WorldWideScience

Sample records for chemical biology consortium

  1. Computational Systems Chemical Biology

    OpenAIRE

    Oprea, Tudor I.; May, Elebeoba E.; Leitão, Andrei; Tropsha, Alexander

    2011-01-01

    There is a critical need for improving the level of chemistry awareness in systems biology. The data and information related to modulation of genes and proteins by small molecules continue to accumulate at the same time as simulation tools in systems biology and whole body physiologically-based pharmacokinetics (PBPK) continue to evolve. We called this emerging area at the interface between chemical biology and systems biology systems chemical biology, SCB (Oprea et al., 2007).

  2. Biological and Chemical Security

    Energy Technology Data Exchange (ETDEWEB)

    Fitch, P J

    2002-12-19

    The LLNL Chemical & Biological National Security Program (CBNP) provides science, technology and integrated systems for chemical and biological security. Our approach is to develop and field advanced strategies that dramatically improve the nation's capabilities to prevent, prepare for, detect, and respond to terrorist use of chemical or biological weapons. Recent events show the importance of civilian defense against terrorism. The 1995 nerve gas attack in Tokyo's subway served to catalyze and focus the early LLNL program on civilian counter terrorism. In the same year, LLNL began CBNP using Laboratory-Directed R&D investments and a focus on biodetection. The Nunn-Lugar-Domenici Defense Against Weapons of Mass Destruction Act, passed in 1996, initiated a number of U.S. nonproliferation and counter-terrorism programs including the DOE (now NNSA) Chemical and Biological Nonproliferation Program (also known as CBNP). In 2002, the Department of Homeland Security was formed. The NNSA CBNP and many of the LLNL CBNP activities are being transferred as the new Department becomes operational. LLNL has a long history in national security including nonproliferation of weapons of mass destruction. In biology, LLNL had a key role in starting and implementing the Human Genome Project and, more recently, the Microbial Genome Program. LLNL has over 1,000 scientists and engineers with relevant expertise in biology, chemistry, decontamination, instrumentation, microtechnologies, atmospheric modeling, and field experimentation. Over 150 LLNL scientists and engineers work full time on chemical and biological national security projects.

  3. Degradation of atrazine by microbial consortium in an anaerobic submerged biological filter.

    Science.gov (United States)

    Nasseri, Simin; Baghapour, Mohammad Ali; Derakhshan, Zahra; Faramarzian, Mohammad

    2014-09-01

    Atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) (ATZ) is one of the components of S-triazine. Due to its certain characteristics, ATZ causes pollution in various ecosystems and has been of concern for its probable carcinogenic effects on humans. Researchers have used chemical and physical methods for removing ATZ from the environment. Although these methods are quick, they have not been capable of complete mineralization. Therefore, researchers are looking for methods with lower energy consumption and cost and higher efficiency. In this study, biodegradation of ATZ by microbial consortium was evaluated in the aquatic environment. The present study aimed to evaluate the efficiency of ATZ removal from aqueous environments by using an anaerobic submerged biological filter in four concentration levels of atrazine and three hydraulic retention times. The maximum efficiencies of ATZ and soluble chemical oxygen demand (SCOD) were 51.1 and 45.6%, respectively. There was no accumulation of ATZ in the biofilm and the loss of ATZ in the control reactor was negligible. This shows that ATZ removal in this system was due to biodegradation. Furthermore, the results of modeling showed that the Stover-Kincannon model had desirable fitness (R² > 99%) in loading ATZ in this biofilter. PMID:25252353

  4. Chemical and biological weapons

    International Nuclear Information System (INIS)

    This paper discusses the prospects of the multilateral negotiations aimed at achieving a complete and total ban on chemical weapons the Chemical Weapons convention (CWC). The control of the proliferation of chemical weapons is no longer just on East-West issue; it is also an issue of concern in Third World Countries, and in some of the wealthier middle eastern nations, such as Kuwait

  5. Biological Removal of Phosphate Using Phosphate Solubilizing Bacterial Consortium from Synthetic Wastewater: A Laboratory Scale

    OpenAIRE

    Dipak Paul; Sankar Narayan Sinha

    2015-01-01

    Biological phosphate removal is an important process having gained worldwide attention and widely used for removing phosphorus from wastewater. The present investigation was aimed to screen the efficient phosphate solubilizing bacterial isolates and used to remove phosphate from synthetic wastewater under shaking flasks conditions. Pseudomonas sp. JPSB12, Enterobacter sp. TPSB20, Flavobacterium sp. TPSB23 and mixed bacterial consortium (Pseudomonas sp. JPSB12+Enterobacter sp. TPSB20+Flavobact...

  6. Biological Removal of Phosphate Using Phosphate Solubilizing Bacterial Consortium from Synthetic Wastewater: A Laboratory Scale

    Directory of Open Access Journals (Sweden)

    Dipak Paul

    2015-01-01

    Full Text Available Biological phosphate removal is an important process having gained worldwide attention and widely used for removing phosphorus from wastewater. The present investigation was aimed to screen the efficient phosphate solubilizing bacterial isolates and used to remove phosphate from synthetic wastewater under shaking flasks conditions. Pseudomonas sp. JPSB12, Enterobacter sp. TPSB20, Flavobacterium sp. TPSB23 and mixed bacterial consortium (Pseudomonas sp. JPSB12+Enterobacter sp. TPSB20+Flavobacterium sp. TPSB23 were used for the removal of phosphate. Among the individual strains, Enterobacter sp. TPSB20 was removed maximum phosphate (61.75% from synthetic wastewater in presence of glucose as a carbon source. The consortium was effectively removed phosphate (74.15-82.50% in the synthetic wastewater when compared to individual strains. The pH changes in culture medium with time and extracellular phosphatase activity (acid and alkaline were also investigated. The efficient removal of phosphate by the consortium may be due to the synergistic activity among the individual strains and phosphatase enzyme activity. The use of bacterial consortium in the remediation of phosphate contaminated aquatic environments has been discussed.

  7. Biological and Chemical Information Technologies

    DEFF Research Database (Denmark)

    Amos, Martyn; Dittrich, Peter; McCaskill, John;

    2011-01-01

    Biological and chemical information technologies (bio/chem IT) have the potential to reshape the scientific and technological landscape. In this paper we briefly review the main challenges and opportunities in the field, before presenting several case studies based on ongoing FP7 research projects....

  8. Connecting Genomic Alterations to Cancer Biology with Proteomics: The NCI Clinical Proteomic Tumor Analysis Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, Matthew; Gillette, Michael; Carr, Steven A.; Paulovich, Amanda G.; Smith, Richard D.; Rodland, Karin D.; Townsend, Reid; Kinsinger, Christopher; Mesri, Mehdi; Rodriguez, Henry; Liebler, Daniel

    2013-10-03

    The National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium is applying the latest generation of proteomic technologies to genomically annotated tumors from The Cancer Genome Atlas (TCGA) program, a joint initiative of the NCI and the National Human Genome Research Institute. By providing a fully integrated accounting of DNA, RNA, and protein abnormalities in individual tumors, these datasets will illuminate the complex relationship between genomic abnormalities and cancer phenotypes, thus producing biologic insights as well as a wave of novel candidate biomarkers and therapeutic targets amenable to verifi cation using targeted mass spectrometry methods.

  9. The chemical biology of sirtuins.

    Science.gov (United States)

    Chen, Bing; Zang, Wenwen; Wang, Juan; Huang, Yajun; He, Yanhua; Yan, Lingling; Liu, Jiajia; Zheng, Weiping

    2015-08-01

    The sirtuin family of enzymes are able to catalyze the N(ε)-acyl-lysine deacylation reaction on histone and non-histone protein substrates. Over the past years since the discovery of its founding member (i.e. the yeast silent information regulator 2 (sir2) protein) in 2000, the sirtuin-catalyzed deacylation reaction has been demonstrated to play an important regulatory role in multiple crucial cellular processes such as transcription, DNA damage repair, and metabolism. This reaction has also been regarded as a current therapeutic target for human diseases such as cancer, and metabolic and neurodegenerative diseases. The unique β-nicotinamide adenine dinucleotide (β-NAD(+) or NAD(+))-dependent nature of the sirtuin-catalyzed deacylation reaction has also engendered extensive mechanistic studies, resulting in a mechanistic view of the enzyme chemistry supported by several lines of experimental evidence. On the journey toward these knowledge advances, chemical biological means have constituted an important functional arsenal; technically, a variety of chemical probes and modulators (inhibitors and activators) have been developed and some of them have been employed toward an enhanced mechanistic and functional (pharmacological) understanding of the sirtuin-catalyzed deacylation reaction. On the other hand, an enhanced mechanistic understanding has also facilitated the development of a variety of chemical probes and modulators. This article will review the tremendous accomplishments achieved during the past few years in the field of sirtuin chemical biology. It is hoped that this would also help to set a stage for how outstanding mechanistic and functional questions for the sirtuin-catalyzed deacylation reaction could be addressed in the future from the chemical biology perspective. PMID:25955411

  10. Olefin metathesis for chemical biology.

    Science.gov (United States)

    Binder, Joseph B; Raines, Ronald T

    2008-12-01

    Chemical biology relies on effective synthetic chemistry for building molecules to probe and modulate biological function. Olefin metathesis in organic solvents is a valuable addition to this armamentarium, and developments during the previous decade are enabling metathesis in aqueous solvents for the manipulation of biomolecules. Functional group-tolerant ruthenium metathesis catalysts modified with charged moieties or hydrophilic polymers are soluble and active in water, enabling ring-opening metathesis polymerization, cross metathesis, and ring-closing metathesis. Alternatively, conventional hydrophobic ruthenium complexes catalyze a similar array of metathesis reactions in mixtures of water and organic solvents. This strategy has enabled cross metathesis on the surface of a protein. Continuing developments in catalyst design and methodology will popularize the bioorthogonal reactivity of metathesis. PMID:18935975

  11. Effect of VOCs and methane in the biological oxidation of the ferrous ion by an acidophilic consortium.

    Science.gov (United States)

    Almenglo, F; Ramírez, M; Gómez, J M; Cantero, D; Revah, S; González-Sánchez, A

    2012-01-01

    During the elimination of H2S from biogas in an aqueous ferric sulphate solution, volatile organic compounds (VOCs) and methane are absorbed and may have an effect on the subsequent biological regeneration of ferric ion. This study was conducted to investigate the effect of maximum concentrations of methane and some VOCs found in biogas on the ferrous oxidation of an acidophilic microbial consortium (FO consortium). The presence and impact of heterotrophic microorganisms on the activity of the acidophilic consortium was also evaluated. No effect on the ferrous oxidation rate was found with gas concentrations of 1500 mg toluene m(-3), 1400 mg 2-butanol m(-3) or 1250 mg 1,2-dichloroethane m(-3), nor with methane at gas concentrations ranging from 15-25% (v/v). A tenfold increase in VOCs concentrations totally inhibited the microbial activity of the FO consortium and the heterotrophs. The presence of a heterotrophic fungus may promote the autotrophic growth of the FO consortium. PMID:22629626

  12. Electrostatic thin film chemical and biological sensor

    Science.gov (United States)

    Prelas, Mark A.; Ghosh, Tushar K.; Tompson, Jr., Robert V.; Viswanath, Dabir; Loyalka, Sudarshan K.

    2010-01-19

    A chemical and biological agent sensor includes an electrostatic thin film supported by a substrate. The film includes an electrostatic charged surface to attract predetermined biological and chemical agents of interest. A charge collector associated with said electrostatic thin film collects charge associated with surface defects in the electrostatic film induced by the predetermined biological and chemical agents of interest. A preferred sensing system includes a charge based deep level transient spectroscopy system to read out charges from the film and match responses to data sets regarding the agents of interest. A method for sensing biological and chemical agents includes providing a thin sensing film having a predetermined electrostatic charge. The film is exposed to an environment suspected of containing the biological and chemical agents. Quantum surface effects on the film are measured. Biological and/or chemical agents can be detected, identified and quantified based on the measured quantum surface effects.

  13. Opportunities for Merging Chemical and Biological Synthesis

    OpenAIRE

    Wallace, Stephen; Balskus, Emily P.

    2014-01-01

    Organic chemists and metabolic engineers use largely orthogonal technologies to access small molecules like pharmaceuticals and commodity chemicals. As the use of biological catalysts and engineered organisms for chemical production grows, it is becoming increasingly evident that future efforts for chemical manufacture will benefit from the integration and unified expansion of these two fields. This review will discuss approaches that combine chemical and biological synthesis for small molecu...

  14. Integrated Genomic Analysis of Diverse Induced Pluripotent Stem Cells from the Progenitor Cell Biology Consortium.

    Science.gov (United States)

    Salomonis, Nathan; Dexheimer, Phillip J; Omberg, Larsson; Schroll, Robin; Bush, Stacy; Huo, Jeffrey; Schriml, Lynn; Ho Sui, Shannan; Keddache, Mehdi; Mayhew, Christopher; Shanmukhappa, Shiva Kumar; Wells, James; Daily, Kenneth; Hubler, Shane; Wang, Yuliang; Zambidis, Elias; Margolin, Adam; Hide, Winston; Hatzopoulos, Antonis K; Malik, Punam; Cancelas, Jose A; Aronow, Bruce J; Lutzko, Carolyn

    2016-07-12

    The rigorous characterization of distinct induced pluripotent stem cells (iPSC) derived from multiple reprogramming technologies, somatic sources, and donors is required to understand potential sources of variability and downstream potential. To achieve this goal, the Progenitor Cell Biology Consortium performed comprehensive experimental and genomic analyses of 58 iPSC from ten laboratories generated using a variety of reprogramming genes, vectors, and cells. Associated global molecular characterization studies identified functionally informative correlations in gene expression, DNA methylation, and/or copy-number variation among key developmental and oncogenic regulators as a result of donor, sex, line stability, reprogramming technology, and cell of origin. Furthermore, X-chromosome inactivation in PSC produced highly correlated differences in teratoma-lineage staining and regulator expression upon differentiation. All experimental results, and raw, processed, and metadata from these analyses, including powerful tools, are interactively accessible from a new online portal at https://www.synapse.org to serve as a reusable resource for the stem cell community. PMID:27293150

  15. Target identification strategies in plant chemical biology

    OpenAIRE

    Dejonghe, Wim; Russinova, Eugenia

    2014-01-01

    The current needs to understand gene function in plant biology increasingly require more dynamic and conditional approaches opposed to classic genetic strategies. Gene redundancy and lethality can substantially complicate research, which might be solved by applying a chemical genetics approach. Now understood as the study of small molecules and their effect on biological systems with subsequent target identification, chemical genetics is a fast developing field with a strong history in pharma...

  16. Knowledge Mobilization across Boundaries with the Use of Novel Organizational Structures, Conferencing Strategies, and Technological Tools: The Ontario Consortium of Undergraduate Biology Educators (oCUBE) Model

    Science.gov (United States)

    Kajiura, Lovaye; Smit, Julie; Montpetit, Colin; Kelly, Tamara; Waugh, Jennifer; Rawle, Fiona; Clark, Julie; Neumann, Melody; French, Michelle

    2014-01-01

    The Ontario Consortium of Undergraduate Biology Educators (oCUBE) brings together over 50 biology educators from 18 Ontario universities with the common goal to improve the biology undergraduate experience for both students and educators. This goal is achieved through an innovative mix of highly interactive face-to-face meetings, online…

  17. Discovery of Chemical Toxicity via Biological Networks and Systems Biology

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, Edward; Habib, Tanwir; Guan, Xin; Escalon, Barbara; Falciani, Francesco; Chipman, J.K.; Antczak, Philipp; Edwards, Stephen; Taylor, Ronald C.; Vulpe, Chris; Loguinov, Alexandre; Van Aggelen, Graham; Villeneuve, Daniel L.; Garcia-Reyero, Natalia

    2010-09-30

    Both soldiers and animals are exposed to many chemicals as the result of military activities. Tools are needed to understand the hazards and risks that chemicals and new materials pose to soldiers and the environment. We have investigated the potential of global gene regulatory networks in understanding the impact of chemicals on reproduction. We characterized effects of chemicals on ovaries of the model animal system, the Fathead minnow (Pimopheles promelas) connecting chemical impacts on gene expression to circulating blood levels of the hormones testosterone and estradiol in addition to the egg yolk protein vitellogenin. We describe the application of reverse engineering complex interaction networks from high dimensional gene expression data to characterize chemicals that disrupt the hypothalamus-pituitary-gonadal endocrine axis that governs reproduction in fathead minnows. The construction of global gene regulatory networks provides deep insights into how drugs and chemicals effect key organs and biological pathways.

  18. History of chemical and biological warfare agents.

    Science.gov (United States)

    Szinicz, L

    2005-10-30

    Chemical and biological warfare agents constitute a low-probability, but high-impact risk both to the military and to the civilian population. The use of hazardous materials of chemical or biological origin as weapons and for homicide has been documented since ancient times. The first use of chemicals in terms of weapons of mass destruction goes back to World War I, when on April 22, 1915 large amounts of chlorine were released by German military forces at Ypres, Belgium. Until around the 1970s of the 20th century, the awareness of the threat by chemical and biological agents had been mainly confined to the military sector. In the following time, the development of increasing range delivery systems by chemical and biological agents possessors sensitised public attention to the threat emanating from these agents. Their proliferation to the terrorists field during the 1990s with the expanding scale and globalisation of terrorist attacks suggested that these agents are becoming an increasing threat to the whole world community. The following article gives a condensed overview on the history of use and development of the more prominent chemical and biological warfare agents. PMID:16111798

  19. Chemical foundations of hydrogen sulfide biology.

    Science.gov (United States)

    Li, Qian; Lancaster, Jack R

    2013-11-30

    Following nitric oxide (nitrogen monoxide) and carbon monoxide, hydrogen sulfide (or its newer systematic name sulfane, H2S) became the third small molecule that can be both toxic and beneficial depending on the concentration. In spite of its impressive therapeutic potential, the underlying mechanisms for its beneficial effects remain unclear. Any novel mechanism has to obey fundamental chemical principles. H2S chemistry was studied long before its biological relevance was discovered, however, with a few exceptions, these past works have received relatively little attention in the path of exploring the mechanistic conundrum of H2S biological functions. This review calls attention to the basic physical and chemical properties of H2S, focuses on the chemistry between H2S and its three potential biological targets: oxidants, metals and thiol derivatives, discusses the applications of these basics into H2S biology and methodology, and introduces the standard terminology to this youthful field. PMID:23850631

  20. Chemical Force Microscopy of Chemical and Biological Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Noy, A

    2006-01-02

    Interactions between chemical functionalities define outcomes of the vast majority of important events in chemistry, biology and materials science. Chemical Force Microscopy (CFM)--a technique that uses direct chemical functionalization of AFM probes with specific functionalities--allows researchers to investigate these important interactions directly. We review the basic principles of CFM, some examples of its application, and theoretical models that provide the basis for understanding the experimental results. We also emphasize application of modern kinetic theory of non-covalent interactions strength to the analysis of CFM data.

  1. Chemical approaches to studying stem cell biology

    Institute of Scientific and Technical Information of China (English)

    Wenlin Li; Kai Jiang; Wanguo Wei; Yan Shi; Sheng Ding

    2013-01-01

    Stem cells,including both pluripotent stem cells and multipotent somatic stem cells,hold great potential for interrogating the mechanisms of tissue development,homeostasis and pathology,and for treating numerous devastating diseases.Establishment of in vitro platforms to faithfully maintain and precisely manipulate stem cell fates is essential to understand the basic mechanisms of stem cell biology,and to translate stem cells into regenerative medicine.Chemical approaches have recently provided a number of small molecules that can be used to control cell selfrenewal,lineage differentiation,reprogramming and regeneration.These chemical modulators have been proven to be versatile tools for probing stem cell biology and manipulating cell fates toward desired outcomes.Ultimately,this strategy is promising to be a new frontier for drug development aimed at endogenous stem cell modulation.

  2. Nanotechnology Applications for Chemical and Biological Sensors

    Directory of Open Access Journals (Sweden)

    M. K. Patra

    2008-09-01

    Full Text Available Recent discoveries indicate that when the materials are brought down to sizes in the range 1–100 nm, theseexhibit unique electrical, optical, magnetic, chemical, and mechanical properties. Methods have now beenestablished to obtain the monodisperse nanocrystals of various metallic and semiconducting materials, single-walled and multi-walled nanotubes of carbon and other metallic and non-metallic materials together withorganic nanomaterials such as supra-molecular nanostructures, dendrimers, hybrid composites with tailoredfunctionalities. The high surface-to-volume ratio with an added element of porosity makes these highly potentialcandidates for chemical and biological sensor applications with higher degree of sensitivity and selectivity ascompared to their bulk counterparts. The paper reviews the recent developments and applications of chemicaland biological sensors based on nanomaterials of various structural forms.Defence Science Journal, 2008, 58(5, pp.636-649, DOI:http://dx.doi.org/10.14429/dsj.58.1686

  3. System chemical biology studies of endocrine disruptors

    DEFF Research Database (Denmark)

    Taboureau, Olivier; Oprea, Tudor I.

    Endocrine disrupting chemicals (EDCs) alter hormonal balance and other physiological systems through inappropriate developmental or adult exposure, perturbing the reproductive function of further generations. While disruption of key receptors (e.g., estrogen, androgen, and thyroid) at the ligand...... binding domain (LBD) has been associated with EDCs, a significant number of EDCs do not appear to influence the LBDs of these receptors. Therefore, we evaluated the potential biological effects of EDCs in humans with the aim to rationalize the etiology of certain disorders associated with the reproductive...

  4. Arbutus unedo L.: chemical and biological properties.

    Science.gov (United States)

    Miguel, Maria G; Faleiro, Maria L; Guerreiro, Adriana C; Antunes, Maria D

    2014-01-01

    Arbutus unedo L. (strawberry tree) has a circum-Mediterranean distribution, being found in western, central and southern Europe, north-eastern Africa (excluding Egypt and Libya) and the Canary Islands and western Asia. Fruits of the strawberry tree are generally used for preparing alcoholic drinks (wines, liqueurs and brandies), jams, jellies and marmalades, and less frequently eaten as fresh fruit, despite their pleasing appearance. An overview of the chemical composition of different parts of the plant, strawberry tree honey and strawberry tree brandy will be presented. The biological properties of the different parts of A. unedo and strawberry tree honey will be also overviewed. PMID:25271425

  5. Arbutus unedo L.: Chemical and Biological Properties

    Directory of Open Access Journals (Sweden)

    Maria G. Miguel

    2014-09-01

    Full Text Available Arbutus unedo L. (strawberry tree has a circum-Mediterranean distribution, being found in western, central and southern Europe, north-eastern Africa (excluding Egypt and Libya and the Canary Islands and western Asia. Fruits of the strawberry tree are generally used for preparing alcoholic drinks (wines, liqueurs and brandies, jams, jellies and marmalades, and less frequently eaten as fresh fruit, despite their pleasing appearance. An overview of the chemical composition of different parts of the plant, strawberry tree honey and strawberry tree brandy will be presented. The biological properties of the different parts of A. unedo and strawberry tree honey will be also overviewed.

  6. Recovery from chemical, biological, and radiological incidents :

    Energy Technology Data Exchange (ETDEWEB)

    Franco, David Oliver; Yang, Lynn I.; Hammer, Ann E.

    2012-06-01

    To restore regional lifeline services and economic activity as quickly as possible after a chemical, biological or radiological incident, emergency planners and managers will need to prioritize critical infrastructure across many sectors for restoration. In parallel, state and local governments will need to identify and implement measures to promote reoccupation and economy recovery in the region. This document provides guidance on predisaster planning for two of the National Disaster Recovery Framework Recovery Support Functions: Infrastructure Systems and Economic Recovery. It identifies key considerations for infrastructure restoration, outlines a process for prioritizing critical infrastructure for restoration, and identifies critical considerations for promoting regional economic recovery following a widearea disaster. Its goal is to equip members of the emergency preparedness community to systematically prioritize critical infrastructure for restoration, and to develop effective economic recovery plans in preparation for a widearea CBR disaster.

  7. The biological and chemical variability of yacon.

    Science.gov (United States)

    Valentová, Katerina; Lebeda, Ales; Dolezalová, Ivana; Jirovský, David; Simonovska, Breda; Vovk, Irena; Kosina, Pavel; Gasmanová, Nikol; Dziechciarková, Marta; Ulrichová, Jitka

    2006-02-22

    This paper focuses on the biological and chemical variability of four yacon (Smallanthus sonchifolius) accessions cultivated under field conditions. Significant variations in tuber shape, weight, content of oligofructans, as well as in leaf isozymes, phenolics, and relative DNA contents were found. Accessions 6 and 88 were the most productive (up to 3.01 and 3.74 kg/plant); accession 48 was the most balanced from the yield aspect in three vegetative periods. A significantly higher content of beta-(2-->1) oligofructans was noted in accessions 48 and 88 as compared to 6 and 60. No difference in sucrose, glucose, and fructose level was observed. Only accession 6 exhibited separate acid phosphatase and esterase isoforms. Accessions 6 and 60 had the highest content of phenolics, and accession 88 had the lowest relative DNA content. Large yacon intraspecific variation may be useful in future detailed research as a good background for breeding, growing, and utilization in industrial processing. PMID:16478259

  8. Biofilm establishment and heavy metal removal capacity of an indigenous mining algal-microbial consortium in a photo-rotating biological contactor.

    Science.gov (United States)

    Orandi, S; Lewis, D M; Moheimani, N R

    2012-09-01

    An indigenous mining algal-microbial consortium was immobilised within a laboratory-scale photo-rotating biological contactor (PRBC) that was used to investigate the potential for heavy metal removal from acid mine drainage (AMD). The microbial consortium, dominated by Ulothrix sp., was collected from the AMD at the Sar Cheshmeh copper mine in Iran. This paper discusses the parameters required to establish an algal-microbial biofilm used for heavy metal removal, including nutrient requirements and rotational speed. The PRBC was tested using synthesised AMD with the multi-ion and acidic composition of wastewater (containing 18 elements, and with a pH of 3.5 ± 0.5), from which the microbial consortium was collected. The biofilm was successfully developed on the PRBC's disc consortium over 60 days of batch-mode operation. The PRBC was then run continuously with a 24 h hydraulic residence time (HRT) over a ten-week period. Water analysis, performed on a weekly basis, demonstrated the ability of the algal-microbial biofilm to remove 20-50 % of the various metals in the order Cu > Ni > Mn > Zn > Sb > Se > Co > Al. These results clearly indicate the significant potential for indigenous AMD microorganisms to be exploited within a PRBC for AMD treatment. PMID:22644382

  9. ChemProt: A disease chemical biology database

    DEFF Research Database (Denmark)

    Taboureau, Olivier; Oprea, Tudor I.

    2013-01-01

    The integration of chemistry, biology, and informatics to study drug actions across multiple biological targets, pathways, and biological systems is an emerging paradigm in drug discovery. Rather than reducing a complex system to simplistic models, fields such as chemogenomics and translational...... chemical biology, drug repurposing, and off-target effects prediction....

  10. Challenges and opportunities in synthetic biology for chemical engineers

    OpenAIRE

    Luo, Yunzi; Lee, Jung-Kul; Zhao, Huimin

    2012-01-01

    Synthetic biology provides numerous great opportunities for chemical engineers in the development of new processes for large-scale production of biofuels, value-added chemicals, and protein therapeutics. However, challenges across all scales abound. In particular, the modularization and standardization of the components in a biological system, so-called biological parts, remain the biggest obstacle in synthetic biology. In this perspective, we will discuss the main challenges and opportunitie...

  11. ChemProt: a disease chemical biology database

    DEFF Research Database (Denmark)

    Taboureau, Olivier; Nielsen, Sonny Kim; Audouze, Karine Marie Laure;

    2011-01-01

    Systems pharmacology is an emergent area that studies drug action across multiple scales of complexity, from molecular and cellular to tissue and organism levels. There is a critical need to develop network-based approaches to integrate the growing body of chemical biology knowledge with network...... biology. Here, we report ChemProt, a disease chemical biology database, which is based on a compilation of multiple chemical-protein annotation resources, as well as disease-associated protein-protein interactions (PPIs). We assembled more than 700 000 unique chemicals with biological annotation for 30...... 578 proteins. We gathered over 2-million chemical-protein interactions, which were integrated in a quality scored human PPI network of 428 429 interactions. The PPI network layer allows for studying disease and tissue specificity through each protein complex. ChemProt can assist in the in silico...

  12. The SYSCILIA gold standard (SCGSv1) of known ciliary components and its applications within a systems biology consortium

    OpenAIRE

    van Dam, Teunis JP; Wheway, Gabrielle; Slaats, Gisela G.; Huynen, Martijn A; Giles, Rachel H.

    2013-01-01

    The multinational SYSCILIA consortium aims to gain a mechanistic understanding of the cilium. We utilize multiple parallel high-throughput (HTP) initiatives to develop predictive models of relationships between complex genotypes and variable phenotypes of ciliopathies. The models generated are only as good as the wet laboratory data fed into them. It is therefore essential to orchestrate a well-annotated and high-confidence dataset to be able to assess the quality of any HTP dataset. Here, we...

  13. Chemical biology: How to minimalize antibodies

    Science.gov (United States)

    Rader, Christoph

    2015-02-01

    The success of antibodies as pharmaceuticals has triggered interest in crafting much smaller mimics. A crucial step forward has been taken with the chemical synthesis of small molecules that recruit immune cells to attack cancer cells.

  14. System chemical biology studies of endocrine disruptors

    DEFF Research Database (Denmark)

    Taboureau, Olivier; Oprea, Tudor I.

    Endocrine disrupting chemicals (EDCs) alter hormonal balance and other physiological systems through inappropriate developmental or adult exposure, perturbing the reproductive function of further generations. While disruption of key receptors (e.g., estrogen, androgen, and thyroid) at the ligand...

  15. Arrays in biological and chemical analysis

    DEFF Research Database (Denmark)

    Christensen, Claus Bo Vöge

    2002-01-01

    Recently a dramatic change has happened for biological and biochemical analysis. Originally developed as an academic massive parallel screening tool, industry has caught the idea as well of performing all kinds of assays in the new format of microarrays. From food manufacturers over water supply...

  16. Studies on Semantic Systems Chemical Biology

    Science.gov (United States)

    Chen, Bin

    2012-01-01

    Current "one disease, one target and one drug" drug development paradigm is under question as relatively few drugs have reached the market in the last two decades. Increasingly research focus is being placed on the study of drug action against biological systems as a whole rather than against a single component (called "Systems…

  17. Chemical and biological sensing using tuning forks

    Science.gov (United States)

    Tao, Nongjian; Boussaad, Salah

    2012-07-10

    A device for sensing a chemical analyte is disclosed. The device is comprised of a vibrating structure having first and second surfaces and having an associated resonant frequency and a wire coupled between the first and second surfaces of the vibrating structure, wherein the analyte interacts with the wire and causes a change in the resonant frequency of the vibrating structure. The vibrating structure can include a tuning fork. The vibrating structure can be comprised of quartz. The wire can be comprised of polymer. A plurality of vibrating structures are arranged in an array to increase confidence by promoting a redundancy of measurement or to detect a plurality of chemical analytes. A method of making a device for sensing a chemical analyte is also disclosed.

  18. Guidelines to improve airport preparedness against chemical and biological terrorism.

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Donna M.; Price, Phillip N. (Lawrence Berkeley National Laboratory, Berkeley, CA); Gordon, Susanna P.; Gadgil, Ashok (Lawrence Berkeley National Laboratory, Berkeley, CA)

    2005-05-01

    Guidelines to Improve Airport Preparedness Against Chemical and Biological Terrorism is a 100-page document that makes concrete recommendations on improving security and assessing vulnerable areas and helps its readers understand the nature of chemical and biological attacks. The report has been turned over to Airports Council International (ACI) and the American Association of Airport Executives (AAAE), two organizations that together represent the interests of thousands of airport personnel and facilities in the U.S. and around the world.

  19. Molecular recognition in chemical and biological systems.

    Science.gov (United States)

    Persch, Elke; Dumele, Oliver; Diederich, François

    2015-03-01

    Structure-based ligand design in medicinal chemistry and crop protection relies on the identification and quantification of weak noncovalent interactions and understanding the role of water. Small-molecule and protein structural database searches are important tools to retrieve existing knowledge. Thermodynamic profiling, combined with X-ray structural and computational studies, is the key to elucidate the energetics of the replacement of water by ligands. Biological receptor sites vary greatly in shape, conformational dynamics, and polarity, and require different ligand-design strategies, as shown for various case studies. Interactions between dipoles have become a central theme of molecular recognition. Orthogonal interactions, halogen bonding, and amide⋅⋅⋅π stacking provide new tools for innovative lead optimization. The combination of synthetic models and biological complexation studies is required to gather reliable information on weak noncovalent interactions and the role of water. PMID:25630692

  20. ECOLOGICAL IMPACT OF INTEGRATED CHEMICAL AND BIOLOGICAL AQUATIC WEED CONTROL

    Science.gov (United States)

    This final report presents results of a four-year study of the ecological impacts of chemical, biological, and integrated methods of aquatic weed control. Biological and water quality changes occurred as abundance of macrophytic vegetation was altered by natural factors or manage...

  1. Radiation, chemical and biological protection. Mass destruction weapons

    International Nuclear Information System (INIS)

    In this text-book mass destruction weapons and radiation, chemical and biological protection are reviewed. The text-book contains the following chapter: (1) Mass destruction weapons; (2) Matter and material; (3) Radioactive materials; (4) Toxic materials; (5) Biological resources; (6) Nuclear energetic equipment; Appendices; References.

  2. UNIVERSITY CONSORTIUM

    OpenAIRE

    RALUCA-OLGUTA PACURARU

    2011-01-01

    Human resource is considered to be the most valuable resource in the knowledge society. Therefore the whole education system acquires an increased importance because of its task of forming this kind of resource. On the other hand, a characteristic of these times is globalization. A possible response of universities around the world to this requirement may be found in the form of university consortiums.

  3. Chemically-functionalized microcantilevers for detection of chemical, biological and explosive material

    Science.gov (United States)

    Pinnaduwage, Lal A [Knoxville, TN; Thundat, Thomas G [Knoxville, TN; Brown, Gilbert M [Knoxville, TN; Hawk, John Eric [Olive Branch, MS; Boiadjiev, Vassil I [Knoxville, TN

    2007-04-24

    A chemically functionalized cantilever system has a cantilever coated on one side thereof with a reagent or biological species which binds to an analyte. The system is of particular value when the analyte is a toxic chemical biological warfare agent or an explosive.

  4. Arbutus unedo L.: Chemical and Biological Properties

    OpenAIRE

    Maria G. Miguel; Maria L. Faleiro; Adriana C. Guerreiro; Maria D. Antunes

    2014-01-01

    Arbutus unedo L. (strawberry tree) has a circum-Mediterranean distribution, being found in western, central and southern Europe, north-eastern Africa (excluding Egypt and Libya) and the Canary Islands and western Asia. Fruits of the strawberry tree are generally used for preparing alcoholic drinks (wines, liqueurs and brandies), jams, jellies and marmalades, and less frequently eaten as fresh fruit, despite their pleasing appearance. An overview of the chemical composition of different parts ...

  5. Chemical and Biological Evaluation of Whey

    International Nuclear Information System (INIS)

    This Study has been carried out to extract whey protein concentrate (WPC) from sweet whey and to study the chemical composition, amino acids composition, amino acid scores and to investigate the possible role of WPC in ameliorating some biochemical disorders induced in γ-irradiated rats. Animals were divided into 4 groups. Group 1, fed on normal diet during experimental period. Group 2, fed on diet containing 15% WPC instead of soybean protein. Group 3, rats exposed to whole body γ-radiation with single dose of 5 Gy and fed on the normal diet. Group 4, rats exposed to 5 Gy then fed on diet containing 15% WPC. The rats were decapitated 14 and 28 days post irradiation. Chemical analysis of WPC revealed that it contains high amounts of protein (44%), total amino acids (71%) and all essential amino acids (EAA), phenylalanine (37%), isoleucine cystine and threonine were the major EAA and high amounts of sulphur amino acids. Methionine gave rich chemical score (102.67%) also, isoleucine (119.95%) and phenylalanine+ tyrosine gave maximum chemical score (198.8%), respectively. Exposure to γ-irradiation caused significant elevation of serum cholesterol, triglycerides, low density lipoprotein (LDL), lipid per oxidation end product (TBARS) and iron (Fe) with significant decrease in high density lipoprotein (HDL), glutathione (GSH) and catalase (CAT) in serum. Also, irradiated rats had significant decrease in copper (Cu), magnesium (Mg) and zinc (Zn) in serum. The histological examination of cardiac tissue showed severe structural damage. Irradiated rats fed on WPC revealed significant improvement of some biochemical parameters. It could be concluded that WPC must be added to diet for reducing radiation injury via metabolic pathway

  6. The chemical and biological versatility of riboflavin.

    Science.gov (United States)

    Massey, V

    2000-01-01

    Since their discovery and chemical characterization in the 1930s, flavins have been recognized as being capable of both one- and two-electron transfer processes, and as playing a pivotal role in coupling the two-electron oxidation of most organic substrates to the one-electron transfers of the respiratory chain. In addition, they are now known as versatile compounds that can function as electrophiles and nucleophiles, with covalent intermediates of flavin and substrate frequently being involved in catalysis. Flavins are thought to contribute to oxidative stress through their ability to produce superoxide, but at the same time flavins are frequently involved in the reduction of hydroperoxides, products of oxygen-derived radical reactions. Flavoproteins play an important role in soil detoxification processes via the hydroxylation of many aromatic compounds, and a simple flavoprotein in liver microsomes catalyses many reactions similar to those carried out by cytochrome P450 enzymes. Flavins are involved in the production of light in bioluminescent bacteria, and are intimately connected with light-initiated reactions such as plant phototropism and nucleic acid repair processes. Recent reports also link them to programmed cell death. The chemical versatility of flavoproteins is clearly controlled by specific interactions with the proteins with which they are bound. One of the main thrusts of current research is to try to define the nature of these interactions, and to understand in chemical terms the various steps involved in catalysis by flavoprotein enzymes. PMID:10961912

  7. Application of surface plasmons to biological and chemical sensors

    International Nuclear Information System (INIS)

    Surface plasmons (SPs) are a collective normal mode of electrons localized at a metallic surface. It has been used for biological sensors since 1990s. This is because it has the following specific characters: (a) The resonance condition is sensitive to the surrounding dielectric constants (refractive indexes) and (b) Highly enhanced optical-electric-fields are produced adjacent to SPs. A brief introduction is given on the principle of the biological and chemical sensors based on SPs for the readers working in the fields other than SPs, followed by a review on the recent developments of the biological and chemical sensors. (author)

  8. Natural evidence for chemical and early biological evolution

    Science.gov (United States)

    Kvenvolden, K. A.

    1974-01-01

    Oparin (1924) and Haldane (1929) have independently hypothesized that life arose under reducing conditions through an evolutionary sequence of events involving increasingly complex organic substances. The natural evidence for this hypothesis of chemical evolution is considered, giving particular attention to tangible samples which have been chemically analyzed in earth-bound laboratories. It is found that meteorites provide naturally occurring evidence in support of chemical evolution, but not of biological evolution. Studies on the early Precambrian Swaziland Sequence and the Bulawayan System of southern Africa provide evidence for very early biological evolution.

  9. Carbon Nanotubes: Detection of Chemical and Biological Warfare Agents

    Directory of Open Access Journals (Sweden)

    Om Kumar

    2008-09-01

    Full Text Available Discovery of carbon nanotubes has great impact on the development of newer methodologies and devicesuseful for the analysis of various types of chemicals. The functionalisation of CNTs with biomolecules relatedto chemical and biological warfare agents makes these useful for the detection of these agents. The detectionsensitivity can be increased manyfold. Various types of chemical and biological sensors were developed usingvarious type of carbon nanotubes as well as nano particles of different metals.Defence Science Journal, 2008, 58(5, pp.617-625, DOI:http://dx.doi.org/10.14429/dsj.58.1684

  10. Waves and Patterns in Chemical and Biological Media

    Science.gov (United States)

    Swinney, Harry L.; Krinsky, Valentin I.

    1991-12-01

    These 28 contributions by leading researchers - from such diverse disciplines as chemistry, biology, physics, mathematics, and physiology - describe recent experiments, numerical simulations, and theoretical analyses of the formation of spatial patterns in chemical and biological systems. Chemical patterns have been systematically studied since the field was established by Alan Turing's landmark 1952 paper, "The chemical basis for morphogenesis," yet only recently have new experimental techniques and numerical analyses of reaction-diffusion equations opened the way to understanding stationary and traveling wave patterns. This collection summarizes the exciting developments in this rapidly growing field. It shows that some biological patterns have been found to be strikingly similar to patterns found in simple, well-controlled laboratory chemical systems, that new chemical reactor designs make it possible to sustain chemical patterns and to study transitions between different kinds of patterns, and that nearly 40 years after Turing's paper, the patterns predicted by Turing have finally been observed in laboratory experiments. Harry L. Swinney is Sid Richardson Foundation Regents Chair, Department of Physics, and Director of the Center for Nonlinear Dynamics at the University of Texas at Austin. Valentin I. Krinsky is Head of the Autowave Laboratory, Institute of Biological Physics, Academy of Sciences, Pushchino, USSR. Chapters cover: Spiral, Ring, and Scroll Patterns: Experiments. Spiral, Ring, and Scroll Patterns: Theory and Simulations. Fronts and Turing Patterns. Waves and Patterns in Biological Systems.

  11. 78 FR 55326 - Determinations Regarding Use of Chemical Weapons in Syria Under the Chemical and Biological...

    Science.gov (United States)

    2013-09-10

    ... Determinations Regarding Use of Chemical Weapons in Syria Under the Chemical and Biological Weapons Control and..., 22 U.S.C. 5604(a), that the Government of Syria has used chemical weapons in violation of... Under Secretary of State for Political Affairs: (1) Determined that the Government of Syria has...

  12. Chemical and biological evaluation of Ranunculus muricatus.

    Science.gov (United States)

    Khan, Farhat Ali; Zahoor, Muhammad; Khan, Ezzat

    2016-03-01

    Ranunculus muricatus is commonly known as spiny fruit buttercup and is used in the treatment of intermittent fevers, gout and asthma. Qualitative analysis of phytochemicals of Ranunculus muricatus indicated the presence of saponins, tannins, phenols, flavonoids and alkaloids. Saponins were present in high amount as compared with other chemicals. Inorganic and heavy metals constituents were determined. Heavy metals estimation in the sample showed that iron was present in high amount followed by zinc even then the concentration of these metals is below acceptable limit. The physical parameters, antioxidant and antimicrobial activities of the extracts were determined. Acetone extract fraction showed optimal antioxidant activity as compared to ethanol and chloroform fractions of the candidate plant. The antimicrobial and antifungal activities of the crude extract and extract fractions were determined by well agar diffusion method. Highest zone of inhibitions were observed for crude extract followed by acetone extract fraction against Micrococcus luteus. Antifungal activities were high for crude extracts against Candida Albican. Findings of this study show that Ranunculus muricatus has a good medicinal impact. PMID:27087095

  13. The terrorist threat nuclear, radiological, biological, chemical - a medical approach

    International Nuclear Information System (INIS)

    Since September 11, 2001, the fear of a large scale nuclear, biological and/or chemical terrorism is taken again into consideration at the highest level of national policies of risk prevention. The advent of international terrorism implies a cooperation between the military defense and the civil defense. The nuclear, radiological, biological and chemical (NRBC) experts of the health service of army and of civil defense will have to work together in case of major terror attack. This book presents this cooperation between civil and military experts in the NRBC domain: risk analysis, national defense plans, crisis management, syndromes and treatments. The different aspects linked with the use of nuclear, biological and chemical weapons are analyzed by the best experts from French medical and research institutes. All topics of each NRBC domain are approached: historical, basic, diagnostic, therapeutic and preventive. (J.S.)

  14. Chemical and biological nonproliferation program. FY99 annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This document is the first of what will become an annual report documenting the progress made by the Chemical and Biological Nonproliferation Program (CBNP). It is intended to be a summary of the program's activities that will be of interest to both policy and technical audiences. This report and the annual CBNP Summer Review Meeting are important vehicles for communication with the broader chemical and biological defense and nonproliferation communities. The Chemical and Biological Nonproliferation Program Strategic Plan is also available and provides additional detail on the program's context and goals. The body of the report consists of an overview of the program's philosophy, goals and recent progress in the major program areas. In addition, an appendix is provided with more detailed project summaries that will be of interest to the technical community.

  15. Chemical and biological nonproliferation program. FY99 annual report; ANNUAL

    International Nuclear Information System (INIS)

    This document is the first of what will become an annual report documenting the progress made by the Chemical and Biological Nonproliferation Program (CBNP). It is intended to be a summary of the program's activities that will be of interest to both policy and technical audiences. This report and the annual CBNP Summer Review Meeting are important vehicles for communication with the broader chemical and biological defense and nonproliferation communities. The Chemical and Biological Nonproliferation Program Strategic Plan is also available and provides additional detail on the program's context and goals. The body of the report consists of an overview of the program's philosophy, goals and recent progress in the major program areas. In addition, an appendix is provided with more detailed project summaries that will be of interest to the technical community

  16. Integrative Chemical-Biological Read-Across Approach for Chemical Hazard Classification

    OpenAIRE

    Low, Yen; Sedykh, Alexander; Fourches, Denis; Golbraikh, Alexander; Whelan, Maurice; Rusyn, Ivan; Tropsha, Alexander

    2013-01-01

    Traditional read-across approaches typically rely on the chemical similarity principle to predict chemical toxicity; however, the accuracy of such predictions is often inadequate due to the underlying complex mechanisms of toxicity. Here we report on the development of a hazard classification and visualization method that draws upon both chemical structural similarity and comparisons of biological responses to chemicals measured in multiple short-term assays (”biological” similarity). The Che...

  17. Journal of Medical Chemical, Biological and Radiological Defense

    International Nuclear Information System (INIS)

    The Journal of Medical Chemical, Biological, and Radiological Defense is a free, on-line journal dedicated to providing an international, peer-reviewed journal of original scientific research and clinical and doctrinal knowledge in the area of medical treatment and countermeasures for chemical, biological and radiological defense; and to developing and maintaining an archive of current research and development information on training, doctrine, and professional discussions of problems related to chemical, biological and radiological casualties. The Journal, www.JMedCBR.org, now in its fifth year, is sponsored by the US Defense Threat Reduction Agency. Areas of interest include, but are not limited to: Neuroprotectants; Bioscavengers for Nerve Agents; Medical Diagnostic Systems and Technologies; Medical Effects of Low Level Exposures; Toxicology and Biological Effects of TICs and TIMs; Broad Spectrum Medical Countermeasures; Treatments and Therapeutics for Bacterial, Viral and Toxin Agents; Radiological Medical Countermeasures; Clinical Treatment of Chemical, Biological or Radiological Casualties; Toxins Structures and Treatments. The Journal is supported by an editorial advisory board of distinguished scientists and researchers in the fields of CBR defense and medical treatment and countermeasures in eleven countries.(author)

  18. Chemical and biological rhizosphere interactions in low zinc soils

    NARCIS (Netherlands)

    Duffner, A.

    2014-01-01

    Abstract of the PhD thesis entitled “Chemical and biological rhizosphere interactions in low zinc soils” by Andreas Duffner Soil provides ecosystem services critical for life. The availability of micronutrients, such as zinc (Zn), in soils is an essenti

  19. A decontamination study of simulated chemical and biological agents

    International Nuclear Information System (INIS)

    A comprehensive decontamination scheme of the chemical and biological agents, including airborne agents and surface contaminating agents, is presented. When a chemical and biological attack occurs, it is critical to decontaminate facilities or equipments to an acceptable level in a very short time. The plasma flame presented here may provide a rapid and effective elimination of toxic substances in the interior air in isolated spaces. As an example, a reaction chamber, with the dimensions of a 22 cm diameter and 30 cm length, purifies air with an airflow rate of 5000 l/min contaminated with toluene, the simulated chemical agent, and soot from a diesel engine, the simulated aerosol for biological agents. Although the airborne agents in an isolated space are eliminated to an acceptable level by the plasma flame, the decontamination of the chemical and biological agents cannot be completed without cleaning surfaces of the facilities. A simulated sterilization study of micro-organisms was carried out using the electrolyzed ozone water. The electrolyzed ozone water very effectively kills endospores of Bacillus atrophaeus (ATCC 9372) within 3 min. The electrolyzed ozone water also kills the vegetative micro-organisms, fungi, and virus. The electrolyzed ozone water, after the decontamination process, disintegrates into ordinary water and oxygen without any trace of harmful materials to the environment

  20. On the transition period from chemical to biological evolution

    International Nuclear Information System (INIS)

    We discuss the consequences of the hypothesis that biological evolution was contemporary with an important event in chemical evolution, namely, the induction of a small chiral bias by the electroweak neutral interaction, amplified by the Salam enhancement factor, which we discuss in terms of familiar crystallographic terms. (author). 18 refs, 3 tabs

  1. Biological Effects and Chemical Measurements in Irish Marine Waters

    OpenAIRE

    Giltrap, Michelle, (Thesis); McHugh, Brendan; Ronan, Jenny; Wilson, James; MCGOVERN Evin

    2014-01-01

    The overall aim of this project was to increase Ireland’s capacity for the generation of integrated monitoring of biological effects and chemical measurement data and for the completion of a pilot scale assessment of the quality of the Irish marine environment at a number of selected locations.

  2. Biological effects of low level exposures to chemicals and radiation

    International Nuclear Information System (INIS)

    In May 1990 a group of scientists representing several federal agencies, the International Society of Regulatory Toxicology and Pharmacology, the private sector, and academia met to develop a strategy to encourage the study of the biological effects of low level exposures (BELLE) to chemical agents and radioactivity. A workshop was held in 1991 with seven invited speakers focusing on the toxicological implications of biological adaptations. The selection of topics and speakers was designed to consider critically the concept of hormesis, not only in a broad, conceptual manner, but also at the molecular and biochemical levels. These presentations offered a complementary perspective on the diverse range of molecular mechanisms that can become activated at low levels of toxicant exposure. In addition to chemical toxicology research, an overview of current research on 'Effects of low-dose radiation on the immune response' was presented as well as 'Cellular adaptation as an important response during chemical carcinogenesis'. The final presentation was devoted to biostatistical considerations when designing studies that address issues associated with the biological responses to low doses of chemicals and radiation, as well as issues in interpretation of the findings from such studies

  3. Effects of industrial chemicals and radioactive materials in biological systems

    International Nuclear Information System (INIS)

    Much has been written on the effects of radiation and toxic chemicals on biological systems. In this communication general considerations regarding these topics will be discussed very briefly; the major emphasis will be focused on the effects of chemicals, namely ethyl methane sulfonate (EMS) on Amoeba, Advantages to the use of amoeba for studying the effects of radiation and chemicals include the following: large mononucleate unicellular organisms having a long generation time; opportunity to study cellular organelles and biochemical and genetic alterations in a single cell system; and a long cell cycle, the stages of which can be synchronized without resorting to chemical treatment or temperature shock and thereby readily permitting study at defined stages of the cell's life cycle. This, in turn, is discussed in light of current disposal methods for this type of waste and how it might be safely disposed of

  4. Coupling respirometry and titrimetry for the characterization of the biological activity of a SO-NR consortium

    OpenAIRE

    Mora, Mabel; Lopez, Luis R.; Gamisans Noguera, Javier; Gabriel Buguña, David

    2014-01-01

    Determining growth rates and kinetic mechanisms of microbial consortia often needs of combining several tests and techniques. The present work demonstrates that combining titrimetric and respirometric data obtained in a single batch test allows obtaining the stoichiometric coefficients, biomass-substrate yields and biological oxidation rates for sulfide-oxidizing nitrate-reducing consortia obtained from an anoxic biotrickling filter for biogas desulfurization. Thiosulfate oxidation using eith...

  5. Chemical and biological rhizosphere interactions in low zinc soils

    OpenAIRE

    Duffner, A.

    2014-01-01

    Abstract of the PhD thesis entitled “Chemical and biological rhizosphere interactions in low zinc soils” by Andreas Duffner Soil provides ecosystem services critical for life. The availability of micronutrients, such as zinc (Zn), in soils is an essential factor for normal healthy growth and reproduction of plants. Zinc deficiency is, however, a global problem in crop production due to low Zn bioavailability in soils to plants. The bioavailable Zn fraction in soils is controlled ...

  6. Chemical and structural features influencing the biological activity of curcumin.

    Science.gov (United States)

    Priyadarsini, K Indira

    2013-01-01

    Curcumin, a polyphenolic natural product, exhibits therapeutic activity against a number of diseases, attributed mainly to its chemical structure and unique physical, chemical, and biological properties. It is a diferuloyl methane molecule [1,7-bis (4-hydroxy-3- methoxyphenyl)-1,6-heptadiene-3,5-dione)] containing two ferulic acid residues joined by a methylene bridge. It has three important functionalities: an aromatic o-methoxy phenolic group, α, β-unsaturated β-diketo moiety and a seven carbon linker. Extensive research in the last two decades has provided evidence for the role of these different functional groups in its crucial biological activities. A few highlights of chemical structural features associated with the biological activity of curcumin are: The o-methoxyphenol group and methylenic hydrogen are responsible for the antioxidant activity of curcumin, and curcumin donates an electron/ hydrogen atom to reactive oxygen species. Curcumin interacts with a number of biomolecules through non-covalent and covalent binding. The hydrogen bonding and hydrophobicity of curcumin, arising from the aromatic and tautomeric structures along with the flexibility of the linker group are responsible for the non-covalent interactions. The α, β-unsaturated β-diketone moiety covalently interacts with protein thiols, through Michael reaction. The β-diketo group forms chelates with transition metals, there by reducing the metal induced toxicity and some of the metal complexes exhibit improved antioxidant activity as enzyme mimics. New analogues with improved activity are being developed with modifications on specific functional groups of curcumin. The physico-chemical and structural features associated with some of the biological activities of curcumin and important analogues are summarized in this article. PMID:23116315

  7. Biological, chemical, electrochemical, and photochemical fractionation of Fe isotopes

    Science.gov (United States)

    John, S.; King, A.; Hutchins, D.; Adkins, J. F.; Fu, F.; Wasson, A.; Hodierne, C.

    2012-12-01

    Iron is an important nutrient for life in the ocean, where low Fe concentrations often limit the growth of marine phytoplankton. Fe stable isotope ratios (δ56Fe) are a potentially valuable new tool for studying the marine biological cycling of Fe. In order to effectively use Fe isotopes as a biological tracer, however, it is important to parameterize the isotope effect for biological uptake. We have therefore measured the biological fractionation of Fe isotopes by the marine diatoms Thalassiosira pseudonana, T. oceanica, and Phaeodactylum tricornutum in culture. During biological Fe acquisition, Fe(III) is often first reduced from Fe(III) to Fe(II), either in seawater or at the cell surface. Therefore, we have also measured the isotope effect for Fe(III) reduction by chemical, electrochemical, and photochemical processes. Diatoms were cultured in EDTA or NTA buffered media under varying Fe concentrations from Fe-sufficiency to Fe-limitation. Biological fractionation of Fe isotopes was determined by comparing δ56Fe of phytoplankton to the media. The use of a cell wash allows us to distinguish between isotopic fractionation during extracellular adsorption and intracellular uptake. The biological fractionation of Fe isotopes is highly dependent on culture conditions with Δδ56Fe ranging from +0.6 ‰ to -0.5 ‰ depending on ligand composition, species, and Fe-limitation status. Isotope effects for chemical, electrochemical, and photochemical reduction of Fe(III) to Fe(II) span an even larger range. For example, chemical reduction of Fe(III)-EDTA with hydroxylamine hydrochloride has an isotope effect of Δδ56Fe = -2.8 ‰. By contrast, photochemical reduction of Fe(III)-EDTA has an isotope effect of Δδ56Fe = +0.9 ‰. Isotope effects for electrochemical reduction of Fe(III) using a rotating disc electrode allow for greater control of experimental conditions, such as differentiating between the effects of electric potential (voltage) and mass transport (diffusion

  8. Innovation in academic chemical screening: Filling the gaps in chemical biology

    OpenAIRE

    Hasson, Samuel A.; Inglese, James

    2013-01-01

    Academic screening centers across the world have endeavored to discover small molecules that can modulate biological systems. To increase the reach of functional-genomic and chemical screening programs, universities, research institutes, and governments have followed their industrial counterparts in adopting high-throughput paradigms. As academic screening efforts have steadily grown in scope and complexity, so have the ideas of what is possible with the union of technology and biology. This ...

  9. Modeling drug- and chemical- induced hepatotoxicity with systems biology approaches

    Directory of Open Access Journals (Sweden)

    SudinBhattacharya

    2012-12-01

    Full Text Available We provide an overview of computational systems biology approaches as applied to the study of chemical- and drug-induced toxicity. The concept of ‘toxicity pathways’ is described in the context of the 2007 US National Academies of Science report, “Toxicity testing in the 21st Century: A Vision and A Strategy”. Pathway mapping and modeling based on network biology concepts are a key component of the vision laid out in this report for a more biologically-based analysis of dose-response behavior and the safety of chemicals and drugs. We focus on toxicity of the liver (hepatotoxicity – a complex phenotypic response with contributions from a number of different cell types and biological processes. We describe three case studies of complementary multi-scale computational modeling approaches to understand perturbation of toxicity pathways in the human liver as a result of exposure to environmental contaminants and specific drugs. One approach involves development of a spatial, multicellular “virtual tissue” model of the liver lobule that combines molecular circuits in individual hepatocytes with cell-cell interactions and blood-mediated transport of toxicants through hepatic sinusoids, to enable quantitative, mechanistic prediction of hepatic dose-response for activation of the AhR toxicity pathway. Simultaneously, methods are being developing to extract quantitative maps of intracellular signaling and transcriptional regulatory networks perturbed by environmental contaminants, using a combination of gene expression and genome-wide protein-DNA interaction data. A predictive physiological model (DILIsymTM to understand drug-induced liver injury (DILI, the most common adverse event leading to termination of clinical development programs and regulatory actions on drugs, is also described. The model initially focuses on reactive metabolite-induced DILI in response to administration of acetaminophen, and spans multiple biological scales.

  10. Chemical and biological flocculation process to treat municipal sewage and analysis of biological function

    Institute of Scientific and Technical Information of China (English)

    XIA Si-qing; YANG Dian-hai; XU Bin; ZHAO Jian-fu

    2005-01-01

    The pilot-scale experimental apparatus and the procedure of the chemical and biological flocculation process to verify the feasibility in treating Shanghai municipal sewage were introduced in this paper. In addition, the biological function of the process was discussed. The results of optimal running showed that in the reaction tank, the concentration of mixed liquor suspended solid(MLSS) was2 g/L, hydraulic retention time(HRT) was 35 min, dosage of liquid polyaluminium chloride(PAC) was 60 mg/L, and the concentration of polyacrylamide(PAM) was 0.5 mg/L. The effluent average concentrations of CODcr, TP, SS and BOD5 were 50 mg/L, 0.62 mg/L, 18mg/L, and 17 mg/L, respectively. These were better than the designed demand. In addition, the existence of biological degradation in this system was proven by several methods. The removal efficiencies of the chemical and biological flocculation process were 20% higher than that of the chemical flocculation process above at the same coagulant dosage. The treatment process under different situations was evaluated on a pilot-scale experiment, and the results provided magnificent parameters and optimal condition for future operation of the plant.

  11. Microbiology and atmospheric processes: chemical interactions of primary biological aerosols

    Directory of Open Access Journals (Sweden)

    L. Deguillaume

    2008-07-01

    Full Text Available This paper discusses the influence of primary biological aerosols (PBA on atmospheric chemistry and vice versa through microbiological and chemical properties and processes. Several studies have shown that PBA represent a significant fraction of air particulate matter and hence affect the microstructure and water uptake of aerosol particles. Moreover, airborne micro-organisms, namely fungal spores and bacteria, can transform chemical constituents of the atmosphere by metabolic activity. Recent studies have emphasized the viability of bacteria and metabolic degradation of organic substances in cloud water. On the other hand, the viability and metabolic activity of airborne micro-organisms depend strongly on physical and chemical atmospheric parameters such as temperature, pressure, radiation, pH value and nutrient concentrations. In spite of recent advances, however, our knowledge of the microbiological and chemical interactions of PBA in the atmosphere is rather limited. Further targeted investigations combining laboratory experiments, field measurements, and modelling studies will be required to characterize the chemical feedbacks, microbiological activities at the air/snow/water interface supplied to the atmosphere.

  12. Dovetailing biology and chemistry: integrating the Gene Ontology with the ChEBI chemical ontology

    OpenAIRE

    Hill, D. P.; Adams, N.; Bada, M.; Batchelor, C.; Berardini, T. Z.; H. Dietze; Drabkin, H.J.; Ennis, M.; Foulger, R. E.; Harris, M. A.; Hastings, J.; Kale, N. S.; Matos, P.; Mungall, C. J.; Owen, G.

    2013-01-01

    Background The Gene Ontology (GO) facilitates the description of the action of gene products in a biological context. Many GO terms refer to chemical entities that participate in biological processes. To facilitate accurate and consistent systems-wide biological representation, it is necessary to integrate the chemical view of these entities with the biological view of GO functions and processes. We describe a collaborative effort between the GO and the Chemical Entities of Biological Inte...

  13. Aromatic rings in chemical and biological recognition: energetics and structures.

    Science.gov (United States)

    Salonen, Laura M; Ellermann, Manuel; Diederich, François

    2011-05-16

    This review describes a multidimensional treatment of molecular recognition phenomena involving aromatic rings in chemical and biological systems. It summarizes new results reported since the appearance of an earlier review in 2003 in host-guest chemistry, biological affinity assays and biostructural analysis, data base mining in the Cambridge Structural Database (CSD) and the Protein Data Bank (PDB), and advanced computational studies. Topics addressed are arene-arene, perfluoroarene-arene, S⋅⋅⋅aromatic, cation-π, and anion-π interactions, as well as hydrogen bonding to π systems. The generated knowledge benefits, in particular, structure-based hit-to-lead development and lead optimization both in the pharmaceutical and in the crop protection industry. It equally facilitates the development of new advanced materials and supramolecular systems, and should inspire further utilization of interactions with aromatic rings to control the stereochemical outcome of synthetic transformations. PMID:21538733

  14. Terrorist threat, chemical, biological, radiological, nuclear medical approach

    International Nuclear Information System (INIS)

    The different aspects linked to the use of nuclear, radiological, biological and or chemical weapons are gathered in this work. They concern history, fundamental aspect, diagnosis, therapy and prevention. The part devoted to the nuclear aspect concern the accidents in relation with ionizing radiations, the radiation syndrome, the contribution and limits of dosimetry, the treatment of medullary aplasia, the evaluation and treatment of an internal contamination, new perspectives on the use of cytokine for the treatment of accidental irradiated persons, alternative to the blood transfusion. (N.C.)

