frequencies and temperatures the dielectric properties of the Mn-doped Cerium oxide (CeO 2 ) nanoparticles, for example, the dielectric consistent, the dielectric loss and the AC conductivity, were studied. (orig.)

  19. Synthesis of Zn{sub 0.95}Cr{sub 0.05}O DMS by co-precipitation and ceramic methods: Structural and magnetization studies

    Energy Technology Data Exchange (ETDEWEB)

    Paul Joseph, D. [Materials Science Centre, Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai 600025 (India); Naveenkumar, S. [Materials Science Centre, Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai 600025 (India); Sivakumar, N. [Materials Science Centre, Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai 600025 (India); Venkateswaran, C. [Materials Science Centre, Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai 600025 (India)]. E-mail: cvunom@hotmail.com

    2006-05-10

    Transitional metal ions-substituted ZnO are recently explored for SPINTRONICS applications. Synthesis of single-phase oxide 'diluted magnetic semiconductors' (DMS) is a must to explore the magnetic properties arising due to the strong sp-d exchange interaction. The synthesis route plays a vital role in this aspect. In this work, we have prepared Zn{sub 0.95}Cr{sub 0.05}O by using the co-precipitation method and also the standard ceramic method and optimized the conditions to obtain the single-phase compound. X-ray diffraction measurements were done on Zn{sub 0.95}Cr{sub 0.05}O annealed and sintered at various temperatures. Comparing these results, we conclude that the co-precipitation method is more convenient for obtaining single-phase compound by the relatively low temperature processing of the precipitated hydroxides. Pelleted sample examined for its magnetic property using a vibrating sample magnetometer (VSM) indicated ferromagnetic-like behavior at 300 K and a spin-glass state at 77 K.

  20. Drug delivery system for an anticancer agent, chlorogenate-Zn/Al-layered double hydroxide nanohybrid synthesised using direct co-precipitation and ion exchange methods

    Energy Technology Data Exchange (ETDEWEB)

    Barahuie, Farahnaz [Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Hussein, Mohd Zobir, E-mail: mzobir@putra.upm.edu.my [Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Arulselvan, Palanisamy [Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Fakurazi, Sharida [Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Zainal, Zulkarnain [Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia)

    2014-09-15

    A nano-structured drug-inorganic clay hybrid involving an active anticancer compound, which is chlorogenic acid (CA) intercalated into Zn/Al-layered double hydroxide, has been assembled via ion-exchange and co-precipitation methods to form a nanohybrid CZAE (a chlorogenic acid-Zn/Al nanohybrid synthesised using an ion-exchange method) and CZAC (a chlorogenic acid-Zn/Al nanohybrid synthesised using a direct method), respectively. The X-ray diffraction (XRD) results confirmed that the CA-LDH had a hybrid structure in which the anionic chlorogenate is arranged between the interlayers as a horizontal monolayer at 90 and 20° angles from the x axis for CZAE and CZAC, respectively. Both nanohybrids have the properties of mesoporous materials. The high loading percentage of chlorogenic acid (approximately 43.2% for CZAE and 45.3% for CZAC) with basal spacings of 11.7 and 12.6 Å for CZAE and CZAC, respectively, corroborates the successful intercalation of chlorogenic acid into the interlayer gallery of layered double hydroxides. Free chlorogenic acid and the synthesised nanocomposites (CZAE, CZAC) were assessed for their cytotoxicity against various cancer cells. The Fourier transform infrared data supported the formation of both nanohybrids, and a thermal analysis showed that the nanohybrids are more thermally stable than their counterparts. The chlorogenate shows a sustained release, and the release rate of chlorogenate from CZAE and CZAC nanohybrids at pH 7.4 is remarkably lower than that at pH 4.8 due to their different release mechanisms. The release rate of chlorogenate from both nanohybrids can be described as pseudo-second order. The present investigation revealed the potential of the nanohybrids to enhance the in vitro anti-tumour effect of chlorogenic acid in liver and lung cancer cells in vitro. - Highlights: • We intercalated chlorogenic into Zn/Al-layered double hydroxide by ion-exchange and coprecipitation methods. • The two methods gave nanocomposites

  1. Wet milling versus co-precipitation in magnetite ferrofluid preparation

    Directory of Open Access Journals (Sweden)

    Almásy László

    2015-01-01

    Full Text Available Various uses of ferrofluids for technical applications continuously raise the interest in improvement and optimization of preparation methods. This paper deals with preparation of finely granulated magnetite particles coated with oleic acid in hydrocarbon suspensions following either chemical co-precipitation from iron salt precursors or wet milling of micron size magnetite powder with the goal to compare the benefits and disadvantages of each method. Microstructural measurements showed that both methods gave similar magnetite particle size of 10-15 nm. Higher saturation magnetization was achieved for the wet-milled magnetite suspension compared to relatively rapid co-precipitation synthesis. Different efficacies of ferrophase incorporation into kerosene could be related to the different mechanisms of oleic acid bonding to nanoparticle surface. The comparative data show that wet milling represents a practicable alternative to the traditional co-precipitation since despite of longer processing time, chemicals impact on environment can be avoided as well as the remnant water in the final product.

  2. Production of zirconia - hydroxyapatite (Z Ha) by using the co-precipitation method and studies of densification

    International Nuclear Information System (INIS)

    Silva, Viviane V.; Domingues, Rosana Z.

    1997-01-01

    Hydroxyapatite (Ha) is one of the materials most bio compatible with human bones and teeth, but its mechanical properties, especially toughness, are insufficient for hard tissue. Recent studies demonstrated that ceramics can be toughened by zirconium particles disperse in them, due to transformation, microcracking, and/or crack diffraction toughening mechanisms. The objective of this study is to characterize zirconia-toughened hydroxy apatite powders prepared by precipitation method by XRD, IR spectroscopy, TEM, TAG, DTA and BET analysis. The density of their ceramics was determined by mercury picnometry method. It was discussed the influence of addition of zirconium in different compositions and phases (Zr O 2 or Zr(OH) 4 ), compacting pressure and sintering temperature on zirconia - hydroxyapatite composites (ZHA). The results show that there is not any kind of reaction or chemical interaction between both phases of the composite materials. (author)

  3. Magnetic properties of co-precipitated hexaferrite powders with Sm-Co substitutions optimized with the molten flux method

    Science.gov (United States)

    Serletis, C.; Litsardakis, G.; Pavlidou, E.; Efthimiadis, K. G.

    2017-11-01

    In this work, using the chemical coprecipitation method, Sr1-xSmxFe12-xCoxO19 (x = 0, 0.1, 0.2) hexaferrite powders were prepared. Major magnetization loops were recorded at room temperature in order to determine the correct calcination temperature for optimum hard magnetic properties. It is found that a small degree of substitution increases substantially the coercive field. Also, the use of the molten flux calcination method increases the remanent magnetization. SEM/EDXS and XRD measurements were performed at the calcined powders: the results show that a single hexaferrite phase is formed and that the substituted powders consist of an assembly of grains with a mean diameter of 40 nm. Measurements of minor magnetization loops and of the temperature and time dependence of the magnetization confirm that the powders consist of a non-oriented single domain magnetic particles assembly. The results indicate that Sm could be a viable replacement for La in the manufacturing of hexaferrites with a high-energy product.

  4. Photocatalytic properties of BiVO{sub 4} prepared by the co-precipitation method: Degradation of rhodamine B and possible reaction mechanisms under visible irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-de la Cruz, A., E-mail: azael70@yahoo.com.mx [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Ciudad Universitaria, C.P. 66451, San Nicolas de los Garza, N.L. (Mexico); Perez, U.M. Garcia [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Ciudad Universitaria, C.P. 66451, San Nicolas de los Garza, N.L. (Mexico)

    2010-02-15

    Bismuth vanadate (BiVO{sub 4}) was synthesized by the co-precipitation method at 200 {sup o}C. The photocatalytic activity of the oxide was tested for the photodegradation of rhodamine B under visible light irradiation. The analysis of the total organic carbon showed that the mineralization of rhodamine B over a BiVO{sub 4} photocatalyst ({approx}40% after 100 h of irradiation) is feasible. In the same way, a gas chromatography analysis coupled with mass spectroscopy revealed the existence of organic intermediates during the photodegradation process such as ethylbenzene, o-xylene, m-xylene, and phthalic anhydride. The modification of variables such as dispersion pH, amount of dissolved O{sub 2}, and irradiation source was studied in order to know the details about the photodegradation mechanism.

  5. Photocatalytic properties of BiVO4 prepared by the co-precipitation method: Degradation of rhodamine B and possible reaction mechanisms under visible irradiation

    International Nuclear Information System (INIS)

    Martinez-de la Cruz, A.; Perez, U.M. Garcia

    2010-01-01

    Bismuth vanadate (BiVO 4 ) was synthesized by the co-precipitation method at 200 o C. The photocatalytic activity of the oxide was tested for the photodegradation of rhodamine B under visible light irradiation. The analysis of the total organic carbon showed that the mineralization of rhodamine B over a BiVO 4 photocatalyst (∼40% after 100 h of irradiation) is feasible. In the same way, a gas chromatography analysis coupled with mass spectroscopy revealed the existence of organic intermediates during the photodegradation process such as ethylbenzene, o-xylene, m-xylene, and phthalic anhydride. The modification of variables such as dispersion pH, amount of dissolved O 2 , and irradiation source was studied in order to know the details about the photodegradation mechanism.

  6. Photodegradation of Acid Black 1 and Removing Heavy Metals from the Water by an Inorganic Nanocomposite Synthesized via Simple Co-Precipitation Method

    Directory of Open Access Journals (Sweden)

    Marziyeh Mohammadi

    2016-07-01

    Full Text Available In this experimental work, PbS/ZnS/ZnO nanocomposite was synthesized via a simple co-precipitation method. The effect of Zn2+/Pb2+ mole ratio was investigated on the product size and morphology. The products were characterized via scanning electron microscopy to obtain product size and morphology. The optical properties of the nanocomposites were studied by ultra violet-visible spectroscopy. Photocatalytic activity of the product was examine by decomposition of acid black 1 as dye. To investigation of the effect of as synthesized nanocomposite on the water treatment, the influences of the nanocomposite to remove heavy ions was studied by atomic absorption spectroscopy. The results showed that the synthesized nanocomposite has well optical properties, photocatalytic and water treatment activities.

  7. Effect of pH variation on the stability and structural properties of In(OH){sub 3} nanoparticles synthesized by co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Goh, Kian Wei; Wong, Yew Hoong [University of Malaya, Department of Mechanical Engineering, Faculty of Engineering, Kuala Lumpur (Malaysia); Johan, Mohd Rafie [University of Malaya, Department of Mechanical Engineering, Faculty of Engineering, Kuala Lumpur (Malaysia); University of Malaya, Nanotechnology and Catalysis Research Centre, Kuala Lumpur (Malaysia)

    2016-10-15

    Indium hydroxide (In(OH){sub 3}) nanoparticles were synthesized at various pH values (8-11) by co-precipitation method. Its properties were characterized by X-ray diffractometer, Fourier transform infrared spectroscopy, Raman spectroscopy and transmission electron microscope. The electrostatic stability of nanoparticles is carried out through zeta potential measurement. The crystallite size of nanoparticles calculated by Scherrer equation has similar trend with the values obtained from William-Hall plot. TEM images show that the particles size is within the range of 11.76-20.76 nm. The maximum zeta potential is 3.68 mV associated with the smallest particle size distribution of 92.6 nm occurred at pH 10. Our work clearly confirms the crystallite size, stability and the morphology of In(OH){sub 3} NPs are strongly depending on the pH of precursor solution. (orig.)

  8. Structural and optical studies of Mg doped nanoparticles of chromium oxide (Cr2O3) synthesized by co-precipitation method

    Science.gov (United States)

    Singh, Jarnail; Verma, Vikram; Kumar, Ravi

    2018-04-01

    We present here the synthesization, structural and optical studies of Mg doped nanoparticles of Chromium oxide (Cr2O3) prepared using co-precipitation method. These samples were characterized using powder X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Raman spectroscopy and UV-Vis spectroscopy techniques. We have demonstrated that there is negligible change in optical band gap with the Mg doping. The prepared Cr2O3 nanoparticles are spherical in shape, but they are transformed into platelets when doped with Mg. The XRD studies reveal that the Mg doping in Cr2O3 doesn't affect the structure of Chromium oxide (Cr2O3).

  9. Synthesis of LiNi0.8Co0.1Mn0.1O2 cathode material by chloride co-precipitation method

    Institute of Scientific and Technical Information of China (English)

    李灵均; 李新海; 王志兴; 伍凌; 郑俊超; 李金辉

    2010-01-01

    LiNi0.8Co0.1Mn0.1O2 was prepared by a chloride co-precipitation method and characterized by thermogravimetric analysis, X-ray diffractometry with Rietveld refinement,electron scanning microscopy and electrochemical measurements.Effects of lithium ion content and sintering temperature on physical and electrochemical performance of LiNi0.8Co0.1Mn0.1O2 were also investigated. The results show that the sample synthesized at 750℃with 105%lithium content has fine particle sizes around 200 nm and homogenous sizes distribution.The initial discharge capacity for the powder is 184 mA·h/g between 2.7 and 4.3 V at 0.1C and room temperature.

  10. Towards deriving Ni-rich cathode and oxide-based anode materials from hydroxides by sharing a facile co-precipitation method.

    Science.gov (United States)

    Qiu, Haifa; Du, Tengfei; Wu, Junfeng; Wang, Yonglong; Liu, Jian; Ye, Shihai; Liu, Sheng

    2018-05-22

    Although intensive studies have been conducted on layered transition metal oxide(TMO)-based cathode materials and metal oxide-based anode materials for Li-ion batteries, their precursors generally follow different or even complex synthesis routes. To share one route for preparing precursors of the cathode and anode materials, herein, we demonstrate a facile co-precipitation method to fabricate Ni-rich hydroxide precursors of Ni0.8Co0.1Mn0.1(OH)2. Ni-rich layered oxide of LiNi0.8Co0.1Mn0.1O2 is obtained by lithiation of the precursor in air. An NiO-based anode material is prepared by calcining the precursor or multi-walled carbon nanotubes (MWCNTs) incorporated precursors. The pre-addition of ammonia solution can simplify the co-precipitation procedures and the use of an air atmosphere can also make the heat treatment facile. LiNi0.8Co0.1Mn0.1O2 as the cathode material delivers a reversible capacity of 194 mA h g-1 at 40 mA g-1 and a notable cycling retention of 88.8% after 100 cycles at 200 mA g-1. This noticeable performance of the cathode arises from a decent particle morphology and high crystallinity of the layered oxides. As the anode material, the MWCNTs-incorporated oxides deliver a much higher reversible capacity of 811.1 mA h g-1 after 200 cycles compared to the pristine oxides without MWCNTs. The improvement on electrochemical performance can be attributed to synergistic effects from MWCNTs incorporation, including reinforced electronic conductivity, rich meso-pores and an alleviated volume effect. This facile and sharing method may offer an integrated and economical approach for commercial production of Ni-rich electrode materials for Li-ion batteries.

  11. Fe(II)–Al(III) layered double hydroxides prepared by ultrasound-assisted co-precipitation method for the reduction of bromate

    International Nuclear Information System (INIS)

    Zhong, Yu; Yang, Qi; Luo, Kun; Wu, Xiuqiong; Li, Xiaoming; Liu, Yang; Tang, Wangwang; Zeng, Guangming; Peng, Bo

    2013-01-01

    Highlights: ► Fe(II)–Al(III) LDHs were synthesized by ultrasound-assisted co-precipitation method. ► The Fe–Al (30 min) exhibited highly reduction reactivity on bromate. ► Pseudo-first-order model described the experimental data well. ► The mechanisms of bromate removal were proposed. -- Abstract: Bromate is recognized as an oxyhalide disinfection byproduct in drinking water. In this paper, Fe(II)–Al(III) layered double hydroxides (Fe–Al LDHs) prepared by the ultrasound-assisted co-precipitation method were used for the reduction of bromate in solution. The Fe–Al LDHs particles were characterized by X-ray diffractometer, scanning electron microscopy and thermogravimetry–differential scanning calorimetry. It was found that ultrasound irradiation assistance promoted the formation of the hydrotalcite-like phase and then improved the removal efficiency of bromate. In addition, the effects of solid-to-solution ratio, contact time, initial bromate concentration, initial pH, coexisting anions on the bromate removal were investigated. The results showed the bromate with an initial concentration of 1.56 μmol/L could be completely removed from solution by Fe–Al LDHs within 120 min. When the initial bromate concentration was 7.81 μmol/L, the Fe–Al LDHs with irradiation time of 30 min exhibited the optimum removal efficiency and the bromate removal capacity (q e ) was 6.80 μmol/g. In addition, the appearance of sulfate and production of bromide were observed simultaneously in this process, which suggested that ion-exchange between sulfate and bromate, and the reduction of bromate to bromide by Fe 2+ were the main mechanisms responsible for the bromate removal by Fe–Al LDHs

  12. Enhanced luminescent properties of long-persistent Sr{sub 2}MgSi{sub 2}O{sub 7}:Eu{sup 2+}, Dy{sup 3+} phosphor prepared by the co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Pan Wen [State Key Laboratory of Fine Chemicals, Department of Materials Science and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Zhongshan Road 158-43, Dalian Liaoning 116012 (China); Ning Guiling [State Key Laboratory of Fine Chemicals, Department of Materials Science and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Zhongshan Road 158-43, Dalian Liaoning 116012 (China)], E-mail: ninggl@dlut.edu.cn; Zhang Xu; Wang Jing; Lin Yuan; Ye Junwei [State Key Laboratory of Fine Chemicals, Department of Materials Science and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Zhongshan Road 158-43, Dalian Liaoning 116012 (China)

    2008-12-15

    Sr{sub 2}MgSi{sub 2}O{sub 7}:Eu{sup 2+}, Dy{sup 3+} phosphors were prepared by the (aminopropyl)-triethoxysilane (APTES) co-precipitation method. Effects of synthesis temperature on the crystal characteristics, luminescent properties and afterglow performance of Sr{sub 2}MgSi{sub 2}O{sub 7}:Eu{sup 2+}, Dy{sup 3+} phosphors have been discussed in detail and compared with the corresponding commercial product. The experimental results indicated that the sample could be synthesized at a relatively lower temperature and had better performance on the above-mentioned properties using the co-precipitation method.

  13. Modified structural and magnetic properties of nanocrystalline MnFe{sub 2}O{sub 4} by pH in capping agent free co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Iranmanesh, P., E-mail: p.iranmanesh@vru.ac.ir [Department of Physics, Vali-e-Asr University of Rafsanjan, 77139-36417 Rafsanjan (Iran, Islamic Republic of); Saeednia, S. [Department of Chemistry, Vali-e-Asr University of Rafsanjan, 77139-36417 Rafsanjan (Iran, Islamic Republic of); Mehran, M.; Dafeh, S. Rashidi [Department of Physics, Vali-e-Asr University of Rafsanjan, 77139-36417 Rafsanjan (Iran, Islamic Republic of)

    2017-03-01

    Nano-sized manganese ferrite (MnFe{sub 2}O{sub 4}) particles were prepared using co-precipitation method in two different pH (9 and 11). The structural, morphological, optical and magnetic properties of as-synthesized nanoparticles were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), UV–vis absorption and vibrating sample magnetometer (VSM). The FTIR spectra revealed two strong peaks at about 600 and 400 cm{sup −1} that can be attributed to the vibration mode of octahedral and tetrahedral sites of spinel structure of MnFe{sub 2}O{sub 4}, respectively. The XRD results showed that the nanocrystalline MnFe{sub 2}O{sub 4} has pure cubic spinel crystal structure with average crystallite size of 11 nm. The cation distribution of these nanoparticles was estimated by X-ray analysis data. The blue shift was observed in the band gap when compared with bulk sample which is due to the quantum size effect. The absence of hysteresis for MnFe{sub 2}O{sub 4} nanoparticles indicated the superparamagnetic behaviour, as expected for single domain nanoparticles. The obtained value for saturation magnetization being less than its value of bulk ones and larger pH is due to surface effects. The calculated magnetic particle size was smaller than crystallite size estimated from the XRD results; which indicate the presence of dead layer on particle surface. - Highlights: • We study effect of pH on the size and magnetic properties of MnFe{sub 2}O{sub 4} nanoparticles. • MnFe{sub 2}O{sub 4} were synthesized by co-precipitation method without any capping agent. • The physical properties are affected by cation contribution and surface effects. • The smaller nanoparticles with larger pH show a red shift in the band gap energy. • The M{sub s} is less than its value of bulk ones due to surface effects.

  14. Enhanced electrochemical performance of nano-sized LiFePO4/C synthesized by an ultrasonic-assisted co-precipitation method

    International Nuclear Information System (INIS)

    Liu Youyong; Cao Chuanbao

    2010-01-01

    A simple and effective method, the ultrasonic-assisted co-precipitation method, was employed to synthesize nano-sized LiFePO 4 /C. A glucose solution was used as the carbon source to produce in situ carbon to improve the conductivity of LiFePO 4 . Ultrasonic irradiation was adopted to control the size and homogenize the LiFePO 4 /C particles. The sample was characterized by X-ray powder diffraction, field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). FE-SEM and TEM show that the as-prepared sample has a reduced particle size with a uniform size distribution, which is around 50 nm. A uniform amorphous carbon layer with a thickness of about 4-6 nm on the particle surface was observed, as shown in the HRTEM image. The electrochemical performance was demonstrated by the charge-discharge test and electrochemical impedance spectra measurements. The results indicate that the nano-sized LiFePO 4 /C presents enhanced discharge capacities (159, 147 and 135 mAh g -1 at 0.1, 0.5 and 2 C-rate, respectively) and stable cycling performance. This study offers a simple method to design and synthesis nano-sized cathode materials for lithium-ion batteries.

  15. High solar-light photocatalytic activity of using Cu3Se2/rGO nanocomposites synthesized by a green co-precipitation method

    Science.gov (United States)

    Nouri, Morteza; Saray, Abdolali Moghaddam; Azimi, H. R.; Yousefi, Ramin

    2017-11-01

    Current work presents a facile, cost-effective, and green method to synthesize copper selenide nanostructures and copper selenide/graphene nanocomposites. The products were synthesized by a co-precipitation method by glycine amino acid as a green surfactant and graphene oxide (GO) sheets as a graphene source. X-ray diffraction patterns (XRD) of the products indicated that the products were Cu2Se3 with tetragonal phase. Fourier transform infrared (FTIR) spectroscopy and the XRD patterns indicated that the GO sheets were changed into reduced GO (rGO) during the synthesis process. Scanning and transmission electron microscopy (SEM and TEM) images showed the nanoparticles (NPs) that were decorated on rGO sheets had the significantly smaller size in compared to the pristine NPs. UV-vis results revealed that, the absorption peak of the products were in the visible region with a band-gap value between 1.85 eV and 1.95 eV. Finally, the products were applied as photocatalytic materials to remove Methylene Blue (MB) dye under solar-light and visible-light irradiation conditions. It was observed; the rGO had a significant role in enhancing the photocatalytic performance of the products and Cu2Se3/rGO (15%) could degrade more than 91% and 73% of MB only during 1 h under solar-light and visible-light sources, respectively.

  16. Synthesis of well-dispersed magnetic CoFe2O4 nanoparticles in cellulose aerogels via a facile oxidative co-precipitation method.

    Science.gov (United States)

    Wan, Caichao; Li, Jian

    2015-12-10

    With the increasing emphasis on green chemistry, it is becoming more important to develop environmentally friendly matrix materials for the synthesis of nanocomposites. Cellulose aerogels with hierarchical micro/nano-scale three-dimensional network beneficial to control and guide the growth of nanoparticles, are suitable as a class of ideal green nanoparticles hosts to fabricate multifunctional nanocomposites. Herein, a facile oxidative co-precipitation method was carried out to disperse CoFe2O4 nanoparticles in the cellulose aerogels matrixes, and the cellulose aerogels were prepared from the native wheat straw based on a green NaOH/polyethylene glycol solution. The mean diameter of the well-dispersed CoFe2O4 nanoparticles in the hybrid aerogels is 98.5 nm. Besides, the hybrid aerogels exhibit strong magnetic responsiveness, which could be flexibly actuated by a small magnet. And this feature also makes this class of magnetic aerogels possibly useful as recyclable adsorbents and some magnetic devices. Meanwhile, the mild green preparation method could also be extended to fabricate other miscellaneous cellulose-based nanocomposites. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Controlling the size and magnetic properties of nano CoFe2O4 by microwave assisted co-precipitation method

    Science.gov (United States)

    Prabhakaran, T.; Mangalaraja, R. V.; Denardin, Juliano C.

    2018-02-01

    In this report, cobalt ferrite nanoparticles synthesized using microwave assisted co-precipitation method was reported. Efforts have been made to control the particles size, distribution, morphology and magnetic properties of cobalt ferrite nanoparticles by varying the concentration of NaOH solution and microwave irradiation time. It was observed that the rate of nucleation and crystal growth was influenced by the tuning parameters. In that way, the average crystallite size of single phase cobalt ferrite nanoparticles was controlled within 9-11 and 10-12 nm with an increase of base concentration and microwave irradiation time, respectively. A narrow size distribution of nearly spherical nanoparticles was achieved through the present procedure. A soft ferromagnetism at room temperature with the considerable saturation magnetization of 58.4 emu g-1 and coercivity of 262.7 Oe was obtained for the cobalt ferrites synthesized with 2.25 M of NaOH solution for 3 and 7 min of microwave irradiation time, respectively. The cobalt ferrite nanoparticles synthesized with a shorter reaction time of 3-7 min was found to be advantageous over other methods that involved conventional heating procedures and longer reaction time to achieve the better magnetic properties for the technological applications.

  18. Investigation on the co-precipitation of transuranium elements from alkaline solutions by the method of appearing reagents

    International Nuclear Information System (INIS)

    Krot, N.; Shilov, V.; Bessonov, A.; Budantseva, N.; Charushnikova, I.; Perminov, V.; Astafurova, L.

    1996-06-01

    Highly alkaline radioactive waste solutions originating from production of plutonium for military purposes are stored in underground tanks at the U.S. Department of Energy Hanford Site. The purification of alkaline solutions from neptunium and plutonium is important in the treatment and disposal of these wastes. This report describes scoping tests with sodium hydroxide solutions, where precipitation techniques were investigated to perform the separation. Hydroxides of iron (III), manganese (II), cobalt (II, III), and chromium (III); manganese (IV) oxide, and sodium uranate were investigated as carriers. The report describes the optimum conditions that were identified to precipitate these carriers homogeneously throughout the solution by reductive, hydrolytic, or catalytic decomposition of alkali-soluble precursor compounds by a technique called the Method of Appearing Reagents. The coprecipitation of pentavalent and hexavalent neptunium and plutonium was investigated for the candidate agents under optimum conditions and is described in this report along with the following results. Plutonium coprecipitated well with all tested materials except manganese (IV) oxide. Neptunium only coprecipitated well with uranate. The report presents a hypothesis to explain these behaviors. Further tests with more complex solution matrices must be performed

  19. Investigation on the co-precipitation of transuranium elements from alkaline solutions by the method of appearing reagents

    Energy Technology Data Exchange (ETDEWEB)

    Krot, N.; Shilov, V.; Bessonov, A.; Budantseva, N.; Charushnikova, I.; Perminov, V.; Astafurova, L. [Russian Academy of Science (Russian Federation). Inst. of Physical Chemistry

    1996-06-06

    Highly alkaline radioactive waste solutions originating from production of plutonium for military purposes are stored in underground tanks at the U.S. Department of Energy Hanford Site. The purification of alkaline solutions from neptunium and plutonium is important in the treatment and disposal of these wastes. This report describes scoping tests with sodium hydroxide solutions, where precipitation techniques were investigated to perform the separation. Hydroxides of iron (III), manganese (II), cobalt (II, III), and chromium (III); manganese (IV) oxide, and sodium uranate were investigated as carriers. The report describes the optimum conditions that were identified to precipitate these carriers homogeneously throughout the solution by reductive, hydrolytic, or catalytic decomposition of alkali-soluble precursor compounds by a technique called the Method of Appearing Reagents. The coprecipitation of pentavalent and hexavalent neptunium and plutonium was investigated for the candidate agents under optimum conditions and is described in this report along with the following results. Plutonium coprecipitated well with all tested materials except manganese (IV) oxide. Neptunium only coprecipitated well with uranate. The report presents a hypothesis to explain these behaviors. Further tests with more complex solution matrices must be performed.

  20. Dosimetric sensing and optical properties of ZnO–SnO2 nanocomposites synthesized by co-precipitation method

    International Nuclear Information System (INIS)

    Baitha, Pankaj Kr.; Pal, Partha P.; Manam, J.

    2014-01-01

    In this study an effort has been made to investigate the dosimetric sensing and optical properties of ZnO–SnO 2 nanocomposites at different pH values. The nanocomposites samples are irradiated by X-ray and then thermoluminescence (TL) analysis is carried out to investigate the response. The structural details of nanocomposites are characterized by Scanning Electron microscope, X-Ray Powder Diffraction and Fourier Transform Infrared Spectroscopy. Similarly, optical properties were characterized by UV–vis spectroscopy and Photoluminescence spectroscopy. The XRD studies revealed good crystallnity of samples with presence of both phases, ZnO as well as SnO 2 simultaneously. The SEM image revealed nanoflakes and nanoflower shape of ZnO–SnO 2 nanocomposite for sample synthesized at pH 7. Also, nanocube and nanosphere can be seen at higher pH value of 9. The room temperature photoluminescence spectra of ZnO–SnO 2 nanocomposite contain multi peaks at 398 nm, 410 nm, 451 nm, 469 nm, 484 nm, 493 nm and 545 nm at an excitation wavelength of 225 nm, which arises mainly due to oxygen and zinc related defects. The TL glow curve shows intense glow peaks at 346°, 261°, 209° and 153° for the samples synthesized at pH 3, pH 5, pH 7 and pH 9 respectively. The peaks are found to be increased with higher pH values. The peaks are found to be shifted towards lower temperature with higher pH values. The study shows that the ZnO–SnO 2 nano-composite is more developed material than singly ZnO compound or SnO 2 with enhanced opto-electronic and thermal properties and great applications in thermal dosimetry. - Highlights: • ZnO–CNT nanocomposites prepared by coprecipitation method at different pH values. • Sample at different pH show different nanostructures as revealed by SEM. • PL spectra indicate intense peaks related to O 2 and Zn defects for all samples. • TL spectra show peak shift with increasing pH values of samples. • ZnO–CNTs are very effective for both

  1. PTFE Additive and Re-annealing Effect on Thermoluminescence Response of CaSO4:Dy Derived from Co-precipitation Method

    Science.gov (United States)

    Nuraeni, Nunung; Dwi Septianto, Ricky; Iskandar, Ferry; Haryanto, Freddy; Waris, Abdul; Hiswara, Eri

    2017-07-01

    Effect of re-annealing treatment in thermoluminescence response of thermoluminescent dosimeter (TLD) CaSO4:Dy and CaSO4:Dy with PTFE (Polytetrafluoroethylene) addition was investigated. CaSO4:Dy was prepared by a co-precipitation method. The PTFE was added before re-annealing treatment which the mass ratio of CaSO4:Dy and PTFE was fixed to 2:3. The re-annealing treatments of the samples were done at temperature 700 °C for 1 hr. The obtained samples were characterized using a Fourier-transform infrared (FTIR) and X-ray diffraction (XRD) to observe the molecule bonding in sample and crystal properties, respectively. From the experimental results, it was observed that the thermoluminescence intensity of CaSO4:Dy, CaSO4:Dy re-annealed at 700 °C, and CaSO4:Dy + PTFE re-annealed at 700 °C are 57.03, 75.15, and 1191.11 nC, respectively. The intensity of 700 °C-re-annealed CaSO4:Dy increased significantly after PTFE addition.

  2. Synthesis and Characterization of Perovskite Type La1-xSrxAlO3-sigma(0<=X<=0.3) by Co-Precipitation Method

    International Nuclear Information System (INIS)

    Mahmoud, O.; Abderezak, G.

    2015-01-01

    This work shows the electrochemical activity of O/sub 2/ evolution reaction in KOH of perovskite type- aluminate oxide (La/sub 1-x/Sr/sub x/AlO/sub 3-sigma/ with x = 0, 0.1, 0.2, 0.3). La/sub 1-x/Sr/sub x/AlO/sub 3-sigma/ (0co-precipitation method. The white precipitates were then washed in distilled water by centrifugation, and calcined at 1000/degree C/ for 6h, the pure phase was characterized by X-ray diffraction (XRD), thermal gravimetric analysis and differential thermal (TG/DSC), Fourier transform infrared spectroscopy (FTIR), specific surface area (BET). The MEB micrographs are shown of the spherical grains and uniform agglomeration of the grains. The oxide powders were used as the films to form a support on Ni/oxides. Oxygen evolution on each oxide catalyst was signed in the cyclic voltammetry with +- 15 V range and the electrochemical impedance in the equivalent of 100 kHz. The results point out the electrode activity and stability of the x = 0.3 composition. (author)

  3. Effects of solution concentration and capping agents on the properties of potassium titanyl phosphate noparticles synthesized using a co-precipitation method

    Science.gov (United States)

    Gharibshahian, E.; Jafar Tafershi, M.; Fazli, M.

    2018-05-01

    In this study, KTiOPO4 (KTP) nanoparticles were synthesized using a co-precipitation method. The effects of the solution concentration (M) and capping agents, such as PVA, oxalic acid, glycine, triethanolamine, and L-alanine, on the structural, microstructural, and optical properties of the products were investigated using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, ultraviolet-visible spectroscopy, field emission scanning electron microscopy, and transmission electron microscopy. Decreasing the solution concentration decreased the crystallite size from 53.07 nm (for M = 2) to 39.42 nm (for M = 0.5). After applying different capping agents to the sample at the optimum concentration (M = 0.5), the crystallite size decreased again and grains as small as 10.61 nm were obtained. XRD and FTIR analyses indicated the formation of KTP nanoparticles with an orthorhombic structure in all of the samples. The optical band gap increased as the crystallite size decreased. Different morphological patterns such as spherical, needle shaped, polyhedron, and tablet forms were observed in the nanoparticles, which were correlated with the effects of the capping agents employed.

  4. Synthesized of PEG-6000 coated MgFe2O4 nanoparticles based on natural iron sand by co-precipitation method

    Science.gov (United States)

    Setiadi, E. A.; Simbolon, S.; Saputra, A. S. P.; Marlianto, E.; Djuhana; Kurniawan, C.; Yunus, M.; Sebayang, P.

    2018-02-01

    The polymer coated Magnesium Ferrite nanoparticles (MgFe2O4) based on natural iron sand, Mg(CH3COO)2.4H2O, and PEG-6000 have been successfully prepared by co-precipitation method. The mass variation of PEG-6000 content was from 0 to 12 gram. It was prepared at synthesize temperature of 70°C. The PEG coating reduced the effect of agglomeration, so the coercivity value can be closed to soft magnets. The nanoparticle of synthesized has MgFe2O4 single phase and cubic spinel structure. The bonding of MgFe2O4 and PEG-6000 as a coating material was confirmed by FTIR curve. The MgFe2O4 density decreased with the increasing of PEG 6000 content. On the other hand, the coercivity value was slightly reduced as the addition of PEG-6000, with the lowest value was obtained on 8 gram PEG content. The optimum condition is obtained at addition of 8 gram PEG 6000 to MgFe2O4, with coercivity, saturation, and remanence are 198.41 Oe, 52.53 emu/g, and 8.51 emu/g, respectively. So that, the sample is widely used as absorbance material of heavy metal.

  5. Structural and magnetic properties of nano-sized NiCuZn ferrites synthesized by co-precipitation method with ultrasound irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Harzali, Hassen, E-mail: harzali@mines-albi.fr [Laboratory of Applied Mineral Chemistry, Faculty of Sciences, University Tunis ElManar, Campus University, Farhat Hached El-Manar, 2092 Tunis (Tunisia); Saida, Fairouz; Marzouki, Arij; Megriche, Adel [Laboratory of Applied Mineral Chemistry, Faculty of Sciences, University Tunis ElManar, Campus University, Farhat Hached El-Manar, 2092 Tunis (Tunisia); Baillon, Fabien; Espitalier, Fabienne [Université de Toulouse, Mines Albi, CNRS, Centre RAPSODEE, Campus Jarlard, F-81013 Albi CT cedex 09 (France); Mgaidi, Arbi [Laboratory of Applied Mineral Chemistry, Faculty of Sciences, University Tunis ElManar, Campus University, Farhat Hached El-Manar, 2092 Tunis (Tunisia); Taibah University, Faculty of Sciences & art, Al Ula (Saudi Arabia)

    2016-12-01

    Sonochemically assisted co-precipitation has been used to prepare nano-sized Ni–Cu–Zn-ferrite powders. A suspension of constituent hydroxides was ultrasonically irradiated for various times at different temperatures with high intensity ultrasound radiation using a direct immersion titanium horn. Structural and magnetic properties were investigated using X-diffraction (XRD), FT-IR spectroscopy, transmission electron microscopy (TEM), Nitrogen adsorption at 77 K (BET) and Vibrating sample magnetometer (VSM). Preliminary experimental results relative to optimal parameters showed that reaction time t=2 h, temperature θ=90 °C and dissipated Power P{sub diss}=46.27 W. At these conditions, this work shows the formation of nanocrystalline single-phase structure with particle size 10–25 nm. Also, ours magnetic measurements proved that the sonochemistry method has a great influence on enhancing the magnetic properties of the ferrite. - Highlights: • Coprecipitation experiments were carried out with ultrasound. • The spinel ferrite NiCuZn was perfectly synthesized by ultrasound. • The saturation magnetization and crystals size are found to be correlated as the dissipated power was varied.

  6. Structural and magnetic properties of nano-sized NiCuZn ferrites synthesized by co-precipitation method with ultrasound irradiation

    International Nuclear Information System (INIS)

    Harzali, Hassen; Saida, Fairouz; Marzouki, Arij; Megriche, Adel; Baillon, Fabien; Espitalier, Fabienne; Mgaidi, Arbi

    2016-01-01

    Sonochemically assisted co-precipitation has been used to prepare nano-sized Ni–Cu–Zn-ferrite powders. A suspension of constituent hydroxides was ultrasonically irradiated for various times at different temperatures with high intensity ultrasound radiation using a direct immersion titanium horn. Structural and magnetic properties were investigated using X-diffraction (XRD), FT-IR spectroscopy, transmission electron microscopy (TEM), Nitrogen adsorption at 77 K (BET) and Vibrating sample magnetometer (VSM). Preliminary experimental results relative to optimal parameters showed that reaction time t=2 h, temperature θ=90 °C and dissipated Power P_d_i_s_s=46.27 W. At these conditions, this work shows the formation of nanocrystalline single-phase structure with particle size 10–25 nm. Also, ours magnetic measurements proved that the sonochemistry method has a great influence on enhancing the magnetic properties of the ferrite. - Highlights: • Coprecipitation experiments were carried out with ultrasound. • The spinel ferrite NiCuZn was perfectly synthesized by ultrasound. • The saturation magnetization and crystals size are found to be correlated as the dissipated power was varied.

  7. Preparation and Characterization of Chitosan-coated Fe3O4 Nanoparticles using Ex-Situ Co-Precipitation Method and Tripolyphosphate/Sulphate as Dual Crosslinkers

    Science.gov (United States)

    Wulandari, Ika O.; Mardila, Vita T.; Santjojo, D. J. Djoko H.; Sabarudin, Akhmad

    2018-01-01

    The unique properties of nanomaterial provide great opportunities to develop in several fields. Several types of nanoparticles have been proven beneficial for biomedical and therapeutic agent development. Particularly for clinical use, nanoparticles must be biocompatible and non-toxic. Iron oxide nanoparticles consist of either magnetite (Fe3O4) or maghemite (γ-Fe2O3) was eligible to use for in vivo application including targeting drug delivery. Due to their distinct properties, these nanoparticles could be directed to the specific target under external magnetic field. However, nanoparticles have a tendency to form agglomeration. Therefore, surface modification was required to reduce the agglomeration. In this study, nanoparticles of Fe3O4 were produced and coated by biomaterial (chitosan) using ex-situ co-precipitation method. Nanoparticles of Fe3O4 were synthesized by adding ammonia water into iron ferric and ferrous solution. Synthesis process of Fe3O4 was conducted prior to adding chitosan. Chitosan was then cross-linked by a combination of tripolyphosphate/sulphate. The different composition ratio and crosslinking time provide the different physical and magnetic characteristics of nanoparticles. Particle and crystallite size was determined by using Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD) respectively, whereas magnetic characteristic was determined by Electron Spin Resonance (ESR). The results showed that the ratio enhancement between chitosan: Fe3O4 increase the particle size, while decreased the crystallite size. Morphology and particle size were influenced by the ratio of crosslinkers. It was found that the higher tripolyphosphate content was contributed to the small size and more spherical morphology. In addition, the influence of crosslinking time toward crystallite size was determined by altering stirring time. The longer duration of crosslinking time, provide the larger crystallite size of chitosan-Fe3O4. There was an interesting

  8. Study of structural phase transformation and hysteresis behavior of inverse-spinel α-ferrite nanoparticles synthesized by co-precipitation method

    Science.gov (United States)

    Dabagh, Shadab; Chaudhary, Kashif; Haider, Zuhaib; Ali, Jalil

    2018-03-01

    Substitution of cobalt (Co2+) ions in cobalt ferrite (CoFe2O4) with copper (Cu2+) and aluminum (Al3+) ions allows variations in their electric and magnetic properties which can be optimized for specific applications. In this article, synthesis of inverse-spinel Co1-xCuxFe2-xAlxO4 (0.0 ≤ x ≤ 0.8) nanoparticles by substituting Cu2+ and Al3+ ions in CoFe2O4 via co-precipitation method is reported. By controlling copper and aluminum (Cu-Al) substituent ratio, the magnetic moment and coercivity of synthesized cobalt ferrite nanoparticles is optimized. The role of substituents on the structure, particle size, morphology, and magnetic properties of nano-crystalline ferrite is investigated. The Co1-xCuxFe2-xAlxO4 (0.0 ≤ x≤ 0.8) nanoparticles with crystallite size in the range of 23.1-26.5 nm are observed, 26.5 nm for x = 0.0-23.1 nm for x = 0.8. The inverse-spinel structure of synthesized Co1-xCuxFe2-xAlxO4 (0.0 ≤ x ≤ 0.8) nano-particles is confirmed by characteristic vibrational bands at tetrahedral and octahedral sites using Fourier transform infrared spectroscopy. A decreases in coercive field and magnetic moment is observed as Cu-Al contents are increased (x = 0.0-0.8). The positive anisotropy of synthesized particles Co1-xCuxFe2-xAlxO4 (0.0 ≤ x ≤ 0.8) is obtained in the range 1.96 × 105 J/m3 for x = 0.0 to 0.29 × 105 J/m3 for x = 0.8.

  9. Characterization of magnetic nano particles of CoFe{sub 2}O{sub 4} and CoZnFe{sub 2}O{sub 4} prepared by the chemical co-precipitation method; Caracterizacion de nanoparticulas magneticas de CoFe{sub 2}O{sub 4} y CoZnFe{sub 2}O{sub 4} preparadas por el metodo de coprecipitacion quimica

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, J.; Zambrano, G.; Gomez, M. E. [Universidad del Valle, Departamento de Fisica, Laboratorio de Peliculas Delgadas, Ciudad Universitaria Melendez, 25360 Cali (Colombia); Prieto, P. [Universidad del Valle, Centro de Excelencia en Nuevos Materiales, Ciudad Universitaria Melendez, 25360 Cali (Colombia); Espinoza B, F. J., E-mail: javierlo21@gmail.com [IPN, Centro de Investigacion y de Estudios Avanzados, Unidad Queretaro, Libramiento Norponiente No. 2000, Fracc. Real de Juriquilla, 76230 Queretaro (Mexico)

    2012-07-01

    Magnetic cobalt ferrite nanoparticles of CoFe{sub 2}O{sub 4} and CoZnFe{sub 2}O{sub 4} were prepared by co-precipitation technique from aqueous salt solutions of Co (II), ZnSO{sub 4} and Fe (III), in an alkaline medium. CoFe{sub 2}O{sub 4} powder samples were structurally characterized by X-ray diffraction, showing the presence of the most intense peat at 2{theta} = 413928{sup o} (Co K{alpha}1) corresponding to the (311) crystallographic orientation of the CoFe{sub 2}O{sub 4} spinel phase. The mean size of the crystalline of CoFe{sub 2}O{sub 4} and CoZnFe{sub 2}O{sub 4} nanoparticles determined from the full width at half maximum of the strongest reflection of the (311) peak by using the Scherrer approximation was calculated to be 11.4 and 7.0 ({+-} o.2) nm, respectively. Transmission electron microscopy studies permitted determining nanoparticle size of CoZnFe{sub 2}O{sub 4}. Fourier transform infrared spectroscopy was used to confirm the formation of Fe-O bonds, allowing identifying the presence of ferrite spinel structure. Magnetic properties were investigated with the aid of a vibrating sample magnetometer at room temperature Herein, the sample showed superparamagnetic behavior, determined by the hysteresis loop finally, due to the hysteresis loop of the CoZnFe{sub 2}O{sub 4} is very small, our magnetic nanoparticles can be considered as a soft magnetic material. These magnetic nanoparticles have interesting technological applications in biomedicine given their biocompatibility, in nano technology, and in ferro fluid preparation. (Author)

  10. Synthesis and magnetic properties of bacterial cellulose—ferrite (MFe2O4, M  =  Mn, Co, Ni, Cu) nanocomposites prepared by co-precipitation method

    Science.gov (United States)

    Sriplai, Nipaporn; Mongkolthanaruk, Wiyada; Pinitsoontorn, Supree

    2017-09-01

    The magnetic nanocomposites based on bacterial cellulose (BC) matrix and ferrite (MFe2O4, M  =  Mn, Co, Ni and Cu) nanoparticles (NPs) were fabricated. The never-dried and freeze-dried BC nanofibrils were used as templates and a co-precipitation method was applied for NPs synthesis. The nanocomposites were either freeze-dried or annealed before subjected to characterization. The x-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy showed that only MnFe2O4 and CoFe2O4 NPs could be successfully incorporated in the BC nanostructures. The results also indicated that the BC template should be freeze-dried prior to the co-precipitation process. The magnetic measurement by a vibrating sample magnetometer (VSM) showed that the strongest ferromagnetic signal was found for BC-CoFe2O4 nanocomposites. The morphological investigation by a scanning electron microscope (SEM) showed the largest volume fraction of NPs in the BC-CoFe2O4 sample which was complimentary to the magnetic property measurement. Annealing resulted in the collapse of the opened nanostructure of the BC composites. Invited talk at 5th Thailand International Nanotechnology Conference (Nano Thailand-2016), 27-29 November 2016, Nakhon Ratchasima, Thailand.

  11. Structural, magnetic and optical characterization of Ni{sub 0.8}Zn{sub 0.2}Fe{sub 2}O{sub 4} nano particles prepared by co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, Y.B., E-mail: ybkans@gmail.com [Department of Physics, Arumugam Pillai Seethai Ammal College, Tiruppattur 630211 (India); Saravanan, R. [Research Centre & PG Department of Physics, The Madura College, Madurai 625011 (India); Srinivasan, N. [Research Centre & PG Department of Physics, Thiagarajar College, Madurai 625009 (India); Praveena, K. [School of Physics, Univeristy of Hyderabad, Hyderabad 500046 (India); Sadhana, K. [Material Research Center, Indian Institute of Science, Bangalore 560012 (India)

    2016-12-01

    Bond strength values, between tetrahedral sites and octahedral sites atoms in the unit cell, are evaluated using maximum entropy method (MEM) for the Ni{sub 0.8}Zn{sub 0.2}Fe{sub 2}O{sub 4} nano ferrite particles, prepared by co-precipitation method and sintered at 900 °C. The spinel structure is confirmed from the XRD analysis done using the Rietveld method. Substitution of zinc ion causes increase in lattice parameter value. Thermal behavior, morphology, magnetic properties and optical band gap energy values of the sample are determined by using thermogravimetric analysis and differential thermal analysis, scanning electron microscope, vibrating sample magnetometer and UV–VIS–NIR techniques respectively. Low value of saturation magnetization is attributed to the disorder in cation distribution.

  12. The effect of doping Mg2+ on structure and properties of Sr(1.992-x)MgxSiO4: 0.008Eu2+ blue phosphor synthesized by co-precipitation method

    Science.gov (United States)

    Yang, Lingxiang; Wang, Jin-shan; Zhu, Da-chuan; Pu, Yong; Zhao, Cong; Han, Tao

    2018-01-01

    In order to improve the luminescence property of silicate phosphors, a series of Sr(1.992-x)MgxSiO4: 0.008Eu2+(x = 0, 0.25, 0.50, 0.75) blue phosphors have been synthesized using one-step calcination of a precursor prepared by chemical co-precipitation. And then the crystal structure and luminescence properties of the phosphors are investigated by means of X-Ray Diffraction and spectrophotometer. The results show that β-phase existed in the mixed phases of Sr2SiO4 (β+α‧) would transform to α‧-phase with Mg2+ ions doping into the silicate host until it disappeared. On the other hand, the introduction of Mg2+ ions can enhance the intensity of the excitation spectrum and promote the excitation sensitivity of Sr(1.992-x)MgxSiO4: 0.008Eu2+ phosphors in NUV region. Under NUV excitation at 350 nm, all samples exhibit a broadband emission in range of 400-550 nm due to the 4f65d1→4f7(8S7/2) transition of Eu2+ ions. According to Multi-peak fitting to emission spectra by Gauss method, the broad emission band consists of two single bands with peaks Em1 and Em2 locating at 460 and 490 nm, which corresponds to Eu2+ ions occupying the ten-fold oxygen-coordinated Sr1 site and the nine-fold oxygen-coordinated Sr2 site, respectively. The luminescence intensity of Sr(1.992-x)MgxSiO4:0.008Eu2+(x = 0, 0.25, 0.50, 0.75) blue phosphors has been enhanced remarkably after Mg2+ ions are added. Meanwhile, the chromaticity coordinates change from the blue-green region to the blue region as x moves from 0 to 0.75. Moreover, the decay curves are measured and can be well fitted with double exponential decay equation. It shows that the average lifetime is extended with the concentration of Mg2+ ions increasing. These results indicate that Sr(1.992-x)MgxSiO4: 0.008Eu2+(x = 0, 0.25, 0.50, 0.75) can be used as a potential blue phosphor in near UV-excited white LEDs.

  13. Formation of Silica-Lysozyme Composites Through Co-Precipitation and Adsorption

    Directory of Open Access Journals (Sweden)

    Daniela B. van den Heuvel

    2018-04-01

    Full Text Available Interactions between silica and proteins are crucial for the formation of biosilica and the production of novel functional hybrid materials for a range of industrial applications. The proteins control both precipitation pathway and the properties of the resulting silica–organic composites. Here, we present data on the formation of silica–lysozyme composites through two different synthesis approaches (co-precipitation vs. adsorption and show that the chemical and structural properties of these composites, when analyzed using a combination of synchrotron-based scattering (total scattering and small-angle X-ray scattering, spectroscopic, electron microscopy, and potentiometric methods vary dramatically. We document that while lysozyme was not incorporated into nor did its presence alter the molecular structure of silica, it strongly enhanced the aggregation of silica particles due to electrostatic and potentially hydrophobic interactions, leading to the formation of composites with characteristics differing from pure silica. The differences increased with increasing lysozyme content for both synthesis approaches. Yet, the absolute changes differ substantially between the two sets of composites, as lysozyme did not just affect aggregation during co-precipitation but also particle growth and likely polymerization during co-precipitation. Our results improve the fundamental understanding of how organic macromolecules interact with dissolved and nanoparticulate silica and how these interactions control the formation pathway of silica–organic composites from sodium silicate solutions, a widely available and cheap starting material.

  14. Formation of Silica-Lysozyme Composites Through Co-Precipitation and Adsorption

    Science.gov (United States)

    van den Heuvel, Daniela B.; Stawski, Tomasz M.; Tobler, Dominique J.; Wirth, Richard; Peacock, Caroline L.; Benning, Liane G.

    2018-04-01

    Interactions between silica and proteins are crucial for the formation of biosilica and the production of novel functional hybrid materials for a range of industrial applications. The proteins control both precipitation pathway and the properties of the resulting silica-organic composites. Here we present data on the formation of silica-lysozyme composites through two different synthesis approaches (co-precipitation vs. adsorption) and show that the chemical and structural properties of these composites, when analyzed using a combination of synchrotron-based scattering (total scattering and SAXS), spectroscopic, electron microscopy and potentiometric methods vary dramatically. We document that while lysozyme was not incorporated into nor did its presence alter the molecular structure of silica, it strongly enhanced the aggregation of silica particles due to electrostatic and potentially hydrophobic interactions, leading to the formation of composites with characteristics differing from pure silica. The differences increased with increasing lysozyme content for both synthesis approaches. Yet, the absolute changes differ substantially between the two sets of composites, as lysozyme did not just affect aggregation during co-precipitation but also particle growth and likely polymerization during co-precipitation. Our results improve the fundamental understanding of how organic macromolecules interact with dissolved and nanoparticulate silica and how these interactions control the formation pathway of silica-organic composites from sodium silicate solutions, a widely available and cheap starting material.

  15. Preparation of nano-porous LiNi0.5Mn1.5O4 with high electrochemical performances by a co-precipitation method for 5 V lithium-ion batteries

    Science.gov (United States)

    Cui, Xiaoling; Li, Hongliang; Li, Shiyou

    2017-10-01

    Porous LiNi0.5Mn1.5O4 is prepared by co-precipitation method. The results of scanning electron microscopy show that the sample has a nano-porous structure. Charge-discharge tests show that the synthesized product exhibits excellent electrochemical performance with a high initial discharge capacity of 129.1 mAh g-1 at 0.5 C and a preferably capacity retention of 96.5% after 200 cycles. The superior performance of the synthesized product is attributed to its nano-porous structure. The nanoparticle reduces the path of Li+ diffusion and increases the reaction sites for lithium insertion/extraction, the pores provide room to buffer the volume changes during charge-discharge.

  16. Preparation and characterization of a carbon-based magnetic nanostructure via co-precipitation method: Peroxidase-like activity assay with 3,3ʹ,5,5ʹ-tetramethylbenzidine

    Directory of Open Access Journals (Sweden)

    Navvabeh Salarizadeh

    2017-09-01

    Full Text Available Objective(S: Natural and artificial enzymes have shown important roles in biotechnological processes. Recently, design and synthesis of artificial enzymes especially peroxidase mimics has been interested by many researchers. Due to disadvantages of natural peroxidases, there is a desirable reason of current research interest in artificial peroxidase mimics. Methods: In this study, magnetic multiwall carbon nanotubes with a structure of Fe3O4/MWCNTs as enzyme mimetic were fabricated using in situ co-precipitation method. The structure, composition, and morphology of Fe3O4/MWCNTs nanocomposite were characterized using X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, and transmission electron microscopy (TEM. The magnetic properties were investigated by the vibrating sample magnetometer (VSM. Peroxidase-like catalytic activity of nanocomposite was investigated using colorimetric and electrochemical tests with 3,3ʹ,5,5ʹ-tetramethylbenzidine (TMB substrate. Results: The obtained data proved the synthesis of Fe3O4/MWCNTs nanocomposite. The average crystallite size of nanostructures was estimated about 12 nm by Debye–Scherer equation. It was found that Fe3O4/MWCNTs nanocomposite exhibit peroxidase-like activity. Colorimetric and electrochemical data demonstrated that prepared nanocomplex has higher catalytic activity toward H2O2 than pure MWCNT nanocatalyst. From electrochemical tests concluded that the Fe3O4/MWCNTs electrode exhibited the better redox response to H2O2, which is ~ 2 times larger than that of the MWCNTs. Conclusions: The synthesis of Fe3O4nanoparticles on MWCNTs was successfully performed by in situ co-precipitation process. Fe3O4/MWCNTs nanocatalyst exhibited a good peroxidase-like activity. These biomimetic catalysts have some advantages such as simplicity, stability and cost effectiveness that can be used in the design of enzyme-based devices for various applied fields.

  17. Synthesis of mesoporous TiO(2-x)N(x) spheres by template free homogeneous co-precipitation method and their photo-catalytic activity under visible light illumination.

    Science.gov (United States)

    Parida, K M; Naik, Brundabana

    2009-05-01

    The article presents preparation, characterization and catalytic activity evaluation of an efficient nitrogen doped mesoporous titania sphere photo-catalyst for degradation of methylene blue (MB) and methyl orange (MO) under visible light illumination. Nitrogen doped titania was prepared by soft chemical route i.e. template free, slow and controlled homogeneous co-precipitation from titanium oxysulfate sulfuric acid complex hydrate, urea, ethanol and water. The molar composition of TiOSO(4) to urea was varied to prepare different atomic % nitrogen doped titania. Mesoporous anatase TiO(2-x)N(x) spheres with average crystallite size of 10 nm and formation of titanium oxynitride center were confirmed from HRTEM, XRD and XPS study. UV-vis DRS showed a strong absorption in the range of 400-500 nm which supports its use in visible spectrum of light. Nitrogen adsorption-desorption study supports the porous nature of the doped material. All the TiO(2-x)N(x) samples showed higher photo-catalytic activity than Degussa P(25) and undoped mesoporous titania. Sample containing around one atomic % nitrogen showed highest activity among the TiO(2-x)N(x) samples.

  18. Effect of temperature on structural, optical and photoluminescence studies on ZnO nanoparticles synthesized by the standard co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Raj, K. Pradeev [Research and Development Centre, Bharathiar University, Coimbatore 641046, Tamil Nadu (India); Department of Physics, CSI College of Engineering, Ooty 643215, Tamil Nadu (India); Sadayandi, K. [Department of Physics, Alagappa Government Arts College, Karaikudi, Sivagangai 630003, Tamil Nadu (India)

    2016-04-15

    This present study brings the synthesis of Zinc oxide (ZnO) nanoparticles (NPs) by the standard aqueous chemical route technique. The impact of calcination temperature on the extent of the ZnO nanoparticles is studied for its lattice constraints. X-ray diffraction (XRD) affirms the hexagonal Wurtzite structure of the synthesized ZnO nanoparticles. From the Williamson–Hall (W–H) plot, positive slope is inferred for pure and calcined ZnO NPs and confirms the presence of tensile strain. From the SEM images it is found that the crystallinity enhances with calcination temperature. From the optical studies, it is found that the band gap energy decreases with improved transmission. The Photoluminescence (PL) spectrum reveals the UV emission is strong near the band-edge. The emission peaks around 400–480 nm result in blue emission and the peaks around 540–560 nm result in green emission. Decrease in band gap energy and enhancement in PL studies reveal the red shift of the calcined ZnO exhibiting solid quantum confinements.

  19. Preparation of Calcium Phosphate/pDNA Nanoparticles for Exogenous Gene Delivery by Co-Precipitation Method: Optimization of Formulation Variables Using Box-Behnken Design.

    Science.gov (United States)

    Li, Wenpan; Zhang, Xirui; Jing, Shasha; Xin, Xiu; Chen, Kang; Chen, Dawei; Hu, Haiyang

    2017-08-01

    This research focused on optimizing the preparations of pDNA-loaded calcium phosphate (CaP) nanoparticles by employing a 3-factor, 3-level Box-Behnken design. Results indicated that a Ca/P ratio of 189.56, pH of 7.82, and a stirring speed of 528.83 rpm were the optimum conditions for preparation of the nanoparticles. The size of the optimized CaP/pDNA nanoparticles was 61.3 ± 3.64 nm, with a polydispersity index of 0.341 and an encapsulation efficiency of up to 92.11%. The optimized CaP/pDNA nanoparticles had high transfection efficiency and demonstrated good biocompatibility in vitro. Therefore, the Box-Behnken design method was successful in providing desirable CaP nanoparticle pDNA delivery systems by optimizing the experimental factors. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  20. Preparation of cauliflower-like shaped Ba0.6Sr0.4TiO3 powders by modified oxalate co-precipitation method

    International Nuclear Information System (INIS)

    Li Mingli; Xu Mingxia

    2009-01-01

    The quantitative barium-strontium titanyl oxalate (Ba 0.6 Sr 0.4 TiO(C 2 O 4 ) 2 .4H 2 O, BSTO) precursor powders were prepared by the modified oxalate co-preparation method. It was based on the cation-exchange reaction between the stoichiometric solutions of oxalotitanic acid (H 2 TiO(C 2 O 4 ) 2 , HTO) and barium + strontium nitrate solution containing stoichiometric quantities of Ba and Sr ions. The pyrolysis of BSTO at 800 deg. C/4 h in air produced the homogeneous cauliflower-like shaped barium-strontium titanate (Ba 0.6 Sr 0.4 TiO 3 , BST) powders. The effect of polyethylene glycol (PEG) on morphology of BSTO and BST powders was also investigated. The characterization studies were carried on the as-dried BSTO and calcined BST powders by various physicochemical techniques, IR, X-ray diffraction (XRD), scanning electron microscopy (SEM), etc. The BSTO and BST powders obtained by aforementioned technique without PEG were homogeneous with spherical shape. The particles grew into spindle shape with the effect of PEG

  1. Nanocrystalline composites of transition metal molybdate (Ni1-xCoxMoO4; x = 0, 0.3, 0.5, 0.7, 1) synthesized by a co-precipitation method as humidity sensors and their photoluminescence properties

    Science.gov (United States)

    Jeseentharani, V.; Dayalan, A.; Nagaraja, K. S.

    2018-04-01

    In this study, nanocrystalline transition metal nickel-cobalt molybdate (Ni1-xCoxMoO4, NiCM; x = 0, 0.3, 0.5, 0.7, 1) composites were prepared using a simple co-precipitation method. The composites were characterized by thermogravimetric/differential thermal analysis, Fourier transform-infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The NiCM composites were studied to determine their possible use as humidity sensors, and photoluminescence (PL) measurements were obtained. The sensing study was performed in environments with different relative humidity levels (5-98%). The maximum sensitivity of 18624 ± 168 was observed with the Ni0.7Co0.3MoO4 composite where the humidity could be calculated according to the relationship: Sf = R5%/R98%, where R5% and R98% are the dc resistances at 5 and 98% RH, respectively. The photoluminescence measurements acquired at room temperature for the NiCMs included green and red emission peaks when excited at a wavelength (λex) of 520 nm.

  2. Effect of electron irradiation exposure on phase formation, microstructure and mechanical strength of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} superconductor prepared via co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Mohiju, Zaahidah ' Atiqah; Hamid, Nasri A., E-mail: Nasri@uniten.edu.my; Kannan, V. [Center for Nuclear Energy, College of Engineering, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor (Malaysia); Abdullah, Yusof [Materials Technology Group, Industrial Technology Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)

    2015-04-29

    In this work the effect of electron irradiation on the mechanical properties of Bi2Sr2CaCu2O8 (Bi-2212) superconductor was studied by exposing the Bi-2212 superconductor with different doses of electron irradiation. Bi-2212 samples were prepared by using co-precipitation method. Irradiation was performed with irradiation dose of 100 kGray and 200 kGray, respectively. Characterization of the samples was performed by using X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). Instron Universal Testing machine was used to measure the strength of the samples. The XRD patterns for the non-irradiated and irradiated samples show well-defined peaks of which could be indexed on the basis of a Bi-2212 phase structure. XRD patterns also indicate that electron irradiation did not affect the Bi-2212 superconducting phase. SEM micrographs show disorientation in the texture of the microstructure for irradiated samples. Sample exposed to 200 kGray electron irradiation dose shows enhancement of grain size. Their grain growth and texture improved slightly compared to other sample. The results also show that enlargement of grain size resulted in higher mechanical strength.

