WorldWideScience

Sample records for chemical bath deposition

  1. CdS films deposited by chemical bath under rotation

    Energy Technology Data Exchange (ETDEWEB)

    Oliva-Aviles, A.I., E-mail: aoliva@mda.cinvestav.mx [Centro de Investigacion y de Estudios Avanzados Unidad Merida, Departamento de Fisica Aplicada. A.P. 73-Cordemex, 97310 Merida, Yucatan (Mexico); Patino, R.; Oliva, A.I. [Centro de Investigacion y de Estudios Avanzados Unidad Merida, Departamento de Fisica Aplicada. A.P. 73-Cordemex, 97310 Merida, Yucatan (Mexico)

    2010-08-01

    Cadmium sulfide (CdS) films were deposited on rotating substrates by the chemical bath technique. The effects of the rotation speed on the morphological, optical, and structural properties of the films were discussed. A rotating substrate-holder was fabricated such that substrates can be taken out from the bath during the deposition. CdS films were deposited at different deposition times (10, 20, 30, 40 and 50 min) onto Corning glass substrates at different rotation velocities (150, 300, 450, and 600 rpm) during chemical deposition. The chemical bath was composed by CdCl{sub 2}, KOH, NH{sub 4}NO{sub 3} and CS(NH{sub 2}){sub 2} as chemical reagents and heated at 75 deg. C. The results show no critical effects on the band gap energy and the surface roughness of the CdS films when the rotation speed changes. However, a linear increase on the deposition rate with the rotation energy was observed, meanwhile the stoichiometry was strongly affected by the rotation speed, resulting a better 1:1 Cd/S ratio as speed increases. Rotation effects may be of interest in industrial production of CdTe/CdS solar cells.

  2. Shallow bath chemical deposition of CdS thin film

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Y.S. [Department of Molecule Science and Engineering, National Taipei University of Science and Technology, Taipei, 10617, Taiwan (China); Choubey, R.K. [Department of Applied Physics, Birla Institute of Technology, Mesra, Ranchi, 835 215 (India); Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan (China); Yu, W.C. [Department of Molecule Science and Engineering, National Taipei University of Science and Technology, Taipei, 10617, Taiwan (China); Hsu, W.T. [Green Energy and Environmental Research Laboratory, Industrial Technology Research Institute, Hsin-Chu, Taiwan (China); Lan, C.W., E-mail: cwlan@ntu.edu.tw [Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan (China)

    2011-10-31

    Cadmium sulfide thin film was grown by shallow chemical bath deposition technique. This technique used a highly conducted hot plate to heat the substrate, while using a shallow bath for higher thermal gradients. As a result, large area uniformity could be achieved and the homogeneous nucleation was suppressed. More importantly, the solution used was greatly reduced, which is crucial for cost reduction in practice. The effects of temperature and shaking on the growth kinetics and film properties were investigated. The reaction activation energy was obtained to be 0.84 eV, and was not affected much by shaking indicating that the deposition is essentially reaction controlled. Furthermore, the films deposited at low or high temperature conditions had better photoconductivity.

  3. Chemical bath ZnSe thin films: deposition and characterisation

    Science.gov (United States)

    Lokhande, C. D.; Patil, P. S.; Ennaoui, A.; Tributsch, H.

    1998-01-01

    The zinc selenide (ZnSe) thin films have been deposited by a simple and inexpensive chemical bath deposition (CBD) method. The selenourea was used as a selenide ion source. The ZnSe films have been characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDAX), Rutherford back scattering (RBS), and optical absorption. The as-deposited ZnSe films on various substrates are found to be amorphous and contain O2 and N2 in addition to Zn and Se. The optical band gap of the film is estimated to be 2.9 eV. The films are photoactive as evidenced by time resolved microwave conductivity (TRMC).

  4. Cobalt Xanthate Thin Film with Chemical Bath Deposition

    Directory of Open Access Journals (Sweden)

    İ. A. Kariper

    2013-01-01

    Full Text Available Cobalt xanthate thin films (CXTFs were successfully deposited by chemical bath deposition, onto amorphous glass substrates, as well as on p- and n-silicon, indium tin oxide, and poly(methyl methacrylate. The structure of the films was analyzed by far-infrared spectrum (FIR, mid-infrared (MIR spectrum, nuclear magnetic resonance (NMR, and scanning electron microscopy (SEM. These films were investigated from their structural, optical, and electrical properties point of view. Electrical properties were measured using four-point method, whereas optical properties were investigated via UV-VIS spectroscopic technique. Uniform distribution of grains was clearly observed from the photographs taken by scanning electron microscope (SEM. The transmittance was about 70–80% (4 hours, 50°C. The optical band gap of the CXTF was graphically estimated to be 3.99–4.02 eV. The resistivity of the films was calculated as 22.47–75.91 Ω·cm on commercial glass depending on film thickness and 44.90–73.10 Ω ·cm on the other substrates. It has been observed that the relative resistivity changed with film thickness. The MIR and FIR spectra of the films were in agreement with the literature analogues. The expected peaks of cobalt xanthate were observed in NMR analysis on glass. The films were dipped in chloroform as organic solvent and were analyzed by NMR.

  5. Characterization of copper selenide thin films deposited by chemical bath deposition technique

    Science.gov (United States)

    Al-Mamun; Islam, A. B. M. O.

    2004-11-01

    A low-cost chemical bath deposition (CBD) technique has been used for the preparation of Cu2-xSe thin films onto glass substrates and deposited films were characterized by X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and UV-vis spectrophotometry. Good quality thin films of smooth surface of copper selenide thin films were deposited using sodium selenosulfate as a source of selenide ions. The structural and optical behaviour of the films are discussed in the light of the observed data.

  6. SnS thin films deposited by chemical bath deposition, dip coating and SILAR techniques

    Science.gov (United States)

    Chaki, Sunil H.; Chaudhary, Mahesh D.; Deshpande, M. P.

    2016-05-01

    The SnS thin films were synthesized by chemical bath deposition (CBD), dip coating and successive ionic layer adsorption and reaction (SILAR) techniques. In them, the CBD thin films were deposited at two temperatures: ambient and 70 °C. The energy dispersive analysis of X-rays (EDAX), X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and optical spectroscopy techniques were used to characterize the thin films. The electrical transport properties studies on the as-deposited thin films were done by measuring the I-V characteristics, DC electrical resistivity variation with temperature and the room temperature Hall effect. The obtained results are deliberated in this paper.

  7. Structural and Optical Properties of Chemical Bath Deposited Silver Oxide Thin Films: Role of Deposition Time

    Directory of Open Access Journals (Sweden)

    A. C. Nwanya

    2013-01-01

    Full Text Available Silver oxide thin films were deposited on glass substrates at a temperature of 50°C by chemical bath deposition technique under different deposition times using pure AgNO3 precursor and triethanolamine as the complexing agent. The chemical analysis based on EDX technique shows the presence of Ag and O at the appropriate energy levels. The morphological features obtained from SEM showed that the AgxO structures varied as the deposition time changes. The X-ray diffraction showed the peaks of Ag2O and AgO in the structure. The direct band gap and the refractive index increased as the deposition time increased and was in the range of 1.64–1.95 eV and 1.02–2.07, respectively. The values of the band gap and refractive index obtained indicate possible applications in photovoltaic and photothermal systems.

  8. Copper selenide thin films by chemical bath deposition

    Science.gov (United States)

    García, V. M.; Nair, P. K.; Nair, M. T. S.

    1999-05-01

    We report the structural, optical, and electrical properties of thin films (0.05 to 0.25 μm) of copper selenide obtained from chemical baths using sodium selenosulfate or N,N-dimethylselenourea as a source of selenide ions. X-ray diffraction (XRD) studies on the films obtained from baths using sodium selenosulfate suggest a cubic structure as in berzelianite, Cu 2- xSe with x=0.15. Annealing the films at 400°C in nitrogen leads to a partial conversion of the film to Cu 2Se. In the case of films obtained from the baths containing dimethylselenourea, the XRD patterns match that of klockmannite, CuSe. Annealing these films in nitrogen at 400°C results in loss of selenium, and consequently a composition rich in copper, similar to Cu 2- xSe, is reached. Optical absorption in the films result from free carrier absorption in the near infrared region with absorption coefficient of ˜10 5 cm -1. Band-to-band transitions which gives rise to the optical absorption in the visible-ultraviolet region may be interpreted in terms of direct allowed transitions with band gap in the 2.1-2.3 eV range and indirect allowed transitions with band gap 1.2-1.4 eV. All the films, as prepared and annealed, show p-type conductivity, in the range of (1-5)×10 3 Ω -1 cm -1. This results in high near infrared reflectance, of 30-80%.

  9. Antimony sulfide thin films prepared by laser assisted chemical bath deposition

    Science.gov (United States)

    Shaji, S.; Garcia, L. V.; Loredo, S. L.; Krishnan, B.; Aguilar Martinez, J. A.; Das Roy, T. K.; Avellaneda, D. A.

    2017-01-01

    Antimony sulfide (Sb2S3) thin films were prepared by laser assisted chemical bath deposition (LACBD) technique. These thin films were deposited on glass substrates from a chemical bath containing antimony chloride, acetone and sodium thiosulfate under various conditions of normal chemical bath deposition (CBD) as well as in-situ irradiation of the chemical bath using a continuous laser of 532 nm wavelength. Structure, composition, morphology, optical and electrical properties of the Sb2S3 thin films produced by normal CBD and LACBD were analyzed by X-Ray diffraction (XRD), Raman Spectroscopy, Atomic force microscopy (AFM), X-Ray photoelectron spectroscopy (XPS), UV-vis spectroscopy and Photoconductivity. The results showed that LACBD is an effective synthesis technique to obtain Sb2S3 thin films for optoelectronic applications.

  10. Chemical bath deposition and characterization of Cu2O-CuxS thin films

    OpenAIRE

    EYA, D. D. O.

    2010-01-01

    Cu2O-CuxS thin films have been deposited on glass substrate by chemical bath deposition technique. The films were obtained by depositing Copper Sulphide (CuxS) on Copper (I) Oxide (Cu2O) and then Cu2O on CuxS. The peak solar transmittance across the thin films were found to be

  11. PbS Thin Films for Photovoltaic Applications Obtained by Non-Traditional Chemical Bath Deposition

    OpenAIRE

    2015-01-01

    To optimize cost-efficiency relation for thin film solar cells, we explore the recently developed versions of chemical deposition of semiconductor films, together with classic CBD (Chemical Bath Deposition): SILAR (Successive Ionic Layer Adsorption and Reaction) and PCBD (Photo Chemical Bath Deposition), all of them ammonia-free and ecologically friendly. The films of CdS and PbS were made, and experimental solar cells with CdS window layer and PbS absorber elaborated. We found that band gap ...

  12. Chemical Bath Deposition of Nickel Sulphide (Ni4S3 Thin Films

    Directory of Open Access Journals (Sweden)

    Darren TEO

    2010-12-01

    Full Text Available Thin films of nickel sulphide were deposited from aqueous baths on indium tin oxide glass substrate. The chemical bath contained nickel sulphate, sodium thiosulfate and triethanolamine solutions. The aim of the present study was to analyze the different experimental conditions to prepare Ni4S3 thin films using chemical bath deposition technique. The structural, morphological and optical properties of nickel sulphide thin films were obtained by X-ray diffraction, atomic force microscopy and UV-Vis Spectrophotometer will be presented. The properties of the films varied with the variation in the deposition parameters. The films deposited at longer deposition time using lower concentration in more acidic medium showed improved crystallinity, good uniformity and better adhesion to the substrate. Films showed band gap of 0.35 eV and exhibited p-type semiconductor behaviour.

  13. Modification of optical and electrical properties of chemical bath deposited CdS using plasma treatments

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, G. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P 66450 (Mexico); Krishnan, B. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P 66450 (Mexico); CIIDIT, Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico); Avellaneda, D.; Castillo, G. Alan; Das Roy, T.K. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P 66450 (Mexico); Shaji, S., E-mail: sshajis@yahoo.com [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P 66450 (Mexico); CIIDIT, Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico)

    2011-08-31

    Cadmium sulphide (CdS) is a well known n-type semiconductor that is widely used in solar cells. Here we report preparation and characterization of chemical bath deposited CdS thin films and modification of their optical and electrical properties using plasma treatments. CdS thin films were prepared from a chemical bath containing Cadmium chloride, Triethanolamine and Thiourea under various deposition conditions. Good quality thin films were obtained during deposition times of 5, 10 and 15 min. CdS thin films prepared for 10 min. were treated using a glow discharge plasma having nitrogen and argon carrier gases. The changes in morphology, optical and electrical properties of these plasma treated CdS thin films were analyzed in detail. The results obtained show that plasma treatment is an effective technique in modification of the optical and electrical properties of chemical bath deposited CdS thin films.

  14. Effect of thermal annealing on the properties of cadmium sulfide deposited via chemical bath deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Faisal R., E-mail: ahmad@ge.com; Yakimov, Aharon; Davis, Robert J.; Her, Jae-Hyuk; Cournoyer, James R.; Ayensu, Nana Menya

    2013-05-01

    This study elucidates how post-deposition annealing in air of CdS thin films deposited via chemical bath deposition, influences the defects and impurities in the films, which in turn affect the electrical conductivity and optical transparency of the films. The electrical properties of the annealed CdS films were characterized using a van der Pauw Hall effect measurement method. Using low-temperature photoluminescence measurements, a variety of sub-bandgap energy levels were observed and identified that are believed to play a critical role in impacting the concentration of carriers in the films. In addition, we studied the optical transmission and crystalline quality of the films as a function of the different annealing conditions. - Highlights: ► Annealing CdS affects its bandgap, structure and electrical conductivity. ► Low temperature photoluminescence spectra show how annealing affects CdS. ► Carrier concentration affected sulfur vacancies and cadmium interstitials.

  15. Cadmium Sulfide Thin Films Deposited onto MWCNT/Polysulfone Substrates by Chemical Bath Deposition

    Directory of Open Access Journals (Sweden)

    M. Moreno

    2016-01-01

    Full Text Available Cadmium sulfide (CdS thin films were deposited by chemical bath deposition (CBD onto polymeric composites with electric field-aligned multiwall carbon nanotubes (MWCNTs. MWCNT/polysulfone composites were prepared by dispersing low concentrations of MWCNTs within dissolved polysulfone (PSF. An alternating current electric field was “in situ” applied to align the MWCNTs within the dissolved polymer along the field direction until the solvent was evaporated. 80 μm thick solid MWCNT/PSF composites with an electrical conductivity 13 orders of magnitude higher than the conductivity of the neat PSF were obtained. The MWCNT/PSF composites were subsequently used as flexible substrates for the deposition of CdS thin films by CBD. Transparent and adherent CdS thin films with an average thickness of 475 nm were obtained. The values of the energy band gap, average grain size, rms roughness, crystalline structure, and preferential orientation of the CdS films deposited onto the polymeric substrate were very similar to the corresponding values of the CdS deposited onto glass (conventional substrate. These results show that the MWCNT/PSF composites with electric field-tailored MWCNTs represent a suitable option to be used as flexible conducting substrate for CdS thin films, which represents an important step towards the developing of flexible systems for photovoltaic applications.

  16. PbS Thin Films for Photovoltaic Applications Obtained by Non-Traditional Chemical Bath Deposition

    Directory of Open Access Journals (Sweden)

    Pérez-García Claudia Elena

    2015-01-01

    Full Text Available To optimize cost-efficiency relation for thin film solar cells, we explore the recently developed versions of chemical deposition of semiconductor films, together with classic CBD (Chemical Bath Deposition: SILAR (Successive Ionic Layer Adsorption and Reaction and PCBD (Photo Chemical Bath Deposition, all of them ammonia-free and ecologically friendly. The films of CdS and PbS were made, and experimental solar cells with CdS window layer and PbS absorber elaborated. We found that band gap of PbS films can be monitored by deposition process due to porosity-induced quantum confinement which depends on the parameters of the process. We expect that the techniques employed can be successfully used for production of optoelectronic devices.

  17. Physical properties of chemical bath deposited CdS thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ximello-Quiebras, J.N.; Contreras-Puente, G.; Aguilar-Hernandez, J. [Escuela Superior de Fisica y Matematicas-Instituto Politecnico Nacional, Edificio 9, U.P.A.L.M. 07738 DF (Mexico); Santana-Rodriguez, G.; Arias-Carbajal Readigos, A. [Facultad de Fisica IMRE, Universidad de la Habana, 10400 La Habana (Cuba)

    2004-05-01

    Cadmium sulfide films of different thicknesses were deposited by chemical bath deposition (CBD) from a bath containing cadmium chloride, ammonium chloride, ammonium hydroxide and thiourea. The XRD patterns show that the films have a hexagonal phase with a preferential (002) orientation. The photoluminescence spectra show a defect structure, characteristics of the CdS films obtained by CBD. The electrical behavior in dark and under illumination, the optical properties and the band gap value reported in this work is in agreement with that reported in the literature.

  18. Morphology control of zinc oxide films via polysaccharide-mediated, low temperature, chemical bath deposition

    Directory of Open Access Journals (Sweden)

    Florian Waltz

    2015-03-01

    Full Text Available In this study we present a three-step process for the low-temperature chemical bath deposition of crystalline ZnO films on glass substrates. The process consists of a seeding step followed by two chemical bath deposition steps. In the second step (the first of the two bath deposition steps, a natural polysaccharide, namely hyaluronic acid, is used to manipulate the morphology of the films. Previous experiments revealed a strong influence of this polysaccharide on the formation of zinc oxide crystallites. The present work aims to transfer this gained knowledge to the formation of zinc oxide films. The influence of hyaluronic acid and the time of its addition on the morphology of the resulting ZnO film were investigated. By meticulous adjustment of the parameters in this step, the film morphology can be tailored to provide an optimal growth platform for the third step (a subsequent chemical bath deposition step. In this step, the film is covered by a dense layer of ZnO. This optimized procedure leads to ZnO films with a very high electrical conductivity, opening up interesting possibilities for applications of such films. The films were characterized by means of electron microscopy, X-ray diffraction and measurements of the electrical conductivity.

  19. Bath Parameter Dependence of Chemically-Deposited Copper Selenide Thin Film

    Science.gov (United States)

    Al-Mamun; Islam, A. B. M. O.

    In this article, a low cost chemical bath deposition (CBD) technique has been used for the preparation of Cu2-xSe thin films on to glass substrate. Different thin films (0.2-0.6 μm) were prepared by adjusting the bath parameter like concentration of ammonia, deposition time, temperature of the solution, and the ratios of the mixing composition between copper and selenium in the reaction bath. From these studies, it reveals that at low concentration of ammonia or TEA, the terminal thicknesses of the films are less, which gradually increases with the increase of concentrations and then drop down at still higher concentrations. It has been found that complexing the Cu2+ ions with TEA first, and then addition of ammonia yields better results than the reverse process. The film thickness increases with the decrease of value x of Cu2-xSe.

  20. CdS thin films prepared by laser assisted chemical bath deposition

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, L.V.; Mendivil, M.I.; Garcia Guillen, G.; Aguilar Martinez, J.A. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); Krishnan, B. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); CIIDIT – Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico); Avellaneda, D.; Castillo, G.A.; Das Roy, T.K. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); Shaji, S., E-mail: sshajis@yahoo.com [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); CIIDIT – Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico)

    2015-05-01

    Highlights: • CdS thin films by conventional CBD and laser assisted CBD. • Characterized these films using XRD, XPS, AFM, optical and electrical measurements. • Accelerated growth was observed in the laser assisted CBD process. • Improved dark conductivity and good photocurrent response for the LACBD CdS. - Abstract: In this work, we report the preparation and characterization of CdS thin films by laser assisted chemical bath deposition (LACBD). CdS thin films were prepared from a chemical bath containing cadmium chloride, triethanolamine, ammonium hydroxide and thiourea under various deposition conditions. The thin films were deposited by in situ irradiation of the bath using a continuous laser of wavelength 532 nm, varying the power density. The thin films obtained during deposition of 10, 20 and 30 min were analyzed. The changes in morphology, structure, composition, optical and electrical properties of the CdS thin films due to in situ irradiation of the bath were analyzed by atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV–vis spectroscopy. The thin films obtained by LACBD were nanocrystalline, photoconductive and presented interesting morphologies. The results showed that LACBD is an effective synthesis technique to obtain nanocrystalline CdS thin films having good optoelectronic properties.

  1. The structural properties of CdS deposited by chemical bath deposition and pulsed direct current magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Lisco, F., E-mail: F.Lisco@lboro.ac.uk [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire, LE11 3TU (United Kingdom); Kaminski, P.M.; Abbas, A.; Bass, K.; Bowers, J.W.; Claudio, G. [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire, LE11 3TU (United Kingdom); Losurdo, M. [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR, via Orabona 4, 70126 Bari (Italy); Walls, J.M. [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire, LE11 3TU (United Kingdom)

    2015-05-01

    Cadmium sulphide (CdS) thin films were deposited by two different processes, chemical bath deposition (CBD), and pulsed DC magnetron sputtering (PDCMS) on fluorine doped-tin oxide coated glass to assess the potential advantages of the pulsed DC magnetron sputtering process. The structural, optical and morphological properties of films obtained by CBD and PDCMS were investigated using X-ray photoelectron spectroscopy, X-ray diffraction, scanning and transmission electron microscopy, spectroscopic ellipsometry and UV-Vis spectrophotometry. The as-grown films were studied and comparisons were drawn between their morphology, uniformity, crystallinity, and the deposition rate of the process. The highest crystallinity is observed for sputtered CdS thin films. The absorption in the visible wavelength increased for PDCMS CdS thin films, due to the higher density of the films. The band gap measured for the as-grown CBD-CdS is 2.38 eV compared to 2.34 eV for PDCMS-CdS, confirming the higher density of the sputtered thin film. The higher deposition rate for PDCMS is a significant advantage of this technique which has potential use for high rate and low cost manufacturing. - Highlights: • Pulsed DC magnetron sputtering (PDCMS) of CdS films • Chemical bath deposition of CdS films • Comparison between CdS thin films deposited by chemical bath and PDCMS techniques • High deposition rate deposition for PDCMS deposition • Uniform, pinhole free CdS thin films.

  2. Atomic Force Microscopy Studies on The Surface Morphologies of Chemical Bath Deposited Cus Thin Films

    Directory of Open Access Journals (Sweden)

    Ho Soonmin

    2016-06-01

    Full Text Available In this work, copper sulphide thin films were deposited onto microscope glass slide by chemical bath deposition technique. The tartaric acid was served as complexing agent to chelate with Cu2+ to obtain complex solution. The influence of pH value on the surface morphologies of the films has been particularly investigated using the atomic force microscopy technique. The atomic force microscopy results indicate that the CuS films deposited at pH 1 were uniform, compact and pinhole free. However, the incomplete surface coverage observed for the films prepared at high pH (pH 2 and 2.5 values.

  3. Study of planar heterojunction perovskite photovoltaic cells using compact titanium oxide by chemical bath deposition

    Science.gov (United States)

    Yamamoto, Kouhei; Kuwabara, Takayuki; Takahashi, Kohshin; Taima, Tetsuya

    2015-08-01

    Spin-coated perovskite solar cells from sol-gels result in high processing costs because of the need for high temperatures. Here, we report a low-temperature spin-coating route to fabricate planar heterojunction perovskite solar cells using chemical bath deposition of compact-TiOx layers. Comparison of the solar cell properties of compact-TiOx and compact-TiO2 layers show that the power conversion efficiency of the planar heterojunction perovskite solar cell fabricated by the low-temperature, compact-TiOx route is comparable to that of conventional TiO2. The chemical bath deposition method requires heating to 150 °C only to form amorphous compact-TiOx films compared with the 450 °C required for crystalline anatase compact-TiO2 films.

  4. Comprehensive optical studies on SnS layers synthesized by chemical bath deposition

    Science.gov (United States)

    Gedi, Sreedevi; Minnam Reddy, Vasudeva Reddy; Park, Chinho; Chan-Wook, Jeon; Ramakrishna Reddy, K. T.

    2015-04-01

    A simple non-vacuum and cost effective wet chemical technique, chemical bath deposition was used to prepare tin sulphide (SnS) layers on glass substrates. The layers were formed by varying bath temperature in the range, 40-80 °C, keeping other deposition parameters as constant. An exhaustive investigation on their optical properties with bath temperature was made using the transmittance and reflectance measurements. The absorption coefficient was evaluated from the optical transmittance data utilizing Lambert's principle and is >104 cm-1 for all the as-prepared layers. The energy band gap of the layers was determined from the differential reflectance spectra that varied from 1.41 eV to 1.30 eV. Consequently, refractive index and extinction coefficient were obtained from Pankov relations and dispersion constants were calculated using Wemple-Didomenico method. In addition, other optical parameters such as the optical conductivity, dielectric constants, dissipation factor, high frequency dielectric constant and relaxation time were also calculated. Finally electrical parameters such as resistivity, carrier mobility and carrier density of as-prepared layers were estimated using optical data. A detailed analysis of the dependence of all above mentioned parameters on bath temperature is reported and discussed for a clean understanding of electronic characteristics of SnS layers.

  5. High-temperature conductivity in chemical bath deposited copper selenide thin films

    Science.gov (United States)

    Dhanam, M.; Manoj, P. K.; Prabhu, Rajeev. R.

    2005-07-01

    This paper reports high-temperature (305-523 K) electrical studies of chemical bath deposited copper (I) selenide (Cu 2-xSe) and copper (II) selenide (Cu 3Se 2) thin films. Cu 2-xSe and Cu 3Se 2 have been prepared on glass substrates from the same chemical bath at room temperature by controlling the pH. From X-ray diffraction (XRD) profiles, it has been found that Cu 2-xSe and Cu 3Se 2 have cubic and tetragonal structures, respectively. The composition of the chemical constituent in the films has been confirmed from XRD data and energy-dispersive X-ray analysis (EDAX). It has been found that both phases of copper selenide thin films have thermally activated conduction in the high-temperature range. In this paper we also report the variation of electrical parameters with film thickness and the applied voltage.

  6. Studies on chemical bath deposited zinc sulphide thin films with special optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Ladar, Maria [Faculty of Chemistry and Chemical Engineering, ' Babes-Bolyai' University, 400028 Cluj-Napoca (Romania); ' Raluca Ripan' Institute for Research in Chemistry, 30 Fantanele, 400294 Cluj-Napoca (Romania); Popovici, Elisabeth-Jeanne [' Raluca Ripan' Institute for Research in Chemistry, 30 Fantanele, 400294 Cluj-Napoca (Romania)]. E-mail: jennypopovici@yahoo.com; Baldea, Ioan [Faculty of Chemistry and Chemical Engineering, ' Babes-Bolyai' University, 400028 Cluj-Napoca (Romania); Grecu, Rodica [' Raluca Ripan' Institute for Research in Chemistry, 30 Fantanele, 400294 Cluj-Napoca (Romania); Indrea, Emil [National Institute for R and D of Isotopic and Molecular Technology, Donath 71-103, 400293 Cluj-Napoca (Romania)

    2007-05-31

    Adherent and uniform zinc sulphide thin films were deposited on optical glass platelets from chemical bath containing thiourea, zinc acetate, ammonia and sodium citrate. The samples, as they were prepared were investigated by UV-vis absorption/reflection spectroscopy, fluorescence spectroscopy and X-ray diffraction. The effects of growth conditions such as reagent concentration and deposition technique (mono- and multi-layer) on optical and structural properties of the ZnS thin films have been studied. The ability of ZnS films to exhibit luminescent properties has also been investigated.

  7. High quality antireflective ZnS thin films prepared by chemical bath deposition

    Energy Technology Data Exchange (ETDEWEB)

    Tec-Yam, S.; Rojas, J.; Rejon, V. [Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Merida, Departamento de Fisica Aplicada, Km. 6 Antigua Carretera a Progreso, AP 73-Cordemex, 97310 Merida Yucatan (Mexico); Oliva, A.I., E-mail: oliva@mda.cinvestav.mx [Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Merida, Departamento de Fisica Aplicada, Km. 6 Antigua Carretera a Progreso, AP 73-Cordemex, 97310 Merida Yucatan (Mexico)

    2012-10-15

    Zinc sulfide (ZnS) thin films for antireflective applications were deposited on glass substrates by chemical bath deposition (CBD). Chemical analysis of the soluble species permits to predict the optimal pH conditions to obtain high quality ZnS films. For the CBD, the ZnCl{sub 2}, NH{sub 4}NO{sub 3}, and CS(NH{sub 2}){sub 2} were fixed components, whereas the KOH concentration was varied from 0.8 to 1.4 M. Groups of samples with deposition times from 60 to 120 min were prepared in a bath with magnetic agitation and heated at 90 Degree-Sign C. ZnS films obtained from optimal KOH concentrations of 0.9 M and 1.0 M exhibited high transparency, homogeneity, adherence, and crystalline. The ZnS films presented a band gap energy of 3.84 eV, an atomic Zn:S stoichiometry ratio of 49:51, a transmittance above 85% in the 300-800 nm wavelength range, and a reflectance below 25% in the UV-Vis range. X-ray diffraction analysis revealed a cubic structure in the (111) orientation for the films. The thickness of the films was tuned between 60 nm and 135 nm by controlling the deposition time and KOH concentration. The incorporation of the CBD-ZnS films into ITO/ZnS/CdS/CdTe and glass/Mo/ZnS heterostructures as antireflective layer confirms their high optical quality. -- Highlights: Black-Right-Pointing-Pointer High quality ZnS thin films were prepared by chemical bath deposition (CBD). Black-Right-Pointing-Pointer Better CBD-ZnS films were achieved by using 0.9 M-KOH concentration. Black-Right-Pointing-Pointer Reduction in the reflectance was obtained for ZnS films used as buffer layers.

  8. Thin Films with Low Zn Content Prepared by Chemical Bath Deposition

    Directory of Open Access Journals (Sweden)

    Caijuan Tian

    2012-01-01

    Full Text Available Chemical bath deposition (CBD was used for the growth of thin films with low Zn content. The influence of preparation conditions, such as pH, temperature, and concentration, on film properties was investigated. The chemical growth mechanism of thin films was analyzed, and optimized growth conditions for the thin films were established. The fill factor and short-circuit current were improved while was used to replace CdS as the window layer in CdTe solar cells.

  9. Structural and Optical Study of Chemical Bath Deposited Nano-Structured CdS Thin Films

    Science.gov (United States)

    Kumar, Suresh; Sharma, Dheeraj; Sharma, Pankaj; Sharma, Vineet; Barman, P. B.; Katyal, S. C.

    2011-12-01

    CdS is commonly used as window layer in polycrystalline solar cells. The paper presents a structural and optical study of CdS nano-structured thin films. High quality CdS thin films are grown on commercial glass by means of chemical bath deposition. It involves an alkaline solution of cadmium salt, a complexant, a chalcogen source and a non-ionic surfactant. The films have been prepared under various process parameters. The chemically deposited films are annealed to estimate its effect on the structural and optical properties of films. These films (as -deposited and annealed) have been characterized by means of XRD, SEM and UV-Visible spectrophotometer. XRD of films show the nano-crystalline nature. The energy gap of films is found to be of direct in nature.

  10. Shallow chemical bath deposition of ZnS buffer layer for environmentally benign solar cell devices

    Science.gov (United States)

    Choubey, R. K.; Kumar, Sunil; Lan, C. W.

    2014-06-01

    Zinc sulfide (ZnS) thin film was grown by a shallow chemical bath deposition (SCBD) technique. In this technique a highly conducting hot plate was used to heat the substrate, while higher thermal gradient was achieved by a shallow bath of the ZnS solution. Consequently, homogeneous nucleation is reduced and quality of ZnS thin films can be improved by shaking. The main advantage of this technique over a traditional one is that the use of solution can be reduced greatly, which is crucial for cost reduction in practice. The effects of shaking on growth kinetics and film properties were investigated by characterizing the as-grown ZnS thin films by x-ray diffraction, transmittance and scanning electron microscopy (SEM).

  11. Dependence of electro-optical properties on the deposition conditions of chemical bath deposited CdS thin films

    Energy Technology Data Exchange (ETDEWEB)

    Dona, J.M.; Herrero, J. [CIEMAT, Madrid (Spain). Inst. de Energias Renovables

    1997-11-01

    Lately, there has been a sharp increase in the publication of papers on chemical bath deposition of CdS thin films and related materials due to successful results obtained using this method to fabricate CdS thin-film buffer layers for CuInSe{sub 2}- and CdTe-based polycrystalline thin-film solar cells. Generally, these papers focus on previously proposed methods of studying film characteristics without a systematic study of the influence of deposition conditions on film characteristics. In this paper the authors present an exhaustive study of the chemical bath-deposited CdS thin films electro-optical properties dependence on deposition variables. The authors propose not only a set of conditions for obtaining CdS thin films by this method but additionally, suitable deposition process conditions for certain application requirements, such as buffer layers for thin-film solar cells. The observed electro-optical characteristics dependence on the deposition variables corroborates the chemical mechanism that they proposed previously for this process.

  12. Ion beam analysis of copper selenide thin films prepared by chemical bath deposition

    Science.gov (United States)

    Andrade, E.; García, V. M.; Nair, P. K.; Nair, M. T. S.; Zavala, E. P.; Huerta, L.; Rocha, M. F.

    2000-03-01

    Analyses of Rutherford back scattered (RBS) 4He+-particle spectra of copper selenide thin films deposited on glass slides by chemical bath were carried out to determine the changes brought about in the thin film by annealing processes. The atomic density per unit area and composition of the films were obtained from these measurements. This analysis shows that annealing in a nitrogen atmosphere at 400°C leads to the conversion of Cu xSe thin film to Cu 2Se. Results of X-ray diffraction, optical, and electrical characteristics on the films are presented to supplement the RBS results.

  13. NiS/ZnS multilayer thinfilm prepared by chemical bath deposition method

    Science.gov (United States)

    Yuvaloshini, J.; Ravi, G.; Shanmugavadivu, Ra.

    2013-06-01

    NiS/ZnS multilayer thin films were prepared by Chemical Bath Deposition (CBD) technique by successive coatings of nickel, zinc and sulphur. The X-ray diffraction was used to obtain structural characterization for the multilayer thinfilms, the crystalline size of 50 nm. The Scanning Electron Microscope techniques were employed to study the internal structure and indentified as of hexagonal structure. An EDAX spectrum confirms the compositional analysis of nickel, zinc and sulphur in nominal composition. The photoluminescence behaviour of NiS/ZnS multilayered system consists in the superposition independent photoluminescence emission in blue shift.

  14. Fabrication of ZnO nanorod using spray-pyrolysis and chemical bath deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Ramadhani, Muhammad F., E-mail: brian@tf.itb.ac.id; Pasaribu, Maruli A. H., E-mail: brian@tf.itb.ac.id; Yuliarto, Brian, E-mail: brian@tf.itb.ac.id; Nugraha, E-mail: brian@tf.itb.ac.id [Advanced Functional Materials Laboratory, Engineering Physics Department Faculty of Industrial Technology, Institut Teknologi Bandung (Indonesia)

    2014-02-24

    ZnO thin films with nanorod structure were deposited using Ultrasonic Spray Pyrolysis method for seed growth, and Chemical Bath Deposition (CBD) for nanorod growth. High purity Zn-hydrate and Urea are used to control Ph were dissolved in ethanol and aqua bidest in Ultrasonic Spray Pyrolysis process. Glass substrate was placed above the heater plate of reaction chamber, and subsequently sprayed with the range duration of 5, 10 and 20 minutes at the temperatures of 3500 C. As for the Chemical Bath Deposition, the glass substrate with ZnO seed on the surface was immerse to Zn-hydrate, HMTA (Hexa Methylene Tetra Amine) and deionized water solution for duration of 3, 5 and 7 hour and temperatures of 600 C, washed in distilled water, dried, and annealed at 3500 C for an hour. The characterization of samples was carried out to reveal the surface morphology using Scanning Electron Microscopy (SEM). From the data, the combination of 5 minutes of Ultrasonic Spray Pyrolysis process and 3 hour of CBD has showed the best structure of nanorod. Meanwhile the longer Spraying process and CBD yield the bigger nanorod structure that have been made, and it makes the films more dense which make the nanorod collide each other and as a result produce unsymetric nanorod structure.

  15. Characterization of chemical bath deposited buffer layers for thin film solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Dwyer, D.; Efstathiadis, H.; Haldar, P. [College of Nanoscale Science and Engineering, University at Albany - State University of New York, 257 Fuller Rd., Albany, NY 12203 (United States); Sun, R. [Angstrom Sun Technologies Inc., 33 Nagog Park, Acton, MA 01720 (United States)

    2010-10-15

    Cadmium sulfide (CdS), indium sulfide (In{sub 2}S{sub 3}) and zinc sulfide (ZnS) thin films have been deposited by chemical bath deposition (CBD) for buffer layer applications in Cu-chalcopyrite-based thin film solar cells. Films were characterized by scanning electron microscopy (SEM), UV-Vis transmission, X-ray photoelectron spectroscopy (XPS), grazing-incidence X-ray diffraction (GIXRD), and spectroscopic ellipsometry. Results indicate CdS can be deposited with low oxygen content and high light transmission over 245-1700 nm. CBD-ZnS and CBD-InS both exhibit 5-10% less light transmission than CdS in the same thickness range. In terms of light transmission and degree of impurities CdS appears to be a better buffer material than CBD-ZnS or CBD-InS. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  16. Structural and Optical Properties of CdS Thin Film Grown by Chemical Bath Deposition

    Directory of Open Access Journals (Sweden)

    S. Rajpal

    2013-07-01

    Full Text Available In this work we report synthesis and optical characterization of CdS thin films coated on glass substrate. The films were deposited using chemical bath deposition method. Scanning Electron microscopy shows a uniform film of CdS film at particular concentration and dipping time. The Energy Dispersive spectroscopy reveals the presence of Cd and S in the CdS film. X-Ray diffraction confirms the cubic structure of CdS deposited on glass and amorphous nature of glass. Optical and photoluminescence studies were done using UV-Visible spectroscopy and Photoluminescence spectroscopy respectively. We have determined bandgap by analyzing UV-Visible spectra results. Wettability studies were done using Optical Contact Angle, which confirms the hydrophobic nature of the CdS films.

  17. Chemical bath deposition of CdS thin films doped with Zn and Cu

    Indian Academy of Sciences (India)

    A I Oliva; J E Corona; R Patiño; A I Oliva-Avilés

    2014-04-01

    Zn- and Cu-doped CdS thin films were deposited onto glass substrates by the chemical bath technique. ZnCl2 and CuCl2 were incorporated as dopant agents into the conventional CdS chemical bath in order to promote the CdS doping process. The effect of the deposition time and the doping concentration on the physical properties of CdS films were investigated. The morphology, thickness, bandgap energy, crystalline structure and elemental composition of Zn- and Cu-doped CdS films were investigated and compared to the undoped CdS films properties. Both Zn- and Cu-doped CdS films presented a cubic crystalline structure with (1 1 1) as the preferential orientation. Lower values of the bandgap energy were observed for the doped CdS films as compared to those of the undoped CdS films. Zn-doped CdS films presented higher thickness and roughness values than those of Cu-doped CdS films. From the photoluminescence results, it is suggested that the inclusion of Zn and Cu into CdS crystalline structure promotes the formation of acceptor levels above the CdS valence band, resulting in lower bandgap energy values for the doped CdS films.

  18. Synthesis and Characterization of SnO2 Thin Films by Chemical Bath Deposition

    Science.gov (United States)

    Rifai, Aditia; Iqbal, Muhammad; Nugraha; Nuruddin, Ahmad; Suyatman; Yuliarto, Brian

    2011-12-01

    SnO2 thin films were deposited on glass substrate by chemical bath deposition (CBD) with stannous chloride (SnCl2..2H2O) as a precursor and urea (CO(NH2)2) as a buffer. X-Ray Diffraction (XRD) are used to characterize the structure of the films; the surface morphology of the films were observed by Scanning Electron Microscope (SEM). Using this techniques, we specify the effect of stannous chloride concentration and weight ratio of urea/H2O on the crystallinity and morphology of these films. The rutile structure corresponding (110), (101) and (211) planes of SnO2 is obtained. The increasing of stannous chloride concentration and the decreasing weight ratio of urea/H2O is found to improve the crystallinity of the film. The average diameter of grain size is about 96 nm.

  19. Influence of deposition time on the properties of chemical bath deposited manganese sulfide thin films

    Directory of Open Access Journals (Sweden)

    Anuar Kassim

    2010-12-01

    Full Text Available Manganese sulfide thin films were chemically deposited from an aqueous solution containing manganese sulfate, sodium thiosulfate and sodium tartrate. The influence of deposition time (2, 3, 6 and 8 days on the properties of thin films was investigated. The structure and surface morphology of the thin films were studied by X-ray diffraction and atomic force microscopy, respectively. In addition, in order to investigate the optical properties of the thin films, the UV-visible spectrophotometry was used. The XRD results indicated that the deposited MnS2 thin films exhibited a polycrystalline cubic structure. The number of MnS2 peaks on the XRD patterns initially increased from three to six peaks and then decreased to five peaks, as the deposition time was increased from 2 to 8 days. From the AFM measurements, the film thickness and surface roughness were found to be dependent on the deposition time.

  20. Combinatorial Chemical Bath Deposition of CdS Contacts for Chalcogenide Photovoltaics.

    Science.gov (United States)

    Mokurala, Krishnaiah; Baranowski, Lauryn L; de Souza Lucas, Francisco W; Siol, Sebastian; van Hest, Maikel F A M; Mallick, Sudhanshu; Bhargava, Parag; Zakutayev, Andriy

    2016-09-12

    Contact layers play an important role in thin film solar cells, but new material development and optimization of its thickness is usually a long and tedious process. A high-throughput experimental approach has been used to accelerate the rate of research in photovoltaic (PV) light absorbers and transparent conductive electrodes, however the combinatorial research on contact layers is less common. Here, we report on the chemical bath deposition (CBD) of CdS thin films by combinatorial dip coating technique and apply these contact layers to Cu(In,Ga)Se2 (CIGSe) and Cu2ZnSnSe4 (CZTSe) light absorbers in PV devices. Combinatorial thickness steps of CdS thin films were achieved by removal of the substrate from the chemical bath, at regular intervals of time, and in equal distance increments. The trends in the photoconversion efficiency and in the spectral response of the PV devices as a function of thickness of CdS contacts were explained with the help of optical and morphological characterization of the CdS thin films. The maximum PV efficiency achieved for the combinatorial dip-coating CBD was similar to that for the PV devices processed using conventional CBD. The results of this study lead to the conclusion that combinatorial dip-coating can be used to accelerate the optimization of PV device performance of CdS and other candidate contact layers for a wide range of emerging absorbers.

  1. Combinatorial Chemical Bath Deposition of CdS Contacts for Chalcogenide Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Mokurala, Krishnaiah; Baranowski, Lauryn L.; de Souza Lucas, Francisco W.; Siol, Sebastian; van Hest, Maikel F. A. M.; Mallick, Sudhanshu; Bhargava, Parag; Zakutayev, Andriy

    2016-09-12

    Contact layers play an important role in thin film solar cells, but new material development and optimization of its thickness is usually a long and tedious process. A high-throughput experimental approach has been used to accelerate the rate of research in photovoltaic (PV) light absorbers and transparent conductive electrodes, however the combinatorial research on contact layers is less common. Here, we report on the chemical bath deposition (CBD) of CdS thin films by combinatorial dip coating technique and apply these contact layers to Cu(In,Ga)Se2 (CIGSe) and Cu2ZnSnSe4 (CZTSe) light absorbers in PV devices. Combinatorial thickness steps of CdS thin films were achieved by removal of the substrate from the chemical bath, at regular intervals of time, and in equal distance increments. The trends in the photoconversion efficiency and in the spectral response of the PV devices as a function of thickness of CdS contacts were explained with the help of optical and morphological characterization of the CdS thin films. The maximum PV efficiency achieved for the combinatorial dip-coating CBD was similar to that for the PV devices processed using conventional CBD. The results of this study lead to the conclusion that combinatorial dip-coating can be used to accelerate the optimization of PV device performance of CdS and other candidate contact layers for a wide range of emerging absorbers.

  2. Synthesis and Characterization of In2S3 Thin Films Deposited by Chemical Bath Deposition on Polyethylene Naphthalate Substrates

    Science.gov (United States)

    Castelo-González, O. A.; Santacruz-Ortega, H. C.; Quevedo-López, M. A.; Sotelo-Lerma, M.

    2012-04-01

    Indium sulfide (In2S3) thin films were deposited on polyethylene naphthalate (PEN) by chemical bath deposition (CBD). The materials were characterized by ultraviolet (UV)-visible spectroscopy, x-ray photoelectron spectroscopy (XPS), energy-dispersive x-ray spectroscopy (EDX), scanning electron microscopy (SEM), and x-ray diffraction (XRD) to investigate the influence of the polymeric substrate on the resulting thin In2S3. The films showed polycrystalline (cubic and tetragonal) structure. A reduction of the ordering of the polymeric chains at the surface of the PEN was also observed, demonstrated by the appearance of two infrared bands at 1094 cm-1 and 1266 cm-1. Presence of oxygen during the early stages of In2S3 growth was also identified. We propose a reaction mechanism for both the equilibrium and nucleation stages. These results demonstrate that In2S3 can be deposited at room temperature on a flexible substrate.

  3. Chemical Bath Deposition of PbS:Hg2+ Nanocrystalline Thin Films

    Directory of Open Access Journals (Sweden)

    R. Palomino-Merino

    2013-01-01

    Full Text Available Nanocrystalline PbS thin films were prepared by Chemical Bath Deposition (CBD at 40 ± 2°C onto glass substrates and their structural and optical properties modified by in-situ doping with Hg. The morphological changes of the layers were analyzed using SEM and the X-rays spectra showing growth on the zinc blende (ZB face. The grain size determined by using X-rays spectra for undoped samples was found to be ~36 nm, whereas with the doped sample was 32–20 nm. Optical absorption spectra were used to calculate the Eg, showing a shift in the range 1.4–2.4 eV. Raman spectroscopy exhibited an absorption band ~135 cm−1 displaying only a PbS ZB structure.

  4. Ethanol Sensing Properties of Nanosheets ZnO Thin Films Prepared by Chemical Bath Deposition

    Science.gov (United States)

    Julia, Sri; Nururddin, Ahmad; Nugraha, Suyatman; Yuliarto, Brian

    2011-12-01

    Nanosheets ZnO thin films were successfully fabricated on alumina substrate by chemical bath deposition method using Zinc Nitrate Tetra hydrate as precursor. Films were annealed at 300 °C for 30 minutes and observed by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive X-Ray Spectroscopy (EDS) to know crystal phase and structure, surface morphology, and elemental composition respectively. The gas sensing performance of ZnO thin films was studied on exposure to ethanol gas sensing in various concentration (300 and 600 ppm). The films showed higher response towards ethanol gas sensing at optimized temperature of 250 °C and exhibited excellent sensitivity of 62.45% upon exposure 300 ppm and 69% upon exposure of 600 ppm ethanol gas sensing. Further, the response and recovery times of ZnO thin films to ethanol become shorter at higher operating temperatures. A possible mechanism of ethanol sensing has been explained.

  5. Femtosecond Transient Absorption Studies in Cadmium Selenide Nanocrystal Thin Films Prepared by Chemical Bath Deposition Method

    Directory of Open Access Journals (Sweden)

    M. C. Rath

    2007-01-01

    Full Text Available Dynamics of photo-excited carrier relaxation processes in cadmium selenide nanocrystal thin films prepared by chemical bath deposition method have been studied by nondegenerate femtosecond transient pump-probe spectroscopy. The carriers were generated by exciting at 400 nm laser light and monitored by several other wavelengths. The induced absorption followed by a fast bleach recovery observed near and above the bandgap indicates that the photo-excited carriers (electrons are first trapped by the available traps and then the trapped electrons absorb the probe light to show a delayed absorption process. The transient decay kinetics was found to be multiexponential in nature. The short time constant, <1 picosecond, was attributed to the trapping of electrons by the surface and/or deep traps and the long time constant, ≥20 picoseconds, was due to the recombination of the trapped carriers. A very little difference in the relaxation processes was observed in the samples prepared at bath temperatures from 25∘C to 60∘C.

  6. Microstructural characterization of chemical bath deposited and sputtered Zn(O,S) buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Gautron, E., E-mail: eric.gautron@cnrs-imn.fr [Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); Buffière, M. [Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); 44solar, 14 rue Kepler, 44240 La Chapelle sur Erdre (France); Harel, S.; Assmann, L.; Arzel, L.; Brohan, L. [Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); Kessler, J. [Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); 44solar, 14 rue Kepler, 44240 La Chapelle sur Erdre (France); Barreau, N. [Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France)

    2013-05-01

    The present work aims at investigating the microstructure of Zn(O,S) buffer layers relative to their deposition route, namely either chemical bath deposition (CBD) or RF co-sputtering process (PVD) under pure Ar. The core of the study consists of cross-sectional transmission electron microscopy (TEM) characterization of the differently grown Zn(O,S) thin films on co-evaporated Cu(In,Ga)Se{sub 2} (CIGSe) absorbers. It shows that the morphology of Zn(O,S) layer deposited on CIGSe using CBD process is made of a thin layer of well oriented ZnS sphalerite-(111) and/or ZnS wurtzite-(0002) planes parallel to CIGSe chalcopyrite-(112) planes at the interface with CIGSe followed by misoriented nanometer-sized ZnS crystallites in an amorphous phase. As far as (PVD)Zn(O,S) is concerned, the TEM analyses reveal two different microstructures depending on the S-content in the films: for [S] / ([O] + [S]) = 0.6, the buffer layer is made of ZnO zincite and ZnS wurtzite crystallites grown nearly coherently to each other, with (0002) planes nearly parallel with CIGSe-(112) planes, while for [S] / ([O] + [S]) = 0.3, it is made of ZnO zincite type crystals with O atoms substituted by S atoms, with (0002) planes perfectly aligned with CIGSe-(112) planes. Such microstructural differences can explain why photovoltaic performances are dependent on the Zn(O,S) buffer layer deposition route. - Highlights: ► Zn(O,S) layers were grown by chemical bath (CBD) or physical vapor (PVD) deposition. ► For CBD, a 3 nm ZnS layer is followed by ZnS nano-crystallites in an amorphous phase. ► For PVD with [S] / ([O] + [S]) = 0.3, the layer has a Zn(O,S) zincite structure. ► For PVD with [S] / ([O] + [S]) = 0.6, ZnS wurtzite and ZnO zincite phases are mixed.

  7. Effects of temperature on the morphology and optical properties of ZnS thin films deposited by chemical bath

    Science.gov (United States)

    Martín-Várguez, P. E.; Ceh, O.; González-Panzo, I. J.; Tec-Yam, S.; Patiño, R.; Oliva, A. I.

    2013-06-01

    Zinc sulphide thin films were deposited on Corning glass substrates by the chemical bath deposition technique at different temperatures. The influence of the bath temperature and deposition time on the morphological and optical properties of the ZnS films are herein investigated. ZnS films were deposited by changing the bath-temperature from 50 °C to 90 °C, and deposition times from 60 to 160 min. Thin and transparent films were obtained with thicknesses from 10 to 90 nm with the increment of the bath temperature, meanwhile the band gap energy Eg values diminishes from 4.15 to 3.4 eV. The quality of the ZnS film surfaces was also influenced by increasing the bath temperature, as showed by the reduced grain size and the increase of roughness, obtained from atomic force microscopy images. ZnS films of good optical quality were obtained at 90 °C with a mean value of Eg = 3.56 ± 0.03 eV.

  8. Effect of Reaction Temperature of CdS Buffer Layers by Chemical Bath Deposition Method.

    Science.gov (United States)

    Kim, Hye Jin; Kim, Chae-Woong; Jung, Duk Young; Jeong, Chaehwan

    2016-05-01

    This study investigated CdS deposition on a Cu(In,Ga)Se2 (CIGS) film via chemical bath deposition (CBD) in order to obtain a high-quality optimized buffer layer. The thickness and reaction temperature (from 50 degrees C to 65 degrees C) were investigated, and we found that an increase in the reaction temperature during CBD, resulted in a thicker CdS layer. We obtained a thin film with a thickness of 50 nm at a reaction temperature of 60 degrees C, which also exhibited the highest photoelectric conversion efficiency for use in solar cells. Room temperature time-resolved photoluminescence (TR-PL) measurements were performed on the Cu(In,Ga)Se2 (CIGS) thin film and CdS/CIGS samples to determine the recombination process of the photo-generated minority carrier. The device performance was found to be dependent on the thickness of the CdS layer. As the thickness of the CdS increases, the fill factor and the series resistance increased to 61.66% and decreased to 8.35 Ω, respectively. The best condition was observed at a reaction temperature of 60 degrees C, and its conversion efficiency was 12.20%.

  9. Optical Characteristics of La-Doped ZnS Thin Films Prepared by Chemical Bath Deposition

    Institute of Scientific and Technical Information of China (English)

    XIE Hai-Qing; CHEN Yuan; HUANG Wei-Qing; HUANG Gui-Fang; PENG Ping; PENG Li; WANG Tai-Hang; ZENG Yun

    2011-01-01

    Undoped and La-doped ZnS thin films are prepared by chemical bath deposition (CBD) process through the co-precipitation reaction of inorganic precursors zinc sulfate, thiosulfate ammonia and La2O3. Composition of the films is analyzed using an energy-dispersive x-ray spectroscopy (EDS). Absorption spectra and spectral transmittances of the films are measured using a double beam UV-VIS spectrophotometer (TU-1901). It is found that significant red shifts in absorption spectra and decrease in absorptivity are obtained with increasing lanthanum. Moreover, optical transmittance is increased as La is doped, with a transmittance of more than 80% for wavelength above 360 nm in La-doped ZnS thin films. Compared to pure ZnS, the band gap decreases and flat-band potential positively shifts to quasi-metal for the La-doped ZnS. These results indicate that La-doped ZnS thin films could be valuably adopted as transparent electrodes.%@@ Undoped and La-doped ZnS thin films are prepared by chemical bath deposition (CBD) process through the co-precipitation reaction of inorganic precursors zinc sulfate, thiosulfate ammonia and La2O2.Composition of the 61ms is analyzed using an energy-dispersive x-ray spectroscopy (EDS).Absorption spectra and spectral tra.nsmitta.nces of the 61ms are measured using a double beam UV-VIS spectrophotometer (TU-1901).It is found that significant red shifts in absorption spectra and decrease in absorptivity are obtained with increasing lanthanum.Moreover, optical transmittance is increased as La is doped, with a transmittance of more than 80% for wavelength above 360 nm in La-doped ZnS thin 61ms.Compared to pure ZnS, the band gap decreases and flat-band potential positively shifts to quasi-metal for the La-doped ZnS.These results indicate that La-doped ZnS thin 6hns could be valuably adopted as transparent electrodes.

  10. Shape controllability and photoluminescence properties of ZnO nanorods grown by chemical bath deposition

    Energy Technology Data Exchange (ETDEWEB)

    Terasako, Tomoaki, E-mail: terasako.tomoaki.mz@ehime-u.ac.jp [Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama-shi, Ehime 790-8577 (Japan); Murakami, Toshihiro [Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama-shi, Ehime 790-8577 (Japan); Yagi, Masakazu [Kagawa National College of Technology, 551 Koda, Takuma-cho, Mitoyo-shi, Kagawa 769-1192 (Japan); Shirakata, Sho [Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama-shi, Ehime 790-8577 (Japan)

    2013-12-31

    Zinc oxide (ZnO) nanorods (NRs) were synthesized on glass substrates and Au seed layers by chemical bath deposition from the aqueous solution of ZnCl{sub 2} and the mixed aqueous solution of zinc acetate dihydrate (ZnAc) and hexamethylenetetramine (HMT) at a low temperature of ∼ 90 °C. Vertically aligned NRs were successfully grown on the Au seed layers. For the NRs synthesized from the ZnCl{sub 2} solution of 0.17 M, when the growth time increased from 15 to 180 min, the average diameter and length increase from ∼ 350 to ∼ 1020 nm and from ∼ 1000 to ∼ 5600 nm, respectively. The increase in average diameter with the concentration of solution was observed on the NRs synthesized from the mixed solution of ZnAc and HMT. The influence of additional HMT was found on the shapes and density of the NRs. Photoluminescence (PL) spectra of the NRs synthesized from the solutions of ZnCl{sub 2} exhibited a dominant orange band (OB) emission at ∼ 640 nm associated with the excess-oxygen atoms. On the other hand, the NRs synthesized from the mixed solution of ZnAc and HMT exhibited a strong near-band-edge (NBE) emission at ∼ 380 nm, suggesting their high crystalline quality. For the NRs synthesized from the mixed solution of ZnAc and HMT, the OB emission is effectively excited at the photon energy corresponding to the A free exciton emission. For the NRs synthesized from the solution of ZnCl{sub 2}, however, the secondary phase Zn(OH){sub 2} formed at the surface regions of the NRs contributes to the excitation process for the OB emission. Photoacoustic (PA) measurements revealed that the intra-band-gap absorption band extending from 400 to 660 nm responsible for nonradiative transitions were suppressed in the NRs synthesized from the mixed solutions of ZnAc and HMT in comparison with those from the ZnCl{sub 2} solutions. - Highlights: • ZnO nanorods (NRs) were grown by Chemical bath deposition. • ZnCl{sub 2} and Zinc acetate dihydrate were used as Zn

  11. Investigation of chemical bath deposition of CdO thin films using three different complexing agents

    Energy Technology Data Exchange (ETDEWEB)

    Khallaf, Hani [Department of Physics, University of Central Florida, Orlando, FL 32816 (United States); Chen, Chia-Ta; Chang, Liann-Be [Graduate Institute of Electro-Optical Engineering, Chang Gung University, Kweishan, Taoyuan 333, Taiwan (China); Green Technology Research Center, Chang Gung University, Kweishan, Taoyuan 333, Taiwan (China); Lupan, Oleg [Department of Physics, University of Central Florida, Orlando, FL 32816 (United States); Department of Microelectronics and Semiconductor Devices, Technical University of Moldova, 168 Stefan cel Mare Boulevard, MD-2004 Chisinau, Republic of Moldova (Moldova, Republic of); Dutta, Aniruddha; Heinrich, Helge [Department of Physics, University of Central Florida, Orlando, FL 32816 (United States); Advanced Materials Processing and Analysis Centre, Department of Mechanical, Materials, and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Shenouda, A. [Central Metallurgical R and D Institute (CMRDI), Tebbin, P.O. Box 87, Helwan (Egypt); Chow, Lee, E-mail: Lee.Chow@ucf.edu [Department of Physics, University of Central Florida, Orlando, FL 32816 (United States); Advanced Materials Processing and Analysis Centre, Department of Mechanical, Materials, and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States)

    2011-09-01

    Chemical bath deposition of CdO thin films using three different complexing agents, namely ammonia, ethanolamine, and methylamine is investigated. CdSO{sub 4} is used as Cd precursor, while H{sub 2}O{sub 2} is used as an oxidation agent. As-grown films are mainly cubic CdO{sub 2}, with some Cd(OH){sub 2} as well as CdO phases being detected. Annealing at 400 deg. C in air for 1 h transforms films into cubic CdO. The calculated optical band gap of as-grown films is in the range of 3.37-4.64 eV. Annealed films have a band gap of about 2.53 eV. Rutherford backscattering spectroscopy of as-grown films reveals cadmium to oxygen ratio of 1.00:1.74 {+-} 0.01 while much better stoichiometry is obtained after annealing, in accordance with the X-ray diffraction results. A carrier density as high as 1.89 x 10{sup 20} cm{sup -3} and a resistivity as low as 1.04 x 10{sup -2} {Omega}-cm are obtained.

  12. ZnS thin film deposited with chemical bath deposition process directed by different stirring speeds

    Science.gov (United States)

    Zhang, Y.; Dang, X. Y.; Jin, J.; Yu, T.; Li, B. Z.; He, Q.; Li, F. Y.; Sun, Y.

    2010-09-01

    In this combined film thickness, scanning electron microscopy (SEM), X-ray diffraction and optical properties study, we explore the effects of different stirring speeds on the growth and optical properties of ZnS film deposited by CBD method. From the disclosed changes of thickness of ZnS film, we conclude that film thickness is independent of the stirring speeds in the heterogeneous process (deposition time less than 40 min), but increases with the stirring speeds and/or deposition time increasing in the homogeneous process. Grazing incident X-ray diffraction (GIXRD) and the study of optical properties disclosed that the ZnS films grown with different stirring speeds show partially crystallized film and exhibit good transmittance (70-88% in the visible region), but the stirring speeds cannot give much effects on the structure and optical properties in the homogeneous process.

  13. The effects of porosity on optical properties of semiconductor chalcogenide films obtained by the chemical bath deposition.

    Science.gov (United States)

    Vorobiev, Yuri V; Horley, Paul P; Hernández-Borja, Jorge; Esparza-Ponce, Hilda E; Ramírez-Bon, Rafael; Vorobiev, Pavel; Pérez, Claudia; González-Hernández, Jesús

    2012-08-29

    This paper is dedicated to study the thin polycrystalline films of semiconductor chalcogenide materials (CdS, CdSe, and PbS) obtained by ammonia-free chemical bath deposition. The obtained material is of polycrystalline nature with crystallite of a size that, from a general point of view, should not result in any noticeable quantum confinement. Nevertheless, we were able to observe blueshift of the fundamental absorption edge and reduced refractive index in comparison with the corresponding bulk materials. Both effects are attributed to the material porosity which is a typical feature of chemical bath deposition technique. The blueshift is caused by quantum confinement in pores, whereas the refractive index variation is the evident result of the density reduction. Quantum mechanical description of the nanopores in semiconductor is given based on the application of even mirror boundary conditions for the solution of the Schrödinger equation; the results of calculations give a reasonable explanation of the experimental data.

  14. Adherent and Conformal Zn(S,O,OH) Thin Films by Rapid Chemical Bath Deposition with Hexamethylenetetramine Additive.

    Science.gov (United States)

    Opasanont, Borirak; Van, Khoa T; Kuba, Austin G; Choudhury, Kaushik Roy; Baxter, Jason B

    2015-06-03

    ZnS is a wide band gap semiconductor whose many applications, such as photovoltaic buffer layers, require uniform and continuous films down to several nanometers thick. Chemical bath deposition (CBD) is a simple, low-cost, and scalable technique to deposit such inorganic films. However, previous attempts at CBD of ZnS have often resulted in nodular noncontinuous films, slow growth rates at low pH, and high ratio of oxygen impurities at high pH. In this work, ZnS thin films were grown by adding hexamethylenetetramine (HMTA) to a conventional recipe that uses zinc sulfate, nitrilotriacetic acid trisodium salt, and thioacetamide. Dynamic bath characterization showed that HMTA helps the bath to maintain near-neutral pH and also acts as a catalyst, which leads to fast nucleation and deposition rates, continuous films, and less oxygen impurities in the films. Films deposited on glass from HMTA-containing bath were uniform, continuous, and 90 nm thick after 1 h, as opposed to films grown without HMTA that were ∼3 times thinner and more nodular. On Cu2(Zn,Sn)Se4, films grown with HMTA were continuous within 10 min. The films have comparatively few oxygen impurities, with S/(S+O) atomic ratio of 88%, and high optical transmission of 98% at 360 nm. The Zn(S,O,OH) films exhibit excellent adhesion to glass and high resistivity, which make them ideal nucleation layers for other metal sulfides. Their promise as a nucleation layer was demonstrated with the deposition of thin, continuous Sb2S3 overlayers. This novel HMTA chemistry enables rapid deposition of Zn(S,O,OH) thin films to serve as a nucleation layer, a photovoltaic buffer layer, or an extremely thin continuous coating for thin film applications. HMTA may also be applied in a similar manner for solution deposition of other metal chalcogenide and oxide thin films with superior properties.

  15. Physical Property Characterization of Pb2+-Doped CdS Nanofilms Deposited by Chemical-Bath Deposition at Low Temperature

    Science.gov (United States)

    Díaz-Reyes, J.; Contreras-Rascón, J. I.; Galván-Arellano, M.; Arias-Cerón, J. S.; Gutiérrez-Arias, J. E. M.; Flores-Mena, J. E.; Morín-Castillo, M. M.

    2016-08-01

    Pb2 +-doped CdS nanofilms are prepared using the growth technique chemical bath deposition (CBD) under optimum conditions lead acetate at the reservoir temperature of 20 ± 2 °C. The Pb2+ molar concentration was in the range 0.0 ≤ x ≤ 0.19.67, which was determined by energy-dispersive X-ray spectroscopy (EDS). The X-ray diffraction results show that the films are of PbS-CdS composites with individual CdS and PbS planes. The X-ray diffraction (XRD) analysis and Raman scattering reveal that CdS-deposited films showed the zincblende (ZB) crystalline phase. The average grain size of the CdS films ranged from 1.21 to 6.67 nm that was determined by the Debye-Scherrer equation from ZB (111) direction, and it was confirmed by high-resolution transmission electron microscopy (HRTEM). Raman scattering shows that the lattice dynamics is characteristic of bimodal behaviour and the multipeaks adjust of the first optical longitudinal mode for the Pb2+-doped CdS denotes the Raman shift of the characteristic peak in the range of 305-298 cm-1 of the CdS crystals, which is associated with the lead ion incorporation. The films exhibit three direct bandgaps, ~2.44 eV attributed to CdS; the other varies continuously from 1.67 to 1.99 eV and another disappears as Pb2+ molar fraction increases.