  15. Biological and chemical technologies research. FY 1995 annual summary report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1996-03-01

    The annual summary report presents the fiscal year (FY) 1995 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program. This BCTR program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1995 (ASR 95) contains the following: program description (including BCTR program mission statement, historical background, relevance, goals and objectives); program structure and organization, selected technical and programmatic highlights for 1995; detailed descriptions of individual projects; a listing of program output, including a bibliography of published work; patents; and awards arising from work supported by the BCTR.

  16. Chemical and biological factors affecting bioavailability of contaminants in seawater

    International Nuclear Information System (INIS)

    This paper discusses the influence that salinity has on the bioavailability of the two largest classes of contaminants, trace metals and organic compounds will be discussed. Although data on contaminant toxicity will be used to draw inferences about chemical availability, this discussion will focus on the properties that contaminants are likely to exhibit in waters of varying salinities. In addition, information on physiological changes that are affected by salinity will be used to illustrate how biological effects can alter the apparent availability of contaminants

  17. Nonlocal reactive transport with physical, chemical, and biological heterogeneity

    Science.gov (United States)

    Hu, Bill X.; Cushman, John H.; Deng, Fei-Wen

    When a natural porous medium is viewed from an eulerian perspective, incomplete characterization of the hydraulic conductivity, chemical reactivity, and biological activity leads to nonlocal constitutive theories, irrespective of whether the medium has evolving heterogeneity with fluctuations over all scales. Within this framework a constitutive theory involving nonlocal dispersive and convective fluxes and nonlocal sources/sinks is developed for chemicals undergoing random linear nonequilibrium reactions and random equilibrium first-order decay in a random conductivity field. The resulting transport equations are solved exactly in Fourier-Laplace space and then numerically inverted to real space. Mean concentration contours and various spatial moments are presented graphically for several covariance structures. 1997 Published by Elsevier Science Ltd. All rights reserved

  18. Simaroubaceae family: botany, chemical composition and biological activities

    Directory of Open Access Journals (Sweden)

    Iasmine A.B.S. Alves

    2014-08-01

    Full Text Available The Simaroubaceae family includes 32 genera and more than 170 species of trees and brushes of pantropical distribution. The main distribution hot spots are located at tropical areas of America, extending to Africa, Madagascar and regions of Australia bathed by the Pacific. This family is characterized by the presence of quassinoids, secondary metabolites responsible of a wide spectrum of biological activities such as antitumor, antimalarial, antiviral, insecticide, feeding deterrent, amebicide, antiparasitic and herbicidal. Although the chemical and pharmacological potential of Simaroubaceae family as well as its participation in official compendia; such as British, German, French and Brazilian pharmacopoeias, and patent registration, many of its species have not been studied yet. In order to direct further investigation to approach detailed botanical, chemical and pharmacological aspects of the Simaroubaceae, the present work reviews the information regarding the main genera of the family up to 2013.

  19. Plant chemical biology: Are we meeting the promise?

    Directory of Open Access Journals (Sweden)

    Glenn R. Hicks

    2014-09-01

    Full Text Available As an early adopter of plant chemical genetics to the study of endomembrane trafficking, we have observed the growth of small molecule approaches. Within the field, we often describe the strengths of the approach in a broad, generic manner, such as the ability to address redundancy and lethality. But, we are now in a much better position to evaluate the demonstrated value of the approach based on examples. In this perspective, we offer an assessment of chemical genetics in plants and where its applications may be of particular utility from the perspective of the cell biologist. Beyond this, we suggest areas to be addressed to provide broader access and enhance the effectiveness of small molecule approaches in plant biology.

  20. Molecular codes in biological and chemical reaction networks.

    Directory of Open Access Journals (Sweden)

    Dennis Görlich

    Full Text Available Shannon's theory of communication has been very successfully applied for the analysis of biological information. However, the theory neglects semantic and pragmatic aspects and thus cannot directly be applied to distinguish between (bio- chemical systems able to process "meaningful" information from those that do not. Here, we present a formal method to assess a system's semantic capacity by analyzing a reaction network's capability to implement molecular codes. We analyzed models of chemical systems (martian atmosphere chemistry and various combustion chemistries, biochemical systems (gene expression, gene translation, and phosphorylation signaling cascades, an artificial chemistry, and random reaction networks. Our study suggests that different chemical systems possess different semantic capacities. No semantic capacity was found in the model of the martian atmosphere chemistry, the studied combustion chemistries, and highly connected random networks, i.e. with these chemistries molecular codes cannot be implemented. High semantic capacity was found in the studied biochemical systems and in random reaction networks where the number of second order reactions is twice the number of species. We conclude that our approach can be applied to evaluate the information processing capabilities of a chemical system and may thus be a useful tool to understand the origin and evolution of meaningful information, e.g. in the context of the origin of life.

  1. Chemical and biological treatment technologies for leather tannery chemicals and wastewaters: a review.

    Science.gov (United States)

    Lofrano, Giusy; Meriç, Sureyya; Zengin, Gülsüm Emel; Orhon, Derin

    2013-09-01

    Although the leather tanning industry is known to be one of the leading economic sectors in many countries, there has been an increasing environmental concern regarding the release of various recalcitrant pollutants in tannery wastewater. It has been shown that biological processes are presently known as the most environmental friendly but inefficient for removal of recalcitrant organics and micro-pollutants in tannery wastewater. Hence emerging technologies such as advanced oxidation processes and membrane processes have been attempted as integrative to biological treatment for this sense. This paper, as the-state-of-the-art, attempts to revise the over world trends of treatment technologies and advances for pollution prevention from tannery chemicals and wastewater. It can be elucidated that according to less extent advances in wastewater minimization as well as in leather production technology and chemicals substitution, biological and chemical treatment processes have been progressively studied. However, there has not been a full scale application yet of those emerging technologies using advanced oxidation although some of them proved good achievements to remove xenobiotics present in tannery wastewater. It can be noted that advanced oxidation technologies integrated with biological processes will remain in the agenda of the decision makers and water sector to apply the best prevention solution for the future tanneries. PMID:23735721

  2. [Chemical, physical and biological risks in law enforcement].

    Science.gov (United States)

    Magrini, Andrea; Grana, Mario; Vicentini, Laura

    2014-01-01

    Chemical, physical and biological risks among public safety and security forces. Law enforcement personnel, involved in routine tasks and in emergency situations, are exposed to numerous and several occupational hazards (chemical, physical and biological) whith likely health and security consequences. These risks are particularly high when the organization and preparation are inadequate, there is a lacking or insufficient coordination, information, education and communication and safety and personal protective equipment are inadequate or insufficient. Despite the objective difficulties, caused by the actual special needs related to the service performed or the organizational peculiarities, the risk identification and assessment is essential for worker health and safety of personnel, as provided for by Legislative Decree no. 81/2008. Chemical risks include airborne pollutants due to vehicular traffic (carbon monoxide, ultrafine particles, benzene, polycyclic aromatic hydrocarbons, aldehydes, nitrogen and sulfur oxides, lead), toxic gases generated by combustion process following fires (aromatic hydrocarbons, PAHs, dioxins and furans, biphenyls, formaldehyde, metals and cyanides), substances emitted in case of chemical accidents (solvents, pesticides, toxic gases, caustics), drugs (methylamphetamine), riot control agents and self-defence spray, lead at firing ranges, and several materials and reagents used in forensic laboratory. The physical hazards are often caused by activities that induce biomechanical overload aid the onset of musculoskeletal disorders, the use of visual display terminals and work environments that may expose to heat stress and discomfort, high and low pressure, noise, vibrations, ionizing and non-ionizing radiation. The main biological risks are blood-borne diseases (viral hepatitis, AIDS), airborne diseases (eg, tuberculosis, meningitis, SARS, anthrax), MRSA, and vector-borne diseases. Many of these risk factors are unavoidable or are not

  3. The diverse biological properties of the chemically inert noble gases.

    Science.gov (United States)

    Winkler, David A; Thornton, Aaron; Farjot, Géraldine; Katz, Ira

    2016-04-01

    The noble gases represent an intriguing scientific paradox. They are extremely inert chemically but display a remarkable spectrum of clinically useful biological properties. Despite a relative paucity of knowledge of their mechanisms of action, some of the noble gases have been used successfully in the clinic. Studies with xenon have suggested that the noble gases as a class may exhibit valuable biological properties such as anaesthesia; amelioration of ischemic damage; tissue protection prior to transplantation; analgesic properties; and a potentially wide range of other clinically useful effects. Xenon has been shown to be safe in humans, and has useful pharmacokinetic properties such as rapid onset, fast wash out etc. The main limitations in wider use are that: many of the fundamental biochemical studies are still lacking; the lighter noble gases are likely to manifest their properties only under hyperbaric conditions, impractical in surgery; and administration of xenon using convectional gaseous anaesthesia equipment is inefficient, making its use very expensive. There is nonetheless a significant body of published literature on the biochemical, pharmacological, and clinical properties of noble gases but no comprehensive reviews exist that summarize their properties and the existing knowledge of their models of action at the molecular (atomic) level. This review provides such an up-to-date summary of the extensive, useful biological properties of noble gases as drugs and prospects for wider application of these atoms. PMID:26896563

  4. Electrochemical approaches for chemical and biological analysis on Mars

    Science.gov (United States)

    Kounaves, Samuel P.

    2003-01-01

    Obtaining in situ chemical data from planetary bodies such as Mars or Europa can present significant challenges. The one analytical technique that has many of the requisite characteristics to meet such a challenge is electroanalysis. Described here are three electroanalytical devices designed for in situ geochemical and biological analysis on Mars. The Mars Environmental Compatibility Assessment (MECA) was built and flight qualified for the now cancelled NASA Mars 2001 Lander. Part of MECA consisted of four "cells" containing arrays of electrochemical based sensors for measuring the ionic species in soil samples. A next-generation MECA, the Robotic Chemical Analysis Laboratory (RCAL), uses a carousel-type system to allow for greater customization of analytical procedures. A second instrument, proposed as part of the 2007 CryoScout mission, consists of a flow-through inorganic chemical analyzer (MICA). CryoScout is a torpedo-like device designed for subsurface investigation of the stratigraphic climate record embedded in Mars' north polar cap. As the CryoScout melts its way through the ice cap, MICA will collect and analyze the meltwater for a variety of inorganics and chemical parameters. By analyzing the chemistry locked in the layers of dust, salt, and ice, geologists will be able to determine the recent history of climate, water, and atmosphere on Mars and link it to the past. Finally, electroanalysis shows its abilities in the detection of possible microorganism on Mars or elsewhere in the solar system. To identify an unknown microorganism, one that may not even use Earth-type biochemistry, requires a detection scheme which makes minimal assumptions and looks for the most general features. Recent work has demonstrated that the use of an array of electrochemical sensors which monitors the changes in a solution via electrical conductivity, pH, and ion selective electrodes, can be used to detect minute chemical perturbations caused by the growth of bacteria and

  5. Innovation in academic chemical screening: filling the gaps in chemical biology.

    Science.gov (United States)

    Hasson, Samuel A; Inglese, James

    2013-06-01

    Academic screening centers across the world have endeavored to discover small molecules that can modulate biological systems. To increase the reach of functional-genomic and chemical screening programs, universities, research institutes, and governments have followed their industrial counterparts in adopting high-throughput paradigms. As academic screening efforts have steadily grown in scope and complexity, so have the ideas of what is possible with the union of technology and biology. This review addresses the recent conceptual and technological innovation that has been propelling academic screening into its own unique niche. In particular, high-content and whole-organism screening are changing how academics search for novel bioactive compounds. Importantly, we recognize examples of successful chemical probe development that have punctuated the changing technology landscape. PMID:23683346

  6. International Lymphoma Epidemiology Consortium

    Science.gov (United States)

    The InterLymph Consortium, or formally the International Consortium of Investigators Working on Non-Hodgkin's Lymphoma Epidemiologic Studies, is an open scientific forum for epidemiologic research in non-Hodgkin's lymphoma.

  7. Chemical, Biological, and Explosive Sensors for Field Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Kyle, Manuel Manard, Stephan Weeks

    2009-01-31

    Special Technologies Laboratory (STL) is developing handheld chemical, biological, and explosive (CBE) detection systems and sensor motes for wireless networked field operations. The CBE sensors are capable of detecting and identifying multiple targeted toxic industrial chemicals (TICs) and high-explosive vapor components. The CBE devices are based on differential mobility spectrometry (DMS) coupled with fast gas chromatography (GC) or mass spectrometry. The systems all include the concepts of: 1. Direct air/particulate “smart” sampling 2. Selective, continuous real-time (~1 sec) alert monitoring using DMS 3. Highly selective, rapid dual technology separation/verification analysis The biosensor technology is based on Raman aerosol particle flow cytometry for target detection and identification. Monitoring and identifying trace level chemical vapors directly from ambient air will allow First Responders to quickly adapt situational response strategies and personal protective equipment needs to the specific response scenario being encountered. First Responders require great confidence in the measurements and ability of a given system to detect CBE below threshold levels without interferences. The concept of determining the background matrix in near real-time to allow subsequent automated field-programmable method selection and cueing of high-value assets in a wide range of environs will be presented. This provides CBE information for decisions prior to First Responders entering the response site or sending a portable mobile unit for a remote site survey of the hazards. The focus is on real-time information needed by those responsible for emergency response and national security.

  8. Chemical, Biological, and Explosive Sensors for Field Measurements

    International Nuclear Information System (INIS)

    Special Technologies Laboratory (STL) is developing handheld chemical, biological, and explosive (CBE) detection systems and sensor motes for wireless networked field operations. The CBE sensors are capable of detecting and identifying multiple targeted toxic industrial chemicals (TICs) and high-explosive vapor components. The CBE devices are based on differential mobility spectrometry (DMS) coupled with fast gas chromatography (GC) or mass spectrometry. The systems all include the concepts of: (1) Direct air/particulate 'smart' sampling; (2) Selective, continuous real-time (∼1 sec) alert monitoring using DMS; and (3) Highly selective, rapid dual technology separation/verification analysis The biosensor technology is based on Raman aerosol particle flow cytometry for target detection and identification. Monitoring and identifying trace level chemical vapors directly from ambient air will allow First Responders to quickly adapt situational response strategies and personal protective equipment needs to the specific response scenario being encountered. First Responders require great confidence in the measurements and ability of a given system to detect CBE below threshold levels without interferences. The concept of determining the background matrix in near real-time to allow subsequent automated field-programmable method selection and cueing of high-value assets in a wide range of environs will be presented. This provides CBE information for decisions prior to First Responders entering the response site or sending a portable mobile unit for a remote site survey of the hazards. The focus is on real-time information needed by those responsible for emergency response and national security

  9. Recommendations for sampling for prevention of hazards in civil defense. On analytics of chemical, biological and radioactive contaminations. Brief instruction for the CBRN (chemical, biological, radioactive, nuclear) sampling

    International Nuclear Information System (INIS)

    The recommendation for sampling for prevention of hazards in civil defense is describing the analytics of chemical, biological and radioactive contaminations and includes detail information on the sampling, protocol preparation and documentation procedures. The volume includes a separate brief instruction for the CBRN (chemical, biological, radioactive, nuclear) sampling.

  10. Chemical and biological stability of solvent refined coal liquids

    Energy Technology Data Exchange (ETDEWEB)

    Wright, C.W.; Weimer, W.C.

    1984-01-01

    Stability studies performed on seventeen SRC samples in boiling point from ambient to 850/sup 0/F showed that the major chemical composition of the materials as monitored by high resolution gas chromatography did not change under the storage conditions of the repository, which were 4/sup 0/C, in inert containers, under a nitrogen atmosphere, in the dark. Samples were monitored after two years of storage. It was also found from microbial mutagenicity studies that after four years in the repository there was no significant change in the biological activity of any of the SRC materials. Samples stored under various parameters of air versus nitrogen atmosphere and ambient light versus darkness at room temperature and -20/sup 0/C for one year showed there was no significant differences in the chemical composition of any of the samples. There was evidence, however, that trace components such as amino-PAH degraded at room temperature, in the light, under an air atmosphere since the microbial mutagenicity of samples stored under these conditions for one year decreased significantly. Both the chemical composition and mutagenicity of FOB samples changed when stored diluted in methylene chloride, in the light, under an air atmosphere at room temperature. After one year of storage under these conditions, the microbial mutagenicity was eliminated. Storage of SRC-II FOB at increased temperatures of 60/sup 0/C and 100/sup 0/C showed significant changes in chemical composition due to volatility effects. The microbial mutagenicity of the FOB samples was completely eliminated after storage at 60/sup 0/C for 32 weeks and 100/sup 0/C for 26 weeks. It appears that the amino-PAH and phenolic materials are the most susceptible components to degradation in the complex SRC materials. 23 references, 29 figures, 50 tables.

  11. Chemical and biological characterization of urban particulate matter

    International Nuclear Information System (INIS)

    Airborne particulate matter has been collected on glass fiber filter by high volume sampling in the Goeteborg urban area. The samples were, after extraction with respect to organic components, tested for biological effect in the Salmonella mutagenicity assay, affinity to the cytosol TCDD receptor and toxicity towards a mammalian cell system and analysed chemically for selected polycyclic aromatic compounds. A series of samples collected simultaneously at a street level location and a rooftop site showed that most parameters associated with the organic compounds adsorbed to airborne particulate matter has similar concentrations at the two levels. The differences observed for the mutagenic effect in different strains and conditions showed that the rooftop samples had a different composition compared to the street samples indicating that atmospheric transformations have occurred. Chemical fractionation of representative samples showed that the distribution of mutagenic activity among different fractions is dissimilar to the distribution obtained in the fractionation of both gasoline and diesel engine exhaust particles. Partial least squares regression analysis showed qualitatively that diesel exhaust is a major source of airborne particulate mutagenic activity and source apportionment with chemical mass balance and multilinear regression corroborated this quantitatively. The multilinear regression analysis gave the result that the airborne activity in Salmonella TA90-S9 originated to 54±4% from diesel exhaust and to 26±3% from gasoline exhaust. The contribution is more equal for the activity measured with TA98+S9. The usefulness of short-term bioassays as an addition to chemical analysis of airborne particulate matter depends on whether only polycylic aromatic hydrocarbons (PAH) are major carcinogens, as has been suggested in the literature, or whether also other polycyclic aromatic compound (PAC) are of importance. (au)

  12. Respiratory Protection Against Chemical and Biological Warfare Agents

    Directory of Open Access Journals (Sweden)

    G.K. Prasad

    2008-09-01

    Full Text Available Chemical and biological warfare (CBW agents pose unavoidable threat, both to soldiers and civilians.Exposure to such deadly agents amidst the CBW agents contaminated environment can be avoided bytaking proper protective measures. Respiratory protection is indispensable when the soldiers or civiliansare surrounded by such deadly environment as contamination-free air is needed for respiration purposes.In this context, an attempt has been made to review the literature for the past five decades on developmentof various protective devices for respiratory protection against aerosols, gases, and vapours of CBWagents. This review covers structural, textural, and adsorption properties of materials used in gas filtersand mechanical filters for the removal of CBW agents.Defence Science Journal, 2008, 58(5, pp.686-697, DOI:http://dx.doi.org/10.14429/dsj.58.1692

  13. Chemical Constituents of Descurainia sophia L. and its Biological Activity

    Directory of Open Access Journals (Sweden)

    Nawal H. Mohamed

    2009-01-01

    Full Text Available Seven coumarin compounds were isolated for the first time from the aerial parts of DescurainiaSophia L. identified as scopoletine, scopoline, isoscopoline, xanthtoxol, xanthtoxin, psoralene and bergaptane.Three flavonoids namely kaempferol, quercetine and isorhamnetine and three terpenoid compounds -sitosterol-amyrine and cholesterol were also isolated and identified by physical and chemical methods; melting point, Rfvalues, UV and 1H NMR spectroscopy. Qualitative and quantitative analyses of free and protein amino acidsusing amino acid analyzer were performed. The plant contains 15 amino acids as free and protein amino acidswith different range of concentrations. Fatty acid analysis using GLC, revealed the presence of 10 fatty acids,the highest percentage was palmitic acid (27.45 % and the lowest was lauric acid (0.13%. Biological screeningof alcoholic extract showed that the plant is highly safe and has analgesic, antipyretic and anti-inflammatoryeffects.

  14. Biological efficiency of interaction between various radiation and chemicals

    International Nuclear Information System (INIS)

    This research project has been carried out jointly with INP (Poland) to develop technologies to assess the biological efficiency of interaction between radiation and chemicals. Through the cooperative project, KAERI and INP have established wide variety of bioassay techniques applicable to radiation bioscience, human monitoring, molecular epidemiology and environmental science. The joint experiment, in special, made it possible to utilize the merits of both institutes and to upgrade and verify KAERI's current technology level. All results of the cooperative research will be jointly published in high standard scientific journals listed in the Science Citation Index (SCI), which can make the role of fundamental basis for improving relationship between Korea and Poland. Research skills such as Trad-MCN assay, SCGE assay, immunohistochemical assay and molecular assay developed through joint research will be further elaborated and will be continuously used for the collaboration between two institutes

  15. Using ChemBank to probe chemical biology.

    Science.gov (United States)

    Petri Seiler, Kathleen; Kuehn, Heidi; Pat Happ, Mary; Decaprio, Dave; Clemons, Paul A

    2008-06-01

    ChemBank (http://chembank.broad.harvard.edu/) is a public, Web-based informatics environment. ChemBank stores and makes freely available data derived from small molecules and small-molecule screens and has resources for relating and studying these data. Currently, ChemBank stores information on hundreds of thousands of small molecules and hundreds of biomedically relevant assays performed at the Broad Institute screening center. Web-based analysis tools are available within ChemBank to study the relationships between small molecules, cell measurements, and cell states. This unit demonstrates the use of ChemBank data to ask and answer questions relating to chemical biology and screening experiments contained within ChemBank. PMID:18551413

  16. BCTR: Biological and Chemical Technologies Research 1994 annual summary report

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, G.

    1995-02-01

    The annual summary report presents the fiscal year (FY) 1994 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). Although the OIT was reorganized in 1991 and AICD no longer exists, this document reports on efforts conducted under the former structure. The annual summary report for 1994 (ASR 94) contains the following: program description (including BCTR program mission statement, historical background, relevance, goals and objectives); program structure and organization, selected technical and programmatic highlights for 1994; detailed descriptions of individual projects; a listing of program output, including a bibliography of published work; patents, and awards arising from work supported by BCTR.

  17. Nucleic Acid Nanostructures for Chemical and Biological Sensing.

    Science.gov (United States)

    Chandrasekaran, Arun Richard; Wady, Heitham; Subramanian, Hari K K

    2016-05-01

    The nanoscale features of DNA have made it a useful molecule for bottom-up construction of nanomaterials, for example, two- and three-dimensional lattices, nanomachines, and nanodevices. One of the emerging applications of such DNA-based nanostructures is in chemical and biological sensing, where they have proven to be cost-effective, sensitive and have shown promise as point-of-care diagnostic tools. DNA is an ideal molecule for sensing not only because of its specificity but also because it is robust and can function under a broad range of biologically relevant temperatures and conditions. DNA nanostructure-based sensors provide biocompatibility and highly specific detection based on the molecular recognition properties of DNA. They can be used for the detection of single nucleotide polymorphism and to sense pH both in solution and in cells. They have also been used to detect clinically relevant tumor biomarkers. In this review, recent advances in DNA-based biosensors for pH, nucleic acids, tumor biomarkers and cancer cell detection are introduced. Some challenges that lie ahead for such biosensors to effectively compete with established technologies are also discussed. PMID:27040036

  18. The chemical information ontology: provenance and disambiguation for chemical data on the biological semantic web.

    Directory of Open Access Journals (Sweden)

    Janna Hastings

    Full Text Available Cheminformatics is the application of informatics techniques to solve chemical problems in silico. There are many areas in biology where cheminformatics plays an important role in computational research, including metabolism, proteomics, and systems biology. One critical aspect in the application of cheminformatics in these fields is the accurate exchange of data, which is increasingly accomplished through the use of ontologies. Ontologies are formal representations of objects and their properties using a logic-based ontology language. Many such ontologies are currently being developed to represent objects across all the domains of science. Ontologies enable the definition, classification, and support for querying objects in a particular domain, enabling intelligent computer applications to be built which support the work of scientists both within the domain of interest and across interrelated neighbouring domains. Modern chemical research relies on computational techniques to filter and organise data to maximise research productivity. The objects which are manipulated in these algorithms and procedures, as well as the algorithms and procedures themselves, enjoy a kind of virtual life within computers. We will call these information entities. Here, we describe our work in developing an ontology of chemical information entities, with a primary focus on data-driven research and the integration of calculated properties (descriptors of chemical entities within a semantic web context. Our ontology distinguishes algorithmic, or procedural information from declarative, or factual information, and renders of particular importance the annotation of provenance to calculated data. The Chemical Information Ontology is being developed as an open collaborative project. More details, together with a downloadable OWL file, are available at http://code.google.com/p/semanticchemistry/ (license: CC-BY-SA.

  19. The Chemical Information Ontology: Provenance and Disambiguation for Chemical Data on the Biological Semantic Web

    Science.gov (United States)

    Hastings, Janna; Chepelev, Leonid; Willighagen, Egon; Adams, Nico; Steinbeck, Christoph; Dumontier, Michel

    2011-01-01

    Cheminformatics is the application of informatics techniques to solve chemical problems in silico. There are many areas in biology where cheminformatics plays an important role in computational research, including metabolism, proteomics, and systems biology. One critical aspect in the application of cheminformatics in these fields is the accurate exchange of data, which is increasingly accomplished through the use of ontologies. Ontologies are formal representations of objects and their properties using a logic-based ontology language. Many such ontologies are currently being developed to represent objects across all the domains of science. Ontologies enable the definition, classification, and support for querying objects in a particular domain, enabling intelligent computer applications to be built which support the work of scientists both within the domain of interest and across interrelated neighbouring domains. Modern chemical research relies on computational techniques to filter and organise data to maximise research productivity. The objects which are manipulated in these algorithms and procedures, as well as the algorithms and procedures themselves, enjoy a kind of virtual life within computers. We will call these information entities. Here, we describe our work in developing an ontology of chemical information entities, with a primary focus on data-driven research and the integration of calculated properties (descriptors) of chemical entities within a semantic web context. Our ontology distinguishes algorithmic, or procedural information from declarative, or factual information, and renders of particular importance the annotation of provenance to calculated data. The Chemical Information Ontology is being developed as an open collaborative project. More details, together with a downloadable OWL file, are available at http://code.google.com/p/semanticchemistry/ (license: CC-BY-SA). PMID:21991315

  20. Chemical and Biological Characterization of Oleanane Triterpenoids from Soy

    Directory of Open Access Journals (Sweden)

    David G. Popovich

    2009-08-01

    Full Text Available Soyasaponins are a group of complex and structural diverse oleanane triterpenoids found in soy (Glycine max and other legumes. They are primarily classified into two main groups − group A and B − based on the attachment of sugar moieties at positions C-3 and C-22 of the ring structures. Group A soyasaponins are bidesmosidic, while group B soyasaponins are monodesmosidic. Group B soyasaponins are further classified into two subcategories known as 2,3-dihydro-2,5-dihydroxy-6 -methyl-4H-pyran-4-one (DDMP and non-DDMP conjugated molecules. The preparation and purification of soyasaponin molecules is complicated by the presence of bioactive soy isoflavones, which often overlap with soyasaponin in polarity and must removed from extracts before biological assessment. Soyasaponin extracts, aglycones of group A and B and individual group B soyasaponins such as soyasaponin I have been reported to posses specific bioactive properties, such as in vitro anti-cancer properties by modulating the cell cycle and inducing apoptosis. The isolation, chemical characterization and detection strategies by HPLC and HPLC-MS are reviewed, along with the reported bioactive effects of soyasaponin extracts and individual molecules in cultured cancer cell experiments.

  1. Terahertz technology in biological and chemical sensing for defence

    Science.gov (United States)

    Woodward, Ruth M.

    2004-12-01

    The terahertz (1 THz = 1012 Hz, 3 mm or 33 cm-1) region of the electromagnetic spectrum is typically defined in the frequency range 100 GHz to 10 THz, corresponding to a wavelength range of 3 mm to 30 microns. Owing to a lack of suitable coherent sources and detectors, this region has only been investigated in earnest in the last ten years for terrestrial imaging and spectroscopy applications. Its role in the medical, pharmaceutical, non-destructive testing and more recently security industries is now being examined. The terahertz frequency range is of particular interest since it is able to probe several molecular interactions including the intermolecular vibrations, large amplitude vibrations and twisting and torsional modes. Molecules have also shown polarization sensitivity to the incident terahertz radiation. The ability of terahertz radiation to investigate conformational change makes it an important part of the electromagnetic spectrum. Terahertz radiation has the potential to provide additional information, which may complement other optically based sensing technologies. The use of terahertz technology in the security and defence industry is discussed, with a specific focus on biological and chemical sensing. The challenges faced in bringing terahertz technology into the market place will be discussed.

  2. Essential oils from neotropical Myrtaceae: chemical diversity and biological properties.

    Science.gov (United States)

    Stefanello, Maria Élida Alves; Pascoal, Aislan C R F; Salvador, Marcos J

    2011-01-01

    Myrtaceae family (121 genera, 3800-5800 spp.) is one of the most important families in tropical forests. They are aromatic trees or shrubs, which frequently produce edible fruits. In the neotropics, ca. 1000 species were found. Several members of this family are used in folk medicine, mainly as an antidiarrheal, antimicrobial, antioxidant, cleanser, antirheumatic, and anti-inflammatory agent and to decrease the blood cholesterol. In addition, some fruits are eaten fresh or used to make juices, liqueurs, and sweets very much appreciated by people. The flavor composition of some fruits belonging to the Myrtaceae family has been extensively studied due to their pleasant and intense aromas. Most of the essential oils of neotropical Myrtaceae analyzed so far are characterized by predominance of sesquiterpenes, some with important biological properties. In the present work, chemical and pharmacological studies carried out on neotropical Myrtaceae species are reviewed, based on original articles published since 1980. The uses in folk medicine and chemotaxonomic importance of secondary metabolites are also briefly discussed. PMID:21259421

  3. Stability and its manifestation in the chemical and biological worlds.

    Science.gov (United States)

    Pascal, Robert; Pross, Addy

    2015-11-21

    Bridging between the phenomenologically distinct biological and physical worlds has been a major scientific challenge since Boltzmann's probabilistic formulation of the second law of thermodynamics. In this review we summarize our recent theoretical attempts to bridge that divide through analysis of the thermodynamic-kinetic interplay in chemical processes and the manner in which that interplay impacts on material stability. Key findings are that the term 'stability' manifests two facets - time and energy - and that stability's time facet, expressed as persistence, is more general than its energy facet. That idea, together with the proposed existence of a logical law of nature, the persistence principle, leads to the mathematically-based insight that stability can come about through either Boltzmann's probabilistic considerations or Malthusian kinetics. Two mathematically-based forms of material persistence then lead directly to the physical likelihood of two material forms, animate and inanimate. Significantly, the incorporation of kinetic considerations into the stability concept appears to bring us closer to enabling two of the central theories in science - the second law of thermodynamics and Darwin's theory of evolution - to be reconciled within a single conceptual framework. PMID:26465292

  4. Chemical, Biological, Radiological and Nuclear Regional Centres of Excellence Initiative

    International Nuclear Information System (INIS)

    This series of slides presents the initiative launched in May 2010 by the European Union to develop at national and regional levels the necessary institutional capacity to fight against the CBRN (Chemical, Biological, Radiological and Nuclear) risk. The origin of the risk can be: -) criminal (proliferation, theft, sabotage and illicit traffics), -) accidental (industrial catastrophes, transport accidents...) and -) natural (mainly pandemics). The initiative consists in the creation of Centres of Excellence for providing assistance and cooperation in the field of CBRN risk and the creation of experts networks for sharing best practices, reviewing laws and regulation, developing technical capacities in order to mitigate the CBRN risk. The initiative is complementary to the instrument for nuclear safety cooperation. Regional Centres of Excellence are being set up in 6 regions: South East Europe, South East Asia, North Africa, West Africa, Middle East, and Central Asia covering nearly 40 countries. A global budget of 100 million Euros will be dedicated to this initiative for the 2009-2013 period. (A.C.)

  5. ChemProt: A disease chemical biology database

    DEFF Research Database (Denmark)

    Taboureau, Olivier; Oprea, Tudor I.

    2013-01-01

    The integration of chemistry, biology, and informatics to study drug actions across multiple biological targets, pathways, and biological systems is an emerging paradigm in drug discovery. Rather than reducing a complex system to simplistic models, fields such as chemogenomics and translational...

  6. The chemical and biological weapon terrorism by the Aum Shnirikyo

    International Nuclear Information System (INIS)

    The Aum Shinrikyo, an obscure cult religious group, attacked the Tokyo subways employing sarin gas in March 1995, which was viewed as a mark of a new era in terrorism. The Aum Shinrikyo remains the one empirical example of a religiously motivated cult with an affluent amount of financial and human resources and motivations to use unconventional weapons. The Aum Shinrikyo's leaders included the scientific elite of a young generation as well as former Yakuza members who had close ties with organized crime networks. Aum succeeded in establishing an extensive network to procure weapons, material, and drug, primarily in Russia but also other countries including the United States and even North Korea. Despite the fact that the law enforcement authority had already obtained various pieces of information that reasonably indicated that Aum was producing sarin by late 1994, the law enforcement authority became too cautious to advance its investigation to arrest Aum members until it was too late. Japan's experience with the Aum Shinrikyo's threats provides valuable insights for democratic governments seeking to thwart the deadly plans of religiously motivated non-state actors. It reveals the tremendous difficulties for a democratic society to confront the terrorists who were willing to pursue their deadly 'divine' objectives, especially when the society had no experience to encounter such a threat. This presentation will explain the chemical and biological weapon programs of the Aum Shinrikyo, especially focusing on the following elements: Intention and capability of the Aum Shinrikyo; Weapon systems and mode of attacks, including their target selections; The lessons learned from this case for the prevention and crisis/consequence management n the event of CBW terrorism. The views expressed here are those of the author and do not represent those of the Research Institute for Science and Technology for Society or its research sponsors.(author)

  7. Building Better Scientists through Cross-Disciplinary Collaboration in Synthetic Biology: A Report from the Genome Consortium for Active Teaching Workshop 2010

    Science.gov (United States)

    Wolyniak, Michael J.; Alvarez, Consuelo J.; Chandrasekaran, Vidya; Grana, Theresa M.; Holgado, Andrea; Jones, Christopher J.; Morris, Robert W.; Pereira, Anil L.; Stamm, Joyce; Washington, Talitha M.; Yang, Yixin

    2010-01-01

    Synthetic biology is the application of engineering and mathematical principles to develop novel biological devices and circuits. What separates synthetic biology from traditional molecular biology is the development of standardized interchangeable DNA "parts," just as advances in engineering in the nineteenth century brought about standardized…

  8. Suitability of Gray Water for Hydroponic Crop Production Following Biological and Physical Chemical and Biological Subsystems

    Science.gov (United States)

    Bubenheim, David L.; Harper, Lynn D.; Wignarajah, Kanapathipillai; Greene, Catherine

    1994-01-01

    The water present in waste streams from a human habitat must be recycled in Controlled Ecological Life Support Systems (CELSS) to limit resupply needs and attain self-sufficiency. Plants play an important role in providing food, regenerating air, and producing purified water via transpiration. However, we have shown that the surfactants present in hygiene waste water have acute toxic effects on plant growth (Bubenheim et al. 1994; Greene et al., 1994). These phytotoxic affects can be mitigated by allowing the microbial population on the root surface to degrade the surfactant, however, a significant suppression (several days) in crop performance is experienced prior to reaching sub-toxic surfactant levels and plant recovery. An effective alternative is to stabilize the microbial population responsible for degradation of the surfactant on an aerobic bioreactor and process the waste water prior to utilization in the hydroponic solution (Wisniewski and Bubenheim, 1993). A sensitive bioassay indicates that the surfactant phytotoxicity is suppressed by more than 90% within 5 hours of introduction of the gray water to the bioreactor; processing for more than 12 hours degrades more than 99% of the phytotoxin. Vapor Compression Distillation (VCD) is a physical / chemical method for water purification which employees sequential distillation steps to separate water from solids and to volatilize contaminants. The solids from the waste water are concentrated in a brine and the pure product water (70 - 90% of the total waste water volume depending on operating conditions) retains non of the phytotoxic effects. Results of the bioassay were used to guide evaluations of the suitability of recovered gray water following biological and VCD processing for hydroponic lettuce production in controlled environments. Lettuce crops were grown for 28 days with 100% of the input water supplied with recovered water from the biological processor or VCD. When compared with the growth of plants

  9. Carbon Nanostructure-Based Field-Effect Transistors for Label-Free Chemical/Biological Sensors

    OpenAIRE

    PingAn Hu; Jia Zhang; Le Li; Zhenlong Wang; William O’Neill; Pedro Estrela

    2010-01-01

    Over the past decade, electrical detection of chemical and biological species using novel nanostructure-based devices has attracted significant attention for chemical, genomics, biomedical diagnostics, and drug discovery applications. The use of nanostructured devices in chemical/biological sensors in place of conventional sensing technologies has advantages of high sensitivity, low decreased energy consumption and potentially highly miniaturized integration. Owing to their particular structu...

  10. Health Outcomes of Exposure to Biological and Chemical Components of Inhalable and Respirable Particulate Matter

    OpenAIRE

    Oyewale Mayowa Morakinyo; Matlou Ingrid Mokgobu; Murembiwa Stanley Mukhola; Raymond Paul Hunter

    2016-01-01

    Particulate matter (PM) is a key indicator of air pollution and a significant risk factor for adverse health outcomes in humans. PM is not a self-contained pollutant but a mixture of different compounds including chemical and biological fractions. While several reviews have focused on the chemical components of PM and associated health effects, there is a dearth of review studies that holistically examine the role of biological and chemical components of inhalable and respirable PM in disease...

  11. Which chemicals drive biological effects in wastewater and recycled water?

    Science.gov (United States)

    Tang, Janet Y M; Busetti, Francesco; Charrois, Jeffrey W A; Escher, Beate I

    2014-09-01

    Removal of organic micropollutants from wastewater during secondary treatment followed by reverse osmosis and UV disinfection was evaluated by a combination of four in-vitro cell-based bioassays and chemical analysis of 299 organic compounds. Concentrations detected in recycled water were below the Australian Guidelines for Water Recycling. Thus the detected chemicals were considered not to pose any health risk. The detected pesticides in the wastewater treatment plant effluent and partially advanced treated water explained all observed effects on photosynthesis inhibition. In contrast, mixture toxicity experiments with designed mixtures containing all detected chemicals at their measured concentrations demonstrated that the known chemicals explained less than 3% of the observed cytotoxicity and less than 1% of the oxidative stress response. Pesticides followed by pharmaceuticals and personal care products dominated the observed mixture effects. The detected chemicals were not related to the observed genotoxicity. The large proportion of unknown toxicity calls for effect monitoring complementary to chemical monitoring. PMID:24874944

  12. Analisis Kebutuhan Oksigen Biologi (Biological Oxygen Demand) Dan Kebutuhan Oksigen Kimia (Chemical Oxygen Demand) Pada Air Limbah Industri

    OpenAIRE

    Matondang, Nia Syofyasti

    2012-01-01

    Kebutuhan Oksigen Biologi (Biological Oxygen Demand) merupakan kebutuhan oksigen dalam mg/l yang diperlukan untuk menguraikan benda organik oleh bakteri sampai limbah tersebut menjadi jernih kembali. Sedangkan Kebutuhan Oksigen Kimia (Chemical Oxygen Demand) adalah banyaknya oksigen dalam mg/l yang dibutuhkan dalam kondisi khusus untuk menguraikan benda organik secara kimiawi. Tujuan penulisan Tugas Akhir ini untuk mengetahui apakah air limbah industri yang dianalisa memenuhi baku mutu yang t...

  13. Ozonation of estrogenic chemicals in biologically treated sewage

    DEFF Research Database (Denmark)

    Hansen, Kamilla Marie Speht; Andersen, Henrik Rasmus; Ledin, Anna

    2010-01-01

    for removal of 17 estrogenic chemicals. The estrogenic compounds included parabens, industrial phenols, sunscreen chemicals, and steroid estrogens. The obtained values of Electrical Energy per Order (EEOs) for the treatment of the estrogens were in the range 0.14–1.1 kWh/m3 corresponding to 1.7–14 g O3/m3...

  14. Stochastic chemical kinetics theory and (mostly) systems biological applications

    CERN Document Server

    Érdi, Péter

    2014-01-01

    This volume reviews the theory and simulation methods of stochastic kinetics by integrating historical and recent perspectives, presents applications, mostly in the context of systems biology and also in combustion theory. In recent years, due to the development in experimental techniques, such as optical imaging, single cell analysis, and fluorescence spectroscopy, biochemical kinetic data inside single living cells have increasingly been available. The emergence of systems biology brought renaissance in the application of stochastic kinetic methods.

  15. NCI Cohort Consortium Membership

    Science.gov (United States)

    The NCI Cohort Consortium membership is international and includes investigators responsible for more than 40 high-quality cohorts who are studying large and diverse populations in more than 15 different countries.

  16. THE PLANT ONTOLOGY CONSORTIUM AND PLANT ONTOLOGIES

    Science.gov (United States)

    The goal of the Plant OntologyTM Consortium is to produce structured controlled vocabularies, arranged in ontologies, that can be applied to plant-based database information even as knowledge of the biology of the relevant plant taxa (e.g., development, anatomy, morphology, genomics, proteomics) is ...

  17. Pyrazine-Derived Disulfide-Reducing Agent for Chemical Biology

    OpenAIRE

    Lukesh, John C.; Wallin, Kelly K.; Raines, Ronald T.

    2014-01-01

    For fifty years, dithiothreitol (DTT) has been the preferred reagent for the reduction of disulfide bonds in proteins and other biomolecules. Herein we report on the synthesis and characterization of 2,3-bis(mercaptomethyl)pyrazine (BMMP), a readily accessible disulfide-reducing agent with reactivity under biological conditions that is markedly superior to DTT and other known reagents.

  18. Chemical imaging of biological systems with the scanning electrochemical microscope.

    Science.gov (United States)

    Gyurcsányi, Róbert E; Jágerszki, Gyula; Kiss, Gergely; Tóth, Klára

    2004-06-01

    A brief overview on recent advances in the application of scanning electrochemical microscopy (SECM) to the investigation of biological systems is presented. Special emphasis is given to the mapping of local enzyme activity by SECM, which is exemplified by relevant original systems. PMID:15110274

  19. Biological treatments affect the chemical composition of coffee pulp

    NARCIS (Netherlands)

    Ulloa Rojas, J.B.; Verreth, J.A.J.; Amato, S.; Huisman, E.A.

    2003-01-01

    Biological treatments were applied to fresh coffee pulp (CoP) to improve its nutritive value for monogastric animals by reducing its content of cellulose and antinutritional factors (ANFs) such as total phenols, tannins and caffeine. Treatments were: (1) ensiling with 0, 50 and 100 g kg¿1 molasses f

  20. Eco-biology of marine diatoms with emphasis on the influence of physico-chemical parameters

    Digital Repository Service at National Institute of Oceanography (India)

    Mitbavkar, S.

    and resuspension of sediment affect the composition and distribution of diatoms. A number of physical, biological and chemical factors may be responsible for the temporal and spatial variation in the diatom abundance, diversity, diatom richness and evenness. Taking...

  1. Prospects for improved detection of chemical, biological, radiological, and nuclear threats

    Energy Technology Data Exchange (ETDEWEB)

    Wuest, Craig R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hart, Brad [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Slezak, Thomas R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2012-07-31

    Acquisition and use of Chemical, Biological, Radiological, and Nuclear (CBRN) weapons continue to be a major focus of concern form the security apparatus of nation states because of their potential for mass casualties when used by a determined adversary.

  2. Environmental parameters of the Tennessee River in Alabama. 2: Physical, chemical, and biological parameters. [biological and chemical effects of thermal pollution from nuclear power plants on water quality

    Science.gov (United States)

    Rosing, L. M.

    1976-01-01

    Physical, chemical and biological water quality data from five sites in the Tennessee River, two in Guntersville Reservoir and three in Wheeler Reservoir were correlated with climatological data for three annual cycles. Two of the annual cycles are for the years prior to the Browns Ferry Nuclear Power Plant operations and one is for the first 14 months of Plant operations. A comparison of the results of the annual cycles indicates that two distinct physical conditions in the reservoirs occur, one during the warm months when the reservoirs are at capacity and one during the colder winter months when the reservoirs have been drawn-down for water storage during the rainy months and for weed control. The wide variations of physical and chemical parameters to which the biological organisms are subjected on an annual basis control the biological organisms and their population levels. A comparison of the parameters of the site below the Power plant indicates that the heated effluent from the plant operating with two of the three reactors has not had any effect on the organisms at this site. Recommendations given include the development of prediction mathematical models (statistical analysis) for the physical and chemical parameters under specific climatological conditions which affect biological organisms. Tabulated data of chemical analysis of water and organism populations studied is given.

  3. Diversity-Oriented Synthetic Strategies Applied to Cancer Chemical Biology and Drug Discovery

    OpenAIRE

    Ian Collins; Jones, Alan M.

    2014-01-01

    How can diversity-oriented strategies for chemical synthesis provide chemical tools to help shape our understanding of complex cancer pathways and progress anti-cancer drug discovery efforts? This review (surveying the literature from 2003 to the present) considers the applications of diversity-oriented synthesis (DOS), biology-oriented synthesis (BIOS) and associated strategies to cancer biology and drug discovery, summarising the syntheses of novel and often highly complex scaffolds from p...

  4. Chemical and Biological Warfare: Should Rapid Detection Techniques Be Researched To Dissuade Usage? A Review

    OpenAIRE

    Mark R. Hurst; Ebtisam Wilkins

    2005-01-01

    Chemistry, microbiology and genetic engineering have opened new doorways for the human race to propel itself to a better future. However, there is a darker side to Bioengineering. One element of this is the manufacture and proliferation of biological and chemical weapons. It is clearly in the interest of humankind to prevent the future use of such weapons of mass destruction. Though many agents have been proposed as potential biological and chemical weapons, the feasibility of these weapons i...

  5. Estimating Escherichia coli loads in streams based on various physical, chemical, and biological factors

    OpenAIRE

    Dwivedi, Dipankar; Mohanty, Binayak P.; Lesikar, Bruce J.

    2013-01-01

    Microbes have been identified as a major contaminant of water resources. Escherichia coli (E. coli) is a commonly used indicator organism. It is well recognized that the fate of E. coli in surface water systems is governed by multiple physical, chemical, and biological factors. The aim of this work is to provide insight into the physical, chemical, and biological factors along with their interactions that are critical in the estimation of E. coli loads in surface streams. There are various mo...

  6. Chemical and biological work-related risks across occupations in Europe: a review

    OpenAIRE

    Montano, Diego

    2014-01-01

    Background Work-related health inequalities are determined to some extent by an unequal exposure to chemical and biological risk factors of disease. Although their potential economic burden in the European Union (EU-25) might be substantial, comprehensive reviews focusing on the distribution of these risks across occupational groups are limited. Thus, the main objective of this review is to provide a synopsis of the exposure to chemical and biological hazards across occupational groups. In ad...

  7. CHEMICAL AND BIOLOGICAL CHARACTERIZATION OF LEACHATES FROM COAL SOLID WASTES

    Science.gov (United States)

    The report gives results of the chemical and mineralogical characterization of coal solid wastes. The wastes included three Lurgi gasification ashes, mineral residues from the SRC-1 and H-Coal liquefaction processes, two chars, two coal-cleaning residues, and a fly-ash-and-water-...

  8. Polycyclic Xanthone Natural Products: Structure, Biological Activity and Chemical Synthesis

    OpenAIRE

    Winter, Dana K.; Sloman, David L.; Porco, John A.

    2013-01-01

    Polycyclic xanthone natural products are a family of polyketides which are characterized by highly oxygenated, angular hexacyclic frameworks. In the last decade, this novel class of molecules has attracted noticeable attention from the synthetic and biological communities due to emerging reports of their potential use as antitumour agents. The aim of this article is to highlight the most recent developments of this subset of the xanthone family by detailing the innate challenges of the constr...

  9. Chemical, physical and biological features of Okra pectin

    OpenAIRE

    Sengkhamparn, N.

    2009-01-01

    In Thailand, many plants have been used as vegetables as well as for traditional medicine. Okra, Abelmoschus esculentus (L.) Moench, is an example of such a plant. Examples for the medical use are treatment of gastric irritation, treatment of dental diseases, lowering cholesterol level and preventing cancer. These biological activities are ascribed to polysaccharide structures of okra in particular pectin structures. However, the precise structure of okra pectins and also of other polysacchar...

  10. Marine Sponges and Symbionts: Chemical and Biological Studies

    OpenAIRE

    Schmidt, Eric W.

    1999-01-01

    This thesis concerns two quite different types of research that are separated into distinct sections of the thesis, but which seek to answer the same question using diametrically opposite approaches. The first part (Chapters 1-8) covers research leading to novel, bioactive compounds in marine sponges, while the second (Chapters 9-10) involves molecular biological studies of symbiosis between microbes and sponges. Although these topics seem at first glance completely separate, they are in real...

  11. Simaroubaceae family: botany, chemical composition and biological activities

    OpenAIRE

    Iasmine A.B.S. Alves; Henrique M. Miranda; Luiz A. L. Soares; Karina P. Randau

    2014-01-01

    The Simaroubaceae family includes 32 genera and more than 170 species of trees and brushes of pantropical distribution. The main distribution hot spots are located at tropical areas of America, extending to Africa, Madagascar and regions of Australia bathed by the Pacific. This family is characterized by the presence of quassinoids, secondary metabolites responsible of a wide spectrum of biological activities such as antitumor, antimalarial, antiviral, insecticide, feeding deterrent, amebicid...

  12. [Advances in studies on chemical constituents and biological activities of Desmodium species].

    Science.gov (United States)

    Liu, Chao; Wu, Ying; Zhang, Qian-Jun; Kang, Wen-Yi; Zhang, Long; Zhou, Qing-Di

    2013-12-01

    The chemical constituents isolated from Desmodium species (Leguminosae) included terpenoids, flavonoids, steroids, alkaloids compounds. Modem pharmacological studies have showed that the Desmodium species have antioxidant, antibacterial, anti-inflammatory, hepatoprotective, diuretic, antipyretic, analgesic and choleretic activity. This article mainly has reviewed the research advances of chemical constituents and biological activities of Desmodium species since 2003. PMID:24791478

  13. 15 CFR Supplement No. 1 to Part 742 - Nonproliferation of Chemical and Biological Weapons

    Science.gov (United States)

    2010-01-01

    ... Biological Weapons No. Supplement No. 1 to Part 742 Commerce and Foreign Trade Regulations Relating to... ADMINISTRATION REGULATIONS CONTROL POLICY-CCL BASED CONTROLS Pt. 742, Supp. 1 Supplement No. 1 to Part 742...: (i) Equipment (for producing chemical weapon precursors and chemical warfare agents) described...

  14. Physico-chemical and biological properties of Ambroxol under irradiation

    International Nuclear Information System (INIS)

    Physico-chemical properties of Ambroxol (AM), a potential antioxidant drug from the expectorant class, were investigated by radiation chemical and spectroscopic studies. The pulse radiolysis experiments showed that AM is a good scavenger of the primary water radical species, particularly eaq- and ·OH radicals. The ·OH attack, preferentially addressed to the ring positions activated by the -NH2 group and occupied by bromine atoms, leads to hydroxycyclohexadienyl radicals. The molecule stabilisation may be achieved by a dehalogenation reaction to give phenoxyl radicals. The ·OH attack to AM is not affected by Cu(II) ions, which interact only weakly with the drug as evidenced by IR and Raman spectroscopy. Survival experiments on E. coli B/r cells irradiated in the presence of AM showed a radiosensitising effect of AM in anoxia. Some possible mechanisms of radiosensitisation are outlined. (author)

  15. Tomato Derived Polysaccharides for Biotechnological Applications: Chemical and Biological Approaches

    Directory of Open Access Journals (Sweden)

    Barbara Nicolaus

    2008-06-01

    Full Text Available Recent studies concerning the isolation and purification of exopolysaccharides from suspension-cultured tomato (Lycopersicon esculentum L. var. San Marzano cells and the description of a simple, rapid and low environmental impact method with for obtaining polysaccharides from solid tomato-processing industry wastes are reported. Their chemical composition, rheological properties and partial primary structure were determined on the basis of spectroscopic analyses (UV, IR, GC-MS, 1H-, 13C-NMR. Moreover, the anticytotoxic activities of exopolysaccharides obtained from cultured tomato cells were tested in a brine shrimp bioassay and the preparation of biodegradable film by chemical processing of polysaccharides from solid tomato industry waste was also reported.

  16. Studying chemical reactions in biological systems with MBN Explorer

    DEFF Research Database (Denmark)

    Sushko, Gennady B.; Solov'yov, Ilia A.; Verkhovtsev, Alexey V.;

    2016-01-01

    The concept of molecular mechanics force field has been widely accepted nowadays for studying various processes in biomolecular systems. In this paper, we suggest a modification for the standard CHARMM force field that permits simulations of systems with dynamically changing molecular topologies....... applied for studying processes where rupture of chemical bonds plays an essential role, e.g., in irradiation- or collision-induced damage, and also in transformation and fragmentation processes involving biomolecular systems....

  17. Categorization of biologically relevant chemical signals in the medial amygdala

    OpenAIRE

    Samuelsen, Chad L.; Meredith, Michael

    2009-01-01

    Many species employ chemical signals to convey messages between members of the same species (conspecific), but chemosignals may also provide information to another species (heterospecific). Here, we found that conspecific chemosignals (male, female mouse urine) increased immediate early gene-protein (IEG) expression in both anterior and posterior medial amygdala of male mice, whereas most heterospecific chemosignals (e.g.: hamster vaginal fluid, steer urine) increased expression only in anter...

  18. Chemical and biological evaluation of rejects from the wood industry

    OpenAIRE

    Daniel Granato; Domingos Sávio Nunes; Patrícia Póvoa de Mattos; Ester de Moura Rios; Adeline Glinski; Luciana Collares Rodrigues; Gerson Zanusso Júnior

    2005-01-01

    This study aimed chemical characterization and microbiological evaluation of extracts obtained from the waste of woods marketed in Paraná State: Peroba-Rosa (Aspidosperma sp.), Roxinho (Peltogyne sp.), Jatobá(Hymenaea sp.), Curupixá (Micropholis sp.), Itaúba (Mezilaurus sp.), Cedrilho (Erisma sp.) and Imbúia (Licaria sp.), whose botanical identifications were based on anatomical studies. The extracts were prepared with different solvents, analyzed by TLC and UV/VIS techniques, and tested agai...

  19. SPR biosensors for detection of biological and chemical analytes

    Czech Academy of Sciences Publication Activity Database

    Dostálek, Jakub; Ladd, J.; Jiang, S.; Homola, Jiří

    Berlin: Springer, 2006 - (Wolfbeis, O.; Homola, J.), s. 177-190. (Springer Ser.on Chemical Sensors and Biosensors. 4). ISBN 3-540-33918-3 Grant ostatní: US FDA(US) FD-U-002250; European Commission(XE) QLK4-CT-2002-02323 Institutional research plan: CEZ:AV0Z20670512 Keywords : surface plasmon resonance * biosensors * optical sensors * food preservation Subject RIV: JB - Sensors, Measurment, Regulation

  20. Chemical and biological evaluation of sediments from the Wadden Sea, The Netherlands

    OpenAIRE

    Brink, van den, R.B.A.; Kater, B. J.

    2006-01-01

    We describe the results of an evaluation of marine sediments using chemical measurements and bioassays. Four groups of chemicals, i.e., heavy metals, PAHs, chlorinated aromatic compounds, and tin compounds, were measured at 16 locations in the Wadden Sea, The Netherlands. Extractions of sediments from each location also were assessed using five bioassays. Our objective was to identify chemicals likely to pose biological risks, characterize the relation between bioassay results and particular ...

  1. Group behaviour in physical, chemical and biological systems

    Indian Academy of Sciences (India)

    Cihan Saçlioğlu; Önder Pekcan; Vidyanand Nanjundiah

    2014-04-01

    Groups exhibit properties that either are not perceived to exist, or perhaps cannot exist, at the individual level. Such `emergent’ properties depend on how individuals interact, both among themselves and with their surroundings. The world of everyday objects consists of material entities. These are, ultimately, groups of elementary particles that organize themselves into atoms and molecules, occupy space, and so on. It turns out that an explanation of even the most commonplace features of this world requires relativistic quantum field theory and the fact that Planck’s constant is discrete, not zero. Groups of molecules in solution, in particular polymers (`sols’), can form viscous clusters that behave like elastic solids (`gels’). Sol-gel transitions are examples of cooperative phenomena. Their occurrence is explained by modelling the statistics of inter-unit interactions: the likelihood of either state varies sharply as a critical parameter crosses a threshold value. Group behaviour among cells or organisms is often heritable and therefore can evolve. This permits an additional, typically biological, explanation for it in terms of reproductive advantage, whether of the individual or of the group. There is no general agreement on the appropriate explanatory framework for understanding group-level phenomena in biology.

  2. Chemical Biology Studies on Molecular Diversity of Annonaceous Acetogenins

    Institute of Scientific and Technical Information of China (English)

    Yao Zhu-Jun

    2004-01-01

    Annonaceous acetogenins, isolated from the Annonaceae plants, have been attracting worldwide attention in recent years due to their biological activities, especially as growth inhibitors of certain tumor ceils [ 1 ]. They have been shown to function by blocking complex I in mitochondria [2] as well as ubiquinone-linked NADPH oxidase in the cells of specific tumor cell lines, including some multidrug-resistant ones [3]. These features make these acetogenins excellent leads for the new antitumor agents. In our previous work, the compounds 1a to 1d (Figure 1), which relies on structure simplification while maintaining all essential functionalities of the acetogenins, was in vitro tested against several human solid tumor cell lines and showed interesting cell selectivity [4]. All four analogues show remarkable activity against the HCT-8 and HT-29 cell lines, while compound 1c was found the best [4bi. In order to further investigate the effects of key structural features, a convergent parallel fragments assembly strategy was developed [4e]. In addition, the biological relevancies of typical annonaceous acetogenin mimetics were also studied [4f].

  3. Group behaviour in physical, chemical and biological systems.

    Science.gov (United States)

    Saçlioğlu, Cihan; Pekcan, Önder; Nanjundiah, Vidyanand

    2014-04-01

    Groups exhibit properties that either are not perceived to exist, or perhaps cannot exist, at the individual level. Such 'emergent' properties depend on how individuals interact, both among themselves and with their surroundings. The world of everyday objects consists of material entities. These are, ultimately, groups of elementary particles that organize themselves into atoms and molecules, occupy space, and so on. It turns out that an explanation of even the most commonplace features of this world requires relativistic quantum field theory and the fact that Planck's constant is discrete, not zero. Groups of molecules in solution, in particular polymers ('sols'), can form viscous clusters that behave like elastic solids ('gels'). Sol-gel transitions are examples of cooperative phenomena. Their occurrence is explained by modelling the statistics of inter-unit interactions: the likelihood of either state varies sharply as a critical parameter crosses a threshold value. Group behaviour among cells or organisms is often heritable and therefore can evolve. This permits an additional, typically biological, explanation for it in terms of reproductive advantage, whether of the individual or of the group. There is no general agreement on the appropriate explanatory framework for understanding group-level phenomena in biology. PMID:24736152

  4. Deciphering Diseases and Biological Targets for Environmental Chemicals using Toxicogenomics Networks

    DEFF Research Database (Denmark)

    Audouze, Karine Marie Laure; Juncker, Agnieszka; Roque, Francisco José Sousa Simões Almeida;

    2010-01-01

    Exposure to environmental chemicals and drugs may have a negative effect on human health. A better understanding of the molecular mechanism of such compounds is needed to determine the risk. We present a high confidence human protein-protein association network built upon the integration of...... chemical toxicology and systems biology. This computational systems chemical biology model reveals uncharacterized connections between compounds and diseases, thus predicting which compounds may be risk factors for human health. Additionally, the network can be used to identify unexpected potential...

  5. Bacteriorhodopsin protein hybrids for chemical and biological sensing

    Science.gov (United States)

    Winder, Eric Michael

    Bacteriorhodopsin (bR), an optoelectric protein found in Halobacterium salinarum, has the potential for use in protein hybrid sensing systems. Bacteriorhodopsin has no intrinsic sensing properties, however molecular and chemical tools permit production of bR protein hybrids with transducing and sensing properties. As a proof of concept, a maltose binding protein-bacteriorhodopsin ([MBP]-bR) hybrid was developed. It was proposed that the energy associated with target molecule binding, maltose, to the hybrid sensor protein would provide a means to directly modulate the electrical output from the MBP-bR bio-nanosensor platform. The bR protein hybrid is produced by linkage between bR (principal component of purified purple membrane [PM]) and MBP, which was produced by use of a plasmid expression vector system in Escherichia coli and purified utilizing an amylose affinity column. These proteins were chemically linked using 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS), which facilitates formation of an amide bond between a primary carboxylic acid and a primary amine. The presence of novel protein hybrids after chemical linkage was analyzed by SDS-PAGE. Soluble proteins (MBP-only derivatives and unlinked MBP) were separated from insoluble proteins (PM derivatives and unlinked PM) using size exclusion chromatography. The putatively identified MBP-bR protein hybrid, in addition to unlinked bR, was collected. This sample was normalized for bR concentration to native PM and both were deposited onto indium tin oxide (ITO) coated glass slides by electrophoretic sedimentation. The photoresponse of both samples, activated using 100 Watt tungsten lamp at 10 cm distance, were equal at 175 mV. Testing of deposited PM with 1 mM sucrose or 1 mM maltose showed no change in the photoresponse of the material, however addition of 1 mM maltose to the deposited MBP-bR linked hybrid material elicited a 57% decrease in photoresponse

  6. Capturing Biological Activity in Natural Product Fragments by Chemical Synthesis.

    Science.gov (United States)

    Crane, Erika A; Gademann, Karl

    2016-03-14

    Natural products have had an immense influence on science and have directly led to the introduction of many drugs. Organic chemistry, and its unique ability to tailor natural products through synthesis, provides an extraordinary approach to unlock the full potential of natural products. In this Review, an approach based on natural product derived fragments is presented that can successfully address some of the current challenges in drug discovery. These fragments often display significantly reduced molecular weights, reduced structural complexity, a reduced number of synthetic steps, while retaining or even improving key biological parameters such as potency or selectivity. Examples from various stages of the drug development process up to the clinic are presented. In addition, this process can be leveraged by recent developments such as genome mining, antibody-drug conjugates, and computational approaches. All these concepts have the potential to identify the next generation of drug candidates inspired by natural products. PMID:26833854

  7. Nano-FTIR chemical mapping of minerals in biological materials

    Directory of Open Access Journals (Sweden)

    Sergiu Amarie

    2012-04-01

    Full Text Available Methods for imaging of nanocomposites based on X-ray, electron, tunneling or force microscopy provide information about the shapes of nanoparticles; however, all of these methods fail on chemical recognition. Neither do they allow local identification of mineral type. We demonstrate that infrared near-field microscopy solves these requirements at 20 nm spatial resolution, highlighting, in its first application to natural nanostructures, the mineral particles in shell and bone. "Nano-FTIR" spectral images result from Fourier-transform infrared (FTIR spectroscopy combined with scattering scanning near-field optical microscopy (s-SNOM. On polished sections of Mytilus edulis shells we observe a reproducible vibrational (phonon resonance within all biocalcite microcrystals, and distinctly different spectra on bioaragonite. Surprisingly, we discover sparse, previously unknown, 20 nm thin nanoparticles with distinctly different spectra that are characteristic of crystalline phosphate. Multicomponent phosphate bands are observed on human tooth sections. These spectra vary characteristically near tubuli in dentin, proving a chemical or structural variation of the apatite nanocrystals. The infrared band strength correlates with the mineral density determined by electron microscopy. Since nano-FTIR sensitively responds to structural disorder it is well suited for the study of biomineral formation and aging. Generally, nano-FTIR is suitable for the analysis and identification of composite materials in any discipline, from testing during nanofabrication to even the clinical investigation of osteopathies.