  3. Growth mechanisms for spherical mixed hydroxide agglomerates prepared by co-precipitation method: A case of Ni{sub 1/3}Co{sub 1/3}Mn{sub 1/3}(OH){sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yue [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Xu, Shengming, E-mail: smxu@stinghua.edu.cn [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Xie, Ming [The State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Precious Metals, Kunming 650106 (China); He, Yinghe, E-mail: yinghe.he@jcu.edu.au [School of Engineering and Physical Sciences, James Cook University, Douglas, Queensland 4811 (Australia); Huang, Guoyong [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Yang, Youcai [The State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Precious Metals, Kunming 650106 (China)

    2015-01-15

    Highlights: • Anisotropic growth of Ni{sub 1/3}Co{sub 1/3}Mn{sub 1/3}(OH){sub 2} along the [0 0 1] direction was revealed. • DFT calculation results show crystal surface energies of (0 0 1) plane is highest. • A new model was proposed to explain the formation of spherical agglomerates. - Abstract: Spherical Ni{sub 1/3}Co{sub 1/3}Mn{sub 1/3}(OH){sub 2} agglomerates were synthesized by the co-precipitation method in the presence of ammonia. The results show that the growth mechanism of spherical agglomerates follows three-stages, i.e. nucleation and anisotropic growth of single crystals; agglomeration of polycrystalline crystallites agglomerated by single crystal grains as primary particles to form embryonic agglomerates; formation, growth and consolidation of spherical agglomerates or particles by agglomeration of embryonic agglomerates, continued growth of individual crystals in the agglomerates and further attachment of primary particles. The first two stages are very fast while the last stage takes almost the entire process to complete. The main reason for the anisotropic growth of Ni{sub 1/3}Co{sub 1/3}Mn{sub 1/3}(OH){sub 2} crystal is that crystal surface energy of E{sub (001)}, E{sub (100)}, E{sub (101)} and E{sub (102)} is different with E{sub (001)} being the highest. The morphology of the final spherical agglomerates is explained by partial re-crystallization of contacting primary particles. The growth process of spherical agglomerates was examined by X-ray diffraction, scanning electron microscope, transmission electron microscope and calculation of crystal surface energy using density function theory.

  4. Synthesis and Evaluation of Microspherical Li1.2Mn0.54Co0.13Ni0.13O2 through Carbon Dioxides-assisted Co-precipitation Method for Lithium-ion Battery

    International Nuclear Information System (INIS)

    Yan, Wenchao; Jiang, Jicheng; Liu, Wei; Yan, Xiao; Sun, Deye; Jin, Yongcheng; Wang, Jing; Xiang, Lan; Munakata, Hirokazu; Kanamura, Kiyoshi

    2016-01-01

    Lithium-rich layered electrode materials are of interest as a promising candidate of cathodes for lithium-ion batteries because of their excellent electrochemical properties. The electrochemical performance of these materials is mainly regulated by preparation conditions during synthesis and calcination process. Here, microspherical Li 1.2 Mn 0.54 Co 0.13 Ni 0.13 O 2 (LMNCO) particles are synthesized through steady pH value control with carbon dioxides bubbling method in co-precipitation process using a simple reactor. SEM images present that CP-LMNCO sample prepared through the assistance of carbon dioxides has spherical particle morphology, while sample (TP-LMNCO) without carbon dioxides assistance shows large nanoparticles agglomeration. The CP-LMNCO electrode demonstrates superior electrochemical performance, which exhibits capacity retention of 97.76% after 100 cycles compared with only 81.94% for TP-LMNCO electrode at 1C (250 mA g −1 ). Even at a higher current density (5C), the CP-LMNCO electrode shows reversible capacity up to 105.4 mA h g −1 . The remarkably improved electrochemical performance of CP-LMNCO electrode is ascribed to spherical morphology with small surface area which decreases side reactions with electrolyte during cycling and smaller primary sizes which reduce lithium ion (Li + ) diffusion distance. Furthermore, the synthesis of spherical materials using metal sulfate with high concentration (up to 5 M) as starting agents are attempted under carbon dioxides assisted conditions, and as-prepared materials also show improved performance.

  5. Growth mechanisms for spherical mixed hydroxide agglomerates prepared by co-precipitation method: A case of Ni1/3Co1/3Mn1/3(OH)2

    International Nuclear Information System (INIS)

    Yang, Yue; Xu, Shengming; Xie, Ming; He, Yinghe; Huang, Guoyong; Yang, Youcai

    2015-01-01

    Highlights: • Anisotropic growth of Ni 1/3 Co 1/3 Mn 1/3 (OH) 2 along the [0 0 1] direction was revealed. • DFT calculation results show crystal surface energies of (0 0 1) plane is highest. • A new model was proposed to explain the formation of spherical agglomerates. - Abstract: Spherical Ni 1/3 Co 1/3 Mn 1/3 (OH) 2 agglomerates were synthesized by the co-precipitation method in the presence of ammonia. The results show that the growth mechanism of spherical agglomerates follows three-stages, i.e. nucleation and anisotropic growth of single crystals; agglomeration of polycrystalline crystallites agglomerated by single crystal grains as primary particles to form embryonic agglomerates; formation, growth and consolidation of spherical agglomerates or particles by agglomeration of embryonic agglomerates, continued growth of individual crystals in the agglomerates and further attachment of primary particles. The first two stages are very fast while the last stage takes almost the entire process to complete. The main reason for the anisotropic growth of Ni 1/3 Co 1/3 Mn 1/3 (OH) 2 crystal is that crystal surface energy of E (001) , E (100) , E (101) and E (102) is different with E (001) being the highest. The morphology of the final spherical agglomerates is explained by partial re-crystallization of contacting primary particles. The growth process of spherical agglomerates was examined by X-ray diffraction, scanning electron microscope, transmission electron microscope and calculation of crystal surface energy using density function theory

  6. Synthesis of Nano-Structured La0.6Sr0.4Co0.2Fe0.8O3 Perovskite by Co-Precipitation Method

    Directory of Open Access Journals (Sweden)

    Ebrahim Mostafavi

    2015-06-01

    Full Text Available Nano-structured lanthanum strontium cobalt ferrite, La0.6Sr0.4Co0.2Fe0.8O3 (LSCF, was successfully synthesized via co-precipitation method using metal nitrates as starting materials. Effects of precipitating agent and calcination temperature on the phase composition and morphology of synthesized powders were systematically studied using X-ray diffraction (XRD and field emission scanning electron microscopy (FESEM, respectively. XRD analysis revealed that a single phase La0.6Sr0.4Co0.2Fe0.8O3 perovskite was obtained in the processed sample using ammonium carbonate as precipitating agent with a NH4+/NO3-molar ratio of 2 after calcination at 1000C for 1 h. The phase composition of products was also affected by changing pH values. Moreover, using sodium hydroxide as a precipitant resulted in a mixture of La0.6Sr0.4Co0.2Fe0.8O3 and cobalt ferrite (CoFe2O4 phases. Careless washing of the precursors can also led to the formation of mixed phase after calcination of final powders. Mean crystallite size of the obtained powders was not noticeably affected by varying calcination temperature from 900 to 1050C and remained almost the same at 10 nm, however increasing calcination temperature to 1100C resulted in sharp structural coarsening. FESEM studies demonstrate that relatively uniform particles with mean particle size of 90 nm were obtained in the sample processed with a NH4+/NO3- molar ratio of 2 after calcination at 1000C for 1 h.

  7. Synthesis of Sr- and Mg- doped lanthanum gallate by carbonate co-precipitation

    International Nuclear Information System (INIS)

    Sunitha, Y.; Narasimham, K.V.N.S.V.P.L.; Raju, V.S.; Kumar, Sanjiv

    2010-01-01

    Sr- and Mg- doped lanthanum gallate (LSGM) are promising electrolytes for low temperature solid oxide fuel cells (SOFCs) in view of their high ionic conductivity and stability over a wide range of oxygen partial pressures. LSGM powders are usually prepared by solid-state reactions. However high sintering temperature (∼ 1500 deg C) required for densification and the formation of secondary phases are the major drawbacks of the method. Wet-chemical method is a suitable alternative to solid-state synthesis with the prospect of the realisation of phase pure material with good sinterability at comparatively lower temperatures. In this paper we present the results of our investigation on the synthesis of LaGaO 3 and LSGM by a wet-chemical method through carbonate co-precipitation using ammonium carbonate and ammonium bicarbonate as precipitants. Phase and microstructural evolution of the material have been studied by XRD and SEM respectively, while compositional analysis has been performed by ion beam analysis (IBA) techniques. In addition we have also investigated the incorporation of Sr and Mg in the lattice of LaGaO 3 by (a) solid-state reaction route and (b) wet-chemical approach

  8. Preparation and Heat-Treatment of DWPF Simulants With and Without Co-Precipitated Noble Metals

    International Nuclear Information System (INIS)

    Koopman, David C.:Eibling, Russel E

    2005-01-01

    The Savannah River National Laboratory is in the process of investigating factors suspected of impacting catalytic hydrogen generation in the Chemical Process Cell of the Defense Waste Processing Facility, DWPF. Noble metal catalyzed hydrogen generation in simulation work constrains the allowable acid addition operating window in DWPF. This constraint potentially impacts washing strategies during sludge batch preparation. It can also influence decisions related to the addition of secondary waste streams to a sludge batch. Noble metals have historically been added as trim chemicals to process simulations. The present study investigated the potential conservatism that might be present from adding the catalytic species as trim chemicals to the final sludge simulant versus co-precipitating the noble metals into the insoluble sludge solids matrix. Parallel preparations of two sludge simulants targeting the composition of Sludge Batch 3 were performed in order to evaluate the impact of the form of noble metals. Identical steps were used except that one simulant had dissolved palladium, rhodium, and ruthenium present during the precipitation of the insoluble solids. Noble metals were trimmed into the other stimulant prior to process tests. Portions of both sludge simulants were held at 97 C for about eight hours to qualitatively simulate the effects of long term storage on particle morphology and speciation. The simulants were used as feeds for Sludge Receipt and Adjustment Tank, SRAT, process simulations. The following conclusions were drawn from the simulant preparation work: (1) The first preparation of a waste slurry simulant with co-precipitated noble metals was successful, based on the data obtained. It appears that 99+% of the noble metals were retained in the simulant. (2) Better control of carbonate, hydroxide, and post-wash trim chemical additions is needed before the new method of simulant preparation will be as reproducible as the old method. (3) The two new

  9. and aluminum-substituted cobalt ferrite prepared by co-precipitation

    Indian Academy of Sciences (India)

    Structural and magnetic properties of zinc- and aluminum-substituted cobalt ferrite prepared by co-precipitation method. S T ALONE1,∗ and K M JADHAV2. 1Shiv Chhatrapati College, Aurangabad 431 004, India. 2Department of Physics, Dr. B. A. Marathwada University, Aurangabad 431 004, India. ∗Corresponding author.

  10. Pronounced effects of the nominal concentrations of WO3 and Ag: WO3 nano-plates (obtained by a co-precipitation method) on their structural, morphological and optical properties

    Science.gov (United States)

    Rajendran, V.; Deepa, B.

    2018-03-01

    Tungsten oxide and different concentration of silver (Ag)-doped tungsten oxide nano material were synthesized by co-precipitation technique. The functional vibrations, structure, and morphology of as-prepared nano material were studied by Fourier transmission infrared spectroscopy, X-ray diffraction, scanning electron microscopy (SEM) and High-resolution transmission electron microscopy (HR-TEM) techniques. The SEM and HR-TEM analysis revealed the formation of nano-plate/nano rods with an average diameter of 40-80 nm diameter and 1-1.5 mm length. Fluorescence (PL) and UV-visible absorption techniques have been used to study the optical properties of the prepared nanoparticles. The observed red shift in the visible absorption spectra confirmed the promoted electron-phonon interaction in WO3 and Ag: WO3 nanoparticles compared to bulk structures. The photoluminescence of nanocrystalline Ag2+ doped WO3 exhibited a strong violet-blue, blue-green emission. Concentration dependence of the emission intensity of Ag2+ in WO3 was studied, and the significant concentration was found to be 0.5% of Ag: WO3. The effluent dye degradation executed for the 0.5% of Ag: WO3 sample under the visible light which reveals the highest degradation efficiency in appropriate time.

  11. Effect of Co2+ and Y3+ ions insertion on the microstructure development and magnetic properties of Ni0.5Zn0.5Fe2O4 powders synthesized using Co-precipitation method

    Science.gov (United States)

    Rashad, M. M.; Rayan, D. A.; Turky, A. O.; Hessien, M. M.

    2015-01-01

    Nanocrystalline Ni0.5Zn0.5-xCoxFe2-zYzO4 powders (x=0-0.3 and z from 0 to 0.3) have been synthesized via a facile co-precipitation technique. X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM) are utilized in order to study the effect of variation of cobalt and yttrium substitutions and its impact on crystalline size, lattice parameter, X-ray density, microstructure and magnetic properties of the formed powders. X-ray diffraction data indicated that, after doping, all samples consisted of the main spinel phase for the formed precursors precipitated at pH 10 annealed at 1000 oC for 2 h. The lattice parameter and the unit cell were decreased linearly with increasing Co content whereas they were increased with increasing the Y incorporation. Additionally, the porosity was increased with increasing Co concentration while it was decreased with increasing the Y insertion. The mean ionic radii and hopping and bond lengths was decreased with the value of Co2+ and they were increased with the value of Y3+ ion as well as both of Y3+ and Co2+ ions. The microstructures of the produced powders were found to be cubic like structure. The addition of Y3+ ion suppressed the grain size whereas addition of Co2+ ion enhanced the grain growth availably. An examination of the magnetic properties revealed an increase in saturation magnetization with increasing Co and Y concentrations incorporation up to x=0.3. Meanwhile, the formed powders exhibited superparamagnetic characteristics. A high saturation magnetization (77.0 emu/g) was achieved for Ni0.5Zn0.2Co0.3Fe2O4 sample annealed at 1000 oC for 2 h.

  12. Supercritical antisolvent co-precipitation of rifampicin and ethyl cellulose.

    Science.gov (United States)

    Djerafi, Rania; Swanepoel, Andri; Crampon, Christelle; Kalombo, Lonji; Labuschagne, Philip; Badens, Elisabeth; Masmoudi, Yasmine

    2017-05-01

    Rifampicin-loaded submicron-sized particles were prepared through supercritical anti-solvent process using ethyl cellulose as polymeric encapsulating excipient. Ethyl acetate and a mixture of ethyl acetate/dimethyl sulfoxide (70/30 and 85/15) were used as solvents for both drug and polymeric excipient. When ethyl acetate was used, rifampicin was crystallized separately without being embedded within the ethyl cellulose matrix while by using the ethyl acetate/dimethyl sulfoxide mixture, reduced crystallinity of the active ingredient was observed and a simultaneous precipitation of ethyl cellulose and drug was achieved. The effect of solvent/CO 2 molar ratio and polymer/drug mass ratio on the co-precipitates morphology and drug loading was investigated. Using the solvent mixture, co-precipitates with particle sizes ranging between 190 and 230nm were obtained with drug loading and drug precipitation yield from respectively 8.5 to 38.5 and 42.4 to 77.2% when decreasing the ethyl cellulose/rifampicin ratio. Results show that the solvent nature and the initial drug concentrations affect morphology and drug precipitation yield of the formulations. In vitro dissolution studies revealed that the release profile of rifampicin was sustained when co-precipitation was carried out with the solvent mixture. It was demonstrated that the drug to polymer ratio influenced amorphous content of the SAS co-precipitates. Differential scanning calorimetry thermograms and infrared spectra revealed that there is neither interaction between rifampicin and the polymer nor degradation of rifampicin during co-precipitation. In addition, stability stress tests on SAS co-precipitates were carried out at 75% relative humidity and room temperature in order to evaluate their physical stability. SAS co-precipitates were X-ray amorphous and remained stable after 6months of storage. The SAS co-precipitation process using a mixture of ethyl acetate/dimethyl sulfoxide demonstrates that this strategy can

  13. Supercritical antisolvent co-precipitation of rifampicin and ethyl cellulose

    CSIR Research Space (South Africa)

    Djerafi, R

    2017-05-01

    Full Text Available . Using the solvent mixture, co-precipitates with particle sizes ranging between 190 and 230 nm were obtained with drug loading and drug precipitation yield from respectively 8.5 to 38.5 and 42.4 to 77.2% when decreasing the ethyl cellulose...

  14. 228Ra and 226Ra measurement on a BaSO4 co-precipitation source

    International Nuclear Information System (INIS)

    Medley, Peter; Martin, Paul; Bollhöfer, Andreas; Parry, David

    2015-01-01

    One of the most commonly-used methods for determination of 226 Ra, particularly in water samples, utilises co-precipitation of Ra with BaSO 4 , followed by microfiltration to produce a source for alpha counting. This paper describes two extensions to BaSO 4 co-precipitation methods which enable determination of 228 Ra using the same source. The adaptations presented here do not introduce any contaminants that will affect the separation of radium or alpha counting for 226 Ra, and can be used for re-analysis of already existing sources prepared by BaSO 4 co-precipitation. The first adaptation uses detection of 228 Ac on the source by gamma spectrometry. The detection efficiency is high, allowing analysis of water samples at sufficiently low activity to be suitable in testing for compliance with drinking water quality standards. As 228 Ac grows in quickly, taking less than 2 days to reach equilibrium with the 228 Ra parent, this can also be useful in radiological emergency response situations. The second adaptation incorporates a method for the digestion of BaSO 4 sources, allowing separation of thorium and subsequent determination of 228 Th activity. Although ingrowth periods for 228 Th can be lengthy, very low detection limits for 228 Ra can be achieved with this technique. - Highlights: • We developed two methods for 228 Ra measurement on Ba(Ra)SO 4 co-precipitation sources. • Measurement by gamma spectrometry using the daughter 228 Ac is rapid. • Detection limits are suitable for assessment of drinking water quality. • The second approach uses alpha spectrometry on a separated Th fraction. • This is more sensitive than gamma spectrometry after an ingrowth period greater than about 1 month

  15. Study of calcium carbonate and sulfate co-precipitation

    KAUST Repository

    Zarga, Y.

    2013-06-01

    Co-precipitation of mineral based salts in scaling is still not well understood and/or thermodynamically well defined in the water industry. This study focuses on investigating calcium carbonate (CaCO3) and sulfate mixed precipitation in scaling which is commonly observed in industrial water treatment processes including seawater desalination either by thermal-based or membrane-based processes. Co-precipitation kinetics were studied carefully by monitoring several parameters simultaneously measured, including: pH, calcium and alkalinity concentrations as well as quartz microbalance responses. The CaCO3 germination in mixed precipitation was found to be different than that of simple precipitation. Indeed, the co-precipitation of CaCO3 germination time was not anymore related to supersaturation as in a simple homogenous precipitation, but was significantly reduced when the gypsum crystals appeared first. On the other hand, the calcium sulfate crystals appear to reduce the energetic barrier of CaCO3 nucleation and lead to its precipitation by activating heterogeneous germination. However, the presence of CaCO3 crystals does not seem to have any significant effect on gypsum precipitation. IR spectroscopy and the Scanning Electronic Microscopy (SEM) were used to identify the nature of scales structures. Gypsum was found to be the dominant precipitate while calcite and especially vaterite were found at lower proportions. These analyses showed also that gypsum crystals promote calcite crystallization to the detriment of other forms. © 2013 Elsevier Ltd.

  16. Development of a calcium phosphate co-precipitate/poly(lactide-co-glycolide) DNA delivery system: release kinetics and cellular transfection studies.

    Science.gov (United States)

    Kofron, Michelle D; Laurencin, Cato T

    2004-06-01

    One of the most common non-viral methods for the introduction of foreign deoxyribonucleic acid (DNA) into cultured cells is calcium phosphate co-precipitate transfection. This technique involves the encapsulation of DNA within a calcium phosphate co-precipitate, particulate addition to in vitro cell culture, endocytosis of the co-precipitate, and exogenous DNA expression by the transfected cell. In this study, we fabricated a novel non-viral gene transfer system by adsorbing DNA, encapsulated in calcium phosphate (DNA/Ca-P) co-precipitates, to biodegradable two- and three-dimensional poly(lactide-co-glycolide) matrices (2D-DNA/Ca-P/PLAGA, 3D-DNA/Ca-P/PLAGA). Co-precipitate release studies demonstrated an initial burst release over the first 48 h. By day 7, approximately 96% of the initially adsorbed DNA/Ca-P co-precipitate had been released. This was followed by low levels of co-precipitate release for 42 days. Polymerase chain reaction was used to demonstrate the ability of the released DNA containing co-precipitates to transfect SaOS-2 cells cultured in vitro on the 3D-DNA/Ca-P/PLAGA matrix and maintenance of the structural integrity of the exogenous DNA. In summary, a promising system for the incorporation and controlled delivery of exogenous genes encapsulated within a calcium phosphate co-precipitate from biodegradable polymeric matrices has been developed and may have applicability to the delivery of therapeutic genes and the transfection of other cell types.

  17. Encapsulation of albumin in self-assembled layer-by-layer microcapsules: comparison of co-precipitation and adsorption techniques.

    Science.gov (United States)

    Labala, Suman; Mandapalli, Praveen Kumar; Bhatnagar, Shubhmita; Venuganti, Venkata Vamsi Krishna

    2015-01-01

    The objective of this study is to prepare and characterize polymeric self-assembled layer-by-layer microcapsules (LbL-MC) to deliver a model protein, bovine serum albumin (BSA). The aim is to compare the BSA encapsulation in LbL-MC using co-precipitation and adsorption methods. In co-precipitation method, BSA was co-precipitated with growing calcium carbonate particles to form a core template. Later, poly(styrene sulfonate) and poly(allylamine hydrochloride) were sequentially adsorbed onto the CaCO3 templates. In adsorption method, preformed LbL-MC were incubated with BSA and encapsulation efficiency is optimized for pH and salt concentration. Free and BSA-encapsulated LbL-MC were characterized using Zetasizer, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy and differential scanning calorimeter. Later, in vitro release studies were performed using dialysis membrane method at pH 4, 7.4 and 9. Results from Zetasizer and SEM showed free LbL-MC with an average size and zeta-potential of 2.0 ± 0.6 μm and 8.1 ± 1.9 mV, respectively. Zeta-potential of BSA-loaded LbL-MC was (-)7.4 ± 0.7 mV and (-)5.7 ± 1.0 mV for co-precipitation and adsorption methods, respectively. In adsorption method, BSA encapsulation in LbL-MC was found to be greater at pH 6.0 and 0.2 M NaCl. Co-precipitation method provided four-fold greater encapsulation efficiency (%) of BSA in LbL-MC compared with adsorption method. At pH 4, the BSA release from LbL-MC was extended up to 120 h. Polyacrylamide gel electrophoresis showed that BSA encapsulated in LBL-MC through co-precipitation is stable toward trypsin treatment. In conclusion, co-precipitation method provided greater encapsulation of BSA in LbL-MC. Furthermore, LbL-MC can be developed as carriers for pH-controlled protein delivery.

  18. Remanence properties of Co-precipitated cobalt ferrite

    International Nuclear Information System (INIS)

    Bueno-Baques, D.; Medina-Boudri, Angela; Matutes-Aquino, J.

    2001-01-01

    Isothermal remanent magnetization (IRM) and DC demagnetization (DCD) curves of a co-precipitated cobalt ferrite sample were obtained. From the IRM and DCD data, the Henkel plot was obtained and analyzed in the Preisach model framework. The Henkel plot data are below the Wohlfarth line that indicates a dominant local disorder (demagnetizing-like effect). Forward and reverse switching field distribution curves were obtained from differentiation of the IRM and DCD curves. The peak values of these switching field distributions differ by a factor of about 2.7

  19. Preparation of cauliflower-like shaped Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3} powders by modified oxalate co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Li Mingli [School of Materials Science and Engineering, Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China)], E-mail: lml@tju.edu.cn; Xu Mingxia [School of Materials Science and Engineering, Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China)

    2009-04-17

    The quantitative barium-strontium titanyl oxalate (Ba{sub 0.6}Sr{sub 0.4}TiO(C{sub 2}O{sub 4}){sub 2}.4H{sub 2}O, BSTO) precursor powders were prepared by the modified oxalate co-preparation method. It was based on the cation-exchange reaction between the stoichiometric solutions of oxalotitanic acid (H{sub 2}TiO(C{sub 2}O{sub 4}){sub 2}, HTO) and barium + strontium nitrate solution containing stoichiometric quantities of Ba and Sr ions. The pyrolysis of BSTO at 800 deg. C/4 h in air produced the homogeneous cauliflower-like shaped barium-strontium titanate (Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3}, BST) powders. The effect of polyethylene glycol (PEG) on morphology of BSTO and BST powders was also investigated. The characterization studies were carried on the as-dried BSTO and calcined BST powders by various physicochemical techniques, IR, X-ray diffraction (XRD), scanning electron microscopy (SEM), etc. The BSTO and BST powders obtained by aforementioned technique without PEG were homogeneous with spherical shape. The particles grew into spindle shape with the effect of PEG.

  20. Suitability of Sr{sub 0.5}Ba{sub 0.5-x}Ce{sub x}Fe{sub 12-y}Ni{sub y}O{sub 19} co-precipitated nanomaterials for inductor applications

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad Javed, E-mail: mjiqauchem@yahoo.co [Surface and Solid State Chemistry Laboratory, Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Farooq, Saima [Surface and Solid State Chemistry Laboratory, Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

    2010-03-18

    The present investigation deals with the synthesis and characterization of Ce-Ni ions substituted nanocrystalline strontium-barium hexaferrites (Sr{sub 0.5}Ba{sub 0.5}Fe{sub 12}O{sub 19}) by the chemical co-precipitation method, with focus on the optimization of annealing temperature for the hexagonal phase development. The synthesis involves co-precipitation of aqueous solutions of water-soluble salts of strontium, barium and iron, at pH 9 using an ammonium hydroxide solution as a precipitating agent. The optimum temperature of annealing, necessary for the hexagonal phase development, is determined on the basis of thermo-gravimetric analysis (TGA). The co-precipitate is annealed at a temperature of 1323 K for 6 h, to produce a single magnetoplumbite phase of Sr-Ba hexaferrites, with the corresponding average crystallite size ranging from 36 to 48 nm. Observed changes in the lattice structure determined by the powder X-ray diffraction (XRD) studies are not in contradiction with the results of TGA. DC-electrical resistivity increases from 1.8 x 10{sup 10} to 12.5 x 10{sup 10} {Omega} cm, whereas the drift mobility, dielectric constant and dielectric loss tangent decrease with increasing the Ce-Ni content of the samples. Material of above-mentioned characteristics is considered to be suitable for applications in the microwave and surface mount devices (SMD) for fabricating the multilayer chip inductors (MLCI).

  1. Chemical decontamination method

    International Nuclear Information System (INIS)

    Nishiwaki, Hitoshi.

    1996-01-01

    Metal wastes contaminated by radioactive materials are contained in a rotational decontamination vessel, and the metal wastes are rotated therein while being in contact with a slight amount of a decontamination liquid comprising a mineral acid. As the mineral acid, a mixed acid of nitric acid, hydrochloric acid and fluoric acid is preferably used. Alternatively, chemical decontamination can also be conducted by charging an acid resistant stirring medium in the rotational decontamination vessel. The surface of the metal wastes is uniformly covered by the slight amount of decontamination liquid to dissolve the surface layer. In addition, heat of dissolution generated in this case is accumulated in the inside of the rotational decontamination vessel, the temperature is elevated with no particular heating, thereby enabling to obtain an excellent decontamination effect substantially at the same level as in the case of heating the liquid to 70degC in a conventional immersion decontamination method. Further, although contact areas between the metal wastes and the immersion vessel are difficult to be decontaminated in the immersion decontamination method, all of areas can be dissolved uniformly in the present invention. (T.M.)

  2. Self-aligned nanocrystalline ZnO hexagons by facile solid-state and co-precipitation route

    International Nuclear Information System (INIS)

    Thorat, J. H.; Kanade, K. G.; Nikam, L. K.; Chaudhari, P. D.; Panmand, R. P.; Kale, B. B.

    2012-01-01

    In this study, we report the synthesis of well-aligned nanocrystalline hexagonal zinc oxide (ZnO) nanoparticles by facile solid-state and co-precipitation method. The co-precipitation reactions were performed using aqueous and ethylene glycol (EG) medium using zinc acetate and adipic acid to obtain zinc adipate and further decomposition at 450 °C to confer nanocrystalline ZnO hexagons. XRD shows the hexagonal wurtzite structure of the ZnO. Thermal study reveals complete formation of ZnO at 430 °C in case of solid-state method, whereas in case of co-precipitation method complete formation was observed at 400 °C. Field emission scanning electron microscope shows spherical morphology for ZnO synthesized by solid-state method. The aqueous-mediated ZnO by co-precipitation method shows rod-like morphology. These rods are formed via self assembling of spherical nanoparticles, however, uniformly dispersed spherical crystallites were seen in EG-mediated ZnO. Transmission electron microscope (TEM) investigations clearly show well aligned and highly crystalline transparent and thin hexagonal ZnO. The particle size was measured using TEM and was observed to be 50–60 nm in case of solid-state method and aqueous-mediated co-precipitation method, while 25–50 nm in case of EG-mediated co-precipitation method. UV absorption spectra showed sharp absorption peaks with a blue shift for EG-mediated ZnO, which demonstrate the mono-dispersed lower particle size. The band gap of the ZnO was observed to be 3.4 eV which is higher than the bulk, implies nanocrystalline nature of the ZnO. The photoluminescence studies clearly indicate the strong violet and weak blue emission in ZnO nanoparticles which is quite unique. The process investigated may be useful to synthesize other oxide semiconductors and transition metal oxides.

  3. Self-aligned nanocrystalline ZnO hexagons by facile solid-state and co-precipitation route

    Energy Technology Data Exchange (ETDEWEB)

    Thorat, J. H. [Mahatma Phule College, Department of Chemistry (India); Kanade, K. G. [Annasaheb Awate College (India); Nikam, L. K. [B.G. College (India); Chaudhari, P. D.; Panmand, R. P.; Kale, B. B., E-mail: kbbb1@yahoo.com [Center for Materials for Electronics Technology (C-MET) (India)

    2012-02-15

    In this study, we report the synthesis of well-aligned nanocrystalline hexagonal zinc oxide (ZnO) nanoparticles by facile solid-state and co-precipitation method. The co-precipitation reactions were performed using aqueous and ethylene glycol (EG) medium using zinc acetate and adipic acid to obtain zinc adipate and further decomposition at 450 Degree-Sign C to confer nanocrystalline ZnO hexagons. XRD shows the hexagonal wurtzite structure of the ZnO. Thermal study reveals complete formation of ZnO at 430 Degree-Sign C in case of solid-state method, whereas in case of co-precipitation method complete formation was observed at 400 Degree-Sign C. Field emission scanning electron microscope shows spherical morphology for ZnO synthesized by solid-state method. The aqueous-mediated ZnO by co-precipitation method shows rod-like morphology. These rods are formed via self assembling of spherical nanoparticles, however, uniformly dispersed spherical crystallites were seen in EG-mediated ZnO. Transmission electron microscope (TEM) investigations clearly show well aligned and highly crystalline transparent and thin hexagonal ZnO. The particle size was measured using TEM and was observed to be 50-60 nm in case of solid-state method and aqueous-mediated co-precipitation method, while 25-50 nm in case of EG-mediated co-precipitation method. UV absorption spectra showed sharp absorption peaks with a blue shift for EG-mediated ZnO, which demonstrate the mono-dispersed lower particle size. The band gap of the ZnO was observed to be 3.4 eV which is higher than the bulk, implies nanocrystalline nature of the ZnO. The photoluminescence studies clearly indicate the strong violet and weak blue emission in ZnO nanoparticles which is quite unique. The process investigated may be useful to synthesize other oxide semiconductors and transition metal oxides.

  4. Gadolinium-doped ceria nanopowders synthesized by urea-based homogeneous co-precipitation (UBHP)

    Energy Technology Data Exchange (ETDEWEB)

    Accardo, G., E-mail: d16605@kist.re.kr [Fuel Cell Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Spiridigliozzi, L. [Department of Civil and Mechanical Engineering, INSTM Research Unit, University of Cassino and Southern Lazio, Via G. Di Biasio 43, 03043 Cassino, FR (Italy); Cioffi, R.; Ferone, C. [Department of Engineering, INSTM Research Unit, University Parthenope of Naples, Centro Direzionale, Is. C4, 80143 Napoli (Italy); Di Bartolomeo, E. [Department of Chemical Science and Technology, University of Rome “Tor Vergata”, Viale della Ricerca Scientifica, 00133 Rome (Italy); Yoon, Sung Pil [Fuel Cell Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Dell’Agli, G. [Department of Civil and Mechanical Engineering, INSTM Research Unit, University of Cassino and Southern Lazio, Via G. Di Biasio 43, 03043 Cassino, FR (Italy)

    2017-02-01

    Gadolinium (10%)-doped ceria was successfully synthesized by using an urea-based co-precipitation method (UBHP). A single fluorite phase was obtained after a low temperature (400 °C) calcination treatment. The resulting powders showed grains of nanometric size with some agglomerations and an overall good sinterability. Pellets were sintered at 1300 and 1500 °C for 3 h. The ionic conductivity was measured by electrochemical impedance spectroscopy measurements and a correlation between electrical properties and microstructure was revealed. The promising conductivity values showed that the synthesized powders are suitable for intermediate temperature solid oxide fuel cells (IT-SOFCs) applications. - Highlights: • Urea-based homogeneous co-precipitation is applied to synthesize nanocrystalline GDC. • Dense GDC samples at different sintering temperatures were characterized. • SEM and TEM revealed a well define microstructure and controlled composition. • Correlation between electrochemical properties by EIS and microstructure was discussed. • UBHP method can be used to prepare high performance GDC electrolytes.

  5. Co-precipitation synthesis of YAG:Dy nanophosphor and its thermometric properties

    International Nuclear Information System (INIS)

    Chong, Joo-Yun; Zhang, Yuelan; Wagner, Brent K.; Kang, Zhitao

    2013-01-01

    Highlights: •YAG:Dy nanophosphors were synthesized with particle size of about 50 nm. •Optimized doping concentration of 6%Dy was determined. •Thermometric photoluminescence properties were studied between 20 and 350 °C. •Temperature-sensitive change in peak ratio of 496/457 nm emissions was demonstrated. •Suitable for potential thermographic applications when dispersed in a liquid media. -- Abstract: Dy 3+ doped yttrium aluminum garnet (YAG) nanophosphors were synthesized by a co-precipitation method for potential thermographic applications in a liquid media dispersed with fluorescent nanoparticles. The doping concentration and annealing temperature on the structural and optical properties of YAG:Dy were investigated. Pure phase YAG:Dy nanophosphors were obtained by annealing the co-precipitated hydroxide products at above 900 °C. Maximum photoluminescence intensity was observed from 6%Dy doped YAG samples. The effect of measuring temperature between 20 and 350 °C on the photoluminescence spectra of nano YAG:Dy was investigated. A temperature-sensitive change in the peak intensity ratio of 496/457 nm emission lines was demonstrated for such nanophosphors for the first time, suggesting potential applications in temperature monitoring of fuel spray

  6. Co-precipitation synthesis of YAG:Dy nanophosphor and its thermometric properties

    Energy Technology Data Exchange (ETDEWEB)

    Chong, Joo-Yun [School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Zhang, Yuelan [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Wagner, Brent K. [Georgia Tech Research Institute, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Kang, Zhitao, E-mail: zhitao.kang@gtri.gatech.edu [Georgia Tech Research Institute, Georgia Institute of Technology, Atlanta, GA 30332 (United States); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2013-12-25

    Highlights: •YAG:Dy nanophosphors were synthesized with particle size of about 50 nm. •Optimized doping concentration of 6%Dy was determined. •Thermometric photoluminescence properties were studied between 20 and 350 °C. •Temperature-sensitive change in peak ratio of 496/457 nm emissions was demonstrated. •Suitable for potential thermographic applications when dispersed in a liquid media. -- Abstract: Dy{sup 3+} doped yttrium aluminum garnet (YAG) nanophosphors were synthesized by a co-precipitation method for potential thermographic applications in a liquid media dispersed with fluorescent nanoparticles. The doping concentration and annealing temperature on the structural and optical properties of YAG:Dy were investigated. Pure phase YAG:Dy nanophosphors were obtained by annealing the co-precipitated hydroxide products at above 900 °C. Maximum photoluminescence intensity was observed from 6%Dy doped YAG samples. The effect of measuring temperature between 20 and 350 °C on the photoluminescence spectra of nano YAG:Dy was investigated. A temperature-sensitive change in the peak intensity ratio of 496/457 nm emission lines was demonstrated for such nanophosphors for the first time, suggesting potential applications in temperature monitoring of fuel spray.

  7. Magnetic and structural properties of Cu0.85Fe0.15O system synthesized by co-precipitation

    International Nuclear Information System (INIS)

    Colorado, H. D.; Pérez Alcázar, G. A.

    2011-01-01

    Cu 0.94 Fe 0.06 O and Cu 0.85 Fe 0.15 O samples were synthesized by using the co-precipitation chemical method. Starting from aqueous solutions of copper nitrate, CuO (NO 3 ) 2 3H 2 O, iron nitrate, Fe (NO 3 ) 3 9H 2 O and sodium hydroxide as precipitating agent, NaOH. The precipitate of three samples for Cu 0.94 Fe 0.06 O and five for Cu 0.85 Fe 0.15 O of fine powder were calcined for 5 h at different temperatures. The obtained X rays diffraction patterns refined by the Rietveld method show the CuO characteristic pattern, showing that the Fe atoms enter to replace Cu atoms. Furthermore, it was obtained that the crystallite size decreases with calcination temperatures for Cu 0.94 Fe 0.06 O. The transmission Mössbauer spectroscopy showed that the samples present a disordered paramagnetic behavior due to the big value of the half-width of line of the quadrupolar splitting. Vibrating sample magnetometry confirms the paramagnetic character. The XRD results indicate that the material is nanostructured, due that the crystallite sizes are of the order of 10 nm for Cu 0.94 Fe 0.06 O and 40 nm for Cu 0.85 Fe 0.15 O.

  8. Research on a pellet co-precipitation micro-filtration process for the treatment of liquid waste containing strontium

    International Nuclear Information System (INIS)

    Xin Luo; North China Institute of Science and Technology, Beijing; Guanghui Zhang; Xue Wang; Ping Gu

    2013-01-01

    The chemical precipitation method for radioactive wastewater treatment has the advantages of being simple and cost-effective. However, difficulties with the solid–liquid separation and sludge concentration restrict the application of this method. In this paper, a pellet co-precipitation micro-filtration (PCM) process was studied for treating strontium-containing wastewater on a laboratory scale. The seed was prepared by CaCO 3 powders. Sr 2+ and CO 3 2- were constantly crystallised on the seed surface, with Na 2 CO 3 as the precipitating agent in the pellet reactor. The following membrane separator with the addition of FeCl 3 enhanced the treatment effect. The average strontium concentrations in the raw water and in the effluent were 12.0 and 0.0220 mg/L, respectively. The strontium decontamination factor (DF) increased with the operation time, with an average value of 577. The precipitate particles formed gradually grew larger, with good sedimentation properties. When the experiment was complete, the formed precipitate was separated easily from the liquid phase and directly discharged. The concentration factor (CF) was 1,958. In the PCM process, crystallisation was the main mechanism for strontium removal, with the influent strontium level playing an important role. Membrane pore blockage and cake layer formation could help to further intercept the strontium crystallites. Furthermore, ferric chloride coagulation in the membrane separator also contributed to strontium removal. The PCM process has potential for wider application in the removal of strontium from wastewater. (author)

  9. Polymer-assisted co-precipitation route for the synthesis of Al 2 O 3

    Indian Academy of Sciences (India)

    It has been observed by field emission scanning electron microscopy analysis that the particle size reduced effectively (below 100 nm) when polymer-assisted co-precipitation route is used instead of the simple co-precipitation technique. A highly dense microstructure of sintered samples has been obtained, driven by ...

  10. Processing, structure and magnetic properties correlation in co-precipitated Ca-ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Abasht, Behzad, E-mail: abasht@gmail.com [Space Thruster Research Institute, Iranian Space Research Center, Tabriz (Iran, Islamic Republic of); Department of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Beitollahi, Ali; Mirkazemi, Seyyed Mohammad [Department of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)

    2016-12-15

    La-substituted hexagonal calcium ferrite, Ca{sub 1−X}La{sub X}Fe{sub 12}O{sub 19} (x varies from 0 to 0.6 with the step of 0.2), was synthesized by applying co-precipitation method, in which the molar ratio of Fe{sup 3+}/(Ca{sup 2+}+La{sup 2+}) was 11. The ferrite precursors were prepared from aqueous solution of calcium nitrate, ferric nitrate and lanthanum nitrate by co-precipitation of calcium, iron and lanthanum ions by using an aqueous base of sodium hydroxide (1.5 M) at the pH of 14 and at room temperature. These precursors were calcinated with different amount of La at different temperature of 700, 1100 and 1200 °C for constant calcination time of 1 h in a static air atmosphere. Some tests such as simultaneous thermal analysis (STA), X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM) were carried out to investigate the thermal behavior, crystallographic properties, morphology and magnetic properties of the precursor powders which were calcinated at different temperatures. The powder XRD patterns of samples which consisted of La as dopant and were calcinated at 1200 °C for 1 h, indicates the formation of calcium hexaferrite and also α-Fe{sub 2}O{sub 3} besides Magnetoplumbite-phase (M-phase). However, the results showed that CaFe{sub 4}O{sub 7} and α-Fe{sub 2}O{sub 3} phases were formed in the sample with the same condition but without using any dopant. The results of SEM showed that the calcium hexaferrite particle were regular hexagonal platelets with the size range of 1–2 µm. The magnetic properties such as maximum magnetization (M{sub Max}), remanent magnetization (M{sub r}) and coercivity (H{sub c}) were measured from the hysteresis loops. Low values of coercive field (16.3 kA m{sup −1}) and maximum magnetization (50.6 A m{sup 2} kg{sup −1}) were obtained from calcium hexaferrite particle in optimum amount of La (X=0.4) which calcinated at the temperature of 1200 °C. - Highlights: • In this

  11. Evaluation of Three Chitin Metal Silicate Co-Precipitates as a Potential Multifunctional Single Excipient in Tablet Formulations

    Directory of Open Access Journals (Sweden)

    Rana Al-Shaikh Hamid

    2010-05-01

    Full Text Available The performance of the novel chitin metal silicate (CMS co-precipitates as a single multifunctional excipient in tablet formulation using direct compression and wet granulation methods is evaluated. The neutral, acidic, and basic drugs Spironolactone (SPL, ibuprofen (IBU and metronidazole (MET, respectively, were used as model drugs. Commercial Aldactone®, Fleximex® and Dumazole® tablets containing SPL, IBU and MET, respectively, and tablets made using Avicel® 200, were used in the study for comparison purposes. Tablets of acceptable crushing strength (>40 N were obtained using CMS. The friability values for all tablets were well below the maximum 1% USP tolerance limit. CMS produced superdisintegrating tablets (disintegration time < 1 min with the three model drugs. Regarding the dissolution rate, the sequence was as follow: CMS > Fleximex® > Avicel® 200, CMS > Avicel® 200 > Dumazole® and Aldactone® > Avicel® 200 > CMS for IBU, MET and SPL, respectively. Compressional properties of formulations were analyzed using density measurements and the compression Kawakita equation as assessment parameters. On the basis of DSC results, CMS co precipitates were found to be compatible with the tested drugs. Conclusively, the CMS co-precipitates have the potential to be used as filler, binder, and superdisintegrant, all-in-one, in the design of tablets by the direct compression as well as wet granulation methods.

  12. Green and red luminescence in co-precipitation synthesized Pr:LuAG nanophosphor

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S. Arun; Kumar, K. Ashok; Gunaseelan, M.; Senthilselvan, J., E-mail: jsselvan@hotmail.com [Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai–600 025, Tamil Nadu (India); Asokan, K. [Materials Science Group, Inter University Accelerator Centre, New Delhi-110067 (India)

    2016-05-06

    Pr:LuAG nanophosphor is an effective candidate in magnetic resonance imaging coupled positron emission tomography (MRI-PET) for medical imaging and scintillator applications. LuAG:Pr (0.05, 0.15 mol%) nanoscale ceramic powders were synthesized by co-precipitation method using urea as precipitant. Effect of antisite defect on structure and luminescence behavior was investigated. Pr:LuAG nanoceramic powders are found crystallized in cubic structure by high temperature calcination at 1400 °C and it shows antisite defect. HR-SEM analysis revealed spherically shaped Pr:LuAG nanoceramic particulate powders with ∼100 nm size. By the excitation at 450 nm, Pr:LuAG nanophosphor exhibit green to red luminescence in the wavelength range of 520 to 680 nm, which is originated from multiplet transition of Pr{sup 3+} ions.

  13. Zirconia-mullite obtained from co-precipitated zirconia-mullite composite powders by SPS

    Energy Technology Data Exchange (ETDEWEB)

    Li, H.Z.; Li, Z.J.; Luo, X.D. [Univ. of Science and Technology Liaoning, Anshan (China). School of High Temperature Materials and Magnesium Resource Engineering; Gui, J.Y.; Xie, Z.P. [Tsinghua Univ., Beijing (China). School of Materials Science and Engineering

    2016-07-01

    The co-precipitation method is used to fabricate precursor powder. This powder is densified by means of the spark plasma sintering (SPS) technique at 1500 C with a holding time of 7 min to prepare zirconia-mullite samples. Their density measures up to 97 % of the theoretical density, and the sintered mullite compacts exhibit better strength properties (289 ± 12 MPa) and H{sub v} (9.99 GPa). The mode of fracture is changed with the addition of ZrO{sub 2} and extensive fine cleavages are observed on the grain surface. These cleavages join together to form steps, which can absorb more energy. The flexural strength of the samples is almost double that of pure mullite, which is related to the formation of cleavages.

  14. Chemical control methods and tools

    Science.gov (United States)

    Steven Manning; James. Miller

    2011-01-01

    After determining the best course of action for control of an invasive plant population, it is important to understand the variety of methods available to the integrated pest management professional. A variety of methods are now widely used in managing invasive plants in natural areas, including chemical, mechanical, and cultural control methods. Once the preferred...

  15. Law of mass action for co-precipitation; Loi d'action de masse de la co-precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Vitorge, P

    2008-07-01

    Coprecipitation is often understood as the incorporation of elements at trace concentrations into -initially pure- solid compounds. Coprecipitation has typically been used to identify radioactive isotopes. Coprecipitation can result in lowering solubility as compared to the solubility, when controlled by pure compounds. For this reason it is also important for geochemistry, waste management and de-pollution studies. The solid obtained with coprecipitation is a new homogeneous solid phase called solid solution. The 2 formula needed to calculate the aqueous solubility when controlled by the ideal AB{sub b(1-x)}C{sub cx} solid solutions are K{sub s,B}{sup 1-x}*K{sub s,C}{sup x} equals [A{sup z{sub A}}]*[B{sup z{sub B}}]{sup b(1-x)}*[C{sup z{sub C}}]{sup cx}/((1-x){sup b(1-x)}x{sup cx}) and K{sub s,C}/K{sub s,B} equals (1-x){sup b}*[C{sup z{sub C}}]{sup c}/[B{sup z{sub B}}]{sup b}*x{sup c}), where K{sub s,B} and K{sub s,C} are the classical constant solubility products of the AB{sub b} and AC{sub c} end-members, the b and c values are calculated from the (z{sub i}) charges of the ions and from charge balance. This report is essentially written to provide a thermodynamic demonstration of the law of mass action in attempts to confirm scientific bases for solubility calculations in geosciences (as typically retention of radio-nuclides by co-precipitation), and to facilitate such calculations. Note that the law of mass action is here a set of 2 equations (not only 1) for the ideal or near ideal systems. Since they are consistent with the phase rule, no extra formula (beside mass balance) is needed to calculate the concentrations of all the species in both phases, namely: [A{sup z{sub A}}], [B{sup z{sub B}}], [C{sup z{sub C}}] and specially x.

  16. Effectiveness of Arsenic Co-Precipitation with Fe-Al Hydroxides for Treatment of Contaminated Water

    Directory of Open Access Journals (Sweden)

    Jaime Wilson Vargas de Mello

    2018-03-01

    Full Text Available ABSTRACT Wastewater treatment is a challenging problem faced by the mining industry, especially when mine effluents include acid mine drainage with elevated arsenic levels. Iron (hydroxides are known to be effective in removal of As from wastewater, and although the resulting compounds are relatively unstable, the presence of structural Al enhances their stability, particularly under reducing conditions. The purpose of this study was to assess the effectiveness of Al-Fe (hydroxide co-precipitates for the removal of As from wastewater and to assess the chemical stability of the products. Different Al-Fe (hydroxides were synthesized at room temperature from ferrous and aluminum salts using three different Fe:Al molar ratios (1:0.0, 1:0.3, and 1:0.7 and aged for 90 days (sulfate experiments or 120 days (chloride experiments in the presence of arsenic. At the end of the aging periods, the precipitated sludges were dried and characterized in order to evaluate their stability and therefore potential As mobility. All treatments were effective in reducing As levels in the water to below 10 µg L-1, but the presence of Al impaired the effectiveness of the treatment. Aluminum decreased the chemical stability of the precipitated sludge and hence its ability to retain As under natural environmental conditions.

  17. Chemical microreactor and method thereof

    Science.gov (United States)

    Morse, Jeffrey D [Martinez, CA; Jankowski, Alan [Livermore, CA

    2011-08-09

    A method for forming a chemical microreactor includes forming at least one capillary microchannel in a substrate having at least one inlet and at least one outlet, integrating at least one heater into the chemical microreactor, interfacing the capillary microchannel with a liquid chemical reservoir at the inlet of the capillary microchannel, and interfacing the capillary microchannel with a porous membrane near the outlet of the capillary microchannel, the porous membrane being positioned beyond the outlet of the capillary microchannel, wherein the porous membrane has at least one catalyst material imbedded therein.

  18. Co-precipitation of loperamide hydrochloride and polyethylene glycol using aerosol solvent extraction system

    International Nuclear Information System (INIS)

    Widjojokusumo, Edward; Youn, Yong-Suk; Lee, Youn-Woo; Veriansyah, Bambang; Tjandrawinata, Raymond Rubianto

    2013-01-01

    The co-precipitation of loperamide hydrochloride (LPM) and polyethylene glycol (PEG) using aerosol solvent extraction system (ASES) was examined. Scanning electron microscopy - energy dispersive X-ray spectroscopy (SEM-EDS) analysis showed that the co-precipitation was achieved in various LPM-PEG mass ratios with changes in its morphology. In 10-50% PEG mass ratios, angular-shaped particles were formed, whereas in 65-90% PEG mass ratios, irregular-shaped particles were formed. X-ray diffraction (XRD) analysis of the co-precipitates revealed that the LPM retained amorphous structure, while, on the other hand, the PEG retained crystalline structure. Fourier transform infrared (FT-IR) spectra indicated carbonyl function group of LPM and ether function group of PEG appeared in the co-precipitates. Results of a dissolution test showed that the co-precipitates of LPM-PEG had higher dissolution rate compared to that of the raw material and processed LPM with ASES. Taken together, the co-precipitation of LPMPEG was achieved using ASES and higher in its dissolution rate

  19. Effects of natural organic matter on calcium and phosphorus co-precipitation.

    Science.gov (United States)

    Sindelar, Hugo R; Brown, Mark T; Boyer, Treavor H

    2015-11-01

    Phosphorus (P), calcium (Ca) and natural organic matter (NOM) naturally occur in all aquatic ecosystems. However, excessive P loads can cause eutrophic or hyper-eutrophic conditions in these waters. As a result, P regulation is important for these impaired aquatic systems, and Ca-P co-precipitation is a vital mechanism of natural P removal in many alkaline systems, such as the Florida Everglades. The interaction of P, Ca, and NOM is also an important factor in lime softening and corrosion control, both critical processes of drinking water treatment. Determining the role of NOM in Ca-P co-precipitation is important for identifying mechanisms that may limit P removal in both natural and engineered systems. The main goal of this research is to assess the role of NOM in inhibiting Ca and P co-precipitation by: (1) measuring how Ca, NOM, and P concentrations affect NOM's potential inhibition of co-precipitation; (2) determining the effect of pH; and (3) evaluating the precipitated solids. Results showed that Ca-P co-precipitation occurs at pH 9.5 in the presence of high natural organic matter (NOM) (≈30 mg L(-1)). The supersaturation of calcite overcomes the inhibitory effect of NOM seen at lower pH values. Higher initial P concentrations lead to both higher P precipitation rates and densities of P on the calcite surface. The maximum surface density of co-precipitated P on the precipitated calcite surface increases with increasing NOM levels, suggesting that NOM does prevent the co-precipitation of Ca and P. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Effect of pH on the Structural and Magnetic Properties of Magnetite Nanoparticles Synthesised by Co-Precipitation

    International Nuclear Information System (INIS)

    Ramadan, W.; Kareem, M.; Hannoyer, B.; Saha, Sh.

    2011-01-01

    Magnetite, Fe3O4, nanoparticles were synthesized using co-precipitation aqueous method at room temperature and at different pH, from 8 to 12.5. The pH value was found to influence greatly the resulting phases and has no significant effect on the particle size. In all cases, magnetite was found to be the main phase but the contribution of Goethite phase was identified clearly with the increase in pH. Significant reduction in saturation magnetization was evident. Structural and magnetic properties of the nanoparticles were examined using; XRD, TEM, Raman Spectroscopy and SQUID. (author)

  1. Gd doping induced weak ferromagnetic ordering in ZnS nanoparticles synthesized by low temperature co-precipitation technique

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Palvinder [Department of Physics, Punjabi University, Patiala, Punjab, 147002 (India); Kumar, Sanjeev, E-mail: sanjeev04101977@gmail.com [Applied Science Department, PEC University of Technology, Chandigarh, 160012 (India); Chen, Chi-Liang, E-mail: chen.cl@nsrrc.org.tw [National Synchrotron Radiation Research Center (NSRRC), Hsinchu, 30076, Taiwan (China); Yang, Kai-Siang [National Synchrotron Radiation Research Center (NSRRC), Hsinchu, 30076, Taiwan (China); Department of Mechanical Engineering, National Taipei University of Technology, Taipei, Taiwan (China); Wei, Da-Hua [Department of Mechanical Engineering, National Taipei University of Technology, Taipei, Taiwan (China); Dong, Chung-Li [Department of Physics, Tamkang University, Tamsui, Taiwan (China); Srivastava, C. [Materials Engineering Department, Indian Institute of Science, Bangalore, 560012 (India); Rao, S.M. [Department of Physics, Punjabi University, Patiala, Punjab, 147002 (India); Institute of Physics, Academia Sinica, Taipei, 11529, Taiwan (China)

    2017-01-15

    Zn{sub 1−x}Gd{sub x}S nanoparticles with Gd concentration x = 0.00, 0.02 and 0.04 were synthesized by the chemical co-precipitation technique using thioglycerol as capping agent. X-ray diffraction (XRD), transmission electron microscopy (TEM), photoluminescence (PL) spectroscopy, X-ray absorption near-edge structure (XANES) and vibrating sample magnetometer (VSM) were employed to characterize the as synthesized Gd doped ZnS nanoparticles. XRD and TEM studies show the formation of cubic ZnS nanoparticles with an average size in the range 5–10 nm. The doping did not alter the phase of the ZnS. The PL spectra of doped ZnS nanoparticles showed the presence of sulphur vacancies in the lattice. XANES of Gd doped ZnS nanoparticles depicts spectral changes may arise from charge transfer between host Zn and dopant Gd ions. A VSM study shows that the weak ferromagnetic behaviour increases with increase in Gd doping ZnS nanoparticles. - Highlights: • Gd doped ZnS nanoparticles synthesized using co-precipitation technique. • PL studies depict sulphur and zinc vacancies in Gd doped ZnS nanoparticles. • XANES studies depict the charge transfer between host Zn and dopant Gd ions. • Room temperature weak ferromagnetism is observed in Gd doped ZnS nanoparticles.

  2. Helix-sense-selective co-precipitation for preparing optically active helical polymer nanoparticles/graphene oxide hybrid nanocomposites.

    Science.gov (United States)

    Huang, Huajun; Li, Weifei; Shi, Yan; Deng, Jianping

    2017-05-25

    Constructing optically active helical polymer based nanomaterials without using expensive and limited chirally helical polymers has become an extremely attractive research topic in both chemical and materials science. In this study, we prepared a series of optically active helical polymer nanoparticles/graphene oxide (OAHPNs/GO) hybrid nanocomposites through an unprecedented strategy-the co-precipitation of optically inactive helical polymers and chirally modified GO. This approach is named helix-sense-selective co-precipitation (HSSCP), in which the chirally modified GO acted as a chiral source for inducing and further stabilizing the predominantly one-handed helicity in the optically inactive helical polymers. SEM and TEM images show quite similar morphologies of all the obtained OAHPNs/GO nanocomposites; specifically, the chirally modified GO sheets were uniformly decorated with spherical polymer nanoparticles. Circular dichroism (CD) and UV-vis absorption spectra confirmed the preferentially induced helicity in the helical polymers and the optical activity of the nanocomposites. The established HSSCP strategy is thus proven to be widely applicable and is expected to produce numerous functional OAHPNs/GO nanocomposites and even the analogues.

  3. Gd doping induced weak ferromagnetic ordering in ZnS nanoparticles synthesized by low temperature co-precipitation technique

    International Nuclear Information System (INIS)

    Kaur, Palvinder; Kumar, Sanjeev; Chen, Chi-Liang; Yang, Kai-Siang; Wei, Da-Hua; Dong, Chung-Li; Srivastava, C.; Rao, S.M.

    2017-01-01

    Zn_1_−_xGd_xS nanoparticles with Gd concentration x = 0.00, 0.02 and 0.04 were synthesized by the chemical co-precipitation technique using thioglycerol as capping agent. X-ray diffraction (XRD), transmission electron microscopy (TEM), photoluminescence (PL) spectroscopy, X-ray absorption near-edge structure (XANES) and vibrating sample magnetometer (VSM) were employed to characterize the as synthesized Gd doped ZnS nanoparticles. XRD and TEM studies show the formation of cubic ZnS nanoparticles with an average size in the range 5–10 nm. The doping did not alter the phase of the ZnS. The PL spectra of doped ZnS nanoparticles showed the presence of sulphur vacancies in the lattice. XANES of Gd doped ZnS nanoparticles depicts spectral changes may arise from charge transfer between host Zn and dopant Gd ions. A VSM study shows that the weak ferromagnetic behaviour increases with increase in Gd doping ZnS nanoparticles. - Highlights: • Gd doped ZnS nanoparticles synthesized using co-precipitation technique. • PL studies depict sulphur and zinc vacancies in Gd doped ZnS nanoparticles. • XANES studies depict the charge transfer between host Zn and dopant Gd ions. • Room temperature weak ferromagnetism is observed in Gd doped ZnS nanoparticles.

  4. Fabrication of Tb3Al5O12 transparent ceramics using co-precipitated nanopowders

    Science.gov (United States)

    Dai, Jiawei; Pan, Yubai; Wang, Wei; Luo, Wei; Xie, Tengfei; Kou, Huamin; Li, Jiang

    2017-11-01

    Terbium aluminum garnet (TAG) precursor was synthesized by a co-precipitation method from a mixed solution of terbium and aluminum nitrates using ammonium hydrogen carbonate (AHC) as the precipitant. The powders calcined at different temperatures were investigated by XRD, FTIR and FESEM in order to choose the optimal calcination temperature. Fine and low-agglomerated TAG powders with average particle size of 88 nm were obtained by calcining the precursor at 1100 °C for 4 h. Using this powder as starting material, TAG transparent ceramics were fabricated by vacuum sintering combined with hot isostatic pressing (HIP) sintering. For the sample pre-sintered at 1700 °C for 20 h with HIP post-treated at 1700 °C for 3 h, the average grain size is about 3.9 μm and the in-line transmittance is beyond 55% in the region of 500-1600 nm, reaching a maximum transmittance of 64.2% at the wavelength of 1450 nm. The Verdet constant at 633 nm is measured to be -178.9 rad T-1 m-1, which is 33% larger than that of the commercial TGG single crystal (-134 rad T-1 m-1).

  5. Structural and magnetic properties of cobalt ferrite nanoparticles synthesized by co-precipitation at increasing temperatures

    Science.gov (United States)

    Stein, C. R.; Bezerra, M. T. S.; Holanda, G. H. A.; André-Filho, J.; Morais, P. C.

    2018-05-01

    This study reports on the synthesis and characterization of cobalt ferrite (CoFe2O4) nanoparticles (NPs) synthesized by chemical co-precipitation in alkaline medium at increasing temperatures in the range of 27 °C to 100 °C. High-quality samples in the size range of 5 to 10 nm were produced using very low stirring speed (250 rpm) and moderate alkaline aqueous solution concentration (4.8 mol/L). Three samples were synthesized and characterized by x-ray diffraction (XRD) and room-temperature (RT) magnetization measurements. All samples present superparamagnetic (SPM) behavior at RT and Rietveld refinements confirm the inverse cubic spinel structure (space group Fd-3m (227)) with minor detectable impurity phase. As the synthesis temperature increases, structural parameters such as lattice constant and grain size change monotonically from 8.385 to 8.383 Å and from 5.8 to 7.4 nm, respectively. Likewise, as the synthesis temperature increases the NPs' magnetic moment and saturation magnetization increases monotonically from 2.6 ×103 to 16×103 μB and from 37 to 66 emu/g, respectively. The RT magnetization (M) versus applied field (H) curves were analyzed by the first-order Langevin function averaged out by a lognormal distribution function of magnetic moments. The excellent curve-fitting of the M versus H data is credited to a reduced particle-particle interaction due to both the SPM behavior and the existence of a surface amorphous shell layer (dead layer), the latter reducing systematically as the synthesis temperature increases.

  6. Preparation of (U, Gd)O2 by inverse co-precipitation in nitric solutions. Study of homogeneity and process optimization

    International Nuclear Information System (INIS)

    Marchi, Daniel E.; Menghini, Jorge E.; Trimarco, Viviana G.

    1999-01-01

    The inverse co-precipitation method has been used at the laboratory level to produce uranium - gadolinium mixed oxides. The formation of a mixed phase in the precipitates has been determined as well as the occurrence of only one phase in the sintered pellets, corresponding to a gadolinium - uranium solution. Moreover, a modification in the calcination-reduction stage was introduced that allows the elimination of the fissures previously detected in the sintered pellets

  7. Chemical treatment of wastewaters produced during separation of iodine 131

    International Nuclear Information System (INIS)

    Cohen, P.; Marcaillou, J.; Amavis, R.

    1959-01-01

    The authors report the development and assessment of a chemical treatment of radioactive wastewaters by co-precipitation. This treatment is aimed at replacing a treatment based on the use of calcium phosphate which proved to be insufficient for wastewaters resulting from the production of iodine 131. After a presentation of the characteristics of the effluents to be processed, the authors report co-precipitation tests performed on effluents before release in the storage vessel (by using barium hydroxide, lead acetate or lead sulfate) and on effluents diluted on the storage vessel. They show that a co-precipitation method based on the use of lead sulfate in alkaline medium gives the best results

  8. Optimisation of parameters for co-precipitation of uranium and plutonium - results of simulation studies

    International Nuclear Information System (INIS)

    Pandey, N.K.; Velvandan, P.V.; Murugesan, S.; Ahmed, M.K.; Koganti, S.B.