  16. Structure and composition of Zn(x)Cd(1-xS) films synthesized through chemical bath deposition.

    Science.gov (United States)

    Tosun, B Selin; Pettit, Chelsea; Campbell, Stephen A; Aydil, Eray S

    2012-07-25

    Zinc cadmium sulfide (ZnxCd1-xS) thin films grown through chemical bath deposition are used in chalcopyrite solar cells as the buffer layer between the n-type zinc oxide and the p-type light absorbing chalcopyrite film. To optimize energetic band alignment and optical absorption, advanced solar cell architectures require the ability to manipulate x as a function of distance from the absorber-ZnCdS interface. Herein, we investigate the fundamental factors that govern the evolution of the composition as a function of depth in the film. By changing the initial concentrations of Zn and Cd salts in the bath, the entire range of overall compositions ranging from primarily cubic ZnS to primarily hexagonal CdS could be deposited. However, films are inhomogeneous and x varies significantly as function of distance from the film-substrate interface. Films with high overall Zn concentration (x > 0.5) exhibit a Cd-rich layer near the film-substrate interface because Cd is more reactive than Zn. This layer is typically beneath a nearly pure ZnS film that forms after the Cd-rich layers are deposited and Cd is depleted in the bath. In films with high overall Cd concentration (x < 0.5) the Zn concentration rises towards the film's surface. Fortunately, these gradients are favorable for solar cells based on low band gap chalcopyrite films.

  17. Effect of different complexing agents on the properties of chemical-bath-deposited ZnS thin films

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jun; Wei, Aixiang, E-mail: weiax@gdut.edu.cn; Zhao, Yu

    2014-03-05

    Highlights: • To fabricate high quality ZnS films need to promote the ion-by-ion process and restrain cluster-by-cluster process. • The complexation ability of tri-sodium citrate is stronger than that of hydrazine hydrate. • The nucleation density of nuclei determine the performance of ZnS thin films. -- Abstract: Zinc sulfide (ZnS) thin films were deposited on glass substrates using the chemical bath deposition (CBD) technique. The effects of different complexing agents (tri-sodium citrate, hydrazine hydrate) and their concentrations on the structure, composition, morphology, optical properties and growth mechanism of ZnS thin films were investigated. The results indicated that the chemical-bath-deposited ZnS thin films exhibit poor crystallinity and a high Zn/S atomic ratio with an average transmittance of 75% in the range of visible light. The ZnS thin films prepared using hydrazine hydrate as the complexing agent present a more compact surface, a smaller average particle size, and a sharper absorption edge at 300–340 nm compared with those prepared using tri-sodium citrate. Based on our experimental observations and analysis, we conclude that the predominant growth mechanism of ZnS thin films is an ion-by-ion process. The nucleation density of Zn(OH){sub 2} nuclei on the substrate in the initial stage produces the different morphologies and properties of the ZnS thin films prepared using the two complexing agents.

  18. Cu{sub 2}ZnSn(S,Se){sub 4} solar cells based on chemical bath deposited precursors

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Chao, E-mail: chao.gao@kit.edu [Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe (Germany); Schnabel, Thomas; Abzieher, Tobias [Zentrum für Sonnenenergie-und Wasserstoff-Forschung Baden-Württemberg (ZSW), 70565 Stuttgart (Germany); Krämmer, Christoph [Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe (Germany); Powalla, Michael [Zentrum für Sonnenenergie-und Wasserstoff-Forschung Baden-Württemberg (ZSW), 70565 Stuttgart (Germany); Light Technology Institute (LTI), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe (Germany); Kalt, Heinz; Hetterich, Michael [Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe (Germany)

    2014-07-01

    A low-cost method has been developed to fabricate Cu{sub 2}ZnSn(S,Se){sub 4} solar cells. By this method, firstly SnS, CuS, and ZnS layers are successively deposited on a molybdenum/soda lime glass (Mo/SLG) substrate by chemical bath deposition. The Cu{sub 2}ZnSn(S,Se){sub 4} thin films are obtained by annealing the precursor in a selenium atmosphere utilizing a graphite box in the furnace. The obtained Cu{sub 2}ZnSn(S,Se){sub 4} thin films show large crystalline grains. By optimizing the preparation process, Cu{sub 2}ZnSn(S,Se){sub 4} solar cells with efficiencies up to 4.5% are obtained. The results imply that the Cu{sub 2}ZnSn(S,Se){sub 4}/CdS interface and the back contact may be limiting factors for solar cell efficiency. - Highlights: • A chemical bath deposition method is developed to prepare Cu{sub 2}ZnSn(S,Se){sub 4} thin films. • The Cu{sub 2}ZnSn(S,Se){sub 4} thin films show good crystallization. • Solar cells with efficiencies up to 4.5% can be prepared based on the Cu{sub 2}ZnSn(S,Se){sub 4} layer. • The limiting factors for the solar cell efficiency are analyzed.

  19. Dynamic scaling and optical properties of Zn(S, O,OH) thin film grown by chemical bath deposition

    Institute of Scientific and Technical Information of China (English)

    Zhang Yi; Li Bo-Yan; Dang Xiang-Yu; Wu Li; Jin Jing; Li Feng-Yan; Ao Jian-Ping; Sun Yun

    2011-01-01

    The scaling behavior and optical properties of Zn(S,O and OH) thin films deposited on soda-lime glass substrates by chemical bath deposition method were studied by combined roughness measurements,scanning electron microscopy and optical properties measurement.From the scaling behaviour,the value of growth scaling exponent β,0.38±0.06,was determined.This value indicated that the Zn(S,O,OH) film growth in the heterogeneous process was influenced by the surface diffusion and shadowing effect.Results of the optical properties measurements disclosed that the transmittance of the film was in the region of 70%-88% and the optical properties of the film grown for 40 min were better than those grown under other conditions.The energy band gap of the film deposited with 40 min was around 3.63 eV.

  20. Study of the crystallographic phase change on copper (I) selenide thin films prepared through chemical bath deposition by varying the pH of the solution

    Science.gov (United States)

    Sandoval-Paz, M. G.; Rodríguez, C. A.; Porcile-Saavedra, P. F.; Trejo-Cruz, C.

    2016-07-01

    Copper (I) selenide thin films with orthorhombic and cubic structure were deposited on glass substrates by using the chemical bath deposition technique. The effects of the solution pH on the films growth and subsequently the structural, optical and electrical properties of the films were studied. Films with orthorhombic structure were obtained from baths wherein both metal complex and hydroxide coexist; while films with cubic structure were obtained from baths where the metal hydroxide there is no present. The structural modifications are accompanied by changes in bandgap energy, morphology and electrical resistivity of the films.

  1. Effects of indium doping on the structural and optical properties of CdSe thin films deposited by chemical bath

    Energy Technology Data Exchange (ETDEWEB)

    Perez G, A. M.; Arreola, I. V. [Universidad Popular Autonoma del Estado de Puebla, 21 Sur No. 1103, Col Santiago, 72160 Puebla, Pue. (Mexico); Tepantlan, C. S. [Universidad Politecnica de Tulancingo, Calle Ingenierias 100 Huapalcalco, 43629 Tulancingo, Hidalgo (Mexico)]. e-mail: arllenemariana.perez@upaep.mx

    2009-07-01

    Thin films of n-type CdSe have been grown on Corning glass substrate by chemical bath deposition, prepared with Sodium Seleno-Sulphate (Na{sub 2}SSeO{sub 3}), Cadmium Chloride (CdCl{sub 2}) and Indium Tri-Chloride (InCl{sub 3}), mixed in an aqueous environment. The effects of different In doping concentrations have been investigated. X-ray diffraction spectra show that at low In concentration only the CdSe lattice is present in the deposited film, whereas CdIn{sub 2}Se{sub 4} and InSe compounds are obtained at higher In concentrations. Optical properties have been calculated from transmission spectra and photoluminescence measurements. From transmission spectra, the absorption coefficient and optical gap were obtained; photoluminescence spectra show band-band recombination from 10 K to room temperature. (Author)

  2. Preparation and characteristics of chemical bath deposited ZnS thin films: Effects of different complexing agents

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Seung Wook [Department of Materials Science and Engineering, KAIST, Daejeon 305-701 (Korea, Republic of); Agawane, G.L.; Gang, Myeng Gil [Photonics Technology Research Institute, Department of Materials Science Engineering, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Moholkar, A.V. [Department of Physics, Shivaji University, Kolhapur 416-004 (India); Moon, Jong-Ha [Photonics Technology Research Institute, Department of Materials Science Engineering, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Kim, Jin Hyeok, E-mail: jinhyeok@chonnam.ac.kr [Photonics Technology Research Institute, Department of Materials Science Engineering, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Lee, Jeong Yong, E-mail: j.y.lee@kaist.ac.kr [Department of Materials Science and Engineering, KAIST, Daejeon 305-701 (Korea, Republic of)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Thick ZnS thin films were successfully prepared by chemical bath deposition in a basic medium using less toxic complexing agents. Black-Right-Pointing-Pointer Effect of different complexing agents such as no complexing agent, Na{sub 3}-citrate and a mixture of Na{sub 3}-citrate and EDTA on the properties of ZnS thin films was investigated. Black-Right-Pointing-Pointer ZnS thin film deposited using two complexing agent showed the outstanding characteristics as compared to those using no and one complexing agent. - Abstract: Zinc sulfide (ZnS) thin films were prepared on glass substrates by a chemical bath deposition technique using aqueous zinc acetate and thiourea solutions in a basic medium (pH {approx} 10) at 80 Degree-Sign C. The effects of different complexing agents, such as a non-complexing agent, Na{sub 3}-citrate, and a mixture of Na{sub 3}-citrate and ethylenediamine tetra-acetate (EDTA), on the structural, chemical, morphological, optical, and electrical properties of ZnS thin films were investigated. X-ray diffraction pattern showed that the ZnS thin film deposited without any complexing agent was grown on an amorphous phase. However, the ZnS thin films deposited with one or two complexing agents showed a polycrystalline hexagonal structure. No secondary phase (ZnO) was observed. X-ray photoelectron spectroscopy showed that all ZnS thin films exhibited both Zn-S and Zn-OH bindings. Field emission scanning electron microscopy (FE-SEM) images showed that ZnS thin films deposited with complexing agents had thicker thicknesses than that deposited without a complexing agent. The electrical resistivity of ZnS thin films was over 10{sup 5} {Omega} cm regardless of complexing agents. The average transmittance of the ZnS thin films deposited without a complexing agent, those with Na{sub 3}-citrate, and those with a mixture of Na{sub 3}-citrate and EDTA was approximately 85%, 65%, and 70%, respectively, while the band gap

  3. Studies of CdS/CdTe interface: Comparison of CdS films deposited by close space sublimation and chemical bath deposition techniques

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jun-feng, E-mail: pkuhjf@bit.edu.cn [Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, UMR CNRS 6502, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); Institute of Materials Science, Darmstadt University of Technology, Petersenstr. 23, 64287 Darmstadt (Germany); School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Fu, Gan-hua; Krishnakumar, V.; Schimper, Hermann-Josef [Institute of Materials Science, Darmstadt University of Technology, Petersenstr. 23, 64287 Darmstadt (Germany); Liao, Cheng [Department of Physics, Peking University, Beijing 100871 (China); Jaegermann, Wolfram [Institute of Materials Science, Darmstadt University of Technology, Petersenstr. 23, 64287 Darmstadt (Germany); Besland, M.P. [Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, UMR CNRS 6502, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France)

    2015-05-01

    The CdS layers were deposited by two different methods, close space sublimation (CSS) and chemical bath deposition (CBD) technique. The CdS/CdTe interface properties were investigated by transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). The TEM images showed a large CSS-CdS grain size in the range of 70-80 nm. The interface between CSS-CdS and CdTe were clear and sharp, indicating an abrupt hetero-junction. On the other hand, CBD-CdS layer had much smaller grain size in the 5-10 nm range. The interface between CBD-CdS and CdTe was not as clear as CSS-CdS. With the stepwise coverage of CdTe layer, the XPS core levels of Cd 3d and S 2p in CSS-CdS had a sudden shift to lower binding energies, while those core levels shifted gradually in CBD-CdS. In addition, XPS depth profile analyses indicated a strong diffusion in the interface between CBD-CdS and CdTe. The solar cells prepared using CSS-CdS yielded better device performance than the CBD-CdS layer. The relationships between the solar cell performances and properties of CdS/CdTe interfaces were discussed. - Highlights: • Studies of CdS deposited by close space sublimation and chemical bath deposition • An observation of CdS/CdTe interface by transmission electron microscope • A careful investigation of CdS/CdTe interface by X ray photoelectron spectra • An easier diffusion at the chemical bath deposition CdS and CdTe interface.

  4. Optimization of synthesis conditions of PbS thin films grown by chemical bath deposition using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Yücel, Ersin, E-mail: dr.ersinyucel@gmail.com [Department of Physics, Faculty of Arts and Sciences, Mustafa Kemal University, 31034 Hatay (Turkey); Yücel, Yasin; Beleli, Buse [Department of Chemistry, Faculty of Arts and Sciences, Mustafa Kemal University, 31034 Hatay (Turkey)

    2015-09-05

    Highlights: • For the first time, RSM and CCD used for optimization of PbS thin film. • Tri-sodium citrate, deposition time and temperature were independent variables. • PbS thin film band gap value was 2.20 eV under the optimum conditions. • Quality of the film was improved after chemometrics optimization. - Abstract: In this study, PbS thin films were synthesized by chemical bath deposition (CBD) under different deposition parameters. Response surface methodology (RSM) was used to optimize synthesis parameters including amount of tri-sodium citrate (0.2–0.8 mL), deposition time (14–34 h) and deposition temperature (26.6–43.4 °C) for deposition of the films. 5-level-3-factor central composite design (CCD) was employed to evaluate effects of the deposition parameters on the response (optical band gap of the films). The significant level of both the main effects and the interaction are investigated by analysis of variance (ANOVA). The film structures were characterized by X-ray diffractometer (XRD). Morphological properties of the films were studied with a scanning electron microscopy (SEM). The optical properties of the films were investigated using a UV–visible spectrophotometer. The optimum amount of tri-sodium citrate, deposition time and deposition temperature were found to be 0.7 mL, 18.07 h and 30 °C respectively. Under these conditions, the experimental band gap of PbS was 2.20 eV, which is quite good correlation with value (1.98 eV) predicted by the model.

  5. Synthesis, Structural and Optoelectronic Properties of Nanocrystalline CdSe Thin Films Prepared By Chemical Bath Deposition Route

    Directory of Open Access Journals (Sweden)

    C. P. Nikam

    2015-12-01

    Full Text Available Cadmium Selenide (CdSe thin films were deposited onto glass substrates by simple and low cost chemical bath deposition (CBD technique. Aqueous ammonia was used as a complexing agent for the synthesis of these films. Deposition parameters were optimised and the crystal structure and morphology of the films were characterized by x-ray diffraction (XRD and field emission scanning electron microscopy (FE-SEM, respectively. XRD pattern revealed that the as-prepared CdSe thin films are polycrystalline with hexagonal structure. The average crystallite size of CdSe thin film was found to be in the range of 12-16 nm. FE-SEM image revealed that deposited thin films were consisting of nanocrystalline grains, which were coalesced to form bigger grains that are in cluster form distributed over the substrate surface. Transmission spectra showed high transmittance in the visible region and direct optical band gap energy was found to be a function of deposition time.

  6. Synthesis and characterization of flower-like ZnSe nanostructured thin films by chemical bath deposition (CBD) method

    Science.gov (United States)

    Bakiyaraj, G.; Dhanasekaran, R.

    2013-04-01

    Flower-like zinc selenide nanostructured thin films were successfully prepared by a chemical bath deposition method on non-conducting glass substrate in an aqueous alkaline medium using sodium selenosulphate as Se2- ion source. The as-deposited films have been characterized by X-ray diffraction (XRD), high resolution scanning electron microscopy (HRSEM), energy-dispersive X-ray analysis (EDX), optical absorption, and photoluminescence spectroscopy (PL). The XRD studies reveal that the as-deposited ZnSe thin film is nanocrystalline with a face-centered cubic phase. SEM image shows the tens to hundreds of petals are self-assembled within a single nanoflower. The direct optical band gap ` E g' for as-deposited flower-like ZnSe thin films is found to be 2.80 eV. Room temperature PL measurement indicates that the as-deposited cubic ZnSe thin films have a near band edge (NBE) emission peaked at around 440 nm (2.81 eV) and broad weak band emission peak from 552 nm (2.24 eV) to 658 nm (1.88 eV). The strong NBE emission from the flower-like ZnSe nanostructured thin films reveals their potential as building for optoelectronic devices.

  7. CdS/FTO thin film electrodes deposited by chemical bath deposition and by electrochemical deposition: A comparative assessment of photo-electrochemical characteristics

    Science.gov (United States)

    Zyoud, Ahed; Saa'deddin, Iyad; Khudruj, Sahar; Hawash, Zafer M.; Park, DaeHoon; Campet, Guy; Hilal, Hikmat S.

    2013-04-01

    CdS thin films have been deposited onto FTO/glass substrates by two different techniques, electrochemical deposition (ECD) and chemical bath deposition (CBD). Feasibility of using these two film types in photoelectrochemical processes has been critically investigated here. The films were comparatively characterized by a number of techniques (solid state absorption spectra, solid state photoluminescence spectra, XRD and SEM). PEC characteristics of the electrodes, including current density-voltage (J-V) plots, conversion efficiency (η), stability and fill-factor (FF) were then studied. The results show that both systems involved nano-sized CdS particles living in coagulates. The ECD was thinner and more uniform than the CBD system. The CBD films were more effective in PEC processes than the ECD counterparts. Effect of annealing on characteristics of both electrode systems has been investigated. Annealing enhanced both film characteristics, but the CBD was affected to a higher extent, and the annealed CBD film was more effective than the ECD counterpart.

  8. Effects of Thermal Annealing on the Optical Properties of Titanium Oxide Thin Films Prepared by Chemical Bath Deposition Technique

    Directory of Open Access Journals (Sweden)

    H.U. Igwe

    2010-08-01

    Full Text Available A titanium oxide thin film was prepared by chemical bath deposition technique, deposited on glass substrates using TiO2 and NaOH solution with triethanolamine (TEA as the complexing agent. The films w ere subjected to post deposition annealing under various temperatures, 100, 150, 200, 300 and 399ºC. The thermal treatment streamlined the properties of the oxide films. The films are transparent in the entire regions of the electromagnetic spectrum, firmly adhered to the substrate and resistant to chemicals. The transmittance is between 20 and 95% while the reflectance is between 0.95 and 1%. The band gaps obtained under various thermal treatments are between 2.50 and 3.0 ev. The refractive index is between 1.52 and 2.55. The thickness achieved is in the range of 0.12-0.14 :m.These properties of the oxide film make it suitable for application in solar cells: Liquid and solid dye-sensitized photoelectrochemical solar cells, photo induced water splitting, dye synthesized solar cells, environmental purifications, gas sensors, display devices, batteries, as well as, solar cells with an organic or inorganic extremely thin absorber. These thin films are also of interest for the photooxidation of water, photocatalysis, electro chromic devices and other uses.

  9. Structural and optical properties of Ni-doped CdS thin films prepared by chemical bath deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Premarani, R. [Arumugam Pillai SeethaiAmmal College, Thiruppattur-630211 (India); Saravanakumar, S., E-mail: sarophy84@gmail.com; Chandramohan, R. [SreeSevuganAnnamalai College, Devakottai-630303 (India); Mahalingam, T. [Department of Electrical and Computer Engineering, Ajou University, Suwon 443-749 (Korea, Republic of)

    2015-06-24

    The structural and optical behavior of undoped Cadmiun Sulphide (CdS) and Ni-doped CdS thinfilms prepared by Chemical Bath Deposition (CBD) technique is reported. The crystallite sizes of the thinfilms have been characterized by X-ray diffraction pattern (XRD). The particle sizes increase with the increase of Ni content in the CdS thinfilms. Scanning Electron Microscope (SEM) results indicated that CdS thinfilms is made up of aggregate of spherical-like particles. The composition was estimated by Energy Dispersive Analysis of X-ray (EDX) and reported. Spectroscopic studies revealed considerable improvement in transmission and the band gap of the films changes with addition of Ni dopant that is associated with variation in crystallite sizes in the nano regime.

  10. Unusual Blueshifting of Optical Band Gap of CdS Nanocrystals through a Chemical Bath Deposition Method

    Directory of Open Access Journals (Sweden)

    Shu Qing Yuan

    2015-01-01

    Full Text Available CdS nanocrystals are synthesized through a chemical bath deposition method. After annealing, these nanocrystals are enlarged according to Scherrer’s formula. Small nanocrystals display wide band gaps as a result of the quantum effect experienced by nanocrystals of a certain size. However, the absorption edge and green and red emissions of annealed CdS nanocrystals show obvious blueshift compared with the as-grown ones. After annealing, the intensity ratio of these green and red emissions increases, which indicated that the defect states are reduced. Therefore, the improvement in crystalline quality and the reduced strain contribute to the unusual blueshifting of the optical band gap and of the green and red emissions.

  11. Top gate ZnO-Al2O3 thin film transistors fabricated using a chemical bath deposition technique

    Science.gov (United States)

    Gogoi, Paragjyoti; Saikia, Rajib; Changmai, Sanjib

    2015-04-01

    ZnO thin films were prepared by a simple chemical bath deposition technique using an inorganic solution mixture of ZnCl2 and NH3 on glass substrates and then were used as the active material in thin film transistors (TFTs). The TFTs were fabricated in a top gate coplanar electrode structure with high-k Al2O3 as the gate insulator and Al as the source, drain and gate electrodes. The TFTs were annealed in air at 500 °C for 1 h. The TFTs with a 50 μm channel length exhibited a high field-effect mobility of 0.45 cm2/(V·s) and a low threshold voltage of 1.8 V. The sub-threshold swing and drain current ON-OFF ratio were found to be 0.6 V/dec and 106, respectively.

  12. Effect of growth time on Ti-doped ZnO nanorods prepared by low-temperature chemical bath deposition

    Science.gov (United States)

    Bidier, Shaker A.; Hashim, M. R.; Al-Diabat, Ahmad M.; Bououdina, M.

    2017-04-01

    Ti-doped ZnO nanorod arrays were grown onto Si substrate using chemical bath deposition (CBD) method at 93 °C. To investigate the effect of time deposition on the morphological, and structural properties, four Ti-doped ZnO samples were prepared at various deposition periods of time (2, 3.5, 5, and 6.5 h). FESEM images displayed high-quality and uniform nanorods with a mean length strongly dependent upon deposition time; i.e. it increases for prolonged growth time. Additionally, EFTEM images reveal a strong erosion on the lateral side for the sample prepared for 6.5 h as compared to 5 h. This might be attributed to the dissolution reaction of ZnO with for prolonged growth time. XRD analysis confirms the formation of a hexagonal wurtzite-type structure for all samples with a preferred growth orientation along the c-axis direction. The (100) peak intensity was enhanced and then quenched, which might be the result of an erosion on the lateral side of nanorods as seen in EFTEM. This study confirms the important role of growth time on the morphological features of Ti-doped ZnO nanorods prepared using CBD.

  13. Effect of Thermal Annealing on the Band GAP and Optical Properties of Chemical Bath Deposited ZnSe Thin Films

    Science.gov (United States)

    Ezema, F. I.; Ekwealor, A. B. C.; Osuji, R. U.

    2006-05-01

    Zinc selenide (ZnSe) thin films were deposited on glass substrate using the chemical bath deposition method at room temperature from aqueous solutions of zinc sulphate and sodium selenosulfate in which sodium hydroxide was employed as complexing agents. The `as-deposited' ZnSe thin films are red in color and annealed in oven at 473 K for 1 hour and on a hot plate in open air at 333 K for 5 minutes, affecting the morphological and optical properties. Optical properties such as absorption coefficient a and extinction coefficient k, were determined using the absorbance and transmission measurement from Unico UV-2102 PC spectrophotometer, at normal incidence of light in the wavelength range of 200-1000 nm. The films have transmittance in VIS-NIR regions that range between 26 and 87%. From absorbance and transmittance spectra, the band gap energy determined ranged between 1.60 eV and 1.75 for the `as deposited' samples, and the annealed samples exhibited a band gap shift of 0.15 eV. The high transmittance of the films together with its large band gap made them good materials for selective coatings for solar cells.

  14. Single step synthesis of rutile TiO2 nanoflower array film by chemical bath deposition method

    Science.gov (United States)

    Dhandayuthapani, T.; Sivakumar, R.; Ilangovan, R.

    2016-05-01

    Titanium oxide (TiO2) nanostructures such as nanorod arrays, nanotube arrays and nanoflower arrays have been extensively investigated by the researchers. Among them nanoflower arrays has shown superior performance than other nanostructures in Dye sensitized solar cell, photocatalysis and energy storage applications. Herein, a single step synthesis for rutile TiO2 nanoflower array films suitable for device applications has been reported. Rutile TiO2 nanoflower thin film was synthesized by chemical bath deposition method using NaCl as an additive. Bath temperature induced evolution of nanoflower thin film arrays was observed from the morphological study. X-ray diffraction study confirmed the presence of rutile phase polycrystalline TiO2. Micro-Raman study revealed the presence of surface phonon mode at 105 cm-1 due to the phonon confinement effect (finite size effect), in addition with the rutile Raman active modes of B1g (143 cm-1), Eg (442 cm-1) and A1g (607 cm-1). Further, the FTIR spectrum confirmed the presence of Ti-O-Ti bonding vibration. The Tauc plot showed the direct energy band gap nature of the film with the value of 2.9 eV.

  15. Chemical bath deposition of CdS thin films: An approach to the chemical mechanism through study of the film microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Dona, J.M.; Herrero, J. [CIEMAT, Madrid (Spain). Inst. de Energias Renovables

    1997-11-01

    Many papers have been published lately on chemical bath deposition of CdS (CBD-CdS) thin films and related materials due to the promising results obtained using CBD-CdS for the fabrication of thin-film solar cells. In spite of this little of the research proposes a realistic chemical mechanism for the deposition process based on the determination of kinetic parameters. In this paper the authors present an exhaustive study of the CBD-CdS kinetic from which they propose a new chemical mechanism which agrees with the kinetic parameters determined supported by heterogeneous catalysis concepts. Simultaneously, the dependence of the deposited film structure on the kinetic variables is studied and the results obtained corroborate the proposed mechanism. These studies have allowed the authors to establish a standard set of conditions for the fabrication of homogeneous and continuous very thin CdS films.

  16. Characterization of CuInS{sub 2} thin films prepared by chemical bath deposition and their implementation in a solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Lugo, S.; López, I. [Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Laboratorio de Materiales I, Av. Universidad, Cd. Universitaria 66451, San Nicolás de los Garza, Nuevo León, México (Mexico); Peña, Y., E-mail: yolapm@gmail.com [Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Laboratorio de Materiales I, Av. Universidad, Cd. Universitaria 66451, San Nicolás de los Garza, Nuevo León, México (Mexico); Calixto, M. [Instituto de Energías Renovables, Universidad Nacional Autónoma de México, C.P. 62580, Temixco, Morelos, México (Mexico); Hernández, T. [Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Laboratorio de Materiales I, Av. Universidad, Cd. Universitaria 66451, San Nicolás de los Garza, Nuevo León, México (Mexico); Messina, S. [Universidad Autónoma de Nayarit, Ciudad de la Cultura “Amado Nervo”, S/N C.P. 63155, Tepic, Nayarit, México (Mexico); and others

    2014-10-31

    CuInS{sub 2} thin films were formed by the sequential deposition of In{sub 2}S{sub 3}–CuS layers on glass substrates, by chemical bath deposition technique, and heating these multilayer 1 h at 350 °C and 400 mPa. The morphology and thickness of the CuInS{sub 2} thin films were analysed by scanning electron microscopy, showing particles with elongated shape and length about 40 nm, and thickness of 267 and 348 nm for samples from 15 and 24 h of deposition time in the chemical bath of In{sub 2}S{sub 3}, respectively. The energy band gap values of the films were around 1.4 eV, whereas the electrical conductivity showed values from 64.91 to 4.11 × 10{sup −3} Ω{sup −1} cm{sup −1} for the samples of 15 and 24 h of In{sub 2}S{sub 3} deposition bath, respectively. The obtained CuInS{sub 2} films showed appropriate values for their application as an absorbing layer in photovoltaic structures of the type: glass/SnO{sub 2}:F/CdS/Sb{sub 2}S{sub 3}/CuInS{sub 2}/PbS/C/Ag. The whole structure was obtained through chemical bath deposition technique. The solar cell corresponding to 15 h of In{sub 2}S{sub 3} deposition duration bath showed energy-conversion efficiency (η) of 0.53% with open circuit voltage (V{sub oc}) of 530 mV, short circuit current density (J{sub sc}) of 2.43 mA cm{sup −2}, and fill factor (FF) of 0.41. In the case of the structure with 24 h of deposition of In{sub 2}S{sub 3} bath, η = 0.43% was measured with the following parameters: V{sub oc} = 330 mV, J{sub sc} = 4.78 mA cm{sup −2} and FF = 0.27. - Highlights: • CuInS{sub 2} films were formed by chemical bath deposition followed by a heat treatment. • Prepared CuInS{sub 2} thin films can work as an effective absorbing layer in a solar cell. • A complete solar cell structure was made by a chemical bath deposition method.

  17. ZnO/CdS/CuInSe{sub 2} photovoltaic cells fabricated using chemical bath deposited CdS buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, S.N.; Lam, W.W.; Qiu, C.X.; Shih, I. [Department of Electrical Engineering, McGill University, Montreal, PQ (Canada)

    1997-04-14

    CdS thin films have been prepared by using chemical bath deposition. The effects of bath temperature and concentration of NH{sub 4}OH were studied. Optimum deposition conditions were established. The resulted CdS thin films exhibit optical transmissions in excess of 90 over the majority of the solar spectrum. ZnO/CdS/CuInSe{sub 2} solar cells were fabricated on electrodeposited CuInSe{sub 2} thin films. A conversion efficiency of 6.3 was obtained with an active area of 7.8 mm{sup 2} (no AR coating)

  18. Effect of Annealing Temperature on the Optical Spectra of CdS Thin Films Deposited at Low Solution Concentrations by Chemical Bath Deposition (CBD Technique

    Directory of Open Access Journals (Sweden)

    Zahid Rizwan

    2011-02-01

    Full Text Available Two different concentrations of CdCl2 and (NH22CS were used to prepare CdS thin films, to be deposited on glass substrate by chemical bath deposition (CBD technique. CdCl2 (0.000312 M and 0.000625 M was employed as a source of Cd2+ while (NH22CS (0.00125 M and 0.000625 M for S2− at a constant bath temperature of 70 °C. Adhesion of the deposited films was found to be very good for all the solution concentrations of both reagents. The films were air-annealed at a temperature between 200 °C to 360 °C for one hour. The minimum thickness was observed to be 33.6 nm for film annealed at 320 °C. XRD analyses reveal that the films were cubic along with peaks of hexagonal phase for all film samples. The crystallite size of the films decreased from 41.4 nm to 7.4 nm with the increase of annealing temperature for the CdCl2 (0.000312 M. Optical energy band gap (Eg, Urbach energy (Eu and absorption coefficient (α have been calculated from the transmission spectral data. These parameters have been discussed as a function of annealing temperature and solution concentration. The best transmission (about 97% was obtained for the air-annealed films at higher temperature at CdCl2 (0.000312 M.

  19. Chemical bath deposited rutile TiO2 compact layer toward efficient planar heterojunction perovskite solar cells

    Science.gov (United States)

    Liang, Chao; Wu, Zhenhua; Li, Pengwei; Fan, Jiajie; Zhang, Yiqiang; Shao, Guosheng

    2017-01-01

    TiO2 is a best choice of electron transport layers in perovskite solar cells, due to its high electron mobility and stability. However, traditional TiO2 processing method requires rather high annealing temperature (>500 °C), preventing it from application to flexible devices. Here, we show that TiO2 thin films can be synthesized via chemical bath deposition below 100 °C. Typically, a compact layer of rutile TiO2 is deposited onto fluorine-doped tin oxide (FTO) coated substrates, in an aqueous TiCl4 solution at 70 °C. Through the optimization of precursor concentration and ultraviolet-ozone surface modification, over 12% power conversion efficiency can be achieved for CH3NH3PbI3 based perovskite solar cells. These findings offer a potential low-temperature technical solution in using TiO2 thin film as an effective transport layer for flexible perovskite solar cells.

  20. Production of HfO2 thin films using different methods: chemical bath deposition, SILAR and sol-gel process

    Science.gov (United States)

    Kariper, İ. A.

    2014-08-01

    Hafnium oxide thin films (HOTFs) were successfully deposited onto amorphous glasses using chemical bath deposition, successive ionic layer absorption and reaction (SILAR), and sol-gel methods. The same reactive precursors were used for all of the methods, and all of the films were annealed at 300°C in an oven (ambient conditions). After this step, the optical and structural properties of the films produced by using the three different methods were compared. The structures of the films were analyzed by X-ray diffraction (XRD). The optical properties are investigated using the ultraviolet-visible (UV-VIS) spectroscopic technique. The film thickness was measured via atomic force microscopy (AFM) in the tapping mode. The surface properties and elemental ratios of the films were investigated and measured by scanning electron microscopy and energy-dispersive X-ray spectroscopy (EDX). The lowest transmittance and the highest reflectance values were observed for the films produced using the SILAR method. In addition, the most intense characteristic XRD peak was observed in the diffraction pattern of the film produced using the SILAR method, and the greatest thickness and average grain size were calculated for the film produced using the SILAR method. The films produced using SILAR method contained fewer cracks than those produced using the other methods. In conclusion, the SILAR method was observed to be the best method for the production of HOTFs.

  1. Cu(In,Ga)Se{sub 2} solar cells with double layered buffers grown by chemical bath deposition

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z.Q.; Shi, J.H.; Zhang, D.W.; Liu, Q.Q.; Sun, Z.; Chen, Y.W. [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, North Zhongshan Rd. 3663, Shanghai 200062 (China); Yang, Z. [Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, Shanghai 200240 (China); Huang, S.M., E-mail: engp5591@yahoo.com [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, North Zhongshan Rd. 3663, Shanghai 200062 (China)

    2011-10-31

    In based mixture In{sub x}(OH,S){sub y} buffer layers deposited by chemical bath deposition technique are a viable alternative to the traditional cadmium sulfide buffer layer in thin film solar cells. We report on the results of manipulating the absorber/buffer interface between the chalcopyrite Cu(In,Ga)Se{sub 2} (CIGS) absorber and CdS or ZnS buffer by addition of a thin In based mixture layer. It is shown that the presence of thin In{sub x}(OH,S){sub y} at the CIGS absorber/CdS or ZnS buffer interfaces greatly improve the solar cell performances. The performances of CIGS cells using dual buffer layers composed of In{sub x}(OH,S){sub y}/CdS or In{sub x}(OH,S){sub y}/ZnS increased by 22.4% and 51.6%, as compared to the single and standard CdS or ZnS buffered cells, respectively.

  2. ZnO thin films fabricated by chemical bath deposition, used as buffer layer in organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lare, Y. [Laboratoire sue l' Energie Solaire, Universite de Lome, Lome (Togo); Godoy, A. [Facultad Ciencias de la Salud, Universidad Diego Portales, Ejercito 141, Santiago de Chile (Chile); Cattin, L. [Universite de Nantes, Nantes Atlantique Universites, IMN, Faculte des Sciences et des Techniques, 2 rue de la Houssiniere, BP 92208, Nantes, F-44000 France (France); Jondo, K. [Laboratoire sue l' Energie Solaire, Universite de Lome, Lome (Togo); Abachi, T. [Ecole Normale Superieure, Kouba, Alger (Algeria); Diaz, F.R. [Laboratorio de Polimeros, Facultad de Quimica, Pontificia Universidad Catolica de Chile, Casilla 306, Correo 22, Santiago (Chile); Morsli, M. [Universite de Nantes, Nantes Atlantique Universites, LAMP, EA 3825, Faculte des Sciences et des Techniques, 2 rue de la Houssiniere, BP 92208, Nantes, F-44000 France (France); Napo, K. [Laboratoire sue l' Energie Solaire, Universite de Lome, Lome (Togo); del Valle, M.A. [Laboratorio de Polimeros, Facultad de Quimica, Pontificia Universidad Catolica de Chile, Casilla 306, Correo 22, Santiago (Chile); Bernede, J.C., E-mail: jean-christian.bernede@univ-nantes.fr [Universite de Nantes, Nantes Atlantique Universites, LAMP, EA 3825, Faculte des Sciences et des Techniques, 2 rue de la Houssiniere, BP 92208, Nantes, F-44000 France (France)

    2009-04-15

    ZnO thin films synthetized by chemical bath deposition are used as buffer layer between the anode and the organic electron donor in organic solar cells. Films deposited from zinc nitrate solutions are annealed in room air at 300 deg. C for half an hour. The X-ray diffraction and microanalysis studies show that ZnO polycrystalline thin films are obtained. The solar cells used are based on the couple copper phthalocyanine as electron donor and (N,N-diheptyl-3,4,9,10-perylenetetracarboxylicdiimide-PTCDI-C7) as electron acceptor. It is shown that the presence of the ZnO buffer layer improves the energy conversion efficiency of the cells. Such improvement could be attributed to a better energy level alignment at the anode/electron donor interface. The anode roughness induced by the ZnO buffer layer can also transform the planar interface organic electron donor/electron acceptor into roughen topography. This increases the interface area, where carrier separation takes place, which improves solar cells performances.

  3. Conformal coating of Ni(OH)2 nanoflakes on carbon fibers by chemical bath deposition for efficient supercapacitor electrodes

    KAUST Repository

    Alhebshi, Nuha

    2013-01-01

    A novel supercapacitor electrode structure has been developed in which a uniform and conformal coating of nanostructured Ni(OH)2 flakes on carbon microfibers is deposited in situ by a simple chemical bath deposition process at room temperature. The microfibers conformally coated with Ni(OH) 2 nanoflakes exhibit five times higher specific capacitance compared to planar (non-conformal) Ni(OH)2 nanoflake electrodes prepared by drop casting of Ni(OH)2 powder on the carbon microfibers (1416 F g-1vs. 275 F g-1). This improvement in supercapacitor performance can be ascribed to the preservation of the three-dimensional structure of the current collector, which is a fibrous carbon fabric, even after the conformal coating of Ni(OH)2 nanoflakes. The 3-D network morphology of the fibrous carbon fabric leads to more efficient electrolyte penetration into the conformal electrode, allowing the ions to have greater access to active reaction sites. Cyclic stability testing of the conformal and planar Ni(OH)2 nanoflake electrodes, respectively, reveals 34% and 62% drop in specific capacitance after 10 000 cycles. The present study demonstrates the crucial effect that electrolyte penetration plays in determining the pseudocapacitive properties of the supercapacitor electrodes. © 2013 The Royal Society of Chemistry.

  4. Studies on Hall Effect and DC Conductivity Measurements of Semiconductor Thin films Prepared by Chemical Bath Deposition (CBD method

    Directory of Open Access Journals (Sweden)

    S. Thirumavalavana

    2015-12-01

    Full Text Available Semiconductors have various useful properties that can be exploited for the realization of a large number of high performance devices in fields such as electronics and optoelectronics. Many novel semiconductors, especially in the form of thin films, are continually being developed. Thin films have drawn the attention of many researchers because of their numerous applications. As the film becomes thinner, the properties acquire greater importance in the miniaturization of elements such as resistors, transistors, capacitors, and solar cells. In the present work, copper selenide (CuSe, cadmium selenide (CdSe, zinc selenide (ZnSe, lead sulphide (PbS, zinc sulphide (ZnS, and cadmium sulphide (CdS thin films were prepared by chemical bath deposition (CBD method. The prepared thin films were analyzed by using Hall measurements in Van Der Pauw configuration (ECOPIA HMS-3000 at room temperature. The Hall parameters such as Hall mobility of the material, resistivity, carrier concentration, Hall coefficient and conductivity were determined. The DC electrical conductivity measurements were also carried out for the thin films using the conventional two – probe technique. The activation energies were also calculated from DC conductivity studies.

  5. Characterization of annealed Eu3+-doped ZnO flower-like morphology synthesized by chemical bath deposition method

    Science.gov (United States)

    Koao, L. F.; Dejene, B. F.; Swart, H. C.; Motloung, S. V.; Motaung, T. E.

    2016-10-01

    Undoped and europium ion (Eu3+) doped ZnO nanostructures were synthesized via the chemical bath deposition method and annealed afterwards in air at 700 °C. The X-ray diffraction measurements confirmed the hexagonal wurtzite structure for all samples. The scanning electron microscopy (SEM) revealed that the nanopowder samples were assembled in flower-like shapes for undoped and hexagonal-shaped for Eu3+-doped ZnO. Elemental energy dispersive (EDS) analysis mapping conducted on the samples revealed homogeneous distribution of Zn, O, and Eu ions. The Ultraviolet-visible (UV-vis) diffusion reflectance spectroscopy showed a decrease in the band gap with an increasing Eu3+ concentration. The photoluminescence (PL) results showed that by exciting Eu3+ (4 mol%) doped ZnO with different excitation wavelength the highest luminescence intensity was observed at an excitation wavelength of 395 nm but no emissions were observed from Eu3+. By exciting further with 465 nm the Eu3+ emissions were observed and emission from undoped ZnO was found for the first time.

  6. RETRACTED: Ammonia-free method for synthesis of CdS nanocrystalline thin films through chemical bath deposition technique

    Science.gov (United States)

    Karimi, M.; Rabiee, M.; Moztarzadeh, F.; Bodaghi, M.; Tahriri, M.

    2009-11-01

    This article has been retracted: please see Elsevier Policy on Article Withdrawal ( http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief of Solid State Communications as the authors have plagiarized part of a paper that has also appeared in Current Applied Physics: Controlled synthesis, characterization and optical properties of CdS nanocrystalline thin films via chemical bath deposition (CBD) route Meysam Karimi, Mohammad Rabiee, Fathollah Moztarzadeh, Mohammadreza Tahriri and Masoud Bodaghi; Curr. Appl. Phys., 9 (2009) 1263-1268, doi: 10.1016/j.cap.2009.02.006. One of the conditions of submission of a paper for publication is that authors declare explicitly that their work is original and has not appeared in a publication elsewhere. Re-use of any data should be appropriately cited. As such this article represents a severe abuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.

  7. Modeling and experiment of dye-sensitized solar cell with vertically aligned ZnO nanorods through chemical bath deposition

    Science.gov (United States)

    Wahyuono, Ruri Agung; Risanti, Doty D.

    2015-01-01

    A theoretical model based on electron diffusion differential equation and Schottky barrier model was developed to determine the current-voltage characteristics of DSSC. To verify the model DSSC with ZnO nanorods photoelectrode which was chemically bath deposited onto the TCO was fabricated. According to modeling results, increasing of recombination current density J at these interfaces results in a decrease in Schottky barrier height φb and therefore improves the photovoltage under the open-circuit condition. It is found that the open-circuit voltage remains constant when the TCO/ZnO Schottky barrier height was varied in the range of 0.45 - 0.6 eV. This theoretical model consistents with the experimental result in which the fabricated DSSCs can produce conversion efficiency in the range of 0.98 - 1.16%. The trend in photovoltage calculated in the theoretical model basically agrees with the experimental result, although the calculated photocurrent is somewhat over estimated compared to the experimental results. The model presents that the ideality factor for ZnO nanorods, which also contributes to the enhancement of photovoltage, increases in the range of 2.75 - 3.0 as the annealing temperature is increased in the experiment.

  8. Effect of Postannealing Treatment on Structural and Optical Properties of ZnO Nanorods Prepared Using Chemical Bath Deposition

    Science.gov (United States)

    Bidier, Shaker A.; Hashim, M. R.; Aldiabat, Ahmad M.

    2017-03-01

    ZnO nanorods have been synthesized on glass substrate by the chemical bath deposition technique. To investigate the effect of postannealing treatment on their crystalline and optical quality, the films were annealed at various temperatures of 300°C, 400°C, and 500°C in air ambient for 1 h. The morphological and chemical composition of the ZnO films were investigated using field-emission scanning electron microscopy (FESEM) with energy-dispersive spectroscopy (EDS). The structural properties were characterized by employing x-ray diffraction analysis and Raman spectroscopy. Finally, the optical properties were investigated by photoluminescence measurements. FESEM images revealed high-quality ZnO nanorods grown on the substrate surface. EDS results demonstrated a slight reduction in the quantity of oxygen after annealing. XRD and Raman results showed noticeable improvement in the crystalline quality of the ZnO films after annealing. The crystallite size increased significantly after annealing, from 40.5 nm for the nonannealed film to a maximum for 46.2 nm for the annealed samples. The photoluminescence results exhibited an increment in the optical quality [ultraviolet (UV) versus visible emission] after postannealing treatment. The enhancement in the crystalline and optical quality of the annealed films compared with the nonannealed sample is due to recrystallization of ZnO particles into a ZnO wurtzite lattice structure as well as relaxation of oxygen molecules adsorbed on the surface of the ZnO nanorods. This enhancement is conducive to improved efficiency for potential applications of ZnO.

  9. Effect of annealing temperature on the optical spectra of CdS thin films deposited at low solution concentrations by Chemical Bath Deposition (CBD) Technique.

    Science.gov (United States)

    Rizwan, Zahid; Zakaria, Azmi; Mohd Ghazali, Mohd Sabri; Jafari, Atefeh; Din, Fasih Ud; Zamiri, Reza

    2011-02-22

    Two different concentrations of CdCl(2) and (NH(2))(2)CS were used to prepare CdS thin films, to be deposited on glass substrate by chemical bath deposition (CBD) technique. CdCl(2) (0.000312 M and 0.000625 M) was employed as a source of Cd(2+) while (NH(2))(2)CS (0.00125 M and 0.000625 M) for S(2-) at a constant bath temperature of 70 °C. Adhesion of the deposited films was found to be very good for all the solution concentrations of both reagents. The films were air-annealed at a temperature between 200 °C to 360 °C for one hour. The minimum thickness was observed to be 33.6 nm for film annealed at 320 °C. XRD analyses reveal that the films were cubic along with peaks of hexagonal phase for all film samples. The crystallite size of the films decreased from 41.4 nm to 7.4 nm with the increase of annealing temperature for the CdCl(2) (0.000312 M). Optical energy band gap (E(g)), Urbach energy (E(u)) and absorption coefficient (α) have been calculated from the transmission spectral data. These parameters have been discussed as a function of annealing temperature and solution concentration. The best transmission (about 97%) was obtained for the air-annealed films at higher temperature at CdCl(2) (0.000312 M).

  10. On the structure, morphology, and optical properties of chemical bath deposited Sb{sub 2}S{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, B. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon (Mexico)], E-mail: kbindu_k@yahoo.com; Arato, A.; Cardenas, E.; Roy, T.K. Das; Castillo, G.A. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon (Mexico)

    2008-03-15

    In the present paper, we have reported the room temperature growth of antimony sulphide (Sb{sub 2}S{sub 3}) thin films by chemical bath deposition and detailed characterization of these films. The films were deposited from a chemical bath containing SbCl{sub 3} and Na{sub 2}S{sub 2}O{sub 3} at 27 deg. C. We have analysed the structure, morphology, composition and optical properties of as deposited Sb{sub 2}S{sub 3} films as well as those subjected to annealing in nitrogen atmosphere or in air. As-deposited films are amorphous to X-ray diffraction (XRD). However, the diffused rings in the electron diffraction pattern revealed the existence of nanocrystalline grains in these films. XRD analysis showed that upon annealing in nitrogen atmosphere these films transformed into polycrystalline with orthorhombic structure. Also, we have observed that during heating in air, Sb{sub 2}S{sub 3} first converts into orthorhombic form and then further heating results in the formation of Sb{sub 2}O{sub 3} crystallites. Optical bandgap energy of as deposited and annealed films was evaluated from UV-vis absorption spectra. The values obtained were 2.57 and 1.73 eV for the as-deposited and the annealed films respectively.

  11. Synthesis of Nanocrystalline SnOx (x = 1–2 Thin Film Using a Chemical Bath Deposition Method with Improved Deposition Time, Temperature and pH

    Directory of Open Access Journals (Sweden)

    Zulkarnain Zainal

    2011-09-01

    Full Text Available Nanocrystalline SnOx (x = 1–2 thin films were prepared on glass substrates by a simple chemical bath deposition method. Triethanolamine was used as complexing agent to decrease time and temperature of deposition and shift the pH of the solution to the noncorrosive region. The films were characterized for composition, surface morphology, structure and optical properties. X-ray diffraction analysis confirms that SnOx thin films consist of a polycrystalline structure with an average grain size of 36 nm. Atomic force microscopy studies show a uniform grain distribution without pinholes. The elemental composition was evaluated by energy dispersive X-ray spectroscopy. The average O/Sn atomic percentage ratio is 1.72. Band gap energy and optical transition were determined from optical absorbance data. The film was found to exhibit direct and indirect transitions in the visible spectrum with band gap values of about 3.9 and 3.7 eV, respectively. The optical transmittance in the visible region is 82%. The SnOx nanocrystals exhibit an ultraviolet emission band centered at 392 nm in the vicinity of the band edge, which is attributed to the well-known exciton transition in SnOx. Photosensitivity was detected in the positive region under illumination with white light.

  12. Synthesis and self-assembly of dumbbell shaped ZnO sub-micron structures using low temperature chemical bath deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Borade, P. [National Centre for Nanoscience and Nanotechnology, University of Mumbai, Kalina Campus, Santacruz (E), Mumbai 400098 (India); Joshi, K.U. [Anton-Paar India Pvt. Ltd., Thane (W), 400607 (India); Gokarna, A.; Lerondel, G. [Laboratoire de Nanotechnologie et D' Instrumentation Optique, Institut Charles Delaunay, CNRS UMR 6281, Université de Technologie de Troyes, 12 Rue Marie Curie, BP 2060, 10010 Troyes (France); Walke, P. [National Centre for Nanoscience and Nanotechnology, University of Mumbai, Kalina Campus, Santacruz (E), Mumbai 400098 (India); Late, D. [National Chemical Laboratory (NCL), Pune 400027 (India); Jejurikar, S.M., E-mail: jejusuhas@gmail.com [National Centre for Nanoscience and Nanotechnology, University of Mumbai, Kalina Campus, Santacruz (E), Mumbai 400098 (India)

    2016-02-01

    We report well dispersed horizontal growth of ZnO sub-micron structures using simplest technique ever known i.e. chemical bath deposition (CBD). A set of samples were prepared under two different cases A) dumbbell shaped ZnO grown in CBD bath and B) tubular ZnO structures evolved from dumbbell shaped structures by dissolution mechanism. Single phase wurtzite ZnO formation is confirmed using X-ray diffraction (XRD) technique in both cases. From the morphological investigations performed using scanning electron microscopy (SEM), sample prepared under case A indicate formation of hex bit tool (HBT) shaped ZnO crystals, which observed to self-organize to form dumbbell structures. Further these microstructures are then converted into tubular structures as a fragment of post CBD process. The possible mechanism responsible for the self-assembly of HBT units to form dumbbell structures is discussed. Observed free excitonic peak located at 370 nm in photoluminescence (PL) spectra recorded at 18 K indicate that the micro/nanostructures synthesized using CBD are of high optical quality. - Highlights: • Controlled growth of Dumbbell shaped ZnO using Chemical Bath Deposition (CBD). • Growth mechanism of dumbbell shaped ZnO by self-assembling was discussed. • Quick Transformation of ZnO dumbbell structures in to tubular structures by dissolution. • Sharp UV Emission at 370 nm from both dumbbell and tubular structures.

  13. Fast chemical bath deposition of Zn(O,S) buffer layers for Cu(In,Ga)Se{sub 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Buffiere, M., E-mail: Marie.Buffiere@cnrs-imn.fr; Harel, S.; Arzel, L.; Deudon, C.; Barreau, N.; Kessler, J.

    2011-08-31

    In order to decrease the deposition time of chemical bath deposited (CBD) Zn(O,S) buffer layers in CIGSe solar cell, the alternative CBD route using H{sub 2}O{sub 2} as additional oxygen source has been investigated. The morphology and the optical properties of the Zn(O,S) thin films grown with and without additive have been compared through scanning electron microscopy (SEM) observations and UV-visible transmission T({lambda}) and reflectivity R({lambda}) measurements, respectively. It is observed that deposition time shorter than 5 min is sufficient to achieve films with similar properties to those deposited following the standard recipe in 15 min. The characteristics of CIGSe/Zn(O,S) structures for which the Zn(O,S) growth has been interrupted after different bath immersion durations have been investigated by XPS measurements. The evolution of the In3d and Zn2p{sub 3/2} signals reveals that after 2 min of deposition, the Zn(O,S) layer grown by the alternative process completely covers the CIGSe and suggests that the increase of the Zn(O,S) growth rate is most probably due to the acceleration of cluster mechanism growth. A comparative study of devices buffered with the so-called fast and standard Zn(O,S) shows similar efficiencies in either case after light soaking.

  14. Photoluminescence study of polycrystalline photovoltaic CdS thin film layers grown by close-spaced sublimation and chemical bath deposition.

    OpenAIRE

    Abken, Anke E.; Halliday, D.P.; Durose, Ken

    2009-01-01

    Photoluminescence (PL) measurements were used to study the effect of postdeposition treatments by annealing and CdCl2 activation on polycrystalline CdS layer grown by close-spaced sublimation (CSS) and chemical bath deposition (CBD). CdS films were either annealed in a temperature range of 200–600 °C or CdCl2 treated between 300–550 °C. The development of “red,” “intermediate orange,” “yellow,” and “green” luminescence bands is discussed in comparison with PL assignments found in literature. ...

  15. In Situ X-ray Absorption Near-Edge Structure Spectroscopy of ZnO Nanowire Growth During Chemical Bath Deposition

    Energy Technology Data Exchange (ETDEWEB)

    McPeak, Kevin M.; Becker, Matthew A.; Britton, Nathan G.; Majidi, Hasti; Bunker, Bruce A.; Baxter, Jason B. (Drexel); (Notre)

    2010-12-03

    Chemical bath deposition (CBD) offers a simple and inexpensive route to deposit semiconductor nanostructures, but lack of fundamental understanding and control of the underlying chemistry has limited its versatility. Here we report the first use of in situ X-ray absorption spectroscopy during CBD, enabling detailed investigation of both reaction mechanisms and kinetics of ZnO nanowire growth from zinc nitrate and hexamethylenetetramine (HMTA) precursors. Time-resolved X-ray absorption near-edge structure (XANES) spectra were used to quantify Zn(II) speciation in both solution and solid phases. ZnO crystallizes directly from [Zn(H{sub 2}O){sub 6}]{sup 2+} without long-lived intermediates. Using ZnO nanowire deposition as an example, this study establishes in situ XANES spectroscopy as an excellent quantitative tool to understand CBD of nanomaterials.

  16. Performance and Loss Analyses of High-Efficiency Chemical Bath Deposition (CBD)-ZnS/Cu(In1-xGax)Se2 Thin-Film Solar Cells

    Science.gov (United States)

    Pudov, Alexei; Sites, James; Nakada, Tokio

    2002-06-01

    Chemically deposited ZnS has been investigated as a buffer layer alternative to cadmium sulfide (CdS) in polycrystalline thin-film Cu(In1-xGax)Se2 (CIGS) solar cells. Cells with efficiency of up to 18.1% based on chemical bath deposition (CBD)-ZnS{\\slash}CIGS heterostructures have been fabricated. This paper presents the performance and loss analyses of these cells based on the current-voltage (J-V) and spectral response curves, as well as comparisons with high efficiency CBD-CdS/CIGS and crystalline silicon counterparts. The CBD-ZnS/CIGS devices have effectively reached the efficiency of the current record CBD-CdS/CIGS cell. The effects of the superior current of the CBD-ZnS/CIGS cell and the superior junction quality of the CBD-CdS/CIGS cell on overall performance nearly cancel each other.

  17. Cd{sub 1−x}Zn{sub x}S thin films with low Zn content obtained by an ammonia-free chemical bath deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Carreón-Moncada, I. [Centro de Investigación y de Estudios Avanzados del IPN, Unidad Saltillo, Av. Industria Metalúrgica 1062, CP. 25900, Ramos Arizpe, Coah., México (Mexico); González, L.A., E-mail: luis.gonzalez@cinvestav.edu.mx [Centro de Investigación y de Estudios Avanzados del IPN, Unidad Saltillo, Av. Industria Metalúrgica 1062, CP. 25900, Ramos Arizpe, Coah., México (Mexico); Pech-Canul, M.I. [Centro de Investigación y de Estudios Avanzados del IPN, Unidad Saltillo, Av. Industria Metalúrgica 1062, CP. 25900, Ramos Arizpe, Coah., México (Mexico); Ramírez-Bon, R. [Centro de Investigación y de Estudios Avanzados del IPN, Unidad Querétaro, Apartado Postal 1-798, CP. 76001 Querétaro, Qro., México (Mexico)

    2013-12-02

    Cd{sub 1−x}Zn{sub x}S films with low Zn content were obtained on glass substrates by an ammonia-free chemical bath deposition process. Alkaline reaction solutions were prepared using cadmium chloride, zinc chloride, sodium citrate, thiourea and potassium hydroxide. As a result of varying the mixture ratio between Cd and Zn precursors, microstructural studies from X-ray diffraction reveal that the resulting films have hexagonal, wurzite type, crystalline structure with changes in the preferential growth orientation. Important changes on the surface morphology and thickness of the Cd{sub 1−x}Zn{sub x}S films were also observed as effects of adding Zn to the CdS lattice. Optical studies show that Cd{sub 1−x}Zn{sub x}S thin films with energy band gaps in the range from 2.48 to 2.65 eV were obtained. - Highlights: • Cd{sub 1−x}Zn{sub x}S layers were grown on glass by ammonia-free chemical bath deposition • Films with low Zn content were obtained using reaction solutions with pH11.5 • Zn addition produced changes on the orientation growth and morphology of the films • Cd{sub 1−x}Zn{sub x}S films have energy band gap values from 2.48 to 2.65 eV.

  18. Growth and characterization of ZnO films deposited by chemical bath and annealed by microwaves (CBD-A{mu}W)

    Energy Technology Data Exchange (ETDEWEB)

    DIaz-Reyes, J [CIBA-IPN, Ex-Hacienda de San Juan Molino, Km. 1.5, Tepetitla, Tlaxcala, 90700 (Mexico); Martinez-Juarez, J; Garcia, M L; Galeazzi, R [CIDS-ICUAP, BUAP, 14 Sur y San Claudio S/N, CU. Edif. No. 137, Col. San Manuel, Puebla, Puebla 72570 (Mexico); Juarez, G, E-mail: jdiazr2001@yahoo.com [DIE-SEES, CINVESTAV-IPN, A. P. 14-740, Mexico, D. F. 07000 (Mexico)

    2010-06-15

    A study of the growth and the physical properties of ZnO films deposited by chemical bath technique and annealed by microwave are presented. For the deposition solution the molar ratio between zinc nitrate and urea is varied in a range of 1:1... 1:10. By X-ray obtains that layers have hexagonal polycrystalline wurtzite type unitary cell. The Raman spectra show the first order experimental Raman spectra of ZnO. The first order Raman modes are identified in the ZnO Raman spectra. The 300K photoluminescence shows radiative bands labelled by red, yellow, green and violet bands, which are associated to defects of oxygen and zinc vacancies. By EDS measurements determined their stoichiometry, which allows relating it with the intensity of radiative bands associated to oxygen and zinc vacancies.

  19. Preparation of nanocrystalline Ni doped ZnS thin films by ammonia-free chemical bath deposition method and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Sahraei, Reza, E-mail: r.sahraei@ilam.ac.ir; Darafarin, Soraya

    2014-05-01

    Nanocrystalline Ni doped ZnS thin films were deposited on quartz, silicon, and glass substrates using chemical bath deposition method in a weak acidic solution containing ethylenediamine tetra acetic acid disodium salt (Na{sub 2}EDTA) as a complexing agent for zinc ions and thioacetamide (TAA) as a sulfide source at 80 °C. The films were characterized by energy-dispersive X-ray spectrometer (EDX), inductively coupled plasma atomic emission spectroscopy (ICP-AES), Fourier transform-infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet–visible spectrophotometry, and photoluminescence (PL) spectroscopy. UV–vis transmission data showed that the films were transparent in the visible region. The X-ray diffraction analysis showed a cubic zinc blend structure. FE-SEM revealed a homogeneous morphology and dense nanostructures. The PL spectra of the ZnS:Ni films showed two characteristic bands, one broad band centered at 430 and another narrow band at 523 nm. Furthermore, concentration quenching effect on the photoluminescence intensity has been observed. - Highlights: • Nanocrystalline ZnS:Ni thin films were prepared by the chemical bath deposition method. • The size of ZnS:Ni nanocrystals was less than 10 nm showing quantum size effect. • SEM images demonstrated a dense and uniform surface that was free of pinholes. • The deposited films were highly transparent (>70%) in the visible region. • The PL spectra of ZnS:Ni thin films showed two emission peaks at 430 and 523 nm.

  20. Optimization of the ZnS Buffer Layer by Chemical Bath Deposition for Cu(In,Ga)Se2 Solar Cells.

    Science.gov (United States)

    Jeon, Dong-Hwan; Hwang, Dae-Kue; Kim, Dae-Hwan; Kang, Jin-Kyu; Lee, Chang-Seop

    2016-05-01

    We evaluated a ZnS buffer layer prepared using a chemical bath deposition (CBD) process for application in cadmium-free Cu(In,Ga)Se2 (CIGS) solar cells. The ZnS buffer layer showed good transmittance (above 90%) in the spectral range from 300 to 800 nm and was non-toxic compared with the CdS buffer layers normally used in CIGS solar cells. The CBD process was affected by several deposition conditions. The deposition rate was dependent on the ammonia concentration (complexing agent). When the ammonia concentration was either too high or low, a decrease in the deposition rate was observed. In addition, post heat treatments at high temperatures had detrimental influences on the ZnS buffer layers because portions of the ZnS thin films were transformed into ZnO. With optimized deposition conditions, a CIGS solar cell with a ZnS buffer layer showed an efficiency of 14.18% with a 0.23 cm2 active area under 100 mW/cm2 illumination.