  8. CHEMICAL AND BIOLOGICAL EXAMINATION OF LEAVES OF MORUS INDICA

    Directory of Open Access Journals (Sweden)

    Pethakamsetty Lakshmi

    2013-06-01

    Full Text Available Mulberry belongs to the genus Morus of the family Moraceae. It is an economically important plant being used for sericulture. Studies have been reported on the chemical composition and nutritional potentials of some mulberry species worldwide. In the present study the chemical examination of Morus indica leaves on conventional extraction and various chromatographic methods, led to the isolation of five compounds- β-sitosterol-3-O-β-D-glucoside, β-sitosterol, salvigenin, cirisimaritin and quercitin. All the compounds were characterized by 2D NMR, MS spectral data and comparison with the published data for the known compounds. All the compounds were reported for the first time from the leaves of this species. The work was further extended to test the crude extracts for antibacterial and antifungal activities. The results from the present study have shown that the species have considerable activity against selected bacterial and fungal strains which can be attributed to the presence of steroidal and phenolic compounds in the crude extracts of Morus indica.

  9. Silicon chip integrated photonic sensors for biological and chemical sensing

    Science.gov (United States)

    Chakravarty, Swapnajit; Zou, Yi; Yan, Hai; Tang, Naimei; Chen, Ray T.

    2016-03-01

    We experimentally demonstrate applications of photonic crystal waveguide based devices for on-chip optical absorption spectroscopy for the detection of chemical warfare simulant, triethylphosphate as well as applications with photonic crystal microcavity devices in the detection of biomarkers for pancreatic cancer in patient serum and cadmium metal ions in heavy metal pollution sensing. At mid-infrared wavelengths, we experimentally demonstrate the higher sensitivity of photonic crystal based structures compared to other nanophotonic devices such as strip and slot waveguides with detection down to 10ppm triethylphosphate. We also detected 5ppb (parts per billion) of cadmium metal ions in water at near-infrared wavelengths using established techniques for the detection of specific probe-target biomarker conjugation chemistries.

  10. Functional Nanostructured Platforms for Chemical and Biological Sensing

    Energy Technology Data Exchange (ETDEWEB)

    Letant, S E

    2006-03-20

    The central goal of our work is to combine semiconductor nanotechnology and surface functionalization in order to build platforms for the selective detection of bio-organisms ranging in size from bacteria (micron range) down to viruses, as well as for the detection of chemical agents (nanometer range). We will show on three porous silicon platforms how pore geometry and pore wall chemistry can be combined and optimized to capture and detect specific targets. We developed a synthetic route allowing to directly anchor proteins on silicon surfaces and illustrated the relevance of this technique by immobilizing live enzymes onto electrochemically etched luminescent nano-porous silicon. The powerful association of the specific enzymes with the transducing matrix led to a selective hybrid platform for chemical sensing. We also used light-assisted electrochemistry to produce periodic arrays of through pores on pre-patterned silicon membranes with controlled diameters ranging from many microns down to tens of nanometers. We demonstrated the first covalently functionalized silicon membranes and illustrated their selective capture abilities with antibody-coated micro-beads. These engineered membranes are extremely versatile and could be adapted to specifically recognize the external fingerprints (size and coat composition) of target bio-organisms. Finally, we fabricated locally functionalized single nanopores using a combination of focused ion beam drilling and ion beam assisted oxide deposition. We showed how a silicon oxide ring can be grown around a single nanopore and how it can be functionalized with DNA probes to detect single viral-sized beads. The next step for this platform is the detection of whole viruses and bacteria.

  11. TOPICAL REVIEW: Biological and chemical sensors for cancer diagnosis

    Science.gov (United States)

    Simon, Elfriede

    2010-11-01

    The great challenge for sensor systems to be accepted as a relevant diagnostic and therapeutic tool for cancer detection is the ability to determine the presence of relevant biomarkers or biomarker patterns comparably to or even better than the traditional analytical systems. Biosensor and chemical sensor technologies are already used for several clinical applications such as blood glucose or blood gas measurements. However, up to now not many sensors have been developed for cancer-related tests because only a few of the biomarkers have shown clinical relevance and the performance of the sensor systems is not always satisfactory. New genomic and proteomic tools are used to detect new molecular signatures and identify which combinations of biomarkers may detect best the presence or risk of cancer or monitor cancer therapies. These molecular signatures include genetic and epigenetic signatures, changes in gene expressions, protein biomarker profiles and other metabolite profile changes. They provide new changes in using different sensor technologies for cancer detection especially when complex biomarker patterns have to be analyzed. To address requirements for this complex analysis, there have been recent efforts to develop sensor arrays and new solutions (e.g. lab on a chip) in which sampling, preparation, high-throughput analysis and reporting are integrated. The ability of parallelization, miniaturization and the degree of automation are the focus of new developments and will be supported by nanotechnology approaches. This review recaps some scientific considerations about cancer diagnosis and cancer-related biomarkers, relevant biosensor and chemical sensor technologies, their application as cancer sensors and consideration about future challenges.

  12. NCI Cohort Consortium

    Science.gov (United States)

    The NCI Cohort Consortium is an extramural-intramural partnership formed by the National Cancer Institute to address the need for large-scale collaborations to pool the large quantity of data and biospecimens necessary to conduct a wide range of cancer studies.

  13. CONTRIBUTIONS TO THE KNOWLEDGE OF SOME PHYSICO-CHEMICAL, CHEMICAL AND BIOLOGICAL CHARACTERISTICS OF THE WATER IN THE NICOLINA RIVER

    Directory of Open Access Journals (Sweden)

    RAMONA ELENA IRIMIA

    2014-09-01

    Full Text Available This paper aims at underlying some physico - chemical, chemical and biological characteristics of the water in the Nicolina River in Iasi city area. Field observations and physical – chemical and chemical analysis of water samples were performed; the species of algae were identified. The results obtained emphasize specific values of the analyzed indicators (pH, conductivity, TDS according to the interval of time and the station of water sampling. The water pH is mainly slightly alkaline; The conductivity and TDS values indicate a high degree of mineralization. We identified 74 taxa of algae belonging to six groups: Cyanophyta, Bacillariophyta, Euglenophyta, Zygnematophyta, Chlorophyta and Chrysophyta. The results obtained and the algal taxons identified underlie the existence of some human influence on the river water in the analysed sector.

  14. HExpoChem: a systems biology resource to explore human exposure to chemicals

    DEFF Research Database (Denmark)

    Taboureau, Olivier; Jacobsen, Ulrik Plesner; Kalhauge, Christian Gram;

    2013-01-01

    of computational biology approaches are needed to assess the health risks of chemical exposure. Here we present HExpoChem, a tool based on environmental chemicals and their bioactivities on human proteins with the objective of aiding the qualitative exploration of human exposure to chemicals. The......Summary: Humans are exposed to diverse hazardous chemicals daily. Although an exposure to these chemicals is suspected to have adverse effects on human health, mechanistic insights into how they interact with the human body are still limited. Therefore, acquisition of curated data and development...... chemical–protein interactions have been enriched with a quality-scored human protein–protein interaction network, a protein–protein association network and a chemical–chemical interaction network, thus allowing the study of environmental chemicals through formation of protein complexes and phenotypic...

  15. Recent advances in the chemical biology of nitroxyl (HNO) detection and generation.

    Science.gov (United States)

    Miao, Zhengrui; King, S Bruce

    2016-07-01

    Nitroxyl or azanone (HNO) represents the redox-related (one electron reduced and protonated) relative of the well-known biological signaling molecule nitric oxide (NO). Despite the close structural similarity to NO, defined biological roles and endogenous formation of HNO remain unclear due to the high reactivity of HNO with itself, soft nucleophiles and transition metals. While significant work has been accomplished in terms of the physiology, biology and chemistry of HNO, important and clarifying work regarding HNO detection and formation has occurred within the last 10 years. This review summarizes advances in the areas of HNO detection and donation and their application to normal and pathological biology. Such chemical biological tools allow a deeper understanding of biological HNO formation and the role that HNO plays in a variety of physiological systems. PMID:27108951

  16. Chemical Composition and Biological Activities of Gerbera anandria

    Directory of Open Access Journals (Sweden)

    Fa He

    2014-04-01

    Full Text Available Gerbera anandria (Compositae was extracted with 75% ethanol and the residue was fractionated using light petroleum, chloroform and ethyl acetate. The constituents of the extracts were separated by column chromatography employing solvents of different polarity. Column chromatography of the light petroleum fraction resulted in the isolation of methyl hexadecanoate, while the chloroform fraction afforded xanthotoxin, 2-hydroxy-6-methylbenzoic acid, 7-hydroxy-1(3H-isobenzofuranone, a mixture of β-sitosterol and stigmasterol, and 8-methoxysmyrindiol and the ethyl acetate fraction gave gerberinside, apigenin-7-O-β-d-glucopyranoside and quercetin. A new coumarin, 8-methoxysmyrindiol, was found. The chemical structures of the isolated compounds were established by MS and NMR (HSQC, HMBC. Free radical scavenging and cytotoxic activities of crude extracts and 8-methoxysmyrindiol were further investigated. The ethyl acetate phase exerted the strongest DPPH free radical scavenging activity in comparison to the other fractions. The coumarin 8-methoxysmyrindiol demonstrated cytotoxicity against multiple human cancer cell lines, with the highest potency in HepG2 cells.

  17. Biological marker of furfural, chemicals without administrative control level.

    Science.gov (United States)

    Morimoto, Yasuo; Hori, Hajime; Higashi, Toshiaki; Nagatomo, Hiroko; Hino, Yoshiyuki; Ohsato, Atsushi; Uchino, Bungo

    2007-06-01

    Furfural, a colorless liquid used in solvent-extraction processes, petroleum refining and as a rubber additive, has been assigned an occupational exposure limit of 2.5 ppm by the Japan Society for Occupational Health, but an administrative control level for furfural has not been established. In order to conduct effective occupational health management in workplaces where furfural is used, we measured furfural concentrations in working environments and collected urine samples to measure furoic acid levels (one of the principal metabolites), which act as a biomarker of exposure to furfural. The measurements of airborne concentrations in a working environment where furfural or a solution containing furfural was handled were made in 2004. Workers answered a questionnaire on working conditions, urine samples were collected at the end of the workshift, and furoic acid in the urine was measured by gas chromatography/flame ionization detector (GC/FID). The ambient concentrations of furfural during the period were 2.1 ppm in a mixer room and 1.6 ppm in a filling room. The mean concentrations of furoic acid in the workers' urine were 7.7 +/- 7.8 mg/g-creatinine in summer and winter, respectively (normal range: 3 - 60 mg/g-creatinine). The average exposure to furfural per month calculated by multiplying the concentration in the working environment by working hours for a month was 86.4 +/- 108.6 ppm hours/months (mean +/- standard deviation) (range; 0 - 336 ppm hours/month). The relationship between average exposure to furfural and furoic acid in the urine was analyzed by simple linear regression analysis and a positive correlation was found. These findings suggest that furoic acid in urine is useful for biological monitoring of exposure to furfural, and that the measurement of both furfural in the environment and furoic acid in the urine are beneficial in occupational health management of furfural. PMID:17582986

  18. Water quality index calculated from biological, physical and chemical attributes.

    Science.gov (United States)

    Rocha, Francisco Cleiton; Andrade, Eunice Maia; Lopes, Fernando Bezerra

    2015-01-01

    To ensure a safe drinking water supply, it is necessary to protect water quality. To classify the suitability of the Orós Reservoir (Northeast of Brazil) water for human consumption, a Water Quality Index (WQI) was enhanced and refined through a Principal Component Analysis (PCA). Samples were collected bi-monthly at seven points (P1 - P7) from July 2009 to July 2011. Samples were analysed for 29 physico-chemical attributes and 4 macroinvertebrate metrics associated with the macrophytes Pistia stratiotes and Eichhornia crassipes. PCA allowed us to reduce the number of attributes from 33 to 12, and 85.32% of the variance was explained in five dimensions (C1 - C5). Components C1 and C3 were related to water-soluble salts and reflect the weathering process, while C2 was related to surface runoff. C4 was associated with macroinvertebrate diversity, represented by ten pollution-resistant families. C5 was related to the nutrient phosphorus, an indicator of the degree of eutrophication. The mean values for the WQIs ranged from 49 to 65 (rated as fair), indicating that water can be used for human consumption after treatment. The lowest values for the WQI were recorded at the entry points to the reservoir (P3, P1, P5, and P4), while the best WQIs were recorded at the exit points (P6 and P7), highlighting the reservoir's purification ability. The proposed WQI adequately expressed water quality, and can be used for monitoring surface water quality. PMID:25492707

  19. Portable Raman device for detection of chemical and biological warfare agents

    Science.gov (United States)

    Wabuyele, Musundi B.; Martin, Matthew E.; Yan, Fei; Stokes, David L.; Mobley, Joel; Cullum, Brian M.; Wintenberg, Alan; Lenarduzzi, Roberto; Vo-Dinh, Tuan

    2005-04-01

    This paper describes a compact, self-contained, cost effective, and portable Raman Integrated Tunable Sensor (RAMiTs) for screening a wide variety of chemical and biological agents for homeland defense applications. The instrument is a fully-integrated, tunable, "point-and-shoot" Raman monitor based on solid-state acousto-optic tunable filter (AOTF) technology. It can provide direct identification and quantitative analysis of chemical and biological samples in a few seconds under field conditions. It also consists of a 830-nm diode laser for excitation, and an avalanche photodiode for detection. Evaluation of this instrument has been performed by analyzing several standard samples and comparing the results those obtained using a conventional Raman system. In addition to system evaluation, this paper will also discuss potential applications of the RAMiTs for detection of chemical and biological warfare agents.

  20. Remote Detection of Biological Particles and Chemical Plumes Using UV Fluorescence Lidar

    Science.gov (United States)

    Tiee, J. J.; Hof, D. E.; Karl, R. R.; Martinez, R. J.; Quick, C. R.; Cooper, D. I.; Eichinger, W. E.; Holtkamp, D. B.

    1992-01-01

    A lidar system based on ultraviolet (UV) laser induced fluorescence (LIF) was developed for the remote detection of atmospherically dispersed biological particles and chemical vapors. This UV fluorescence lidar has many potential applications for monitoring environmental pollution, industrial waste emission, agricultural insect control, illicit chemical processing, and military defense operations. The general goal of this work is to investigate the research issues associated with the long range detection and identification of chemicals, e.g. aromatic solvents and chemical precursors, and biological materials, e.g. bacillus thuringiensis (BT) and bacillus globiggi (BG). In the detection of biological particulates, we are particularly interested in extending the detection range of an existing solar-blind 248-nm lidar system. We are investigating the use of longer excitation laser wavelengths (i.e. lambda greater than 280-nm to have more favorable atmospheric light transmission characteristics) for improving detection range to better than 10 km. In the detection of chemical plumes, our main research objectives are to determine how accurately and sensitively a chemical plume can be located at range, and how well spectrally the chemical species can be measured to allow their identification.

  1. Chemical Security Analysis Center

    Data.gov (United States)

    Federal Laboratory Consortium — In 2006, by Presidential Directive, DHS established the Chemical Security Analysis Center (CSAC) to identify and assess chemical threats and vulnerabilities in the...

  2. Chemical and biological evaluation of rejects from the wood industry

    Directory of Open Access Journals (Sweden)

    Daniel Granato

    2005-06-01

    Full Text Available This study aimed chemical characterization and microbiological evaluation of extracts obtained from the waste of woods marketed in Paraná State: Peroba-Rosa (Aspidosperma sp., Roxinho (Peltogyne sp., Jatobá(Hymenaea sp., Curupixá (Micropholis sp., Itaúba (Mezilaurus sp., Cedrilho (Erisma sp. and Imbúia (Licaria sp., whose botanical identifications were based on anatomical studies. The extracts were prepared with different solvents, analyzed by TLC and UV/VIS techniques, and tested against: Proteus mirabilis ATCC15290, Staphylococcus aureus ATCC25923, Escherichia coli ATCC25922, Enterobacter aerogenes ATCC13048, Micrococcus luteus ATCC9341, Klebsiella pneumoniae ATCC13883, Pseudomonas aeroginosa ATCC27853, Staphylococcus aureus, Streptococcus mutans and Bacillus cereus isolated from the clinic. The ethanol extract from Peroba-rosa containing alkaloids showed activity against P. mirabilis. Itaúba, Jatobá and Imbúia methanol extracts containing phenolics, and the Roxinho ethyl acetate extract containing terpenoids and phenolics were active against K. pneumoniae, M. luteus, E. coli, S. aureus and P. mirabilis. P. aeroginosa, S. mutans and E. aerogenes were resistant to the extracts.Este estudo visa a caracterização química e a avaliação da atividade antimicrobiana de extratos obtidos a partir de rejeitos resultantes do beneficiamento de madeiras nobres comercializadas no Paraná: Peroba-Rosa (Aspidosperma sp., Roxinho (Peltogyne sp., Jatobá (Hymenaea sp., Curupixá (Micropholis sp., Itaúba (Mezilaurus sp., Cedrilho (Erisma sp. e Imbúia-do-Norte (Licaria sp., cujas identificações botânicas basearam-se em estudos anatômicos. Os extratos foram preparados com diversos solventes, analisados por CCD e espectrometria UV/VIS, testando-se contra: Proteus mirabilis ATCC15290, Escherichia coli ATCC25922, Enterobacter aerogenes ATCC13048, Staphylococcus aureus ATCC25923, Micrococcus luteus ATCC9341, Klebsiella pneumoniae ATCC13883

  3. Chemical characterization and biological activity of Chaga (Inonotus obliquus), a medicinal “mushroom”

    OpenAIRE

    Glamočlija, Jasmina; Ćirić, Ana; Nikolić, Miloš; Fernandes, Ângela; Barros, Lillian; Ricardo C. Calhelha; Ferreira, Isabel C.F.R.; Soković, Marina; Van Griensven, Leo J. L. D.

    2015-01-01

    Chemical composition and biological properties of aqueous and ethanolic extracts of Inonotus obliquus (Pers.:Fr.) Pilat from different origins, i.e. of Finland, Russia, and Thailand, were studied. Concerning biological activity, antimicrobial, antiqourum, antioxidative, and antitumor and cytotoxic effects were tested. Oxalic acid was found as the main organic acid, with the highest amount in Russian aqueous extract. Gallic, protocatechuic and p-hydroxybenzoic acids were detected in all sample...

  4. Characterization of PAH-contaminated soils focusing on availability, chemical composition and biological effects

    OpenAIRE

    Bergknut, Magnus

    2006-01-01

    The risks associated with a soil contaminated by polycyclic aromatic hydrocarbons (PAHs) are generally assessed by measuring individual PAHs in the soil and correlating the obtained amounts to known adverse biological effects of the PAHs. The validity of such a risk estimation is dependent on the presence of additional compounds, the availability of the compounds (including the PAHs), and the methods used to correlate the measured chemical data and biological effects. In the work underlying t...

  5. Miniaturized droplets-based microarray of chemical and biological high-throughput tests

    OpenAIRE

    Neto, Ana I.; Correia, Clara R.; Custódio, Catarina A.; Mano, J.F

    2013-01-01

    Publicado em "Journal of Tissue Engineering and Regenerative Medicine, vol. 7, supp. 1 (2013) The development of high-throughput and combinatorial technologies is helping to speed up research that is applicable in many areas of chemistry, engineering and biology. We propose a simple, versatile high-efficient and new superhydrophobic platform, which permits to arrange of quasi-spherical aqueous-based droplets with the capability to support and monitor a series of chemical/biolog...

  6. Chemical denaturation as a tool in the formulation optimization of biologics

    OpenAIRE

    Freire, Ernesto; Schön, Arne; Hutchins, Burleigh M.; Brown, Richard K

    2013-01-01

    Biologics have become the fastest growing segment in the pharmaceutical industry. As is the case with all proteins, biologics are susceptible to denature or to aggregate; conditions that, if present, preclude their use as pharmaceuticals. Identifying the solvent conditions that maximize their structural stability is crucial during development. Since the structural stability of a protein is susceptible to different chemical and physical conditions, the use of several complementary techniques c...

  7. The effect of biological and chemical additives on the chemical composition and fermentation process of Dactylis glomerata silage

    Directory of Open Access Journals (Sweden)

    Jhonny E. Alba-Mejía

    2016-06-01

    Full Text Available This study was carried out to determine the chemical composition, silage quality and ensilability of ten cocksfoot cultivars using biological and chemical silage additives. The plant material was harvested from the first and second cut, cultivated at the Research Station of Fodder Crops in Vatín, Czech Republic. Wilted forage was chopped and ensiled in mini-silos with 3 replicates per treatment. The treatments were: 1 without additives, used as a control; 2 with bacterial inoculants; and 3 with chemical preservatives. The results indicated that the year factor (2012-2013 influenced significantly the chemical composition of the silage in both cuts. The use of biological inoculants reduced the content of crude fibre and acid detergent fibre; but it did not influence the content of neutral detergent fibre, in comparison with the control silage in both cuts. Furthermore, the application of biological inoculants reduced the concentration of lactic acid (LA and acetic acid (AA in contrast to the control silage in the first cut. Moreover, in the second cut the same values tended to be the opposite. Interestingly, ‘Amera’ was the unique variety that presented a high concentration of butyric acid (0.2% in comparison with other varieties in the first cut. In conclusion, the biological inoculants had a favourable effect on silage fermentation. Notably, only ‘Greenly’ and ‘Starly’ varieties from the first cut; and ‘Greenly’, ‘Sw-Luxor’, and ‘Otello’ varieties from the second cut were appropriate for ensiling because their pH-values; LA and AA concentrations were ideal according to the parameters of the fermentation process.

  8. Physical, chemical and biological characterization of the sanitary landfill leachate in Limeira-SP city.

    Directory of Open Access Journals (Sweden)

    Ronaldo Teixeira Pelegrini

    2007-07-01

    Full Text Available This work presents an evaluation of the physical, chemical and biological characteristics of the waste leachate originated from solids waste mass and after permanence in average of 24 hours in the captation pond, which is located on the sanitary landfill in Limeira-SP. The points were denominated Point 0: entrance of leachate in natura in the pond and Point 1: exit of leachate from the pond. The study was accomplished through of the monitoring of physical (pH, color, turbidity, conductivity and temperature, chemical (alkalinity, acidity, phosphorus, amoniacal nitrogen, nitrite, nitrate and TOC and biological (heterotrophic bacterial parameters during a period of 50 days.

  9. Metabolic Engineering for Production of Biorenewable Fuels and Chemicals: Contributions of Synthetic Biology

    Directory of Open Access Journals (Sweden)

    Laura R. Jarboe

    2010-01-01

    Full Text Available Production of fuels and chemicals through microbial fermentation of plant material is a desirable alternative to petrochemical-based production. Fermentative production of biorenewable fuels and chemicals requires the engineering of biocatalysts that can quickly and efficiently convert sugars to target products at a cost that is competitive with existing petrochemical-based processes. It is also important that biocatalysts be robust to extreme fermentation conditions, biomass-derived inhibitors, and their target products. Traditional metabolic engineering has made great advances in this area, but synthetic biology has contributed and will continue to contribute to this field, particularly with next-generation biofuels. This work reviews the use of metabolic engineering and synthetic biology in biocatalyst engineering for biorenewable fuels and chemicals production, such as ethanol, butanol, acetate, lactate, succinate, alanine, and xylitol. We also examine the existing challenges in this area and discuss strategies for improving biocatalyst tolerance to chemical inhibitors.

  10. Biologically inspired large scale chemical sensor arrays and embedded data processing

    Science.gov (United States)

    Marco, S.; Gutiérrez-Gálvez, A.; Lansner, A.; Martinez, D.; Rospars, J. P.; Beccherelli, R.; Perera, A.; Pearce, T.; Vershure, P.; Persaud, K.

    2013-05-01

    Biological olfaction outperforms chemical instrumentation in specificity, response time, detection limit, coding capacity, time stability, robustness, size, power consumption, and portability. This biological function provides outstanding performance due, to a large extent, to the unique architecture of the olfactory pathway, which combines a high degree of redundancy, an efficient combinatorial coding along with unmatched chemical information processing mechanisms. The last decade has witnessed important advances in the understanding of the computational primitives underlying the functioning of the olfactory system. EU Funded Project NEUROCHEM (Bio-ICT-FET- 216916) has developed novel computing paradigms and biologically motivated artefacts for chemical sensing taking inspiration from the biological olfactory pathway. To demonstrate this approach, a biomimetic demonstrator has been built featuring a large scale sensor array (65K elements) in conducting polymer technology mimicking the olfactory receptor neuron layer, and abstracted biomimetic algorithms have been implemented in an embedded system that interfaces the chemical sensors. The embedded system integrates computational models of the main anatomic building blocks in the olfactory pathway: the olfactory bulb, and olfactory cortex in vertebrates (alternatively, antennal lobe and mushroom bodies in the insect). For implementation in the embedded processor an abstraction phase has been carried out in which their processing capabilities are captured by algorithmic solutions. Finally, the algorithmic models are tested with an odour robot with navigation capabilities in mixed chemical plumes

  11. Health Outcomes of Exposure to Biological and Chemical Components of Inhalable and Respirable Particulate Matter.

    Science.gov (United States)

    Morakinyo, Oyewale Mayowa; Mokgobu, Matlou Ingrid; Mukhola, Murembiwa Stanley; Hunter, Raymond Paul

    2016-01-01

    Particulate matter (PM) is a key indicator of air pollution and a significant risk factor for adverse health outcomes in humans. PM is not a self-contained pollutant but a mixture of different compounds including chemical and biological fractions. While several reviews have focused on the chemical components of PM and associated health effects, there is a dearth of review studies that holistically examine the role of biological and chemical components of inhalable and respirable PM in disease causation. A literature search using various search engines and (or) keywords was done. Articles selected for review were chosen following predefined criteria, to extract and analyze data. The results show that the biological and chemical components of inhalable and respirable PM play a significant role in the burden of health effects attributed to PM. These health outcomes include low birth weight, emergency room visit, hospital admission, respiratory and pulmonary diseases, cardiovascular disease, cancer, non-communicable diseases, and premature death, among others. This review justifies the importance of each or synergistic effects of the biological and chemical constituents of PM on health. It also provides information that informs policy on the establishment of exposure limits for PM composition metrics rather than the existing exposure limits of the total mass of PM. This will allow for more effective management strategies for improving outdoor air quality. PMID:27314370

  12. Chemical and Biological Warfare: Should Rapid Detection Techniques Be Researched To Dissuade Usage? A Review

    Directory of Open Access Journals (Sweden)

    Mark R. Hurst

    2005-01-01

    Full Text Available Chemistry, microbiology and genetic engineering have opened new doorways for the human race to propel itself to a better future. However, there is a darker side to Bioengineering. One element of this is the manufacture and proliferation of biological and chemical weapons. It is clearly in the interest of humankind to prevent the future use of such weapons of mass destruction. Though many agents have been proposed as potential biological and chemical weapons, the feasibility of these weapons is a matter of conjecture. The unpredictable and indiscriminate devastation caused by natural epidemics and hazardous chemicals during wartime without medical treatment should warn humans of the dangers of employing them as weapons. This study argues rapid detection techniques may dissuade future use. Many agents are far less toxic to treatment. A quick response time to most attacks will decrease the chances of serious health issues. The agent will be less effective and discourage the attacker from using the weapon. Fortunately, the Chemical and Biological Weapons Convention (CWCIBWC allows defensive work in the area of biological and chemical weapons. Consequently, the review will discuss history, delivery/dispersal systems and specific agents of the warfare. The study presents current developments in biosensors for toxic materials of defense interest. It concludes with future directions for biosensor development.

  13. Establishing an International Soil Modelling Consortium

    Science.gov (United States)

    Vereecken, Harry; Schnepf, Andrea; Vanderborght, Jan

    2015-04-01

    Soil is one of the most critical life-supporting compartments of the Biosphere. Soil provides numerous ecosystem services such as a habitat for biodiversity, water and nutrients, as well as producing food, feed, fiber and energy. To feed the rapidly growing world population in 2050, agricultural food production must be doubled using the same land resources footprint. At the same time, soil resources are threatened due to improper management and climate change. Soil is not only essential for establishing a sustainable bio-economy, but also plays a key role also in a broad range of societal challenges including 1) climate change mitigation and adaptation, 2) land use change 3) water resource protection, 4) biotechnology for human health, 5) biodiversity and ecological sustainability, and 6) combating desertification. Soils regulate and support water, mass and energy fluxes between the land surface, the vegetation, the atmosphere and the deep subsurface and control storage and release of organic matter affecting climate regulation and biogeochemical cycles. Despite the many important functions of soil, many fundamental knowledge gaps remain, regarding the role of soil biota and biodiversity on ecosystem services, the structure and dynamics of soil communities, the interplay between hydrologic and biotic processes, the quantification of soil biogeochemical processes and soil structural processes, the resilience and recovery of soils from stress, as well as the prediction of soil development and the evolution of soils in the landscape, to name a few. Soil models have long played an important role in quantifying and predicting soil processes and related ecosystem services. However, a new generation of soil models based on a whole systems approach comprising all physical, mechanical, chemical and biological processes is now required to address these critical knowledge gaps and thus contribute to the preservation of ecosystem services, improve our understanding of climate

  14. Compound Activity Mapping: Integrating Chemical and Biological Profiling for the Functional Annotation of Natural Product Libraries

    OpenAIRE

    Kurita, Kenji Long

    2015-01-01

    Natural products research has had a significant impact on human-health and our understanding of the natural world as a pillar of pharmacognosy, organic chemistry, ecology, and chemical biology. But while this science has yielded countless discoveries such as penicillin, taxol, and artimesinin and will continue to improve quality of life around the world, the idea that natural products is a panacea of chemical diversity has been challenged by problems including the endless rediscovery of known...

  15. Integrated biological chemical approach for the identification of polyaromatic mutagens in surface waters

    OpenAIRE

    GALLAMPOIS Christine

    2012-01-01

    Surface waters are essential for human life, to supply of drinking water and as an important resource for agricultural, industrial and recreational activities. However, tonnes of pollutants enter these surface waters every year. Amongst the substances discharged into the environment, a large number are known to be mutagenic. Effect-directed analysis (EDA) is a tool to identify chemicals responsible for the observed toxic effects. It is based on a combination of chemical and biological analysi...

  16. Effect of Organic Amendments and Inorganic Nitrogen on Biological and Chemical Degradation of Atrazine in Soil

    OpenAIRE

    E Ranjbar; G.H. Haghnia; A. Lakzian; A Fotovat

    2010-01-01

    This study was conducted to compare the impact of various organic amendments with different C/N ratios and chemical compositions on biological and chemical degradation of Atrazine in sterile and non-sterile soils. The experiment was carried out in a factorial arrangement (2×6×2) including two soil types (sterile and non sterile soils), six types of organic amendments (vermicompost, cow manure, glucose, starch and sawdust and without organic matter) and two levels of inorganic nitrogen fertili...

  17. Degradation of Refractory Organic Compounds in Aqueous Wastes employing a combination of biological and chemical treatments

    OpenAIRE

    Chindris, Anuta

    2011-01-01

    In this study the removal of refractory organic compounds (ROCs) in Aqueous Wastes (AW) employing a combination of biological and chemical treatment were investigated at Department of Chemical Engineering and Materials Science, University of Cagliari, Italy and Department of Engineering, Oxford University, UK. The main objectives were to stimulate and optimise the degradation of ROCs with efficient removal of them in AW. This project is divided in two sections, a theoreti...

  18. [Biological, chemical, and radiation factors in the classification of medical waste].

    Science.gov (United States)

    Rusakov, N V; Korotkova, G I; Orlov, A Iu; Kadyrov, D E

    2011-01-01

    The current classification of medical waste does not consider the sanitary-and-chemical hazard of epidemiologically dangerous and extremely dangerous medical waste (classes B and C). According to the results of the studies performed, the authors propose the improved classification of medical waste, which makes it possible to take into account not only infectious, radiation, and toxicological, but also sanitary-and-chemical hazards (toxicity, carcinogenicity, mutagenicity, and biological activity) of medical waste. PMID:21901883

  19. Chemical, biological, radiological, and nuclear decontamination: Recent trends and future perspective

    OpenAIRE

    Vinod Kumar; Rajeev Goel; Raman Chawla; Silambarasan, M.; Rakesh Kumar Sharma

    2010-01-01

    Chemical, biological, radiological, and nuclear (CBRN) decontamination is the removal of CBRN material from equipment or humans. The objective of the decontamination is to reduce radiation burden, salvage equipment, and materials, remove loose CBRN contaminants, and fix the remaining in place in preparation for protective storage or permanent disposal work activities. Decontamination may be carried out using chemical, electrochemical, and mechanical means. Like materials, humans may also be c...

  20. Nonequilibrium thermodynamics transport and rate processes in physical, chemical and biological systems

    CERN Document Server

    Demirel, Yasar

    2014-01-01

    Natural phenomena consist of simultaneously occurring transport processes and chemical reactions. These processes may interact with each other and may lead to self-organized structures, fluctuations, instabilities, and evolutionary systems. Nonequilibrium Thermodynamics, 3rd edition emphasizes the unifying role of thermodynamics in analyzing the natural phenomena. This third edition updates and expands on the first and second editions by focusing on the general balance equations for coupled processes of physical, chemical, and biological systems. The new edition contains a new chapte

  1. Application of synthetic biology for production of chemicals in yeast Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Borodina, Irina; Li, Mingji

    2015-01-01

    biology has the potential to bring down this cost by improving our ability to predictably engineer biological systems. This review highlights synthetic biology applications for design, assembly, and optimization of non-native biochemical pathways in baker's yeast Saccharomyces cerevisiae. We describe...... computational tools for the prediction of biochemical pathways, molecular biology methods for assembly of DNA parts into pathways, and for introducing the pathways into the host, and finally approaches for optimizing performance of the introduced pathways.......Synthetic biology and metabolic engineering enable generation of novel cell factories that efficiently convert renewable feedstocks into biofuels, bulk, and fine chemicals, thus creating the basis for biosustainable economy independent on fossil resources. While over a hundred proof...

  2. IPD-Work consortium

    DEFF Research Database (Denmark)

    Kivimäki, Mika; Singh-Manoux, Archana; Virtanen, Marianna;

    2015-01-01

    of countries. The aim of the consortium is to estimate reliably the associations of work-related psychosocial factors with chronic diseases, disability, and mortality. Our findings are highly cited by the occupational health, epidemiology, and clinical medicine research community. However, some of......Established in 2008 and comprising over 60 researchers, the IPD-Work (individual-participant data meta-analysis in working populations) consortium is a collaborative research project that uses pre-defined meta-analyses of individual-participant data from multiple cohort studies representing a range...... the IPD-Work's findings have also generated disagreement as they challenge the importance of job strain as a major target for coronary heart disease (CHD) prevention, this is reflected in the critical discussion paper by Choi et al (1). In this invited reply to Choi et al, we aim to (i) describe how...

  3. Kansas Wind Energy Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Gruenbacher, Don [Kansas State Univ., Manhattan, KS (United States)

    2015-12-31

    This project addresses both fundamental and applied research problems that will help with problems defined by the DOE “20% Wind by 2030 Report”. In particular, this work focuses on increasing the capacity of small or community wind generation capabilities that would be operated in a distributed generation approach. A consortium (KWEC – Kansas Wind Energy Consortium) of researchers from Kansas State University and Wichita State University aims to dramatically increase the penetration of wind energy via distributed wind power generation. We believe distributed generation through wind power will play a critical role in the ability to reach and extend the renewable energy production targets set by the Department of Energy. KWEC aims to find technical and economic solutions to enable widespread implementation of distributed renewable energy resources that would apply to wind.

  4. The journal of medical chemical, biological and radiological defense, an update

    International Nuclear Information System (INIS)

    The Journal of Medical Chemical, Biological, and Radiological Defense (www.JMedCBR.org) is a peer-reviewed scientific online journal focusing on the biology, chemistry, physiology, toxicology and treatment of exposure to threat agents. JMedCBR provides a central international forum for the publication of current research and development information on medical chemical, biological and radiological defense, as well as training, doctrine, and problems related to chemical, biological and radiological casualties. JMedCBR is sponsored by the US Defense Threat Reduction Agency (DTRA) Chem-Bio Technologies Directorate as part of its scientific outreach program in chemical and biological defense solutions for the Department of Defense. In addition to scientific and medical research, JMedCBR hosts an archive of related papers from authors in the field. Although organized into annual issues, articles are published on the web continuously. The complete JMedCBR is published electronically and is made available to the scientific community free of charge. JMedCBR is committed to providing its readers with quality scientific information and critical analyses. All submissions are peer-reviewed by an editorial board of recognized and respected international scientists who represent expertise in different aspects of medical chemical, biological and radiological defense. Contributions to JMedCBR must be original works of the author(s) and must not have been previously published or simultaneously submitted to other publications. The author(s) transfer the copyright of articles published in JMedCBR to the journal. A copyright transfer form must accompany each manuscript submission. For more information on submitting to JMedCBR, see the Authors' Guide, available at http://www.jmedcbr.org/authorGuide.html.(author)

  5. Nuclear Technology Education Consortium

    International Nuclear Information System (INIS)

    To reinforce the government efforts toward the restoration of nuclear education health, a new concept in post-graduate level training for the nuclear sector has been developed by a strong consortium of UK universities and HE institutions under the title Nuclear Technology Education Consortium (NTEC). The basis of this consortium were designed to meet the UK projected nuclear skills requirements in decommissioning and cleanup, reactor technology, fusion and nuclear medicine. The structure and content of the programme, which leads to qualifications up to master's level in nuclear science and technology, was established following extensive consultations with the UK nuclear sector, including industry, regulators, MoD, NDA, Government Departments and the Cogent Sector Skills Council. The programme is coordinated by the Dalton Nuclear Institute at The University of Manchester. This programme has been approved by the Institution of Mechanical Engineers. Following are the key features of this consortium: - It was only designed to fulfil the needs nuclear sector; - It offers subjects in broad spectrum, from reactor theory through decommissioning to waste disposal and storage, the subject matter being presented by leading specialists in their field; - Each topic is presented in short course format which is ideal for employees within the industry; - It offers part-time basis over a period of three years as well as full-time in one year post-graduate courses in nuclear science and technology; - This programme also covers the Post-graduate Diploma or Post-graduate Certificate opportunity for students; - Individual subjects are presented in 'short course' modular format, providing excellent access to the programme for engineers and managers in full-time employment who wish to advance their skill and knowledge base; - The core of each module is one week of direct teaching at the relevant institution, minimizing the time away from the workplace for an employee whilst maximizing

  6. Comparison of biological and chemical phosphorus removals in continuous and sequencing batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ketchum, L.H.; Irvine, R.L. Jr.; Breyfogle, R.E.; Manning, J.F. Jr.

    1987-01-01

    A full-scale study of phosphorus removal has been conducted at Culver using continuous-flow operation, SBR operation, and several different chemical treatment schemes. A full-scale demonstration of SBR biological phosphorus removal also has been shown to be effective. Four contributing groups of organisms and their roles in biological SBR phosphorus removal have been described: denitrifying organisms, fermentation product-manufacturing organisms, phosphorus- accumulating organisms, and aerobic autotrophs and heterotrophs. The SBR can provide the proper balance of anoxic, anaerobic, and aerobic conditions to allow these group of organisms to successfully remove phosphorus biologically, without chemical addition. Treatment results using various chemicals for phosphorus removal, both during conventional, continuous-flow operation and after the plant was converted for SBR operation, have also been provided for comparison. Effluent phosphorus concentrations were almost identical for each period, except for the period when phosphorus was removed biologically and without any chemical addition when effluent phosphorus concentrations were the lowest. These removals were made as a result of settling alone; no tertiary rapid stand filter was used or required.

  7. Improving integrative searching of systems chemical biology data using semantic annotation

    Directory of Open Access Journals (Sweden)

    Chen Bin

    2012-03-01

    Full Text Available Abstract Background Systems chemical biology and chemogenomics are considered critical, integrative disciplines in modern biomedical research, but require data mining of large, integrated, heterogeneous datasets from chemistry and biology. We previously developed an RDF-based resource called Chem2Bio2RDF that enabled querying of such data using the SPARQL query language. Whilst this work has proved useful in its own right as one of the first major resources in these disciplines, its utility could be greatly improved by the application of an ontology for annotation of the nodes and edges in the RDF graph, enabling a much richer range of semantic queries to be issued. Results We developed a generalized chemogenomics and systems chemical biology OWL ontology called Chem2Bio2OWL that describes the semantics of chemical compounds, drugs, protein targets, pathways, genes, diseases and side-effects, and the relationships between them. The ontology also includes data provenance. We used it to annotate our Chem2Bio2RDF dataset, making it a rich semantic resource. Through a series of scientific case studies we demonstrate how this (i simplifies the process of building SPARQL queries, (ii enables useful new kinds of queries on the data and (iii makes possible intelligent reasoning and semantic graph mining in chemogenomics and systems chemical biology. Availability Chem2Bio2OWL is available at http://chem2bio2rdf.org/owl. The document is available at http://chem2bio2owl.wikispaces.com.

  8. Combined biological and physico-chemical treatment of filtered pig manure wastewater : pilot investigations

    NARCIS (Netherlands)

    Kalyuzhnyi, S.; Sklyar, V.; Epov, A.; Archipchenko, I.; Barboulina, I.; Orlova, O.; Klapwijk, A.

    2002-01-01

    Combined biological and physico-chemical treatment of filtered pig manure wastewater has been investigated on the pilot installation operated under ambient temperatures (15-20°C) and included: i) UASB-reactor for elimination of major part of COD from the filtrate; (ii) stripper of CO2 fluidised bed

  9. The search for life's origins: Progress and future directions in planetary biology and chemical evolution

    Science.gov (United States)

    1990-01-01

    The current state is reviewed of the study of chemical evolution and planetary biology and the probable future is discussed of the field, at least for the near term. To this end, the report lists the goals and objectives of future research and makes detailed, comprehensive recommendations for accomplishing them, emphasizing those issues that were inadequately discussed in earlier Space Studies Board reports.

  10. Knowledge and Awareness Concerning Chemical and Biological Terrorism: Continuing Education Implications.

    Science.gov (United States)

    Rose, Molly A.; Larrimore, Karen L.

    2002-01-01

    Nurses, physicians, and nursing and medical students (n=291) were surveyed about their awareness of chemical and biological terrorism. Infection control personnel and nurse educators (n=24) were surveyed about terrorism preparation. Fewer than one-quarter of questions were answered correctly, and only about 23% reported confidence in the ability…

  11. Natural product diversity and its role in chemical biology and drug discovery

    OpenAIRE

    Hong, Jiyong

    2011-01-01

    Through the natural selection process, natural products possess a unique and vast chemical diversity and have been evolved for optimal interactions with biological macromolecules. Owing to their diversity, target affinity, and specificity, natural products have demonstrated enormous potential as modulators of biomolecular function, been an essential source for drug discovery, and provided design principles for combinatorial library development.

  12. Chemical and biological extraction of metals present in E waste: A hybrid technology

    International Nuclear Information System (INIS)

    Highlights: ► Hybrid methodology for E waste management. ► Efficient extraction of metals. ► Trace metal extraction is possible. - Abstract: Management of metal pollution associated with E-waste is widespread across the globe. Currently used techniques for the extraction of metals from E-waste by using either chemical or biological leaching have their own limitations. Chemical leaching is much rapid and efficient but has its own environmental consequences, even the future prospects of associated nanoremediation are also uncertain. Biological leaching on the other hand is comparatively a cost effective technique but at the same moment it is time consuming and the complete recovery of the metal, alone by biological leaching is not possible in most of the cases. The current review addresses the individual issues related to chemical and biological extraction techniques and proposes a hybrid-methodology which incorporates both, along with safer chemicals and compatible microbes for better and efficient extraction of metals from the E-waste.

  13. Selective Chemical-Lithographic Reaction Techniques Using Radiation Technology for Biological Application

    International Nuclear Information System (INIS)

    This report, titled 'selective Chemical-Lithographic Reaction Techniques Using Radiation Technology for Biological Application' contains a research summary, 1) development of selective reaction technology using irradiation of electron beams, 2) preparation of functional surfaces using selective radiation technology on carbon-based nanomaterials, and 3) development of bio-applicable biochips using combinatorial surface modification

  14. Chemical composition and biological activity of the essential oil of rhizome of Zingiber zerumbet (L.) smith

    Science.gov (United States)

    Technical Abstract: The aim was designed to study the biological activity and chemical composition of essential oil of Zingiber zerumbet (L.) Smith. The essential oil extracted from the rhizome of the plant was analysed by gas chromatography-mass spectroscopy and its major components amounting t...

  15. Weapons of mass destruction: Overview of the CBRNEs (Chemical, Biological, Radiological, Nuclear, and Explosives).

    Science.gov (United States)

    Prockop, Leon D

    2006-11-01

    The events of September 11, 2001, made citizens of the world acutely aware of disasters consequent to present-day terrorism. This is a war being waged for reasons obscure to many of its potential victims. The term "NBCs" was coined in reference to terrorist weapons of mass destruction, i.e., nuclear, biological and chemical. The currently accepted acronym is "CBRNE" which includes Chemical, Biological, Radiological, Nuclear, and Explosive weapons. Non-nuclear explosives are the most common terrorist weapon now in use. Nuclear and radiological weapons are beyond the scope of this publication, which focuses on the "CBEs", i.e. chemical, biological and explosive weapons. Although neurologists will not be the first responders to CBEs, they must know about the neurological effects in order to provide diagnosis and treatment to survivors. Neurological complications of chemical, biological and explosive weapons which have or may be used by terrorists are reviewed by international experts in this publication. Management and treatment profiles are outlined. PMID:16920155

  16. PERFORMANCE OF NORTH AMERICAN BIOREACTOR LANDFILLS: II. CHEMICAL AND BIOLOGICAL CHARACTERISTICS

    Science.gov (United States)

    The objective of this research was to examine the performance of five North American bioreactor landfills. This paper represents the second of a two part series and addresses biological and chemical aspects of bioreactor performance including gas production and management, and l...

  17. Quantum chemical methods for the investigation of photoinitiated processes in biological systems: theory and applications.

    Science.gov (United States)

    Dreuw, Andreas

    2006-11-13

    With the advent of modern computers and advances in the development of efficient quantum chemical computer codes, the meaningful computation of large molecular systems at a quantum mechanical level became feasible. Recent experimental effort to understand photoinitiated processes in biological systems, for instance photosynthesis or vision, at a molecular level also triggered theoretical investigations in this field. In this Minireview, standard quantum chemical methods are presented that are applicable and recently used for the calculation of excited states of photoinitiated processes in biological molecular systems. These methods comprise configuration interaction singles, the complete active space self-consistent field method, and time-dependent density functional theory and its variants. Semiempirical approaches are also covered. Their basic theoretical concepts and mathematical equations are briefly outlined, and their properties and limitations are discussed. Recent successful applications of the methods to photoinitiated processes in biological systems are described and theoretical tools for the analysis of excited states are presented. PMID:17009357

  18. Chemical or Biological Terrorist Attacks: An Analysis of the Preparedness of Hospitals for Managing Victims Affected by Chemical or Biological Weapons of Mass Destruction

    OpenAIRE

    Bennett, Russell L.

    2006-01-01

    The possibility of a terrorist attack employing the use of chemical or biological weapons of mass destruction (WMD) on American soil is no longer an empty threat, it has become a reality. A WMD is defined as any weapon with the capacity to inflict death and destruction on such a massive scale that its very presence in the hands of hostile forces is a grievous threat. Events of the past few years including the bombing of the World Trade Center in 1993, the Murrah Federal Building in Oklahoma C...

  19. Total, chemical, and biological oxygen consumption of the sediments in the Ziya River watershed, China.

    Science.gov (United States)

    Rong, Nan; Shan, Baoqing

    2016-07-01

    Sediment oxygen demand (SOD) is a critical dissolved oxygen (DO) sink in many rivers. Understanding the relative contributions of the biological and chemical components of SOD would improve our knowledge of the potential environmental harm SOD could cause and allow appropriate management systems to be developed. A various inhibitors addition technique was conducted to measure the total, chemical, and biological SOD of sediment samples from 13 sites in the Ziya River watershed, a severely polluted and anoxic river system in the north of China. The results showed that the major component of SOD was chemical SOD due to iron predominate. The ferrous SOD accounted for 21.6-78.9 % of the total SOD and 33.26-96.79 % of the chemical SOD. Biological SOD represented 41.13 % of the overall SOD averagely. Sulfide SOD accounted for 1.78-45.71 % of the total SOD and it was the secondary predominate of the chemical SOD. Manganous SOD accounted for 1.2-16.6 % of the total SOD and it was insignificant at many sites. Only four kinds of benthos were collected in the Ziya River watershed, resulting from the low DO concentration in the sediment surface due to SOD. This study would be helpful for understanding and preventing the potential sediment oxygen depletion during river restoration. PMID:27026547

  20. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals

    DEFF Research Database (Denmark)

    Jullesson, David; David, Florian; Pfleger, Brian;

    2015-01-01

    Industrial bio-processes for fine chemical production are increasingly relying on cell factories developed through metabolic engineering and synthetic biology. The use of high throughput techniques and automation for the design of cell factories, and especially platform strains, has played an imp...... chemicals that have reached the market, key metabolic engineering tools that have allowed this to happen and some of the companies that are currently utilizing these technologies for developing industrial production processes.......Industrial bio-processes for fine chemical production are increasingly relying on cell factories developed through metabolic engineering and synthetic biology. The use of high throughput techniques and automation for the design of cell factories, and especially platform strains, has played an...... important role in the transition from laboratory research to industrial production. Model organisms such as Saccharomyces cerevisiae and Escherichia coli remain widely used host strains for industrial production due to their robust and desirable traits. This review describes some of the bio-based fine...

  1. Surface-enhanced Raman scattering (SERS) detection for chemical and biological agents

    Science.gov (United States)

    Yan, Fei; Stokes, David L.; Wabuyele, Musundi B.; Griffin, Guy D.; Vass, Arpad A.; Vo-Dinh, Tuan

    2004-07-01

    Surface-enhanced Raman scattering (SERS) spectra of chemical agent simulants such as dimethyl methylphonate (DMMP), pinacolyl methylphosphonate (PMP), diethyl phosphoramidate (DEPA), and 2-chloroethyl ethylsulfide (CEES), and biological agent simulants such as bacillus globigii (BG), erwinia herbicola (EH), and bacillus thuringiensis (BT) were obtained from silver oxide film-deposited substrates. Thin AgO films ranging in thickness from 50 nm to 250 nm were produced by chemical bath deposition onto glass slides. Further Raman intensity enhancements were noticed in UV irradiated surfaces due to photo-induced Ag nanocluster formation, which may provide a possible route to producing highly useful plasmonic sensors for the detection of chemical and biological agents upon visible light illumination.

  2. Evaluation of the biological treatment for removal of color indigo textile industrial waste water by a microbial consortium in fluidized bed

    International Nuclear Information System (INIS)

    Water has been one of the most affected by industrialization and the development of the textile sector. Medellin is the fashion capital of Colombia and city daily use cleaners dedicated to clothing indigo dyeing. They are major consumers of ground and drinking water. Water is used with minimal consciousness, its increased raw material and which generates high monthly costs. This study was built (RLF) fluidized bed reactor. The anthracite was used as support material for investigating the efficiency removed of the chemical oxygen demand (COD), demand biochemical oxygen (BOD) and color of simulated textile wastewater. Following studies at laboratory scale were initially made to prepare the immobilization of microorganisms in the middle of solid support and periods of start-up and operation of the pilot plant testing: bioaugmentating and bioadaptacion seed taken from textile effluent and removal of color in discontinuous reactor. The results indicated that it is possible to achieve aerobic treatment of textile waste water after obtaining an inoculum adapted to sources of carbon of surfactants, and Indigo.

  3. The PlaNet Consortium: A Network of European Plant Databases Connecting Plant Genome Data in an Integrated Biological Knowledge Resource

    Directory of Open Access Journals (Sweden)

    K. F. X. Mayer

    2006-04-01

    Full Text Available The completion of the Arabidopsis genome and the large collections of other plant sequences generated in recent years have sparked extensive functional genomics efforts. However, the utilization of this data is inefficient, as data sources are distributed and heterogeneous and efforts at data integration are lagging behind. PlaNet aims to overcome the limitations of individual efforts as well as the limitations of heterogeneous, independent data collections. PlaNet is a distributed effort among European bioinformatics groups and plant molecular biologists to establish a comprehensive integrated database in a collaborative network. Objectives are the implementation of infrastructure and data sources to capture plant genomic information into a comprehensive, integrated platform. This will facilitate the systematic exploration of Arabidopsis and other plants. New methods for data exchange, database integration and access are being developed to create a highly integrated, federated data resource for research. The connection between the individual resources is realized with BioMOBY. BioMOBY provides an architecture for the discovery and distribution of biological data through web services. While knowledge is centralized, data is maintained at its primary source without a need for warehousing. To standardize nomenclature and data representation, ontologies and generic data models are defined in interaction with the relevant communities.Minimal data models should make it simple to allow broad integration, while inheritance allows detail and depth to be added to more complex data objects without losing integration. To allow expert annotation and keep databases curated, local and remote annotation interfaces are provided. Easy and direct access to all data is key to the project.

  4. Novel fluorescence-based integrated sensor for chemical and biological agent detection

    Science.gov (United States)

    Frye-Mason, Greg; Leuschen, Martin; Wald, Lara; Paul, Kateri; Hancock, Lawrence F.; Fagan, Steve; Krouse, Justin; Hutchinson, Kira D.

    2004-12-01

    There is a renewed interest in the development of chemical and biological agent sensors due to the increased threat of weapons deployment by terrorist organizations and rogue states. Optically based sensors address the needs of military and homeland security forces in that they are reliable, rapidly deployed, and can provide continuous monitoring with little to no operator involvement. Nomadics has developed optically based chemical weapons sensors that utilize reactive fluorescent chromophores initially developed by Professor Tim Swager at MIT. The chromophores provide unprecedented sensitivity and selectivity toward toxic industrial chemicals and certain chemical weapon agents. The selectivity is based upon the reactivity of the G-class nerve agents (phosphorylation of acetylcholinesterase enzyme) that makes them toxic. Because the sensor recognizes the reactivity of strong electrophiles and not molecular weight, chemical affinity or ionizability, our system detects a specific class of reactive agents and will be able to detect newly developed or modified agents that are not currently known. We have recently extended this work to pursue a combined chemical/biological agent sensor system incorporating technologies based upon novel deep ultraviolet (UV) light emitting diodes (LEDs) developed out of the DARPA Semiconductor UV Optical Sources (SUVOS) program.

  5. Chemical or Biological Terrorist Attacks: An Analysis of the Preparedness of Hospitals for Managing Victims Affected by Chemical or Biological Weapons of Mass Destruction

    Directory of Open Access Journals (Sweden)

    Russell L. Bennett

    2006-03-01

    Full Text Available The possibility of a terrorist attack employing the use of chemical or biological weapons of mass destruction (WMD on American soil is no longer an empty threat, it has become a reality. A WMD is defined as any weapon with the capacity to inflict death and destruction on such a massive scale that its very presence in the hands of hostile forces is a grievous threat. Events of the past few years including the bombing of the World Trade Center in 1993, the Murrah Federal Building in Oklahoma City in 1995 and the use of planes as guided missiles directed into the Pentagon and New York’s Twin Towers in 2001 (9/11 and the tragic incidents involving twentythree people who were infected and five who died as a result of contact with anthrax-laced mail in the Fall of 2001, have well established that the United States can be attacked by both domestic and international terrorists without warning or provocation. In light of these actions, hospitals have been working vigorously to ensure that they would be “ready” in the event of another terrorist attack to provide appropriate medical care to victims. However, according to a recent United States General Accounting Office (GAO nationwide survey, our nation’s hospitals still are not prepared to manage mass causalities resulting from chemical or biological WMD. Therefore, there is a clear need for information about current hospital preparedness in order to provide a foundation for systematic planning and broader discussions about relative cost, probable effectiveness, environmental impact and overall societal priorities. Hence, the aim of this research was to examine the current preparedness of hospitals in the State of Mississippi to manage victims of terrorist attacks involving chemical or biological WMD. All acute care hospitals in the State were selected for inclusion in this study. Both quantitative and qualitative methods were utilized for data collection

  6. A coupled physical-biological-chemical model for the Indian Ocean

    Indian Academy of Sciences (India)

    P S Swathi; M K Sharada; K S Yajnik

    2000-12-01

    A coupled physical-biological-chemical model has been developed at C-MMACS. for studying the time- variation of primary productivity and air-sea carbon-dioxide exchange in the Indian Ocean. The physical model is based on the Modular Ocean Model, Version 2 (MOM2) and the biological model describes the nonlinear dynamics of a 7-component marine ecosystem. The chemical model includes dynamical equation for the evolution of dissolved inorganic carbon and total alkalinity. The interaction between the biological and chemical model is through the Redfield ratio. The partial pressure of carbon dioxide pCO2 of the surface layer is obtained from the chemical equilibrium equations of Peng et al 1987. Transfer coefficients for air-sea exchange of CO2 are computed dynamically based on the wind speeds. The coupled model reproduces the high productivity observed in the Arabian Sea off the Somali and Omani coasts during the Southwest (SW) monsoon. The entire Arabian Sea is an outgassing region for CO2 in spite of high productivity with transfer rates as high as 80 m-mol C/m2/day during SW monsoon near the Somali Coast on account of strong winds.

  7. Mapping the patent landscape of synthetic biology for fine chemical production pathways.

    Science.gov (United States)

    Carbonell, Pablo; Gök, Abdullah; Shapira, Philip; Faulon, Jean-Loup

    2016-09-01

    A goal of synthetic biology bio-foundries is to innovate through an iterative design/build/test/learn pipeline. In assessing the value of new chemical production routes, the intellectual property (IP) novelty of the pathway is important. Exploratory studies can be carried using knowledge of the patent/IP landscape for synthetic biology and metabolic engineering. In this paper, we perform an assessment of pathways as potential targets for chemical production across the full catalogue of reachable chemicals in the extended metabolic space of chassis organisms, as computed by the retrosynthesis-based algorithm RetroPath. Our database for reactions processed by sequences in heterologous pathways was screened against the PatSeq database, a comprehensive collection of more than 150M sequences present in patent grants and applications. We also examine related patent families using Derwent Innovations. This large-scale computational study provides useful insights into the IP landscape of synthetic biology for fine and specialty chemicals production. PMID:27489206

  8. Chemical analysis and biological testing of materials from the EDS coal liquefaction process: a status report

    Energy Technology Data Exchange (ETDEWEB)

    Later, D.W.; Pelroy, R.A.; Wilson, B.W.

    1984-05-01

    Representative process materials were obtained from the EDS pilot plant for chemical and biological analyses. These materials were characterized for biological activity and chemical composition using a microbial mutagenicity assay and chromatographic and mass spectrometric analytical techniques. The two highest boiling distillation cuts, as well as process solvent (PS) obtained from the bottoms recycle mode operation, were tested for initiation of mouse skin tumorigenicity. All three materials were active; the crude 800/sup 0 +/F cut was substantially more potent than the crude bottoms recycle PS or 750 to 800/sup 0/F distillate cut. Results from chemical analyses showed the EDS materials, in general, to be more highly alkylated and have higher hydroaromatic content than analogous SRC II process materials (no in-line process hydrogenation) used for comparison. In the microbial mutagenicity assays the N-PAC fractions showed greater activity than did the aliphatic hydrocarbon, hydroxy-PAH, or PAH fractions, although mutagenicity was detected in certain PAH fractions by a modified version of the standard microbial mutagenicity assay. Mutagenic activities for the EDS materials were lower, overall, than those for the corresponding materials from the SRC II process. The EDS materials produced under different operational modes had distinguishable differences in both their chemical constituency and biological activity. The primary differences between the EDS materials studied here and their SRC II counterparts used for comparison are most likely attributable to the incorporation of catalytic hydrogenation in the EDS process. 27 references, 28 figures, 27 tables.

  9. Escalation of terrorism? On the risk of attacks with chemical, biological, radiological and nuclear weapons or materials

    International Nuclear Information System (INIS)

    The report on the risk of attacks with chemical, biological, radiological and nuclear weapons or materials covers the following topics: the variety of terrorism: ethnic-nationalistic, politically motivated, social revolutionary, political extremism, religious fanaticism, governmental terrorism; CBRN (chemical, biological, radiological, nuclear) weapons and materials: their availability and effectiveness in case of use; potential actor groups; prevention and counter measures, emergency and mitigating measures.