    1999-01-01

    Preparation of plutonium oxide from plutonium nitrate solution generally proceeds via oxalate precipitation route. In a nuclear fuel reprocessing scheme this step succeeds the partitioning step (separation of uranium and plutonium). Results of present studies confirm that it is possible to avoid partitioning step and recover plutonium and uranium as co-precipitated product. This also helps in minimising the risk of proliferation of fissile material. In this procedure, the solubility of uranium oxalate in nitric acid is effectively used. Co-precipitation parameters are optimised with simulated solutions of uranium nitrate and thorium nitrate (in place of plutonium). On the basis of obtained results a reconversion flow-sheet is designed and reported here. (author)

  9. Co-precipitation and solubility studies of cesium, potassium and sodium tetraphenylborate

    International Nuclear Information System (INIS)

    Peterson, R.A.

    1999-01-01

    This report contains the results from a study requested by High Level Waste Division on the co-precipitation and solubility of cesium, potassium, and sodium tetraphenylborate. Co-precipitation of cesium (Cs), potassium (K), and sodium (Na) tetraphenylborate (TPB) helps determine the efficiency of reagent usage in the Small Tank Precipitation Process. This process uses NaTPB to remove cesium from waste by means of precipitation. Previous studies by McCabe suggested that if the sodium ion concentration [Na+] increased the rate at which cesium tetraphenylborate (KTPB) in the presence of high [Na+] (∼5M) appears to produce a mixed solid phase composed of NaTPB and KTPB together in the crystal lattice

  10. Production of mixed oxide fuel for fast reactor irradiation test by co-precipitation

    International Nuclear Information System (INIS)

    Todokoro, Akio; Masuda, Sumio; Naruki, Kaoru; Kaya, Akira; Koizumi, Masumichi

    1974-01-01

    Studies were made on the production of homogeneous mixed oxide by co-precipitation. Experiments were made on the effects of the addition rate of ammonia water, precipitation temperature, aging time of co-precipitate, and pH value. Plutonium refined by anion exchange was mixed with solution of uranium. The concentration of free acid in the mixed solution was adjusted to 1.5-2.0 M, and the total volume of the solution was made 3.01. The weight of Pu and U in the solution was 100g. The solution was kept at a definite temperature while being stirred. Concentrated ammonia solution was added to the solution at a definite rate. The precipitate thus formed was filtrated after aging, then dried for 24 hours at 100 +- 2 0 C. Dried co-precipitate was calcinated for 1 hr at 550 0 C. The reduction for 4 hours at 800 0 C gave the mixed powder of PuO 2 and UO 2 . After pressing, the powder was sintered for 2 hours at 1700 0 C. The shrinkage ratio decreased as the activity and tap density of the original powder increased. The activity determined by specific surface area increased as the rate of ammonia water addition increased, and as the precipitation temperature rose. Tap density was independent of the rate of addition of ammonia water. The activity of the powder increased and the tap density decreased as the aging time of precipitate increased. (Fukutomi, T.)

  11. Liberation of Adsorbed and Co-Precipitated Arsenic from Jarosite, Schwertmannite, Ferrihydrite, and Goethite in Seawater

    Directory of Open Access Journals (Sweden)

    Rodrigo Alarcón

    2014-07-01

    Full Text Available Sea level rise is able to change the geochemical conditions in coastal systems. In these environments, transport of contaminants can be controlled by the stability and adsorption capacity of iron oxides. The behavior of adsorbed and co-precipitated arsenic in jarosite, schwertmannite, ferrihydrite, and goethite in sea water (common secondary minerals in coastal tailings was investigated. The aim of the investigation was to establish As retention and transport under a marine flood scenario, which may occur due to climate change. Natural and synthetic minerals with co-precipitated and adsorbed As were contacted with seawater for 25 days. During this period As, Fe, Cl, SO4, and pH levels were constantly measured. The larger retention capability of samples with co-precipitated As, in relation with adsorbed As samples, reflects the different kinetics between diffusion, dissolution, and surface exchange processes. Ferrihydrite and schwertmannite showed good results in retaining arsenic, although schwertmannite holding capacity was enhanced due its buffering capacity, which prevented reductive dissolution throughout the experiment. Arsenic desorption from goethite could be understood in terms of ion exchange between oxides and electrolytes, due to the charge difference generated by a low point-of-zero-charge and the change in stability of surface complexes between synthesis conditions and natural media.

  12. Effect of Co{sup 2+} and Y{sup 3+} ions insertion on the microstructure development and magnetic properties of Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} powders synthesized using Co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Rashad, M.M., E-mail: rashad133@yahoo.com [Central Metallurgical Research and Development Institute (CMRDI), P.O. Box 87, Helwan 11421, Cairo (Egypt); Rayan, D.A.; Turky, A.O. [Central Metallurgical Research and Development Institute (CMRDI), P.O. Box 87, Helwan 11421, Cairo (Egypt); Hessien, M.M. [Central Metallurgical Research and Development Institute (CMRDI), P.O. Box 87, Helwan 11421, Cairo (Egypt); Chemistry Department, Taif University (Saudi Arabia)

    2015-01-15

    Nanocrystalline Ni{sub 0.5}Zn{sub 0.5−x}Co{sub x}Fe{sub 2−z}Y{sub z}O{sub 4} powders (x=0–0.3 and z from 0 to 0.3) have been synthesized via a facile co-precipitation technique. X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM) are utilized in order to study the effect of variation of cobalt and yttrium substitutions and its impact on crystalline size, lattice parameter, X-ray density, microstructure and magnetic properties of the formed powders. X-ray diffraction data indicated that, after doping, all samples consisted of the main spinel phase for the formed precursors precipitated at pH 10 annealed at 1000 {sup o}C for 2 h. The lattice parameter and the unit cell were decreased linearly with increasing Co content whereas they were increased with increasing the Y incorporation. Additionally, the porosity was increased with increasing Co concentration while it was decreased with increasing the Y insertion. The mean ionic radii and hopping and bond lengths was decreased with the value of Co{sup 2+} and they were increased with the value of Y{sup 3+} ion as well as both of Y{sup 3+} and Co{sup 2+} ions. The microstructures of the produced powders were found to be cubic like structure. The addition of Y{sup 3+} ion suppressed the grain size whereas addition of Co{sup 2+} ion enhanced the grain growth availably. An examination of the magnetic properties revealed an increase in saturation magnetization with increasing Co and Y concentrations incorporation up to x=0.3. Meanwhile, the formed powders exhibited superparamagnetic characteristics. A high saturation magnetization (77.0 emu/g) was achieved for Ni{sub 0.5}Zn{sub 0.2}Co{sub 0.3}Fe{sub 2}O{sub 4} sample annealed at 1000 {sup o}C for 2 h. - Highlights: • Ni{sub 0.5}Zn{sub 0.5−x}Co{sub x}Fe{sub 2−z}Y{sub z}O{sub 4} powders were synthesized. • The porosity decreases with Y{sup 3+} and increases with Co{sup 2+}. • The bond lengths decrease with Co{sup 2

  13. Method for producing chemical energy

    Science.gov (United States)

    Jorgensen, Betty S.; Danen, Wayne C.

    2004-09-21

    Fluoroalkylsilane-coated metal particles having a central metal core, a buffer layer surrounding the core, and a fluoroalkylsilane layer attached to the buffer layer are prepared by combining a chemically reactive fluoroalkylsilane compound with an oxide coated metal particle having a hydroxylated surface. The resulting fluoroalkylsilane layer that coats the particles provides them with excellent resistance to aging. The particles can be blended with oxidant particles to form energetic powder that releases chemical energy when the buffer layer is physically disrupted so that the reductant metal core can react with the oxidant.

  14. Magnetic and structural properties of Cu{sub 0.85}Fe{sub 0.15}O system synthesized by co-precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Colorado, H. D., E-mail: herdacom@gmail.com; Perez Alcazar, G. A. [Universidad del Valle, Departamento de Fisica (Colombia)

    2011-11-15

    Cu{sub 0.94}Fe{sub 0.06}O and Cu{sub 0.85}Fe{sub 0.15}O samples were synthesized by using the co-precipitation chemical method. Starting from aqueous solutions of copper nitrate, CuO (NO{sub 3}){sub 2} 3H{sub 2}O, iron nitrate, Fe (NO{sub 3}){sub 3} 9H{sub 2}O and sodium hydroxide as precipitating agent, NaOH. The precipitate of three samples for Cu{sub 0.94}Fe{sub 0.06}O and five for Cu{sub 0.85}Fe{sub 0.15}O of fine powder were calcined for 5 h at different temperatures. The obtained X rays diffraction patterns refined by the Rietveld method show the CuO characteristic pattern, showing that the Fe atoms enter to replace Cu atoms. Furthermore, it was obtained that the crystallite size decreases with calcination temperatures for Cu{sub 0.94}Fe{sub 0.06}O. The transmission Moessbauer spectroscopy showed that the samples present a disordered paramagnetic behavior due to the big value of the half-width of line of the quadrupolar splitting. Vibrating sample magnetometry confirms the paramagnetic character. The XRD results indicate that the material is nanostructured, due that the crystallite sizes are of the order of 10 nm for Cu{sub 0.94}Fe{sub 0.06}O and 40 nm for Cu{sub 0.85}Fe{sub 0.15}O.

  15. Chemical methods of rock analysis

    National Research Council Canada - National Science Library

    Jeffery, P. G; Hutchison, D

    1981-01-01

    .... Such methods include those based upon spectrophotometry, flame emission spectrometry and atomic absorption spectroscopy, as well as gravimetry, titrimetry and the use of ion-selective electrodes...

  16. Comparison of structural and luminescence properties of Dy2O3 nanopowders synthesized by co-precipitation and green combustion routes

    International Nuclear Information System (INIS)

    Chandrasekhar, M.; Nagabhushana, H.; Sudheerkumar, K.H.; Dhananjaya, N.; Sharma, S.C.; Kavyashree, D.; Shivakumara, C.; Nagabhushana, B.M.

    2014-01-01

    Highlights: • Dy 2 O 3 nanopowders were prepared by co-precipitation and eco-friendly green combustion route using plant latex. • Both the products show excellent chromaticity coordinates in the white region, which were quite useful for white LED’s. • Thermoluminescence response of the Dy 2 O 3 product prepared by green synthesis was higher when compared to co-precipitation route. • Structural parameters of Dy 2 O 3 were estimated using Rietveld refinement. • The development of nanosize materials using eco-friendly resources was an attractive non-hazardous chemical route. - Abstract: Dysprosium oxide (Dy 2 O 3 ) nanopowders were prepared by co-precipitation (CP) and eco-friendly green combustion (GC) routes. SEM micrographs prepared by CP route show smooth rods with various lengths and diameters while, GC route show porous, agglomerated particles. The results were further confirmed by TEM. Thermoluminescence (TL) responses of the nanopowder prepared by both the routes were studied using γ-rays. A well resolved glow peak at 353 °C along with less intense peak at 183 °C was observed in GC route while, in CP a single glow peak at 364 °C was observed. The kinetic parameters were estimated using Chen’s glow peak route. Photoluminescence (PL) of Dy 2 O 3 shows peaks at 481, 577, 666 and 756 nm which were attributed to Dy 3+ transitions of 4 F 9/2 ⟶ 6 H 15/2 , 6 H 13/2 , 6 H 11/2 and 6 H 9/2 , respectively. Color co-ordinate values were located in the white region as a result the product may be useful for the fabrication of WLED’S

  17. Synthesis of aqueous suspensions of magnetic nanoparticles with the co-precipitation of iron ions in the presence of aspartic acid

    Energy Technology Data Exchange (ETDEWEB)

    Pušnik, Klementina; Goršak, Tanja [Department for Materials Synthesis, Jožef Stefan Institute, 1000 Ljubljana (Slovenia); Jožef Stefan International Postgraduate School, 1000 Ljubljana (Slovenia); Drofenik, Miha [Department for Materials Synthesis, Jožef Stefan Institute, 1000 Ljubljana (Slovenia); Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000 Maribor (Slovenia); Makovec, Darko [Department for Materials Synthesis, Jožef Stefan Institute, 1000 Ljubljana (Slovenia); Jožef Stefan International Postgraduate School, 1000 Ljubljana (Slovenia)

    2016-09-01

    There is increasing demand for the production of large quantities of aqueous suspensions of magnetic iron-oxide nanoparticles. Amino acids are one possible type of inexpensive, nontoxic, and biocompatible molecules that can be used as the surfactants for the preparation of stable suspensions. This preparation can be conducted in a simple, one-step process based on the co-precipitation of Fe{sup 3+}/Fe{sup 2+} ions in the presence of the amino acid. However, the presence of this amino acid changes the mechanism of the magnetic nanoparticles' formation. In this investigation we analyzed the influence of aspartic amino acid (Asp) on the formation of magnetic iron-oxide nanoparticles during the co-precipitation. The process of the nanoparticles’ formation was followed using a combination of TEM, x-ray diffractometry, magnetic measurements, in-situ FT-IR spectroscopy, and chemical analysis, and compared with the formation of nanoparticles without the Asp. The Asp forms a coordination complex with the Fe{sup 3+} ions, which impedes the formation of the intermediate iron oxyhydroxide phase and suppresses the growth of the final magnetic iron-oxide nanoparticles. Slower reaction kinetics can lead to the formation of nonmagnetic secondary phases. The aspartic-acid-absorbed nanoparticles can be dispersed to form relatively concentrated aqueous suspensions displaying a good colloidal stability at an increased pH. - Highlights: • Co-precipitation of Fe{sup 3+}/Fe{sup 2+} ions in the presence of aspartic amino acid (Asp). • Through analysis of nanoparticle formation mechanism. • Presence of Asp changes the mechanism of the nanoparticles’ formation. • Asp forms a coordination complex with the Fe{sup 3+} ions. • Asp impedes the formation of iron oxyhydroxide phase and suppresses the growth of iron-oxide nanoparticles. • The aspartic-acid-absorbed nanoparticles form stable aqueous suspensions.

  18. Synthesis of aqueous suspensions of magnetic nanoparticles with the co-precipitation of iron ions in the presence of aspartic acid

    International Nuclear Information System (INIS)

    Pušnik, Klementina; Goršak, Tanja; Drofenik, Miha; Makovec, Darko

    2016-01-01

    There is increasing demand for the production of large quantities of aqueous suspensions of magnetic iron-oxide nanoparticles. Amino acids are one possible type of inexpensive, nontoxic, and biocompatible molecules that can be used as the surfactants for the preparation of stable suspensions. This preparation can be conducted in a simple, one-step process based on the co-precipitation of Fe 3+ /Fe 2+ ions in the presence of the amino acid. However, the presence of this amino acid changes the mechanism of the magnetic nanoparticles' formation. In this investigation we analyzed the influence of aspartic amino acid (Asp) on the formation of magnetic iron-oxide nanoparticles during the co-precipitation. The process of the nanoparticles’ formation was followed using a combination of TEM, x-ray diffractometry, magnetic measurements, in-situ FT-IR spectroscopy, and chemical analysis, and compared with the formation of nanoparticles without the Asp. The Asp forms a coordination complex with the Fe 3+ ions, which impedes the formation of the intermediate iron oxyhydroxide phase and suppresses the growth of the final magnetic iron-oxide nanoparticles. Slower reaction kinetics can lead to the formation of nonmagnetic secondary phases. The aspartic-acid-absorbed nanoparticles can be dispersed to form relatively concentrated aqueous suspensions displaying a good colloidal stability at an increased pH. - Highlights: • Co-precipitation of Fe 3+ /Fe 2+ ions in the presence of aspartic amino acid (Asp). • Through analysis of nanoparticle formation mechanism. • Presence of Asp changes the mechanism of the nanoparticles’ formation. • Asp forms a coordination complex with the Fe 3+ ions. • Asp impedes the formation of iron oxyhydroxide phase and suppresses the growth of iron-oxide nanoparticles. • The aspartic-acid-absorbed nanoparticles form stable aqueous suspensions.

  19. Survey of Nuclear Methods in Chemical Technology

    International Nuclear Information System (INIS)

    Broda, E.

    1966-01-01

    An attempt is made to classify nuclear methods on a logical basis to facilitate assimilation by the technologist. The three main groups are: (I) Tracer methods, (II) Methods based on the influence of absorbers on radiations to be measured, and (III) Radiation chemical methods. The variants of the first two groups are discussed in some detail, and typical examples are given. Group I can be subdivided into (1) Indicator methods, (2) Emanation methods, (3) Radioreagent methods, and (4) Isotope dilution methods, Group II into (5) Activation methods, (6) Absorption methods, (7) Induced Nuclear Reaction methods, (8) Scattering methods, and (9) Fluorescence methods. While the economic benefits due to nuclear methods already run into hundreds of millions of dollars annually, owing to radiation protection problems radiochemical methods in the strict sense are not widely used in actual production. It is suggested that more use should be made of pilot plant tracer studies of chemical processes as used in industry. (author)

  20. Chemical methods of rock analysis

    National Research Council Canada - National Science Library

    Jeffery, P. G; Hutchison, D

    1981-01-01

    A practical guide to the methods in general use for the complete analysis of silicate rock material and for the determination of all those elements present in major, minor or trace amounts in silicate...

  1. Structural characterization, formation mechanism and stability of curcumin in zein-lecithin composite nanoparticles fabricated by antisolvent co-precipitation.

    Science.gov (United States)

    Dai, Lei; Sun, Cuixia; Li, Ruirui; Mao, Like; Liu, Fuguo; Gao, Yanxiang

    2017-12-15

    Curcumin (Cur) exhibits a range of bioactive properties, but its application is restrained due to its poor water solubility and sensitivity to environmental stresses. In this study, zein-lecithin composite nanoparticles were fabricated by antisolvent co-precipitation technique for delivery of Cur. The result showed that the encapsulation efficiency of Cur was significantly enhanced from 42.03% in zein nanoparticles to 99.83% in zein-lecithin composite nanoparticles. The Cur entrapped in the nanoparticles was in an amorphous state confirmed by differential scanning calorimetry and X-ray diffraction. Fourier transform infrared analysis revealed that hydrogen bonding, electrostatic interaction and hydrophobic attraction were the main interactions among zein, lecithin, and Cur. Compared with single zein and lecithin nanoparticles, zein-lecithin composite nanoparticles significantly improved the stability of Cur against thermal treatment, UV irradiation and high ionic strength. Therefore, zein-lecithin composite nanoparticles could be a potential delivery system for water-insoluble bioactive compounds with enhanced encapsulation efficiency and chemical stability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Co-precipitation of oppositely charged nanoparticles: the case of mixed ligand nanoparticles

    International Nuclear Information System (INIS)

    Moglianetti, Mauro; Ponomarev, Evgeniy; Szybowski, Maxime; Stellacci, Francesco; Reguera, Javier

    2015-01-01

    Colloid stability is of high importance in a multitude of fields ranging from food science to biotechnology. There is strong interest in studying the stability of small particles (of a size of a few nanometres) with complex surface structures, that make them resemble the complexity of proteins and other natural biomolecules, in the presence of oppositely charged nanoparticles. While for nanoparticles with homogeneously charged surfaces an abrupt precipitation has been observed at the neutrality of charges, data are missing about the stability of nanoparticles when they have more complex surface structures, like the presence of hydrophobic patches. To study the role of these hydrophobic patches in the stability of nanoparticles a series of negatively charged nanoparticles has been synthesized with different ratios of hydrophobic content and with control on the structural distribution of the hydrophobic moiety, and then titrated with positively charged nanoparticles. For nanoparticles with patchy nanodomains, the influence of hydrophobic content was observed together with the influence of the size of the nanoparticles. By contrast, for nanoparticles with a uniform distribution of hydrophobic ligands, size changes and hydrophobic content did not play any role in co-precipitation behaviour. A comparison of these two sets of nanoparticles suggests that nanodomains present at the surfaces of nanoparticles are playing an important role in stability against co-precipitation. (paper)

  3. Chemical Tracer Methods: Chapter 7

    Science.gov (United States)

    Healy, Richard W.

    2017-01-01

    Tracers have a wide variety of uses in hydrologic studies: providing quantitative or qualitative estimates of recharge, identifying sources of recharge, providing information on velocities and travel times of water movement, assessing the importance of preferential flow paths, providing information on hydrodynamic dispersion, and providing data for calibration of water flow and solute-transport models (Walker, 1998; Cook and Herczeg, 2000; Scanlon et al., 2002b). Tracers generally are ions, isotopes, or gases that move with water and that can be detected in the atmosphere, in surface waters, and in the subsurface. Heat also is transported by water; therefore, temperatures can be used to trace water movement. This chapter focuses on the use of chemical and isotopic tracers in the subsurface to estimate recharge. Tracer use in surface-water studies to determine groundwater discharge to streams is addressed in Chapter 4; the use of temperature as a tracer is described in Chapter 8.Following the nomenclature of Scanlon et al. (2002b), tracers are grouped into three categories: natural environmental tracers, historical tracers, and applied tracers. Natural environmental tracers are those that are transported to or created within the atmosphere under natural processes; these tracers are carried to the Earth’s surface as wet or dry atmospheric deposition. The most commonly used natural environmental tracer is chloride (Cl) (Allison and Hughes, 1978). Ocean water, through the process of evaporation, is the primary source of atmospheric Cl. Other tracers in this category include chlorine-36 (36Cl) and tritium (3H); these two isotopes are produced naturally in the Earth’s atmosphere; however, there are additional anthropogenic sources of them.

  4. Filterless pre-concentration by co-precipitation by formation of crystalline precipitate in the analysis of barium by FIA-FAES

    DEFF Research Database (Denmark)

    Plamboeck, C.; Westtoft, H.C.; Pedersen, S.A.

    2003-01-01

    A novel method based on flow injection analysis (FIA) and flame atomic emission spectrometry (FAES) is presented. It was developed for direct determination of barium in drinking water, in natural water, in digested samples of bone and liver, in saline water and in a standard reference material...... (NIST SRM 1640). It was found that digestion of bone by an incineration procedure was required, in order to extract most of the barium. In the FIA manifold, barium was pre-concentrated by co-precipitation with lead chromate leading to a crystalline deposit that adhered well to the inner walls of a nylon...

  5. Comparison of Chemical and Physical-chemical Wastewater Discoloring Methods

    Directory of Open Access Journals (Sweden)

    Durašević, V.

    2007-11-01

    Full Text Available Today's chemical and physical-chemical wastewater discoloration methods do not completely meet demands regarding degree of discoloration. In this paper discoloration was performed using Fenton (FeSO4 . 7 H2O + H2O2 + H2SO4 and Fenton-like (FeCl3 . 6 H2O + H2O2 + HCOOH chemical methods and physical-chemical method of coagulation/flocculation (using poly-electrolyte (POEL combining anion active coagulant (modified poly-acrylamides and cationic flocculant (product of nitrogen compounds in combination with adsorption on activated carbon. Suitability of aforementioned methods was investigated on reactive and acid dyes, regarding their most common use in the textile industry. Also, investigations on dyes of different chromogen (anthraquinone, phthalocyanine, azo and xanthene were carried out in order to determine the importance of molecular spatial structure. Oxidative effect of Fenton and Fenton-like reagents resulted in decomposition of colored chromogen and high degree of discoloration. However, the problem is the inability of adding POEL in stechiometrical ratio (also present in physical-chemical methods, when the phenomenon of overdosing coagulants occurs in order to obtain a higher degree of discoloration, creating a potential danger of burdening water with POEL. Input and output water quality was controlled through spectrophotometric measurements and standard biological parameters. In addition, part of the investigations concerned industrial wastewaters obtained from dyeing cotton materials using reactive dye (C. I. Reactive Blue 19, a process that demands the use of vast amounts of electrolytes. Also, investigations of industrial wastewaters was labeled as a crucial step carried out in order to avoid serious misassumptions and false conclusions, which may arise if dyeing processes are only simulated in the laboratory.

  6. Synthesis of aqueous suspensions of magnetic nanoparticles with the co-precipitation of iron ions in the presence of aspartic acid

    Science.gov (United States)

    Pušnik, Klementina; Goršak, Tanja; Drofenik, Miha; Makovec, Darko

    2016-09-01

    There is increasing demand for the production of large quantities of aqueous suspensions of magnetic iron-oxide nanoparticles. Amino acids are one possible type of inexpensive, nontoxic, and biocompatible molecules that can be used as the surfactants for the preparation of stable suspensions. This preparation can be conducted in a simple, one-step process based on the co-precipitation of Fe3+/Fe2+ ions in the presence of the amino acid. However, the presence of this amino acid changes the mechanism of the magnetic nanoparticles' formation. In this investigation we analyzed the influence of aspartic amino acid (Asp) on the formation of magnetic iron-oxide nanoparticles during the co-precipitation. The process of the nanoparticles' formation was followed using a combination of TEM, x-ray diffractometry, magnetic measurements, in-situ FT-IR spectroscopy, and chemical analysis, and compared with the formation of nanoparticles without the Asp. The Asp forms a coordination complex with the Fe3+ ions, which impedes the formation of the intermediate iron oxyhydroxide phase and suppresses the growth of the final magnetic iron-oxide nanoparticles. Slower reaction kinetics can lead to the formation of nonmagnetic secondary phases. The aspartic-acid-absorbed nanoparticles can be dispersed to form relatively concentrated aqueous suspensions displaying a good colloidal stability at an increased pH.

  7. FTIR and structural properties of co-precipitated cobalt ferrite nano particles

    International Nuclear Information System (INIS)

    Hutamaningtyas, E.; Utari; Suharyana; Purnama, B.; Wijayanta, A. T.

    2016-01-01

    The FTIR and structural properties in co-precipitated cobalt ferrite (CoFe 2 O 4 ) nanoparticles are discussed in this paper. The synthesis was conducted at temperatures of 75°C and 95°C following post annealing at 1200°C for 5 hours. Other modification samples were synthesis at temperature of 95°C and then annealing at temperature of 1000°C and 1200°C for 5 hours. For both modification of synthesis and annealing temperature, FTIR result showed a metal oxide at a wave number of 590 cm -1 which indicated cobalt ferrite nanoparticles. The crystalline structure was confirmed using x-ray diffraction that the high purity of cobalt ferrite was realized. Calculation of the cation distribution by using comparison I 220 /I 222 and I 422 /I 222 show that the synthesis and annealing temperature succesfully modify cation occupy the site octahedral and tetrahedral. (paper)

  8. Synthesis of alumina/YAG 20 vol% composite by co-precipitation

    Directory of Open Access Journals (Sweden)

    Radosław Lach

    2011-12-01

    Full Text Available Co-precipitation of alumina/YAG precursor from aluminum and yttrium nitrate solution with ammonium carbonate results in dawsonite. Its crystallographic parameters differ from the compound precipitated with no yttrium additive. It suggests that yttrium ions become incorporated into the dawsonite structure. The DSC/TG and X-ray diffraction measurements show decomposition of dawsonite at elevated temperatures resulting in γ-Al2O3 and then δ- and θ-alumina modifications. Full transformation to α-Al2O3 and YAG occurs at temperatures higher than 1230°C. Starting powder for the sintering experiments was prepared using the coprecipitated precursor calcined at 600°C. Seeding of such powder with 5 wt.% α-Al2O3 results in material of 98% density at 1500°C. Much lower densification show compacts of unseeded powder.

  9. Magnetic behavior of nickel ferrite nanoparticles prepared by co-precipitation route

    International Nuclear Information System (INIS)

    Maaz, K.; Mashiatullah, A.; Javed, T.; Ali, G.; Karim, S.

    2008-01-01

    Magnetic nanoparticles of nickel ferrite (NiFe/sub 2/O/sub 4/) have been synthesized by co-precipitation route using stable ferric and nickel salts with sodium hydroxide as the precipitating agent and oleic acid as the surfactant. X-ray Diffraction (XRD) and Transmission Electron Microscope (TEM) analyses confirmed the formation of single phase nickel ferrite nanoparticles in the range 8-28 nm. The size of the particles was observed to be increasing linearly with increasing annealing temperature of the sample. Typical blocking effects were observed below -225 K for all the prepared samples. The superparamagnetic blocking temperature was found to be continuously increasing with increasing particle sizes that has been attributed to the increased effective anisotropy of the nanoparticles. The saturation moment of all the samples was found much below the bulk value of nickel ferrite that has been attributed to the disordered surface spins of these nanoparticles. (author)

  10. Synthesis and crystal kinetics of cerium oxide nanocrystallites prepared by co-precipitation process

    International Nuclear Information System (INIS)

    Shih, C.J.; Chen, Y.J.; Hon, M.H.

    2010-01-01

    Cerium oxide nanocrystallites were synthesized at a relatively low temperature using cerium nitrate as starting materials in a water solution by a co-precipitation process. Effect of calcination temperature on the crystallite growth of cerium oxide nano-powders was investigated by X-ray diffraction, transmission electron microscopy and electron diffraction. The crystallization temperature of the cerium oxide powders was estimated to be about 273 K by XRD analysis. When calcined from 473 to 1273 K, the crystallization of the face-centered cubic phase was observed by XRD. The crystallite size of the cerium oxide increased from 10.0 to 43.8 nm with calcining temperature increasing from 673 to 1273 K. The activation energy for growth of cerium oxide nanoparticles was found to be 16.0 kJ mol -1 .

  11. Synthesis and crystal kinetics of cerium oxide nanocrystallites prepared by co-precipitation process

    Energy Technology Data Exchange (ETDEWEB)

    Shih, C.J., E-mail: cjshih@kmu.edu.tw [Department of Fragrance and Cosmetics Science, Kaohsiung Medical University, 100 Shi-Chuan 1st Road, Kaohsiung 807, Taiwan (China); Chen, Y.J. [Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Hon, M.H. [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan (China)

    2010-05-15

    Cerium oxide nanocrystallites were synthesized at a relatively low temperature using cerium nitrate as starting materials in a water solution by a co-precipitation process. Effect of calcination temperature on the crystallite growth of cerium oxide nano-powders was investigated by X-ray diffraction, transmission electron microscopy and electron diffraction. The crystallization temperature of the cerium oxide powders was estimated to be about 273 K by XRD analysis. When calcined from 473 to 1273 K, the crystallization of the face-centered cubic phase was observed by XRD. The crystallite size of the cerium oxide increased from 10.0 to 43.8 nm with calcining temperature increasing from 673 to 1273 K. The activation energy for growth of cerium oxide nanoparticles was found to be 16.0 kJ mol{sup -1}.

  12. Co-precipitation and solubility studies of cesium, potassium and sodium tetraphenylborate

    International Nuclear Information System (INIS)

    Peterson, R.A.

    2000-01-01

    This report contains the results from a study requested by High Level Waste on the co-precipitation and solubility of cesium, potassium, and sodium tetraphenylborate. Co-precipitation of cesium (Cs), potassium (K), and sodium (Na) tetraphenylborate (TPB) helps determine the efficiency of reagent usage in the Small Tank Precipitation Process. This process uses NaTPB to remove cesium from waste by means of precipitation. Previous studies by McCabe suggested that if the sodium ion concentration [Na + ] increased the rate at which cesium tetraphenylborate (CsTPB) precipitates also increases. Serkiz also demonstrated that the precipitation of potassium tetraphenylborate (KTPB) in the presence of high [Na + ] (∼5M) appears to produce a mixed solid phase composed of NaTPB and KTPB together in the crystal lattice. In the crystallographic structure of these three tetraphenylborate salts (Cs,K,NaTPB), the tetraphenylborate ion dominates the size of the crystals. Also, note that the three crystals have nearly identical structures with the exception of two additional peaks in the cesium pattern. Given these similarities, TPB precipitation in the presence of Na + , Cs + and K + likely produces an impure isomorphic crystalline mixture of CsTPB, KTPB and NaTPB. The authors speculate that the primary crystalline structure resembles that of KTPB with NaTPB and CsTPB mixed throughout the crystal structure. The precipitation of NaTPB makes some of the anticipated excess tetraphenylborate relatively unavailable for precipitation of cesium. Thus, the amount of excess tetraphenylborate required to completely precipitate all of the potassium and cesium may increase significantly

  13. Nanoscale co-precipitation and mechanical properties of a high-strength low-carbon steel

    International Nuclear Information System (INIS)

    Mulholland, Michael D.; Seidman, David N.

    2011-01-01

    Nanoscale co-precipitation in a novel high-strength low-carbon steel is studied in detail after isothermal aging. Atom-probe tomography is utilized to quantify the co-precipitation of co-located Cu precipitates and M 2 C (M is any combination of Cr, Mo, Fe, or Ti) carbide strengthening precipitates. Coarsening of Cu precipitates is offset by the nucleation and growth of M 2 C carbide precipitate, resulting in the maintenance of a yield strength of 1047 ± 7 MPa (152 ± 1 ksi) for as long as 320 h of aging time at 450 deg. C. Impact energies of 153 J (113 ± 6 ft-lb) and 144 J (106 ± 2 ft-lb) are measured at -30 deg. C and -60 deg. C, respectively. The co-location of Cu and M 2 C carbide precipitates results in non-stationary-state coarsening of the Cu precipitates. Synchrotron-source X-ray diffraction studies reveal that the measured 33% increase in impact toughness after aging for 80 h at 450 deg. C is due to dissolution of cementite, Fe 3 C, which is the source of carbon for the nucleation and growth of M 2 C carbide precipitates. Less than 1 vol.% austenite is observed for aging treatments at temperatures less than 600 deg. C, suggesting that transformation-induced plasticity does not play a significant role in the toughness of specimens aged at temperatures less than 600 deg. C. Aging treatments at temperatures greater than 600 deg. C produce more austenite, in the range 2-7%, but at the expense of yield strength.

  14. Evaluation of the structure and microstructure of NixMg1-xO oxides obtained by co-precipitation

    International Nuclear Information System (INIS)

    Martinez L, G.; Kryshtab, T.; Hesiquio G, M.; Kryvko, A.

    2013-01-01

    Ni x Mg 1-x O oxides were prepared by thermal treatment at temperatures of 400, 600 and 800 C from a hydrotalcite-like precursor obtained by co-precipitation at constant ph. The oxides obtained were characterized by X-ray diffraction methods. From the obtained results we concluded that the oxides calcined at temperatures of 400, and 600 C are unstable that means that there exists the effect of memory and with a time they return to the precursor. Presence of Ni in Mg oxide provides stability of the compounds thermally treated at 800 C. In order to analyze the structure and microstructure, the reflections 111, 200 and 220 were used. The positions of the maxima of the diffraction peaks are shifted with respect to the simulated ones for Mg O and Ni O. This result reveals that in solid solutions studied compressive strains or vacation are present. The parameters of the microstructure (coherent domain size and micro deformations) were evaluated. The coherent domain size was found to be in the range of 8 - 10 nm and the presence of residual strains of micro deformation can be associated with the existence of extended defects. (Author)

  15. Mechanisms of Se(IV) Co-precipitation with Ferrihydrite at Acidic and Alkaline Conditions and Its Behavior during Aging

    DEFF Research Database (Denmark)

    Francisco, Paul Clarence M.; Sato, Tsutomu; Otake, Tsubasa

    2018-01-01

    in nanopore and defect structures. These results demonstrate a potential long-term immobilization pathway for Se(IV) even after phase transformation. This work presents one of the first direct insights on Se(IV) co-precipitation and its behavior in response to iron phase transformations.......Understanding the form of Se(IV) co-precipitated with ferrihydrite and its subsequent behavior during phase transformation is critical to predicting its long-term fate in a range of natural and engineered settings. In this work, Se(IV)-ferrihydrite co-precipitates formed at different pH were......, Se(IV) was removed dominantly as a ferric selenite-like phase intimately associated with ferrihydrite, while at pH 10, it was mostly present as a surface species on ferrihydrite. Similarly, the behavior of Se(IV) and the extent of its retention during phase transformation varied with pH. At pH 5, Se...

  16. Spectroscopic Chemical Analysis Methods and Apparatus

    Science.gov (United States)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor); Bhartia, Rohit (Inventor); Lane, Arthur L. (Inventor)

    2018-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted along with photoluminescence spectroscopy (i.e. fluorescence and/or phosphorescence spectroscopy) to provide high levels of sensitivity and specificity in the same instrument.

  17. VBSCF Methods: Classical Chemical Concepts and Beyond

    NARCIS (Netherlands)

    Rashid, Z.

    2013-01-01

    The aim of this research has been to extend the ab initio Valence Bond Self-Consistent Field (VBSCF) methodology and to apply this method to the electronic structure of molecules. The valence bond method directly deals with the chemical structure of molecules in a pictorial language, which chemists

  18. Lithium recycling and cathode material regeneration from acid leach liquor of spent lithium-ion battery via facile co-extraction and co-precipitation processes.

    Science.gov (United States)

    Yang, Yue; Xu, Shengming; He, Yinghe

    2017-06-01

    A novel process for extracting transition metals, recovering lithium and regenerating cathode materials based on facile co-extraction and co-precipitation processes has been developed. 100% manganese, 99% cobalt and 85% nickel are co-extracted and separated from lithium by D2EHPA in kerosene. Then, Li is recovered from the raffinate as Li 2 CO 3 with the purity of 99.2% by precipitation method. Finally, organic load phase is stripped with 0.5M H 2 SO 4 , and the cathode material LiNi 1/3 Co 1/3 Mn 1/3 O 2 is directly regenerated from stripping liquor without separating metal individually by co-precipitation method. The regenerative cathode material LiNi 1/3 Co 1/3 Mn 1/3 O 2 is miro spherical morphology without any impurities, which can meet with LiNi 1/3 Co 1/3 Mn 1/3 O 2 production standard of China and exhibits good electrochemical performance. Moreover, a waste battery management model is introduced to guarantee the material supply for spent battery recycling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Co-precipitation of plutonium(IV) and americium(III) from nitric acid-oxalic acid solutions with bismuth oxalate

    International Nuclear Information System (INIS)

    Pius, I.C.; Noronha, D.M.; Chaudhury, Satyajeet

    2017-01-01

    Co-precipitation of plutonium and americium from nitric acid-oxalic acid solutions with bismuth oxalate has been investigated for the removal of these long lived α-active nuclides from waste solutions. Effect of concentration of bismuth and oxalic acid on the co-precipitation of Pu(IV) from 3 M HNO_3 has been investigated. Similar experiments were also carried out from 3.75 M HNO_3 on co-precipitation of Am(III) to optimize the conditions of precipitation. Strong co-precipitation of Pu(IV) and Am(III) with bismuth oxalate indicate feasibility of treatment of plutonium and americium bearing waste solutions. (author)

  20. Bulk tungsten with uniformly dispersed La2O3 nanoparticles sintered from co-precipitated La2O3/W nanoparticles

    International Nuclear Information System (INIS)

    Xia, Min; Yan, Qingzhi; Xu, Lei; Guo, Hongyan; Zhu, Lingxu; Ge, Changchun

    2013-01-01

    Graphical abstract: La 2 O 3 doped La 2 O 3 /W nanoparticles with high-purity and uniform diameters have been fabricated by a co-precipitation process. The as-prepared nanoparticles demonstrate the potential of this method for fabricating uniformly structured bulk tungsten materials. -- Abstract: We report the preparation of 1 wt% La 2 O 3 doped La 2 O 3 /W nanoparticles by a co-precipitation process, using ammonium metatungstate (AMT) and lanthanum nitrate as raw materials. The as-synthesized nanoparticles were characterized by X-ray diffraction, Filed-emission scanning electron microscopy, Transmission electron microscopy (TEM), energy dispersive spectroscopy. Our results reveal that the as-synthesized particles possess uniform diameters of about 70 nm, and are of high purity. The TEM and the corresponding fast Fourier transform images demonstrated that La 2 O 3 precipitates were homogeneously doped into the nano-sized tungsten particles. When the as-synthesized nanoparticles were sintered by spark plasma sintering, the electron backscatter diffraction images of the bulk material reveal that La 2 O 3 nanoparticles were homogenously distributed in both the tungsten grains and the grain boundaries, and the sample exhibit a narrow micro-hardness distribution

  1. Chemical decontaminating method for stainless steel

    International Nuclear Information System (INIS)

    Onuma, Tsutomu; Akimoto, Hidetoshi.

    1990-01-01

    Radioactive metal wastes comprising passivated stainless steels are chemically decontaminated to such a radioactivity level as that of usual wastes. The present invention for chemically decontaminating stainless steels comprises a first step of immersing decontaminates into a sulfuric acid solution and a second step of immersing them into an aqueous solution prepared by adding oxidative metal salts to sulfuric acid, in which a portion of the surface of stainless steels as decontaminates are chemically ground to partially expose substrate materials and then the above-mentioned decontamination steps are applied. More than 90% of radioactive materials are removed in this method by the dissolution of the exposed substrate materials and peeling of cruds secured to the surface of the materials upon dissolution. This method is applicable to decontamination of articles having complicate shapes, can reduce the amount of secondary wastes after decontamination and also remarkably shorten the time required for decontamination. (T.M.)

  2. Chemical treatment of wastewaters produced during separation of iodine 131; Traitement chimique des eaux residuaires provenant de la preparation d'iode-131

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, P.; Marcaillou, J.; Amavis, R.

    1959-06-22

    The authors report the development and assessment of a chemical treatment of radioactive wastewaters by co-precipitation. This treatment is aimed at replacing a treatment based on the use of calcium phosphate which proved to be insufficient for wastewaters resulting from the production of iodine 131. After a presentation of the characteristics of the effluents to be processed, the authors report co-precipitation tests performed on effluents before release in the storage vessel (by using barium hydroxide, lead acetate or lead sulfate) and on effluents diluted on the storage vessel. They show that a co-precipitation method based on the use of lead sulfate in alkaline medium gives the best results.

  3. Heavy metal immobilization via microbially induced carbonate precipitation and co-precipitation

    Science.gov (United States)

    Lauchnor, E. G.; Stoick, E.

    2017-12-01

    Microbially induced CaCO3 precipitation (MICP) has been successfully used in applications such as porous media consolidation and sealing of leakage pathways in the subsurface, and it has the potential to be used for remediation of metal and radionuclide contaminants in surface and groundwater. In this work, MICP is investigated for removal of dissolved heavy metals from contaminated mine discharge water via co-precipitation in CaCO3 or formation of other metal carbonates. The bacterially catalyzed hydrolysis of urea produces inorganic carbon and ammonium and increases pH and the saturation index of carbonate minerals to promote precipitation of CaCO3. Other heavy metal cations can be co-precipitated in CaCO3 as impurities or by replacing Ca2+ in the crystal lattice. We performed laboratory batch experiments of MICP in alkaline mine drainage sampled from an abandoned mine site in Montana and containing a mixture of heavy metals at near neutral pH. Both a model bacterium, Sporosarcina pasteurii, and a ureolytic bacterium isolated from sediments on the mine site were used to promote MICP. Removal of dissolved metals from the aqueous phase was determined via inductively coupled plasma mass spectrometry and resulting precipitates were analyzed via electron microscopy and energy dispersive x-ray spectroscopy (EDX). Both S. pasteurii and the native ureolytic isolate demonstrated ureolysis, increased the pH and promoted precipitation of CaCO3 in batch tests. MICP by the native bacterium reduced concentrations of the heavy metals zinc, copper, cadmium, nickel and manganese in the water. S. pasteurii was also able to promote MICP, but with less removal of dissolved metals. Analysis of precipitates revealed calcium carbonate and phosphate minerals were likely present. The native isolate is undergoing identification via 16S DNA sequencing. Ongoing work will evaluate biofilm formation and MICP by the isolate in continuous flow, gravel-filled laboratory columns. This research

  4. Synthesis of composite nanoparticles using co-precipitation of a magnetic iron-oxide shell onto core nanoparticles

    International Nuclear Information System (INIS)

    Primc, Darinka; Belec, Blaž; Makovec, Darko

    2016-01-01

    Composite nanoparticles can be synthesized by coating a shell made of one material onto core nanoparticles made of another material. Here we report on a novel method for coating a magnetic iron oxide onto the surface of core nanoparticles in an aqueous suspension. The method is based on the heterogeneous nucleation of an initial product of Fe"3"+/Fe"2"+ co-precipitation on the core nanoparticles. The close control of the supersaturation of the precipitating species required for an exclusively heterogeneous nucleation and the growth of the shell were achieved by immobilizing the reactive Fe"3"+ ions in a nitrate complex with urea ([Fe((CO(NH_2)_2)_6](NO_3)_3) and by using solid Mg(OH)_2 as the precipitating reagent. The slow thermal decomposition of the complex at 60 °C homogeneously releases the reactive Fe"3"+ ions into the suspension of the core nanoparticles. The key stage of the process is the thermal hydrolysis of the released Fe"3"+ ions prior to the addition of Mg(OH)_2. The thermal hydrolysis results in the formation of γ-FeOOH, exclusively at the surfaces of the core nanoparticles. After the addition of the solid hydroxide Mg(OH)_2, the pH increases and at pH ~ 5.7 the Fe"2"+ precipitates and reacts with the γ-FeOOH to form magnetic iron oxide with a spinel structure (spinel ferrite) at the surfaces of the core nanoparticles. The proposed low-temperature method for the synthesis of composite nanoparticles is capable of forming well-defined interfaces between the two components, important for the coupling of the different properties. The procedure is environmentally friendly, inexpensive, and appropriate for scaling up to mass production.Graphical abstract

  5. Photoluminescence study of Mn doped ZnS nanoparticles prepared by co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, M. P., E-mail: vishwadeshpande@yahoo.co.in; Patel, Kamakshi, E-mail: kamphysics@gmail.com; Gujarati, Vivek P.; Chaki, S. H. [Department of Physics, Sardar Patel University, VallabhVidyanagr-388120,Anand, Gujarat, India. (India)

    2016-05-06

    ZnS nanoparticles co-doped with different concentration (5,10,15%) of Mn were synthesized using polyvinylpyrrolidone (PVP) as a capping agent under microwave irradiation. We confirmed doping of Mn in the host ZnS by EDAX whereas powder X-ray diffractogram showed the cubic zinc blende structure of all these samples. TEM images did showed agglomeration of particles and SAED pattern obtained indicated polycrystalline nature. From SAED pattern we calculated lattice parameter of the samples which have close resemblance from that obtained from XRD pattern. The band gap values of pure and doped ZnS nanoparticles were calculated from UV-Visible absorption spectra. ZnS itself is a luminescence material but when we dope it with transition metal ion such as Mn, Co, and Cu they exhibits strong and intense luminescence in the particular region. The photoluminescence spectra of pure ZnS nanoparticles showed an emission at 421 and 485nm which is blue emission which was originated from the defect sites of ZnS itself and also sulfur deficiency and when doped with Mn{sup 2+} an extra peak with high intensity was observed at 530nm which is nearly yellow-orange emission which isrelated to the presence of Mn in the host lattice.

  6. Advances on reverse strike co-precipitation method of uranium-plutonium mixed solutions

    International Nuclear Information System (INIS)

    Menghini, Jorge E.; Marchi, Daniel E.; Orosco, Edgardo H.; Greco, Luis

    2000-01-01

    The reverse strike coprecipitation of uranium-plutonium mixed solutions, is an alternative way to obtain MOX fuel pellets. Previous tests, carried out in the Alpha Laboratory, included a stabilization step for transforming 100 % of plutonium into Pu +4 . Therefore, the plutonium precipitated as Pu(OH) 4 . In this second step, the stabilization process was suppressed. In this way, besides Pu(OH) 4 , a part of the precipitated is composed of a mixed salt: AD(U,Pu). Then, a homogeneous solid solution is formed in the early steps of the process. The powders showed higher tap density, better performance during the pressing and lower sinterability than the powders obtained in previous tests. The advantageous and disadvantageous effects of the stabilization step are analyzed in this paper. (author)

  7. On preparation of nanocrystalline chromites by co-precipitation andautocombustion methods

    Czech Academy of Sciences Publication Activity Database

    Matulková, Irena; Holec, Petr; Pacáková, Barbara; Kubíčková, Simona; Mantlíková, Alice; Plocek, Jiří; Němec, I.; Nižňanský, D.; Vejpravová, Jana

    2015-01-01

    Roč. 195, May (2015), s. 66-73 ISSN 0921-5107 R&D Projects: GA ČR GAP108/10/1250 Institutional support: RVO:68378271 ; RVO:61388980 Keywords : transition metal chromites * nanocrystalline particles * microstructural analysis * vibrational spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.331, year: 2015

  8. Structural Characterization of Polymer-Clay Nanocomposites Prepared by Co-Precipitation Using EPR Techniques

    Directory of Open Access Journals (Sweden)

    Udo Kielmann

    2014-02-01

    Full Text Available Polymer-clay nanocomposites (PCNCs containing either a rubber or an acrylate polymer were prepared by drying or co-precipitating polymer latex and nanolayered clay (synthetic and natural suspensions. The interface between the polymer and the clay nanoparticles was studied by electron paramagnetic resonance (EPR techniques by selectively addressing spin probes either to the surfactant layer (labeled stearic acid or the clay surface (labeled catamine. Continuous-wave (CW EPR studies of the surfactant dynamics allow to define a transition temperature T* which was tentatively assigned to the order-disorder transition of the surfactant layer. CW EPR studies of PCNC showed that completely exfoliated nanoparticles coexist with agglomerates. HYSCORE spectroscopy in PCNCs showed couplings within the probe −assigned with DFT computations− and couplings with nuclei of the environment, 1H and 23Na for the surfactant layer probe, and 29Si, 7Li, 19F and 23Na for the clay surface probe. Analysis of these couplings indicates that the integrity of the surfactant layer is conserved and that there are sizeable ionic regions containing sodium ions directly beyond the surfactant layer. Simulations of the very weak couplings demonstrated that the HYSCORE spectra are sensitive to the composition of the clay and whether or not clay platelets stack.

  9. Neptunium sorption and co-precipitation of strontium in simulated DWPF salt solution

    International Nuclear Information System (INIS)

    McIntyre, P.F.; Orebaugh, E.G.; King, C.M.

    1988-01-01

    Batch experiments performed using crushed slag saltstone (∼40 mesh) removed >80% of 237 Np from simulated Defense Waste Processing Facility (DWPF) salt solution. The concentration of 237 Np (110 pCi/ml) used was 1000x greater than levels in actual DWPF solutions. Neptunium-239 was used as a tracer and was formed by neutron activation of uranyl nitrate. Results showed that small amounts of crushed saltstone (as little as 0.05 grams), removed >80% of neptunium from 15 ml of simulated DWPF solution after several hours equilibration. The neptunium is sorbed on insoluble carbonates formed in and on the saltstone matrix. Further testing showed that addition of 0.01 and 0.10 ml of 1 molar Ca +2 (ie. Ca (NO 3 ) 2 , CaCl 2 ) into 15 ml of simulated DWPF solution yielded a white carbonate precipitate which also removed >80% of the neptunium after 1 hour equilibration. Further experiments were performed to determine the effectiveness of this procedure to co-precipitate strontium

  10. Uranium (III)-Plutonium (III) co-precipitation in molten chloride

    Science.gov (United States)

    Vigier, Jean-François; Laplace, Annabelle; Renard, Catherine; Miguirditchian, Manuel; Abraham, Francis

    2018-02-01

    Co-management of the actinides in an integrated closed fuel cycle by a pyrochemical process is studied at the laboratory scale in France in the CEA-ATALANTE facility. In this context the co-precipitation of U(III) and Pu(III) by wet argon sparging in LiCl-CaCl2 (30-70 mol%) molten salt at 705 °C is studied. Pu(III) is prepared in situ in the molten salt by carbochlorination of PuO2 and U(III) is then introduced as UCl3 after chlorine purge by argon to avoid any oxidation of uranium up to U(VI) by Cl2. The oxide conversion yield through wet argon sparging is quantitative. However, the preferential oxidation of U(III) in comparison to Pu(III) is responsible for a successive conversion of the two actinides, giving a mixture of UO2 and PuO2 oxides. Surprisingly, the conversion of sole Pu(III) in the same conditions leads to a mixture of PuO2 and PuOCl, characteristic of a partial oxidation of Pu(III) to Pu(IV). This is in contrast with coconversion of U(III)-Pu(III) mixtures but in agreement with the conversion of Ce(III).

  11. Synthesis and magnetic characterization of nickel ferrite nanoparticles prepared by co-precipitation route

    Science.gov (United States)

    Maaz, K.; Karim, S.; Mumtaz, A.; Hasanain, S. K.; Liu, J.; Duan, J. L.

    2009-06-01

    Magnetic nanoparticles of nickel ferrite (NiFe 2O 4) have been synthesized by co-precipitation route using stable ferric and nickel salts with sodium hydroxide as the precipitating agent and oleic acid as the surfactant. X-ray diffraction (XRD) and transmission electron microscope (TEM) analyses confirmed the formation of single-phase nickel ferrite nanoparticles in the range 8-28 nm depending upon the annealing temperature of the samples during the synthesis. The size of the particles ( d) was observed to be increasing linearly with annealing temperature of the sample while the coercivity with particle size goes through a maximum, peaking at ˜11 nm and then decreases for larger particles. Typical blocking effects were observed below ˜225 K for all the prepared samples. The superparamagnetic blocking temperature ( T B) was found to be increasing with increasing particle size that has been attributed to the increased effective anisotropy energy of the nanoparticles. The saturation moment of all the samples was found much below the bulk value of nickel ferrite that has been attributed to the disordered surface spins or dead/inert layer in these nanoparticles.

  12. Irregular distribution of metal ions in ferrites prepared by co-precipitation technique structure analysis of Mn-Zn ferrite using extended X-ray absorption fine structure

    International Nuclear Information System (INIS)

    Jeyadevan, B.; Tohji, K.; Nakatsuka, K.; Narayanasamy, A.

    2000-01-01

    The tetrahedral/octahedral site occupancy of non-magnetic zinc ion, added to maximize the net magnetic moment of mixed ferrites has been found to depend on the method of preparation. In this paper, we qualitatively analyze the metal ion distribution in Mn-Zn ferrite particles prepared by co-precipitation and ceramic methods using extended X-ray absorption fine structure (EXAFS) technique. The results suggest that the differences observed in the magnetic properties of the samples prepared by different methods are not only due to the difference in particle size but also due to the difference in cation distribution. The difference in cation distributions between ferrites of similar composition prepared differently has been found to depend on the crystal field stability energies of the metal ion of interest and associated cations

  13. Lithium-Rich Nanoscale Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 Cathode Material Prepared by Co-Precipitation Combined Freeze Drying (CP-FD) for Lithium-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Ying; Li, Yu; Wu, Chuan; Lu, Jun; Li, Hui; Liu, Zhaolin; Zhong, Yunxia; Chen, Shi; Zhang, Cunzhong; Amine, Khalil; Wu, Feng

    2015-07-14

    Nanoscale Li-rich Li1.2Mn0.54Ni0.13Co0.13O2 material is synthesized by a co-precipitation combined freeze drying (CP-FD) method, and compared with a conventional co-precipitation method combined vacuum drying (CP-VD). With the combination of X-ray diffraction (XRD) and scanning electron microscopy (SEM), it is found that the sample from CP-FD method consists of a pure phase with good crystallinity and small, homogenous particles (100-300 nm) with uniform particle size distribution. Inductively coupled plasma spectroscopy (ICP) shows that the sample has a stoichiometric ratio of n((Li)): n((Mn)): n((Ni)): n((Co))=9: 4: 1: 1; and its Brunauer-Emmett-Teller (BET) specific surface area is 5.749 m(2)g(-1). This sample achieves excellent electrochemical properties: its initial discharge capacities are 298.9 mAhg(-1) at 0.1C (20 mAg(-1)), 246.1 mAhg(-1) at 0.5C, 215.8 mAhg(-1) at 1C, and 154.2 mAhg(-1) at 5C (5C charge and 5C discharge), as well as good cycling performance. In addition, the Li+ chemical diffusion coefficient of Li1.2Mn0.54Ni0.13Co0.13O2 material prepared by the CP-FD method is 4.59 x 10(-11) cm(2) s(-1), which is higher than that of the Li1.2Mn0.54Ni0.13Co0.13O2 material prepared by CP-VD. This phenomenon illustrates the potential for Li1.2Mn0.54Ni0.13Co0.13O2 with good rate performance synthesized by CP-FD method.

  14. Arsenic Removal from Groundwater by Solar Driven Inline-Electrolytic Induced Co-Precipitation and Filtration—A Long Term Field Test Conducted in West Bengal

    Science.gov (United States)

    Malakar, Pradyut; Jana, Bana Bihari; Benz, Florian; Goldmaier, Alexander; Feistel, Ulrike; Jana, Joydev; Lahiri, Susmita; Alvarez, Juan Antonio

    2017-01-01

    Arsenic contamination in drinking water resources is of major concern in the Ganga delta plains of West Bengal in India and Bangladesh. Here, several laboratory and field studies on arsenic removal from drinking water resources were conducted in the past and the application of strong-oxidant-induced co-precipitation of arsenic on iron hydroxides is still considered as the most promising mechanism. This paper suggests an autonomous, solar driven arsenic removal setting and presents the findings of a long term field test conducted in West Bengal. The system applies an inline-electrolytic cell for in situ chlorine production using the natural chloride content of the water and by that substituting the external dosing of strong oxidants. Co-precipitation of As(V) occurs on freshly formed iron hydroxide, which is removed by Manganese Greensand Plus® filtration. The test was conducted for ten months under changing source water conditions considering arsenic (187 ± 45 µg/L), iron (5.5 ± 0.8 mg/L), manganese (1.5 ± 0.4 mg/L), phosphate (2.4 ± 1.3 mg/L) and ammonium (1.4 ± 0.5 mg/L) concentrations. Depending on the system setting removal rates of 94% for arsenic (10 ± 4 µg/L), >99% for iron (0.03 ± 0.03 mg/L), 96% for manganese (0.06 ± 0.05 mg/L), 72% for phosphate (0.7 ± 0.3 mg/L) and 84% for ammonium (0.18 ± 0.12 mg/L) were achieved—without the addition of any chemicals/adsorbents. Loading densities of arsenic on iron hydroxides averaged to 31 µgAs/mgFe. As the test was performed under field conditions and the here proposed removal mechanisms work fully autonomously, it poses a technically feasible treatment alternative, especially for rural areas. PMID:28974053

  15. Arsenic Removal from Groundwater by Solar Driven Inline-Electrolytic Induced Co-Precipitation and Filtration-A Long Term Field Test Conducted in West Bengal.

    Science.gov (United States)

    Otter, Philipp; Malakar, Pradyut; Jana, Bana Bihari; Grischek, Thomas; Benz, Florian; Goldmaier, Alexander; Feistel, Ulrike; Jana, Joydev; Lahiri, Susmita; Alvarez, Juan Antonio

    2017-10-02

    Arsenic contamination in drinking water resources is of major concern in the Ganga delta plains of West Bengal in India and Bangladesh. Here, several laboratory and field studies on arsenic removal from drinking water resources were conducted in the past and the application of strong-oxidant-induced co-precipitation of arsenic on iron hydroxides is still considered as the most promising mechanism. This paper suggests an autonomous, solar driven arsenic removal setting and presents the findings of a long term field test conducted in West Bengal. The system applies an inline-electrolytic cell for in situ chlorine production using the natural chloride content of the water and by that substituting the external dosing of strong oxidants. Co-precipitation of As(V) occurs on freshly formed iron hydroxide, which is removed by Manganese Greensand Plus ® filtration. The test was conducted for ten months under changing source water conditions considering arsenic (187 ± 45 µg/L), iron (5.5 ± 0.8 mg/L), manganese (1.5 ± 0.4 mg/L), phosphate (2.4 ± 1.3 mg/L) and ammonium (1.4 ± 0.5 mg/L) concentrations. Depending on the system setting removal rates of 94% for arsenic (10 ± 4 µg/L), >99% for iron (0.03 ± 0.03 mg/L), 96% for manganese (0.06 ± 0.05 mg/L), 72% for phosphate (0.7 ± 0.3 mg/L) and 84% for ammonium (0.18 ± 0.12 mg/L) were achieved-without the addition of any chemicals/adsorbents. Loading densities of arsenic on iron hydroxides averaged to 31 µgAs/mgFe. As the test was performed under field conditions and the here proposed removal mechanisms work fully autonomously, it poses a technically feasible treatment alternative, especially for rural areas.

  16. Sequestration of uranium on fabricated aluminum co-precipitated with goethite (Al-FeOOH)

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yubing; Yang, Shubin; Wang, Qi; Wang, Xiangke [Chinese Academy of Science, Hefei (China). Key Laboratory of Novel Thin Film Solar Cells; Alsaedi, Ahmad [King Abdulaziz Univ., Jeddah (Saudi Arabia). Nonlinear Analysis and Applied Mathematics (NAAM) Research Group

    2014-11-01

    Aluminum co-precipitated with goethites (Al-FeOOHs) are ubiquitous within (sub)-surface environments, which are considered one of the most important sinks for radionuclide pollution management. Accordingly, various mole ratios Al-FeOOH were synthesized and characterized by XRD, FT-IR, TEM, specific surface area and potentiometric acid-base titration. According to XRD and TEM images, the morphology of Al-FeOOH was transformed from acicular-like goethite to cotton-like gibbsite with increasing Al content. The adsorption and sequential desorption of U(VI) on Al-FeOOHs were conducted by batch techniques under N{sub 2} conditions. The batch adsorption results showed that the adsorption of U(VI) on Al-FeOOHs slightly increased at pH < 4.0, then the significant increase of U(VI) adsorption was observed at pH from 4.0 to 7.0, whereas the suppressed adsorption at pH > 8.0 was due to the electrostatic repulsion between negative charge surface and negative carbonato-complexes. The adsorption of U(VI) on Al-FeOOHs was independent of ionic strength at pH > 5.0, indicating that the inner-sphere surface complexation predominated their adsorption behaviors, whereas U(VI) adsorption on Al-FeOOH could be the outer-sphere surface/cation exchange reaction. The sequential extraction texts showed that the desorption of U(VI) from Al-FeOOHs decreased with increasing Al content. These findings highlighted the effect of Al content on the sequestration and immobilization of U(VI) onto Al-FeOOHs from (sub)-surface environments in pollution management.

  17. Parametric study on co-precipitation of U/Th in MOX fuel of AHWR

    International Nuclear Information System (INIS)

    Tiwari, S.K.; Swaroopa Lakshmi, Y.; Nath, Baidurjya; Setty, D.S.; Kalyana Krishnan, G.; Saibaba, N.

    2015-01-01

    During manufacturing of Mixed Oxide Fuel (MOX) pellets for Advance Heavy Water Reactor (AHWR-LEU), around 30% rejected MOX pellets are generated in every cycle. These rejected MOX pellets are dissolved in nitric acid for recovery of U/Th. The recovered U/Th is recycled for production of MOX pellets. MOX pellets of varying compositions are used in AHWR fuel. Dissolution of MOX pellets in nitric acid is a challenging task because of its low surface area and longer dissolution times. High normal nitric acid is used in order to increase rate of dissolution, which in turn results in generation of high free acidity solution which influences the precipitation characteristics of Uranium (VI) by oxalic acid. Oxalic acid precipitation helps in generation of nitric acid which can be used for dissolution there by effectively facilitating nil effluent generation. Precipitation by oxalic acid unlike ammonia has advantage of zero liquid effluent discharge by complete recycle of oxalate filtrate to dissolution section. In the present work, the effect of various parameters like free acidity, residence time, concentration of oxalic acid, initial concentration of uranium and thorium etc. on the precipitation of U(VI) and Th(IV) in nitrate media by oxalic acid was carried out. The precipitated powder was subjected to various morphological evaluations like particle size etc. Study of various parameters on the co-precipitation of uranium and thorium by oxalic acid was carried out. It was observed that complete precipitation (> 99.9%) of thorium as oxalate does not depend on free acidity range (1- 6 N). Excess oxalic acid is not required for complete precipitation of thorium oxalate. The precipitation of uranyl oxalate varies with initial free acidity of solution. Uranyl oxalate precipitation does not take place at and above 5 N of free acidity

  18. Chemically reducing decontamination method for radioactive metal

    International Nuclear Information System (INIS)

    Tanaka, Akio; Onuma, Tsutomu; Sato, Hitoshi.