  1. Investigations on the synthesis, optical and electrical properties of TiO{sub 2} thin films by Chemical Bath Deposition (CBD) method

    Energy Technology Data Exchange (ETDEWEB)

    Govindasamy, Geetha [Bharathiar University, Coimbatore (India); Murugasen, Priya [Department of Physics, Saveetha Engineering College (India); Sagadevan, Suresh [Department of Physics, AMET University, Chennai (India)

    2016-03-15

    Titanium dioxide (TiO{sub 2} ) thin films were prepared by Chemical Bath Deposition (CBD) method. The X-ray diffraction (XRD) analysis was used to examine the structure and to determine the crystallite size of TiO{sub 2} thin film. The surface morphology of the film was studied using Scanning Electron Microscopy (SEM).The optical properties were studied using the UV-Visible and photoluminescence (PL) spectrum. Optical constants such as band gap, refractive index, extinction coefficient and electric susceptibility were determined. The FTIR spectrum revealed the strong presence of TiO{sub 2} . The dielectric properties of TiO{sub 2} thin films were studied for different frequencies and different temperatures. The AC electrical conductivity test revealed that the conduction depended both on the frequency and the temperature. Photoconductivity study was carried out in order to ascertain the positive photoconductivity of the TiO{sub 2} thin films. (author)

  2. Thermoluminescence of Zn O thin films deposited by chemical bath; Termoluminiscencia de peliculas delgadas de ZnO depositadas por bano quimico

    Energy Technology Data Exchange (ETDEWEB)

    Camacho A, M. C.; Cruz V, C. [Universidad de Sonora, Departamento de Investigacion en Polimeros y Materiales, Apdo. Postal 130, 83000 Hermosillo, Sonora (Mexico); Bernal H, R.; Berman M, D. [Universidad de Sonora, Departamento de Investigacion en Fisica, Apdo. Postal 5-088, 83190 Hermosillo, Sonora (Mexico); Castano M, V. M., E-mail: carmencamacho@gimmunison.com [UNAM, Instituto de Fisica, Centro de Fisica Aplicada y Tecnologia Avanzada, Apdo. Postal 1-1010, 76000 Queretaro, Qro. (Mexico)

    2015-10-15

    Full text: Zn O films on Si were synthesized using a deposition method by chemical bath and thermally treated at 900 degrees C for 12 h in air. The morphological characterization by scanning electron microscopy reveals that uniform films were obtained. To investigate the thermoluminescent properties of the films were exposed to irradiation with beta particles with doses in the range from 0.5 to 128 Gy. The brightness curves obtained using a heating rate of 5 degrees C have two peaks, one at 124 and another at 270 degrees C, and a linear dependence of the integrated thermoluminescence as a function of dose. The second maximum reveals the existence of localized trapping states of potential utility in thermoluminescent dosimetry. (Author)

  3. Chemical bath deposition of textured and compact zinc oxide thin films on vinyl-terminated polystyrene brushes

    Science.gov (United States)

    Blumenstein, Nina J; Hofmeister, Caroline G; Lindemann, Peter; Huang, Cheng; Baier, Johannes; Leineweber, Andreas; Wöll, Christof; Schimmel, Thomas

    2016-01-01

    Summary In this study we investigated the influence of an organic polystyrene brush on the deposition of ZnO thin films under moderate conditions. On a non-modified SiOx surface, island growth is observed, whereas the polymer brush induces homogeneous film growth. A chemical modification of the polystyrene brushes during the mineralization process occurs, which enables stronger interaction between the then polar template and polar ZnO crystallites in solution. This may lead to oriented attachment of the crystallites so that the observed (002) texture arises. Characterization of the templates and the resulting ZnO films were performed with ζ-potential and contact angle measurements as well as scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD). Infrared spectroscopy (IR) measurements were used to investigate the polystyrene brushes before and after modification. PMID:26925358

  4. Photoluminescence characteristics of CdS layers deposited in a chemical bath and their correlation to CdS/CdTe solar cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza-Perez, R.; Aguilar-Hernandez, J.; Sastre-Hernandez, J.; Ximello-Quiebras, N.; Contreras-Puente, G.; Vigil-Galan, O.; Moreno-Garcia, E. [Escuela Superior de Fisica y Matematicas del IPN, Edificio 9, UPALM, DF 07738 (Mexico); Santana-Rodriguez, G. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Coyoacan 04510, DF (Mexico); Morales-Acevedo, A. [CINVESTAV-IPN, Depto. de Ingenieria Electrica, Avenida IPN No. 2508, DF 07360 (Mexico)

    2006-06-15

    In this work, we study CdS films processed by chemical bath deposition (CBD) using different thiourea concentrations in the bath solution with post-thermal treatments using CdCl{sub 2}. We study the effects of the thiourea concentration on the photovoltaic performance of the CdS/CdTe solar cells, by the analysis of the I-V curve, for S/Cd ratios in the CBD solution from 3 to 8. In this range of S/Cd ratios the CdS/CdTe solar cells show variations of the open circuit voltage (V{sub oc}), the short circuit current (J{sub sc}) and the fill factor (FF). Other experimental data such as the optical transmittance and photoluminescence were obtained in order to correlate to the I-V characteristics of the solar cells. The best performance of CdS-CdTe solar cells made with CdS films obtained with a S/Cd ratio of 6 is explained in terms of the sulfur vacancies to sulfur interstitials ratio in the CBD-CdS layers. (author)

  5. Chemical bath deposition of thin semiconductor films for use as buffer layers in CuInS sub 2 thin film solar cells

    CERN Document Server

    Kaufmann, C A

    2002-01-01

    different growth phases, layer morphology and solar cell performance were sought and an improved deposition process was developed. As a result, Cd-free CulnS sub 2 thin film solar cells with efficiencies of up to 10.6%) (total area) could be produced. Overall the substitution of CdS is shown to be possible by different alternative compounds, such as Zn(OH,O) sub x S sub y or In(OH,O) sub x S sub y. In the case of In(OH,O) sub x S sub y , an understanding of the CBD process and the effect of different growth phases on the resulting solar cell characteristics could be developed. A CulnS sub 2 thin film solar cell is a multilayered semiconductor device. The solar cells discussed have a layer sequence Mo/CulnS sub 2 /buffer/i-ZnO/ZnO:Ga, where a heterojunction establishes between the p-type absorber and the n-type front contact. Conventionally the buffer consists of CdS, deposited by chemical bath deposition (CBD). Apart from providing process oriented benefits the buffer layer functions as a tool for engineering...

  6. Fabrication of p-type CuO thin films using chemical bath deposition technique and their solar cell applications with Si nanowires

    Science.gov (United States)

    Akgul, Funda Aksoy; Akgul, Guvenc

    2017-02-01

    Recently, CuO has attracted much interest owing to its suitable material properties, inexpensive fabrication cost and potential applications for optoelectronic devices. In this study, CuO thin films were deposited on glass substrates using chemical bath deposition technique and post-deposition annealing effect on the properties of the prepared samples were investigated. p-n heterojunction solar cells were then constructed by coating of p-type CuO films onto the vertically well-aligned n-type Si nanowires synthesized through MACE method. Photovoltaic performance of the fabricated devices were determined with current-voltage (I-V) measurements under AM 1.5 G illumination. The optimal short-circuit current density, open-circuit voltage, fill factor and power conversion efficiency were found to be 3.2 mA/cm-2, 337 mV, 37.9 and 0.45%, respectively. The observed performance clearly indicates that the investigated device structure could be a promising candidate for high-performance low-cost new-generation photovoltaic diodes.

  7. Structural, Surface Morphology and Optical Properties of ZnS Films by Chemical Bath Deposition at Various Zn/S Molar Ratios

    Directory of Open Access Journals (Sweden)

    Fei-Peng Yu

    2014-01-01

    Full Text Available In this study, ZnS thin films were prepared on glass substrates by chemical bath deposition at various Zn/S molar ratios from 1/50 to 1/150. The effects of Zn/S molar ratio in precursor on the characteristics of ZnS films were demonstrated by X-ray diffraction, scanning electron microscopy, optical transmittance, X-ray photoelectron spectroscopy, and Fourier transform infrared spectrometry. It was found that more voids were formed in the ZnS film prepared using the precursor with Zn/S molar ratio of 1/50, and the other ZnS films showed the denser structure as the molar ratio was decreased from 1/75 to 1/150. From the analyses of chemical bonding states, the ZnS phase was indeed formed in these films. Moreover, the ZnO and Zn(OH2 also appeared due to the water absorption on film surface during deposition. This would be helpful to the junction in cell device. With changing the Zn/S molar ratio from 1/75 to 1/150, the ZnS films demonstrate high transmittance of 75–88% in the visible region, indicating the films are potentially useful in photovoltaic applications.

  8. Low-Temperature Growth of Well-Aligned ZnO Nanorod Arrays by Chemical Bath Deposition for Schottky Diode Application

    Science.gov (United States)

    Yuan, Zhaolin

    2015-04-01

    A well-aligned ZnO nanorod array (ZNRA) was successfully grown on an indium tin oxide (ITO) substrate by chemical bath deposition at low temperature. The morphology, crystalline structure, transmittance spectrum and photoluminescence spectrum of as-grown ZNRA were investigated by field emission scanning electron microscopy, x-ray diffraction, ultraviolet-visible spectroscopy and spectrophotometer, respectively. The results of these measurements showed that the ZNRA contained densely packed, aligned nanorods with diameters from 30 nm to 40 nm and a wurtzite structure. The ZNRA exhibited good optical transparency within the visible spectral range, with >80% transmission. Gold (Au) was deposited on top of the ZNRA, and the current-voltage characteristics of the resulting ITO/ZNRA/Au device in the dark were evaluated in detail. The ITO/ZNRA/Au device acted as a Schottky barrier diode with rectifying behaviour, low turn-on voltage (0.6 V), small reverse-bias saturation current (3.73 × 10-6 A), a high ideality factor (3.75), and a reasonable barrier height (0.65 V) between the ZNRA and Au.

  9. Production of HfO2 thin films using different methods:chemical bath deposition, SILAR and sol-gel process

    Institute of Scientific and Technical Information of China (English)

    İ.A.Kariper

    2014-01-01

    Hafnium oxide thin films (HOTFs) were successfully deposited onto amorphous glasses using chemical bath deposition, succes-sive ionic layer absorption and reaction (SILAR), and sol-gel methods. The same reactive precursors were used for all of the methods, and all of the films were annealed at 300°C in an oven (ambient conditions). After this step, the optical and structural properties of the films pro-duced by using the three different methods were compared. The structures of the films were analyzed by X-ray diffraction (XRD). The opti-cal properties are investigated using the ultraviolet-visible (UV-VIS) spectroscopic technique. The film thickness was measured via atomic force microscopy (AFM) in the tapping mode. The surface properties and elemental ratios of the films were investigated and measured by scanning electron microscopy and energy-dispersive X-ray spectroscopy (EDX). The lowest transmittance and the highest reflectance values were observed for the films produced using the SILAR method. In addition, the most intense characteristic XRD peak was observed in the diffraction pattern of the film produced using the SILAR method, and the greatest thickness and average grain size were calculated for the film produced using the SILAR method. The films produced using SILAR method contained fewer cracks than those produced using the other methods. In conclusion, the SILAR method was observed to be the best method for the production of HOTFs.

  10. Preparation of Cauliflower-like ZnO Films by Chemical Bath Deposition:Photovoltaic Performance and Equivalent Circuit of Dye-sensitized Solar Cells

    Institute of Scientific and Technical Information of China (English)

    Yuqiao Wang; Xia Cui; Yuan Zhang; Xiaorui Gao; Yueming Sun

    2013-01-01

    The uniform cauliflower-like ZnO films were deposited on the conducting substrate by a chemical bath deposition in urea/water solution.The film structure and morphology were characterized by X-ray diffraction,thermogravimetric differential thermal analysis,energy dispersive spectroscopy,selected area electron diffraction,field emission scanning electron microscopy and high resolution transmission electron microscopy.The average diameter of ZnO nanoparticles and the petal thickness were 25 nm and 8 μm,respectively.Dyesensitized solar cells based on the cauliflower-like ZnO film electrode showed the short-circuit current density of 6.08 mA/cm2,the open-circuit photovoltage of 0.66 V,the fill factor of 0.55 and the overall conversion efficiency of 2.18%.The equivalent circuit of cells based on the ZnO film electrodes was measured by the electrochemical impedance spectroscopy.Furthermore,the analysis of equivalent circuit provided the relationship between the cell performance and the interfacial resistance,such as the shunt resistance and the series resistance.

  11. Characterizations of chemical bath-deposited zinc oxysulfide films and the effects of their annealing on copper-indium-gallium-selenide solar cell efficiency

    Science.gov (United States)

    Hsieh, Tsung-Min; Lue, Shingjiang Jessie; Ao, Jianping; Sun, Yun; Feng, Wu-Shiung; Chang, Liann-Be

    2014-01-01

    Zinc oxysulfide (Zn(S,O)) thin films are fabricated using a chemical bath deposition method onto glass substrates and the surface of copper-indium-gallium-selenide (CIGS) adsorption layers for solar cell fabrication. The light and electric properties of the Zn(S,O) layers are improved after rapid thermal annealing (RTA). The Zn(S,O) properties of samples annealed under various atmospheres are compared. The resulting annealed Zn(S,O) films are 80-100 nm thick. The band gap decreases from 3.8 eV to 3.3 eV and the light transmittance is improved by more than 95% after annealing under oxygen atmosphere. The oxygen-annealed sample has a S/(S + O) ratio of 0.28 and a S/Zn ratio of 0.72. The CIGS solar cell that consists of the annealed Zn(S,O) buffer layer is more efficient (6.15%) than that of the non-annealed Zn(S,O) (4.56%). The solar cell performance is correlated with the deposited Zn(S,O) characteristics. The significantly higher carrier concentration, increases light transmittance, and improves crystalline structure of the oxygen-annealed Zn(S,O) film contributes to the improved cell performance.

  12. A comparative study of thin films of Zn(O;OH)S and In(O;OH)S deposited on CuInS2 by chemical bath deposition method

    Science.gov (United States)

    Vallejo, W.; Quiñones, C.; Gordillo, G.

    2012-04-01

    In this work, a study of synthesis of thin films of Zn(O;OH)S and In(O;OH)S deposited by chemical bath deposition (CBD) is presented. The thin films of Zn(O;OH)S and In(O;OH)S were deposited from different chemical bath systems on absorber layers of CuInS2 (CIS), indium tin oxide substrates (ITO) and soda lime glass substrates (SL). The differences on the growth rate, optical, morphological and structural properties of the thin films Zn(O;OH)S and In(O;OH)S are studied. The Growth studies showed that thin films of Zn(O;OH)S and In(O;OH)S grown faster on CIS than on SL and ITO substrates. The optical and morphological studies showed that both thin films present high transmittance in visible electromagnetic spectrum and covered uniformly the surface of the substrate, furthermore it was observed that thin films of Zn(O;OH)S and In(O;OH)S were polycrystalline. Finally, the results suggest that thin films of Zn(O;OH)S and In(O;OH)S obtained in this work could be used as buffer layer to replace the thin films of CdS, which are conventionally used as buffer layer in chalcopyrite based solar cells.

  13. Superhydrophobic Cu2S@Cu2O film on copper surface fabricated by a facile chemical bath deposition method and its application in oil-water separation

    Science.gov (United States)

    Pi, Pihui; Hou, Kun; Zhou, Cailong; Li, Guidong; Wen, Xiufang; Xu, Shouping; Cheng, Jiang; Wang, Shuangfeng

    2017-02-01

    Cu2S and Cu2O composite (Cu2S@Cu2O) film with micro/nano binary structure was created on copper surface using the mixing solution of sodium thiosulphate and copper sulfate by a facile chemical bath deposition method. After modification with low-cost polydimethylsioxane (PDMS), the superhydrophobic Cu2S@Cu2O film was obtained. The as-prepared film shows outstanding water repellency with a water contact angle larger than 150° and long-term storage stability. The geometric morphology and chemical composition of the film were characterized by scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), respectively. Moreover, the same method was used to fabricate superhydrophobic/superoleophilic copper mesh, and it could realize separation of various oily sewages with separation efficiency above 94%. This strategy has potential to fabricate the practical superhydrophobic Cu2S@Cu2O film on copper surface on a large scale due to its simplicity and low cost.

  14. pH dependent studies of chemical bath deposition grown ZnO-SiO2 core-shell thin films

    Science.gov (United States)

    Seth, Rajni; Panwar, Sanjay; Kumar, Sunil; Kang, T. W.; Jeon, H. C.

    2017-01-01

    ZnO-SiO2 core-shell thin films were synthesized using chemical-bath deposition at different pH. Optical studies were done to optimize the thin films to find suitable parameters for solar cell buffer layers. These studies were done by measuring the transmission at 500 nm, which is the peak of the solar spectrum. All the parameters were seen to be highly pH dependent. The transmittance for a sample synthesized with a pH of 10.8 reached 85%. The transmittance was found not to depend on the bandgap values, but it was found possibly to depend on the fewer defect states created at a particular pH, as shown by Urbach energy and scanning electron microscopy (SEM) surface structure. An appreciable transmittance was observed in the blue region of the spectrum which had been missing until now in commercial CdS-based buffer layers. The Fourier-transform infrared and the energy dispersive X-ray spectra confirmed that the films were composed of only ZnO and silica only: no impurities were found. The urbach energy values and the SEM image of sample S3 clearly indicate the creation of fewer of defects, leading to higher crystallintiy and higher transmittance. Therefore, this shortcoming can be resolved by the substituted buffer layer of ZnO:SiO2 nano-composite thin film, which can enhance the blue response of the photovoltaic cells.

  15. Effect of copper doping on structural, optical and electrical properties of Cd0.8Zn0.2S films prepared by chemical bath deposition

    Indian Academy of Sciences (India)

    K Hadasa; G Yellaiah; M Nagabhushanam

    2014-02-01

    Cd0.8Zn0.2S:Cu films of 1.3–6.1 mole percentage of copper have been grown on mica substrate by using chemical bath deposition technique. The films have been characterized by using XRD, SEM and UV spectrophotometer. X-ray diffraction studies have shown that the films are polycrystalline. The average crystallite size as measured from XRD data is in the range of 125–130 nm. The activation energies of Cd0.8Zn0.2S:Cu films, as observed from d.c. conductivity studies in the temperature range (77–300 K) studied, decreased with the increase in Cu concentration. The optical absorption studies have revealed that the energy gap increases gradually with an increase in Cu concentration, whereas conductivity studies have shown an anomalous increase in conductivity in films of 3.8 mole percentage of Cu. SEM pictures have revealed the presence of defects with spherical structure having fibre network. The variation of electrical conductivity is explained based on the defects present and by adopting tunneling mechanism.

  16. A Comparative Study on Structural and Optical Properties of ZnO Micro-Nanorod Arrays Grown on Seed Layers Using Chemical Bath Deposition and Spin Coating Methods

    Directory of Open Access Journals (Sweden)

    Sibel MORKOÇ KARADENİZ

    2016-11-01

    Full Text Available In this study, Zinc Oxide (ZnO seed layers were prepared on Indium Tin Oxide (ITO substrates by using Chemical Bath Deposition (CBD method and Sol-gel Spin Coating (SC method. ZnO micro-nanorod arrays were grown on ZnO seed layers by using Hydrothermal Synthesis method. Seed layer effects of structural and optical properties of ZnO arrays were characterized. X-ray diffractometer (XRD, Scanning Electron Microscopy (SEM and Ultraviolet Visible (UV-Vis Spectrometer were used for analyses. ZnO micro-nanorod arrays consisted of a single crystalline wurtzite ZnO structure for each seed layer. Besides, ZnO rod arrays were grown smoothly and vertically on SC seed layer, while ZnO rod arrays were grown randomly and flower like structures on CBD seed layer. The optical absorbance peaks found at 422 nm wavelength in the visible region for both ZnO arrays. Optical bandgap values were determined by using UV-Vis measurements at 3.12 and 3.15 eV for ZnO micro-nanorod arrays on CBD seed layer and for ZnO micro-nanorod arrays on SC-seed layer respectively.DOI: http://dx.doi.org/10.5755/j01.ms.22.4.13443

  17. Influence of Codoping on the Optical Properties of ZnO Thin Films Synthesized on Glass Substrate by Chemical Bath Deposition Method

    Directory of Open Access Journals (Sweden)

    G. Shanmuganathan

    2014-01-01

    Full Text Available Fe and K simultaneously doped ZnO thin films Zn0.99 K0.01 (Fex O (x=1, 2, 3, and 4% were synthesized by chemical bath deposition method. The XRD investigation reveals that all the doped ZnO thin films are in hexagonal wurtzite crystal structure without impurity phases. With increase in Fe concentration, the growth of thin films along c axis is evident from the XRD which indicates the increase in intensity along (002 direction. The same is visible from the surface morphology which shows the formation of hexagonal structure for higher Fe concentration. The topography shows gradual variation with Fe incorporation. The optical energy band gap obtained from the transmittance spectrum decreases from 3.42 to 3.06 eV with increase in Fe concentration indicating the red shift and this trend is consistent with the earlier experimental results. The UV emission is centered around 3.59 eV. The optical constants such as refractive index, extinction coefficient, and absorption coefficient which are essential for the optoelectronic applications were also determined.

  18. Effect of band-aligned double absorber layers on photovoltaic characteristics of chemical bath deposited PbS/CdS thin film solar cells.

    Science.gov (United States)

    Ho Yeon, Deuk; Chandra Mohanty, Bhaskar; Lee, Seung Min; Soo Cho, Yong

    2015-09-23

    Here we report the highest energy conversion efficiency and good stability of PbS thin film-based depleted heterojunction solar cells, not involving PbS quantum dots. The PbS thin films were grown by the low cost chemical bath deposition (CBD) process at relatively low temperatures. Compared to the quantum dot solar cells which require critical and multistep complex procedures for surface passivation, the present approach, leveraging the facile modulation of the optoelectronic properties of the PbS films by the CBD process, offers a simpler route for optimization of PbS-based solar cells. Through an architectural modification, wherein two band-aligned junctions are stacked without any intervening layers, an enhancement of conversion efficiency by as much as 30% from 3.10 to 4.03% facilitated by absorption of a wider range of solar spectrum has been obtained. As an added advantage of the low band gap PbS stacked over a wide gap PbS, the devices show stability over a period of 10 days.

  19. Low-temperature selective catalytic reduction of NO with NH3 over nanoflaky MnOx on carbon nanotubes in situ prepared via a chemical bath deposition route

    Science.gov (United States)

    Fang, Cheng; Zhang, Dengsong; Cai, Sixiang; Zhang, Lei; Huang, Lei; Li, Hongrui; Maitarad, Phornphimon; Shi, Liyi; Gao, Ruihua; Zhang, Jianping

    2013-09-01

    Nanoflaky MnOx on carbon nanotubes (nf-MnOx@CNTs) was in situ synthesized by a facile chemical bath deposition route for low-temperature selective catalytic reduction (SCR) of NO with NH3. This catalyst was mainly characterized by the techniques of X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), N2 adsorption-desorption analysis, X-ray photoelectron spectroscopy (XPS), H2 temperature-programmed reduction (H2-TPR) and NH3 temperature-programmed desorption (NH3-TPD). The SEM, TEM, XRD results and N2 adsorption-desorption analysis indicated that the CNTs were surrounded by nanoflaky MnOx and the obtained catalyst exhibited a large surface area as well. Compared with the MnOx/CNT and MnOx/TiO2 catalysts prepared by an impregnation method, the nf-MnOx@CNTs presented better NH3-SCR activity at low temperature and a more extensive operating temperature window. The XPS results showed that a higher atomic concentration of Mn4+ and more chemisorbed oxygen species existed on the surface of CNTs for nf-MnOx@CNTs. The H2-TPR and NH3-TPD results demonstrated that the nf-MnOx@CNTs possessed stronger reducing ability, more acid sites and stronger acid strength than the other two catalysts. Based on the above mentioned favourable properties, the nf-MnOx@CNT catalyst has an excellent performance in the low-temperature SCR of NO to N2 with NH3. In addition, the nf-MnOx@CNT catalyst also presented favourable stability and H2O resistance.Nanoflaky MnOx on carbon nanotubes (nf-MnOx@CNTs) was in situ synthesized by a facile chemical bath deposition route for low-temperature selective catalytic reduction (SCR) of NO with NH3. This catalyst was mainly characterized by the techniques of X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), N2 adsorption-desorption analysis, X-ray photoelectron spectroscopy (XPS), H2 temperature-programmed reduction (H2-TPR) and NH3 temperature

  20. Low-temperature selective catalytic reduction of NO with NH₃ over nanoflaky MnOx on carbon nanotubes in situ prepared via a chemical bath deposition route.

    Science.gov (United States)

    Fang, Cheng; Zhang, Dengsong; Cai, Sixiang; Zhang, Lei; Huang, Lei; Li, Hongrui; Maitarad, Phornphimon; Shi, Liyi; Gao, Ruihua; Zhang, Jianping

    2013-10-07

    Nanoflaky MnO(x) on carbon nanotubes (nf-MnO(x)@CNTs) was in situ synthesized by a facile chemical bath deposition route for low-temperature selective catalytic reduction (SCR) of NO with NH₃. This catalyst was mainly characterized by the techniques of X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), N₂ adsorption-desorption analysis, X-ray photoelectron spectroscopy (XPS), H₂ temperature-programmed reduction (H₂-TPR) and NH₃ temperature-programmed desorption (NH₃-TPD). The SEM, TEM, XRD results and N₂ adsorption-desorption analysis indicated that the CNTs were surrounded by nanoflaky MnO(x) and the obtained catalyst exhibited a large surface area as well. Compared with the MnO(x)/CNT and MnO(x)/TiO₂ catalysts prepared by an impregnation method, the nf-MnO(x)@CNTs presented better NH₃-SCR activity at low temperature and a more extensive operating temperature window. The XPS results showed that a higher atomic concentration of Mn(4+) and more chemisorbed oxygen species existed on the surface of CNTs for nf-MnO(x)@CNTs. The H₂-TPR and NH₃-TPD results demonstrated that the nf-MnO(x)@CNTs possessed stronger reducing ability, more acid sites and stronger acid strength than the other two catalysts. Based on the above mentioned favourable properties, the nf-MnO(x)@CNT catalyst has an excellent performance in the low-temperature SCR of NO to N₂ with NH₃. In addition, the nf-MnO(x)@CNT catalyst also presented favourable stability and H₂O resistance.

  1. Electrical characterization of annealed chemical-bath-deposited CdS films and their application in superstrate configuration CdTe/CdS solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Graf, A., E-mail: aleksandr.graf@gmail.com [Department of Physics, Tallinn University of Technology, 5 Ehitajate tee, 19086 Tallinn (Estonia); Department of Materials Science, Tallinn University of Technology, 5 Ehitajate tee, 19086 Tallinn (Estonia); Maticiuc, N.; Spalatu, N.; Mikli, V. [Department of Materials Science, Tallinn University of Technology, 5 Ehitajate tee, 19086 Tallinn (Estonia); Mere, A. [Department of Physics, Tallinn University of Technology, 5 Ehitajate tee, 19086 Tallinn (Estonia); Department of Materials Science, Tallinn University of Technology, 5 Ehitajate tee, 19086 Tallinn (Estonia); Gavrilov, A. [Department of Physics, Tallinn University of Technology, 5 Ehitajate tee, 19086 Tallinn (Estonia); Hiie, J. [Department of Materials Science, Tallinn University of Technology, 5 Ehitajate tee, 19086 Tallinn (Estonia)

    2015-05-01

    Application of chemical-bath-deposited CdS in the superstrate configuration of CdTe/CdS solar cells involving CdCl{sub 2}:O{sub 2} heat treatment of CdTe/CdS structures at about 400 °C is problematic. Namely, the vertical capillary surfaces (grain boundaries) between the columnar CdS grains perform as fast diffusion channels leading to the emergence of short circuits between the absorber and front contact. It was assumed that the grain boundaries contain residual hydroxy-oxide type compounds and form electrical barriers between columnar grains in the lateral direction of the CdS layer and that the electrical methods should be indicative of the behavior of grain boundaries in the annealing process. All samples were characterized by temperature dependence of DC conductivity in a temperature range of 50-300 K, X-ray diffraction, and scanning electron microscope. It has been found that the deeper layers of H{sub 2} and N{sub 2} annealed CdS preserve residual hydroxide, which released the gas phase in the recrystallization process of the chloride processing and created porosity on the CdTe/CdS interface. - Highlights: • We examine interface of CdS/CdTe structures after chloride heat treatment. • The mechanism of the formation of porosity in the CdS/CdTe interface is suggested. • Chloride heat treatment causes also recrystallization of CdS. • The gap between CdS and CdTe is minimal due to CdO on the grain boundaries of CdS.

  2. Effect of deposition variables on properties of CBD ZnS thin films prepared in chemical bath of ZnSO4/SC(NH2)2/Na3C3H5O7/NH4OH

    Science.gov (United States)

    Liu, Wei-Long; Yang, Chang-Siao; Hsieh, Shu-Huei; Chen, Wen-Jauh; Fern, Chi-Lon

    2013-01-01

    The CBD ZnS thin films were prepared on substrates of soda lime glass in chemical bath. The effect of deposition variables including zinc sulfate, thiourea, tri-sodium citrate, ammoina water, bath temperature, and deposition time on the properties of CBD ZnS thin films were comprehensively studied. The CBD ZnS thin films were characterized by a field emission scanning electron microscope (FESEM) for the surface and cross section morphologies and thicknesses, an energy dispersive spectrometer equipped in FESEM for the atomic% of Zn and S, an ultraviolet-visible spectrometer (300-800 nm) for the transmittance and energy gap, and an atomic force microscope for the surface roughness. The results showed that the CBD ZnS thin films have a transmittance for ultraviolet-visible rays (300-800 nm) from 70.8 to 87.8%. The CBD ZnS thin films prepared in bath 5 have an energy gap from 3.881 to 3.980 eV. The CBD ZnS thin films prepared in bath 6 have a growth rate from 1.8 to 3.2 nm/min and activation energy of 59.8 kJ/mol for their growth.

  3. Structural,Morphological and Optical Properties of Well-Ordered CdO Nanostructures Synthesized by Easy-Economical Chemical Bath Deposition Technique

    Institute of Scientific and Technical Information of China (English)

    Sibel Morko Karadeniz; Tuba Kln; Burcu Bozkurt rak; Tuba Irmak Sakaoglu; agr rak; Mehmet Ertugrul; Ali Ercan Ekinci

    2016-01-01

    In this Study ,Cadmium Oxide (CdO) nanostructures were synthesized by using Chemical Bath Dep‐osition Technique .The synthesized process was carried out at room temperature .The structural and optical properties of nanostructures was characterized by XRD ,SEM and UV‐Vis techniques .As a result ,the CdO nanostructures are oriented along (111) plane of cubic crystal structure .The morphology of CdO nanostruc‐tures showed interconnected prism‐like and cauliflower‐type cluster nanostructure . The UV results of this structures with high absorbtion coefficient are observed to be in accordance with the CdO nanoparticles .

  4. Preparation of highly photocatalytic active CdS/TiO{sub 2} nanocomposites by combining chemical bath deposition and microwave-assisted hydrothermal synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Li, E-mail: qqhrll@163.com [College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Key Laboratory of Composite Modified Material of Colleges in Heilongjiang Province, Qiqihar 161006 (China); Wang, Lili [College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Hu, Tianyu [College of Environment and Resources, Jilin University, Changchun 130024 (China); Zhang, Wenzhi; Zhang, Xiuli; Chen, Xi [College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China)

    2014-10-15

    CdS/TiO{sub 2} nanocomposites were prepared from Cd and Ti (1:1 M ratio) using cetyltrimethylammonium bromide by a two-step chemical bath deposition (CBD) and microwave-assisted hydrothermal synthesis (MAHS) method. A series of nanocomposites with different morphologies and activities were prepared by varying the reaction time in the MAHS (2, 4, and 6 h). The crystal structure, morphology, and surface physicochemical properties of the nanocomposites were characterized by X-ray diffraction, UV–visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and N{sub 2} adsorption–desorption measurements. The results show that the CdS/TiO{sub 2} nanocomposites were composed of anatase TiO{sub 2} and hexagonal CdS phases with strong absorption in the visible region. The surface morphologies changed slightly with increasing microwave irradiation time, while the Brunauer–Emmett–Teller surface area increased remarkably. The photocatalytic degradation of methyl orange (MO) was investigated under UV light and simulated sunlight irradiation. The photocatalytic activity of the CdS/TiO{sub 2} (6 h) composites prepared by the MAHS method was higher than those of CdS, P25, and other CdS/TiO{sub 2} nanocomposites. The CdS/TiO{sub 2} (6 h) nanocomposites significantly affected the UV and microwave-assisted photocatalytic degradation of different dyes. To elucidate the photocatalytic reaction mechanism for the CdS/TiO{sub 2} nanocomposites, controlled experiments were performed by adding different radical scavengers. - Graphical abstract: CdS/TiO{sub 2} nanocomposites were prepared using CTAB by CBD combined with MAHS method. In addition, with increasing microwave irradiation time, the morphology of CdS/TiO{sub 2} changed from popcorn-like to wedge-like structure. - Highlights: • The CdS/TiO{sub 2} was prepared by CBD combined with MAHS two-step method under CTAB. • The morphologies of as-samples were different with the time of

  5. Photoluminescence study of polycrystalline photovoltaic CdS thin film layers grown by close-spaced sublimation and chemical bath deposition

    Science.gov (United States)

    Abken, Anke E.; Halliday, D. P.; Durose, Ken

    2009-03-01

    Photoluminescence (PL) measurements were used to study the effect of postdeposition treatments by annealing and CdCl2 activation on polycrystalline CdS layer grown by close-spaced sublimation (CSS) and chemical bath deposition (CBD). CdS films were either annealed in a temperature range of 200-600 °C or CdCl2 treated between 300-550 °C. The development of "red," "intermediate orange," "yellow," and "green" luminescence bands is discussed in comparison with PL assignments found in literature. PL spectra from CdS layer grown by CSS are dominated by the yellow band with transitions at 2.08 and 1.96 eV involving (Cdi-A), (VS-A) complex states where A represents an acceptor. Green luminescence bands are observed at 2.429 and 2.393 eV at higher annealing temperature of 500-600 °C or CdCl2 treatment above 450 °C, and these peaks are associated with zero and a longitudinal optical phonon replica of "free-to-bound" transitions. As grown CBD-CdS films show a prominent red band with four main peaks located at 1.43, 1.54, 1.65, and 1.77 eV, believed to be phonon replicas coupled with local vibrational modes. This remains following postdeposition treatment. The red luminescence is associated with VS surface states and in the case of CdCl2 treatment with (VCd-ClS) centers. Postdeposition treatments of CBD and CdS promote the evolution of an intermediate orange band at 2.00 eV, most likely a donor-acceptor pair, and a yellow band at 2.12 eV correlated with (Cdi-VCd) centers. The green luminescence bands observed at 2.25 and 2.34 eV are associated with transitions from deep donor states (e.g., Cdi) to the valence band. These states form due to crystallinity enhancement and lattice conversion during annealing or CdCl2 activation. Observed changes in PL bands provide detailed information about changes in radiative recombination centers in CdS layer, which are suggested to occur during device processing of CdTe/CdS thin film solar cells.

  6. Effect of deposition parameters and strontium doping on characteristics of nanostructured ZnO thin film by chemical bath deposition method

    Science.gov (United States)

    Sheeba, N. H.; Naduvath, J.; Abraham, A.; Weiss, M. P.; Diener, Z. J.; Remillard, S. K.; DeYoung, P. A.; Philip, R. R.

    2014-10-01

    Polycrystalline thin films of ZnO and Sr-doped ZnO (ZnO:Sr) on ultrasonically cleaned soda lime glass substrates are synthesized through successive ionic layer adsorption and reaction. The XRD profiles of ZnO and ZnO:Sr films prepared at different number of deposition cycles exhibit hexagonal wurtzite structure with preferred orientation along (002) direction. The crystallites are found to be nano sized, having variation in size with the increase in number of depositions cycles and also with Sr doping. Optical absorbance studies reveal a systematically controllable blueshift in band gap of Sr-doped ZnO films. SEM images indicate enhanced assembling of crystallites to form elongated rods as number of dips increased in Sr doped ZnO. The films are found to be n-type with the Sr doping having little effect on the electrical properties.

  7. Effect of deposition parameters and strontium doping on characteristics of nanostructured ZnO thin film by chemical bath deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Sheeba, N. H., E-mail: sheebames.naser@gmail.com [M.E.S. Asmabi College, P. Vemballur, Thrissur, Kerala (India); Naduvath, J., E-mail: johnsnaduvath@gmail.com [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology, Mumbai (India); Abraham, A., E-mail: anithakklm@gmail.com; Philip, R. R., E-mail: reenatara@rediffmail.com [Thin Film Research Lab, U.C. College, Aluva, Kerala (India); Weiss, M. P., E-mail: matthew@hope.edu, E-mail: zachary.diener@hope.edu, E-mail: remillard@hope.edu, E-mail: deyoung@hope.edu; Diener, Z. J., E-mail: matthew@hope.edu, E-mail: zachary.diener@hope.edu, E-mail: remillard@hope.edu, E-mail: deyoung@hope.edu; Remillard, S. K., E-mail: matthew@hope.edu, E-mail: zachary.diener@hope.edu, E-mail: remillard@hope.edu, E-mail: deyoung@hope.edu; DeYoung, P. A., E-mail: matthew@hope.edu, E-mail: zachary.diener@hope.edu, E-mail: remillard@hope.edu, E-mail: deyoung@hope.edu [Hope Ion Beam Accelerator Laboratory, Hope College, Holland, MI (United States)

    2014-10-15

    Polycrystalline thin films of ZnO and Sr-doped ZnO (ZnO:Sr) on ultrasonically cleaned soda lime glass substrates are synthesized through successive ionic layer adsorption and reaction. The XRD profiles of ZnO and ZnO:Sr films prepared at different number of deposition cycles exhibit hexagonal wurtzite structure with preferred orientation along (002) direction. The crystallites are found to be nano sized, having variation in size with the increase in number of depositions cycles and also with Sr doping. Optical absorbance studies reveal a systematically controllable blueshift in band gap of Sr-doped ZnO films. SEM images indicate enhanced assembling of crystallites to form elongated rods as number of dips increased in Sr doped ZnO. The films are found to be n-type with the Sr doping having little effect on the electrical properties.

  8. Chemically deposited tin sulphide

    Energy Technology Data Exchange (ETDEWEB)

    Akkari, A., E-mail: anis.akkari@ies.univ-montp2.f [Laboratoire de Physique de la Matiere Condensee, Faculte des Sciences de Tunis El Manar, Tunisie 2092 (Tunisia); Institut d' Electronique du Sud, Unite Mixte de Recherche 5214 UM2-CNRS (ST2i), Universite Montpellier 2, Place Eugene Bataillon, CC 082, 34095 Montpellier Cedex 5 (France); Guasch, C. [Institut d' Electronique du Sud, Unite Mixte de Recherche 5214 UM2-CNRS (ST2i), Universite Montpellier 2, Place Eugene Bataillon, CC 082, 34095 Montpellier Cedex 5 (France); Kamoun-Turki, N. [Laboratoire de Physique de la Matiere Condensee, Faculte des Sciences de Tunis El Manar, Tunisie 2092 (Tunisia)

    2010-02-04

    SnS thin films were deposited on glass substrates after multi-deposition runs by chemical bath deposition from aqueous solution containing 30 ml triethanolamine (TEA) (C{sub 6}H{sub 15}NO{sub 3}) (50%), 10 ml thioacetamide (CH{sub 3}CSNH{sub 2}), 8 ml ammonia (NH{sub 3}) solution and 10 ml of Sn{sup 2+}(0.1 M). These films were characterised with X-ray diffraction (XRD), with scanning electron microscopy, and with spectrophotometric measurements. The obtained thin films exhibit the zinc blend structure, the crystallinity seems to be improved as the film thickness increases and the band gap energy is found to be about 1.76 eV for film prepared after six depositions runs.

  9. Polycrystalline materials by chemical-bath-deposition for their application in thin film solar cells; Materiales policristalino depositados por bano quimico alternativos al sulfuro de cadmio para su aplicacion en celulas solares de lamina delgada

    Energy Technology Data Exchange (ETDEWEB)

    Bayon Cabeza, M. R. [Ciemat. Madrid (Spain)

    2000-07-01

    In the last years, chemical-bath-deposition (CBD) has been proven to be an excellent method for preparing sulphide and selenide-based thin film semiconductors. due to their optoelectronic properties, some of those materials can be used in thin film solar cells either as absorbers or as buffer-window-layers. In this way, the chemical-bath-deposition seems to be the best method for preparing the cadmium sulphide-buffer layer which is present in the thin film solar cells based on chalcopyrite absorbers (CIS or CIGS) because the highest efficiencies (about 19%) have been achieved for devices using buffer layer. Nowadays there has been considerable interest in replacing this compound, said toxic, by other CBD-semiconductors with similar or even better properties than the cadmium sulphide and, if possible, less health hazardous and more environmental friendly. Among all the alternative materials that have been studied, both the indium and the zinc hydroxisulphide have produced the best performance devices leading to efficiencies higher than 14%. Despite the good results obtained using those materials, only a few studies have been found in relation to the chemical bath process, the growth mechanism and the structural, optoelectronic and morphological properties of the thin films. Therefore the aim of this work is to prepare CBD-indium, indium-zinc and indium-cadmium hydroxisulphide thin films in order to study dependence of the film properties on the deposition conditions and to prove the suitability of those films for being used as alternative buffer layers in thin film solar cells. (Author)

  10. The effect of processing conditions on the structural morphology and physical properties of ZnO and CdS thin films produced via sol-gel synthesis and chemical bath deposition techniques

    Science.gov (United States)

    Salam, Shahzad; Islam, Mohammad; Alam, Mahboob; Akram, Aftab; Ikram, Mujtaba; Mahmood, Asif; Khan, Majid; Mujahid, Mohammad

    2011-12-01

    Cadmium sulfide (CdS) and zinc oxide (ZnO) are used in thin film solar cells as buffer layer and transparent conducting oxide, respectively. The effect of annealing conditions on the morphology and physical properties of CdS and ZnO films prepared using chemical bath deposition and sol-gel synthesis techniques, respectively, was investigated. CdS films obtained from the chemical bath deposition (CBD) process were found to be polycrystalline with dense granular morphology. Electrical characterization of the films annealed at 400 °C for 10 min yielded values of 2.2×10-3 Ω cm and 8.3×1012 cm-3 for resistivity and carrier concentration, respectively. Scanning electron microscopy (SEM) and x-ray diffraction (XRD) studies of intrinsic zinc oxide (i-ZnO) films revealed flake-like morphology and transformation of the as-deposited amorphous structure into a hexagonal wurtzite crystal structure upon annealing at 500 °C for 2 h. Optical and electrical characterization results showed that such films had ~80% transmittance and resistivity values as low as 6.4×102 Ω cm. These films are being explored for fabrication and testing of copper-indium-gallium-(di)selenide (CIGS) thin film solar cells obtained from simple, cost-effective, solution-based synthesis routes.

  11. Electroless Ni-B deposition from an emulsified supercritical carbon dioxide bath

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hung-Yu; Chung, Sung-Ting; Chuang, Yan-Chi [Department of Materials Science and Engineering, National Chung Kung University, Tainan 70101, Taiwan (China); Tsai, Wen-Ta, E-mail: wttsai@mail.ncku.edu.t [Department of Materials Science and Engineering, National Chung Kung University, Tainan 70101, Taiwan (China)

    2010-10-01

    The electroless deposition of boron-containing Ni (EN-B) film from a supercritical carbon dioxide (sc-CO{sub 2}) bath was introduced. The deposition rate in sc-CO{sub 2} bath was one order of magnitude lower than that at ambient pressure without the presence of sc-CO{sub 2}. A more uniform chemical composition of the EN-B film could be obtained if it was deposited in the sc-CO{sub 2} bath. X-ray diffraction analyses revealed that the as-deposited film was amorphous in nature, despite of the deposition condition. Deposition defects such as cracks and voids could be avoided if the deposition was conducted in the sc-CO{sub 2} bath. Crystallization and boride precipitation were found after heat treatment at 400 {sup o}C for 1 h. The EN-B film deposited from the sc-CO{sub 2} bath had a higher hardness as compared with that of the normal EN-B coating. A substantial increase in hardness was obtained due to boride precipitation.

  12. Studies on chemical bath deposited CdS buffer layers for CIGS thin film solar cells%CIGS薄膜太阳能电池缓冲层CdS薄膜的制备研究

    Institute of Scientific and Technical Information of China (English)

    何丽秋

    2016-01-01

    目前CdS材料的制备方法有很多种,但是最常用的是化学水浴法。本文研究了浓度、反应溶液pH值、温度、沉积时间对CdS缓冲层薄膜的影响,对CIGS薄膜太阳能电池缓冲层CdS薄膜的制备方法进行了论述。%At present,the preparation methods of CdS has many kinds,The chemical bath deposition(CBD)is the most commonly method.In this review,the effects of concentration,pH,temperature and deposition time on the CdS buffer layer were studied.The preparation methods of CIGS thin film for CdS thin film solar cells were discussed.

  13. Structural analysis of CdS thin films obtained by multiple dips of oscillating chemical bath

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez Lazos, C.D. [Seccion de Electronica del Estado Solido, Centro de Investigacion y de Estudios Avanzados, Av. Instituto Politecnico Nacional 2508, Col. San Pedro Zacatenco, 07360 Mexico, D.F. (Mexico); Rosendo, E., E-mail: erosendo@siu.buap.m [Centro de Investigacion en Dispositivos Semiconductores, Universidad Autonoma de Puebla, 14 Sur y San Claudio, Col. San Manuel, C.P. 72570, Puebla (Mexico); Ortega, M. [Seccion de Electronica del Estado Solido, Centro de Investigacion y de Estudios Avanzados, Av. Instituto Politecnico Nacional 2508, Col. San Pedro Zacatenco, 07360 Mexico, D.F. (Mexico); Oliva, A.I. [Departamento de Fisica Aplicada, Centro de Investigacion y de Estudios Avanzados, Unidad Merida, A.P. 73 Cordemex, 97310 Merida, Yucatan (Mexico); Tapia, O.; Diaz, T.; Juarez, H.; Garcia, G. [Centro de Investigacion en Dispositivos Semiconductores, Universidad Autonoma de Puebla, 14 Sur y San Claudio, Col. San Manuel, C.P. 72570, Puebla (Mexico); Rubin, M. [Facultad de Ciencias de la Computacion, 14 Sur y San Claudio, Col. San Manuel, C.P. 72570, Puebla (Mexico)

    2009-11-25

    Highly oriented CdS thin films with thicknesses greater than 1 mum were deposited by multiple dips, using oscillating chemical bath deposition (OCBD) at the bath temperature of 75 deg. C, and deposition time ranging from 15 to 75 min for a single dip. Samples with different thickness were prepared by repeating the deposition process for two and three times. The films deposited by a single dip have the alpha-greenockite structure showing the (0 0 2) as preferred orientation, as indicated by the X-ray diffraction measurements. This notable characteristic is preserved in the samples obtained from two or three dips. The crystallite size for the samples deposited by a single dip depends on the deposition time, because it varied from 23 to 37 nm as the deposition time increased. Nevertheless for samples deposited by two and three dips, the grain size shows no noticeable change, being about 22 nm.

  14. Spray-Pyrolyzed Three-Dimensional CuInS2 Solar Cells on Nanocrystalline-Titania Electrodes with Chemical-Bath-Deposited Inx(OH)ySz Buffer Layers

    Science.gov (United States)

    Nguyen, Duy-Cuong; Mikami, Yuki; Tsujimoto, Kazuki; Ryo, Toshihiro; Ito, Seigo

    2012-10-01

    Three-dimensional (3D) compound solar cells with the structure of TiO2/compact TiO2/florin-doped tin-oxide-coated glass plates> have been fabricated by spray pyrolysis deposition of CuInS2 and chemical-bath deposition of Inx(OH)ySz for the light absorber and buffer layer, respectively. The effect of deposition and annealing conditions of Inx(OH)ySz on the photovoltaic properties of 3D CuInS2 solar cells was investigated. Inx(OH)ySz annealed in air ambient showed a better cell performance than those annealed in nitrogen ambient and without annealing. The improvement of the performance of cells with Inx(OH)ySz buffer layers annealed in air ambient is due to the increase in oxide concentration in the buffer layers [confirmed by X-ray photoelectron spectroscopy (XPS) measurement]. Among cells with Inx(OH)ySz buffer layers deposited for 1, 1.5, 1.75, and 2 h, that with Inx(OH)ySz deposited for 1.75 h showed the best cell performance. The best cell performance was observed for Inx(OH)ySz deposited for 1.75 h with annealing at 300 °C for 30 min in air ambient, and cell parameters were 22 mA cm-2 short-circuit photocurrent density, 0.41 V open-circuit voltage, 0.35 fill factor, and 3.2% conversion efficiency.

  15. Chemical bath deposition of ZnO nanowires at near-neutral pH conditions without hexamethylenetetramine (HMTA): understanding the role of HMTA in ZnO nanowire growth.

    Science.gov (United States)

    McPeak, Kevin M; Le, Thinh P; Britton, Nathan G; Nickolov, Zhorro S; Elabd, Yossef A; Baxter, Jason B

    2011-04-05

    Chemical bath deposition (CBD) is an inexpensive and reproducible method for depositing ZnO nanowire arrays over large areas. The aqueous Zn(NO(3))(2)-hexamethylenetetramine (HMTA) chemistry is one of the most common CBD chemistries for ZnO nanowire synthesis, but some details of the reaction mechanism are still not well-understood. Here, we report the use of in situ attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy to study HMTA adsorption from aqueous solutions onto ZnO nanoparticle films and show that HMTA does not adsorb on ZnO. This result refutes earlier claims that the anisotropic morphology arises from HMTA adsorbing onto and capping the ZnO {10 1 0} faces. We conclude that the role of HMTA in the CBD of ZnO nanowires is only to control the saturation index of ZnO. Furthermore, we demonstrate the first deposition of ZnO nanowire arrays at 90 °C and near-neutral pH conditions without HMTA. Nanowires were grown using the pH buffer 2-(N-morpholino)ethanesulfonic acid (MES) and continuous titratation with KOH to maintain the same pH conditions where growth with HMTA occurs. This semi-batch synthetic method opens many new opportunities to tailor the ZnO morphology and properties by independently controlling temperature and pH.

  16. Optical and structural study of In{sub 2}S{sub 3} thin films growth by co-evaporation and chemical bath deposition (CBD) on Cu{sub 3}BiS{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Mesa, F., E-mail: fgmesar@unal.edu.co [Unidad de Estudios Universitarios, Colegio Mayor de Nuestra Señora del Rosario, Cra. 24 N° 63C-69, Bogotá (Colombia); Chamorro, W. [Université de Lorraine, Institut Jean Lamour, Nancy (France); Hurtado, M. [Departamento de Quimica, Universidad Nacional de Colombia, Cra. 30 N° 45-03, Bogotá (Colombia); Departamento de Física, Universidad de los Andes, Calle 21 No. 1-20, Bogotá (Colombia)

    2015-09-30

    Highlights: • In{sub 2}S{sub 3} thin films usually grow like an ultrathin. • Samples grown by CBD have a higher degree of coverage of the substrate unlike co-evaporation method. • Solar cells of Al/TCO/In{sub 2}S{sub 3}/Cu{sub 3}BiS{sub 3}/Mo structure. • In{sub 2}S{sub 3} thin films were deposited on Cu{sub 3}BiS{sub 3} (CBS), with of In{sub 2}S{sub 3} β-phase with tetragonal structure. - Abstract: We present the growth of In{sub 2}S{sub 3} onto Cu{sub 3}BiS{sub 3} layers and soda-lime glass (SLG) substrates by using chemical bath deposition (CBD) and physical co-evaporation. The results reveal that the microstructure and the optical properties of the In{sub 2}S{sub 3} films are highly dependent on the growth method. X-ray diffractrograms show that In{sub 2}S{sub 3} films have a higher crystallinity when growing by co-evaporation than by CBD. In{sub 2}S{sub 3} thin films grown by CBD with a thickness below 170 nm have an amorphous structure however when increasing the thickness the films exhibit two diffraction peaks associated to the (1 0 3) and (1 0 7) planes of the β-In{sub 2}S{sub 3} tetragonal structure. It was also found that the In{sub 2}S{sub 3} films present an energy bandgap (E{sub g}) of about 2.75 eV, regardless of the thickness of the samples.

  17. In{sub 6}Se{sub 7} thin films by heating thermally evaporated indium and chemical bath deposited selenium multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Ornelas, R.E.; Avellaneda, D. [Universidad Autonoma de Nuevo Leon, Facultad de Ingenieria Mecanica y Electrica, San Nicolas de los Garza, Nuevo Leon-66450 (Mexico); Shaji, S. [Universidad Autonoma de Nuevo Leon, Facultad de Ingenieria Mecanica y Electrica, San Nicolas de los Garza, Nuevo Leon-66450 (Mexico); Universidad Autonoma de Nuevo Leon-CIIDIT, Apodaca, N.L (Mexico); Castillo, G.A.; Roy, T.K. Das [Universidad Autonoma de Nuevo Leon, Facultad de Ingenieria Mecanica y Electrica, San Nicolas de los Garza, Nuevo Leon-66450 (Mexico); Krishnan, B., E-mail: kbindu_k@yahoo.com [Universidad Autonoma de Nuevo Leon, Facultad de Ingenieria Mecanica y Electrica, San Nicolas de los Garza, Nuevo Leon-66450 (Mexico); Universidad Autonoma de Nuevo Leon-CIIDIT, Apodaca, N.L (Mexico)

    2012-05-15

    Indium selenide (In{sub 6}Se{sub 7}) thin films were prepared via selenization of thermally evaporated indium thin films by dipping in sodium selenosulphate solution followed by annealing in nitrogen atmosphere. First, indium was thermally evaporated on glass substrate. Then, the indium coated glass substrates were dipped in a solution containing 80 ml 0.125 M sodium selenosulphate and 1.5 ml dilute acetic acid (25%) for 5 min. Glass/In-Se layers were annealed at 200-400 Degree-Sign C in nitrogen atmosphere (0.1 Torr) for 30 min. X-ray diffraction studies showed the formation of monoclinic In{sub 6}Se{sub 7}. Morphology of the thin films formed at different conditions was analyzed using Scanning electron microscopy. The elemental analysis was done using Energy dispersive X-ray detection. Electrical conductivity under dark and illumination conditions was evaluated. Optical band gap was computed using transmittance and reflectance spectra. The band gap value was in the range 1.8-2.6 eV corresponding to a direct allowed transition. We studied the effect of indium layer thickness and selenium deposition time on the structure, electrical and optical properties of In{sub 6}Se{sub 7} thin films.

  18. Enhanced photovoltaic performance and time varied controllable growth of a CuS nanoplatelet structured thin film and its application as an efficient counter electrode for quantum dot-sensitized solar cells via a cost-effective chemical bath deposition.

    Science.gov (United States)

    Thulasi-Varma, Chebrolu Venkata; Rao, S Srinivasa; Kumar, Challa Shesha Sai Pavan; Gopi, Chandu V V M; Durga, I Kanaka; Kim, Soo-Kyoung; Punnoose, Dinah; Kim, Hee-Je

    2015-11-28

    For the first time we report a simple synthetic strategy to prepare copper sulfide counter electrodes on fluorine-doped tin oxide (FTO) substrates using the inexpensive chemical bath deposition method in the presence of hydrochloric acid (HCl) at different deposition times. CuS nanoplatelet structures were uniformly grown on the FTO substrate with a good dispersion and optimized conditions. The growth process of the CuS nanoplatelets can be controlled by changing the deposition time in the presence of HCl. HCl acts as a complexing agent as well as improving S(2-) concentration against S atoms in this one-step preparation. The photovoltaic performance was significantly improved in terms of the power conversion efficiency (PCE), short-circuit density (J(sc)), open-circuit voltage (V(oc)), and the fill factor (FF). The optimized deposition time of CuS 60 min resulted in a higher PCE of 4.06%, J(sc) of 12.92 mA cm(-2), V(oc) of 0.60 V, and a FF of 0.52 compared to CuS 50 min, CuS 70 min, and a Pt CE. The superior performance of the 60 min sample is due to the greater electrocatalytic activity and low charge transfer resistance at the interface of the CE and the polysulfide electrolyte. The concentration of Cu/S also had an important role in the formation of the CuS nanoplatelet structures. The optical bandgaps for the CuS with different morphologies were measured to be in the range of 1.98-2.28 eV. This improved photovoltaic performance is mainly attributed to the greater number of active reaction sites created by the CuS layer on the FTO substrate, which results large specific surface, superior electrical conductivity, low charge transfer resistance, and faster electron transport in the presence of HCl. Cyclic voltammetry, electrochemical impedance spectroscopy and Tafel-polarization measurements were used to investigate the electrocatalytic activity of the CuS and Pt CEs. This synthetic procedure not only provides high electrocatalytic activity for QDSSCs but could

  19. Characterization of CdTe Films Deposited at Various Bath Temperatures and Concentrations Using Electrophoretic Deposition

    Directory of Open Access Journals (Sweden)

    Zulkarnain Zainal

    2012-05-01

    Full Text Available CdTe film was deposited using the electrophoretic deposition technique onto an ITO glass at various bath temperatures. Four batch film compositions were used by mixing 1 to 4 wt% concentration of CdTe powder with 10 mL of a solution of methanol and toluene. X-ray Diffraction analysis showed that the films exhibited polycrystalline nature of zinc-blende structure with the (111 orientation as the most prominent peak. From the Atomic Force Microscopy, the thickness and surface roughness of the CdTe film increased with the increase of CdTe concentration. The optical energy band gap of film decreased with the increase of CdTe concentration, and with the increase of isothermal bath temperature. The film thickness increased with respect to the increase of CdTe concentration and bath temperature, and following, the numerical expression for the film thickness with respect to these two variables has been established.

  20. Characterization of CdTe films deposited at various bath temperatures and concentrations using electrophoretic deposition.

    Science.gov (United States)

    Daud, Mohd Norizam Md; Zakaria, Azmi; Jafari, Atefeh; Ghazali, Mohd Sabri Mohd; Abdullah, Wan Rafizah Wan; Zainal, Zulkarnain

    2012-01-01

    CdTe film was deposited using the electrophoretic deposition technique onto an ITO glass at various bath temperatures. Four batch film compositions were used by mixing 1 to 4 wt% concentration of CdTe powder with 10 mL of a solution of methanol and toluene. X-ray Diffraction analysis showed that the films exhibited polycrystalline nature of zinc-blende structure with the (111) orientation as the most prominent peak. From the Atomic Force Microscopy, the thickness and surface roughness of the CdTe film increased with the increase of CdTe concentration. The optical energy band gap of film decreased with the increase of CdTe concentration, and with the increase of isothermal bath temperature. The film thickness increased with respect to the increase of CdTe concentration and bath temperature, and following, the numerical expression for the film thickness with respect to these two variables has been established.

  1. Nanocrystalline CdS{sub 1−x}Se{sub x} alloys as thin films prepared by chemical bath deposition: Effect of x on the structural and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Ramirez, E.A. [Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, CP 07738, México D.F. (Mexico); Hernandez-Perez, M.A., E-mail: mhernandezp0606@ipn.mx [Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, CP 07738, México D.F. (Mexico); Aguilar-Hernandez, J. [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, CP 07738, México D.F. (Mexico); Rangel-Salinas, E. [Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, CP 07738, México D.F. (Mexico)

    2014-12-05

    Highlights: • CdS1−xSe{sub x} films with tunable structural and optical properties were grown by CBD. • Thin films are composed by a solid solution of the CdS{sub 1−x}Se{sub x} ternary alloy. • Crystal size, band gap and photoluminescence signal, decrease with the composition. • Ternary alloys show hexagonal phase with preferential orientation on (0 0 2) plane. • Films with x ⩾ 0.5 show semi-spherical grains composed by nanoworms structures. - Abstract: CdS{sub 1−x}Se{sub x} thin films were deposited on Corning glass substrates at 75 °C by chemical bath deposition (CBD) varying the composition “x” from 0 to 1 at a constant deposition time of 120 min. The composition of the films was adjusted by modifying the concentration as well as the ratio of the precursors. The morphological, compositional, structural and optical properties of the films were analyzed using several techniques such as Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), X-ray Diffraction (XRD), UV–Vis Spectroscopy (UV–Vis) and Photoluminescence (PL). The films grow as layers following the ion by ion mechanism, the density of the films decreases with x. Films are constituted by clusters (100–600 nm in diameter) of semispherical particles with sizes fluctuating from 10 to 20 nm. For x ⩾ 0.5 the particles are well-arranged in a “worm-like” structure. All the films are polycrystalline, to x = 0 (CdS) the cubic phase is present, the increase of composition promotes the formation of hexagonal phase or a mixture of both cubic and hexagonal phases. Preferential orientation in the (1 0 0) or (0 0 2) plane is observed. The crystal size decreases from 20 to 6 nm when x is increased. The optical properties can be easily tuned by adjusting the composition. Optical absorption analysis shows that the band gap (E{sub g}) value shifts to red in function of x (from 2.47 to 1.99 eV). Photoluminescence signal changes as “x” varies showing a regular behavior

  2. Characterization of CdTe Films Deposited at Various Bath Temperatures and Concentrations Using Electrophoretic Deposition

    OpenAIRE

    Zulkarnain Zainal; Mohd Norizam Md Daud; Azmi Zakaria; Mohd Sabri Mohd Ghazali; Atefeh Jafari; Wan Rafizah Wan Abdullah

    2012-01-01

    CdTe film was deposited using the electrophoretic deposition technique onto an ITO glass at various bath temperatures. Four batch film compositions were used by mixing 1 to 4 wt% concentration of CdTe powder with 10 mL of a solution of methanol and toluene. X-ray Diffraction analysis showed that the films exhibited polycrystalline nature of zinc-blende structure with the (111) orientation as the most prominent peak. From the Atomic Force Microscopy, the thickness and surface roughness of the ...

  3. Effects of Sodium Citrate Concentration on Electroless Ni-Fe Bath Stability and Deposition

    Science.gov (United States)

    Jung, Myung-Won; Kang, Sung K.; Lee, Jae-Ho

    2014-01-01

    In this research, electroless Ni-Fe bath stability and deposition characteristics were investigated for various sodium citrate concentrations. Complexing agents such as sodium citrate are one of the main components of such electroless plating baths. Since they could play various roles such as maintaining pH stability, preventing precipitation of metal salts, and reducing the concentrations of free metal ions, the concentration of complexing agents in the plating bath is an important parameter for electroless deposition processes. In this research, unstable baths were obtained for insufficient sodium citrate concentrations, and these phenomena were analyzed with ChemEQL. Moreover, the deposition characteristics of electroless Ni-Fe for under bump metallurgy diffusion barriers were also investigated using energy-dispersive spectroscopy and field-emission scanning electron microscopy.

  4. PREPARATION AND ANALYSIS OF Ni-P-Zn ELECTROLESS DEPOSITION FROM ALKALT BATH

    Institute of Scientific and Technical Information of China (English)

    Y.S. Huang; F.Z. Cui

    2005-01-01

    Electroless Ni-P-Zn alloys deposited from alkali bath were investigated in this paper. The deposition bath contained nickel sulfate, zinc chloride and hypophosphate. The process parameters, such as temperature, pH and zinc salt concentration were presented and discussed.The microstructure of the coatings was studied by XRD and SEM. The cathode glowing discharge characters of Ni-P-Zn depositions were studied with luminous Neon lamps. Electrodes deposited by electroless Ni-P alloys were apt to sputter during luminous working hours. Electroless Ni-P-Zn depositions improved the discharge characters of the electrodes.With the concentration of zinc in the deposition rising to 4wt%, electrode sputter was largely restrained. The thickness of the deposition also influenced the discharge characters of the electrode. To avoid electrode sputter, the concentration of zinc has to rise with the thickness of the depositions.

  5. Dual Bath Electrodeposition of Alternate Multilayer Coatings of Zinc and Nickel Deposits

    Institute of Scientific and Technical Information of China (English)

    XINWen-li; FEIJing-yin; LIANGGuo-zheng

    2004-01-01

    The synthesis of zinc and nickel alternate multilayer coatings produced by successive deposition from dual baths containing a revised zinc sulphate electrolyte and a new developed nickel bath has been investigated. Smooth and uniform zinc-nickel compositionally modulated multilayered (CMM) coatings with different multilayer configurations were obtained. The surface and cross-sectional morphologies of samples were examined using scanning electron microscopy (SEM). Cross-sectional morphology showed the layered structure of the coatings clearly.

  6. Spectral response of CdS/CdTe solar cells obtained with different S/Cd ratios for the CdS chemical bath

    Energy Technology Data Exchange (ETDEWEB)

    Vigil-Galan, O.; Sastre-Hernandez, J.; Contreras-Puente, G.; Tufino-Velazquez, M. [Escuela Superior de Fisica y Matematicas, Instituto Politecnico Nacional, 07738 Mexico D. F. (Mexico); Arias-Carbajal, A. [Facultad de Quimica, IMRE, Universidad de La Habana, 10400 La Habana (Cuba); Mendoza-Perez, R. [Universidad Autonoma de la Ciudad de Mexico, 09970 Mexico, D. F. (Mexico); Santana, G. [Instituto de Investigacion en Materiales, UNAM, 04510 Mexico, D. F. (Mexico); Morales-Acevedo, A. [Departamento de Ingenieria Electrica, CINVESTAV-IPN, 07360 Mexico, D. F. (Mexico)

    2006-09-22

    In this work, the influence of the variation of chemical bath thiourea concentration in the solution for depositing CdS layers upon the spectral response of chemical bath deposition (CBD)-CdS/CdTe solar cells is studied. Although changes in the short and long wavelength range for the spectral response of the cells were observed in dependence of the thiourea concentration, no significant changes were observed in the diffusion length of minority carriers in the CdTe layer, as determined from the constant photocurrent method, when the thiourea concentration is increased in the CdS deposition solution. (author)

  7. Direct electroless Ni-P deposition on AM50 magnesium alloy from sulfate bath

    Institute of Scientific and Technical Information of China (English)

    LI Guang-yu; NIU Li-yuan; JIANG Zhong-hao; GU Chang-dong; LIAN Jian-she

    2006-01-01

    A bright electroless Ni-P deposition on AM50 magnesium alloy in a sulfate plating bath was proposed by using direct plating process with non-chromate pretreatment. The electroless Ni-P plating on AM50 magnesium alloy has an admirable appearance and good adhesion. The results indicate that the electroless Ni-P deposition with non-chromate pretreatment has better adhesion than that of zinc immersion coating. Anodic polarization curves indicate that the electroless Ni-P deposition obtained from the sulfate bath has similar corrosion-resistance to that obtained from basic nickel carbonate bath. The deposition process generates less pollutant by a non-chromate plating bath and is suitable for the magnesium alloys manufacture because of its low cost. The hardness of the electroless Ni-P plated AM50 is about HV 720.6 and HV 969.7 after heat treatments at 180 ℃ for 2 h. The wear resistance of Ni-P plated magnesium alloy specimens is about 5 to 9 times as high as that of bare magnesium alloys.