  10. Natural products-prompted chemical biology: phenotypic screening and a new platform for target identification.

    Science.gov (United States)

    Kakeya, Hideaki

    2016-05-01

    Covering: 1993 to 2016The exploitation of small molecules from natural sources, such as microbial metabolites, has contributed to the discovery of not only new drugs but also new research tools for chemical biology. My research team has discovered several novel bioactive small molecules using in vivo cell-based phenotypic screening, and has investigated their modes of action using chemical genetics and chemical genomics. This highlight focuses on our recent discoveries and chemical genetics approaches for bioactive microbial metabolites that target cancer cells, the cancer microenvironment and cell membrane signalling. In addition, the development of two new platforms, 5-sulfonyl tetrazole-based and thiourea-modified amphiphilic lipid-based probe technologies, to identify the cellular targets of these molecules is also discussed. PMID:26883503

  11. Drug side-effect prediction based on the integration of chemical and biological spaces.

    Science.gov (United States)

    Yamanishi, Yoshihiro; Pauwels, Edouard; Kotera, Masaaki

    2012-12-21

    Drug side-effects, or adverse drug reactions, have become a major public health concern and remain one of the main causes of drug failure and of drug withdrawal once they have reached the market. Therefore, the identification of potential severe side-effects is a challenging issue. In this paper, we develop a new method to predict potential side-effect profiles of drug candidate molecules based on their chemical structures and target protein information on a large scale. We propose several extensions of kernel regression model for multiple responses to deal with heterogeneous data sources. The originality lies in the integration of the chemical space of drug chemical structures and the biological space of drug target proteins in a unified framework. As a result, we demonstrate the usefulness of the proposed method on the simultaneous prediction of 969 side-effects for approved drugs from their chemical substructure and target protein profiles and show that the prediction accuracy consistently improves owing to the proposed regression model and integration of chemical and biological information. We also conduct a comprehensive side-effect prediction for uncharacterized drug molecules stored in DrugBank and confirm interesting predictions using independent information sources. The proposed method is expected to be useful at many stages of the drug development process. PMID:23157436

  12. Chemical and biological attributes of a lowland soil affected by land leveling

    Directory of Open Access Journals (Sweden)

    José Maria Barbat Parfitt

    2013-11-01

    Full Text Available The objective of this work was to evaluate the relationship between soil chemical and biological attributes and the magnitude of cuts and fills after the land leveling process of a lowland soil. Soil samples were collected from the 0 - 0.20 m layer, before and after leveling, on a 100 point grid established in the experimental area, to evaluate chemical attributes and soil microbial biomass carbon (MBC. Leveling operations altered the magnitude of soil chemical and biological attributes. Values of Ca, Mg, S, cation exchange capacity, Mn, P, Zn, and soil organic matter (SOM decreased in the soil profile, whereas Al, K, and MBC increased after leveling. Land leveling decreased in 20% SOM average content in the 0 - 0.20 m layer. The great majority of the chemical attributes did not show relations between their values and the magnitude of cuts and fills. The relation was quadratic for SOM, P, and total N, and was linear for K, showing a positive slope and indicating increase in the magnitude of these attributes in cut areas and stability in fill areas. The relationships between these chemical attributes and the magnitude of cuts and fills indicate that the land leveling map may be a useful tool for degraded soil recuperation through amendments and organic fertilizers.

  13. On the Need to Establish an International Soil Modeling Consortium

    Science.gov (United States)

    Vereecken, H.; Vanderborght, J.; Schnepf, A.

    2014-12-01

    Soil is one of the most critical life-supporting compartments of the Biosphere. Soil provides numerous ecosystem services such as a habitat for biodiversity, water and nutrients, as well as producing food, feed, fiber and energy. To feed the rapidly growing world population in 2050, agricultural food production must be doubled using the same land resources footprint. At the same time, soil resources are threatened due to improper management and climate change. Despite the many important functions of soil, many fundamental knowledge gaps remain, regarding the role of soil biota and biodiversity on ecosystem services, the structure and dynamics of soil communities, the interplay between hydrologic and biotic processes, the quantification of soil biogeochemical processes and soil structural processes, the resilience and recovery of soils from stress, as well as the prediction of soil development and the evolution of soils in the landscape, to name a few. Soil models have long played an important role in quantifying and predicting soil processes and related ecosystem services. However, a new generation of soil models based on a whole systems approach comprising all physical, mechanical, chemical and biological processes is now required to address these critical knowledge gaps and thus contribute to the preservation of ecosystem services, improve our understanding of climate-change-feedback processes, bridge basic soil science research and management, and facilitate the communication between science and society. To meet these challenges an international community effort is required, similar to initiatives in systems biology, hydrology, and climate and crop research. Our consortium will bring together modelers and experimental soil scientists at the forefront of new technologies and approaches to characterize soils. By addressing these aims, the consortium will contribute to improve the role of soil modeling as a knowledge dissemination instrument in addressing key

  14. A chemical screen for biological small molecule–RNA conjugates reveals CoA-linked RNA

    OpenAIRE

    Kowtoniuk, Walter Eugene; Shen, Yinghua; Heemstra, Jennifer M.; Agarwal, Isha; Liu, David Ruchien

    2009-01-01

    Compared with the rapidly expanding set of known biological roles for RNA, the known chemical diversity of cellular RNA has remained limited primarily to canonical RNA, 3'-aminoacylated tRNAs, nucleobase-modified RNAs, and 5'-capped mRNAs in eukaryotes. We developed two methods to detect in a broad manner chemically labile cellular small molecule-RNA conjugates. The methods were validated by the detection of known tRNA and rRNA modifications. The first method analyzes small molecules cleaved ...

  15. The Chemical Composition and Biological Properties of Coconut (Cocos nucifera L. Water

    Directory of Open Access Journals (Sweden)

    Yan Fei Ng

    2009-12-01

    Full Text Available Coconut water (coconut liquid endosperm, with its many applications, is one of the world’s most versatile natural product. This refreshing beverage is consumed worldwide as it is nutritious and beneficial for health. There is increasing scientific evidence that supports the role of coconut water in health and medicinal applications. Coconut water is traditionally used as a growth supplement in plant tissue culture/micropropagation. The wide applications of coconut water can be justified by its unique chemical composition of sugars, vitamins, minerals, amino acids and phytohormones. This review attempts to summarise and evaluate the chemical composition and biological properties of coconut water.

  16. Chemical and biological toxicity assessment of simulated Hanford site low-level waste grouts

    International Nuclear Information System (INIS)

    Defining the potential damage to the biosphere associated with exposure to low-level waste grouting operations at the Hanford Site near Richland, Washington, is difficult and controversial. Combined chemical and biological assessment of grout toxicity is needed to provide information on the potential risks of animal and plant exposure to the grouts. This paper will identify and predict the chemical components of the grout that will have the greatest potential of causing deleterious effects on fish and wildlife indigenous to the Hanford Site. This paper will also determine whether the current grout technology is adequate in controlling toxicant and pollutant releases for regulatory compliance

  17. Secondary metabolites as potential cancer therapeutic leads : : synthesis and chemical biology of Englerin A and Fusarisetin A

    OpenAIRE

    Caro-Diaz, Eduardo J.E.

    2014-01-01

    Secondary metabolites generated from natural sources such as microbes, fungi, marine fauna and other microorganism have proven to represent a microcosm of chemical diversity and therefore a great source of novel phamacophoric structures. It is without question that nature in its long biological and chemical evolution has gifted us with beautiful molecular architectures with equally important biological function to provide leads into new and potentially useful biologically active molecules. As...

  18. Microbial Consortium with High Cellulolytic Activity (MCHCA for enhanced biogas production.

    Directory of Open Access Journals (Sweden)

    Krzysztof ePoszytek

    2016-03-01

    Full Text Available The use of lignocellulosic biomass as a substrate in agricultural biogas plants is very popular and yields good results. However, the efficiency of anaerobic digestion, and thus biogas production, is not always satisfactory due to the slow or incomplete degradation (hydrolysis of plant matter. To enhance the solubilization of the lignocellulosic biomass various physical, chemical and biological pretreatment methods are used.The aim of this study was to select and characterize cellulose-degrading bacteria, and to construct a microbial consortium, dedicated for degradation of maize silage and enhancing biogas production from this substrate.Over one hundred strains of cellulose-degrading bacteria were isolated from: sewage sludge, hydrolyzer from an agricultural biogas plant, cattle slurry and manure. After physiological characterization of the isolates, sixteen strains (representatives of Bacillus, Providencia and Ochrobactrum genera were chosen for the construction of a Microbial Consortium with High Cellulolytic Activity, called MCHCA. The selected strains had a high endoglucanase activity (exceeding 0.21 IU/mL CMCase activity and a wide range of tolerance to various physical and chemical conditions. Lab-scale simulation of biogas production using the selected strains for degradation of maize silage was carried out in a two-bioreactor system, similar to those used in agricultural biogas plants.The obtained results showed that the constructed MCHCA consortium is capable of efficient hydrolysis of maize silage, and increases biogas production by even 38%, depending on the inoculum used for methane fermentation. The results in this work indicate that the mesophilic Microbial Consortium with High Cellulolytic Activity has a great potential for application on industrial scale in agricultural biogas plants.

  19. HRI catalytic two-stage liquefaction (CTSL) process materials: chemical analysis and biological testing

    Energy Technology Data Exchange (ETDEWEB)

    Wright, C.W.; Later, D.W.

    1985-12-01

    This report presents data from the chemical analysis and biological testing of coal liquefaction materials obtained from the Hydrocarbon Research, Incorporated (HRI) catalytic two-stage liquefaction (CTSL) process. Materials from both an experimental run and a 25-day demonstration run were analyzed. Chemical methods of analysis included adsorption column chromatography, high-resolution gas chromatography, gas chromatography/mass spectrometry, low-voltage probe-inlet mass spectrometry, and proton nuclear magnetic resonance spectroscopy. The biological activity was evaluated using the standard microbial mutagenicity assay and an initiation/promotion assay for mouse-skin tumorigenicity. Where applicable, the results obtained from the analyses of the CTSL materials have been compared to those obtained from the integrated and nonintegrated two-stage coal liquefaction processes. 18 refs., 26 figs., 22 tabs.

  20. Identification of a thienopyrimidine derivatives target by a kinome and chemical biology approach.

    Science.gov (United States)

    Lee, Chulho; Yang, Jee Sun; Han, Gyoonhee

    2015-09-01

    Target identification through chemical biology has been considered one of the most efficient approaches for drug discovery. Thienopyrimidine derivatives were designed to discover potent IκB kinase β (IKKβ) inhibitors based on a known IKKβ inhibitor library. Most of the thienopyrimidine derivatives inhibited nitric oxide and tumor necrosis factor alpha, which are downstream of the NF-κB signaling pathway, but not IKKβ. To identify the appropriate targets of thienopyrimidine analogues, chemical biology approaches, including text mining and a subsequent kinase panel assay from the kinome profiling were used. Based on the results, Fms-like tyrosine kinase 3 was found to be the target for thienopyrimidine derivatives, and was confirmed to be a potent inhibitor for acute myeloid leukemia. PMID:26186885

  1. Total-Internal-Reflection Platforms for Chemical and Biological Sensing Applications

    Science.gov (United States)

    Sapsford, Kim E.

    Sensing platforms based on the principle of total internal reflection (TIR) represent a fairly mature yet still expanding and exciting field of research. Sensor development has mainly been driven by the need for rapid, stand-alone, automated devices for application in the fields of clinical diagnosis and screening, food and water safety, environmental monitoring, and chemical and biological warfare agent detection. The technologies highlighted in this chapter are continually evolving, taking advantage of emerging advances in microfabrication, lab-on-a-chip, excitation, and detection techniques. This chapter describes many of the underlying principles of TIR-based sensing platforms and additionally focusses on planar TIR fluorescence (TIRF)-based chemical and biological sensors.

  2. Chemical and Biological Aspects of Marine Sponges from the Family Mycalidae.

    Science.gov (United States)

    Habener, Leesa J; Hooper, John N A; Carroll, Anthony R

    2016-06-01

    Sponges are a useful source of bioactive natural products. Members of the family Mycalidae, in particular, have provided a variety of chemical structures including alkaloids, polyketides, terpene endoperoxides, peptides, and lipids. This review highlights the compounds isolated from Mycalid sponges and their associated biological activities. A diverse group of 190 compounds have been reported from over 40 specimens contained in 49 references. Over half of the studies have reported on the biological activities for the compounds isolated. The polyketides, in particular the macrolides, displayed potent cytotoxic activities (< 1 µM), and the alkaloids, in particular the 2,5-disubstituted pyrrole derivatives, were associated with moderate cytotoxic activities (1-20 µM). The pyrrole alkaloids and the cyclic peroxides appear to be phylogenetically restricted to sponges and thus might prove useful when applied to sponge taxonomy. The observed diversity of chemical structures suggests this family makes a good target for targeted biodiscovery projects. PMID:27002400

  3. Preparing Federal Coordinating Officers (FCOs) to operate in Chemical, Biological, Radiological, and Nuclear (CBRN) environments

    OpenAIRE

    Russell, Tony.

    2008-01-01

    CHDS State/Local In this thesis the Federal Emergency Management Agency's (FEMA) Federal Coordinating Officer (FCO) function is examined as it relates to Chemical, Biological, Radiological and Nuclear (CBRN) operations. It is suggested that targeted changes can be made to ensure the FCOs are better prepared to manage the additional complexities of a CBRN environment. The changes include addressing the FCOs from the systems approach- internally to improve the FCO personal and professio...

  4. Chemical Composition and Biological Activities of Fragrant Mexican Copal (Bursera spp.

    Directory of Open Access Journals (Sweden)

    Giulia Gigliarelli

    2015-12-01

    Full Text Available Copal is the Spanish word used to describe aromatic resins from several genera of plants. Mexican copal derives from several Bursera spp., Protium copal, some Pinus spp. (e.g., P. pseudostrobus and a few Fabaceae spp. It has been used for centuries as incense for religious ceremonies, as a food preservative, and as a treatment for several illnesses. The aim of this review is to analyze the chemical composition and biological activity of commercial Mexican Bursera copal.

  5. Application of chemical oxidation processes for the removal of pharmaceuticals in biologically treated wastewater

    OpenAIRE

    Hey, Gerly

    2013-01-01

    The discharge of effluents from wastewater treatment plants (WWTPs) is considered to be the major source of residual pharmaceuticals frequently found in aquatic environments. The complex nature of such compounds tends to make conventional biological treatments aimed at their removal ineffective. The present thesis concerns the removal of 62 different active pharmaceutical ingredients commonly detected in Swedish wastewater effluents by means of chemical oxidation techniques. Techniques wit...

  6. Influence of physical and chemical factors on biological leaching process of copper from printed circuit boards

    OpenAIRE

    Willner, J

    2013-01-01

    The article presents the results of the research regarding the biological leaching of this metal from electronic wastes components in the form of printed circuit boards. The purpose of the study was to evaluate the influence of some physical and chemical factors (e.g. pH, oxidation-reduction potential) on bioleaching process and efficiency of copper transfer from solid phase into solution. Bioleaching experiments were carried out with pure cultures of Acidithiobacillus ferrooxidans. The obtai...

  7. Physical-chemical and biological parameters of two neighbouring post-exploitation clay-pits

    Directory of Open Access Journals (Sweden)

    S. Celewicz-Gołdyn

    2006-09-01

    Full Text Available The aim of the study was to determine the physical-chemical and biological (aquatic vegetation cover and plankton structure parameters of two post-exploitation clay-pits. As a result of the study it was found that even though the examined water bodies were situated within a very short distance, were of the same origin and of a similar time of origination, they differed from each other in many aspects.

  8. STUDY OF PHYSIO-CHEMICAL CHARACTERISTICS AND BIOLOGICAL TREATMENT OF MOLASSES-BASED DISTILLERY EFFLUENT

    OpenAIRE

    Anupama Chaudhary* AK Sharma and Birbal Singh

    2013-01-01

    Molasses based distilleries are recognized as of major polluting industries with a large amount of annual effluent production. Modi Distillery, located at Modi Nagar in western Uttar Pradesh, is a molasses-based distillery with a capacity of 26 KLPD. Being an alcohol-processing unit, we estimated capacity and efficiency of Modi distillery that discharges highly polluted effluent to small drainage with a very high biological oxygen demand (BOD) (42,000-51,000mg/ltr) and chemical oxygen demand ...

  9. Biological and chemical behavior of 99m-Tc-MDP complexes

    International Nuclear Information System (INIS)

    Technetium MDP complexes have their usefulness in diagnostic medicine, where when radiolabeled they assist physicians in the early detection of metastatic (cancerous) and inflammatory bone disease. They are also useful therapeutic agents in many disorders of bone mineralization such as osteoporosis and Paget's disease. Understanding the mechanism of diagnostic and therapeutic mode of action relies extensively on the basic science investigations of the chemical and biological behavior of these compounds

  10. One-Dimensional Conducting Polymer Nanostructures for Chemical and Biological Sensor Applications

    OpenAIRE

    Chartuprayoon, Nicha

    2012-01-01

    Despite of their short history, conducting polymers such as polypyrrole (PPy) have emerged as a novel building block for label-free chemiresistive/FET chemical/biological sensors owing to a great environmental stability, active functional monomers for direct covalent immobilization of bioreceptors, remarkable optical, magnetic, and electrical properties like a semiconductor as well as mechanical property and ease of fabrication possessed by polymers. Tunable electrical conductivity can also b...

  11. Physico-Chemical and Biological Parameters of the Three Rural Ponds of Sasaram of Bihar

    Directory of Open Access Journals (Sweden)

    Jyoti Choudhary

    2014-06-01

    Full Text Available Physico chemical and biological parameters of the three rural pond of Sasaram,Bihar has been studied to see the present condition for its better utilization. The study revealed that parameters are within permissible limit for fish culture and the stocking should be done as per the productivity of the water. As per the BOD estimation the ponds falls under moderately polluted category.

  12. Non-covalent interactions and physico-chemical properties of small biological systems : theoretical approaches

    OpenAIRE

    Riffet, Vanessa

    2014-01-01

    The three-dimensional structure and physico-chemical properties of biomolecules such as peptides are not only governed by their elementary composition but also various non-covalent intra-and inter-molecular interactions. The characterization, measurement and effects of these interactions are currently at the center of many researches at the interface between biology and physical chemistry. In this context, the aim of our thesis is a better understanding of these interactions in biomolecules a...

  13. Management of chemical and biological risks in agri-food chain

    OpenAIRE

    Bachev, Hrabrin

    2011-01-01

    Paper presents diverse modes of governance of chemical and biological risks in agri-food sector, assesses their efficiency, complementarities, and challenges, and suggests recommendations for public policies improvement. It defines governance as system of social order responsible for particular behavior of agents; specify various (institutions, market, private, public) mechanisms of risk governance and (natural, technological, behavioral etc.) factors of efficiency; and suggest a framework fo...

  14. An iron-facilitated chemical and biological process for phosphorus removal and recovery during wastewater treatment

    OpenAIRE

    Zhao, Kang; 趙鈧

    2013-01-01

    Phosphorus (P) is an important pollutant of concern in wastewater that causes eutrophication and algal blooms in water body. On the other hand, P is a valuable natural resource for agricultural and industrial use. With the rapid depletion of mineral phosphorus on earth, there is a need to recover phosphorus from wastewater. In this study, a new chemical and biological process facilitated with iron dosing has been developed for P removal and recovery during wastewater treatment. The system con...

  15. The Metal And Sulphate Removal From Mine Drainage Waters By Biological-Chemical Ways

    OpenAIRE

    Jenčárová Jana; Luptáková Alena

    2015-01-01

    Mine drainage waters are often characterized by high concentrations of sulphates and metals as a consequence of the mining industry of sulphide minerals. The aims of this work are to prove some biological-chemical processes utilization for the mine drainage water treatment. The studied principles of contamination elimination from these waters include sulphate reduction and metal bioprecipitation by the application of sulphate-reducing bacteria (SRB). Other studied process was metal sorption b...

  16. Chemical biology of mutagenesis and DNA repair: cellular responses to DNA alkylation

    OpenAIRE

    Shrivastav, Nidhi; Li, Deyu; Essigmann, John M.

    2009-01-01

    The reaction of DNA-damaging agents with the genome results in a plethora of lesions, commonly referred to as adducts. Adducts may cause DNA to mutate, they may represent the chemical precursors of lethal events and they can disrupt expression of genes. Determination of which adduct is responsible for each of these biological endpoints is difficult, but this task has been accomplished for some carcinogenic DNA-damaging agents. Here, we describe the respective contributions of specific DNA les...

  17. Physical-chemical and biological parameters of two neighbouring post-exploitation clay-pits

    OpenAIRE

    S. Celewicz-Gołdyn; B. Nagengast; N. Kuczyńska-Kippen

    2006-01-01

    The aim of the study was to determine the physical-chemical and biological (aquatic vegetation cover and plankton structure) parameters of two post-exploitation clay-pits. As a result of the study it was found that even though the examined water bodies were situated within a very short distance, were of the same origin and of a similar time of origination, they differed from each other in many aspects.

  18. Chemical and biological evolution of (U-14C)phenol sorbed on activated carbon

    International Nuclear Information System (INIS)

    Methods describing the chemical and biological evolution of (U-14C)phenol adsorbed on activated carbon are given with or without the use of bacteria. Without bacteria, the (U-14C)phenol initially adsorbed is not removed from the carbon after adding a solution of unlabelled phenol through the column for eight days. With bacteria, the (U-14C)phenol initially present, is removed (60-70%) from activated carbon with a solution containing unlabelled phenol, nitrogen and phosphorus. (author)

  19. Chemical Composition and Biological Activities of Fragrant Mexican Copal (Bursera spp.)

    OpenAIRE

    Giulia Gigliarelli; Becerra, Judith X.; Massimo Curini; Maria Carla Marcotullio

    2015-01-01

    Copal is the Spanish word used to describe aromatic resins from several genera of plants. Mexican copal derives from several Bursera spp., Protium copal, some Pinus spp. (e.g., P. pseudostrobus) and a few Fabaceae spp. It has been used for centuries as incense for religious ceremonies, as a food preservative, and as a treatment for several illnesses. The aim of this review is to analyze the chemical composition and biological activity of commercial Mexican Bursera copal.

  20. Gold nanoparticle wire and integrated wire array for electronic detection of chemical and biological molecules

    OpenAIRE

    J. J. Diao; Qing Cao

    2011-01-01

    Nanoparticle wire and integrated nanoparticle wire array have been prepared through a green technique: discontinuous vertical evaporation-driven colloidal deposition. The conducting gold nanoparticle wire made by this technique shows ability for the sensitive electronic detection of chemical and biological molecules due to its high surface to volume ratio. Furthermore, we also demonstrate a potential usage of integrated gold nanoparticle wire array for the localized detection.

  1. Gold nanoparticle wire and integrated wire array for electronic detection of chemical and biological molecules

    Directory of Open Access Journals (Sweden)

    J. J. Diao

    2011-03-01

    Full Text Available Nanoparticle wire and integrated nanoparticle wire array have been prepared through a green technique: discontinuous vertical evaporation-driven colloidal deposition. The conducting gold nanoparticle wire made by this technique shows ability for the sensitive electronic detection of chemical and biological molecules due to its high surface to volume ratio. Furthermore, we also demonstrate a potential usage of integrated gold nanoparticle wire array for the localized detection.

  2. Editorial : special Issue contributed by the 10th International Chemical and Biological Engineering Conference - CHEMPOR 2008

    OpenAIRE

    Ferreira, E. C.; Mota, M.

    2009-01-01

    The 10th International Chemical and Biological Engineering Conference - CHEMPOR 2008, was held in Braga, Portugal, from the 4th to the 6th of September, 2008. The conference was jointly organized by the University of Minho, the “Ordem dos Engenheiros,” and the Institute for Biotechnology and Bioengineeing, with the support of “Sociedade Portuguesa de Qu´ımica” and “Sociedade Portuguesa de Biotecnologia”. The CHEMPOR series traditionally brings together both young and establishe...

  3. Artificial Cell Research as a Field that Connects Chemical, Biological and Philosophical Questions.

    Science.gov (United States)

    Deplazes-Zemp, Anna

    2016-01-01

    This review article discusses the interdisciplinary nature and implications of artificial cell research. It starts from two historical theories: Gánti's chemoton model and the autopoiesis theory by Maturana and Varela. They both explain the transition from chemical molecules to biological cells. These models exemplify two different ways in which disciplines of chemistry, biology and philosophy can profit from each other. In the chemoton model, conclusions from one disciplinary approach are relevant for the other disciplines. In contrast, the autopoiesis model itself (rather than its conclusions) is transferred from one discipline to the other. The article closes by underpinning the relevance of artificial cell research for philosophy with reference to the on-going philosophical debates on emergence, biological functions and biocentrism. PMID:27363375

  4. The Neuroscience Peer Review Consortium

    Directory of Open Access Journals (Sweden)

    Maunsell John HR

    2009-03-01

    Full Text Available Abstract As the Neuroscience Peer Review Consortium (NPRC ends its first year, it is worth looking back to see how the experiment has worked. In order to encourage dissemination of the details outlined in this Editorial, it will also be published in other journals in the Neuroscience Peer Review Consortium.

  5. Chemical and biological sensors based on optically confined birefringent chalcopyrite heterostructures

    International Nuclear Information System (INIS)

    This paper introduces and discusses the design and application(s) of a new and unique integrated solid-state molecular sensor (SSMS) system. The SSMS is based on optically confined birefringent heterostructure technology, which has the capability of recognizing target chemicals and biological molecules in an ambient environment. The SSMS technology is applicable for miniaturized sensor devices that can be used for quick, remote screening and recognition of chemical hazards in the environment. For example, trace impurities related to air/water pollution can be continuously monitored. Just as important, however, the SSMS technology will have a worldwide impact--economically as well as technologically--when used in the detection of chemical and biological agents, as well as for a variety of medical sensing applications, such as to identify and monitor complex biological structures, test for allergic reactions and screen for common diseases. Moreover, it could hasten the time of development and introduction into the marketplace of critically needed new drugs by the monitoring of biochemical and molecular cellular responses to the candidate drugs. Materials selection criteria, growth parameters and device architecture requirements are given and discussed. In addition, the results of a recent phase matching calculation, substantiating the feasibility of the SSMS, are given and discussed

  6. Chemical and biological characterization of residential oil burner emission. A literature survey

    International Nuclear Information System (INIS)

    This literature study covers the time period 1980 to 1993 and is concerned with oil burners used for residential heating with a nominal heating power of less than 20 kW, which are normally used in one-family houses. Emission samples from domestic heaters using organic fuels consists of a very complex matrix of pollutants ranging from aggregate states solid to gaseous. Biological effects elicited by exhaust emissions have been detected and determined. It has been shown for diesel vehicles that selection of fuel properties has an impact on combustion reaction paths which results in different exhaust chemical compositions. It was also determined that diesel fuel properties have an impact on the biological activity of diesel exhaust emissions, which is to be expected from their chemical characterization. As a result of this, Sweden has an environmental classification of diesel fuels which has been in force since 1991. Analogously, the Swedish Environmental Protection Agency has asked whether detrimental environmental and health effects from residential heating can be reduced by selection of fuel properties, and if so by how much? In addition, which properties are most important to control in a future environmental classification of heating oils? As a first step in this process, a literature survey was performed. Major topics were: Sampling technology, chemical composition, biological activity, and risk assessment of emissions. 33 refs, 11 tabs

  7. Green Jobs: Definition and Method of Appraisal of Chemical and Biological Risks.

    Science.gov (United States)

    Cheneval, Erwan; Busque, Marc-Antoine; Ostiguy, Claude; Lavoie, Jacques; Bourbonnais, Robert; Labrèche, France; Bakhiyi, Bouchra; Zayed, Joseph

    2016-04-01

    In the wake of sustainable development, green jobs are developing rapidly, changing the work environment. However a green job is not automatically a safe job. The aim of the study was to define green jobs, and to establish a preliminary risk assessment of chemical substances and biological agents for workers in Quebec. An operational definition was developed, along with criteria and sustainable development principles to discriminate green jobs from regular jobs. The potential toxicity or hazard associated with their chemical and biological exposures was assessed, and the workers' exposure appraised using an expert assessment method. A control banding approach was then used to assess risks for workers in selected green jobs. A double entry model allowed us to set priorities in terms of chemical or biological risk. Among jobs that present the highest risk potential, several are related to waste management. The developed method is flexible and could be adapted to better appraise the risks that workers are facing or to propose control measures. PMID:26718400

  8. Bioassessment of a combined chemical-biological treatment for synthetic acid mine drainage.

    Science.gov (United States)

    Pagnanelli, F; De Michelis, I; Di Muzio, S; Ferella, F; Vegliò, F

    2008-11-30

    In this work, ecotoxicological characteristics of synthetic samples of acid mine drainage (AMD) before and after a combined chemical-biological treatment were investigated by using Lepidium sativum and Daphnia magna. AMD treatment was performed in a two-column apparatus consisting of chemical precipitation by limestone and biological refinement by sulphate reducing bacteria. Synthetic samples of AMD before treatment were toxic for both L. sativum (germination index, G, lower than 10%) and D. magna (100% immobility) due to acid pH and presence of copper and zinc. Chemical treatment (raising pH to 5-6 and eliminating copper) generated effluents with reduced toxicity for L. sativum (G=33%), while 100% immobility was still observed for D. magna. Dynamic trends of toxicity for the first and fifth outputs of the biological column denoted a gradual improvement leading to hormesis for Lepidium (after the initial release of organic excess), while a constant residual toxicity remained for Daphnia (probably due to H(2)S produced by sulphate reducing bacteria). PMID:18394799

  9. A field survey of chemicals and biological products used in shrimp farming

    International Nuclear Information System (INIS)

    This study documented the use of chemicals and biological products in marine and brackish water shrimp farming in Thailand, the world's top producer of farmed shrimp. Interviews were conducted with 76 shrimp farmers in three major shrimp producing regions, the eastern Gulf coast, the southern Gulf coast and the Andaman coast area. Farmers in the study used on average 13 different chemicals and biological products. The most commonly used products were soil and water treatment products, pesticides and disinfectants. Farmers in the southern Gulf coast area used a larger number of products than farmers in the other two areas. In the study, the use of more than 290 different chemicals and biological products was documented. Many of the pesticides, disinfectants and antibiotics used by the farmers could have negative effects on the cultured shrimps, cause a risk for food safety, occupational health, and/or have negative effects on adjacent ecosystems. Manufacturers and retailers of the products often neglected to provide farmers with necessary information regarding active ingredient and relevant instructions for safe and efficient use

  10. Effects of timber harvest on river food webs: physical, chemical and biological responses.

    Directory of Open Access Journals (Sweden)

    J Timothy Wootton

    Full Text Available I compared physical, chemical and biological characteristics of nine rivers running through three timber harvest regimes to investigate the effects of land use on river ecosystems, to determine whether these corresponded to changes linked with downstream location, and to compare the response of different types of indicator variables. Physical variables changed with downstream location, but varied little with timber harvest. Most chemical variables increased strongly with timber harvest, but not with downstream location. Most biological variables did not vary systematically with either timber harvest or downstream location. Dissolved organic carbon did not vary with timber harvest or downstream location, but correlated positively with salmonid abundance. Nutrient manipulations revealed no general pattern of nutrient limitation with timber harvest or downstream location. The results suggest that chemical variables most reliably indicate timber harvest impact in these systems. The biological variables most relevant to human stakeholders were surprisingly insensitive to timber harvest, however, apparently because of decoupling from nutrient responses and unexpectedly weak responses by physical variables.

  11. Microcantilever technology for law enforcement and anti-terrorism applications: chemical, biological, and explosive material detection

    Science.gov (United States)

    Adams, J. D.; Rogers, B.; Whitten, R.

    2005-05-01

    The remarkable sensitivity, compactness, low cost, low power-consumption, scalability, and versatility of microcantilever sensors make this technology among the most promising solutions for detection of chemical and biological agents, as well as explosives. The University of Nevada, Reno, and Nevada Nanotech Systems, Inc (NNTS) are currently developing a microcantilever-based detection system that will measure trace concentrations of explosives, toxic chemicals, and biological agents in air. A baseline sensor unit design that includes the sensor array, electronics, power supply and air handling has been created and preliminary demonstrations of the microcantilever platform have been conducted. The envisioned device would measure about two cubic inches, run on a small watch battery and cost a few hundred dollars. The device could be operated by untrained law enforcement personnel. Microcantilever-based devices could be used to "sniff out" illegal and/or hazardous chemical and biological agents in high traffic public areas, or be packaged as a compact, low-power system used to monitor cargo in shipping containers. Among the best detectors for such applications at present is the dog, an animal which is expensive, requires significant training and can only be made to work for limited time periods. The public is already accustomed to explosives and metal detection systems in airports and other public venues, making the integration of the proposed device into such security protocols straightforward.

  12. Diversity-Oriented Synthetic Strategies Applied to Cancer Chemical Biology and Drug Discovery

    Directory of Open Access Journals (Sweden)

    Ian Collins

    2014-10-01

    Full Text Available How can diversity-oriented strategies for chemical synthesis provide chemical tools to help shape our understanding of complex cancer pathways and progress anti-cancer drug discovery efforts? This review (surveying the literature from 2003 to the present considers the applications of diversity-oriented synthesis (DOS, biology-oriented synthesis (BIOS and associated strategies to cancer biology and drug discovery, summarising the syntheses of novel and often highly complex scaffolds from pluripotent or synthetically versatile building blocks. We highlight the role of diversity-oriented synthetic strategies in producing new chemical tools to interrogate cancer biology pathways through the assembly of relevant libraries and their application to phenotypic and biochemical screens. The use of diversity-oriented strategies to explore structure-activity relationships in more advanced drug discovery projects is discussed. We show how considering appropriate and variable focus in library design has provided a spectrum of DOS approaches relevant at all stages in anti-cancer drug discovery.

  13. Enrichment strategy to select functional consortium from mixed cultures: Consortium from rumen liquor for simultaneous cellulose degradation and hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Aijie; Ren, Nanqi [State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); School of Environmental and Municipal Engineering, Harbin Institute of Technology, Harbin 150090 (China); Gao, Lingfang; Xu, Jifei; Liu, Chong; Lee, Duu-Jong [School of Environmental and Municipal Engineering, Harbin Institute of Technology, Harbin 150090 (China)

    2010-12-15

    Strain isolation using conventional roll tube/plating technique is time consuming and is able to culture in vitro only a small fraction of existing microbes in a natural microflora. This paper proposed a simple and rapid method to select the as-simple-as-possible biological consortium by serially diluting the original mixed culture. The diluted which remains, while the one diluted in serial loses the target function, is defined as the functional consortium of the original mixed culture. Since the microbial structure and the reaction pathway incorporated with the functional consortium is much simpler than its original mother liquor, detailed analysis on the strain interaction is possible without the risk of losing key functional strains as often caused from conventional isolation method. The rumen liquor that can degrade cellulose and produce hydrogen is used as a demonstration example. A ''rumen cellulose-degrading bacterial consortium'' (RCBC) was identified using the proposed enrichment strategy. (author)

  14. Detection of Chemical/Biological Agents and Stimulants using Quadrupole Ion Trap Mass Spectrometry

    International Nuclear Information System (INIS)

    Detection of Chemical/Biological Agents and Simulants A new detector for chemical and biological agents is being developed for the U. S. Army under the Chemical and Biological Mass Spectrometer Block II program. The CBMS Block II is designed to optimize detection of both chemical and biological agents through the use of direct sampling inlets[I], a multi- ported sampling valve and a turbo- based vacuum system to support chemical ionization. Unit mass resolution using air as the buffer gas[2] has been obtained using this design. Software to control the instrument and to analyze the data generated from the instrument has also been newly developed. Detection of chemical agents can be accomplished. using the CBMS Block II design via one of two inlets - a l/ I 6'' stainless steel sample line -Chemical Warfare Air (CW Air) or a ground probe with enclosed capillary currently in use by the US Army - CW Ground. The Block II design is capable of both electron ionization and chemical ionization. Ethanol is being used as the Cl reagent based on a study indicating best performance for the Biological Warfare (BW) detection task (31). Data showing good signal to noise for 500 pg of methyl salicylate injected into the CW Air inlet, 50 ng of dimethylmethylphosphonate exposed to the CW Ground probe and 5 ng of methyl stearate analyzed using the pyrolyzer inlet were presented. Biological agents are sampled using a ''bio-concentrator'' unit that is designed to concentrate particles in the low micron range. Particles are collected in the bottom of a quartz pyrolyzer tube. An automated injector is being developed to deliver approximately 2 pL of a methylating reagent, tetramethylamonium- hydroxide to 'the collected particles. Pyrolysis occurs by rapid heating to ca. 55OOC. Biological agents are then characterized by their fatty acid methyl ester profiles and by other biomarkers. A library of ETOH- Cl/ pyrolysis MS data of microorganisms used for a recently published study[3] has been

  15. Advanced Lab Consortium ``Conspiracy''

    Science.gov (United States)

    Reichert, Jonathan F.

    2006-03-01

    Advanced Laboratory instruction is a time-honored and essential element of an undergraduate physics education. But, from my vantage point, it has been neglected by the two major professional societies, APS and AAPT. At some schools, it has been replaced by ``research experiences,'' but I contend that very few of these experiences in the research lab, particularly in the junior year, deliver what they promise. It is time to focus the attention of APS, AAPT, and the NSF on the advanced lab. We need to create an Advanced Lab Consortium (ALC) of faculty and staff to share experiments, suppliers, materials, pedagogy, ideas, in short to build a professional network for those committed to advanced lab instruction. The AAPT is currently in serious discussions on this topic and my company stands ready with both financial and personnel resources to support the effort. This talk is a plea for co-conspirators.

  16. Nuclear Fabrication Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Levesque, Stephen [EWI, Columbus, OH (United States)

    2013-04-05

    This report summarizes the activities undertaken by EWI while under contract from the Department of Energy (DOE) Office of Nuclear Energy (NE) for the management and operation of the Nuclear Fabrication Consortium (NFC). The NFC was established by EWI to independently develop, evaluate, and deploy fabrication approaches and data that support the re-establishment of the U.S. nuclear industry: ensuring that the supply chain will be competitive on a global stage, enabling more cost-effective and reliable nuclear power in a carbon constrained environment. The NFC provided a forum for member original equipment manufactures (OEM), fabricators, manufacturers, and materials suppliers to effectively engage with each other and rebuild the capacity of this supply chain by : Identifying and removing impediments to the implementation of new construction and fabrication techniques and approaches for nuclear equipment, including system components and nuclear plants. Providing and facilitating detailed scientific-based studies on new approaches and technologies that will have positive impacts on the cost of building of nuclear plants. Analyzing and disseminating information about future nuclear fabrication technologies and how they could impact the North American and the International Nuclear Marketplace. Facilitating dialog and initiate alignment among fabricators, owners, trade associations, and government agencies. Supporting industry in helping to create a larger qualified nuclear supplier network. Acting as an unbiased technology resource to evaluate, develop, and demonstrate new manufacturing technologies. Creating welder and inspector training programs to help enable the necessary workforce for the upcoming construction work. Serving as a focal point for technology, policy, and politically interested parties to share ideas and concepts associated with fabrication across the nuclear industry. The report the objectives and summaries of the Nuclear Fabrication Consortium

  17. Gas Storage Technology Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Joel L. Morrison; Sharon L. Elder

    2007-06-30

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

  18. Chemical, biological, radiological, and nuclear decontamination: Recent trends and future perspective

    Directory of Open Access Journals (Sweden)

    Vinod Kumar

    2010-01-01

    Full Text Available Chemical, biological, radiological, and nuclear (CBRN decontamination is the removal of CBRN material from equipment or humans. The objective of the decontamination is to reduce radiation burden, salvage equipment, and materials, remove loose CBRN contaminants, and fix the remaining in place in preparation for protective storage or permanent disposal work activities. Decontamination may be carried out using chemical, electrochemical, and mechanical means. Like materials, humans may also be contaminated with CBRN contamination. Changes in cellular function can occur at lower radiation doses and exposure to chemicals. At high dose, cell death may take place. Therefore, decontamination of humans at the time of emergency while generating bare minimum waste is an enormous task requiring dedication of large number of personnel and large amount of time. General principles of CBRN decontamination are discussed in this review with emphasis on radiodecontamination.

  19. Removal of phenolic compounds from the petrochemical effluent with a methanogenic consortium

    International Nuclear Information System (INIS)

    A specific petrochemical effluent was treated with a methanogenic consortium enriched for its ability to degrade phenolic compounds. The aim of using a well defined consortium, rather than undefined anaerobic sludges, was an interest in isolation of the bacterium responsible for the initial transformation of phenol into benzoic acid. The effluent was determined, and the degradation of the phenol was followed while the consortium was adapted by successive transfers in serum bottles with increasing concentrations of effluent. An assessment was made of the significance of some of the culture medium components on phenol removal. A study was carried out, after developing an upflow fixed-film anaerobic bioreactor, of the degradation of the various phenolic compounds present in two different batches of the same specific chemical effluent. The toxicity of batch A effluent was reduced by a factor of 2 after being treated in in the bioreactor, which is partially due to phenol and o-cresol removal. The biofilm was still active after exposure to the more concentrated and toxic B effluent, as evidenced by the the excellent phenol removal obtained with this effluent. Gas production was observed after exposure of the biofilm to effluent B, which showed that the methanogenic bacteria was still active. While there are other more efficient biological means for treating global petroleum refinery wastewaters, the anaerobic reactor indicates a good potential for the treatment of phenolic compounds in this specific effluent for the improvement of, at low cost, an existing wastewater treatment process. 25 refs., 2 tabs

  20. In situ combined chemical and biological assessment of estrogenic pollution in a water recycling system.

    Science.gov (United States)

    Chi, Yulang; Huang, Qiansheng; Zhang, Huanteng; Chen, Yajie; Dong, Sijun

    2016-05-01

    Estrogenic pollution and its control in aquatic systems have drawn substantial attention around the world. The chemical and biological assessment approaches currently utilized in the laboratory or field cannot give an integrated assessment of the pollution when used separately. In this study, in situ chemical and biological methods were combined to detect pollution in a water recycling system. Data for the water quality index (WQI) demonstrated that the water treatment resulted in the decline of pollution from upstream to downstream. Wild male Nile tilapia, Oreochromis niloticus, was sampled in June and September. The concentrations of four common endocrine disrupting chemicals (EDCs) were determined in the tilapia liver by chromatographic analysis methods. The level of 17β-estradiol (E2) declined from upstream to downstream in both months. In contrast, the levels of bisphenol A (BPA), di-(2-ethylhcxyl) phthalate (DEHP), and perfluorooctane sulfonate (PFOS) did not display this declining tendency. The highest relative expression of vitellogenin 1 (VTG1) was observed in tilapia from upstream, then the level significantly decreased along the water system. The relative expression levels of CYP1A1 in the water system were also significantly higher than that of the control. However, no declining trend could be observed along the water system. The change of VTG1 expression corresponded well with that of E2 levels in the tilapia liver. Overall, our study assessed the pollution by endocrine disruptors using chemical and biological data with good correspondence. This study also demonstrated the effectiveness of the water recycling system in eliminating estrogen pollution in municipal sewage. PMID:27155427

  1. Systems chemical biology and the Semantic Web: what they mean for the future of drug discovery research.

    Science.gov (United States)

    Wild, David J; Ding, Ying; Sheth, Amit P; Harland, Lee; Gifford, Eric M; Lajiness, Michael S

    2012-05-01

    Systems chemical biology, the integration of chemistry, biology and computation to generate understanding about the way small molecules affect biological systems as a whole, as well as related fields such as chemogenomics, are central to emerging new paradigms of drug discovery such as drug repurposing and personalized medicine. Recent Semantic Web technologies such as RDF and SPARQL are technical enablers of systems chemical biology, facilitating the deployment of advanced algorithms for searching and mining large integrated datasets. In this paper, we aim to demonstrate how these technologies together can change the way that drug discovery is accomplished. PMID:22222943

  2. Matrix effects in biological SIMS using cluster ion beams of different chemical composition.

    Science.gov (United States)

    Alnajeebi, Afnan M; Vickerman, John C; Lockyer, Nicholas P

    2016-06-01

    The influence of the matrix effect on secondary ion yield presents a very significant challenge in quantitative secondary ion mass spectrometry (SIMS) analysis, for example, in determining the relative concentrations of metabolites that characterize normal biological activities or disease progression. Not only the sample itself but also the choice of primary ion beam may influence the extent of ionization suppression/enhancement due to the local chemical environment. In this study, an assessment of ionization matrix effects was carried out on model systems using C60 (+), Arn (+), and (H2O)n (+) cluster ion beams. The analytes are pure and binary mixtures of amino acids arginine and histidine biological standards. Ion beams of 20 keV were compared with a range of cluster sizes n = 1000-10 000. The component secondary ion yields were assessed for matrix effects using different primary ion beams and sample composition. The presence of water in the cluster beam is associated with a reduction in the observed matrix effects, suggesting that chemically reactive ion beams may provide a route to more quantitative SIMS analysis of complex biological systems. PMID:26825287

  3. Treatment of textile effluent by chemical (Fenton's Reagent) and biological (sequencing batch reactor) oxidation

    International Nuclear Information System (INIS)

    The removal of organic compounds and colour from a synthetic effluent simulating a cotton dyeing wastewater was evaluated by using a combined process of Fenton's Reagent oxidation and biological degradation in a sequencing batch reactor (SBR). The experimental design methodology was first applied to the chemical oxidation process in order to determine the values of temperature, ferrous ion concentration and hydrogen peroxide concentration that maximize dissolved organic carbon (DOC) and colour removals and increase the effluent's biodegradability. Additional studies on the biological oxidation (SBR) of the raw and previously submitted to Fenton's oxidation effluent had been performed during 15 cycles (i.e., up to steady-state conditions), each one with the duration of 11.5 h; Fenton's oxidation was performed either in conditions that maximize the colour removal or the increase in the biodegradability. The obtained results allowed concluding that the combination of the two treatment processes provides much better removals of DOC, BOD5 and colour than the biological or chemical treatment alone. Moreover, the removal of organic matter in the integrated process is particularly effective when Fenton's pre-oxidation is carried out under conditions that promote the maximum increase in wastewater biodegradability.

  4. Structural characterization of chitin and chitosan obtained by biological and chemical methods.

    Science.gov (United States)

    Pacheco, Neith; Garnica-Gonzalez, Mónica; Gimeno, Miquel; Bárzana, Eduardo; Trombotto, Stéphane; David, Laurent; Shirai, Keiko

    2011-09-12

    Chitin production was biologically achieved by lactic acid fermentation (LAF) of shrimp waste (Litopenaeus vannameii) in a packed bed column reactor with maximal percentages of demineralization (D(MIN)) and deproteinization (D(PROT)) after 96 h of 92 and 94%, respectively. This procedure also afforded high free astaxanthin recovery with up to 2400 μg per gram of silage. Chitin product was also obtained from the shrimp waste by a chemical method using acid and alkali for comparison. The biologically obtained chitin (BIO-C) showed higher M(w) (1200 kDa) and crystallinity index (I(CR)) (86%) than the chemically extracted chitin (CH-C). A multistep freeze-pump-thaw (FPT) methodology was applied to obtain medium M(w) chitosan (400 kDa) with degree of acetylation (DA) ca. 10% from BIO-C, which was higher than that from CH-C. Additionally, I(CR) values showed the preservation of crystalline chitin structure in BIO-C derivatives at low DA (40-25%). Moreover, the FPT deacetylation of the attained BIO-C produced chitosans with bloc copolymer structure inherited from a coarse chitin crystalline morphology. Therefore, our LAF method combined with FPT proved to be an affective biological method to avoid excessive depolymerization and loss of crystallinity during chitosan production, which offers new perspective applications for this material. PMID:21790136

  5. The Role of Molecular Biology in the Biomonitoring of Human Exposure to Chemicals

    Directory of Open Access Journals (Sweden)

    Balam Muñoz

    2010-11-01

    Full Text Available Exposure to different substances in an occupational environment is of utmost concern to global agencies such as the World Health Organization and the International Labour Organization. Interest in improving work health conditions, particularly of those employees exposed to noxious chemicals, has increased considerably and has stimulated the search for new, more specific and selective tests. Recently, the field of molecular biology has been indicated as an alternative technique for monitoring personnel while evaluating work-related pathologies. Originally, occupational exposure to environmental toxicants was assessed using biochemical techniques to determine the presence of higher concentrations of toxic compounds in blood, urine, or other fluids or tissues; results were used to evaluate potential health risk. However, this approach only estimates the presence of a noxious chemical and its effects, but does not prevent or diminish the risk. Molecular biology methods have become very useful in occupational medicine to provide more accurate and opportune diagnostics. In this review, we discuss the role of the following common techniques: (1 Use of cell cultures; (2 evaluation of gene expression; (3 the “omic” sciences (genomics, transcriptomics, proteomics and metabolomics and (4 bioinformatics. We suggest that molecular biology has many applications in occupational health where the data can be applied to general environmental conditions.

  6. Implementation of algorithms to discriminate chemical/biological airbursts from high explosive airbursts utilizing acoustic signatures

    Science.gov (United States)

    Hohil, Myron E.; Desai, Sachi; Morcos, Amir

    2006-05-01

    The Army is currently developing acoustic sensor systems that will provide extended range surveillance, detection, and identification for force protection and tactical security. A network of such sensors remotely deployed in conjunction with a central processing node (or gateway) will provide early warning and assessment of enemy threats, near real-time situational awareness to commanders, and may reduce potential hazards to the soldier. In contrast, the current detection of chemical/biological (CB) agents expelled into a battlefield environment is limited to the response of chemical sensors that must be located within close proximity to the CB agent. Since chemical sensors detect hazardous agents through contact, the sensor range to an airburst is the key-limiting factor in identifying a potential CB weapon attack. The associated sensor reporting latencies must be minimized to give sufficient preparation time to field commanders, who must assess if an attack is about to occur, has occurred, or if occurred, the type of agent that soldiers might be exposed to. The long-range propagation of acoustic blast waves from heavy artillery blasts, which are typical in a battlefield environment, introduces a feature for using acoustics and other sensor suite technologies for the early detection and identification of CB threats. Employing disparate sensor technologies implies that warning of a potential CB attack can be provided to the solider more rapidly and from a safer distance when compared to current conventional methods. Distinct characteristics arise within the different airburst signatures because High Explosive (HE) warheads emphasize concussive and shrapnel effects, while chemical/biological warheads are designed to disperse their contents over immense areas, therefore utilizing a slower burning, less intensive explosion to mix and distribute their contents. Highly reliable discrimination (100%) has been demonstrated at the Portable Area Warning Surveillance System

  7. Laboratory of Chemical Physics

    Data.gov (United States)

    Federal Laboratory Consortium — Current research in the Laboratory of Chemical Physics is primarily concerned with experimental, theoretical, and computational problems in the structure, dynamics,...

  8. Chemical Structure-Biological Activity Models for Pharmacophores’ 3D-Interactions

    Science.gov (United States)

    Putz, Mihai V.; Duda-Seiman, Corina; Duda-Seiman, Daniel; Putz, Ana-Maria; Alexandrescu, Iulia; Mernea, Maria; Avram, Speranta

    2016-01-01

    Within medicinal chemistry nowadays, the so-called pharmaco-dynamics seeks for qualitative (for understanding) and quantitative (for predicting) mechanisms/models by which given chemical structure or series of congeners actively act on biological sites either by focused interaction/therapy or by diffuse/hazardous influence. To this aim, the present review exposes three of the fertile directions in approaching the biological activity by chemical structural causes: the special computing trace of the algebraic structure-activity relationship (SPECTRAL-SAR) offering the full analytical counterpart for multi-variate computational regression, the minimal topological difference (MTD) as the revived precursor for comparative molecular field analyses (CoMFA) and comparative molecular similarity indices analysis (CoMSIA); all of these methods and algorithms were presented, discussed and exemplified on relevant chemical medicinal systems as proton pump inhibitors belonging to the 4-indolyl,2-guanidinothiazole class of derivatives blocking the acid secretion from parietal cells in the stomach, the 1-[(2-hydroxyethoxy)-methyl]-6-(phenylthio)thymine congeners’ (HEPT ligands) antiviral activity against Human Immunodeficiency Virus of first type (HIV-1) and new pharmacophores in treating severe genetic disorders (like depression and psychosis), respectively, all involving 3D pharmacophore interactions. PMID:27399692

  9. Biological and chemical tests of contaminated soils to determine bioavailability and environmentally acceptable endpoints (EAE)

    International Nuclear Information System (INIS)

    The understanding of the concept of bioavailability of soil contaminants to receptors and its use in supporting the development of EAE is growing but still incomplete. Nonetheless, there is increased awareness of the importance of such data to determine acceptable cleanup levels and achieve timely site closures. This presentation discusses a framework for biological and chemical testing of contaminated soils developed as part of a Gas Research Institute (GRI) project entitled ''Environmentally Acceptable Endpoints in Soil Using a Risk Based Approach to Contaminated Site Management Based on Bioavailability of Chemicals in Soil.'' The presentation reviews the GRI program, and summarizes the findings of the biological and chemical testing section published in the GRI report. The three primary components of the presentation are: (1) defining the concept of bioavailability within the existing risk assessment paradigm, (2) assessing the usefulness of the existing tests to measure bioavailability and test frameworks used to interpret these measurements, and (3) suggesting how a small selection of relevant tests could be incorporated into a flexible testing scheme for soils to address this issue

  10. Chemical Structure-Biological Activity Models for Pharmacophores’ 3D-Interactions

    Directory of Open Access Journals (Sweden)

    Mihai V. Putz

    2016-07-01

    Full Text Available Within medicinal chemistry nowadays, the so-called pharmaco-dynamics seeks for qualitative (for understanding and quantitative (for predicting mechanisms/models by which given chemical structure or series of congeners actively act on biological sites either by focused interaction/therapy or by diffuse/hazardous influence. To this aim, the present review exposes three of the fertile directions in approaching the biological activity by chemical structural causes: the special computing trace of the algebraic structure-activity relationship (SPECTRAL-SAR offering the full analytical counterpart for multi-variate computational regression, the minimal topological difference (MTD as the revived precursor for comparative molecular field analyses (CoMFA and comparative molecular similarity indices analysis (CoMSIA; all of these methods and algorithms were presented, discussed and exemplified on relevant chemical medicinal systems as proton pump inhibitors belonging to the 4-indolyl,2-guanidinothiazole class of derivatives blocking the acid secretion from parietal cells in the stomach, the 1-[(2-hydroxyethoxy-methyl]-6-(phenylthiothymine congeners’ (HEPT ligands antiviral activity against Human Immunodeficiency Virus of first type (HIV-1 and new pharmacophores in treating severe genetic disorders (like depression and psychosis, respectively, all involving 3D pharmacophore interactions.

  11. Chemical Structure-Biological Activity Models for Pharmacophores' 3D-Interactions.

    Science.gov (United States)

    Putz, Mihai V; Duda-Seiman, Corina; Duda-Seiman, Daniel; Putz, Ana-Maria; Alexandrescu, Iulia; Mernea, Maria; Avram, Speranta

    2016-01-01

    Within medicinal chemistry nowadays, the so-called pharmaco-dynamics seeks for qualitative (for understanding) and quantitative (for predicting) mechanisms/models by which given chemical structure or series of congeners actively act on biological sites either by focused interaction/therapy or by diffuse/hazardous influence. To this aim, the present review exposes three of the fertile directions in approaching the biological activity by chemical structural causes: the special computing trace of the algebraic structure-activity relationship (SPECTRAL-SAR) offering the full analytical counterpart for multi-variate computational regression, the minimal topological difference (MTD) as the revived precursor for comparative molecular field analyses (CoMFA) and comparative molecular similarity indices analysis (CoMSIA); all of these methods and algorithms were presented, discussed and exemplified on relevant chemical medicinal systems as proton pump inhibitors belonging to the 4-indolyl,2-guanidinothiazole class of derivatives blocking the acid secretion from parietal cells in the stomach, the 1-[(2-hydroxyethoxy)-methyl]-6-(phenylthio)thymine congeners' (HEPT ligands) antiviral activity against Human Immunodeficiency Virus of first type (HIV-1) and new pharmacophores in treating severe genetic disorders (like depression and psychosis), respectively, all involving 3D pharmacophore interactions. PMID:27399692

  12. Tracking SERS-active nanoprobe intracellular uptake for chemical and biological sensing

    Science.gov (United States)

    Gregas, Molly K.; Yan, Fei; Scaffidi, Jonathan; Wang, Hsin-Neng; Khoury, Christopher; Zhang, Yan; Vo-Dinh, Tuan

    2007-09-01

    A critical aspect of the use of nanoprobes for intracellular studies in chemical and biological sensing involves a fundamental understanding of their uptake and trajectory in cells. In this study, we describe experiments using surface-enhanced Raman scattering (SERS) spectroscopy and mapping to track cellular uptake of plasmonics-active labeled nanoparticles. Three different Raman-active labels with positive, negative, and neutral charges were conjugated to silver colloidal nanoparticles with the aim of spatially and temporally profiling intracellular delivery and tracking of nanoprobes during uptake in single mammalian cells. 1-D Raman spectra and 2-D Raman mapping are used to identify and locate the probes via their SERS signal intensities. Because Raman spectroscopy is very specific for identification of chemical and molecular signatures, the development of functionalized plasmonics-active nanoprobes capable of exploring intracellular spaces and processes has the ability to provide specific information on the effects of biological and chemical pollutants in the intracellular environment. The results indicate that this technique will allow study of when, where, and how these substances affect cells and living organisms.

  13. Biological assessment of contaminated land using earthworm biomarkers in support of chemical analysis

    International Nuclear Information System (INIS)

    Biological indicators can be used to assess polluted sites but their success depends on the availability of suitable assays. The aim of this study was to investigate the performance of two earthworm biomarkers, lysosomal membrane stability measured using the neutral red retention assay (NRR-T) and the total immune activity (TIA) assay, that have previously been established as responsive to chemical exposure. Responses of the two assays were measured following in situ exposure to complexly contaminated field soils at three industrial sites as well as urban and rural controls. The industrial sites were contaminated with a range of metal (cadmium, copper, lead, zinc, nickel and cobalt) and organic (including polycyclic aromatic hydrocarbons) contaminants, but at concentrations below the 'New Dutch List' Intervention concentrations. Exposed earthworms accumulated both metals and organic compounds at the contaminated sites, indicating that there was significant exposure. No effect on earthworm survival was found at any of the sites. Biomarker measurements, however, indicated significant effects, with lower NRR-T and TIA found in the contaminated soils when compared to the two controls. The results demonstrate that a comparison of soil pollutant concentrations with guideline values would not have unequivocally identified chemical exposure and toxic effect for soil organisms living in these soils. However, the earthworm biomarkers successfully identified significant exposure and biological effects caused by the mixture of chemicals present

  14. Chemical Biology Approaches to Genome Editing: Understanding, Controlling, and Delivering Programmable Nucleases.

    Science.gov (United States)

    Hu, Johnny H; Davis, Kevin M; Liu, David R

    2016-01-21

    Programmable DNA nucleases have provided scientists with the unprecedented ability to probe, regulate, and manipulate the human genome. Zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly interspaced short palindromic repeat-Cas9 system (CRISPR-Cas9) represent a powerful array of tools that can bind to and cleave a specified DNA sequence. In their canonical forms, these nucleases induce double-strand breaks at a DNA locus of interest that can trigger cellular DNA repair processes that disrupt or replace genes. The fusion of these programmable nucleases with a variety of other protein domains has led to a rapidly growing suite of tools for activating, repressing, visualizing, and modifying loci of interest. Maximizing the usefulness and therapeutic relevance of these tools, however, requires precisely controlling their activity and specificity to minimize potentially toxic side effects arising from off-target activities. This need has motivated the application of chemical biology principles and methods to genome-editing proteins, including the engineering of variants of these proteins with improved or altered specificities, and the development of genetic, chemical, optical, and protein delivery methods that control the activity of these agents in cells. Advancing the capabilities, safety, effectiveness, and therapeutic relevance of genome-engineering proteins will continue to rely on chemical biology strategies that manipulate their activity, specificity, and localization. PMID:26933736

  15. Gas Storage Technology Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Joel Morrison; Elizabeth Wood; Barbara Robuck

    2010-09-30

    The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to

  16. Contrasting patterns of tolerance between chemical and biological insecticides in mosquitoes exposed to UV-A.

    Science.gov (United States)

    Tetreau, Guillaume; Chandor-Proust, Alexia; Faucon, Frédéric; Stalinski, Renaud; Akhouayri, Idir; Prud'homme, Sophie M; Raveton, Muriel; Reynaud, Stéphane

    2013-09-15

    Mosquitoes are vectors of major human diseases, such as malaria, dengue or yellow fever. Because no efficient treatments or vaccines are available for most of these diseases, control measures rely mainly on reducing mosquito populations by the use of insecticides. Numerous biotic and abiotic factors are known to modulate the efficacy of insecticides used in mosquito control. Mosquito breeding sites vary from opened to high vegetation covered areas leading to a large ultraviolet gradient exposure. This ecological feature may affect the general physiology of the insect, including the resistance status against insecticides. In the context of their contrasted breeding sites, we assessed the impact of low-energetic ultraviolet exposure on mosquito sensitivity to biological and chemical insecticides. We show that several mosquito detoxification enzyme activities (cytochrome P450, glutathione S-transferases, esterases) were increased upon low-energy UV-A exposure. Additionally, five specific genes encoding detoxification enzymes (CYP6BB2, CYP6Z7, CYP6Z8, GSTD4, and GSTE2) previously shown to be involved in resistance to chemical insecticides were found over-transcribed in UV-A exposed mosquitoes, revealed by RT-qPCR experiments. More importantly, toxicological bioassays revealed that UV-exposed mosquitoes were more tolerant to four main chemical insecticide classes (DDT, imidacloprid, permethrin, temephos), whereas the bioinsecticide Bacillus thuringiensis subsp. israelensis (Bti) appeared more toxic. The present article provides the first experimental evidence of the capacity of low-energy UV-A to increase mosquito tolerance to major chemical insecticides. This is also the first time that a metabolic resistance to chemical insecticides is linked to a higher susceptibility to a bioinsecticide. These results support the use of Bti as an efficient alternative to chemical insecticides when a metabolic resistance to chemicals has been developed by mosquitoes. PMID:23911355

  17. Introducing chemical biology applications to introductory organic chemistry students using series of weekly assignments.