    1994-01-01

    The present invention concerns a decontamination method of electrolytically reducing radioactive metal wastes, then chemically dissolving the surface thereof with a strong acid decontaminating solution. This method utilizes dissolving characteristics of stainless steels in the strong acid solution. That is, in the electrolytic reduction operation, a portion of the metal wastes is brought into contact with a strong acid decontaminating solution, and voltage and current are applied to the portion and keep it for a long period of time so as to make the potential of the immersed portion of the metal wastes to an active soluble region. Then, the electrolytic reduction operation is stopped, and the metal wastes are entirely immersed in the decontaminating solution to decontaminate by chemical dissolution. As the decontaminating solution, strong acid such as sulfuric acid, nitric acid is used. Since DC current power source capacity required for causing reaction in the active soluble region can be decreased, the decontamination facility can be minimized and simplified, and necessary electric power can be saved even upon decontamination of radioactive metal wastes made of stainless steels and having a great area. Further, chemical dissolution can be conducted without adding an expensive oxidizing agent. (N.H.)

  19. Chemical analysis by nuclear methods. v. 2

    International Nuclear Information System (INIS)

    Alfassi, Z.B.

    1998-01-01

    'Chemical analysis by Nuclear Methods' is an effort of some renowned authors in field of nuclear chemistry and radiochemistry which is compiled by Alfassi, Z.B. and translated into Farsi version collected in two volumes. The second volume consists of the following chapters: Detecting ion recoil scattering and elastic scattering are dealt in the eleventh chapter, the twelfth chapter is devoted to nuclear reaction analysis using charged particles, X-ray emission is discussed at thirteenth chapter, the fourteenth chapter is about using ion microprobes, X-ray fluorescence analysis is discussed in the fifteenth chapter, alpha, beta and gamma ray scattering in chemical analysis are dealt in chapter sixteen, Moessbauer spectroscopy and positron annihilation are discussed in chapter seventeen and eighteen; The last two chapters are about isotope dilution analysis and radioimmunoassay

  20. Structural, electric and dielectric properties of Eu-doped SrBi2Nb2O9 ceramics obtained by co-precipitation route

    Directory of Open Access Journals (Sweden)

    Mohamed Afqir

    2018-03-01

    Full Text Available This paper presents a study of the structure and dielectric properties of Eu-doped SrBi2Nb2O9 ceramics prepared by co-precipitation route and sintered at 850 °C. The materials were examined using XRD and FTIR methods. XRD data indicated the formation of well crystallized structure of the pure and doped SrBi2Nb2O9, without the presence of undesirable phases. FTIR spectra do not bring a significant shift in the band positions. Moreover, the AC conductivity, dielectric constant and dielectric loss of the ceramics were determined through the frequency range [50 kHz–1 MHz]. In particular, the dielectric constant (ε′ and dielectric losses (tan δ of the SrBi2Nb2O9 and SrBi1.6Eu0.4Nb2O9 ceramics were measured as a function of temperature at various frequencies.

  1. Method of chemical decontamination of stainless steel

    International Nuclear Information System (INIS)

    Onuma, Tsutomu; Akimoto, Hidetoshi.

    1989-01-01

    The present invention concerns a decontamination method of chemically decontaminating radioactive metal wastes of passivated stainless steels to a radioactivity level identical with usual wastes, in which the amount of oxidizable metal salts used is decreased. Metal wastes of stainless steels contaminated at their surface with radioactive materials are immersed in a sulfuric acid solution. In this case, a voltage is applied for a certain period of time so that the potential of the stainless steels comes to an active region. Then, oxidizable metal salt (tetravalent cerium) is added into the sulfuric acid solution. According to this method, since most of radioactive materials are removed in the immersing step to the sulfuric acid solution, the amount of the tetravalent cerium used is as less as 1/700 and the decontamination time is as short as 1/4 as compared with those in the conventional method. (K.M.)

  2. Revisiting Pocos de Caldas. Application of the co-precipitation approach to establish realistic solubility limits for performance assessment

    International Nuclear Information System (INIS)

    Bruno, J.; Duro, L.; Jordana, S.; Cera, E.

    1996-02-01

    Solubility limits constitute a critical parameter for the determination of the mobility of radionuclides in the near field and the geosphere, and consequently for the performance assessment of nuclear waste repositories. Mounting evidence from natural system studies indicate that trace elements, and consequently radionuclides, are associated to the dynamic cycling of major geochemical components. We have recently developed a thermodynamic approach to take into consideration the co-precipitation and co-dissolution processes that mainly control this linkage. The approach has been tested in various natural system studies with encouraging results. The Pocos de Caldas natural analogue was one of the sites where a full testing of our predictive geochemical modelling capabilities were done during the analogue project. We have revisited the Pocos de Caldas data and expanded the trace element solubility calculations by considering the documented trace metal/major ion interactions. This has been done by using the co-precipitation/co-dissolution approach. The outcome is as follows: A satisfactory modelling of the behaviour of U, Zn and REEs is achieved by assuming co-precipitation with ferrihydrite. Strontium concentrations are apparently controlled by its co-dissolution from Sr-rich fluorites. From the performance assessment point of view, the present work indicates that calculated solubility limits using the co-precipitation approach are in close agreement with the actual trace element concentrations. Furthermore, the calculated radionuclide concentrations are 2-4 orders of magnitude lower than conservative solubility limits calculated by assuming equilibrium with individual trace element phases. 34 refs, 18 figs, 13 tabs

  3. Revisiting Pocos de Caldas. Application of the co-precipitation approach to establish realistic solubility limits for performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, J.; Duro, L.; Jordana, S.; Cera, E. [QuantiSci, Barcelona (Spain)

    1996-02-01

    Solubility limits constitute a critical parameter for the determination of the mobility of radionuclides in the near field and the geosphere, and consequently for the performance assessment of nuclear waste repositories. Mounting evidence from natural system studies indicate that trace elements, and consequently radionuclides, are associated to the dynamic cycling of major geochemical components. We have recently developed a thermodynamic approach to take into consideration the co-precipitation and co-dissolution processes that mainly control this linkage. The approach has been tested in various natural system studies with encouraging results. The Pocos de Caldas natural analogue was one of the sites where a full testing of our predictive geochemical modelling capabilities were done during the analogue project. We have revisited the Pocos de Caldas data and expanded the trace element solubility calculations by considering the documented trace metal/major ion interactions. This has been done by using the co-precipitation/co-dissolution approach. The outcome is as follows: A satisfactory modelling of the behaviour of U, Zn and REEs is achieved by assuming co-precipitation with ferrihydrite. Strontium concentrations are apparently controlled by its co-dissolution from Sr-rich fluorites. From the performance assessment point of view, the present work indicates that calculated solubility limits using the co-precipitation approach are in close agreement with the actual trace element concentrations. Furthermore, the calculated radionuclide concentrations are 2-4 orders of magnitude lower than conservative solubility limits calculated by assuming equilibrium with individual trace element phases. 34 refs, 18 figs, 13 tabs.

  4. Chemical deposition methods using supercritical fluid solutions

    Science.gov (United States)

    Sievers, Robert E.; Hansen, Brian N.

    1990-01-01

    A method for depositing a film of a desired material on a substrate comprises dissolving at least one reagent in a supercritical fluid comprising at least one solvent. Either the reagent is capable of reacting with or is a precursor of a compound capable of reacting with the solvent to form the desired product, or at least one additional reagent is included in the supercritical solution and is capable of reacting with or is a precursor of a compound capable of reacting with the first reagent or with a compound derived from the first reagent to form the desired material. The supercritical solution is expanded to produce a vapor or aerosol and a chemical reaction is induced in the vapor or aerosol so that a film of the desired material resulting from the chemical reaction is deposited on the substrate surface. In an alternate embodiment, the supercritical solution containing at least one reagent is expanded to produce a vapor or aerosol which is then mixed with a gas containing at least one additional reagent. A chemical reaction is induced in the resulting mixture so that a film of the desired material is deposited.

  5. Mercury (II) reduction and co-precipitation of metallic mercury on hydrous ferric oxide in contaminated groundwater.

    Science.gov (United States)

    Richard, Jan-Helge; Bischoff, Cornelia; Ahrens, Christian G M; Biester, Harald

    2016-01-01

    Mercury (Hg) speciation and sorption analyses in contaminated aquifers are useful for understanding transformation, retention, and mobility of Hg in groundwater. In most aquifers hydrous ferric oxides (HFOs) are among the most important sorbents for trace metals; however, their role in sorption or mobilization of Hg in aquifers has been rarely analyzed. In this study, we investigated Hg chemistry and Hg sorption to HFO under changing redox conditions in a highly HgCl2-contaminated aquifer (up to 870μgL(-1) Hg). Results from aqueous and solid phase Hg measurements were compared to modeled (PHREEQC) data. Speciation analyses of dissolved mercury indicated that Hg(II) forms were reduced to Hg(0) under anoxic conditions, and adsorbed to or co-precipitated with HFO. Solid phase Hg thermo-desorption measurements revealed that between 55 and 93% of Hg bound to HFO was elemental Hg (Hg(0)). Hg concentrations in precipitates reached more than 4 weight %, up to 7000 times higher than predicted by geochemical models that do not consider unspecific sorption to and co-precipitation of elemental Hg with HFO. The observed process of Hg(II) reduction and Hg(0) formation, and its retention and co-precipitation by HFO is thought to be crucial in HgCl2-contaminated aquifers with variable redox-conditions regarding the related decrease in Hg solubility (factor of ~10(6)), and retention of Hg in the aquifer. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Chemical decontamination method for radioactive metal waste

    International Nuclear Information System (INIS)

    Tanaka, Akio; Onuma, Tsutomu; Yamazaki, Sei; Miura, Haruki.

    1993-01-01

    The present invention provides a chemical decontamination method for radioactive metal wastes, which are generated from radioactive material handling facilities and the surfaces of which are contaminated by radioactive materials. That is, it has a feature of applying acid dissolution simultaneously with mechanical grinding. The radioactive metal wastes are contained in a vessel such as a barrel together with abrasives in a sulfuric acid solution and rotated at several tens rotation per minute. By such procedures for the radioactive metal wastes, (1) cruds and passive membranes are mechanically removed, (2) exposed mother metal materials are uniformly brought into contact with sulfuric acid and further (3) the mother metal materials dissolve the cruds and the passive membranes also chemically by a reducing dissolution (so-called local cell effect). According to the method of the present invention, stainless steel metal wastes having cruds and passive membranes can rapidly and efficiently be decontaminated to a radiation level equal with that of ordinary wastes. (I.S.)

  7. Chemical Compounds and Extraction Methods of "Maollahm".

    Science.gov (United States)

    Sadeghpoor, Omid; Dayeni, Manijeh; Razi, Samane

    2016-05-01

    Maollahm or meat juice, a by-product of meat, is a traditional remedy in Persian medicine. This product was used as a nourishment or treatment substance for sick people. According to the ancient Persian medicine, animal meat has more affinity with the human body and the body easily absorbs its nutrition. Therefore, one could resort to maollahm for patients requiring urgent nourishment to boost and strengthen their body. In this work, different ways of preparing maollahm from poultry, goat, cow, and sheep meat are studied. Most of these methods are based on distillation or barbecue before distillation, as prescribed by traditional medicine books. The reactions, chemical processes, and volatile compounds related to different types of cooked meat are also compared with the outcome of recent research studies. The difference between various types of meat is related to their compounds. Different cooking processes such as barbecuing, roasting, cooking, and boiling have an effect on the taste, smell and the chemical constituents of maollahm. Additionally, the type of meat, animal feed, as well as using or removing the fat during the cooking process, have an effect on the produced volatile compounds. Cooking process and the type of meat have a direct effect on the compounds of maollahm. Possible reactions in the preparation process of maollahm are investigated and presented according to the new research studies.

  8. Method and techniques of radioactive waste treatment

    International Nuclear Information System (INIS)

    Ghafar, M.; Aasi, N.

    2002-04-01

    This study illustrates the characterization of radioactive wastes produced by the application of radioisotopes in industry and research. The treatment methods of such radioactive wastes, chemical co-precipitation and ion exchange depending on the technical state of radioactive waste management facility in Syria were described. The disposal of conditioned radioactive wastes, in a safe way, has been discussed including the disposal of the radioactive sources. The characterizations of the repository to stock conditioned radioactive wastes were mentioned. (author)

  9. Fast New Method for Temporary Chemical Passivation

    Directory of Open Access Journals (Sweden)

    Marek Solčanský

    2012-12-01

    Full Text Available The main material parameter of silicon, that influences the effectiveness of photovoltaic cells, is the minority carrier bulk lifetime.It may change in the technological process especially during high temperature operations. Monitoring of the carrier bulk-lifetimeis necessary for modifying the whole technological process of production. For the measurement of the minority carrier bulk-lifetimethe characterization method MW PCD (Microwave Photoconductance Decay is used, where the result of measurement is the effectivecarrier lifetime, which is very dependent on the surface recombination velocity and therefore on the quality of a silicon surfacepassivation.This work deals with an examination of a different solution types for the chemical passivation of a silicon surface. Varioussolutions are tested on silicon wafers for their consequent comparison. The main purpose of this work is to find optimal solution, whichsuits the requirements of a time stability and start-up velocity of passivation, reproducibility of the measurements and a possibilityof a perfect cleaning of a passivating solution remains from a silicon surface. Another purpose of this work is to identify the parametersof other quinhydrone solutions with different concentrations as compared with the quinhydrone solution in methanol witha concentration of 0.07 mol/dm³ marked QM007 (referential solution.The method of an effective chemical passivation with a quinhydrone in methanol solution was suggested. The solution witha concentration of 0.07 mol /dm3 fulfills all required criteria. The work also confirms the influence of increased concentrationquinhydrone on the temporal stability of the passivation layer and the effect for textured silicon wafers. In conclusion, the influenceof an illumination and the temperature on the properties of the passivating solution QM007 is discussed.

  10. Chemical Methods for Peptide and Protein Production

    Directory of Open Access Journals (Sweden)

    Istvan Toth

    2013-04-01

    Full Text Available Since the invention of solid phase synthetic methods by Merrifield in 1963, the number of research groups focusing on peptide synthesis has grown exponentially. However, the original step-by-step synthesis had limitations: the purity of the final product decreased with the number of coupling steps. After the development of Boc and Fmoc protecting groups, novel amino acid protecting groups and new techniques were introduced to provide high quality and quantity peptide products. Fragment condensation was a popular method for peptide production in the 1980s, but unfortunately the rate of racemization and reaction difficulties proved less than ideal. Kent and co-workers revolutionized peptide coupling by introducing the chemoselective reaction of unprotected peptides, called native chemical ligation. Subsequently, research has focused on the development of novel ligating techniques including the famous click reaction, ligation of peptide hydrazides, and the recently reported a-ketoacid-hydroxylamine ligations with 5-oxaproline. Several companies have been formed all over the world to prepare high quality Good Manufacturing Practice peptide products on a multi-kilogram scale. This review describes the advances in peptide chemistry including the variety of synthetic peptide methods currently available and the broad application of peptides in medicinal chemistry.

  11. Chemical methods for peptide and protein production.

    Science.gov (United States)

    Chandrudu, Saranya; Simerska, Pavla; Toth, Istvan

    2013-04-12

    Since the invention of solid phase synthetic methods by Merrifield in 1963, the number of research groups focusing on peptide synthesis has grown exponentially. However, the original step-by-step synthesis had limitations: the purity of the final product decreased with the number of coupling steps. After the development of Boc and Fmoc protecting groups, novel amino acid protecting groups and new techniques were introduced to provide high quality and quantity peptide products. Fragment condensation was a popular method for peptide production in the 1980s, but unfortunately the rate of racemization and reaction difficulties proved less than ideal. Kent and co-workers revolutionized peptide coupling by introducing the chemoselective reaction of unprotected peptides, called native chemical ligation. Subsequently, research has focused on the development of novel ligating techniques including the famous click reaction, ligation of peptide hydrazides, and the recently reported α-ketoacid-hydroxylamine ligations with 5-oxaproline. Several companies have been formed all over the world to prepare high quality Good Manufacturing Practice peptide products on a multi-kilogram scale. This review describes the advances in peptide chemistry including the variety of synthetic peptide methods currently available and the broad application of peptides in medicinal chemistry.

  12. Chemical decontamination method for radioactive metal waste

    International Nuclear Information System (INIS)

    Onuma, Tsutomu; Akimoto, Hidetoshi

    1991-01-01

    The invention relates to a decontamination method for radioactive metal waste products derived from equipment that handles radioactive materials whose surfaces have been contaminated; in particular it concerns a decontamination method that reduces the amount of radioactive waste by decontaminating radioactive waste substances to a level of radioactivity in line with normal waste products. In order to apply chemical decontamination to metal waste products whose surfaces are divided into carbon steel waste and stainless steel waste; the carbon steel waste is treated using only a primary process in which the waste is immersed in a sulfuric acid solution, while the stainless steel waste must be treated with both the primary process and then electrolytically reduces it for a specific length of time and a secondary process that uses a solution of sulfuric acid mixed with oxidizing metal salts. The method used to categorize metal waste into carbon steel waste and stainless steel waste involves determining the presence, or absence, of magnetism. Voltage is applied for a fixed duration; once that has stopped, electrolytic reduction repeats the operative cycle of applying, then stopping voltage until the potential of the radioactive metal waste is retained in the active region. 1 fig. 2 tabs

  13. Semiclassical methods in chemical reaction dynamics

    International Nuclear Information System (INIS)

    Keshavamurthy, S.

    1994-12-01

    Semiclassical approximations, simple as well as rigorous, are formulated in order to be able to describe gas phase chemical reactions in large systems. We formulate a simple but accurate semiclassical model for incorporating multidimensional tunneling in classical trajectory simulations. This model is based on the existence of locally conserved actions around the saddle point region on a multidimensional potential energy surface. Using classical perturbation theory and monitoring the imaginary action as a function of time along a classical trajectory we calculate state-specific unimolecular decay rates for a model two dimensional potential with coupling. Results are in good comparison with exact quantum results for the potential over a wide range of coupling constants. We propose a new semiclassical hybrid method to calculate state-to-state S-matrix elements for bimolecular reactive scattering. The accuracy of the Van Vleck-Gutzwiller propagator and the short time dynamics of the system make this method self-consistent and accurate. We also go beyond the stationary phase approximation by doing the resulting integrals exactly (numerically). As a result, classically forbidden probabilties are calculated with purely real time classical trajectories within this approach. Application to the one dimensional Eckart barrier demonstrates the accuracy of this approach. Successful application of the semiclassical hybrid approach to collinear reactive scattering is prevented by the phenomenon of chaotic scattering. The modified Filinov approach to evaluating the integrals is discussed, but application to collinear systems requires a more careful analysis. In three and higher dimensional scattering systems, chaotic scattering is suppressed and hence the accuracy and usefulness of the semiclassical method should be tested for such systems

  14. Semiclassical methods in chemical reaction dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Keshavamurthy, Srihari [Univ. of California, Berkeley, CA (United States)

    1994-12-01

    Semiclassical approximations, simple as well as rigorous, are formulated in order to be able to describe gas phase chemical reactions in large systems. We formulate a simple but accurate semiclassical model for incorporating multidimensional tunneling in classical trajectory simulations. This model is based on the existence of locally conserved actions around the saddle point region on a multidimensional potential energy surface. Using classical perturbation theory and monitoring the imaginary action as a function of time along a classical trajectory we calculate state-specific unimolecular decay rates for a model two dimensional potential with coupling. Results are in good comparison with exact quantum results for the potential over a wide range of coupling constants. We propose a new semiclassical hybrid method to calculate state-to-state S-matrix elements for bimolecular reactive scattering. The accuracy of the Van Vleck-Gutzwiller propagator and the short time dynamics of the system make this method self-consistent and accurate. We also go beyond the stationary phase approximation by doing the resulting integrals exactly (numerically). As a result, classically forbidden probabilties are calculated with purely real time classical trajectories within this approach. Application to the one dimensional Eckart barrier demonstrates the accuracy of this approach. Successful application of the semiclassical hybrid approach to collinear reactive scattering is prevented by the phenomenon of chaotic scattering. The modified Filinov approach to evaluating the integrals is discussed, but application to collinear systems requires a more careful analysis. In three and higher dimensional scattering systems, chaotic scattering is suppressed and hence the accuracy and usefulness of the semiclassical method should be tested for such systems.

  15. Arsenic Removal from Groundwater by Solar Driven Inline-Electrolytic Induced Co-Precipitation and Filtration—A Long Term Field Test Conducted in West Bengal

    Directory of Open Access Journals (Sweden)

    Philipp Otter

    2017-10-01

    Full Text Available Arsenic contamination in drinking water resources is of major concern in the Ganga delta plains of West Bengal in India and Bangladesh. Here, several laboratory and field studies on arsenic removal from drinking water resources were conducted in the past and the application of strong-oxidant-induced co-precipitation of arsenic on iron hydroxides is still considered as the most promising mechanism. This paper suggests an autonomous, solar driven arsenic removal setting and presents the findings of a long term field test conducted in West Bengal. The system applies an inline-electrolytic cell for in situ chlorine production using the natural chloride content of the water and by that substituting the external dosing of strong oxidants. Co-precipitation of As(V occurs on freshly formed iron hydroxide, which is removed by Manganese Greensand Plus® filtration. The test was conducted for ten months under changing source water conditions considering arsenic (187 ± 45 µg/L, iron (5.5 ± 0.8 mg/L, manganese (1.5 ± 0.4 mg/L, phosphate (2.4 ± 1.3 mg/L and ammonium (1.4 ± 0.5 mg/L concentrations. Depending on the system setting removal rates of 94% for arsenic (10 ± 4 µg/L, >99% for iron (0.03 ± 0.03 mg/L, 96% for manganese (0.06 ± 0.05 mg/L, 72% for phosphate (0.7 ± 0.3 mg/L and 84% for ammonium (0.18 ± 0.12 mg/L were achieved—without the addition of any chemicals/adsorbents. Loading densities of arsenic on iron hydroxides averaged to 31 µgAs/mgFe. As the test was performed under field conditions and the here proposed removal mechanisms work fully autonomously, it poses a technically feasible treatment alternative, especially for rural areas.

  16. Investigating hydrogel dosimeter decomposition by chemical methods

    International Nuclear Information System (INIS)

    Jordan, Kevin

    2015-01-01

    The chemical oxidative decomposition of leucocrystal violet micelle hydrogel dosimeters was investigated using the reaction of ferrous ions with hydrogen peroxide or sodium bicarbonate with hydrogen peroxide. The second reaction is more effective at dye decomposition in gelatin hydrogels. Additional chemical analysis is required to determine the decomposition products

  17. Ultrasound assisted co-precipitation of nanostructured CuO-ZnO-Al2O3 over HZSM-5: effect of precursor and irradiation power on nanocatalyst properties and catalytic performance for direct syngas to DME.

    Science.gov (United States)

    Allahyari, Somaiyeh; Haghighi, Mohammad; Ebadi, Amanollah; Hosseinzadeh, Shahin

    2014-03-01

    Nanostructured CuO-ZnO-Al2O3/HZSM-5 was synthesized from nitrate and acetate precursors using ultrasound assisted co-precipitation method under different irradiation powers. The CuO-ZnO-Al2O3/HZSM-5 nanocatalysts were characterized using XRD, FESEM, BET, FTIR and EDX Dot-mapping analyses. The results indicated precursor type and irradiation power have significant influences on phase structure, morphology, surface area and functional groups. It was observed that the acetate formulated CuO-ZnO-Al2O3/HZSM-5 nanocatalyst have smaller CuO crystals with better dispersion and stronger interaction between components in comparison to nitrate based nanocatalysts. Ultrasound assisted co-precipitation synthesis method resulted in nanocatalyst with more uniform morphology compared to conventional method and increasing irradiation power yields smaller particles with better dispersion and higher surface area. Additionally the crystallinity of CuO is lower at high irradiation powers leading to stronger interaction between metal oxides. The nanocatalysts performance were tested at 200-300 °C, 10-40 bar and space velocity of 18,000-36,000 cm(3)/g h with the inlet gas composition of H2/CO = 2/1 in a stainless steel autoclave reactor. The acetate based nanocatalysts irradiated with higher levels of power exhibited better reactivity in terms of CO conversion and DME yield. While there is an optimal temperature for CO conversion and DME yield in direct synthesis of DME, CO conversion and DME yield both increase with the pressure increase. Furthermore ultrasound assisted co-precipitation method yields more stable CuO-ZnO-Al2O3/HZSM-5 nanocatalyst while conventional precipitated nanocatalyst lost their activity ca. 18% and 58% in terms of CO conversion and DME yield respectively in 24 h time on stream test.

  18. The magnetic and colloidal properties of CoFe2O4 nanoparticles synthesized by co-precipitation.

    Science.gov (United States)

    Gyergyek, Sašo; Drofenik, Miha; Makovec, Darko

    2014-01-01

    Magnetic CoFe(2)O(4) nanoparticles were synthesized by co-precipitation at 80 °C. This co-precipitation was achieved by the rapid addition of a strong base to an aqueous solution of cations. The investigation of the samples that were quenched at different times after the addition of the base, using transmission electron microscopy (TEM) coupled with energy-dispersive X-ray spectroscopy (EDXS) and X-ray powder diffractometry, revealed the formation of a Co-deficient amorphous phase and Co(OH)(2), which rapidly reacted to form small CoFe(2)O(4) nanoparticles. The nanoparticles grew with the time of aging at elevated temperature. The colloidal suspensions of the nanoparticles were prepared in both an aqueous medium and in a non-polar organic medium, with the adsorption of citric acid and ricinoleic acid on the nanoparticles, respectively. The measurements of the room-temperature magnetization revealed the ferrimagnetic state of the CoFe(2)O(4) nanoparticles, while their suspensions displayed superparamagnetic behaviour.

  19. Chemical Reactivity as Described by Quantum Chemical Methods

    Directory of Open Access Journals (Sweden)

    F. De Proft

    2002-04-01

    Full Text Available Abstract: Density Functional Theory is situated within the evolution of Quantum Chemistry as a facilitator of computations and a provider of new, chemical insights. The importance of the latter branch of DFT, conceptual DFT is highlighted following Parr's dictum "to calculate a molecule is not to understand it". An overview is given of the most important reactivity descriptors and the principles they are couched in. Examples are given on the evolution of the structure-property-wave function triangle which can be considered as the central paradigm of molecular quantum chemistry to (for many purposes a structure-property-density triangle. Both kinetic as well as thermodynamic aspects can be included when further linking reactivity to the property vertex. In the field of organic chemistry, the ab initio calculation of functional group properties and their use in studies on acidity and basicity is discussed together with the use of DFT descriptors to study the kinetics of SN2 reactions and the regioselectivity in Diels Alder reactions. Similarity in reactivity is illustrated via a study on peptide isosteres. In the field of inorganic chemistry non empirical studies of adsorption of small molecules in zeolite cages are discussed providing Henry constants and separation constants, the latter in remarkable good agreement with experiments. Possible refinements in a conceptual DFT context are presented. Finally an example from biochemistry is discussed : the influence of point mutations on the catalytic activity of subtilisin.

  20. Effect of irradiation power and time on ultrasound assisted co-precipitation of nanostructured CuO–ZnO–Al2O3 over HZSM-5 used for direct conversion of syngas to DME as a green fuel

    International Nuclear Information System (INIS)

    Allahyari, Somaiyeh; Haghighi, Mohammad; Ebadi, Amanollah; Hosseinzadeh, Shahin

    2014-01-01

    Graphical abstract: Nanostructured CuO–ZnO–Al 2 O 3 /HZSM-5 catalyst has been prepared by an ultrasound-assisted co-precipitation hybrid method. Effect of power and irradiation time have been studied by changing the time (30–45–60 min) and power of sonication (50–100–150 W) during the synthesis which lead to different physiochemical properties of the catalyst. The XRD, FESEM, EDX, FTIR and BET analyses exhibited smaller particles with higher surface area and less population of particle aggregates at longer and highly irradiated catalysts. Study on the performance of investigated catalysts in direct synthesis of DME from syngas showed ultrasound-assisted co-precipitated synthesized catalysts have superior reactivity and stability compared with non-sonicated catalyst. Among sonicated catalysts, with increasing power and time of irradiation, the catalyst represents higher activity and DME selectivity. - Highlights: • Synthesis of CuO–ZnO–Al 2 O 3 /HZSM-5 by ultrasound assisted co-precipitation method. • Significant changes in morphology and surface area after ultrasound irradiations. • Smaller dispersed particle aggregates in longer and more intense irradiated catalysts. • Improvement in reactivity and stability of the longer and more intense ultrasound irradiated CZAZ catalyst. - Abstract: Nanostructured CuO–ZnO–Al 2 O 3 /HZSM-5 catalyst has been prepared by an ultrasound-assisted co-precipitation hybrid method. The effect of irradiation power and irradiation time have been studied by changing time (30, 45, 60 min) and power of the sonication (50, 100, 150 W) during the synthesis which led to different physiochemical properties of the nanocatalyst. The XRD, FESEM, EDX, FTIR and BET analyses exhibited smaller particles with higher surface area and less population of particle aggregates at longer and highly irradiated nanocatalysts. The nanocatalyst irradiated at 150 W for 60 min (the longest irradiation time and the most intense power

  1. Recovery of sludge from the treatment of liquid radioactive effluents by co-precipitation with calcium carbonate: laboratory study; Recuperation des boues de traitement des effluents radioactifs liquides par coprecipitation avec le carbonate de calcium: etude de laboratoire

    Energy Technology Data Exchange (ETDEWEB)

    Patti, F.; Gailledreau, C.; Cohen, P.

    1961-02-24

    As during the treatment by co-precipitation with calcium carbonate of liquid radioactive residues, a partial decontamination can be obtained by simply agitating an already formed radioactive sludge with the effluent to be processed, the authors study whether it would be possible to first perform a co-precipitation with a lower dose of calcium carbonate and then to complete decontamination by agitating with an adequate quantity of sludge stored during preceding operations. The authors report the study of the influence of reactant quantity on the chemical treatment efficiency, of the evolution of the activity of a radioactive residual solution in contact with a precipitate, of the cleaner element, of a precipitate reuse, of the technological and economic aspects, and of another possibility of reduction of the precipitate volume [French] Dans le traitement par coprecipitation avec le carbonate de calcium des residus radioactifs liquides, une decontamination partielle peut etre obtenue en agitant simplement une boue radioactive deja formee avec l'effluent a traiter. En consequence, il pourrait etre possible d'effectuer d'abord une coprecipitation avec une dose plus faible de carbonate de calcium et de completer ensuite la decontamination en agitant le liquide avec une quantite convenable de boue stockee a partir d'operations precedentes. (auteurs)

  2. Oleic-acid-coated CoFe2O4 nanoparticles synthesized by co-precipitation and hydrothermal synthesis

    International Nuclear Information System (INIS)

    Gyergyek, Sašo; Drofenik, Miha; Makovec, Darko

    2012-01-01

    Highlights: ► Synthesis of oleic-acid-coated CoFe 2 O 4 nanoparticles from an aqueous solution. ► During the co-precipitation of Co 2+ /Fe 3+ single-phase spinel forms. ► During the co-precipitation of Co 2+ /Fe 2+ , feroxyhyte forms in addition to spinel. ► Oleic acid increases the spinel formation temperature and limits particle growth. ► Colloidal suspensions of ferrimagnetic CoFe 2 O 4 were prepared. - Abstract: Oleic-acid-coated CoFe 2 O 4 nanoparticles were synthesized by co-precipitation and hydrothermal synthesis. The coprecipitation of the nanoparticles was achieved by the rapid addition of a strong base to an aqueous solution of cations in the presence of the oleic acid surfactant, or without this additive. The nanoparticles were also synthesized by a hydrothermal treatment of suspensions of the precipitates, coprecipitated at room temperature in the presence of the oleic acid, or without it. The influence of the synthesis conditions, such as the valence state of the iron cation in the starting aqueous solution, the temperature of the treatment and the presence of oleic acid, on the particles size was systematically studied. X-ray powder diffractometry (XRD) and transmission electron microscopy (TEM) coupled with energy-dispersive X-ray spectroscopy (EDS) revealed that, although spinel forms at room temperature, a substantial amount of Co was incorporated within the secondary, feroxyhyte-like phase when the iron cation was in the 2+ state. In contrast, when iron was in the 3+ state, the spinel forms at elevated temperatures of approximately 60 °C. The presence of the oleic acid further increased the formation temperature for the stoichiometric spinel. Moreover, the oleic acid impeded the particles’ growth and enabled the preparation of colloidal suspensions of the nanoparticles in non-polar organic solvents. The nanoparticles’ size was successfully controlled by the temperature of the synthesis in the region where superparamagnetism

  3. Assessment of chemical exposures: calculation methods for environmental professionals

    National Research Council Canada - National Science Library

    Daugherty, Jack E

    1997-01-01

    ... on by scientists, businessmen, and policymakers. Assessment of Chemical Exposures: Calculation Methods for Environmental Professionals addresses the expanding scope of exposure assessments in both the workplace and environment...

  4. Determination of Pb in river water samples by inductively coupled plasma optical emission spectrometry after ultrasound-assisted co-precipitation with manganese dioxide

    International Nuclear Information System (INIS)

    Sousa Bispo, Marcia; Santos da Boa Morte, Elane; Korn das Gracas Andrade, Maria; Sena Gomes Teixeira, Leonardo; Korn, Mauro; Costa, Antonio Celso Spinola

    2005-01-01

    A simple and efficient procedure for separation and pre-concentration using ultrasound-assisted co-precipitation with manganese dioxide was developed for Pb determination by inductively coupled plasma optical emission spectrometry (ICP OES). The optimization process was carried out using a two-level factorial design and a Doehlert matrix. Three variables (i.e. concentration of oxidizing solution-KMnO 4 , concentration of MnSO 4 solution and time of ultrasonic irradiation) were used as factors in the optimization. The recoveries, based on the analysis of spiked samples, were between 90% and 105%, and the precision was ≤ 5%. The detection limit and quantification limit for Pb determination were 3.2 and 10.7 μg L -1 , respectively. The proposed method was applied for the determination of Pb in water samples from a river heavily polluted by industrial effluents. The recovery measured by analyte addition technique showed that the proposed pre-concentration method had good accuracy

  5. Novel Synthesis of Ultra-Small Dextran Coated Maghemite Nanoparticles for MRI and CT Contrast Agents via a Low Temperature Co-Precipitation Reaction.

    Science.gov (United States)

    Rabias, Ioannis; Fardis, Michael; Kehagias, Thomas; Kletsas, Dimitris; Pratsinis, Harris; Tsitrouli, Danai; Maris, Thomas G; Papavassiliou, George

    2015-01-01

    Ultra-small dextran coated maghemite nanoparticles are synthesized via a low temperature modified co-precipitation method. A monoethylene glycol/water solution of 1:1 molar ratios and a fixed apparatus is used at a constant temperature of 5-10 degrees C. The growth of nanoparticles is prohibited due to low temperature synthesis and differs from usual thermal decomposition methods via Ostwald ripening. Strict temperature control and reaction timing of less than 20 minutes are essential to maintain narrow distribution in particle size. These nanoparticles are water-dispersible and biocompatible by capping with polyethylene glycol ligands. The aqueous suspensions are tested for cytotoxic activity on normal human skin fibroblasts. There is no reduction of the cells' viability at any concentration tested, the highest being 1% v/v of the suspension in culture medium, corresponding to the highest concentrations to be administered in vivo. Initial comparison with a T1 MRI contrast agent in sale shows that maghemite nanoparticles exhibit high r1 and r2 relaxivities in MRI tomography and strong contrast in computed tomography, demonstrating that these nanoparticles can be efficient T1, T2 and CT contrast agents.

  6. Device for collecting chemical compounds and related methods

    Science.gov (United States)

    Scott, Jill R.; Groenewold, Gary S.; Rae, Catherine

    2013-01-01

    A device for sampling chemical compounds from fixed surfaces and related methods are disclosed. The device may include a vacuum source, a chamber and a sorbent material. The device may utilize vacuum extraction to volatilize the chemical compounds from the fixed surfaces so that they may be sorbed by the sorbent material. The sorbent material may then be analyzed using conventional thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS) instrumentation to determine presence of the chemical compounds. The methods may include detecting release and presence of one or more chemical compounds and determining the efficacy of decontamination. The device may be useful in collection and analysis of a variety of chemical compounds, such as residual chemical warfare agents, chemical attribution signatures and toxic industrial chemicals.

  7. Safety in the Chemical Laboratory: Tested Disposal Methods for Chemical Wastes from Academic Laboratories.

    Science.gov (United States)

    Armour, M. A.; And Others

    1985-01-01

    Describes procedures for disposing of dichromate cleaning solution, picric acid, organic azides, oxalic acid, chemical spills, and hydroperoxides in ethers and alkenes. These methods have been tested under laboratory conditions and are specific for individual chemicals rather than for groups of chemicals. (JN)

  8. and aluminum-substituted cobalt ferrite prepared by co-precipitation ...

    Indian Academy of Sciences (India)

    Spinal ferrites having the general formula Co1-ZnFe2-AlO4 ( = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6) were prepared using the wet chemical co-operation technique. The samples were annealed at 800°C for 12 h and were studied by means of X-ray diffraction, magnetization and low field AC susceptibility measurements.

  9. Chemical Method of Urine Volume Measurement

    Science.gov (United States)

    Petrack, P.

    1967-01-01

    A system has been developed and qualified as flight hardware for the measurement of micturition volumes voided by crewmen during Gemini missions. This Chemical Urine Volume Measurement System (CUVMS) is used for obtaining samples of each micturition for post-flight volume determination and laboratory analysis for chemical constituents of physiological interest. The system is versatile with respect to volumes measured, with a capacity beyond the largest micturition expected to be encountered, and with respect to mission duration of inherently indefinite length. The urine sample is used for the measurement of total micturition volume by a tracer dilution technique, in which a fixed, predetermined amount of tritiated water is introduced and mixed into the voided urine, and the resulting concentration of the tracer in the sample is determined with a liquid scintillation spectrometer. The tracer employed does not interfere with the analysis for the chemical constituents of the urine. The CUVMS hardware consists of a four-way selector valve in which an automatically operated tracer metering pump is incorporated, a collection/mixing bag, and tracer storage accumulators. The assembled system interfaces with a urine receiver at the selector valve inlet, sample bags which connect to the side of the selector valve, and a flexible hose which carries the excess urine to the overboard drain connection. Results of testing have demonstrated system volume measurement accuracy within the specification limits of +/-5%, and operating reliability suitable for system use aboard the GT-7 mission, in which it was first used.

  10. Study of magnetic and electrical properties of La doped Mn-Zn nanoferrites synthesized by co-precipitation technique

    International Nuclear Information System (INIS)

    Panwar, Neena; Thakur, Atul; Thakur, Preeti

    2013-01-01

    Lanthanum manganese zinc ferrite powder of the composition Mn 0.4 Zn 0.6 La 0.4 Fe 1.6 O 4 were synthesized via co-precipitation technique. Metallic chlorides of manganese, zinc and iron in which Lanthanum is doped were taken. Sodium hydroxide (NaOH) base was used as precipitant agent. The calcinations (presintering) were performed at 700℃ for 3h and sintering at different temperatures 900℃, 850℃, 800℃ also for 3h. The structural investigation of the prepared sample was performed with X-ray diffraction (XRD) and scanning electron microscope (SEM). For studying magnetic properties vibrating sample magnetometer (VSM) are used. Electrical properties were studied by DC resistivity set up. (author)

  11. Room Temperature Co-Precipitation Synthesis of Magnetite Nanoparticles in a Large pH Window with Different Bases.

    Science.gov (United States)

    Mascolo, Maria Cristina; Pei, Yongbing; Ring, Terry A

    2013-11-28

    Magnetite nanoparticles (Fe₃O₄) represent the most promising materials in medical applications. To favor high-drug or enzyme loading on the nanoparticles, they are incorporated into mesoporous materials to form a hybrid support with the consequent reduction of magnetization saturation. The direct synthesis of mesoporous structures appears to be of interest. To this end, magnetite nanoparticles have been synthesized using a one pot co-precipitation reaction at room temperature in the presence of different bases, such as NaOH, KOH or (C₂H₅)₄NOH. Magnetite shows characteristics of superparamagnetism at room temperature and a saturation magnetization (Ms) value depending on both the crystal size and the degree of agglomeration of individual nanoparticles. Such agglomeration appears to be responsible for the formation of mesoporous structures, which are affected by the pH, the nature of alkali, the slow or fast addition of alkaline solution and the drying modality of synthesized powders.

  12. Room Temperature Co-Precipitation Synthesis of Magnetite Nanoparticles in a Large pH Window with Different Bases

    Directory of Open Access Journals (Sweden)

    Maria Cristina Mascolo

    2013-11-01

    Full Text Available Magnetite nanoparticles (Fe3O4 represent the most promising materials in medical applications. To favor high-drug or enzyme loading on the nanoparticles, they are incorporated into mesoporous materials to form a hybrid support with the consequent reduction of magnetization saturation. The direct synthesis of mesoporous structures appears to be of interest. To this end, magnetite nanoparticles have been synthesized using a one pot co-precipitation reaction at room temperature in the presence of different bases, such as NaOH, KOH or (C2H54NOH. Magnetite shows characteristics of superparamagnetism at room temperature and a saturation magnetization (Ms value depending on both the crystal size and the degree of agglomeration of individual nanoparticles. Such agglomeration appears to be responsible for the formation of mesoporous structures, which are affected by the pH, the nature of alkali, the slow or fast addition of alkaline solution and the drying modality of synthesized powders.

  13. Quality Control Guidelines for SAM Chemical Methods

    Science.gov (United States)

    Learn more about quality control guidelines and recommendations for the analysis of samples using the chemistry methods listed in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  14. Co-precipitation synthesis and photoluminescence properties of K2GdZr (PO4)3:Eu3+—a deep red luminomagnetic nanophosphor

    International Nuclear Information System (INIS)

    Chawla, Santa; Ravishanker,; Rajkumar,; Khan, A.F.; Kotnala, R.K.

    2013-01-01

    Nanoparticles of Eu 3+ activated K 2 GdZr(PO 4 ) 3 has been successfully synthesized by controlled inclusive co-precipitation method in high alkaline environment to enable complex crystalline phase formation. Much enhanced deep red luminescence, broadened emission bands with unusually prominent 5 D 0 – 7 F 4 transition at 699 nm are defining characteristics of the nanoparticles compared to bulk counterpart synthesized by solid state reaction route. Among various excitation pathways such as charge transfer from O 2− –Eu 3+ , Gd 3+ –Eu 3+ , the direct excitation of Eu 3+ at 394 nm is the most effective as revealed by photoluminescence and time resolved studies. Occurrence and variation of superparamagnetism in undoped and Eu 3+ doped nanoparticles indicate the role of unpaired 4f electron spin of Gd 3+ in making the nanoparticles superparamagnetic. A room temperature cost effective synthesis process of Eu 3+ doped multimetallic complex phosphate supermagnetic nanophosphor can pave way for applications requiring such functionality. -- Highlights: ► Eu 3+ doped K 2 GdZr(PO 4 ) 3 nanocrystals have been synthesized successfully by coprecipitation. ► K 2 GdZr(PO 4 ) 3 :Eu 3+ emit intense deep red fluorescence. ► Red emitting K 2 GdZr(PO 4 ) 3 :Eu 3+ nanocrystals show superparamagnetism due to Gd 3+ . ► Luminomagnetic KGP:Eu 3+ have application potential in biology, lighting and display

  15. Synthesis and crystallization behavior of 3 mol% yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) nanosized powders prepared using a simple co-precipitation process

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Yu-Wei [Graduate Institute of Applied Science, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Yang, Ko-Ho, E-mail: yangkoho@cc.kuas.edu.tw [Graduate Institute of Applied Science, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Department of Mold and Die Engineering, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Chang, Kuo-Ming [Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Dental Materials Research Center, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Yeh, Sung-Wei [Metal Industries Research and Development Centre, 1001 Kaohsiung Highway, Kaohsiung 811, Taiwan (China); Wang, Moo-Chin, E-mail: mcwang@kmu.edu.tw [Department of Fragrance and Cosmetics Science, Kaohsiung Medical University, 100, Shihchuan 1st Road, Kaohsiung 80728, Taiwan (China)

    2011-06-16

    Highlights: > The thermal behavior of 3Y-TZP precursor powders had been investigated. > The crystallization behavior of 3Y-TZP nanopowders had been investigated. > The activation energy for crystallization of tetragonal ZrO{sub 2} was obtained. > The growth morphology parameter n is approximated as 2.0. > The crystallites show a plate-like morphology. - Abstract: The synthesis and crystallization behavior of 3 mol% yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) nanopowders prepared using a simple co-precipitation process at 348 K and pH = 7 were investigated using differential scanning calorimetry/thermogravimetry (DSC/TG), an X-ray diffractometer (XRD), the Raman spectra, transmission electron microscopy (TEM), selected area electron diffraction (SAED), and an energy dispersive spectrometer (EDS). The activation energy of tetragonal ZrO{sub 2} crystallization from 3Y-TZP freeze-dried precursor powders using a non-isothermal method, namely, 169.2 {+-} 21.9 kJ mol{sup -1}, was obtained. The growth morphology parameter n was approximated as 2.0, which indicated that it had a plate-like morphology. The XRD, Raman spectra, and SAED patterns showed that the phase of the tetragonal ZrO{sub 2} was maintained at 1273 K. The crystallite size of 3Y-TZP freeze-dried precursor powders calcined at 1273 K for 5 min was 21.3 nm.

  16. Synthesis and crystallization behavior of 3 mol% yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) nanosized powders prepared using a simple co-precipitation process

    International Nuclear Information System (INIS)

    Hsu, Yu-Wei; Yang, Ko-Ho; Chang, Kuo-Ming; Yeh, Sung-Wei; Wang, Moo-Chin

    2011-01-01

    Highlights: → The thermal behavior of 3Y-TZP precursor powders had been investigated. → The crystallization behavior of 3Y-TZP nanopowders had been investigated. → The activation energy for crystallization of tetragonal ZrO 2 was obtained. → The growth morphology parameter n is approximated as 2.0. → The crystallites show a plate-like morphology. - Abstract: The synthesis and crystallization behavior of 3 mol% yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) nanopowders prepared using a simple co-precipitation process at 348 K and pH = 7 were investigated using differential scanning calorimetry/thermogravimetry (DSC/TG), an X-ray diffractometer (XRD), the Raman spectra, transmission electron microscopy (TEM), selected area electron diffraction (SAED), and an energy dispersive spectrometer (EDS). The activation energy of tetragonal ZrO 2 crystallization from 3Y-TZP freeze-dried precursor powders using a non-isothermal method, namely, 169.2 ± 21.9 kJ mol -1 , was obtained. The growth morphology parameter n was approximated as 2.0, which indicated that it had a plate-like morphology. The XRD, Raman spectra, and SAED patterns showed that the phase of the tetragonal ZrO 2 was maintained at 1273 K. The crystallite size of 3Y-TZP freeze-dried precursor powders calcined at 1273 K for 5 min was 21.3 nm.

  17. Field theoretical methods in chemical physics

    International Nuclear Information System (INIS)

    Paul, R.

    1982-01-01

    Field theory will become an important tool for the chemist, and this book presents a clear and thorough account of the theory itself and its applications for solving a wide variety of chemical problems. The author has brought together the foundations upon which the many and varied applications of field theory have been built, giving more intermediate steps than is usual in the derivations. This makes the book easily accessible to anyone with a background of calculus, statistical thermodynamics and elementary quantum chemistry. (orig./HK)

  18. Chemical decontamination method in nuclear facility system

    International Nuclear Information System (INIS)

    Takahashi, Ryota; Sakai, Hitoshi; Oka, Shigehiro.

    1996-01-01

    Pumps and valves in a closed recycling loop system incorporating materials to be chemically decontaminated are decomposed, a guide plate having the decomposed parts as an exit/inlet of a decontaminating liquid is formed, and a decontaminating liquid recycling loop comprising a recycling pump and a heater is connected to the guide plate. Decontaminating liquid from a decontaminating liquid storage tank is supplied to the decontaminating liquid recycling loop. With such constitutions, the decontaminating liquid is filled in the recycling closed loop system incorporating materials to be decontaminated, and the materials to be decontaminated are chemically decontaminated. The decontaminating liquid after the decontamination is discharged and flows, if necessary, in a recycling system channel for repeating supply and discharge. After the decontamination, the guide plate is removed and returned to the original recycling loop. When pipelines of a reactor recycling system are decontaminated, the amount of decontaminations can be decreased, and reforming construction for assembling the recycling loop again, which requires cutting for pipelines in the system is no more necessary. Accordingly, the amount of wastes can be decreased, and therefore, the decontamination operation is facilitated and radiation dose can be reduced. (T.M.)

  19. Chemical decontamination method for radioactive metal waste

    International Nuclear Information System (INIS)

    Onuma, Tsutomu; Tanaka, Akio; Shibuya, Sadao.

    1991-01-01

    When contaminants mainly composed of copper remained on the surface of stainless steel wastes sent from an electrolytic reduction as a first step are chemically decontaminated, metal wastes are discriminated to carbon steel wastes and stainless steel wastes. Then, the carbon steel wastes are applied only with the first step of immersing in a sulfuric acid solution, and stainless steel wastes are applied with a first step of immersing into a sulfuric acid solution for electrolytic reduction for a predetermined period of time and a second step of immersing into a liquid in which an oxidative metal salt is added to sulfuric acid. The decontamination liquid which is used for immersing the stainless steel wastes in the second step and the oxidation force of which is lowered is used as the sulfuric acid solution in the first step for the carbon steel wastes. In view of the above, the decontamination liquid of the second step can be utilized most effectively, enabling to greatly decrease the secondary wastes and to improve decontamination efficiency. (T.M.)

  20. Investigation of Evaluation method of chemical runaway reaction

    International Nuclear Information System (INIS)

    Sato, Yoshihiko; Sasaya, Shinji; Kurakata, Koichiro; Nojiri, Ichiro

    2002-02-01

    Safety study 'Study of evaluation of abnormal occurrence for chemical substances in the nuclear fuel facilities' will be carried out from 2001 to 2005. In this study, the prediction of thermal hazards of chemical substances will be investigated and prepared. The hazard prediction method of chemical substances will be constructed from these results. Therefore, the hazard prediction methods applied in the chemical engineering in which the chemical substances with the hazard of fire and explosion were often treated were investigated. CHETAH (The ASTM Computer Program for Chemical Thermodynamic and Energy Release Evaluation) developed by ASTM (American Society for Testing and Materials) and TSS (Thermal Safety Software) developed by CISP (ChemInform St. Petersburg) were introduced and the fire and explosion hazards of chemical substances and reactions in the reprocessing process were evaluated. From these evaluated results, CHETAH could almost estimate the heat of reaction at 10% accuracy. It was supposed that CHETAH was useful as a screening for the hazards of fire and explosion of the new chemical substances and so on. TSS could calculate the reaction rate and the reaction behavior from the data measured by the various calorimeters rapidly. It was supposed that TSS was useful as an evaluation method for the hazards of fire and explosion of the new chemical reactions and so on. (author)

  1. Chemical Compounds and Extraction Methods of ?Maollahm?

    OpenAIRE

    Sadeghpoor, Omid; Dayeni, Manijeh; Razi, Samane

    2016-01-01

    Background: Maollahm or meat juice, a by-product of meat, is a traditional remedy in Persian medicine. This product was used as a nourishment or treatment substance for sick people. According to the ancient Persian medicine, animal meat has more affinity with the human body and the body easily absorbs its nutrition. Therefore, one could resort to maollahm for patients requiring urgent nourishment to boost and strengthen their body. Methods: In this work, different ways of preparing maollahm f...

  2. Investigation of Chemical Equilibrium Kinetics by the Electromigration Method

    CERN Document Server

    Bozhikov, G A; Bontchev, G D; Maslov, O D; Milanov, M V; Dmitriev, S N

    2002-01-01

    Measurement of the chemical reaction rates for complex formation as well as hydrolysis type reactions by the method of horizontal zone electrophoresis is outlined. The correlation between chemical equilibrium kinetics and electrodiffusion processes in a constant d.c. electric field is described. In model electromigration experiments the reaction rate constant of the complex formation of Hf(IV) and DTPA is determined.

  3. Method of cleaning oil slicks and chemical spills

    International Nuclear Information System (INIS)

    Billings, L.

    1992-01-01

    This patent describes a method of cleaning a floating chemical spill on a body of water. It comprises: providing a quantity of popular bark-based pelleted or granular product, flotation means and a flexible net having openings generally smaller than the smallest whole pellet dimension of the pelleted product, spreading the net over a chemical spill on the body of water, connecting the floatation means to the net thereby supporting the net adjacent the surface of the body of water, placing the poplar bark-based product on the net, absorbing the floating chemical spill into the product, and removing the chemical soaked product from the body of water

  4. Variational methods for chemical and nuclear reactions

    International Nuclear Information System (INIS)

    Crawford, O.H.

    1977-01-01

    All the variational functionals are derived which satisfy certain criteria of suitability for molecular and nuclear scattering, below the threshold energy for three-body breakup. The existence and uniqueness of solutions are proven. The most general suitable functional is specialized, by particular values of its parameters, to Kohn's taneta, Kato's cot(eta-theta), the inverse Kohn coeta, Kohn's S matrix, our S matrix, Lane and Robson's functional, and several new functionals, an infinite number of which are contained in the general expression. Four general ways of deriving algebraic methods from a given functional are discussed, and illustrated with specific algebraic results. These include equations of Lane and Robson and of Kohn, the fundamental R matrix relation, and new equations. The relative configuration space is divided as in the Wigner R matrix theory, and trial wavefunctions are needed for only the region where all the particles are interacting. In addition, a version of the general functional is presented which does not require any division of space

  5. A novel strategy for phosphopeptide enrichment using lanthanide phosphate co-precipitation.

    Science.gov (United States)

    Mirza, Munazza Raza; Rainer, Matthias; Güzel, Yüksel; Choudhary, Iqbal M; Bonn, Günther K

    2012-08-01

    Reversible phosphorylation of proteins is a common theme in the regulation of important cellular functions such as growth, metabolism, and differentiation. The comprehensive understanding of biological processes requires the characterization of protein phosphorylation at the molecular level. Although, the number of cellular phosphoproteins is relatively high, the phosphorylated residues themselves are generally of low abundance due to the sub-stoichiometric nature. However, low abundance of phosphopeptides and low degree of phosphorylation typically necessitates isolation and concentration of phosphopeptides prior to mass spectrometric analysis. In this study, we used trivalent lanthanide ions (LaCl(3), CeCl(3), EuCl(3), TbCl(3), HoCl(3), ErCl(3), and TmCl(3)) for phosphopeptide enrichment and cleaning-up. Due to their low solubility product, lanthanide ions form stable complexes with the phosphate groups of phosphopeptides and precipitate out of solution. In a further step, non-phosphorylated compounds can easily be removed by simple centrifugation and washing before mass spectrometric analysis using Matrix-assisted laser desorption/ionisation-time of flight. The precipitation method was applied for the isolation of phosphopeptides from standard proteins such as ovalbumin, α-casein, and β-casein. High enrichment of phosphopeptides could also be achieved for real samples such as fresh milk and egg white. The technology presented here represents an excellent and highly selective tool for phosphopeptide recovery; it is easily applicable and shows several advantages as compared with standard approaches such as TiO(2) or IMAC.

  6. Odour detection methods: olfactometry and chemical sensors.

    Science.gov (United States)

    Brattoli, Magda; de Gennaro, Gianluigi; de Pinto, Valentina; Loiotile, Annamaria Demarinis; Lovascio, Sara; Penza, Michele

    2011-01-01

    The complexity of the odours issue arises from the sensory nature of smell. From the evolutionary point of view olfaction is one of the oldest senses, allowing for seeking food, recognizing danger or communication: human olfaction is a protective sense as it allows the detection of potential illnesses or infections by taking into account the odour pleasantness/unpleasantness. Odours are mixtures of light and small molecules that, coming in contact with various human sensory systems, also at very low concentrations in the inhaled air, are able to stimulate an anatomical response: the experienced perception is the odour. Odour assessment is a key point in some industrial production processes (i.e., food, beverages, etc.) and it is acquiring steady importance in unusual technological fields (i.e., indoor air quality); this issue mainly concerns the environmental impact of various industrial activities (i.e., tanneries, refineries, slaughterhouses, distilleries, civil and industrial wastewater treatment plants, landfills and composting plants) as sources of olfactory nuisances, the top air pollution complaint. Although the human olfactory system is still regarded as the most important and effective "analytical instrument" for odour evaluation, the demand for more objective analytical methods, along with the discovery of materials with chemo-electronic properties, has boosted the development of sensor-based machine olfaction potentially imitating the biological system. This review examines the state of the art of both human and instrumental sensing currently used for the detection of odours. The olfactometric techniques employing a panel of trained experts are discussed and the strong and weak points of odour assessment through human detection are highlighted. The main features and the working principles of modern electronic noses (E-Noses) are then described, focusing on their better performances for environmental analysis. Odour emission monitoring carried out through

  7. Odour Detection Methods: Olfactometry and Chemical Sensors

    Directory of Open Access Journals (Sweden)

    Sara Lovascio

    2011-05-01

    Full Text Available The complexity of the odours issue arises from the sensory nature of smell. From the evolutionary point of view olfaction is one of the oldest senses, allowing for seeking food, recognizing danger or communication: human olfaction is a protective sense as it allows the detection of potential illnesses or infections by taking into account the odour pleasantness/unpleasantness. Odours are mixtures of light and small molecules that, coming in contact with various human sensory systems, also at very low concentrations in the inhaled air, are able to stimulate an anatomical response: the experienced perception is the odour. Odour assessment is a key point in some industrial production processes (i.e., food, beverages, etc. and it is acquiring steady importance in unusual technological fields (i.e., indoor air quality; this issue mainly concerns the environmental impact of various industrial activities (i.e., tanneries, refineries, slaughterhouses, distilleries, civil and industrial wastewater treatment plants, landfills and composting plants as sources of olfactory nuisances, the top air pollution complaint. Although the human olfactory system is still regarded as the most important and effective “analytical instrument” for odour evaluation, the demand for more objective analytical methods, along with the discovery of materials with chemo-electronic properties, has boosted the development of sensor-based machine olfaction potentially imitating the biological system. This review examines the state of the art of both human and instrumental sensing currently used for the detection of odours. The olfactometric techniques employing a panel of trained experts are discussed and the strong and weak points of odour assessment through human detection are highlighted. The main features and the working principles of modern electronic noses (E-Noses are then described, focusing on their better performances for environmental analysis. Odour emission monitoring

  8. Continuous precipitation of mineral products: influence of mixing conditions on the co-precipitation of cerium-zirconium mixed oxides

    International Nuclear Information System (INIS)

    Di Patrizio, Nicolas

    2015-01-01

    An automated experimental set-up with rapid mixers is used to study the influence of mixing conditions on the co-precipitation of cerium-zirconium mixed oxides. The intensity of mixing is controlled by the inlet flow rates of the reacting solutions. An engulfment model is used to estimate a mixing time from the measurement of a segregation index by the Villermaux-Dushman reaction system. Three geometries of Hartridge Roughton mixers are compared. Mixing performance is better when a separate mixing chamber upstream of a narrower outlet pipe is present. A better mixing decreases the maximal reducibility temperature of the material and increases the crystal strains of the particles calcined at 1100 C. This is probably due to a better homogenization of the particles content. The important incorporation of nitrates in the particle at the outlet of the mixers shows precipitation occurs while the mixing process is not finished. This experimental result was confirmed by numerical simulation and an estimation of sur-saturations during the mixing process. (author)

  9. Safety in the Chemical Laboratory--Chemical Management: A Method for Waste Reduction.

    Science.gov (United States)

    Pine, Stanley H.

    1984-01-01

    Discusses methods for reducing or eliminating waste disposal problems in the chemistry laboratory, considering both economic and environmental aspects of the problems. Proposes inventory control, shared use, solvent recycling, zero effluent, and various means of disposing of chemicals. (JM)

  10. Calculation of Multiphase Chemical Equilibrium by the Modified RAND Method

    DEFF Research Database (Denmark)

    Tsanas, Christos; Stenby, Erling Halfdan; Yan, Wei

    2017-01-01

    method. The modified RAND extends the classical RAND method from single-phase chemical reaction equilibrium of ideal systems to multiphase chemical equilibrium of nonideal systems. All components in all phases are treated in the same manner and the system Gibbs energy can be used to monitor convergence....... This is the first time that modified RAND was applied to multiphase chemical equilibrium systems. The combined algorithm was tested using nine examples covering vapor–liquid (VLE) and vapor–liquid–liquid equilibria (VLLE) of ideal and nonideal reaction systems. Successive substitution provided good initial......A robust and efficient algorithm for simultaneous chemical and phase equilibrium calculations is proposed. It combines two individual nonstoichiometric solving procedures: a nested-loop method with successive substitution for the first steps and final convergence with the second-order modified RAND...

  11. Chemical analysis of cyanide in cyanidation process: review of methods

    International Nuclear Information System (INIS)

    Nova-Alonso, F.; Elorza-Rodriguez, E.; Uribe-Salas, A.; Perez-Garibay, R.

    2007-01-01

    Cyanidation, the world wide method for precious metals recovery, the chemical analysis of cyanide, is a very important, but complex operation. Cyanide can be present forming different species, each of them with different stability, toxicity, analysis method and elimination technique. For cyanide analysis, there exists a wide selection of analytical methods but most of them present difficulties because of the interference of species present in the solution. This paper presents the different available methods for chemical analysis of cyanide: titration, specific electrode and distillation, giving special emphasis on the interferences problem, with the aim of helping in the interpretation of the results. (Author)

  12. Chemical compositions, methods of making the chemical compositions, and structures made from the chemical compositions

    Science.gov (United States)

    Yang, Lei; Cheng, Zhe; Liu, Ze; Liu, Meilin

    2015-01-13

    Embodiments of the present disclosure include chemical compositions, structures, anodes, cathodes, electrolytes for solid oxide fuel cells, solid oxide fuel cells, fuel cells, fuel cell membranes, separation membranes, catalytic membranes, sensors, coatings for electrolytes, electrodes, membranes, and catalysts, and the like, are disclosed.

  13. Radionuclide co-precipitation

    International Nuclear Information System (INIS)

    Bruno, J.; Sandino, A.

    1987-12-01

    The thermodynamic and kinetic behaviour of the minor components of the spent fuel matrix has been theoretically and experimentally investigated. Two different situations have been studied: Part I, the near field scenario, where the release and migration of the minor components is dependent on the solubility behaviour of UO 2 (s); Part II, the far field, where the solubility and transport of the radionuclides is related to the major geochemical processes occurring. (orig.)