  8. Dual Bath Electrodeposition of Alternate Multilayer Coatings of Zinc and Nickel Deposits

    Institute of Scientific and Technical Information of China (English)

    XIN Wen-li; FEI Jing-yin; LIANG Guo-zheng

    2004-01-01

    The synthesis of zinc and nickel alternate multilayer coatings produced by successive deposition from dual baths containing a revised zinc sulphate electrolyte and a new developed nickel bath has been investigated. Smooth and uniform zinc-nickel compositionally modulated multilayered (CMM) coatings with different multilayer configurations were obtained. The surface and cross-sectional morphologies of samples were examined using scanning electron microscopy (SEM). Cross-sectional morphology showed the layered structure of the coatings clearly.Key Words: multilayer coating, electrodeposited zinc and nickel, electrodeposition

  9. Preparation of In2S3 Sensitized Solar Cells with Chemical Bath Deposition and Their Performance%化学浴沉积方法制备硫化铟敏化太阳电池及其性能研究

    Institute of Scientific and Technical Information of China (English)

    朱俊; 张耀红; 胡林华; 戴松元

    2013-01-01

    In2S3 is a stable semiconductor material with low toxicity. We prepared In2S3 sensitized solar cel s using low-cost chemical bath deposition methodology. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) were used to reveal the microstructure of the In2S3 sensitized TiO2 nanoporous films. Our results indicated that the deposition temperature has a remarkable effect on the morphology of In2S3 sensitized TiO2 films, which in turn affects the photovoltaic performance of devices. When the deposition temperature was low, the deposition reaction rate was slow, resulting in only minimal deposition. However, if the deposition temperature was increased too much, there was insufficient time for the In2S3 to be deposited within the internal pore structure of the TiO2 mesoporous films. The best homogeneous In2S3 sensitized TiO2 films were obtained with a deposition temperature of 40 °C. At this temperature, the optical absorption of the resulting film was optimal and displayed the largest short circuit current density among the films examined. Moreover, the fil factor was also the best, approaching 65%. The best overal power conversion efficiency was 0.32%.%  硫化铟是一种稳定、低毒性的半导体材料.本文采用低成本的化学浴沉积方法制备了硫化铟敏化太阳电池, X射线衍射(XRD)、光电子能谱(XPS)和扫描电镜(SEM)结果表明形成了硫化铟敏化的二氧化钛薄膜.化学浴沉积温度对所得硫化铟敏化薄膜的形貌有显著的影响,进而影响电池性能.温度太低时,化学浴沉积反应速率太低,只发生少量沉积;温度太高时,化学浴沉积反应速率较快,硫化铟来不及沉积到二氧化钛多孔薄膜内部.当温度在40°C时,硫化铟沉积均匀性最好,薄膜的光吸收性能最佳,电池的短路电流最大,另外,填充因子达到最佳,为65%,电池总体光电转换效率为0.32%.

  10. Electroless Ni-P Deposition on Magnesium Alloy from a Sulfate Bath

    Institute of Scientific and Technical Information of China (English)

    LI Guangyu; NIU Liyuan; JIANG Qing; JIANG Zhonghao; LIAN Jianshe

    2008-01-01

    A technology for electroless Ni-P deposition on AZ91D from a low cost plating bath containing sulfate nickel was proposed.The seal pretreatment was employed before the electroless Ni-P deposition for the sake of occluding the micro holes of the cast magnesium alloy and interdicting the bubble formation in the Ni-P coating during plating process.And pickling pretreatment can provide a better adhesion between the Ni-P deposition and AZ91D substrate.The deposition speed of the Ni-P coating is 29 um/h.The technology is employed to AZ91D magnesium alloy automobile parts and can provide high hardness and high wear-resistant.The weight losses of Ni-P plated and heat-treated Ni-P plated magnesium alloy specimen are only about I/6 and 1/10 that of bare magnesium alloy specimen after l0 min abrasion wear,respectively.The hardness of the electroless Ni-P plated brake pedal support brackets is 674.1 VHN and 935.7 VHN after 2 hours heat treatments at 180 C.The adhesion of Ni-P coatings on magnesium alloy substrates meets the demands of ISO Standards 2819.The technology is environment friendly and cannot cause hazard to environment because of absence of chromate in the whole process.

  11. Simple Chemical Vapor Deposition Experiment

    Science.gov (United States)

    Pedersen, Henrik

    2014-01-01

    Chemical vapor deposition (CVD) is a process commonly used for the synthesis of thin films for several important technological applications, for example, microelectronics, hard coatings, and smart windows. Unfortunately, the complexity and prohibitive cost of CVD equipment makes it seldom available for undergraduate chemistry students. Here, a…

  12. Effect of plating time on growth of nanocrystalline Ni–P from sulphate/glycine bath by electroless deposition method

    Indian Academy of Sciences (India)

    N Latha; V Raj; M Selvam

    2013-08-01

    Nanocrystalline nickel phosphorus (NC-Ni–P) deposits from sulphate/glycine bath using a simple electroless deposition process is demonstrated. In the present investigation, nanoporous alumina films are formed on the aluminium surface by anodization process followed by deposition of nickel onto the pores by electroless plating method. Anodic aluminium oxide surface was first sensitized and activated by using palladium chloride solution before immersing into the electroless nickel bath. Electroless nickel plating was carried out from the optimized bath by changing the deposition time from 20 to 1800 s at a constant temperature of 80 °C and a pH of 4.0. Surface morphology, elemental composition, structure and reflectance of the deposits have been analysed by using scanning electron microscopy, atomic force microscopy, energy dispersive X-ray analysis, X-ray diffractometry and UV-visible spectroscopic studies, respectively. Electroless nickel deposits formed at an early stage produces dense uniform nanocrystals containing higher percentage of atomic phosphorus with cubic Ni (111) structure. As the deposition time increased, nanocrystalline sharp peak became amorphous and dimension of the crystal size varied from 54 to 72 nm.

  13. Electrolytic deposition and corrosion resistance of Zn–Ni coatings obtained from sulphate-chloride bath

    Indian Academy of Sciences (India)

    Katarzyna Wykpis; Magdalena Popczyk; Antoni Budniok

    2011-07-01

    Zn–Ni coatings were deposited under galvanostatic conditions on steel substrate (OH18N9). The influence of current density of deposition on the surface morphology, chemical and phase composition was investigated. The corrosion resistance of Zn–Ni coatings obtained at current density 10–25 mA cm-2 are measured, and are compared with that of metallic cadmium coating. Structural investigations were performed by the X-ray diffraction (XRD) method. The surface morphology and chemical composition of deposited coatings were studied using a scanning electron microscope (JEOL JSM-6480) with EDS attachment. Studies of electrochemical corrosion resistance were carried out in the 5% NaCl, using potentiodynamic and electrochemical impedance spectroscopy (EIS) methods. On the ground of these research, the possibility of deposition of Zn–Ni coatings contained 24–26% at. Ni was exhibited. It was stated, that surface morphology, chemical and phase composition of these coatings are practically independent on current density of deposition. On the basis of electrochemical investigations it was found that corrosion resistance of these Zn–Ni coatings is also independent of current density. These coatings are more corrosion resistant in 5% NaCl solution than metallic cadmium. It was suggested that the Zn–Ni coating may be used as a substitute for toxic cadmium.

  14. Effects of deposition time in chemically deposited ZnS films in acidic solution

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, H.; Chelouche, A., E-mail: azeddinechelouche@gmail.com; Talantikite, D.; Merzouk, H.; Boudjouan, F.; Djouadi, D.

    2015-08-31

    We report an experimental study on the synthesis and characterization of zinc sulfide (ZnS) single layer thin films deposited on glass substrates by chemical bath deposition technique in acidic solution. The effect of deposition time on the microstructure, surface morphology, optical absorption, transmittance, and photoluminescence (PL) was investigated by X-ray diffraction (XRD), scanning electronic microscopy (SEM), UV-Vis–NIR spectrophotometry and photoluminescence (PL) spectroscopy. The results showed that the samples exhibit wurtzite structure and their crystal quality is improved by increasing deposition time. The latter, was found to affect the morphology of the thin films as showed by SEM micrographs. The optical measurements revealed a high transparency in the visible range and a dependence of absorption edge and band gap on deposition time. The room temperature PL spectra indicated that all ZnS grown thin films emit a UV and blue light, while the band intensities are found to be dependent on deposition times. - Highlights: • Single layer ZnS thin films were deposited by CBD in acidic solution at 95 °C. • The effect of deposition time was investigated. • Coexistence of ZnS and ZnO hexagonal structures for time deposition below 2 h • Thicker ZnS films were achieved after monolayer deposition for 5 h. • The highest UV-blue emission observed in thin film deposited at 5 h.

  15. 柠檬酸浓度对化学浴沉积硫化铟薄膜形成机理的影响研究%Effect of Concentration of Citric Acid on the Formation Mechanism of In2S3 Thin Film by Chemical Bath Deposition

    Institute of Scientific and Technical Information of China (English)

    高志华; 刘晶冰; 汪浩

    2011-01-01

    以柠檬酸为配位剂,在酸性条件下采用化学浴沉积方法在FTO玻璃衬底上制得硫化铟薄膜,分别采用XRD、SEM、UV等手段对薄膜相结构、形貌和薄膜的透光率进行了表征.结果表明薄膜为立方结构的β-InS3,薄膜均一连续,呈网状表面形貌,透光率随厚度增加而递减,带隙宽度介于2.5~2.6 eV之间.主要研究了配位剂的浓度对薄膜形成机理的影响,结果表明:柠檬酸浓度较低时,柠檬酸根与铟离子的配位平衡是整个反应的速控步骤;当柠檬酸浓度较高时,硫代乙酰胺与酸作用生成硫离子的反应是整个反应的速控步骤.%A series of IN2S3 thin films were obtained via chemical bath deposition method on the FTO glass in the acidic solution, with citric acid as the complexing agent. XRD, SEM, UV were adopted to characterize phase structure, morphology and optical transmission of the thin films. The results indicated that all the thin films were cube structured β-In2S3, with uniform, network-like morphology. Transmission of films was step-down with the thickness of films increasing. Band gaps were calculated between 2.5 and 2.6 Ev. The effect of concentration of the complexing agent on the thin films formation mechanism was investigated. The results showed that when the concentration of citric acid was lower, control step of the whole reaction system was the complexation balance of citric acid ions and metal indium ions, and when higher, the key reaction was that thioacetamide decomposed to form sulfide ion under acidic condition.

  16. Tungsten chemical vapor deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Kiichi; Takeda, Nobuo.

    1993-07-13

    A tungsten chemical vapor deposition method is described, comprising: a first step of selectively growing a first thin tungsten film of a predetermined thickness in a desired region on the surface of a silicon substrate by reduction of a WF[sub 6] gas introduced into an atmosphere of a predetermined temperature containing said silicon substrate; and a second step of selectively growing a second tungsten film of a predetermined thickness on said first thin tungsten film by reduction of said WF[sub 6] with a silane gas further introduced into said atmosphere, wherein the surface state of said substrate is monitored by a pyrometer and the switching from said first step to said second step is performed when the emissivity of infrared light from the substrate surfaces reaches a predetermined value.

  17. Chemical vapor deposition of mullite coatings

    Science.gov (United States)

    Sarin, Vinod; Mulpuri, Rao

    1998-01-01

    This invention is directed to the creation of crystalline mullite coatings having uniform microstructure by chemical vapor deposition (CVD). The process comprises the steps of establishing a flow of reactants which will yield mullite in a CVD reactor, and depositing a crystalline coating from the reactant flow. The process will yield crystalline coatings which are dense and of uniform thickness.

  18. Research and Analysis on the Physical and Chemical Properties of Molten Bath with Bottom-Blowing in EAF Steelmaking Process

    Science.gov (United States)

    Wei, Guangsheng; Zhu, Rong; Dong, Kai; Ma, Guohong; Cheng, Ting

    2016-10-01

    Bottom-blowing technology is widely adopted in electric arc furnace (EAF) steelmaking to promote the molten bath fluid flow, accelerate the metallurgical reaction, and improve the quality of molten steel. In this study, a water model experiment and a computational fluid dynamics model were established to investigate the effects of bottom-blowing gas flow rate on the fluid flow characteristics in the EAF molten bath. The results show that the interaction among the bottom-blowing gas streams influences the molten bath flow field, and increasing the bottom-blowing gas flow rate can accelerate the fluid flow and decrease the volume of the dead zone. Based on industrial application research, the physical and chemical properties of the molten bath with bottom-blowing were analyzed. Compared with traditional melting conditions without bottom-blowing, bottom-blowing technology demonstrates obvious advantages in promoting the heat transfer and metallurgical reactions in the molten bath. With the bottom-blowing arrangement, the dephosphorization and decarburization rates are accelerated, the contents of FeO and T. Fe in endpoint slag are decreased, and the endpoint carbon-oxygen equilibrium of molten steel is improved.

  19. Chemical-vapor-deposition reactor

    Science.gov (United States)

    Chern, S.

    1979-01-01

    Reactor utilizes multiple stacked trays compactly arranged in paths of horizontally channeled reactant gas streams. Design allows faster and more efficient deposits of film on substrates, and reduces gas and energy consumption. Lack of dead spots that trap reactive gases reduces reactor purge time.

  20. Growth of doped Pb S:Co{sup 2+} nano crystals by chemical bath

    Energy Technology Data Exchange (ETDEWEB)

    Portillo M, O.; Gutierrez P, R.; Chavez P, M.; Marquez S, M. N.; Hernandez T, G.; Lazcano H, M.; Moreno R, A. [Universidad Autonoma de Puebla, Facultad de Ciencias Quimicas, Laboratorio de Ciencia de Materiales, Apdo. Postal 1067, 72001 Puebla, Pue. (Mexico); Palomino M, R. [Universidad Autonoma de Puebla, Facultad de Ciencias Fisico-Matematicas, Posgrado en Fisica Aplicada, 72001 Puebla, Pue. (Mexico); Rubio R, E., E-mail: osporti@yahoo.com.mx [Universidad Autonoma de Puebla, Centro Universitario de Vinculacion y Transferencia de Tecnologia, 72001 Puebla, Pue. (Mexico)

    2016-11-01

    Nanocrystalline Pb S films grown by chemical bath at T = 40 ± 2 degrees Celsius onto glass slides were modified by in situ Co{sup 2+} -doping and their structural and optical properties were examined. By Ft-IR spectra, a sharp stretching mode can be seen at ∼1384 cm{sup -1} due to the vibration mode of CO{sup 2/3} ions. X-ray diffraction patterns shown the growth on the zinc blende crystalline face. The grain size was determined by using X-rays diffractograms and was found at ∼28 nm and ∼13 - 25 nm for undoped and doped samples, respectively. Optical absorption spectra was used for calculating the energy band gap, and displayed a shift in the ∼1.21 - 2.21 eV range, associated with quantum confinement effect. Raman peaks at ∼210, 271 and 451 cm{sup -1}, corresponding to a 1LO phonon mode, a two-phonon process, and a 2LO phonon mode respectively were also recorded. The surface and grain size of the films were measured by atomic force microscopy studies. (Author)

  1. Modeling the transport of organic chemicals between polyethylene passive samplers and water in finite and infinite bath conditions.

    Science.gov (United States)

    Tcaciuc, A Patricia; Apell, Jennifer N; Gschwend, Philip M

    2015-12-01

    Understanding the transfer of chemicals between passive samplers and water is essential for their use as monitoring devices of organic contaminants in surface waters. By applying Fick's second law to diffusion through the polymer and an aqueous boundary layer, the authors derived a mathematical model for the uptake of chemicals into a passive sampler from water, in finite and infinite bath conditions. The finite bath model performed well when applied to laboratory observations of sorption into polyethylene (PE) sheets for various chemicals (polycyclic aromatic hydrocarbons, polychlorinated biphenyls [PCBs], and dichlorodiphenyltrichloroethane [DDT]) and at varying turbulence levels. The authors used the infinite bath model to infer fractional equilibration of PCB and DDT analytes in field-deployed PE, and the results were nearly identical to those obtained using the sampling rate model. However, further comparison of the model and the sampling rate model revealed that the exchange of chemicals was inconsistent with the sampling rate model for partially or fully membrane-controlled transfer, which would be expected in turbulent conditions or when targeting compounds with small polymer diffusivities and small partition coefficients (e.g., phenols, some pesticides, and others). The model can be applied to other polymers besides PE as well as other chemicals and in any transfer regime (membrane, mixed, or water boundary layer-controlled). Lastly, the authors illustrate practical applications of this model such as improving passive sampler design and understanding the kinetics of passive dosing experiments.

  2. Structural, optical and electrical properties of chemically deposited nonstoichiometric copper indium diselenide films

    Indian Academy of Sciences (India)

    R H Bari; L A Patil; P P Patil

    2006-10-01

    Thin films of copper indium diselenide (CIS) were prepared by chemical bath deposition technique onto glass substrate at temperature, 60°C. The studies on composition, morphology, optical absorption, electrical conductivity and structure of the films were carried out and discussed. Characterization included X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X-ray analysis (EDAX) and absorption spectroscopy. The results are discussed and interpreted.

  3. Role of the buffer solution in the chemical deposition of CdS films for CIGS solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sooho; Kim, Donguk; Baek, Dohyun; Hong, Byoungyou; Yi, Junsin; Lee, Jaehyeong [Sungkyunkwan University, Suwon (Korea, Republic of); Park, Yongseob [Chosun College of Science and and Technology, Gwangju (Korea, Republic of); Choi, Wonseok [Hanbat National University, Daejeon (Korea, Republic of)

    2014-05-15

    In this work, the effects of NH{sub 4}Ac on the structural and the electro-optical properties of CdS films were investigated. CdS thin films were deposited on soda-lime glass and indium-tin-oxide (ITO) coated glass from a chemical bath containing 0.025 M cadmium acetate, 0 M ∼ 0.2 M ammonium acetate, 0.5 M thiourea, and ammonia. Cadmium acetate was the cadmium source, ammonium acetate served as a buffer, ammonia was the complexing agent, and thiourea was the source of sulfur. A commonly- available chemical bath deposition system was successfully modified to obtain precise control over the pH of the solution at 75 .deg. C during the deposition. Chemically deposited CdS films were studied by using field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), optical transmittance, and electrical resistivity measurements.

  4. Characterization of CBD-CdS layers with different S/Cd ratios in the chemical bath and their relation with the efficiency of CdS/CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Vigil-Galan, O. [Escuela Superior de Fisica y Matematicas-I.P.N., Edificio No. 9 U.P.A.L.M. 07738 Mexico D. F. (Mexico)]. E-mail: osvaldo@esfm.ipn.mx; Morales-Acevedo, A. [CINVESTAV-IPN, Electrical Engineering Departament, Av. IPN No 2508, 07360 Mexico D. F. (Mexico); Cruz-Gandarilla, F. [Escuela Superior de Fisica y Matematicas-I.P.N., Edificio No. 9 U.P.A.L.M. 07738 Mexico D. F. (Mexico); Jimenez-Escamilla, M.G. [Escuela Superior de Fisica y Matematicas-I.P.N., Edificio No. 9 U.P.A.L.M. 07738 Mexico D. F. (Mexico); Aguilar-Hernandez, J. [Escuela Superior de Fisica y Matematicas-I.P.N., Edificio No. 9 U.P.A.L.M. 07738 Mexico D. F. (Mexico); Contreras-Puente, G. [Escuela Superior de Fisica y Matematicas-I.P.N., Edificio No. 9 U.P.A.L.M. 07738 Mexico D. F. (Mexico); Sastre-Hernandez, J. [Escuela Superior de Fisica y Matematicas-I.P.N., Edificio No. 9 U.P.A.L.M. 07738 Mexico D. F. (Mexico); Sanchez-Meza, E. [Escuela Superior de Fisica y Matematicas-I.P.N., Edificio No. 9 U.P.A.L.M. 07738 Mexico D. F. (Mexico); Ramon-Garcia, M.L. [Centro de Investigaciones en Energia.UNAM. Privada Xochicalco s/n Col. Centro Temixco. CP. 62580 Morelos (Mexico)

    2007-05-31

    In previous papers we have reported the improvement of the efficiency of CdS/CdTe solar cells by varying the thiourea/CdCl{sub 2} ratio (R {sub tc}) in the chemical bath solution used for the deposition of the CdS layers. In this work, a more complete study concerning the physical properties of Chemical Bath Deposited (CBD) CdS layers studied by photoluminescence, X-ray diffraction and optical spectroscopy are correlated to the I-V characteristics under AM 1.5 sunlight and the spectral response of CdS/CdTe solar cells. It is confirmed that the optimum R {sub tc} for the CBD CdS films is R {sub tc} = 5, since in this case the best solar cells were obtained and these films show the better optical and structural characteristics.

  5. Laser Velocimetry of Chemical Vapor Deposition Flows

    Science.gov (United States)

    1993-01-01

    Laser velocimetry (LV) is being used to measure the gas flows in chemical vapor deposition (CVD) reactors. These gas flow measurements can be used to improve industrial processes in semiconductor and optical layer deposition and to validate numerical models. Visible in the center of the picture is the graphite susceptor glowing orange-hot at 600 degrees C. It is inductively heated via the copper cool surrounding the glass reactor.

  6. Chemical vapor deposition coating for micromachines

    Energy Technology Data Exchange (ETDEWEB)

    MANI,SEETHAMBAL S.; FLEMING,JAMES G.; SNIEGOWSKI,JEFFRY J.; DE BOER,MAARTEN P.; IRWIN,LAWRENCE W.; WALRAVEN,JEREMY A.; TANNER,DANELLE M.; DUGGER,MICHAEL T.

    2000-04-21

    Two major problems associated with Si-based MEMS devices are stiction and wear. Surface modifications are needed to reduce both adhesion and friction in micromechanical structures to solve these problems. In this paper, the authors will present a process used to selectively coat MEMS devices with tungsten using a CVD (Chemical Vapor Deposition) process. The selective W deposition process results in a very conformal coating and can potentially solve both stiction and wear problems confronting MEMS processing. The selective deposition of tungsten is accomplished through silicon reduction of WF{sub 6}, which results in a self-limiting reaction. The selective deposition of W only on polysilicon surfaces prevents electrical shorts. Further, the self-limiting nature of this selective W deposition process ensures the consistency necessary for process control. Selective tungsten is deposited after the removal of the sacrificial oxides to minimize process integration problems. This tungsten coating adheres well and is hard and conducting, requirements for device performance. Furthermore, since the deposited tungsten infiltrates under adhered silicon parts and the volume of W deposited is less than the amount of Si consumed, it appears to be possible to release stuck parts that are contacted over small areas such as dimples. Results from tungsten deposition on MEMS structures with dimples will be presented. The effect of wet and vapor phase cleanings prior to the deposition will be discussed along with other process details. The W coating improved wear by orders of magnitude compared to uncoated parts. Tungsten CVD is used in the integrated-circuit industry, which makes this approach manufacturable.

  7. Metallization on FDM Parts Using the Chemical Deposition Technique

    Directory of Open Access Journals (Sweden)

    Azhar Equbal

    2014-08-01

    Full Text Available Metallization of ABS (acrylonitrile-butadiene-styrene parts has been studied on flat part surfaces. These parts are fabricated on an FDM (fused deposition modeling machine using the layer-wise deposition principle using ABS as a part material. Electroless copper deposition on ABS parts was performed using two different surface preparation processes, namely ABS parts prepared using chromic acid for etching and ABS parts prepared using a solution mixture of sulphuric acid and hydrogen peroxide (H2SO4/H2O2 for etching. After surface preparations using these routes, copper (Cu is deposited electrolessly using four different acidic baths. The acidic baths used are 5 wt% CuSO4 (copper sulfate with 15 wt% of individual acids, namely HF (hydrofluoric acid, H2SO4 (sulphuric acid, H3PO4 (phosphoric acid and CH3COOH (acetic acid. Cu deposition under different acidic baths used for both the routes is presented and compared based on their electrical performance, scanning electron microscopy (SEM and energy dispersive X-ray spectrometry (EDS. The result shows that chromic acid etched samples show better electrical performance and Cu deposition in comparison to samples etched via H2SO4/H2O2.

  8. Determination of electroless deposition by chemical nickeling

    Directory of Open Access Journals (Sweden)

    M. Badida

    2013-07-01

    Full Text Available Increasing of technical level and reliability of machine products in compliance with the economical and ecological terms belongs to the main trends of the industrial development. During the utilisation of these products there arise their each other contacts and the interaction with the environment. That is the reason for their surface degradation by wear effect, corrosion and other influences. The chemical nickel-plating allows autocatalytic deposition of nickel from water solutions in the form of coherent, technically very profitable coating without usage of external source of electric current. The research was aimed at evaluating the surface changes after chemical nickel-plating at various changes of technological parameters.

  9. Radiative transfer modeling of surface chemical deposits

    Science.gov (United States)

    Reichardt, Thomas A.; Kulp, Thomas J.

    2016-05-01

    Remote detection of a surface-bound chemical relies on the recognition of a pattern, or "signature," that is distinct from the background. Such signatures are a function of a chemical's fundamental optical properties, but also depend upon its specific morphology. Importantly, the same chemical can exhibit vastly different signatures depending on the size of particles composing the deposit. We present a parameterized model to account for such morphological effects on surface-deposited chemical signatures. This model leverages computational tools developed within the planetary and atmospheric science communities, beginning with T-matrix and ray-tracing approaches for evaluating the scattering and extinction properties of individual particles based on their size and shape, and the complex refractive index of the material itself. These individual-particle properties then serve as input to the Ambartsumian invariant imbedding solution for the reflectance of a particulate surface composed of these particles. The inputs to the model include parameters associated with a functionalized form of the particle size distribution (PSD) as well as parameters associated with the particle packing density and surface roughness. The model is numerically inverted via Sandia's Dakota package, optimizing agreement between modeled and measured reflectance spectra, which we demonstrate on data acquired on five size-selected silica powders over the 4-16 μm wavelength range. Agreements between modeled and measured reflectance spectra are assessed, while the optimized PSDs resulting from the spectral fitting are then compared to PSD data acquired from independent particle size measurements.

  10. Electrowinning of Nickel from ammonical sulphate bath and effect of acetone on morphology of nickel deposit and its correlation with kinetic parameters

    Directory of Open Access Journals (Sweden)

    Borikar, D. K.

    2006-01-01

    Full Text Available The electrodeposition of nickel from nickel sulphate bath was studied in ammonia medium. The electrolytic conditions for nickel deposition was optimized at room temperature. The effect of acetone on current efficiency, morphology, stability and particle size of deposited nickel powder was studied. The effect of organic additive Tribenzyl ammonium chloride (TBAC on the morphology of nickel powder was also studied. The kinetics of electrodeposition was studied and the results were utilized in developing mathematical model. During electrodeposition the current efficiency was found to increase with increase in acetone concentration up to 15% V/V in bath solution. On further increase of acetone concentration in bath solution current efficiency decreases. The stability of the electrowon deposited nickel powder was found to be in the range of 85 to 89 %. Powder morphology was found to be dentritic, porous and irregular. The morphology was also found to be underdeveloped dentritic to rounded aggregate as the concentration of organic additive TBAC increases. The average particle size of the deposited powder was found to be decreasing as the concentration of the acetone increases. The average size of the particle is in the range of 13-16 m.

  11. Physical-chemical conditions of ore deposition

    Science.gov (United States)

    Barton, P.B.

    1981-01-01

    Ore deposits form under a wide range of physical and chemical conditions, but those precipitating from hot, aqueous fluids-i.e. the hydrothermal deposits-form generally below 700??C and at pressures of only 1 or 2 kbar or less. Natural aqueous fluids in rocks may extract metal and sulfur from a variety of rock types or may acquire them as a residual heritage from a crystallizing silicate magma. Ore-forming hydrothermal fluids never appear as hot springs (except in deep, submarine situations) because they boil, mix with surface waters, and cool, thereby losing their ore-bearing ability before reaching the surface. Mineral systems function as chemical buffers and indicators just as buffers and indicators function in a chemical laboratory. By reading the record written in the buffer/indicator assemblages of minerals one can reconstruct many aspects of the former chemical environment. By studying the record of changing conditions one may deduce information regarding the processes functioning to create the succession of chemical environments and the ore deposits they represent. The example of the OH vein at Creede, Colorado, shows a pH buffered by the K-feldspar + muscovite + quartz assemblage and the covariation of S2 and O2 buffered by the assemblage chlorite + pyrite + quartz. Boiling of the ore fluid led to its oxidation to hematite-bearing assemblages and simultaneously produced an intensely altered, sericitic capping over the vein in response to the condensation of vapors bearing acidic components. The solubility of metals as calculated from experimental and theoretical studies of mineral solubility appears too low by at least one or two powers of ten to explain the mineralization at Creede. In contrast to Creede where the mineral stabilities all point to a relatively consistent chemistry, the Mississippi Valley type deposits present a puzzle of conflicting chemical clues that are impossible to reconcile with any single equilibrium situation. Thus we must

  12. Physical-chemical conditions of ore deposition

    Science.gov (United States)

    Barton, Paul B.

    Ore deposits form under a wide range of physical and chemical conditions, but those precipitating from hot, aqueous fluids-i.e. the hydrothermal deposits-form generally below 700°C and at pressures of only 1 or 2 kbar or less. Natural aqueous fluids in rocks may extract metal and sulfur from a variety of rock types or may acquire them as a residual heritage from a crystallizing silicate magma. Ore-forming hydrothermal fluids never appear as hot springs (except in deep, submarine situations) because they boil, mix with surface waters, and cool, thereby losing their ore-bearing ability before reaching the surface. Mineral systems function as chemical buffers and indicators just as buffers and indicators function in a chemical laboratory. By reading the record written in the buffer/indicator assemblages of minerals one can reconstruct many aspects of the former chemical environment. By studying the record of changing conditions one may deduce information regarding the processes functioning to create the succession of chemical environments and the ore deposits they represent. The example of the OH vein at Creede, Colorado, shows a pH buffered by the K-feldspar + muscovite + quartz assemblage and the covariation of S 2 and O 2 buffered by the assemblage chlorite + pyrite + quartz. Boiling of the ore fluid led to its oxidation to hematite-bearing assemblages and simultaneously produced an intensely altered, sericitic capping over the vein in response to the condensation of vapors bearing acidic components. The solubility of metals as calculated from experimental and theoretical studies of mineral solubility appears too low by at least one or two powers of ten to explain the mineralization at Creede. In contrast to Creede where the mineral stabilities all point to a relatively consistent chemistry, the Mississippi Valley type deposits present a puzzle of conflicting chemical clues that are impossible to reconcile with any single equilibrium situation. Thus we must

  13. Chemical Vapour Deposition of Large Area Graphene

    DEFF Research Database (Denmark)

    Larsen, Martin Benjamin Barbour Spanget

    structure. Optimization of a process for graphene growth on commercially available copper foil is limited by the number of aluminium oxide particles on the surface of the catalyst. By replacing the copper foil with a thin deposited copper film on a SiO2/Si or c-plane sapphire wafer the particles can......Chemical Vapor Deposition (CVD) is a viable technique for fabrication of large areas of graphene. CVD fabrication is the most prominent and common way of fabricating graphene in industry. In this thesis I have attempted to optimize a growth recipe and catalyst layer for CVD fabrication of uniform......, single layer, and high carrier mobility large area graphene. The main goals of this work are; (1) explore the graphene growth mechanics in a low pressure cold-wall CVD system on a copper substrate, and (2) optimize the process of growing high quality graphene in terms of carrier mobility, and crystal...

  14. Bath atomic composition and deposition time influence on the properties of nanostructured CdS{sub 0.5}Se{sub 0.5} thin films synthesized by CBD

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Ramirez, E.A. [Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, CP 07738 México D.F. (Mexico); Hernandez-Perez, M.A., E-mail: angeleshp@yahoo.com [Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, CP 07738 México D.F. (Mexico); Aguilar-Hernandez, J.R.; Contreras-Puente, G. [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, CP 07738 México D.F. (Mexico)

    2015-09-01

    Chemical Bath Deposition (CBD) was used to grow CdS{sub 1−xf}Se{sub xf} (x{sub f} = 0.5) thin films on Corning glass substrates at 75 °C. The atomic composition of the bath was varied until an x{sub f} of 0.5 was obtained, maintaining the deposition time at 120 min. Then the deposition time was modified from 5 to 360 min. The structural and optical properties of the films were analyzed by Scanning Electron Microscopy, Energy Dispersive Spectroscopy, X-Ray Diffraction, UV–Vis Spectroscopy, Profilometry and Inductive Coupled Plasma-Optical Emission Spectroscopy (ICP-OES). A bath atomic composition of Cd:S:Se equal to 0.76:0.55:0.45 was employed to obtain a film of x{sub f} = 0.5. The films are constituted by clusters of semispherical nanoparticles (ϕ{sub av} = 15 nm), which are well-arranged in a “nanoworm” structure. The nucleation time of the particles is lower than 5 min. All the films are polycrystalline with hexagonal phase and preferentially orientated on the (002) plane. The crystal size (11–6 nm) and the band gap (2.17–1.99 eV) decrease with the content of Se and remain constant with the deposition time. The composition x{sub f} = 0.5 is achieved at different times to the heterogeneous (60 min) and homogeneous reactions (15 min). The kinetics of deposition and the consumption rate of Se change in a similar way, reaching the stability after 60 min. - Highlights: • CdS{sub 1−x}Se{sub x} ternary alloy thin films with x = 0.5 ± 0.05 can be grown by CBD at 75 °C. • CdS{sub 1−x}Se{sub x} nanocrystals are well arranged in a “worm” structure from 30 min and x ≥ 0.25. • The E{sub g} of (002) oriented hexagonal film is strongly affected by x and crystal size. • Films with x = 0.5 are obtained from 30 min using a Cd:S:Se = 0.76:0.5:0.6 bath ratio. • Consumption rate has the same behavior that growth rate, changing around 60 min.

  15. Structural, optical and electrical properties of chemically deposited copper selenide films

    Indian Academy of Sciences (India)

    R H Bari; V Ganesan; S Potadar; L A Patil

    2009-02-01

    Stoichiometric and nonstoichiometric thin films of copper selenide have been prepared by chemical bath deposition technique at temperature below 60°C on glass substrate. The effect of nonstoichiometry on the optical, electrical and structural properties of the film was studied. The bandgap energy was observed to increase with the increase in at % of copper in composition. The grain size was also observed to increase with the decrease of at % of copper in composition. The films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDS), absorption spectroscopy, and AFM. The results are discussed and interpreted.

  16. Size dependent optical characteristics of chemically deposited nanostructured ZnS thin films

    Indian Academy of Sciences (India)

    A U Ubale; V S Sangawar; D K Kulkarni

    2007-04-01

    ZnS thin films of different thicknesses were prepared by chemical bath deposition using thiourea and zinc acetate as S2- and Zn2+ source. The effect of film thickness on the optical and structural properties was studied. The optical absorption studies in the wavelength range 250–750 nm show that band gap energy of ZnS increases from 3.68–4.10 eV as thickness varied from 332–76 nm. The structural estimation shows variation in grain size from 6.9–17.8 nm with thickness. The thermoemf measurement indicates that films prepared by this method are of -type.

  17. Synthesis and characterization of chemically deposited CdS thin films without toxic precursors.

    Science.gov (United States)

    Fernández-Pérez, A.; Sandoval-Paz, M. G.

    2016-05-01

    Al doped and undoped CdS thin films (CdS:Al) were deposited on glass, copper and bronze substrates by chemical bath deposition technique in an ammonia-free cadmium-sodium citrate system. The structural and optical properties of the CdS films were determined by X-ray diffraction (XRD), scanning electron microscope (SEM), and simultaneous transmission- reflection spectroscopy. It was found that the properties of the films depend on the amount of Al in the growth solutions and deposition time. The increase in Al content in the reaction solution led to a smaller crystallite size and higher energy band gap that varies in the range 2.42 eV - 2.59 eV depending on the Al content.

  18. Tungsten Deposition on Graphite using Plasma Enhanced Chemical Vapour Deposition.

    Science.gov (United States)

    Sharma, Uttam; Chauhan, Sachin S.; Sharma, Jayshree; Sanyasi, A. K.; Ghosh, J.; Choudhary, K. K.; Ghosh, S. K.

    2016-10-01

    The tokamak concept is the frontrunner for achieving controlled thermonuclear reaction on earth, an environment friendly way to solve future energy crisis. Although much progress has been made in controlling the heated fusion plasmas (temperature ∼ 150 million degrees) in tokamaks, technological issues related to plasma wall interaction topic still need focused attention. In future, reactor grade tokamak operational scenarios, the reactor wall and target plates are expected to experience a heat load of 10 MW/m2 and even more during the unfortunate events of ELM's and disruptions. Tungsten remains a suitable choice for the wall and target plates. It can withstand high temperatures, its ductile to brittle temperature is fairly low and it has low sputtering yield and low fuel retention capabilities. However, it is difficult to machine tungsten and hence usages of tungsten coated surfaces are mostly desirable. To produce tungsten coated graphite tiles for the above-mentioned purpose, a coating reactor has been designed, developed and made operational at the SVITS, Indore. Tungsten coating on graphite has been attempted and successfully carried out by using radio frequency induced plasma enhanced chemical vapour deposition (rf -PECVD) for the first time in India. Tungsten hexa-fluoride has been used as a pre-cursor gas. Energy Dispersive X-ray spectroscopy (EDS) clearly showed the presence of tungsten coating on the graphite samples. This paper presents the details of successful operation and achievement of tungsten coating in the reactor at SVITS.

  19. Ultrafast deposition of silicon nitride and semiconductor silicon thin films by Hot Wire Chemical Vapor Deposition

    NARCIS (Netherlands)

    Schropp, R.E.I.; van der Werf, C.H.M.; Verlaan, V.; Rath, J.K.; Li, H. B. T.

    2009-01-01

    The technology of Hot Wire Chemical Vapor Deposition (HWCVD) or Catalytic Chemical Vapor Deposition (Cat-CVD) has made great progress during the last couple of years. This review discusses examples of significant progress. Specifically, silicon nitride deposition by HWCVD (HW-SiNx) is highlighted, a

  20. Indium sulfide thin films as window layer in chemically deposited solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lugo-Loredo, S. [Universidad Autónoma de Nuevo León, UANL, Fac. de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria San Nicolás de Los Garza Nuevo León, C.P. 66451 (Mexico); Peña-Méndez, Y., E-mail: yolapm@gmail.com [Universidad Autónoma de Nuevo León, UANL, Fac. de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria San Nicolás de Los Garza Nuevo León, C.P. 66451 (Mexico); Calixto-Rodriguez, M. [Universidad Tecnológica Emiliano Zapata del Estado de Morelos, Av. Universidad Tecnológica No. 1, C.P. 62760 Emiliano Zapata, Morelos (Mexico); Messina-Fernández, S. [Universidad Autónoma de Nayarit, Ciudad de la Cultura “Amado Nervo” S/N, C.P. 63190 Tepic, Nayarit (Mexico); Alvarez-Gallegos, A. [Universidad Autónoma del Estado de Morelos, Centro de Investigación en Ingeniería y Ciencias Aplicadas, Av. Universidad 1001, C.P. 62209, Cuernavaca Morelos (Mexico); Vázquez-Dimas, A.; Hernández-García, T. [Universidad Autónoma de Nuevo León, UANL, Fac. de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria San Nicolás de Los Garza Nuevo León, C.P. 66451 (Mexico)

    2014-01-01

    Indium sulfide (In{sub 2}S{sub 3}) thin films have been synthesized by chemical bath deposition technique onto glass substrates using In(NO{sub 3}){sub 3} as indium precursor and thioacetamide as sulfur source. X-ray diffraction studies have shown that the crystalline state of the as-prepared and the annealed films is β-In{sub 2}S{sub 3}. Optical band gap values between 2.27 and 2.41 eV were obtained for these films. The In{sub 2}S{sub 3} thin films are photosensitive with an electrical conductivity value in the range of 10{sup −3}–10{sup −7} (Ω cm){sup −1}, depending on the film preparation conditions. We have demonstrated that the In{sub 2}S{sub 3} thin films obtained in this work are suitable candidates to be used as window layer in thin film solar cells. These films were integrated in SnO{sub 2}:F/In{sub 2}S{sub 3}/Sb{sub 2}S{sub 3}/PbS/C–Ag solar cell structures, which showed an open circuit voltage of 630 mV and a short circuit current density of 0.6 mA/cm{sup 2}. - Highlights: • In{sub 2}S{sub 3} thin films were deposited using the Chemical Bath Deposition technique. • A direct energy band gap between 2.41 to 2.27 eV was evaluated for the In{sub 2}S{sub 3} films. • We made chemically deposited solar cells using the In{sub 2}S{sub 3} thin films.

  1. Chemically deposited TiO2/CdS bilayer system for photoelectrochemical properties

    Indian Academy of Sciences (India)

    P R Deshmukh; U M Patil; K V Gurav; S B Kulkarni; C D Lokhande

    2012-12-01

    In the present investigation, TiO2, CdS and TiO2/CdS bilayer system have been deposited on the fluorine doped tin oxide (FTO) coated glass substrate by chemical methods. Nanograined TiO2 was deposited on FTO coated glass substrates by successive ionic layers adsorption and reaction (SILAR) method. Chemical bath deposition (CBD)method was employed to deposit CdS thin film on pre-deposited TiO2 film. A further study has beenmade for structural, surface morphological, optical and photoelectrochemical (PEC) properties of FTO/TiO2, FTO/CdS and FTO/TiO2/CdS bilayers system. PEC behaviour of FTO/TiO2/CdS bilayers was studied and compared with FTO/CdS single system. FTO/TiO2/CdS bilayers system showed improved performance of PEC properties over individual FTO/CdS thin films.

  2. Structural, morphology and optical properties of chemically deposited Sb{sub 2}S{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Maghraoui-Meherzi, H., E-mail: hajer.maghraoui@laposte.ne [Laboratoire de chimie Analytique et Electrochimie, Faculte des Sciences de Tunis, Campus universitaire 2092 Tunis El Manar (Tunisia); Ben Nasr, T.; Kamoun, N. [Laboratoire de physique de la Matiere Condensee, Faculte des Sciences de Tunis, Campus universitaire 2092 Tunis El Manar (Tunisia); Dachraoui, M. [Laboratoire de chimie Analytique et Electrochimie, Faculte des Sciences de Tunis, Campus universitaire 2092 Tunis El Manar (Tunisia)

    2010-08-01

    Metal chalcogenide thin films prepared by chemical methods are currently attracting considerable attention, as they are relatively inexpensive, simple and convenient for large area deposition. Antimony sulphide (Sb{sub 2}S{sub 3}) films were deposited on glass substrate by chemical bath deposition from solution containing SbCl{sub 3} and Na{sub 2}S{sub 2}O{sub 3}. Characterization of the films was carried out with X-ray diffraction (XRD), atomic force microscopy (AFM), Auger electron spectroscopy (AES) and UV-Vis spectrophotometry. Using these techniques, we have specified the effect of temperature and time deposition on the crystallinity structure of antimony sulphide films. Homogeneous films were found to be crystallized on orthorhombic structure, and indicate a direct band gap of 2.24 eV.

  3. Chemically deposited Sb{sub 2}S{sub 3} thin films for optical recording

    Energy Technology Data Exchange (ETDEWEB)

    Shaji, S; Arato, A; Castillo, G Alan; Palma, M I Mendivil; Roy, T K Das; Krishnan, B [Facultad de IngenierIa Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P- 66450 (Mexico); O' Brien, J J; Liu, J, E-mail: bkrishnan@fime.uanl.m [Center for Nanoscience and Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One Univ. Blvd., St. Louis, MO - 63121 (United States)

    2010-02-24

    Laser induced changes in the properties of Sb{sub 2}S{sub 3} thin films prepared by chemical bath deposition are described in this paper. Sb{sub 2}S{sub 3} thin films of thickness 550 nm were deposited from a solution containing SbCl{sub 3} and Na{sub 2}S{sub 2}O{sub 3} at 27 {sup 0}C for 5 h. These thin films were irradiated by a 532 nm continuous wave laser beam under different conditions at ambient atmosphere. X-ray diffraction analysis showed amorphous to polycrystalline transformation due to laser exposure of these thin films. Morphology and composition of these films were described. Optical properties of these films before and after laser irradiation were analysed. The optical band gap of the material was decreased due to laser induced crystallization. The results obtained confirm that there is further scope for developing this material as an optical recording media.

  4. Influence of bath PH value on microstructure and corrosion resistance of phosphate chemical conversion coating on sintered Nd-Fe-B permanent magnets

    Science.gov (United States)

    Ding, Xia; Xue, Long-fei; Wang, Xiu-chun; Ding, Kai-hong; Cui, Sheng-li; Sun, Yong-cong; Li, Mu-sen

    2016-10-01

    The effect of bath PH value on formation, microstructure and corrosion resistance of the phosphate chemical conversion (PCC) coatings as well as the effect on the magnetic property of the magnets is investigated in this paper. The results show that the coating mass and thickness increase with the decrease of the bath PH value. Scanning electron microscopy observation demonstrates that the PCC coatings are in a blocky structure with different grain size. Transmission electron microscope and X-ray diffractometer tests reveal the coatings are polycomponent and are mainly composed of neodymium phosphate hydrate and praseodymium phosphate hydrate. The electrochemical analysis and static immersion corrosion test show the corrosion resistance of the PCC coatings prepared at bath PH value of 0.52 is worst. Afterwards the corrosion resistance increases first and then decreases with the increasing of the bath PH values. The magnetic properties of all the samples with PCC treatment are decreased. The biggest loss is occurred when the bath PH value is 0.52. Taken together, the optimum PH range of 1.00-1.50 for the phosphate solution has been determined.

  5. Effects of Buffer Salt Concentration on the Dominated Deposition Mechanism and Optical Characteristics of Chemically Deposited Cadmium Sulfide Thin Films

    Science.gov (United States)

    Kakhaki, Z. Makhdoumi; Youzbashi, A.; Sangpour, P.; Kazemzadeh, A.; Naderi, N.; Bazargan, A. M.

    2016-02-01

    Effects of buffer salt concentration on the rate of deposition, dominated deposition mechanism and subsequently the structural, morphological, and optical properties of cadmium sulfide (CdS) thin films deposited by chemical bath deposition (CBD) on glass substrate were investigated. The precursors were chosen to be cadmium chloride (CdCl2) as the cadmium source, thiourea (CS(NH2)2) as the sulfur source, ammonium nitrate (NH4NO3) as the buffer salt and ammonia as the complexing agent and the pH controller. The influence of the NH4NO3 concentration on the structure, morphology, film uniformity, stoichiometry and optical properties of CdS thin films was also studied by X-ray diffractometer (XRD), field emission scanning electron microscope (FE-SEM), energy dispersive X-ray (EDX) spectroscope, uv-visible and photoluminescence (PL) spectroscopes. The XRD studies revealed that all the deposited films exhibited a (002)h/(111)c preferred orientation. The crystallite size was increased from 20nm to 30nm by the increase of concentration of NH4NO3 from 0.5M to 2.5M. The morphology of CdS thin films were agglomerated spherical particles consisted of smaller particles. The surface of thin films deposited at the NH4NO3 concentration of 0.5M was compact and smooth. The increase of the concentration of NH4NO3 decreased the packing density of the films. The optical band gap was in the range of 2.25-2.4eV, which was decreased by the decrement of packing density. The PL spectra showed two peaks centered at 400nm and 500nm which are attributed to violet and band-to-band emissions, respectively.

  6. Variation in chemical wet deposition with meteorological conditions

    Science.gov (United States)

    Raynor, Gilbert S.; Hayes, Janet V.

    Analysis of hourly sequential precipitation samples collected at Brookhaven National Laboratory over a 4-y period shows systematic relationships between amounts of chemicals deposited in precipitation and meteorological conditions. Samples were taken by an automatic, sequential sampler and measured for pH, conductivity and the concentrations of major ions. Concurrent measurements and observations were made of the synoptic situation, precipitation type and rate, wind speed and direction, and temperature. Deposition per unit area was computed for subsets of the data classified by meteorological and time parameters. Results demonstrate that precipitation amount alone is not an adequate predictor of chemical wet deposition because of the variability of concentration in precipitation which is a complex function of emission rates and atmospheric processes. Results, however, document those conditions under which most material is deposited and those circumstances in which deposition occurs at the greatest rate. When classified by season, hydrogen and sulfate ion deposition are greatest in the summer when precipitation is lowest and least in the winter when precipitation is greatest. Nitrogen in both nitrate and ammonium has a similar but less extreme pattern. By synoptic type, all chemicals are deposited most heavily in warm front precipitation but the fraction of hydrogen and sulfate deposited in cold front and squall line hours is greater than the fraction of precipitation. All chemicals are deposited most heavily in steady rain when examined by precipitation type but thundershowers deposit chemicals of anthropogenic origin in amounts disproportionate to precipitation amounts. Results are also presented from data classified by other parameters.

  7. Thin alumina and silica films by chemical vapor deposition (CVD)

    OpenAIRE

    Hofman, R.; Morssinkhof, R.W.J.; Fransen, T.; Westheim, J.G.F.; Gellings, P.J.

    1993-01-01

    Alumina and silica coatings have been deposited by MOCVD (Metal Organic Chemical Vapor Deposition) on alloys to protect them against high temperature corrosion. Aluminium Tri-lsopropoxide (ATI) and DiAcetoxyDitertiaryButoxySilane (DAOBS) have been used as metal organic precursors to prepare these ceramic coatings. The influence of several process steps on the deposition rate and surface morphology is discussed. The deposition of SiO2 at atmospheric pressure is kinetically limited below 833 K ...

  8. Survival of the faucet snail after chemical disinfection, pH extremes, and heated water bath treatments

    Science.gov (United States)

    Mitchell, A.J.; Cole, R.A.

    2008-01-01

    The faucet snail Bithynia tentaculata, a nonindigenous aquatic snail from Eurasia, was introduced into Lake Michigan in 1871 and has spread to the mid-Atlantic states, the Great Lakes region, Montana, and most recently, the Mississippi River. The faucet snail serves as intermediate host for several trematodes that have caused large-scale mortality among water birds, primarily in the Great Lakes region and Montana. It is important to limit the spread of the faucet snail; small fisheries equipment can serve as a method of snail distribution. Treatments with chemical disinfection, pH extremes, and heated water baths were tested to determine their effectiveness as a disinfectant for small fisheries equipment. Two treatments eliminated all test snails: (1) a 24-h exposure to Hydrothol 191 at a concentration of at least 20 mg/L and (2) a treatment with 50??C heated water for 1 min or longer. Faucet snails were highly resistant to ethanol, NaCl, formalin, Lysol, potassium permanganate, copper sulfate, Baquacil, Virkon, household bleach, and pH extremes (as low as 1 and as high as 13).

  9. The mechanical properties of thin alumina film deposited by metal-organic chemical vapour deposition

    NARCIS (Netherlands)

    Haanappel, V.A.C.; Gellings, P.J.; Vendel, van de D.; Metselaar, H.S.C.; Corbach, van H.D.; Fransen, T.

    1995-01-01

    Amorphous alumina films were deposited by metal-organic chemical vapour deposition (MOCVD) on stainless steel, type AISI 304. The MOCVD experiments were performed in nitrogen at low and atmospheric pressures. The effects of deposition temperature, growth rate and film thickness on the mechanical pro

  10. Preparation of polycrystalline CdS thin films by chemical bath deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, E.A.; Kim, B.S.; Shin, S.H.; Park, J.I.; Park, K.J. [National Industrial Technology Inst., Kwacheon (Korea, Republic of). Div. of Inorganic Chemistry

    1996-12-31

    CdS has been recognized as a promising n-type window material for CdTe/CdS and CuInSe{sub 2}/CdS heterojunction thin film solar cells. The authors prepared CdS thin films from a solution containing cadmium acetate, thiourea, ammonia, and ammonium acetate. They varied fabrication conditions such as the concentrations of reactants, reaction temperature, and heat treatment, to investigate the changes in structural and optical properties of the film. Effects of substrate on the properties were also investigated.

  11. Plasma-Enhanced Chemical Vapor Deposition as a Method for the Deposition of Peptide Nanotubes

    Science.gov (United States)

    2013-09-17

    peptide nanotubes, plasma-enhanced chemical vapor deposition, nano assembly 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18...Using physical vapor deposition ( PVD ) well-ordered assemblies of peptide nanotubes (PNTs) composed of dipeptide subunits are obtained on various...for the deposition of thin films (Figure 1b). A. B. Figure 1. (a) Illustration of physical vapor deposition ( PVD ) process of diphenylalanine

  12. Application of design of experiment on electrophoretic deposition of glass-ceramic coating materials from an aqueous bath

    Indian Academy of Sciences (India)

    Someswar Datta

    2000-04-01

    A process for application of abrasion- or corrosion-resistant glass-ceramic coating materials on metal substrate by electrophoretic deposition technique in an aqueous medium has been described. The effects of various process parameters, e.g. coating material concentration, time of deposition, applied current, pH of the suspension and concentration of the polymeric dispersant on the deposition efficiency have been studied. The process has been studied using a 23-factorial design technique of three independent variables; i.e. coating material concentration, applied current, and the time taken to achieve the best combination. The regression equation obtained explains the experimental results satisfactorily.

  13. Thin alumina and silica films by chemical vapor deposition (CVD)

    NARCIS (Netherlands)

    Hofman, R.; Morssinkhof, R.W.J.; Fransen, T.; Westheim, J.G.F.; Gellings, P.J.

    1993-01-01

    Alumina and silica coatings have been deposited by MOCVD (Metal Organic Chemical Vapor Deposition) on alloys to protect them against high temperature corrosion. Aluminium Tri-lsopropoxide (ATI) and DiAcetoxyDitertiaryButoxySilane (DAOBS) have been used as metal organic precursors to prepare these ce

  14. Chemically deposited CdS by an ammonia-free process for solar cells window layers

    Energy Technology Data Exchange (ETDEWEB)

    Ochoa-Landin, R. [Centro de Investigacion y Estudios Avanzados del IPN, Unidad Queretaro, Apdo. Postal 1-798, 76001 Queretaro, Qro. (Mexico); Departamento de Fisica, Universidad de Sonora, Apdo. Postal 88, 83190 Hermosillo, Son. (Mexico); Sastre-Hernandez, J.; Vigil-Galan, O. [Escuela Superior de Fisica y Matematicas, Instituto Politecnico Nacional UP Adolfo Lopez Mateos, Edif. 9, 07738 Mexico, DF (Mexico); Ramirez-Bon, R. [Centro de Investigacion y Estudios Avanzados del IPN, Unidad Queretaro, Apdo. Postal 1-798, 76001 Queretaro, Qro. (Mexico)

    2010-02-15

    Chemically deposited CdS window layers were studied on two different transparent conductive substrates, namely indium tin oxide (ITO) and fluorine doped tin oxide (FTO), to determine the influence of their properties on CdS/CdTe solar cells performance. Three types of CdS films obtained from different chemical bath deposition (CBD) processes were studied. The three CBD processes employed sodium citrate as the complexing agent in partial or full substitution of ammonia. The CdS films were studied by X-ray diffraction, optical transmission spectroscopy and atomic force microscopy. CdS/CdTe devices were completed by depositing 3 {mu}m thick CdTe absorbent layers by means of the close-spaced vapor transport technique (CSVT). Evaporated Cu-Au was used as the back contact in all the solar cells. Dark and under illumination J-V characteristic and quantum efficiency measurements were done on the CdS/CdTe devices to determine their conversion efficiency and spectral response. The efficiency of the cells depended on the window layer and on the transparent contact with values between 5.7% and 8.7%. (author)

  15. Structural, Optical and Electrical Properties of Nanocrystalline Cuprous Oxide Thin Film Deposited By Chemical Method

    Directory of Open Access Journals (Sweden)

    Prakash Bansilal Ahirrao

    2010-06-01

    Full Text Available Cuprous oxide (Cu2O is an interesting p-type semiconductor material used in solar cell applications.  The Modified Chemical Bath Deposition (M-CBD method is suitable for growing thin multilayer structure due to low deposition temperature. This method does not require any sophisticated instrument and substrate need not to be conductive. The nanocrystalline Cu2O thin films were deposited on glass substrates by M-CBD method. The deposited films were characterized by different characterization techniques to study structural, surface morphological, optical and electrical properties. The structural studies show that, the formation of Cu2O thin films with an average crystallite size of 14 nm. Optical studies show a direct band gap 2.48 eV. The room temperature electrical resistivity is of the order of 1.3 kW-cm and activation energy 0.33 eV. The films exhibit p-type electrical conductivity as seen by thermo-emf measurements.

  16. Effect of bath concentration on the growth and photovoltaic response of SILAR-deposited CuO thin films

    Science.gov (United States)

    Visalakshi, S.; Kannan, R.; Valanarasu, S.; Kim, Hyun-Seok; Kathalingam, A.; Chandramohan, R.

    2015-09-01

    Solar cell property of p-CuO/n-Si heterojunction was investigated using SILAR-deposited CuO thin films. The effects of copper salt concentration on the growth of CuO films and its effect on the efficiency in solar cell conversion were investigated. Structural, morphological, optical and electrical studies of the CuO thin films deposited at 90 °C with different copper sulphate concentrations are reported. Crystallinity of the film is found to increase with the increase in copper sulphate concentration. The measured Raman spectrum of the deposited film showed peaks corresponding to CuO phase. It is observed by the SEM that the film is homogeneous fully covering the substrate. The optical band gap of the deposited film has exhibited a decrease in band gap from 1.76 to 1.57 eV with the increase in copper sulphate concentration. Solar cell device was constructed using the p-CuO film deposited on n-silicon substrate, and its photovoltaic response was measured. It showed increasing photoresponse with increasing concentration of copper sulphate.

  17. The chemical/physical and microbiological characteristics of typical bath and laundry waste waters. [waste water reclamation during manned space flight

    Science.gov (United States)

    Hypes, W. D.; Batten, C. E.; Wilkins, J. R.

    1974-01-01

    Chemical/physical and microbiological characteristics are studied of typical bath and laundry waters collected during a 12 day test in which the untreated waste waters were reused for toilet flush. Most significant changes were found for ammonia, color, methylene blue active substances, phosphates, sodium, sulfates, total organic carbon, total solids, and turbidity in comparison with tap water baseline. The mean total number of microorganisms detected in the waste waters ranged from 1 million to 10 to the 7th power cells/m1 and the mean number of possible coliforms ranged from 10 to the 5th power to 1 million. An accumulation of particulates and an objectible odor were detected in the tankage used during the 12 day reuse of the untreated waste waters. The combined bath and laundry waste waters from a family of four provided 91 percent of the toilet flush water for the same family.

  18. Chemical Vapor Deposition of Turbine Thermal Barrier Coatings

    Science.gov (United States)

    Haven, Victor E.

    1999-01-01

    Ceramic thermal barrier coatings extend the operating temperature range of actively cooled gas turbine components, therefore increasing thermal efficiency. Performance and lifetime of existing ceram ic coatings are limited by spallation during heating and cooling cycles. Spallation of the ceramic is a function of its microstructure, which is determined by the deposition method. This research is investigating metalorganic chemical vapor deposition (MOCVD) of yttria stabilized zirconia to improve performance and reduce costs relative to electron beam physical vapor deposition. Coatings are deposited in an induction-heated, low-pressure reactor at 10 microns per hour. The coating's composition, structure, and response to the turbine environment will be characterized.

  19. Advances in the chemical vapor deposition (CVD) of Tantalum

    DEFF Research Database (Denmark)

    Mugabi, James Atwoki; Eriksen, Søren; Christensen, Erik

    2014-01-01

    The chemical stability of tantalum in hot acidic media has made it a key material in the protection of industrial equipment from corrosion under such conditions. The Chemical Vapor Deposition of tantalum to achieve such thin corrosion resistant coatings is one of the most widely mentioned examples...

  20. Influence of complexing agent on the growth of chemically deposited Ni3Pb2S2 thin films

    Directory of Open Access Journals (Sweden)

    Ho Soonmin

    2014-09-01

    Full Text Available Ni3Pb2S2 thin films were prepared by chemical bath deposition method. Here, the objective of this research was to investigate the influence of complexing agent on the properties of films.These films were characterized using atomic force microscopy, UV-Visible spectro photometer and X-ray diffraction. It was found that, as the concentration of tartaric acid increased, film thickness increased, but, the band gap reduced. For the films prepared using 0.1M of tartaric acid, the films were uniform and completely covered the substrates.

  1. Tandem solar cells deposited using hot-wire chemical vapor deposition

    NARCIS (Netherlands)

    Veen, M.K. van

    2003-01-01

    In this thesis, the application of the hot-wire chemical vapor deposition (HWCVD) technique for the deposition of silicon thin films is described. The HWCVD technique is based on the dissociation of silicon-containing gasses at the catalytic surface of a hot filament. Advantages of this technique ar

  2. Controlling the resistivity gradient in chemical vapor deposition-deposited aluminum-doped zinc oxide

    NARCIS (Netherlands)

    Ponomarev, M. V.; Verheijen, M. A.; Keuning, W.; M. C. M. van de Sanden,; Creatore, M.

    2012-01-01

    Aluminum-doped ZnO (ZnO:Al) grown by chemical vapor deposition (CVD) generally exhibit a major drawback, i.e., a gradient in resistivity extending over a large range of film thickness. The present contribution addresses the plasma-enhanced CVD deposition of ZnO: Al layers by focusing on the control

  3. Clean diffusion coatings by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Warnes, B.M.; Punola, D.C. [Howmet Thermatech Coatings, Whitehall, MI (United States)

    1997-10-01

    An experimental program was undertaken to identify diffusion coating impurities introduced by standard aluminizing processes and to evaluate the impact of those impurities on oxidation resistance of the resultant Pt aluminide coating. IN-738 tabs and foils were platinum-electroplated, and then aluminized using three different processes: high-activity pack cementation, high-activity CVD and low-activity CVD. The results suggest that aluminizing processes which involve aluminum bearing alloys in the coating retort with H{sub 2} or H{sub 2}/HCl gas at high temperature can contaminate the diffusion coating during deposition. CVD low-activity aluminizing (coating gas generated at low temperature outside the coating chamber from 99.999% Al) did not introduce any coating impurities. In addition, the data indicates that harmful impurities from the IN-738 substrate (sulfur, boron and tungsten) and the electroplating process (phosphorus) were removed from the coating during deposition. The CVD low-activity Pt aluminide coating was the `cleanest` in the study, and it exhibited the best high-temperature oxidation resistance of the coatings considered. It can be concluded that trace elements in diffusion coatings from the superalloy substrate and/or the aluminizing process can adversely effect the oxidation resistance of those coatings, and that CVD low-activity aluminizing yields cleaner coatings than other commercially available aluminizing techniques. (orig.) 10 refs.

  4. Optical and structural properties of chemically deposited CdS thin films on polyethylene naphthalate substrates

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval-Paz, M.G., E-mail: myrnasandoval@udec.cl [Departamento de Fisica, Facultad de Ciencias Fisicas y Matematicas, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile); Ramirez-Bon, R. [Centro de Investigacion y Estudios Avanzados del IPN, Unidad Queretaro, Apdo. Postal 1-798, 76001 Queretaro, Qro. (Mexico)

    2011-11-30

    CdS thin films were deposited on polyethylene naphthalate substrates by means of the chemical bath deposition technique in an ammonia-free cadmium-sodium citrate system. Three sets of CdS films were grown in precursor solutions with different contents of Cd and thiourea maintaining constant the concentration ratios [Cd]/[thiourea] and [Cd]/[sodium citrate] at 0.2 and 0.1 M/M, respectively. The concentrations of cadmium in the reaction solutions were 0.01, 7.5 Multiplication-Sign 10{sup -3} and 6.8 Multiplication-Sign 10{sup -3} M, respectively. The three sets of CdS films were homogeneous, hard, specularly reflecting, yellowish and adhered very well to the plastic substrates, quite similar to those deposited on glass substrates. The structural and optical properties of the CdS films were determined from X-ray diffraction, optical transmission and reflection spectroscopy and atomic force microscopy measurements. We found that the properties of the films depend on both the amount of Cd in the growth solutions and on the deposition time. The increasing of Cd concentration in the reaction solution yield to thicker CdS films with smaller grain size, shorter lattice constant, and higher energy band gap. The energy band gap of the CdS films varied in the range 2.42-2.54 eV depending on the precursor solution. The properties of the films were analyzed in terms of the growth mechanisms during the chemical deposition of CdS layers.

  5. Influence of air annealing on the structural, morphological, optical and electrical properties of chemically deposited ZnSe thin films

    Science.gov (United States)

    Kale, R. B.; Lokhande, C. D.

    2005-11-01

    Zinc selenide nanocrystalline thin films are grown onto amorphous glass substrate from an aqueous alkaline medium, using chemical bath deposition (CBD) method. The ZnSe thin films are annealed in air for 4 h at various temperatures and characterized by structural, morphological, optical and electrical properties. The as-deposited ZnSe film grew with nanocrystalline cubic phase alongwith some amorphous phase present in it. After annealing metastable nanocrystalline cubic phase was transformed into stable polycrystalline hexagonal phase with partial conversion of ZnSe into ZnO. The optical band gap, Eg, of as-deposited film is 2.85 eV and electrical resistivity of the order of 10 6-10 7 Ω cm. Depending upon annealing temperature, decrease up to 0.15 eV and 10 2 Ω cm were observed in the optical band gap, Eg, and electrical resistivity, respectively.