    Science.gov (United States)

    Kanin, Maralee R; Pontrello, Jason K

    2016-03-01

    Calls to bring interdisciplinary content and examples into introductory science courses have increased, yet strategies that involve course restructuring often suffer from the need for a significant faculty commitment to motivate change. Minimizing the need for dramatic course reorganization, the structure, reactivity, and chemical biology applications of classes of biological monomers and polymers have been integrated into introductory organic chemistry courses through three series of semester-long weekly assignments that explored (a) Carbohydrates and Oligosaccharides, (b) Amino Acids, Peptides, and Proteins, and (c) Nucleosides, Nucleotides, and Nucleic Acids. Comparisons of unannounced pre- and post tests revealed improved understanding of a reaction introduced in the assignments, and course examinations evaluated cumulative assignment topics. Course surveys revealed that demonstrating biologically relevant applications consistently throughout the semesters enhanced student interest in the connection between basic organic chemistry content and its application to new and unfamiliar bio-related examples. Covering basic material related to these classes of molecules outside of the classroom opened lecture time to allow the instructor to further build on information developed through the weekly assignments, teaching advanced topics and applications typically not covered in an introductory organic chemistry lecture course. Assignments were implemented as homework, either with or without accompanying discussion, in both laboratory and lecture organic courses within the context of the existing course structures. © 2015 by The International Union of Biochemistry and Molecular Biology, 44:168-178, 2016. PMID:26560414

  18. Biological responses to the chemical recovery of acidified fresh waters in the UK

    International Nuclear Information System (INIS)

    We report biological changes at several UK Acid Waters Monitoring Network lakes and streams that are spatially consistent with the recovery of water chemistry induced by reductions in acid deposition. These include trends toward more acid-sensitive epilithic diatom and macroinvertebrate assemblages, an increasing proportional abundance of macroinvertebrate predators, an increasing occurrence of acid-sensitive aquatic macrophyte species, and the recent appearance of juvenile (<1 year old) brown trout in some of the more acidic flowing waters. Changes are often shown to be directly linked to annual variations in acidity. Although indicative of biological improvement in response to improving water chemistry, 'recovery' in most cases is modest and very gradual. While specific ecological recovery endpoints are uncertain, it is likely that physical and biotic interactions are influencing the rate of recovery of certain groups of organisms at particular sites. - Recently observed changes in the species composition of UK lakes and streams are consistent with chemical recovery from acidification

  19. Biological effects of anthropogenic chemical stress: Tools for the assessment of ecosystem health (BEAST)

    DEFF Research Database (Denmark)

    Lehtonen, Kari K.; Sundelin, Brita; Lang, Thomas;

    In the Baltic Sea Action Plan the urgent need to develop biological effects monitoring of hazardous substances and the assessment of ecosystem health has been clearly indicated. These goals will be tackled in the newly launched BEAST project (Biological Effects of Anthropogenic Chemical Stress......: Tools for the Assessment of Ecosystem Health, 2009-2011), which is part of the Baltic Sea BONUS+ Programme funded jointly by national funding agencies and FP7 ERA-NET+ of the European Commission. The BEAST project consists of three workpackages (WP) with the following main tasks: WP1- Field studies and...... experiments in selected sub-regions of the Baltic Sea, WP2 - Application and validation of methods in monitoring and assessment in the Baltic Sea, and WP3 - Developing tools for ecosystem health assessment in the Baltic Sea. BEAST research activities are focused in the sub-regions of Gulf of Bothnia, Gulf of...

  20. Broadband 10-300 GHz stimulus-response sensing for chemical and biological entities

    International Nuclear Information System (INIS)

    By illuminating the sample with a broadband 10-300 GHz stimulus and coherently detecting the response, we obtain reflection and transmission spectra of common powdered substances, and compare them as a starting point for distinguishing concealed threats in envelopes and on personnel. Because these samples are irregular and their dielectric properties cannot be modulated, however, the spectral information we obtain is largely qualitative. To show how to gain quantitative information on biological species at micro- and millimetre-wave frequencies, we introduce thermal modulation of a globular protein in solution, and show that changes in single-wavelength microwave reflections coincide with accepted visible absorption spectra, pointing the way towards gaining quantitative chemical and biological spectra from broadband terahertz systems

  1. Surface chemical and biological characterization of flax fabrics modified with silver nanoparticles for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Paladini, F., E-mail: federica.paladini@unisalento.it [Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce (Italy); Picca, R.A.; Sportelli, M.C.; Cioffi, N. [Department of Chemistry, University of Bari “Aldo Moro”, Via Orabona 4, 70126 Bari (Italy); Sannino, A.; Pollini, M. [Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce (Italy)

    2015-07-01

    Silver nanophases are increasingly used as effective antibacterial agent for biomedical applications and wound healing. This work aims to investigate the surface chemical composition and biological properties of silver nanoparticle-modified flax substrates. Silver coatings were deposited on textiles through the in situ photo-reduction of a silver solution, by means of a large-scale apparatus. The silver-coated materials were characterized through X-ray Photoelectron Spectroscopy (XPS), to assess the surface elemental composition of the coatings, and the chemical speciation of both the substrate and the antibacterial nanophases. A detailed investigation of XPS high resolution regions outlined that silver is mainly present on nanophases' surface as Ag{sub 2}O. Scanning electron microscopy and energy dispersive X-ray spectroscopy were also carried out, in order to visualize the distribution of silver particles on the fibers. The materials were also characterized from a biological point of view in terms of antibacterial capability and cytotoxicity. Agar diffusion tests and bacterial enumeration tests were performed on Gram positive and Gram negative bacteria, namely Staphylococcus aureus and Escherichia coli. In vitro cytotoxicity tests were performed through the extract method on murine fibroblasts in order to verify if the presence of the silver coating affected the cellular viability and proliferation. Durability of the coating was also assessed, thus confirming the successful scaling up of the process, which will be therefore available for large-scale production. - Highlights: • Silver nanophases are increasingly used as effective antibacterial agent for biomedical applications. • Silver coatings were deposited on textiles through the in situ photo-reduction of a silver solution. • Flax fabrics were characterized from a biological and surface chemical point of view. • Scaling up of the process was confirmed.

  2. Surface chemical and biological characterization of flax fabrics modified with silver nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    Silver nanophases are increasingly used as effective antibacterial agent for biomedical applications and wound healing. This work aims to investigate the surface chemical composition and biological properties of silver nanoparticle-modified flax substrates. Silver coatings were deposited on textiles through the in situ photo-reduction of a silver solution, by means of a large-scale apparatus. The silver-coated materials were characterized through X-ray Photoelectron Spectroscopy (XPS), to assess the surface elemental composition of the coatings, and the chemical speciation of both the substrate and the antibacterial nanophases. A detailed investigation of XPS high resolution regions outlined that silver is mainly present on nanophases' surface as Ag2O. Scanning electron microscopy and energy dispersive X-ray spectroscopy were also carried out, in order to visualize the distribution of silver particles on the fibers. The materials were also characterized from a biological point of view in terms of antibacterial capability and cytotoxicity. Agar diffusion tests and bacterial enumeration tests were performed on Gram positive and Gram negative bacteria, namely Staphylococcus aureus and Escherichia coli. In vitro cytotoxicity tests were performed through the extract method on murine fibroblasts in order to verify if the presence of the silver coating affected the cellular viability and proliferation. Durability of the coating was also assessed, thus confirming the successful scaling up of the process, which will be therefore available for large-scale production. - Highlights: • Silver nanophases are increasingly used as effective antibacterial agent for biomedical applications. • Silver coatings were deposited on textiles through the in situ photo-reduction of a silver solution. • Flax fabrics were characterized from a biological and surface chemical point of view. • Scaling up of the process was confirmed

  3. Physical, chemical, and biological data collected in Mobile Bay, Alabama in May 1989-December 1999 (NODC Accession 0116496)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains physical, chemical, and biological data collected during ten years of near-monthly shipboard surveys carried out in Mobile Bay between May...

  4. Physical-chemical determinant properties of biological communities in continental semi-arid waters.

    Science.gov (United States)

    da Rocha, Francisco Cleiton; de Andrade, Eunice Maia; Lopes, Fernando Bezerra; de Paula Filho, Francisco José; Filho, José Hamilton Costa; da Silva, Merivalda Doroteu

    2016-08-01

    Throughout human history, water has undergone changes in quality. This problem is more serious in dry areas, where there is a natural water deficit due to climatic factors. The aims of this study, therefore, were (i) to verify correlations between physical attributes, chemical attributes and biological metrics and (ii) from the biological attributes, to verify the similarity between different points of a body of water in a tropical semi-arid region. Samples were collected every 2 months, from July 2009 to July 2011, at seven points. Four physical attributes, five chemical attributes and four biological metrics were investigated. To identify the correlations between the physicochemical properties and the biological metrics, hierarchical cluster analysis (HCA) and canonical correlation analysis (CCA) were applied. Nine classes of phytoplankton were identified, with the predominance of species of cyanobacteria, and ten families of macroinvertebrates. The use of HCA resulted in the formation of three similar groups, showing that it was possible to reduce the number of sampling points when monitoring water quality with a consequent reduction in cost. Group I was formed from the waters at the high end of the reservoir (points P1, P2 and P3), group II by the waters from the middle third (points P4 and P5), and group III by the waters from the lower part of the reservoir (points P6 and P7). Richness of the phytoplanktons Cyanophyceae, Chorophyceae and Bacillariophyceae was the attribute which determined dissimilarity in water quality. Using CCA, it was possible to identify the spatial variability of the physicochemical attributes (TSS, TKN, nitrate and total phosphorus) that most influence the metrics of the macroinvertebrates and phytoplankton present in the water. Low macroinvertebrate diversity, with a predominance of indicator families for deterioration in water quality, and the composition of phytoplankton showing a predominance of cyanobacteria, suggests greater

  5. COnsortium of METabolomics Studies (COMETS)

    Science.gov (United States)

    The COnsortium of METabolomics Studies (COMETS) is an extramural-intramural partnership that promotes collaboration among prospective cohort studies that follow participants for a range of outcomes and perform metabolomic profiling of individuals.

  6. Application study of nuclear technologies for integration chemical, biological and radiological technology

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jae Kon; Han, M. H.; Kim, Y. H.; Yang, J. E.; Jung, K. S.; Cha, H. K.; Moon, J.; La, K. H

    2001-02-01

    The projects are suggested the method to maximize the technology and research results which are being carried out by KAERI on the nuclear field. The study presents 1)the technology to rapidly and accurately determine and the nature of contamination, 2) the technology to predict the spread of contaminant and the magnitude of damage, and 3) the expert-aided decision making technology to identify the optimum counter-measures. And the solutions are also suggested the application to military technology in Chemical, Biological and Radiation field. In addition, I hope this kind of cooperation model come to be the good case of military civilian research harmony to improve the national competition capability.

  7. Fungi as chemical industries and genetic engineering for the production of biologically active secondary metabolites

    Institute of Scientific and Technical Information of China (English)

    Abid Ali Khan; Nafees Bacha; Bashir Ahmad; Ghosia Lutfullah; Umar Farooq; Russell John Cox

    2014-01-01

    Fungi is somewhere in between the micro and macro organisms which is a good source of producing biologically active secondary metabolites. Fungi have been used as tool for producing different types of secondary metabolites by providing different nutrients at different laboratory conditions. The fungi have been engineered for the desired secondary metabolites by using different laboratory techniques, for example, homologous and heterologous expressions. This review reported how the fungi are used as chemical industry for the production of secondary metabolites and how they are engineered in laboratory for the production of desirable metabolites;also the biosynthetic pathways of the bio-organic-molecules were reported.

  8. Fungi as chemical industries and genetic engineering for the production of biologically active secondary metabolites

    Institute of Scientific and Technical Information of China (English)

    Abid; Ali; Khan; Nafees; Bacha; Bashir; Ahmad; Ghosia; Lutfullah; Umar; Farooq; Russell; John; Cox

    2014-01-01

    Fungi is somewhere in between the micro and macro organisms which is a good source of producing biologically active secondary metabolites.Fungi have been used as tool for producing different types of secondary metabolites by providing different nutrients at different laboratory conditions.The fungi have been engineered for the desired secondary metabolites by using different laboratory techniques,for example,homologous and heterologous expressions.This review reported how the fungi are used as chemical industry for the production of secondary metabolites and how they are engineered in laboratory for the production of desirable metabolites:also the biosynthetic pathways of the bio-organic-molecules were reported.

  9. Influence of physical and chemical factors on biological leaching process of copper from printed circuit boards

    Directory of Open Access Journals (Sweden)

    J. Willner

    2013-04-01

    Full Text Available The article presents the results of the research regarding the biological leaching of this metal from electronic wastes components in the form of printed circuit boards. The purpose of the study was to evaluate the influence of some physical and chemical factors (e.g. pH, oxidation-reduction potential on bioleaching process and efficiency of copper transfer from solid phase into solution. Bioleaching experiments were carried out with pure cultures of Acidithiobacillus ferrooxidans. The obtained results were discussed.

  10. Monitoring PAH contamination in water: Comparison of biological and physico-chemical tools

    OpenAIRE

    Bourgeault, A.; Gourlay Francé, C.

    2013-01-01

    he suitability of biological methods and chemical-based passive samplers to determine exposure to PAHs was tested by deploying zebra mussels and SPMDs along the Seine River over 11 months. The concentration of 13 PAHs was analyzed every month in both water and mussels. The sum of the PAH concentrations in mussels, initially at 299 ng gdry wt− 1, reached 2654, 3972 and 3727 ng g− 1 at the end of exposure in the three sampling points taken through the river. The respective SPMD-avai...

  11. Application study of nuclear technologies for integration chemical, biological and radiological technology

    International Nuclear Information System (INIS)

    The projects are suggested the method to maximize the technology and research results which are being carried out by KAERI on the nuclear field. The study presents 1)the technology to rapidly and accurately determine and the nature of contamination, 2) the technology to predict the spread of contaminant and the magnitude of damage, and 3) the expert-aided decision making technology to identify the optimum counter-measures. And the solutions are also suggested the application to military technology in Chemical, Biological and Radiation field. In addition, I hope this kind of cooperation model come to be the good case of military civilian research harmony to improve the national competition capability

  12. Medical preparedness for chemical, biological, radiological, nuclear, and explosives (CBRNE) events: Gaps and recommendations

    International Nuclear Information System (INIS)

    The Workshop on Medical Preparedness for Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) events: national scan was held on 20 and 21 May 2010 at the Diefenbunker Museum in Ottawa (Canada). The purpose of the workshop was to provide the CBRNE Research and Technology Initiative with a Canadian national profile of existing capabilities and anticipated gaps in casualty management consistent with the community emergency response requirements. The workshop was organised to enable extensive round-table discussions and provide a summary of key gaps and recommendations for emergency response planners. (authors)

  13. LANL organic analysis detection capabilities for chemical and biological warfare agents

    Energy Technology Data Exchange (ETDEWEB)

    Ansell, G.B.; Cournoyer, M.E.; Hollis, K.W.; Monagle, M.

    1996-12-31

    Organic analysis is the analytical arm for several Los Alamos National Laboratory (LANL) research programs and nuclear materials processes, including characterization and certification of nuclear and nonnuclear materials used in weapons, radioactive waste treatment and waste certification programs. Organic Analysis has an extensive repertoire of analytical technique within the group including headspace gas, PCBs/pesticides, volatile organics and semivolatile organic analysis. In addition organic analysis has mobile labs with analytic capabilities that include volatile organics, total petroleum hydrocarbon, PCBs, pesticides, polyaromatic hydrocarbons and high explosive screening. A natural extension of these capabilities can be applied to the detection of chemical and biological agents,

  14. Chem2Bio2RDF: A Linked Open Data Portal for Chemical Biology

    CERN Document Server

    Chen, Bin; Zhu, Qian; Ding, Ying; Dong, Xiao; Sankaranarayanan, Madhuvanthi; Wang, Huijun; Sun, Yuyin

    2010-01-01

    The Chem2Bio2RDF portal is a Linked Open Data (LOD) portal for systems chemical biology aiming for facilitating drug discovery. It converts around 25 different datasets on genes, compounds, drugs, pathways, side effects, diseases, and MEDLINE/PubMed documents into RDF triples and links them to other LOD bubbles, such as Bio2RDF, LODD and DBPedia. The portal is based on D2R server and provides a SPARQL endpoint, but adds on few unique features like RDF faceted browser, user-friendly SPARQL query generator, MEDLINE/PubMed cross validation service, and Cytoscape visualization plugin. Three use cases demonstrate the functionality and usability of this portal.

  15. Medical preparedness for chemical, biological, radiological, nuclear, and explosives (CBRNE) events: gaps and recommendations.

    Science.gov (United States)

    Wilkinson, Diana; Waruszynski, Barbara; Mazurik, Laurie; Szymczak, Ann-Marie; Redmond, Erin; Lichacz, Fred

    2010-11-01

    The Workshop on Medical Preparedness for Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) events: national scan was held on 20 and 21 May 2010 at the Diefenbunker Museum in Ottawa, Canada. The purpose of the workshop was to provide the CBRNE Research and Technology Initiative with a Canadian national profile of existing capabilities and anticipated gaps in casualty management consistent with the community emergency response requirements. The workshop was organised to enable extensive round-table discussions and provide a summary of key gaps and recommendations for emergency response planners. PMID:21041238

  16. Phisicals, chemicals and biologicals evaluations of microbasin in the Modeneis Stream in Limeira –SP.

    Directory of Open Access Journals (Sweden)

    Bruno Baddo

    2008-05-01

    Full Text Available This work presents an evaluation of the water quality from Modeneis stream belonging the microbasin of Barroca Funda stream, affluent of the Ribeirão Tatu in the city of Limeira, São Paulo. Three points of collection for analyses had been chosen: spring, middle and end of microbasin. The study was realized through the monitoring of waters and sediment during eight weeks, being verified the physical parameter (pH, Color, Turbidity, Conductivity and Total Solids, chemical (Alkalinity, Acidity, Nitrate, Hardness and TOC and biological ( acute Toxicity- Daphnia similis and chronic- Ceriodaphnia dubia of the samples.

  17. Estimating Escherichia coli loads in streams based on various physical, chemical, and biological factors

    Science.gov (United States)

    Dwivedi, Dipankar; Mohanty, Binayak P.; Lesikar, Bruce J.

    2013-05-01

    Microbes have been identified as a major contaminant of water resources. Escherichia coli is a commonly used indicator organism. It is well recognized that the fate of E. coli in surface water systems is governed by multiple physical, chemical, and biological factors. The aim of this work is to provide insight into the physical, chemical, and biological factors along with their interactions that are critical in the estimation of E. coli loads in surface streams. There are various models to predict E. coli loads in streams, but they tend to be system- or site-specific or overly complex without enhancing our understanding of these factors. Hence, based on available data, a Bayesian neural network (BNN) is presented for estimating E. coli loads based on physical, chemical, and biological factors in streams. The BNN has the dual advantage of overcoming the absence of quality data (with regard to consistency in data) and determination of mechanistic model parameters by employing a probabilistic framework. This study evaluates whether the BNN model can be an effective alternative tool to mechanistic models for E. coli load estimation in streams. For this purpose, a comparison with a traditional model (load estimator (LOADEST), U.S. Geological Survey) is conducted. The models are compared for estimated E. coli loads based on available water quality data in Plum Creek, Texas. All the model efficiency measures suggest that overall E. coli load estimations by the BNN model are better than the E. coli load estimations by the LOADEST model on all the three occasions (threefold cross validation). Thirteen factors were used for estimating E. coli loads with the exhaustive feature selection technique, which indicated that 6 of 13 factors are important for estimating E. coli loads. Physical factors included temperature and dissolved oxygen; chemical factors include phosphate and ammonia; and biological factors include suspended solids and chlorophyll. The results highlight that

  18. Evaluation of physical-chemical and biological treatment of shale oil retort water

    Energy Technology Data Exchange (ETDEWEB)

    Mercer, B.W.; Mason, M.J.; Spencer, R.R.; Wong, A.L.; Wakamiya, W.

    1982-09-01

    Bench scale studies were conducted to evaluate conventional physical-chemical and biological treatment processes for removal of pollutants from retort water produced by in situ shale oil recovery methods. Prior to undertaking these studies, very little information had been reported on treatment of retort water. A treatment process train patterned after that generally used throughout the petroleum refining industry was envisioned for application to retort water. The treatment train would consist of processes for removing suspended matter, ammonia, biodegradable organics, and nonbiodegradable or refractory organics. The treatment processes evaluated include anaerobic digestion and activated sludge for removal of biodegradable organics and other oxidizable substances; activated carbon adsorption for removal of nonbiodegradable organics; steam stripping for ammonia removal; and chemical coagulation, sedimentation and filtration for removal of suspended matter. Preliminary cost estimates are provided.

  19. The Cambridge Infectious Diseases Consortium

    OpenAIRE

    Wood, James

    2010-01-01

    The Cambridge Infectious Diseases Consortium (CIDC) was established to provide a multi-institutional, world class quality environment for infectious disease research addressing important questions and for the recruitment and training of high quality veterinarians into careers in infectious disease research. The programme has been a demonstrable success in achieving these overall aims. The institutions that have played a key role in the consortium include the Department of Veterinary Medic...

  20. Biodegradation by bioaugmentation of dairy wastewater by fungal consortium on a bioreactor lab-scale and on a pilot-scale.

    Science.gov (United States)

    Djelal, Hayet; Amrane, Abdeltif

    2013-09-01

    A fungal consortium including Aspergillus niger, Mucor hiemalis and Galactomyces geotrichum was tested for the treatment of dairy wastewater. The bio-augmentation method was tested at lab-scale (4 L), at pilot scale (110 L) and at an industrial scale in Wastewater Treatment Plants (WWTP). The positive impact of fungal addition was confirmed when fungi was beforehand accelerated by pre-culture on whey (5 g/L lactose) or on the dairy effluent. Indeed, chemical oxygen demand (COD) removal yields increased from 55% to 75% for model medium, diluted milk. While after inoculation of an industrial biological tank from a dairy factory with the fungal consortium accelerated by pre-cultivation in a 1000 L pilot plant, the outlet COD values decreased from values above the standard one (100 mg/L) to values in the range of 50-70 mg/L. In addition, there was a clear impact of fungal addition on the 'hard' or non-biodegradable COD owing to the significant reduction of the increase of the COD on BOD5 ratio between the inlet and the outlet of the biological tank of WWTP. It was in the range of 451%-1111% before adding fungal consortium, and in the range of 257%-153% after bio-augmentation with fungi. An inoculated bioreactor with fungal consortium was developed at lab-scale and demonstrated successfully at pilot scale in PMID:24520735

  1. Phyto chemical and biological studies of certain plants with potential radioprotective activity

    International Nuclear Information System (INIS)

    One of the promising directions of radiation protection development is the search for natural radioprotective agents.The present work includes: I- Screening of certain edible and medicinal plants growing in Egypt for their radioprotective activities. II- Detailed phyto chemical and biolo-activity studies of the dried leaves of brassaia actinophylla endl. comprising: A-Phyto chemical screening and proximate analysis. B-Investigation of lipoidal matter. C- Isolation, characterization and structure elucidation of phenolic constituents. D- Isolation, characterization and structure elucidation of saponin constituents. E- Evaluation of radioprotective and antitumor activities. I- Evaluation of potential radioprotective activities of certain herbs: In vivo biological screening designed to investigate the radioprotective role of 70% ethanol extract of 11 different herbals was carried out by measuring the lipid peroxide content, as well as the activities of two antioxidant enzymes; viz glutathione, and superoxide dismutase in blood and liver tissues 1 and 7 days after radiation exposure. II : Phyto chemical and biolo-activity studies of the dried leaves of brassaia actinophylla Endl A : preliminary phyto chemical screening, determination and TLC examination of successive extractives. B : Investigation of lipoidal matter. GLC of unsaponifiable matter (USM)

  2. Validation of N-myristoyltransferase as an antimalarial drug target using an integrated chemical biology approach

    Science.gov (United States)

    Wright, Megan H.; Clough, Barbara; Rackham, Mark D.; Rangachari, Kaveri; Brannigan, James A.; Grainger, Munira; Moss, David K.; Bottrill, Andrew R.; Heal, William P.; Broncel, Malgorzata; Serwa, Remigiusz A.; Brady, Declan; Mann, David J.; Leatherbarrow, Robin J.; Tewari, Rita; Wilkinson, Anthony J.; Holder, Anthony A.; Tate, Edward W.

    2014-02-01

    Malaria is an infectious disease caused by parasites of the genus Plasmodium, which leads to approximately one million deaths per annum worldwide. Chemical validation of new antimalarial targets is urgently required in view of rising resistance to current drugs. One such putative target is the enzyme N-myristoyltransferase, which catalyses the attachment of the fatty acid myristate to protein substrates (N-myristoylation). Here, we report an integrated chemical biology approach to explore protein myristoylation in the major human parasite P. falciparum, combining chemical proteomic tools for identification of the myristoylated and glycosylphosphatidylinositol-anchored proteome with selective small-molecule N-myristoyltransferase inhibitors. We demonstrate that N-myristoyltransferase is an essential and chemically tractable target in malaria parasites both in vitro and in vivo, and show that selective inhibition of N-myristoylation leads to catastrophic and irreversible failure to assemble the inner membrane complex, a critical subcellular organelle in the parasite life cycle. Our studies provide the basis for the development of new antimalarials targeting N-myristoyltransferase.

  3. REALIZATION OF CONSORTIUM PROJECTS

    OpenAIRE

    Łukasik, Jolanta

    2010-01-01

    В статье описаны институционные проблемы и взаимоотношения внутри консорциум во время реализации проектов. Представлены избранные конфликтные ситуации, которые могут появиться в проектных коллективах, также описан фактор риска, который может появляться во время работы с проектом.The article describes the institutional problems and relationships within the consortium during the realization of projects. Selected conflict situations that may arise in project teams and risk factor that may appear...

  4. Scientific Basis for a Coupled Thermal-Hydrological-Mechanical-Chemical-Biological Experimental Facility at DUSEL Homestake

    Science.gov (United States)

    Sonnenthal, E. L.; Elsworth, D.; Lowell, R. P.; Maher, K.; Mailloux, B. J.; Uzunlar, N.; Freifeld, B. M.; Keimowitz, A. R.; Wang, J. S.

    2009-12-01

    Most natural and engineered earth system processes involve strong coupling of thermal, mechanical, chemical, and sometimes biological processes in rocks that are heterogeneous at a wide range of spatial scales. One of the most pervasive processes in the Earth’s crust is that of fluids (primarily water, but also CO2, hydrocarbons, volcanic gases, etc.) flowing through fractured heated rock under stress. A preliminary design is being formulated for a large-scale subsurface experimental facility to investigate coupled Thermal-Hydrological-Mechanical-Chemical-Biological (THMCB) processes in fractured rock at depth. The experiment would be part of the proposed Deep Underground Science and Engineering Laboratory (DUSEL) in the Homestake Mine, South Dakota. Fundamental geochemical, isotopic, microbiological, laboratory THMC experiments, and numerical modeling will be used to guide the experimental design and evaluation of the time and spatial scales of the coupled THMCB processes. Although we sometimes analyze rocks and fluids for physical and chemical properties, it is difficult to create quantitative numerical models based on fundamental physics and chemistry that can capture the dynamic changes that have occurred or may yet take place. Initial conditions and history are only known roughly at best, and the boundary conditions have likely varied over time as well. Processes such as multicomponent chemical and thermal diffusion, multiphase flow, advection, and thermal expansion/contraction, are taking place simultaneously in rocks that are structurally and chemically complex—heterogeneous assemblages of mineral grains, pores, and fractures—and visually opaque. The only way to fully understand such processes is to carry out well-controlled experiments at a range of scales (grain/pore-scale to decimeter-scale) that can be interrogated and modeled. The THMCB experimental facility is also intended to be a unique laboratory for testing hypotheses regarding effects of

  5. The chemical and biological evolution of mature fine tailings in oil sands end-pit lakes

    International Nuclear Information System (INIS)

    This presentation described an innovative bench-scale technique to characterize oil sand tailings and their impact on sediment oxygen demand (SOD) for future end-pit lake model behaviour. SOD is a dominant contributor to oxygen depletion in wetlands. The function and sustainability of a wetland ecosystem depends on the biochemical processes occurring at the sediment-water interface. The biochemical reactions associated with natural sediment can change with the addition of oil sands processed material (OSPM), which can affect SOD and ecosystem viability. It is important to establishing the biotic and abiotic controls of SOD. In order to evaluate the effectiveness of current wetland reclamation designs, it is important to establish the biotic and abiotic controls of SOD. The REDOX chemistry of fresh tailings sediment (MFT) was measured in this laboratory microcosm to determine the chemical and biological influences, and to study the role of developing microbial communities as new mature fine tailings (MFT) age. The study evaluated the changes in the main chemical, physical and biological populations of the MFT in both aerobic and anaerobic microcosms. A combination of microelectrode arrays and DNA profiling at the tailings water interface was used in the study.

  6. Handheld hyperspectral imager for standoff detection of chemical and biological aerosols

    Science.gov (United States)

    Hinnrichs, Michele; Jensen, James O.; McAnally, Gerard

    2004-08-01

    Pacific Advanced Technology has developed a small hand held imaging spectrometer, Sherlock, for gas leak and aerosol detection and imaging. The system is based on a patented technique, (IMSS Image Multi-spectral Sensing), that uses diffractive optics and image processing algorithms to detect spectral information about objects in the scene of the camera. This cameras technology has been tested at Dugway Proving Ground and Dstl Porton Down facilities looking at Chemical and Biological agent simulants. In addition to Chemical and Biological detection, the camera has been used for environmental monitoring of green house gases and is currently undergoing extensive laboratory and field testing by the Gas Technology Institute, British Petroleum and Shell Oil for applications for gas leak detection and repair. In this paper we will present some of the results from the data collection at the TRE test at Dugway Proving Ground during the summer of 2002 and laboratory testing at the Dstl facility at Porton Down in the UK in the fall of 2002.

  7. Chemical and biological assessment of Angelica herbal decoction: comparison of different preparations during historical applications.

    Science.gov (United States)

    Zhang, Wendy Li; Zheng, Ken Yu-Zhong; Zhu, Kevin Yue; Zhan, Janis Ya-Xian; Bi, Cathy Wen-Chuan; Chen, Jian-Ping; Du, Crystal Ying-Qing; Zhao, Kui-Jun; Lau, David Tai-Wai; Dong, Tina Ting-Xia; Tsim, Karl Wah-Keung

    2012-08-15

    The commonly used Angelica herbal decoction today is Danggui Buxue Tang (DBT), which is a dietary supplement in treating menopausal irregularity in women, i.e. to nourish "Qi" and to enrich "Blood". According to historical record, many herbal decoctions were also named DBT, but the most popular formulation of DBT was written in Jin dynasty (1247 AD) of China, which contained Astragali Radix (AR) and Angelicae Sinensis Radix (ASR) with a weight ratio of 5:1. However, at least two other Angelica herbal decoctions recorded as DBT were prescribed in Song (1155 AD) and Qing dynasties (1687 AD). Although AR and ASR are still the major components in the DBT herbal decoctions, they are slightly varied in the herb composition. In order to reveal the efficiency of different Angelica herbal decoctions, the chemical and biological properties of three DBT herbal extracts were compared. Significantly, the highest amounts of AR-derived astragaloside III, astragaloside IV, calycosin and formononetin and ASR-derived ferulic acid were found in DBT described in 1247 AD: this preparation showed stronger activities in osteogenic, estrogenic and erythropoetic effects than the other two DBT. The current results supported the difference of three DBT in chemical and biological properties, which could be a result of different herbal combinations. For the first time, this study supports the popularity of DBT described in 1247 AD. PMID:22902230

  8. Decolorization of Distillery Spentwash (Melanoidin by Immobilized Consortium (Bacterium and Yeast Cell: Entrapped into Sodium Alginate Bead

    Directory of Open Access Journals (Sweden)

    Soni Tiwari

    2014-01-01

    Full Text Available Sugarcane distilleries use molasses for ethanol production and generate large volume of effluent containing high Biological Oxygen Demand (BOD and Chemical Oxygen Demand (COD along with melanoidin pigment. The aim of this study was to isolate potential thermotolerant melanoidin decolorizing bacterium and yeast from natural resources for consortium development and entrapped in suitable matrix for immobilization at large scale spentwash treatment. A total 58 bacteria and 24 yeast were isolated from soil sample of distillery site in which Pediococcus acidilactici B-25 and Candida tropicalis RG-09 showed higher decolorization. These two strains were used for consortium development and then entrapped in sodium alginate for the wastewater treatment in a continuous column immobilization system. The immobilized consortium cells showed maximum 85% decolorization with the optimized parameters such as 2% (w/v sodium alginate, 2% (w/v calcium chloride with 16 h curing time, 5 g alginate beads with 2 mm bead diameter. The immobilized cells of consortium in alginate beads are more efficient for the wastewater treatment and can be reused for eighteen cycles (24x18 = 432 h without any loss in their activity and 22 cycles with 72% residual activity. Immobilization of consortium cells in continuous column system is better than free culture. Among the immobilized cell bioreactors, no doubt that continuous column immobilization is a novel and efficient one which can be adopted for the treatment of industrial wastewater containing melanoidin compounds and other pollutants. A proper choice of immobilized culture, careful consideration of various design parameters for continuous column immobilization will make treatment process cost effective in the long run.

  9. Chemical properties of soils treated with biological sludge from gelatin industry

    Directory of Open Access Journals (Sweden)

    Rita de Cássia Melo Guimarães

    2012-04-01

    Full Text Available The impact of agro-industrial organic wastes in the environment can be reduced when used in agriculture. From the standpoint of soil fertility, residue applications can increase the organic matter content and provide nutrients for plants. This study evaluated the effect of biological sludge from gelatin industry on the chemical properties of two Ultisols (loamy sand and sandy clay and an Oxisol (clay. The experiment lasted 120 days and was carried out in laboratory in a completely randomized design with factorial arrangement, combining the three soils and six biological sludge rates (0, 100, 200, 300, 400, and 500 m³ ha-1, with three replications. Biological sludge rates of up to 500 m³ ha-1 decreased soil acidity and increased the effective cation exchange capacity (CEC and N, Ca, Mg, and P availability, without exceeding the tolerance limit for Na. The increase in exchangeable base content, greater than the effective CEC, indicates that the major part of cations added by the sludge remains in solution and can be lost by leaching.

  10. A novel process of dye wastewater treatment by linking advanced chemical oxidation with biological oxidation

    Directory of Open Access Journals (Sweden)

    Zou Haiming

    2015-12-01

    Full Text Available Dye wastewater is one of typically non-biodegradable industrial effluents. A new process linking Fenton’s oxidation with biological oxidation proposed in this study was investigated to degrade the organic substances from real dye wastewater. During the combination process, the Fenton’s oxidation process can reduce the organic load and enhance biodegradability of dye wastewater, which is followed by biological aerated filter (BAF system to further remove organic substances in terms of discharge requirement. The results showed that 97.6% of chemical oxygen demand (COD removal by the combination process was achieved at the optimum process parameters: pH of 3.5, H2O2 of 2.0 mL/L, Fe(II of 500 mg/L, 2.0 h treatment time in the Fenton’s oxidation process and hydraulic retention time (HRT of 5 h in the BAF system. Under these conditions, COD concentration of effluent was 72.6 mg/L whereas 3020 mg/L in the influent, thus meeting the requirement of treated dye wastewater discharge performed by Chinese government (less than 100 mg/L. These results obtained here suggest that the new process combining Fenton’s oxidation with biological oxidation may provide an economical and effective alternative for treatment of non-biodegradable industrial wastewater.

  11. Physico-chemical properties and biological effects of diesel and biomass particles.

    Science.gov (United States)

    Longhin, Eleonora; Gualtieri, Maurizio; Capasso, Laura; Bengalli, Rossella; Mollerup, Steen; Holme, Jørn A; Øvrevik, Johan; Casadei, Simone; Di Benedetto, Cristiano; Parenti, Paolo; Camatini, Marina

    2016-08-01

    Diesel combustion and solid biomass burning are the major sources of ultrafine particles (UFP) in urbanized areas. Cardiovascular and pulmonary diseases, including lung cancer, are possible outcomes of combustion particles exposure, but differences in particles properties seem to influence their biological effects. Here the physico-chemical properties and biological effects of diesel and biomass particles, produced under controlled laboratory conditions, have been characterized. Diesel UFP were sampled from a Euro 4 light duty vehicle without DPF fuelled by commercial diesel and run over a chassis dyno. Biomass UFP were collected from a modern automatic 25 kW boiler propelled by prime quality spruce pellet. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images of both diesel and biomass samples showed aggregates of soot particles, but in biomass samples ash particles were also present. Chemical characterization showed that metals and PAHs total content was higher in diesel samples compared to biomass ones. Human bronchial epithelial (HBEC3) cells were exposed to particles for up to 2 weeks. Changes in the expression of genes involved in xenobiotic metabolism were observed after exposure to both UFP already after 24 h. However, only diesel particles modulated the expression of genes involved in inflammation, oxidative stress and epithelial-to-mesenchymal transition (EMT), increased the release of inflammatory mediators and caused phenotypical alterations, mostly after two weeks of exposure. These results show that diesel UFP affected cellular processes involved in lung and cardiovascular diseases and cancer. Biomass particles exerted low biological activity compared to diesel UFP. This evidence emphasizes that the study of different emission sources contribution to ambient PM toxicity may have a fundamental role in the development of more effective strategies for air quality improvement. PMID:27194366

  12. Chemical and biological studies at and around proposed CHASNUPP-3/CHASNUPP-4 outfall

    International Nuclear Information System (INIS)

    Chemical and biological characteristics of Indus River at and around proposed CHASNUPP-2/CHASNUPP-4 outfall at Chashma were investigated for site characterization studies. In this connection, river water samples from eight locations stretching over an area of 3 x 3 km on both sides of proposed outfall were collected and analyzed to establish baseline data. Results of chemical and biological analysis are presented. Electrical conductivity (EC), pH and total dissolved solids (TDS) of samples varied from 290 to 709 mu S/cm, 7.9 to 8.4, and 166 to 406 mg/l respectively. Concentrations of bicarbonates, sulphate and Cl ions were found in the range of 102 - 195 mg/l, 16 - 91 mg/l and 12 - 54 mg/l respectively. All the values were found in permissible range for aquatic life. Results of biological analysis indicate that total Phytoplankton per liter ranged from 67000- 601000 while zooplankton concentration was 4000-63900 per liter. Total zooplankton in Chashma lake in both sampling was 60000 per liter. Fish fauna was categorized taxonomically. Most common fish found in the area were Sole, Daula, Mori, Gulfaam, Rahu, Seenghara, Khagga, and Mullee. Majority of fish found in the area lay egg in April-June with the exception of Mullee and Khagga whose spawning period is May/August. During first sampling, Khagga was observed at all sampling stations except Station No. 6. Mullee was found at sampling stations 1, 2, 4, and 7, while Rahu was found at Station no. 2, 3 and 6. Gulfaam was observed at Station no. 1, 2, 5 and 7. (Orig./A.B.)

  13. Biological and chemical decoration of peptide nanostructures via biotin-avidin interactions.

    Science.gov (United States)

    Reches, Meital; Gazit, Ehud

    2007-07-01

    Novel architectures with nanometric dimensions hold an immense promise as building blocks for future nanotechnological applications. Biological nanostructures are of special interest due to their biocompatibility and because they allow the utilization of biochemical recognition interfaces. The ability to decorate bio-nanostructures with functional groups is highly important in order to utilize them in several applications including ultrasensitive sensors, drug delivery systems, and tissue engineering. Peptide-based nanostructures have a distinct advantage over other assemblies because they can be easily modified with chemical and biological elements. Aromatic dipeptide nanotubes (ADNT) are formed by the self-assembly of a very simple building block, the diphenylalanine peptide. These nanotubes have remarkable chemical and mechanical properties and their utilization in various applications has previously been demonstrated. Here we report on the chemical modification of ADNT with biotin moieties, in order to enable the selective decoration of the tubes with avidin-labeled species. First, ADNT were prepared in aqueous solution by self-assembly of the dipeptide building blocks. Next, they were modified using N-hydroxysuccinimido-biotin. The level of biotinylation was assessed by the interaction of the tubes with gold-labeled strepavidin and ultrastructural analysis by electron microscopy. The ability of the modified assemblies to serve as a generic functional platform was demonstrated by avidin-mediated conjugation. Avidin was added as a molecular linker to allow the decoration with biotin-labeled quantum dots. The efficient decoration was again probed by the imaging of the modified tubes using laser confocal microscopy. Taken together, we demonstrated the ability to decorate ADNT using a generic avidin-biotin adaptor. This decoration should lead to the integration and utilization of the tubes in various applications. PMID:17663236

  14. Decommissioning samples from the Ft. Lewis, WA, solvent refined coal pilot plant: chemical analysis and biological testing

    Energy Technology Data Exchange (ETDEWEB)

    Weimer, W.C.; Wright, C.W.

    1985-10-01

    This report presents the results from chemical analyses and limited biological assays of three sets of samples from the Ft. Lewis, WA solvent refined coal (SRC) pilot plant. The samples were collected during the process of decommissioning this facility. Chemical composition was determined for chemical class fractions of the samples by using high-resolution gas chromatography (GC), high-resolution GC/mass spectrometry (MS) and high-resolution MS. Biological activity was measuring using both the histidine reversion microbial mutagenicity assay with Salmonella typhimurium, TA98 and an initiation/promotion mouse-skin tumorigenicity assay. 19 refs., 7 figs., 27 tabs.

  15. Mesophilic anaerobic co-digestion of cattle manure and corn stover with biological and chemical pretreatment.

    Science.gov (United States)

    Wei, Yufang; Li, Xiujin; Yu, Liang; Zou, Dexun; Yuan, Hairong

    2015-12-01

    Biological and chemical pretreatment methods using liquid fraction of digestate (LFD), ammonia solution (AS), and NaOH were compared in the process of mesophilic anaerobic co-digestion of cattle manure and corn stover. The results showed that LFD pretreatment could achieve the same effect as the chemical pretreatment (AS, NaOH) at the performance of anaerobic digestion (AD). Compared with the untreated corn stover, the cumulative biomethane production (CBP) and the volatile solid (VS) removal rate of three pretreatment methods were increased by 25.40-30.12% and 14.48-16.84%, respectively, in the co-digestion of cattle manure and corn stover. T80 was 20-37.14% shorter than that of the control test (35 ± 1 days). LFD pretreatment not only achieved the same effect as chemical pretreatment, but also reduced T80 and improved buffer capacity of anaerobic digestion system. Therefore, this study provides meaningful insight for exploring efficient pretreatment strategy to stabilize and enhance AD performance for practical application. PMID:26409855

  16. Technical Program of The Fifth World Congress on Chemical, Biological and Radiological Terrorism

    International Nuclear Information System (INIS)

    Many countries worldwide were interested in the part that CBMTS industry played in the overall protection schemes required of all nations. It was idea to develop a baseline of information on antidotes and planned medical treatment for military and civilian medical casualties, in both peace and war. It was an almost complete lack of international communications across the full spectrum of chemical and biological medical treatment. Based on actual incidents that affected their chemical, petrochemical and pharmaceutical industries during their recent war, countries highlighted a danger that every country could face in the event of military actions, sabotage and especially terrorist actions, as well as major incidents or accidents involving these industries. Today TICS and TIMS and chemical and pharmaceutical industries and accidents and incidents whether by man or nature are part of our daily lexicon. The very tragic events 9/11 graphically demonstrated the importance of our CBMTS approach at bringing together the world's very best professionals in science and medicine to explore at the outer edges of science and technology, the most important issue facing the international community. Although the success in this approach has been continually documented for many years, CBMTS will continually rededicate our total efforts towards defining the issues, surfacing the problems across the NBC science and medical spectrum and applying the best efforts at developing solutions that would most benefit our world community

  17. Antioxidant activity of the probiotic consortium in vitro

    Directory of Open Access Journals (Sweden)

    Saule Saduakhasova

    2014-01-01

    Full Text Available Introduction: Available evidence suggests that probiotics have different biological functions that depend on several mechanisms, such as antioxidant and DNA-protective activities. The probiotic consortium includes bacterial cultures such as Streptococcus thermophilus, Lactococcus lactis, Lactobacillus plantarum, and other bacterial cultures isolated from traditional Kazakh dairy products (ayran, kumys, shubat, and healthy clinical material. The aim of this study was to investigate the total antioxidant activity of the consortium of probiotic bacteria and to determine the activity of superoxide dismutase, glutathione reductase, and DNA-protective action. Material and methods: In vitro comet assay was used to determine the antigenotoxicity of the probiotic consortium. Total antioxidant activity was determined using a method of analysis with Trolox as the equivalent. The analysis method of superoxide dismutase activity assesses the inhibition rate of the nitroblue tetrazolium reduction to formazan by superoxide dismutase. Determination of glutathione reductase activity is based on the measurement of the NADPH oxidation speed. Results: A significantly high level of the total antioxidant activity of the probiotic consortium intact cells (15.3 mM/ml was observed whereas the activity index of  lysate  was 11.1 mM/ml. The superoxide dismutase activity of probiotic consortium lysate was evaluated, with values that peaked at 0.24 U/mg protein. The superoxide dismutase activity of the consortium was lower in comparison to L.fernentum E-3 and L.fernentum E-18 cultures with values of 0.85 U/mg and 0.76 U/mg protein, respectively. SOD activity of probiotic consortium whole cells was not observed, which is typical for lactic acid bacteria. Glutathione reductase plays an important role in the optimal protection from oxidative stress. Glutathione reductase activity of the studied probiotic consortium was low; moreover, the activity of the lysate was two times

  18. Microbial Consortium with High Cellulolytic Activity (MCHCA) for Enhanced Biogas Production

    Science.gov (United States)

    Poszytek, Krzysztof; Ciezkowska, Martyna; Sklodowska, Aleksandra; Drewniak, Lukasz

    2016-01-01

    The use of lignocellulosic biomass as a substrate in agricultural biogas plants is very popular and yields good results. However, the efficiency of anaerobic digestion, and thus biogas production, is not always satisfactory due to the slow or incomplete degradation (hydrolysis) of plant matter. To enhance the solubilization of the lignocellulosic biomass various physical, chemical and biological pretreatment methods are used. The aim of this study was to select and characterize cellulose-degrading bacteria, and to construct a microbial consortium, dedicated for degradation of maize silage and enhancing biogas production from this substrate. Over 100 strains of cellulose-degrading bacteria were isolated from: sewage sludge, hydrolyzer from an agricultural biogas plant, cattle slurry and manure. After physiological characterization of the isolates, 16 strains (representatives of Bacillus, Providencia, and Ochrobactrum genera) were chosen for the construction of a Microbial Consortium with High Cellulolytic Activity, called MCHCA. The selected strains had a high endoglucanase activity (exceeding 0.21 IU/mL CMCase activity) and a wide range of tolerance to various physical and chemical conditions. Lab-scale simulation of biogas production using the selected strains for degradation of maize silage was carried out in a two-bioreactor system, similar to those used in agricultural biogas plants. The obtained results showed that the constructed MCHCA consortium is capable of efficient hydrolysis of maize silage, and increases biogas production by even 38%, depending on the inoculum used for methane fermentation. The results in this work indicate that the mesophilic MCHCA has a great potential for application on industrial scale in agricultural biogas plants. PMID:27014244

  19. Combustion Byproducts Recycling Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    The Combustion Byproducts Recycling Consortium (CBRC) program was developed as a focused program to remove and/or minimize the barriers for effective management of over 123 million tons of coal combustion byproducts (CCBs) annually generated in the USA. At the time of launching the CBRC in 1998, about 25% of CCBs were beneficially utilized while the remaining was disposed in on-site or off-site landfills. During the ten (10) year tenure of CBRC (1998-2008), after a critical review, 52 projects were funded nationwide. By region, the East, Midwest, and West had 21, 18, and 13 projects funded, respectively. Almost all projects were cooperative projects involving industry, government, and academia. The CBRC projects, to a large extent, successfully addressed the problems of large-scale utilization of CCBs. A few projects, such as the two Eastern Region projects that addressed the use of fly ash in foundry applications, might be thought of as a somewhat smaller application in comparison to construction and agricultural uses, but as a novel niche use, they set the stage to draw interest that fly ash substitution for Portland cement might not attract. With consideration of the large increase in flue gas desulfurization (FGD) gypsum in response to EPA regulations, agricultural uses of FGD gypsum hold promise for large-scale uses of a product currently directed to the (currently stagnant) home construction market. Outstanding achievements of the program are: (1) The CBRC successfully enhanced professional expertise in the area of CCBs throughout the nation. The enhanced capacity continues to provide technology and information transfer expertise to industry and regulatory agencies. (2) Several technologies were developed that can be used immediately. These include: (a) Use of CCBs for road base and sub-base applications; (b) full-depth, in situ stabilization of gravel roads or highway/pavement construction recycled materials; and (c) fired bricks containing up to 30%-40% F

  20. Biological uptake analysis of organisms exposed to oil and chemically dispersed oil

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, G. M.; Aurand, D. V. [Ecosystem Management and Associates Inc., Purcellville, VA (United States); Wright, D. A. [Maryland Univ., Chesapeake Biological Laboratory, Solomons, MD (United States)

    1999-07-01

    This paper presents the results of a preliminary evaluation of tissue samples that were archived from a full-scale biological study of water column, inter-tidal and benthic organisms exposed to weathered Arabian crude oil or to the same oil that was chemically dispersed with Corexit 9500. At various intervals during the experiment, fish, oysters and polychaetes were removed from the mesocosm tanks, and the tissue was analyzed for 40 individual PAHs using gas chromatography/mass spectrometry. It was found that it is possible to track PAH body burden in test animal tissues, even if the water column exposure period is very short, therefore inclusion of this type of analysis in future studies would be useful in evaluating effects of thresholds for various profiles, in both mesocosm and laboratory studies. 16 refs., 1 tab., 2 figs.

  1. Biological uptake analysis of organisms exposed to oil and chemically dispersed oil

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, G. M.; Aurand, D. V. [Ecosystem Management and Associates Inc., Purcellville, VA (United States); Wright, D. A. [Maryland Univ., Chesapeake Biological Laboratory, Solomons, MD (United States)

    1999-08-01

    This paper presents the results of a preliminary evaluation of tissue samples that were archived from a full-scale biological study of water column, inter-tidal and benthic organisms exposed to weathered Arabian crude oil or to the same oil that was chemically dispersed with Corexit 9500. At various intervals during the experiment, fish, oysters and polychaetes were removed from the mesocosm tanks, and the tissue was analyzed for 40 individual PAHs using gas chromatography/mass spectrometry. It was found that it is possible to track PAH body burden in test animal tissues, even if the water column exposure period is very short, therefore inclusion of this type of analysis in future studies would be useful in evaluating effects of thresholds for various profiles, in both mesocosm and laboratory studies. 16 refs., 1 tab., 2 figs.

  2. Mutagens and carcinogens - Occurrence and role during chemical and biological evolution

    Science.gov (United States)

    Giner-Sorolla, A.; Oro, J.

    1981-01-01

    The roles of mutagenic and carcinogenic substances in early biologic evolution is examined, along with terrestrial and extraterrestrial sources of mutagens and carcinogens. UV solar radiation is noted to have served to stimulate prebiotic life while also causing harmful effects in plants and animals. Aromatic compounds have been found in meteorites, and comprise leukemogens, polycyclic hydrocarbons, and nitrasamine precursors. Other mutagenic sources are volcanoes, and the beginning of evolution with mutagenic substances is complicated by the appearance of malignancies due to the presence of carcinogens. The atmosphere of the Precambrian period contained both mutagens and early carcinogens and, combined with volcanic activity discharges, formed an atmospheric chemical background analogous to the background ionizing radiation. Carcinogenesis is concluded to be intrinsic to nature, having initiated evolution and, eventually, cancer cells.

  3. Structural, Chemical and Biological Aspects of Antioxidants for Strategies Against Metal and Metalloid Exposure

    Directory of Open Access Journals (Sweden)

    Swaran J. S. Flora

    2009-01-01

    Full Text Available Oxidative stress contributes to the pathophysiology of exposure to heavy metals/metalloid. Beneficial renal effects of some medications, such as chelation therapy depend at least partially on the ability to alleviate oxidative stress. The administration of various natural or synthetic antioxidants has been shown to be of benefit in the prevention and attenuation of metal induced biochemical alterations. These include vitamins, N-acetylcysteine, α-lipoic acid, melatonin, dietary flavonoids and many others. Human studies are limited in this regard. Under certain conditions, surprisingly, the antioxidant supplements may exhibit pro-oxidant properties and even worsen metal induced toxic damage. To date, the evidence is insufficient to recommend antioxidant supplements in subject with exposure to metals. Prospective, controlled clinical trials on safety and effectiveness of different therapeutic antioxidant strategies either individually or in combination with chelating agent are indispensable. The present review focuses on structural, chemical and biological aspects of antioxidants particularly related to their chelating properties.

  4. Industrialization of Biology. A Roadmap to Accelerate the Advanced Manufacturing of Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, Douglas C. [National Academy of Sciences, Washington, DC (United States)

    2015-09-01

    The report stresses the need for efforts to inform the public of the nature of industrial biotechnology and of its societal benefits, and to make sure that concerns are communicated effectively between the public and other stakeholders. In addition to scientific advances, a number of governance and societal factors will influence the industrialization of biology. Industry norms and standards need to be established in areas such as read/write accuracy for DNA, data and machine technology specifications, and organism performance in terms of production rates and yields. An updated regulatory regime is also needed to accelerate the safe commercialization of new host organisms, metabolic pathways, and chemical products, and regulations should be coordinated across nations to enable rapid, safe, and global access to new technologies and products.

  5. Heterocyclyl linked anilines and benzaldehydes as precursors for biologically significant new chemical entities

    Indian Academy of Sciences (India)

    Raman K Verma; Vijay Kumar; Prithwish Ghosh; Lalit K Wadhwa

    2012-09-01

    Benzylidene and benzyl thiazolidinediones, oxazolidinediones, isoxazolidinediones and their acyclic analogs like alpha alkylthio/alkoxy phenylpropanoic acids, beta-keto esters and tyrosine-based compounds possess broad therapeutic potential in general and as Peroxisome Proliferator Activated Receptors (PPARs) agonists in particular in the management of hyperglycemia and hyperlipidaemia for the treatment of Type 2 Diabetes (T2D). We have synthesised and characterized some novel and suitably substituted heterocyclyl linked benzaldehydes and anilines, which can be easily and very readily derivatized to all the above mentioned classes to generate new chemical entities of broader biological significance. Synthesis of their benzylidene thiazolidinedione and diethyl malonate and also benzyl diethyl malonate and alpha-bromoesters derivatives is reported in some of the cases in the present work.

  6. Effect of three biological response modifiers on chemical carcinogenesis in mice.

    Science.gov (United States)

    Bogdanović, Z; Culo, F; Marusić, M

    1993-01-01

    The modulation of chemical carcinogenesis by three biological response modifiers was assessed in a mouse model. CBA mice given 20-methylcholanthrene s.c. were treated with peptidoglycan monomer, azure B and indomethacin for one month, either from day 0 or 75 after methylcholanthrene injection to assess their effects on tumor incidence (on days 150 and 300), time of tumor appearance, time of death, and duration and dynamics of tumor growth. All three agents significantly influenced some of the parameters of tumor growth, except tumor incidence on day 300. Highly significant sex differences in tumor appearance and growth were observed. Tumors with late appearance grew faster in comparison to tumors with early appearance. The data presented indicate that the effectiveness of anti-cancer body defense mechanisms can be best defined by the time of tumor appearance. PMID:8272149

  7. Chemical constituents and biological activities of species of Justicia: a review

    Directory of Open Access Journals (Sweden)

    Geone M. Corrêa

    2012-02-01

    Full Text Available The Acanthaceae family is an important source of therapeutic drugs, and the ethnopharmacological knowledge of this family requires urgent documentation as several of its species are near extinction. Justicia is the largest genus of Acanthaceae, with approximately 600 species. The present work provides a review addressing the chemistry and pharmacology of the genus Justicia. In addition, the biological activities of compounds isolated from the genus are also covered. The chemical and pharmacological information in the present work may inspire new biomedical applications for the species of Justicia, considering atom economy, the synthesis of environmentally benign products without producing toxic by-products, the use of renewable sources of raw materials, and the search for processes with maximal efficiency of energy.

  8. AICD -- Advanced Industrial Concepts Division Biological and Chemical Technologies Research Program. 1993 Annual summary report

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, G.; Bair, K.; Ross, J. [eds.

    1994-03-01

    The annual summary report presents the fiscal year (FY) 1993 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1993 (ASR 93) contains the following: A program description (including BCTR program mission statement, historical background, relevance, goals and objectives), program structure and organization, selected technical and programmatic highlights for 1993, detailed descriptions of individual projects, a listing of program output, including a bibliography of published work, patents, and awards arising from work supported by BCTR.

  9. Biological and Chemical Technologies Research at OIT: Annual Summary Report, FY 1997

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, G.

    1998-03-01

    The annual summary report presents the fiscal year (FY) 1 997 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program. This BCTR program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1997 (ASR 97) contains the following: program description (including BCTR program mission statement, historical background, relevance, goals and objectives); program structure and organization; selected technical and programmatic highlights for 1 997; detailed descriptions of individual projects; and a listing of program output, including a bibliography of published work, patents, and awards arising from work supported by the program.

  10. Analysis of biological and chemical compounds by remote spectroscopy using IR TeX glass fibers

    Science.gov (United States)

    Le Foulgoc, Karine; Le Neindre, Lydia; Guimond, Yann; Ma, Hong Li; Zhang, Xhang H.; Lucas, Jacques

    1995-09-01

    The TeX glasses are attracting much attention as materials for low loss mid-IR optical fibers and are consequently good candidates for thermal imaging, laser power delivery, and more recently remote sensing. The TeX glass fiber, transmitting in a wide optical window, has a minimum attenuation in the 9-10 micrometers region. Fibers with an attenuation of less than 0.5 dB/m have been repeatly obtained. These fibers are coated with a UV curable or thermal plastic, in order to improve their mechanical properites. The IR remote spectroscopy using TeX fibers is one of the most promising applications. This technology allows to perform in situ, real-time, and on-line analysis of chemical and biological compounds. The study of industrial processes such as fermentations has been performed by this method, based on the use of these IR TeX fibers.

  11. Current status of medical training for facing chemical, biological and nuclear disasters

    International Nuclear Information System (INIS)

    A descriptive, longitudinal and prospective study was conducted in 200 sixth year-medical students from the Faculty 2 of Medical University in Santiago de Cuba during 2011-2012, with the purpose of determining some of deficiencies affecting their performance during chemical, biological or nuclear disasters, for which an unstructured survey and an observation guide were applied. In the series demotivation of some students regarding the topic, poor theoretical knowledge of the topic, the ignorance of ways to access information and the little use of this topic in college scientific events were evidenced, which also involved the little systematization of the content on disasters and affected the objectives of medical training with comprehensive profile

  12. The Metal And Sulphate Removal From Mine Drainage Waters By Biological-Chemical Ways

    Directory of Open Access Journals (Sweden)

    Jenčárová Jana

    2015-06-01

    Full Text Available Mine drainage waters are often characterized by high concentrations of sulphates and metals as a consequence of the mining industry of sulphide minerals. The aims of this work are to prove some biological-chemical processes utilization for the mine drainage water treatment. The studied principles of contamination elimination from these waters include sulphate reduction and metal bioprecipitation by the application of sulphate-reducing bacteria (SRB. Other studied process was metal sorption by prepared biogenic sorbent. Mine drainage waters from Slovak localities Banská Štiavnica and Smolník were used to the pollution removal examination. In Banská Štiavnica water, sulphates decreased below the legislative limit. The elimination of zinc by sorption experiments achieved 84 % and 65 %, respectively.

  13. Terror weapons. Ridding the world of nuclear, biological and chemical weapons - Commission on mass destruction weapons

    International Nuclear Information System (INIS)

    This book approaches in 8 chapters the ambitious challenge of ridding the world of all mass destruction weapons: 1 - re-launching disarmament; 2 - terror weapons: nature of threats and answers (weakness of traditional answers, counter-proliferation); 3 - nuclear weapons: preventing proliferation and terrorism, reducing threat and nuclear weapons number, from regulation to banning); 4 - biological or toxin weapons; 5 - chemical weapons; 6 - vectors, anti-missile defenses and space weapons; 7 - exports control, international assistance and non-governmental actors; 8 - respect, verification, enforcement and role of the United Nations. The recommendations and works of the Commission are presented in appendix together with the declaration adopted on April 30, 2009. (J.S.)

  14. Chemical and biological studies of Microgramma vacciniifolia (Langsd. and Fisch.) Copel (Polypodiaceae)

    International Nuclear Information System (INIS)

    Chemical studies with aerial parts of Microgramma vacciniifolia (Langsd. and Fisch.) Copel. afforded β-sitosterol, hopan-22-ol, 6-metoxiapinenin-7-O-β-D-allopyranoside and a mixture containing ethyl esters of carboxylic acids. The structures of the compounds were elucidated by spectroscopy and GC-MS analysis. The total phenolics contents of the crude extract and fractions were determined by Folin-Ciocalteau method. The antioxidant activity was evaluated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH). The AcOEt fraction showed better activity in DPPH assay (9.9 ± 0.03 μg/mL), and presented also higher contents of the total phenolic (93.60 ± 1.11 μg/mg). Antimicrobial and allelopathic effects of the crude ethanolic extract and fractions also were evaluated. In addition, the combination of biological activities was discussed. (author)

  15. Organic light-emitting devices (OLEDs) and OLED-based chemical and biological sensors: an overview

    International Nuclear Information System (INIS)

    The basic photophysics, transport properties, state of the art, and challenges in OLED science and technology, and the major developments in structurally integrated OLED-based luminescent chemical and biological sensors are reviewed briefly. The dramatic advances in OLED performance have resulted in devices with projected continuous operating lifetimes of ∼2 x 105 h (∼23 yr) at ∼150 Cd m-2 (the typical brightness of a computer monitor or TV). Consequently, commercial products incorporating OLEDs, e.g., cell phones, MP3 players, and, most recently, OLED TVs, are rapidly proliferating. The progress in elucidating the photophysics and transport properties, occurring in tandem with the development of OLEDs, has been no less dramatic. It has resulted in a detailed understanding of the dynamics of trapped and mobile negative and positive polarons (to which the electrons and holes, respectively, relax upon injection), and of singlet and triplet excitons. It has also yielded a detailed understanding of the spin dynamics of polarons and triplet excitons, which affects their overall dynamics significantly. Despite the aforementioned progress, there are outstanding challenges in OLED science and technology, notably in improving the efficiency of the devices and their stability at high brightness (>1000 Cd m-2). One of the most recent emerging OLED-based technologies is that of structurally integrated photoluminescence-based chemical and biological sensors. This sensor platform, pioneered by the authors, yields uniquely simple and potentially very low-cost sensor (micro)arrays. The second part of this review describes the recent developments in implementing this platform for gas phase oxygen, dissolved oxygen (DO), anthrax lethal factor, and hydrazine sensors, and for a DO, glucose, lactate, and ethanol multianalyte sensor. (topical review)

  16. Development of standards for chemical and biological decontamination of buildings and structures affected by terrorism

    Energy Technology Data Exchange (ETDEWEB)

    Lumley, T.C.; Volchek, K.; Fingas, M. [Environment Canada, Ottawa, ON (Canada). Emergencies Science and Technology Division, Environmental Technology Centre, Science and Technology Branch; Hay, A.W.M. [Leeds Univ., Leeds (United Kingdom)

    2006-07-01

    Currently, there are no suitable standards for determining levels of safety when reoccupying a building that has been recommissioned following a biological or chemical attack. For that reason, this study focused on developing clean-up standards for decontaminating buildings and construction materials after acts of terrorism. Several parameters must be assessed when determining the course of action to decontaminate toxic agents and to rehabilitate facilities. First, the hazardous substance must be positively identified along with the degree of contamination and information on likely receptors. Potential exposure route is also a key consideration in the risk assessment process. A key objective of the study was to develop specific guidelines for ascertaining and defining clean. In particular, standards for chemical and biological agents that pose a real or potential risk for use as agents of terrorism will be developed. The selected agents for standards development were ammonia, fentanyl, malathion, mustard gas, potassium cyanide, ricin, sarin, hepatitis A virus, and bacillus anthracis. The standards will be developed by establishing the relationship between the amount of exposure and expected health effects; assessing real and potential risks by identifying individuals at risk and consideration of all exposure routes; and, characterizing the risk to determine the potential for toxicity or infectivity. For non-carcinogens, this was done through the analysis of other known guidelines. Cancer-slope factors will be considered for carcinogens. The standards will be assessed in the laboratory using animal models. The guidelines and standards are intended for first-responders and are scheduled for development by the end of 2006. 15 refs., 3 tabs.