  14. Automated methods for thorium determination in liquids, solids and aerosols

    International Nuclear Information System (INIS)

    Robertson, R.; Stuart, J.E.

    1984-01-01

    Methodology for determining trace thorium levels in a variety of sample types for compliance purposes was developed. Thorium in filtered water samples is concentrated by ferric hydroxide co-precipitation. Aerosols on glass-fibre, cellulose ester or teflon filters are acid digested and thorium is concentrated by lanthanum fluoride co-precipitation. Chemical separation and measurement are then done on a Technicon AAII-C auto-analyzer via TTA-solvent extraction and colorimetry using the thorium-arsenazo III colour complex. Solid samples are acid digested and thorium is concentrated and separated using lanthanum fluoride co-precipitation followed by anion-exchange chromatography. Measurement is then carried out on the autoanalyzer by direct development of the thorium-arsenazo III colour complex. Chemical yields are determined through the addition of thorium-234 tracer with assay by gamma-ray spectrometry. The sensitivities of the methods for liquids, aerosols and solids are approximately 1μg/L,0.5μg and 0.5 μg/g respectively. At thorium levels about ten times the detection limits, accuracy and reproducibility are typically +-10 percent for liquids and aerosols and +- 15 percent for solid samples

  15. Chemical Methods to Knock Down the Amyloid Proteins

    Directory of Open Access Journals (Sweden)

    Na Gao

    2017-06-01

    Full Text Available Amyloid proteins are closely related with amyloid diseases and do tremendous harm to human health. However, there is still a lack of effective strategies to treat these amyloid diseases, so it is important to develop novel methods. Accelerating the clearance of amyloid proteins is a favorable method for amyloid disease treatment. Recently, chemical methods for protein reduction have been developed and have attracted much attention. In this review, we focus on the latest progress of chemical methods that knock down amyloid proteins, including the proteolysis-targeting chimera (PROTAC strategy, the “recognition-cleavage” strategy, the chaperone-mediated autophagy (CMA strategy, the selectively light-activatable organic and inorganic molecules strategy and other chemical strategies.

  16. Electrical Conduction Mechanism and Dielectric Properties of Spherical Shaped Fe₃O₄ Nanoparticles Synthesized by Co-Precipitation Method.

    Science.gov (United States)

    Radoń, Adrian; Łukowiec, Dariusz; Kremzer, Marek; Mikuła, Jarosław; Włodarczyk, Patryk

    2018-05-05

    On the basis of dielectric measurements performed in a wide temperature range (173⁻373 K), a comprehensive analysis of the dielectric and electrical properties of magnetite nanoparticles electrical conduction mechanism of compressed spherical shaped Fe₃O₄ nanoparticles was proposed. The electrical conductivity of Fe₃O₄ nanoparticles was related to two different mechanisms (correlated barrier hopping and non-overlapping small polaron tunneling mechanisms); the transition between them was smooth. Additionally, role of grains and grain boundaries with charge carrier mobility and with observed hopping mechanism was described in detail. It has been confirmed that conductivity dispersion (as a function of frequencies) is closely related to both the long-range mobility (conduction mechanism associated with grain boundaries) and to the short-range mobility (conduction mechanism associated with grains). Calculated electron mobility increases with temperature, which is related to the decreasing value of hopping energy for the tunneling of small polarons. The opposite scenario was observed for the value of electron hopping energy.

  17. EPR and photoluminescence properties of Mn2+ doped CdS nanoparticles synthesized via co-precipitation method.

    Science.gov (United States)

    Gupta, Atul K; Kripal, Ram

    2012-10-01

    The structural properties of Mn doped CdS (Mn:CdS) nanoparticles (NPs) are studied using X-ray diffraction (XRD), Transmission electron microscopy (TEM), Ultraviolet-visible (UV-vis), Photoluminescence (PL), Raman and Electron paramagnetic resonance (EPR) spectroscopy. XRD analysis shows the nanostructure with 2-4 nm of average crystallite size. The planes (110), (103) and (112) in XRD pattern distinguish the wurtzite structure of the Mn:CdS NPs. The intensity of the plane (102) increases as the doping concentration of Mn(2+) increases. UV-vis absorption spectra show blue shift as compared to bulk CdS. The optical band gap energy of Mn(2+) (0, 0.35, 0.70 and 1.35 at.%) doped CdS NPs corresponding to absorption edge are found to be 5.29, 5.28, 5.25 and 5.21 eV, respectively. The intensity of luminescence is changing with the concentration of Mn(2+) doped in CdS NPs. Raman spectra show blue shift in fundamental optical phonon mode (1LO) as well as second optical phonon mode (2LO) as compared to bulk CdS. The intensity ratio of the 2LO to 1LO modes slightly decreases as Mn(2+) concentration increases. EPR shows the existence of Mn(2+) with different local structures in CdS nanoparticles. The values of spectroscopic splitting factor (g) and hyperfine interaction constant (A) decrease as Mn(2+) concentration increases in CdS NPs. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Effect of drying methods on the chemical composition of three ...

    African Journals Online (AJOL)

    Three methods of drying (oven, sun and smoke) were used to dry Bonga spp., Sardinella spp. and Heterotis niloticus. The physico-chemical and minerals contents of the sample were determined using standard methods. Oven dried H. niloticus recorded the highest (16.42%) moisture content while the least moisture content ...

  19. A identification system for chemical warfare agents with PGNAA method

    International Nuclear Information System (INIS)

    Wang Bairong; Yin Guanghua; Yang Zhongping

    2006-01-01

    The principle and the experimental commanding of Chemical warfare Agents Identification with PGNAA method are discussed in this paper. The choosing of Detector, neutron source and the data processing method are detailed. Finally, a set of experimental instruments composed of Cf-232 and BGO detector is developed based on the theory discussed above. (authors)

  20. Identification system for chemical warfare agents with PGNAA method

    International Nuclear Information System (INIS)

    Wang Bairong; Yin Guanghua; Yang Zhongpin

    2007-01-01

    The principle and the experimental commanding of Chemical warfare Agents Identification with PGNAA method are discussed in this paper. The choosing of detector, neutron source and the data processing method are detailed. Finally, a set of experimental instruments composed of Cf-232 and BGO detector is developed based on this theory discussed above. (authors)

  1. Methods of uranium isotpic separation by chemical exchange chromatography

    International Nuclear Information System (INIS)

    Pena V, L.A.; Valle M, L.

    1985-01-01

    Chemical exchange chromatography as applied to isotope separation has undergone a constant development during the last few years. The results so far indicate that this method could eventually become commercially useful. This work presents a critical review of the experimental methods presently under study by principal research groups, and which have not get been compared. (Author)

  2. Insights: A New Method to Balance Chemical Equations.

    Science.gov (United States)

    Garcia, Arcesio

    1987-01-01

    Describes a method designed to balance oxidation-reduction chemical equations. Outlines a method which is based on changes in the oxidation number that can be applied to both molecular reactions and ionic reactions. Provides examples and delineates the steps to follow for each type of equation balancing. (TW)

  3. New methods of sup(111)In chemical separation

    International Nuclear Information System (INIS)

    Santos, D.F.; Osso Junior, J.A.; Bastos, M.A.V.; Britto, J.L.Q.; Silva, R.F.

    1986-01-01

    The cation exchange and thermochromatography methods for chemical separation of sup(111) In from silver targets are described. The cation exchange method is based on the difference between In and Ag distribution coefficients on cation exchange resin treated with HNO sub(3). The thermochromatography consists of indium diffusion on silver melted after sublimation and posterior condensation. (M.C.K.)

  4. Structural, dielectric and magnetic properties of Bi{sub 1−x}Y{sub x}FeO{sub 3} (0⩽x⩽0.2) obtained by acid–base co-precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Medina, Leila María Saleh [Instituto de Química Física de Materiales, Ambiente y Energía (INQUIMAE), Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina); Jorge, Guillermo A. [Instituto de Ciencias, Universidad Nacional de General Sarmiento, Buenos Aires (Argentina); Martín Negri, R., E-mail: rmn@qi.fcen.uba.ar [Instituto de Química Física de Materiales, Ambiente y Energía (INQUIMAE), Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina)

    2014-04-01

    Highlights: • Yttrium-substituted bismuth-iron oxides were prepared by co-precipitation synthesis. • Single-phase materials with absence of other bismuth-oxides were obtained. • Strong dependence of magnetic and electrical properties with yttrium percentage at RT. • Magnetic and electric properties are related to particle size and structural changes. - Abstract: Bismuth–iron oxides with partial substitution of bismuth by yttrium, referred as (Bi{sub 1−x}Y{sub x})FeO{sub 3}, were synthesized by simple-low cost acid–base co-precipitation method, which constitutes a difference with the currently used synthetic methods for obtaining BiFeO{sub 3}-doped compounds (e.g. polymer assisted sol–gel, solid state, microwave, etc.) Samples were characterized by XRD, EDS, SEM, TEM, DSC and FTIR. The influence of yttrium (Y) substitution on magnetization curves of (Bi{sub 1−x}Y{sub x})FeO{sub 3} powders were studied at room temperature by VSM. The particle size systematically decreases with the Y percentage. Ferromagnetic curves were obtained at room temperature for Y-percentage lower than 20% with relatively large values of the coercive field, H{sub c}, which increases with Y-substitution, while for 20% yttrium a superparamagnetic behavior is observed. The electrical impedance of compressed disks were investigated also by impedance analysis in the range 1Hz–1MHz and the results were successfully fitted by a simple parallel R–C model. The dc-leakage currents are lower than previously reported for (Bi{sub 1−x}Y{sub x})FeO{sub 3} compounds and for most of the doped-BiFeO{sub 3} ceramics. As a difference with the influence on the magnetic behavior, the doping with yttrium does not seem to have a large influence on the dielectrical properties. These results suggest that magnetization can be systematically modified by the relatively simple co-precipitation synthesis while keeping invariable the dielectrical properties.

  5. Arsenic Removal from Groundwater by Solar Driven Inline-Electrolytic Induced Co-Precipitation and Filtration—A Long Term Field Test Conducted in West Bengal

    OpenAIRE

    Otter, Philipp; Malakar, Pradyut; Jana, Bana Bihari; Grischek, Thomas; Benz, Florian; Goldmaier, Alexander; Feistel, Ulrike; Jana, Joydev; Lahiri, Susmita; Alvarez, Juan Antonio

    2017-01-01

    Arsenic contamination in drinking water resources is of major concern in the Ganga delta plains of West Bengal in India and Bangladesh. Here, several laboratory and field studies on arsenic removal from drinking water resources were conducted in the past and the application of strong-oxidant-induced co-precipitation of arsenic on iron hydroxides is still considered as the most promising mechanism. This paper suggests an autonomous, solar driven arsenic removal setting and presents the finding...

  6. Quality-by-Design (QbD): An integrated process analytical technology (PAT) approach for a dynamic pharmaceutical co-precipitation process characterization and process design space development.

    Science.gov (United States)

    Wu, Huiquan; White, Maury; Khan, Mansoor A

    2011-02-28

    The aim of this work was to develop an integrated process analytical technology (PAT) approach for a dynamic pharmaceutical co-precipitation process characterization and design space development. A dynamic co-precipitation process by gradually introducing water to the ternary system of naproxen-Eudragit L100-alcohol was monitored at real-time in situ via Lasentec FBRM and PVM. 3D map of count-time-chord length revealed three distinguishable process stages: incubation, transition, and steady-state. The effects of high risk process variables (slurry temperature, stirring rate, and water addition rate) on both derived co-precipitation process rates and final chord-length-distribution were evaluated systematically using a 3(3) full factorial design. Critical process variables were identified via ANOVA for both transition and steady state. General linear models (GLM) were then used for parameter estimation for each critical variable. Clear trends about effects of each critical variable during transition and steady state were found by GLM and were interpreted using fundamental process principles and Nyvlt's transfer model. Neural network models were able to link process variables with response variables at transition and steady state with R(2) of 0.88-0.98. PVM images evidenced nucleation and crystal growth. Contour plots illustrated design space via critical process variables' ranges. It demonstrated the utility of integrated PAT approach for QbD development. Published by Elsevier B.V.

  7. APPLICATION OF CHEMICAL METHODS TO THE SOLID WASTE MANAGEMENT

    Directory of Open Access Journals (Sweden)

    C. P. Bulimaga

    2008-12-01

    Full Text Available The present article is a synthesis analysis of application of chemical methods for the development of technologies of hazardous waste management. Here are offered some technologies of neutralization of the waste containing hexacyanofferates, galvanic wastes and those with contain of vanadium, which are collected at Power Thermoelectric Plants.

  8. Comparison of traditional physico-chemical methods and molecular ...

    African Journals Online (AJOL)

    This study was aim to review the efficiency of molecular markers and traditional physico-chemical methods for the identification of basmati rice. The study involved 44 promising varieties of Indica rices collected from geographically distant places and adapted to irrigated and aerobic agro-ecosystems. Quality data for ...

  9. Effect of integration of cultural, botanical, and chemical methods of ...

    African Journals Online (AJOL)

    A field experiment was conducted from November 2011 to June 2013 to evaluate the effects of botanical, cultural, and chemical methods on termite colony survival, crop and wooden damage, and other biological activities in Ghimbi district of western Ethiopia. The termite mounds were dug and the following treatments were ...

  10. Electrochemical and chemical methods of metallizing plastic films

    OpenAIRE

    Chapples, J.

    1991-01-01

    This thesis describes two novel techniques for the metallization of non-electroactive polymer films and thicker sectioned polyethylene and nylon substrates. In the first approach, non-electroactive polymer substrates were impregnated with surface layers of polypyrrole and polyaniline, using electrochemical and chemical methods of polymerization. The relative merits of both these approaches are discussed and compared with other methods in the literature. The resultant composi...

  11. Soil chemical sensor and precision agricultural chemical delivery system and method

    Science.gov (United States)

    Colburn, Jr., John W.

    1991-01-01

    A real time soil chemical sensor and precision agricultural chemical delivery system includes a plurality of ground-engaging tools in association with individual soil sensors which measure soil chemical levels. The system includes the addition of a solvent which rapidly saturates the soil/tool interface to form a conductive solution of chemicals leached from the soil. A multivalent electrode, positioned within a multivalent frame of the ground-engaging tool, applies a voltage or impresses a current between the electrode and the tool frame. A real-time soil chemical sensor and controller senses the electrochemical reaction resulting from the application of the voltage or current to the leachate, measures it by resistivity methods, and compares it against pre-set resistivity levels for substances leached by the solvent. Still greater precision is obtained by calibrating for the secondary current impressed through solvent-less soil. The appropriate concentration is then found and the servo-controlled delivery system applies the appropriate amount of fertilizer or agricultural chemicals substantially in the location from which the soil measurement was taken.

  12. Manual of selected physico-chemical analytical methods. IV

    International Nuclear Information System (INIS)

    Beran, M.; Klosova, E.; Krtil, J.; Sus, F.; Kuvik, V.; Vrbova, L.; Hamplova, M.; Lengyel, J.; Kelnar, L.; Zakouril, K.

    1990-11-01

    The Central Testing Laboratory of the Nuclear Research Institute at Rez has for a decade been participating in the development of analytical procedures and has been providing analyses of samples of different types and origin. The analytical procedures developed have been published in special journals and a number of them in the Manuals of analytical methods, in three parts. The 4th part of the Manual contains selected physico-chemical methods developed or modified by the Laboratory in the years 1986-1990 within the project ''Development of physico-chemical analytical methods''. In most cases, techniques are involved for non-nuclear applications. Some can find wider applications, especially in analyses of environmental samples. Others have been developed for specific cases of sample analyses or require special instrumentation (mass spectrometer), which partly restricts their applicability by other institutions. (author)

  13. Method for fractional solid-waste sampling and chemical analysis

    DEFF Research Database (Denmark)

    Riber, Christian; Rodushkin, I.; Spliid, Henrik

    2007-01-01

    four subsampling methods and five digestion methods, paying attention to the heterogeneity and the material characteristics of the waste fractions, it was possible to determine 61 substances with low detection limits, reasonable variance, and high accuracy. For most of the substances of environmental...... of variance (20-85% of the overall variation). Only by increasing the sample size significantly can this variance be reduced. The accuracy and short-term reproducibility of the chemical characterization were good, as determined by the analysis of several relevant certified reference materials. Typically, six...... to eight different certified reference materials representing a range of concentrations levels and matrix characteristics were included. Based on the documentation provided, the methods introduced were considered satisfactory for characterization of the chemical composition of waste-material fractions...

  14. Method for innovative synthesis-design of chemical process flowsheets

    DEFF Research Database (Denmark)

    Kumar Tula, Anjan; Gani, Rafiqul

    Chemical process synthesis-design involve the identification of the processing route to reach a desired product from a specified set of raw materials, design of the operations involved in the processing route, the calculations of utility requirements, the calculations of waste and emission...... to the surrounding and many more. Different methods (knowledge-based [1], mathematical programming [2], hybrid, etc.) have been proposed and are also currently employed to solve these synthesis-design problems. D’ Anterroches [3] proposed a group contribution based approach to solve the synthesis-design problem...... of chemical processes, where, chemical process flowsheets could be synthesized in the same way as atoms or groups of atoms are synthesized to form molecules in computer aided molecular design (CAMD) techniques [4]. That, from a library of building blocks (functional process-groups) and a set of rules to join...

  15. ZnS nanoflakes deposition by modified chemical method

    International Nuclear Information System (INIS)

    Desai, Mangesh A.; Sartale, S. D.

    2014-01-01

    We report deposition of zinc sulfide nanoflakes on glass substrates by modified chemical method. The modified chemical method involves adsorption of zinc–thiourea complex on the substrate and its dissociation in presence of hydroxide ions to release sulfur ions from thiourea which react with zinc ions present in the complex to form zinc sulfide nanoflakes at room temperature. Influence of zinc salt and thiourea concentrations ratios on the morphology of the films was investigated by scanning electron microscope (SEM). The ratio of zinc and thiourea in the zinc–thiourea complex significantly affect the size of the zinc sulfide nanoflakes, especially width and density of the nanoflakes. The X-ray diffraction analysis exhibits polycrystalline nature of the zinc sulfide nanoflakes with hexagonal phase

  16. Method and apparatus for controlling gas evolution from chemical reactions

    Science.gov (United States)

    Skorpik, James R.; Dodson, Michael G.

    1999-01-01

    The present invention is directed toward monitoring a thermally driven gas evolving chemical reaction with an acoustic apparatus. Signals from the acoustic apparatus are used to control a heater to prevent a run-away condition. A digestion module in combination with a robotic arm further automate physical handling of sample material reaction vessels. The invention is especially useful for carrying out sample procedures defined in EPA Methods SW-846.

  17. Study on magnetite nanoparticles synthesized by chemical method

    International Nuclear Information System (INIS)

    Pei Wenli; Kumada, H.; Natusme, T.; Saito, H.; Ishio, S.

    2007-01-01

    Magnetite nanoparticles with controlled size were synthesized by chemical method. Higher deposition temperature and a rapid-raising temperature procedure are favorable to particle size distribution and fabrication of monodisperse nanoparticles. The larger nanoparticles can be synthesized by the two-step method. The large nanoparticle (up to 25 nm) without agglomeration was successfully produced. The saturation magnetization of 11 nm magnetite particles was 45 emu/g at room temperature, which is smaller than that of bulk magnetite due to surface effect. Hysteresis of the magnetite nanoparticle was very small, indicating superparamagnetic behavior. The magnetic domains of the 11 nm magnetite nanoparticles were successfully observed by MFM

  18. Approximate method for stochastic chemical kinetics with two-time scales by chemical Langevin equations

    International Nuclear Information System (INIS)

    Wu, Fuke; Tian, Tianhai; Rawlings, James B.; Yin, George

    2016-01-01

    The frequently used reduction technique is based on the chemical master equation for stochastic chemical kinetics with two-time scales, which yields the modified stochastic simulation algorithm (SSA). For the chemical reaction processes involving a large number of molecular species and reactions, the collection of slow reactions may still include a large number of molecular species and reactions. Consequently, the SSA is still computationally expensive. Because the chemical Langevin equations (CLEs) can effectively work for a large number of molecular species and reactions, this paper develops a reduction method based on the CLE by the stochastic averaging principle developed in the work of Khasminskii and Yin [SIAM J. Appl. Math. 56, 1766–1793 (1996); ibid. 56, 1794–1819 (1996)] to average out the fast-reacting variables. This reduction method leads to a limit averaging system, which is an approximation of the slow reactions. Because in the stochastic chemical kinetics, the CLE is seen as the approximation of the SSA, the limit averaging system can be treated as the approximation of the slow reactions. As an application, we examine the reduction of computation complexity for the gene regulatory networks with two-time scales driven by intrinsic noise. For linear and nonlinear protein production functions, the simulations show that the sample average (expectation) of the limit averaging system is close to that of the slow-reaction process based on the SSA. It demonstrates that the limit averaging system is an efficient approximation of the slow-reaction process in the sense of the weak convergence.

  19. A feasibility study of the preparation of (U,Gd)3O8 solid solutions by thermal decomposition of co-precipitated carbonate mixtures

    International Nuclear Information System (INIS)

    Ravindran, P.V.; Rajagopalan, K.V.; Mathur, K.P.

    1998-01-01

    Co-precipitation from equimolar nitrate solutions of uranium (VI) and gadolinium has been used to obtain a mixture of (NH 4 ) 4 UO 2 (CO 3 ) 3 and Gd 2 (CO 3 ) 3 .3H 2 O at a pre-determined composition. Simultaneous measurements by TG, DTA and evolved gas analysis (EGA) showed that a calcination temperature of 700 C was necessary to decompose the carbonate completely to oxides. X-ray diffraction data indicated that a solid solution of Gd 2 O 3 in U 3 O 8 cannot be obtained by heating the carbonate mixtures up to 800 C in inert atmospheres. (orig.)

  20. Co-precipitation of radium with barium and strontium sulfate and its impact on the fate of radium during treatment of produced water from unconventional gas extraction.

    Science.gov (United States)

    Zhang, Tieyuan; Gregory, Kelvin; Hammack, Richard W; Vidic, Radisav D

    2014-04-15

    Radium occurs in flowback and produced waters from hydraulic fracturing for unconventional gas extraction along with high concentrations of barium and strontium and elevated salinity. Radium is often removed from this wastewater by co-precipitation with barium or other alkaline earth metals. The distribution equation for Ra in the precipitate is derived from the equilibrium of the lattice replacement reaction (inclusion) between the Ra(2+) ion and the carrier ions (e.g., Ba(2+) and Sr(2+)) in aqueous and solid phases and is often applied to describe the fate of radium in these systems. Although the theoretical distribution coefficient for Ra-SrSO4 (Kd = 237) is much larger than that for Ra-BaSO4 (Kd = 1.54), previous studies have focused on Ra-BaSO4 equilibrium. This study evaluates the equilibria and kinetics of co-precipitation reactions in Ra-Ba-SO4 and Ra-Sr-SO4 binary systems and the Ra-Ba-Sr-SO4 ternary system under varying ionic strength (IS) conditions that are representative of brines generated during unconventional gas extraction. Results show that radium removal generally follows the theoretical distribution law in binary systems and is enhanced in the Ra-Ba-SO4 system and restrained in the Ra-Sr-SO4 system by high IS. However, the experimental distribution coefficient (Kd') varies widely and cannot be accurately described by the distribution equation, which depends on IS, kinetics of carrier precipitation and does not account for radium removal by adsorption. Radium removal in the ternary system is controlled by the co-precipitation of Ra-Ba-SO4, which is attributed to the rapid BaSO4 nucleation rate and closer ionic radii of Ra(2+) with Ba(2+) than with Sr(2+). Carrier (i.e., barite) recycling during water treatment was shown to be effective in enhancing radium removal even after co-precipitation was completed. Calculations based on experimental results show that Ra levels in the precipitate generated in centralized waste treatment facilities far

  1. Investigation of chemical equilibrium kinetics by the electromigration method

    International Nuclear Information System (INIS)

    Bozhikov, G.A.; Ivanov, P.I.; Maslov, O.D.; Dmitriev, S.N.; Bontchev, G.D.; Milanov, M.V.

    2003-01-01

    The measurement of the chemical reaction rates for complex formation as well as hydrolysis type reactions by the method of horizontal zone electrophoresis is outlined. The correlation between chemical equilibrium kinetics and electrodiffusion processes in a constant d.c. electric field is described. In model electromigration experiments the reaction rate constant of the formation a complex by Hf(IV) and diethylenetriaminepentaacetic acid (DTPA) is determined. The electrophoretic mobility, diffusion coefficient and stability constant of the [HfDTPA] - complex are calculated, taking into account experimental electrophoretic data obtained at 298.15±0.05 K and constant ionic strength. No-carrier-added 175 Hf radionuclide was used in electromigration experiments at concentrations of 10 -10 -10 -11 M. (orig.)

  2. An experimental design method leading to chemical Turing patterns.

    Science.gov (United States)

    Horváth, Judit; Szalai, István; De Kepper, Patrick

    2009-05-08

    Chemical reaction-diffusion patterns often serve as prototypes for pattern formation in living systems, but only two isothermal single-phase reaction systems have produced sustained stationary reaction-diffusion patterns so far. We designed an experimental method to search for additional systems on the basis of three steps: (i) generate spatial bistability by operating autoactivated reactions in open spatial reactors; (ii) use an independent negative-feedback species to produce spatiotemporal oscillations; and (iii) induce a space-scale separation of the activatory and inhibitory processes with a low-mobility complexing agent. We successfully applied this method to a hydrogen-ion autoactivated reaction, the thiourea-iodate-sulfite (TuIS) reaction, and noticeably produced stationary hexagonal arrays of spots and parallel stripes of pH patterns attributed to a Turing bifurcation. This method could be extended to biochemical reactions.

  3. A method of refining aromatic hydrocarbons from coal chemical production

    Energy Technology Data Exchange (ETDEWEB)

    Zieborak, K.; Koprowski, A.; Ratajczak, W.

    1979-10-01

    A method is disclosed for refining aromatic hydrocarbons of coal chemical production by contact of liquid aromatic hydrocarbons and their mixtures with a strongly acid macroporous sulfocationite in the H-form at atmospheric pressure and high temperature. The method is distinguished in that the aromatic hydrocarbons and their mixtures, from which alkali compounds have already been removed, are supplied for refinement with the sulfocationite with simultaneous addition of olefin derivatives of aromatic hydrocarbons, followed by separation of pure hydrocarbons by rectification. Styrene or alpha-methylstyrene is used as the olefin derivatives of the aromatic hydrocarbons. The method is performed in several stages with addition of olefin derivatives of aromatic hydrocarbons at each stage.

  4. Methods of chemical and phase composition analysis of gallstones

    Science.gov (United States)

    Suvorova, E. I.; Pantushev, V. V.; Voloshin, A. E.

    2017-11-01

    This review presents the instrumental methods used for chemical and phase composition investigation of gallstones. A great body of data has been collected in the literature on the presence of elements and their concentrations, obtained by fluorescence microscopy, X-ray fluorescence spectroscopy, neutron activation analysis, proton (particle) induced X-ray emission, atomic absorption spectroscopy, high-resolution gamma-ray spectrometry, electron paramagnetic resonance. Structural methods—powder X-ray diffraction, infrared spectroscopy, Raman spectroscopy—provide information about organic and inorganic phases in gallstones. Stone morphology was studied at the macrolevel with optical microscopy. Results obtained by analytical scanning and transmission electron microscopy with X-ray energy dispersive spectrometry are discussed. The chemical composition and structure of gallstones determine the strategy of removing stone from the body and treatment of patients: surgery or dissolution in the body. Therefore one chapter of the review describes the potential of dissolution methods. Early diagnosis and appropriate treatment of the disease depend on the development of clinical methods for in vivo investigation, which gave grounds to present the main characteristics and potential of ultrasonography (ultrasound scanning), magnetic resonance imaging, and X-ray computed tomography.

  5. In situ co-precipitation preparation of a superparamagnetic graphene oxide/Fe3O4 nanocomposite as an adsorbent for wastewater purification: synthesis, characterization, kinetics, and isotherm studies.

    Science.gov (United States)

    Pu, Shengyan; Xue, Shengyang; Yang, Zeng; Hou, Yaqi; Zhu, Rongxin; Chu, Wei

    2018-04-13

    A superparamagnetic graphene oxide (GO)/Fe 3 O 4 nanocomposite (MGO) was prepared by a facile in situ co-precipitation strategy, resulting in a prospective material for the application of graphene oxide in wastewater treatment. MGO was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The prepared adsorbent showed a high adsorption efficiency relevant to the purification of dye-contaminated wastewater and could be readily magnetically separated. The maximum adsorption capacity was ca. 546.45 mg g -1 for the common cationic dye methylene blue (MB) and ca. 628.93 mg g -1 for the anionic dye Congo red (CR). The adsorption processes fit the pseudo-second-order kinetic model well, which revealed that these processes may involve the chemical interaction between adsorbate and adsorbent. The thermodynamic parameters indicated that the adsorption reaction was an endothermic and spontaneous process. Furthermore, the prepared magnetic adsorbent had a wide effective pH range from 5 to 11 and showed good stability after five reuse cycles. The synthetic MGO showed great potential as a promising adsorbent for organic contaminant removal in wastewater treatment.

  6. AN ANALYTICAL METHOD FOR CHEMICAL SPECIATION OF SELENIUM IN SOIL

    Directory of Open Access Journals (Sweden)

    Constantin Luca

    2010-10-01

    Full Text Available Selenium is an essential microelement, sometimes redoubtable, through its beneficial role - risk depending on its concentration in the food chain, at low dose is an important nutrient in the life of humans and animals, contrary at high doses, it becomes toxic. Selenium may be find itself in the environment (soil, sediment, water in many forms (oxidized, reduced, organometallic which determine their mobility and toxicity. Determination of chemical speciation (identification of different chemical forms provides much more complete information for a better understanding of the behavior and the potential impact on the environment. In this work we present the results of methodological research on the extraction of sequential forms of selenium in the soil and the coupling of analytical methods capable of identifying very small amounts of selenium in soils An efficient scheme of sequential extractions forms of selenium (SES consisting in atomic absorption spectrometry coupled with hydride generation (HGAAS has been developed into five experimental steps, detailed in the paper. This operational scheme has been applied to the analysis of chemical speciation in the following areas: the Bărăgan Plain and Central Dobrogea of Romania.

  7. Use of ab initio quantum chemical methods in battery technology

    Energy Technology Data Exchange (ETDEWEB)

    Deiss, E [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Ab initio quantum chemistry can nowadays predict physical and chemical properties of molecules and solids. An attempt should be made to use this tool more widely for predicting technologically favourable materials. To demonstrate the use of ab initio quantum chemistry in battery technology, the theoretical energy density (energy per volume of active electrode material) and specific energy (energy per mass of active electrode material) of a rechargeable lithium-ion battery consisting of a graphite electrode and a nickel oxide electrode has been calculated with this method. (author) 1 fig., 1 tab., 7 refs.

  8. Synthesis of Lead Sulfide Nanoparticles by Chemical Precipitation Method

    International Nuclear Information System (INIS)

    Chongad, L S; Sharma, A; Banerjee, M; Jain, A

    2016-01-01

    Lead sulfide (PbS) nanoparticles were prepared by chemical precipitation method (CPM) with the assistance of H 2 S gas. The microstructure and morphology of the synthesized nanoparticles have been investigated using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The XRD patterns of the PbS nanoparticles reveal formation of cubic phase. To investigate the quality of prepared nanoparticles, the particles size, lattice constant, strain, dislocation density etc. have been determined using XRD. TEM images reveal formation of cubic nanoparticles and the particle size determined from TEM images agree well with those from XRD. (paper)

  9. Alternative Chemical Amplification Methods for Peroxy Radical Detection

    Science.gov (United States)

    Wood, E. C. D.

    2014-12-01

    Peroxy radicals (HO2, CH3O2, etc.) are commonly detected by the chemical amplification technique, in which ambient air is mixed with high concentrations of CO and NO, initiating a chain reaction that produces 30 - 200 NO2 molecules per sampled peroxy radical. The NO2 is then measured by one of several techniques. With the exception of CIMS-based techniques, the chemical amplification method has undergone only incremental improvements since it was first introduced in 1982. The disadvantages of the technique include the need to use high concentrations of CO and the greatly reduced sensitivity of the amplification chain length in the presence of water vapor. We present a new chemical amplification scheme in which either ethane or acetaldehyde is used in place of CO, with the NO2 product detected using Cavity Attenuated Phase Shift spectroscopy (CAPS). Under dry conditions, the amplification factor of the alternative amplifiers are approximately six times lower than the CO-based amplifier. The relative humidity "penalty" is not as severe, however, such that at typical ambient relative humidity (RH) values the amplification factor is within a factor of three of the CO-based amplifier. Combined with the NO2 sensitivity of CAPS and a dual-channel design, the detection limit of the ethane amplifier is less than 2 ppt (1 minute average, signal-to-noise ratio 2). The advantages of these alternative chemical amplification schemes are improved safety, a reduced RH correction, and increased sensitivity to organic peroxy radicals relative to HO2.

  10. Facile synthesis of radial-like macroporous superparamagnetic chitosan spheres with in-situ co-precipitation and gelation of ferro-gels.

    Directory of Open Access Journals (Sweden)

    Chih-Hui Yang

    Full Text Available Macroporous chitosan spheres encapsulating superparamagnetic iron oxide nanoparticles were synthesized by a facile and effective one-step fabrication process. Ferro-gels containing ferrous cations, ferric cations and chitosan were dropped into a sodium hydroxide solution through a syringe pump. In addition, a sodium hydroxide solution was employed for both gelation (chitosan and co-precipitation (ferrous cations and ferric cations of the ferro-gels. The results showed that the in-situ co-precipitation of ferro-ions gave rise to a radial morphology with non-spheroid macro pores (large cavities inside the chitosan spheres. The particle size of iron oxide can be adjusted from 2.5 nm to 5.4 nm by tuning the concentration of the sodium hydroxide solution. Using Fourier Transform Infrared Spectroscopy and X-ray diffraction spectra, the synthesized nanoparticles were illustrated as Fe(3O(4 nanoparticles. In addition, the prepared macroporous chitosan spheres presented a super-paramagnetic behaviour at room temperature with a saturation magnetization value as high as ca. 18 emu/g. The cytotoxicity was estimated using cell viability by incubating doses (0∼1000 µg/mL of the macroporous chitosan spheres. The result showed good viability (above 80% with alginate chitosan particles below 1000 µg/mL, indicating that macroporous chitosan spheres were potentially useful for biomedical applications in the future.

  11. Co-precipitation of phosphate and iron limits mitochondrial phosphate availability in Saccharomyces cerevisiae lacking the yeast frataxin homologue (YFH1).

    Science.gov (United States)

    Seguin, Alexandra; Santos, Renata; Pain, Debkumar; Dancis, Andrew; Camadro, Jean-Michel; Lesuisse, Emmanuel

    2011-02-25

    Saccharomyces cerevisiae cells lacking the yeast frataxin homologue (Δyfh1) accumulate iron in the mitochondria in the form of nanoparticles of ferric phosphate. The phosphate content of Δyfh1 mitochondria was higher than that of wild-type mitochondria, but the proportion of mitochondrial phosphate that was soluble was much lower in Δyfh1 cells. The rates of phosphate and iron uptake in vitro by isolated mitochondria were higher for Δyfh1 than wild-type mitochondria, and a significant proportion of the phosphate and iron rapidly became insoluble in the mitochondrial matrix, suggesting co-precipitation of these species after oxidation of iron by oxygen. Increasing the amount of phosphate in the medium decreased the amount of iron accumulated by Δyfh1 cells and improved their growth in an iron-dependent manner, and this effect was mostly transcriptional. Overexpressing the major mitochondrial phosphate carrier, MIR1, slightly increased the concentration of soluble mitochondrial phosphate and significantly improved various mitochondrial functions (cytochromes, [Fe-S] clusters, and respiration) in Δyfh1 cells. We conclude that in Δyfh1 cells, soluble phosphate is limiting, due to its co-precipitation with iron.

  12. Chemical methods for the determination of composition of cryolite

    International Nuclear Information System (INIS)

    Shivarudrappa, V.; Patil, B.N.; Marathe, S.G.; Jain, H.C.

    1989-01-01

    Preparation of uranium and plutonium alloys containing aluminium involves the use of cryolite and many times, cryolite which may be contaminated with alpha activity has to be analysed for its purity. In view of this, chemical methods for the determination of composition of commercial cryolite samples have been developed. Methods are standardised for the determination of individual constituents of cryolite viz., aluminium, sodium, fluoride and major impurities, calcium and magnesium. Studies on the dissolution of the sample, effect of one or more components on the determination of the other and their elimination are carried out. Aluminium and sodium are determined gravimetrically as oxinate and triple acetate respectively. Fluoride is determined by a volumetric procedure after cation exchange separtion of soluble fluoride. Calcium and magnesium are determined by a sequential pH-metri titration. This report describes the details of the procedures and the results of these studies for two commercial cryolite samples. (author). 7 tabs

  13. Method of waste stabilization with dewatered chemically bonded phosphate ceramics

    Science.gov (United States)

    Wagh, Arun; Maloney, Martin D.

    2010-06-29

    A method of stabilizing a waste in a chemically bonded phosphate ceramic (CBPC). The method consists of preparing a slurry including the waste, water, an oxide binder, and a phosphate binder. The slurry is then allowed to cure to a solid, hydrated CBPC matrix. Next, bound water within the solid, hydrated CBPC matrix is removed. Typically, the bound water is removed by applying heat to the cured CBPC matrix. Preferably, the quantity of heat applied to the cured CBPC matrix is sufficient to drive off water bound within the hydrated CBPC matrix, but not to volatalize other non-water components of the matrix, such as metals and radioactive components. Typically, a temperature range of between 100.degree. C.-200.degree. C. will be sufficient. In another embodiment of the invention wherein the waste and water have been mixed prior to the preparation of the slurry, a select amount of water may be evaporated from the waste and water mixture prior to preparation of the slurry. Another aspect of the invention is a direct anyhydrous CBPC fabrication method wherein water is removed from the slurry by heating and mixing the slurry while allowing the slurry to cure. Additional aspects of the invention are ceramic matrix waste forms prepared by the methods disclosed above.

  14. Quantum confinement of lead titanate nanocrystals by wet chemical method

    Energy Technology Data Exchange (ETDEWEB)

    Kaviyarasu, K., E-mail: kaviyarasuloyolacollege@gmail.com [UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology Laboratories, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, P O Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), Materials Research Department (MSD), iThemba LABS-National Research Foundation - NRF, 1 Old Faure Road, 7129, P O Box 722, Somerset West, Western Cape Province (South Africa); Manikandan, E., E-mail: maniphysics@gmail.com [Nanosciences African Network (NANOAFNET), Materials Research Department (MSD), iThemba LABS-National Research Foundation - NRF, 1 Old Faure Road, 7129, P O Box 722, Somerset West, Western Cape Province (South Africa); Central Research Laboratory, Sree Balaji Medical College & Hospital, Bharath University, Chrompet, Chennai, Tamil Nadu (India); Nuru, Z.Y. [UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology Laboratories, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, P O Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), Materials Research Department (MSD), iThemba LABS-National Research Foundation - NRF, 1 Old Faure Road, 7129, P O Box 722, Somerset West, Western Cape Province (South Africa); Maaza, M., E-mail: likmaaz@gmail.com [UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology Laboratories, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, P O Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), Materials Research Department (MSD), iThemba LABS-National Research Foundation - NRF, 1 Old Faure Road, 7129, P O Box 722, Somerset West, Western Cape Province (South Africa)

    2015-11-15

    Lead Titanate (PbTiO{sub 3)} is a category of the practical semiconductor metal oxides, which is widely applied in various scientific and industrial fields because of its catalytic, optical, and electrical properties. PbTiO{sub 3} nanocrystalline materials have attracted a wide attention due to their unique properties. PbTiO{sub 3} nanocrystals were investigated by X-ray diffraction (XRD) to identify the PbTiO{sub 3} nanocrystals were composed a tetragonal structure. The diameter of a single sphere was around 20 nm and the diameter reached up to 3 μm. The chemical composition of the samples and the valence states of elements were determined by X-ray photoelectron spectroscopy (XPS) in detail. - Highlights: • Single crystalline NSs of PbTiO{sub 3} fabricated by wet chemical method. • PbTiO{sub 3} NSs were uniform and continuous along the long axis. • Tetragonal perovskite structure with the diameter 20 nm and length 3 μm. • XPS spectrum was fitted with Lorentzian function respectively. • The size of the images is also 10 μm × 10 μm.

  15. Alcohol vapor sensing by cadmium-doped zinc oxide thick films based chemical sensor

    Science.gov (United States)

    Zargar, R. A.; Arora, M.; Chackrabarti, S.; Ahmad, S.; Kumar, J.; Hafiz, A. K.

    2016-04-01

    Cadmium-doped zinc oxide nanoparticles were derived by simple chemical co-precipitation route using zinc acetate dihydrate and cadmium acetate dihydrate as precursor materials. The thick films were casted from chemical co-precipitation route prepared nanoparticles by economic facile screen printing method. The structural, morphological, optical and electrical properties of the film were characterized relevant to alcohol vapor sensing application by powder XRD, SEM, UV-VIS and DC conductivity techniques. The response and sensitivity of alcohol (ethanol) vapor sensor are obtained from the recovery curves at optimum working temperature range from 20∘C to 50∘C. The result shows that maximum sensitivity of the sensor is observed at 25∘C operating temperature. On varying alcohol vapor concentration, minor variation in resistance has been observed. The sensing mechanism of sensor has been described in terms of physical adsorption and chemical absorption of alcohol vapors on cadmium-doped zinc oxide film surface and inside film lattice network through weak hydrogen bonding, respectively.

  16. Development of a benchtop baking method for chemically leavened crackers. II. Validation of the method

    Science.gov (United States)

    A benchtop baking method has been developed to predict the contribution of gluten functionality to overall flour performance for chemically leavened crackers. Using a diagnostic formula and procedure, dough rheology was analyzed to evaluate the extent of gluten development during mixing and machinin...

  17. ZnSe thin films by chemical bath deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Lokhande, C.D.; Patil, P.S.; Tributsch, H. [Hahn-Meitner-Institute, Bereich Physikalische Chemie, Abt. CS, Glienicker Strasse-100, D-14109 Berlin (Germany); Ennaoui, A. [Hahn-Meitner-Institute, Bereich Physikalische Chemie, Abt. CG, Glienicker Strasse-100, D-14109 Berlin (Germany)

    1998-09-04

    The ZnSe thin films have been deposited onto glass substrates by the simple chemical bath deposition method using selenourea as a selenide ion source from an aqueous alkaline medium. The effect of Zn ion concentration, bath temperature and deposition time period on the quality and thickness of ZnSe films has been studied. The ZnSe films have been characterized by XRD, TEM, EDAX, TRMC (time-resolved microwave conductivity), optical absorbance and RBS techniques for their structural, compositional, electronic and optical properties. The as-deposited ZnSe films are found to be amorphous, Zn rich with optical band gap, Eg, equal to 2.9 eV

  18. Trace impurities in coal by wet chemical methods

    International Nuclear Information System (INIS)

    Pollock, E.N.

    1975-01-01

    In determining trace elements in coal by wet chemical methods, conventional atomic absorption spectroscopy (AAS) was used to determine Li, Be, V, Cr, Mn, Co, Ni, Cu, Zn, Ag, Cd, and Pb after dry ashing and acid dissolutions. A graphite furnace accessory was used for the flameless AAS determination of Bi, Se, Sn, Te, Be, Pb, As, Cd, Cr, Sb, and Ge. Mercury can be determined by flameless AAS after oxygen bomb combustion. Arsenic and antimony can be determined as their hydrides by AAS after low temperature ashing. Germanium, tin, bismuth, and tellurium can be determined as their hydrides by AAS after high temperature ashing. Selenium can be determined as its hydride by AAS after a special combustion procedure or after oxygen bomb combustion. Fluorine can be determined by specific ion analysis after oxygen bomb combustion. Boron can be determined colorimetrically. (U.S.)

  19. Studies of coupled chemical and catalytic coal conversion methods

    Energy Technology Data Exchange (ETDEWEB)

    Stock, L.M.

    1990-01-01

    This report concerns our research on base-catalyzed coal solubilization and a new approach for hydrogen addition. The work on base-catalyzed, chemical solubilization is continuing. this report is focused on the hydrogenation research. Specifically it deals with the use of arene chromium carbonyl complexes as reagents for the addition of dideuterium to coal molecules. In one phase of the work, he has established that the aromatic hydrocarbons in a representative coal liquid can be converted in very good yield to arene chromium carbonyl compounds. In a second phase of the work directly related to our objective of improved methods for catalytic hydrogenation, he has established that the aromatic constituents of the same coal liquid add dideuterium in the presence of added napththalene chromium carbonyl.

  20. Impact of physical and chemical parameters on the hydroxyapatite nanopowder synthesized by chemical precipitation method

    Science.gov (United States)

    Thu Trang Pham, Thi; Phuong Nguyen, Thu; Pham, Thi Nam; Phuong Vu, Thi; Tran, Dai Lam; Thai, Hoang; Thanh Dinh, Thi Mai

    2013-09-01

    In this paper, the synthesis of hydroxyapatite (HAp) nanopowder was studied by chemical precipitation method at different values of reaction temperature, settling time, Ca/P ratio, calcination temperature, (NH4)2HPO4 addition rate, initial concentration of Ca(NO3)2 and (NH4)2HPO4. Analysis results of properties, morphology, structure of HAp powder from infrared (IR) spectra, x-ray diffraction (XRD), energy dispersive x-ray (EDX) spectra and scanning electron microscopy (SEM) indicated that the synthesized HAp powder had cylinder crystal shape with size less than 100 nm, single-phase structure. The variation of the synthesis conditions did not affect the morphology but affected the size of HAp crystals.

  1. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. First Update. (3rd edition)

    International Nuclear Information System (INIS)

    Friedman; Sellers.

    1988-01-01

    The proposed Update is for Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, Third Edition. Attached to the report is a list of methods included in the proposed update indicating whether the method is a new method, a partially revised method, or a totally revised method. Do not discard or replace any of the current pages in the SW-846 manual until the proposed update I package is promulgated. Until promulgation of the update package, the methods in the update package are not officially part of the SW-846 manual and thus do not carry the status of EPA-approved methods. In addition to the proposed Update, six finalized methods are included for immediate inclusion into the Third Edition of SW-846. Four methods, originally proposed October 1, 1984, will be finalized in a soon to be released rulemaking. They are, however, being submitted to subscribers for the first time in the update. These methods are 7211, 7381, 7461, and 7951. Two other methods were finalized in the 2nd Edition of SW-846. They were inadvertantly omitted from the 3rd Edition and are not being proposed as new. These methods are 7081 and 7761

  2. Influence of Yb{sup 3+} on the structural, dielectric and magnetic properties of Mg{sub 0.7}Co{sub 0.3}Fe{sub 2}O{sub 4} nanocrystallites synthesized via co-precipitation route

    Energy Technology Data Exchange (ETDEWEB)

    Ejaz, Muhammad [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Mahmood, Azhar [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Khan, Muhammad Azhar, E-mail: azhar.khan@iub.edu.pk [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Hussain, Altaf [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Sultan, Amber [Quaid-e-Azam Medical College, Bahawalpur 63100 (Pakistan); Mahmood, Asif [College of Engineering, Department of Chemical Engineering, King Saud University, Riyadh (Saudi Arabia); Chughtai, Adeel Hussain; Ashiq, Muhammad Naeem [Institute of Chemical Sciences, Bahauddin Zakaryia University, Multan 60800 (Pakistan); Warsi, Muhammad Farooq, E-mail: farooq.warsi@iub.edu.pk [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Shakir, Imran [Sustainable Energy Technologies (SET) center, College of Engineering, King Saud University, PO-BOX 800, Riyadh 11421 (Saudi Arabia)

    2016-04-15

    A series of nanostructured ferrites having chemical composition Mg{sub 0.7}Co{sub 0.3}Yb{sub x}Fe{sub 2−x}O{sub 4} (x=0.0–0.08) was prepared by the chemical co-precipitation route. The synthesized samples were characterized by X-ray diffraction (XRD), Thermo-gravimetric analysis (TGA), differential thermal analysis (DTA), vibrating sample magnetometer (VSM) and impedance analyzer. The analysis of XRD patterns confirmed the spinel structure and the crystallite size calculated by Scherer's formula was found in the range of 18–43 nm. The crystallite size was small enough to obtain considerable signal to noise ratio in the recording media. The lattice constant was increased from 8.362 Ǻ to 8.383 Ǻ as the Yb contents were increased in the magnesium-cobalt ferrites. The TGA and DTA were carried out for prepared sample to investigate the thermal decomposition process. Magnetization results obtained from VSM measurements elucidate that the substitution of rare earth ytterbium decreased the saturation magnetization and retentivity. The dielectric properties of the samples were studied at room temperature in the frequency range of 1 MHz to 3 GHz and the samples exhibited the dispersion in high frequency region. The dielectric constant (ε) and dielectric loss (tan δ) were decreased with the increased frequency and ytterbium doping. The dielectric parameters were explained on the basis of space charge distribution. The dielectric and magnetic parameters suggested that these nano-materials are potential candidates for switching and recording media applications. - Graphical abstract: Mg{sub 0.7}Co{sub 0.3}Yb{sub x}Fe{sub 2−x}O{sub 4} nanostructured spinel ferrites were prepared by chemical co-precipitation technique. The crystallite size was found in the range 18–43 nm. The substitutions of rare earth ytterbium decrease the saturation magnetization and retentivity. The dielectric parameters were explained on the basis of space charge distribution. The

  3. Physical-chemical property based sequence motifs and methods regarding same

    Science.gov (United States)

    Braun, Werner [Friendswood, TX; Mathura, Venkatarajan S [Sarasota, FL; Schein, Catherine H [Friendswood, TX

    2008-09-09

    A data analysis system, program, and/or method, e.g., a data mining/data exploration method, using physical-chemical property motifs. For example, a sequence database may be searched for identifying segments thereof having physical-chemical properties similar to the physical-chemical property motifs.

  4. Optimization principles for preparation methods and properties of fine ferrite materials

    Science.gov (United States)

    Borisova, N. M.; Golubenko, Z. V.; Kuz'micheva, T. G.; Ol'khovik, L. P.; Shabatin, V. P.

    1992-08-01

    The paper is devoted to the problems of development of fine materials based on Ba-ferrite for vertical magnetic recording in particular. Taking an analogue — BaFe 12-2 xCo xTe xO 19 — we have optimized the melt co-precipitation method and shown a new opportunity to provide chemical homogeneity of microcrystallites by means of cryotechnology. Magnetic characteristics of the magnetic tape experimental sample for digital video recording are presented. A series of principles of consistent control of ferrite powder properties are formulated and illustrated with specific developments.

  5. Preparation of Au/Y2O3 and Au/NiO catalysts by co-precipitation and their oxidation activities

    International Nuclear Information System (INIS)

    Sreethawong, Thammanoon; Sitthiwechvijit, Norsit; Rattanachatchai, Apiwat; Ouraipryvan, Piya; Schwank, Johannes W.; Chavadej, Sumaeth

    2011-01-01

    Research highlights: → The catalytic activity of Au catalysts supported on Y 2 O 3 and NiO prepared by co-precipitation was investigated for CO and methanol oxidation. → The phase transformation of yttrium support greatly affected the CO oxidation activity. → The Au/Y 2 O 3 exhibited the same activity as Au/NiO for the methanol oxidation while the Au/NiO gave higher activity for CO oxidation. - Abstract: The objective of this work was to investigate the catalytic activity of gold catalysts supported on two metal oxides, yttrium oxide and nickel oxide, prepared by co-precipitation for CO and methanol oxidation reactions. The TGA and XRD results confirmed that yttrium hydroxide (Y(OH) 3 ) was formed at calcination temperature below 300 deg. C. When it was calcined at 400 deg. C, the Y(OH) 3 was transformed to yttrium oxide hydroxide (YOOH). Finally, when calcination temperature was raised to 600 deg. C, the YOOH was completely transformed to yttrium oxide (Y 2 O 3 ). Interestingly, the gold loaded on YOOH calcined at 400 deg. C and gold loaded on Y 2 O 3 calcined at 500 deg. C comparatively showed the highest catalytic activity for complete CO oxidation at a reaction temperature of 300 deg. C. The 0.12% Au/Y 2 O 3 catalyst calcined at 500 deg. C was employed for both CO and methanol oxidation studies. For complete CO oxidation, the reaction temperatures of Au/Y 2 O 3 and Au/NiO catalysts were 325 deg. C and 250 deg. C, respectively. The light-off temperatures of Au/Y 2 O 3 and Au/NiO catalysts for methanol oxidation were 210 deg. C and 205 deg. C, respectively. Conclusively, the Au/Y 2 O 3 clearly exhibited the same activity as that of Au/NiO for methanol oxidation while the Au/NiO gave higher activity for CO oxidation.

  6. Evaluation of a chemical risk assessment method of South Korea for chemicals classified as carcinogenic, mutagenic or reprotoxic (CMR).

    Science.gov (United States)

    Kim, Min-Uk; Byeon, Sang-Hoon

    2017-12-12

    Chemicals were used in various fields by the development of industry and science and technology. The Chemical Hazard Risk Management (CHARM) was developed to assess the risk of chemicals in South Korea. In this study, we were to evaluate the CHARM model developed for the effective management of workplace chemicals. We used 59 carcinogenic, mutagenic or reprotoxic (CMR) materials, which are both the work environment measurement result and the usage information among the manufacturer data. The CHARM model determines the risk to human health using the exposure level (based on working environment measurements or a combination of the quantity used and chemical physical properties (e.g., fugacity and volatility)), hazard (using occupational exposure limit (OEL) or Risk phrases (R-phrases)/Hazard statements (H-statements) from the Material Safety Data Sheet (MSDS)). The risk level was lower when using the results of the work environment measurement than when applying the chemical quantity and physical properties in the exposure level evaluation method. It was evaluated as grade 4 for the CMR material in the hazard class determination. The risk assessment method by R-phrases was evaluated more conservatively than the risk assessment method by OEL. And the risk assessment method by H-statements was evaluated more conservatively than the risk assessment method by R-phrases. The CHARM model was gradually conservatively assessed as it proceeded in the next step without quantitative information for individual workplaces. The CHARM is expected to help identify the risk if the hazards and exposure levels of chemicals were identified in individual workplaces. For CMR substances, although CHARM is highly evaluated for hazards, the risk is assessed to be low if exposure levels are assessed low. When evaluating the risk of highly hazardous chemicals such as CMR substances, we believe the model should be adapted to be more conservative and classify these as higher risk. This work is

  7. Wireless Chemical Sensor and Sensing Method for Use Therewith

    Science.gov (United States)

    Woodard, Stanley E. (Inventor); Oglesby, Donald M. (Inventor); Taylor, Bryant D. (Inventor)

    2016-01-01

    A wireless chemical sensor includes an electrical conductor and a material separated therefrom by an electric insulator. The electrical conductor is an unconnected open-circuit shaped for storage of an electric field and a magnetic field. In the presence of a time-varying magnetic field, the first electrical conductor resonates to generate harmonic electric and magnetic field responses. The material is positioned at a location lying within at least one of the electric and magnetic field responses so-generated. The material changes in electrical conductivity in the presence of a chemical-of-interest.

  8. Aperture-Tolerant, Chemical-Based Methods to Reduce Channeling

    Energy Technology Data Exchange (ETDEWEB)

    Randall S. Seright

    2007-09-30

    This final technical progress report describes work performed from October 1, 2004, through May 16, 2007, for the project, 'Aperture-Tolerant, Chemical-Based Methods to Reduce Channeling'. We explored the potential of pore-filling gels for reducing excess water production from both fractured and unfractured production wells. Several gel formulations were identified that met the requirements--i.e., providing water residual resistance factors greater than 2,000 and ultimate oil residual resistance factors (F{sub rro}) of 2 or less. Significant oil throughput was required to achieve low F{sub rro} values, suggesting that gelant penetration into porous rock must be small (a few feet or less) for existing pore-filling gels to provide effective disproportionate permeability reduction. Compared with adsorbed polymers and weak gels, strong pore-filling gels can provide greater reliability and behavior that is insensitive to the initial rock permeability. Guidance is provided on where relative-permeability-modification/disproportionate-permeability-reduction treatments can be successfully applied for use in either oil or gas production wells. When properly designed and executed, these treatments can be successfully applied to a limited range of oilfield excessive-water-production problems. We examined whether gel rheology can explain behavior during extrusion through fractures. The rheology behavior of the gels tested showed a strong parallel to the results obtained from previous gel extrusion experiments. However, for a given aperture (fracture width or plate-plate separation), the pressure gradients measured during the gel extrusion experiments were much higher than anticipated from rheology measurements. Extensive experiments established that wall slip and first normal stress difference were not responsible for the pressure gradient discrepancy. To explain the discrepancy, we noted that the aperture for gel flow (for mobile gel wormholing through concentrated

  9. Highly transparent Tb3Al5O12 magneto-optical ceramics sintered from co-precipitated powders with sintering aids

    Science.gov (United States)

    Dai, Jiawei; Pan, Yubai; Xie, Tengfei; Kou, Huamin; Li, Jiang

    2018-04-01

    Highly transparent terbium aluminum garnet (Tb3Al5O12, TAG) magneto-optical ceramics were fabricated from co-precipitated nanopowders with tetraethoxysilane (TEOS) as sintering aid by vacuum sintering combined with hot isostatic pressing (HIP) post-treatment. The ball milled TAG powder shows better dispersity than the as-synthesized powder, and its average particle size is about 80 nm. For the ceramic sample pre-sintered at 1720 °C for 20 h with HIP post-treated at 1700 °C for 3 h, the in-line transmittance exceeds 76% in the region of 400-1580nm (except the absorption band), reaching a maximum value of 81.8% at the wavelength of 1390 nm. The microstructure of the TAG ceramic is homogeneous and its average grain size is approximately 19.7 μm. The Verdet constant of the sample is calculated to be -182.7 rad·T-1·m-1 at room temperature.

  10. Structural and magnetic characterization of co-precipitated Ni{sub x}Zn{sub 1−x}Fe{sub 2}O{sub 4} ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Srinivas, Ch., E-mail: srinivas.chintoju75@gmail.com [Department of Physics, Sasi Institute of Technology and Engineering, Tadepalligudem 534101 (India); Tirupanyam, B.V. [Department of Physics, Government College (Autonomous), Rajamahendravaram 533103 (India); Meena, S.S.; Yusuf, S.M. [Solid State Physics Division, Bhabha Atomic Research Center, Mumbai 400085 (India); Babu, Ch. Seshu [Department of Physics, Sasi Institute of Technology and Engineering, Tadepalligudem 534101 (India); Ramakrishna, K.S. [Department of Physics, Srinivasa Institute of Engineering and Technology, Amalapuram 533222 (India); Potukuchi, D.M. [Department of Physics, University College of Engineering, Jawaharlal Nehru Technological University, Kakinada 533003 (India); Sastry, D.L., E-mail: dl_sastry@rediffmail.com [Department of Physics, Andhra University, Visakhapatnam 530003 (India)

    2016-06-01

    A series of Ni{sub x}Zn{sub 1−x}Fe{sub 2}O{sub 4} (x=0.5, 0.6 and 0.7) ferrite nanoparticles have been synthesized using a co-precipitation technique, in order to understand the doping effect of nickel on their structural and magnetic properties. XRD and FTIR studies reveal the formation of spinel phase of ferrite samples. Substitution of nickel has promoted the growth of crystallite size (D), resulting the decrease of lattice strain (η). It was also observed that the lattice parameter (a) increases with the increase of Ni{sup 2+} ion concentration. All particles exhibit superparamagnetism at room temperature. The hyperfine interaction increases with the increase of nickel substitution, which can be assumed to the decrease of core–shell interactions present in the nanoparticles. The Mössbauer studies witness the existence of Fe{sup 3+} ions and absence of Fe{sup 2+} ions in the present systems. These superparamagnetic nanoparticles are supposed to be potential candidates for biomedical applications. The results are interpreted in terms of microstructure, cation redistribution and possible core–shell interactions. - Highlights: • Thermodynamic solubility of Ni{sup 2+} in zinc ferrite influences the crystallite sizes. • At room temperature the ferrite systems exhibit superparamagnetism. • Core–shell model was exactly suited to explain magnetic behavior. • Core–shell interactions decrease with increase in Ni{sup 2+} ion concentration.

  11. Characterization of FeCo particles synthesized via co-precipitation, particle growth using flux treatment and reduction in hydrogen gas

    Energy Technology Data Exchange (ETDEWEB)

    Kishimoto, Mikio, E-mail: kishimoto.mikio.gb@u.tsukuba.ac.jp; Latiff, Hawa; Kita, Eiji; Yanagihara, Hideto

    2017-06-15

    The possibility of high coercive force in FeCo particles was examined focusing on distortion introduced in the particles. The particles were synthesized via co-precipitation of Fe and Co ions, heat-treatment in potassium bromide flux for particle growth, and reduction using hydrogen gas. The particle shape was spherical or a slightly elongated with the size of approximately 30–200 nm, and the composition with approximately Fe{sub 60}Co{sub 40} was determined from the D-spacing of (110) peak. The coercive force of approximately 90 kA/m was obtained in particles with the saturation magnetization of approximately 150 Am{sup 2}/kg. The coercive force was higher than those in reported FeCo particles with same level of saturation magnetization. As one of the reason of high coercive force, we expected the possibility of occurrence of magnetic anisotropy based on the anisotropic distortion generated between FeCo alloy and surface oxides in a slightly elongated particles. - Highlights: • FeCo particles synthesized via Fe/Co:1/1, flux treated, and reduction. • Spherical or slightly elongated shape with size of approximately 30–200 nm. • Composition with Fe{sub 60}Co{sub 40} determined from D-spacing of (110) peak. • Coercive force of 90 kA/m and saturation magnetization of 150 Am{sup 2}/kg.

  12. Effect of calcination temperature on the crystallite growth of cerium oxide nano-powders prepared by the co-precipitation process

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jian-Chih [Department of Orthopaedics, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan (China); Chen, Wen-Cheng [School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Tien, Yin-Chun [Department of Orthopaedics, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan (China); Shih, Chi-Jen, E-mail: cjshih@kmu.edu.t [Department of Fragrance and Cosmetics Science, Kaohsiung Medical University, 100 Shi-Chuan1st Road, Kaohsiung 80708, Taiwan (China)

    2010-04-30

    Cerium oxide nanocrystallites were synthesized by a co-precipitation process at a relatively low temperature, using cerium (III) nitrate as the starting material in a water solution with pH in the range of 8-9. The effect of calcination temperature on the crystallite growth of cerium oxide nano-powders was investigated by X-ray diffraction, transmission electron microscopy and electron diffraction. The crystallization temperature of the cerium oxide powders was estimated to be about 273 K, by XRD analysis. When calcined at temperatures from 473 to 1273 K, face-centered cubic phase crystallization was observed by XRD. The crystallite size of the cerium oxide increased from 12.0 to 48 nm as the calcining temperature increased from 473 to 1273 K, in the pH range 8-9. The activation energy for the growth of cerium oxide nanoparticles was found to have very low values of 17.5 kJ/mol for pH = 8 and 16.0 kJ/mol for pH = 9.