  6. Deposition of electrochromic tungsten oxide thin films by plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Henley, W.B.; Sacks, G.J. [Univ. of South Florida, Tampa, FL (United States). Center of Microelectronics

    1997-03-01

    Use of plasma-enhanced chemical vapor deposition (PECVD) for electrochromic WO{sub 3} film deposition is investigated. Oxygen, hydrogen, and tungsten hexafluoride were used as source gases. Reactant gas flow was investigated to determine the effect on film characteristics. High quality optical films were obtained at deposition rates on the order of 100 {angstrom}/s. Higher deposition rates were attainable but film quality and optical coherence degraded. Atomic emission spectroscopy (AES), was used to provide an in situ assessment of the plasma deposition chemistry. Through AES, it is shown that the hydrogen gas flow is essential to the deposition of the WO{sub 3} film. Oxygen gas flow and tungsten hexafluoride gas flow must be approximately equal for high quality films.

  7. Chemical vapor deposition reactor. [providing uniform film thickness

    Science.gov (United States)

    Chern, S. S.; Maserjian, J. (Inventor)

    1977-01-01

    An improved chemical vapor deposition reactor is characterized by a vapor deposition chamber configured to substantially eliminate non-uniformities in films deposited on substrates by control of gas flow and removing gas phase reaction materials from the chamber. Uniformity in the thickness of films is produced by having reactive gases injected through multiple jets which are placed at uniformally distributed locations. Gas phase reaction materials are removed through an exhaust chimney which is positioned above the centrally located, heated pad or platform on which substrates are placed. A baffle is situated above the heated platform below the mouth of the chimney to prevent downdraft dispersion and scattering of gas phase reactant materials.

  8. The effect of Ce{sup 3+} on structure, morphology and optical properties of flower-like ZnO synthesized using the chemical bath method

    Energy Technology Data Exchange (ETDEWEB)

    Koao, L.F. [Department of Physics, University of the Free State, Qwaqwa Campus, Private Bag X13, Phuthaditjhaba 9866 (South Africa); Dejene, F.B., E-mail: dejenebf@qwa.ufs.ac.za [Department of Physics, University of the Free State, Qwaqwa Campus, Private Bag X13, Phuthaditjhaba 9866 (South Africa); Swart, H.C., E-mail: swarthc@ufs.ac.za [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein 9300 (South Africa); Botha, J.R. [Physics Department, P.O. Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa)

    2013-11-15

    Ce{sup 3+} doped ZnO flower-like structures were synthesized by the chemical bath deposition method (CBD). The influence of Ce{sup 3+} as a dopant on the crystallization, surface morphology, optical and luminescent properties of ZnO flowers-like structures were investigated. The X-ray diffraction (XRD) spectra of the ZnO:Ce{sup 3+}nanostructures correspond to the various planes of a single hexagonal ZnO phase for the lower Ce concentration samples. The estimated grain sizes calculated using the XRD spectra were found to be in order of 42±2 nm. The grain size was found to be not dependent on the concentration of the Ce{sup 3+} ions used up to 3 mol% of Ce. Scanning Auger electron microscopy and scanning electron micrographs indicate that the addition of Ce{sup 3+} influence the morphology of the samples. The flower-like structures obtained for the undoped and low concentration Ce doped ZnO changed into a mixed structure with the emergence of pyramid shapes for higher concentration Ce doped samples. The solid undoped and low concentration Ce doped powder showed good optical properties with a high reflectance in the visible regions. The properties, however, diminished at higher Ce concentration. The band gap energies decreased linearly with concentration from 3.0±0.1 to 2.4±0.3 eV for ZnO:0 mol% Ce{sup 3+} up to ZnO:10 mol% Ce{sup 3+}. Under 248 nm excitation, the undoped and low concentration Ce doped ZnO flower-like rods exhibited a green emission, peaking at about 559 nm. The higher Ce concentration (0.3 mol% and above) was emitted at 436 and 503 nm due to the Ce transitions. The intensity of these emission spectra of the ZnO:Ce{sup 3+} decreased with the addition of more Ce{sup 3+} ions. -- Highlights: • Ce{sup 3+} doped ZnO flower-like structures were synthesized by CBD. • Flower-like hexagonal ZnO:Ce{sup 3+}nanostructures were obtained for undoped and low mol% Ce. • ZnO changed into a mixed structure with emergence of pyramid shapes for higher mol% Ce

  9. A novel induction heater for chemical vapor deposition

    Science.gov (United States)

    Ong, C. W.; Wong, H. K.; Sin, K. S.; Yip, S. T.; Chik, K. P.

    1989-06-01

    We report how an induction cooker for household use can be modified for heating substrate or heating gases to high temperature in a chemical vapor deposition system. Only minor changes of the cooker are necessary. Stable substrate temperature as high as 900 °C was achieved with input power of about 1150 W.

  10. Chemical Vapor Deposition of Aluminum Oxide Thin Films

    Science.gov (United States)

    Vohs, Jason K.; Bentz, Amy; Eleamos, Krystal; Poole, John; Fahlman, Bradley D.

    2010-01-01

    Chemical vapor deposition (CVD) is a process routinely used to produce thin films of materials via decomposition of volatile precursor molecules. Unfortunately, the equipment required for a conventional CVD experiment is not practical or affordable for many undergraduate chemistry laboratories, especially at smaller institutions. In an effort to…

  11. Effective conductivity of chemically deposited ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Robles, M. [Universidad Autonoma del Estado de Morelos (UAEM), Cuernavaca (Mexico). Fac. de Ciencias; Tagueena-Martinez, J. [IIM-UNAM, Temixco, Morelos (Mexico). Lab. de Energia Solar; Del Rio, J.A. [IIM-UNAM, Temixco, Morelos (Mexico). Lab. de Energia Solar

    1997-01-30

    Chemically deposited thin films have multiple applications. However, as a result of their complex structure, their physical properties are very difficult to predict. In this paper, we use an effective medium approach to model these heterogeneous systems. We extend Thorpe`s formula for the effective electrical conductivity of elliptical holes randomly distributed in a matrix to a system composed of conducting ellipses in a conducting matrix. This extension is used to calculate the effective electrical conductivity of polycrystalline chemically deposited ZnO thin films. We compare experimental results obtained by two different deposition methods: spray pyrolysis and successive ion layer adsorption and reaction (SILAR) reported here. We select the elliptical geometric parameters from microstructural data. Good agreement between the experimental measurements and our calculation is obtained. In addition, we present a new proof of the reciprocity theorem used to derive the theoretical relation. (orig.)

  12. Nanocrystalline Diamond Films Deposited by Electron Assisted Hot Filament Chemical Vapor Deposition

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Nanocrystalline diamond films were deposited on polished Si wafer surface with electron assisted hot filament chemical vapor deposition at 1 kPa gas pressure, the deposited films were characterized and observed by Raman spectrum, X-ray diffraction, atomic force microscopy and semiconductor characterization system. The results show that when 8 A bias current is applied for 5 h, the surface roughness decreases to 28.5 nm. After 6 and 8 A bias current are applied for 1 h, and the nanocrystalline films deposition continue for 4 h with 0 A bias current at 1 kPa gas pressure. The nanocrystalline diamond films with 0.5×109 and 1×1010 Ω·cm resistivity respectively are obtained. It is demonstrated that electron bombardment plays an important role of nucleation to deposit diamond films with smooth surface and high resistivity.

  13. Low-temperature deposition of crystalline silicon nitride nanoparticles by hot-wire chemical vapor deposition

    Science.gov (United States)

    Kim, Chan-Soo; Youn, Woong-Kyu; Lee, Dong-Kwon; Seol, Kwang-Soo; Hwang, Nong-Moon

    2009-07-01

    The nanocrystalline alpha silicon nitride (α-Si 3N 4) was deposited on a silicon substrate by hot-wire chemical vapor deposition at the substrate temperature of 700 °C under 4 and 40 Torr at the wire temperatures of 1430 and 1730 °C, with a gas mixture of SiH 4 and NH 3. The size and density of crystalline nanoparticles on the substrate increased with increasing wire temperature. With increasing reactor pressure, the crystallinity of α-Si 3N 4 nanoparticles increased, but the deposition rate decreased.

  14. The atmospheric chemical vapour deposition of coatings on glass

    CERN Document Server

    Sanderson, K D

    1996-01-01

    The deposition of thin films of indium oxide, tin doped indium oxide (ITO) and titanium nitride for solar control applications have been investigated by Atmospheric Chemical Vapour Deposition (APCVD). Experimental details of the deposition system and the techniques used to characterise the films are presented. Results from investigations into the deposition parameters, the film microstructure and film material properties are discussed. A range of precursors were investigated for the deposition of indium oxide. The effect of pro-mixing the vaporised precursor with an oxidant source and the deposition temperature has been studied. Polycrystalline In sub 2 O sub 3 films with a resistivity of 1.1 - 3x10 sup - sup 3 OMEGA cm were obtained with ln(thd) sub 3 , oxygen and nitrogen. The growth of ITO films from ln(thd) sub 3 , oxygen and a range of tin dopants is also presented. The effect of the dopant precursor, the doping concentration, deposition temperature and the effect of additives on film growth and microstr...

  15. Analysis of chemically deposited CdSe and CdS thin films

    CERN Document Server

    Osuji, R U

    2002-01-01

    We have successfully deposited quality polycrystalline thin films of CdSe and CdS on Corning 7059 glass slides by the electroless chemical bath technique at room temperature (~27 $^\\circ$C). X-ray analysis confirmed the successful deposition of CdSe and CdS thin films. Our grown CdSe film thickness ranged from 0.10 $\\mu$m. to 0.80 $\\pm$ 0.01 $\\mu$m and the CdS film thickness ranged from 0.10 $\\mu$m to 1.00 $\\pm$ 0.01 $\\mu$m. The scanning electron micrograph of the films reveals uniform film surface. The energy gaps, $E_g$ determined for our CdSe and CdS films have average values of 1.70 $\\pm$ 0.04 eV and 2.15 $\\pm$ 0.04 eV respectively. The films have high absorbance in the 0.35 $\\mu$m - 0.85 $\\mu$m range. These qualities make them suitable for use in thin film solar cell technology.

  16. Chemically deposited thin films of sulfides and selenides of antimony and bismuth as solar energy materials

    Science.gov (United States)

    Nair, M. T. S.; Nair, Padmanabhan K.; Garcia, Victor M.; Pena, Y.; Arenas, O. L.; Garcia, J. C.; Gomez-Daza, O.

    1997-10-01

    Chemical bath deposition techniques for bismuth sulfide, bismuth selenide, antimony sulfide, and antimony selenide thin films of about 0.20 - 0.25 micrometer thickness are reported. All these materials may be considered as solar absorber films: strong optical absorption edges, with absorption coefficient, (alpha) , greater than 104 cm-1, are located at 1.31 eV for Bi2Se3, 1.33 eV for Bi2S3, 1.8 eV for Sb2S3, and 1.35 eV for Sb2Se3. As deposited, all the films are nearly amorphous. However, well defined crystalline peaks matching bismuthinite (JCPDS 17- 0320), paraguanajuatite (JCPDS 33-0214), and stibnite (JCPDS 6-0474) and antimony selenide (JCPDS 15-0861) for Bi2S3, Bi2Se3, Sb2S3 and Sb2Se3 respectively, are observed when the films are annealed in nitrogen at 300 degrees Celsius. This is accompanied by a substantial modification of the electrical conductivity in the films: from 10-7 (Omega) -1 cm-1 (in as prepared films) to 10 (Omega) -1 cm-1 in the case of bismuth sulfide and selenide films, and enhancement of photosensitivity in the case of antimony sulfide films. The chemical deposition of a CuS/CuxSe film on these Vx- VIy films and subsequent annealing at 300 degrees Celsius for 1 h at 1 torr of nitrogen leads to the formation of p-type films (conductivity of 1 - 100 (Omega) -1 cm-1) of multinary composition. Among these, the formation of Cu3BiS3 (JCPDS 9-0488) and Cu3SbS4 (JCPDS 35- 0581), CuSbS2 (JCPDS 35-0413) have been clearly detected. Solar energy applications of these films are suggested.

  17. Combustion chemical vapor deposited coatings for thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Hampikian, J.M.; Carter, W.B. [Georgia Institute of Technology, Atlanta, GA (United States). School of Materials Science and Engineering

    1995-12-31

    The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings. In this report, the evaluation of alumina and ceria coatings on a nickel-chromium alloy is described.

  18. Oxygen Barrier Coating Deposited by Novel Plasma-enhanced Chemical Vapor Deposition

    DEFF Research Database (Denmark)

    Jiang, Juan; Benter, M.; Taboryski, Rafael Jozef

    2010-01-01

    We report the use of a novel plasma-enhanced chemical vapor deposition chamber with coaxial electrode geometry for the SiOx deposition. This novel plasma setup exploits the diffusion of electrons through the inner most electrode to the interior samples space as the major energy source. This confi......We report the use of a novel plasma-enhanced chemical vapor deposition chamber with coaxial electrode geometry for the SiOx deposition. This novel plasma setup exploits the diffusion of electrons through the inner most electrode to the interior samples space as the major energy source....... This configuration enables a gentle treatment of sensitive materials like low-density polyethylene foils and biodegradable materials. SiOx coatings deposited in the novel setup were compared with other state of the art plasma coatings and were found to possess equally good or better barrier properties. The barrier...... effect of single-layer coatings deposited under different reaction conditions was studied. The coating thickness and the carbon content in the coatings were found to be the critical parameters for the barrier property. The novel barrier coating was applied on different polymeric materials...

  19. Self-organization and nanostructure formation in chemical vapor deposition

    Science.gov (United States)

    Walgraef, Daniel

    2013-10-01

    When thin films are grown on a substrate by chemical vapor deposition, the evolution of the first deposited layers may be described, on mesoscopic scales, by dynamical models of the reaction-diffusion type. For monatomic layers, such models describe the evolution of atomic coverage due to the combined effect of reaction terms representing adsorption-desorption and chemical processes and nonlinear diffusion terms that are of the Cahn-Hilliard type. This combination may lead, below a critical temperature, to the instability of uniform deposited layers. This instability triggers the formation of nanostructures corresponding to regular spatial variations of substrate coverage. Patterns wavelengths and symmetries are selected by dynamical variables and not by variational arguments. According to the balance between reaction- and diffusion-induced nonlinearities, a succession of nanostructures including hexagonal arrays of dots, stripes, and localized structures of various types may be obtained. These structures may initiate different growth mechanisms, including Volmer-Weber and Frank-Van der Merwe types of growth. The relevance of this approach to the study of deposited layers of different species is discussed.

  20. Chemical vapor deposition coating of fibers using microwave application

    Science.gov (United States)

    Barmatz, Martin B. (Inventor); Hoover, Gordon (Inventor); Jackson, Henry W. (Inventor)

    2000-01-01

    Chemical vapor deposition coating is carried out in a cylindrical cavity. The fibers are heated by a microwave source that is uses a TM0N0 mode, where O is an integer, and produces a field that depends substantially only on radius. The fibers are observed to determine their heating, and their position can be adjusted. Once the fibers are uniformly heated, a CVD reagent is added to process the fibers.

  1. Research on chemical vapor deposition processes for advanced ceramic coatings

    Science.gov (United States)

    Rosner, Daniel E.

    1993-01-01

    Our interdisciplinary background and fundamentally-oriented studies of the laws governing multi-component chemical vapor deposition (VD), particle deposition (PD), and their interactions, put the Yale University HTCRE Laboratory in a unique position to significantly advance the 'state-of-the-art' of chemical vapor deposition (CVD) R&D. With NASA-Lewis RC financial support, we initiated a program in March of 1988 that has led to the advances described in this report (Section 2) in predicting chemical vapor transport in high temperature systems relevant to the fabrication of refractory ceramic coatings for turbine engine components. This Final Report covers our principal results and activities for the total NASA grant of $190,000. over the 4.67 year period: 1 March 1988-1 November 1992. Since our methods and the technical details are contained in the publications listed (9 Abstracts are given as Appendices) our emphasis here is on broad conclusions/implications and administrative data, including personnel, talks, interactions with industry, and some known applications of our work.

  2. High Quality SiGe Layer Deposited by a New Ultrahigh Vacuum Chemical Vapor Deposition System

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    An ultrahigh vacuum chemical vapor deposition (UHV/CVD) system is developed and the details of its construction and operation are reported. Using high purity SiH4 and GeH4 reactant gases,the Si0.82Ge0.18 layer is deposited at 550℃. With the measurements by double crystal X-ray diffraction (DCXRD), transmission electron microscopy (TEM) and Rutherford backscattering spectroscopy (RBS) techniques, it is shown that the crystalline quality of the SiGe layer is good,and the underlying SiGe/Si heterointerface is sharply defined.

  3. Mechanical and piezoresistive properties of thin silicon films deposited by plasma-enhanced chemical vapor deposition and hot-wire chemical vapor deposition at low substrate temperatures

    Science.gov (United States)

    Gaspar, J.; Gualdino, A.; Lemke, B.; Paul, O.; Chu, V.; Conde, J. P.

    2012-07-01

    This paper reports on the mechanical and piezoresistance characterization of hydrogenated amorphous and nanocrystalline silicon thin films deposited by hot-wire chemical vapor deposition (HWCVD) and radio-frequency plasma-enhanced chemical vapor deposition (PECVD) using substrate temperatures between 100 and 250 °C. The microtensile technique is used to determine film properties such as Young's modulus, fracture strength and Weibull parameters, and linear and quadratic piezoresistance coefficients obtained at large applied stresses. The 95%-confidence interval for the elastic constant of the films characterized, 85.9 ± 0.3 GPa, does not depend significantly on the deposition method or on film structure. In contrast, mean fracture strength values range between 256 ± 8 MPa and 600 ± 32 MPa: nanocrystalline layers are slightly stronger than their amorphous counterparts and a pronounced increase in strength is observed for films deposited using HWCVD when compared to those grown by PECVD. Extracted Weibull moduli are below 10. In terms of piezoresistance, n-doped radio-frequency nanocrystalline silicon films deposited at 250 °C present longitudinal piezoresistive coefficients as large as -(2.57 ± 0.03) × 10-10 Pa-1 with marginally nonlinear response. Such values approach those of crystalline silicon and of polysilicon layers deposited at much higher temperatures.

  4. Characterization of nanocarbon deposited on insulator substrate by alcohol chemical vapor deposition

    Science.gov (United States)

    Tsujimoto, Marina; Murata, Hidenobu; Tachibana, Masaru

    2016-10-01

    Single-layer-graphene-like nanocarbon materials were directly deposited on c-plane sapphire substrates by thermal chemical vapor deposition with ethanol as a carbon source. Scanning electron microscopy (SEM) images show that the deposited materials have sheetlike grains of around 100 nm diameter. Most of them have “hills” with 32 nm diameter on the grains. According to atomic force microscopy (AFM) observation, the height of the sheetlike grains is below 1 nm, which is comparable to that of single-layer graphene, while the hills have a height of several nm. Raman spectra show that the material is similar to graphitic nanocarbon, which has a strong D band. This result implies that there are a number of defects in the nanocarbon materials.

  5. Morphological and chemical study of the initial growth of CdS thin films deposited using an ammonia-free chemical process

    Energy Technology Data Exchange (ETDEWEB)

    Mazon-Montijo, D.A.; Sotelo-Lerma, M.; Quevedo-Lopez, M. [Centro de Investigacion en Polimeros y Materiales, Universidad de Sonora, Apdo. Postal 130, 83190 Hermosillo, Son. (Mexico); El-Bouanani, M. [Department of Materials Science and Engineering, University of North Texas, P.O. Box 305310 Denton, TX 76203-5310 (United States); Alshareef, H.N. [SEMATECH, 2706 Montopolis Drive, Austin, TX 78741 (United States); Espinoza-Beltran, F.J. [Centro de Investigacion y Estudios Avanzados del IPN, Unidad Queretaro, Apdo. Postal 1-798, 76001 Queretaro, Qro. (Mexico); Ramirez-Bon, R. [Centro de Investigacion y Estudios Avanzados del IPN, Unidad Queretaro, Apdo. Postal 1-798, 76001 Queretaro, Qro. (Mexico)], E-mail: rrbon@qro.cinvestav.mx

    2007-11-15

    We study the initial growth stages of CdS thin films deposited by an ammonia-free chemical bath deposition process. This ammonia-free process is more environmentally benign because it reduces potential ammonia release to the environment due to its high volatility. Instead of ammonia, sodium citrate was used as the complexing agent. We used atomic force microscopy (AFM), Rutherford backscattering (RBS) and X-ray photoelectron spectroscopy (XPS) to investigate the morphological and chemical modifications at the substrate surface during the first initial stages of the CdS deposition process. Additionally, X-ray diffraction (XRD) and optical transmission spectroscopy measurements were carried out to compliment the study. XPS results show that the first nucleation centers are composed by Cd(OH){sub 2} which agglomerate in patterns of bands, as demonstrated by AFM results. It is also observed that the conversion to CdS (by anionic exchange) of the first nucleus begins before the substrate surface is completely covered by a homogenous film.

  6. Characterization of Thin Films Deposited with Precursor Ferrocene by Plasma Enhanced Chemical Vapour Deposition

    Institute of Scientific and Technical Information of China (English)

    YAO Kailun; ZHENG Jianwan; LIU Zuli; JIA Lihui

    2007-01-01

    In this paper,the characterization of thin films,deposited with the precursor ferrocene(FcH)by the plasma enhanced chemical vapour deposition(PECVD)technique,was investigated.The films were measured by Scanning Electronic Microscopy(SEM),Atomic Force Microscopy(AFM),Electron Spectroscopy for Chemical Analysis(ESCA),and superconducting Quantum Interference Device(SQUID).It was observed that the film's layer is homogeneous in thickness and has a dense morphology without cracks.The surface roughness is about 36 nm.From the results of ESCA,it can be inferred that the film mainly contains the compound FeOOH,and carbon is combined with oxygen in different forms under different supply-powers.The hysteresis loops indicate that the film is of soft magnetism.

  7. Deposition of thermal and hot-wire chemical vapor deposition copper thin films on patterned substrates.

    Science.gov (United States)

    Papadimitropoulos, G; Davazoglou, D

    2011-09-01

    In this work we study the hot-wire chemical vapor deposition (HWCVD) of copper films on blanket and patterned substrates at high filament temperatures. A vertical chemical vapor deposition reactor was used in which the chemical reactions were assisted by a tungsten filament heated at 650 degrees C. Hexafluoroacetylacetonate Cu(I) trimethylvinylsilane (CupraSelect) vapors were used, directly injected into the reactor with the aid of a liquid injection system using N2 as carrier gas. Copper thin films grown also by thermal and hot-wire CVD. The substrates used were oxidized silicon wafers on which trenches with dimensions of the order of 500 nm were formed and subsequently covered with LPCVD W. HWCVD copper thin films grown at filament temperature of 650 degrees C showed higher growth rates compared to the thermally ones. They also exhibited higher resistivities than thermal and HWCVD films grown at lower filament temperatures. Thermally grown Cu films have very uniform deposition leading to full coverage of the patterned substrates while the HWCVD films exhibited a tendency to vertical growth, thereby creating gaps and incomplete step coverage.

  8. Synthesis of Aligned Carbon Nanotubes by Thermal Chemical Vapor Deposition

    Institute of Scientific and Technical Information of China (English)

    LI Gang; ZHOU Ming; MA Weiwei; CAI Lan

    2009-01-01

    Single crystal silicon was found to be very beneficial to the growth of aligned carbon nanotubes by chemical vapor deposition with C2H2 as carbon source. A thin film of Ni served as catalyst was deposited on the Si substrate by the K575X Peltier Cooled High Resolution Sputter Coater before growth. The growth properties of carbon nanotubes were studied as a function of the Ni catalyst layer thickness. The diameter, growth rate and areal density of the carbon nanotubes were controlled by the initial thickness of the catalyst layer. Steric hindrance between nanotubes forces them to grow in well-aligned manner at an initial stage of growth. Transmission electron microscope analysis revealed that nanotubes grew by a tip growth mechanism.

  9. Electrospray deposition of isolated chemically synthesized magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, Pierre; Meffre, Anca; Lacroix, Lise-Marie; Ugnati, Damien [Université de Toulouse (France); INSA, UPS, CNRS, Laboratoire de Physique et Chimie des Nano-objets (LPCNO) (France); Ondarçuhu, Thierry [Centre d’Elaboration de Matériaux et d’Etudes Structurales (CEMES-CNRS) (France); Respaud, Marc; Lassagne, Benjamin, E-mail: lassagne@insa-toulouse.fr [Université de Toulouse (France); INSA, UPS, CNRS, Laboratoire de Physique et Chimie des Nano-objets (LPCNO) (France)

    2016-01-15

    The deposition of isolated magnetic nanoparticles onto a substrate was performed using electrohydrodynamic spraying. Two kinds of nanoparticles were sprayed, 11 nm CoFe carbide nanospheres and 10.5 nm Fe nanocubes. By studying carefully the evolution of the sprayed charged droplets and the mechanism of nanoparticle dispersion in them, we could optimize the nanoparticle concentration within the initial nanoparticle solution (i) to reduce the magnetic interaction and therefore prevent agglomeration and (ii) to obtain in a relatively short period (1 h) a deposit of isolated magnetic nanoparticles with a density of up to 400 nanoparticles per µm{sup 2}. These results open great perspectives for magnetic measurements on single objects using advanced magnetometry techniques as long as spintronics applications based on single chemically synthesized magnetic nanoparticles.

  10. Synthesis of mullite coatings by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Mulpuri, R.P.; Auger, M.; Sarin, V.K. [Boston Univ., MA (United States)

    1996-08-01

    Formation of mullite on ceramic substrates via chemical vapor deposition was investigated. Mullite is a solid solution of Al{sub 2}O{sub 3} and SiO{sub 2} with a composition of 3Al{sub 2}O{sub 3}{circ}2SiO{sub 2}. Thermodynamic calculations performed on the AlCl{sub 3}-SiCl{sub 4}-CO{sub 2}-H{sub 2} system were used to construct equilibrium CVD phase diagrams. With the aid of these diagrams and consideration of kinetic rate limiting factors, initial process parameters were determined. Through process optimization, crystalline CVD mullite coatings have been successfully grown on SiC and Si{sub 3}N{sub 4} substrates. Results from the thermodynamic analysis, process optimization, and effect of various process parameters on deposition rate and coating morphology are discussed.

  11. Chemical vapour deposited diamonds for dosimetry of radiotherapeutical beams

    Energy Technology Data Exchange (ETDEWEB)

    Bucciolini, M.; Mazzocchi, S. [Firenze Univ., Firenze (Italy). Dipartimento di Fisiopatologia Clinica; INFN, Firenze (Italy); Borchi, E.; Bruzzi, M.; Pini, S.; Sciortino, S. [Firenze Univ., Firenze (Italy). Dipartimento di Energetica; INFN, Firenze (Italy); Cirrone, G.A.P.; Guttone, G.; Raffaele, L.; Sabini, M.G. [INFN, Catania (Italy). Laboratori Nazionali del Sud

    2002-07-01

    This paper deals with the application of synthetic diamond detectors to the clinical dosimetry of photon and electron beams. It has been developed in the frame of INFN CANDIDO project and MURST Cofin. Diamonds grown with CVD (Chemical Vapour Deposition) technique have been studied; some of them are commercial samples while others have been locally synthesised. Experiments have been formed using both on-line and off-line approaches. For the off-line measurements, TL (thermoluminescent) and TSC (thermally stimulated current) techniques have been used.

  12. Handbook of chemical vapor deposition principles, technology and applications

    CERN Document Server

    Pierson, Hugh O

    1999-01-01

    Turn to this new second edition for an understanding of the latest advances in the chemical vapor deposition (CVD) process. CVD technology has recently grown at a rapid rate, and the number and scope of its applications and their impact on the market have increased considerably. The market is now estimated to be at least double that of a mere seven years ago when the first edition of this book was published. The second edition is an update with a considerably expanded and revised scope. Plasma CVD and metallo-organic CVD are two major factors in this rapid growth. Readers will find the latest

  13. Bath temperature impact on morphological evolution of Ni(OH)2 thin films and their supercapacitive behaviour

    Indian Academy of Sciences (India)

    U M Patil; K V Gurav; J H Kim; C D Lokhande; S C Jun

    2014-02-01

    Nanostructured Ni(OH)2 thin films were deposited over stainless steel (SS) and glass substrate via simple chemical bath deposition (CBD) method. NiCl2 :6H2O were used as source of nickel and aqueous ammonia as a complexing agent. The coating process of Ni(OH)2 material over substrate is based on the decomposition of ammonia complexed nickel ions at two different bath temperatures. The changes in structural, morphological and electro-chemical properties are examined as an impact of bath temperature. XRD studies reveal formation of mixed phase of and at lower bath temperature (313 K) while, pure phase of Ni(OH)2 thin films deposited was observed at higher bath temperature (353 K). The morphological evolution from honeycomb structure to vertically aligned flakes over the substrate is observed as the influence of bath temperature. The supercapacitive performance based on the morphology examined by using cyclic voltammetric measurements in 1 M KOH. The maximum specific capacitances of 610 and 460 F/g were observed for the vertical flake and honeycomb structured Ni(OH)2 thin films, respectively.

  14. Microbiologists meet geologists in Bath

    Science.gov (United States)

    Onstott, T. C.

    A diverse group of microbiologists, molecular biologists, chemical engineers, and geologists met in Bath, United Kingdom, in September 1993 to reach across the barriers separating their disciplines and report new findings in the expanding field of geomicrobiology. The occasion was the second International Symposium on Subsurface Microbiology, cosponsored by the Subsurface Science Program of the U.S. Department of Energy. Historically, Bath was a resort centered around the emission of thermal waters credited with the potential to cure numerous ills. The location was appropriate given that biotechnology appears to have considerable potential to cure some challenging environmental ailments.

  15. Nickel electrodeposition from novel citrate bath

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new type of electroplating bath suitable for nickel electrodeposition was developed. Trisodium citrate was used as a complexing agent and a buffer in the bath. The buffering capacity between trisodium citrate and boric acid were compared. The effects were investigated under different conditions of bath composition, current density, pH and temperature on the potentiodynamic cathodic polarization curves, cathodic current efficiency and throwing index, as well as the electrical conductivity of these baths. The optimum conditions for producing sound and satisfactory nickel deposits were: NiSO4·6H2O 350 g/L, NiC12·6H2O 45 g/L and Na3C6H5O7 30 g/L at pH=4 and 55 ℃. The surface morphology of the as-plated Ni deposit was examined by SEM. The results reveal that the nickel deposition obtained from the optimum conditions are composed of compact, non-porous fine grains covering the entire surface. X-ray analysis shows that nickel deposits obtained from the citrate bath have a fine crystal structure compared with deposits from the Watts bath.

  16. Ti-doped hydrogenated diamond like carbon coating deposited by hybrid physical vapor deposition and plasma enhanced chemical vapor deposition

    Science.gov (United States)

    Lee, Na Rae; Sle Jun, Yee; Moon, Kyoung Il; Sunyong Lee, Caroline

    2017-03-01

    Diamond-like carbon films containing titanium and hydrogen (Ti-doped DLC:H) were synthesized using a hybrid technique based on physical vapor deposition (PVD) and plasma enhanced chemical vapor deposition (PECVD). The film was deposited under a mixture of argon (Ar) and acetylene gas (C2H2). The amount of Ti in the Ti-doped DLC:H film was controlled by varying the DC power of the Ti sputtering target ranging from 0 to 240 W. The composition, microstructure, mechanical and chemical properties of Ti-doped DLC:H films with varying Ti concentrations, were investigated using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), nano indentation, a ball-on-disk tribometer, a four-point probe system and dynamic anodic testing. As a result, the optimum composition of Ti in Ti-doped DLC:H film using our hybrid method was found to be a Ti content of 18 at. %, having superior electrical conductivity and high corrosion resistance, suitable for bipolar plates. Its hardness value was measured to be 25.6 GPa with a low friction factor.

  17. Initiated chemical vapor deposition of antimicrobial polymer coatings.

    Science.gov (United States)

    Martin, T P; Kooi, S E; Chang, S H; Sedransk, K L; Gleason, K K

    2007-02-01

    The vapor phase deposition of polymeric antimicrobial coatings is reported. Initiated chemical vapor deposition (iCVD), a solventless low-temperature process, is used to form thin films of polymers on fragile substrates. For this work, finished nylon fabric is coated by iCVD with no affect on the color or feel of the fabric. Infrared characterization confirms the polymer structure. Coatings of poly(dimethylaminomethyl styrene) of up to 540 microg/cm2 were deposited on the fabric. The antimicrobial properties were tested using standard method ASTM E2149-01. A coating of 40 microg/cm2 of fabric was found to be very effective against gram-negative Escherichia coli, with over a 99.99%, or 4 log, kill in just 2 min continuing to over a 99.9999%, or 6 log, reduction in viable bacteria in 60 min. A coating of 120 microg/cm2 was most effective against the gram-positive Bacillus subtilis. Further tests confirmed that the iCVD polymer did not leach off the fabric.

  18. Conversion Coatings for Aluminum Alloys by Chemical Vapor Deposition Mechanisms

    Science.gov (United States)

    Reye, John T.; McFadden, Lisa S.; Gatica, Jorge E.; Morales, Wilfredo

    2004-01-01

    With the rise of environmental awareness and the renewed importance of environmentally friendly processes, the United States Environmental Protection Agency has targeted surface pre-treatment processes based on chromates. Indeed, this process has been subject to regulations under the Clean Water Act as well as other environmental initiatives, and there is today a marked movement to phase the process out in the near future. Therefore, there is a clear need for new advances in coating technology that could provide practical options for replacing present industrial practices. Depending on the final application, such coatings might be required to be resistant to corrosion, act as chemically resistant coatings, or both. This research examined a chemical vapor deposition (CVD) mechanism to deposit uniform conversion coatings onto aluminum alloy substrates. Robust protocols based on solutions of aryl phosphate ester and multi-oxide conversion coating (submicron) films were successfully grown onto the aluminum alloy samples. These films were characterized by X-ray Photoelectron Spectroscopy (XPS). Preliminary results indicate the potential of this technology to replace aqueous-based chromate processes.

  19. Chemically deposited In2S3-Ag2S layers to obtain AgInS2 thin films by thermal annealing

    Science.gov (United States)

    Lugo, S.; Peña, Y.; Calixto-Rodriguez, M.; López-Mata, C.; Ramón, M. L.; Gómez, I.; Acosta, A.

    2012-12-01

    AgInS2 thin films were obtained by the annealing of chemical bath deposited In2S3-Ag2S layers at 400 °C in N2 for 1 h. According to the XRD and EDX results the chalcopyrite structure of AgInS2 has been obtained. These films have an optical band gap, Eg, of 1.86 eV and an electrical conductivity value of 1.2 × 10-3 (Ω cm)-1.

  20. Low resistance polycrystalline diamond thin films deposited by hot filament chemical vapour deposition

    Indian Academy of Sciences (India)

    Mahtab Ullah; Ejaz Ahmed; Abdelbary Elhissi; Waqar Ahmed

    2014-05-01

    Polycrystalline diamond thin films with outgrowing diamond (OGD) grains were deposited onto silicon wafers using a hydrocarbon gas (CH4) highly diluted with H2 at low pressure in a hot filament chemical vapour deposition (HFCVD) reactor with a range of gas flow rates. X-ray diffraction (XRD) and SEM showed polycrystalline diamond structure with a random orientation. Polycrystalline diamond films with various textures were grown and (111) facets were dominant with sharp grain boundaries. Outgrowth was observed in flowerish character at high gas flow rates. Isolated single crystals with little openings appeared at various stages at low gas flow rates. Thus, changing gas flow rates had a beneficial influence on the grain size, growth rate and electrical resistivity. CVD diamond films gave an excellent performance for medium film thickness with relatively low electrical resistivity and making them potentially useful in many industrial applications.

  1. Adherent apatite coating on titanium substrate using chemical deposition.

    Science.gov (United States)

    Rohanizadeh, R; LeGeros, R Z; Harsono, M; Bendavid, A

    2005-03-15

    Plasma-sprayed "HA" coatings on commercial orthopedic and dental implants consist of mixtures of calcium phosphate phases, predominantly a crystalline calcium phosphate phase, hydroxyapatite (HA) and an amorphous calcium phosphate (ACP) with varying HA/ACP ratios. Alternatives to the plasma-spray method are being explored because of some of its disadvantages. The purpose of this study was to deposit an adherent apatite coating on titanium substrate using a two-step method. First, titanium substrates were immersed in acidic solution of calcium phosphate resulting in the deposition of a monetite (CaHPO4) coating. Second, the monetite crystals were transformed to apatite by hydrolysis in NaOH solution. Composition and morphology of the initial and final coatings were identified using X-ray diffraction (XRD), Scanning Electron Microscopy, and Energy Dispersive Spectroscopy (EDS). The final coating was porous and the apatite crystals were agglomerated and followed the outline of the large monetite crystals. EDS revealed the presence of calcium and phosphorous elements on the titanium substrate after removing the coating using tensile or scratching tests. The average tensile bond of the coating was 5.2 MPa and cohesion failures were observed more frequently than adhesion failures. The coating adhesion measured using scratch test with a 200-microm-radius stylus was 13.1N. Images from the scratch tracks demonstrated that the coating materials were squashed without fracturing inside and/or at the border of the tracks until the failure point of the coating. In conclusion, this study showed the potential of a chemical deposition method for depositing a coating consisting of either monetite or apatite. This method has the advantage of producing a coating with homogenous composition on even implants of complex geometry or porosity. This method involves low temperatures and, therefore, can allow the incorporation of growth factors or biogenic molecules.

  2. MANSION BATHS OF CYPRUS

    Directory of Open Access Journals (Sweden)

    Enes Kavalçalan

    2015-12-01

    Full Text Available From the very beginning of the human history, body cleanliness is one of the basic needs. At first, human beings have supplied the needs of cleaning from rivers and lakes. With the development of civilizations they have started to build baths. In Roman Period these baths have been combined with Gymnasiums and become a part of the social life while they were merely small places of bathing in Ancient Greek. In the course of time, bath architecture which gained new functions and typologies with the effects of different nations and geographic places has maintained its own existence in Turkish culture as a popular ingredient in it. In this paper, mansion baths that were built in Ottoman period in Cyprus are studied. Firstly all locations of baths were determinated, photographed and measured during the research. Then, the determinated baths have been tried to being described comprehensively in the light of the documents and knowledges that are achievable. Main plan in mansion baths was built on the basis of “dressing” and “hotness” sections. Also, there are installation parts like “water tank” and “boiler room”. The baths which have a peculiar schema in itself constitute the exceptional examples of bath typology. With this paper, introduction to science world of mansion baths which are generally ignored in most of the researches because of the small sizes, are aimed.

  3. Luminescent Nanocrystalline Silicon Carbide Thin Film Deposited by Helicon Wave Plasma Enhanced Chemical Vapour Deposition

    Institute of Scientific and Technical Information of China (English)

    LU Wan-bing; YU Wei; WU Li-ping; CUI Shuang-kui; FU Guang-sheng

    2006-01-01

    Hydrogenated nanocrystalline silicon carbide (SiC) thin films were deposited on the single-crystal silicon substrate using the helicon wave plasma enhanced chemical vapor deposition (HW-PECVD) technique. The influences of magnetic field and hydrogen dilution ratio on the structures of SiC thin film were investigated with the atomic force microscopy (AFM), the Fourier transform infrared absorption (FTIR) and the transmission electron microscopy (TEM). The results indicate that the high plasma activity of the helicon wave mode proves to be a key factor to grow crystalline SiC thin films at a relative low substrate temperature. Also, the decrease in the grain sizes from the level of microcrystalline to that of nanocrystalline can be achieved by increasing the hydrogen dilution ratios. Transmission electron microscopy measurements reveal that the size of most nanocrystals in the film deposited under the higher hydrogen dilution ratios is smaller than the doubled Bohr radius of 3C-SiC (approximately 5.4 nm), and the light emission measurements also show a strong blue photoluminescence at the room temperature, which is considered to be caused by the quantum confinement effect of small-sized SiC nanocrystals.

  4. Design and implementation of a novel portable atomic layer deposition/chemical vapor deposition hybrid reactor

    Science.gov (United States)

    Selvaraj, Sathees Kannan; Jursich, Gregory; Takoudis, Christos G.

    2013-09-01

    We report the development of a novel portable atomic layer deposition chemical vapor deposition (ALD/CVD) hybrid reactor setup. Unique feature of this reactor is the use of ALD/CVD mode in a single portable deposition system to fabricate multi-layer thin films over a broad range from "bulk-like" multi-micrometer to nanometer atomic dimensions. The precursor delivery system and control-architecture are designed so that continuous reactant flows for CVD and cyclic pulsating flows for ALD mode are facilitated. A custom-written LabVIEW program controls the valve sequencing to allow synthesis of different kinds of film structures under either ALD or CVD mode or both. The entire reactor setup weighs less than 40 lb and has a relatively small footprint of 8 × 9 in., making it compact and easy for transportation. The reactor is tested in the ALD mode with titanium oxide (TiO2) ALD using tetrakis(diethylamino)titanium and water vapor. The resulting growth rate of 0.04 nm/cycle and purity of the films are in good agreement with literature values. The ALD/CVD hybrid mode is demonstrated with ALD of TiO2 and CVD of tin oxide (SnOx). Transmission electron microscopy images of the resulting films confirm the formation of successive distinct TiO2-ALD and SnOx-CVD layers.

  5. Design and implementation of a novel portable atomic layer deposition/chemical vapor deposition hybrid reactor.

    Science.gov (United States)

    Selvaraj, Sathees Kannan; Jursich, Gregory; Takoudis, Christos G

    2013-09-01

    We report the development of a novel portable atomic layer deposition chemical vapor deposition (ALD/CVD) hybrid reactor setup. Unique feature of this reactor is the use of ALD/CVD mode in a single portable deposition system to fabricate multi-layer thin films over a broad range from "bulk-like" multi-micrometer to nanometer atomic dimensions. The precursor delivery system and control-architecture are designed so that continuous reactant flows for CVD and cyclic pulsating flows for ALD mode are facilitated. A custom-written LabVIEW program controls the valve sequencing to allow synthesis of different kinds of film structures under either ALD or CVD mode or both. The entire reactor setup weighs less than 40 lb and has a relatively small footprint of 8 × 9 in., making it compact and easy for transportation. The reactor is tested in the ALD mode with titanium oxide (TiO2) ALD using tetrakis(diethylamino)titanium and water vapor. The resulting growth rate of 0.04 nm/cycle and purity of the films are in good agreement with literature values. The ALD/CVD hybrid mode is demonstrated with ALD of TiO2 and CVD of tin oxide (SnOx). Transmission electron microscopy images of the resulting films confirm the formation of successive distinct TiO2-ALD and SnO(x)-CVD layers.

  6. Silicon nitride at high growth rate using hot wire chemical vapor deposition

    NARCIS (Netherlands)

    Verlaan, V.

    2008-01-01

    Amorphous silicon nitride (SiNx) is a widely studied alloy with many commercial applications. This thesis describes the application of SiNx deposited at high deposition rate using hot wire chemical vapor deposition (HWCVD) for solar cells and thin film transistors (TFTs). The deposition process of H

  7. Strain relaxation in graphene grown by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Troppenz, Gerald V., E-mail: gerald.troppenz@helmholtz-berlin.de; Gluba, Marc A.; Kraft, Marco; Rappich, Jörg; Nickel, Norbert H. [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institut für Silizium Photovoltaik, Kekuléstr. 5, D-12489 Berlin (Germany)

    2013-12-07

    The growth of single layer graphene by chemical vapor deposition on polycrystalline Cu substrates induces large internal biaxial compressive strain due to thermal expansion mismatch. Raman backscattering spectroscopy and atomic force microscopy were used to study the strain relaxation during and after the transfer process from Cu foil to SiO{sub 2}. Interestingly, the growth of graphene results in a pronounced ripple structure on the Cu substrate that is indicative of strain relaxation of about 0.76% during the cooling from the growth temperature. Removing graphene from the Cu substrates and transferring it to SiO{sub 2} results in a shift of the 2D phonon line by 27 cm{sup −1} to lower frequencies. This translates into additional strain relaxation. The influence of the processing steps, used etching solution and solvents on strain, is investigated.

  8. Thermoluminescence characterisation of chemical vapour deposited diamond films

    CERN Document Server

    Mazzocchi, S; Bucciolini, M; Cuttone, G; Pini, S; Sabini, M G; Sciortino, S

    2002-01-01

    The thermoluminescence (TL) characteristics of a set of six chemical vapour deposited diamond films have been studied with regard to their use as off-line dosimeters in radiotherapy. The structural characterisation has been performed by means of Raman spectroscopy. Their TL responses have been tested with radiotherapy beams ( sup 6 sup 0 Co photons, photons and electrons from a linear accelerator (Linac), 26 MeV protons from a TANDEM accelerator) in the dose range 0.1-7 Gy. The dosimetric characterisation has yielded a very good reproducibility, a very low dependence of the TL response on the type of particle and independence of the radiation energy. The TL signal is not influenced by the dose rate and exhibits a very low thermal fading. Moreover, the sensitivity of the diamond samples compares favourably with that of standard TLD100 dosimeters.

  9. Plasma Enhanced Chemical Vapour Deposition of Horizontally Aligned Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Matthew T. Cole

    2013-05-01

    Full Text Available A plasma-enhanced chemical vapour deposition reactor has been developed to synthesis horizontally aligned carbon nanotubes. The width of the aligning sheath was modelled based on a collisionless, quasi-neutral, Child’s law ion sheath where these estimates were empirically validated by direct Langmuir probe measurements, thereby confirming the proposed reactors ability to extend the existing sheath fields by up to 7 mm. A 7 mbar growth atmosphere combined with a 25 W plasma permitted the concurrent growth and alignment of carbon nanotubes with electric fields of the order of 0.04 V μm−1 with linear packing densities of up to ~5 × 104 cm−1. These results open up the potential for multi-directional in situ alignment of carbon nanotubes providing one viable route to the fabrication of many novel optoelectronic devices.

  10. Chemical vapor deposition of amorphous ruthenium-phosphorus alloy films

    Energy Technology Data Exchange (ETDEWEB)

    Shin Jinhong [Texas Materials Institute, University of Texas at Austin, Austin, TX 78750 (United States); Waheed, Abdul [Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712 (United States); Winkenwerder, Wyatt A. [Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712 (United States); Kim, Hyun-Woo [Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712 (United States); Agapiou, Kyriacos [Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712 (United States); Jones, Richard A. [Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712 (United States); Hwang, Gyeong S. [Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712 (United States); Ekerdt, John G. [Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712 (United States)]. E-mail: ekerdt@che.utexas.edu

    2007-05-07

    Chemical vapor deposition growth of amorphous ruthenium-phosphorus films on SiO{sub 2} containing {approx} 15% phosphorus is reported. cis-Ruthenium(II)dihydridotetrakis-(trimethylphosphine), cis-RuH{sub 2}(PMe{sub 3}){sub 4} (Me = CH{sub 3}) was used at growth temperatures ranging from 525 to 575 K. Both Ru and P are zero-valent. The films are metastable, becoming increasingly more polycrystalline upon annealing to 775 and 975 K. Surface studies illustrate that demethylation is quite efficient near 560 K. Precursor adsorption at 135 K or 210 K and heating reveal the precursor undergoes a complex decomposition process in which the hydride and trimethylphosphine ligands are lost at temperatures as low at 280 K. Phosphorus and its manner of incorporation appear responsible for the amorphous-like character. Molecular dynamics simulations are presented to suggest the local structure in the films and the causes for phosphorus stabilizing the amorphous phase.

  11. Field emission properties of chemical vapor deposited individual graphene

    Energy Technology Data Exchange (ETDEWEB)

    Zamri Yusop, Mohd [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, 466-8555 Nagoya (Japan); Department of Materials, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Kalita, Golap, E-mail: kalita.golap@nitech.ac.jp [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, 466-8555 Nagoya (Japan); Center for Fostering Young and Innovative Researchers, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, 466-8555 Nagoya (Japan); Yaakob, Yazid; Takahashi, Chisato; Tanemura, Masaki [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, 466-8555 Nagoya (Japan)

    2014-03-03

    Here, we report field emission (FE) properties of a chemical vapor deposited individual graphene investigated by in-situ transmission electron microscopy. Free-standing bilayer graphene is mounted on a cathode microprobe and FE processes are investigated varying the vacuum gap of cathode and anode. The threshold field for 10 nA current were found to be 515, 610, and 870 V/μm for vacuum gap of 400, 300, and 200 nm, respectively. It is observed that the structural stability of a high quality bilayer graphene is considerably stable during emission process. By contacting the nanoprobe with graphene and applying a bias voltage, structural deformation and buckling are observed with significant rise in temperature owing to Joule heating effect. The finding can be significant for practical application of graphene related materials in emitter based devices as well as understanding the contact resistance influence and heating effect.

  12. Advanced titania buffer layer architectures prepared by chemical solution deposition

    Science.gov (United States)

    Kunert, J.; Bäcker, M.; Brunkahl, O.; Wesolowski, D.; Edney, C.; Clem, P.; Thomas, N.; Liersch, A.

    2011-08-01

    Chemical solution deposition (CSD) was used to grow high-quality (100) oriented films of SrTiO3 (STO) on CSD CaTiO3 (CTO), Ba0.1Ca0.9TiO3 (BCT) and STO seed and template layers. These template films bridge the lattice misfit between STO and the nickel-tungsten (NiW) substrate, assisting in dense growth of textured STO. Additional niobium (Nb) doping of the STO buffer layer reduces oxygen diffusion which is necessary to avoid undesired oxidation of the NiW. The investigated templates offer suitable alternatives to established standard buffer systems like La2Zr2O7 (LZO) and CeO2 for coated conductors.

  13. Chemical vapor deposition synthesis of tunable unsubstituted polythiophene.

    Science.gov (United States)

    Nejati, Siamak; Lau, Kenneth K S

    2011-12-20

    Despite having exceptional electroactive properties, applications of unsubstituted polythiophene (PTh) have been limited due to its insolubility. To overcome this challenge, we have employed oxidative chemical vapor deposition (oCVD) as a unique liquid-free technique to enable the oxidative polymerization of PTh using thiophene as the starting monomer and vanadium oxytrichloride as an effective vaporizable oxidant initiator. Vibrational and phototelectron spectroscopy indicated the formation of unsubstituted polythiophene. Cyclic voltammetry revealed its electrochromic behavior in solution. Significantly, polymer conjugation length and electrical conductivity can be tuned by controlling oCVD process variables. Polymerization is found to be adsorption-limited, so by providing sufficient monomer and limiting the amount of initiator at the growth surface, PTh is believed to be formed through α-α thiophene linkages.

  14. The Chemical Vapour Deposition of Tantalum - in long narrow channels

    DEFF Research Database (Denmark)

    Mugabi, James Atwoki

    use as a construction material for process equipment, with the cheaper alternative being the construction of equipment from steel and then protecting it with a thin but efficacious layer of tantalum. Chemical Vapour Deposition (CVD) is chosen as the most effective process to apply thin corrosion...... protective layers of tantalum because of the process’ ability to coat complex geometries and its relative ease to control. This work focuses on studying the CVD of tantalum in long narrow channels with the view that the knowledge gained during the project can be used to optimise the commercial coating...... process that Tantaline A/S and Alfa Laval (Sweden) use to manufacture tantalum coated plate heat exchangers. Experiments are done by coating the inner side of long, thin stainless steel tubes in the temperature range of 700 – 950 °C and pressure range of 25 – 990 mbar while using different reactant...

  15. Physical properties of chemically deposited Bi{sub 2}S{sub 3} thin films using two post-deposition treatments

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-García, H., E-mail: hamog@ier.unam.mx [Instituto de Ciencias Físicas, Laboratorio de espectroscopia, Universidad Nacional Autónoma de México, Apartado Postal 48-3, C.P. 62210 Cuernavaca, Morelos (Mexico); Messina, S. [Universidad Autónoma de Nayarit, Ciudad de la Cultura “Amado Nervo” S/N, C.P. 63155 Tepic, Nayarit (Mexico); Calixto-Rodriguez, M. [Universidad Tecnológica Emiliano Zapata del Estado de Morelos, Av. Universidad Tecnológica No. 1, C.P. 62760 Emiliano Zapata, Morelos (Mexico); Martínez, H. [Instituto de Ciencias Físicas, Laboratorio de espectroscopia, Universidad Nacional Autónoma de México, Apartado Postal 48-3, C.P. 62210 Cuernavaca, Morelos (Mexico)

    2014-08-30

    Highlights: • The post-deposition treatment by Ar plasma is a viable alternative to enhance the optical, electrical, morphological and structural properties of Bi{sub 2}S{sub 3} semiconductor thin films. • The plasma treatment avoids the loss in thickness of the chemically deposited Bi{sub 2}S{sub 3} thin films. • The E{sub g} values were 1.60 eV for the thermally annealed samples and 1.56 eV for the Ar plasma treated samples. • The highest value obtained for the electrical conductivity was 7.7 × 10{sup −2} (Ω cm){sup −1} in plasma treated samples. - Abstract: As-deposited bismuth sulfide (Bi{sub 2}S{sub 3}) thin films prepared by chemical bath deposition technique were treated with thermal annealed in air atmosphere and argon AC plasma. The as-deposited, thermally annealing and plasma treatment Bi{sub 2}S{sub 3} thin films have been characterized by X-ray diffraction (XRD) analysis, atomic force microscopy analysis (AFM), transmission, specular reflectance and electrical measurements. The structural, morphological, optical and electrical properties of the films are compared. The XRD analysis showed that both post-deposition treatments, transform the thin films from amorphous to a crystalline phase. The atomic force microscopy (AFM) measurement showed a reduction of roughness for the films treated in plasma. The energy band gap value of the as-prepared film was E{sub g} = 1.61 eV, while for the film thermally annealed was E{sub g} = 1.60 eV and E{sub g} = 1.56 eV for film treated with Plasma. The electrical conductivity under illumination of the as-prepared films was 3.6 × 10{sup −5} (Ω cm){sup −1}, whereas the conductivity value for the thermally annealed films was 2.0 × 10{sup −3} (Ω cm){sup −1} and for the plasma treated films the electrical conductivity increases up to 7.7 × 10{sup −2} (Ω cm){sup −1}.

  16. Chemical vapor deposition coatings for oxidation protection of titanium alloys

    Science.gov (United States)

    Cunnington, G. R.; Robinson, J. C.; Clark, R. K.

    1991-01-01

    Results of an experimental investigation of the oxidation protection afforded to Ti-14Al-21Nb and Ti-14Al-23Nb-2V titanium aluminides and Ti-17Mo-3Al-3Nb titanium alloy by aluminum-boron-silicon and boron-silicon coatings are presented. These coatings are applied by a combination of physical vapor deposition (PVD) and chemical vapor deposition (CVD) processes. The former is for the application of aluminum, and the latter is for codeposition of boron and silicon. Coating thickness is in the range of 2 to 7 microns, and coating weights are 0.6 to 2.0 mg/sq cm. Oxidation testing was performed in air at temperatures to 1255 K in both static and hypersonic flow environments. The degree of oxidation protection provided by the coatings is determined from weight change measurements made during the testing and post test compositional analyses. Temperature-dependent total normal emittance data are also presented for four coating/substrate combinations. Both types of coatings provided excellent oxidation protection for the exposure conditions of this investigation. Total normal emittances were greater than 0.80 in all cases.

  17. Laser diagnostics of chemical vapour deposition of diamond films

    CERN Document Server

    Wills, J B

    2002-01-01

    Cavity ring down spectroscopy (CRDS) has been used to make diagnostic measurements of chemically activated CH sub 4 / H sub 2 gas mixtures during the chemical vapour deposition (CVD) of thin diamond films. Absolute absorbances, concentrations and temperatures are presented for CH sub 3 , NH and C sub 2 H sub 2 in a hot filament (HF) activated gas mixture and CH, C sub 2 and C sub 2 H sub 2 in a DC arc plasma jet activated mixture. Measurements of the radical species were made using a pulsed dye laser system to generate tuneable visible and UV wavelengths. These species have greatest concentration in the hottest, activated regions of the reactors. Spatial profiling of the number densities of CH sub 3 and NH radicals have been used as stringent tests of predictions of radical absorbance and number densities made by 3-D numerical simulations, with near quantitative agreement. O sub 2 has been shown to reside in the activated region of the Bristol DC arc jet at concentrations (approx 10 sup 1 sup 3 molecules / cm...

  18. Studies on Hall Effect and DC Conductivity Measurements of Semiconductor Thin films Prepared by Chemical Bath Deposition (CBD) method

    OpenAIRE

    S. Thirumavalavana; K. Mani; S. Suresh Sagadevan

    2015-01-01

    Semiconductors have various useful properties that can be exploited for the realization of a large number of high performance devices in fields such as electronics and optoelectronics. Many novel semiconductors, especially in the form of thin films, are continually being developed. Thin films have drawn the attention of many researchers because of their numerous applications. As the film becomes thinner, the properties acquire greater importance in the miniaturization of elements such as resi...

  19. Evaluation of chemical and structural properties of germanium-carbon coatings deposited by plasma enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jamali, Hossein, E-mail: h.jamali@mut-es.ac.ir; Mozafarinia, Reza; Eshaghi, Akbar

    2015-10-15

    Germanium-carbon coatings were deposited on silicon and glass substrates by plasma enhanced chemical vapor deposition (PECVD) using three different flow ratios of GeH{sub 4} and CH{sub 4} precursors. Elemental analysis, structural evaluation and microscopic investigation of coatings were performed using laser-induced breakdown spectroscopy (LIBS), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM), respectively. Based on the results, the coatings exhibited a homogeneous and dense structure free of pores with a very good adhesion to substrate. The structural evaluation revealed that the germanium-carbon coatings were a kind of a Ge-rich composite material containing the amorphous and crystalline germanium and amorphous carbon with the mixture of Ge–Ge, Ge–C, C–C, Ge–H and C–H bonds. The result suggested that the amorphisation of the coatings could be increased with raising CH{sub 4}:GeH{sub 4} flow rate ratio and subsequently increasing C amount incorporated into the coating. - Highlights: • Germanium-carbon coatings were prepared by PECVD technique. • The germanium-carbon coatings were a kind of composite material. • The amorphisation of the coatings were increased with raising CH{sub 4}:GeH{sub 4} flow ratio.

  20. Electrochromic Devices Deposited on Low-Temperature Plastics by Plasma-Enhanced Chemical Vapor Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, Joshua; Seman, Michael

    2005-09-20

    Electrochromic windows have been identified by the Basic energy Sciences Advisory committee as an important technology for the reduction of energy spent on heating and cooling in residential and commercial buildings. Electrochromic devices have the ability to reversibly alter their optical properties in response to a small electric field. By blocking ultraviolet and infrared radiation, while modulating the incoming visible radiation, electrochromics could reduce energy consumption by several Quads per year. This amounts to several percent of the total annual national energy expenditures. The purpose of this project was to demonstrate proof of concept for using plasma-enhanced chemical vapor deposition (PECVD) for depositing all five layers necessary for full electrochromic devices, as an alternative to sputtering techniques. The overall goal is to produce electrochromic devices on flexible polymer substrates using PECVD to significantly reduce the cost of the final product. We have successfully deposited all of the films necessary for a complete electrochromic devices using PECVD. The electrochromic layer, WO3, displayed excellent change in visible transmission with good switching times. The storage layer, V2O5, exhibited a high storage capacity and good clear state transmission. The electrolyte, Ta2O5, was shown to functional with good electrical resistivity to go along with the ability to transfer Li ions. There were issues with leakage over larger areas, which can be address with further process development. We developed a process to deposit ZnO:Ga with a sheet resistance of < 50 W/sq. with > 90% transmission. Although we were not able to deposit on polymers due to the temperatures required in combination with the inverted position of our substrates. Two types of full devices were produced. Devices with Ta2O5 were shown to be functional using small aluminum dots as the top contact. The polymer electrolyte devices were shown to have a clear state transmission of

  1. Deposition of highly (111)-oriented PZT thin films by using metal organic chemical deposition

    CERN Document Server

    Bu, K H; Choi, D K; Seong, W K; Kim, J D

    1999-01-01

    Lead zirconate titanate (PZT) thin films have been grown on Pt/Ta/SiNx/Si substrates by using metal organic chemical vapor deposition with Pb(C sub 2 H sub 5) sub 4 , Zr(O-t-C sub 4 H sub 9) sub 4 , and Ti(O-i-C sub 3 H sub 7) sub 4 as source materials and O sub 2 as an oxidizing gas. The Zr fraction in the thin films was controlled by varying the flow rate of the Zr source material. The crystal structure and the electrical properties were investigated as functions of the composition. X-ray diffraction analysis showed that at a certain range of Zr fraction, highly (111)-oriented PZT thin films with no pyrochlore phases were deposited. On the other hand, at low Zr fractions, there were peaks from Pb-oxide phases. At high Zr fractions, peaks from pyrochlore phase were seen. The films also showed good electrical properties, such as a high dielectric constant of more than 1200 and a low coercive voltage of 1.35 V.

  2. Temperature admittance spectroscopy of boron doped chemical vapor deposition diamond

    Energy Technology Data Exchange (ETDEWEB)

    Zubkov, V. I., E-mail: VZubkovspb@mail.ru; Kucherova, O. V.; Zubkova, A. V.; Ilyin, V. A.; Afanas' ev, A. V. [St. Petersburg State Electrotechnical University (LETI), Professor Popov Street 5, 197376 St. Petersburg (Russian Federation); Bogdanov, S. A.; Vikharev, A. L. [Institute of Applied Physics of the Russian Academy of Sciences, Ul' yanov Street 46, 603950 Nizhny Novgorod (Russian Federation); Butler, J. E. [St. Petersburg State Electrotechnical University (LETI), Professor Popov Street 5, 197376 St. Petersburg (Russian Federation); Institute of Applied Physics of the Russian Academy of Sciences, Ul' yanov Street 46, 603950 Nizhny Novgorod (Russian Federation); National Museum of Natural History (NMNH), P.O. Box 37012 Smithsonian Inst., Washington, D.C. 20013-7012 (United States)

    2015-10-14

    Precision admittance spectroscopy measurements over wide temperature and frequency ranges were carried out for chemical vapor deposition epitaxial diamond samples doped with various concentrations of boron. It was found that the experimentally detected boron activation energy in the samples decreased from 314 meV down to 101 meV with an increase of B/C ratio from 600 to 18000 ppm in the gas reactants. For the heavily doped samples, a transition from thermally activated valence band conduction to hopping within the impurity band (with apparent activation energy 20 meV) was detected at temperatures 120–150 K. Numerical simulation was used to estimate the impurity DOS broadening. Accurate determination of continuously altering activation energy, which takes place during the transformation of conduction mechanisms, was proposed by numerical differentiation of the Arrhenius plot. With increase of boron doping level the gradual decreasing of capture cross section from 3 × 10{sup −13} down to 2 × 10{sup −17} cm{sup 2} was noticed. Moreover, for the hopping conduction the capture cross section becomes 4 orders of magnitude less (∼2 × 10{sup −20} cm{sup 2}). At T > T{sub room} in doped samples the birth of the second conductance peak was observed. We attribute it to a defect, related to the boron doping of the material.

  3. Review: Plasma-enhanced chemical vapor deposition of nanocrystalline diamond

    Directory of Open Access Journals (Sweden)

    Katsuyuki Okada

    2007-01-01

    Full Text Available Nanocrystalline diamond films have attracted considerable attention because they have a low coefficient of friction and a low electron emission threshold voltage. In this paper, the author reviews the plasma-enhanced chemical vapor deposition (PE-CVD of nanocrystalline diamond and mainly focuses on the growth of nanocrystalline diamond by low-pressure PE-CVD. Nanocrystalline diamond particles of 200–700 nm diameter have been prepared in a 13.56 MHz low-pressure inductively coupled CH4/CO/H2 plasma. The bonding state of carbon atoms was investigated by ultraviolet-excited Raman spectroscopy. Electron energy loss spectroscopy identified sp2-bonded carbons around the 20–50 nm subgrains of nanocrystalline diamond particles. Plasma diagnostics using a Langmuir probe and the comparison with plasma simulation are also reviewed. The electron energy distribution functions are discussed by considering different inelastic interaction channels between electrons and heavy particles in a molecular CH4/H2 plasma.