  17. Indoor Air Nuclear, Biological, and Chemical Health Modeling and Assessment System

    Energy Technology Data Exchange (ETDEWEB)

    Stenner, Robert D.; Hadley, Donald L.; Armstrong, Peter R.; Buck, John W.; Hoopes, Bonnie L.; Janus, Michael C.

    2001-03-01

    Indoor air quality effects on human health are of increasing concern to public health agencies and building owners. The prevention and treatment of 'sick building' syndrome and the spread of air-borne diseases in hospitals, for example, are well known priorities. However, increasing attention is being directed to the vulnerability of our public buildings/places, public security and national defense facilities to terrorist attack or the accidental release of air-borne biological pathogens, harmful chemicals, or radioactive contaminants. The Indoor Air Nuclear, Biological, and Chemical Health Modeling and Assessment System (IA-NBC-HMAS) was developed to serve as a health impact analysis tool for use in addressing these concerns. The overall goal was to develop a user-friendly fully functional prototype Health Modeling and Assessment system, which will operate under the PNNL FRAMES system for ease of use and to maximize its integration with other modeling and assessment capabilities accessible within the FRAMES system (e.g., ambient air fate and transport models, water borne fate and transport models, Physiologically Based Pharmacokinetic models, etc.). The prototype IA-NBC-HMAS is designed to serve as a functional Health Modeling and Assessment system that can be easily tailored to meet specific building analysis needs of a customer. The prototype system was developed and tested using an actual building (i.e., the Churchville Building located at the Aberdeen Proving Ground) and release scenario (i.e., the release and measurement of tracer materials within the building) to ensure realism and practicality in the design and development of the prototype system. A user-friendly "demo" accompanies this report to allow the reader the opportunity for a "hands on" review of the prototype system's capability.

  18. The ocean sampling day consortium

    DEFF Research Database (Denmark)

    Kopf, Anna; Bicak, Mesude; Kottmann, Renzo;

    2015-01-01

    Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate...... the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our...

  19. Indole Alkaloids of the Stigonematales (Cyanophyta: Chemical Diversity, Biosynthesis and Biological Activity

    Directory of Open Access Journals (Sweden)

    Katherine Walton

    2016-04-01

    Full Text Available The cyanobacteria are well recognized as producers of a wide array of bioactive metabolites including toxins, and potential drug candidates. However, a limited number of taxa are generally considered with respect to both of these aspects. That said, the order Stigonematales, although largely overlooked in this regard, has become increasingly recognized as a source of bioactive metabolites relevant to both human and environmental health. In particular, the hapalindoles and related indole alkaloids (i.e., ambiguines, fischerindoles, welwitindolinones from the order, represent a diverse, and phylogenetically characteristic, class of secondary metabolites with biological activity suggestive of potential as both environmental toxins, and promising drug discovery leads. The present review gives an overview of the chemical diversity of biologically active metabolites from the Stigonematales—and particularly the so-called hapalindole-type alkaloids—including their biosynthetic origins, and their pharmacologically and toxicologically relevant bioactivities. Taken together, the current evidence suggests that these alkaloids, and the associated cyanobacterial taxa from the order, warrant future consideration as both potentially harmful (i.e., “toxic” algae, and as promising leads for drug discovery.

  20. Biological and chemical treatment of Cedrela fissilis seeds for controlling Rhizoctonia sp.

    Directory of Open Access Journals (Sweden)

    Marília Lazarotto

    2013-03-01

    Full Text Available This research evaluated the effect of a fungicide and a biological product, singly and combined, for the control of pathogens, especially Rhizoctonia sp., in seeds of Cedrela fissilis. Before the seeds treatment, the inoculation of Rhizoctonia sp., isolated from C. fissilis seeds in blotter-test and considered pathogenic for the specie, was done on half of the seeds used. After, the seeds were subjected to treatments with powder organic product based on Trichoderma spp. (singly, powder fungicide Captan (also singly, combination of two products in a maximum dose considered (100% and combination of half dose of both products, besides the control. After the seeds treatments the following tests were done: germination, emergence in vermiculite, with evaluations of seedlings and sanitary by blotter-test. No treatment could eradicate Rhizoctonia sp. inoculated seed, but the treatment with 100% of the dose of both products reduced its incidence. The combination of chemical and biological products can be a viable alternative for the treatment of C. fissililis seeds, especially in the control of Rhizoctonia sp.

  1. Nanomaterial processing using self-assembly-bottom-up chemical and biological approaches

    International Nuclear Information System (INIS)

    Nanotechnology is touted as the next logical sequence in technological evolution. This has led to a substantial surge in research activities pertaining to the development and fundamental understanding of processes and assembly at the nanoscale. Both top-down and bottom-up fabrication approaches may be used to realize a range of well-defined nanostructured materials with desirable physical and chemical attributes. Among these, the bottom-up self-assembly process offers the most realistic solution toward the fabrication of next-generation functional materials and devices. Here, we present a comprehensive review on the physical basis behind self-assembly and the processes reported in recent years to direct the assembly of nanoscale functional blocks into hierarchically ordered structures. This paper emphasizes assembly in the synthetic domain as well in the biological domain, underscoring the importance of biomimetic approaches toward novel materials. In particular, two important classes of directed self-assembly, namely, (i) self-assembly among nanoparticle–polymer systems and (ii) external field-guided assembly are highlighted. The spontaneous self-assembling behavior observed in nature that leads to complex, multifunctional, hierarchical structures within biological systems is also discussed in this review. Recent research undertaken to synthesize hierarchically assembled functional materials have underscored the need as well as the benefits harvested in synergistically combining top-down fabrication methods with bottom-up self-assembly. (review article)

  2. Chemical Dissolution Pathways of MoS2 Nanosheets in Biological and Environmental Media.

    Science.gov (United States)

    Wang, Zhongying; von dem Bussche, Annette; Qiu, Yang; Valentin, Thomas M; Gion, Kyle; Kane, Agnes B; Hurt, Robert H

    2016-07-01

    Material stability and dissolution in aqueous media are key issues to address in the development of a new nanomaterial intended for technological application. Dissolution phenomena affect biological and environmental persistence; fate, transport, and biokinetics; device and product stability; and toxicity pathways and mechanisms. This article shows that MoS2 nanosheets are thermodynamically and kinetically unstable to O2-oxidation under ambient conditions in a variety of aqueous media. The oxidation is accompanied by nanosheet degradation and release of soluble molybdenum and sulfur species, and generates protons that can colloidally destabilize the remaining sheets. The oxidation kinetics are pH-dependent, and a kinetic law is developed for use in biokinetic and environmental fate modeling. MoS2 nanosheets fabricated by chemical exfoliation with n-butyl-lithium are a mixture of 1T (primary) and 2H (secondary) phases and oxidize rapidly with a typical half-life of 1-30 days. Ultrasonically exfoliated sheets are in pure 2H phase, and oxidize much more slowly. Cytotoxicity experiments on MoS2 nanosheets and molybdate ion controls reveal the relative roles of the nanosheet and soluble fractions in the biological response. These results indicate that MoS2 nanosheets will not show long-term persistence in living systems and oxic natural waters, with important implications for biomedical applications and environmental risk. PMID:27267956

  3. Monitoring PAH contamination in water: Comparison of biological and physico-chemical tools

    Energy Technology Data Exchange (ETDEWEB)

    Bourgeault, A., E-mail: bourgeault@ensil.unilim.fr; Gourlay-Francé, C.

    2013-06-01

    The suitability of biological methods and chemical-based passive samplers to determine exposure to PAHs was tested by deploying zebra mussels and SPMDs along the Seine River over 11 months. The concentration of 13 PAHs was analyzed every month in both water and mussels. The sum of the PAH concentrations in mussels, initially at 299 ng g{sub dry} {sub wt}{sup −1}, reached 2654, 3972 and 3727 ng g{sup −1} at the end of exposure in the three sampling points taken through the river. The respective SPMD-available concentrations of TPAHs reached 9, 52 and 34 ng L{sup −1}. Results showed seasonal variations of total PAH concentrations in the mussels, characterized by a decrease during spawning. The non-achievement of steady state concentration that was observed in mussels may be accounted for by the temporal variation of environmental concentrations. Thus, a bioaccumulation model based on kinetic rather than simple equilibrium partitioning was found to be more appropriate to describe PAH content in mussels. Moreover, biodynamic kinetic modeling proved useful to better understand the uptake and loss processes of pyrene. It clearly shows that these processes are markedly influenced by the biological state of the zebra mussels. The most realistic hypothesis is that the temporal variation of the biodynamic parameters may originate from a decrease of the mussels' metabolization of PAHs during spawning. Since SPMD passive samplers cannot integrate such biological factors, they are poor predictors of PAH bioavailability in mussels. - Highlights: • PAH contamination was monitored by deploying mussels and SPMDs over 11 months along the Seine River. • 5–6 ring PAHs which could not be quantified in spot samples, were measured in SPMDs. • PAH concentrations in the mussels decreased during spawning. • Temporal variation of bioaccumulated PAH may originate from a decrease of the mussels' metabolism during spawning. • Biodynamic model was allowed to explain

  4. Monitoring PAH contamination in water: Comparison of biological and physico-chemical tools

    International Nuclear Information System (INIS)

    The suitability of biological methods and chemical-based passive samplers to determine exposure to PAHs was tested by deploying zebra mussels and SPMDs along the Seine River over 11 months. The concentration of 13 PAHs was analyzed every month in both water and mussels. The sum of the PAH concentrations in mussels, initially at 299 ng gdrywt−1, reached 2654, 3972 and 3727 ng g−1 at the end of exposure in the three sampling points taken through the river. The respective SPMD-available concentrations of TPAHs reached 9, 52 and 34 ng L−1. Results showed seasonal variations of total PAH concentrations in the mussels, characterized by a decrease during spawning. The non-achievement of steady state concentration that was observed in mussels may be accounted for by the temporal variation of environmental concentrations. Thus, a bioaccumulation model based on kinetic rather than simple equilibrium partitioning was found to be more appropriate to describe PAH content in mussels. Moreover, biodynamic kinetic modeling proved useful to better understand the uptake and loss processes of pyrene. It clearly shows that these processes are markedly influenced by the biological state of the zebra mussels. The most realistic hypothesis is that the temporal variation of the biodynamic parameters may originate from a decrease of the mussels' metabolization of PAHs during spawning. Since SPMD passive samplers cannot integrate such biological factors, they are poor predictors of PAH bioavailability in mussels. - Highlights: • PAH contamination was monitored by deploying mussels and SPMDs over 11 months along the Seine River. • 5–6 ring PAHs which could not be quantified in spot samples, were measured in SPMDs. • PAH concentrations in the mussels decreased during spawning. • Temporal variation of bioaccumulated PAH may originate from a decrease of the mussels' metabolism during spawning. • Biodynamic model was allowed to explain the bioaccumulation

  5. A microfluidic chemical/biological sensing system based on membrane dissolution and optical absorption

    Science.gov (United States)

    Sridharamurthy, Sudheer S.; Dong, Liang; Jiang, Hongrui

    2007-01-01

    A microfluidic system to sense chemical and biological analytes using membranes dissolvable by the analyte is demonstrated. The scheme to detect the dissolution of the membrane is based on the difference in optical absorption of the membrane and the fluidic sample being assayed. The presence of the analyte in the sample chemically cleaves the membrane and causes the sample to flow into the membrane area. This causes a change in the optical absorption of the path between the light source and detector. A device comprising the microfluidic channels and the membrane is microfabricated using liquid-phase photopolymerization. A light emitting diode (LED) and a detector with an integrated amplifier are positioned and aligned on either side of the device. The state of the membrane is continuously monitored after introducing the sample. The temporal dissolution characteristics of the membrane are extracted in terms of the output voltage of the detector as a function of time. This is used to determine the concentration of the analyte. The absorption spectra of the membrane and fluidic sample are studied to determine the optimal wavelength that provides the maximum difference in absorbance between the membrane and the sample. In this work, the dissolution of a poly(acrylamide) hydrogel membrane in the presence of a reducing agent (dithiothreitol—DTT) is used as a model system. For this system, with 1 M DTT, complete membrane dissolution occurred after 65 min.

  6. Beyond terrestrial biology: charting the chemical universe of α-amino acid structures.

    Science.gov (United States)

    Meringer, Markus; Cleaves, H James; Freeland, Stephen J

    2013-11-25

    α-Amino acids are fundamental to biochemistry as the monomeric building blocks with which cells construct proteins according to genetic instructions. However, the 20 amino acids of the standard genetic code represent a tiny fraction of the number of α-amino acid chemical structures that could plausibly play such a role, both from the perspective of natural processes by which life emerged and evolved, and from the perspective of human-engineered genetically coded proteins. Until now, efforts to describe the structures comprising this broader set, or even estimate their number, have been hampered by the complex combinatorial properties of organic molecules. Here, we use computer software based on graph theory and constructive combinatorics in order to conduct an efficient and exhaustive search of the chemical structures implied by two careful and precise definitions of the α-amino acids relevant to coded biological proteins. Our results include two virtual libraries of α-amino acid structures corresponding to these different approaches, comprising 121 044 and 3 846 structures, respectively, and suggest a simple approach to exploring much larger, as yet uncomputed, libraries of interest. PMID:24152173

  7. Physico-chemical and biological studies on water from Aries River (Romania).

    Science.gov (United States)

    Butiuc-Keul, A; Momeu, L; Craciunas, C; Dobrota, C; Cuna, S; Balas, G

    2012-03-01

    Our work was focused on physico-chemical and biological characteristics of Aries River, one of the largest rivers from Romania. Water samples were collected from 11 sites along Aries River course. We have measured de (18)O and D isotopic composition of Aries River water in these locations and correlated these data with the isotopic composition of aquatic plants and with the pollution degree. Some ions from Aries River water were also analyzed: NO(3)(-), NO(2)(-), PO(4)(3-) Cu(2+), Fe(3+). Analysis of diatom communities has been performed in order to quantify the level of water pollution of Aries River. All physico-chemical analyses revealed that the most polluted site is Abrud; the source of pollution is most probably the mining enterprise from Rosia Montana. Water isotope content increases from upstream to downstream of the locations analyzed. The structure of diatom communities is strongly influenced by the different pollution sources from this area: mine waters, industrial waters, waste products, land cleaning, tourism etc. The water eutrophication increases from upstream of Campeni to downstream of Campia Turzii. PMID:21596474

  8. Combined biologic (anaerobic-aerobic) and chemical treatment of starch industry wastewater.

    Science.gov (United States)

    Sklyar, Vladimir; Epov, Andrey; Gladchenko, Marina; Danilovich, Dmitrii; Kalyuzhnyi, Sergey

    2003-01-01

    A combined biologic and chemical treatment of high-strength (total chemical oxygen demand [CODtot] up to 20 g/L), strong nitrogenous (total N up to 1 g/L), and phosphoric (total P up to 0.4 g/L) starch industry wastewater was investigated at laboratory-scale level. As a principal step for COD elimination, upflow anaerobic sludge bed reactor performance was investigated at 30 degrees C. Under hydraulic retention times (HRTs) of about 1 d, when the organic loading rates were higher than 15 g of COD/(L.d), the CODtot removal varied between 77 and 93%, giving effluents with a COD/N ratio of 4-5:1, approaching the requirements of subsequent denitrification. The activated sludge reactor operating in aerobic-anoxic regime (HRT of about 4 d, duration of aerobic and anoxic phases of 30 min each) was able to remove up to 90% of total nitrogen and up to 64% of COD tot from the anaerobic effluents under 17-20 degrees C. The coagulation experiments with Fe(III) showed that 1.4 mg of resting hardly biodegradable COD and 0.5 mg of phosphate (as P) could be removed from the aerobic effluents by each milligram of iron added. PMID:12794298

  9. Comparative Study of Chemical Composition and Biological Activity of Yellow, Green, Brown, and Red Brazilian Propolis

    Science.gov (United States)

    Machado, Christiane Schineider; Mokochinski, João Benhur; de Lira, Tatiana Onofre; de Oliveira, Fátima de Cassia Evangelista; Cardoso, Magda Vieira; Ferreira, Roseane Guimarães; Sawaya, Alexandra Christine Helena Frankland; Ferreira, Antonio Gilberto; Pessoa, Cláudia; Cuesta-Rubio, Osmany; Monteiro, Marta Chagas; de Campos, Mônica Soares

    2016-01-01

    The chemical composition and biological activity of a sample of yellow propolis from Mato Grosso do Sul, Brazil (EEP-Y MS), were investigated for the first time and compared with green, brown, and red types of Brazilian propolis and with a sample of yellow propolis from Cuba. Overall, EEP-Y MS had different qualitative chemical profiles, as well as different cytotoxic and antimicrobial activities when compared to the other types of propolis assessed in this study and it is a different chemotype of Brazilian propolis. Absence of phenolic compounds and the presence of mixtures of aliphatic compounds in yellow propolis were determined by analysing 1H-NMR spectra and fifteen terpenes were identified by GC-MS. EEP-Y MS showed cytotoxic activity against human tumour strain OVCAR-8 but was not active against Gram-negative or Gram-positive bacteria. Our results confirm the difficulty of establishing a uniform quality standard for propolis from diverse geographical origins. The most appropriate pharmacological applications of yellow types of propolis must be further investigated. PMID:27525023

  10. Biological effects of activation products and other chemicals released from fusion power plants

    International Nuclear Information System (INIS)

    Literature reviews indicate that existing information is incomplete, often contradictory, and of questionable value for the prediction and assessment of ultimate impact from fusion-associated activation products and other chemical releases. It is still uncertain which structural materials will be used in the blanket and first wall of fusion power plants. However, niobium, vanadium, vanadium-chromium alloy, vanadium-titanium alloy, sintered aluminum product, and stainless steel have been suggested. The activation products of principal concern will be the longer-lived isotopes of 26Al, 49V, 51Cr, 54Mn, 55Fe, 58Co, 60Co, 93Nb, and 94Nb. Lithium released to the environment either during the mining cycle, from power plant operation or accident, may be in the form of a number of compound types varying in solubility and affinity for biological organisms. The effects of a severe liquid metal fire or explosion involving Na or K will vary according to inherent abiotic and biotic features of the affected site. Saline, saline-alkaline, and sodic soils of arid lands would be particularly susceptible to alkaline stress. Beryllium released to the environment during the mining cycle or reactor accident situation could be in the form of a number of compound types. Adverse effects to aquatic species from routine chemical releases (biocides, corrosion inhibitors, dissolution products) may occur in the discharge of both fission and fusion power plant designs

  11. Interaction of chemical species with biological regulation of the metabolism of essential trace elements

    Energy Technology Data Exchange (ETDEWEB)

    Windisch, W. [Center of Life and Food Sciences, Technische Univ. Muenchen, Freising (Germany)

    2002-02-01

    Variations in the chemical speciation of dietary trace elements can result in the provision of different amounts of these micronutrients to the organism and might thus induce interactions with trace-element metabolism. The chemical species of Zn, Fe, Cu, and Mn can interact with other components of the diet even before reaching the site of absorption, e.g. by formation of poorly soluble complexes with phytic acid. This might considerably modify the amount of metabolically available trace elements; differences between absorptive capacity per se toward dietary species seems to be less important. Homeostasis usually limits the quantities of Zn, Fe, Cu, and Mn transported from the gut into the organism, and differences between dietary species are largely eliminated at this step. There is no homeostatic control of absorption of Se and I, and organisms seem to be passively exposed to influx of these micronutrients irrespective of dietary speciation. Inside the organism the trace elements are usually converted into a metabolically recognizable form, channeled into their biological functions, or submitted to homeostatically controlled excretion. Some dietary species can, however, be absorbed as intact compounds. As long as the respective quantities of trace elements are not released from their carriers, they are not recognized properly by trace element metabolism and might induce tissue accumulation, irrespective of homeostatic control. (orig.)

  12. Optimization of integrated chemical-biological degradation of a reactive azo dye using response surface methodology

    International Nuclear Information System (INIS)

    The integrated chemical-biological degradation combining advanced oxidation by UV/H2O2 followed by aerobic biodegradation was used to degrade C.I. Reactive Azo Red 195A, commonly used in the textile industry in Australia. An experimental design based on the response surface method was applied to evaluate the interactive effects of influencing factors (UV irradiation time, initial hydrogen peroxide dosage and recirculation ratio of the system) on decolourisation efficiency and optimizing the operating conditions of the treatment process. The effects were determined by the measurement of dye concentration and soluble chemical oxygen demand (S-COD). The results showed that the dye and S-COD removal were affected by all factors individually and interactively. Maximal colour degradation performance was predicted, and experimentally validated, with no recirculation, 30 min UV irradiation and 500 mg H2O2/L. The model predictions for colour removal, based on a three-factor/five-level Box-Wilson central composite design and the response surface method analysis, were found to be very close to additional experimental results obtained under near optimal conditions. This demonstrates the benefits of this approach in achieving good predictions while minimising the number of experiments required

  13. A chemical screen for biological small molecule-RNA conjugates reveals CoA-linked RNA.

    Science.gov (United States)

    Kowtoniuk, Walter E; Shen, Yinghua; Heemstra, Jennifer M; Agarwal, Isha; Liu, David R

    2009-05-12

    Compared with the rapidly expanding set of known biological roles for RNA, the known chemical diversity of cellular RNA has remained limited primarily to canonical RNA, 3'-aminoacylated tRNAs, nucleobase-modified RNAs, and 5'-capped mRNAs in eukaryotes. We developed two methods to detect in a broad manner chemically labile cellular small molecule-RNA conjugates. The methods were validated by the detection of known tRNA and rRNA modifications. The first method analyzes small molecules cleaved from RNA by base or nucleophile treatment. Application to Escherichia coli and Streptomyces venezuelae RNA revealed an RNA-linked hydroxyfuranone or succinyl ester group, in addition to a number of other putative small molecule-RNA conjugates not previously reported. The second method analyzes nuclease-generated mononucleotides before and after treatment with base or nucleophile and also revealed a number of new putative small molecule-RNA conjugates, including 3'-dephospho-CoA and its succinyl-, acetyl-, and methylmalonyl-thioester derivatives. Subsequent experiments established that these CoA species are attached to E. coli and S. venezuelae RNA at the 5' terminus. CoA-linked RNA cannot be generated through aberrant transcriptional initiation by E. coli RNA polymerase in vitro, and CoA-linked RNA in E. coli is only found among smaller (approximately < 200 nucleotide) RNAs that have yet to be identified. These results provide examples of small molecule-RNA conjugates and suggest that the chemical diversity of cellular RNA may be greater than previously understood. PMID:19416889

  14. A chemical screen for biological small molecule–RNA conjugates reveals CoA-linked RNA

    Science.gov (United States)

    Kowtoniuk, Walter E.; Shen, Yinghua; Heemstra, Jennifer M.; Agarwal, Isha; Liu, David R.

    2009-01-01

    Compared with the rapidly expanding set of known biological roles for RNA, the known chemical diversity of cellular RNA has remained limited primarily to canonical RNA, 3′-aminoacylated tRNAs, nucleobase-modified RNAs, and 5′-capped mRNAs in eukaryotes. We developed two methods to detect in a broad manner chemically labile cellular small molecule–RNA conjugates. The methods were validated by the detection of known tRNA and rRNA modifications. The first method analyzes small molecules cleaved from RNA by base or nucleophile treatment. Application to Escherichia coli and Streptomyces venezuelae RNA revealed an RNA-linked hydroxyfuranone or succinyl ester group, in addition to a number of other putative small molecule–RNA conjugates not previously reported. The second method analyzes nuclease-generated mononucleotides before and after treatment with base or nucleophile and also revealed a number of new putative small molecule–RNA conjugates, including 3′-dephospho-CoA and its succinyl-, acetyl-, and methylmalonyl-thioester derivatives. Subsequent experiments established that these CoA species are attached to E. coli and S. venezuelae RNA at the 5′ terminus. CoA-linked RNA cannot be generated through aberrant transcriptional initiation by E. coli RNA polymerase in vitro, and CoA-linked RNA in E. coli is only found among smaller (≲200 nucleotide) RNAs that have yet to be identified. These results provide examples of small molecule-RNA conjugates and suggest that the chemical diversity of cellular RNA may be greater than previously understood. PMID:19416889

  15. Short-term effects of different organic amendments on soil chemical, biochemical and biological indicators

    Science.gov (United States)

    Mondelli, Donato; Aly, Adel; Yirga Dagnachew, Ababu; Piscitelli, Lea; Dumontet, Stefano; Miano, Teodoro

    2014-05-01

    The limited availability of animal manure and the high cost of good quality compost lead to difficult soil quality management under organic agriculture. Therefore, it is important to find out alternative organic soil amendments and more flexible strategies that are able to sustain crop productivity and maintain and enhance soil quality. A three years study was carried out in the experimental fields of the Mediterranean Agronomic Institute of Bari located in Valenzano, Italy. The main objective of this research is to investigate the effects of different fertility management strategies on soil quality in order to estimate the role of innovative matrices for their use in organic farming. The experiment consists of seven treatments applied to a common crop rotation. The treatments include alternative organic amendments (1- olive mill wastewater OMW, 2- residues of mushroom cultivation MUS, 3- coffee chaff COF), common soil amendments (4- compost COM, 5- faba bean intercropping LEG, 6- cow manure - MAN) and as a reference treatment (7- mineral fertilizer COV). The soil quality was assessed before and after the application of the treatments, through biological (microbial biomass carbon and nitrogen, soil respiration and metabolic quotient), biochemical (soil enzymatic activities: β-glucosidase, alkaline phospatase, urease, fluorescein diacetate (FDA) hydrolysis), and chemical (pH, soil organic carbon, soil organic matter, total nitrogen, available phosphorous, exchangeable potassium, dissolved organic carbon and total dissolved nitrogen) indicators. Based on the results obtained after the second year, all treatments were able to improve various soil chemical parameters as compared to mineral fertilizer. The incorporation of COF and OMW seemed to be more effective in improving soil total N and exchangeable K, while MAN significantly increased available P. All the amendments enhance dissolved organic C, soil respiration, microbial biomass and metabolic quotient as

  16. Chemical composition and biological activity of Rubus idaeus shoots – a traditional herbal remedy of Eastern Europe

    OpenAIRE

    Krauze-Baranowska, Mirosława; Głód, Daniel; Kula, Marta; Majdan, Magdalena; Hałasa, Rafał; Matkowski, Adam; Kozłowska, Weronika; Kawiak, Anna

    2014-01-01

    Background The young shoots of Rubus idaeus are traditionally used as a herbal remedy in common cold, fever and flu-like infections yet there is no research concerning this plant material. The aim of the study was to evaluate the chemical composition and biological properties of raspberry shoots from 11 cultivar varieties. Methods The methanol extracts were subjected to chromatographic analysis using HPLC-DAD-ESI-MS, and two-dimensional ‘comprehensive’ LCxLC techniques. The biological activit...

  17. Brain Tumor Epidemiology Consortium (BTEC)

    Science.gov (United States)

    The Brain Tumor Epidemiology Consortium is an open scientific forum organized to foster the development of multi-center, international and inter-disciplinary collaborations that will lead to a better understanding of the etiology, outcomes, and prevention of brain tumors.

  18. Hammond Bay Biological Station

    Data.gov (United States)

    Federal Laboratory Consortium — Hammond Bay Biological Station (HBBS), located near Millersburg, Michigan, is a field station of the USGS Great Lakes Science Center (GLSC). HBBS was established by...

  19. Laboratory of Biological Modeling

    Data.gov (United States)

    Federal Laboratory Consortium — The Laboratory of Biological Modeling is defined by both its methodologies and its areas of application. We use mathematical modeling in many forms and apply it to...

  20. Chemical and biological study of Manilkara zapota (L. Van Royen leaves (Sapotaceae cultivated in Egypt

    Directory of Open Access Journals (Sweden)

    Nesrin M Fayek

    2012-01-01

    Full Text Available Background: Manilkara zapota (L. Van Royen is an evergreen tree, native to the tropical Americas and introduced to Egypt as a fruiting tree in 2002. No previous study was reported on the plant cultivated in Egypt. Materials and Methods: In this study, the leaves of the plant cultivated in Egypt were subjected to phytochemical and biological investigations. The lipoidal matter was analyzed by GLC. Five compounds were isolated from the petroleum ether and ethyl acetate fractions of the alcoholic extract of the leaves by chromatographic fractionation on silica gel and sephadex, the structures of these compounds were identified using IR, UV, MS, 1 H-NMR and 13 C-NMR. The LD 50 of the alcoholic and aqueous extracts of the leaves was determined and their antihyperglycemic, hypocholesterolemic and antioxidant activities were tested by enzymatic colorimetric methods using specific kits. Results: Unsaturated fatty acids represent 32.32 % of the total fatty acids, oleic acid (13.95%, linoleidic acid (10.18 % and linoleic acid (5.96 % were the major ones. The isolated compounds were identified as lupeol acetate, oleanolic acid, apigenin-7-O-α-L-rhamnoside, myricetin-3-O-α-L-rhamnoside and caffeic acid. This is the first report about isolation of these compounds from Manilkara zapota except myricetin-3-O-α-L-rhamnoside, which was previously isolated from the plant growing abroad. The LD 50 recorded 80 g/Kg b. wt. for both the tested extracts, so they could be considered to be safe. They exhibited antihyperglycemic, hypocholesterolemic and antioxidant activities. Conclusion: The observed biological activities were attributed to the different chemical constituents present in the plant mainly its phenolic constituents.

  1. Chemical composition and biological activities of leaves of ziziphus mauritiana l. native to pakistan

    International Nuclear Information System (INIS)

    Ziziphus mauritiana L., is a fruit tree well known for its nutritional and medicinal benefits. The aim of the current study was to investigate the chemical composition as well as biological (antioxidant, antimicrobial, antitumor and anticancer) attributes of different solvent extracts from the leaves of Ziziphus mauritiana. It was established by colorimetric method that chloroform extract had greater amount of total phenolics (84.69 +- 0.92 micro g GAE/mg of extract), while methanol extract contained higher content of total flavonoids (46.94+-1.55 micro g QE/mg of extract). Meanwhile, methanol extract exhibited higher DPPH free radical scavenging potential (IC50 = 0.11 mg/mL) and antimicrobial (antibacterial and antifungal) activity among others. Overall, E. coli was noted to be the most resistant microbial strain against all the tested extracts. Chloroform extract showed strongest antitumor (IC50 = 70.74 micro g/mL) and anticancer activity (IC50 values of 27.78 and 18.32 micro g/mL against human cancer cell lines U937 and HCT-116, respectively) and significantly inhibited the viability of these cell lines. According to GC-MS analysis methyl stearate (15.59%), plamitic acid (38.55%) and micro-linolenic acid (26.45%) were identified as the major components of methanol, chloroform and hexane extracts, respectively in addition to presence of several other bioactives. The results of this study conclude that Z. mauritiana leaves extract with efficient biological activities can be explored for potential uses as antioxidant, antitumor and anticancer agents for pharmaceutical industry. (author)

  2. Comparison Between Biological Treatment and Chemical Precipitation for Nitrogen Removal from Old Landfill Leachate

    Directory of Open Access Journals (Sweden)

    Long Tengrui

    2007-01-01

    Full Text Available The study reports the results of a laboratory scale investigation aimed at evaluating the effectiveness of mature municipal landfill leachate treatment by a biological stage (used SBBR as a biological treatment and Chemical precipitation (Used MAP precipitation (magnesium ammonium phosphate to study the nitrogen removal capabilities for treatment of sanitary landfill leachate containing high ammonia concentration, and the comparison between them. The monitored sample taken from the Chang Sheng bridge landfill site in Chongqing city-China, has its concentrations of COD, BOD5, and NH3-N about 1650, 75 and 1100 mg/l respectively. The results from SBBR showed that after two months long period of domestication and one month period of stability, the ammonia nitrogen removal efficiency reached to 99% in the SBBR reactor, at nitrogen loading rate 0.51 kg TN/m3 per day and HRT was 9 hours, met to Chinese standards for discharge. The results of the MAP precipitation was technically effective to remove the high NH3-N strength of over 1100 mg/l from the raw leachate at molar ratio of Mg2+: NH4+: PO4-3 of 1:1:1, they demonstrated a very satisfactory removal of ammonia; an initial NH3+-N concentration of 1100 mg/l contained in the raw leachate was quickly reduced to 28 mg/l within 15 min, while the pH producing a maximum removal of ammonia was 9.0. The percent removal of ammonia after treatment by MAP was 97.5%.

  3. Laboratory of Cell and Molecular Biology

    Data.gov (United States)

    Federal Laboratory Consortium — The Laboratory of Cell and Molecular Biology investigates the organization, compartmentalization, and biochemistry of eukaryotic cells and the pathology associated...

  4. Modelling chemical and biological reactions during unsaturated flow in silty arable soils

    Science.gov (United States)

    Michel, Kerstin; Herrmann, Sandra; Ludwig, Bernard

    2010-05-01

    Ion dynamics in arable soils are strongly affected by the chemical and biological transformations triggered by fertilizer input. Hydrogeochemical models may improve our understanding of underlying processes. Our objective was to test the ability of the hydrogeochemical model PHREEQC2 in combination with the parameter optimization programme PEST to describe and predict chemical and biological processes in silty soils triggered by fertilizer application or acidification and to investigate the usefulness of different parameterization approaches. Three different experiments were carried out using undisturbed columns of two topsoils (0-25 cm) from Germany (Göttingen, GO) and from the Oman (Qasha', QA). The columns were irrigated at 10 oC with 3 mm day-1 for one year using 1 mM HCl (HCl experiment) and two fertilizer solutions with low (0.1 to 0.9 mmol L-1) and high concentrations (1.3 to 14.7 mmol L-1) of N (as NH4NO3), K, Ca and Mg. In the fertilization experiments (Fert1, Fert2), the columns were alternately irrigated with the two different solutions for variable time periods. One-dimensional transport and homogenous and heterogenous reactions were calculated using PHREEQC2. The Fert1 experiment was used for calibration. The models were validated using the Fert2 and HCl experiments. The models tested were model variant m1 with no adjustable parameters, model variant m2 in which nitrate concentrations in input solutions and cation exchange capacity were optimized for Fert1, and m3 in which additionally all cation exchange coefficients and ion concentrations in the initial solution were optimized. Model variant m1 failed to predict the concentrations of several cations for both soils (modelling efficiencies (EF) ≤ 0), since N dynamics were not considered adequately. Model variants m2 and m3 described (Fert1 treatment) and predicted (Fert2 and HCl treatment) pH, cation and NO3- concentrations generally more accurately for both soils. For nutrient cations, EF values

  5. Chemical and biological tracers to determine groundwater flow in karstic aquifer, Yucatan Peninsula

    Science.gov (United States)

    Lenczewski, M.; Leal-Bautista, R. M.; McLain, J. E.

    2013-05-01

    Little is known about the extent of pollution in groundwater in the Yucatan Peninsula; however current population growth, both from international tourism and Mexican nationals increases the potential for wastewater release of a vast array of contaminants including personal care products, pharmaceuticals (Rx), and pathogenic microorganisms. Pathogens and Rx in groundwater can persist and can be particularly acute in this region where high permeability of the karst bedrock and the lack of top soil permit the rapid transport of contaminants into groundwater aquifers. The objective of this research is to develop and utilize novel biological and chemical source tracking methods to distinguish between different sources of anthropogenic pollution in degraded groundwater. Although several methods have been used successfully to track fecal contamination sources in small scale studies, little is known about their spatial limitations, as source tracking studies rarely include sample collection over a wide geographical area and with different sources of water. In addition, although source tracking methods to distinguish human from animal fecal contamination are widely available, this work has developed source tracking distinguish between separate human populations is highly unique. To achieve this objective, we collected water samples from a series of drinking wells, cenotes (sinkholes), wastewater treatment plants, and injection wells across the Yucatan Peninsula and examine potential source tracers within the collected water samples. The result suggests that groundwater sources impacted by tourist vs. local populations contain different chemical stressors. This work has developed a more detailed understanding of the presence and persistence of personal care products, pharmaceuticals, and fecal indicators in a karstic system; such understanding will be a vital component for the protection Mexican groundwater and human health. Quantification of different pollution sources

  6. Chemical composition and biological activities of essential oils of Azadirachta indica A. Juss.

    Directory of Open Access Journals (Sweden)

    S S El-Hawary

    2013-09-01

    Full Text Available Summary. Essential oils of Neem, Azadirachta indica A. Juss. (family Meliaceae leaves and flowers were prepared by hydrodistillation method. The chemical composition of the oil samples was investigated by GC/MS. Hydrocarbon constituted 85.36% of the leaves oil .The major compounds were β-Elemene (33.39%, γ- Elemene (9.89%, Germacrene D (9.72%, Caryophyllene (6.8% and Bicyclogermacrene (5.23% while the percent of the oxygenated compounds were (5.04% mainly attributed to sesquiterpene oxide. On the other hand, flowers oil hydrocarbons constituted 63.22% composed mainly of pentacosane (18.58%, tetracosane (10.65%, β-germacrene (9.73%, β- caryophyllene (5.84% and dodecene (4.54% while the percent of the oxygenated compounds were 28.3% mainly attributed to octadecanol (16.7%, verdiflorol (5.32%, farnesol (1.63% and α– terpineol (1.51%. The antioxidant properties determined by 2, 2-diphenyl-1-picrylhydrazyl assays, antibacterial activity against Gram-positive and Gram-negative, antifungal and larvicidal activities were promising and in relation with the chemical composition of the essential oils. The results indicated that essential oil of flowers could be especially promising as an inexpensive source of effective antioxidant /antimicrobial /larvicidal agents tantamount to fixed oil of the neem seeds.Industrial relevance. The use of medicinal plants is a universal phenomenon. Natural products from plants are rich source to identify, select and process new drugs for medicinal use. Most of research focused on fixed oil of neem seeds but very little was concerned about volatile oils of leaves and flowers. The diverse biological activities of Neem essential oils can be applied on a large scale as antioxidant, antimicrobial and larvicidal agents comprising many important benefits including their volatility, lower level of risk to the environment than with synthetic ones.Keywords. Azadirachta indica; Neem; essential oil; GC/MS; antioxidant

  7. Disease control by chemical and biological fungicides in cultivated mushrooms: button mushroom, oyster mushroom and shiitake

    Directory of Open Access Journals (Sweden)

    Ivana Potočnik

    2015-12-01

    Full Text Available The most commonly cultivated basidiomycetes worldwide and in Serbia are button mushroom (Agaricus bisporus, oyster mushroom (Pleurotus sp. and shiitake (Lentinus edodes. Production of their fruiting bodies is severely afflicted by fungal, bacterial, and viral pathogens that are able to cause diseases which affect yield and quality. Major A. bisporus fungal pathogens include Mycogone perniciosa, Lecanicillium fungicola, and Cladobotryum spp., the causal agents of dry bubble, wet bubble, and cobweb disease, respectively. Various Trichoderma species, the causal agents of green mould, also affect all three kinds of edible mushrooms. Over the past two decades, green mould caused by T. aggressivum has been the most serious disease of button mushroom. Oyster mushroom is susceptible to T. pleurotum and shiitake to T. harzianum. The bacterial brawn blotch disease, caused by Pseudomonas tolaasii, is distributed globally. Disease control on mushroom farms worldwide is commonly based on the use of fungicides. However, evolution of pathogen resistance to fungicides after frequent application, and host sensitivity to fungicides are serious problems. Only a few fungicides are officially recommended in mushroom production: chlorothalonil and thiabendazol in North America and prochloraz in the EU and some other countries. Even though decreased sensitivity levels of L. fungicola and Cladobotryum mycophilum to prochloraz have been detected, disease control is still mainly provided by that chemical fungicide. Considering such resistance evolution, harmful impact to the environment and human health, special attention should be focused on biofungicides, both microbiological products based on Bacillus species and various natural substances of biological origin, together with good programs of hygiene. Introduction of biofungicides has created new possibilities for crop protection with reduced application of chemicals.

  8. Zanthoxylum caribaeum (Rutaceae) essential oil: chemical investigation and biological effects on Rhodnius prolixus nymph.

    Science.gov (United States)

    Nogueira, J; Mourão, S C; Dolabela, I B; Santos, M G; Mello, C B; Kelecom, A; Mexas, R; Feder, D; Fernandes, C P; Gonzalez, M S; Rocha, L

    2014-11-01

    A chemical investigation and bioassays against fifth-instar nymphae of the hematophagous insect Rhodnius prolixus, vector of Chagas disease, were conducted with the essential oil from Zanthoxylum caribaeum. The main results may be summarized as follows: (i) 54 components were identified, corresponding to 90.4% of the relative composition; sesquiterpenes (47.3%) and monoterpenes (41.2%) are the major constituents; (ii) muurola-4,5-trans-diene and isodaucene are described for the first time as chemical constituents of the essential oil from leaves of this species; (iii) topical treatment with the crude essential oil induced high levels of paralysis (from 18.88 to 33.33%) and mortality (from 80 to 98.9%) depending on the dose applied (0.5 to 5.0 μl per insect); (iv) feeding treatment with the crude essential oil also induced high levels of mortality (from 48.8 to 100%) but low levels of paralysis (from 2.22 to 7.77%) depending on the dose applied (0.5 to 5.0 μl/ml of blood); (v) in the continuous treatment, only the dose of 5.0 μl/cm(2) was able to promote statistical significant levels of mortality (63.3%) but no paralysis were detected. However in this group, occasionally, only few insects displayed malformations of legs and wings after treatment; and (vi) any treatment was able to disrupt the metamorphosis process since the low adult stage emergence observed to all groups was due the high insect mortality. These observations suggest the interference of Z. caribaeum compounds on the triatomine neuroendocrine system. The significance of these results in relation to the relevant biological events in R. prolixus as well as the possible use of insect growth regulators present in Z. caribaeum oil in integrated vector control programs against hematophagous triatomine species is herein discussed. PMID:25224729

  9. Physical, chemical and biological characterization of six biochars produced for the remediation of contaminated sites.

    Science.gov (United States)

    Denyes, Mackenzie J; Parisien, Michèle A; Rutter, Allison; Zeeb, Barbara A

    2014-01-01

    The physical and chemical properties of biochar vary based on feedstock sources and production conditions, making it possible to engineer biochars with specific functions (e.g. carbon sequestration, soil quality improvements, or contaminant sorption). In 2013, the International Biochar Initiative (IBI) made publically available their Standardized Product Definition and Product Testing Guidelines (Version 1.1) which set standards for physical and chemical characteristics for biochar. Six biochars made from three different feedstocks and at two temperatures were analyzed for characteristics related to their use as a soil amendment. The protocol describes analyses of the feedstocks and biochars and includes: cation exchange capacity (CEC), specific surface area (SSA), organic carbon (OC) and moisture percentage, pH, particle size distribution, and proximate and ultimate analysis. Also described in the protocol are the analyses of the feedstocks and biochars for contaminants including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), metals and mercury as well as nutrients (phosphorous, nitrite and nitrate and ammonium as nitrogen). The protocol also includes the biological testing procedures, earthworm avoidance and germination assays. Based on the quality assurance / quality control (QA/QC) results of blanks, duplicates, standards and reference materials, all methods were determined adequate for use with biochar and feedstock materials. All biochars and feedstocks were well within the criterion set by the IBI and there were little differences among biochars, except in the case of the biochar produced from construction waste materials. This biochar (referred to as Old biochar) was determined to have elevated levels of arsenic, chromium, copper, and lead, and failed the earthworm avoidance and germination assays. Based on these results, Old biochar would not be appropriate for use as a soil amendment for carbon sequestration, substrate quality

  10. Chelating impact assessment of biological ad chemical chelates on metal extraction from contaminated soils

    International Nuclear Information System (INIS)

    Soil contamination is the result of uncontrolled waste dumping and poor practices by humans. Of all the pollutants heavy metals are of particular concern due to their atmospheric deposition, leaching capacity and non-biodegradability. Heavy metal containing effluent is discharged into the agricultural fields and water bodies. This results in the accumulation of heavy metals in soil and the crops grown on that soil. Studies have revealed detrimental impacts on soil fertility and the poor health of animals and humans. Phytoextraction is widely researched for remediation of heavy metal contaminated soil. To enhance the effect of phytoextraction heavy metals have to be available to the plants in soluble form. In this study the potential of different chelating agents was assessed in solubilizing the heavy metals making easy for plants to uptake them. For this purpose efficient chemical and biological chelating agent had to be identified. Along with that an optimum dose and application time for chemical chelating agent was determined. Ethylenediamine tetraacetic acid (EDTA), Diethylene triamine pentaacetic acid (DTPA), Nitriloacetic acid (NTA) were applied to the soil, containing Pb, Cr, Cu and Cd, at different concentrations and application time. Aspergillus niger and Aspergillus flavus were incubated in soil for different time periods. In correspondence with findings of the study, Pb and Cr were best solubilized by 5mM EDTA. For Cd and Cu 5mM DTPA carried out efficient chelation. NTA showed relatively inadequate solubilisation, although for Cr it performed equal to EDTA. A. niger and A. flavus instead of solubilizing adsorbed the metals in their biomass. Adsorption was mainly carried out by A. niger. (author)

  11. Corn in consortium with forages

    Directory of Open Access Journals (Sweden)

    Cássia Maria de Paula Garcia

    2013-12-01

    Full Text Available The basic premises for sustainable agricultural development with focus on rural producers are reducing the costs of production and aggregation of values through the use crop-livestock system (CLS throughout the year. The CLS is based on the consortium of grain crops, especially corn with tropical forages, mainly of the genus Panicum and Urochloa. The study aimed to evaluate the grain yield of irrigated corn crop intercropped with forage of the genus Panicum and Urochloa. The experiment was conducted at the Fazenda de Ensino, Pesquisa e Extensão – FEPE  of the Faculdade de Engenharia - UNESP, Ilha Solteira in an Oxisol in savannah conditions and in the autumn winter of 2009. The experimental area was irrigated by a center pivot and had a history of no-tillage system for 8 years. The corn hybrid used was simple DKB 390 YG at distances of 0.90 m. The seeds of grasses were sown in 0.34 m spacing in the amount of 5 kg ha-1, they were mixed with fertilizer minutes before sowing  and placed in a compartment fertilizer seeder and fertilizers were mechanically deposited in the soil at a depth of 0.03 m. The experimental design used was a randomized block with four replications and five treatments: Panicum maximum cv. Tanzania sown during the nitrogen fertilization (CTD of the corn; Panicum maximum cv. Mombaça sown during the nitrogen fertilization (CMD of the corn; Urochloa brizantha cv. Xaraés sown during the occasion of nitrogen fertilization (CBD of the corn; Urochloa ruziziensis cv. Comumsown during the nitrogen fertilization (CRD of the corn and single corn (control. The production components of corn: plant population per hectare (PlPo, number of ears per hectare (NE ha-1, number of rows per ear (NRE, number of kernels per row on the cob (NKR, number of grain in the ear (NGE and mass of 100 grains (M100G were not influenced by consortium with forage. Comparing grain yield (GY single corn and maize intercropped with forage of the genus Panicum

  12. Methods and systems for carrying out a pH-influenced chemical and/or biological reaction

    Science.gov (United States)

    Stern, Michael C.; Simeon, Fritz; Hatton, Trevor Alan

    2016-04-05

    The present invention generally relates to methods and systems for carrying out a pH-influenced chemical and/or biological reaction. In some embodiments, the pH-influenced reaction involves the conversion of CO.sub.2 to a dissolved species.

  13. HIGHLY SELECTIVE SENSORS FOR CHEMICAL AND BIOLOGICAL WARFARE AGENTS, INSECTICIDES AND VOCS BASED ON A MOLECULAR SURFACE IMPRINTING TECHNIQUE

    Science.gov (United States)

    Abstract was given as an oral platform presentation at the Pittsburgh Conference, Orlando FL (March 5-9, 2006). Research described is the development of sensors based on molecular surface imprinting. Applications include the monitoring of chemical and biological agents and inse...

  14. Biochemical ripening of dredged sediments. Part 1. Kinetics of biological organic matter mineralization and chemical sulfur oxidation

    NARCIS (Netherlands)

    Vermeulen, J.; Gool, M.P.M. van; Dorleijn, A.S.; Joziasse, J.; Bruning, H.; Rulkens, W.H.; Grotenhuis, J.T.C.

    2007-01-01

    After dredged sediments have settled in a temporary upland disposal site, ripening starts, which turns waterlogged sediment into aerated soil. Aerobic biological mineralization of organic matter (OM) and chemical oxidation of reduced sulfur compounds are the major biochemical ripening processes. Qua

  15. 78 FR 74218 - Imposition of Additional Sanctions on Syria Under the Chemical and Biological Weapons Control and...

    Science.gov (United States)

    2013-12-10

    ... Imposition of Additional Sanctions on Syria Under the Chemical and Biological Weapons Control and Warfare.... ACTION: Notice. SUMMARY: On August 2, 2013, a determination was made that the Government of Syria used... Notice 8460. That determination resulted in sanctions against the Government of Syria. Section 307(b)...

  16. Aqueous media treatment and decontamination of hazardous chemical and biological substances by contact plasma

    International Nuclear Information System (INIS)

    Usage of non-equilibrium contact plasma for processes of decontamination and neutralization in conditions of manifestation of chemical, biological and radiation terrorism takes on special significance due to portability of equipment and its mobility in places where toxic liquid media hazardous for people's health are located. Processes of decontamination of aqueous media, seminated with pathogenic microorganisms and viruses, treatment of water containing toxic heavy metals, cyanides, surface-active substances, and heavy radioactive elements, are investigated. Examples of activation processes in infected water and toxic aqueous solutions present convincing evidence of the way, how new quality technological approach for achievement of high enough degree of the said media treatment is used in each specific case. Among new properties of water activated as a result of action of non-equilibrium contact plasma, it is necessary to mention presence of cluster structure, confirmed by well-known spectral and physical-chemical methods, presence of peroxide compounds, active particles and radicals. Anti-microbial activity which is displayed under action of plasma in aqueous media (chemically pure water, drinking water, aqueous solutions of sodium chloride, potassium iodide, as well as other inorganic compounds) towards wide range of pathogenic and conventionally pathogenic microorganisms allows use them as reliable, accessible and low-cost preparations for increasing the degree of safety of food products. Combination of such processes with known methods of filtration and ultra-filtration gives an efficient and available complex capable of withstanding any threats, which may arise for population and living organisms. Present-day level of machine-building, electrical engineering, and electronics allows predict creation of industrial plasma installations, adapted to conditions of various terrorist threats, with minimized power consumption and optimized technological parameters

  17. Functional consortium for denitrifying sulfide removal process

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chuan [Harbin Inst. of Technology (CN). State Key Lab. of Water Resource and Environment (SKLWRE); Harbin Inst. of Technology (China). School of Municipal and Environmental Engineering; Ren, Nanqi; Wang, Aijie [Harbin Inst. of Technology (CN). State Key Lab. of Water Resource and Environment (SKLWRE); Liu, Lihong [Harbin Inst. of Technology (China). School of Municipal and Environmental Engineering; Lee, Duu-Jong [Harbin Inst. of Technology (CN). State Key Lab. of Water Resource and Environment (SKLWRE); National Taiwan Univ., Taipei (China). Dept. of Chemical Engineering

    2010-03-15

    Denitrifying sulfide removal (DSR) process simultaneously converts sulfide, nitrate, and chemical oxygen demand from industrial wastewaters to elemental sulfur, nitrogen gas, and carbon dioxide, respectively. This investigation utilizes a dilution-to-extinction approach at 10{sup -2} to 10{sup -6} dilutions to elucidate the correlation between the composition of the microbial community and the DSR performance. In the original suspension and in 10{sup -2} dilution, the strains Stenotrophomonas sp., Thauera sp., and Azoarcus sp. are the heterotrophic denitrifiers and the strains Paracoccus sp. and Pseudomonas sp. are the sulfide-oxidizing denitrifers. The 10{sup -4} dilution is identified as the functional consortium for the present DSR system, which comprises two functional strains, Stenotrophomonas sp. strain Paracoccus sp. At 10{sup -6} dilution, all DSR performance was lost. The functions of the constituent cells in the DSR granules were discussed based on data obtained using the dilution-to-extinction approach. (orig.)

  18. Stabilization of Protein-Protein Interactions in chemical biology and drug discovery.

    Science.gov (United States)

    Bier, David; Thiel, Philipp; Briels, Jeroen; Ottmann, Christian

    2015-10-01

    More than 300,000 Protein-Protein Interactions (PPIs) can be found in human cells. This number is significantly larger than the number of single proteins, which are the classical targets for pharmacological intervention. Hence, specific and potent modulation of PPIs by small, drug-like molecules would tremendously enlarge the "druggable genome" enabling novel ways of drug discovery for essentially every human disease. This strategy is especially promising in diseases with difficult targets like intrinsically disordered proteins or transcription factors, for example neurodegeneration or metabolic diseases. Whereas the potential of PPI modulation has been recognized in terms of the development of inhibitors that disrupt or prevent a binary protein complex, the opposite (or complementary) strategy to stabilize PPIs has not yet been realized in a systematic manner. This fact is rather surprising given the number of impressive natural product examples that confer their activity by stabilizing specific PPIs. In addition, in recent years more and more examples of synthetic molecules are being published that work as PPI stabilizers, despite the fact that in the majority they initially have not been designed as such. Here, we describe examples from both the natural products as well as the synthetic molecules advocating for a stronger consideration of the PPI stabilization approach in chemical biology and drug discovery. PMID:26093250

  19. Differences in the chemical profiles and biological activities of Paeonia lactiflora and Paeonia obovata.

    Science.gov (United States)

    Bae, Ji-Yeong; Kim, Chul Young; Kim, Hyun Jin; Park, Jong Hee; Ahn, Mi-Jeong

    2015-02-01

    Paeonia lactiflora and P. obovata are perennial herbs, each root of which has been consumed as a major oriental medicine, Paeoniae Radix and a famous folk medicine, Mountain Paeony Root, respectively. Although morphological studies have been performed comparing these two plants, there is insufficient scientific evidence that characterizes the differences in their chemical profiles and biological activities. Hence, the present study was undertaken to compare these two medicinal foods using a high-performance liquid chromatography-diode-array detector (HPLC-DAD) analysis and a gastric ulcer model in mice. HPLC analysis employed to assess the nine components revealed that P. lactiflora exhibited higher contents of phenolic compounds than P. obovata. Although a monoterpene glycoside, 6'-O-acetylpaeoniflorin was identified in P. obovata, it was not detected in P. lactiflora. Multivariate statistical analysis for HPLC data revealed that the orthogonal projections to latent structure-discriminant analysis is more appropriate than principal component analysis for differentiating the two groups. Moreover, the 50% methanol P. lactiflora extract (PL) was more effective against experimental gastric ulcer than P. obovata extract (PO) in the HCl/ethanol-induced ulcer model. In addition, PL displayed higher 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity and lower nitric oxide production in a murine macrophage cell line, RAW 264.7, than PO. The DPPH radical scavenging activity of PL was as high as that of the positive control, butylated hydroxytoluene, at a concentration of 25 μg/mL. PMID:25299493

  20. Molecules in interstellar clouds. [physical and chemical conditions of star formation and biological evolution

    Science.gov (United States)

    Irvine, W. M.; Hjalmarson, A.; Rydbeck, O. E. H.

    1981-01-01

    The physical conditions and chemical compositions of the gas in interstellar clouds are reviewed in light of the importance of interstellar clouds for star formation and the origin of life. The Orion A region is discussed as an example of a giant molecular cloud where massive stars are being formed, and it is pointed out that conditions in the core of the cloud, with a kinetic temperature of about 75 K and a density of 100,000-1,000,000 molecules/cu cm, may support gas phase ion-molecule chemistry. The Taurus Molecular Clouds are then considered as examples of cold, dark, relatively dense interstellar clouds which may be the birthplaces of solar-type stars and which have been found to contain the heaviest interstellar molecules yet discovered. The molecular species identified in each of these regions are tabulated, including such building blocks of biological monomers as H2O, NH3, H2CO, CO, H2S, CH3CN and H2, and more complex species such as HCOOCH3 and CH3CH2CN.

  1. Risk-based objectives for the allocation of chemical, biological, and radiological air emissions sensors.

    Science.gov (United States)

    Lambert, James H; Farrington, Mark W

    2006-12-01

    This article addresses the problem of allocating devices for localized hazard protection across a region. Each identical device provides only local protection, and the devices serve localities that are exposed to nonidentical intensities of hazard. A method for seeking the optimal allocation Policy Decisions is described, highlighting the potentially competing objectives of maximizing local risk reductions and coverage risk reductions. The metric for local risk reductions is the sum of the local economic risks avoided. The metric for coverage risk reductions is adapted from the p-median problem and equal to the sum of squares of the distances from all unserved localities to their closest associated served locality. Three graphical techniques for interpreting the Policy Decisions are presented. The three linked graphical techniques are applied serially. The first technique identifies Policy Decisions that are nearly Pareto optimal. The second identifies locations where sensor placements are most justified, based on a risk-cost-benefit analysis under uncertainty. The third displays the decision space for any particular policy decision. The method is illustrated in an application to chemical, biological, and/or radiological weapon sensor placement, but has implications for disaster preparedness, transportation safety, and other arenas of public safety. PMID:17184404

  2. Ethnobotany, chemical constituents and biological activities of the flowers of Hydnora abyssinica A.Br. (Hydnoraceae).

    Science.gov (United States)

    Al-Fatimi, M; Ali, N A A; Kilian, N; Franke, K; Arnold, N; Kuhnt, C; Schmidt, J; Lindequist, U

    2016-04-01

    Hydnora abyssinica A.Br. (Hydnoraceae), a holoparasitic herb, is for the first time recorded for Abyan governorate of South Yemen. Flowers of this species were studied for their ethnobotanical, biological and chemical properties for the first time. In South Yemen, they are traditionally used as wild food and to cure stomach diseases, gastric ulcer and cancer. Phytochemical analysis of the extracts showed the presence of terpenes, tannins, phenols, and flavonoids. The volatile components of the air-dried powdered flowers were identified using a static headspace GC/MS analysis as acetic acid, ethyl acetate, sabinene, α-terpinene, (+)-D-limonene and γ-terpinene. These volatile compounds that characterize the odor and taste of the flowers were detected for the first time in a species of the family Hydnoraceae. The flowers were extracted by n-hexane, dichlormethane, ethyl acetate, ethanol, methanol and water. With exception of the water extract all extracts demonstrated activities against Gram-positive bacteria as well as remarkable radical scavenging activities in DPPH assay. Ethyl acetate, methanol and water extracts exhibited good antifungal activities. The cytotoxic activity of the extracts against FL cells, measured in neutral red assay, was only weak (IC50 > 500 μg/mL). The results justify the traditional use of the flowers of Hydnora abyssinica in South Yemen. PMID:27209704

  3. Data Analysis of Multi-Laser Standoff Spectral identification of chemical and biological compounds

    Energy Technology Data Exchange (ETDEWEB)

    Farahi, R H [ORNL; Zaharov, Viktor [ORNL; Tetard, Laurene [ORNL; Thundat, Thomas George [ORNL; Passian, Ali [ORNL

    2013-01-01

    With the availability of tunable broadband coherent sources that emit mid-infrared radiation with well-defined beam characteristics, spectroscopies that were traditionally not practical for standoff detection1 or for develop- ment of miniaturized infrared detectors2, 3 have renewed interest. While obtaining compositional information for objects from a distance remains a major challenge in chemical and biological sensing, recently we demonstrated that capitalizing on mid-infrared excitation of target molecules by using quantum cascade lasers and invoking a pump probe scheme can provide spectral fingerprints of substances from a variable standoff distance.3 However, the standoff data is typically associated with random fluctuations that can corrupt the fine spectral features and useful data. To process the data from standoff experiments toward better recognition we consider and apply two types of denoising techniques, namely, spectral analysis and Karhunen-Loeve Transform (KLT). Using these techniques, infrared spectral data have been effectively improved. The result of the analysis illustrates that KLT can be adapted as a powerful data denoising tool for the presented pump-probe infrared standoff spectroscopy.

  4. Data analysis of multi-laser standoff spectral identification of chemical and biological compounds

    Science.gov (United States)

    Farahi, R.; Zaharov, V.; Tetard, L.; Thundat, T.; Passian, A.

    2013-06-01

    With the availability of tunable broadband coherent sources that emit mid-infrared radiation with well-defined beam characteristics, spectroscopies that were traditionally not practical for standoff detection1 or for development of miniaturized infrared detectors2, 3 have renewed interest. While obtaining compositional information for objects from a distance remains a major challenge in chemical and biological sensing, recently we demonstrated that capitalizing on mid-infrared excitation of target molecules by using quantum cascade lasers and invoking a pump probe scheme can provide spectral fingerprints of substances from a variable standoff distance.3 However, the standoff data is typically associated with random fluctuations that can corrupt the fine spectral features and useful data. To process the data from standoff experiments toward better recognition we consider and apply two types of denoising techniques, namely, spectral analysis and Karhunen-Loeve Transform (KLT). Using these techniques, infrared spectral data have been effectively improved. The result of the analysis illustrates that KLT can be adapted as a powerful data denoising tool for the presented pump-probe infrared standoff spectroscopy.