  13. Co-precipitation synthesis and luminescence behavior of Ce-doped yttrium aluminum garnet (YAG:Ce) phosphor: The effect of precipitant

    International Nuclear Information System (INIS)

    Zhang Kai; Liu Hezhou; Wu Yating; Hu Wenbin

    2008-01-01

    YAG:Ce precursors were co-precipitated using ammonia water and ammonium hydrogen carbonate as precipitants, respectively. Phase transition of the precursors during sintering was compared between the two precipitants. The precursors synthesized with ammonia water transformed to YAG at about 1000 deg. C via YAlO 3 phase. The precursors synthesized with ammonium hydrogen carbonate directly converted to pure YAG at about 900 deg. C. Comparing the powders produced with the two precipitants, the powders produced with ammonia hydrogen carbonate showed good dispersity. When sintered at 1600 deg. C, aggregation of the powders synthesized with the two precipitants both became severe. With increase the sintering temperature, the maximum wavelength of excitation and emission spectra of the phosphors synthesized with ammonium water hardly varied. While the maximum wavelength of excitation spectra of the phosphors synthesized with ammonium hydrogen carbonate unchanged, and the emission spectra showed red shift. Because of size effect and higher loss of cerium content, the emission intensity of phosphors prepared with ammonium hydrogen carbonate was lower than the phosphors prepared with ammonium water, when sintered at the same temperature

  14. Detailed crystallization study of co-precipitated Y1.47 Gd1.53 Fe5 O12 and relevant magnetic properties

    International Nuclear Information System (INIS)

    Serra, Rogerio Arving; Ogasawara, Tsuneharu; Ogasawara, Angelica Soares

    2007-01-01

    The crystallization process of co-precipitated Y 1.5 Gd 1.5 Fe 5 O 12 powder heated up to 1000 deg C at rate of 5 deg C min -1 was investigated. Above 810 deg C crystalline Y 1.47 Gd 1.53 Fe 5 O 12 was obtained with a lattice parameter of 12.41 A and a theoretical density of 5.84 g cm -3 . Dry pressed rings were sintered at 1270 and 1320 deg C, increasing the grain-size from 3.1 to 6.5 μm, the theoretical density by 87.6 to 95.3% and decreasing H c from 2.9725 to 1.4005 Oe. Additionally, Hc increased when the frequency of the hysteresis graph varied from 60 Hz to 10 kHz, the curie temperature was 282.4 deg C and Ms equalled 9.25 emu g -1 (0.17 kG) agreeing well with the B s -value of the hysteresis graph and literature values. (author)

  15. Minimizing the Free Energy: A Computer Method for Teaching Chemical Equilibrium Concepts.

    Science.gov (United States)

    Heald, Emerson F.

    1978-01-01

    Presents a computer method for teaching chemical equilibrium concepts using material balance conditions and the minimization of the free energy. Method for the calculation of chemical equilibrium, the computer program used to solve equilibrium problems and applications of the method are also included. (HM)

  16. Methods and tools for sustainable chemical process design

    DEFF Research Database (Denmark)

    Loureiro da Costa Lira Gargalo, Carina; Chairakwongsa, Siwanat; Quaglia, Alberto

    2015-01-01

    As the pressure on chemical and biochemical processes to achieve a more sustainable performance increases, the need to define a systematic and holistic way to accomplish this is becoming more urgent. In this chapter, a multilevel computer-aided framework for systematic design of more sustainable...

  17. Current methods in risk assessment of genotoxic chemicals.

    Science.gov (United States)

    Cartus, Alexander; Schrenk, Dieter

    2017-08-01

    Chemical contaminants and residues are undesired chemicals occurring in consumer products such as food and drugs, at the workplace and in the environment, i.e. in air, soil and water. These compounds can be detected even at very low concentrations and lead frequently to considerable concerns among consumers and in the media. Thus it is a major challenge for modern toxicology to provide transparent and versatile tools for the risk assessment of such compounds in particular with respect to human health. Well-known examples of toxic contaminants are dioxins or mercury (in the environment), mycotoxins (from infections by molds) or acrylamide (from thermal treatment of food). The process of toxicological risk assessment of such chemicals is based on i) the knowledge of their contents in food, air, water etc., ii) the routes and extent of exposure of humans, iii) the toxicological properties of the compound, and, iv) its mode(s) of action. In this process quantitative dose-response relationships, usually in experimental animals, are of outstanding importance. For a successful risk assessment, in particular of genotoxic chemicals, several conditions and models such as the Margin of Exposure (MoE) approach or the Threshold of Toxicological Concern (TTC) concept exist, which will be discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Effects of different chemical materials and cultural methods on ...

    African Journals Online (AJOL)

    reading 6

    2011-10-27

    Oct 27, 2011 ... which accounts for 53% of wheat production in China and about 15% of the total ... environment as it is mainly made from chemical mate- rials. ... yield and yield components in harvest in both years were deter- mined. The data were subjected to analyses of variance (ANOVA) ..... Long-term stability of.

  19. Device and method for enhanced collection and assay of chemicals with high surface area ceramic

    Science.gov (United States)

    Addleman, Raymond S.; Li, Xiaohong Shari; Chouyyok, Wilaiwan; Cinson, Anthony D.; Bays, John T.; Wallace, Krys

    2016-02-16

    A method and device for enhanced capture of target analytes is disclosed. This invention relates to collection of chemicals for separations and analysis. More specifically, this invention relates to a solid phase microextraction (SPME) device having better capability for chemical collection and analysis. This includes better physical stability, capacity for chemical collection, flexible surface chemistry and high affinity for target analyte.

  20. Investigations on structural and optical properties of starch capped ZnS nanoparticles synthesized by microwave irradiation method

    Science.gov (United States)

    Lalithadevi, B.; Mohan Rao, K.; Ramananda, D.

    2018-05-01

    Following a green synthesis method, zinc sulfide (ZnS) nanoparticles were prepared by chemical co-precipitation technique using starch as capping agent. Microwave irradiation was used as heating source. X-ray diffraction studies indicated that nanopowders obtained were polycrystalline possessing ZnS simple cubic structure. Transmission electron microscopic studies indicated that starch limits the agglomeration by steric stabilization. Interaction between ZnS and starch was confirmed by Fourier transform infrared spectroscopy as well as Raman scattering studies. Quantum size effects were observed in optical absorption studies while quenching of defect states on nanoparticles was improved with increase in starch addition as indicated by photoluminescence spectra.

  1. Structural and Morphological Properties of Zn{sub 1−x}Zr{sub x}O with Room-Temperature Ferromagnetism and Fabricated by Using the Co-Precipitation Technique

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, M.; Irfan, R.; Riaz, S.; Naseem, S.; Hussain, S. S. [University of the Punjab, Lahore (Pakistan); Murtaza, G. [Government College University, Lahore (Pakistan)

    2017-03-15

    In this study, ZnO was doped with various concentrations of zirconium (x{sub Zr} = 0 - 5 mole%), by using the co-precipitation method so as to achieve successful formation of a single-phase diluted magnetic semiconductor. X-Ray diffraction results showed that the crystal structure of Zn{sub 1−x}Zr{sub x}O was that of hexagonal wurtzite. The structural properties showed no additional phases at low impurity contents (x{sub Zr} < 3%); however, impurity peaks belonging to ZrO{sub 2} appeared at high impurity contents (x{sub Zr} ≥ 3%). The calculated ZnO lattice constants 'a' and 'c' were found to be 3.256 Å and 5.203 Å, respectively, which are in close match to the values found in the literature. For undoped ZnO, the average calculated particle size was 75.35 nm, and calculated bond length was 1.98 Å. The residual strains and the secondary phases of ZrO{sub 2} were found to affect the lattice parameters and the bond lengths. The scanning electron microscopy images showed a porous structure with non-uniform surface morphology. However, a few nano-scale dendrite-type structures were also present, indicating the potential applications of Zr-doped ZnO in nano-devices. Vibrating sample magnetometry (VSM) was employed to measure the magnetic properties, and the measurements showed undoped ZnO to be diamagnetic; however, doping with Zr induced a small ferromagnetic character at small magnetic fields. On the other hand, a paramagnetic behavior was evident at higher magnetic fields. The magnetization at 1T was observed to degrade with increasing Zr content in the ZnO host lattice, which was due to the residual strains and the secondary phases.

  2. Consolidation of the formation sand by chemical methods

    Directory of Open Access Journals (Sweden)

    Mariana Mihočová

    2006-10-01

    Full Text Available The sand control by consolidation involves the process of injecting chemicals into the naturally unconsolidated formation to provide an in situ grain-to-grain cementation. The sand consolidation chemicals are available for some 30 years. Several types of consolidating material were tried. Presently available systems utilize solidified plastics to provide the cementation. These systems include phenol resin, phenol-formaldehyde, epoxy, furan and phenolic-furfuryl.The sand consolidation with the steam injection is a novel technique. This process provides a highly alkaline liquid phase and temperatures to 300 °C to geochemically create cements by interacting with the dirty sand.While the formation consolidation has widely applied, our experience has proved a high level of success.

  3. Using deuterated PAH amendments to validate chemical extraction methods to predict PAH bioavailability in soils

    International Nuclear Information System (INIS)

    Gomez-Eyles, Jose L.; Collins, Chris D.; Hodson, Mark E.

    2011-01-01

    Validating chemical methods to predict bioavailable fractions of polycyclic aromatic hydrocarbons (PAHs) by comparison with accumulation bioassays is problematic. Concentrations accumulated in soil organisms not only depend on the bioavailable fraction but also on contaminant properties. A historically contaminated soil was freshly spiked with deuterated PAHs (dPAHs). dPAHs have a similar fate to their respective undeuterated analogues, so chemical methods that give good indications of bioavailability should extract the fresh more readily available dPAHs and historic more recalcitrant PAHs in similar proportions to those in which they are accumulated in the tissues of test organisms. Cyclodextrin and butanol extractions predicted the bioavailable fraction for earthworms (Eisenia fetida) and plants (Lolium multiflorum) better than the exhaustive extraction. The PAHs accumulated by earthworms had a larger dPAH:PAH ratio than that predicted by chemical methods. The isotope ratio method described here provides an effective way of evaluating other chemical methods to predict bioavailability. - Research highlights: → Isotope ratios can be used to evaluate chemical methods to predict bioavailability. → Chemical methods predicted bioavailability better than exhaustive extractions. → Bioavailability to earthworms was still far from that predicted by chemical methods. - A novel method using isotope ratios to assess the ability of chemical methods to predict PAH bioavailability to soil biota.

  4. Using deuterated PAH amendments to validate chemical extraction methods to predict PAH bioavailability in soils

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Eyles, Jose L., E-mail: j.l.gomezeyles@reading.ac.uk [University of Reading, School of Human and Environmental Sciences, Soil Research Centre, Reading, RG6 6DW Berkshire (United Kingdom); Collins, Chris D.; Hodson, Mark E. [University of Reading, School of Human and Environmental Sciences, Soil Research Centre, Reading, RG6 6DW Berkshire (United Kingdom)

    2011-04-15

    Validating chemical methods to predict bioavailable fractions of polycyclic aromatic hydrocarbons (PAHs) by comparison with accumulation bioassays is problematic. Concentrations accumulated in soil organisms not only depend on the bioavailable fraction but also on contaminant properties. A historically contaminated soil was freshly spiked with deuterated PAHs (dPAHs). dPAHs have a similar fate to their respective undeuterated analogues, so chemical methods that give good indications of bioavailability should extract the fresh more readily available dPAHs and historic more recalcitrant PAHs in similar proportions to those in which they are accumulated in the tissues of test organisms. Cyclodextrin and butanol extractions predicted the bioavailable fraction for earthworms (Eisenia fetida) and plants (Lolium multiflorum) better than the exhaustive extraction. The PAHs accumulated by earthworms had a larger dPAH:PAH ratio than that predicted by chemical methods. The isotope ratio method described here provides an effective way of evaluating other chemical methods to predict bioavailability. - Research highlights: > Isotope ratios can be used to evaluate chemical methods to predict bioavailability. > Chemical methods predicted bioavailability better than exhaustive extractions. > Bioavailability to earthworms was still far from that predicted by chemical methods. - A novel method using isotope ratios to assess the ability of chemical methods to predict PAH bioavailability to soil biota.

  5. Method of heat decomposition for chemical decontaminating resin waste

    International Nuclear Information System (INIS)

    Kikuchi, Akira.

    1988-01-01

    Purpose: To make resin wastes into non-deleterious state, discharge them into a resin waste storage tank of existent radioactive waste processing facility and store and dispose them. Constitution: In the processing of chemical decontaminating resin wastes, iron exchange resins adsorbing chemical decontaminating agents comprising a solution of citric acid, oxalic acid, formic acid and EDTA alone or as a mixture of them are heated to dry, thermally decomposed and then separated from the ion exchange resins. That is, the main ingredients of the chemical decontaminating agents are heat-decomposed when heated and dried at about 250 deg C in air and converted into non-toxic gases such as CO, CO 2 , NO, NO 2 or H 2 O. Further, since combustion or carbonization of the basic materials for the resin is not caused at such a level of temperature, the resin wastes removed with organic acid and chelating agents are transferred to an existent resin waste storage tank and stored therein. In this way, facility cost and radiation exposure can remarkably be decreased. (Kamimura, M.)

  6. Development of a Benchtop Baking Method for Chemically Leavened Crackers

    Science.gov (United States)

    Traditionally, the baking performance of soft wheat flours has been evaluated by well-established benchtop cookie-baking methods. In contrast, a benchtop cracker-baking method has not been widely explored or implemented as an official method, due to hurdles including the difficulty in finding ideal...

  7. Chemical and ecological control methods for Epitrix spp.

    Directory of Open Access Journals (Sweden)

    A. G. S. Cuthbertson

    2015-01-01

    Full Text Available Very little information exists in regards to the control options available for potato flea beetles, Epitrix spp. This short review covers both chemical and ecological options currently available for control of Epitrix spp. Synthetic pyrethroids are the weapon of choice for the beetles. However, the impetus in integrated pest management is to do timely (early-season applications with something harsh which will give long-term protection at a time when there are not a lot of beneficials in the field. Finding the balance for control of Epitrix spp. is proving difficult.

  8. Metal-assisted chemical etch porous silicon formation method

    Science.gov (United States)

    Li, Xiuling; Bohn, Paul W.; Sweedler, Jonathan V.

    2004-09-14

    A thin discontinuous layer of metal such as Au, Pt, or Au/Pd is deposited on a silicon surface. The surface is then etched in a solution including HF and an oxidant for a brief period, as little as a couple seconds to one hour. A preferred oxidant is H.sub.2 O.sub.2. Morphology and light emitting properties of porous silicon can be selectively controlled as a function of the type of metal deposited, Si doping type, silicon doping level, and/or etch time. Electrical assistance is unnecessary during the chemical etching of the invention, which may be conducted in the presence or absence of illumination.

  9. Method for separating the isotopes of a chemical element

    International Nuclear Information System (INIS)

    Devienne, F.M.

    1977-01-01

    A beam of positive or negative primary ions of at least one compound of a chemical element is accelerated in order to pass through collision boxes placed in series. As a result of inelastic collisions of the ions with the molecules of a neutral target gas within each collision box, a given percentage of primary ions is dissociated into at least two fragments, one of which is a secondary ion in the form of at least two isotopic species. The collision boxes are brought to a potential V 2 so as to trap preferentially one isotopic species which is condensed within each box. 15 claims, 4 figures

  10. Chemical Mixtures Health Risk Assessment of Environmental Contaminants: Concepts, Methods, Applications

    Science.gov (United States)

    This problems-based, introductory workshop focuses on methods to assess health risks posed by exposures to chemical mixtures in the environment. Chemical mixtures health risk assessment methods continue to be developed and evolve to address concerns over health risks from multic...

  11. Methods for the Determination of Chemical Contaminants in Drinking Water. Training Manual.

    Science.gov (United States)

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    This training manual, intended for chemists and technicians with little or no experience in chemical procedures required to monitor drinking water, covers analytical methods for inorganic and organic chemical contaminants listed in the interim primary drinking water regulations. Topics include methods for heavy metals, nitrate, and organic…

  12. Chemical Mixtures Health Risk Assessment of Environmental Contaminants: Concepts, Methods, And Applications

    Science.gov (United States)

    This problems-based, introductory workshop focuses on methods to assess health risks posed by exposures to chemical mixtures in the environment. Chemical mixtures health risk assessment methods continue to be developed and evolve to address concerns over health risks from multic...

  13. Method of operating a thermal engine powered by a chemical reaction

    Science.gov (United States)

    Ross, J.; Escher, C.

    1988-06-07

    The invention involves a novel method of increasing the efficiency of a thermal engine. Heat is generated by a non-linear chemical reaction of reactants, said heat being transferred to a thermal engine such as Rankine cycle power plant. The novel method includes externally perturbing one or more of the thermodynamic variables of said non-linear chemical reaction. 7 figs.

  14. Co-precipitation synthesis and characterization of tin-doped α-Fe2O3 nanoparticles with enhanced photocatalytic activities

    Science.gov (United States)

    Mansour, Houda; Bargougui, Radhouane; Autret-Lambert, Cécile; Gadri, Abdellatif; Ammar, Salah

    2018-03-01

    In this study, Sn-doped hematite (α-Fe2O3) nanoparticles with various dopant concentrations ranging from 1 to 6 mol% were prepared successfully using a simple co-precipitation technique. The effects of Sn doping on the structural, morphological, optical, and magnetic properties were determined using X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), UV-visible diffuse reflectance spectroscopy, and a superconducting quantum interference device. XRD analysis showed that all of the samples had a typical hematite-type hexagonal structure of Fe2O3 without any additional peaks due to spurious phases. The cell parameters a and c decreased monotonically as the Sn content increased, thereby indicating that Sn ions were substituted into the α-Fe2O3 lattice. These results and the TEM analyses showed that the size of the nanoparticles decreased to 10 nm as the Sn doping concentration increased. UV-visible absorption measurements showed that the decrease in particle size was accompanied by a decrease in the band gap value from 2.07 eV for α-Fe2O3 to 1.87 eV with 6 mol% Sn doping. Furthermore, the magnetic properties demonstrated that all of the samples exhibited ferromagnetic behavior at room temperature. The photocatalytic activities of the samples were studied based on the degradation of methylene blue as a model compound, where the results showed that an appropriate amount of Sn dopant could greatly increase the amount of hydroxyl radicals generated by α-Fe2O3 nanoparticles, which were responsible for the obvious increase in the photocatalytic activity.

  15. Flame atomic absorption spectrometric determination of heavy metals in aqueous solution and surface water preceded by co-precipitation procedure with copper(II) 8-hydroxyquinoline

    Science.gov (United States)

    Ipeaiyeda, Ayodele Rotimi; Ayoade, Abisayo Ruth

    2017-12-01

    Co-precipitation procedure has widely been employed for preconcentration and separation of metal ions from the matrices of environmental samples. This is simply due to its simplicity, low consumption of separating solvent and short duration for analysis. Various organic ligands have been used for this purpose. However, there is dearth of information on the application of 8-hydroxyquinoline (8-HQ) as ligand and Cu(II) as carrier element. The use of Cu(II) is desirable because there is no contamination and background adsorption interference. Therefore, the objective of this study was to use 8-HQ in the presence of Cu(II) for coprecipitation of Cd(II), Co(II), Cr(III), Ni(II) and Pb(II) from standard solutions and surface water prior to their determinations by flame atomic absorption spectrometry (FAAS). The effects of pH, sample volume, amount of 8-HQ and Cu(II) and interfering ions on the recoveries of metal ions from standard solutions were monitored using FAAS. The water samples were treated with 8-HQ under the optimum experimental conditions and metal concentrations were determined by FAAS. The metal concentrations in water samples not treated with 8-HQ were also determined. The optimum recovery values for metal ions were higher than 85.0%. The concentrations (mg/L) of Co(II), Ni(II), Cr(III), and Pb(II) in water samples treated with 8-HQ were 0.014 ± 0.002, 0.03 ± 0.01, 0.04 ± 0.02 and 0.05 ± 0.02, respectively. These concentrations and those obtained without coprecipitation technique were significantly different. Coprecipitation procedure using 8-HQ as ligand and Cu(II) as carrier element enhanced the preconcentration and separation of metal ions from the matrix of water sample.

  16. Systematic methods for synthesis and design of sustainable chemical and biochemical processes

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    Chemical and biochemical process design consists of designing the process that can sustainably manufacture an identified chemical product through a chemical or biochemical route. The chemical product tree is potentially very large; starting from a set of basic raw materials (such as petroleum...... for process intensification, sustainable process design, identification of optimal biorefinery models as well as integrated process-control design, and chemical product design. The lecture will present the main concepts, the decomposition based solution approach, the developed methods and tools together...

  17. Effect of Fermentation Methods on Chemical and Microbial ...

    African Journals Online (AJOL)

    Mung flours were fermented using spontaneous and backslopping methods for 72 h and microbial analysis over a period of 72 h fermentation was carried out. The samples were subjected to biochemical test, anti-nutrient and selected mineral and vitamin contents evaluation using standard methods. There was a gradual ...

  18. Decontamination by water jet, chemical and electrochemical methods

    International Nuclear Information System (INIS)

    Gauchon, J.P.; Mordenti, P.; Bezia, C.; Fuentes, P.; Kervegant, Y.; Munoz, C.; Pierlas, C.

    1986-01-01

    The decontamination tests have been carried out on samples coming from representative specimens from primary circuit of the PWR and on samples coming from the emergency feed water piping of the German BWR (Isar). The oxide found in PWR primary loops can only be removed by a two steps process. The initial embrittling step is particularly effective in hot alkaline permanganate medium. Oxidation by ozone treatment is less effective. The second step involves chemical erosion of the metal in nitrofluoric acid in conjonction with ultrasonic agitation. Among the reagents used, only oxalic acid is suitable for electrolytic decontamination. Among the reagents possible for decontamination of the Isar specimens (ferritic steel lined with hematite) halogenous acid in mixture without or with oxygenated water, sulfuric acid, the formic acid/formaldehyde mixture are chosen. Metal erosion with high pressure jet as well as the decontamination efficiency on parts lined with hematite have made possible to determine the best conditions. 33 figs, 29 refs

  19. Evaluation of chemical surface treatment methods for mitigation of PWSCC

    International Nuclear Information System (INIS)

    Dame, C.; Marks, C.; Olender, A.; Farias, J.

    2015-01-01

    As part of its mission to propose innovative and safe technologies to mitigate Primary Water Stress Corrosion Cracking (PWSCC) in Pressurized Water Reactors (PWR), EPRI recently initiated a program to evaluate potential new chemical surface treatments that might delay the occurrence of PWSCC such that no failure of components would be observed during their lifetime. Among the initial screening of more than thirty technologies, seven were selected for a more detailed review. The selected technologies were: nickel and nickel alloy plating, organic inhibitors, chromium-based inhibitors, silicon carbide, titanium-based inhibitors, rare earth metal (REM)-based inhibitors and encapsulation. The conclusions of the review of these technologies were that two of them were worth pursuing, titanium-based and REM-based inhibitors, and that evaluating the radiological consequences of injecting these products in the primary system, as well as assessing their efficacy to mitigate PWSCC, should be prioritized as the next required steps in qualification for implementation. (authors)

  20. Determination of chemical oxygen demand (COD) using an alternative wet chemical method free of mercury and dichromate.

    Science.gov (United States)

    Kolb, Marit; Bahadir, Müfit; Teichgräber, Burkhard

    2017-10-01

    Worldwide, the standard methods for the determination of the important wastewater parameter chemical oxygen demand (COD) are still based on the use of the hazardous chemicals, mercury sulfate and chromium(VI). However, due to their properties they are meanwhile classified as "priority pollutants" and shall be phased out or banned in the frame of REACH (current European Chemical Law: Registration, Evaluation, Authorization and restriction of Chemicals) by the European Union. Hence, a new wet-chemical method free of mercury and chromium(VI) was developed. Manganese(III) was used as oxidant and silver nitrate for the removal of chloride ions. The quantification was performed by back titration of manganese(III) with iron(II) as done in the standard method. In order to minimize losses of organic substances during the precipitation of silver chloride, suspended and colloid organic matter had to be separated by precipitation of aluminum hydroxide in a first step. In these cases, two fractions, one of the suspended and colloid matters and a second of the dissolved organic substances, are prepared and oxidized separately. The method was tested with potassium hydrogen phthalate (KHP) as conventional COD reference substance and different types of wastewater samples. The oxidation of KHP was reproducible in a COD range of 20-500 mg/L with a mean recovery rate of 88.7% in comparison to the standard COD method (DIN 38409-41). Also in presence of 1000 mg/L chloride a recovery rate of 84.1% was reached. For a series of industrial and municipal wastewater samples a high correlation (R 2  = 0.9935) to the standard method with a mean recovery rate of 78.1% (±5.2%) was determined. Even though the results of the new method are not 100% of the standard method, its high correlation to the standard method and reproducibility offers an environmentally benign alternative method with no need to purchase new laboratory equipment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Method of manipulating the chemical properties of water to improve the effectiveness of a desired chemical process

    Science.gov (United States)

    Hawthorne, Steven B.; Miller, David J.; Yang, Yu; Lagadec, Arnaud Jean-Marie

    1999-01-01

    The method of the present invention is adapted to manipulate the chemical properties of water in order to improve the effectiveness of a desired chemical process. The method involves heating the water in the vessel to subcritical temperatures between 100.degree. to 374.degree. C. while maintaining sufficient pressure to the water to maintain the water in the liquid state. Various physiochemical properties of the water can be manipulated including polarity, solute solubility, surface tension, viscosity, and the disassociation constant. The method of the present invention has various uses including extracting organics from solids and semisolids such as soil, selectively extracting desired organics from nonaqueous liquids, selectively separating organics using sorbent phases, enhancing reactions by controlling the disassociation constant of water, cleaning waste water, and removing organics from water using activated carbon or other suitable sorbents.

  2. Toxicity assessment of chemical contaminants;transition from in vitromethods to novel in vitro methods

    Directory of Open Access Journals (Sweden)

    A.A. Farshad

    2007-04-01

    Full Text Available Exposure to occupational and environmental contaminants is a major contributor to human health problems. Despite significant achievements in the risk assessment of chemicals, the toxicological database, particularly for industrial chemicals, remains limited. Considering there areapproximately 80, 000 chemicals in commerce, and an extremely large number of chemical mixtures, in vivo testing of this large number is unachievable from ethical, economical and scientific perspectives. Therefore, increasing the number of available industrial chemicals andnew products has created a demand for alternatives to animal methods for better safety evaluation. Recent toxicity studies have demonstrated that in vitro methods are capable of rapidly providing toxicity information. In this review, current toxicity test methods for risk evaluation of industrial chemical contaminants are presented. To evaluate the potential applications of  more recent test methods developed for toxicity testing of chemical contaminants are discussed. Although  to be considered more broadly for risk assessment of human chemical exposures. In vitro methods,in vitro toxicology methods cannot exactly mimic the biodynamics of the whole body, in vitro  relationships (QSARs and physiologically based toxicokinetic (PBTK models have a potentialtest systems in combination with the knowledge of quantitative structure activity.

  3. Monitoring a chemical plume remediation via the radio imaging method

    International Nuclear Information System (INIS)

    McCorkle, R.W.; Spence, T.; Linder, K.E.; Betsill, J.D.

    1996-01-01

    In this paper, the authors present the results of a site characterization, monitoring, and remediation effort at Sandia National Laboratories (SNL). The primary objective of the study is to determine the feasibility of using the Radio Imaging Method (RIM) to solve a near-surface waste site characterization problem. The goals are to demonstrate the method during the site characterization phase, then continue with an in-situ monitoring and analysis of the remediation process

  4. Perovskite type nanopowders and thin films obtained by chemical methods

    Directory of Open Access Journals (Sweden)

    Viktor Fruth

    2010-09-01

    Full Text Available The review presents the contribution of the authors, to the preparation of two types of perovskites, namely BiFeO3 and LaCoO3, by innovative methods. The studied perovskites were obtained as powders, films and sintered bodies. Their complex structural and morphological characterization is also presented. The obtained results have underlined the important influence of the method of preparation on the properties of the synthesized perovskites.

  5. A New Pseudoinverse Matrix Method For Balancing Chemical Equations And Their Stability

    International Nuclear Information System (INIS)

    Risteski, Ice B.

    2008-01-01

    In this work is given a new pseudoniverse matrix method for balancing chemical equations. Here offered method is founded on virtue of the solution of a Diophantine matrix equation by using of a Moore-Penrose pseudoinverse matrix. The method has been tested on several typical chemical equations and found to be very successful for the all equations in our extensive balancing research. This method, which works successfully without any limitations, also has the capability to determine the feasibility of a new chemical reaction, and if it is feasible, then it will balance the equation. Chemical equations treated here possess atoms with fractional oxidation numbers. Also, in the present work are introduced necessary and sufficient criteria for stability of chemical equations over stability of their extended matrices

  6. Intrinsic dependence of the magnetic properties of CoFe{sub 2}O{sub 4} nanoparticles prepared via chemical methods with addition of chelating agents

    Energy Technology Data Exchange (ETDEWEB)

    Mendonça, E.C. [Núcleo de Pós-Graduação em Física, Campus Prof. José Aluísio de Campos, UFS, 49100-000 São Cristóvão, SE (Brazil); Tenório, Mayara A. [Departamento de Física, Campus Prof. Alberto Carvalho, UFS, 49500-000 Itabaiana, SE (Brazil); Mecena, S.G.; Zucolotto, B.; Silva, L.S. [Núcleo de Pós-Graduação em Física, Campus Prof. José Aluísio de Campos, UFS, 49100-000 São Cristóvão, SE (Brazil); Jesus, C.B.R. [Instituto de Física Gleb Wataghin, UNICAMP, C. P. 6165, 13083-970 Campinas, SP (Brazil); Meneses, C.T. [Núcleo de Pós-Graduação em Física, Campus Prof. José Aluísio de Campos, UFS, 49100-000 São Cristóvão, SE (Brazil); and others

    2015-12-01

    In this work, the effect of addition of different chelating agents on the magnetic properties of cobalt ferrite nanoparticles produced by the combining of both co-precipitation and hydrothermal methods is reported. The Rietveld analyses of X-ray diffraction patterns reveal that our samples are single phase (space group: Fd-3m) with small average sizes. The weight losses observed in the thermogravimetric measurements together with the M×H curves show that the organic contamination coming from chelating agent decomposition can give rise to misinterpretation of the magnetization measurements. Besides, analyses of the zero-field-cooled (ZFC) and field-cooled (FC) magnetization measurements and the M×H curves measured at room temperature allows us to state that both the average blocking temperature and particles size distribution are sensitive to the kind of chelating agent. - Highlights: Superparamagnetism. Chelating agents. Organic contamination.

  7. Deciding which chemical mixtures risk assessment methods work best for what mixtures

    International Nuclear Information System (INIS)

    Teuschler, Linda K.

    2007-01-01

    The most commonly used chemical mixtures risk assessment methods involve simple notions of additivity and toxicological similarity. Newer methods are emerging in response to the complexities of chemical mixture exposures and effects. Factors based on both science and policy drive decisions regarding whether to conduct a chemical mixtures risk assessment and, if so, which methods to employ. Scientific considerations are based on positive evidence of joint toxic action, elevated human exposure conditions or the potential for significant impacts on human health. Policy issues include legislative drivers that may mandate action even though adequate toxicity data on a specific mixture may not be available and risk assessment goals that impact the choice of risk assessment method to obtain the amount of health protection desired. This paper discusses three important concepts used to choose among available approaches for conducting a chemical mixtures risk assessment: (1) additive joint toxic action of mixture components; (2) toxicological interactions of mixture components; and (3) chemical composition of complex mixtures. It is proposed that scientific support for basic assumptions used in chemical mixtures risk assessment should be developed by expert panels, risk assessment methods experts, and laboratory toxicologists. This is imperative to further develop and refine quantitative methods and provide guidance on their appropriate applications. Risk assessors need scientific support for chemical mixtures risk assessment methods in the form of toxicological data on joint toxic action for high priority mixtures, statistical methods for analyzing dose-response for mixtures, and toxicological and statistical criteria for determining sufficient similarity of complex mixtures

  8. [Bioinorganic chemical composition of the lens and methods of its investigation].

    Science.gov (United States)

    Avetisov, S E; Novikov, I A; Pakhomova, N A; Motalov, V G

    2018-01-01

    Bioinorganic chemical composition of the lens of human and experimental animals (cows, dogs, rats, rabbits) have been analyzed in various studies. In most cases, the studies employed different methods to determine the gross (total) composition of chemical elements and their concentrations in the examined samples. Less frequently, they included an assessment of the distribution of chemical elements in the lens and correlation of their concentration with its morphological changes. Chemical elements from all groups (series) of the periodic classification system were discovered in the lens substance. Despite similar investigation methods, different authors obtained contradicting results on the chemical composition of the lens. This article presents data suggesting possible correlation between inorganic chemical elements in the lens substance with the development and formation of lenticular opacities. All currently employed methods are known to only analyze limited number of select chemical elements in the tissues and do not consider the whole range of elements that can be analyzed with existing technology; furthermore, the majority of studies are conducted on the animal model lens. Therefore, it is feasible to continue the development of the chemical microanalysis method by increasing the sensitivity of Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM/EDS) with the purpose of assessing the gross chemical composition and distribution of the elements in the lens substance, as well as revealing possible correlation between element concentration and morphological changes in the lens.

  9. Detailed balance method for chemical potential determination in Monte Carlo and molecular dynamics simulations

    International Nuclear Information System (INIS)

    Fay, P.J.; Ray, J.R.; Wolf, R.J.

    1994-01-01

    We present a new, nondestructive, method for determining chemical potentials in Monte Carlo and molecular dynamics simulations. The method estimates a value for the chemical potential such that one has a balance between fictitious successful creation and destruction trials in which the Monte Carlo method is used to determine success or failure of the creation/destruction attempts; we thus call the method a detailed balance method. The method allows one to obtain estimates of the chemical potential for a given species in any closed ensemble simulation; the closed ensemble is paired with a ''natural'' open ensemble for the purpose of obtaining creation and destruction probabilities. We present results for the Lennard-Jones system and also for an embedded atom model of liquid palladium, and compare to previous results in the literature for these two systems. We are able to obtain an accurate estimate of the chemical potential for the Lennard-Jones system at higher densities than reported in the literature

  10. Magnetic Properties of Ni-Zn Ferrite Prepared with the Layered Precursor Method

    International Nuclear Information System (INIS)

    Zhou Xin; Hou Zhi-Ling; Li Feng; Qi Xin

    2010-01-01

    We prepare NiZnFe 2 O 4 soft magnetic ferrites with different molar ratios with the layered precursor method and investigate their magnetic properties. In the layered precursor, metal ions are scattered on the layer plate in a certain way on account of the effect of lowest lattice energy and lattice orientation. After high temperature calcinations, spinel ferrites with uniform structural component and single magnetic domain can be obtained, and the magnetic property is improved greatly. NiZnFe 2 O 4 ferrites prepared have the best specific saturation magnetization of 79.15 emu·g −1 , higher than that of 68 emu·g −1 prepared by the chemical co-precipitation method and that of 59 emu·g −1 prepared by the emulsion-gel method. Meanwhile the coercivity of NiZnFe 2 O 4 ferrites prepared by layered precursor method is 14 kA·m −1 , lower than that of 50 emu·g −1 prepared by the co-precipitation method and that of 59 emu·g −1 prepared by the emulsion-gel method. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  11. Virtual screening methods as tools for drug lead discovery from large chemical libraries.

    Science.gov (United States)

    Ma, X H; Zhu, F; Liu, X; Shi, Z; Zhang, J X; Yang, S Y; Wei, Y Q; Chen, Y Z

    2012-01-01

    Virtual screening methods have been developed and explored as useful tools for searching drug lead compounds from chemical libraries, including large libraries that have become publically available. In this review, we discussed the new developments in exploring virtual screening methods for enhanced performance in searching large chemical libraries, their applications in screening libraries of ~ 1 million or more compounds in the last five years, the difficulties in their applications, and the strategies for further improving these methods.

  12. An Energy Efficiency Evaluation Method Based on Energy Baseline for Chemical Industry

    OpenAIRE

    Yao, Dong-mei; Zhang, Xin; Wang, Ke-feng; Zou, Tao; Wang, Dong; Qian, Xin-hua

    2016-01-01

    According to the requirements and structure of ISO 50001 energy management system, this study proposes an energy efficiency evaluation method based on energy baseline for chemical industry. Using this method, the energy plan implementation effect in the processes of chemical production can be evaluated quantitatively, and evidences for system fault diagnosis can be provided. This method establishes the energy baseline models which can meet the demand of the different kinds of production proce...

  13. Reduction in Acidity by Chemical and Microbiological Methods and Their Effect on Moslavac Wine Quality

    OpenAIRE

    Herjavec, Stanka; Majdak, Ana; Tupajić, Pavica; Redžepović, Sulejman; Orlić, Sandi

    2003-01-01

    Changes in chemical composition and sensory properties caused by chemical and microbiological methods of deacidification in Moslavac (syn. Furmint) wines were investigated. Alcoholic fermentation of Moslavac musts was carried out with two different strains of the yeasts Saccharomyces paradoxus. There were no marked differences in chemical composition among the wines. Compared to the control microbiological deacidification of wines by Oenococcus oeni resulted in a complete decomposition of mal...

  14. Destruction and waste treatment methods used in a chemical agent disposal project. Memorandum report

    Energy Technology Data Exchange (ETDEWEB)

    McAndless, J.; Fedor, V.; Kinderwater, T.

    1992-10-01

    This report describes the equipment and methods used to thermally decontaminate scrap metal and destroy stockpiles of nerve agents, mustard and lewisite chemical warfare agents. Mustard was destroyed by direct incineration whereas the nerve agents and lewisite were chemically neutralized. The arsenic waste from the lewisite neutralization process was chemically-fixated in concrete for final disposal by landfilling. The scrap metal was incinerated and rendered suitable for recycling into metal feedstock.

  15. Laboratory studies of 235U enrichment by chemical separation methods

    International Nuclear Information System (INIS)

    Daloisi, P.J.; Orlett, M.J.; Tracy, J.W.; Saraceno, A.J.

    1976-01-01

    Laboratory experiments on 235 U enrichment processes based on column redox ion exchange, electrodialysis, and gas exchange chromatography performed from August 1972 to September 1974 are summarized. Effluent from a 50 to 50 weight mixture of U +4 and U +6 (as UO 2 2+ ), at a total uranium concentration of 5 mg U per ml in 0.25N H 2 SO 4 -0.03N NaF solution, passing through a 100 cm length cation exchange column at 0.5 ml/min flow rates, was enriched in 235 U by 1.00090 +- .00012. The enriched fraction was mostly in the +6 valence form while the depleted fraction was U +4 retained on the resin. At flow rates of 2 ml/min, the enrichment factor decreases to 1.00033 +- .00003. In the electrodialysis experiments, the fraction of uranium diffusing through the membranes (mostly as +6 valence state) in 4.2 hours is enriched in 235 U by 1.00096 +- .00012. Gas exchange chromatography tests involved dynamic and static exposure of UF 6 over NaF. In dynamic tests, no significant change in isotopic abundance occurred in the initial one-half weight cut of UF 6 . The measured relative 235 U/ 238 U mole ratios were 1.00004 +- .00004 for these runs. In static runs, enrichment became evident. For the NaF(UF 6 )/sub x/-UF 6 system, there is 235 U depletion in the gas phase, with a single-stage factor of 1.00033 at 100 0 C and 1.00025 at 25 0 C after 10 days of equilibration. The single-stage or unit holdup time is impractically long for all three chemical processes

  16. Room temperature synthesis of magnetite (Fe.sub.3−δ./sub.O.sub.4./sub.) nanoparticles by a simple reverse co-precipitation method

    Czech Academy of Sciences Publication Activity Database

    Mahmed, N.; Heczko, Oleg; Söderberg, O.; Hannula, S.-P.

    2011-01-01

    Roč. 18, č. 3 (2011), 032020/1-032020/4 ISSN 1757-8981 Institutional research plan: CEZ:AV0Z10100520 Keywords : ferromagnetic nanoparticles * magnetite nanoparticles synthesis * maghemi Subject RIV: BM - Solid Matter Physics ; Magnetism

  17. Structural and transport properties of nanocrystalline MnFe/sub 2/O/sub 4/ synthesized by co-precipitation method

    International Nuclear Information System (INIS)

    Akhtar, M.J.; Younas, M.

    2012-01-01

    The nanocrystalline ferrites with spinel structures have been the focus of scientific investigation and received continuous interest in recent decades. The structural and electrical properties of these materials have become an important area of research and are attracting considerable interest due to broad range of applications. Spinel ferrites have been shown to exhibit interesting dielectric properties in the nanocrystalline form in comparison to the corresponding bulk materials. Structural and electrical properties of nanocrystalline MnFe/sub 2/O/sub 4/ were investigated. X-ray diffraction and X-ray absorption fine structure spectroscopy results showed that nanocrystalline MnFe/sub 2/O/sub 4/ had cubic symmetry with 80% inversion. shows the X-ray absorption near edge structure (XANES) spectra of MnFe/sub 2/O/sub 4/ and Zn/sub 1-x/Ni/sub x/Fe/sub 2/O/sub 4/, used as model compounds. The electrical transport properties were investigated by employing impedance spectroscopy. It was observed that the dielectric constant decreased with the increase in frequency. The effects of frequency on dielectric properties were more prominent in the low frequency region, where dielectric constant increased as temperature was increased. (Orig./A.B.)

  18. Physico-chemical properties of manufactured nanomaterials - Characterisation and relevant methods. An outlook based on the OECD Testing Programme.

    NARCIS (Netherlands)

    Rasmussen, Kirsten; Rauscher, Hubert; Mech, Agnieszka; Riego Sintes, Juan; Gilliland, Douglas; González, Mar; Kearns, Peter; Moss, Kenneth; Visser, Maaike; Groenewold, Monique; Bleeker, Eric A J

    Identifying and characterising nanomaterials require additional information on physico-chemical properties and test methods, compared to chemicals in general. Furthermore, regulatory decisions for chemicals are usually based upon certain toxicological properties, and these effects may not be

  19. Apparatus and method for solid fuel chemical looping combustion

    Science.gov (United States)

    Siriwardane, Ranjani V; Weber, Justin M

    2015-04-14

    The disclosure provides an apparatus and method utilizing fuel reactor comprised of a fuel section, an oxygen carrier section, and a porous divider separating the fuel section and the oxygen carrier section. The porous divider allows fluid communication between the fuel section and the oxygen carrier section while preventing the migration of solids of a particular size. Maintaining particle segregation between the oxygen carrier section and the fuel section during solid fuel gasification and combustion processes allows gases generated in either section to participate in necessary reactions while greatly mitigating issues associated with mixture of the oxygen carrier with char or ash products. The apparatus and method may be utilized with an oxygen uncoupling oxygen carrier such as CuO, Mn.sub.3O.sub.4, or Co.sub.3O.sub.4, or utilized with a CO/H.sub.2 reducing oxygen carrier such as Fe.sub.2O.sub.3.

  20. EFFECTS OF EXTRACTION METHODS ON PHYSICO-CHEMICAL ...

    African Journals Online (AJOL)

    The relative density value ranged from 0.9 to 0.92 at 29°C (room temperature). Both oil samples were in liquid state at room temperature and boiling points varied from 94°C-to 98°C for solvent extracted oil and hydraulic press oil respectively. The results showed thatJhe method ofextraction imposed significant changes on ...

  1. Methods for chemical analysis of water and wastes

    Energy Technology Data Exchange (ETDEWEB)

    1979-03-01

    This manual provides test procedures approved for the monitoring of water supplies, waste discharges, and ambient waters, under the Safe Drinking Water Act, the National Pollutant Discharge Elimination System, and Ambient Monitoring Requirements of Section 106 and 208 of Public Law 92-500. The test methods have been selected to meet the needs of federal legislation and to provide guidance to laboratories engaged in the protection of human health and the aquatic environment.

  2. Recycling of poly(ethylene terephthalate – A review focusing on chemical methods

    Directory of Open Access Journals (Sweden)

    B. Geyer

    2016-07-01

    Full Text Available Recycling of poly(ethylene terephthalate (PET is of crucial importance, since worldwide amounts of PETwaste increase rapidly due to its widespread applications. Hence, several methods have been developed, like energetic, material, thermo-mechanical and chemical recycling of PET. Most frequently, PET-waste is incinerated for energy recovery, used as additive in concrete composites or glycolysed to yield mixtures of monomers and undefined oligomers. While energetic and thermo-mechanical recycling entail downcycling of the material, chemical recycling requires considerable amounts of chemicals and demanding processing steps entailing toxic and ecological issues. This review provides a thorough survey of PET-recycling including energetic, material, thermo-mechanical and chemical methods. It focuses on chemical methods describing important reaction parameters and yields of obtained reaction products. While most methods yield monomers, only a few yield undefined low molecular weight oligomers for impaired applications (dispersants or plasticizers. Further, the present work presents an alternative chemical recycling method of PET in comparison to existing chemical methods.

  3. A LITERATURE REVIEW OF WIPE SAMPLING METHODS FOR CHEMICAL WARFARE AGENTS AND TOXIC INDUSTRIAL CHEMICALS

    Science.gov (United States)

    Wipe sampling is an important technique for the estimation of contaminant deposition in buildings, homes, or outdoor surfaces as a source of possible human exposure. Numerousmethods of wipe sampling exist, and each method has its own specification for the type of wipe, we...

  4. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  5. Quality control of chemical heat treatment by the fractography method

    International Nuclear Information System (INIS)

    Tamarina, A.M.; Parygin, V.A.; Karpov, V.N.

    1978-01-01

    A fractographic investigation is carried out of fracture of a nitrided layer of 38KhMYuA steel and of cemented and cyanided layers of 12KhM3A steel. It is established that a fracture of the nitrided layer consists of three zones of crystalline facets: 1) a surface zone of fine crystalline facets located in a single plane and having the appearance of a white band (Σ-phase zone); 2) zone of acicular facets whose presence is due to the break-down of the carbonitride phase; 3) zone of large facets of boundary breakdown. The fractures of cemented and cyanided samples consist of multiple fine facets of multi-face shapes. It has been found that the depth and the microstructure of a diffusion layer in steel after chemothermal processing can be most rapidly and objectively evaluated by the fractographic method

  6. [Research on determination of chemical purity of andrographolide by coulometric titration method].

    Science.gov (United States)

    Yang, Ning; Yang, Dezhi; Xu, Lishen; Lv, Yang

    2010-04-01

    The determination of chemical purity of andrographolide by coulometric titration method is studied in this paper. The coulometric titration was carried out in a mixture composed of 4 mol x L(-1) hydrochloric acid and 1 mol x L(-1) potassium bromide solution and 1 mol x L(-1) potassium nitrate solution (1:1). Bromine is electrogenerated at the anode and reacts with the andrographolide. The number of electrons involved in the eleatrode reaction is 2. Purity of andrographolide is 99.76% compared with 99.77% utilizing area normalization method by HPLC. The RSD are 0.33% and 0.02% respectively. The results from two methods are consistent, so the determination of chemical purity of andrographolide by coulometric titration method is scientific and feasible. The method is rapid, simple, convenient, sensitive and accurate. The reference material is not essential in the method. The method is suitable for determination of chemical purity of andrographolide.

  7. DRES Database of Methods for the Analysis of Chemical Warfare Agents

    National Research Council Canada - National Science Library

    D'Agostino, Paul

    1997-01-01

    .... Update of the database continues as an ongoing effort and the DRES Database of Methods for the Analysis of Chemical Warfare Agents is available panel in hardcopy form or as a softcopy Procite or Wordperfect file...

  8. A comparison of the microstructures and electrochemical capacitive properties of 2 graphenes prepared by arc discharge method and chemical method

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H.; Yang, Y. [Research Inst. of Chemical Defense, Beijing (China); Univ. of Science and Technology, Beijing (China); Cao, G.; Xu, B. [Research Inst. of Chemical Defense, Beijing (China)

    2010-07-01

    In this study, 2 kinds of graphene materials were prepared using both arc discharge and chemical methods. The pore structures and electrochemical capacitive properties of the materials were investigated. A mesopore structure was obtained for the graphene prepared using the arc discharge method, with a capacitance of 12.9 F/g and a high rate capability when used in electrochemical applications. The graphene prepared with the chemical method demonstrated a more highly developed micropore structure and capacitances greater than 70 F/g. However, rate performance for the graphene was normal. 2 figs.

  9. Effects of sonication on co-precipitation synthesis and activity of copper manganese oxide catalyst to remove methane and sulphur dioxide gases.

    Science.gov (United States)

    Yap, Yeow Hong; Lim, Mitchell S W; Lee, Zheng Yee; Lai, Kar Chiew; Jamaal, Muhamad Ashraf; Wong, Farng Hui; Ng, Hoon Kiat; Lim, Siew Shee; Tiong, T Joyce

    2018-01-01

    The utilisation of ultrasound in chemical preparation has been the focus of intense study in various fields, including materials science and engineering. This paper presents a novel method of synthesising the copper-manganese oxide (Hopcalite) catalyst that is used for the removal of volatile organic compounds and greenhouse gases like carbon monoxide. Several samples prepared under different conditions, with and without ultrasound, were subjected to a series of characterisation tests such as XRD, BET, FE-SEM, EDX, TPR-H 2 , TGA and FT-IR in order to establish their chemical and physical properties. A series of catalytic tests using a micro-reactor were subsequently performed on the samples in order to substantiate the aforementioned properties by analysing their ability to oxidise compressed natural gas (CNG), containing methane and sulphur dioxide. Results showed that ultrasonic irradiation of the catalyst led to observable alterations in its morphology: surfaces of the particles were noticeably smoothed and an increased in amorphicity was detected. Furthermore, ultrasonic irradiation has shown to enhance the catalytic activity of Hopcalite, achieving a higher conversion of methane relative to non-sonicated samples. Varying the ultrasonic intensity also produced appreciable effects, whereby an increase in intensity results in a higher conversion rate. The catalyst sonicated at the highest intensity of 29.7W/cm 2 has a methane conversion rate of 13.5% at 400°C, which was the highest among all the samples tested. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. A rapid method for the computation of equilibrium chemical composition of air to 15000 K

    Science.gov (United States)

    Prabhu, Ramadas K.; Erickson, Wayne D.

    1988-01-01

    A rapid computational method has been developed to determine the chemical composition of equilibrium air to 15000 K. Eleven chemically reacting species, i.e., O2, N2, O, NO, N, NO+, e-, N+, O+, Ar, and Ar+ are included. The method involves combining algebraically seven nonlinear equilibrium equations and four linear elemental mass balance and charge neutrality equations. Computational speeds for determining the equilibrium chemical composition are significantly faster than the often used free energy minimization procedure. Data are also included from which the thermodynamic properties of air can be computed. A listing of the computer program together with a set of sample results are included.

  11. Plant management in natural areas: balancing chemical, mechanical, and cultural control methods

    Science.gov (United States)

    Steven Manning; James. Miller

    2011-01-01

    After determining the best course of action for control of an invasive plant population, it is important to understand the variety of methods available to the integrated pest management professional. A variety of methods are now widely used in managing invasive plants in natural areas, including chemical, mechanical, and cultural control methods. Once the preferred...

  12. A new cascade method for studying isotope effect in chemical exchange system without valance change

    International Nuclear Information System (INIS)

    Wen Xiaoning; Luo Wenzong

    1987-01-01

    A new cascade method for studying isotope effect in chemical exchange system without valance change is developed and described. This method is simple to use and consumes less extractant as compared with the commonly used Woodward method. It is also convenient for unstable systems

  13. Neodymium cobalt oxide as a chemical sensor

    Science.gov (United States)

    Abdel-Latif, I. A.; Rahman, Mohammed M.; Khan, Sher Bahadar

    2018-03-01

    Chemical sensing and electrical transport properties of neodymium coblate, NdCoO3, was investigated in this work. It was prepared by using co-precipitation method. Pure neodymium chloride and cobalt chloride were mixing in the presence of sodium hydroxide and the obtained co-precipitated powder was calcined at 850 and 1000 °C. The synthesized composites, as-grown (NdCoO3-I), calcined at 850 °C (NdCoO3-II), and calcined at 1000 °C (NdCoO3-III) were studied in details in terms of their morphological and structural properties. The X-ray analysis confirmed that the synthesized products are well crystalline possessing single phase orthorhombic crystal system of space group Pbnm(62). The crystallite size of NdCoO3-I, NdCoO3-II, and NdCoO3-III is 22, 111, and 338 nm, respectively which reflect that crystallite size is increasing with increase in firing temperature. The DC resistivity was measured as a function of temperature in the temperature range from room temperature up to 200 °C. All NdCoO3 are semiconductor in this range of temperature but showed different activation energy which strongly depends on the crystallite size of the products. The activation energy decreased with increase in crystallite size, 0.798, 0.414 and 0.371 eV for NdCoO3-I, NdCoO3-II, and NdCoO3-III, respectively. Thus resistivity increases with increase in crystallite size of NdCoO3. All NdCoO3 products were tested as chemical sensor for acetone by electrochemical approaches and showed excellent sensitivity. Among the NdCoO3 samples, NdCoO3-III showed the highest sensitivity (3.4722 μAcm-2 mM-1) compared to other compositions and gradually decreased to 3.2407 μAcm-2 mM-1 with decreasing the crystallite size of NdCoO3-II. It is also observed that the sensitivity drastically decreased to 0.76253 μAcm-2 mM-1 in the case of NdCoO3-I. It is introduced an efficient route for the detection of environmental unsafe chemicals by electrochemical approach for the safety of healthcare and environmental

  14. Development of an automated method for determination of thorium in soil samples and aerosols

    International Nuclear Information System (INIS)

    Stuart, J.E.; Robertson, R.

    1986-09-01

    Methodology for determining trace thorium levels in a variety of sample types was further developed. Thorium in filtered water samples is concentrated by ferric hydroxide precipitation followed by dissolution and co-precipitation with lanthanum fluoride. Aerosols on glass fibre, cellulose ester, or teflon filters and solid soil and sediment samples are acid digested. Subsequently thorium is concentrated by lanthanum fluoride co-precipitation. Chemical separation and measurement is then done on a Technicon AA11-C autoanalyzer, using solvent extraction into thenoyltrifuoroacetone in kerosene followed by back extraction into 2 N H NO 3 , and colourometric measurement of the thorium arsenazo III complex. Chemical yields are determined by the addition of thorium-234 tracer using gamma-ray spectrometry. The sensitivities of the methods for water, aerosol and solid samples are approximately 1.0 μg/L, 0.5 μg/g and 1.0 μg/g respectively. At thorium levels about ten times the detection limit, accuracy is estimated to be ± 10% for liquids and aerosols and ± 15% for solid samples, and precision ± 5% for all samples

  15. Characterization and photo-chemical applications of nano-ZnO prepared by wet chemical and thermal decomposition methods

    International Nuclear Information System (INIS)

    Mousa, M.A.; Bayoumy, W.A.A.; Khairy, M.

    2013-01-01

    Graphical abstract: - Highlights: • Nano-ZnO particles were synthesized by soft-wet precipitation and dry methods. • ZnO nanoparticle with different morphologies was obtained. • Nano ZnO samples showed a high photocatalytic activity. • ZnO nanoparticle showed strong ultraviolet emission at room temperature. • The samples showed high biological activity depending on their synthetic method. - Abstract: Nano-crystalline ZnO particles were synthesized using two different routes: soft-wet and dry methods. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to identify the particles structures and morphologies, while X-ray diffraction (XRD) was used for verifying the particles crystal structure. The thermal stabilities of the particles were examined through thermal gravimetric analysis technique and their surface areas were calculated using BET method. Moreover, the photocatalytic activities were evaluated using UV–vis spectroscopy and photoluminescence (PL) characterization. The results showed that all the prepared ZnO samples possess a hexagonal wurtzite structure with high purity. Different particle sizes and morphologies of spheres, rods and wires were obtained depending on the preparation method used. Particle sizes obtained by the dry method are smaller than that found by the wet chemical method. The effects of both particle size and morphology on each of surface as well as optical properties, photocatalytic activity, dye/ZnO solar cell efficiency and biological activity have been studied and discussed

  16. Chemical modification of cobalt ferrite nanoparticles with possible application as asphaltene flocculant agent

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, G.E.; Clarindo, J.E.S.; Santo, K.S.E., E-mail: geiza.oliveira@ufes.br [Universidade Federal do Espirito Santo (CCE/DQUI/UFES), Vitoria, ES (Brazil). Centro de Ciencias Exatas. Dept. de Quimica; Souza Junior, F.G. [Universidade Federal do Rio de Janeiro (IMA/UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Macromoleculas

    2013-11-01

    Asphaltenes can cause enormous losses in the oil industry, because they are soluble only in aromatic solvents. Therefore, they must be removed from the petroleum before it is refined, using flocculant agents. Aiming to find new materials that can work as flocculant agents to asphaltenes, cobalt ferrite nanoparticles were chemically modified through acid-base reactions using dodecylbenzene sulfonic acid (DBSA) to increase their lipophilicity. Nanoparticle synthesis was performed using the co-precipitation method followed by annealing of these nanoparticles, aiming to change the structural phase. Modified and unmodified nanoparticles were tested by FTIR-ATR, XRD and TGA/DTA. In addition, precipitation onset of the asphaltenes was performed using modified and unmodified nanoparticles. These tests showed that modified nanoparticles have a potential application as flocculant agents used to remove asphaltenes before oil refining, since the presence of nanoparticles promotes the asphaltene precipitation onset with the addition of a small amount of non-solvent (author)

  17. Chemical modification of cobalt ferrite nanoparticles with possible application as asphaltene flocculant agent

    International Nuclear Information System (INIS)

    Oliveira, G.E.; Clarindo, J.E.S.; Santo, K.S.E.; Souza Junior, F.G.

    2013-01-01

    Asphaltenes can cause enormous losses in the oil industry, because they are soluble only in aromatic solvents. Therefore, they must be removed from the petroleum before it is refined, using flocculant agents. Aiming to find new materials that can work as flocculant agents to asphaltenes, cobalt ferrite nanoparticles were chemically modified through acid-base reactions using dodecylbenzene sulfonic acid (DBSA) to increase their lipophilicity. Nanoparticle synthesis was performed using the co-precipitation method followed by annealing of these nanoparticles, aiming to change the structural phase. Modified and unmodified nanoparticles were tested by FTIR-ATR, XRD and TGA/DTA. In addition, precipitation onset of the asphaltenes was performed using modified and unmodified nanoparticles. These tests showed that modified nanoparticles have a potential application as flocculant agents used to remove asphaltenes before oil refining, since the presence of nanoparticles promotes the asphaltene precipitation onset with the addition of a small amount of non-solvent (author)

  18. Method for Non-Invasive Determination of Chemical Properties of Aqueous Solutions

    Science.gov (United States)

    Todd, Paul W. (Inventor); Jones, Alan (Inventor); Thomas, Nathan A. (Inventor)

    2016-01-01

    A method for non-invasively determining a chemical property of an aqueous solution is provided. The method provides the steps of providing a colored solute having a light absorbance spectrum and transmitting light through the colored solute at two different wavelengths. The method further provides the steps of measuring light absorbance of the colored solute at the two different transmitted light wavelengths, and comparing the light absorbance of the colored solute at the two different wavelengths to determine a chemical property of an aqueous solution.

  19. A method for assessing residual NAPL based on organic chemical concentrations in soil samples

    International Nuclear Information System (INIS)

    Feenstra, S.; Mackay, D.M.; Cherry, J.A.

    1991-01-01

    Ground water contamination by non-aqueous phase liquid (NAPL) chemicals is a serious concern at many industrial facilities and waste disposal sites. NAPL in the form of immobile residual contamination, or pools of mobile or potentially mobile NAPL, can represent continuing sources of ground water contamination. In order to develop rational and cost-effective plans for remediation of soil and ground water contamination at such sites, it is essential to determine if non-aqueous phase liquid (NAPL) chemicals are present in the subsurface and delineate the zones of NAPL contamination. Qualitatively, soil analyses that exhibit chemical concentrations in the percent range or >10,000 mg/kg would generally be considered to indicate the presence of NAPL. However, the results of soil analyses are seldom used in a quantitative manner to assess the possible presence of residual NAPL contamination when chemical concentrations are lower and the presence of NAPL is not obvious. The assessment of the presence of NAPL in soil samples is possible using the results of chemical and physical analyses of the soil, and the fundamental principles of chemical partitioning in unsaturated or saturated soil. The method requires information on the soil of the type typically considered in ground water contamination studies and provides a simple tool for the investigators of chemical spill and waste disposal sites to assess whether soil chemical analyses indicate the presence of residual NAPL in the subsurface

  20. X-ray photon-in/photon-out methods for chemical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Marcus, Matthew A.

    2010-03-24

    Most interesting materials in nature are heterogeneous, so it is useful to have analytical techniques with spatial resolution sufficient to resolve these heterogeneities.This article presents the basics of X-ray photon-in/photon-out chemical imaging. This family of methods allows one to derive images reflectingthe chemical state of a given element in a complex sample, at micron or deep sub-micron scale. X-ray chemical imaging is relatively non-destructiveand element-selective, and requires minimal sample preparation. The article presents the basic concepts and some considerations of data takingand data analysis, along with some examples.

  1. NMR determination of chemically related metals in solution as a new method of inorganic analysis

    International Nuclear Information System (INIS)

    Fedorov, L.A.

    1989-01-01

    An NMR spectroscopic method for the determination of chemically related metals in solution is suggested. The metals are determined in complexes with specially selected polydentate ligands. Structural requirements to ligands, analytical properties and general limits of the application of the method are discussed. (orig.)

  2. The method of modelling of relationships between hardenability and chemical composition of the constructional alloy steels

    International Nuclear Information System (INIS)

    Dobrzanski, L.A.; Sitek, W.

    1998-01-01

    Basing on the experimental results of the hardenability investigations, which employed Jominy method, the model of the neural networks was developed and fully verified experimentally. The model makes it possible to obtain Jominy hardenability curves basing on the steel chemical composition. The model of neural networks, making it possible to design the steel chemical composition, basing on the known Jominy hardenability curve shape, was developed also and fully verified numerically. The practical usability of the models developed is presented. (author)

  3. Methods for conversion of carbohydrates in ionic liquids to value-added chemicals

    Science.gov (United States)

    Zhao, Haibo [The Woodlands, TX; Holladay, Johnathan E [Kennewick, WA; Zhang, Zongchao C [Norwood, NJ

    2011-05-10

    Methods are described for converting carbohydrates including, e.g., monosaccharides, disaccharides, and polysaccharides in ionic liquids to value-added chemicals including furans, useful as chemical intermediates and/or feedstocks. Fructose is converted to 5-hydroxylmethylfurfural (HMF) in the presence of metal halide and acid catalysts. Glucose is effectively converted to HMF in the presence of chromium chloride catalysts. Yields of up to about 70% are achieved with low levels of impurities such as levulinic acid.