  4. On The Stability Of Model Flows For Chemical Vapour Deposition

    Science.gov (United States)

    Miller, Robert

    2016-11-01

    The flow in a chemical vapour deposition (CVD) reactor is assessed. The reactor is modelled as a flow over an infinite-radius rotating disk, where the mean flow and convective instability of the disk boundary layer are measured. Temperature-dependent viscosity and enforced axial flow are used to model the steep temperature gradients present in CVD reactors and the pumping of the gas towards the disk, respectively. Increasing the temperature-dependence parameter of the fluid viscosity (ɛ) results in an overall narrowing of the fluid boundary layer. Increasing the axial flow strength parameter (Ts) accelerates the fluid both radially and axially, while also narrowing the thermal boundary layer. It is seen that when both effects are imposed, the effects of axial flow generally dominate those of the viscosity temperature dependence. A local stability analysis is performed and the linearized stability equations are solved using a Galerkin projection in terms of Chebyshev polynomials. The neutral stability curves are then plotted for a range of ɛ and Ts values. Preliminary results suggest that increasing Ts has a stabilising effect on both type I and type II stationary instabilities, while small increases in ɛ results in a significant reduction to the critical Reynolds number.

  5. Charged impurity-induced scatterings in chemical vapor deposited graphene

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ming-Yang; Tang, Chiu-Chun [Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Ling, D. C. [Department of Physics, Tamkang University, Tamsui Dist., New Taipei 25137, Taiwan (China); Li, L. J. [Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 11529, Taiwan (China); Chi, C. C.; Chen, Jeng-Chung [Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2013-12-21

    We investigate the effects of defect scatterings on the electric transport properties of chemical vapor deposited (CVD) graphene by measuring the carrier density dependence of the magneto-conductivity. To clarify the dominant scattering mechanism, we perform extensive measurements on large-area samples with different mobility to exclude the edge effect. We analyze our data with the major scattering mechanisms such as short-range static scatters, short-range screened Coulomb disorders, and weak-localization (WL). We establish that the charged impurities are the predominant scatters because there is a strong correlation between the mobility and the charge impurity density. Near the charge neutral point (CNP), the electron-hole puddles that are induced by the charged impurities enhance the inter-valley scattering, which is favorable for WL observations. Away from the CNP, the charged-impurity-induced scattering is weak because of the effective screening by the charge carriers. As a result, the local static structural defects govern the charge transport. Our findings provide compelling evidence for understanding the scattering mechanisms in graphene and pave the way for the improvement of fabrication techniques to achieve high-quality CVD graphene.

  6. Chemical vapor deposited silica coatings for solar mirror protection

    Science.gov (United States)

    Gulino, Daniel A.; Dever, Therese M.; Banholzer, William F.

    1988-01-01

    A variety of techniques is available to apply protective coatings to oxidation susceptible spacecraft components, and each has associated advantages and disadvantages. Film applications by means of chemical vapor deposition (CVD) has the advantage of being able to be applied conformally to objects of irregular shape. For this reason, a study was made of the oxygen plasma durability of thin film (less than 5000 A) silicon dioxide coatings applied by CVD. In these experiments, such coatings were applied to silver mirrors, which are strongly subject to oxidation, and which are proposed for use on the space station solar dynamic power system. Results indicate that such coatings can provide adequate protection without affecting the reflectance of the mirror. Scanning electron micrographs indicated that oxidation of the silver layer did occur at stress crack locations, but this did not affect the measured solar reflectances. Oxidation of the silver did not proceed beyond the immediate location of the crack. Such stress cracks did not occur in thinner silica films, and hence such films would be desirable for this application.

  7. High surface area graphene foams by chemical vapor deposition

    Science.gov (United States)

    Drieschner, Simon; Weber, Michael; Wohlketzetter, Jörg; Vieten, Josua; Makrygiannis, Evangelos; Blaschke, Benno M.; Morandi, Vittorio; Colombo, Luigi; Bonaccorso, Francesco; Garrido, Jose A.

    2016-12-01

    Three-dimensional (3D) graphene-based structures combine the unique physical properties of graphene with the opportunity to get high electrochemically available surface area per unit of geometric surface area. Several preparation techniques have been reported to fabricate 3D graphene-based macroscopic structures for energy storage applications such as supercapacitors. Although reaserch has been focused so far on achieving either high specific capacitance or high volumetric capacitance, much less attention has been dedicated to obtain high specific and high volumetric capacitance simultaneously. Here, we present a facile technique to fabricate graphene foams (GF) of high crystal quality with tunable pore size grown by chemical vapor deposition. We exploited porous sacrificial templates prepared by sintering nickel and copper metal powders. Tuning the particle size of the metal powders and the growth temperature allow fine control of the resulting pore size of the 3D graphene-based structures smaller than 1 μm. The as-produced 3D graphene structures provide a high volumetric electric double layer capacitance (165 mF cm-3). High specific capacitance (100 Fg-1) is obtained by lowering the number of layers down to single layer graphene. Furthermore, the small pore size increases the stability of these GFs in contrast to the ones that have been grown so far on commercial metal foams. Electrodes based on the as-prepared GFs can be a boost for the development of supercapacitors, where both low volume and mass are required.

  8. Effect of tri-sodium citrate concentration on structural, optical and electrical properties of chemically deposited tin sulfide films

    Science.gov (United States)

    Gode, F.; Guneri, E.; Baglayan, O.

    2014-11-01

    Tin sulfide thin films were deposited onto glass substrates by chemical bath deposition. The effects of molar concentration of the complexing agent, tri-sodium citrate, on the structural, morphological, optical and electrical properties of the films were investigated. The films are characterized by X-ray diffraction, scanning electron microscopy, atomic force microscopy, optical absorption spectroscopy and Hall effect measurements. Polycrystalline film structure in orthorhombic phase was determined. Flower-like spherical grains are observed on the surface. While their average size increased from 345 nm to 750 nm when the tri-sodium citrate concentration was increased from 6.4 × 10-3 M to 8.0 × 10-3 M, the surface roughness varied in an opposite manner from approximately 120.18 nm to 29.36 nm. For these concentrations, optical band gap of the films decreased from 1.40 eV to 1.17 eV, whereas the Hall conductivity, mobility and carrier concentration of the films increased slightly from 5.91 × 10-5 to 8.78 × 10-5 (Ω cm)-1, from 148 to 228 cm2 V-1 s-1 and from 1.73 × 1012 to 3.59 × 1012 cm-1, respectively.

  9. High rate deposition of microcrystalline silicon films by high-pressure radio frequency plasma enhanced chemical vapor deposition (PECVD)

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Hydrogenated microcrystalline silicon (μc-Si:H) thin films were prepared by high- pressure radio-frequency (13.56 MHz) plasma enhanced chemical vapor deposition (rf-PECVD) with a screened plasma. The deposition rate and crystallinity varying with the deposition pressure, rf power, hydrogen dilution ratio and electrodes distance were systematically studied. By optimizing the deposition parameters the device quality μc-Si:H films have been achieved with a high deposition rate of 7.8 /s at a high pressure. The Voc of 560 mV and the FF of 0.70 have been achieved for a single-junction μc-Si:H p-i-n solar cell at a deposition rate of 7.8 /s.

  10. Properties of alumina films by atmospheric pressure metal-organic chemical vapour deposition

    NARCIS (Netherlands)

    Haanappel, V.A.C.; Corbach, van H.D.; Fransen, T.; Gellings, P.J.

    1994-01-01

    Thin alumina films were deposited at low temperatures (290–420°C) on stainless steel, type AISI 304. The deposition process was carried out in nitrogen by metal-organic chemical vapour deposition using aluminum tri-sec-butoxide. The film properties including the protection of the underlying substrat

  11. Initiated-chemical vapor deposition of organosilicon layers: Monomer adsorption, bulk growth, and process window definition

    NARCIS (Netherlands)

    Aresta, G.; Palmans, J.; M. C. M. van de Sanden,; Creatore, M.

    2012-01-01

    Organosilicon layers have been deposited from 1,3,5-trivinyl-1,3,5-trimethylcyclotrisiloxane (V3D3) by means of the initiated-chemical vapor deposition (i-CVD) technique in a deposition setup, ad hoc designed for the engineering of multilayer moisture permeation barriers. The application of Fourier

  12. Electrical and magnetoresistivity studies in chemical solution deposited La

    Energy Technology Data Exchange (ETDEWEB)

    Angappane, S.; Murugaraj, P.; Sethupathi, K.; Rangarajan, G.; Sastry, V. S.; Chakkaravarthi, A. Arul; Ramasamy, P.

    2001-06-01

    High quality magnetoresistive La{sub (1{minus}x)}Ca{sub x}MnO{sub 3} thin films have been prepared by the chemical solution deposition technique. A solution of propionate precursors of lanthanum, calcium, and manganese in propionic acid was used for this purpose. Films of varying compositions (x varying from 0.1 to 0.4) were spin coated on to LaAlO{sub 3}(100) and SrTiO{sub 3}(100) substrates at room temperature and pyrolyzed in the temperature range 600{endash}850{degree}C. For fixed compositions, annealing at higher temperatures shifts the insulator{endash}metal transition temperature (T{sub I{endash}M}) to higher values accompanied by a reduction in the resistivity values. The T{sub I{endash}M} variation for different x values was found to be less pronounced in the compositions x=0.2, 0.3, and 0.4. Typical T{sub I{endash}M} values of 283 K and 290 K were obtained for La{sub 0.7}Ca{sub 0.3}MnO{sub 3} coated on LaAlO{sub 3} and SrTiO{sub 3} substrates, respectively, when annealed at 850{degree}C. The substrate effect was found to be more pronounced for the x value 0.1 which showed two peaks (one at 271 K and another at 122 K) in the {rho}-T curve. The roles of substrate mismatch, composition variation, and annealing temperatures are discussed. {copyright} 2001 American Institute of Physics.

  13. Control of crystallite size in diamond film chemical vapor deposition

    Science.gov (United States)

    Moran, Mark B.; Johnson, Linda F.; Klemm, Karl A.

    1992-12-01

    In depositing an adhering, continuous, polycrystalline diamond film of optical or semiconductor quality on a substrate, as by forming on the substrate a layer of a refractory nitride interlayer and depositing diamond on the interlayer without mechanical treatment or seeding of the substrate or the interlayer, the substrate is heated in a vacuum chamber containing a microwave activated mixture of hydrogen and a gas including carbon, and the size of deposited diamond crystallites and their rate of deposition selectively varied by a bias voltage applied to the substrate.

  14. A Comparison between Thin-Film Transistors Deposited by Hot-Wire Chemical Vapor Deposition and PECVD

    Directory of Open Access Journals (Sweden)

    Meysam Zarchi

    2015-03-01

    Full Text Available The effect of new growth techniques on the mobility and stability of amorphous silicon (a-Si:H thin film transistors (TFTs has been studied. It was suggested that the key parameter controlling the field-effect mobility and stability is the intrinsic stress in the a-Si:H layer. Amorphous and microcrystalline silicon films were deposited by radiofrequency plasma enhanced chemical vapor deposition (RF-PECVD and hot-wire chemical vapor deposition (HW-CVD at 100 ºC and 25 ºC. Structural properties of these films were measured by Raman Spectroscopy. Electronic properties were measured by dark conductivity, σd, and photoconductivity, σph. For amorphous silicon films deposited by RF-PECVD on PET, photosensitivity's of >105 were obtained at both 100 º C and 25 ºC. For amorphous silicon films deposited by HW-CVD, a photosensitivity of > 105 was obtained at 100 ºC. Microcrystalline silicon films deposited by HW-CVD at 95% hydrogen dilution show σph~ 10-4 Ω-1cm-1, while maintaining a photosensitivity of ~102 at both 100 ºC and 25 ºC. Microcrystalline silicon films with a large crystalline fraction (> 50% can be deposited by HW-CVD all the way down to room temperature.

  15. Fabrication of complex oxide microstructures by combinatorial chemical beam vapour deposition through stencil masks

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, E. [3D-OXIDES, 70 rue Gustave Eiffel, Saint Genis Pouilly 01630 (France); Sandu, C.S., E-mail: cosmin.sandu@3d-oxides.com [3D-OXIDES, 70 rue Gustave Eiffel, Saint Genis Pouilly 01630 (France); Laboratoire de Céramique, Ecole Polytechnique Fédérale de Lausanne, Station 12, CH-1015 Lausanne (Switzerland); Harada, S.; Benvenuti, G. [3D-OXIDES, 70 rue Gustave Eiffel, Saint Genis Pouilly 01630 (France); Savu, V. [Laboratoire de Microsystèmes 1, Ecole Polytechnique Fédérale de Lausanne, Station 17, CH-1015 Lausanne (Switzerland); Muralt, P. [Laboratoire de Céramique, Ecole Polytechnique Fédérale de Lausanne, Station 12, CH-1015 Lausanne (Switzerland)

    2015-07-01

    Chemical Beam Vapour Deposition is a gas phase deposition technique, operated under high vacuum conditions, in which evaporated chemical precursors are thermally decomposed on heated substrates to form a film. In the particular equipment used in this work, different chemical beams effuse from a plurality of punctual precursor sources with line of sight trajectory to the substrate. A shadow mask is used to produce 3D-structures in a single step, replicating the apertures of a stencil as deposits on the substrate. The small gap introduced between substrate and mask induces a temperature difference between both surfaces and is used to deposit selectively solely on the substrate without modifying the mask, taking advantage of the deposition rate dependency on temperature. This small gap also enables the deposition of complex patterned structures resulting from the superposition of many patterns obtained using several precursor beams from different directions through a single mask aperture. A suitable process parameter window for precursor flow and substrate temperature is evidenced to maximize resolution. - Highlights: • Micro-feature growth with stencil mask by Chemical Beam Vapour Deposition • Growth of complex structured oxide films in one step • The gap between substrate and mask avoids deposition on the stencil. • Fabrication of 3D structures by superposing deposits from several beams • The versatile setup combines few chemical beams, variable geometry and stencil mask patterns.

  16. Synthetic Cathinones ("Bath Salts")

    Science.gov (United States)

    ... and Over-the-Counter Medications Stimulant ADHD Medications: Methylphenidate and Amphetamines Synthetic Cannabinoids Synthetic Cathinones ("Bath Salts") Effects of Drug Abuse Comorbidity: Addiction and Other Mental Disorders Drug Use ...

  17. ANOMALOUS ELECTRODEPOSITION OF Fe-Ni ALLOY COATING FROM SIMPLE AND COMPLEX BATHS AND ITS MAGNETIC PROPERTY

    Directory of Open Access Journals (Sweden)

    M A Islam

    2010-03-01

    Full Text Available Electrodeposition of Fe-Ni thin films has been carried on copper substrate under various electrodeposition conditions from two simple and six complex baths. Sulfate baths composing of NiSO4. 7H2O, FeSO4.7H2O, H3BO3 and Na2SO4KEYWORDS: Anomalous Electrodeposition, Fe-Ni Coating, Complexing agent, Current Density, Magnetic Property. 1. INTRODUCTION Alloy electrodeposition technologies can extend tremendously the potential of electrochemical deposition processes to provide coatings that require unique mechanical, chemical and physical properties [1]. There has been a great research interest in the development and characterization of iron-nickel (Fe-Ni thin films due to their operational capacity, economic interest, magnetic and other properties [2]. Due to their unique low coefficient of thermal expansion (CTE and soft magnetic properties, Fe-Ni alloys have been used in industrial applications for over 100 years [3]. Typical examples of applications that are based on the low CTE of Fe-Ni alloys include: thermostatic bimetals, glass sealing, integrated circuit packaging, cathode ray tube, shadow masks, membranes for liquid natural gas tankers; applications based on the soft magnetic properties include: read-write heads for magnetic storage, magnetic actuators, magnetic shielding, high performance transformer cores. comprise the simple baths whereas complex baths were prepared by adding ascorbic acid, saccharin and citric acid in simple baths. The effect of bath composition, pH and applied current density on coating appearance, composition, morphology and magnetic property were studied. Wet chemical analysis technique was used to analyze the coating composition whereas SEM and VSM were used to study the deposit morphology and magnetic property respectively. Addition of complexing agents in plating baths suppressed the anomalous nature of Fe-Ni alloy electrodeposition. Coatings obtained from simple baths were characterized by coarse grained non

  18. Laser assisted modification and chemical metallization of electron-beam deposited ceria thin films

    Energy Technology Data Exchange (ETDEWEB)

    Krumov, E., E-mail: emodk@clf.bas.bg [Central Laboratory of Photoprocesses ' Acad. Jordan Malinowski' , Bulgarian Academy of Sciences, Acad. Georgy Bonchev Str., bl. 109, 1113 Sofia (Bulgaria); Starbov, N.; Starbova, K. [Central Laboratory of Photoprocesses ' Acad. Jordan Malinowski' , Bulgarian Academy of Sciences, Acad. Georgy Bonchev Str., bl. 109, 1113 Sofia (Bulgaria); Perea, A.; Solis, J. [Instituto de Optica ' Daza de Valdes' , CSIC, 28006 Madrid (Spain)

    2009-11-15

    Excimer laser processing is applied for tailoring the surface morphology and phase composition of CeO{sub 2} ceramic thin films. E-beam evaporation technique is used to deposit samples on stainless steel and silicate glass substrates. The films are then irradiated with ArF* excimer laser pulses under different exposure conditions. Scanning electron microscopy, optical spectrophotometry, X-ray diffractometry and EDS microanalysis are used to characterize the non-irradiated and laser-processed films. Upon UV laser exposure there is large increase of the surface roughness that is accompanied by photo-darkening and ceria reduction. It is shown that the laser induced changes in the CeO{sub 2} films facilitate the deposition of metal nano-aggregates in a commercial copper electroless plating bath. The significance of laser modification as a novel approach for the production of CeO{sub 2} based thin film catalysts is discussed.

  19. Functionalization of Hydrogenated Chemical Vapour Deposition-Grown Graphene by On-Surface Chemical Reactions.

    Science.gov (United States)

    Drogowska, Karolina; Kovaříček, Petr; Kalbáč, Martin

    2017-03-23

    The reactivity of hydrogenated graphene when treated with oxidising agents, KMnO4 and KIO4 , as well as alkylated with benzyl bromide (BnBr) was studied. The probed reactions are strictly limited to the partly hydrogenated form of graphene in which most of the hydrogen atoms are located in activated benzylic/allylic positions. This, in turn, clearly demonstrates the presence of hydrogen attached to the graphene lattice. Attachment of the benzyl group was also unequivocally demonstrated by characteristic vibrations recorded in the surface-enhanced Raman spectra, and all reactions were shown to proceed solely on hydrogenated graphene as evidenced by the comparison with pristine chemical vapour deposition-grown graphene.

  20. Practical silicon deposition rules derived from silane monitoring during plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bartlome, Richard, E-mail: richard.bartlome@alumni.ethz.ch; De Wolf, Stefaan; Demaurex, Bénédicte; Ballif, Christophe [Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin-Film Electronics Laboratory, Rue de la Maladière 71b, 2000 Neuchâtel (Switzerland); Amanatides, Eleftherios; Mataras, Dimitrios [University of Patras, Department of Chemical Engineering, Plasma Technology Laboratory, P.O. Box 1407, 26504 Patras (Greece)

    2015-05-28

    We clarify the difference between the SiH{sub 4} consumption efficiency η and the SiH{sub 4} depletion fraction D, as measured in the pumping line and the actual reactor of an industrial plasma-enhanced chemical vapor deposition system. In the absence of significant polysilane and powder formation, η is proportional to the film growth rate. Above a certain powder formation threshold, any additional amount of SiH{sub 4} consumed translates into increased powder formation rather than into a faster growing Si film. In order to discuss a zero-dimensional analytical model and a two-dimensional numerical model, we measure η as a function of the radio frequency (RF) power density coupled into the plasma, the total gas flow rate, the input SiH{sub 4} concentration, and the reactor pressure. The adjunction of a small trimethylboron flow rate increases η and reduces the formation of powder, while the adjunction of a small disilane flow rate decreases η and favors the formation of powder. Unlike η, D is a location-dependent quantity. It is related to the SiH{sub 4} concentration in the plasma c{sub p}, and to the phase of the growing Si film, whether the substrate is glass or a c-Si wafer. In order to investigate transient effects due to the RF matching, the precoating of reactor walls, or the introduction of a purifier in the gas line, we measure the gas residence time and acquire time-resolved SiH{sub 4} density measurements throughout the ignition and the termination of a plasma.

  1. Numerical modeling of chemical vapor deposition (CVD) in a horizontal reactor

    Science.gov (United States)

    Sheikholeslami, M. Z.; Jasinski, T.; Fretz, K. W.

    1988-01-01

    In the present numerical prediction of the deposition rate of silicon from silane in a CVD process, the conservation equations for mass, momentum, energy, and chemical species are solved on a staggered grid using the SIMPLE algorithm, while the rate of chemical reactions in the gas phase and on the susceptor surface is obtained from an Arrhenius rate equation. Predicted deposition rates as a function of position along the susceptor with and without the gas phase chemical reaction are compared with the available experimental and numerical data; agreement is excellent except at the leading edge of the susceptor, where the deposition rate is overpredicted.

  2. Fabrication of Isotropic Pyrocarbon at 1400℃ by Thermal Gradient Chemical Vapor Deposition Apparatus

    Institute of Scientific and Technical Information of China (English)

    GUO Lingjun; ZHANG Dongsheng; LI Kezhi; LI Hejun

    2009-01-01

    An experiment was designed to prepare isotropic pyrocarbon by thermal gradient chemical vapor deposition apparatus.The deposition was performed under ambient atmosphere at 1400℃,with natural gas volume flow of 3.5 m~3/h for 80 h.The results show that the thickness and the bulk density of the deposit are about 1.95 g/cm~3 and 10 mm,respectively.The microstructure of the deposit was examined by polarized light microscopy and scanning electron microscopy,which shows that the deposit is constituted of sphere isotropic pyrocarbon,pebble pyrocarbon and laminar pyrocarbon.

  3. Structural and optical properties of chemically deposited Cd(S–Se) : CdCl2, Sm films

    Indian Academy of Sciences (India)

    R S Singh; S Bhushan

    2009-04-01

    Results of SEM and XRD studies, optical absorption and photoluminescence (PL) emission spectra and photoconductivity (PC), rise and decay studies are reported for Cd(S–Se) : CdCl2, Sm films prepared by chemical deposition method on glass substrates at 60°C in a water bath. SEM studies show ball-type structures along with voids which are related to layered growth. XRD studies show prominent diffraction lines of CdS and CdSe along with some peaks of CdCl2 and impurity Sm. The values of strain (), grain size () and dislocation density () are evaluated from XRD studies and the nature of crystallinity of the films are discussed. Optical absorption spectra also show the presence of Sm in the lattice. From the results of optical absorption spectra, the band gaps are determined. PL emission spectra of Cd(S–Se) consist of two peaks which are related to the edge emission of CdS and CdSe involving excitons. In Sm-doped emissions corresponding to transitions ${}^{4}G_{5/2}$ to ${}^{6}H_{5/2}$, ${}^{6}H_{7/2}$ and ${}^{6}H_{9/2}$ are observed. Sufficiently high photo current (pc) to dark current (dc) ratios with a maximum value of the order of 106 are also obtained in some special cases. This high photosensitization is related to increase in mobility and life time of carriers due to photo excitation.

  4. All hot wire chemical vapor deposition low substrate temperature transparent thin film moisture barrier

    NARCIS (Netherlands)

    Spee, D.A.; Schipper, M.R.; van der Werf, C.H.M.; Rath, J.K.; Schropp, R.E.I.

    2013-01-01

    We deposited a silicon nitride/polymer hybrid multilayer moisture barrier for flexible electronics in a hot wire chemical vapor deposition process, entirely below 100 °C. We were able to reach a water vapor transmission rate (WVTR) as low as 5×10−6 g/m2/day at a temperature of 60 °C and a relative h

  5. Low temperature junction growth using hot-wire chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qi; Page, Matthew; Iwaniczko, Eugene; Wang, Tihu; Yan, Yanfa

    2014-02-04

    A system and a process for forming a semi-conductor device, and solar cells (10) formed thereby. The process includes preparing a substrate (12) for deposition of a junction layer (14); forming the junction layer (14) on the substrate (12) using hot wire chemical vapor deposition; and, finishing the semi-conductor device.

  6. Plasma-enhanced Chemical Vapor Deposition of Aluminum Oxide Using Ultrashort Precursor Injection Pulses

    NARCIS (Netherlands)

    Dingemans, G.; M. C. M. van de Sanden,; Kessels, W. M. M.

    2012-01-01

    An alternative plasma-enhanced chemical vapor deposition (PECVD) method is developed and applied for the deposition of high-quality aluminum oxide (AlOx) films. The PECVD method combines a continuous plasma with ultrashort precursor injection pulses. We demonstrate that the modulation of the precurs

  7. Expanding thermal plasma chemical vapour deposition of ZnO:Al layers for CIGS solar cells

    NARCIS (Netherlands)

    Sharma, K.; Williams, B.L.; Mittal, A.; Knoops, H.C.M.; Kniknie, B.J.; Bakker, N.J.; Kessels, W.M.M.; Schropp, R.E.I.; Creatore, M.

    2014-01-01

    Aluminium-doped zinc oxide (ZnO:Al) grown by expanding thermal plasma chemical vapour deposition (ETP-CVD) has demonstrated excellent electrical and optical properties, which make it an attractive candidate as a transparent conductive oxide for photovoltaic applications. However, when depositing ZnO

  8. Copper Plating from Non-Cyanide Alkaline Baths

    Science.gov (United States)

    Li, Minggang; Wei, Guoying; Wang, Jianfang; Li, Meng; Zhao, Xixi; Bai, Yuze

    2014-12-01

    Non-cyanide alkaline bath was used to prepare copper thin films. Influences of various temperatures on deposition rates, surface morphologies and microstructures of films were investigated. Copper thin films prepared from non-cyanide alkaline bath show typical nodular structures. Copper films fabricated at higher temperature possess rough surface due to hydrolysis of complexing agents. According to the XRD patterns, all deposited films were crystalline and showed Cu (111), Cu (200) and Cu (220) peaks. The intensity of peak (200) increases gradually with the rise on bath temperatures. Films with maximum thickness (7.5 μm) could be obtained at the temperature of 40°C. From the cyclic voltammetry curve, it was found that the cathodic polarization decreased slightly with increase of bath temperatures. In addition, when the bath temperature was equal to 50°C, current efficiency could reach to 96.95%.

  9. Hot-filament chemical vapour deposition of diamond onto steel

    NARCIS (Netherlands)

    Buijnsters, Ivan

    2003-01-01

    The main goal of this project was to establish the feasibility of depositing well adhering polycrystalline diamond coatings on steel substrates. It is well known that the growth and adhesion of diamond layers directly onto steels is complicated by the high carbon solubility and the high thermal expa

  10. Chemical vapor deposition polymerization the growth and properties of parylene thin films

    CERN Document Server

    Fortin, Jeffrey B

    2004-01-01

    Chemical Vapor Deposition Polymerization - The Growth and Properties of Parylene Thin Films is intended to be valuable to both users and researchers of parylene thin films. It should be particularly useful for those setting up and characterizing their first research deposition system. It provides a good picture of the deposition process and equipment, as well as information on system-to-system variations that is important to consider when designing a deposition system or making modifications to an existing one. Also included are methods to characterizae a deposition system's pumping properties as well as monitor the deposition process via mass spectrometry. There are many references that will lead the reader to further information on the topic being discussed. This text should serve as a useful reference source and handbook for scientists and engineers interested in depositing high quality parylene thin films.

  11. Characterization of chemically deposited ZnSe/SnO 2/glass films: Influence of annealing in Ar atmosphere on physical properties

    Science.gov (United States)

    Metin, H.; Durmuş, S.; Erat, S.; Ari, M.

    2011-05-01

    The Zinc Selenide (ZnSe) thin films have been deposited on SnO 2/glass substrates by a simple and inexpensive chemical bath deposition (CBD). The structural, optical and electrical properties of ZnSe films have been characterized by X-ray diffraction (XRD), Energy Dispersive X-ray Analysis (EDAX), optical absorption spectroscopy, and four point probe techniques, respectively. The films have been subjected to different annealing temperature in Argon (Ar) atmosphere. An increase in annealing temperature does not cause a complete phase transformation whereas it affects the crystallite size, dislocation density and strain. The optical band gap ( Eg) of the as-deposited film is estimated to be 3.08 eV and decreases with increasing annealing temperature down to 2.43 eV at 773 K. The as-deposited and annealed films show typical semiconducting behaviour, d ρ/d T > 0. Interestingly, the films annealed at 373 K, 473 K, and 573 K show two distinct temperature dependent regions of electrical resistivity; exponential region at high temperature, linear region at low temperature. The temperature at which the transition takes place from exponential to linear region strongly depends on the annealing temperature.

  12. Portable thermal bath

    OpenAIRE

    2010-01-01

    [EN] A bath, particularly for use in laboratory experiments and research centres, for heating a liquid (10) unifonnly all along the length thereof, with temperature variations of les s than ±0.5°C, said liquid (10) remaining under static conditions, said bath comprising a channel (2) containing a volume ofliquid (10) to be heated; a resistance heating wire (3) on the outside face of the channel (2), connected to an external power source (11) that supplies it with electricity, heating...

  13. Water Evaporation in Swimming Baths

    DEFF Research Database (Denmark)

    Hyldgård, Carl-Erik

    This paper is publishing measuring results from models and full-scale baths of the evaporation in swimming baths, both public baths and retraining baths. Moreover, the heat balance of the basin water is measured. In addition the full-scale measurements have given many experiences which are repres......This paper is publishing measuring results from models and full-scale baths of the evaporation in swimming baths, both public baths and retraining baths. Moreover, the heat balance of the basin water is measured. In addition the full-scale measurements have given many experiences which...... are represented in instructions for carrying out and running swimming baths. If you follow the instructions you can achieve less investments, less heat consumption and a better comfort to the bathers....

  14. Experimental study on the formation and growth of electroless nickel-boron coatings from borohydride-reduced bath on mild steel

    Energy Technology Data Exchange (ETDEWEB)

    Vitry, Veronique, E-mail: veronique.vitry@umons.ac.be [Service de Metallurgie, Universite de Mons, Rue de l' Epargne 56, 7000 Mons (Belgium); Sens, Adeline [Service de Metallurgie, Universite de Mons, Rue de l' Epargne 56, 7000 Mons (Belgium); Kanta, Abdoul-Fatah [Service de Sciences des Materiaux, Universite de Mons, Rue de l' Epargne 56, 7000 Mons (Belgium); Delaunois, Fabienne [Service de Metallurgie, Universite de Mons, Rue de l' Epargne 56, 7000 Mons (Belgium)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Initiation mechanism of electroless Ni-B on St-37 steel has been identified. Black-Right-Pointing-Pointer Different phases of the plating process were observed and identified. Black-Right-Pointing-Pointer Influence of chemical heterogeneity on coating morphology was revealed. Black-Right-Pointing-Pointer Batch replenishment of the plating bath induces new germination phase. - Abstract: Quality and homogeneity of electroless nickel-boron coatings are very important for applications in corrosion and electronics and are completely dependent on the formation of the deposit. The growth and formation process of electroless nickel-boron was investigated by immersing mild steel (St-37) samples in an un-replenished bath for various periods of time (from 5 s to 1 h). The coatings obtained at the different stages of the process were then characterized: thickness was measured by SEM, morphology was observed, weight gain was recorded and top composition of the coatings was obtained from XPS. Three main phases were identified during the coating formation and links between plating time, instantaneous deposition rate, chemistry of last formed deposit and morphology were established. The mechanism for initial deposition on steel substrate for borohydride-reduced electroless nickel bath was also observed. Those results were confronted with chemistry evolution in the unreplenished plating bath during the process. This allowed getting insight about phenomena occurring in the plating bath and their influence on coating formation.

  15. Chemical vapor deposition of silicon carbide for large area mirrors

    Science.gov (United States)

    Gentilman, R. L.; Maguire, E. A.

    1982-05-01

    CVD-SiC has been identified as the leading mirror material for high energy synchrotron radiation because of its high K/alpha ratio and its ability to be super-polished to less than or equal to 10 A rms roughness. Technology already exists for depositing SiC over large areas (approximately 70 cm x 20 cm). The CVD process, substrate selection, and mirror design considerations are discussed.

  16. Effect of tri-sodium citrate concentration on structural, optical and electrical properties of chemically deposited tin sulfide films

    Energy Technology Data Exchange (ETDEWEB)

    Gode, F., E-mail: ftmgode@gmail.com [Department of Physics, Mehmet Akif Ersoy University, 15030 Burdur (Turkey); Guneri, E. [Department of Primary Education, Erciyes University, 38039 Kayseri (Turkey); Baglayan, O. [Department of Physics, Anadolu University, 26470 Eskisehir (Turkey)

    2014-11-01

    Graphical abstract: - Highlights: • SnS thin films grown by CBD in different concentration of tri-sodium citrate. • Grain size increases, while surface roughness decreases, with concentration. • Optical band gap decreases from 1.40 eV to 1.17 eV with increasing concentration. • Electrical conductivity improves with increasing concentration. - Abstract: Tin sulfide thin films were deposited onto glass substrates by chemical bath deposition. The effects of molar concentration of the complexing agent, tri-sodium citrate, on the structural, morphological, optical and electrical properties of the films were investigated. The films are characterized by X-ray diffraction, scanning electron microscopy, atomic force microscopy, optical absorption spectroscopy and Hall effect measurements. Polycrystalline film structure in orthorhombic phase was determined. Flower-like spherical grains are observed on the surface. While their average size increased from 345 nm to 750 nm when the tri-sodium citrate concentration was increased from 6.4 × 10{sup −3} M to 8.0 × 10{sup −3} M, the surface roughness varied in an opposite manner from approximately 120.18 nm to 29.36 nm. For these concentrations, optical band gap of the films decreased from 1.40 eV to 1.17 eV, whereas the Hall conductivity, mobility and carrier concentration of the films increased slightly from 5.91 × 10{sup −5} to 8.78 × 10{sup −5} (Ω cm){sup −1}, from 148 to 228 cm{sup 2} V{sup −1} s{sup −1} and from 1.73 × 10{sup 12} to 3.59 × 10{sup 12} cm{sup −1}, respectively.

  17. Effect of Reaction Time and Temperature on Chemical, Structural, Optical, and Photoelectrical Properties of PbS Thin Films Chemically Deposited from the Pb(OAc)2-NaOH-TU-TEA Aqueous System

    Science.gov (United States)

    Castelo-González, O. A.; Sotelo-Lerma, M.; García-Valenzuela, J. A.

    2017-01-01

    Lead sulfide (PbS) thin films have been deposited on float glass substrates by the chemical bath deposition technique using a Pb(CH3COO)2-NaOH-(NH2)2CS-N(CH2CH2OH)3 definite aqueous system. The chemical and structural characteristics, as well as the variation of the optical and photoelectrical properties, were studied as functions of reaction time and temperature. For this purpose, the following characterization techniques were employed: x-ray diffraction analysis, x-ray photoelectron spectroscopy, ultraviolet-visible-near infrared spectrophotometry, and dark and light current measurements. Based on the results, it was observed that increase in the reaction temperature increased the deposition rate of the PbS thin film (associated with the cubic crystalline structure); increase of this parameter from 40°C to 70°C (with reaction time of 60 min) led to an increase of the thickness from ˜129 nm to ˜459 nm and the crystallite size ( D) from 15.3 nm to 20.2 nm; on the other hand, increase in temperature decreased the energy bandgap ( E g) from 1.66 eV to 0.51 eV and the relative photosensitivity factor ( S ph) from 0.468 to 0.032. A similar effect was obtained with increase of the reaction time for given temperature.

  18. Effect of Reaction Time and Temperature on Chemical, Structural, Optical, and Photoelectrical Properties of PbS Thin Films Chemically Deposited from the Pb(OAc)2-NaOH-TU-TEA Aqueous System

    Science.gov (United States)

    Castelo-González, O. A.; Sotelo-Lerma, M.; García-Valenzuela, J. A.

    2016-08-01

    Lead sulfide (PbS) thin films have been deposited on float glass substrates by the chemical bath deposition technique using a Pb(CH3COO)2-NaOH-(NH2)2CS-N(CH2CH2OH)3 definite aqueous system. The chemical and structural characteristics, as well as the variation of the optical and photoelectrical properties, were studied as functions of reaction time and temperature. For this purpose, the following characterization techniques were employed: x-ray diffraction analysis, x-ray photoelectron spectroscopy, ultraviolet-visible-near infrared spectrophotometry, and dark and light current measurements. Based on the results, it was observed that increase in the reaction temperature increased the deposition rate of the PbS thin film (associated with the cubic crystalline structure); increase of this parameter from 40°C to 70°C (with reaction time of 60 min) led to an increase of the thickness from ˜129 nm to ˜459 nm and the crystallite size (D) from 15.3 nm to 20.2 nm; on the other hand, increase in temperature decreased the energy bandgap (E g) from 1.66 eV to 0.51 eV and the relative photosensitivity factor (S ph) from 0.468 to 0.032. A similar effect was obtained with increase of the reaction time for given temperature.

  19. PARTICLE COATING BY CHEMICAL VAPOR DEPOSITION IN A FLUIDI7ED BED REACTOR

    Institute of Scientific and Technical Information of China (English)

    Gregor; Czok; Joachim; Werther

    2005-01-01

    Aluminum coatings were created onto glass beads by chemical vapor deposition in a fluidized bed reactor at different temperatures. Nitrogen was enriched with Triisobutylaluminum (TIBA) vapor and the latter was thermally decomposed inside the fluidized bed to deposit the elemental aluminum. To ensure homogeneous coating on the bed material, the fluidizing conditions necessary to avoid agglomeration were investigated for a broad range of temperatures.The deposition reaction was modeled on the basis of a discrete particle simulation to gain insight into homogeneity and thickness of the coating throughout the bed material. In particular, the take-up of aluminum was traced for selected particles that exhibited a large mass of deposited aluminum.

  20. Co3O4 protective coatings prepared by Pulsed Injection Metal Organic Chemical Vapour Deposition

    DEFF Research Database (Denmark)

    Burriel, M.; Garcia, G.; Santiso, J.

    2005-01-01

    Cobalt oxide films were grown by Pulsed Injection Metal Organic Chemical Vapour Deposition (PI-MOCVD) using Co(acac)(3) (acac=acetylacetonate) precursor dissolved in toluene. The structure, morphology and growth rate of the layers deposited on silicon substrates were studied as a function...... of deposition temperature. Pure Co3O4 spinel structure was found for deposition temperatures ranging from 360 to 540 degreesC. The optimum experimental parameters to prepare dense layers with a high growth rate were determined and used to prepare corrosion protective coatings for Fe-22Cr metallic interconnects...

  1. A mathematical model and simulation results of plasma enhanced chemical vapor deposition of silicon nitride films

    NARCIS (Netherlands)

    Konakov, S.A.; Krzhizhanovskaya, V.V.

    2015-01-01

    We developed a mathematical model of Plasma Enhanced Chemical Vapor Deposition (PECVD) of silicon nitride thin films from SiH4-NH3-N2-Ar mixture, an important application in modern materials science. Our multiphysics model describes gas dynamics, chemical physics, plasma physics and electrodynamics.

  2. Industrial Scale Synthesis of Carbon Nanotubes Via Fluidized Bed Chemical Vapor Deposition: A Senior Design Project

    Science.gov (United States)

    Smith, York R.; Fuchs, Alan; Meyyappan, M.

    2010-01-01

    Senior year chemical engineering students designed a process to produce 10 000 tonnes per annum of single wall carbon nanotubes (SWNT) and also conducted bench-top experiments to synthesize SWNTs via fluidized bed chemical vapor deposition techniques. This was an excellent pedagogical experience because it related to the type of real world design…

  3. What Are Bath Salts?

    Science.gov (United States)

    ... in Missouri. She won the 3rd place 2013 Addiction Science Award . Read More » 0 Comments Bath Salts: An Emerging Danger February 05, 2013 / Sara Bellum ... copy Listen Drug Facts ... Nicotine, & E-Cigarettes Brain and Addiction Drug Overdoses in Youth HIV/AIDS and Drug ...

  4. Ultrafine Microstructure Composites Prepared by Chemical Vapor Deposition

    Science.gov (United States)

    1989-12-01

    pressed AIN from Denka , hot pressed BN+AlN from Union Carbide (71%BN, 20%AIN, and 4%B203 ) ..... . 217 5-57 XRD patterns of BN+AlN deposited on A1203 at...side wall of the top section of the graphite extension tube as shown in Figure 3-9. The top end of the extension tube was sealed using graphite cement ...samples) are shown in Figures 5-34 through 5-36. Also, the XRD spectra of uncoated A 20,O and hot-pressed AlN ( Denka , Inc.) are included in Figure 5-34 for

  5. Silicon doping techniques using chemical vapor dopant deposition

    Energy Technology Data Exchange (ETDEWEB)

    Popadic, M.

    2009-11-12

    Ultrashallow junctions are essential for the achievement of superior transistor performance, both in MOSFET and bipolar transistors. The stringent demands require state-of-the-art fabrication techniques. At the same time, in a different context, the accurate fabrication of various n type doping profiles by low-temperature Si epitaxy is a challenge due to autodoping. In this thesis, these two, apparently unrelated, problems are both addressed as the layer of CVD surface-deposited dopant atoms is used as a doping source. It is demonstrated that a layer of dopants deposited on the Si surface can be used as a doping source by either thermal or laser drive-in for the fabrication of both deep and ultrashallow defect-free junctions. In low-temperature CVD epitaxy, autodoping is a consequence of dopant surface segregation and doping from the surface layer. This process has been characterized, and consequently excellent controllability is achieved. In addition, new results related to the CVD of dopants itself are obtained, and two theoretical achievements are made: the analytical model of arbitrarily shallow junctions is derived, and a new C-V profiling technique suitable for the characterization of ultrashallow junctions is developed.

  6. A new modular multichamber plasma enhanced chemical vapor deposition system

    Science.gov (United States)

    Madan, A.; Rava, P.; Schropp, R. E. I.; von Roedern, B.

    1993-06-01

    The present work reports on a new modular UHV multichamber PECVD system with characteristics which prevent both the incorporation of residual impurities and cross contamination between different layers. A wide range of intrinsic and doped hydrogenated amorphous silicon (a-Si:H) materials have been produced and single junction pin solar cells with an efficiency greater than 10% have been readily obtained with little optimization. The system contains three UHV modular process zones (MPZ's); the MPZ's and a load lock chamber are located around a central isolation and transfer zone which contains the transport mechanism consisting of an arm with radial and linear movement. This configuration allows for introduction of the substrate into the MPZ's in any sequence so that any type of multilayer device can be produced. The interelectrode distance in the MPZ's can be adjusted between 1 and 5 cm. This has been found to be an important parameter in the optimisation of the deposition rate and of the uniformity. The multichamber concept also allows individually optimized deposition temperatures and interelectrode distances for the various layers. The system installed in Utrecht will be employed for further optimization of single junction solar cells and for research and development of stable a-Si:H tandem cells.

  7. Effect of Different Catalyst Deposition Technique on Aligned Multiwalled Carbon Nanotubes Grown by Thermal Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Mohamed Shuaib Mohamed Saheed

    2014-01-01

    Full Text Available The paper reported the investigation of the substrate preparation technique involving deposition of iron catalyst by electron beam evaporation and ferrocene vaporization in order to produce vertically aligned multiwalled carbon nanotubes array needed for fabrication of tailored devices. Prior to the growth at 700°C in ethylene, silicon dioxide coated silicon substrate was prepared by depositing alumina followed by iron using two different methods as described earlier. Characterization analysis revealed that aligned multiwalled carbon nanotubes array of 107.9 µm thickness grown by thermal chemical vapor deposition technique can only be achieved for the sample with iron deposited using ferrocene vaporization. The thick layer of partially oxidized iron film can prevent the deactivation of catalyst and thus is able to sustain the growth. It also increases the rate of permeation of the hydrocarbon gas into the catalyst particles and prevents agglomeration at the growth temperature. Combination of alumina-iron layer provides an efficient growth of high density multiwalled carbon nanotubes array with the steady growth rate of 3.6 µm per minute for the first 12 minutes and dropped by half after 40 minutes. Thicker and uniform iron catalyst film obtained from ferrocene vaporization is attributed to the multidirectional deposition of particles in the gaseous form.

  8. Low temperature deposition of polycrystalline silicon thin films on a flexible polymer substrate by hot wire chemical vapor deposition

    Science.gov (United States)

    Lee, Sang-hoon; Jung, Jae-soo; Lee, Sung-soo; Lee, Sung-bo; Hwang, Nong-moon

    2016-11-01

    For the applications such as flexible displays and solar cells, the direct deposition of crystalline silicon films on a flexible polymer substrate has been a great issue. Here, we investigated the direct deposition of polycrystalline silicon films on a polyimide film at the substrate temperature of 200 °C. The low temperature deposition of crystalline silicon on a flexible substrate has been successfully made based on two ideas. One is that the Si-Cl-H system has a retrograde solubility of silicon in the gas phase near the substrate temperature. The other is the new concept of non-classical crystallization, where films grow by the building block of nanoparticles formed in the gas phase during hot-wire chemical vapor deposition (HWCVD). The total amount of precipitation of silicon nanoparticles decreased with increasing HCl concentration. By adding HCl, the amount and the size of silicon nanoparticles were reduced remarkably, which is related with the low temperature deposition of silicon films of highly crystalline fraction with a very thin amorphous incubation layer. The dark conductivity of the intrinsic film prepared at the flow rate ratio of RHCl=[HCl]/[SiH4]=3.61 was 1.84×10-6 Scm-1 at room temperature. The Hall mobility of the n-type silicon film prepared at RHCl=3.61 was 5.72 cm2 V-1s-1. These electrical properties of silicon films are high enough and could be used in flexible electric devices.

  9. Bathing a patient in bed

    Science.gov (United States)

    ... medlineplus.gov/ency/patientinstructions/000427.htm Bathing a patient in bed To use the sharing features on this page, please enable JavaScript. Some patients cannot safely leave their beds to bathe. For ...

  10. Preparation and analysis of chemically gradient functional bioceramic coating formed by pulsed laser deposition.

    Science.gov (United States)

    Rajesh, P; Muraleedharan, C V; Sureshbabu, S; Komath, Manoj; Varma, Harikrishna

    2012-02-01

    Bioactive ceramic coatings based on calcium phosphates yield better functionality in the human body for a variety of metallic implant devices including orthopaedic and dental prostheses. In the present study chemically and hence functionally gradient bioceramic coating was obtained by pulsed laser deposition method. Calcium phosphate bioactive ceramic coatings based on hydroxyapatite (HA) and tricalcium phosphate (TCP) were deposited over titanium substrate to produce gradation in physico-chemical characteristics and in vitro dissolution behaviour. Sintered targets of HA and α-TCP were deposited in a multi target laser deposition system. The obtained deposits were characterized by X-ray diffraction, fourier transform infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray analysis. Inductively coupled plasma spectroscopy was used to estimate the in vitro dissolution behaviour of coatings. The variation in mechanical property of the gradient layer was evaluated through scratch test and micro-indentation hardness. The bioactivity was examined in vitro with respect to the ability of HA layer to form on the surface as a result of contact with simulated body fluid. It could be inferred that chemically gradient functional bioceramic coating can be produced by laser deposition of multiple sintered targets with variable chemical composition.

  11. Silicon epitaxy using tetrasilane at low temperatures in ultra-high vacuum chemical vapor deposition

    Science.gov (United States)

    Hazbun, Ramsey; Hart, John; Hickey, Ryan; Ghosh, Ayana; Fernando, Nalin; Zollner, Stefan; Adam, Thomas N.; Kolodzey, James

    2016-06-01

    The deposition of silicon using tetrasilane as a vapor precursor is described for an ultra-high vacuum chemical vapor deposition tool. The growth rates and morphology of the Si epitaxial layers over a range of temperatures and pressures are presented. The layers were characterized using transmission electron microscopy, x-ray diffraction, spectroscopic ellipsometry, Atomic Force Microscopy, and secondary ion mass spectrometry. Based on this characterization, high quality single crystal silicon epitaxy was observed. Tetrasilane was found to produce higher growth rates relative to lower order silanes, with the ability to deposit crystalline Si at low temperatures (T=400 °C), with significant amorphous growth and reactivity measured as low as 325 °C, indicating the suitability of tetrasilane for low temperature chemical vapor deposition such as for SiGeSn alloys.

  12. Effects of deposition parameters on microstructure and thermal conductivity of diamond films deposited by DC arc plasma jet chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    QU Quan-yan; QIU Wan-qi; ZENG De-chang; LIU Zhong-wu; DAI Ming-jiang; ZHOU Ke-song

    2009-01-01

    The uniform diamond films with 60 mm in diameter were deposited by improved DC arc plasma jet chemical vapor deposition technique. The structure of the film was characterized by scanning electronic microcopy(SEM) and laser Raman spectrometry. The thermal conductivity was measured by a photo thermal deflection technique. The effects of main deposition parameters on microstructure and thermal conductivity of the films were investigated. The results show that high thermal conductivity, 10.0 W/(K-cm), can be obtained at a CH4 concentration of 1.5% (volume fraction) and the substrate temperatures of 880-920 ℃ due to the high density and high purity of the film. A low pressure difference between nozzle and vacuum chamber is also beneficial to the high thermal conductivity.

  13. Baths and becks \\ud

    OpenAIRE

    Gupta, A.F.

    2005-01-01

    A report on two prominent dialectal variables in England. Using rather informally collected data, The author looks here at two well-known variables in the English of England: first, whether there is a short or long vowel in words such as grass and bath; second, what regional words people know for streams. The treatment of these variables is consistent over time, and seems to have little to do with social status or carefulness of speech.\\ud

  14. Enhanced Bactericidal Activity of Silver Thin Films Deposited via Aerosol-Assisted Chemical Vapor Deposition

    OpenAIRE

    Ponja, S. D.; Sehmi, S. K.; Allan, E.; MacRobert, A. J.; Parkin, I. P.; Carmalt, C. J.

    2015-01-01

    Silver thin films were deposited on SiO2-barrier-coated float glass, fluorine-doped tin oxide (FTO) glass, Activ glass, and TiO2-coated float glass via AACVD using silver nitrate at 350 °C. The films were annealed at 600 °C and analyzed by X-ray powder diffraction, X-ray photoelectron spectroscopy, UV/vis/near-IR spectroscopy, and scanning electron microscopy. All the films were crystalline, and the silver was present in its elemental form and of nanometer dimension. The antibacterial activit...

  15. TiOxNy coatings grown by atmospheric pressure metal organic chemical vapor deposition

    OpenAIRE

    Maury, Francis; Duminica, Florin-Daniel

    2010-01-01

    International audience; Titanium oxynitride coatings were deposited on various substrates by an original atmospheric pressure metal organic chemical vapor deposition (MOCVD) process using titanium tetra-iso-propoxide as titanium and oxygen precursors and hydrazine as a nitrogen source. The films composition was monitored by controlling the N2H4 mole fraction in the initial reactive gas phase. The variation of the N content in the films results in significant changes in morphological, structur...

  16. Discrete formulation of mixed finite element methods for vapor deposition chemical reaction equations

    Institute of Scientific and Technical Information of China (English)

    LUO Zhen-dong; ZHOU Yan-jie; ZHU Jiang

    2007-01-01

    The vapor deposition chemical reaction processes, which are of extremely extensive applications, can be classified as a mathematical modes by the following governing nonlinear partial differential equations containing velocity vector,temperature field,pressure field,and gas mass field.The mixed finite element(MFE)method is employed to study the system of equations for the vapor deposition chemical reaction processes.The semidiscrete and fully discrete MFE formulations are derived.And the existence and convergence(error estimate)of the semidiscrete and fully discrete MFE solutions are deposition chemical reaction processes,the numerical solutions of the velocity vector,the temperature field,the pressure field,and the gas mass field can be found out simultaneonsly.Thus,these researches are not only of important theoretical means,but also of extremely extensive applied vistas.

  17. Ag2S deposited on oxidized polypropylene as composite material for solar light absorption

    NARCIS (Netherlands)

    Krylovaa, V.; Milbrat, A.; Embrachts, A.; Baltrusaitis, J.

    2014-01-01

    Thin film metal chalcogenides are superior solar light absorbers and can be combined into a functional material when deposited on polymeric substrates. Ag2S composite materials were synthesized on oxidized polypropylene using chemical bath deposition method and their properties were explored using X

  18. Improvement of the Crystallinity of Silicon Films Deposited by Hot-Wire Chemical Vapor Deposition with Negative Substrate Bias

    Science.gov (United States)

    Zhang, Lei; Shen, Honglie; You, Jiayi

    2013-08-01

    We have investigated the effect of negative substrate bias on microcrystalline silicon films deposited on glass and stainless steel by hot-wire chemical vapor deposition (HWCVD) to gain insight into the effect of negative substrate bias on crystallization. Structural characterization of the silicon films was performed by Raman spectroscopy, x-ray diffraction, and scanning electron microscopy. It was found that the crystallinity of the films is obviously improved by applying the substrate bias, especially for films on stainless steel. At hot-wire temperature of 1800°C and negative substrate bias of -800 V, grain size as large as 200 nm was obtained on stainless-steel substrate with crystalline fraction 9% higher than that of films deposited on glass and 15% higher than that of films deposited without substrate bias. It is deduced that the improvement of the crystallinity is mainly related to the accelerated electrons emitted from the hot wires. The differences in this improvement between different substrates are caused by the different electrical potential of the substrates. A solar cell fabricated by HWCVD with -800 V substrate bias is demonstrated, showing an obviously higher conversion efficiency than that without substrate bias.

  19. Surface modification of reverse osmosis desalination membranes by thin-film coatings deposited by initiated chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ozaydin-Ince, Gozde, E-mail: gozdeince@sabanciuniv.edu [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Matin, Asif, E-mail: amatin@mit.edu [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Khan, Zafarullah, E-mail: zukhan@mit.edu [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Zaidi, S.M. Javaid, E-mail: zaidismj@kfupm.edu.sa [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Gleason, Karen K., E-mail: kkgleasn@mit.edu [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2013-07-31

    Thin-film polymeric reverse osmosis membranes, due to their high permeation rates and good salt rejection capabilities, are widely used for seawater desalination. However, these membranes are prone to biofouling, which affects their performance and efficiency. In this work, we report a method to modify the membrane surface without damaging the active layer or significantly affecting the performance of the membrane. Amphiphilic copolymer films of hydrophilic hydroxyethylmethacrylate and hydrophobic perfluorodecylacrylate (PFA) were synthesized and deposited on commercial RO membranes using an initiated chemical vapor deposition technique which is a polymer deposition technique that involves free-radical polymerization initiated by gas-phase radicals. Relevant surface characteristics such as hydrophilicity and roughness could be systematically controlled by varying the polymer chemistry. Increasing the hydrophobic PFA content in the films leads to an increase in the surface roughness and hydrophobicity. Furthermore, the surface morphology studies performed using the atomic force microscopy show that as the thickness of the coating increases average surface roughness increases. Using this knowledge, the coating thickness and chemistry were optimized to achieve high permeate flux and to reduce cell attachment. Results of the static bacterial adhesion tests show that the attachment of bacterial cells is significantly reduced on the coated membranes. - Highlights: • Thin films are deposited on reverse osmosis membranes. • Amphiphilic thin films are resistant to protein attachment. • The permeation performance of the membranes is not affected by the coating. • The thin film coatings delayed the biofouling.

  20. Hot-Wire Chemical Vapor Deposition of Few-Layer Graphene on Copper Substrates

    Science.gov (United States)

    Soler, Víctor-Manuel Freire; Badia-Canal, Jordi; Roca, Carles Corbella; Miralles, Esther Pascual; Serra, Enric Bertran; Bella, José-Luís Andújar

    2013-01-01

    Chemical vapor deposition (CVD) of graphene on copper is an efficient technology for producing high-quality graphene for large areas. The objective of this work is to deposit graphene/few-layer graphene (FLG) using different types of copper substrate by a new hot-wire CVD process. We carried out the processes at temperatures below 1000 °C with acetylene (C2H2) as a precursor gas. After a general characterization of the samples, the results mostly indicate the formation of FLG on copper samples by this method. Nevertheless, the presence of pure, crystalline, and sufficiently flat surfaces is needed for depositing high-quality graphene layers.

  1. LASER-INDUCED DECOMPOSITION OF METAL CARBONYLS FOR CHEMICAL VAPOR DEPOSITION OF MICROSTRUCTURES

    OpenAIRE

    1989-01-01

    Tungsten and nickel carbonyls were used to produce metal microstructures by laser-induced chemical vapor deposition (CVD) on various substrates. The deposition rate of microstructures produced by thermodecomposition of W(CO)6 on Si substrates heated with a cw Ar+ laser beam was relatively low (10 to 30 nm/s) even at high temperatures (above 900°C). Ni microstructures were deposited on quartz substrates irradiated with a CO2 laser beam. Relatively high laser powers were needed to heat the Ni s...

  2. Synthesis of silicon carbide nanowires by solid phase source chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    NI Jie; LI Zhengcao; ZHANG Zhengjun

    2007-01-01

    In this paper,we report a simple approach to synthesize silicon carbide(SiC)nanowires by solid phase source chemical vapor deposition(CVD) at relatively low temperatures.3C-SiC nanowires covered by an amorphous shell were obtained on a thin film which was first deposited on silicon substrates,and the nanowires are 20-80 am in diameter and several μm in length,with a growth direction of[200].The growth of the nanowires agrees well on vapor-liquid-solid (VLS)process and the film deposited on the substrates plays an important role in the formation of nanowires.

  3. Regular growth combined with lateral etching in diamond deposited over silicon substrate by using hot filament chemical vapor deposition technique

    Science.gov (United States)

    Ali, M.; Ürgen, M.

    2013-05-01

    Hot filament chemical vapor deposition has proved to be an attractive method for growing diamond films with good quality and higher growth rate. Diamond films were produced at deposition parameters under which, it is possible to have regular growth combined with lateral etching (RGCLE). Fracture cross-section SEM images showed that RGCLE initiated over polycrystalline diamond film and proceeded by the growth of consecutive steps in each crystallite, which terminated with square/rectangle shaped facets. All the diamond films exhibit RGCLE but with different type of growth behavior. Present work discusses the cyclic formation of the steps in diamond crystallites and RGCLE modes. RGCLE in diamond film may find important applications where heat absorption and dissipation are key issues.

  4. Characterization of Plasma Enhanced Chemical Vapor Deposition-Physical Vapor Deposition transparent deposits on textiles to trigger various antimicrobial properties to food industry textiles

    Energy Technology Data Exchange (ETDEWEB)

    Brunon, Celine [Universite de Lyon, Universite Lyon 1, Laboratoire des Sciences Analytiques (LSA), CNRS, UMR 5180, Bat. J. Raulin 5eme etage, F-69622 Villeurbanne Cedex (France); Chadeau, Elise; Oulahal, Nadia [Universite de Lyon, Universite Lyon 1, Laboratoire de Recherche en Genie Industriel Alimentaire (LRGIA, E.A. 3733), Rue Henri de Boissieu, F-01000 Bourg en Bresse (France); Grossiord, Carol [Science et Surface, 64, Chemin des Mouilles, F-69130 Ecully (France); Dubost, Laurent [HEF, ZI SUD, Rue Benoit Fourneyron, F-42166 Andrezieux Boutheon (France); Bessueille, Francois [Universite de Lyon, Universite Lyon 1, Laboratoire des Sciences Analytiques (LSA), CNRS, UMR 5180, Bat. J. Raulin 5eme etage, F-69622 Villeurbanne Cedex (France); Simon, Farida [TDV Industrie, 43 Rue du Bas des Bois, BP 121, F-53012 Laval Cedex (France); Degraeve, Pascal [Universite de Lyon, Universite Lyon 1, Laboratoire de Recherche en Genie Industriel Alimentaire (LRGIA, E.A. 3733), Rue Henri de Boissieu, F-01000 Bourg en Bresse (France); Leonard, Didier, E-mail: didier.leonard@univ-lyon1.fr [Universite de Lyon, Universite Lyon 1, Laboratoire des Sciences Analytiques (LSA), CNRS, UMR 5180, Bat. J. Raulin 5eme etage, F-69622 Villeurbanne Cedex (France)

    2011-07-01

    Textiles for the food industry were treated with an original deposition technique based on a combination of Plasma Enhanced Chemical Vapor Deposition and Physical Vapor Deposition to obtain nanometer size silver clusters incorporated into a SiOCH matrix. The optimization of plasma deposition parameters (gas mixture, pressure, and power) was focused on textile transparency and antimicrobial properties and was based on the study of both surface and depth composition (X-ray Photoelectron Spectroscopy (XPS), Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS), as well as Transmission Electron Microscopy, Atomic Force Microscopy, SIMS depth profiling and XPS depth profiling on treated glass slides). Deposition conditions were identified in order to obtain a variable and controlled quantity of {approx} 10 nm size silver particles at the surface and inside of coatings exhibiting acceptable transparency properties. Microbiological characterization indicated that the surface variable silver content as calculated from XPS and ToF-SIMS data directly influences the level of antimicrobial activity.

  5. Processing of CuInSe{sub 2}-based solar cells: Characterization of deposition processes in terms of chemical reaction analyses. Phase 2 Annual Report, 6 May 1996--5 May 1997

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, T.

    1999-10-20

    This report describes research performed by the University of Florida during Phase 2 of this subcontract. First, to study CIGS, researchers adapted a contactless, nondestructive technique previously developed for measuring photogenerated excess carrier lifetimes in SOI wafers. This dual-beam optical modulation (DBOM) technique was used to investigate the differences between three alternative methods of depositing CdS (conventional chemical-bath deposition [CBD], metal-organic chemical vapor deposition [MOCVD], and sputtering). Second, a critical assessment of the Cu-In-Se thermochemical and phase diagram data using standard CALPHAD procedures is being performed. The outcome of this research will produce useful information on equilibrium vapor compositions (required annealing ambients, Sex fluxes from effusion cells), phase diagrams (conditions for melt-assisted growth), chemical potentials (driving forces for diffusion and chemical reactions), and consistent solution models (extents of solid solutions and extending phase diagrams). Third, an integrated facility to fabricate CIS PV devices was established that includes migration-enhanced epitaxy (MEE) for deposition of CIS, a rapid thermal processing furnace for absorber film formation, sputtering of ZnO, CBD or MOCVD of CdS, metallization, and pattern definition.

  6. Stability increase of fuel clad with zirconium oxynitride thin film by metalorganic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jee, Seung Hyun [Department of Materials Science and Engineering, Yonsei University, 134 Sinchon Dong, Seoul 120-749 (Korea, Republic of); Materials Research and Education Center, Dept. of Mechanical Engineering, Auburn University, 275 Wilmore Labs, AL 36849-5341 (United States); Kim, Jun Hwan; Baek, Jong Hyuk [Recycled Fuel Development Division, Korea Atomic Energy Research Institute, P.O. Box 105, Yuseong, Daejeon, 305-600 (Korea, Republic of); Kim, Dong-Joo [Materials Research and Education Center, Dept. of Mechanical Engineering, Auburn University, 275 Wilmore Labs, AL 36849-5341 (United States); Kang, Seong Sik [Regulatory Research Division, Korea Institute of Nuclear Safety, 19, Guseong-Dong, Yuseong-Gu, Daejeon, 305-338 (Korea, Republic of); Yoon, Young Soo, E-mail: yoonys@yonsei.ac.kr [Department of Materials Science and Engineering, Yonsei University, 134 Sinchon Dong, Seoul 120-749 (Korea, Republic of)

    2012-06-01

    A zirconium oxynitride (ZON) thin film was deposited onto HT9 steel as a cladding material by a metalorganic chemical vapor deposition (MOCVD) in order to prevent a fuel-clad chemical interaction (FCCI) between a U-10 wt% Zr metal fuel and a clad material. X-ray diffraction spectrums indicated that the mixture of structures of zirconium nitride, oxide and carbide in the MOCVD grown ZON thin films. Also, typical equiaxial grain structures were found in plane and cross sectional images of the as-deposited ZON thin films with a thickness range of 250-500 nm. A depth profile using auger electron microscopy revealed that carbon and oxygen atoms were decreased in the ZON thin film deposited with hydrogen gas flow. Diffusion couple tests at 800 Degree-Sign C for 25 hours showed that the as-deposited ZON thin films had low carbon and oxygen content, confirmed by the Energy Dispersive X-ray Spectroscopy, which showed a barrier behavior for FCCI between the metal fuel and the clad. This result suggested that ZON thin film cladding by MOCVD, even with the thickness below the micro-meter level, has a high possibility as an effective FCCI barrier. - Highlights: Black-Right-Pointing-Pointer Zirconium oxynitride (ZON) deposited by metal organic chemical vapor deposition. Black-Right-Pointing-Pointer Prevention of fuel cladding chemical interaction (FCCI) investigated. Black-Right-Pointing-Pointer Interfusion reduced by between metal fuel (U-10 wt% Zr) and a HT9 cladding material. Black-Right-Pointing-Pointer Hydrogenation of the ZON during growth improved the FCCI barrier performance.