  5. A search for losses of chemical elements during freeze-drying of biological materials

    International Nuclear Information System (INIS)

    Possible losses of seven chemical elements were investigated in biological tissues during freeze-drying in vacuum. Thyroid glands were taken during post-mortem examination of 23 people died of different diseases. Instrumental neutron activation analysis (INAA) was used to estimate contents of Br, Ca, Cl, I, K, Mg, and Na. The nuclear reactor vertical channel with flux density of 1.2 x 1013 n x cm-2 x s-1 was used for neutron irradiation. The analysis was carried out using short-lived radionuclides induced in samples after neutron irradiation. Then thyroids were freeze-dried at below 0 deg C in vacuum up to the constant mass (lyophilisation) and then homogenized. Samples of lyophilised and homogenized tissues were again studied by INAA. The lack of difference between the results of the analysis before and after lyophilisation is an evidence of no loss of Br, Ca, Cl, I, K, Mg, and Na during freeze-drying of biotissues in vacuum. (author)

  6. On the origin and early evolution of biological catalysis and other studies on chemical evolution

    Science.gov (United States)

    Oro, J.; Lazcano, A.

    1991-01-01

    One of the lines of research in molecular evolution which we have developed for the past three years is related to the experimental and theoretical study of the origin and early evolution of biological catalysis. In an attempt to understand the nature of the first peptidic catalysts and coenzymes, we have achieved the non-enzymatic synthesis of the coenzymes ADPG, GDPG, and CDP-ethanolamine, under conditions considered to have been prevalent on the primitive Earth. We have also accomplished the prebiotic synthesis of histidine, as well as histidyl-histidine, and we have measured the enhancing effects of this catalytic dipeptide on the dephosphorylation of deoxyribonucleotide monophosphates, the hydrolysis of oligo A, and the oligomerization 2', 3' cAMP. We reviewed and further developed the hypothesis that RNA preceded double stranded DNA molecules as a reservoir of cellular genetic information. This led us to undertake the study of extant RNA polymerases in an attempt to discover vestigial sequences preserved from early Archean times. In addition, we continued our studies of on the chemical evolution of organic compounds in the solar system and beyond.

  7. The critical role of didodecyldimethylammonium bromide on physico-chemical, technological and biological properties of NLC.

    Science.gov (United States)

    Carbone, C; Campisi, A; Manno, D; Serra, A; Spatuzza, M; Musumeci, T; Bonfanti, R; Puglisi, G

    2014-09-01

    Exploiting the experimental factorial design and the potentiality of Turbiscan AG Station, we developed and characterized unmodified and DDAB-coated NLC prepared by a low energy organic solvent free phase inversion temperature technique. A 22 full factorial experimental design was developed in order to study the effects of two independent variables (DDAB and ferulic acid) and their interaction on mean particle size and zeta potential values. The factorial planning was validated by ANOVA analysis; the correspondence between the predicted values of size and zeta and those measured experimentally confirmed the validity of the design and the equation applied for its resolution. The DDAB-coated NLC were significantly affected in their physico-chemical properties by the presence of DDAB, as showed by the results of the experimental design. The coated NLC showed higher physical stability with no particles aggregation compared to the unmodified NLC, as demonstrated by Turbiscan(®) AGS measurements. X-ray diffraction, Raman spectroscopy and Cryo-TEM images allowed us to assert that DDAB plays a critical role in increasing the lipids structural order with a consequent enhancement of the NLC physical stability. Furthermore, the results of the in vitro biological studies allow the revisiting of the role of DDAB to the benefit of glioblastoma treatment, due to its efficacy in increasing the NLC uptake and reducing the viability of human glioblastoma cancer cells (U87MG). PMID:24929522

  8. Biological and chemical-physical properties of root-end filling materials: A comparative study

    Directory of Open Access Journals (Sweden)

    Matteo Ceci

    2015-01-01

    Full Text Available Aim: The purpose of the study is to evaluate and compare the biological and chemical-physical properties of four different root-end filling materials. Materials and Methods: Cytotoxicity towards murine odontoblasts cells (MDPC-23 was evaluated using the Transwell insert methodology by Alamar blue test. Streptococcus salivarius, S. sanguis, and S. mutans strains were selected to evaluate the antimicrobial activity by agar disc diffusion test. Solubility was determined after 24 h and 2 months. pH values were measured after 3 and 24 h. To evaluate radiopacity, all materials were scanned on a GE Healthcare Lunar Prodigy. Results: Excellent percentage of vitality were obtained by mineral trioxide aggregate (MTA-based materials and Biodentine. MTA-Angelus, ProRoot MTA, and Intermediate Restorative Material (IRM showed the highest values for the inhibition zones when tested for S. mutans, while Biodentine showed the largest inhibition zone when tested for S. sanguis. All the materials fulfilled the requirements of the International Standard 6876, demonstrating low solubility with a weight loss of less than 3%. No significant reduction in pH value was demonstrated after 24 h. ProRoot MTA and MTA-Angelus showed the highest values of radiographic density. Conclusions: The differences showed by the root-end filling materials tested do not cover completely the ideal clinical requests.

  9. Strategy for responding to nuclear, radiological, biological and chemical threats in Switzerland

    International Nuclear Information System (INIS)

    ABC- Protection in Switzerland was originally set up primarily for protection against military weapons of mass destruction, such as atomic/nuclear or chemical weapons. Protection against biological weapons - at first within the domain of the medical service - was later integrated into AC-Protection, thus leading to ABC-Protection in Switzerland. In some cases the objectives of ABC-Protection with regard to prevention and intervention were defined differently in the military and civil fields. In order to put ABC-Protection in Switzerland on a uniform basis, the Federal Council has instructed the KomABC (Commission for ABC-Protection) to develop a general strategy for 'ABC-Protection in Switzerland'. The following paper describes the objectives as well as the key elements of this general strategy, which should guarantee that all Federal and Cantonal organizations take decisions related to prevention and intervention based on the same principles. The strategy covers the following topics: 1) Reference scenarios for ABC-Protection; 2) Demands related to prevention; 3) Demands related to intervention; 4) Allocation of tasks at the Federal and Cantonal levels. Protective measures for improving ABC-Protection in Switzerland are presented. (author)

  10. AB Blanket for Cities (for continual pleasant weather and protection from chemical, biological and radioactive weapons)

    CERN Document Server

    Bolonkin, Alexander

    2009-01-01

    In a series of previous articles (see references) the author offered to cover a city or other important large installations or subregions by a transparent thin film supported by a small additional air overpressure under the form of an AB Dome. The building of a gigantic inflatable AB Dome over an empty flat surface is not difficult. However, if we want to cover a city, garden, forest or other obstacle course we cannot easily deploy the thin film over building or trees. In this article is suggested a new method which solves this problem. The idea is to design a double film blanket filled by light gas (for example, methane, hydrogen, or helium). Sections of this AB Blanket are lighter then air and fly in atmosphere. They can be made on a flat area (serving as an assembly area) and delivered by dirigible or helicopter to station at altitude over the city. Here they connect to the already assembled AB Blanket subassemblies, cover the city in an AB Dome and protect it from bad weather, chemical, biological and rad...

  11. Chemical composition and biological evaluation of Physalis peruviana root as hepato-renal protective agent.

    Science.gov (United States)

    El-Gengaihi, Souad E; Hassan, Emad E; Hamed, Manal A; Zahran, Hanan G; Mohammed, Mona A

    2013-03-01

    This study was designed to investigate the potential of Physalis peruviana root as a functional food with hepato-renal protective effects against fibrosis. The chemical composition of the plant root suggested the presence of alkaloids, withanolides and flavonoids. Five compounds were isolated and their structures elucidated by different spectral analysis techniques. One compound was isolated from the roots: cuscohygrine. The biological evaluation was conducted on different animal groups; control rats, control treated with ethanolic root extract, CCl(4) group, CCl(4) treated with root extract, and CCl(4) treated with silymarin as a standard herbal drug. The evaluation used the oxidative stress markers malondialdehyde (MDA), superoxide dismutase (SOD), and nitric oxide (NO). The liver function indices; aspartate and alanine aminotransferases (AST & ALT), alkaline phosphatase (ALP), gamma glutamyl transferase (GGT), bilirubin, and total hepatic protein were also estimated. Kidney disorder biomarkers; creatinine, urea, and serum protein were also evaluated. The results suggested safe administration, and improvement of all the investigated parameters. The liver and kidney histopathological analysis confirmed the results. In conclusion, P. peruviana succeeded in protecting the liver and kidney against fibrosis. Further studies are needed to discern their pharmacological applications and clinical uses. PMID:23419022

  12. Chemical and biological studies on producing high quality biscuits with irradiated tomato wastes

    International Nuclear Information System (INIS)

    The present investigation has been carried out to produce high quality biscuits for treatment of some special diseases. In this study, the total tomato processing wastes were used as new source of protein in which the most predominate elements were found to be phosphorus, potassium and magnesium. Phenyl alanine was found to be the first limiting amino acid, while lysine was the second limiting amino acid. It was found to contain about 30.66% fiber and 28.1% protein. The total tomato processing wastes remain unutilized and they not only add to the disposal problem, but also aggravate environmental pollution. Tomato wastes were irradiated in two doses (1.5 and 2.5 KGy) for preservation. Biscuits were made with supplementation of 5, 10 and 15% tomato wastes. All samples of biscuits were examined for chemical composition and organoleptic evaluation. Biological assay was carried out on rats fed biscuits containing 15% irradiated and non-irradiated tomato wastes. The weight gain, serum cholesterol and triglycerides were determined. Internal organs were also followed. The results obtained showed that 15% tomato wastes biscuit had the highest content of lysine, isoleucine and fiber (6.36, 2.72 and 24.80, respectively) and also scored a good grade. Weight gain, cholesterol and triglycerides were reduced comparable to control and there was no effect of irradiation on the rats internal organs

  13. Diagnosis of water pollution caused by chemical effluents using hydro biological methods

    International Nuclear Information System (INIS)

    Industrial plants which discharge chemical effluents into rivers are faced with a double problem. 1 - To avoid excessive pollution which leads to an important modification of the medium and to a poisoning of the aquatic fauna, and in particular to the killing of fish. These disadvantages are avoided by a treatment of the effluents, by calculating the minimum fatal doses and the limiting dilutions for fish, and by carrying out biological analyses and tests on the residual waters. 2 - To avoid provoking continuous, slow and insidious pollutions which are more difficult to detect and which would result in the gradual sterilization of receptive media. In order to estimate this possible influence, the authors have listed the aquatic fauna and flora found in the canal which was the object of the experiment, and have modified the Saprobies system due to Kolwickz. They have tried to detect the presence or absence of pollution by estimating the density of the phyto-plankton formed on submerged laminae (periphyton) and the specific variations in the alga of which these populations are made up. In this report are given details of the tests and of the first results obtained. (authors)

  14. Effects of sterilization methods on the physical, chemical, and biological properties of silk fibroin membranes.

    Science.gov (United States)

    de Moraes, Mariana Agostini; Weska, Raquel Farias; Beppu, Marisa Masumi

    2014-05-01

    Silk fibroin has been widely explored for many biomedical applications, due to its biocompatibility and biodegradability. Sterilization is a fundamental step in biomaterials processing and it must not jeopardize the functionality of medical devices. The aim of this study was to analyze the influence of different sterilization methods in the physical, chemical, and biological characteristics of dense and porous silk fibroin membranes. Silk fibroin membranes were treated by several procedures: immersion in 70% ethanol solution, ultraviolet radiation, autoclave, ethylene oxide, and gamma radiation, and were analyzed by scanning electron microscopy, Fourier-transformed infrared spectroscopy (FTIR), X-ray diffraction, tensile strength and in vitro cytotoxicity to Chinese hamster ovary cells. The results indicated that the sterilization methods did not cause perceivable morphological changes in the membranes and the membranes were not toxic to cells. The sterilization methods that used organic solvent or an increased humidity and/or temperature (70% ethanol, autoclave, and ethylene oxide) increased the silk II content in the membranes: the dense membranes became more brittle, while the porous membranes showed increased strength at break. Membranes that underwent sterilization by UV and gamma radiation presented properties similar to the nonsterilized membranes, mainly for tensile strength and FTIR results. PMID:24259492

  15. Ensuring safe water in post-chemical, biological, radiological and nuclear emergencies

    Directory of Open Access Journals (Sweden)

    Praveen Kumar Amar

    2010-01-01

    Full Text Available Disaster scenarios are dismal and often result in mass displacement and migration of people. In eventuality of emergency situations, people need to be rehabilitated and provided with an adequate supply of drinking water, the most essential natural resource needed for survival, which is often not easily available even during non-disaster periods. In the aftermath of a natural or human-made disaster affecting mankind and livestock, the prime aim is to ensure supply of safe water to reduce the occurrence and spread of water borne disease due to interrupted, poor and polluted water supply. Chemical, biological, radiological and nuclear (CBRN emergencies augment the dilemma as an additional risk of "contamination" is added. The associated risks posed to health and life should be reduced to as low as reasonably achievable. Maintaining a high level of preparedness is the crux of quick relief and efficient response to ensure continuous supply of safe water, enabling survival and sustenance. The underlying objective would be to educate and train the persons concerned to lay down the procedures for the detection, cleaning, and treatment, purification including desalination, disinfection, and decontamination of water. The basic information to influence the organization of preparedness and execution of relief measures at all levels while maintaining minimum standards in water management at the place of disaster, are discussed in this article.

  16. Protecting buildings from a biological or chemical attack: Actions to take before or during a release

    Energy Technology Data Exchange (ETDEWEB)

    Price, Phillip N.; Sohn, Michael D.; Gadgil, Ashok J.; Delp, William W.; Lorenzetti, David M.; Finlayson, Elizabeth U.; Thatcher, Tracy L.; Sextro, Richard G.; Derby, Elisabeth A.; Jarvis, Sondra A.

    2003-01-29

    This report presents advice on how to operate a building to reduce casualties from a biological or chemical attack, as well as potential changes to the building (e.g. the design of the ventilation system) that could make it more secure. It also documents the assumptions and reasoning behind the advice. The particular circumstances of any attack, such as the ventilation system design, building occupancy, agent type, source strength and location, and so on, may differ from the assumptions made here, in which case actions other than our recommendations may be required; we hope that by understanding the rationale behind the advice, building operators can modify it as required for their circumstances. The advice was prepared by members of the Airflow and Pollutant Transport Group, which is part of the Indoor Environment Department at the Lawrence Berkeley National Laboratory. The group's expertise in this area includes: tracer-gas measurements of airflows in buildings (Sextro, Thatcher); design and operation of commercial building ventilation systems (Delp); modeling and analysis of airflow and tracer gas transport in large indoor spaces (Finlayson, Gadgil, Price); modeling of gas releases in multi-zone buildings (Sohn, Lorenzetti, Finlayson, Sextro); and occupational health and safety experience related to building design and operation (Sextro, Delp). This report is concerned only with building design and operation; it is not a how-to manual for emergency response. Many important emergency response topics are not covered here, including crowd control, medical treatment, evidence gathering, decontamination methods, and rescue gear.

  17. Links between physical, chemical and biological processes in Bashita-minato, a mangrove swamp in Japan

    Science.gov (United States)

    Mazda, Yoshihiro; Sato, Yoshio; Sawamoto, Shozo; Yokochi, Hiroyuki; Wolanski, Eric

    1990-12-01

    Bashita-minato in Iriomote Island, Japan, is a mangrove swamp separated from a coral reef slightly offshore by a sill made of coral sand. As a result of storm-dominated formation and erosion of the sill, the water properties in the swamp vary widely with time. When water flows over the sill into the swamp from a nearby coral reef at flood tide, the oxygen cycle and the water properties in the swamp depend on both the semi-diurnal tidal flows and the diurnal cycle of oxygen concentration in reef waters, which is caused by biological activities, i.e. photosynthesis and respiration in the shallow coral reef area. When the entrance is blocked by the sill, the swamp becomes ponded, and the water temperature increases rapidly (1 °C day -1), with a temperature maximum at a mid-water layer as in a solar pond. The bottom layer, rich in organic matter from decaying mangrove detritus, becomes anoxic within a day after the sill closure. Various chemicals are then released from the bottom mud, the irradiance extinction coefficient increasing by as much as 1 m -1 day -1. This in turn results in continuous degradations in photosynthetic activity of benthic algae and in water properties until the sill is breached again under spring high tides or intense rainfall.

  18. Corn in consortium with forages

    OpenAIRE

    Cássia Maria de Paula Garcia; Marcelo Andreotti; Marcelo Carvalho Minhoto Teixeira Filho; Keny Samejima Mascarenha Lopes; Ciniro Costa; Erikelly Aline Ribeiro de Santana

    2013-01-01

    The basic premises for sustainable agricultural development with focus on rural producers are reducing the costs of production and aggregation of values through the use crop-livestock system (CLS) throughout the year. The CLS is based on the consortium of grain crops, especially corn with tropical forages, mainly of the genus Panicum and Urochloa. The study aimed to evaluate the grain yield of irrigated corn crop intercropped with forage of the genus Panicum and Urochloa. The experiment was c...

  19. The AGTSR consortium: An update

    Energy Technology Data Exchange (ETDEWEB)

    Fant, D.B.; Golan, L.P. [Clemson Univ., SC (United States)

    1995-10-01

    The Advanced Gas Turbine Systems Research (AGTSR) program is a collaborative University-Industry R&D Consortium that is managed and administered by the South Carolina Energy R&D Center. AGTSR is a nationwide consortium dedicated to advancing land-based gas turbine systems for improving future power generation capability. It directly supports the technology-research arm of the ATS program and targets industry-defined research needs in the areas of combustion, heat transfer, materials, aerodynamics, controls, alternative fuels, and advanced cycles. The consortium is organized to enhance U.S. competitiveness through close collaboration with universities, government, and industry at the R&D level. AGTSR is just finishing its third year of operation and is sponsored by the U.S. DOE - Morgantown Energy Technology Center. The program is scheduled to continue past the year 2000. At present, there are 78 performing member universities representing 36 states, and six cost-sharing U.S. gas turbine corporations. Three RFP`s have been announced and the fourth RFP is expected to be released in December, 1995. There are 31 research subcontracts underway at performing member universities. AGTSR has also organized three workshops, two in combustion and one in heat transfer. A materials workshop is in planning and is scheduled for February, 1996. An industrial internship program was initiated this past summer, with one intern positioned at each of the sponsoring companies. The AGTSR consortium nurtures close industry-university-government collaboration to enhance synergism and the transition of research results, accelerate and promote evolutionary-revolutionary R&D, and strives to keep a prominent U.S. industry strong and on top well into the 21st century. This paper will present the objectives and benefits of the AGTSR program, progress achieved to date, and future planned activity in fiscal year 1996.

  20. The ocean sampling day consortium

    OpenAIRE

    Kopf, Anna; Bicak, Mesude; Kottmann, Renzo; Schnetzer, Julia; Kostadinov, Ivaylo; Lehmann, Katja; Fernandez-Guerra, Antonio; Jeanthon, Christian; Rahav, Eyal; Ullrich, Matthias; Wichels, Antje; Gerdts, Gunnar; Polymenakou, Paraskevi; Kotoulas, Giorgos; Siam, Rania

    2015-01-01

    Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks...

  1. The ocean sampling day consortium

    OpenAIRE

    Kopf, Anna; Bicak, Mesude; Kottmann, Renzo; Schnetzer, Julia; Kostadinov, Ivaylo; Lehmann, Katja; Fernandez-Guerra, Antonio; Jeanthon, Christian; Rahav, Eyal; Ullrich, Matthias; Wichels, Antje; Gerdts, Gunnar; Polymenakou, Paraskevi; Kotoulas, Giorgos; Siam, Rania

    2015-01-01

    Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks betwe...

  2. The ocean sampling day consortium

    OpenAIRE

    Kopf, Anna; Bicak, Mesude; Kottmann, Renzo; Schnetzer, Julia; Kostadinov, Ivaylo; Lehmann, Katja; Fernandez-Guerra, Antonio; Jeanthon, Christian; Rahav, Eyal; Ullrich, Matthias; Wichels, Antje; Gerdts, Gunnar; Polymenakou, Paraskevi; Kotoulas, Giorgos; Siam, Rania

    2015-01-01

    Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and ne...

  3. Appalachian clean coal technology consortium

    Energy Technology Data Exchange (ETDEWEB)

    Kutz, K.; Yoon, Roe-Hoan [Virginia Polytechnic Institute and State Univ., Blacksburg, VA (United States)

    1995-11-01

    The Appalachian Clean Coal Technology Consortium (ACCTC) has been established to help U.S. coal producers, particularly those in the Appalachian region, increase the production of lower-sulfur coal. The cooperative research conducted as part of the consortium activities will help utilities meet the emissions standards established by the 1990 Clean Air Act Amendments, enhance the competitiveness of U.S. coals in the world market, create jobs in economically-depressed coal producing regions, and reduce U.S. dependence on foreign energy supplies. The research activities will be conducted in cooperation with coal companies, equipment manufacturers, and A&E firms working in the Appalachian coal fields. This approach is consistent with President Clinton`s initiative in establishing Regional Technology Alliances to meet regional needs through technology development in cooperation with industry. The consortium activities are complementary to the High-Efficiency Preparation program of the Pittsburgh Energy Technology Center, but are broader in scope as they are inclusive of technology developments for both near-term and long-term applications, technology transfer, and training a highly-skilled work force.

  4. Activation of chemical biological defense mechanisms and remission of vital oxidative injury by low dose radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yamaoka, K. [Okayama University Medical School, Okayama (Japan); Nomura, T. [Central Research Institute of Electric Power Industry, Tokyo (Japan); Kojima, S. [Science University of Tokyo, Chiba (Japan)

    2000-05-01

    Excessive active oxygen produced in vivo by various causes is toxic. Accumulation of oxidation injuries due to excessive active causes cell and tissue injuries, inducing various pathologic conditions such as aging and carcinogenesis. On the other hand, there are chemical defense mechanisms in the body that eliminate active oxygen or repair damaged molecules, defending against resultant injury. It is interesting reports that appropriate oxidation stress activate the chemical biological defense mechanisms. In this study, to elucidate these phenomena and its mechanism by low dose radiation, we studied on the below subjects. Activation of chemical biological defense mechanisms by low dose radiation: (1) The effects radiation on lipid peroxide (LPO) levels in the organs, membrane fluidity and the superoxide dismutase (SOD) activity were examined in rats and rabbits. Rats were irradiated with low dose X-ray over their entire bodies, and rabbits inhaled vaporized radon spring water, which primarily emitted {alpha}-ray. The following results were obtained. Unlike high dose X-ray, low dose X-ray and radon inhalation both reduced LPO levels and made the state of the SH-group on membrane-bound proteins closer to that of juvenile animals, although the sensitivity to radioactivity varied depending on the age of the animals and among different organs and tissues. The SOD activity was elevated, suggesting that low dose X-ray and radon both activate the host defensive function. Those changes were particularly marked in the organs related to immune functions of the animals which received low dose X-ray, while they were particularly marked in the brain after radon inhalation. It was also found that those changes continued for longer periods after low dose X-irradiation. (2) Since SOD is an enzyme that mediates the dismutation of O{sub 2}- to H{sub 2}O{sub 2}, the question as to whether the resultant H{sub 2}O{sub 2} is further detoxicated into H{sub 2}O and O{sub 2} or not must

  5. Activation of chemical biological defense mechanisms and remission of vital oxidative injury by low dose radiation

    International Nuclear Information System (INIS)

    Excessive active oxygen produced in vivo by various causes is toxic. Accumulation of oxidation injuries due to excessive active causes cell and tissue injuries, inducing various pathologic conditions such as aging and carcinogenesis. On the other hand, there are chemical defense mechanisms in the body that eliminate active oxygen or repair damaged molecules, defending against resultant injury. It is interesting reports that appropriate oxidation stress activate the chemical biological defense mechanisms. In this study, to elucidate these phenomena and its mechanism by low dose radiation, we studied on the below subjects. Activation of chemical biological defense mechanisms by low dose radiation: (1) The effects radiation on lipid peroxide (LPO) levels in the organs, membrane fluidity and the superoxide dismutase (SOD) activity were examined in rats and rabbits. Rats were irradiated with low dose X-ray over their entire bodies, and rabbits inhaled vaporized radon spring water, which primarily emitted α-ray. The following results were obtained. Unlike high dose X-ray, low dose X-ray and radon inhalation both reduced LPO levels and made the state of the SH-group on membrane-bound proteins closer to that of juvenile animals, although the sensitivity to radioactivity varied depending on the age of the animals and among different organs and tissues. The SOD activity was elevated, suggesting that low dose X-ray and radon both activate the host defensive function. Those changes were particularly marked in the organs related to immune functions of the animals which received low dose X-ray, while they were particularly marked in the brain after radon inhalation. It was also found that those changes continued for longer periods after low dose X-irradiation. (2) Since SOD is an enzyme that mediates the dismutation of O2- to H2O2, the question as to whether the resultant H2O2 is further detoxicated into H2O and O2 or not must still be evaluated. Hence, we studied the effect of

  6. Physicochemical and biological quality of soil in hexavalent chromium-contaminated soils as affected by chemical and microbial remediation.

    Science.gov (United States)

    Liao, Yingping; Min, Xiaobo; Yang, Zhihui; Chai, Liyuan; Zhang, Shujuan; Wang, Yangyang

    2014-01-01

    Chemical and microbial methods are the main remediation technologies for chromium-contaminated soil. These technologies have progressed rapidly in recent years; however, there is still a lack of methods for evaluating the chemical and biological quality of soil after different remediation technologies have been applied. In this paper, microbial remediation with indigenous bacteria and chemical remediation with ferrous sulphate were used for the remediation of soils contaminated with Cr(VI) at two levels (80 and 1,276 mg kg(-1)) through a column leaching experiment. After microbial remediation with indigenous bacteria, the average concentration of water-soluble Cr(VI) in the soils was reduced to less than 5.0 mg kg(-1). Soil quality was evaluated based on 11 soil properties and the fuzzy comprehensive assessment method, including fuzzy mathematics and correlative analysis. The chemical fertility quality index was improved by one grade using microbial remediation with indigenous bacteria, and the biological fertility quality index increased by at least a factor of 6. Chemical remediation with ferrous sulphate, however, resulted in lower levels of available phosphorus, dehydrogenase, catalase and polyphenol oxidase. The result showed that microbial remediation with indigenous bacteria was more effective for remedying Cr(VI)-contaminated soils with high pH value than chemical remediation with ferrous sulphate. In addition, the fuzzy comprehensive evaluation method was proven to be a useful tool for monitoring the quality change in chromium-contaminated soils. PMID:23784058

  7. Tree species traits influence soil physical, chemical, and biological properties in high elevation forests.

    Directory of Open Access Journals (Sweden)

    Edward Ayres

    Full Text Available BACKGROUND: Previous studies have shown that plants often have species-specific effects on soil properties. In high elevation forests in the Southern Rocky Mountains, North America, areas that are dominated by a single tree species are often adjacent to areas dominated by another tree species. Here, we assessed soil properties beneath adjacent stands of trembling aspen, lodgepole pine, and Engelmann spruce, which are dominant tree species in this region and are distributed widely in North America. We hypothesized that soil properties would differ among stands dominated by different tree species and expected that aspen stands would have higher soil temperatures due to their open structure, which, combined with higher quality litter, would result in increased soil respiration rates, nitrogen availability, and microbial biomass, and differences in soil faunal community composition. METHODOLOGY/PRINCIPAL FINDINGS: We assessed soil physical, chemical, and biological properties at four sites where stands of aspen, pine, and spruce occurred in close proximity to one-another in the San Juan Mountains, Colorado. Leaf litter quality differed among the tree species, with the highest nitrogen (N concentration and lowest lignin:N in aspen litter. Nitrogen concentration was similar in pine and spruce litter, but lignin:N was highest in pine litter. Soil temperature and moisture were highest in aspen stands, which, in combination with higher litter quality, probably contributed to faster soil respiration rates from stands of aspen. Soil carbon and N content, ammonium concentration, and microbial biomass did not differ among tree species, but nitrate concentration was highest in aspen soil and lowest in spruce soil. In addition, soil fungal, bacterial, and nematode community composition and rotifer, collembolan, and mesostigmatid mite abundance differed among the tree species, while the total abundance of nematodes, tardigrades, oribatid mites, and prostigmatid

  8. Determining the Chemical and Biological Availability of Zinc in Urban Stormwater Retention Ponds

    Science.gov (United States)

    Camponelli, K.; Casey, R.; Lev, S. M.; Landa, E. R.; Snodgrass, J.

    2005-12-01

    Highway runoff has the potential to negatively impact receiving systems due to transport of contaminants that accumulate on road surfaces. Metals such as copper and zinc are major components of automobile brake pads and tires, respectively. As these automobile parts are degraded, these metal containing particulates are deposited on the roadway and are washed into storm water retention ponds and surface water bodies during precipitation events. It has been estimated that 15 to 60% of the Zn in urban stormwater runoff comes from tire wear and that tire wear is a significant source of Zn to the environment with release inventories comparable to waste incineration sources. In urban and sub-urban systems, this large source of Zn can accumulate in stormwater retention ponds which serve as habitat for a variety of species. Understanding the chemical and biological availability of Zn to biota is integral to assessing the habitat quality of retention ponds. This study is a first effort to relate the amount and speciation of Zn in a retention pond to Zn inputs through highway-derived runoff events. In addition, results suggest that the chemical speciation and availability of particulate Zn can be related to the bioavailability and toxicity of Zn to pond organisms (i.e. larval amphibians). The study site in Owings Mills, MD is located next to a four-lane highway from which it receives runoff through a single culvert. Five species of anurans are known to utilize the pond as a breeding site and Zn in amphibian tissues and retention pond sediments were highly elevated at this site in 2001 and 2002. A recent analysis of pond sediments, soils, roadway dust and storm water collected at this site suggests that roadway particulate matter transported during runoff events is the dominant source of Zn in this system. Overall, Zn and other trace metals were found to be most abundant in the clay sized faction of pond sediments and soils. The pond cores were found to have higher Zn and Cu

  9. Biologic

    CERN Document Server

    Kauffman, L H

    2002-01-01

    In this paper we explore the boundary between biology and the study of formal systems (logic). In the end, we arrive at a summary formalism, a chapter in "boundary mathematics" where there are not only containers but also extainers ><, entities open to interaction and distinguishing the space that they are not. The boundary algebra of containers and extainers is to biologic what boolean algebra is to classical logic. We show how this formalism encompasses significant parts of the logic of DNA replication, the Dirac formalism for quantum mechanics, formalisms for protein folding and the basic structure of the Temperley Lieb algebra at the foundations of topological invariants of knots and links.

  10. Nanomaterial based detection and degradation of biological and chemical contaminants in a microfluidic system

    Science.gov (United States)

    Jayamohan, Harikrishnan

    Monitoring and remediation of environmental contaminants (biological and chemical) form the crux of global water resource management. There is an extant need to develop point-of-use, low-power, low-cost tools that can address this problem effectively with minimal environmental impact. Nanotechnology and microfluidics have made enormous advances during the past decade in the area of biosensing and environmental remediation. The "marriage" of these two technologies can effectively address some of the above-mentioned needs. In this dissertation, nanomaterials were used in conjunction with microfluidic techniques to detect and degrade biological and chemical pollutants. In the first project, a point-of-use sensor was developed for detection of trichloroethylene (TCE) from water. A self-organizing nanotubular titanium dioxide (TNA) synthesized by electrochemical anodization and functionalized with photocatalytically deposited platinum (Pt/TNA) was applied to the detection. The morphology and crystallinity of the Pt/TNA sensor was characterized using field emission scanning electron microscope, energy dis- persive x-ray spectroscopy, and X-ray diffraction. The sensor could detect TCE in the concentrations ranging from 10 to 1000 ppm. The room-temperature operation capability of the sensor makes it less power intensive and can potentially be incorporated into a field-based sensor. In the second part, TNA synthesized on a foil was incorporated into a flow-based microfluidic format and applied to degradation of a model pollutant, methylene blue. The system was demonstrated to have enhanced photocatalytic performance at higher flow rates (50-200 muL/min) over the same microfluidic format with TiO2 nanoparticulate (commercial P25) catalyst. The microfluidic format with TNA catalyst was able to achieve 82% fractional conversion of 18 mM methylene blue in comparison to 55% in the case of the TiO2 nanoparticulate layer at a flow rate of 200 L/min. The microfluidic device was

  11. Microbial metabolism fuels ecosystem-scale organic matter transformations: an integrated biological and chemical perspective

    Science.gov (United States)

    Wrighton, K. C.; Narrowe, A. B.; Angle, J.; Stefanik, K. S.; Daly, R. A.; Johnston, M.; Miller, C. S.

    2014-12-01

    Freshwater saturated sediments and soils represent vital ecosystems due to their nutrient cycling capacities and their prominent contribution to global greenhouse gas emissions. However, the diversity of microorganisms and metabolic pathways involved in carbon cycling, and the impacts of these processes on other biogeochemical cycles remain poorly understood. Major advances in DNA sequencing have helped forge linkages between the previously disconnected biological and chemical components of these systems. Here, we present data on the use of assembly-based metagenomics to generate hypotheses on microbial carbon degradation and biogeochemical cycling in waterlogged sediments and soils. DNA sequencing from a fresh water aquifer adjacent to the Colorado River in Rifle, CO yielded extensive genome recovery from multiple previously unknown bacterial lineages. Fermentative metabolisms encoded by these genomes drive nitrogen, hydrogen, and sulfur cycling in this subsurface system. We are also applying a similar approach to identify microbial processes in a freshwater wetland on Lake Erie, OH. Given the increased diversity (increased richness, decreased evenness, and strain variation) of wetland sediment microbial communities, we modified methods for specialized assembly of long taxonomic marker gene amplicons (EMIRGE) to create a biogeographical map of Fungi, Archaea, and Bacteria along depth and hydrological transects. This map reveals that the microbial community associated with the top two depths (>7 cm) is significantly different from bottom depths (7-40 cm). Dissolved organic matter (DOM) molecular weight and the presence of oxidized terminal electron acceptors best predict differences in microbial community structure. Laboratory mesocosms amended with pore-water DOM, in situ soil communities, and variable oxygen conditions link DOM composition and redox to microbial metabolic networks, biogeochemical cycles, and green house gas emission. Organism identities from

  12. Chemically and biologically-mediated fertilizing value of manure-derived biochar.

    Science.gov (United States)

    Subedi, R; Taupe, N; Ikoyi, I; Bertora, C; Zavattaro, L; Schmalenberger, A; Leahy, J J; Grignani, C

    2016-04-15

    This study evaluates the potential of manure-derived biochars in promoting plant growth and enhancing soil chemical and biological properties during a 150day pot experiment. Biochars from pyrolysis of poultry litter (PL) and swine manure (SM) at 400 and 600°C, and a commonly available wood chip (WC) biochar produced at high temperature (1000°C) were incorporated to silt-loam (SL) and sandy (SY) soils on a 2% dry soil weight basis. Ryegrass was sown and moisture was adjusted to 60% water filled pore space (WFPS). The PL400 and SM400 biochars significantly increased (p<0.05) shoot dry matter (DM) yields (SL soil) and enhanced nitrogen (N), phosphorus (P) and potassium (K) uptake by the plants in both soils, compared to the Control. All biochars significantly increased the soil carbon (C) contents compared to the Control. Total N contents were significantly greater for PL400 and PL600 treatments in both soils. The dehydrogenase activity (DA) significantly increased for PL400 and SM400 treatments and was positively correlated with the volatile matter (VM) contents of the biochars, while β-glucosidase activity (GA) decreased for the same treatments in both soils. All biochars significantly shifted (p≤0.05) the bacterial community structure compared to the Control. This study suggests that pyrolysis of animal manures can produce a biochar that acts as both soil amendment and an organic fertilizer as proven by increased NPK uptake, positive liming effect and high soil nutrient availability, while WC biochar could work only in combination with fertilizers (organic as well as mineral). PMID:26851878

  13. An Introduction to the Biological and Chemical Oceanography Data Management Office (BCO- DMO)

    Science.gov (United States)

    Chandler, C.; Glover, D.; Groman, R.; Wiebe, P.

    2007-12-01

    The BCO-DMO (http://www.bco-dmo.org) was created to serve PIs funded by the NSF Biological and Chemical Oceanography Sections as a facility where marine biogeochemical and ecological data and information developed in the course of scientific research can easily be disseminated, protected, and stored on short and intermediate time-frames. The Data Management Office also strives to provide research scientists and others with the tools and systems necessary to work with marine biogeochemical and ecological data from heterogeneous sources with increased efficacy. To accomplish this, two data management offices (former- U.S. JGOFS and U.S. GLOBEC) have been united and enhanced to provide a venue for contribution of electronic data/metadata and other information for open distribution via the World Wide Web. The JGOFS/GLOBEC Client/Server distributed data management system software is used to serve data and information to every investigator, regardless of computing platform. In addition, Web services are provided for data discovery, and development has begun on a machine-to-machine application programming interface (API) to allow interoperability between Web-based data systems. The BCO-DMO will manage existing and new data sets from individual scientific investigators, collaborative groups of investigators, and data management offices of larger multi-institutional projects via any standard Web browser. The office will work with principal investigators on data quality control; maintain an inventory and program thesaurus of strictly defined field names; generate metadata (e.g. Directory Interchange Format (DIF) ) records required by Federal agencies; ensure submission of data to national data centers; support and encourage data synthesis by providing new, online, Web-based display tools; facilitate interoperability among different data portals; and facilitate regional, national, and international data and information exchange.

  14. A review on chemical and biological properties of Cayratia trifolia Linn. (Vitaceae

    Directory of Open Access Journals (Sweden)

    Dinesh Kumar

    2011-01-01

    Full Text Available Cayratia trifolia Linn. Domin Syn. Vitis trifolia (Family: Vitaceae is commonly known as Fox grape in English; Amlabel, Ramchana in Hindi and Amlavetash in Sanskrit. It is native to India, Asia and Australia. It is a perennial climber having trifoliated leaves with 2-3 cm long petioles and ovate to oblong-ovate leaflets. Flowers are small greenish white and brown in color. Fruits are fleshy, juicy, dark purple or black, nearly spherical, about 1 cm in diameter. It is found throughout the hills in India. This perennial climber is also found in the hotter part of India from Jammu and Rajasthan to Assam extending into the peninusular India upto 600 m height. Whole plant of Cayratia trifolia has been reported to contain yellow waxy oil, steroids/terpenoids, flavonoids, tannins upon preliminary phytochemical screening. Leaves contain stilbenes (piceid, reveratrol, viniferin, ampelopsin. Stem, leaves, roots are reported to possess hydrocyanic acid, delphinidin and several flavonoids such as cyanidin is reported in the leaves. This plant also contains kaempferol, myricetin, quercetin, triterpenes and epifriedelanol. Infusion of seeds along with extract of tubers is traditionally given orally to diabetic patients to check sugar level of blood. Paste of tuberous is applied on the affected part in the treatment of snake bite. Whole plant is used as diuretic, in tumors, neuralgia and splenopathy. Its climbers wrapped around the neck of frantic bullock and poultice of leaves are used to yoke sores of bullock. The bark extract shows the antiviral, antibacterial, antiprotozoal, hypoglycemic, anticancer and diuretic activity. This article focuses on the upgraded review on chemical and biological properties of Cayratia trifolia Linn. and triggers further investigation on this plant.

  15. Chemical and Biological Reduction of the Radical SAM Enzyme CPH4 Synthase.

    Science.gov (United States)

    Bruender, Nathan A; Young, Anthony P; Bandarian, Vahe

    2015-05-12

    The radical S-adenosyl-L-methionine (SAM) superfamily is a large and growing group of enzymes that conduct complex radical-mediated transformations. A one-electron reduction of SAM via the +1 state of the cubane [4Fe-4S] cluster generates a 5'-deoxyadenosyl radical, which initiates turnover. The [4Fe-4S] cluster must be reduced from its resting +2 state to the catalytically active +1 oxidation state by an electron. In practice, dithionite or the Escherichia coli flavodoxin (EcFldA)/ferredoxin (flavodoxin):NADP(+) oxidoreductase (Fpr)/NADPH system is used. Herein, we present a systematic investigation of the reductive activation of the radical SAM enzyme CDG synthase (BsQueE) from Bacillus subtilis comparing biological and chemical reductants. These data show that either of the flavodoxin homologues encoded by the B. subtilis genome, BsYkuN or BsYkuP, as well as a series of small molecule redox mediators, supports BsQueE activity. With dithionite as a reductant, the activity of BsQueE is ~75-fold greater in the presence of BsYkuN and BsYkuP compared to that in the presence of dithionite alone. By contrast, EcFldA supports turnover to ~10-fold greater levels than dithionite alone under the same conditions. Comparing the ratio of the rate of turnover to the apparent binding constant for the flavodoxin homologues reveals 10- and 240-fold preferences for BsYkuN over BsYkuP and EcFldA, respectively. The differential activation of the enzyme cannot be explained by the abortive cleavage of SAM. We conclude from these observations that the differential activation of BsQueE by Fld homologues may reside in the details of the interaction between the flavodoxin and the radical SAM enzyme. PMID:25933252

  16. The chemical fate of the Cd/Se/Te-based quantum dot 705 in the biological system: toxicity implications

    Energy Technology Data Exchange (ETDEWEB)

    Lin, C-H; Chang, Louis W; Lai, W-H; Chang, W-H; Lin Pinpin [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Taiwan (China); Chang Han [Department of Pathology, Chung Shan Medical University, Taichung, Taiwan (China); Yang, M-H [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan (China); Yang, C-S [Center for Nanomedicine Research, National Health Research Institutes, Zhunan, Taiwan (China)], E-mail: pplin@nhri.org.tw

    2009-05-27

    QD705 is a cadmium/selenium/tellurium (Cd/Se/Te)-based quantum dot with good potential for biomedical applications. Although the biological fate of QD705 is established, its chemical fate in the biological system is still unknown. Since the chemical nature of Cd in QD705 (either stays as bounded Cd or becomes free Cd) is closely related to the toxicity of this nanocrystal, information on its chemical fate is critically needed. In this study we investigated the chemical fate of QD705 in the kidneys of mice. We used the molar ratio of Cd and Te (increased Cd/Te ratio signifies increased Cd release from QD705) and the induction of tissue metallothionein (MT) as markers for elevated free Cd in tissues. Our study indicated that 100% of QD705 (measured as Cd) was still retained in the body 16 weeks after exposure, with significant time redistribution to the kidneys. Furthermore, there were an elevation in both the molar Cd/Te ratio and MT-1 expression in the kidneys, suggesting that free Cd was released from QD705. Thus QD705 is not as stable or biologically inert as many may have once believed. Our study demonstrated that free Cd indeed can be released from QD705 in the kidneys and increases the risk of renal toxicity.

  17. The chemical fate of the Cd/Se/Te-based quantum dot 705 in the biological system: toxicity implications

    International Nuclear Information System (INIS)

    QD705 is a cadmium/selenium/tellurium (Cd/Se/Te)-based quantum dot with good potential for biomedical applications. Although the biological fate of QD705 is established, its chemical fate in the biological system is still unknown. Since the chemical nature of Cd in QD705 (either stays as bounded Cd or becomes free Cd) is closely related to the toxicity of this nanocrystal, information on its chemical fate is critically needed. In this study we investigated the chemical fate of QD705 in the kidneys of mice. We used the molar ratio of Cd and Te (increased Cd/Te ratio signifies increased Cd release from QD705) and the induction of tissue metallothionein (MT) as markers for elevated free Cd in tissues. Our study indicated that 100% of QD705 (measured as Cd) was still retained in the body 16 weeks after exposure, with significant time redistribution to the kidneys. Furthermore, there were an elevation in both the molar Cd/Te ratio and MT-1 expression in the kidneys, suggesting that free Cd was released from QD705. Thus QD705 is not as stable or biologically inert as many may have once believed. Our study demonstrated that free Cd indeed can be released from QD705 in the kidneys and increases the risk of renal toxicity.

  18. Method of and apparatus for cleaning garments and soft goods contaminated with nuclear, chemical and/or biological contaminants

    International Nuclear Information System (INIS)

    A method is described for decontaminating garments, soft good or mixtures thereof contaminated with radioactive particulates, toxin, chemical, and biological contaminants comprising the steps of: (a) depositing contaminated garments, soft goods or mixtures thereof in a cleaning drum; (b) charging the drum with a cleaning solvent in which the chemical contaminants are soluble; (c) agitating the drum during a wash cycle to separate radioactive, toxin, biological particulate matter of mixtures thereof from the garments; (d) draining the drum of the dry cleaning solvent which contains suspended particulate contaminants and dissolved chemical contaminants; (e) contacting the drained solvent with both a neutralizing agent and an oxidizing agent, the neutralizing agent being selected from the group consisting of sodium hydroxide, potassium hydroxide and mixtures thereof and having a concentration greater than one (1.0) normal; (f) rinsing the garments, soft goods or mixtures thereof by circulating clean solvent from a solvent tank through the drum thereby effecting additional removal and flushing of particulate and chemical contaminants; (g) filtering the circulated solvent to remove the particulate material suspended in the solvent prior to addition to the drum; and (h) preferentially adsorbing the chemical contaminants dissolved in the circulated solvent prior to addition to the drum

  19. Impact of mechanical mowing and chemical treatment on phytosociological, pedochemical and biological parameters in roadside soils and vegetation.

    Science.gov (United States)

    Pellegrini, Elisa; Falcone, Lino; Loppi, Stefano; Lorenzini, Giacomo; Nali, Cristina

    2016-03-01

    Many chemical and non-chemical strategies have been applied to control weeds in agricultural and industrial areas. Knowledge regarding the effects of these methods on roadside vegetation is still poor. A 2-year field experiment was performed along a road located near Livorno (Tuscany, central Italy). Eight plots/strips were identified, of which four were subjected to periodical mechanical mowing and the remaining four were treated with a chemical herbicide based on glyphosate (the producer's recommended rates were used for the selective control of broad-leaved weeds). Our results clearly showed that roadside soil and vegetation are a significant reservoir of anthropogenic activities which have a strong negative effect on several phytosociological, pedochemical and biological parameters. Compared with conventional mechanical mowing, chemical treatment induced (i) a significant increase in organic matter in the upper plot layers (+18%), and (ii) a marked reduction in weed height throughout the entire period of the experiment. Irrespectively of the kind of treatment, no significance differences were detected in terms of (i) biological quality of soil (the abundance and diversity of arthropod communities did not change), and (ii) plant elemental content (bulk concentrations of analysed trace elements had a good fit within ranges of occurrence in the "reference plant"). The glyphosate partially controlled broad-leaved weeds and this moderate efficacy is dependent upon the season/time of application. In conclusion, the rational and sustainable use of chemical herbicides may be a useful tool for the management of roadside vegetation. PMID:26573685

  20. Chemical Stability of Chromium Carbide and Chromium Nitride Powders Compared with Chromium Metal in Synthetic Biological Solutions

    OpenAIRE

    Tao Jiang; Inger Odnevall Wallinder; Gunilla Herting

    2012-01-01

    Chromium carbide (Cr-C) and chromium nitride (Cr-N) powders were compared with a chromium metal powder (Cr-metal) to evaluate their chemical stability in solution. All three powders were exposed in five different synthetic biological solutions of varying pH and chemical composition simulating selected human exposure conditions. Characterisation of the powders, using GI-XRD, revealed that the predominant bulk crystalline phases were Cr7C3 and Cr2N for Cr-C and Cr-N respectively. The outermost ...

  1. VAMDC Consortium: A Service to Astrophysics

    Science.gov (United States)

    L Dubernet, M.; Moreau, N.; Zwoelf, C. M.; Ba, Y. A.

    2015-12-01

    The VAMDC Consortium is a worldwide consortium which federates Atomic and Molecular databases through an e-science infrastructure and a political organisation. About 90% of the inter-connected databases handle data that are used for the interpretation of spectra and for the modelisation of media of many fields of astrophysics. This paper presents how the VAMDC Consortium is organised in order to provide a ``service'' to the astrophysics community.

  2. PanScan, the Pancreatic Cancer Cohort Consortium, and the Pancreatic Cancer Case-Control Consortium

    Science.gov (United States)

    The Pancreatic Cancer Cohort Consortium consists of more than a dozen prospective epidemiologic cohort studies within the NCI Cohort Consortium, whose leaders work together to investigate the etiology and natural history of pancreatic cancer.

  3. Chemically enhanced biological NOx removal from flue gases : nitric oxide and ferric EDTA reduction in BioDeNox reactors

    OpenAIRE

    Maas,, F.

    2005-01-01

    The emission of nitrogen oxides (NOx) to the atmosphere is a major environmental problem. To abate NOx emissions from industrial flue gases, to date, mainly chemical processes like selective catalytic reduction (SCR) are applied. All these processes require high temperatures (>300 °C) and expensive catalysts. Therefore, biological NOx removal techniques using denitrification may represent promising alternatives for the conventional SCR techniques. However, water based biofiltration require...

  4. The effect of biological and chemical control agents on the health status of the very early potato cultivar Rosara

    OpenAIRE

    Cwalina-Ambroziak Bożena; Damszel Marta Maria; Głosek-Sobieraj Małgorzata

    2015-01-01

    The external appearance and quality of table potatoes are determined, among other factors, by the health status of the plants during the growing season. Chemical control methods are often combined with biocontrol agents to effectively fight potato pathogens. Potatoes of the very early cultivar Rosara were grown in experimental plots. The plots were located in Tomaszkowo (NE Poland, 2007-2009). The experiment involved the following treatments: 1) biological control − mycorrhizal Glomus spp. in...

  5. Chemical and botanical characterization of Chilean propolis and biological activity on cariogenic bacteria Streptococcus mutans and Streptococcus sobrinus

    OpenAIRE

    Leticia Barrientos; Herrera, Christian L.; Gloria Montenegro; Ximena Ortega; Jorge Veloz; Marysol Alvear; Alejandro Cuevas; Nicolás Saavedra; Salazar, Luis A.

    2013-01-01

    Propolis is a non-toxic natural substance with multiple pharmacological properties including anti-cancer, antioxidant, fungicidal, antibacterial, antiviral, and anti-inflammatory among others. The aim of this study was to determine the chemical and botanical characterization of Chilean propolis samples and to evaluate their biological activity against the cariogenic bacteria Streptococcus mutans and Streptococcus sobrinus. Twenty propolis samples were obtained from beekeeping producers from t...

  6. The Fox Nuclear, Biological, and Chemical Reconnaissance System : |blessons-learned from a foreign non-developmental item acquisition

    OpenAIRE

    Norris, James W.

    1995-01-01

    Non-developmental Item acquisition represent a viable approach to meet procurement needs of the Defense Department. The reduced acquisition cycle times and resultant cost savings of this acquisition strategy presents significant potential benefits to DoD. One weapon system program that has successfully used such an NDI strategy is the U.S. Army's Fox Nuclear, Biological, and Chemical Reconnaissance System. This thesis examines the DoD acquisition process and how NDIs are used within the proce...

  7. Synthetic methylotrophy: engineering the production of biofuels and chemicals based on the biology of aerobic methanol utilization.

    Science.gov (United States)

    Whitaker, William B; Sandoval, Nicholas R; Bennett, Robert K; Fast, Alan G; Papoutsakis, Eleftherios T

    2015-06-01

    Synthetic methylotrophy is the development of non-native methylotrophs that can utilize methane and methanol as sole carbon and energy sources or as co-substrates with carbohydrates to produce metabolites as biofuels and chemicals. The availability of methane (from natural gas) and its oxidation product, methanol, has been increasing, while prices have been decreasing, thus rendering them as attractive fermentation substrates. As they are more reduced than most carbohydrates, methane and methanol, as co-substrates, can enhance the yields of biologically produced metabolites. Here we discuss synthetic biology and metabolic engineering strategies based on the native biology of aerobic methylotrophs for developing synthetic strains grown on methanol, with Escherichia coli as the prototype. PMID:25796071

  8. Lab-on-fiber technology: a new vision for chemical and biological sensing.

    Science.gov (United States)

    Ricciardi, Armando; Crescitelli, Alessio; Vaiano, Patrizio; Quero, Giuseppe; Consales, Marco; Pisco, Marco; Esposito, Emanuela; Cusano, Andrea

    2015-12-21

    The integration of microfluidics and photonic biosensors has allowed achievement of several laboratory functions in a single chip, leading to the development of photonic lab-on-a-chip technology. Although a lot of progress has been made to implement such sensors in small and easy-to-use systems, many applications such as point-of-care diagnostics and in vivo biosensing still require a sensor probe able to perform measurements at precise locations that are often hard to reach. The intrinsic property of optical fibers to conduct light to a remote location makes them an ideal platform to meet this demand. The motivation to combine the good performance of photonic biosensors on chips with the unique advantages of optical fibers has thus led to the development of the so-called lab-on-fiber technology. This emerging technology envisages the integration of functionalized materials on micro- and nano-scales (i.e. the labs) with optical fibers to realize miniaturized and advanced all-in-fiber probes, especially useful for (but not limited to) label-free chemical and biological applications. This review presents a broad overview of lab-on-fiber biosensors, with particular reference to lab-on-tip platforms, where the labs are integrated on the optical fiber facet. Light-matter interaction on the fiber tip is achieved through the integration of thin layers of nanoparticles or nanostructures supporting resonant modes, both plasmonic and photonic, highly sensitive to local modifications of the surrounding environment. According to the physical principle that is exploited, different configurations - such as localized plasmon resonance probes, surface enhanced Raman scattering probes and photonic probes - are classified, while various applications are presented in context throughout. For each device, the surface chemistry and the related functionalization protocols are reviewed. Moreover, the implementation strategies and fabrication processes, either based on bottom-up or top

  9. A Chemical Biology Approach to Reveal Sirt6-targeted Histone H3 Sites in Nucleosomes.

    Science.gov (United States)

    Wang, Wesley Wei; Zeng, Yu; Wu, Bo; Deiters, Alexander; Liu, Wenshe R

    2016-07-15

    As a member of a highly conserved family of NAD(+)-dependent histone deacetylases, Sirt6 is a key regulator of mammalian genome stability, metabolism, and life span. Previous studies indicated that Sirt6 is hardwired to remove histone acetylation at H3K9 and H3K56. However, how Sirt6 recognizes its nucleosome substrates has been elusive due to the difficulty of accessing homogeneous acetyl-nucleosomes and the low activity of Sirt6 toward peptide substrates. Based on the fact that Sirt6 has an enhanced activity to remove long chain fatty acylation from lysine, we developed an approach to recombinantly synthesize histone H3 with a fatty acylated lysine, N(ε)-(7-octenoyl)-lysine (OcK), installed at a number of lysine sites and used these acyl-H3 proteins to assemble acyl-nucleosomes as active Sirt6 substrates. A chemical biology approach that visualizes OcK in nucleosomes and therefore allows direct sensitization of Sirt6 activities on its acyl-nucleosome substrates was also formulated. By combining these two approaches, we showed that Sirt6 actively removes acylation from H3K9, H3K18, and H3K27; has relatively low activities toward H3K4 and K3K23; but sluggishly removes acylation at H3K14, H3K36, H3K56, and H3K79. Overexpressing Sirt6 in 293T cells led to downregulated acetylation at H3K18 and K3K27, confirming these two novel Sirt6-targeted nucleosome lysine sites in cells. Given that downregulation of H3K18 acetylation is correlated with a poor prognosis of several cancer types and H3K27 acetylation antagonizes repressive gene regulation by di- and trimethylation at H3K27, our current study implies that Sirt6 may serve as a target for cancer intervention and regulatory pathway investigation in cells. PMID:27152839

  10. How Clean is Safe? Improving the Effectiveness of Decontamination of Structures and People Following Chemical and Biological Incidents

    Energy Technology Data Exchange (ETDEWEB)

    Vogt (Sorensen), B.M.

    2003-04-03

    This report describes a U.S. Department of Energy, (DOE) Chemical and Biological National Security Program project that sought to establish what is known about decontamination of structures, objects, and people following an exposure to chemical or biological materials. Specifically we sought to identify the procedures and protocols used to determine when and how people or buildings are considered ''clean'' following decontamination. To fulfill this objective, the study systematically examined reported decontamination experiences to determine what procedures and protocols are currently employed for decontamination, the timeframe involved to initiate and complete the decontamination process, how the contaminants were identified, the factors determining when people were (or were not) decontaminated, the problems encountered during the decontamination process, how response efforts of agencies were coordinated, and the perceived social psychological effects on people who were decontaminated or who participated in the decontamination process. Findings and recommendations from the study are intended to aid decision-making and to improve the basis for determining appropriate decontamination protocols for recovery planners and policy makers for responding to chemical and biological events.

  11. STRUCTURE OF CONSORTIUM DESTRUCTIVE COMPONENTS IN THE INDUSTRIAL AREA OF KRIVYI RIG BASIN

    Directory of Open Access Journals (Sweden)

    Kachinskaya V.V.

    2014-08-01

    Full Text Available Тhe structural organization and a biological variety of ground mesofauna on consortium level of the organization of ecosystems are considered. The analysis of indicators of the structural organization and a biodiversity of ground mesofauna in consortium Ulmus and Populus in the conditions of territories of industrial mining – metallurgical complex of Krivyi Rig Basin is carried out. It is established that taxonomical structure of ground mesofauna is characterized by insignificant number and quantity of taxonomical groups. Prevalence in morfo-ecological structure of hortobiontes and herpetobiontes testifies about faunae considerable attachment to consortium determinants and influences of a steppe climate on its structure. Prevalence of phytophages and polyphages in trophic structure is caused by combination of determinants specificity of consortium and zone source of fauna formations. The structural organization of ground mesofauna in consortium Ulmus and Populus in the conditions of industrial sites is characterized simplified taxonomical structure with a low biodiversity at all levels. It was suggested that structural and functional organization of destructive components of the block consortium of Ulmus and Populus in the conditions of industrial sites are simplified and determined by biogeochemical patterns of pedogenic and leaf litter layer of consortium and type of anthropogenic impact. Management and sustainable use of consortium under technogenic pressure should be based on the effects of extreme and critical components in the evolution of consortium. These critical points are the type of leading man-made factors and pedogenic and leaf litter biogeochemical conditions of consortium determinants, which results in inhibition of development and simplification of the structural and functional organization of destructive components of the block. The elaboration of measures to restore and maintain that structural and functional organization

  12. Nontarget effects of chemical pesticides and biological pesticide on rhizospheric microbial community structure and function in Vigna radiata.

    Science.gov (United States)

    Singh, Sunil; Gupta, Rashi; Kumari, Madhu; Sharma, Shilpi

    2015-08-01

    Intensive agriculture has resulted in an indiscriminate use of pesticides, which demands in-depth analysis of their impact on indigenous rhizospheric microbial community structure and function. Hence, the objective of the present work was to study the impact of two chemical pesticides (chlorpyrifos and cypermethrin) and one biological pesticide (azadirachtin) at two dosages on the microbial community structure using cultivation-dependent approach and on rhizospheric bacterial communities involved in nitrogen cycle in Vigna radiata rhizosphere through cultivation-independent technique of real-time PCR. Cultivation-dependent study highlighted the adverse effects of both chemical pesticide and biopesticide on rhizospheric bacterial and fungal communities at different plant growth stages. Also, an adverse effect on number of genes and transcripts of nifH (nitrogen fixation); amoA (nitrification); and narG, nirK, and nirS (denitrification) was observed. The results from the present study highlighted two points, firstly that nontarget effects of pesticides are significantly detrimental to soil microflora, and despite being of biological origin, azadirachtin exerted negative impact on rhizospheric microbial community of V. radiata behaving similar to chemical pesticides. Hence, such nontarget effects of chemical pesticide and biopesticide in plants' rhizosphere, which bring out the larger picture in terms of their ecotoxicological effect, demand a proper risk assessment before application of pesticides as agricultural amendments. PMID:25801369

  13. Analytical methods for the quantification of bisphenol A, alkylphenols, phthalate esters, and perfluoronated chemicals in biological samples.

    Science.gov (United States)

    Nakazawa, Hiroyuki; Iwasaki, Yusuke; Ito, Rie

    2014-01-01

    Our modern society has created a large number of chemicals that are used for the production of everyday commodities including toys, food packaging, cosmetic products, and building materials. We enjoy a comfortable and convenient lifestyle with access to these items. In addition, in specialized areas, such as experimental science and various medical fields, laboratory equipment and devices that are manufactured using a wide range of chemical substances are also extensively employed. The association between human exposure to trace hazardous chemicals and an increased incidence of endocrine disease has been recognized. However, the evaluation of human exposure to such endocrine disrupting chemicals is therefore imperative, and the determination of exposure levels requires the analysis of human biological materials, such as blood and urine. To obtain as much information as possible from limited sample sizes, highly sensitive and reliable analytical methods are also required for exposure assessments. The present review focuses on effective analytical methods for the quantification of bisphenol A (BPA), alkylphenols (APs), phthalate esters (PEs), and perfluoronated chemicals (PFCs), which are chemicals used in the production of everyday commodities. Using data obtained from liquid chromatography/mass spectrometry (LC/MS) and LC/MS/MS analyses, assessments of the risks to humans were also presented based on the estimated levels of exposure to PFCs. PMID:24420241

  14. Fiscal 1998 achievement report on regional consortium research and development project. Regional consortium of venture business fostering type--Creation of key industries (Development of technologies for manufacturing and utilizing various biological regulatory substances using Hokkaido-produced biomasses as materials); 1998 nendo Dosan biomass wo genryo to shita kakushu seitai chosetsu kino busshitsu no seisan riyo gijutsu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The efforts aim to meet consumers' needs for products that will prevent lifestyle diseases or the like. For this purpose, substances answering the purpose are extracted from Hokkaido-produced agricultural and aquatic biomasses, and prepared for testing. Researches are conducted on how they behave in the enzyme, cell, and biological systems, and active substances are isolated and identified. In relation to the aquatic biomass, a technology is established of extracting and separating DHA (docosahexaenoic acid), EPA (eicosapentaenoic acid), taurine, etc., which are multivalent unsaturated fatty acids effective in preventing lifestyle diseases, from the unused parts of the squid. In relation to the agricultural biomass, antimicrobial active substances are extracted and separated from small fruit plants such as the chicory. Long-keeping foods are tentatively produced by the addition of dried powder of the chicory root tuber. In the elucidation of various biological regulatory substances contained in the Hokkaido-produced biomasses, they are tested for their abilities to resist microbes and active oxygen. Furthermore, verification tests are conducted by administering the substances to the senescence-accelerated mouse (SAM). (NEDO)

  15. Combining physical, cultural and biological methods: prospects for integrated non-chemical weed management strategies

    OpenAIRE

    Hatcher, Lecturer Paul; Melander, Senior scientist Bo

    2003-01-01

    Physical, cultural and biological methods for weed control have developed largely independently and are often concerned with weed control in different systems: physical and cultural control in annual crops and biocontrol in extensive grasslands. We discuss the strengths and limitations of four physical and cultural methods for weed control: mechanical, thermal, cutting, and intercropping, and the advantages and disadvantages of combining biological control with them. These physical and cult...