  4. A simple in chemico method for testing skin sensitizing potential of chemicals using small endogenous molecules.

    Science.gov (United States)

    Nepal, Mahesh Raj; Shakya, Rajina; Kang, Mi Jeong; Jeong, Tae Cheon

    2018-06-01

    Among many of the validated methods for testing skin sensitization, direct peptide reactivity assay (DPRA) employs no cells or animals. Although no immune cells are involved in this assay, it reliably predicts the skin sensitization potential of a chemical in chemico. Herein, a new method was developed using endogenous small-molecular-weight compounds, cysteamine and glutathione, rather than synthetic peptides, to differentiate skin sensitizers from non-sensitizers with an accuracy as high as DPRA. The percent depletion of cysteamine and glutathione by test chemicals was measured by an HPLC equipped with a PDA detector. To detect small-size molecules, such as cysteamine and glutathione, a derivatization by 4-(4-dimethylaminophenylazo) benzenesulfonyl chloride (DABS-Cl) was employed prior to the HPLC analysis. Following test method optimization, a cut-off criterion of 7.14% depletion was applied to differentiate skin sensitizers from non-sensitizers in combination of the ratio of 1:25 for cysteamine:test chemical with 1:50 for glutathione:test chemical for the best predictivity among various single or combination conditions. Although overlapping HPLC peaks could not be fully resolved for some test chemicals, high levels of sensitivity (100.0%), specificity (81.8%), and accuracy (93.3%) were obtained for 30 chemicals tested, which were comparable or better than those achieved with DPRA. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Powder samples of Ag/ZnO nanocomposite containing different amounts of Ag were synthesized by co-precipitation method. The synthesized samples were characterized by XRD, SEM, EDX and TEM techniques. The XRD results revealed that all the samples show wurtzite hexagonal phase of ZnO. The TEM micrographs ...

  6. An Energy Efficiency Evaluation Method Based on Energy Baseline for Chemical Industry

    Directory of Open Access Journals (Sweden)

    Dong-mei Yao

    2016-01-01

    Full Text Available According to the requirements and structure of ISO 50001 energy management system, this study proposes an energy efficiency evaluation method based on energy baseline for chemical industry. Using this method, the energy plan implementation effect in the processes of chemical production can be evaluated quantitatively, and evidences for system fault diagnosis can be provided. This method establishes the energy baseline models which can meet the demand of the different kinds of production processes and gives the general solving method of each kind of model according to the production data. Then the energy plan implementation effect can be evaluated and also whether the system is running normally can be determined through the baseline model. Finally, this method is used on cracked gas compressor unit of ethylene plant in some petrochemical enterprise; it can be proven that this method is correct and practical.

  7. Chemical Footprint Method for Improved Communication of Freshwater Ecotoxicity Impacts in the Context of Ecological Limits

    DEFF Research Database (Denmark)

    Bjørn, Anders; Diamond, Miriam; Birkved, Morten

    2014-01-01

    The ecological footprint method has been successful in communicating environmental impacts of anthropogenic activities in the context of ecological limits. We introduce a chemical footprint method that expresses ecotoxicity impacts from anthropogenic chemical emissions as the dilution needed...... to avoid freshwater ecosystem damage. The indicator is based on USEtox characterization factors with a modified toxicity reference point. Chemical footprint results can be compared to the actual dilution capacity within the geographic vicinity receiving the emissions to estimate whether its ecological...... limit has been exceeded and hence whether emissions can be expected to be environmentally sustainable. The footprint method was illustrated using two case studies. The first was all inventoried emissions from European countries and selected metropolitan areas in 2004, which indicated that the dilution...

  8. Chemical Pretreatment Methods for the Production of Cellulosic Ethanol: Technologies and Innovations

    Directory of Open Access Journals (Sweden)

    Edem Cudjoe Bensah

    2013-01-01

    Full Text Available Pretreatment of lignocellulose has received considerable research globally due to its influence on the technical, economic and environmental sustainability of cellulosic ethanol production. Some of the most promising pretreatment methods require the application of chemicals such as acids, alkali, salts, oxidants, and solvents. Thus, advances in research have enabled the development and integration of chemical-based pretreatment into proprietary ethanol production technologies in several pilot and demonstration plants globally, with potential to scale-up to commercial levels. This paper reviews known and emerging chemical pretreatment methods, highlighting recent findings and process innovations developed to offset inherent challenges via a range of interventions, notably, the combination of chemical pretreatment with other methods to improve carbohydrate preservation, reduce formation of degradation products, achieve high sugar yields at mild reaction conditions, reduce solvent loads and enzyme dose, reduce waste generation, and improve recovery of biomass components in pure forms. The use of chemicals such as ionic liquids, NMMO, and sulphite are promising once challenges in solvent recovery are overcome. For developing countries, alkali-based methods are relatively easy to deploy in decentralized, low-tech systems owing to advantages such as the requirement of simple reactors and the ease of operation.

  9. Adaptation of chemical methods of analysis to the matrix of pyrite-acidified mining lakes

    International Nuclear Information System (INIS)

    Herzsprung, P.; Friese, K.

    2000-01-01

    Owing to the unusual matrix of pyrite-acidified mining lakes, the analysis of chemical parameters may be difficult. A number of methodological improvements have been developed so far, and a comprehensive validation of methods is envisaged. The adaptation of the available methods to small-volume samples of sediment pore waters and the adaptation of sensitivity to the expected concentration ranges is an important element of the methods applied in analyses of biogeochemical processes in mining lakes [de

  10. The phase-resolved photoacoustic method to indicate chemical assignments of paracetamol

    Science.gov (United States)

    Camilotti, J. G.; Somer, A.; Costa, G. F.; Ribeiro, M. A.; Bonardi, C.; Cruz, G. K.; Gómez, S. L.; Beltrame, F. L.; Medina, A. N.; Sato, F.; Astrath, N. G. C.; Novatski, A.

    2014-03-01

    In this work, the phase-resolved photoacoustic method was applied to provide specific information on the chemical assignments of paracetamol in the near-infrared region. Two broad bands, centered at 1370 and 1130 nm, were well-resolved using this method, making it possible to assign the peaks centered at 1398, 1355 and 1295 nm to a C-H combination from a CH3 structure and the peak at 1305 nm to a C-H combination from the aromatic ring. This information represents a new finding in chemical studies regarding this medicament.

  11. Assessment of the radium-barium co-precipitation and its potential influence on the solubility of Ra in the near-field

    Energy Technology Data Exchange (ETDEWEB)

    Grandia, Fidel; Merino, Joan; Bruno, Jordi (Amphos XXI Consulting S.L., Barcelona (Spain))

    2008-08-15

    Radium 226 is one of the main contributors to radiological dose in some of the scenarios contemplated in the recent SR Can safety assessment. The relative contribution of the 226Ra dose is clearly dependent on the source term value for this radionuclide, which is directly connected to its solubility behaviour. Most of the source term calculations performed for this radionuclide pessimistically assume that its solubility is controlled by the individual solubility of RaSO{sub 4}(s), the most insoluble phase under near field conditions, while the abundant information from early radiochemical research, natural system studies and anthropogenic systems would indicate that Ra(II) is mainly associated to BaSO{sub 4}(s) precipitation. In this work we have investigated the extensive literature concerning the mechanisms and processes controlling the co-precipitation/solid solution formation behaviour of the Ra(II)/Ba(II) sulphate system. We have also established the necessary thermodynamic moles to model the solubility behaviour in the vicinity of the spent fuel system. Calculations using an ATM-104 fuel at 40 MWd/kg U show that barium and radium inventories per canister progressively grow with time after deposition, most of the barium is produced in the initial 500 years. In the unlikely event of a contact of sulphate-containing groundwaters with the fuel, Ba(II) will precipitate as BaSO{sub 4}(s). The production of 226Ra reaches its peak some 300,000 years after deposition. This substantial time gap indicates that most of the BaSO{sub 4}(s) will be present when and if radium is released from the fuel, even if some Ra(II) and Ba(II) will be released contemporaneously. Two potential scenarios have been addressed from the mechanistic point of view. In the event of a simultaneous release of Ra with Ba, the former will be readily incorporated into the precipitating BaSO{sub 4} to build a Ra Ba sulphate solid solution. All the existing evidence indicates, that in this case, the

  12. Assessment of the radium-barium co-precipitation and its potential influence on the solubility of Ra in the near-field

    International Nuclear Information System (INIS)

    Grandia, Fidel; Merino, Joan; Bruno, Jordi

    2008-08-01

    Radium 226 is one of the main contributors to radiological dose in some of the scenarios contemplated in the recent SR Can safety assessment. The relative contribution of the 226 Ra dose is clearly dependent on the source term value for this radionuclide, which is directly connected to its solubility behaviour. Most of the source term calculations performed for this radionuclide pessimistically assume that its solubility is controlled by the individual solubility of RaSO 4 (s), the most insoluble phase under near field conditions, while the abundant information from early radiochemical research, natural system studies and anthropogenic systems would indicate that Ra(II) is mainly associated to BaSO 4 (s) precipitation. In this work we have investigated the extensive literature concerning the mechanisms and processes controlling the co-precipitation/solid solution formation behaviour of the Ra(II)/Ba(II) sulphate system. We have also established the necessary thermodynamic moles to model the solubility behaviour in the vicinity of the spent fuel system. Calculations using an ATM-104 fuel at 40 MWd/kg U show that barium and radium inventories per canister progressively grow with time after deposition, most of the barium is produced in the initial 500 years. In the unlikely event of a contact of sulphate-containing groundwaters with the fuel, Ba(II) will precipitate as BaSO 4 (s). The production of 226 Ra reaches its peak some 300,000 years after deposition. This substantial time gap indicates that most of the BaSO 4 (s) will be present when and if radium is released from the fuel, even if some Ra(II) and Ba(II) will be released contemporaneously. Two potential scenarios have been addressed from the mechanistic point of view. In the event of a simultaneous release of Ra with Ba, the former will be readily incorporated into the precipitating BaSO 4 to build a Ra Ba sulphate solid solution. All the existing evidence indicates, that in this case, the behaviour of the

  13. In silico toxicology: computational methods for the prediction of chemical toxicity

    KAUST Repository

    Raies, Arwa B.; Bajic, Vladimir B.

    2016-01-01

    Determining the toxicity of chemicals is necessary to identify their harmful effects on humans, animals, plants, or the environment. It is also one of the main steps in drug design. Animal models have been used for a long time for toxicity testing. However, in vivo animal tests are constrained by time, ethical considerations, and financial burden. Therefore, computational methods for estimating the toxicity of chemicals are considered useful. In silico toxicology is one type of toxicity assessment that uses computational methods to analyze, simulate, visualize, or predict the toxicity of chemicals. In silico toxicology aims to complement existing toxicity tests to predict toxicity, prioritize chemicals, guide toxicity tests, and minimize late-stage failures in drugs design. There are various methods for generating models to predict toxicity endpoints. We provide a comprehensive overview, explain, and compare the strengths and weaknesses of the existing modeling methods and algorithms for toxicity prediction with a particular (but not exclusive) emphasis on computational tools that can implement these methods and refer to expert systems that deploy the prediction models. Finally, we briefly review a number of new research directions in in silico toxicology and provide recommendations for designing in silico models.

  14. In silico toxicology: computational methods for the prediction of chemical toxicity

    KAUST Repository

    Raies, Arwa B.

    2016-01-06

    Determining the toxicity of chemicals is necessary to identify their harmful effects on humans, animals, plants, or the environment. It is also one of the main steps in drug design. Animal models have been used for a long time for toxicity testing. However, in vivo animal tests are constrained by time, ethical considerations, and financial burden. Therefore, computational methods for estimating the toxicity of chemicals are considered useful. In silico toxicology is one type of toxicity assessment that uses computational methods to analyze, simulate, visualize, or predict the toxicity of chemicals. In silico toxicology aims to complement existing toxicity tests to predict toxicity, prioritize chemicals, guide toxicity tests, and minimize late-stage failures in drugs design. There are various methods for generating models to predict toxicity endpoints. We provide a comprehensive overview, explain, and compare the strengths and weaknesses of the existing modeling methods and algorithms for toxicity prediction with a particular (but not exclusive) emphasis on computational tools that can implement these methods and refer to expert systems that deploy the prediction models. Finally, we briefly review a number of new research directions in in silico toxicology and provide recommendations for designing in silico models.

  15. Rapid continuous chemical methods for studies of nuclei far from stability

    CERN Document Server

    Trautmann, N; Eriksen, D; Gaggeler, H; Greulich, N; Hickmann, U; Kaffrell, N; Skarnemark, G; Stender, E; Zendel, M

    1981-01-01

    Fast continuous separation methods accomplished by combining a gas-jet recoil-transport system with a variety of chemical systems are described. Procedures for the isolation of individual elements from fission product mixtures with the multistage solvent extraction facility SISAK are presented. Thermochromatography in connection with a gas-jet has been studied as a technique for on-line separation of volatile fission halides. Based on chemical reactions in a gas-jet system itself separation procedures for tellurium, selenium and germanium from fission products have been worked out. All the continuous chemical methods can be performed within a few seconds. The application of such procedures to the investigation of nuclides far from the line of beta -stability is illustrated by a few examples. (16 refs).

  16. Ammonia-free chemical bath method for deposition of microcrystalline cadmium selenide films

    International Nuclear Information System (INIS)

    Lokhande, C.D.; Lee, Eun-Ho; Jung, Kwang-Deog; Joo, Oh-Shim

    2005-01-01

    Chemical deposition of cadmium selenide (CdSe) films has been carried out from alkaline aqueous solution containing Cd 2+ and Se 2- ions. In general, the alkaline pH of the CdSe deposition bath has been adjusted by addition of liquid ammonia. However, the use of ammonia in large-scale chemical deposition method represents an environmental problem due to its volatility and toxicity. The volatility of ammonia changes the pH of deposition bath and results into irreproducible film properties. In the present paper, ammonia-free and weak alkaline (pH < 9.0) chemical method for cadmium selenide film has been developed. The cadmium selenide films are microcrystalline (grain size 0.5-0.7 μm) with hexagonal crystal structure. These films are photoactive and therefore, useful in photo conversion of light into electrical power

  17. Simple method to transfer graphene from metallic catalytic substrates to flexible surfaces without chemical etching

    International Nuclear Information System (INIS)

    Ko, P J; Takahashi, H; Sakai, H; Thu, T V; Okada, H; Sandhu, A; Koide, S

    2013-01-01

    Graphene shows promise for applications in flexible electronics. Here, we describe our procedure to transfer graphene grown on copper substrates by chemical vapor deposition to polydimethylsiloxane (PDMS) and SiO 2 /Si surfaces. The transfer of graphene was achieved by a simple, etching-free method onto flexible PDMS substrates.

  18. Computer Aided Methods & Tools for Separation & Purification of Fine Chemical & Pharmaceutical Products

    DEFF Research Database (Denmark)

    Afonso, Maria B.C.; Soni, Vipasha; Mitkowski, Piotr Tomasz

    2006-01-01

    An integrated approach that is particularly suitable for solving problems related to product-process design from the fine chemicals, agrochemicals, food and pharmaceutical industries is presented together with the corresponding methods and tools, which forms the basis for an integrated computer...

  19. Measurement of interfacial areas with the chemical method for a system with alternating dispersed phases

    NARCIS (Netherlands)

    van Woezik, B.A.A.; Westerterp, K.R.

    2000-01-01

    The interfacial area for a liquid–liquid system has been determined by the chemical reaction method. The saponification of butyl formate ester with 8 M sodium hydroxide has been used to this end. A correlation has been derived to describe the mole flux of ester through the interface and the kinetic

  20. Non- chemical methods of seed treatment for control of seed- borne pathogens on vegetables

    NARCIS (Netherlands)

    Amein, T.; Wright, S.A.I.; Wickstrom, M.; Schmitt, A.; Koch, E.; Wolf, van der J.M.; Groot, S.P.C.; Werner, S.; Jahn, M.

    2006-01-01

    The aim of EU-project "Seed Treatments for Organic Vegetable Production" (STOVE) was to evaluate non-chemical methods for control of seed-borne pathogens in organic vegetable production. Physical (hot air, hot water and electron) and biologi-cal (microorganisms and different agents of natural

  1. A new ultrasonic method to detect chemical additives in branded milk

    Indian Academy of Sciences (India)

    Abstract. A new ultrasonic method – thermoacoustic analysis – is reported for the detection of the added chemical preservatives in branded milk. The nature of variation and shift in the thermal response of the acoustic parameters specific acoustic impedance, adiabatic compressibility and Rao's specific sound velocity for ...

  2. The overlapping distribution method to compute chemical potentials of chain molecules

    NARCIS (Netherlands)

    Mooij, G.C.A.M.; Frenkel, D.

    1994-01-01

    The chemical potential of continuously deformable chain molecules can be estimated by measuring the average Rosenbluth weight associated with the virtual insertion of a molecule. We show how to generalize the overlapping-distribution method of Bennett to histograms of Rosenbluth weights. In this way

  3. Heat Recovery from High Temperature Slags: A Review of Chemical Methods

    Directory of Open Access Journals (Sweden)

    Yongqi Sun

    2015-03-01

    Full Text Available Waste heat recovery from high temperature slags represents the latest potential way to remarkably reduce the energy consumption and CO2 emissions of the steel industry. The molten slags, in the temperature range of 1723–1923 K, carry large amounts of high quality energy. However, the heat recovery from slags faces several fundamental challenges, including their low thermal conductivity, inside crystallization, and discontinuous availability. During past decades, various chemical methods have been exploited and performed including methane reforming, coal and biomass gasification, and direct compositional modification and utilization of slags. These methods effectively meet the challenges mentioned before and help integrate the steel industry with other industrial sectors. During the heat recovery using chemical methods, slags can act as not only heat carriers but also as catalysts and reactants, which expands the field of utilization of slags. Fuel gas production using the waste heat accounts for the main R&D trend, through which the thermal heat in the slag could be transformed into high quality chemical energy in the fuel gas. Moreover, these chemical methods should be extended to an industrial scale to realize their commercial application, which is the only way by which the substantial energy in the slags could be extracted, i.e., amounting to 16 million tons of standard coal in China.

  4. Surface Nano Structures Manufacture Using Batch Chemical Processing Methods for Tooling Applications

    DEFF Research Database (Denmark)

    Tosello, Guido; Calaon, Matteo; Gavillet, J.

    2011-01-01

    The patterning of large surface areas with nano structures by using chemical batch processes to avoid using highenergy intensive nano machining processes was investigated. The capability of different surface treatment methods of creating micro and nano structured adaptable mould inserts for subse...

  5. Method for the deconvolution of incompletely resolved CARS spectra in chemical dynamics experiments

    International Nuclear Information System (INIS)

    Anda, A.A.; Phillips, D.L.; Valentini, J.J.

    1986-01-01

    We describe a method for deconvoluting incompletely resolved CARS spectra to obtain quantum state population distributions. No particular form for the rotational and vibrational state distribution is assumed, the population of each quantum state is treated as an independent quantity. This method of analysis differs from previously developed approaches for the deconvolution of CARS spectra, all of which assume that the population distribution is Boltzmann, and thus are limited to the analysis of CARS spectra taken under conditions of thermal equilibrium. The method of analysis reported here has been developed to deconvolute CARS spectra of photofragments and chemical reaction products obtained in chemical dynamics experiments under nonequilibrium conditions. The deconvolution procedure has been incorporated into a computer code. The application of that code to the deconvolution of CARS spectra obtained for samples at thermal equilibrium and not at thermal equilibrium is reported. The method is accurate and computationally efficient

  6. New chemical-DSMC method in numerical simulation of axisymmetric rarefied reactive flow

    Science.gov (United States)

    Zakeri, Ramin; Kamali Moghadam, Ramin; Mani, Mahmoud

    2017-04-01

    The modified quantum kinetic (MQK) chemical reaction model introduced by Zakeri et al. is developed for applicable cases in axisymmetric reactive rarefied gas flows using the direct simulation Monte Carlo (DSMC) method. Although, the MQK chemical model uses some modifications in the quantum kinetic (QK) method, it also employs the general soft sphere collision model and Stockmayer potential function to properly select the collision pairs in the DSMC algorithm and capture both the attraction and repulsion intermolecular forces in rarefied gas flows. For assessment of the presented model in the simulation of more complex and applicable reacting flows, first, the air dissociation is studied in a single cell for equilibrium and non-equilibrium conditions. The MQK results agree well with the analytical and experimental data and they accurately predict the characteristics of the rarefied flowfield with chemical reaction. To investigate accuracy of the MQK chemical model in the simulation of the axisymmetric flow, air dissociation is also assessed in an axial hypersonic flow around two geometries, the sphere as a benchmark case and the blunt body (STS-2) as an applicable test case. The computed results including the transient, rotational and vibrational temperatures, species concentration in the stagnation line, and also the heat flux and pressure coefficient on the surface are compared with those of the other chemical methods like the QK and total collision energy (TCE) models and available analytical and experimental data. Generally, the MQK chemical model properly simulates the chemical reactions and predicts flowfield characteristics more accurate rather than the typical QK model. Although in some cases, results of the MQK approaches match with those of the TCE method, the main point is that the MQK does not need any experimental data or unrealistic assumption of specular boundary condition as used in the TCE method. Another advantage of the MQK model is the

  7. Chemical methods for Sm-Nd separation and its application in isotopic geological dating

    International Nuclear Information System (INIS)

    Guo Qifeng.

    1990-01-01

    Three chemical methods for Sm-Nd separation are mainly desribed: low chromatography of butamone-ammonium thiocyanate for hight concentration Sm and Nd separation, P 240 column chromatography for medium concentration Sm-Nd separation, and pressure ion exchange for low concentration Sm-Nd. The first Sm-Nd synchrone obtained in China with Sm-Nd methods is introduced and Sm-Nd isotopic geological dating in Early Archaean rocks in eastern Hebei has been determined

  8. Food irradiation: physical-chemical, technological and economical background and competing methods of food preservation

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    1994-01-01

    Physical, chemical and technical as well as economical background of food preservation by irradiation have been performed. The radiation sources and the elements of radiation chemistry connected with their use in food irradiation process have been shown. The problems of dosimetry and endurance of dose uniformity for processed products have been also discussed. The other methods of food preservation and their weakness and advantages have been also presented and compared with food irradiation method

  9. Preparation of polymeric biomaterials with the aid of radiation-chemical methods

    International Nuclear Information System (INIS)

    Kabanov, Vitalii Ya

    1998-01-01

    The results of the application of radiation-chemical methods for the preparation of polymeric biomaterials are surveyed and treated systematically. The characteristic features of these methods and their advantages and disadvantages are indicated. The properties of polymeric biomaterials prepared using ionising radiation are examined. Particular attention is devoted to studies carried out during the last 10-15 years. The bibliography includes 492 references.

  10. Method and multichannel equipment for chemical analysis by X-ray emission

    International Nuclear Information System (INIS)

    Bacso, J.; Horkay, Gy.; Kalinka, G.; Kertesz, Zs.; Kiss Varga, M.; Lakatos, T.; Mathe, Gy.; Paal, A.; Sulik, B.

    1978-01-01

    In the patent a simple method and an apparatus are described for chemical analysis based on X-ray emission generated by irradiation. The concentrations of pre-selected elements can be determined easily by this method using an equipment containing microprocessor. The number of channels and the elements to be determined can be modified by a simple change in the program. (Sz.J.)

  11. Chemical sensors and the development of potentiometric methods for liquid media analysis

    International Nuclear Information System (INIS)

    Vlasov, Yu.G.; Kolodnikov, V.V.; Ermolenko, Yu.E.; Mikhajlova, S.S.

    1996-01-01

    Aspects of applying indirect potentiometric determination to chemical analysis are considered. Among them are the standard and modified addition and subtraction methods, the multiple addition method, and potentiometric titration using ion-selective electrodes as indicators. These methods significantly extend the capabilities of ion-selective potentiometric analysis. Conditions for the applicability of the above-mentioned methods to various samples (Cd, REE, Th, iodides and others) are discussed using all available ion-selective electrodes as examples. 162 refs., 2 figs., 5 tabs

  12. In vitro methods for hazard assessment of industrial chemicals – opportunities and challenges

    Directory of Open Access Journals (Sweden)

    Chin Lin eWong

    2015-05-01

    Full Text Available Allergic contact dermatitis (ACD is a delayed-type hypersensitivity immune reaction mediated by T-lymphocytes as a result of repeated exposure of an allergen primarily on skin. ACD accounts for up to 95% of occupational skin diseases (OSDs, with epoxy resins implicated as one of the most common causes of ACD. Efficient high-throughput in vitro screening for accurate identification of compounds and materials that may pose hazardous risks in the workplace is crucial. At present, the murine local lymph node assay (LLNA is the ‘method of choice’ for predicting the sensitizing potency of contact allergens. As the 3Rs principles of reduction, refinement and replacement in animal testing has gained political and economic momentum, several in vitro screening methods have been developed for identifying potential contact allergens. To date, these latter methods have been utilized primarily to assess the skin sensitizing potential of the chemical components of cosmetic products with scant research attention as to the applicability of these methods to industrial chemicals, particularly epoxy resins. Herein we review the currently utilized in vitro methods and identify the knowledge gaps with regard to assessing the generalizability of in vitro screening methods for assessing the skin sensitizing potential of industrial chemicals.

  13. Solar cells elaborated by chemical methods: examples of research and development at CIE-UNAM

    International Nuclear Information System (INIS)

    Rincon, Marina E.

    2008-01-01

    Full text: At the Energy Research Center (CIE-UNAM-Mexico), the major areas of renewable energy research are solar thermal energy, photovoltaic energy, geothermal energy, hydrogen energy, materials for renewable energy, and energy planning. Among the efforts to developed solar cells, both physical and chemical methods are in progress at CIE-UNAM. In this contribution we focus on the advancement in efficiency, stability, and cost, of photovoltaic junctions based on chemically deposited films. Examples of early research are a composite thin film electrode comprised of SnO2/Bi2S3 nanocrystallites (5 nm) prepared by sequential deposition of SnO2 and Bi2S3 films onto an optically transparent electrode; the co-deposition of pyrrole and Bi2S3 nanoparticles on chemically deposited bismuth sulfide substrates to explore new approaches to improve light-collection efficiency in polymer photovoltaics; the sensitization of titanium dioxide coatings by chemically deposited cadmium selenide and bismuthe sulfide thin films. Here the good photostability of the coatings was promising for the use of the sensitized films in photocatalytic as well as photovoltaic applications. More recently, chemically deposited cadmium sulfide thin films have been explored in planar hybrid heterojunctions with chemically synthesized poly 3-octylthiophene, as well as all-chemically deposited photovoltaic structures. Examples of the last are: chemically deposited thin films of CdS (80 nm), Sb2S3 (450 nm), and Ag2Se (150 nm) annealed at 300 C and integrated into a p-i-n structure glass/SnO2:F/n-CdS/Sb2S3/p-AgSbSe2/Ag, showing Voc ∼ 550 mV and Jsc ∼ 2.3 mA/cm2 at 1 kW/m2 (tungsten halogen) intensity. Similarly, chemically deposited SnS (450nm) and CuS (80nm) thin films integrated in a photovoltaic structure SnO2:F/CdS/SnS/CuS/Ag, showing Voc>300 mV and Jsc up to 5 mA/cm2 under 850 W/m2 tungsten halogen illumination. These photovoltaic structures have been found to be stable over a period extending over

  14. Chemical synthesis of composite HML / PDMcT / PAni and its application as the trhiodan adsorbent in aqueous solutions

    International Nuclear Information System (INIS)

    Girotto, L.G.; Pacheco, I.; Freitas, L.L. de; Oliveira, R.S.; Amaral, F.A. do; Canobre, S.C.

    2016-01-01

    The mixed hydroxide lamellar [Co -Al- Cl] was synthesize by the co- precipitation method constant pH 8. The synthesis composite HML/PDMcT/PAni was carried out via chemical. The DRX composite HML/PDMcT/PAni showed that one amorphicity in the conductor polymer doesn't hid the diffraction peaks characteristic of HML. The MEV micrographs of composite HDL / PDMcT / PAni showed a large number of crystallites compacts with several shapes characteristic to PDMcT and nanofibers of polyaniline indicating an association between the different constituents forming the composite. The results of the adsorption was 98% of the pesticide in the composite HML / PDMcT / PAni , the composite can contribute so significantly to one Thiodon withdrawal in contaminated pesticide waters. (author)

  15. Evaluation of quantum-chemical methods of radiolysis stability for macromolecular structures

    International Nuclear Information System (INIS)

    Postolache, Cristian; Matei, Lidia

    2005-01-01

    The behavior of macromolecular structures in ionising fields was analyzed by quantum-chemical methods. In this study the primary radiolytic effect was analyzed using a two-step radiolytic mechanism: a) ionisation of molecule and spatial redistribution of atoms in order to reach a minimum value of energy, characteristic to the quantum state; b) neutralisation of the molecule by electron capture and its rapid dissociation into free radicals. Chemical bonds suspected to break are located in the distribution region of LUMO orbital and have minimal homolytic dissociation energies. Representative polymer structures (polyethylene, polypropylene, polystyrene, poly α and β polystyrene, polyisobutylene, polytetrafluoroethylene, poly methylsiloxanes) were analyzed. (authors)

  16. Analysis and classification of physical and chemical methods of fuel activation

    Directory of Open Access Journals (Sweden)

    Fedorchak Viktoriya

    2015-12-01

    Full Text Available The offered article explores various research studies, developed patents in terms of physical and chemical approaches to the activation of fuel. In this regard, national and foreign researches in the field of fuels activators with different principles of action were analysed, evaluating their pros and cons. The article also intends to classify these methods and compare them regarding diverse desired results and types of fuels used. In terms of physical and chemical influences on fuels and the necessity of making constructive changes in the fuel system of internal combustion engines, an optimal approach was outlined.

  17. Increased Surface Roughness in Polydimethylsiloxane Films by Physical and Chemical Methods

    Directory of Open Access Journals (Sweden)

    Jorge Nicolás Cabrera

    2017-08-01

    Full Text Available Two methods, the first physical and the other chemical, were investigated to modify the surface roughness of polydimethylsiloxane (PDMS films. The physical method consisted of dispersing multi-walled carbon nanotubes (MWCNTs and magnetic cobalt ferrites (CoFe2O4 prior to thermal cross-linking, and curing the composite system in the presence of a uniform magnetic field H. The chemical method was based on exposing the films to bromine vapours and then UV-irradiating. The characterizing techniques included scanning electron microscopy (SEM, energy-dispersive spectroscopy (EDS, Fourier transform infrared (FTIR spectroscopy, optical microscopy, atomic force microscopy (AFM and magnetic force microscopy (MFM. The surface roughness was quantitatively analyzed by AFM. In the physical method, the random dispersion of MWCNTs (1% w/w and magnetic nanoparticles (2% w/w generated a roughness increase of about 200% (with respect to PDMS films without any treatment, but that change was 400% for films cured in the presence of H perpendicular to the surface. SEM, AFM and MFM showed that the magnetic particles always remained attached to the carbon nanotubes, and the effect on the roughness was interpreted as being due to a rupture of dispersion randomness and a possible induction of structuring in the direction of H. In the chemical method, the increase in roughness was even greater (1000%. Wells were generated with surface areas that were close to 100 μm2 and depths of up to 500 nm. The observations of AFM images and FTIR spectra were in agreement with the hypothesis of etching by Br radicals generated by UV on the polymer chains. Both methods induced important changes in the surface roughness (the chemical method generated the greatest changes due to the formation of surface wells, which are of great importance in superficial technological processes.

  18. In Silico Prediction of Chemicals Binding to Aromatase with Machine Learning Methods.

    Science.gov (United States)

    Du, Hanwen; Cai, Yingchun; Yang, Hongbin; Zhang, Hongxiao; Xue, Yuhan; Liu, Guixia; Tang, Yun; Li, Weihua

    2017-05-15

    Environmental chemicals may affect endocrine systems through multiple mechanisms, one of which is via effects on aromatase (also known as CYP19A1), an enzyme critical for maintaining the normal balance of estrogens and androgens in the body. Therefore, rapid and efficient identification of aromatase-related endocrine disrupting chemicals (EDCs) is important for toxicology and environment risk assessment. In this study, on the basis of the Tox21 10K compound library, in silico classification models for predicting aromatase binders/nonbinders were constructed by machine learning methods. To improve the prediction ability of the models, a combined classifier (CC) strategy that combines different independent machine learning methods was adopted. Performances of the models were measured by test and external validation sets containing 1336 and 216 chemicals, respectively. The best model was obtained with the MACCS (Molecular Access System) fingerprint and CC method, which exhibited an accuracy of 0.84 for the test set and 0.91 for the external validation set. Additionally, several representative substructures for characterizing aromatase binders, such as ketone, lactone, and nitrogen-containing derivatives, were identified using information gain and substructure frequency analysis. Our study provided a systematic assessment of chemicals binding to aromatase. The built models can be helpful to rapidly identify potential EDCs targeting aromatase.

  19. Comparative analysis of chemical similarity methods for modular natural products with a hypothetical structure enumeration algorithm.

    Science.gov (United States)

    Skinnider, Michael A; Dejong, Chris A; Franczak, Brian C; McNicholas, Paul D; Magarvey, Nathan A

    2017-08-16

    Natural products represent a prominent source of pharmaceutically and industrially important agents. Calculating the chemical similarity of two molecules is a central task in cheminformatics, with applications at multiple stages of the drug discovery pipeline. Quantifying the similarity of natural products is a particularly important problem, as the biological activities of these molecules have been extensively optimized by natural selection. The large and structurally complex scaffolds of natural products distinguish their physical and chemical properties from those of synthetic compounds. However, no analysis of the performance of existing methods for molecular similarity calculation specific to natural products has been reported to date. Here, we present LEMONS, an algorithm for the enumeration of hypothetical modular natural product structures. We leverage this algorithm to conduct a comparative analysis of molecular similarity methods within the unique chemical space occupied by modular natural products using controlled synthetic data, and comprehensively investigate the impact of diverse biosynthetic parameters on similarity search. We additionally investigate a recently described algorithm for natural product retrobiosynthesis and alignment, and find that when rule-based retrobiosynthesis can be applied, this approach outperforms conventional two-dimensional fingerprints, suggesting it may represent a valuable approach for the targeted exploration of natural product chemical space and microbial genome mining. Our open-source algorithm is an extensible method of enumerating hypothetical natural product structures with diverse potential applications in bioinformatics.

  20. Synthesis of pure and Sr-doped LaGaO3, LaFeO3 and LaCoO3 and Sr,Mg-doped LaGaO3 for ITSOFC application using different wet chemical routes

    International Nuclear Information System (INIS)

    Kumar, M.; Srikanth, S.; Ravikumar, B.; Alex, T.C.; Das, S.K.

    2009-01-01

    Pure and Sr-doped LaGaO 3 , LaFeO 3 and LaCoO 3 and Sr,Mg-doped LaGaO 3 were synthesized by various wet chemical routes, namely combustion, co-precipitation and citrate-gel methods. The effect of the various process parameters on the phase purity, particle size and surface area and morphology of the synthesized powders were determined by XRD, simultaneous TG-DTA, laser light scattering, BET and scanning electron microscopy. The stability of the synthesized pure phases in oxidizing and reducing atmosphere was also studied by thermogravimetry. It was observed that pure and Sr-doped single perovskite phases of lanthanum ferrite, cobaltite and gallate and Sr,Mg-doped lanthanum gallate could be synthesized by combustion and citrate-gel methods under suitable process conditions. Synthesis using the co-precipitation method yielded incomplete reaction irrespective of the calcination temperature adopted. The citrate-gel method yielded better powder properties in terms of particle size and morphology and surface area compared to combustion synthesis. It was found that pure and Sr-doped lanthanum ferrite, lanthanum cobaltite, lanthanum gallate and Sr,Mg-doped lanthanum gallate were stable in the oxidizing atmosphere. In the reducing atmosphere, pure and Sr-doped lanthanum ferrite and Sr,Mg-doped lanthanum gallate was found to be stable at least during the timeframe of the thermogravimetric experiment whereas pure and Sr-doped lanthanum cobaltite was partially reduced in hydrogen atmosphere

  1. Synchronization and Arrest of the Budding Yeast Cell Cycle Using Chemical and Genetic Methods.

    Science.gov (United States)

    Rosebrock, Adam P

    2017-01-03

    The cell cycle of budding yeast can be arrested at specific positions by different genetic and chemical methods. These arrests enable study of cell cycle phase-specific phenotypes that would be missed during examination of asynchronous cultures. Some methods for arrest are reversible, with kinetics that enable release of cells back into a synchronous cycling state. Benefits of chemical and genetic methods include scalability across a large range of culture sizes from a few milliliters to many liters, ease of execution, the absence of specific equipment requirements, and synchronization and release of the entire culture. Of note, cell growth and division are decoupled during arrest and block-release experiments. Cells will continue transcription, translation, and accumulation of protein while arrested. If allowed to reenter the cell cycle, cells will do so as a population of mixed, larger-than-normal cells. Despite this important caveat, many aspects of budding yeast physiology are accessible using these simple chemical and genetic tools. Described here are methods for the block and release of cells in G 1 phase and at the M/G 1 transition using α-factor mating pheromone and the temperature-sensitive cdc15-2 allele, respectively, in addition to methods for arresting the cell cycle in early S phase and at G 2 /M by using hydroxyurea and nocodazole, respectively. © 2017 Cold Spring Harbor Laboratory Press.

  2. Morphological and chemical changes of dentin after applying different sterilization methods

    Directory of Open Access Journals (Sweden)

    Cláudio Antonio Talge Carvalho

    Full Text Available Aim The present study evaluated the morphological and chemical changes of dentin produced by different sterilization methods, using scanning electron microscopy (SEM and energy-dispersive X-ray spectrometry (EDS analysis. Material and method Five human teeth were sectioned into 4 samples, each divided into 3 specimens. The specimens were separated into sterilization groups, as follows: wet heat under pressure; cobalt 60 gamma radiation; and control (without sterilization. After sterilization, the 60 specimens were analyzed by SEM under 3 magnifications: 1500X, 5000X, and 10000X. The images were analyzed by 3 calibrated examiners, who assigned scores according to the changes observed in the dentinal tubules: 0 = no morphological change; 1, 2 and 3 = slight, medium and complete obliteration of the dentinal tubules. The chemical composition of dentin was assessed by EDS, with 15 kV incidence and 1 μm penetration. Result The data obtained were submitted to the statistical tests of Kruskall-Wallis and ANOVA. It was observed that both sterilization methods – with autoclave and with cobalt 60 gamma radiation – produced no significant changes to the morphology of the dentinal tubules or to the chemical composition of dentin. Conclusion Both methods may thus be used to sterilize teeth for research conducted in vitro.

  3. Chemical characteristics of fine particles emitted from different gas cooking methods

    Science.gov (United States)

    See, Siao Wei; Balasubramanian, Rajasekhar

    Gas cooking is an important indoor source of fine particles (PM 2.5). The chemical characteristics of PM 2.5 emitted from different cooking methods, namely, steaming, boiling, stir-frying, pan-frying and deep-frying were investigated in a domestic kitchen. Controlled experiments were conducted to measure the mass concentration of PM 2.5 and its chemical constituents (elemental carbon (EC), organic carbon (OC), polycyclic aromatic hydrocarbons (PAHs), metals and ions) arising from these five cooking methods. To investigate the difference in particle properties of different cooking emissions, the amount and type of food, and the heat setting on the gas stove were kept constant during the entire course of the experiments. Results showed that deep-frying gave rise to the largest amount of PM 2.5 and most chemical components, followed by pan-frying, stir-frying, boiling, and steaming. Oil-based cooking methods released more organic pollutants (OC, PAHs, and organic ions) and metals, while water-based cooking methods accounted for more water-soluble (WS) ions. Their source profiles are also presented and discussed.

  4. Standard test methods for chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of uranium hexafluoride

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 These test methods cover procedures for subsampling and for chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of uranium hexafluoride UF6. Most of these test methods are in routine use to determine conformance to UF6 specifications in the Enrichment and Conversion Facilities. 1.2 The analytical procedures in this document appear in the following order: Note 1—Subcommittee C26.05 will confer with C26.02 concerning the renumbered section in Test Methods C761 to determine how concerns with renumbering these sections, as analytical methods are replaced with stand-alone analytical methods, are best addressed in subsequent publications. Sections Subsampling of Uranium Hexafluoride 7 - 10 Gravimetric Determination of Uranium 11 - 19 Titrimetric Determination of Uranium 20 Preparation of High-Purity U3O 8 21 Isotopic Analysis 22 Isotopic Analysis by Double-Standard Mass-Spectrometer Method 23 - 29 Determination of Hydrocarbons, Chlorocarbons, and Partially Substitut...

  5. Wavelet-based Adaptive Mesh Refinement Method for Global Atmospheric Chemical Transport Modeling

    Science.gov (United States)

    Rastigejev, Y.

    2011-12-01

    Numerical modeling of global atmospheric chemical transport presents enormous computational difficulties, associated with simulating a wide range of time and spatial scales. The described difficulties are exacerbated by the fact that hundreds of chemical species and thousands of chemical reactions typically are used for chemical kinetic mechanism description. These computational requirements very often forces researches to use relatively crude quasi-uniform numerical grids with inadequate spatial resolution that introduces significant numerical diffusion into the system. It was shown that this spurious diffusion significantly distorts the pollutant mixing and transport dynamics for typically used grid resolution. The described numerical difficulties have to be systematically addressed considering that the demand for fast, high-resolution chemical transport models will be exacerbated over the next decade by the need to interpret satellite observations of tropospheric ozone and related species. In this study we offer dynamically adaptive multilevel Wavelet-based Adaptive Mesh Refinement (WAMR) method for numerical modeling of atmospheric chemical evolution equations. The adaptive mesh refinement is performed by adding and removing finer levels of resolution in the locations of fine scale development and in the locations of smooth solution behavior accordingly. The algorithm is based on the mathematically well established wavelet theory. This allows us to provide error estimates of the solution that are used in conjunction with an appropriate threshold criteria to adapt the non-uniform grid. Other essential features of the numerical algorithm include: an efficient wavelet spatial discretization that allows to minimize the number of degrees of freedom for a prescribed accuracy, a fast algorithm for computing wavelet amplitudes, and efficient and accurate derivative approximations on an irregular grid. The method has been tested for a variety of benchmark problems

  6. Calcium phosphate formation from sea urchin - (brissus latecarinatus via modified mechano-chemical (ultrasonic conversion method

    Directory of Open Access Journals (Sweden)

    R. Samur

    2013-07-01

    Full Text Available This study aims to produce apatite structures, such as hydroxyapatite (HA and fluorapatite (FA, from precursor calcium phosphates of biological origin, namely from sea urchin, with mechano-chemical stirring and hot-plating conversion method. The produced materials were heat treated at 800 °C for 4 hours. X-ray diffraction and scanning electron microscopy (SEM studies were conducted. Calcium phosphate phases were developed. The SEM images showed the formation of micro to nano-powders. The experimental results suggest that sea urchin, Brissus latecarinatus skeleton could be an alternative source for the production of various mono or biphasic calcium phosphates with simple and economic mechano-chemical (ultrasonic conversion method.

  7. Adaptive Finite Element Method Assisted by Stochastic Simulation of Chemical Systems

    KAUST Repository

    Cotter, Simon L.; Vejchodský , Tomá š; Erban, Radek

    2013-01-01

    Stochastic models of chemical systems are often analyzed by solving the corresponding Fokker-Planck equation, which is a drift-diffusion partial differential equation for the probability distribution function. Efficient numerical solution of the Fokker-Planck equation requires adaptive mesh refinements. In this paper, we present a mesh refinement approach which makes use of a stochastic simulation of the underlying chemical system. By observing the stochastic trajectory for a relatively short amount of time, the areas of the state space with nonnegligible probability density are identified. By refining the finite element mesh in these areas, and coarsening elsewhere, a suitable mesh is constructed and used for the computation of the stationary probability density. Numerical examples demonstrate that the presented method is competitive with existing a posteriori methods. © 2013 Society for Industrial and Applied Mathematics.

  8. Combined Docking with Classical Force Field and Quantum Chemical Semiempirical Method PM7

    Directory of Open Access Journals (Sweden)

    A. V. Sulimov

    2017-01-01

    Full Text Available Results of the combined use of the classical force field and the recent quantum chemical PM7 method for docking are presented. Initially the gridless docking of a flexible low molecular weight ligand into the rigid target protein is performed with the energy function calculated in the MMFF94 force field with implicit water solvent in the PCM model. Among several hundred thousand local minima, which are found in the docking procedure, about eight thousand lowest energy minima are chosen and then energies of these minima are recalculated with the recent quantum chemical semiempirical PM7 method. This procedure is applied to 16 test complexes with different proteins and ligands. For almost all test complexes such energy recalculation results in the global energy minimum configuration corresponding to the ligand pose near the native ligand position in the crystalized protein-ligand complex. A significant improvement of the ligand positioning accuracy comparing with MMFF94 energy calculations is demonstrated.

  9. Combined Docking with Classical Force Field and Quantum Chemical Semiempirical Method PM7.

    Science.gov (United States)

    Sulimov, A V; Kutov, D C; Katkova, E V; Sulimov, V B

    2017-01-01

    Results of the combined use of the classical force field and the recent quantum chemical PM7 method for docking are presented. Initially the gridless docking of a flexible low molecular weight ligand into the rigid target protein is performed with the energy function calculated in the MMFF94 force field with implicit water solvent in the PCM model. Among several hundred thousand local minima, which are found in the docking procedure, about eight thousand lowest energy minima are chosen and then energies of these minima are recalculated with the recent quantum chemical semiempirical PM7 method. This procedure is applied to 16 test complexes with different proteins and ligands. For almost all test complexes such energy recalculation results in the global energy minimum configuration corresponding to the ligand pose near the native ligand position in the crystalized protein-ligand complex. A significant improvement of the ligand positioning accuracy comparing with MMFF94 energy calculations is demonstrated.

  10. Application of isotopic and chemical methods to the study of hydrological problems in Brazilian northeastern areas

    International Nuclear Information System (INIS)

    Ponte, J.H.

    1979-01-01

    Hydrological studies are reported with samples of ground water from several region of northern - and northeastern Brazil: Marajo Island (State of Para), State of Piaui, Ceara and Rio Grande do Norte. A description is given of the utilization of chemical and isotopic methods, in particular measurements of tritium concentration and 14 C- counting techniques for the determination of the origin and residence time of water. (I.C.R.) [pt

  11. Method for conversion of carbohydrate polymers to value-added chemical products

    Science.gov (United States)

    Zhang, Zongchao C [Norwood, NJ; Brown, Heather M [Kennewick, WA; Su, Yu [Richland, WA

    2012-02-07

    Methods are described for conversion of carbohydrate polymers in ionic liquids, including cellulose, that yield value-added chemicals including, e.g., glucose and 5-hydroxylmethylfurfural (HMF) at temperatures below 120.degree. C. Catalyst compositions that include various mixed metal halides are described that are selective for specified products with yields, e.g., of up to about 56% in a single step process.

  12. Optical methods for creating delivery systems of chemical compounds to plant roots

    Science.gov (United States)

    Kuznetsov, Pavel E.; Rogacheva, Svetlana M.; Arefeva, Oksana A.; Minin, Dmitryi V.; Tolmachev, Sergey A.; Kupadze, Machammad S.

    2004-08-01

    Spectrophotometric and fluorescence methods have been used for creation and investigation of various systems of target delivery of chemical compounds to roots of plants. The possibility of using liposomes, incrusted by polysaccharides of the external surface of nitrogen-fixing rizospheric bacteria Azospirillum brasilense SP 245, and nanoparticles incrusted by polysaccharides of wheat roots, as the named systems has been shown. The important role of polysaccharide-polysaccharide interaction in the adsorption processes of bacteria on wheat roots has been demonstrated.

  13. Chemometrics-assisted spectrophotometry method for the determination of chemical oxygen demand in pulping effluent.

    Science.gov (United States)

    Chen, Honglei; Chen, Yuancai; Zhan, Huaiyu; Fu, Shiyu

    2011-04-01

    A new method has been developed for the determination of chemical oxygen demand (COD) in pulping effluent using chemometrics-assisted spectrophotometry. Two calibration models were established by inducing UV-visible spectroscopy (model 1) and derivative spectroscopy (model 2), combined with the chemometrics software Smica-P. Correlation coefficients of the two models are 0.9954 (model 1) and 0.9963 (model 2) when COD of samples is in the range of 0 to 405 mg/L. Sensitivities of the two models are 0.0061 (model 1) and 0.0056 (model 2) and method detection limits are 2.02-2.45 mg/L (model 1) and 2.13-2.51 mg/L (model 2). Validation experiment showed that the average standard deviation of model 2 was 1.11 and that of model 1 was 1.54. Similarly, average relative error of model 2 (4.25%) was lower than model 1 (5.00%), which indicated that the predictability of model 2 was better than that of model 1. Chemometrics-assisted spectrophotometry method did not need chemical reagents and digestion which were required in the conventional methods, and the testing time of the new method was significantly shorter than the conventional ones. The proposed method can be used to measure COD in pulping effluent as an environmentally friendly approach with satisfactory results.

  14. Relative proportions of polycyclic aromatic hydrocarbons differ between accumulation bioassays and chemical methods to predict bioavailability

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Eyles, Jose L., E-mail: j.l.gomezeyles@reading.ac.u [University of Reading, School of Human and Environmental Sciences, Department of Soil Science, Reading RG6 6DW, Berkshire (United Kingdom); Collins, Chris D.; Hodson, Mark E. [University of Reading, School of Human and Environmental Sciences, Department of Soil Science, Reading RG6 6DW, Berkshire (United Kingdom)

    2010-01-15

    Chemical methods to predict the bioavailable fraction of organic contaminants are usually validated in the literature by comparison with established bioassays. A soil spiked with polycyclic aromatic hydrocarbons (PAHs) was aged over six months and subjected to butanol, cyclodextrin and tenax extractions as well as an exhaustive extraction to determine total PAH concentrations at several time points. Earthworm (Eisenia fetida) and rye grass root (Lolium multiflorum) accumulation bioassays were conducted in parallel. Butanol extractions gave the best relationship with earthworm accumulation (r{sup 2} <= 0.54, p <= 0.01); cyclodextrin, butanol and acetone-hexane extractions all gave good predictions of accumulation in rye grass roots (r{sup 2} <= 0.86, p <= 0.01). However, the profile of the PAHs extracted by the different chemical methods was significantly different (p < 0.01) to that accumulated in the organisms. Biota accumulated a higher proportion of the heavier 4-ringed PAHs. It is concluded that bioaccumulation is a complex process that cannot be predicted by measuring the bioavailable fraction alone. - The ability of chemical methods to predict PAH accumulation in Eisenia fetida and Lolium multiflorum was hindered by the varied metabolic fate of the different PAHs within the organisms.

  15. Environmental Chemicals in Urine and Blood: Improving Methods for Creatinine and Lipid Adjustment

    Science.gov (United States)

    O’Brien, Katie M.; Upson, Kristen; Cook, Nancy R.; Weinberg, Clarice R.

    2015-01-01

    Background Investigators measuring exposure biomarkers in urine typically adjust for creatinine to account for dilution-dependent sample variation in urine concentrations. Similarly, it is standard to adjust for serum lipids when measuring lipophilic chemicals in serum. However, there is controversy regarding the best approach, and existing methods may not effectively correct for measurement error. Objectives We compared adjustment methods, including novel approaches, using simulated case–control data. Methods Using a directed acyclic graph framework, we defined six causal scenarios for epidemiologic studies of environmental chemicals measured in urine or serum. The scenarios include variables known to influence creatinine (e.g., age and hydration) or serum lipid levels (e.g., body mass index and recent fat intake). Over a range of true effect sizes, we analyzed each scenario using seven adjustment approaches and estimated the corresponding bias and confidence interval coverage across 1,000 simulated studies. Results For urinary biomarker measurements, our novel method, which incorporates both covariate-adjusted standardization and the inclusion of creatinine as a covariate in the regression model, had low bias and possessed 95% confidence interval coverage of nearly 95% for most simulated scenarios. For serum biomarker measurements, a similar approach involving standardization plus serum lipid level adjustment generally performed well. Conclusions To control measurement error bias caused by variations in serum lipids or by urinary diluteness, we recommend improved methods for standardizing exposure concentrations across individuals. Citation O’Brien KM, Upson K, Cook NR, Weinberg CR. 2016. Environmental chemicals in urine and blood: improving methods for creatinine and lipid adjustment. Environ Health Perspect 124:220–227; http://dx.doi.org/10.1289/ehp.1509693 PMID:26219104

  16. Evaluation of the structure and microstructure of Ni{sub x}Mg{sub 1-x}O oxides obtained by co-precipitation; Evaluacion de la estructura y microestructura de oxidos de Ni{sub x}Mg{sub 1-x}O obtenidos por co-precipitacion

    Energy Technology Data Exchange (ETDEWEB)

    Martinez L, G.; Kryshtab, T. [IPN, Escuela Superior de Fisica y Matematicas, Departamento de Fisica, Av. Instituto Politecnico Nacional s/n, Edif. 9, 07738 Mexico D. F. (Mexico); Hesiquio G, M. [IPN, Escuela Superior de Ingenieria Quimica e Industrias Extractivas, Av. Instituto Politecnico Nacional s/n, Edif. 6, 07738 Mexico D. F. (Mexico); Kryvko, A., E-mail: marloz7@yahoo.com.mx [IPN, Escuela Superior de Ingenieria Mecanica y Electrica, Departamento de Sistemas, Av. Instituto Politecnico Nacional s/n, Edif. Z-4, 07738 Mexico D. F. (Mexico)

    2013-06-01

    Ni{sub x}Mg{sub 1-x}O oxides were prepared by thermal treatment at temperatures of 400, 600 and 800 C from a hydrotalcite-like precursor obtained by co-precipitation at constant ph. The oxides obtained were characterized by X-ray diffraction methods. From the obtained results we concluded that the oxides calcined at temperatures of 400, and 600 C are unstable that means that there exists the effect of memory and with a time they return to the precursor. Presence of Ni in Mg oxide provides stability of the compounds thermally treated at 800 C. In order to analyze the structure and microstructure, the reflections 111, 200 and 220 were used. The positions of the maxima of the diffraction peaks are shifted with respect to the simulated ones for Mg O and Ni O. This result reveals that in solid solutions studied compressive strains or vacation are present. The parameters of the microstructure (coherent domain size and micro deformations) were evaluated. The coherent domain size was found to be in the range of 8 - 10 nm and the presence of residual strains of micro deformation can be associated with the existence of extended defects. (Author)

  17. Enhancing sewage sludge dewaterability by bioleaching approach with comparison to other physical and chemical conditioning methods.

    Science.gov (United States)

    Liu, Fenwu; Zhou, Jun; Wang, Dianzhan; Zhou, Lixiang

    2012-01-01

    The sewage sludge conditioning process is critical to improve the sludge dewaterability prior to mechanical dewatering. Traditionally, sludge is conditioned by physical or chemical approaches, mostly with the addition of inorganic or organic chemicals. Here we report that bioleaching, an efficient and economical microbial method for the removal of sludge-borne heavy metals, also plays a significant role in enhancing sludge dewaterability. The effects of bioleaching and physical or chemical approaches on sludge dewaterability were compared. The conditioning result of bioleaching by Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans on sludge dewatering was investigated and compared with the effects of hydrothermal (121 degrees C for 2 hr), microwave (1050 W for 50 sec), ultrasonic (250 W for 2 min), and chemical conditioning (24% ferric chloride and 68% calcium oxide; dry basis). The results show that the specific resistance to filtration (SRF) or capillary suction time (CST) of sludge is decreased by 93.1% or 74.1%, respectively, after fresh sludge is conditioned by bioleaching, which is similar to chemical conditioning treatment with ferric chloride and calcium oxide but much more effective than other conditioning approaches including hydrothermal, microwave, and ultrasonic conditioning. Furthermore, after sludge dewatering, bioleached sludge filtrate contains the lowest concentrations of chroma (18 times), COD (542 mg/L), total N (TN, 300 mg/L), NH4(+)-N (208 mg/L), and total P (TP, 2 mg/L) while the hydrothermal process resulted in the highest concentration of chroma (660 times), COD (18,155 mg/L), TN (472 mg/L), NH4(+)-N (381 mg/L), and TP (191 mg/L) among these selected conditioning methods. Moreover, unlike chemical conditioning, sludge bioleaching does not result in a significant reduction of organic matter, TN, and TP in the resulting dewatered sludge cake. Therefore, considering sludge dewaterability and the chemical properties of sludge

  18. A method for making an inert porous electrode for a chemical current source

    Energy Technology Data Exchange (ETDEWEB)

    Ksenzhek, O.S.; Litvinova, V.I.; Martynenko, T.L.; Raykhelson, L.B.; Shembel, Ye.M.; Sokolov, L.A.

    1983-01-01

    A method is proposed for making an inert, porous electrode for chemical current sources (KhIT) with a nonaqueous electrolyte on the basis of aprotonic solvents and an active cathode substance which is dissolved in the electrolyte. The method includes preparing an electrode mass from the starting material and subsequent formation of the electrode. To increase the energy capacity, after formation, the electrode is subjected to electrochemical anode polarization to potentials which correspond to the potential of electrochemical breakdown of the background electrolyte.

  19. Ion transport by gating voltage to nanopores produced via metal-assisted chemical etching method

    Science.gov (United States)

    Van Toan, Nguyen; Inomata, Naoki; Toda, Masaya; Ono, Takahito

    2018-05-01

    In this work, we report a simple and low-cost way to create nanopores that can be employed for various applications in nanofluidics. Nano sized Ag particles in the range from 1 to 20 nm are formed on a silicon substrate with a de-wetting method. Then the silicon nanopores with an approximate 15 nm average diameter and 200 μm height are successfully produced by the metal-assisted chemical etching method. In addition, electrically driven ion transport in the nanopores is demonstrated for nanofluidic applications. Ion transport through the nanopores is observed and could be controlled by an application of a gating voltage to the nanopores.

  20. Synthesis and characterization of nanosized MnZn ferrites via a modified hydrothermal method

    Science.gov (United States)

    Li, Mingling; Liu, Xiansong; Xu, Taotao; Nie, Yu; Li, Honglin; Zhang, Cong

    2017-10-01

    Nanosized MnZn ferrite particles, with narrow size distribution, regular morphology and high saturation magnetization have been synthesized via a modified hydrothermal method. This modified hydrothermal method involves a chemical co-precipitation of hydroxides under a vacuum condition using potassium hydroxide as precipitating agent, followed by a separate hydrothermal process. The microstructure and magnetic properties of the synthesized nanoparticles were investigated by X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM) and vibrating sample magnetometer (VSM). The effects of different synthesis conditions (excess ratio of precipitating agent and hydrothermal reaction time) on the microstructure and magnetic properties of the as-synthesized nanoparticles were discussed. The magnetic measurements indicated that the obtained samples were superparamagnetic in nature at room temperature. Moreover, the MnZn ferrite nanoparticles with excellent magnetic performance could be synthesized at 180 °C for a short reaction time (3 h).

  1. Testing of the Defense Waste Processing Facility Cold Chemical Dissolution Method in Sludge Batch 9 Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coleman, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Young, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Brown, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-05-10

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) tests the applicability of the digestion methods used by the DWPF Laboratory for elemental analysis of Sludge Receipt and Adjustment Tank (SRAT) Receipt samples and SRAT Product process control samples. DWPF SRAT samples are typically dissolved using a method referred to as the DWPF Cold Chemical or Cold Chem Method (CC), (see DWPF Procedure SW4- 15.201). Testing indicates that the CC method produced mixed results. The CC method did not result in complete dissolution of either the SRAT Receipt or SRAT Product with some fine, dark solids remaining. However, elemental analyses did not reveal extreme biases for the major elements in the sludge when compared with analyses obtained following dissolution by hot aqua regia (AR) or sodium peroxide fusion (PF) methods. The CC elemental analyses agreed with the AR and PF methods well enough that it should be adequate for routine process control analyses in the DWPF after much more extensive side-by-side tests of the CC method and the PF method are performed on the first 10 SRAT cycles of the Sludge Batch 9 (SB9) campaign. The DWPF Laboratory should continue with their plans for further tests of the CC method during these 10 SRAT cycles.

  2. A vector/parallel method for a three-dimensional transport model coupled with bio-chemical terms

    NARCIS (Netherlands)

    B.P. Sommeijer (Ben); J. Kok (Jan)

    1995-01-01

    textabstractA so-called fractional step method is considered for the time integration of a three-dimensional transport-chemical model in shallow seas. In this method, the transport part and the chemical part are treated separately by appropriate integration techniques. This separation is motivated

  3. CO2 (carbon dioxide) fixation by applying new chemical absorption-precipitation methods

    International Nuclear Information System (INIS)

    Park, Sangwon; Lee, Min-Gu; Park, Jinwon

    2013-01-01

    CO 2 (carbon dioxide) is the most common greenhouse gas and most of it is emitted from human activities. The methods for CO 2 emission reduction can be divided into physical, chemical, and biochemical methods. Among the physical and chemical methods, CCS (carbon capture and storage) is a well-known reducing technology. However, this method has many disadvantages including the required storage area. In general, CCS requires capture and storage processes. In this study, we propose a method for reusing the absorbed CO 2 either in nature or in industry. The emitted CO 2 was converted into CO 3 2− using a conversion solution, and then made into a carbonate by combining the conversion solution with metal ions at normal temperature and pressure. The resulting carbonate was analyzed using FT-IR (Fourier transform infrared spectroscopy) and XRD (X-ray diffraction). We verified the formation of a solid consisting of calcite and vaterite. In addition, the conversion solution that was used could be reused in the same process of CCS technology. Our study demonstrates a successful method of reducing and reusing emitted CO 2 , thereby making CO 2 a potential future resource. - Highlights: • This study focused on a new CO 2 fixation process method. • In CCS technology, the desorption process requires high thermal energy consumption. • This new method does not require a desorption process because the CO 2 is accomplished through CaCO 3 crystallization. • A new absorption method is possible instead of the conventional absorption-desorption process. • This is not only a rapid reaction for fixing CO 2 , but also economically feasible

  4. [On necessity to modify biochemical methods for detecting organophosphorus componds in chemical weapons extinction objects (review of literature)].

    Science.gov (United States)

    Prokofieva, D S; Shmurak, V I; Sadovnikov, S V; Gontcharov, N V

    2015-01-01

    The article covers problems of biochemical methods assessing organophosphorus toxic compounds in objects of chemical weapons extinction. The authors present results of works developing new, more specific and selective biochemical methods.

  5. In Silico Prediction of Chemical Toxicity for Drug Design Using Machine Learning Methods and Structural Alerts

    Science.gov (United States)

    Yang, Hongbin; Sun, Lixia; Li, Weihua; Liu, Guixia; Tang, Yun

    2018-02-01

    For a drug, safety is always the most important issue, including a variety of toxicities and adverse drug effects, which should be evaluated in preclinical and clinical trial phases. This review article at first simply introduced the computational methods used in prediction of chemical toxicity for drug design, including machine learning methods and structural alerts. Machine learning methods have been widely applied in qualitative classification and quantitative regression studies, while structural alerts can be regarded as a complementary tool for lead optimization. The emphasis of this article was put on the recent progress of predictive models built for various toxicities. Available databases and web servers were also provided. Though the methods and models are very helpful for drug design, there are still some challenges and limitations to be improved for drug safety assessment in the future.

  6. In Silico Prediction of Chemical Toxicity for Drug Design Using Machine Learning Methods and Structural Alerts

    Directory of Open Access Journals (Sweden)

    Hongbin Yang

    2018-02-01

    Full Text Available During drug development, safety is always the most important issue, including a variety of toxicities and adverse drug effects, which should be evaluated in preclinical and clinical trial phases. This review article at first simply introduced the computational methods used in prediction of chemical toxicity for drug design, including machine learning methods and structural alerts. Machine learning methods have been widely applied in qualitative classification and quantitative regression studies, while structural alerts can be regarded as a complementary tool for lead optimization. The emphasis of this article was put on the recent progress of predictive models built for various toxicities. Available databases and web servers were also provided. Though the methods and models are very helpful for drug design, there are still some challenges and limitations to be improved for drug safety assessment in the future.