  7. Chemical vapor deposition of ceramic coatings on metals and ceramic fibers

    Science.gov (United States)

    Nable, Jun Co

    2005-07-01

    The research presented in this study consists of two major parts. The first part is about the development of ceramic coatings on metals by chemical vapor deposition (CVD) and metal-organic chemical vapor deposition (MOCVD). Ceramics such as Al2O3 and Cr2O3, are used as protective coatings for materials used at elevated temperatures (>700°C). These metal oxides either exhibit oxidation resistance or have been used as environmental bond coats. Conventional methods of coating by chemical vapor deposition requires deposition temperatures of >950°C which could damage the substrate material during the coating process. Lower deposition temperatures (400 to 600°C) by MOCVD of these metal oxides were successful on Ni metal substrates. Surface modification such as pre-oxidation and etching were also investigated. In addition, a novel approach for the CVD of TiN on metals was developed. This new approach utilizes ambient pressure conditions which lead to deposition temperatures of 800°C or lower compared to conventional CVD of TiN at 1000°C. Titanium nitride can be used as an abrasive and wear coating on cutting and grinding tools. This nitride can also serve as a diffusion coating in metals. The second major part of this research involves the synthesis of interfacial coatings on ceramic reinforcing fibers for ceramic matrix composites. Aluminum and chromium oxides were deposited onto SiC, and Al2O3-SiO 2 fibers by MOCVD. The effects of the interface coatings on the tensile strength of ceramic fibers are also discussed. New duplex interface coatings consisting of BN or TiN together with Al2O3 or ZrO 2 were also successfully deposited and evaluated on SiC fibers.

  8. Guidelines for bath PUVA, bathing suit PUVA and soak PUVA

    Directory of Open Access Journals (Sweden)

    Sathish B Pai

    2015-01-01

    Full Text Available Background: The aim of these guidelines is to encourage dermatologists to use bath psoralen plus ultraviolet A (PUVA, bathing suit PUVA and soak PUVA in the treatment of psoriasis vulgaris and other conditions. Methods: Evidence was collected using searches of the PubMed, MEDLINE and COCHRANE databases using the keywords “bath PUVA,” “soak PUVA,” “bathing suit PUVA” and “turban PUVA.” Only publications in English were reviewed. Results: One hundred and thirty-eight studies were evaluated, 57 of which fulfilled the criteria for inclusion. Conclusions: Both bath PUVA and bathing suit PUVA are very effective and safe treatments for generalized stable plaque psoriasis (strength of recommendation, A. Soak PUVA is very effective in the treatment of both palmoplantar psoriasis and chronic palmoplantar eczema (strength of recommendation, A.

  9. Density-controlled growth of well-aligned ZnO nanowires using chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Well-aligned ZnO nanowires were grown on Si substrate by chemical vapor deposition.The experimental results showed that the density of nanowires was related to the heating process and growth temperature.High-density ZnO nanowires were obtained under optimal conditions.The growth mechanism of the ZnO nanowires was presented as well.

  10. In situ observations during chemical vapor deposition of hexagonal boron nitride on polycrystalline copper

    DEFF Research Database (Denmark)

    Kidambi, Piran R.; Blume, Raoul; Kling, Jens

    2014-01-01

    Using a combination of complementary in situ X-ray photoelectron spectroscopy and X-ray diffraction, we study the fundamental mechanisms underlying the chemical vapor deposition (CVD) of hexagonal boron nitride (h-BN) on polycrystalline Cu. The nucleation and growth of h-BN layers is found to occ...

  11. Growth Process Conditions of Tungsten Oxide Thin Films Using Hot-Wire Chemical Vapor Deposition

    NARCIS (Netherlands)

    Houweling, Z.S.; Geus, J.W.; de Jong, M.; Harks, P.P.R.M.L.; van der Werf, C.H.M.; Schropp, R.E.I.

    2011-01-01

    We report the growth conditions of nanostructured tungsten oxide (WO3−x) thin films using hot-wire chemical vapor deposition (HWCVD). Two tungsten filaments were resistively heated to various temperatures and exposed to an air flow at various subatmospheric pressures. The oxygen partial pressure was

  12. Vaporization of a mixed precursors in chemical vapor deposition for YBCO films

    Science.gov (United States)

    Zhou, Gang; Meng, Guangyao; Schneider, Roger L.; Sarma, Bimal K.; Levy, Moises

    1995-01-01

    Single phase YBa2Cu3O7-delta thin films with T(c) values around 90 K are readily obtained by using a single source chemical vapor deposition technique with a normal precursor mass transport. The quality of the films is controlled by adjusting the carrier gas flow rate and the precursor feed rate.

  13. Tip-based chemical vapor deposition with a scanning nano-heater

    NARCIS (Netherlands)

    Gaitas, A.

    2013-01-01

    In this preliminary effort, a moving nano-heater directs a chemical vapor deposition reaction (nano-CVD) demonstrating a tip-based nanofabrication (TBN) method. Localized nano-CVD of copper (Cu) and copper oxide (CuO) on a silicon (Si) and silicon oxide (SiO2) substrate from gasses, namely sublimate

  14. Electrical properties of plasma-deposited silicon oxide clarified by chemical modeling

    NARCIS (Netherlands)

    Kovalgin, A.Y.; Boogaard, A.; Brunets, I.; Aarnink, A.A.I.; Wolters, R.A.M.

    2009-01-01

    Our study is focused on Plasma Enhanced Chemical Vapor Deposition (PECVD) of silicon dioxide films at low temperatures (< 150 oC) using Inductively Coupled (IC) High-Density (HD) plasma source. We recently fabricated Thin Film Transistors (TFTs) with high-quality ICPECVD gate oxides, which exhibited

  15. CHEMICALLY DEPOSITED SILVER FILM USED AS A SERS-ACTIVE OVER COATING LAYER FOR POLYMER FILM

    Institute of Scientific and Technical Information of China (English)

    Xiao-ning Liu; Gi Xue; Yun Lu; Jun Zhang; Fen-ting Li; Chen-chen Xue; Stephen Z.D. Cheng

    2001-01-01

    When colloidal silver particles were chemically deposited onto polymer film as an over-coating layer, surfaceenhanced Raman scattering (SERS) spectra could be collected for the surface analysis. SERS measurements of liquid crystal film were successfully performed without disturbing the surface morphology.

  16. Chemical Vapor Deposition of Atomically-Thin Molybdenum Disulfide (MoS2)

    Science.gov (United States)

    2015-03-01

    photoluminescence. 15. SUBJECT TERMS Chemical vapor deposition (CVD) Nanotechnology Molybdenum disulfide (MoS2) Raman spectroscopy 16...by ANSI Std. Z39.18 UNCLASSIFIED Approved for public release; distribution is unlimited. i CONTENTS Page Introduction 1...UNCLASSIFIED Approved for public release; distribution is unlimited. 1 INTRODUCTION Recently, an explosion of interest in low-dimensional

  17. A Study on Medium Temperature Chemical Vapor Deposition (MT-CVD) Technology and Super Coating Materials

    Institute of Scientific and Technical Information of China (English)

    GAO Jian; LI Jian-ping; ZENG Xiang-cai; MA Wen-cun

    2004-01-01

    In this paper, the dense and columnar crystalline TiCN coating layers with very good bonding strength between a layer and another layer was deposited using Medium Temperature Chemical Vapor Deposition (MT-CVD) where CH3CN organic composite with C/N atomic clusters etc. was utilized at 700 ~ 900 ℃. Effect of coating processing parameters, such as coating temperature, pressure and different gas flow quantity on structures and properties of TiCN coating layers were investigated. The super coating mechanis mand structures were analyzed. The new coating processing parameters and properties of carbide inserts with super coating layers were gained by using the improved high temperature chemical vapor deposition (HTCVD) equipment and HT-CVD, in combination with MT-CVD technology.

  18. Deposition and characterization of diamond-like nanocomposite coatings grown by plasma enhanced chemical vapour deposition over different substrate materials

    Indian Academy of Sciences (India)

    Awadesh Kr Mallik; Nanadadulal Dandapat; Prajit Ghosh; Utpal Ganguly; Sukhendu Jana; Sayan Das; Kaustav Guha; Garfield Rebello; Samir Kumar Lahiri; Someswar Datta

    2013-04-01

    Diamond-like nanocomposite (DLN) coatings have been deposited over different substrates used for biomedical applications by plasma-enhanced chemical vapour deposition (PECVD). DLN has an interconnecting network of amorphous hydrogenated carbon and quartz-like oxygenated silicon. Raman spectroscopy, Fourier transform–infra red (FT–IR) spectroscopy, transmission electron microscopy (TEM) and X-ray diffraction (XRD) have been used for structural characterization. Typical DLN growth rate is about 1 m/h, measured by stylus profilometer. Due to the presence of quartz-like Si:O in the structure, it is found to have very good adhesive property with all the substrates. The adhesion strength found to be as high as 0.6 N on SS 316 L steel substrates by scratch testing method. The Young’s modulus and hardness have found to be 132 GPa and 14.4 GPa, respectively. DLN coatings have wear factor in the order of 1 × 10-7 mm3/N-m. This coating has found to be compatible with all important biomedical substrate materials and has successfully been deposited over Co–Cr alloy based knee implant of complex shape.

  19. A sub-atmospheric chemical vapor deposition process for deposition of oxide liner in high aspect ratio through silicon vias.

    Science.gov (United States)

    Lisker, Marco; Marschmeyer, Steffen; Kaynak, Mehmet; Tekin, Ibrahim

    2011-09-01

    The formation of a Through Silicon Via (TSV) includes a deep Si trench etching and the formation of an insulating layer along the high-aspect-ratio trench and the filling of a conductive material into the via hole. The isolation of the filling conductor from the silicon substrate becomes more important for higher frequencies due to the high coupling of the signal to the silicon. The importance of the oxide thickness on the via wall isolation can be verified using electromagnetic field simulators. To satisfy the needs on the Silicon dioxide deposition, a sub-atmospheric chemical vapor deposition (SA-CVD) process has been developed to deposit an isolation oxide to the walls of deep silicon trenches. The technique provides excellent step coverage of the 100 microm depth silicon trenches with the high aspect ratio of 20 and more. The developed technique allows covering the deep silicon trenches by oxide and makes the high isolation of TSVs from silicon substrate feasible which is the key factor for the performance of TSVs for mm-wave 3D packaging.

  20. Influence of gas phase equilibria on the chemical vapor deposition of graphene.

    Science.gov (United States)

    Lewis, Amanda M; Derby, Brian; Kinloch, Ian A

    2013-04-23

    We have investigated the influence of gas phase chemistry on the chemical vapor deposition of graphene in a hot wall reactor. A new extended parameter space for graphene growth was defined through literature review and experimentation at low pressures (≥0.001 mbar). The deposited films were characterized by scanning electron microscopy, Raman spectroscopy, and dark field optical microscopy, with the latter showing promise as a rapid and nondestructive characterization technique for graphene films. The equilibrium gas compositions have been calculated across this parameter space. Correlations between the graphene films grown and prevalent species in the equilibrium gas phase revealed that deposition conditions associated with a high acetylene equilibrium concentration lead to good quality graphene deposition, and conditions that stabilize large hydrocarbon molecules in the gas phase result in films with multiple defects. The transition between lobed and hexagonal graphene islands was found to be linked to the concentration of the monatomic hydrogen radical, with low concentrations associated with hexagonal islands.

  1. Plasma Assisted Chemical Vapour Deposition – Technological Design Of Functional Coatings

    Directory of Open Access Journals (Sweden)

    Januś M.

    2015-06-01

    Full Text Available Plasma Assisted Chemical Vapour Deposition (PA CVD method allows to deposit of homogeneous, well-adhesive coatings at lower temperature on different substrates. Plasmochemical treatment significantly impacts on physicochemical parameters of modified surfaces. In this study we present the overview of the possibilities of plasma processes for the deposition of diamond-like carbon coatings doped Si and/or N atoms on the Ti Grade2, aluminum-zinc alloy and polyetherketone substrate. Depending on the type of modified substrate had improved the corrosion properties including biocompatibility of titanium surface, increase of surface hardness with deposition of good adhesion and fine-grained coatings (in the case of Al-Zn alloy and improving of the wear resistance (in the case of PEEK substrate.

  2. Processes and environmental significance of the subglacial chemical deposits in Tianshan Mountains

    Institute of Scientific and Technical Information of China (English)

    LIU; Gengnian; LUO; Risheng; CAO; Jun

    2005-01-01

    On the bedrock surface of Glacier No.1 in the headwater of Urumqi River, Tianshan Mts., well layered and crystallized subglacial calcite precipitations were discovered. Based on observations and analysis of the surface form, sedimentary texture and structure, and chemical composition of the deposits, clues about the subglacial processes and environment are deduced. The radial-growth crustation texture of the deposits, which builds up in the saturated CaCO3 solution, proves the existence of pressure melting water and water films under Glacier No.1; and their rhythmic beddings, dissolved planes and unconformable contacts show that the water films responsible for the formation of these structures were in a wide range of spatial as well as temporal variations. Though formed under continental glacier in non-limestone area, the deposits are quite similar to those formed under temperate glaciers in limestone areas, a fact that shows a similar process of chemical precipitation between the two. Hence the enrichment of calcium in the subglacial melting water and the process of precipitation have actually little to do with the bedrock lithology and the glacier types. The cemented detritus in the deposits are rich in Fe and Al while depleted in K, Na and Si; also the included clay mineral consists mainly of illite, which reveals some weak chemical weathering under the continental glacier. The subglacial CaCO3 precipitates when plenty of Ca++ melt into the subglacial melting water on a comparatively enclosed ice-bedrock interface under a high CO2 partial pressure, the forming of subglacial chemical deposits therefore offers unequivocal evidence for the ongoing of subglacial chemical reactions.

  3. Sputter deposition of transition-metal carbide films — A critical review from a chemical perspective

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Ulf, E-mail: ulf.jansson@kemi.uu.se [Department of Chemistry, Ångström, Uppsala Universitet (Sweden); Lewin, Erik [Laboratory for Nanoscale Materials Science, Empa (Switzerland); Department of Chemistry, Ångström, Uppsala Universitet (Sweden)

    2013-06-01

    Thin films based on transition-metal carbides exhibit many interesting physical and chemical properties making them attractive for a variety of applications. The most widely used method to produce metal carbide films with specific properties at reduced deposition temperatures is sputter deposition. A large number of papers in this field have been published during the last decades, showing that large variations in structure and properties can be obtained. This review will summarise the literature on sputter-deposited carbide films based on chemical aspects of the various elements in the films. By considering the chemical affinities (primarily towards carbon) and structural preferences of different elements, it is possible to understand trends in structure of binary transition-metal carbides and the ternary materials based on these carbides. These trends in chemical affinity and structure will also directly affect the growth process during sputter deposition. A fundamental chemical perspective of the transition-metal carbides and their alloying elements is essential to obtain control of the material structure (from the atomic level), and thereby its properties and performance. This review covers a wide range of materials: binary transition-metal carbides and their nanocomposites with amorphous carbon; the effect of alloying carbide-based materials with a third element (mainly elements from groups 3 through 14); as well as the amorphous binary and ternary materials from these elements deposited under specific conditions or at certain compositional ranges. Furthermore, the review will also emphasise important aspects regarding materials characterisation which may affect the interpretation of data such as beam-induced crystallisation and sputter-damage during surface analysis.

  4. FTIR Characterization of Fluorine Doped Silicon Dioxide Thin Films Deposited by Plasma Enhanced Chemical Vapor Deposition

    Institute of Scientific and Technical Information of China (English)

    WANG Peng-Fei; DING Shi-Jin; ZHANG Wei; ZHANG Jian-Yun; WANGJi-Tao; WEI William Lee

    2000-01-01

    Fluorine doped silicon dioxide (SiOF) thin films have been prepared by plasma enhanced chemical vapor depo sition. The Fourier transform infrared spectrometry (FTIR) spectra of SiOF films are deliberated to reveal the structure change of SiO2 and the mechanism of dielectric constant reduction after doping fluorine. When F is doped in SiO2 films, the Si-O stretching absorption peak will have a blue-shift due to increase of the partial charge of the O atom. The FTIR spectra indicate that some Si-OH components in the thin film can be removed after doping fluorine. These changes reduce the ionic and orientational polarization, and result in the reduction in dielectric constant of the film. According to Gaussian fitting, it is found that the Si-F2 bonds will appear in the SiOF film with increase of the fluorine content. The Si-F2 structures are liable to react with water, and cause the same increase of absorbed moisture in the film.

  5. Modelling and optimization of film thickness variation for plasma enhanced chemical vapour deposition processes

    Science.gov (United States)

    Waddell, Ewan; Gibson, Des; Lin, Li; Fu, Xiuhua

    2011-09-01

    This paper describes a method for modelling film thickness variation across the deposition area within plasma enhanced chemical vapour deposition (PECVD) processes. The model enables identification and optimization of film thickness uniformity sensitivities to electrode configuration, temperature, deposition system design and gas flow distribution. PECVD deposition utilizes a co-planar 300mm diameter electrodes with separate RF power matching to each electrode. The system has capability to adjust electrode separation and electrode temperature as parameters to optimize uniformity. Vacuum is achieved using dry pumping with real time control of butterfly valve position for active pressure control. Comparison between theory and experiment is provided for PECVD of diamond-like-carbon (DLC) deposition onto flat and curved substrate geometries. The process utilizes butane reactive feedstock with an argon carrier gas. Radiofrequency plasma is used. Deposited film thickness sensitivities to electrode geometry, plasma power density, pressure and gas flow distribution are demonstrated. Use of modelling to optimise film thickness uniformity is demonstrated. Results show DLC uniformity of 0.30% over a 200 mm flat zone diameter within overall electrode diameter of 300mm. Thickness uniformity of 0.75% is demonstrated over a 200mm diameter for a non-conformal substrate geometry. Use of the modelling method for PECVD using metal-organic chemical vapour deposition (MOCVD) feedstock is demonstrated, specifically for deposition of silica films using metal-organic tetraethoxy-silane. Excellent agreement between experimental and theory is demonstrated for conformal and non-conformal geometries. The model is used to explore scalability of PECVD processes and trade-off against film thickness uniformity. Application to MEMS, optical coatings and thin film photovoltaics is discussed.

  6. Synthesis of carbon nanotubes using the cobalt nanocatalyst by thermal chemical vapor deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Madani, S.S. [Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Zare, K. [Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Department of Chemistry, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Ghoranneviss, M. [Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Salar Elahi, A., E-mail: Salari_phy@yahoo.com [Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2015-11-05

    The three main synthesis methods of Carbon nanotubes (CNTs) are the arc discharge, the laser ablation and the chemical vapour deposition (CVD) with a special regard to the latter one. CNTs were produced on a silicon wafer by Thermal Chemical Vapor Deposition (TCVD) using acetylene as a carbon source, cobalt as a catalyst and ammonia as a reactive gas. The DC-sputtering system was used to prepare cobalt thin films on Si substrates. A series of experiments was carried out to investigate the effects of reaction temperature and deposition time on the synthesis of the nanotubes. The deposition time was selected as 15 and 25 min for all growth temperatures. Energy Dispersive X-ray (EDX) measurements were used to investigate the elemental composition of the Co nanocatalyst deposited on Si substrates. Atomic Force Microscopy (AFM) was used to characterize the surface topography of the Co nanocatalyst deposited on Si substrates. The as-grown CNTs were characterized under Field Emission Scanning Electron Microscopy (FESEM) to study the morphological properties of CNTs. Also, the grown CNTs have been investigated by High Resolution Transmission Electron Microscopy (HRTEM) and Raman spectroscopy. The results demonstrated that increasing the temperature leads to increasing the diameter of CNTs. The ideal reaction temperature was 850 °C and the deposition time was 15 min. - Graphical abstract: FESEM images of CNTs grown on the cobalt catalyst at growth temperatures of (a) 850 °C, (b) 900 °C, (c) 950 °C and (d) 1000 °C during the deposition time of 15 min. - Highlights: • Carbon nanotubes (CNTs) were produced on a silicon wafer by TCVD technique. • EDX and AFM were used to investigate the elemental composition and surface topography. • FESEM was used to study the morphological properties of CNTs. • The grown CNTs have been investigated by HRTEM and Raman spectroscopy.

  7. The influence of methanol addition during the film growth of SnO 2 by atmospheric pressure chemical vapor deposition

    NARCIS (Netherlands)

    Volintiru, I.; Graaf, A. de; Deelen, J. van; Poodt, P.W.G.

    2011-01-01

    Undoped tin oxide (SnO2) thin films have been deposited in a stagnant point flow chemical vapor deposition reactor from a water/tin tetrachloride mixture. By adding methanol during the deposition process the film electrical properties change significantly: ten times more conductive SnO 2 films are o

  8. Influence of precursor solution parameters on chemical properties of calcium phosphate coatings prepared using Electrostatic Spray Deposition (ESD).

    NARCIS (Netherlands)

    Leeuwenburgh, S.C.G.; Wolke, J.G.C.; Schoonman, J.; Jansen, J.A.

    2004-01-01

    A novel coating technique, referred to as Electrostatic Spray Deposition (ESD), was used to deposit calcium phosphate (CaP) coatings with a variety of chemical properties. The relationship between the composition of the precursor solutions and the crystal and molecular structure of the deposited coa

  9. Characterization of Si:O:C:H films fabricated using electron emission enhanced chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Durrant, Steven F. [Laboratorio de Plasmas Tecnologicos, Campus Experimental de Sorocaba, Universidade Estadual Paulista-UNESP, Avenida Tres de Marco, 511, Alto da Boa Vista, 18087-180, Soracaba, SP (Brazil)], E-mail: steve@sorocaba.unesp.br; Rouxinol, Francisco P.M.; Gelamo, Rogerio V. [Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas, 13083-970, Campinas, SP (Brazil); Trasferetti, B. Claudio [Present address: Superintendencia Regional da Policia Federal em Sao Paulo, Setor Tecnico-Cientifico, Rua Hugo d' Antola 95/10o Andar, Lapa de Baixo, 05038-090 Sao Paulo, SP (Brazil); Davanzo, C.U. [Instituto de Quimica, Universidade Estadual de Campinas, 13083-970, Campinas, SP (Brazil); Bica de Moraes, Mario A. [Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas, 13083-970, Campinas, SP (Brazil)

    2008-01-15

    Silicon-based polymers and oxides may be formed when vapours of oxygen-containing organosilicone compounds are exposed to energetic electrons drawn from a hot filament by a bias potential applied to a second electrode in a controlled atmosphere in a vacuum chamber. As little deposition occurs in the absence of the bias potential, electron impact fragmentation is the key mechanism in film fabrication using electron-emission enhanced chemical vapour deposition (EEECVD). The feasibility of depositing amorphous hydrogenated carbon films also containing silicon from plasmas of tetramethylsilane or hexamethyldisiloxane has already been shown. In this work, we report the deposition of diverse films from plasmas of tetraethoxysilane (TEOS)-argon mixtures and the characterization of the materials obtained. The effects of changes in the substrate holder bias (V{sub S}) and of the proportion of TEOS in the mixture (X{sub T}) on the chemical structure of the films are examined by infrared-reflection absorption spectroscopy (IRRAS) at near-normal and oblique incidence using unpolarised and p-polarised, light, respectively. The latter is particularly useful in detecting vibrational modes not observed when using conventional near-normal incidence. Elemental analyses of the film were carried out by X-ray photoelectron spectroscopy (XPS), which was also useful in complementary structural investigations. In addition, the dependencies of the deposition rate on V{sub S} and X{sub T} are presented.

  10. Control of interface nanoscale structure created by plasma-enhanced chemical vapor deposition.

    Science.gov (United States)

    Peri, Someswara R; Akgun, Bulent; Satija, Sushil K; Jiang, Hao; Enlow, Jesse; Bunning, Timothy J; Foster, Mark D

    2011-09-01

    Tailoring the structure of films deposited by plasma-enhanced chemical vapor deposition (PECVD) to specific applications requires a depth-resolved understanding of how the interface structures in such films are impacted by variations in deposition parameters such as feed position and plasma power. Analysis of complementary X-ray and neutron reflectivity (XR, NR) data provide a rich picture of changes in structure with feed position and plasma power, with those changes resolved on the nanoscale. For plasma-polymerized octafluorocyclobutane (PP-OFCB) films, a region of distinct chemical composition and lower cross-link density is found at the substrate interface for the range of processing conditions studied and a surface layer of lower cross-link density also appears when plasma power exceeds 40 W. Varying the distance of the feed from the plasma impacts the degree of cross-linking in the film center, thickness of the surface layer, and thickness of the transition region at the substrate. Deposition at the highest power, 65 W, both enhances cross-linking and creates loose fragments with fluorine content higher than the average. The thickness of the low cross-link density region at the air interface plays an important role in determining the width of the interface built with a layer subsequently deposited atop the first.

  11. Microstructural characterization and chemical compatibility of pulsed laser deposited yttria coatings on high density graphite

    Energy Technology Data Exchange (ETDEWEB)

    Sure, Jagadeesh [Corrosion Science and Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam — 603 102 (India); Mishra, Maneesha [Physical Metallurgy Group, Indira Gandhi Centre for Atomic Research, Kalpakkam-603 102 (India); Tarini, M. [SRM University, Kattankulathur-603 203 (India); Shankar, A. Ravi; Krishna, Nanda Gopala [Corrosion Science and Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam — 603 102 (India); Kuppusami, P. [Physical Metallurgy Group, Indira Gandhi Centre for Atomic Research, Kalpakkam-603 102 (India); Mallika, C. [Corrosion Science and Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam — 603 102 (India); Mudali, U. Kamachi, E-mail: kamachi@igcar.gov.in [Corrosion Science and Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam — 603 102 (India)

    2013-10-01

    Yttria coatings were deposited on high density (HD) graphite substrate by pulsed laser deposition method and subsequently annealing in vacuum at 1373 K was carried out to evaluate the thermal stability of the coatings. Yttria deposited on HD graphite samples were exposed to molten LiCl–KCl salt at 873 K for 3 h to evaluate the corrosion behavior of the coating for the purpose of pyrochemical reprocessing applications. The microstructure and the corrosion behavior of the yttria coating deposited on HD graphite in molten LiCl–KCl salt were evaluated by several characterization techniques. X-ray diffraction and Laser Raman patterns confirmed the presence of cubic phase of yttria in the coating. The surface morphology of yttria coating on HD graphite examined by scanning electron microscope and atomic force microscopy revealed the agglomeration of oxide particles and formation of clusters. After annealing at 1373 K, no appreciable grain growth of yttria particles could be observed. X-ray photoelectron spectroscopy analysis was carried out for elemental analysis before and after chemical compatibility test of the coated samples in molten LiCl–KCl salt to identify the corrosive elements present on the yttria coatings. The chemical compatibility and thermal stability of the yttria coating on HD graphite in molten LiCl–KCl salt medium have been established. - Highlights: • Y{sub 2}O{sub 3} coating was deposited on graphite by pulsed laser deposition method. • Chemical compatibility of Y{sub 2}O{sub 3} coating in LiCl–KCl salt at 873 K was studied. • Gibbs free energy change was positive for Y{sub 2}O{sub 3} reaction with Cl{sub 2}, U and UCl{sub 3}. • Y{sub 2}O{sub 3} coating exhibited better corrosion performance in molten LiCl–KCl salt.

  12. Preparation of Dispersed Platinum Nanoparticles on a Carbon Nanostructured Surface Using Supercritical Fluid Chemical Deposition

    Directory of Open Access Journals (Sweden)

    Mineo Hiramatsu

    2010-03-01

    Full Text Available We have developed a method of forming platinum (Pt nanoparticles using a metal organic chemical fluid deposition (MOCFD process employing a supercritical fluid (SCF, and have demonstrated the synthesis of dispersed Pt nanoparticles on the surfaces of carbon nanowalls (CNWs, two-dimensional carbon nanostructures, and carbon nanotubes (CNTs. By using SCF-MOCFD with supercritical carbon dioxide as a solvent of metal-organic compounds, highly dispersed Pt nanoparticles of 2 nm diameter were deposited on the entire surface of CNWs and CNTs. The SCF-MOCFD process proved to be effective for the synthesis of Pt nanoparticles on the entire surface of intricate carbon nanostructures with narrow interspaces.

  13. Boron coating on boron nitride coated nuclear fuels by chemical vapor deposition

    Science.gov (United States)

    Durmazuçar, Hasan H.; Gündüz, Güngör

    2000-12-01

    Uranium dioxide-only and uranium dioxide-gadolinium oxide (5% and 10%) ceramic nuclear fuel pellets which were already coated with boron nitride were coated with thin boron layer by chemical vapor deposition to increase the burn-up efficiency of the fuel during reactor operation. Coating was accomplished from the reaction of boron trichloride with hydrogen at 1250 K in a tube furnace, and then sintering at 1400 and 1525 K. The deposited boron was identified by infrared spectrum. The morphology of the coating was studied by using scanning electron microscope. The plate, grainy and string (fiber)-like boron structures were observed.

  14. A mathematical model and simulation results of plasma enhanced chemical vapor deposition of silicon nitride films

    Science.gov (United States)

    Konakov, S. A.; Krzhizhanovskaya, V. V.

    2015-01-01

    We developed a mathematical model of Plasma Enhanced Chemical Vapor Deposition (PECVD) of silicon nitride thin films from SiH4-NH3-N2-Ar mixture, an important application in modern materials science. Our multiphysics model describes gas dynamics, chemical physics, plasma physics and electrodynamics. The PECVD technology is inherently multiscale, from macroscale processes in the chemical reactor to atomic-scale surface chemistry. Our macroscale model is based on Navier-Stokes equations for a transient laminar flow of a compressible chemically reacting gas mixture, together with the mass transfer and energy balance equations, Poisson equation for electric potential, electrons and ions balance equations. The chemical kinetics model includes 24 species and 58 reactions: 37 in the gas phase and 21 on the surface. A deposition model consists of three stages: adsorption to the surface, diffusion along the surface and embedding of products into the substrate. A new model has been validated on experimental results obtained with the "Plasmalab System 100" reactor. We present the mathematical model and simulation results investigating the influence of flow rate and source gas proportion on silicon nitride film growth rate and chemical composition.

  15. High performance PbS quantum dot sensitized solar cells via electric field assisted in situ chemical deposition on modulated TiO2 nanotube arrays.

    Science.gov (United States)

    Tao, Liang; Xiong, Yan; Liu, Hong; Shen, Wenzhong

    2014-01-21

    Quantum dot sensitized solar cells (QDSSCs) are attractive photovoltaic devices due to their simplicity and low material requirements. However, efforts to realize high efficiencies in QDSSCs have often been offset by complicated processes and expensive or toxic materials, significantly limiting their useful application. In this work, we have realized for the first time, high performance PbS QDSSCs based on TiO2 nanotube arrays (NTAs) via an in situ chemical deposition method controlled by a low electric field. An efficiency, η, of ~3.41% under full sun illumination has been achieved, which is 133.6% higher than the best result previously reported for a simple system without doping or co-sensitizing, and comparable to systems with additional chemicals. Furthermore, a high open-circuit voltage (0.64 V), short-circuit current (8.48 mA cm(-2)) and fill factor (0.63) have been achieved. A great increase in the quantity of the loaded quantum dots (QDs) in the NTAs was obtained from the in situ electric field assisted chemical bath deposition (EACBD) process, which was the most significant contributing factor with respect to the high JSC. The high VOC and FF have been attributed to a much shorter electron path, less structural and electronic defects, and lower recombination in the ordered TiO2 NTAs produced by oscillating anodic voltage. Besides, the optimal film thickness (~4 μm) based on the NTAs was much thinner than that of the control cell based on nanoporous film (~30.0 μm). This investigation can hopefully offer an effective way of realizing high performance QDSSCs and QD growth/installation in other nanostructures as well.

  16. Using different chemical methods for deposition of copper selenide thin films and comparison of their characterization.

    Science.gov (United States)

    Güzeldir, Betül; Sağlam, Mustafa

    2015-11-05

    Different chemical methods such as Successive Ionic Layer Adsorption and Reaction (SILAR), spin coating and spray pyrolysis methods were used to deposite of copper selenide thin films on the glass substrates. The films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X-ray analysis (EDX) spectroscopy and UV-vis spectrophotometry. The XRD and SEM studies showed that all the films exhibit polycrystalline nature and crystallinity of copper selenide thin films prepared with spray pyrolysis greater than spin coating and SILAR methods. From SEM and AFM images, it was observed copper selenide films were uniform on the glass substrates without any visible cracks or pores. The EDX spectra showed that the expected elements exist in the thin films. Optical absorption studies showed that the band gaps of copper selenide thin films were in the range 2.84-2.93 eV depending on different chemical methods. The refractive index (n), optical static and high frequency dielectric constants (ε0, ε∞) values were calculated by using the energy bandgap values for each deposition method. The obtained results from different chemical methods revealed that the spray pyrolysis technique is the best chemical deposition method to fabricate copper selenide thin films. This absolute advantage was lead to play key roles on performance and efficiency electrochromic and photovoltaic devices.

  17. Surface modification of silicon-containing fluorocarbon films prepared by plasma-enhanced chemical vapor deposition

    Science.gov (United States)

    Jin, Yoonyoung; Desta, Yohannes; Goettert, Jost; Lee, G. S.; Ajmera, P. K.

    2005-07-01

    Surface modification of silicon-containing fluorocarbon (SiCF) films achieved by wet chemical treatments and through x-ray irradiation is examined. The SiCF films were prepared by plasma-enhanced chemical vapor deposition, using gas precursors of tetrafluoromethane and disilane. As-deposited SiCF film composition was analyzed by x-ray photoelectron spectroscopy. Surface modification of SiCF films utilizing n-lithiodiaminoethane wet chemical treatment is discussed. Sessile water-drop contact angle changed from 95°+/-2° before treatment to 32°+/-2° after treatment, indicating a change in the film surface characteristics from hydrophobic to hydrophilic. For x-ray irradiation on the SiCF film with a dose of 27.4 kJ/cm3, the contact angle of the sessile water drop changed from 95°+/-2° before radiation to 39°+/-3° after x-ray exposure. The effect of x-ray exposure on chemical bond structure of SiCF films is studied using Fourier transform infrared measurements. Electroless Cu deposition was performed to test the applicability of the surface modified films. The x-ray irradiation method offers a unique advantage in making possible surface modification in a localized area of high-aspect-ratio microstructures. Fabrication of a Ti-membrane x-ray mask is introduced here for selective surface modification using x-ray irradiation.

  18. Chemical vapor deposition fabrication and characterization of silica-coated carbon fiber ultramicroelectrodes.

    Science.gov (United States)

    Zhao, G; Giolando, D M; Kirchhoff, J R

    1995-08-01

    Carbon fiber disk ultramicroelectrodes (UMEs) with well-defined geometries were prepared by chemical vapor deposition techniques. Transparent silica films with thicknesses from 1 to 600 microns were deposited on the cylindrical length of 5 and 10 microns carbon fibers from a SiCl4, H2, and O2 ternary precursor system at 850-1150 degrees C or sequential deposition from Si(OEt)4 as a single source precursor at 700 degrees C followed by the SiCl4, H2, and O2 precursor system. Film thickness, film adhesion to the fiber substrate, and the overall dimensions of the silica-coated carbon fiber were studied and found to be a function of the precursor system, precursor concentrations, fiber diameter, deposition time, and fiber temperature. The silica films were found to be free of microcracks and characterized by a quality seal between the carbon fiber and the coating. As a result, the silica-coated disk UME exhibits an excellent electrochemical response without the need to use an epoxy sealant at the electrode tip. Furthermore, the deposition of hard and inert ceramic materials imparts durability to fragile carbon fibers and facilitates the handling of UMEs in microenvironments. Finally, the advantage of concentric deposition about the fibers to produce a disk UME in the center of an insulating plane was used to examine the effect of the thickness of the insulating coating on the limiting current response.

  19. Conformal encapsulation of three-dimensional, bioresorbable polymeric scaffolds using plasma-enhanced chemical vapor deposition.

    Science.gov (United States)

    Hawker, Morgan J; Pegalajar-Jurado, Adoracion; Fisher, Ellen R

    2014-10-21

    Bioresorbable polymers such as poly(ε-caprolactone) (PCL) have a multitude of potential biomaterial applications such as controlled-release drug delivery and regenerative tissue engineering. For such biological applications, the fabrication of porous three-dimensional bioresorbable materials with tunable surface chemistry is critical to maximize their surface-to-volume ratio, mimic the extracellular matrix, and increase drug-loading capacity. Here, two different fluorocarbon (FC) precursors (octofluoropropane (C3F8) and hexafluoropropylene oxide (HFPO)) were used to deposit FC films on PCL scaffolds using plasma-enhanced chemical vapor deposition (PECVD). These two coating systems were chosen with the intent of modifying the scaffold surfaces to be bio-nonreactive while maintaining desirable bulk properties of the scaffold. X-ray photoelectron spectroscopy showed high-CF2 content films were deposited on both the exterior and interior of PCL scaffolds and that deposition behavior is PECVD system specific. Scanning electron microscopy data confirmed that FC film deposition yielded conformal rather than blanket coatings as the porous scaffold structure was maintained after plasma treatment. Treated scaffolds seeded with human dermal fibroblasts (HDF) demonstrate that the cells do not attach after 72 h and that the scaffolds are noncytotoxic to HDF. This work demonstrates conformal FC coatings can be deposited on 3D polymeric scaffolds using PECVD to fabricate 3D bio-nonreactive materials.

  20. Preparation and characterization of boron nitride coatings on carbon fibers from borazine by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Li Junsheng, E-mail: charlesljs@163.com [State Key Laboratory of Advanced Ceramic Fibers and Composites, College of Aerospace and Materials Engineering, National University of Defense Technology, Changsha, 410073 (China); Zhang Changrui; Li Bin [State Key Laboratory of Advanced Ceramic Fibers and Composites, College of Aerospace and Materials Engineering, National University of Defense Technology, Changsha, 410073 (China)

    2011-06-15

    Boron nitride (BN) coatings were deposited on carbon fibers by chemical vapor deposition (CVD) using borazine as single source precursor. The deposited coatings were characterized by scanning electron microscopy (SEM), Auger electron spectroscopy (AES), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. The effect of temperatures on growth kinetics, morphology, composition and structure of the coatings was investigated. In the low temperature range of 900 deg. C-1000 deg. C, the growth rate increased with increasing temperature complying with Arrhenius law, and an apparent active energy of 72 kJ/mol was calculated. The coating surface was smooth and compact, and the coatings uniformly deposited on individual fibers of carbon fiber bundles. The growth was controlled by surface reaction. At 1000 deg. C, the deposition rate reached a maximum (2.5 {mu}m/h). At the same time, the limiting step of the growth translated to be mass-transportation. Above 1100 deg. C, the growth rate decreased drastically due to the occurrence of gas-phase nucleation. Moreover, the coating surface became loose and rough. Composition and structure examinations revealed that stoichiometric BN coatings with turbostratic structure were obtained below 1000 deg. C, while hexagonal BN coatings were deposited above 1100 deg. C. A penetration of carbon element from the fibers to the coatings was observed.

  1. New Brightener for Zn-Fe Alloy Plating from Sulphate Bath

    Directory of Open Access Journals (Sweden)

    B. M. Praveen

    2011-01-01

    Full Text Available Zn-Fe alloy electrodeposition was carried out in the presence of condensation product 2-{[(1E-(3,4-dimethoxyphenylmethylidene]amino}-3-hydroxypropanoic acid formed between veratraldehyde and serine in acid sulphate bath. Hull cell was used for optimizing the operating parameters and bath constituents. During deposition, the potential was shifted towards cathodic direction in the presence of addition agents and brightener. The polarization studies show that deposition taking place in basic bath and optimum bath was 1.08 and 1.15 V, respectively. Current efficiency and throwing power were reached around 85% and 26%, respectively. The SEM images of bright deposit indicated its fine-grained nature and appreciable reduction in the grain size. XRD studies have showed that the grain size of the deposit generated from optimum bath was 16 nm. UV-visible spectroscopic studies confirm the formation of complex between metal ion and brightener.

  2. Chemical characterisation of rainwater at Stromboli Island (Italy): The effect of post-depositional processes

    Science.gov (United States)

    Cangemi, Marianna; Madonia, Paolo; Favara, Rocco

    2017-04-01

    Volcanoes emit fluids and solid particles into the atmosphere that modify the chemical composition of natural precipitation. We have investigated the geochemistry of Stromboli's rainfall during the period from November 2014 to March 2016 using a network of a new type of sampler specifically designed for operations on volcanic islands. We found that most of the chemical modifications are due to processes occurring after the storage of rainwater in the sampling bottles. These processes include dissolution of volcanogenic soluble salts encrusting volcanic ash and a variable contribution of sea spray aerosol. Our data showed noticeably less scatter than has previously been achieved with a different sampling system that was more open to the atmosphere. This demonstrates the improved efficacy of the new sampler design. The data showed that post-depositional chemical alteration of rain samples dominates over processes occurring during droplet formation ad precipitation. This has important implications for the calculation of fluxes of chemicals from rainfall in volcanic regions.

  3. Electronic structure and chemical reaction of Ca deposition on regioregular poly(3-hexylthiophene) surfaces

    Institute of Scientific and Technical Information of China (English)

    ZHAO Wei; GUO YuXian; FENG XueFei; ZHANG Liang; ZHANG WenHua; ZHU JunFa

    2009-01-01

    Conjugated polymer, regioregular poly(3-hexylthiophene) (rr-P3HT), films were prepared by spin-coating the rr-P3HT chloroform solution onto clean silicon wafer surfaces. The chemical re-action and electronic structure of Ca deposition on rr-P3HT surfaces were in situ investigated by synchrotron radiation photoemission spectroscopy (SRPES) and X-ray photoemission spectros-copy (XPS). Upon Ca deposition, Ca-induced band bending of rr-P3HT is observed. In addition, Ca atoms preferentially react with S atoms of rr-P3HT. No obvious reaction between Ca and C atoms can be found. Through the investigation of the evolution of valence band spectra and secondary electron cut-off of rr-P3HT during the process of Ca deposition, an energy level alignment diagram at the Ca/rr-P3HT interface is derived.

  4. FABRICATION OF DIAMOND TUBES IN BIAS-ENHANCED HOT-FILAMENT CHEMICAL VAPOR DEPOSITION SYSTEM

    Institute of Scientific and Technical Information of China (English)

    CHEN Ming; MA Yuping; XIANG Daohui; SUN Fanghong

    2007-01-01

    Deposition of diamond thin films on tungsten wire Substrate with the gas mixture of acetone and hydrogen by using bias-enhanced hol filament chemical vapor deposition (CVD) with the tantalum wires being optimized arranged is investigated. The self-supported diamond tubes are obtained by etching away the tungsten Substrates. The quality of the diamond film before and after the removal of Substrates is observed by scanning electron microscope (SEM) and Raman spectrum. The results show that the cylindrical diamond tubes with good quality and uniform thickness are obtained on tungsten wires by using bias enhanced hot filament CVD. The compressive stress in diamond film formed during the deposition is released after the Substrate etches away by mixture of H202 and NH4OH. There is no residual stress in diamond tube after Substrate removal.

  5. Low temperature metal free growth of graphene on insulating substrates by plasma assisted chemical vapor deposition

    Science.gov (United States)

    Muñoz, R.; Munuera, C.; Martínez, J. I.; Azpeitia, J.; Gómez-Aleixandre, C.; García-Hernández, M.

    2017-03-01

    Direct growth of graphene films on dielectric substrates (quartz and silica) is reported, by means of remote electron cyclotron resonance plasma assisted chemical vapor deposition r-(ECR-CVD) at low temperature (650 °C). Using a two step deposition process- nucleation and growth- by changing the partial pressure of the gas precursors at constant temperature, mostly monolayer continuous films, with grain sizes up to 500 nm are grown, exhibiting transmittance larger than 92% and sheet resistance as low as 900 Ω sq-1. The grain size and nucleation density of the resulting graphene sheets can be controlled varying the deposition time and pressure. In additon, first-principles DFT-based calculations have been carried out in order to rationalize the oxygen reduction in the quartz surface experimentally observed. This method is easily scalable and avoids damaging and expensive transfer steps of graphene films, improving compatibility with current fabrication technologies.

  6. Non-classical crystallization of silicon thin films during hot wire chemical vapor deposition

    Science.gov (United States)

    Jung, Jae-Soo; Lee, Sang-Hoon; Kim, Da-Seul; Kim, Kun-Su; Park, Soon-Won; Hwang, Nong-Moon

    2017-01-01

    The deposition behavior of silicon films by hot wire chemical vapor deposition (HWCVD) was approached by non-classical crystallization, where the building block of deposition is a nanoparticle generated in the gas phase of the reactor. The puzzling phenomenon of the formation of an amorphous incubation layer on glass could be explained by the liquid-like property of small charged nanoparticles (CNPs), which are generated in the initial stage of the HWCVD process. Using the liquid-like property of small CNPs, homo-epitaxial growth as thick as 150 nm could be successfully grown on a silicon wafer at 600 °C under the processing condition where CNPs as small as possible could be supplied steadily by a cyclic process which periodically resets the process. The size of CNPs turned out to be an important parameter in the microstructure evolution of thin films.

  7. Simultaneous growth of diamond and nanostructured graphite thin films by hot-filament chemical vapor deposition

    Science.gov (United States)

    Ali, M.; Ürgen, M.

    2012-01-01

    Diamond and graphite films on silicon wafer were simultaneously synthesized at 850 °C without any additional catalyst. The synthesis was achieved in hot-filament chemical vapor deposition reactor by changing distance among filaments in traditional gas mixture. The inter-wire distance for diamond and graphite deposition was kept 5 and 15 mm, whereas kept constant from the substrate. The Raman spectroscopic analyses show that film deposited at 5 mm is good quality diamond and at 15 mm is nanostructured graphite and respective growths confirm by scanning auger electron microscopy. The scanning electron microscope results exhibit that black soot graphite is composed of needle-like nanostructures, whereas diamond with pyramidal featured structure. Transformation of diamond into graphite mainly attributes lacking in atomic hydrogen. The present study develops new trend in the field of carbon based coatings, where single substrate incorporate dual application can be utilized.

  8. Chemical solution deposition of CaCu3Ti4O12 thin film

    Indian Academy of Sciences (India)

    Viswanathan S Saji; Han Cheol Choe

    2010-06-01

    CaCu3Ti4O12 (CCTO) thin film was successfully deposited on boron doped silica substrate by chemical solution deposition and rapid thermal processing. The phase and microstructure of the deposited films were studied as a function of sintering temperature, employing X-ray diffractometry and scanning electron microscopy. Dielectric properties of the films were measured at room temperature using impedance spectroscopy. Polycrystalline pure phase CCTO thin films with (220) preferential orientation was obtained at a sintering temperature of 750°C. There was a bimodal size distribution of grains. The dielectric constant and loss factor at 1 kHz obtained for a film sintered at 750°C was ∼ 2000 and tan ∼ 0.05.

  9. Influence of bath temperature and bath composition on Co-Ag electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Torres, Jose; Valles, Elisa [Electrodep, Departament de Quimica Fisica and Institut de Nanociencia i Nanotecnologia (IN' ' 2UB) de la Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Gomez, Elvira, E-mail: e.gomez@ub.ed [Electrodep, Departament de Quimica Fisica and Institut de Nanociencia i Nanotecnologia (IN' ' 2UB) de la Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain)

    2010-08-01

    A study of the best conditions to prepare smooth heterogeneous Co-Ag films with low amounts of S from a thiourea-based electrolytic bath has been performed. Using a 0.01 M AgClO{sub 4} + 0.1 M Co(ClO{sub 4}){sub 2} + 0.1 M thiourea + 0.1 M sodium gluconate + 0.3 M H{sub 3}BO{sub 3} + 0.1 M NaClO{sub 4} bath, low temperature (10 {sup o}C) allowed obtaining compact and smooth deposits containing 2 wt.% sulphur. Decreasing thiourea content 0.06 M and increasing gluconate concentration up to 0.3 M, better deposits (more compact with lower sulphur content (1.2 wt.%)) were obtained. A clear influence of the species present in the bath on the film quality was observed: while gluconate favoured film cohesion, boric acid hindered hydrogen adsorption. For all films, fcc-Ag, hcp-Co and hcp-CoAg{sub 3} phases were always detected by XRD, TEM and electron diffraction, their proportions varying with the electrodeposition conditions. Magnetic measurements revealed that the increase in the CoAg{sub 3} led to an increase in the film coercivity. GMR values were only measured at cryogenic temperatures, they being higher for the deposits with the lowest sulphur content revealing that sulphur exerts a negative effect on magnetoresistance.

  10. Atmospheric pressure chemical vapor deposition (APCVD) grown bi-layer graphene transistor characteristics at high temperature

    KAUST Repository

    Qaisi, Ramy M.

    2014-05-15

    We report the characteristics of atmospheric chemical vapor deposition grown bilayer graphene transistors fabricated on ultra-scaled (10 nm) high-κ dielectric aluminum oxide (Al2O3) at elevated temperatures. We observed that the drive current increased by >400% as temperature increased from room temperature to 250 °C. Low gate leakage was maintained for prolonged exposure at 100 °C but increased significantly at temperatures >200 °C. These results provide important insights for considering chemical vapor deposition graphene on aluminum oxide for high temperature applications where low power and high frequency operation are required. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Low Temperature Growth of Vertically Aligned Carbon Nanotubes via Floating Catalyst Chemical Vapor Deposition Method

    Institute of Scientific and Technical Information of China (English)

    M.R. Atiyan; D.R. Awang Biak; F. Ahmadun; I.S. Ahamad; F. Mohd Yasin; H. Mohamed Yusoff

    2011-01-01

    Synthesis of carbon nanotubes (CNTs) below 600℃ using supporting catalyst chemical vapor deposition method was reported by many research groups. However, the floating catalyst chemical vapor deposition received less attention due to imperfect nanotubes produced. In this work, the effects of varying the preheating temperature on the synthesis of CNT were investigated. The reaction temperature was set at 570℃. The preheating set temperature was varied from 150 to 400℃ at 50℃ interval. Three O-ring shape heating mantels were used as heating source for the preheater. In situ monitoring device was used to observe the temperature profile in the reactor. Benzene and ferrocene were used as the carbon source and catalyst precursor, respectively. Vertically aligned CNTs were synthesized when the preheating temperature was set at 400℃. When the preheating temperature was increased up to 400℃, both the length and the alignment of CNTs produced were improved.

  12. Synthesis of magnetic tunnel junctions with full in situ atomic layer and chemical vapor deposition processes

    Energy Technology Data Exchange (ETDEWEB)

    Mantovan, R., E-mail: roberto.mantovan@mdm.imm.cnr.it [Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, 20864 Agrate Brianza (Italy); Vangelista, S.; Kutrzeba-Kotowska, B.; Cocco, S.; Lamperti, A.; Tallarida, G. [Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, 20864 Agrate Brianza (MB) (Italy); Mameli, D. [Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, 20864 Agrate Brianza (Italy); Dipartimento di Scienze Chimiche, Universita di Cagliari, Cittadella Universitaria, 09042 Monserrato, Cagliari (Italy); Fanciulli, M. [Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, 20864 Agrate Brianza (Italy); Dipartimento di Scienza dei Materiali, Universita degli studi Milano-Bicocca, Via R Cozzi 53, 20125 Milano (Italy)

    2012-05-01

    Magnetic tunnel junctions, i.e. the combination of two ferromagnetic electrodes separated by an ultrathin tunnel oxide barrier, are core elements in a large variety of spin-based devices. We report on the use of combined chemical vapor and atomic layer deposition processes for the synthesis of magnetic tunnel junctions with no vacuum break. Structural, chemical and morphological characterizations of selected ferromagnetic and oxide layers are reported, together with the evidence of tunnel magnetoresistance effect in patterned Fe/MgO/Co junctions.

  13. Large improvement of phosphorus incorporation efficiency in n-type chemical vapor deposition of diamond

    Science.gov (United States)

    Ohtani, Ryota; Yamamoto, Takashi; Janssens, Stoffel D.; Yamasaki, Satoshi; Koizumi, Satoshi

    2014-12-01

    Microwave plasma enhanced chemical vapor deposition is a promising way to generate n-type, e.g., phosphorus-doped, diamond layers for the fabrication of electronic components, which can operate at extreme conditions. However, a deeper understanding of the doping process is lacking and low phosphorus incorporation efficiencies are generally observed. In this work, it is shown that systematically changing the internal design of a non-commercial chemical vapor deposition chamber, used to grow diamond layers, leads to a large increase of the phosphorus doping efficiency in diamond, produced in this device, without compromising its electronic properties. Compared to the initial reactor design, the doping efficiency is about 100 times higher, reaching 10%, and for a very broad doping range, the doping efficiency remains highly constant. It is hypothesized that redesigning the deposition chamber generates a higher flow of active phosphorus species towards the substrate, thereby increasing phosphorus incorporation in diamond and reducing deposition of phosphorus species at reactor walls, which additionally reduces undesirable memory effects.

  14. High index of refraction films for dielectric mirrors prepared by metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Brusasco, R.M.

    1989-01-01

    A wide variety of metal oxides with high index of refraction can be prepared by Metal-Organic Chemical Vapor Deposition. We present some recent optical and laser damage results on oxide films prepared by MOCVD which could be used in a multilayer structure for highly reflecting (HR) dielectric mirror applications. The method of preparation affects both optical properties and laser damage threshold. 10 refs., 8 figs., 4 tabs.

  15. Chemical spray pyrolysis of β-In2S3 thin films deposited at different temperatures

    OpenAIRE

    SALL, THIERNO; Marí Soucase, Bernabé; Mollar García, Miguel Alfonso; Hartitti, Bouchaib; Fahoume, Mounir

    2015-01-01

    In2S3 thin films were deposited onto indium tin oxide-coated glass substrates by chemical spray pyrolysis while keeping the substrates at different temperatures. The structures of the sprayed In2S3 thin films were characterized by X-ray diffraction (XFD). The quality of the thin films was determined by Raman spectroscopy. Scanning electron microscopy (SEM) and atomic force microscopy were used to explore the surface morphology and topography of the thin films, respectively. The optic...

  16. Theoretical Descriptions of Carbon Nanotubes Synthesis in a Chemical Vapor Deposition Reactor: A Review

    OpenAIRE

    Lubej, M.; Plazl, I.

    2012-01-01

    The mechanisms by which carbon nanotubes nucleate and grow are still poorly understood. Understanding and mathematically describing the process is crucial for its optimization. This paper reviews different models which have been proposed to explain carbon nanotube growth in the chemical vapor deposition process. The review is divided into two sections, the first section describes some nucleation, growth and termination simulations based on molecular dynamics, and the second section describes ...

  17. Graphene growth from reduced graphene oxide by chemical vapour deposition: seeded growth accompanied by restoration

    OpenAIRE

    2016-01-01

    Understanding the underlying mechanisms involved in graphene growth via chemical vapour deposition (CVD) is critical for precise control of the characteristics of graphene. Despite much effort, the actual processes behind graphene synthesis still remain to be elucidated in a large number of aspects. Herein, we report the evolution of graphene properties during in-plane growth of graphene from reduced graphene oxide (RGO) on copper (Cu) via methane CVD. While graphene is laterally grown from R...

  18. Purification of Single-walled Carbon Nanotubes Grown by a Chemical Vapour Deposition (CVD) Method

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A procedure for purification of single-walled carbon nanotubes(SWNTs) grown by the chemical vapour deposition (CVD) of carbon monooxide has been developed. Based on the result from TGA/DTA of as-prepared sample, the oxidation temperature was determined. The process included sonication, oxidation and acid washing steps. The purity and yield after purification were determined and estimated by TEM. Moreover, for the first time, a loop structure for CVD SWNTs has been observed.

  19. Fabrication of Rare Earth-Doped Transparent Glass Ceramic Optical Fibers by Modified Chemical Vapor Deposition

    OpenAIRE

    2011-01-01

    International audience; Rare earth (RE) doped silica-based optical fibers with transparent glass ceramic (TGC) core was fabricated through the well-known modified chemical vapor deposition (MCVD) process without going through the commonly used stage of post-ceramming. The main characteristics of the RE-doped oxyde nanoparticles namely, their density and mean diameter in the fibers are dictated by the concentration of alkaline earth element used as phase separating agent. Magnesium and erbium ...

  20. Growth of Aligned Carbon Nanotubes through Microwave Plasma Chemical Vapor Deposition

    Institute of Scientific and Technical Information of China (English)

    王升高; 汪建华; 马志斌; 王传新; 满卫东

    2005-01-01

    Aligned carbon nanotubes (CNTs) were synthesized on glass by microwave plasma chemical vapor deposition (MWPCVD) with a mixture of methane and hydrogen gases at the low temperature of 550 ℃. The experimental results show that both the self-bias potential and the density of the catalyst particles are responsible for the alignment of CNTs. When the catalyst particle density is high enough, strong interactions among the CNTs can inhibit CNTs from growing randomly and result in parallel alignment.

  1. Growth process conditions of tungsten oxide thin films using hot-wire chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Houweling, Z. Silvester, E-mail: Z.S.Houweling@uu.nl [Nanophotonics - Physics of Devices, Debye Institute for Nanomaterials Science, Utrecht University, Princetonlaan 4, 3584 CB Utrecht (Netherlands); Geus, John W. [Electron Microscopy, Utrecht University, Padualaan 8, 3584 CH Utrecht (Netherlands); Jong, Michiel de; Harks, Peter-Paul R.M.L.; Werf, Karine H.M. van der; Schropp, Ruud E.I. [Nanophotonics - Physics of Devices, Debye Institute for Nanomaterials Science, Utrecht University, Princetonlaan 4, 3584 CB Utrecht (Netherlands)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Process parameters to control hot-wire CVD of WO{sub 3-x} are categorized. Black-Right-Pointing-Pointer Growth time, oxygen partial pressure, filament and substrate temperature are varied. Black-Right-Pointing-Pointer Chemical and crystal structure, optical bandgap and morphology are determined. Black-Right-Pointing-Pointer Oxygen partial pressure determines the deposition rate up to as high as 36 {mu}m min{sup -1}. Black-Right-Pointing-Pointer Nanostructures, viz. wires, crystallites and closed crystallite films, are controllably deposited. - Abstract: We report the growth conditions of nanostructured tungsten oxide (WO{sub 3-x}) thin films using hot-wire chemical vapor deposition (HWCVD). Two tungsten filaments were resistively heated to various temperatures and exposed to an air flow at various subatmospheric pressures. The oxygen partial pressure was varied from 6.0 Multiplication-Sign 10{sup -6} to 1.0 mbar and the current through the filaments was varied from 4.0 to 9.0 A, which constitutes a filament temperature of 1390-2340 Degree-Sign C in vacuum. It is observed that the deposition rate of the films is predominantly determined by the oxygen partial pressure; it changes from about 1 to about 36,000 nm min{sup -1} in the investigated range. Regardless of the oxygen partial pressure and filament temperature used, thin films with a nanogranular morphology are obtained, provided that the depositions last for 30 min or shorter. The films consist either of amorphous or partially crystallized WO{sub 3-x} with high averaged transparencies of over 70% and an indirect optical band gap of 3.3 {+-} 0.1 eV. A prolonged deposition time entails an extended exposure of the films to thermal radiation from the filaments, which causes crystallization to monoclinic WO{sub 3} with diffraction maxima due to the (0 0 2), (2 0 0) and (0 2 0) crystallographic planes, furthermore the nanograins sinter and the films exhibit a cone

  2. Fabrication of copper nanorods by low-temperature metal organic chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ying; Frank Leung-Yuk Lam; HU Xijun; YAN Zifeng

    2006-01-01

    Copper nanorods have been synthesized in mesoporous SBA-15 by a low-temperature metal organic chemical vapor deposition (MOCVD)employing copper (Ⅱ) acetylacetonate, Cu(acac)2,and hydrogen as a precursor and reactant gas, respectively. The hydrogen plays an important role in chemical reduction of oganometallic precursor which enhances mass transfer in the interior of the SBA-15 porous substrate. Such copper nanostructures are of great potentials in the semiconductor due to their unusual optical, magnetic and electronic properties.In addition, it has been found that chemically modifying the substrate surface by carbon deposition is crucial to such synthesis of copper nanostructures in the interior of the SBA-15, which is able to change the surface properties of SBA-15 from hydrophilic to hydrophobic to promote the adsorption of organic cupric precursor. It has also been found that the copper nanoparticles deposited on the external surface are almost eliminated and the copper nanorods are more distinct while the product was treated with ammonia. This approach could be achieved under a mild condition: a low temperature (400℃) and vacuum (2 kPa) which is extremely milder than the conventional method. It actually sounds as a foundation which is the first time to synthesize a copper nanorod at a mild condition of a low reaction temperature and pressure.

  3. Silica-titania composite aerogel photocatalysts by chemical liquid deposition of titania onto nanoporous silica scaffolds.

    Science.gov (United States)

    Zu, Guoqing; Shen, Jun; Wang, Wenqin; Zou, Liping; Lian, Ya; Zhang, Zhihua

    2015-03-11

    Silica-titania composite aerogels were synthesized by chemical liquid deposition of titania onto nanoporous silica scaffolds. This novel deposition process was based on chemisorption of partially hydrolyzed titanium alkoxides from solution onto silica nanoparticle surfaces and subsequent hydrolysis and condensation to afford titania nanoparticles on the silica surface. The titania is homogeneously distributed in the silica-titania composite aerogels, and the titania content can be effectively controlled by regulating the deposition cycles. The resultant composite aerogel with 15 deposition cycles possessed a high specific surface area (SSA) of 425 m(2)/g, a small particle size of 5-14 nm, and a large pore volume and pore size of 2.41 cm(3)/g and 18.1 nm, respectively, after heat treatment at 600 °C and showed high photocatalytic activity in the photodegradation of methylene blue under UV-light irradiation. Its photocatalytic activity highly depends on the deposition cycles and heat treatment. The combination of small particle size, high SSA, and enhanced crystallinity after heat treatment at 600 °C contributes to the excellent photocatalytic property of the silica-titania composite aerogel. The higher SSAs compared to those of the reported titania aerogels (aerogels promising candidates as photocatalysts.

  4. Chain Assemblies from Nanoparticles Synthesized by Atmospheric Pressure Plasma Enhanced Chemical Vapor Deposition: The Computational View.

    Science.gov (United States)

    Mishin, Maxim V; Zamotin, Kirill Y; Protopopova, Vera S; Alexandrov, Sergey E

    2015-12-01

    This article refers to the computational study of nanoparticle self-organization on the solid-state substrate surface with consideration of the experimental results, when nanoparticles were synthesised during atmospheric pressure plasma enhanced chemical vapor deposition (AP-PECVD). The experimental study of silicon dioxide nanoparticle synthesis by AP-PECVD demonstrated that all deposit volume consists of tangled chains of nanoparticles. In certain cases, micron-sized fractals are formed from tangled chains due to deposit rearrangement. This work is focused on the study of tangled chain formation only. In order to reveal their formation mechanism, a physico-mathematical model was developed. The suggested model was based on the motion equation solution for charged and neutral nanoparticles in the potential fields with the use of the empirical interaction potentials. In addition, the computational simulation was carried out based on the suggested model. As a result, the influence of such experimental parameters as deposition duration, particle charge, gas flow velocity, and angle of gas flow was found. It was demonstrated that electrical charges carried by nanoparticles from the discharge area are not responsible for the formation of tangled chains from nanoparticles, whereas nanoparticle kinetic energy plays a crucial role in deposit morphology and density. The computational results were consistent with experimental results.

  5. Growth of nanocrystalline silicon carbide thin films by plasma enhanced chemical vapor deposition

    CERN Document Server

    Lee, S W; Moon, J Y; Ahn, S S; Kim, H Y; Shin, D H

    1999-01-01

    Nanocrystalline silicon carbide thin films have been deposited by plasma enhanced chemical vapor deposition (PECVD) using SiH sub 4 , CH sub 4 , and H sub 2 gases. The effects of gas mixing ratio (CH sub 4 /SiH sub 4), deposition temperature, and RF power on the film properties have been studied. The growth rate, refractive index, and the optical energy gap depends critically on the growth conditions. The dependence of the growth rate on the gas flow ratio is quite different from the results obtained for the growth using C sub 2 H sub 2 gas instead of CH sub 4. As the deposition temperature is increased from 300 .deg. C to 600 .deg. C, hydrogen and carbon content in the film decreases and as a result the optical gap decreases. At the deposition temperature of 600 .deg. C and RF power of 150 W, the film structure si nanocrystalline, As the result of the nanocrystallization the dark conductivity is greatly improved. The nanocrystalline silicon carbide thin films may be used for large area optoelectronic devices...

  6. a Design of Experiment Study of the Nucleation of Chemical Vapor Deposited Diamond Films.