  16. Current Protocols in Chemical Biology Construction and Use of Glycan Microarrays

    OpenAIRE

    Campbell, Christopher T.; Zhang, Yalong; Gildersleeve, Jeffrey C.

    2010-01-01

    Glycosylation is an important post-translational modification that influences many biological processes critical for development, normal physiologic function, and diseases. Unfortunately, progress towards understanding the roles of glycans in biology has been slow due to the challenges of studying glycans and the proteins that interact with them. Glycan microarrays provide a high-throughput approach for the rapid analysis of carbohydrate-macromolecule interactions. Protocols detailed here are...

  17. A novel process of dye wastewater treatment by linking advanced chemical oxidation with biological oxidation

    OpenAIRE

    Zou Haiming; Ma Wanzheng; Wang Yan

    2015-01-01

    Dye wastewater is one of typically non-biodegradable industrial effluents. A new process linking Fenton’s oxidation with biological oxidation proposed in this study was investigated to degrade the organic substances from real dye wastewater. During the combination process, the Fenton’s oxidation process can reduce the organic load and enhance biodegradability of dye wastewater, which is followed by biological aerated filter (BAF) system to further remove organic substances in terms of dischar...

  18. A University Consortium on Homogeneous Charge Compression Ignition Engine Research

    Energy Technology Data Exchange (ETDEWEB)

    Assanis, Dennis; Atreya, Arvind; Bowman, Craig; Chen, Jyh-Yuan; Cheng, Wai; Davidson, David; Dibble, Robert; Edwards, Chris; Filipi, Zoran; Golden, David; Green, William; Hanson, Ronald; Hedrick, J Karl; Heywood, John; Im, Hong; Lavoie, George; Sick, Volker; Wooldridge, Margaret

    2007-03-31

    Over the course of this four year project, the consortium team members from UM, MIT, Stanford, and Berkeley along with contributors from Sandia National Labs and LLNL, have produced a wide range of results on gasoline HCCI control and implementation. The work spanned a wide range of activities including engine experiments, fundamental chemical kinetics experiments, and an array of analytical modeling techniques and simulations. Throughout the project a collaborative approach has produced a many significant new insights into HCCI engines and their behavior while at the same time we achieved our key consortium goal: to develop workable strategies for gasoline HCCI control and implementation. The major accomplishments in each task are summarized, followed by detailed discussion.

  19. Tri-District Arts Consortium Summer Program.

    Science.gov (United States)

    Kirby, Charlotte O.

    1990-01-01

    The Tri-District Arts Consortium in South Carolina was formed to serve artistically gifted students in grades six-nine. The consortium developed a summer program offering music, dance, theatre, and visual arts instruction through a curriculum of intense training, performing, and hands-on experiences with faculty members and guest artists. (JDD)

  20. Introduction to Neuroscience Peer Review Consortium

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    @@ Introduction The Neuroscience Peer Review Consortium is an alliance of neuroscience journals that have agreed to accept manuscript reviews from other members of the Consortium.Its goals are to support efficient and thorough peer review of original research in neuroscience, speed the publication of research reports, and reduce the burden on peer reviewers.

  1. Functionalized gold nanoparticle supported sensory mechanisms applied in detection of chemical and biological threat agents: A review

    International Nuclear Information System (INIS)

    Highlights: ► Smart sensors are needed for detection of chemical and biological threat agents. ► Smart sensors detect analytes with rapid speed, high sensitivity and selectivity. ► Functionalized gold nanoparticles (GNPs) can potentially smart sense threat agents. ► Functionalized GNPs support multiple analytical methods for sensing threat agents. ► Threat agents of all types can be detected using functionalized GNPs. - Abstract: There is a great necessity for development of novel sensory concepts supportive of smart sensing capabilities in defense and homeland security applications for detection of chemical and biological threat agents. A smart sensor is a detection device that can exhibit important features such as speed, sensitivity, selectivity, portability, and more importantly, simplicity in identifying a target analyte. Emerging nanomaterial based sensors, particularly those developed by utilizing functionalized gold nanoparticles (GNPs) as a sensing component potentially offer many desirable features needed for threat agent detection. The sensitiveness of physical properties expressed by GNPs, e.g. color, surface plasmon resonance, electrical conductivity and binding affinity are significantly enhanced when they are subjected to functionalization with an appropriate metal, organic or biomolecular functional groups. This sensitive nature of functionalized GNPs can be potentially exploited in the design of threat agent detection devices with smart sensing capabilities. In the presence of a target analyte (i.e., a chemical or biological threat agent) a change proportional to concentration of the analyte is observed, which can be measured either by colorimetric, fluorimetric, electrochemical or spectroscopic means. This article provides a review of how functionally modified gold colloids are applied in the detection of a broad range of threat agents, including radioactive substances, explosive compounds, chemical warfare agents, biotoxins, and

  2. Functionalized gold nanoparticle supported sensory mechanisms applied in detection of chemical and biological threat agents: A review

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyayula, Venkata K.K., E-mail: Upadhyayula.Venkata@epa.gov [Oak Ridge Institute of Science and Education (ORISE), MC-100-44, PO Box 117, Oak Ridge, TN 37831 (United States)

    2012-02-17

    Highlights: Black-Right-Pointing-Pointer Smart sensors are needed for detection of chemical and biological threat agents. Black-Right-Pointing-Pointer Smart sensors detect analytes with rapid speed, high sensitivity and selectivity. Black-Right-Pointing-Pointer Functionalized gold nanoparticles (GNPs) can potentially smart sense threat agents. Black-Right-Pointing-Pointer Functionalized GNPs support multiple analytical methods for sensing threat agents. Black-Right-Pointing-Pointer Threat agents of all types can be detected using functionalized GNPs. - Abstract: There is a great necessity for development of novel sensory concepts supportive of smart sensing capabilities in defense and homeland security applications for detection of chemical and biological threat agents. A smart sensor is a detection device that can exhibit important features such as speed, sensitivity, selectivity, portability, and more importantly, simplicity in identifying a target analyte. Emerging nanomaterial based sensors, particularly those developed by utilizing functionalized gold nanoparticles (GNPs) as a sensing component potentially offer many desirable features needed for threat agent detection. The sensitiveness of physical properties expressed by GNPs, e.g. color, surface plasmon resonance, electrical conductivity and binding affinity are significantly enhanced when they are subjected to functionalization with an appropriate metal, organic or biomolecular functional groups. This sensitive nature of functionalized GNPs can be potentially exploited in the design of threat agent detection devices with smart sensing capabilities. In the presence of a target analyte (i.e., a chemical or biological threat agent) a change proportional to concentration of the analyte is observed, which can be measured either by colorimetric, fluorimetric, electrochemical or spectroscopic means. This article provides a review of how functionally modified gold colloids are applied in the detection of a broad

  3. Evaluating legacy contaminants and emerging chemicals in marine environments using adverse outcome pathways and biological effects-directed analysis

    International Nuclear Information System (INIS)

    Natural and synthetic chemicals are essential to our daily lives, food supplies, health care, industries and safe sanitation. At the same time protecting marine ecosystems and seafood resources from the adverse effects of chemical contaminants remains an important issue. Since the 1970s, monitoring of persistent, bioaccumulative and toxic (PBT) chemicals using analytical chemistry has provided important spatial and temporal trend data in three important contexts; relating to human health protection from seafood contamination, addressing threats to marine top predators and finally providing essential evidence to better protect the biodiversity of commercial and non-commercial marine species. A number of regional conventions have led to controls on certain PBT chemicals over several years (termed ‘legacy contaminants’; e.g. cadmium, lindane, polycyclic aromatic hydrocarbons [PAHs] and polychlorinated biphenyls [PCBs]). Analytical chemistry plays a key role in evaluating to what extent such regulatory steps have been effective in leading to reduced emissions of these legacy contaminants into marine environments. In parallel, the application of biomarkers (e.g. DNA adducts, CYP1A-EROD, vitellogenin) and bioassays integrated with analytical chemistry has strengthened the evidence base to support an ecosystem approach to manage marine pollution problems. In recent years, however, the increased sensitivity of analytical chemistry, toxicity alerts and wider environmental awareness has led to a focus on emerging chemical contaminants (defined as chemicals that have been detected in the environment, but which are currently not included in regulatory monitoring programmes and whose fate and biological impacts are poorly understood). It is also known that natural chemicals (e.g. algal biotoxins) may also pose a threat to marine species and seafood quality. Hence complex mixtures of legacy contaminants, emerging chemicals and natural biotoxins in marine ecosystems represent

  4. Chemoselective Attachment of Biologically Active Proteins to Surfaces by Native Chemical Ligation

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, C L; de Yoreo, J J; Coleman, M; Camarero, J A

    2003-11-22

    The present work describes our ongoing efforts towards the creation of micro and nanoscaled ordered arrays of protein covalently attached to site-specific chemical linkers patterned by different microlithographic techniques. We present a new and efficient solid-phase approach for the synthesis of chemically modified long alkyl-thiols. These compounds can be used to introduce chemoselective reacting groups onto silicon-based surfaces. We show that these modified thiols can be used for creating nano- and micrometric chemical patterns by using different lithographic techniques. We show that these patterns can react chemoselectively with proteins which have been recombinantly modified to contain complementary chemical groups at specific positions thus resulting in the oriented attachment of the protein to the surface.

  5. Metabolic Engineering for Production of Biorenewable Fuels and Chemicals: Contributions of Synthetic Biology

    OpenAIRE

    2010-01-01

    Production of fuels and chemicals through microbial fermentation of plant material is a desirable alternative to petrochemical-based production. Fermentative production of biorenewable fuels and chemicals requires the engineering of biocatalysts that can quickly and efficiently convert sugars to target products at a cost that is competitive with existing petrochemical-based processes. It is also important that biocatalysts be robust to extreme fermentation conditions, biomass-derived inhibito...

  6. Reduced biological control and enhanced chemical pest management in the evolution of fungus farming in ants

    DEFF Research Database (Denmark)

    Fernández-Marín, Hermógenes; Zimmerman, Jess K; Nash, David R;

    2009-01-01

    To combat disease, most fungus-growing ants (Attini) use antibiotics from mutualistic bacteria (Pseudonocardia) that are cultured on the ants' exoskeletons and chemical cocktails from exocrine glands, especially the metapleural glands (MG). Previous work has hypothesized that (i) Pseudonocardia a...... reliance on mutualistic Pseudonocardia are correlated with larger colony size among attine genera, raising questions about the efficacy of managing disease in large societies with chemical cocktails versus bacterial antimicrobial metabolites....

  7. The Lyophilization Process Maintains the Chemical and Biological Characteristics of Royal Jelly

    OpenAIRE

    Andresa Piacezzi Nascimento; Larissa Ariana Roveroni Moraes; Nathália Ursoli Ferreira; Gabriela de Padua Moreno; Fernanda Grassi Mangolini Uahib; Edna Aparecida Barizon; Andresa Aparecida Berretta

    2015-01-01

    The alternative use of natural products, like royal jelly (RJ), may be an important tool for the treatment of infections caused by antibiotic-resistant bacteria. RJ presents a large number of bioactive substances, including antimicrobial compounds. In this study, we carried out the chemical characterization of fresh and lyophilized RJ and investigated their antibacterial effects with the purpose of evaluating if the lyophilization process maintains the chemical and antibacterial properties of...

  8. The combinatorial synthesis and chemical and biological evaluation of a 1,4-benzodiazepine library.

    OpenAIRE

    Bunin, B A; Plunkett, M J; Ellman, J A

    1994-01-01

    A library of 192 structurally diverse 1,4-benzodiazepine derivatives containing a variety of chemical functionalities including amides, carboxylic acids, amines, phenols, and indoles was constructed from three components, 2-aminobenzophenones, amino acids, and alkylating agents, by employing Geysen's pin apparatus [Geysen, H. M., Rodda, S. J., Mason, T. J., Tribbick, G. & Schoofs, P. G. (1987) J. Immunol. Methods 102, 259-274]. Rigorous analytical verification of the chemical integrity and yi...

  9. Properties of Random Complex Chemical Reaction Networks and Their Relevance to Biological Toy Models

    OpenAIRE

    Bigan, Erwan; Steyaert, Jean-Marc; Douady, Stéphane

    2013-01-01

    We investigate the properties of large random conservative chemical reaction networks composed of elementary reactions endowed with either mass-action or saturating kinetics, assigning kinetic parameters in a thermodynamically-consistent manner. We find that such complex networks exhibit qualitatively similar behavior when fed with external nutrient flux. The nutrient is preferentially transformed into one specific chemical that is an intrinsic property of the network. We propose a self-consi...

  10. Human Pluripotent Stem Cell Based Developmental Toxicity Assays for Chemical Safety Screening and Systems Biology Data Generation.

    Science.gov (United States)

    Shinde, Vaibhav; Klima, Stefanie; Sureshkumar, Perumal Srinivasan; Meganathan, Kesavan; Jagtap, Smita; Rempel, Eugen; Rahnenführer, Jörg; Hengstler, Jan Georg; Waldmann, Tanja; Hescheler, Jürgen; Leist, Marcel; Sachinidis, Agapios

    2015-01-01

    Efficient protocols to differentiate human pluripotent stem cells to various tissues in combination with -omics technologies opened up new horizons for in vitro toxicity testing of potential drugs. To provide a solid scientific basis for such assays, it will be important to gain quantitative information on the time course of development and on the underlying regulatory mechanisms by systems biology approaches. Two assays have therefore been tuned here for these requirements. In the UKK test system, human embryonic stem cells (hESC) (or other pluripotent cells) are left to spontaneously differentiate for 14 days in embryoid bodies, to allow generation of cells of all three germ layers. This system recapitulates key steps of early human embryonic development, and it can predict human-specific early embryonic toxicity/teratogenicity, if cells are exposed to chemicals during differentiation. The UKN1 test system is based on hESC differentiating to a population of neuroectodermal progenitor (NEP) cells for 6 days. This system recapitulates early neural development and predicts early developmental neurotoxicity and epigenetic changes triggered by chemicals. Both systems, in combination with transcriptome microarray studies, are suitable for identifying toxicity biomarkers. Moreover, they may be used in combination to generate input data for systems biology analysis. These test systems have advantages over the traditional toxicological studies requiring large amounts of animals. The test systems may contribute to a reduction of the costs for drug development and chemical safety evaluation. Their combination sheds light especially on compounds that may influence neurodevelopment specifically. PMID:26132533

  11. The effect of biological and chemical control agents on the health status of the very early potato cultivar Rosara

    Directory of Open Access Journals (Sweden)

    Cwalina-Ambroziak Bożena

    2015-12-01

    Full Text Available The external appearance and quality of table potatoes are determined, among other factors, by the health status of the plants during the growing season. Chemical control methods are often combined with biocontrol agents to effectively fight potato pathogens. Potatoes of the very early cultivar Rosara were grown in experimental plots. The plots were located in Tomaszkowo (NE Poland, 2007-2009. The experiment involved the following treatments: 1 biological control − mycorrhizal Glomus spp. inoculum was applied to the roots, − tubers were dressed and plants were sprayed with Polyversum three times during the growing season, 2 chemical control - at two-week intervals, plants were sprayed with the following fungicides: Infinito 687.5 SC and Tanos 50 WG, Valbon 72 WG and Tanos 50 WG. In the control treatment, potato plants were not protected against pathogens. During the growing season, the severity of late blight and early blight was evaluated on a nine-point scale. The composition of fungal communities colonising potato stems was analysed. The fungistatic properties of the fungicides used in the field experiment were evaluated in an in vitro test. The symptoms of infections caused by Phytophthora infestans and Alternaria spp. were significantly reduced in the treatment which used the integrated chemical and biological control. The least diverse fungal community was isolated from fungicide-treated plants. In the in vitro test, fungicides at all analysed concentrations inhibited the linear mycelial growth of selected pathogens.

  12. Effects of chemical and biological pesticides on plant growth parameters and rhizospheric bacterial community structure in Vigna radiata

    International Nuclear Information System (INIS)

    Highlights: • Non-target effects of pesticides employing qualitative and quantitative approaches. • Qualitative shifts in resident and active bacterial community structure. • Abundance of 16S rRNA gene and transcripts were reduced significantly. • Effects of biological pesticide similar to chemical pesticides on rhizospheric bacteria. - Abstract: With increasing application of pesticides in agriculture, their non-target effects on soil microbial communities are critical to soil health maintenance. The present study aimed to evaluate the effects of chemical pesticides (chlorpyrifos and cypermethrin) and a biological pesticide (azadirachtin) on growth parameters and the rhizospheric bacterial community of Vigna radiata. Qualitative and quantitative analysis by PCR-denaturing gradient gel electrophoresis (DGGE) and q-PCR, respectively, of the 16S rRNA gene and transcript were performed to study the impact of these pesticides on the resident and active rhizospheric bacterial community. While plant parameters were not affected significantly by the pesticides, a shift in the bacterial community structure was observed with an adverse effect on the abundance of 16S rRNA gene and transcripts. Chlorpyrifos showed almost complete degradation toward the end of the experiment. These non-target impacts on soil ecosystems and the fact that the effects of the biopesticide mimic those of chemical pesticides raise serious concerns regarding their application in agriculture

  13. Field Trial Assessment of Biological, Chemical, and Physical Responses of Soil to Tillage Intensity, Fertilization, and Grazing

    Science.gov (United States)

    Vargas Gil, Silvina; Becker, Analia; Oddino, Claudio; Zuza, Mónica; Marinelli, Adriana; March, Guillermo

    2009-08-01

    Soil microbial populations can fluctuate in response to environmental changes and, therefore, are often used as biological indicators of soil quality. Soil chemical and physical parameters can also be used as indicators because they can vary in response to different management strategies. A long-term field trial was conducted to study the effects of different tillage systems (NT: no tillage, DH: disc harrow, and MP: moldboard plough), P fertilization (diammonium phosphate), and cattle grazing (in terms of crop residue consumption) in maize ( Zea mays L.), sunflower ( Heliantus annuus L.), and soybean ( Glycine max L.) on soil biological, chemical, and physical parameters. The field trial was conducted for four crop years (2000/2001, 2001/2002, 2002/2003, and 2003/2004). Soil populations of Actinomycetes, Trichoderma spp., and Gliocladium spp. were 49% higher under conservation tillage systems, in soil amended with diammonium phosphate (DAP) and not previously grazed. Management practices also influenced soil chemical parameters, especially organic matter content and total N, which were 10% and 55% higher under NT than under MP. Aggregate stability was 61% higher in NT than in MP, 15% higher in P-fertilized soil, and also 9% higher in not grazed strips, bulk density being 12% lower in NT systems compared with MP. DAP application and the absence of grazing also reduced bulk density (3%). Using conservation tillage systems, fertilizing crops with DAP, and avoiding grazing contribute to soil health preservation and enhanced crop production.

  14. Effects of chemical and biological pesticides on plant growth parameters and rhizospheric bacterial community structure in Vigna radiata

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Sunil; Gupta, Rashi; Sharma, Shilpi, E-mail: shilpi@dbeb.iitd.ac.in

    2015-06-30

    Highlights: • Non-target effects of pesticides employing qualitative and quantitative approaches. • Qualitative shifts in resident and active bacterial community structure. • Abundance of 16S rRNA gene and transcripts were reduced significantly. • Effects of biological pesticide similar to chemical pesticides on rhizospheric bacteria. - Abstract: With increasing application of pesticides in agriculture, their non-target effects on soil microbial communities are critical to soil health maintenance. The present study aimed to evaluate the effects of chemical pesticides (chlorpyrifos and cypermethrin) and a biological pesticide (azadirachtin) on growth parameters and the rhizospheric bacterial community of Vigna radiata. Qualitative and quantitative analysis by PCR-denaturing gradient gel electrophoresis (DGGE) and q-PCR, respectively, of the 16S rRNA gene and transcript were performed to study the impact of these pesticides on the resident and active rhizospheric bacterial community. While plant parameters were not affected significantly by the pesticides, a shift in the bacterial community structure was observed with an adverse effect on the abundance of 16S rRNA gene and transcripts. Chlorpyrifos showed almost complete degradation toward the end of the experiment. These non-target impacts on soil ecosystems and the fact that the effects of the biopesticide mimic those of chemical pesticides raise serious concerns regarding their application in agriculture.

  15. Functionalized gold nanoparticle supported sensory mechanisms applied in detection of chemical and biological threat agents: a review.

    Science.gov (United States)

    Upadhyayula, Venkata K K

    2012-02-17

    There is a great necessity for development of novel sensory concepts supportive of smart sensing capabilities in defense and homeland security applications for detection of chemical and biological threat agents. A smart sensor is a detection device that can exhibit important features such as speed, sensitivity, selectivity, portability, and more importantly, simplicity in identifying a target analyte. Emerging nanomaterial based sensors, particularly those developed by utilizing functionalized gold nanoparticles (GNPs) as a sensing component potentially offer many desirable features needed for threat agent detection. The sensitiveness of physical properties expressed by GNPs, e.g. color, surface plasmon resonance, electrical conductivity and binding affinity are significantly enhanced when they are subjected to functionalization with an appropriate metal, organic or biomolecular functional groups. This sensitive nature of functionalized GNPs can be potentially exploited in the design of threat agent detection devices with smart sensing capabilities. In the presence of a target analyte (i.e., a chemical or biological threat agent) a change proportional to concentration of the analyte is observed, which can be measured either by colorimetric, fluorimetric, electrochemical or spectroscopic means. This article provides a review of how functionally modified gold colloids are applied in the detection of a broad range of threat agents, including radioactive substances, explosive compounds, chemical warfare agents, biotoxins, and biothreat pathogens through any of the four sensory means mentioned previously. PMID:22244163

  16. Operationalising UN security council resolution 1540: an overview of select practical activities in the chemical and biological weapon-related areas

    International Nuclear Information System (INIS)

    The UN member states are continuing to take measures to inter alia establish and effectively implement controls to prevent the proliferation of nuclear, biological and chemical weapons and their means of delivery in accordance with United Nations Security Council Resolution 1540 (2004). The resolution also encourages enhanced international cooperation on such efforts, including by working through the 1540 Committee. Most analyses on the implementation of the resolution have focused on nuclear issues. This presentation provides an overview of select practical activities in the chemical and biological weapon-related areas, including chemical product classification and identification, biosafety and biosecurity practices and criminal prosecutions for unauthorised chemical transfers.(author)

  17. Measurement of 100 B. anthracis Ames spores within 15 minutes by SERS at the US Army Edgewood Chemical Biological Ctr.

    Science.gov (United States)

    Farquharson, Stuart; Shende, Chetan; Smith, Wayne; Huang, Hermes; Sperry, Jay; Sickler, Todd; Prugh, Amber; Guicheteau, Jason

    2014-05-01

    Since the distribution of Bacillus anthracis-Ames spores through the US Postal System, there has been a persistent fear that biological warfare agents will be used by terrorists against our military abroad and our civilians at home. While there has been substantial effort since the anthrax attack of 2001 to develop analyzers to detect this and other biological warfare agents, the analyzers remain either too slow, lack sensitivity, produce high false-positive rates, or cannot be fielded. In an effort to overcome these limitations we have been developing a surface-enhanced Raman spectroscopy system. Here we describe the use of silver nanoparticles functionalized with a short peptide to selectively capture Bacillus anthracis spores and produce SER scattering. Specifically, measurements of 100 B. anthracis-Ames spores/mL in ~25 minutes performed at the US Army's Edgewood Chemical Biological Center are presented. The measurements provide a basis for the development of systems that can detect spores collected from the air or water supplies with the potential of saving lives during a biological warfare attack.

  18. Field application of the Numobag as a portable disposable isolation unit and for treating chemical, radiological or biologically induced wounds.

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Keith A.; Felton, Robert; Vaughan, Courtenay Thomas

    2005-04-01

    Numotech Inc. has developed the Numobag{trademark}, a disposable, lightweight, wound healing device which produces Topical Hyperbaric Oxygen Therapy (THOT). The Numobag{trademark} is cost effective and has been clinically validated to heal large skin lesions rapidly and has proven to arrest wound advancement from several insidious forms of biological attack including dermal anthrax, small pox, necrotizing fasciitis etc. The Numobag{trademark} can treat mass casualties wounded by chemical/radiological burns or damaging biological exposures. The Numobag{trademark} can be a frontline tool as an isolation unit, reducing cross-contamination and infection of medical personnel. The heightened oxygen content kills organisms on the skin and in the wound, avoids expensive hospital trash disposal procedures, and helps the flesh heal. The Numobag{trademark} requires high purity oxygen. Numotech Inc. is teaming with Sandia National Laboratories and Spektr Conversion in Russia to develop a cost effective, portable, low power oxygen generator.

  19. The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata (Syzigium aromaticum L. Myrtaceae): a short review.

    Science.gov (United States)

    Chaieb, Kamel; Hajlaoui, Hafedh; Zmantar, Tarek; Kahla-Nakbi, Amel Ben; Rouabhia, Mahmoud; Mahdouani, Kacem; Bakhrouf, Amina

    2007-06-01

    The essential oil extracted from the dried flower buds of clove, Eugenia caryophyllata L. Merr. & Perry (Myrtaceae), is used as a topical application to relieve pain and to promote healing and also finds use in the fragrance and flavouring industries. The main constituents of the essential oil are phenylpropanoids such as carvacrol, thymol, eugenol and cinnamaldehyde. The biological activity of Eugenia caryophyllata has been investigated on several microorganisms and parasites, including pathogenic bacteria, Herpes simplex and hepatitis C viruses. In addition to its antimicrobial, antioxidant, antifungal and antiviral activity, clove essential oil possesses antiinflammatory, cytotoxic, insect repellent and anaesthetic properties. This short review addresses the chemical composition and biological effects of clove essential oil, and includes new results from GC/MS analysis and a study of its antimicrobial activity against a large number of multi-resistant Staphylococcus epidermidis isolated from dialysis biomaterials. PMID:17380552

  20. Structure of physics and the chemical or biological action of ionizing radiations - rarely employed ideas

    International Nuclear Information System (INIS)

    The fact is pointed out that phenomena in radiochemistry and micro-scale radiobiology are non-linear similarly to phenomena in modern theoretical physics. A comparison is made of the conceptual development of theoretical physics and of theoretical radiation biology. The use of Bose-Einstein's exciton condensation is suggested for expressing the non-linearity of radiochemical and radiobiological processes. (Ha)

  1. Periodic Table Target: A Game that Introduces the Biological Significance of Chemical Element Periodicity

    Science.gov (United States)

    Sevcik, Richard S.; McGinty, Ragan L.; Schultz, Linda D.; Alexander, Susan V.

    2008-01-01

    Periodic Table Target, a game for middle school or high school students, familiarizes students with the form of the periodic table and the biological significance of different elements. The Periodic Table Target game board is constructed as a class project, and the game is played to reinforce the content. Students are assigned several elements…

  2. 40 CFR 230.61 - Chemical, biological, and physical evaluation and testing.

    Science.gov (United States)

    2010-07-01

    ... for adverse environmental impact at the proposed disposal site, a comparison of the biological... evaluation and testing. 230.61 Section 230.61 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... environmental effects. If the General Evaluation indicates the presence of a sufficiently large number...

  3. Using ANN to predict E. coli accumulation in coves based on interaction amongst various physical, chemical and biological factors

    Science.gov (United States)

    Dwivedi, D.; Mohanty, B. P.; Lesikar, B. J.

    2008-12-01

    The accumulation of Escherichia Coli (E. coli) in canals, coves and streams is the result of a number of interacting processes operating at multiple spatial and temporal scales. Fate and transport of E. coli in surface water systems is governed by different physical, chemical, and biological processes. Various models developed to quantify each of these processes occurring at different scales are not so far pooled into a single predictive model. At present, very little is known about the fate and transport of E. coli in the environment. We hypothesize that E. coli population heterogeneity in canals and coves is affected by physical factors (average stream width and/ depth, secchi depth, flow and flow severity, day since precipitation, aquatic vegetation, solar radiation, dissolved and total suspended solids etc.); chemical factors (basic water quality, nutrients, organic compounds, pH, and toxicity etc.); and biological factors (type of bacterial strain, predation, and antagonism etc.). The specific objectives of this study are to: (1) examine the interactions between E. coli and various coupled physical, chemical and biological factors; (2) examine the interactions between E. coli and toxic organic pollutants and other pathogens (viruses); and (3) evaluate qualitatively the removal efficiency of E. coli. We suggest that artificial neural networks (ANN) may be used to provide a possible solution to this problem. To demonstrate the application of the approach, we develop an ANN representing E. coli accumulation in two polluted sites at Lake Granbury in the upper part of the Brazos River in North Central Texas. The graphical structure of ANN explicitly represents cause- and-effect relationship between system variables. Each of these relationships can then be quantified independently using an approach suitable for the type and scale of information available. Preliminary results revealed that E. coli concentrations in canals show seasonal variations regardless of change

  4. Physical, chemical and biological data, Climax I Expedition, PIQUERO Expedition, and NEMO Expedition from 19 September 1968 to 20 February 1972 (NODC Accession 7500716)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, chemical, and biological data were collected using CTD and XBT casts in the North/South Pacific Ocean from 19 September 1968 to 20 February 1972. Data...

  5. Catalogue of methods of calculation, interpolation, smoothing, and reduction for the physical, chemical, and biological parameters of deep hydrology (CATMETH) (NODC Accession 7700442)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The document presents the methods, formulas and citations used by the BNDO to process physical, chemical, and biological data for deep hydrology including...

  6. AGRICOH: A Consortium of Agricultural Cohorts

    Directory of Open Access Journals (Sweden)

    Shelia H. Zahm

    2011-04-01

    Full Text Available AGRICOH is a recently formed consortium of agricultural cohort studies involving 22 cohorts from nine countries in five continents: South Africa (1, Canada (3, Costa Rica (2, USA (6, Republic of Korea (1, New Zealand (2, Denmark (1, France (3 and Norway (3. The aim of AGRICOH, initiated by the US National Cancer Institute (NCI and coordinated by the International Agency for Research on Cancer (IARC, is to promote and sustain collaboration and pooling of data to investigate the association between a wide range of agricultural exposures and a wide range of health outcomes, with a particular focus on associations that cannot easily be addressed in individual studies because of rare exposures (e.g., use of infrequently applied chemicals or relatively rare outcomes (e.g., certain types of cancer, neurologic and auto-immune diseases. To facilitate future projects the need for data harmonization of selected variables is required and is underway. Altogether, AGRICOH provides excellent opportunities for studying cancer, respiratory, neurologic, and auto-immune diseases as well as reproductive and allergic disorders, injuries and overall mortality in association with a wide array of exposures, prominent among these the application of pesticides.

  7. Effects of antecedent land cover on physical, chemical, and biological responses to urbanization in streams across the conterminous United States

    Science.gov (United States)

    Cuffney, T. F.; Qian, S.

    2012-12-01

    The effects of urbanization on physical, chemical, and biological characteristics of streams were assessed across gradients of urbanization in 9 metropolitan areas of the conterminous US (Boston, MA; Raleigh; NC, Birmingham, AL; Atlanta, GA; Milwaukee-Green Bay, WI; Denver, CO; Dallas-Fort Worth, TX; Salt Lake City, UT; and Portland, OR) as a part of the U.S. Geological Survey's National Water Quality Assessment Program. Gradients of urbanization were established on the basis of a multimetric index of urban intensity that combined land cover, population, and road density. Simple regression models established that the condition of biological communities (e.g., invertebrate responses) showed statistically significant degradation as urbanization increased in six (Boston, Raleigh, Birmingham, Atlanta, Salt Lake, and Portland) of the nine metropolitan areas. Multiple regression models incorporating basin-scale land cover (e.g., forest, agricultural land) and environmental variables (e.g., water temperature, chemistry, hydrology) did not substantially improve the explanatory power of the regressions and could not explain differences in responses among metropolitan areas. Multilevel hierarchical models incorporating basin- and regional-scale predictors demonstrated that regional-scale climate (air temperature and precipitation) and antecedent land cover (i.e., land cover being converted to urban) predicted invertebrate responses to urbanization. The lack of identifiable urban responses for Milwaukee-Green Bay, Denver, and Dallas-Fort Worth were associated with high levels of antecedent agriculture (row crops and grazing) that degraded the biological communities and obscured the effects of urbanization. Urbanization was associated with increases in conductivity, nutrients, pesticides, and hydrologic variability. Levels of these variables at background sites were higher in regions with high antecedent agriculture; consequently, the effects of urbanization appeared to be

  8. The Surface Coat of Plant-Parasitic Nematodes: Chemical Composition, Origin, and Biological Role—A Review

    OpenAIRE

    Spiegel, Y.; McClure, M. A.

    1995-01-01

    Chemical composition, origin, and biological role of the surface coat (SC) of plant-parasitic nematodes are described and compared with those of animal-parasitic and free-living nematodes. The SC of the plant-parasitic nematodes is 5-30 nm thick and is characterized by a net negative charge. It consists, at least in part, of glycoproteins and proteins with various molecular weights, depending upon the nematode species. The lability of its components and the binding of human red blood cells to...

  9. Speciation of trace elements in biological samples by nuclear analytical and related techniques coupled with chemical and biochemical separation

    International Nuclear Information System (INIS)

    In the past, most analytical problems relating to biological systems were addressed by measuring the total concentrations of elements. Now there is increasing interest of the importance of their chemical forms, in which an element is present in biological systems, e.g., the oxidation state, the binding state with macromolecules, or even the molecular structure. The biological effects of chromium, which is classified as an essential nutrient, are dependent upon its oxidation. state. In general, trivalent chromium is biochemically active, whereas hexavalent chromium is considered to be toxic. Mercury is one of serious environmental persistent pollutants. However, organic forms of mercury are known to possess much higher toxicity than inorganic mercury. Therefore, information on speciation is critically required in order to better understanding of their bioavailability, metabolism, transformation, and toxicity in vivo. Recently, chemical speciation of selenium, mercury, copper, zinc, iron, and so on, has been investigated by INAA, ICP-MS, XRF, EXAFS and related techniques combined with chemical and biochemical separation (extraction, chromatography, gel electrophoresis, etc.). INAA, XRF, and ICP-MS have superior advantages in aspect of multielemental analysis with high accuracy and sensitivity, which render the possibility of analyzing various elements of interest simultaneously. These offline or online techniques have been flexibly applied to different biological matrixes, such as human hair, serum, urine, various tissues and organs in our researches. In addition, EXAFS provides structural information about the moiety of metal centers up to a distance of approximately 4-5 Anstrom. For instance, hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Imbalance of elements, such as Se, Zn, Fe, Cu, Cd, Ca, etc., has been found in the whole blood or serum of patients with HCC. We found that the profiles of Se, Cd, Fe, Zn and Cu-containing proteins

  10. Chemicals identified in human biological media: a data base. Third annual report, October 1981

    Energy Technology Data Exchange (ETDEWEB)

    Cone, M.V.; Baldauf, M.F.; Martin, F.M. (comps.)

    1981-12-01

    Data from almost 1600 of the 3800 body-burden documents collected to date have been entered in the data base as of October 1981. The emphasis on including recent literature and significant research documents has resulted in a chronological mix of articles from 1974 to the present. When body-burden articles are identified, data are extracted and entered in the data base by chemical and tissue/body fluid. Each data entry comprises a single record (or line entry) and is assigned a record number. If a particular document deals with more than one chemical and/or tissue, there will be multiple records for that document. For example, a study of 5 chemicals in each of 3 tissues has 15 different records (or 15 line entries) in the data base with 15 record numbers. Record numbers are assigned consecutively throughout the entire data base and appear in the upper left corner of the first column for each record.

  11. Long-range standoff detection of chemical, biological, and explosive hazards on surfaces

    Science.gov (United States)

    Fountain, Augustus Way, III; Guicheteau, Jason A.; Pearman, William F.; Chyba, Thomas H.; Christesen, Steven D.

    2010-04-01

    Fielded surface detection systems rely on contact with either the liquid contamination itself or the associated chemical vapor above the contaminated surface and do not provide a standoff or remote detection capability. Conversely, standoff chemical vapor sensing techniques have not shown efficacy in detecting those contaminants as liquids or solids on surfaces. There are a number of optical or spectroscopic techniques that could be applied to this problem of standoff chemical detection on surfaces. The three techniques that have received the most interest and development are laser induced breakdown spectroscopy (LIBS), fluorescence, and Raman spectroscopy. Details will be presented on the development of these techniques and their applicability to detecting CBRNE contamination on surfaces.

  12. Biological availability of lead in a paint aerosol. 1. Physical and chemical characterization of a lead paint aerosol.

    Science.gov (United States)

    Kalman, D; Schumacher, R; Covert, D; Eaton, D L

    1984-09-01

    This study was conducted to determine the physical and chemical characteristics of an aerosol of lead-based paint, generated in an industrial spray operation, that might influence the biological availability of lead present in inhaled aerosols. Paint aerosols were collected, and mass-size distribution was determined using a portable cascade impactor under actual occupational conditions. Approx. 2% of the particulate mass collected was in the respirable range (less than 10 micron mean aerodynamic diameter), although the maximum airborne concentration of lead was found to be 2-3 mg/m3. The lead concentration in a dried aerosol was very resistant to chemical digestion. Analysis by X-ray diffraction, atomic absorption spectroscopy and inductively coupled plasma emission spectroscopy showed approx. 11% lead by dry weight, although the wet weight concentration of lead reported by the manufacturer was 12.8%. PMID:6485003

  13. Chemical Composition and Biological Activity of Essential Oils of Origanum vulgare L. subsp. vulgare L. under Different Growth Conditions

    Directory of Open Access Journals (Sweden)

    Enrica De Falco

    2013-12-01

    Full Text Available This research was aimed at investigating the essential oil production, chemical composition and biological activity of a crop of pink flowered oregano (Origanum vulgare L. subsp. vulgare L. under different spatial distribution of the plants (single and binate rows. This plant factor was shown to affect its growth, soil covering, fresh biomass, essential oil amount and composition. In particular, the essential oil percentage was higher for the binate row treatment at the full bloom. The chemical composition of the oils obtained by hydrodistillation was fully characterized by GC and GC-MS. The oil from plants grown in single rows was rich in sabinene, while plants grown in double rows were richer in ocimenes. The essential oils showed antimicrobial action, mainly against Gram-positive pathogens and particularly Bacillus cereus and B. subtilis.

  14. Biological and Chemical Control of Fruit Rot in Greenhouse Sweet Peppers (Capsicum annum L.) Caused by Fusarium subglutinans

    OpenAIRE

    R.S. Utkhede; Mathur, S.

    2005-01-01

    Experiments were conducted for two years to evaluate biologicals and chemicals for control of internal fruit rot of peppers caused by Fusarium subglutinans under greenhouse conditions. Fusarium subglutinans inoculum was pipetted on flowers of sweet peppers cv. Sympathy one day after applications of chemical and biological treatments. Pepper fruits were assessed for disease incidence and fruit weight sixty days after inoculation of flowers. Pepper fruits in PreStop�, Rovral� , BASF-516 and Qu...

  15. PRELIMINARY STUDY ON ENHANCED PROPERTIES AND BIOLOGICAL RESISTANCE OF CHEMICALLY MODIFIED ACACIA SPP.

    Directory of Open Access Journals (Sweden)

    H. P. S. Abdul Khalil

    2010-11-01

    Full Text Available A preliminary experimental study was carried out to examine the ability of a chemically modified Acacia spp. to resist biodegradation. The modifications of Acacia mangium and Acacia hybrid were carried out by propionic anhydride and succinic anhydride in the presence of sodium formate as a catalyst. The treated samples were found resistant to microbial attack, while the untreated ones were damaged on 12 months exposure to a soil burial. The appearance grading, mass loss, mechanical properties, and scanning electron microscopy results revealed that chemical modification enhances the resistance of Acacia mangium and Acacia hybrid wood species to biodegradation.

  16. Welcome to Processes—A New Open Access Journal on Chemical and Biological Process Technology

    Directory of Open Access Journals (Sweden)

    Michael A. Henson

    2012-11-01

    Full Text Available As the result of remarkable technological progress, this past decade has witnessed considerable advances in our ability to manipulate natural and engineered systems, particularly at the molecular level. These advancements offer the potential to revolutionize our world through the development of novel soft and hard materials and the construction of new cellular platforms for chemical and pharmaceutical synthesis. For these technologies to truly impact society, the development of process technology that will enable effective large-scale production is essential. Improved processes are also needed for more established technologies in chemical and biochemical manufacturing, as these industries face ever increasing competitive pressure that mandates continuous improvement. [...

  17. Extension of in vivo half-life of biologically active peptides via chemical conjugation to XTEN protein polymer.

    Science.gov (United States)

    Podust, Vladimir N; Sim, Bee-Cheng; Kothari, Dharti; Henthorn, Lana; Gu, Chen; Wang, Chia-wei; McLaughlin, Bryant; Schellenberger, Volker

    2013-11-01

    XTEN, unstructured biodegradable proteins, have been used to extend the in vivo half-life of genetically fused therapeutic proteins and peptides. To expand the applications of XTEN technology to half-life extension of other classes of molecules, XTEN protein polymers and methods for chemical XTENylation were developed. Two XTEN precursors were engineered to contain enzymatically removable purification tags. The proteins were readily expressed in bacteria and purified to homogeneity by chromatography techniques. As proof-of-principle, GLP2-2G peptide was chemically conjugated to each of the two XTEN protein polymers using maleimide-thiol chemistry. The monodisperse nature of XTEN protein polymer enabled reaction monitoring as well as the detection of peptide modifications in the conjugated state using reverse phase-high performance liquid chromatography (RP-HPLC) and electrospray ionization mass spectrometry. The resulting GLP2-2G-XTEN conjugates were purified by preparative RP-HPLC to homogeneity. In comparison with recombinantly fused GLP2-2G-XTEN, chemically conjugated GLP2-2G-XTEN molecules exhibited comparable in vitro activity, in vitro plasma stability and pharmacokinetics in rats. These data suggest that chemical XTENylation could effectively extend the half-life of a wide spectrum of biologically active molecules, therefore broadening its applicability. PMID:24133142

  18. Potential for the integration of biological and chemical control of sheath blight disease caused by Rhizoctonia solani on rice.

    Science.gov (United States)

    Boukaew, Sawai; Klinmanee, Chanasirin; Prasertsan, Poonsuk

    2013-10-01

    Biological control using antagonistic microbes to minimize the use of chemical pesticides has recently become more prevalent. In an attempt to find an integrated control system for sheath blight, caused by Rhizoctonia solani in rice, Streptomyces philanthi RM-1-138, commercial formulations of Bacillus subtilis as Larminar® and B. subtilis strain NSRS 89-24+MK-007 as Biobest® and chemical fungicides including carbendazim®, validamycin®, propiconazole® and mancozeb® were applied alone and in combination with S. philanthi RM-1-138. In vitro experiments showed that all treatments tested did provide some control against mycelial growth and sclerotia production by R. solani PTRRS-9. In addition, the four chemical fungicides had no detrimental effects on S. philanthi RM-1-138 even at high concentrations (up to 100 μg/ml). The efficacy of S. philanthi RM-1-138, the commercial formulations of B. subtilis, chemical fungicides alone or in combination with S. philanthi RM-1-138 was also tested in a greenhouse experiment against sheath blight disease on rice plants. All treatments showed some protection of rice for sheath blight by 47-60 % when carbendazim® was applied alone and up to 74 % when combined with S. philanthi RM-1-138. PMID:23653261

  19. Effects of mussel shell addition on the chemical and biological properties of a Cambisol.

    Science.gov (United States)

    Paz-Ferreiro, J; Baez-Bernal, D; Castro Insúa, J; García Pomar, M I

    2012-03-01

    The use of a by-product of the fisheries industry (mussel shell) combined with cattle slurry was evaluated as soil amendment, with special attention to the biological component of soil. A wide number of properties related to soil quality were measured: microbial biomass, soil respiration, net N mineralization, dissolved organic carbon, dissolved organic nitrogen, dissolved inorganic nitrogen, dehydrogenase, β-glucosidase, urease and phosphomonoesterase activities. The amendments showed an enhancement of soil biological activity and a decrease of aluminium held in the cation exchange complex. No adverse effects were observed on soil properties. Given that mussel shells are produced in coastal areas as a by-product and have to be managed as a waste and the fertility constraints in the local soils due to their low pH, our research suggest that there is an opportunity for disposing a residue into the soil and improving soil fertility. PMID:22209299

  20. Broomrape (Orobanche cernua) control before attachment to host through chemically or biologically manipulating seed germination.

    NARCIS (Netherlands)

    Dhanapal, G.N.; Struik, P.C.

    1996-01-01

    Seven series of laboratory and glasshouse experiments were conducted to investigate different methods of testing and studying the effect of several chemicals, root exudates of germinating crop seeds, and their interactions on Orobanche cernua. Compared to experiments in an incubator, better results

  1. ChemProt-3.0: a global chemical biology diseases mapping

    DEFF Research Database (Denmark)

    Kringelum, Jens Vindahl; Kjærulff, Sonny Kim; Brunak, Søren;

    2016-01-01

    ChemProt is a publicly available compilation of chemical-protein-disease annotation resources that enables the study of systems pharmacology for a small molecule across multiple layers of complexity from molecular to clinical levels. In this third version, ChemProt has been updated to more than 1...

  2. Introducing Chemical Biology Applications to Introductory Organic Chemistry Students Using Series of Weekly Assignments

    Science.gov (United States)

    Kanin, Maralee R.; Pontrello, Jason K.

    2016-01-01

    Calls to bring interdisciplinary content and examples into introductory science courses have increased, yet strategies that involve course restructuring often suffer from the need for a significant faculty commitment to motivate change. Minimizing the need for dramatic course reorganization, the structure, reactivity, and chemical biology…

  3. Base-modified nucleotides and DNA for applications in diagnostics and chemical biology

    Czech Academy of Sciences Publication Activity Database

    Hocek, Michal

    Praha: Czech Chemical Society, 2015. s. 31. [Liblice 2015. Advances in Organic , Bioorganic and Pharmaceutical Chemistry /50./. 06.11.2015-08.11.2015, Olomouc] R&D Projects: GA ČR GBP206/12/G151; GA ČR GA14-04289S Institutional support: RVO:61388963 Keywords : base-modified nucleotides * DNA Subject RIV: CC - Organic Chemistry

  4. Characterization of chemical, biological and antiproliferative properties of fermented black carrot juice, shalgam

    Science.gov (United States)

    Shalgam juice is a dark red-colored and sour fermented beverage produced and consumed in Turkey. The main ingredient of shalgam juice is black carrot, which is rich in anthocyanins. In this study, commercially available shalgam juice was characterized by determining its chemical composition and anti...

  5. Chemical Variability and Biological Activities of Volatile Oils from Hyptis suaveolens (L. Poit.

    Directory of Open Access Journals (Sweden)

    Luiz Claudio Barbosa

    2013-03-01

    Full Text Available Hyptis suaveolens (L. Poit. belongs to the Lamiaceae family and is widely used in folk medicine in various countries. Th e essential oils from H. suaveolens have been extensively investigated and are mainly composed of monoterpenes and sesquiterpenes, although significant diterpene content has been reported in recent studies. The survey of the literature concerning H. suaveolens essential oils revealed a high level of chemical variability in terms of quantity and composition that is commonly observed for volatile oils from other plant species. However, few researchers have dealt with the reasons for such chemical variability. Our research group has been investigating the relationships between growing conditions of the plants and the H. suaveolens (L. Poit. essential oil composition. The results of these investigations have led to some advances in the characterization and knowledge of H. suaveolens chemotypes from Brazil. Nevertheless, since this species presents high level of genetic polymorphism and allows it to adapt to the alterations in environmental features resulting in interpopulational and intrapopulational variability in the volatile oil chemical compositions. Consequently, biochemical assays on the biosynthetic pathway are required in order to detect the molecular mechanisms involved in inducing differential terpenoid biosynthesis within H. suaveolens. These are some of the challenges which require resolution leading to an understanding of the complex secondary metabolism of this species, thereby making possible the volatile oil chemical standardization seeking productivity and phytotherapy.

  6. Biological and chemical treatment of Cedrela fissilis seeds for controlling Rhizoctonia sp.

    OpenAIRE

    Marília Lazarotto; Marlove Fátima Brião Muniz; Rafael Beltrame; Álvaro Figueredo dos Santos; Jucéli Müller; Maristela Machado Araújo

    2013-01-01

    This research evaluated the effect of a fungicide and a biological product, singly and combined, for the control of pathogens, especially Rhizoctonia sp., in seeds of Cedrela fissilis. Before the seeds treatment, the inoculation of Rhizoctonia sp., isolated from C. fissilis seeds in blotter-test and considered pathogenic for the specie, was done on half of the seeds used. After, the seeds were subjected to treatments with powder organic product based on Trichoderma spp. (singly), powder fungi...

  7. Chemical and Biological Properties of Quinochalcone C-Glycosides from the Florets of Carthamus tinctorius

    Directory of Open Access Journals (Sweden)

    Shijun Yue

    2013-12-01

    Full Text Available Quinochalcone C-glycosides are regarded as characteristic components that have only been isolated from the florets of Carthamus tinctorius. Recently, quinochalcone C-glycosides were found to have multiple pharmacological activities, which has attracted the attention of many researchers to explore these compounds. This review aims to summarize quinochalcone C-glycosides’ physicochemical properties, chromatographic behavior, spectroscopic characteristics, as well as their biological activities, which will be helpful for further study and development of quinochalcone C-glycosides.

  8. Emergence and Evolution of Order in Physical, Chemical, and Biological Systems

    Science.gov (United States)

    Swinney, Harry

    2008-10-01

    Do the Great Red Spot of Jupiter and the spirals in a frog egg have anything in common? The sizes are vastly different and the biology of even a simple frog egg is far more complicated than the physics of a fluid. Yet the patterns formed in such systems, differing widely in scale and in the underlying molecular mechanisms, can in many cases be understood from a common approach.

  9. Portuguese Thymbra and Thymus species volatiles: chemical composition and biological activities.

    Science.gov (United States)

    Figueiredo, A C; Barroso, J G; Pedro, L G; Salgueiro, L; Miguel, M G; Faleiro, M L

    2008-01-01

    Thymbra capitata and Thymus species are commonly known in Portugal as thyme and they are currently used as culinary herbs, as well as for ornamental, aromatizing and traditional medicinal purposes. The present work reports on the state of the art on the information available on the taxonomy, ethnobotany, cell and molecular biology of the Portuguese representatives of these genera and on the chemotaxonomy and antibacterial, antifungal and antioxidant activities of their essential oils and other volatile-containing extracts. PMID:19075695

  10. Chemical kinetic mechanistic models to investigate cancer biology and impact cancer medicine

    Science.gov (United States)

    Stites, Edward C.

    2013-04-01

    Traditional experimental biology has provided a mechanistic understanding of cancer in which the malignancy develops through the acquisition of mutations that disrupt cellular processes. Several drugs developed to target such mutations have now demonstrated clinical value. These advances are unequivocal testaments to the value of traditional cellular and molecular biology. However, several features of cancer may limit the pace of progress that can be made with established experimental approaches alone. The mutated genes (and resultant mutant proteins) function within large biochemical networks. Biochemical networks typically have a large number of component molecules and are characterized by a large number of quantitative properties. Responses to a stimulus or perturbation are typically nonlinear and can display qualitative changes that depend upon the specific values of variable system properties. Features such as these can complicate the interpretation of experimental data and the formulation of logical hypotheses that drive further research. Mathematical models based upon the molecular reactions that define these networks combined with computational studies have the potential to deal with these obstacles and to enable currently available information to be more completely utilized. Many of the pressing problems in cancer biology and cancer medicine may benefit from a mathematical treatment. As work in this area advances, one can envision a future where such models may meaningfully contribute to the clinical management of cancer patients.

  11. Building a local research consortium.

    Science.gov (United States)

    Martin, P A

    1994-05-01

    Although state, regional, and national networking often are critical to the nurse researchers, local support that is broader than what is found in any single agency may be the foundation needed by clinicians who want "more" research than that prescribed by their current role. More formal consortiums have successfully implemented a variety of research projects and are another possibility to explore (Beaman & Strader, 1990; Bolton, 1991; Chenitz et al., 1990; Keefe et al., 1988; Thiele, 1989). Another option is some state nurses' associations that have formal research assemblies (eg., Ohio Nurses Association, Assembly of Nurse Researchers). However, forming a local, less formal group with a few expert advisors may supply the energy and momentum necessary for both using and conducting research at a grassroots level. The expert advisors should be research-trained nurses (almost always with a PhD or DNS) who are active group members. Although Fitzpatrick encouraged collaborative research and writing early in the history of Applied Nursing Research (Fitzpatrick, 1989), in 1993 approximately two thirds of the articles in Applied Nursing Research still were single authored. Nurses are not using collaboration to its fullest extent. An informal group in one community has been one way to release the scholarship that was latent in many nurses. PMID:8031105

  12. Energy Effectiveness of Direct UV and UV/H2O2 Treatment of Estrogenic Chemicals in Biologically Treated Sewage

    Directory of Open Access Journals (Sweden)

    Kamilla M. S. Hansen

    2012-01-01

    Full Text Available Continuous exposure of aquatic life to estrogenic chemicals via wastewater treatment plant effluents has in recent years received considerable attention due to the high sensitivity of oviparous animals to disturbances of estrogen-controlled physiology. The removal efficiency by direct UV and the UV/H2O2 treatment was investigated in biologically treated sewage for most of the estrogenic compounds reported in wastewater. The investigated compounds included parabens, industrial phenols, sunscreen chemicals, and steroid estrogens. Treatment experiments were performed in a flow through setup. The effect of different concentrations of H2O2 and different UV doses was investigated for all compounds in an effluent from a biological wastewater treatment plant. Removal effectiveness increased with H2O2 concentration until 60 mg/L. The treatment effectiveness was reported as the electrical energy consumed per unit volume of water treated required for 90% removal of the investigated compound. It was found that the removal of all the compounds was dependent on the UV dose for both treatment methods. The required energy for 90% removal of the compounds was between 28 kWh/m3 (butylparaben and 1.2 kWh/m3 (estrone for the UV treatment. In comparison, the UV/H2O2 treatment required between 8.7 kWh/m3 for bisphenol A and benzophenone-7 and 1.8 kWh/m3 for ethinylestradiol.

  13. Final Programme and Abstracts. COST Action CM0603 Free Radicals in Chemical Biology (CHEMBIORADICAL) Joint Working Group

    International Nuclear Information System (INIS)

    The main objective of the Action is to promote a chemical biology approach for the investigation of free radical pathways. Chemical reactivity and molecular libraries are the start of a multidisciplinary research context 'from small molecules to large systems', culminating in the biological complexity. The Action aims at improving communication and exchange among neighbouring scientific fields, such as chemistry with several domains of life sciences, specifically addressing the real barrier consisting of specialist language and tools. Four working groups address the formation, reactivity and fate of free radicals involving bio-molecules, such as unsaturated lipids, aromatic-, cyclic- and sulphur-containing amino acid residues, sugar and base moieties of nucleic acids. Tasks concern the role of free radicals in normal cell metabolism and in damages, defining structural and functional modifications, in the framework of physiologically and pathologically related processes relevant to human quality of life and health. In the programme are involved 19 universities and research institutions from nearly all European countries. The research programme of the group has been carried and is still continued based on close bilateral collaboration with many foreign laboratories from Europe, USA (Notre Dame Radiation Laboratory) and Chile

  14. Reducing Mortality from Terrorist Releases of Chemical and Biological Agents: I. Filtration for Ventilation Systems in Commercial Building

    Energy Technology Data Exchange (ETDEWEB)

    Thatcher, Tracy L.; Daisey, Joan M.

    1999-09-01

    There is growing concern about potential terrorist attacks involving releases of chemical and/or biological (CB) agents, such as sarin or anthrax, in and around buildings. For an external release, the CB agent can enter the building through the air intakes of a building's mechanical ventilation system and by infiltration through the building envelope. For an interior release in a single room, the mechanical ventilation system, which often recirculates some fraction of the air within a building, may distribute the released CB agent throughout the building. For both cases, installing building systems that remove chemical and biological agents may be the most effective way to protect building occupants. Filtration systems installed in the heating, ventilating and air-conditioning (HVAC) systems of buildings can significantly reduce exposures of building occupants in the event of a release, whether the release is outdoors or indoors. Reduced exposures can reduce the number of deaths from a terrorist attack. The purpose of this report is to provide information and examples of the design of filtration systems to help building engineers retrofit HVAC systems. The report also provides background information on the physical nature of CB agents and brief overviews of the basic principles of particle and vapor filtration.

  15. Effect of storage on the chemical composition and biological activity of several popular South African medicinal plants.

    Science.gov (United States)

    Stafford, G I; Jäger, A K; van Staden, J

    2005-02-10

    The in vitro biological activity of nine frequently used medicinal plants in South Africa was assessed and re-assessed after various lengths of storage. The plants investigated were Alepidea amatymbica, Leonotis leonurus, Drimia robusta, Vernonia colorata, Merwilla natalensis, Eucomis autumnalis, Bowiea volubilis, Helichrysum cymosum and Siphonochilus aethiopicus. Water, ethanol and hexane extracts of fresh, 90-day-old and 1-year-old material were assayed for antibacterial activity against four strains of bacteria and for COX-1 inhibition activity. TLC-fingerprints of the fresh and stored extracts were produce to document chemical changes. Alepidea amatymbica, Eucomis autumnalis, Helichrysum cymosum, Leonotis leonurus, Siphonochilus aethiopicus and Vernonia colorata were investigated further as to the effect of 1 year's storage. Elevated temperature and humidity (55 degrees C and 100% relative humidity) were used to accelerate the ageing process of Alepidea amatymbica, Leonotis leonurus and Vernonia colorata plant material for further investigation. The TLC-fingerprints indicated that there was chemical breakdown during storage in certain species. The degree of changes in biological activity and chemistry due to storage were species-specific. In general, antibacterial activity was retained in most species while COX-1 inhibition activity was lost rapidly. PMID:15652284

  16. A Systems Biology Approach for Identifying Hepatotoxicant Groups Based on Similarity in Mechanisms of Action and Chemical Structure.

    Science.gov (United States)

    Hebels, Dennie G A J; Rasche, Axel; Herwig, Ralf; van Westen, Gerard J P; Jennen, Danyel G J; Kleinjans, Jos C S

    2016-01-01

    When evaluating compound similarity, addressing multiple sources of information to reach conclusions about common pharmaceutical and/or toxicological mechanisms of action is a crucial strategy. In this chapter, we describe a systems biology approach that incorporates analyses of hepatotoxicant data for 33 compounds from three different sources: a chemical structure similarity analysis based on the 3D Tanimoto coefficient, a chemical structure-based protein target prediction analysis, and a cross-study/cross-platform meta-analysis of in vitro and in vivo human and rat transcriptomics data derived from public resources (i.e., the diXa data warehouse). Hierarchical clustering of the outcome scores of the separate analyses did not result in a satisfactory grouping of compounds considering their known toxic mechanism as described in literature. However, a combined analysis of multiple data types may hypothetically compensate for missing or unreliable information in any of the single data types. We therefore performed an integrated clustering analysis of all three data sets using the R-based tool iClusterPlus. This indeed improved the grouping results. The compound clusters that were formed by means of iClusterPlus represent groups that show similar gene expression while simultaneously integrating a similarity in structure and protein targets, which corresponds much better with the known mechanism of action of these toxicants. Using an integrative systems biology approach may thus overcome the limitations of the separate analyses when grouping liver toxicants sharing a similar mechanism of toxicity. PMID:27311473

  17. Oil Production by a Consortium of Oleaginous Microorganisms grown on primary effluent wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Jacqueline; Hetrick, Mary; French, Todd; Hernandez, Rafael; Donaldson, Janet; Mondala, Andro; Holmes, William

    2011-01-01

    Municipal wastewater could be a potential growth medium that has not been considered for cultivating oleaginous microorganisms. This study is designed to determine if a consortium of oleaginous microorganism can successfully compete for carbon and other nutrients with the indigenous microorganisms contained in primary effluent wastewater. RESULTS: The oleaginous consortium inoculated with indigenous microorganisms reached stationary phase within 24 h, reaching a maximum cell concentration of 0.58 g L -1. Water quality post-oleaginous consortium growth reached a maximum chemical oxygen demand (COD) reduction of approximately 81%, supporting the consumption of the glucose within 8 h. The oleaginous consortium increased the amount of oil produced per gram by 13% compared with indigenous microorganisms in raw wastewater. Quantitative polymerase chain reaction (qPCR) results show a substantial population increase in bacteria within the first 24 h when the consortium is inoculated into raw wastewater. This result, along with the fatty acid methyl esters (FAMEs) results, suggests that conditions tested were not sufficient for the oleaginous consortium to compete with the indigenous microorganisms.

  18. The LBNL/JSU/AGMUS Science Consortium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    This report discusses the 11 year of accomplishments of the science consortium of minority graduates from Jackson State University and Ana G. Mendez University at the Lawrence Berkeley National Laboratory.

  19. Broomrape (Orobanche cernua) control before attachment to host through chemically or biologically manipulating seed germination.

    OpenAIRE

    Dhanapal, G.N.; Struik, P. C.

    1996-01-01

    Seven series of laboratory and glasshouse experiments were conducted to investigate different methods of testing and studying the effect of several chemicals, root exudates of germinating crop seeds, and their interactions on Orobanche cernua. Compared to experiments in an incubator, better results were obtained when seed germination was tested in the presence of seedlings of host plants under glasshouse conditions. GR24 at 0.1 and 1.0 mg kg-1 was the most effective in stimulating the germina...

  20. The EVB as a quantitative tool for formulating simulations and analyzing biological and chemical reactions

    OpenAIRE

    Kamerlin, Shina C. L.; Warshel, Arieh

    2010-01-01

    Recent years have seen dramatic improvements in computer power, allowing ever more challenging problems to be approached. In light of this, it is imperative to have a quantitative model for examining chemical reactivity, both in the condensed phase and in solution, as well as to accurately quantify physical organic chemistry (particularly as experimental approaches can often be inconclusive). Similarly, computational approaches allow for great progress in studying enzyme catalysis, as they al...