  7. In Silico Prediction of Chemical Toxicity for Drug Design Using Machine Learning Methods and Structural Alerts.

    Science.gov (United States)

    Yang, Hongbin; Sun, Lixia; Li, Weihua; Liu, Guixia; Tang, Yun

    2018-01-01

    During drug development, safety is always the most important issue, including a variety of toxicities and adverse drug effects, which should be evaluated in preclinical and clinical trial phases. This review article at first simply introduced the computational methods used in prediction of chemical toxicity for drug design, including machine learning methods and structural alerts. Machine learning methods have been widely applied in qualitative classification and quantitative regression studies, while structural alerts can be regarded as a complementary tool for lead optimization. The emphasis of this article was put on the recent progress of predictive models built for various toxicities. Available databases and web servers were also provided. Though the methods and models are very helpful for drug design, there are still some challenges and limitations to be improved for drug safety assessment in the future.

  8. Reactive Chemical Vapor Deposition Method as New Approach for Obtaining Electroluminescent Thin Film Materials

    Directory of Open Access Journals (Sweden)

    Valentina V. Utochnikova

    2012-01-01

    Full Text Available The new reactive chemical vapor deposition (RCVD method has been proposed for thin film deposition of luminescent nonvolatile lanthanide aromatic carboxylates. This method is based on metathesis reaction between the vapors of volatile lanthanide dipivaloylmethanate (Ln(dpm3 and carboxylic acid (HCarb orH2Carb′ and was successfully used in case of HCarb. Advantages of the method were demonstrated on example of terbium benzoate (Tb(bz3 and o-phenoxybenzoate thin films, and Tb(bz3 thin films were successfully examined in the OLED with the following structure glass/ITO/PEDOT:PSS/TPD/Tb(bz3/Ca/Al. Electroluminescence spectra of Tb(bz3 showed only typical luminescent bands, originated from transitions of the terbium ion. Method peculiarities for deposition of compounds of dibasic acids H2Carb′ are established on example of terbium and europium terephtalates and europium 2,6-naphtalenedicarboxylate.

  9. The advanced CECE process for enriching tritium by the chemical exchange method with a hydrophobic catalyst

    International Nuclear Information System (INIS)

    Kitamoto, Asashi; Shimizu, Masami; Masui, Takashi.

    1992-01-01

    The monothermal chemical exchange process with electrolysis, i.e., CECE process, was an effective method for enriching and removing tritium from tritiated water with low to middle level activity. The purpose of this study is to propose the theoretical background of the two-parameter evaluation method, which is based on a two-step isotope exchange reaction between hydrogen gas and liquid water, for improvement of the performance of a hydrophobic catalyst by a trickle bed-type column. Finally, a two-parameter method could attain the highest performance of isotope separation and the lowest liquid holdup for a trickle bed-type column. Therefore, this method will present some effective and practical procedures in scaling up a tritium enrichment process. The main aspect of the CECE process in engineering design and system evaluation was to develop the isotope exchange column with a high performance catalyst. (author)

  10. Extension of a hybrid particle-continuum method for a mixture of chemical species

    Science.gov (United States)

    Verhoff, Ashley M.; Boyd, Iain D.

    2012-11-01

    Due to the physical accuracy and numerical efficiency achieved by analyzing transitional, hypersonic flow fields with hybrid particle-continuum methods, this paper describes a Modular Particle-Continuum (MPC) method and its extension to include multiple chemical species. Considerations that are specific to a hybrid approach for simulating gas mixtures are addressed, including a discussion of the Chapman-Enskog velocity distribution function (VDF) for near-equilibrium flows, and consistent viscosity models for the individual CFD and DSMC modules of the MPC method. Representative results for a hypersonic blunt-body flow are then presented, where the flow field properties, surface properties, and computational performance are compared for simulations employing full CFD, full DSMC, and the MPC method.

  11. Regression Methods for Virtual Metrology of Layer Thickness in Chemical Vapor Deposition

    DEFF Research Database (Denmark)

    Purwins, Hendrik; Barak, Bernd; Nagi, Ahmed

    2014-01-01

    The quality of wafer production in semiconductor manufacturing cannot always be monitored by a costly physical measurement. Instead of measuring a quantity directly, it can be predicted by a regression method (Virtual Metrology). In this paper, a survey on regression methods is given to predict...... average Silicon Nitride cap layer thickness for the Plasma Enhanced Chemical Vapor Deposition (PECVD) dual-layer metal passivation stack process. Process and production equipment Fault Detection and Classification (FDC) data are used as predictor variables. Various variable sets are compared: one most...... algorithm, and Support Vector Regression (SVR). On a test set, SVR outperforms the other methods by a large margin, being more robust towards changes in the production conditions. The method performs better on high-dimensional multivariate input data than on the most predictive variables alone. Process...

  12. Assessment of chromatographic methods for the chemical stability of a new miconazole nitrate cream

    International Nuclear Information System (INIS)

    Garcia Pulpeiro, Oscar; Calzadilla Aguiar, Wendy; Rodriguez Bencomo, Wendy

    2013-01-01

    To assess the chromatographic methods for the chemical stability of a new 2 % miconazol nitrate cream. arious degradation conditions were firstly used in the raw material miconazole nitrate in order to obtain the possible degradation products of this drug and to evaluate them by thin layer chromatography-based method, which was validated to identify the degradation products in the new cream. The performance of the official method based on high resolution liquid chromatography and reported in British Pharmacopoeia 2010 was evaluated, and its selectivity against the possible degradation products were also analyzed. Both chromatographic methods were applied to the analysis of cream samples from the three pilot batches under heat stress for 30 days

  13. General method and thermodynamic tables for computation of equilibrium composition and temperature of chemical reactions

    Science.gov (United States)

    Huff, Vearl N; Gordon, Sanford; Morrell, Virginia E

    1951-01-01

    A rapidly convergent successive approximation process is described that simultaneously determines both composition and temperature resulting from a chemical reaction. This method is suitable for use with any set of reactants over the complete range of mixture ratios as long as the products of reaction are ideal gases. An approximate treatment of limited amounts of liquids and solids is also included. This method is particularly suited to problems having a large number of products of reaction and to problems that require determination of such properties as specific heat or velocity of sound of a dissociating mixture. The method presented is applicable to a wide variety of problems that include (1) combustion at constant pressure or volume; and (2) isentropic expansion to an assigned pressure, temperature, or Mach number. Tables of thermodynamic functions needed with this method are included for 42 substances for convenience in numerical computations.

  14. Advances in mixed-integer programming methods for chemical production scheduling.

    Science.gov (United States)

    Velez, Sara; Maravelias, Christos T

    2014-01-01

    The goal of this paper is to critically review advances in the area of chemical production scheduling over the past three decades and then present two recently proposed solution methods that have led to dramatic computational enhancements. First, we present a general framework and problem classification and discuss modeling and solution methods with an emphasis on mixed-integer programming (MIP) techniques. Second, we present two solution methods: (a) a constraint propagation algorithm that allows us to compute parameters that are then used to tighten MIP scheduling models and (b) a reformulation that introduces new variables, thus leading to effective branching. We also present computational results and an example illustrating how these methods are implemented, as well as the resulting enhancements. We close with a discussion of open research challenges and future research directions.

  15. Green Jobs: Definition and Method of Appraisal of Chemical and Biological Risks.

    Science.gov (United States)

    Cheneval, Erwan; Busque, Marc-Antoine; Ostiguy, Claude; Lavoie, Jacques; Bourbonnais, Robert; Labrèche, France; Bakhiyi, Bouchra; Zayed, Joseph

    2016-04-01

    In the wake of sustainable development, green jobs are developing rapidly, changing the work environment. However a green job is not automatically a safe job. The aim of the study was to define green jobs, and to establish a preliminary risk assessment of chemical substances and biological agents for workers in Quebec. An operational definition was developed, along with criteria and sustainable development principles to discriminate green jobs from regular jobs. The potential toxicity or hazard associated with their chemical and biological exposures was assessed, and the workers' exposure appraised using an expert assessment method. A control banding approach was then used to assess risks for workers in selected green jobs. A double entry model allowed us to set priorities in terms of chemical or biological risk. Among jobs that present the highest risk potential, several are related to waste management. The developed method is flexible and could be adapted to better appraise the risks that workers are facing or to propose control measures. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  16. Peculiarities of Enhancing Resistant Starch in Ruminants Using Chemical Methods: Opportunities and Challenges

    Directory of Open Access Journals (Sweden)

    Qendrim Zebeli

    2013-06-01

    Full Text Available High-producing ruminants are fed high amounts of cereal grains, at the expense of dietary fiber, to meet their high energy demands. Grains consist mainly of starch, which is easily degraded in the rumen by microbial glycosidases, providing energy for rapid growth of rumen microbes and short-chain fatty acids (SCFA as the main energy source for the host. Yet, low dietary fiber contents and the rapid accumulation of SCFA lead to rumen disorders in cattle. The chemical processing of grains has become increasingly important to confer their starch resistances against rumen microbial glycosidases, hence generating ruminally resistant starch (RRS. In ruminants, unlike monogastric species, the strategy of enhancing resistant starch is useful, not only in lowering the amount of carbohydrate substrates available for digestion in the upper gut sections, but also in enhancing the net hepatic glucose supply, which can be utilized by the host more efficiently than the hepatic gluconeogenesis of SCFA. The use of chemical methods to enhance the RRS of grains and the feeding of RRS face challenges in the practice; therefore, the present article attempts to summarize the most important achievements in the chemical processing methods used to generate RRS, and review advantages and challenges of feeding RRS to ruminants

  17. Development and validation of NIR-chemometric methods for chemical and pharmaceutical characterization of meloxicam tablets.

    Science.gov (United States)

    Tomuta, Ioan; Iovanov, Rares; Bodoki, Ede; Vonica, Loredana

    2014-04-01

    Near-Infrared (NIR) spectroscopy is an important component of a Process Analytical Technology (PAT) toolbox and is a key technology for enabling the rapid analysis of pharmaceutical tablets. The aim of this research work was to develop and validate NIR-chemometric methods not only for the determination of active pharmaceutical ingredients content but also pharmaceutical properties (crushing strength, disintegration time) of meloxicam tablets. The development of the method for active content assay was performed on samples corresponding to 80%, 90%, 100%, 110% and 120% of meloxicam content and the development of the methods for pharmaceutical characterization was performed on samples prepared at seven different compression forces (ranging from 7 to 45 kN) using NIR transmission spectra of intact tablets and PLS as a regression method. The results show that the developed methods have good trueness, precision and accuracy and are appropriate for direct active content assay in tablets (ranging from 12 to 18 mg/tablet) and also for predicting crushing strength and disintegration time of intact meloxicam tablets. The comparative data show that the proposed methods are in good agreement with the reference methods currently used for the characterization of meloxicam tablets (HPLC-UV methods for the assay and European Pharmacopeia methods for determining the crushing strength and disintegration time). The results show the possibility to predict both chemical properties (active content) and physical/pharmaceutical properties (crushing strength and disintegration time) directly, without any sample preparation, from the same NIR transmission spectrum of meloxicam tablets.

  18. Radiation purification of the chemical industry effluents and possibilities of realization of this method

    International Nuclear Information System (INIS)

    Petryaev, E.P.; Kovalevskaya, A.M.; Shlyk, V.G.; Savushkin, I.A.; Kazazyan, V.T.

    1977-01-01

    Radiation-chemical methods for synthetic fibre industry effluents purification from cyanides, sulphides and monomers, as well as for disinfection of circulation water and improvement in sedimental and filtering properties of waste active slurry in petrochemical industry are described. Chemical plant effluents are purified by 70-90% from cyanides at the dose rate of 0,3 - 0,5 Mrad, by 60 - 70% from sulphides and monomers at the dose of 0,2 Mrad. Circulation water of petroleum processing plant is disinfected at the dose of 0,08 Mrad; the rates of filtration and sedimentation of waste active slurry increase two and three fold, correspondingly, at the dose of 0,6 Mrad. The power of radiation sources required for the industrial realization of radiation purification of liquid wastes has been calculated

  19. A new particle-like method for high-speed flows with chemical non-equilibrium

    Directory of Open Access Journals (Sweden)

    Fábio Rodrigues Guzzo

    2010-04-01

    Full Text Available The present work is concerned with the numerical simulation of hypersonic blunt body flows with chemical non-equilibrium. New theoretical and numerical formulations for coupling the chemical reaction to the fluid dynamics are presented and validated. The fluid dynamics is defined for a stationary unstructured mesh and the chemical reaction process is defined for “finite quantities” moving through the stationary mesh. The fluid dynamics is modeled by the Euler equations and the chemical reaction rates by the Arrhenius law. Ideal gases are considered. The thermodynamical data are based on JANNAF tables and Burcat’s database. The algorithm proposed by Liou, known as AUSM+, is implemented in a cell-centered based finite volume method and in an unstructured mesh context. Multidimensional limited MUSCL interpolation method is used to perform property reconstructions and to achieve second-order accuracy in space. The minmod limiter is used. The second order accuracy, five stage, Runge-Kutta time-stepping scheme is employed to perform the time march for the fluid dynamics. The numerical code VODE, which is part of the CHEMKIN-II package, is adopted to perform the time integration for the chemical reaction equations. The freestream reacting fluid is composed of H2 and air at the stoichiometric ratio. The emphasis of the present paper is on the description of the new methodology for handling the coupling of chemical and fluid mechanic processes, and its validation by comparison with the standard time-splitting procedure. The configurations considered are the hypersonic flow over a wedge, in which the oblique detonation wave is induced by an oblique shock wave, and the hypersonic flow over a blunt body. Differences between the solutions obtained with each formulation are presented and discussed, including the effects of grid refinement in each case. The primary objective of such comparisons is the validation of the proposed methodology. Moreover, for

  20. X-ray methods for the chemical characterization of atmospheric aerosols

    International Nuclear Information System (INIS)

    Jaklevic, J.M.; Thompson, A.C.

    1981-05-01

    The development and use of several x-ray methods for the chemical characterization of atmospherical aerosol particulate samples are described. These methods are based on the emission, absorption, and scattering of x-ray photons with emphasis on the optimization for the non-destructive analysis of dilute specimens. Techniques discussed include photon induced energy dispersive x-ray fluorescence, extended x-ray absorption fine structure spectroscopy using synchrotron radiation and high-rate x-ray powder diffractometry using a position-sensitive gas proportional counter. These x-ray analysis methods were applied to the measurement of the chemical compositions of size-segregated aerosol particulate samples obtained with dichotomous samplers. The advantages of the various methods for use in such measurements are described and results are presented. In many cases, the complementary nature of the analytical information obtained from the various measurements is an important factor in the characterization of the sample. For example, the multiple elemental analyses obtained from x-ray fluorescence can be used as a cross check on the major compounds observed by powder diffraction

  1. EXTRACTION OF ASTAXANTHIN ESTERS FROM SHRIMP WASTE BY CHEMICAL AND MICROBIAL METHODS

    Directory of Open Access Journals (Sweden)

    A. Khanafari, A. Saberi, M. Azar, Gh. Vosooghi, Sh. Jamili, B. Sabbaghzadeh

    2007-04-01

    Full Text Available The carotenoid pigments specifically astaxanthin has many significant applications in food, pharmaceutical and cosmetic industries. The goal of this research was the extraction of Astaxanthin from a certain Persian Gulf shrimp species waste (Penaeus semisulcatus, purification and identification of the pigment by chemical and microbial methods. Microbial fermentation was obtained by inoculation of two Lactobacillus species Lb. plantarum and Lb. acidophilus in the medium culture containing shrimp waste powder by the intervention of lactose sugar, yeast extract, the composition of Both and the coolage (-20oC. The carotenoids were extracted by an organic solvent system. After purification of astaxanthin with the thin layer chromatography method by spectrophotometer, NMR and IR analysis the presence of astaxanthin esters was recognized in this specific species of Persian Gulf shrimp. Results obtained from this study showed that the coolage at –20 oC not only does not have an amplifying effect on the production of astaxanthin but also slightly reduces this effect. Also the effect of intervention of lactose sugar showed more effectiveness in producing astaxanthin than yeast extract or more than with the presence of both. The results also indicated that there is not much difference in the ability of producing the pigment by comparing both Lb. plantarum and Lb. acidophillus. Also results showed the microbial method of extraction of astaxanthin is more effective than chemical method. The pigment extracted from certain amount of shrimp powder, 23.128 mg/g, was calculated.

  2. In silico toxicology: comprehensive benchmarking of multi-label classification methods applied to chemical toxicity data

    KAUST Repository

    Raies, Arwa B.

    2017-12-05

    One goal of toxicity testing, among others, is identifying harmful effects of chemicals. Given the high demand for toxicity tests, it is necessary to conduct these tests for multiple toxicity endpoints for the same compound. Current computational toxicology methods aim at developing models mainly to predict a single toxicity endpoint. When chemicals cause several toxicity effects, one model is generated to predict toxicity for each endpoint, which can be labor and computationally intensive when the number of toxicity endpoints is large. Additionally, this approach does not take into consideration possible correlation between the endpoints. Therefore, there has been a recent shift in computational toxicity studies toward generating predictive models able to predict several toxicity endpoints by utilizing correlations between these endpoints. Applying such correlations jointly with compounds\\' features may improve model\\'s performance and reduce the number of required models. This can be achieved through multi-label classification methods. These methods have not undergone comprehensive benchmarking in the domain of predictive toxicology. Therefore, we performed extensive benchmarking and analysis of over 19,000 multi-label classification models generated using combinations of the state-of-the-art methods. The methods have been evaluated from different perspectives using various metrics to assess their effectiveness. We were able to illustrate variability in the performance of the methods under several conditions. This review will help researchers to select the most suitable method for the problem at hand and provide a baseline for evaluating new approaches. Based on this analysis, we provided recommendations for potential future directions in this area.

  3. In silico toxicology: comprehensive benchmarking of multi-label classification methods applied to chemical toxicity data

    KAUST Repository

    Raies, Arwa B.; Bajic, Vladimir B.

    2017-01-01

    One goal of toxicity testing, among others, is identifying harmful effects of chemicals. Given the high demand for toxicity tests, it is necessary to conduct these tests for multiple toxicity endpoints for the same compound. Current computational toxicology methods aim at developing models mainly to predict a single toxicity endpoint. When chemicals cause several toxicity effects, one model is generated to predict toxicity for each endpoint, which can be labor and computationally intensive when the number of toxicity endpoints is large. Additionally, this approach does not take into consideration possible correlation between the endpoints. Therefore, there has been a recent shift in computational toxicity studies toward generating predictive models able to predict several toxicity endpoints by utilizing correlations between these endpoints. Applying such correlations jointly with compounds' features may improve model's performance and reduce the number of required models. This can be achieved through multi-label classification methods. These methods have not undergone comprehensive benchmarking in the domain of predictive toxicology. Therefore, we performed extensive benchmarking and analysis of over 19,000 multi-label classification models generated using combinations of the state-of-the-art methods. The methods have been evaluated from different perspectives using various metrics to assess their effectiveness. We were able to illustrate variability in the performance of the methods under several conditions. This review will help researchers to select the most suitable method for the problem at hand and provide a baseline for evaluating new approaches. Based on this analysis, we provided recommendations for potential future directions in this area.

  4. The Synthesis and Characterization of W- 1wt.% TiC Alloy Using a Chemical Method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taehee; Ryu, Ho Jin [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    The tungsten and its alloys have been used in many applications due to their excellent mechanical and thermal properties such as high melting point, high thermal conductivity, high strength at elevated temperatures, low sputtering yield in radiation environment and low tritium inventory. Moreover, many researchers consider tungsten alloys as the most promising candidate for plasma facing components for future nuclear fusion reactors. Three samples of W – 1.0 wt.% TiC composites with the different fabrication methods were successfully developed. The combined method of the wet chemical method and 3D mixing showed small amount of agglomeration of TiC particles, however, the TiC particle sizes were smaller than 3DM1 sample. Since the WCM1 showed the better mechanical property, microhardness, the main future plan is to achieve the same or improved mechanical property of W3D1.

  5. Principles of Single-Laboratory Validation of Analytical Methods for Testing the Chemical Composition of Pesticides

    Energy Technology Data Exchange (ETDEWEB)

    Ambrus, A. [Hungarian Food Safety Office, Budapest (Hungary)

    2009-07-15

    Underlying theoretical and practical approaches towards pesticide formulation analysis are discussed, i.e. general principles, performance characteristics, applicability of validation data, verification of method performance, and adaptation of validated methods by other laboratories. The principles of single laboratory validation of analytical methods for testing the chemical composition of pesticides are outlined. Also the theoretical background is described for performing pesticide formulation analysis as outlined in ISO, CIPAC/AOAC and IUPAC guidelines, including methodological characteristics such as specificity, selectivity, linearity, accuracy, trueness, precision and bias. Appendices I–III hereof give practical and elaborated examples on how to use the Horwitz approach and formulae for estimating the target standard deviation towards acceptable analytical repeatability. The estimation of trueness and the establishment of typical within-laboratory reproducibility are treated in greater detail by means of worked-out examples. (author)

  6. Method of manipulating the chemical properties of water to improve the effectiveness of a desired process

    Science.gov (United States)

    Hawthorne, Steven B.; Miller, David J.; Lagadec, Arnaud Jean-Marie; Hammond, Peter James; Clifford, Anthony Alan

    2002-01-01

    The method of the present invention is adapted to manipulate the chemical properties of water in order to improve the effectiveness of a desired process. The method involves heating the water in the vessel to subcritical temperatures between 100.degree. to 374.degree. C. while maintaining sufficient pressure to the water to maintain the water in the liquid state. Various physiochemical properties of the water can be manipulated including polarity, solute solubility, surface tension, viscosity, and the disassociation constant. The method of the present invention has various uses including extracting organics from solids and semisolids such as soil, selectively extracting desired organics from liquids, selectively separating organics using sorbent phases, enhancing reactions by controlling the disassociation constant of water, cleaning waste water, removing organics from water using activated carbon or other suitable sorbents, and degrading various compounds.

  7. Assessment of the Authenticity of Herbal Dietary Supplements: Comparison of Chemical and DNA Barcoding Methods.

    Science.gov (United States)

    Pawar, Rahul S; Handy, Sara M; Cheng, Raymond; Shyong, Nicole; Grundel, Erich

    2017-07-01

    About 7 % of the U. S. population reports using botanical dietary supplements. Increased use of such supplements has led to discussions related to their authenticity and quality. Reports of adulteration with substandard materials or pharmaceuticals are of concern because such substitutions, whether inadvertent or deliberate, may reduce the efficacy of specific botanicals or lead to adverse events. Methods for verifying the identity of botanicals include macroscopic and microscopic examinations, chemical analysis, and DNA-based methods including DNA barcoding. Macroscopic and microscopic examinations may fail when a supplement consists of botanicals that have been processed beyond the ability to provide morphological characterizations. Chemical analysis of specific marker compounds encounters problems when these compounds are not distinct to a given species or when purified reference standards are not available. Recent investigations describing DNA barcoding analysis of botanical dietary supplements have raised concerns about the authenticity of the supplements themselves as well as the appropriateness of using DNA barcoding techniques with finished botanical products. We collected 112 market samples of frequently consumed botanical dietary supplements of ginkgo, soy, valerian, yohimbe, and St. John's wort and analyzed each for specific chemical markers (i.e., flavonol glycosides, total isoflavones, total valerenic acids, yohimbine, and hypericins, respectively). We used traditional DNA barcoding techniques targeting the nuclear ITS2 gene and the chloroplast gene psb A- trn H on the same samples to determine the presence of DNA of the labelled ingredient. We compared the results obtained by both methods to assess the contribution of each in determining the identity of the samples. Georg Thieme Verlag KG Stuttgart · New York.

  8. Recycling and Resistance of Petrogenic Particulate Organic Carbon: Implications from A Chemical Oxidation Method

    Science.gov (United States)

    Zhang, T.; Li, G.; Ji, J.

    2013-12-01

    Petrogenic particulate organic carbon (OCpetro) represents a small fraction of photosynthetic carbon which escapes pedogenic-petrogenic degradation and gets trapped in the lithosphere. Exhumation and recycling of OCpetro are of significant importance in the global carbon cycle because OCpetro oxidation represents a substantial carbon source to the atmosphere while the re-burial of OCpetro in sediment deposits has no net effect. Though studies have investigated various behaviors of OCpetro in the surface environments (e.g., riverine mobilization, marine deposition, and microbial remineralization), less attention has been paid to the reaction kinetics and structural transformations during OCpetro oxidation. Here we assess the OCpetro-oxidation process based on a chemical oxidation method adopted from soil studies. The employed chemical oxidation method is considered an effective simulation of natural oxidation in highly oxidative environments, and has been widely used in soil studies to isolate the inert soil carbon pool. We applied this chemical method to the OCpetro-enriched black shale samples from the middle-lower Yangtze (Changjiang) basin, China, and performed comprehensive instrumental analyses (element analysis, Fourier transform infrared (FTIR) spectrum, and Raman spectrum). We also conducted step-oxidizing experiments following fixed time series and monitored the reaction process in rigorously controlled lab conditions. In this work, we present our experiment results and discuss the implications for the recycling and properties of OCpetro. Particulate organic carbon concentration of black shale samples before and after oxidation helps to quantify the oxidability of OCpetro and constrain the preservation efficiency of OCpetro during fluvial erosion over large river basin scales. FTIR and Raman analyses reveal clear structural variations on atomic and molecular levels. Results from the step-oxidizing experiments provide detailed information about the reaction

  9. PbO networks composed of single crystalline nanosheets synthesized by a facile chemical precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Samberg, Joshua P. [Department of Materials Science and Engineering, North Carolina State University, 911 Partners Way, Engineering Building I, Raleigh, NC 27695-7907 (United States); Kajbafvala, Amir, E-mail: amir.kajbafvala@gmail.com [Department of Materials Science and Engineering, North Carolina State University, 911 Partners Way, Engineering Building I, Raleigh, NC 27695-7907 (United States); Koolivand, Amir [Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695 (United States)

    2014-03-01

    Graphical abstract: - Highlights: • Synthesis of PbO networks through a simple chemical precipitation route. • The synthesis method is rapid and low-cost. • Each network is composed of single crystalline PbO nanosheets. • A possible growth mechanism is proposed for synthesized PbO networks. - Abstract: For the field of energy storage, nanostructured lead oxide (PbO) shows immense potential for increased specific energy and deep discharge for lead acid battery technologies. In this work, PbO networks composed of single crystalline nanosheets were synthesized utilizing a simple, low cost and rapid chemical precipitation method. The PbO networks were prepared in a single reaction vessel from starting reagents of lead acetate dehydrate, ammonium hydroxide and deionized water. Lead acetate dehydrate was chosen as a reagent, as opposed to lead nitrate, to eliminate the possibility of nitrate contamination of the final product. X-ray diffraction (XRD) analysis, high resolution scanning electron microscopy (HRSEM) and high resolution transmission electron microscopy (HRTEM) analysis were used to characterize the synthesized PbO networks. The reproducible method described herein synthesized pure β-PbO (massicot) powders, with no byproducts. A possible formation mechanism for these PbO networks is proposed. The growth is found to proceed predominately in the 〈1 1 1〉 and 〈2 0 0〉 directions while being limited in the 〈0 1 1〉 direction.

  10. PbO networks composed of single crystalline nanosheets synthesized by a facile chemical precipitation method

    International Nuclear Information System (INIS)

    Samberg, Joshua P.; Kajbafvala, Amir; Koolivand, Amir

    2014-01-01

    Graphical abstract: - Highlights: • Synthesis of PbO networks through a simple chemical precipitation route. • The synthesis method is rapid and low-cost. • Each network is composed of single crystalline PbO nanosheets. • A possible growth mechanism is proposed for synthesized PbO networks. - Abstract: For the field of energy storage, nanostructured lead oxide (PbO) shows immense potential for increased specific energy and deep discharge for lead acid battery technologies. In this work, PbO networks composed of single crystalline nanosheets were synthesized utilizing a simple, low cost and rapid chemical precipitation method. The PbO networks were prepared in a single reaction vessel from starting reagents of lead acetate dehydrate, ammonium hydroxide and deionized water. Lead acetate dehydrate was chosen as a reagent, as opposed to lead nitrate, to eliminate the possibility of nitrate contamination of the final product. X-ray diffraction (XRD) analysis, high resolution scanning electron microscopy (HRSEM) and high resolution transmission electron microscopy (HRTEM) analysis were used to characterize the synthesized PbO networks. The reproducible method described herein synthesized pure β-PbO (massicot) powders, with no byproducts. A possible formation mechanism for these PbO networks is proposed. The growth is found to proceed predominately in the 〈1 1 1〉 and 〈2 0 0〉 directions while being limited in the 〈0 1 1〉 direction

  11. U-Pb dating by zircon dissolution method using chemical abrasion

    Energy Technology Data Exchange (ETDEWEB)

    Takehara, Lucy, E-mail: lucytakehara@gmail.com.br [Servico Geologico do Brasil (CPRM), Brasilia, DF (Brazil); Chemale Junior, Farid [Universidade de Brasilia (UnB), Brasilia, DF (Brazil). Inst. de Geociencias. Lab. de Geocronologia; Hartmann, Leo A. [Universidade Federal do Rio Grande do Sul (UFRS), Porto Alegre, RS (Brazil). Inst. de Geociencias; Dussin, Ivo A.; Kawashita, Koji [Universidade de Sao Paulo (USP), SP, (Brazil). Centro de Pesquisa Geocronologicas

    2012-06-15

    Chemical abrasion was carried out on zircons grains of the Temora II standard for U-Pb dating prior to analyses using in situ Laser Ablation-Multi Collector Ion Coupled Plasma Mass Spectrometer (LA-ICPMS) followed by the Isotope Dissolution Thermal Ionization Mass Spectrometer (ID-TIMS) method. The proposed methodology was herein applied in order to reduce primarily the effects of secondary Pb loss, the presence of common lead and/or silicate impurities. Nine Temora II zircon grains were analyzed by the laser ablation method yielding an age of 418.3 +- 4.3 Ma. Zircon grains of a same population were separated for chemical abrasion before dissolution and mass spectrometry analyses. Six fractions of them were separated for isotope dissolution using {sup 235}U-{sup 205}Pb mixed spike after we have checked and assured the laboratory conditions of low blank values for total Pb of less than 2 pg/g. The obtained U-Pb zircon age by the ID-TIMS method was 415.7 +- 1.8 Ma (error 0.43 %) based on four successful determinations. The results are consistent with the published ages for the Temora diorite (Temora I - 416.75 +- 1.3 Ma; Temora II - 416.78 +- 0.33 Ma) and established as 416 +- 0.33 Ma. The technique is thus recommended for high precision U-Pb zircon analyses (error < 1 %), mainly for high resolution stratigraphic studies of Phanerozoic sequences. (author)

  12. A novel fabrication method of carbon electrodes using 3D printing and chemical modification process.

    Science.gov (United States)

    Tian, Pan; Chen, Chaoyang; Hu, Jie; Qi, Jin; Wang, Qianghua; Chen, Jimmy Ching-Ming; Cavanaugh, John; Peng, Yinghong; Cheng, Mark Ming-Cheng

    2017-11-23

    Three-dimensional (3D) printing is an emerging technique in the field of biomedical engineering and electronics. This paper presents a novel biofabrication method of implantable carbon electrodes with several advantages including fast prototyping, patient-specific and miniaturization without expensive cleanroom. The method combines stereolithography in additive manufacturing and chemical modification processes to fabricate electrically conductive carbon electrodes. The stereolithography allows the structures to be 3D printed with very fine resolution and desired shapes. The resin is then chemically modified to carbon using pyrolysis to enhance electrochemical performance. The electrochemical characteristics of 3D printing carbon electrodes are assessed by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The specific capacitance of 3D printing carbon electrodes is much higher than the same sized platinum (Pt) electrode. In-vivo electromyography (EMG) recording, 3D printing carbon electrodes exhibit much higher signal-to-noise ratio (40.63 ± 7.73) than Pt electrodes (14.26 ± 6.83). The proposed biofabrication method is envisioned to enable 3D printing in many emerging applications in biomedical engineering and electronics.

  13. Characterization of Olive Oil by Ultrasonic and Physico-chemical Methods

    Science.gov (United States)

    Alouache, B.; Khechena, F. K.; Lecheb, F.; Boutkedjirt, T.

    Olive oil excels by its nutritional and medicinal benefits. It can be consumed without any treatment. However, its quality can be altered by inadequate storage conditions or if it is mixed with other kinds of oils. The objective of this work is to demonstrate the ability of ultrasonic methods to characterize and control olive oil quality. By using of a transducer of 2.25 MHz nominal frequency, in pulse echo mode, ultrasonic parameters, such as propagation velocity and attenuation,have been measured for pure olive oil and for its mixtures with sunflower oil at different proportions. Mechanical properties, such as density and viscosity, have also been determined. The results of ultrasonic measurements are consistent with those obtained by physico-chemical methods, such as rancidity degree, acid index, UV specific extinction coefficient and viscosity. They show that the ultrasonic method allows to distinguish between mixtures at different proportions. The study allows concluding that ultrasound techniques can be considered as a useful complement to existing physico-chemical analysis techniques.

  14. Comparison of Three Sample Preparation Methods for Analysis of Chemical Warfare Agent Stimulants in Water

    International Nuclear Information System (INIS)

    Alessandro Sassolini

    2015-01-01

    Analytical chemistry in CBRNe (Chemical Biological Radiological Nuclear explosive) context requires not only high quality data; quickness, ruggedness and robustness are also mandatory. In this work, three samples preparation methods were compared using several organophosphorus pesticides as test compounds, used as stimulants of nerve CWA (Chemical Warfare Agents) to choose the one with best characteristics. Result was obtained better with the Dispersive Liquid-Liquid Micro Extraction (DLLME), relatively new in CBRNe field, obtaining uncertainty for different simulants between 8 and 15 % while a quantification limit between 0.01 and 0.08 μg/ l. To optimize this extraction method, different organo chlorinated solvents also tested but not relevant difference in these tests was obtained. In this work, all samples were analyzed by using a gas chromatography coupled with mass spectrometer (GC-MS) and also with Gas Chromatograph coupled with Nitrogen Phosphorous Detector (NPD) for DLLME samples to evaluate a low cost and rugged instrument adapt to field analytical methods with good performance in terms of uncertainty and sensibility even if poorer respect to the mass spectrometry. (author)

  15. Chemical methods and techniques to monitor early Maillard reaction in milk products; A review.

    Science.gov (United States)

    Aalaei, Kataneh; Rayner, Marilyn; Sjöholm, Ingegerd

    2018-01-23

    Maillard reaction is an extensively studied, yet unresolved chemical reaction that occurs as a result of application of the heat and during the storage of foods. The formation of advanced glycation end products (AGEs) has been the focus of several investigations recently. These molecules which are formed at the advanced stage of the Maillard reaction, are suspected to be involved in autoimmune diseases in humans. Therefore, understanding to which extent this reaction occurs in foods, is of vital significance. Because of their composition, milk products are ideal media for this reaction, especially when application of heat and prolonged storage are considered. Thus, in this work several chemical approaches to monitor this reaction in an early stage are reviewed. This is mostly done regarding available lysine blockage which takes place in the very beginning of the reaction. The most popular methods and their applications to various products are reviewed. The methods including their modifications are described in detail and their findings are discussed. The present paper provides an insight into the history of the most frequently-used methods and provides an overview on the indicators of the Maillard reaction in the early stage with its focus on milk products and especially milk powders.

  16. A high-throughput method for assessing chemical toxicity using a Caenorhabditis elegans reproduction assay

    International Nuclear Information System (INIS)

    Boyd, Windy A.; McBride, Sandra J.; Rice, Julie R.; Snyder, Daniel W.; Freedman, Jonathan H.

    2010-01-01

    The National Research Council has outlined the need for non-mammalian toxicological models to test the potential health effects of a large number of chemicals while also reducing the use of traditional animal models. The nematode Caenorhabditis elegans is an attractive alternative model because of its well-characterized and evolutionarily conserved biology, low cost, and ability to be used in high-throughput screening. A high-throughput method is described for quantifying the reproductive capacity of C. elegans exposed to chemicals for 48 h from the last larval stage (L4) to adulthood using a COPAS Biosort. Initially, the effects of exposure conditions that could influence reproduction were defined. Concentrations of DMSO vehicle ≤ 1% did not affect reproduction. Previous studies indicated that C. elegans may be influenced by exposure to low pH conditions. At pHs greater than 4.5, C. elegans reproduction was not affected; however below this pH there was a significant decrease in the number of offspring. Cadmium chloride was chosen as a model toxicant to verify that automated measurements were comparable to those of traditional observational studies. EC 50 values for cadmium for automated measurements (176-192 μM) were comparable to those previously reported for a 72-h exposure using manual counting (151 μM). The toxicity of seven test toxicants on C. elegans reproduction was highly correlative with rodent lethality suggesting that this assay may be useful in predicting the potential toxicity of chemicals in other organisms.

  17. Structure activity studies of an analgesic drug tapentadol hydrochloride by spectroscopic and quantum chemical methods

    Science.gov (United States)

    Arjunan, V.; Santhanam, R.; Marchewka, M. K.; Mohan, S.; Yang, Haifeng

    2015-11-01

    Tapentadol is a novel opioid pain reliever drug with a dual mechanism of action, having potency between morphine and tramadol. Quantum chemical calculations have been carried out for tapentadol hydrochloride (TAP.Cl) to determine the properties. The geometry is optimised and the structural properties of the compound were determined from the optimised geometry by B3LYP method using 6-311++G(d,p), 6-31G(d,p) and cc-pVDZ basis sets. FT-IR and FT-Raman spectra are recorded in the solid phase in the region of 4000-400 and 4000-100 cm-1, respectively. Frontier molecular orbital energies, LUMO-HOMO energy gap, ionisation potential, electron affinity, electronegativity, hardness and chemical potential are also calculated. The stability of the molecule arising from hyperconjugative interactions and charge delocalisation has been analysed using NBO analysis. The 1H and 13C nuclear magnetic resonance chemical shifts of the molecule are analysed.

  18. A path flux analysis method for the reduction of detailed chemical kinetic mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wenting; Ju, Yiguang [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Chen, Zheng [State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871 (China); Gou, Xiaolong [School of Power Engineering, Chongqing University, Chongqing 400044 (China)

    2010-07-15

    A direct path flux analysis (PFA) method for kinetic mechanism reduction is proposed and validated by using high temperature ignition, perfect stirred reactors, and steady and unsteady flame propagations of n-heptane and n-decane/air mixtures. The formation and consumption fluxes of each species at multiple reaction path generations are analyzed and used to identify the important reaction pathways and the associated species. The formation and consumption path fluxes used in this method retain flux conservation information and are used to define the path indexes for the first and the second generation reaction paths related to a targeted species. Based on the indexes of each reaction path for the first and second generations, different sized reduced chemical mechanisms which contain different number of species are generated. The reduced mechanisms of n-heptane and n-decane obtained by using the present method are compared to those generated by the direct relation graph (DRG) method. The reaction path analysis for n-decane is conducted to demonstrate the validity of the present method. The comparisons of the ignition delay times, flame propagation speeds, flame structures, and unsteady spherical flame propagation processes showed that with either the same or significantly less number of species, the reduced mechanisms generated by the present PFA are more accurate than that of DRG in a broad range of initial pressures and temperatures. The method is also integrated with the dynamic multi-timescale method and a further increase of computation efficiency is achieved. (author)

  19. A rapid chemical method for lysing Arabidopsis cells for protein analysis

    Directory of Open Access Journals (Sweden)

    Takano Tetsuo

    2011-07-01

    Full Text Available Abstract Background Protein extraction is a frequent procedure in biological research. For preparation of plant cell extracts, plant materials usually have to be ground and homogenized to physically break the robust cell wall, but this step is laborious and time-consuming when a large number of samples are handled at once. Results We developed a chemical method for lysing Arabidopsis cells without grinding. In this method, plants are boiled for just 10 minutes in a solution containing a Ca2+ chelator and detergent. Cell extracts prepared by this method were suitable for SDS-PAGE and immunoblot analysis. This method was also applicable to genomic DNA extraction for PCR analysis. Our method was applied to many other plant species, and worked well for some of them. Conclusions Our method is rapid and economical, and allows many samples to be prepared simultaneously for protein analysis. Our method is useful not only for Arabidopsis research but also research on certain other species.

  20. A Review of Carbon Nanomaterials’ Synthesis via the Chemical Vapor Deposition (CVD Method

    Directory of Open Access Journals (Sweden)

    Yehia M. Manawi

    2018-05-01

    Full Text Available Carbon nanomaterials have been extensively used in many applications owing to their unique thermal, electrical and mechanical properties. One of the prime challenges is the production of these nanomaterials on a large scale. This review paper summarizes the synthesis of various carbon nanomaterials via the chemical vapor deposition (CVD method. These carbon nanomaterials include fullerenes, carbon nanotubes (CNTs, carbon nanofibers (CNFs, graphene, carbide-derived carbon (CDC, carbon nano-onion (CNO and MXenes. Furthermore, current challenges in the synthesis and application of these nanomaterials are highlighted with suggested areas for future research.

  1. Recovery of Americium-241 from lightning rod by the method of chemical treatment

    International Nuclear Information System (INIS)

    Cruz, W.H.

    2013-01-01

    About 95% of the lightning rods installed in the Peruvian territory have set in their structures, pose small amounts of radioactive sources such as Americium-241 ( 241 Am), fewer and Radium 226 ( 226 Ra) these are alpha emitters and have a half life of 432 years and 1600 years respectively. In this paper describes the recovery of radioactive sources of 241 Am radioactive lightning rods using the conventional chemical treatment method using agents and acids to break down the slides. The 241 Am recovered was as excitation source and alpha particle generator for analysing samples by X Ray Fluorescence, for fixing the stainless steel 241 Am technique was used electrodeposition. (author)

  2. A Review of Carbon Nanomaterials’ Synthesis via the Chemical Vapor Deposition (CVD) Method

    Science.gov (United States)

    Manawi, Yehia M.; Samara, Ayman; Al-Ansari, Tareq; Atieh, Muataz A.

    2018-01-01

    Carbon nanomaterials have been extensively used in many applications owing to their unique thermal, electrical and mechanical properties. One of the prime challenges is the production of these nanomaterials on a large scale. This review paper summarizes the synthesis of various carbon nanomaterials via the chemical vapor deposition (CVD) method. These carbon nanomaterials include fullerenes, carbon nanotubes (CNTs), carbon nanofibers (CNFs), graphene, carbide-derived carbon (CDC), carbon nano-onion (CNO) and MXenes. Furthermore, current challenges in the synthesis and application of these nanomaterials are highlighted with suggested areas for future research. PMID:29772760

  3. Calculation of NMR chemical shifts. 7. Gauge-invariant INDO method

    Science.gov (United States)

    Fukui, H.; Miura, K.; Hirai, A.

    A gauge-invariant INDO method based on the coupled Hartree-Fuck perturbation theory is presented and applied to the calculation of 1H and 13C chemical shifts of hydrocarbons including ring compounds. Invariance of the diamagnetic and paramagnetic shieldings with respect to displacement of the coordinate origin is discussed. Comparison between calculated and experimental results exhibits fairly good agreement, provided that the INDO parameters of Ellis et al. (J. Am. Chem. Soc.94, 4069 (1972)) are used with the inclusion of all multicenter one-electron integrals.

  4. ELECTROREDUCTION MECHANISM OF Ni(DMG)-2 COMPLEX STUDIED WITH QUANTUM CHEMICAL METHOD

    Institute of Scientific and Technical Information of China (English)

    倪亚明; 任镜清; 黎健; 王德民; 梁伟根; 朱芝仙; 高小霞

    1990-01-01

    The electronic structures of the species Ni(DMG)2, (Ni(DMG)2)- and (Ni(DMG)2)2- have been studied by INDO quantum chemical method. The results have clearly shown that in the first stage of the electroreduction of Ni(DMG)2, one electron interacts with the d orbitals on the nickel atom, while in the further stage the second electron interacts with the p orbitals on the nitrogen atoms. It conforms with our electrochemical experimental studies which showed that not only Ni(Ⅱ) is reduced but also DMG is catalytically reduced during the reduction of Ni(DMG)2.

  5. Safety evaluation and regulation of chemicals. 2. Impact of regulations - improvement of methods

    Energy Technology Data Exchange (ETDEWEB)

    Homburger, F [ed.

    1985-01-01

    This volume assesses the impact of new scientific knowledge on the testing and regulation of chemicals, including food additives, drugs, cosmetics, pesticides, and other commercial substances. Apart from describing the newest tests, regulations, and risk assessment strategies, chapters reflect changes forced by both the growing need for cost containment and the mounting pressure to find alternatives to animal testing. Based on an international congress, the book also brings the advantage of diversity in the background and nationality of the authors, thus allowing a view of central problems according to the different interests of academics, industry scientists, government scientists, and regulators. The book opens with coverage of national and international regulations designed to prevent and control damage to human health and the environment. Topics range from basic problems of policy design and enforcement to the specific requirements for chemical regulation in developing countries. The next chapters cover new tests, systems, and assays used in in vivo safety testing. Readers will find a critical assessment of tests used to determine teratogenicity, mutagenicity, carcinogenicity, neurotoxicity and chemical lethality. Other topics include factors operating in the public perception of chemical hazards, guidelines for decision making in the management and regulation of risks, and future trends in the methodology of safety evaluation. The volume concludes with an overview of in vitro methods for testing hepatotoxicity. Several short-term in vitro test models and limited in vivo bioassays are presented and evaluated in terms of their capacity to substitute for long-term animal studies. Expert and thorough in its coverage, the book offers a wealth of technical and practical information for toxicologists, pharmacologists, industrial policy makers, and government regulators. (orig.). With 67 figs., 34 tabs.

  6. Biomimetic hydrophobic surface fabricated by chemical etching method from hierarchically structured magnesium alloy substrate

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yan; Yin, Xiaoming; Zhang, Jijia [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China); Wang, Yaming [Institute for Advanced Ceramics, Harbin Institute of Technology, Harbin 150001 (China); Han, Zhiwu, E-mail: zwhan@jlu.edu.cn [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China); Ren, Luquan [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China)

    2013-09-01

    As one of the lightest metal materials, magnesium alloy plays an important role in industry such as automobile, airplane and electronic product. However, magnesium alloy is hindered due to its high chemical activity and easily corroded. Here, inspired by typical plant surfaces such as lotus leaves and petals of red rose with super-hydrophobic character, the new hydrophobic surface is fabricated on magnesium alloy to improve anti-corrosion by two-step methodology. The procedure is that the samples are processed by laser first and then immersed and etched in the aqueous AgNO{sub 3} solution concentrations of 0.1 mol/L, 0.3 mol/L and 0.5 mol/L for different times of 15 s, 40 s and 60 s, respectively, finally modified by DTS (CH{sub 3}(CH{sub 2}){sub 11}Si(OCH{sub 3}){sub 3}). The microstructure, chemical composition, wettability and anti-corrosion are characterized by means of SEM, XPS, water contact angle measurement and electrochemical method. The hydrophobic surfaces with microscale crater-like and nanoscale flower-like binary structure are obtained. The low-energy material is contained in surface after DTS treatment. The contact angles could reach up to 138.4 ± 2°, which hydrophobic property is both related to the micro–nano binary structure and chemical composition. The results of electrochemical measurements show that anti-corrosion property of magnesium alloy is improved. Furthermore, our research is expected to create some ideas from natural enlightenment to improve anti-corrosion property of magnesium alloy while this method can be easily extended to other metal materials.

  7. A Parallel Multiblock Structured Grid Method with Automated Interblocked Unstructured Grids for Chemically Reacting Flows

    Science.gov (United States)

    Spiegel, Seth Christian

    An automated method for using unstructured grids to patch non- C0 interfaces between structured blocks has been developed in conjunction with a finite-volume method for solving chemically reacting flows on unstructured grids. Although the standalone unstructured solver, FVFLO-NCSU, is capable of resolving flows for high-speed aeropropulsion devices with complex geometries, unstructured-mesh algorithms are inherently inefficient when compared to their structured counterparts. However, the advantages of structured algorithms in developing a flow solution in a timely manner can be negated by the amount of time required to develop a mesh for complex geometries. The global domain can be split up into numerous smaller blocks during the grid-generation process to alleviate some of the difficulties in creating these complex meshes. An even greater abatement can be found by allowing the nodes on abutting block interfaces to be nonmatching or non-C 0 continuous. One code capable of solving chemically reacting flows on these multiblock grids is VULCAN, which uses a nonconservative approach for patching non-C0 block interfaces. The developed automated unstructured-grid patching algorithm has been installed within VULCAN to provide it the capability of a fully conservative approach for patching non-C0 block interfaces. Additionally, the FVFLO-NCSU solver algorithms have been deeply intertwined with the VULCAN source code to solve chemically reacting flows on these unstructured patches. Finally, the CGNS software library was added to the VULCAN postprocessor so structured and unstructured data can be stored in a single compact file. This final upgrade to VULCAN has been successfully installed and verified using test cases with particular interest towards those involving grids with non- C0 block interfaces.

  8. Synthesis of ZnO nanopencils using wet chemical method and its investigation as LPG sensor

    International Nuclear Information System (INIS)

    Shimpi, Navinchandra G.; Jain, Shilpa; Karmakar, Narayan; Shah, Akshara; Kothari, D.C.; Mishra, Satyendra

    2016-01-01

    Highlights: • Synthesis using a simple and cost-effective wet chemical process. • Uniform, monodispersed and pure nanoparticles. • Pencil shaped rods with sharp tips. • Understanding of Growth mechanism. • Efficient LPG sensing with high response. • Morphology dependent sensing. - Abstract: ZnO nanopencils (NPCs) were prepared by a novel wet chemical process, using triethanolamine (TEA) as a mild base, which is relatively simple and cost effective method as compared to hydrothermal method. ZnO NPCs were characterized using powder X-ray diffraction (XRD), Fourier Transform Infra-Red (FTIR) spectroscopy in mid-IR and far-IR regions, X-ray Photoelectron Spectroscopy (XPS), UV–vis (UV–vis) absorption spectroscopy, room temperature Photoluminescence (PL) spectroscopy and Field Emission Scanning Electron Microscopy (FESEM). ZnO NPCs obtained, were highly pure, uniform and monodispersed.XRD pattern indicated hexagonal unit cell structure with preferred orientation along the c-axis. Sensing behaviour of ZnO NPCs was studied towards Liquefied Petroleum Gas (LPG) at different operating temperatures. The study shows that ZnO NPCs were most sensitive and promising candidate for detection of LPG at 250 °C with gas sensitivity > 60%. The high response towards LPG is due to high surface area of ZnO NPCs and their parallel alignment.

  9. Immobilization methods for the rapid total chemical synthesis of proteins on microtiter plates.

    Science.gov (United States)

    Zitterbart, Robert; Krumrey, Michael; Seitz, Oliver

    2017-07-01

    The chemical synthesis of proteins typically involves the solid-phase peptide synthesis of unprotected peptide fragments that are stitched together in solution by native chemical ligation (NCL). The process is slow, and throughput is limited because of the need for repeated high performance liquid chromatography purification steps after both solid-phase peptide synthesis and NCL. With an aim to provide faster access to functional proteins and to accelerate the functional analysis of synthetic proteins by parallelization, we developed a method for the high performance liquid chromatography-free synthesis of proteins on the surface of microtiter plates. The method relies on solid-phase synthesis of unprotected peptide fragments, immobilization of the C-terminal fragment and on-surface NCL with an unprotected peptide thioester in crude form. Herein, we describe the development of a suitable immobilization chemistry. We compared (i) formation of nickel(II)-oligohistidine complexes, (ii) Cu-based [2 + 3] alkine-azide cycloaddition and (iii) hydrazone ligation. The comparative study identified the hydrazone ligation as most suitable. The sequence of immobilization via hydrazone ligation, on-surface NCL and radical desulfurization furnished the targeted SH3 domains in near quantitative yield. The synthetic proteins were functional as demonstrated by an on-surface fluorescence-based saturation binding analysis. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

  10. Synthesis of ZnO nanopencils using wet chemical method and its investigation as LPG sensor

    Energy Technology Data Exchange (ETDEWEB)

    Shimpi, Navinchandra G., E-mail: navin_shimpi@rediffmail.com [Department of Chemistry, University of Mumbai, Santacruz (East), Mumbai-400098 (India); Jain, Shilpa [Department of Chemistry, University of Mumbai, Santacruz (East), Mumbai-400098 (India); Karmakar, Narayan [Department of Physics, University of Mumbai, Santacruz (East), Mumbai-400098 (India); Shah, Akshara [Department of Chemistry, University of Mumbai, Santacruz (East), Mumbai-400098 (India); Kothari, D.C. [Department of Physics, University of Mumbai, Santacruz (East), Mumbai-400098 (India); National Centre for Nanosciences & Nanotechnology, University of Mumbai, Santacruz (East), Mumbai-400098 (India); Mishra, Satyendra [University Institute of Chemical Technology, North Maharashtra University, Jalgaon (India)

    2016-12-30

    Highlights: • Synthesis using a simple and cost-effective wet chemical process. • Uniform, monodispersed and pure nanoparticles. • Pencil shaped rods with sharp tips. • Understanding of Growth mechanism. • Efficient LPG sensing with high response. • Morphology dependent sensing. - Abstract: ZnO nanopencils (NPCs) were prepared by a novel wet chemical process, using triethanolamine (TEA) as a mild base, which is relatively simple and cost effective method as compared to hydrothermal method. ZnO NPCs were characterized using powder X-ray diffraction (XRD), Fourier Transform Infra-Red (FTIR) spectroscopy in mid-IR and far-IR regions, X-ray Photoelectron Spectroscopy (XPS), UV–vis (UV–vis) absorption spectroscopy, room temperature Photoluminescence (PL) spectroscopy and Field Emission Scanning Electron Microscopy (FESEM). ZnO NPCs obtained, were highly pure, uniform and monodispersed.XRD pattern indicated hexagonal unit cell structure with preferred orientation along the c-axis. Sensing behaviour of ZnO NPCs was studied towards Liquefied Petroleum Gas (LPG) at different operating temperatures. The study shows that ZnO NPCs were most sensitive and promising candidate for detection of LPG at 250 °C with gas sensitivity > 60%. The high response towards LPG is due to high surface area of ZnO NPCs and their parallel alignment.

  11. Atomic force microscopy of histological sections using a chemical etching method

    International Nuclear Information System (INIS)

    Tiribilli, B.; Bani, D.; Quercioli, F.; Ghirelli, A.; Vassalli, M.

    2005-01-01

    Physiology and pathology have a big deal on tissue morphology, and the intrinsic spatial resolution of an atomic force microscope (AFM) is able to observe ultrastructural details. In order to investigate cellular and subcellular structures in histological sections with the AFM, we used a new simple method for sample preparation, i.e. chemical etching of semithin sections from epoxy resin-embedded specimens: such treatment appears to melt the upper layers of the embedding resin; thus, removing the superficial roughness caused by the edge of the microtome knife and bringing into high relief the biological structures hidden in the bulk. Consecutive ultrathin sections embedded in epoxy resin were observed with a transmission electron microscope (TEM) to compare the different imaging properties on the same specimen sample. In this paper we report, as an example, our AFM and TEM images of two different tissue specimens, rat pancreas and skeletal muscle fibres, showing that most of the inner details are visible with the AFM. These results suggest that chemical etching of histological sections may be a simple, fast and cost-effective method for AFM imaging with ultrastructural resolution

  12. Big (Bio)Chemical Data Mining Using Chemometric Methods: A Need for Chemists.

    Science.gov (United States)

    Tauler, Roma; Parastar, Hadi

    2018-03-23

    This review aims to demonstrate abilities to analyze Big (Bio)Chemical Data (BBCD) with multivariate chemometric methods and to show some of the more important challenges of modern analytical researches. In this review, the capabilities and versatility of chemometric methods will be discussed in light of the BBCD challenges that are being encountered in chromatographic, spectroscopic and hyperspectral imaging measurements, with an emphasis on their application to omics sciences. In addition, insights and perspectives on how to address the analysis of BBCD are provided along with a discussion of the procedures necessary to obtain more reliable qualitative and quantitative results. In this review, the importance of Big Data and of their relevance to (bio)chemistry are first discussed. Then, analytical tools which can produce BBCD are presented as well as some basics needed to understand prospects and limitations of chemometric techniques when they are applied to BBCD are given. Finally, the significance of the combination of chemometric approaches with BBCD analysis in different chemical disciplines is highlighted with some examples. In this paper, we have tried to cover some of the applications of big data analysis in the (bio)chemistry field. However, this coverage is not extensive covering everything done in the field. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Alternative Chemical Cleaning Methods for High Level Waste Tanks: Simulant Studies

    Energy Technology Data Exchange (ETDEWEB)

    Rudisill, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); King, W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hay, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jones, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-11-19

    Solubility testing with simulated High Level Waste tank heel solids has been conducted in order to evaluate two alternative chemical cleaning technologies for the dissolution of sludge residuals remaining in the tanks after the exhaustion of mechanical cleaning and sludge washing efforts. Tests were conducted with non-radioactive pure phase metal reagents, binary mixtures of reagents, and a Savannah River Site PUREX heel simulant to determine the effectiveness of an optimized, dilute oxalic/nitric acid cleaning reagent and pure, dilute nitric acid toward dissolving the bulk non-radioactive waste components. A focus of this testing was on minimization of oxalic acid additions during tank cleaning. For comparison purposes, separate samples were also contacted with pure, concentrated oxalic acid which is the current baseline chemical cleaning reagent. In a separate study, solubility tests were conducted with radioactive tank heel simulants using acidic and caustic permanganate-based methods focused on the “targeted” dissolution of actinide species known to be drivers for Savannah River Site tank closure Performance Assessments. Permanganate-based cleaning methods were evaluated prior to and after oxalic acid contact.

  14. Controlled growth of epitaxial CeO2 thin films with self-organized nanostructure by chemical solution method

    DEFF Research Database (Denmark)

    Yue, Zhao; Grivel, Jean-Claude

    2013-01-01

    Chemical solution deposition is a versatile technique to grow oxide thin films with self-organized nanostructures. Morphology and crystallographic orientation control of CeO2 thin films grown on technical NiW substrates by a chemical solution deposition method are achieved in this work. Based...

  15. Methods of direct (non-chromatographic) quantification of body metabolites utilizing chemical ionization mass spectrometry

    International Nuclear Information System (INIS)

    Mee, J.M.L.

    1978-01-01

    For quantitative determination of known metabolites from the biological sample by direct chemical ionization mass spectrometry (CI-MS), the method of internal standard using stable isotopically labelled analogs appears to be the method of choice. In the case where stable isotope ratio determinations could not be applied, and alternative quantification can be achieved using non-labelled external or internal standards and a calibration curve (sum of peak height per a given number of scans versus concentration). The technique of computer monitoring permits display and plotting of ion current profiles (TIC and SIC) or spectra per a given number of scans or a given range of mass per charge. Examples are given in areas of clinical application and the quantitative data show very good agreement with the conventional chromatographic measurements. (Auth.)

  16. Surface plasmon resonance based sensing of different chemical and biological samples using admittance loci method

    Science.gov (United States)

    Brahmachari, Kaushik; Ghosh, Sharmila; Ray, Mina

    2013-06-01

    The admittance loci method plays an important role in the design of multilayer thin film structures. In this paper, admittance loci method has been explored theoretically for sensing of various chemical and biological samples based on surface plasmon resonance (SPR) phenomenon. A dielectric multilayer structure consisting of a Boro silicate glass (BSG) substrate, calcium fluoride (CaF2) and zirconium dioxide (ZrO2) along with different dielectric layers has been investigated. Moreover, admittance loci as well as SPR curves of metal-dielectric multilayer structure consisting of the BSG substrate, gold metal film and various dielectric samples has been simulated in MATLAB environment. To validate the proposed simulation results, calibration curves have also been provided.

  17. Reactive Ion Etching as Cleaning Method Post Chemical Mechanical Polishing for Phase Change Memory Device

    International Nuclear Information System (INIS)

    Min, Zhong; Zhi-Tang, Song; Bo, Liu; Song-Lin, Feng; Bomy, Chen

    2008-01-01

    In order to improve nano-scale phase change memory performance, a super-clean interface should be obtained after chemical mechanical polishing (CMP) of Ge 2 Sb 2 Te 5 phase change films. We use reactive ion etching (RIE) as the cleaning method. The cleaning effect is analysed by scanning electron microscopy and an energy dispersive spectrometer. The results show that particle residue on the surface has been removed. Meanwhile, Ge 2 Sb 2 Te 5 material stoichiometric content ratios are unchanged. After the top electrode is deposited, current-voltage characteristics test demonstrates that the set threshold voltage is reduced from 13 V to 2.7V and the threshold current from 0.1mA to 0.025mA. Furthermore, we analyse the RIE cleaning principle and compare it with the ultrasonic method

  18. Development of polishing methods for Chemical Vapor Deposited Silicon Carbide mirrors for synchrotron radiation

    International Nuclear Information System (INIS)

    Fuchs, B.A.; Brown, N.J.

    1987-01-01

    Material properties of Chemical Vapor Deposited Silicon Carbide (CVD SiC) make it ideal for use in mirrors for synchrotron radiation experiments. We developed methods to grind and polish flat samples of CVD SiC down to measured surface roughness values as low as 1.1 Angstroms rms. We describe the processing details, including observations we made during trial runs with alternative processing recipes. We conclude that pitch polishing using progressively finer diamond abrasive, augmented with specific water based lubricants and additives, produces superior results. Using methods based on these results, a cylindrical and a toroidal mirror, each about 100 x 300mm, were respectively finished by Continental Optical and Frank Cooke, Incorporated. WYCO Interferometry shows these mirrors have surface roughness less than 5.7 Angstroms rms. These mirrors have been installed on the LLNL/UC X-ray Calibration and Standards Facility at the Stanford Synthrotron Radiation Laboratory

  19. Standard test methods for chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade boron carbide

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 These test methods cover procedures for the chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade boron carbide powder and pellets to determine compliance with specifications. 1.2 The analytical procedures appear in the following order: Sections Total Carbon by Combustion and Gravimetry 7-17 Total Boron by Titrimetry 18-28 Isotopic Composition by Mass Spectrometry 29-38 Chloride and Fluoride Separation by Pyrohydrolysis 39-45 Chloride by Constant-Current Coulometry 46-54 Fluoride by Ion-Selective Electrode 55-63 Water by Constant-Voltage Coulometry 64-72 Impurities by Spectrochemical Analysis 73-81 Soluble Boron by Titrimetry 82-95 Soluble Carbon by a Manometric Measurement 96-105 Metallic Impurities by a Direct Reader Spectrometric Method 106-114

  20. Chemical intermediate detection following corona discharge on volatile organic compounds: general method using molecular beam techniques

    International Nuclear Information System (INIS)

    He Luning; Sulkes, Mark

    2011-01-01

    Nonthermal plasma (NTP)-based treatments of volatile organic compounds (VOCs) have potential for effective environmental remediation. Theory and experiment that consider the basic science pertaining to discharge events have helped improve NTP remediation outcomes. If direct information on early post-discharge chemical intermediates were also available, it would likely lead to additional improvement in NTP remediation outcomes. To this point, however, experiments yielding direct information on post-NTP VOC intermediates have been limited. An approach using supersonic expansion molecular beam methods offers general promise for detection of post-discharge VOC intermediates. To illustrate the potential utility of these methods, we present mass spectra showing the growth of early products formed when pulsed corona discharges were carried out on toluene in He and then in He with added O 2 . Good general detection of neutral post-discharge species was obtained using 800 nm 150 fs photoionization pulses.