    Science.gov (United States)

    Tang, Chi

    1995-01-01

    Because of its property, diamond has a unique role in the semiconductor and tool industry. As diamond synthesis technology advances, more and more applications are emerging. However, in order to take advantage of its exceptional property, reliable control of nucleation and growth must be accomplished. In this study, the author systematically studies the nucleation process in chemical vapor deposition (CVD) of diamonds. Among many important intricacies concerning diamond nucleation on foreign surfaces, this study addresses the following issues: the role of ultrasonic pre-treatment in CVD; the correlation between hot filament chemical vapor deposition (HFCVD) and microwave assisted chemical vapor deposition (MACVD) control parameters and the nucleation processes; the role of biasing substrates on the nucleation density in MACVD; the correlation between parameters of biasing substrates and the nucleation density; the reliable control of nucleation in CVD diamond synthesis. To achieve the goal of this research, a multi -purpose deposition system was built enabling the author to eliminate unnecessary variables in the deposition process. To ensure the accuracy of the nucleation effects of parameters investigated, great effort was made to calibrate measurement instruments so that noise or fluctuations in the experiments were minimized. The implementation of design of experiments (DOE), a systematic investigating technique, vastly improved the efficiency of this study over the less sophisticated empirical approach. In addition, DOE allowed the author to quantitatively estimate the effects of control parameters. Finally, diamond deposition was confirmed by Scanning Electron microscope, Micro Raman Scattering and Rutherford Backscattering. This research has successfully implemented DOE in estimating the effects of diamond nucleation quantitatively. The mechanism of ultrasonic pre-treatment is explained, and its effects are ascribed to seeding. The effects of primary CVD

  7. Annealing effects on the chemical deposited CdS films and the electrical properties of CdS/CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Han, Junfeng [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Institute of Materials Science, Darmstadt University of Technology, Petersenstr. 23, 64287 Darmstadt (Germany); Liao, Cheng, E-mail: Cliao@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Jiang, Tao [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Fu, Ganhua; Krishnakumar, V.; Spanheimer, C.; Haindl, G. [Institute of Materials Science, Darmstadt University of Technology, Petersenstr. 23, 64287 Darmstadt (Germany); Zhao, Kui [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Klein, A.; Jaegermann, W. [Institute of Materials Science, Darmstadt University of Technology, Petersenstr. 23, 64287 Darmstadt (Germany)

    2011-02-15

    Graphical abstract: From XPS core level spectras, compared with as-depositing CdS (sample A), the Fermi level is shifting closer to the conduction band after annealing treatment in the oxygen (sample B) while it is shifting closer to the valence band after annealing treatment in the argon-hydrogen (sample C). That might be the main reason of the different performance of the final devices. The open circuit voltage of the CdS/CdTe solar cell increases when the CBD CdS is annealed with oxygen, while the performance of the solar cell decreases when the CBD CdS is annealed with argon-hydrogen. Research highlights: {yields} Two different methods (oxidation and reduction) were used to anneal CdS films for CdTe solar cells. {yields} Electrical properties were analyzed by XPS (Fermi levels of CdS films). {yields} Annealing treatment in oxidation atmosphere could shift Fermi level of CdS film to higher position and consequently improve the CdS/CdTe junction and performance of solar cells. -- Abstract: CdS layers grown by chemical bath deposition (CBD) are annealed in the oxygen and argon-hydrogen atmosphere respectively. It has been found that the open circuit voltage of the CdS/CdTe solar cell increases when the CBD CdS is annealed with oxygen before the deposition of CdTe by close spaced sublimation (CSS), while the performance of the solar cell decreases when the CBD CdS is annealed with argon-hydrogen. Electronic properties of the CdS films are investigated using X-ray photo-electron spectroscopy (XPS), which indicates that the Fermi level is shifting closer to the conduction band after annealing in the oxygen and consequently a higher open circuit voltage of the solar cell can be obtained.

  8. Temporal and spatial trends of chemical composition of wet deposition samples collected in Austria

    Science.gov (United States)

    Schreiner, Elisabeth; Kasper-Giebl, Anne; Lohninger, Hans

    2016-04-01

    Triggered by the occurrence of acid rain a sampling network for the collection of wet deposition samples was initiated in Austria in the early 1980s. Now the data set covers a time period of slightly more than 30 years for the stations being operable since the beginning. Sampling of rain water and snow was and is performed with Wet and Dry Only Samplers (WADOS) on a daily basis. Chemical analysis of rain water and snow samples comprised anions (chloride, nitrate, sulfate) and cations (sodium, ammonium, potassium, calcium and magnesium) as well as pH and electrical conductivity. Here we evaluate and discuss temporal trends of both, ion concentrations and wet deposition data for twelve sampling stations, which were operable for most of the observation period of 30 years. As expected concentrations and wet deposition loads of sulfate and acidity decreased significantly during the last three decades - which is also reflected by a strong decrease of sulfur emissions in Austria and neighboring countries. Regarding nitrate the decrease of concentrations and wet deposition loads is less pronounced. Again this is in accordance with changes in emission data. In case of ammonium even less stations showed a significant decrease of annual average concentrations and depositions. Reasons for that might be twofold. On one hand emissions of ammonia did not decrease as strongly as e.g. sulfur emissions. Furthermore local sources will be more dominant and can influence the year to year variability. Seasonality of ion concentrations and deposition loads were investigated using Fourier analysis. Sulfate, nitrate, ammonium, acidity and also precipitation amount showed characteristic seasonal patterns for most of the sites and for concentrations as well as deposition loads. However the maxima in ion concentrations and deposition loads were observed during different times of the year. Concentrations of basic cations and chloride, on the contrary, hardly showed any seasonality. However, as

  9. Microstructural, chemical and textural characterization of ZnO nanorods synthesized by aerosol assisted chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Sáenz-Trevizo, A.; Amézaga-Madrid, P.; Fuentes-Cobas, L.; Pizá-Ruiz, P.; Antúnez-Flores, W.; Ornelas-Gutiérrez, C. [Centro de Investigación en Materiales Avanzados, S.C., Chihuahua, Chihuahua 31109 (Mexico); Pérez-García, S.A. [Centro de Investigación en Materiales Avanzados, S.C., Unidad Monterrey, Apodaca, Nuevo León 66600 (Mexico); Miki-Yoshida, M., E-mail: mario.miki@cimav.edu.mx [Centro de Investigación en Materiales Avanzados, S.C., Chihuahua, Chihuahua 31109 (Mexico)

    2014-12-15

    ZnO nanorods were synthesized by aerosol assisted chemical vapor deposition onto TiO{sub 2} covered borosilicate glass substrates. Deposition parameters were optimized and kept constant. Solely the effect of different nozzle velocities on the growth of ZnO nanorods was evaluated in order to develop a dense and uniform structure. The crystalline structure was characterized by conventional X-ray diffraction in grazing incidence and Bragg–Brentano configurations. In addition, two-dimensional grazing incidence synchrotron radiation diffraction was employed to determine the preferred growth direction of the nanorods. Morphology and growth characteristics analyzed by electron microscopy were correlated with diffraction outcomes. Chemical composition was established by X-ray photoelectron spectroscopy. X-ray diffraction results and X-ray photoelectron spectroscopy showed the presence of wurtzite ZnO and anatase TiO{sub 2} phases. Morphological changes noticed when the deposition velocity was lowered to the minimum, indicated the formation of relatively vertically oriented nanorods evenly distributed onto the TiO{sub 2} buffer film. By coupling two-dimensional X-ray diffraction and computational modeling with ANAELU it was proved that a successful texture determination was achieved and confirmed by scanning electron microscopy analysis. Texture analysis led to the conclusion of a preferred growth direction in [001] having a distribution width Ω = 20° ± 2°. - Highlights: • Uniform and pure single-crystal ZnO nanorods were obtained by AACVD technique. • Longitudinal and transversal axis parallel to the [001] and [110] directions, respectively. • Texture was determined by 2D synchrotron diffraction and electron microscopy analysis. • Nanorods have its [001] direction distributed close to the normal of the substrate. • Angular spread about the preferred orientation is 20° ± 2°.

  10. Highly conducting phosphorous doped Nc-Si:H thin films deposited at high deposition rate by hot-wire chemical vapor deposition method.

    Science.gov (United States)

    Waman, V S; Kamble, M M; Ghosh, S S; Mayabadi, Azam; Sathe, V G; Amalnekar, D P; Pathan, H M; Jadkar, S R

    2012-11-01

    In this paper, we report the synthesis of highly conducting phosphorous doped hydrogenated nanocrystalline silicon (nc-Si:H) films at substantially low substrate temperature (200 degrees C) by hot-wire chemical vapor deposition (HW-CVD) method using pure silane (SiH4) and phosphine (PH3) gas mixture without hydrogen dilution. Structural, optical and electrical properties of these films were investigated as a function of PH3 gas-phase ratio. The characterization of these films by low-angle X-ray diffraction, Raman spectroscopy and atomic force microscopy revealed that, the incorporation of phosphorous in nc-Si:H induces an amorphization in the nc-Si:H film structure. Fourier transform infrared spectroscopy analysis indicates that hydrogen predominately incorporated in phosphorous doped n-type nc-Si:H films mainly in di-hydrogen species (Si-H2) and poly-hydrogen (Si-H2)n bonded species signifying that the films become porous, and micro-void rich. We have observed high band gap (1.97-2.37 eV) in the films, though the hydrogen content is low (< 1.4 at.%) over the entire range of PH3 gas-phase ratio studied. Under the optimum deposition conditions, phosphorous doped nc-Si:H films with high dark conductivity (sigma Dark -5.3 S/cm), low charge-carrier activation energy (E(act) - 132 meV) and high band gap (- 2.01 eV), low hydrogen content (- 0.74 at.%) were obtained at high deposition rate (12.9 angstroms/s).

  11. Supercritical fluid chemical deposition of Pd nanoparticles on magnesium–scandium alloy for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Couillaud, Samuel; Kirikova, Marina [CNRS, ICMCB, UPR 9048, F-33600 Pessac (France); Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France); Zaïdi, Warda; Bonnet, Jean-Pierre [LRCS, UMR CNRS 6007, 33 rue Saint-Leu, 80039-Amiens (France); Marre, Samuel; Aymonier, Cyril [CNRS, ICMCB, UPR 9048, F-33600 Pessac (France); Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France); Zhang, Junxian; Cuevas, Fermin; Latroche, Michel [ICMPE, CNRS-UPEC, UMR 7182, 2-8 rue Henri Dunant, 94320-Thiais (France); Aymard, Luc [LRCS, UMR CNRS 6007, 33 rue Saint-Leu, 80039-Amiens (France); Bobet, Jean-Louis, E-mail: bobet@icmcb-bordeaux.cnrs.fr [CNRS, ICMCB, UPR 9048, F-33600 Pessac (France); Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France)

    2013-10-15

    Highlights: •Nanoparticles of Pd were deposed on the binary compound Mg{sub 0.65}Sc{sub 0.35} using the Supercritical Fluid Chemical Deposition (SFCD) method. •Numerous parameters were tested and optimized in order to obtain a homogeneous deposition. •At the first step, Pd@Mg0.65Sc0.35 decomposes into ScH{sub 2} and MgH{sub 2} under hydrogen pressure (1 MPa) at 330 °C. •The mixture, after decomposition absorbs hydrogen reversibly on Mg/MgH{sub 2} couple with good kinetics. -- Abstract: The deposition of Pd nanoparticles on the binary compound Mg{sub 0.65}Sc{sub 0.35} using the Supercritical Fluid Chemical Deposition (SFCD) method was performed. There, the SFCD operating parameters (co-solvent, temperature, CO{sub 2} and hydrogen pressure, reaction time) have been optimized to obtain homogeneous deposition of Pd nanoparticles (around 10 nm). The hydrogenation properties of the optimized Pd@Mg{sub 0.65}Sc{sub 0.35} material were determined and compared to those of Mg{sub 0.65}Sc{sub 0.35}Pd{sub 0.024}. The latter compound forms at 300 °C and 1 MPa of H{sub 2} a hydride that crystallizes in the fluorite structure, absorbs reversibly 1.5 wt.% hydrogen and exhibits fast kinetics. In contrast, Pd@Mg{sub 0.65}Sc{sub 0.35} compound decomposes into ScH{sub 2} and MgH{sub 2} during hydrogen absorption under the same conditions. However, reversible sorption reaches 3.3 wt.% of hydrogen while keeping good kinetics. The possible roles of Pd on the hydrogen-induced alloy decomposition are discussed.

  12. Electroluminescence and photoluminescence of conjugated polymer films prepared by plasma enhanced chemical vapor deposition of naphthalene

    CERN Document Server

    Rajabi, Mojtaaba; Firouzjah, Marzieh Abbasi; Hosseini, Seyed Iman; Shokri, Babak

    2012-01-01

    Polymer light-emitting devices were fabricated utilizing plasma polymerized thin films as emissive layers. These conjugated polymer films were prepared by RF Plasma Enhanced Chemical Vapor Deposition (PECVD) using naphthalene as monomer. The effect of different applied powers on the chemical structure and optical properties of the conjugated polymers was investigated. The fabricated devices with structure of ITO/PEDOT:PSS/ plasma polymerized Naphthalene/Alq3/Al showed broadband Electroluminescence (EL) emission peaks with center at 535-550 nm. Using different structural and optical tests, connection between polymers chemical structure and optical properties under different plasma powers has been studied. Fourier transform infrared (FTIR) and Raman spectroscopies confirmed that a conjugated polymer film with a 3-D cross-linked network was developed. By increasing the power, products tended to form as highly cross-linked polymer films. Photoluminescence (PL) spectra of plasma polymers showed different excimerc ...

  13. Growth of AlGaN Epitaxial Film with High Al Content by Metalorganic Chemical Vapour Deposition

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-Lan; ZHAO De-Gang; YANG Hui; LIANG Jun-Wu

    2007-01-01

    A high-Al-content AlCaN epilayer is grown on a low-temperature-deposited AlN buffer on (0001) sapphire bylow pressure metalorganic chemical vapour deposition. The dependence of surface roughness, tilted mosaicity,and twisted mosaicity on the conditions of the AlCaN epilayer deposition is evaluated. An AlCaN epilayer withfavourable surface morphology and crystal quality is deposited on a 20nm low-temperature-deposited AlN buffer at a low Ⅴ/Ⅲ flow ratio of 783 and at a low reactor pressure of 100 Torr, and the adduct reaction between trimethylaluminium and NH3 is considered.

  14. MBMS studies of gas-phase kinetics in diamond chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Fox, C.A. [Stanford Univ., CA (United States); McMaster, M.C. [IBM San Jose, CA (United States); Tung, D.M. [Sandia National Labs., Livermore, CA (United States)] [and others

    1995-03-01

    A molecular beam mass spectrometer system (MBMS) has been used to determine the near-surface gaseous composition involved in the low pressure chemical vapor deposition of diamond. With this system, radical and stable species can be detected with a sensitivity better than 10 ppm. Threshold ionization techniques have been employed to distinguish between radical species in the deposition environment from radical species generated by parent molecule cracking. An extensive calibration procedure was used to enable the quantitative determination of H-atom and CH{sub 3} radical mole fractions. Using the MBMS system, the gaseous composition involved in LPCVD of diamond has been measured for a wide variety of deposition conditions, including hot-filament gas activation, microwave-plasma gas activation, and a variety of precursor feed mixtures (ex: CH{sub 4}/H{sub 2}, C{sub 2}H{sub 2}/H{sub 2}). For microwave-plasma activation (MPCVD), the radical concentrations (H-atom and CH{sub 3} radicals) are independent of the identity of the precursor feed gas provided the input carbon mole fraction is constant. However, in hot-filament diamond deposition (HFCVD), the atomic hydrogen concentration decreased by an order of magnitude as the mole fraction of carbon in the precursor mixture is increased to .07; this sharp reduction has been attributed to filament poisoning of the catalytic tungsten surface via hydrocarbon deposition. Additionally, the authors find that the H-atom concentration is independent of the substrate temperature for both hot-filament and microwave plasma deposition; radial H-atom diffusion is invoked to explain this observation.

  15. Deposition of carbon nanotubes onto aramid fibers using as-received and chemically modified fibers

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Uicab, O. [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburna de Hidalgo, C.P. 97200 Mérida, Yucatán (Mexico); Avilés, F., E-mail: faviles@cicy.mx [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburna de Hidalgo, C.P. 97200 Mérida, Yucatán (Mexico); Gonzalez-Chi, P.I; Canché-Escamilla, G.; Duarte-Aranda, S. [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburna de Hidalgo, C.P. 97200 Mérida, Yucatán (Mexico); Yazdani-Pedram, M. [Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, S. Livingstone 1007, Independencia, Santiago (Chile); Toro, P. [Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Av. Beauchef 850, Santiago (Chile); Gamboa, F. [Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Mérida, Depto. de Física Aplicada, Km. 6 Antigua Carretera a Progreso, 97310 Mérida, Yucatán (Mexico); Mazo, M.A.; Nistal, A.; Rubio, J. [Instituto de Cerámica y Vidrio (ICV-CSIC), Kelsen 5, 28049 Madrid (Spain)

    2016-11-01

    Highlights: • The surface of aramid fibers was functionalized by two acid treatments. • The treatment based on HNO{sub 3}/H{sub 2}SO{sub 4} reduced the mechanical properties of the fibers. • CNTs were deposited on the aramid fibers, reaching electrical conductivity. • Homogeneous CNT distribution was achieved by using pristine fibers or chlorosulfonic acid. - Abstract: Multiwall carbon nanotubes (MWCNTs) oxidized by an acid treatment were deposited on the surface of as-received commercial aramid fibers containing a surface coating (“sizing”), and fibers modified by either a chlorosulfonic treatment or a mixture of nitric and sulfuric acids. The surface of the aramid fiber activated by the chemical treatments presents increasing density of CO, COOH and OH functional groups. However, these chemical treatments reduced the tensile mechanical properties of the fibers, especially when the nitric and sulfuric acid mixture was used. Characterization of the MWCNTs deposited on the fiber surface was conducted by scanning electron microscopy, Raman spectroscopy mapping and X-ray photoelectron spectroscopy. These characterizations showed higher areal concentration and more homogeneous distribution of MWCNTs over the aramid fibers for as-received fibers and for those modified with chlorosulfonic acid, suggesting the existence of interaction between the oxidized MWCNTs and the fiber coating. The electrical resistance of the MWCNT-modified aramid yarns comprising ∼1000 individual fibers was in the order of MΩ/cm, which renders multifunctional properties.

  16. Expanding Thermal Plasma Chemical Vapour Deposition of ZnO:Al Layers for CIGS Solar Cells

    Directory of Open Access Journals (Sweden)

    K. Sharma

    2014-01-01

    Full Text Available Aluminium-doped zinc oxide (ZnO:Al grown by expanding thermal plasma chemical vapour deposition (ETP-CVD has demonstrated excellent electrical and optical properties, which make it an attractive candidate as a transparent conductive oxide for photovoltaic applications. However, when depositing ZnO:Al on CIGS solar cell stacks, one should be aware that high substrate temperature processing (i.e., >200°C can damage the crucial underlying layers/interfaces (such as CIGS/CdS and CdS/i-ZnO. In this paper, the potential of adopting ETP-CVD ZnO:Al in CIGS solar cells is assessed: the effect of substrate temperature during film deposition on both the electrical properties of the ZnO:Al and the eventual performance of the CIGS solar cells was investigated. For ZnO:Al films grown using the high thermal budget (HTB condition, lower resistivities, ρ, were achievable (~5 × 10−4 Ω·cm than those grown using the low thermal budget (LTB conditions (~2 × 10−3 Ω·cm, whereas higher CIGS conversion efficiencies were obtained for the LTB condition (up to 10.9% than for the HTB condition (up to 9.0%. Whereas such temperature-dependence of CIGS device parameters has previously been linked with chemical migration between individual layers, we demonstrate that in this case it is primarily attributed to the prevalence of shunt currents.

  17. Green wet chemical route to synthesize capped CdSe quantum dots

    Indian Academy of Sciences (India)

    A Oudhia; P Bichpuria

    2014-02-01

    In the present work, we report green synthesis of tartaric acid (TA) and triethanolamine (TEA) capped cadmium selenide quantum dots (CdSe QDs) employing chemical bath deposition (CBD) method. The mechanism of capping using non-toxic binary capping agents is also discussed. Stable QDs of various sizes were obtained by varying pH of the bath. The structural, morphological and spectroscopic characterization of the as-prepared samples by XRD, SEM, optical absorption and photoluminescence (PL) is also reported.

  18. Nucleation and growth of single layer graphene on electrodeposited Cu by cold wall chemical vapor deposition

    Science.gov (United States)

    Das, Shantanu; Drucker, Jeff

    2017-03-01

    The nucleation density and average size of graphene crystallites grown using cold wall chemical vapor deposition (CVD) on 4 μm thick Cu films electrodeposited on W substrates can be tuned by varying growth parameters. Growth at a fixed substrate temperature of 1000 °C and total pressure of 700 Torr using Ar, H2 and CH4 mixtures enabled the contribution of total flow rate, CH4:H2 ratio and dilution of the CH4/H2 mixture by Ar to be identified. The largest variation in nucleation density was obtained by varying the CH4:H2 ratio. The observed morphological changes are analogous to those that would be expected if the deposition rate were varied at fixed substrate temperature for physical deposition using thermal evaporation. The graphene crystallite boundary morphology progresses from irregular/jagged through convex hexagonal to regular hexagonal as the effective C deposition rate decreases. This observation suggests that edge diffusion of C atoms along the crystallite boundaries, in addition to H2 etching, may contribute to shape evolution of the graphene crystallites. These results demonstrate that graphene grown using cold wall CVD follows a nucleation and growth mechanism similar to hot wall CVD. As a consequence, the vast knowledge base relevant to hot wall CVD may be exploited for graphene synthesis by the industrially preferable cold wall method.

  19. Nucleation and growth of chemically vapor deposited tungsten on various substrate materials: A review

    Energy Technology Data Exchange (ETDEWEB)

    Broadbent, E.K.

    1987-11-01

    W films produced by chemical-vapor deposition (CVD), typically via reduction of WF/sub 6/, are being used for numerous applications in very large scale integrated circuit technology. Blanket and selectively deposited films require nucleation and growth on a specific underlayer material: Si, metal, or metal silicide. The compatibility of CVD W with various underlayers is reviewed for the device applications of contact/via fill, diffusion barrier, metal interconnect, and source/drain coating. Nucleation of W directly on single crystal Si can sometimes produce tunnel-defect structures at the edges or along the entire interface of the deposit. Sputtered Mo and W, and to some extent TiW and TiN, have been shown to be suitable nucleation layers for CVD W, yielding a fluorine-free interface with low-electrical contact resistance. A sputtered W/Ti adhesion bilayer is demonstrated for a blanket W deposition+etchback process. CoSi/sub 2/ appears an appropriate choice where CVD W and salicide technologies are combined.

  20. Structure and mechanical properties of pyrolytic carbon produced by fluidized bed chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Honorato, E.; Meadows, P.J. [Manchester Materials Science Centre, School of Materials, University of Manchester, Grosvenor Street, Manchester M1 7HS (United Kingdom); Xiao, P. [Manchester Materials Science Centre, School of Materials, University of Manchester, Grosvenor Street, Manchester M1 7HS (United Kingdom)], E-mail: Ping.Xiao@manchester.ac.uk; Marsh, G.; Abram, T.J. [Nexia Solutions Ltd., Springfields PR4 0XJ (United Kingdom)

    2008-11-15

    Pyrolytic carbon was deposited on spherical particles using a multi-spout fluidized bed chemical vapor deposition reactor to fabricate TRISO fuel for the High Temperature Reactor (HTR). Modern techniques such as Raman spectroscopy and nanoindentation supported by porosimetry, scanning electron microscopy and transmission electron microscopy were employed to analyze the particle coatings directly. Raman spectroscopy and nanoindentation were given special attention due to their capacity to provide information on the internal structure of pyrolytic carbon and its mechanical properties without the necessity of complex sample preparation. The results obtained were used to study the relationship deposition conditions-microstructure-mechanical properties in more detail. Increasing the deposition temperature reduced the density and Young's modulus as porosity and in-plane disorder of carbon domains increased. There was also a change from a laminar microstructure of PyC to that containing more spherical particles. It appeared that anisotropy, domain size and level of graphitization (examined by Raman and TEM) had a strong influence on the mechanical properties. Clear differences were observed between acetylene and the acetylene/propylene mixture as precursor gases.

  1. Nanostructured silicon carbon thin films grown by plasma enhanced chemical vapour deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Coscia, U. [Dipartimento di Fisica, Università di Napoli “Federico II” Complesso Universitario MSA, via Cinthia, 80126 Napoli (Italy); CNISM Unita' di Napoli, Complesso Universitario MSA, via Cinthia, 80126 Napoli (Italy); Ambrosone, G., E-mail: ambrosone@na.infn.it [Dipartimento di Fisica, Università di Napoli “Federico II” Complesso Universitario MSA, via Cinthia, 80126 Napoli (Italy); SPIN-CNR, Complesso Universitario MSA, via Cinthia, 80126 Napoli (Italy); Basa, D.K. [Department of Physics, Utkal University, Bhubaneswar 751004 (India); Rigato, V. [INFN Laboratori Nazionali Legnaro, 35020 Legnaro (Padova) (Italy); Ferrero, S.; Virga, A. [Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy)

    2013-09-30

    Nanostructured silicon carbon thin films, composed of Si nanocrystallites embedded in hydrogenated amorphous silicon carbon matrix, have been prepared by varying rf power in ultra high vacuum plasma enhanced chemical vapour deposition system using silane and methane gas mixtures diluted in hydrogen. In this paper we have studied the compositional, structural and electrical properties of these films as a function of rf power. It is shown that with increasing rf power the atomic densities of carbon and hydrogen increase while the atomic density of silicon decreases, resulting in a reduction in the mass density. Further, it is demonstrated that carbon is incorporated into amorphous matrix and it is mainly bonded to silicon. The study has also revealed that the crystalline volume fraction decreases with increase in rf power and that the films deposited with low rf power have a size distribution of large and small crystallites while the films deposited with relatively high power have only small crystallites. Finally, the enhanced transport properties of the nanostructured silicon carbon films, as compared to amorphous counterpart, have been attributed to the presence of Si nanocrystallites. - Highlights: • The mass density of silicon carbon films decreases from 2.3 to 2 g/cm{sup 3}. • Carbon is incorporated in the amorphous phase and it is mainly bonded to silicon. • Nanostructured silicon carbon films are deposited at rf power > 40 W. • Si nanocrystallites in amorphous silicon carbon enhance the electrical properties.

  2. Electrochemical metal speciation analysis of chemically heterogeneous samples: the outstanding features of stripping chronopotentiometry at scanned deposition potential

    NARCIS (Netherlands)

    Leeuwen, van H.P.; Town, R.M.

    2003-01-01

    The application of depletive stripping chronopotentiometry at scanned deposition potential (SSCP) to metal ion speciation analysis of chemically heterogeneous complex systems is described. In this electroanalytical stripping technique, metal which is accumulated in the electrode during the depositio

  3. Synthesis of multiferroic Er-Fe-O thin films by atomic layer and chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Mantovan, R., E-mail: roberto.mantovan@mdm.imm.cnr.it; Vangelista, S.; Wiemer, C.; Lamperti, A.; Tallarida, G. [Laboratorio MDM IMM-CNR, I-20864 Agrate Brianza (MB) (Italy); Chikoidze, E.; Dumont, Y. [GEMaC, Université de Versailles St. Quentin en Yvelines-CNRS, Versailles (France); Fanciulli, M. [Laboratorio MDM IMM-CNR, I-20864 Agrate Brianza (MB) (Italy); Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, Milano (Italy)

    2014-05-07

    R-Fe-O (R = rare earth) compounds have recently attracted high interest as potential new multiferroic materials. Here, we report a method based on the solid-state reaction between Er{sub 2}O{sub 3} and Fe layers, respectively grown by atomic layer deposition and chemical vapor deposition, to synthesize Er-Fe-O thin films. The reaction is induced by thermal annealing and evolution of the formed phases is followed by in situ grazing incidence X-ray diffraction. Dominant ErFeO{sub 3} and ErFe{sub 2}O{sub 4} phases develop following subsequent thermal annealing processes at 850 °C in air and N{sub 2}. Structural, chemical, and morphological characterization of the layers are conducted through X-ray diffraction and reflectivity, time-of-flight secondary ion-mass spectrometry, and atomic force microscopy. Magnetic properties are evaluated by magnetic force microscopy, conversion electron Mössbauer spectroscopy, and vibrating sample magnetometer, being consistent with the presence of the phases identified by X-ray diffraction. Our results constitute a first step toward the use of cost-effective chemical methods for the synthesis of this class of multiferroic thin films.

  4. Synthesis of multiferroic Er-Fe-O thin films by atomic layer and chemical vapor deposition

    Science.gov (United States)

    Mantovan, R.; Vangelista, S.; Wiemer, C.; Lamperti, A.; Tallarida, G.; Chikoidze, E.; Dumont, Y.; Fanciulli, M.

    2014-05-01

    R-Fe-O (R = rare earth) compounds have recently attracted high interest as potential new multiferroic materials. Here, we report a method based on the solid-state reaction between Er2O3 and Fe layers, respectively grown by atomic layer deposition and chemical vapor deposition, to synthesize Er-Fe-O thin films. The reaction is induced by thermal annealing and evolution of the formed phases is followed by in situ grazing incidence X-ray diffraction. Dominant ErFeO3 and ErFe2O4 phases develop following subsequent thermal annealing processes at 850 °C in air and N2. Structural, chemical, and morphological characterization of the layers are conducted through X-ray diffraction and reflectivity, time-of-flight secondary ion-mass spectrometry, and atomic force microscopy. Magnetic properties are evaluated by magnetic force microscopy, conversion electron Mössbauer spectroscopy, and vibrating sample magnetometer, being consistent with the presence of the phases identified by X-ray diffraction. Our results constitute a first step toward the use of cost-effective chemical methods for the synthesis of this class of multiferroic thin films.

  5. The effect of ultrasonic pre-treatment on nucleation density of chemical vapor deposition diamond

    Science.gov (United States)

    Tang, Chi; Ingram, David C.

    1995-11-01

    Using statistical design of experiments, the effect of ultrasonic pre-treatment on the nucleation density of diamond was studied. The parameters investigated included ultrasonic excitation power, concentration of diamond powder in water, duration of ultrasonic excitation, and duration of cleaning with water after ultrasonic excitation. Diamond films were deposited on silicon (100) substrates using microwave assisted plasma chemical vapor deposition. The nucleation density varied from 106 nuclei/cm2 to 109 nuclei/cm2. The results illustrated that the dominant effect in ultrasonic pre-treatment was seeding. Moreover, scratches caused by the seeds during the treatment enabled more seeds to be retained on the surface. Based on these results, an optimized ultrasonic pretreatment has been developed. The new procedure yields a uniform nucleation density of 109 nuclei/cm2 on silicon (100) substrates.

  6. Preparation of γ-Al2O3 films by laser chemical vapor deposition

    Science.gov (United States)

    Gao, Ming; Ito, Akihiko; Goto, Takashi

    2015-06-01

    γ- and α-Al2O3 films were prepared by chemical vapor deposition using CO2, Nd:YAG, and InGaAs lasers to investigate the effects of varying the laser wavelength and deposition conditions on the phase composition and microstructure. The CO2 laser was found to mostly produce α-Al2O3 films, whereas the Nd:YAG and InGaAs lasers produced γ-Al2O3 films when used at a high total pressure. γ-Al2O3 films had a cauliflower-like structure, while the α-Al2O3 films had a dense and columnar structure. Of the three lasers, it was the Nd:YAG laser that interacted most with intermediate gas species. This promoted γ-Al2O3 nucleation in the gas phase at high total pressure, which explains the cauliflower-like structure of nanoparticles observed.

  7. Synthesis of zirconia (ZrO2) nanowires via chemical vapor deposition

    Science.gov (United States)

    Baek, M. K.; Park, S. J.; Choi, D. J.

    2017-02-01

    Monoclinic zirconia nanowires were synthesized by chemical vapor deposition using ZrCl4 powder as a starting material at 1200 °C and 760 Torr. Graphite was employed as a substrate, and an Au thin film was pre-deposited on the graphite as a catalyst. The zirconia nanostructure morphology was observed through scanning electron microscopy and transmission electron microscopy. Based on X-ray diffraction, selected area electron diffraction, and Raman spectroscopy data, the resulting crystal structure was found to be single crystalline monoclinic zirconia. The homogeneous distributions of Zr, O and Au were studied by scanning transmission electron microscopy with energy dispersive X-ray spectroscopy mapping, and there was no metal droplet at the nanowire tips despite the use of an Au metal catalyst. This result is apart from that of conventional metal catalyzed nanowires.

  8. Preparation of diamond/Cu microchannel heat sink by chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    刘学璋; 罗浩; 苏栩; 余志明

    2015-01-01

    A Ti interlayer with thickness about 300 nm was sputtered on Cu microchannels, followed by an ultrasonic seeding with nanodiamond powders. Adherent diamond film with crystalline grains close to thermal equilibrium shape was tightly deposited by hot-filament chemical vapor deposition (HF-CVD). The nucleation and growth of diamond were investigated with micro-Raman spectroscope and field emission scanning electron microscope (FE-SEM) with energy dispersive X-ray detector (EDX). Results show that the nucleation density is found to be up to 1010 cm−2. The enhancement of the nucleation kinetics can be attributed to the nanometer rough Ti interlayer surface. An improved absorption of nanodiamond particles is found, which act as starting points for the diamond nucleation during HF-CVD process. Furthermore, finite element simulation was conducted to understand the thermal management properties of prepared diamond/Cu microchannel heat sink.

  9. Plasma-enhanced chemical vapor deposition of amorphous Si on graphene

    Science.gov (United States)

    Lupina, G.; Strobel, C.; Dabrowski, J.; Lippert, G.; Kitzmann, J.; Krause, H. M.; Wenger, Ch.; Lukosius, M.; Wolff, A.; Albert, M.; Bartha, J. W.

    2016-05-01

    Plasma-enhanced chemical vapor deposition of thin a-Si:H layers on transferred large area graphene is investigated. Radio frequency (RF, 13.56 MHz) and very high frequency (VHF, 140 MHz) plasma processes are compared. Both methods provide conformal coating of graphene with Si layers as thin as 20 nm without any additional seed layer. The RF plasma process results in amorphization of the graphene layer. In contrast, the VHF process keeps the high crystalline quality of the graphene layer almost intact. Correlation analysis of Raman 2D and G band positions indicates that Si deposition induces reduction of the initial doping in graphene and an increase of compressive strain. Upon rapid thermal annealing, the amorphous Si layer undergoes dehydrogenation and transformation into a polycrystalline film, whereby a high crystalline quality of graphene is preserved.

  10. Translation Effects in Fluorine Doped Tin Oxide Thin Film Properties by Atmospheric Pressure Chemical Vapour Deposition

    Directory of Open Access Journals (Sweden)

    Mohammad Afzaal

    2016-10-01

    Full Text Available In this work, the impact of translation rates in fluorine doped tin oxide (FTO thin films using atmospheric pressure chemical vapour deposition (APCVD were studied. We demonstrated that by adjusting the translation speeds of the susceptor, the growth rates of the FTO films varied and hence many of the film properties were modified. X-ray powder diffraction showed an increased preferred orientation along the (200 plane at higher translation rates, although with no actual change in the particle sizes. A reduction in dopant level resulted in decreased particle sizes and a much greater degree of (200 preferred orientation. For low dopant concentration levels, atomic force microscope (AFM studies showed a reduction in roughness (and lower optical haze with increased translation rate and decreased growth rates. Electrical measurements concluded that the resistivity, carrier concentration, and mobility of films were dependent on the level of fluorine dopant, the translation rate and hence the growth rates of the deposited films.

  11. The Physico-Chemical Conditions for Mobilization of Gold in Mobin Gold Deposit, Southwest Hunan, China

    Institute of Scientific and Technical Information of China (English)

    谷俐; 杨华; 戴塔根; 刘利萍

    2002-01-01

    Experiments on water-rock interaction were carried out on wall-rock samples from the Mobin gold deposit, Southwest Hunan, China, with the aim of determining the optimum physical and chemical conditions for the mobilization of gold in solution. Results indicate that gold is most easily mobilized from the wall rock-tuffaceous slate of the Mobin Deposit. Mobi lization is optimized if fluids are neutral to slightly alkaline and contain both chlorine and sulphur ions at the concentration and composition of about [0.25M (NH4)2S + 1M NaCl]. The amount of gold leached from the tuffaceous slate increases with temperature although the effect decreases above about 200℃ .

  12. MgB{sub 2} thin films by hybrid physical-chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xi, X.X. [Department of Physics, Pennsylvania State University, University Park, PA 16802 (United States)]|[Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States)]. E-mail: xxx4@psu.edu; Pogrebnyakov, A.V. [Department of Physics, Pennsylvania State University, University Park, PA 16802 (United States)]|[Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Xu, S.Y.; Chen, K.; Cui, Y.; Maertz, E.C. [Department of Physics, Pennsylvania State University, University Park, PA 16802 (United States); Zhuang, C.G. [Department of Physics, Pennsylvania State University, University Park, PA 16802 (United States)]|[Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States)]|[Department of Physics, Peking University, Beijing 100871 (China); Li, Qi [Department of Physics, Pennsylvania State University, University Park, PA 16802 (United States); Lamborn, D.R. [Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Redwing, J.M. [Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States)]|[Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Liu, Z.K.; Soukiassian, A.; Schlom, D.G.; Weng, X.J.; Dickey, E.C. [Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Chen, Y.B.; Tian, W.; Pan, X.Q. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Cybart, S.A. [Department of Physics, University of California, Berkeley, CA 94720 (United States); Dynes, R.C. [Department of Physics, University of California, Berkeley, CA 94720 (United States)

    2007-06-01

    Hybrid physical-chemical vapor deposition (HPCVD) has been the most effective technique for depositing MgB{sub 2} thin films. It generates high magnesium vapor pressures and provides a clean environment for the growth of high purity MgB{sub 2} films. The epitaxial pure MgB{sub 2} films grown by HPCVD show higher-than-bulk T {sub c} due to tensile strain in the films. The HPCVD films are the cleanest MgB{sub 2} materials reported, allowing basic research, such as on magnetoresistance, that reveals the two-band nature of MgB{sub 2}. The carbon-alloyed HPCVD films demonstrate record-high H {sub c2} values promising for high magnetic field applications. The HPCVD films and multilayers have enabled the fabrication of high quality MgB{sub 2} Josephson junctions.

  13. Chemical solution deposition of ferroelectric yttrium-doped hafnium oxide films on platinum electrodes

    Science.gov (United States)

    Starschich, S.; Griesche, D.; Schneller, T.; Waser, R.; Böttger, U.

    2014-05-01

    Ferroelectric hafnium oxide films were fabricated by chemical solution deposition with a remnant polarization of >13 μC/cm2. The samples were prepared with 5.2 mol. % yttrium-doping and the thickness varied from 18 nm to 70 nm. The hafnium oxide layer was integrated into a metal-insulator-metal capacitor using platinum electrodes. Due to the processing procedure, no thickness dependence of the ferroelectric properties was observed. To confirm the ferroelectric nature of the deposited samples, polarization, capacitance, and piezoelectric displacement measurements were performed. However, no evidence of the orthorhombic phase was found which has been proposed to be the non-centrosymmetric, ferroelectric phase in HfO2.

  14. Chemical solution deposition of YBCO thin film by different polymer additives

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.T.; Li, G.; Pu, M.H.; Sun, R.P.; Zhou, H.M.; Zhang, Y. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); Zhang, H. [Department of Physics, Peking University, Beijing 100871 (China); Yang, Y. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); Cheng, C.H. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); School of Materials Science and Engineering, University of New South Wale, Sydney, 2052 NSW (Australia); Zhao, Y. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); School of Materials Science and Engineering, University of New South Wale, Sydney, 2052 NSW (Australia)], E-mail: yzhao@swjtu.edu.cn

    2008-09-15

    A polymer-assisted chemical solution deposition approach has been proposed for the preparation of YBCO thin film. Different additives like PVB (polyvinyl butyral), PEG (polyethylene glycol) and PVP (polyvinylpyrrolidone) have been used to adjust the final viscosity of the precursor solution and thus the film formation. In this fluorine-free approach, YBCO has been deposited on single crystal substrates with metal acetates being starting materials. Biaxially textured YBCO thin films have been obtained. However, different additives lead to different microstructure. Dense, smooth and crack-free YBCO film prepared with PVB as additive yields sharp superconducting transition around T{sub c} = 90 K as well as high J{sub c} (0 T, 77 K) over 3 MA/cm{sup 2}.

  15. Chemical solution deposition of YBCO thin film by different polymer additives

    Science.gov (United States)

    Wang, W. T.; Li, G.; Pu, M. H.; Sun, R. P.; Zhou, H. M.; Zhang, Y.; Zhang, H.; Yang, Y.; Cheng, C. H.; Zhao, Y.

    2008-09-01

    A polymer-assisted chemical solution deposition approach has been proposed for the preparation of YBCO thin film. Different additives like PVB (polyvinyl butyral), PEG (polyethylene glycol) and PVP (polyvinylpyrrolidone) have been used to adjust the final viscosity of the precursor solution and thus the film formation. In this fluorine-free approach, YBCO has been deposited on single crystal substrates with metal acetates being starting materials. Biaxially textured YBCO thin films have been obtained. However, different additives lead to different microstructure. Dense, smooth and crack-free YBCO film prepared with PVB as additive yields sharp superconducting transition around Tc = 90 K as well as high Jc (0 T, 77 K) over 3 MA/cm 2.

  16. Nanoscale arrays of antimony telluride single crystals by selective chemical vapor deposition

    Science.gov (United States)

    Huang, Ruomeng; Benjamin, Sophie L.; Gurnani, Chitra; Wang, Yudong; Hector, Andrew L.; Levason, William; Reid, Gillian; De Groot, C. H. (Kees)

    2016-01-01

    Arrays of individual single nanocrystals of Sb2Te3 have been formed using selective chemical vapor deposition (CVD) from a single source precursor. Crystals are self-assembled reproducibly in confined spaces of 100 nm diameter with pitch down to 500 nm. The distribution of crystallite sizes across the arrays is very narrow (standard deviation of 15%) and is affected by both the hole diameter and the array pitch. The preferred growth of the crystals in the orientation along the diagonal of the square holes strongly indicates that the diffusion of adatoms results in a near thermodynamic equilibrium growth mechanism of the nuclei. A clear relationship between electrical resistivity and selectivity is established across a range of metal selenides and tellurides, showing that conductive materials result in more selective growth and suggesting that electron donation is of critical importance for selective deposition. PMID:27283116

  17. Synthesis of nanocrystalline silicon thin films using the increase of the deposition pressure in the hot-wire chemical vapour deposition technique

    Directory of Open Access Journals (Sweden)

    J.K. Rath

    2010-01-01

    Full Text Available Nanostructured thin silicon-based films have been deposited using the hot-wire chemical vapour deposition (HWCVD technique at the University of the Western Cape. A variety of techniques including optical and infrared spectroscopy, Raman scattering spectroscopy, X-rays diffraction (XRD and transmission electron microscopy (TEM have been used for characterisation of the films. The electrical measurements show that the films have good values of photoresponse, and the photocurrent remains stable after several hours of light soaking. This contribution will discuss the characteristics of the hydrogenated nanocrystalline silicon thin films deposited using increased process chamber pressure at a fixed hydrogen dilution ratio in monosilane gas.

  18. The chemical composition and fluxes of atmospheric wet deposition at four sites in South Africa

    Science.gov (United States)

    Conradie, E. H.; Van Zyl, P. G.; Pienaar, J. J.; Beukes, J. P.; Galy-Lacaux, C.; Venter, A. D.; Mkhatshwa, G. V.

    2016-12-01

    South Africa is the economic hub of southern Africa and is regarded as an important source region of atmospheric pollutants. A nitrogen dioxide (NO2) hotspot is clearly visible from space over the South African Mpumalanga Highveld, while South Africa is also regarded as the 9th largest anthropogenic sulphur (S) emitting country. Notwithstanding the importance of South Africa with regard to nitrogen (N) and S emissions, very limited data has been published on the chemical composition of wet deposition for this region. This paper presents the concentrations of sodium (Na+), ammonium (NH4+), potassium (K+), calcium (Ca2+), magnesium (Mg2+), nitrate (NO3-), chloride (Cl-), sulphate (SO42-) and water-soluble organic acids (OA) in the wet deposition samples collected between 2009 and 2014 at four South African IDAF (IGAC DEBITS Africa) sites, which are regarded as regional representatives of the north-eastern interior. Also, wet deposition fluxes of the ten ions are calculated and presented in this paper. The results show that the total ionic concentrations and fluxes of wet deposition were much higher at the two sites closer to anthropogenic emissions, while the pH of wet deposition at these two sites were lower compared to that of the two sites that were less impacted by anthropogenic emissions. . The major sources of the ten ions included marine, terrigenous (crust), fossil fuel combustion, agriculture and biomass burning. Significant contributions from fossil fuel combustion were determined for the two sites in close proximity to anthropogenic source regions. The results of back trajectory analysis, however, did indicate that the two remote sites are also affected by air masses passing over the source region through anti-cyclonic recirculation. The largest contributions at the two sites distant from the anthropogenic source regions were marine sources, while the impact of biomass burning was also more significant at the remote sites. Comparison to previous wet

  19. Behavior of incorporated nitrogen in plasma-nitrided silicon oxide formed by chemical vapor deposition

    Science.gov (United States)

    Shinoda, Nao; Itokawa, Hiroshi; Fujitsuka, Ryota; Sekine, Katsuyuki; Onoue, Seiji; Tonotani, Junichi

    2016-04-01

    The behavior of nitrogen (N) atoms in plasma-nitrided silicon oxide (SiO2) formed by chemical vapor deposition (CVD) was characterized by physical analysis and from electrical properties. The changes in the chemical bonding and distribution of N in plasma-nitrided SiO2 were investigated for different subsequent processes. N-Si3, N-Si2O, and N2 are formed in a SiO2 film by plasma nitridation. N2 molecules diffuse out during annealing at temperatures higher than 900 °C. NH species are generated from N2 molecules and H in the SiO2 film with subsequent oxide deposition using O3 as an oxidant. The capacitance-voltage (C-V) curves of metal-oxide-semiconductor (MOS) capacitors are obtained. The negative shift of the C-V curve is caused by the increase in the density of positive fix charge traps in CVD-SiO2 induced by plasma nitridation. The C-V curve of plasma-nitrided SiO2 subjected to annealing shifts to the positive direction and that subjected to the subsequent oxide deposition shifts markedly to the negative direction. It is clarified that the density of positive charge fixed traps in plasma-nitrided SiO2 films decrease because the amount of N2 molecules is decreased by annealing, and that the density of traps increases because NH species are generated and move to the interface between SiO2 and the Si substrate with the subsequent oxide deposition.

  20. Corrosion resistant coatings (Al2O3) produced by metal organic chemical vapour deposition using aluminium-tri-sec-butoxide

    NARCIS (Netherlands)

    Haanappel, V.A.C.; Corbach, van H.D.; Fransen, T.; Gellings, P.J.

    1993-01-01

    The metal organic chemical vapour deposition (MOCVD) of amorphous alumina films on steel was performed in nitrogen at atmospheric pressure. This MOCVD process is based on the thermal decomposition of aluminium-tri-sec-butoxide (ATSB). The effect of the deposition temperature (within the range 290–42

  1. Evaluation of niobium dimethylamino-ethoxide for chemical vapour deposition of niobium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Dabirian, Ali [Laboratory for Photonic Materials and Characterization, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 17, 1015 Lausanne (Switzerland); Kuzminykh, Yury, E-mail: yury.kuzminykh@empa.ch [Laboratory for Photonic Materials and Characterization, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 17, 1015 Lausanne (Switzerland); Laboratory for Advanced Materials Processing, Empa, Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, 3602 Thun (Switzerland); Wagner, Estelle; Benvenuti, Giacomo [3D-Oxides, 70 Rue G. Eiffel Technoparc, 01630 St Genis Pouilly (France); ABCD Technology, 12 route de Champ-Colin, 1260 Nyon (Switzerland); Rushworth, Simon [Tyndall National Institute, Lee Maltings, Dyke Parade, Cork (Ireland); Hoffmann, Patrik, E-mail: patrik.hoffmann@empa.ch [Laboratory for Photonic Materials and Characterization, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 17, 1015 Lausanne (Switzerland); Laboratory for Advanced Materials Processing, Empa, Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, 3602 Thun (Switzerland)

    2014-11-28

    Chemical vapour deposition (CVD) processes depend on the availability of suitable precursors. Precursors that deliver a stable vapour pressure are favourable in classical CVD processes, as they ensure process reproducibility. In high vacuum CVD (HV-CVD) process vapour pressure stability of the precursor is of particular importance, since no carrier gas assisted transport can be used. The dimeric Nb{sub 2}(OEt){sub 10} does not fulfil this requirement since it partially dissociates upon heating. Dimethylamino functionalization of an ethoxy ligand of Nb(OEt){sub 5} acts as an octahedral field completing entity and leads to Nb(OEt){sub 4}(dmae). We show that Nb(OEt){sub 4}(dmae) evaporates as monomeric molecule and ensures a stable vapour pressure and, consequently, stable flow. A set of HV-CVD experiments were conducted using this precursor by projecting a graded molecular beam of the precursor onto the substrate at deposition temperatures from 320 °C to 650 °C. Film growth rates ranging from 8 nm·h{sup −1} to values larger than 400 nm·h{sup −1} can be obtained in this system illustrating the high level of control available over the film growth process. Classical CVD limiting conditions along with the recently reported adsorption–reaction limited conditions are observed and the chemical composition, and microstructural and optical properties of the films are related to the corresponding growth regime. Nb(OEt){sub 4}(dmae) provides a large process window of deposition temperatures and precursor fluxes over which carbon-free and polycrystalline niobium oxide films with growth rates proportional to precursor flux are obtained. This feature makes Nb(OEt){sub 4}(dmae) an attractive precursor for combinatorial CVD of niobium containing complex oxide films that are finding an increasing interest in photonics and photoelectrochemical water splitting applications. The adsorption–reaction limited conditions provide extremely small growth rates comparable to an

  2. Microreactor-Assisted Solution Deposition for Compound Semiconductor Thin Films

    Directory of Open Access Journals (Sweden)

    Chang-Ho Choi

    2014-05-01

    Full Text Available State-of-the-art techniques for the fabrication of compound semiconductors are mostly vacuum-based physical vapor or chemical vapor deposition processes. These vacuum-based techniques typically operate at high temperatures and normally require higher capital costs. Solution-based techniques offer opportunities to fabricate compound semiconductors at lower temperatures and lower capital costs. Among many solution-based deposition processes, chemical bath deposition is an attractive technique for depositing semiconductor films, owing to its low temperature, low cost and large area deposition capability. Chemical bath deposition processes are mainly performed using batch reactors, where all reactants are fed into the reactor simultaneously and products are removed after the processing is finished. Consequently, reaction selectivity is difficult, which can lead to unwanted secondary reactions. Microreactor-assisted solution deposition processes can overcome this limitation by producing short-life molecular intermediates used for heterogeneous thin film synthesis and quenching the reaction prior to homogeneous reactions. In this paper, we present progress in the synthesis and deposition of semiconductor thin films with a focus on CdS using microreactor-assisted solution deposition and provide an overview of its prospect for scale-up.

  3. Electrodeposition of copper selenide films from acidic bath and their properties

    Science.gov (United States)

    Mane, Rajaram S.; Shaikh, Arif V.; Joo, Oh-Shim; Han, Sung-Hwan; Pathan, Habib M.

    2012-06-01

    Copper selenide thin films are successfully deposited using electrodeposition method by combining copper sulfate and sodiumseleno sulfate precursors at room temperature in acidic bath. The chemical composition was a key factor in preparing high-quality uniform and smooth thin films of the copper selenide. We present indium-tin-oxide as a substrate for depositing copper selenide films which usually exists as copper (I) selenide or copper (II) selenide. Obtained brownish films of copper selenide are examined for their structural, morphological, compositional and optical properties by means of X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis and optical absorption measurement techniques, respectively for the structural, morphological and optical analysis.

  4. MgB2 superconducting whiskers synthesized by using the hybrid physical-chemical vapor deposition.

    Science.gov (United States)

    Wang, Yazhou; Zhuang, Chenggang; Gao, Jingyun; Shan, Xudong; Zhang, Jingmin; Liao, Zhimin; Xu, Hongjun; Yu, Dapeng; Feng, Qingrong

    2009-02-25

    In this work, MgB(2) whiskers were fabricated on a copper substrate by using the hybrid physical-chemical vapor deposition, which was one of the most effective ways to make high quality pure MgB(2) films, with the possible growth mechanism discussed. The whiskers are hexagonal and conelike and grow along the [0001] direction with a single-crystal structure. The onset transition temperature is approximately 39 K, which is among the best in the published nanostructure MgB(2) papers. Fabrication of nanoscale MgB(2) whiskers provides the fundamental understanding of the effect of dimensionality and size on superconductivity.

  5. Synthesis and Characterization of Tin(IV) Oxide Obtained by Chemical Vapor Deposition Method

    Science.gov (United States)

    Nagirnyak, Svitlana V.; Lutz, Victoriya A.; Dontsova, Tatiana A.; Astrelin, Igor M.

    2016-07-01

    The effect of precursors on the characteristics of tin oxide obtained by chemical vapor deposition (CVD) method was investigated. The synthesis of nanosized tin(IV) oxide was carried out with the use of two different precursors: tin(II) oxalate obtained using tin chloride(II) and oxalic acid; tin(II) oxalate obtained using tin chloride(II); and ammonium oxalate. The synthesized tin(IV) oxide samples were studied by electron microscopy, X-ray diffraction and optical spectra. The lattice parameters of tin(IV) oxide samples were defined, the bandgap of samples were calculated.

  6. Synthesis and Characterization of Tin(IV) Oxide Obtained by Chemical Vapor Deposition Method

    OpenAIRE

    Nagirnyak, Svitlana V.; Lutz, Victoriya A.; Dontsova, Tatiana A.; Astrelin, Igor M.

    2016-01-01

    The effect of precursors on the characteristics of tin oxide obtained by chemical vapor deposition (CVD) method was investigated. The synthesis of nanosized tin(IV) oxide was carried out with the use of two different precursors: tin(II) oxalate obtained using tin chloride(II) and oxalic acid; tin(II) oxalate obtained using tin chloride(II); and ammonium oxalate. The synthesized tin(IV) oxide samples were studied by electron microscopy, X-ray diffraction and optical spectra. The lattice parame...

  7. Magnetic property and recording performance of chemical deposition CoP thin films

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    The thickness of CoP thin films prepared by wet chemical deposition is of crucial importance on magnetic property and recording perform-ance. The coercivity of CoP films decreased with increasing film thickness. The coercivity was 45.37 kA m 1 at the thickness of 300 nm, and decreased to 21.65 kA m 1 at 5.7 μm. Recording performance tests indicate that, for drums with the same size, different recorded magnetic pole density have different thickness requirements. For 40 mm diameter magnetic drum, the optimal ...

  8. Synthesis of carbon nanotube array using corona discharge plasma-enhanced chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A corona discharge plasma-enhanced chemical vapor deposition with the features of atmospheric pressure and low temperature has been developed to synthesize the carbon nanotube array. The array was synthesized from methane and hydrogen mixture in anodic aluminum oxide template channels in that cobalt was electrodeposited at the bottom. The characterization results by the scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy and Raman spectroscopy indicate that the array consists of carbon nanotubes with the diameter of about 40 nm and the length of more than 4 -m, and the carbon nanotubes are mainly restrained within the channels of templates.

  9. Growth of straight carbon nanotubes by simple thermal chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    ZOU Xiao-ping; H. ABE; T. SHIMIZU; A. ANDO; H. TOKUMOTO; ZHU Shen-ming; ZHOU Hao-shen

    2006-01-01

    Straight carbon nanotubes (CNTs) were achieved by simple thermal chemical vapor deposition(STCVD) catalyzed by Mo-Fe alloy catalyst on silica supporting substrate at 700 ℃. High-resolution transmission electron microscopy images show that the straight CNTs are well graphitized with no attached amorphous carbon. Mo-Fe alloy catalyst particles play a very crucial role in the growth of straight CNTs. The straight carbon nanotubes contain much less defects than the curved nanotubes and might have potential applications for nanoelectrical devices in the future. The simple synthesis of straight CNTs may have benefit for large-scale productions.

  10. High-purity cobalt thin films with perpendicular magnetic anisotropy prepared by chemical vapor deposition

    Science.gov (United States)

    Ootera, Yasuaki; Shimada, Takuya; Kado, Masaki; Quinsat, Michael; Morise, Hirofumi; Nakamura, Shiho; Kondo, Tsuyoshi

    2015-11-01

    A study of the chemical vapor deposition (CVD) of high-purity cobalt thin films is described. The Co layer prepared by a thermal CVD technique with a Pt/Ta underlayer and a Pt cap layer shows a saturation magnetization (Ms) of ∼1.8 T and perpendicular magnetic anisotropy (PMA) with an anisotropy energy (Ku) of ∼105 J/m3. The cobalt thickness dependence of Ku reveals that the interfacial anisotropy at the Pt/Co interface is most likely the origin of the obtained PMA.

  11. Studies on non-oxide coating on carbon fibers using plasma enhanced chemical vapor deposition technique

    Science.gov (United States)

    Patel, R. H.; Sharma, S.; Prajapati, K. K.; Vyas, M. M.; Batra, N. M.

    2016-05-01

    A new way of improving the oxidative behavior of carbon fibers coated with SiC through Plasma Enhanced Chemical Vapor Deposition technique. The complete study includes coating of SiC on glass slab and Stainless steel specimen as a starting test subjects but the major focus was to increase the oxidation temperature of carbon fibers by PECVD technique. This method uses relatively lower substrate temperature and guarantees better stoichiometry than other coating methods and hence the substrate shows higher resistance towards mechanical and thermal stresses along with increase in oxidation temperature.

  12. High efficiency AIGaAs/Si monolithic tandem solar cell grown by metalorganic chemical vapor deposition

    OpenAIRE

    Tetsuo, Soga; T.", "Kato; M., Yang; Masayoshi, Umeno; Takashi, Jimbo

    1995-01-01

    The improvements of the AlGaAs solar cell grown on the Si substrate and the AlGaAs/Si tandem solar cell by metalorganic chemical vapor deposition have been investigated. The active‐area conversion efficiency of the Al0.1Ga0.9As solar cell on the Si substrate as high as 12.9% has been obtained by improving the growth sequence and adopting an Al compositionally graded band emitter layer. A high efficiency monolithic AlGaAs/Si tandem solar cell with the active‐area conversion efficiency of 19.9%...

  13. Synthesis and oxidation behavior of boron-substituted carbon powders by hot filament chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Boron-substituted carbon powder, BxC1-x with x up to 0.17, has been successfully synthesized by hot filament chemical vapor deposition. The boron concentration in prepared BxC1-x samples can be controlled by varying the relative proportions of methane and diborane. X-ray diffraction, transmission electron microscopy, and electron energy loss spectrum confirm the successful synthesis of an amorphous BC5 compound, which consists of 10―20 nm particles with disk-like morphology. Thermogravimetry measurement shows that BC5 compound starts to oxidize ap-proximately at 620℃ and has a higher oxidation resistance than carbon.

  14. Time variant layer control in atmospheric pressure chemical vapor deposition based growth of graphene

    KAUST Repository

    Qaisi, Ramy M.

    2013-04-01

    Graphene is a semi-metallic, transparent, atomic crystal structure material which is promising for its high mobility, strength and transparency - potentially applicable for radio frequency (RF) circuitry and energy harvesting and storage applications. Uniform (same number of layers), continuous (not torn or discontinuous), large area (100 mm to 200 mm wafer scale), low-cost, reliable growth are the first hand challenges for its commercialization prospect. We show a time variant uniform (layer control) growth of bi- to multi-layer graphene using atmospheric chemical vapor deposition system. We use Raman spectroscopy for physical characterization supported by electrical property analysis. © 2013 IEEE.

  15. Chemical surface deposition of cds thin films from CdI2 aqueous solution

    Directory of Open Access Journals (Sweden)

    G. Il’chuk

    2009-01-01

    Full Text Available For the first time using CdI2 solution CdS films on glass and ITO coated glass substrates were produced by the method of layerwise chemical surface deposition (ChSD. CdS thin films with the widths from 40 nm to 100 nm were obtained for windows in solar cells based on CdS/CdTe heterojunctions. Changes of the structural and optical properties of CdS films due to air annealing are shown.

  16. MgB2 ultrathin films fabricated by hybrid physical chemical vapor deposition and ion milling

    Directory of Open Access Journals (Sweden)

    Narendra Acharya

    2016-08-01

    Full Text Available In this letter, we report on the structural and transport measurements of ultrathin MgB2 films grown by hybrid physical-chemical vapor deposition followed by low incident angle Ar ion milling. The ultrathin films as thin as 1.8 nm, or 6 unit cells, exhibit excellent superconducting properties such as high critical temperature (Tc and high critical current density (Jc. The results show the great potential of these ultrathin films for superconducting devices and present a possibility to explore superconductivity in MgB2 at the 2D limit.

  17. Electro-chemical deposition of zinc oxide nanostructures by using two electrodes

    Directory of Open Access Journals (Sweden)

    B. A. Taleatu

    2011-09-01

    Full Text Available One of the most viable ways to grow nanostructures is electro deposition. However, most electrodeposited samples are obtained by three-electrode electrochemical cell. We successfully use a much simpler two-electrode cell to grow different ZnO nanostructures from common chemical reagents. Concentration, pH of the electrolytes and growth parameters like potentials at the electrodes, are tailored to allow fast growth without complexity. Morphology and surface roughness are investigated by Scanning Electron and Air Force Microscopy (SEM and AFM respectively, crystal structure by X-Ray Diffraction measurements (XRD and ZnO stoichiometry by core level photoemission spectroscopy (XPS.

  18. Synthesis and characterization of well-aligned carbon nitrogen nanotubes by microwave plasma chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Well-aligned carbon nitrogen nanotube films have been synthesized successfully on mesoporous silica substrates by microwave plasma chemical vapor deposition (MWPCVD) method. Studies on their morphology, structure, and composition by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy (EDX), respectively, indicate that these nanotubes consist of linearly polymerized carbon nitrogen nanobells, and the nitrogen atoms have been doped into carbon netweork to form a new structure C1-xNx (x=0.16±0.01). X-ray photoelectron spectroscopy (XPS) results of the samples further demonstrate that carbon bonds covalently with nitrogen in all the carbon nitrogen nanotube films.

  19. MgB2 ultrathin films fabricated by hybrid physical chemical vapor deposition and ion milling

    Science.gov (United States)

    Acharya, Narendra; Wolak, Matthäus A.; Tan, Teng; Lee, Namhoon; Lang, Andrew C.; Taheri, Mitra; Cunnane, Dan; Karasik, Boris. S.; Xi, X. X.

    2016-08-01

    In this letter, we report on the structural and transport measurements of ultrathin MgB2 films grown by hybrid physical-chemical vapor deposition followed by low incident angle Ar ion milling. The ultrathin films as thin as 1.8 nm, or 6 unit cells, exhibit excellent superconducting properties such as high critical temperature (Tc) and high critical current density (Jc). The results show the great potential of these ultrathin films for superconducting devices and present a possibility to explore superconductivity in MgB2 at the 2D limit.

  20. An Investigation on the Formation of Carbon Nanotubes by Two-Stage Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    M. S. Shamsudin

    2012-01-01

    Full Text Available High density of carbon nanotubes (CNTs has been synthesized from agricultural hydrocarbon: camphor oil using a one-hour synthesis time and a titanium dioxide sol gel catalyst. The pyrolysis temperature is studied in the range of 700–900°C at increments of 50°C. The synthesis process is done using a custom-made two-stage catalytic chemical vapor deposition apparatus. The CNT characteristics are investigated by field emission scanning electron microscopy and micro-Raman spectroscopy. The experimental results showed that structural properties of CNT are highly dependent on pyrolysis temperature changes.

  1. Development of Diffusion barrier coatings and Deposition Technologies for Mitigating Fuel Cladding Chemical Interactions (FCCI)

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Kumar; Allen, Todd; Cole, James

    2013-02-27

    The goal of this project is to develop diffusion barrier coatings on the inner cladding surface to mitigate fuel-cladding chemical interaction (FCCI). FCCI occurs due to thermal and radiation enhanced inter-diffusion between the cladding and fuel materials, and can have the detrimental effects of reducing the effective cladding wall thickness and lowering the melting points of the fuel and cladding. The research is aimed at the Advanced Burner Reactor (ABR), a sodium-cooled fast reactor, in which higher burn-ups will exacerbate the FCCI problem. This project will study both diffusion barrier coating materials and deposition technologies. Researchers will investigate pure vanadium, zirconium, and titanium metals, along with their respective oxides, on substrates of HT-9, T91, and oxide dispersion-strengthened (ODS) steels; these materials are leading candidates for ABR fuel cladding. To test the efficacy of the coating materials, the research team will perform high-temperature diffusion couple studies using both a prototypic metallic uranium fuel and a surrogate the rare-earth element lanthanum. Ion irradiation experiments will test the stability of the coating and the coating-cladding interface. A critical technological challenge is the ability to deposit uniform coatings on the inner surface of cladding. The team will develop a promising non-line-of-sight approach that uses nanofluids . Recent research has shown the feasibility of this simple yet novel approach to deposit coatings on test flats and inside small sections of claddings. Two approaches will be investigated: 1) modified electrophoretic deposition (MEPD) and 2) boiling nanofluids. The coatings will be evaluated in the as-deposited condition and after sintering.

  2. Growth mechanisms of zinc oxide and zinc sulfide films by mist chemical vapor deposition

    Science.gov (United States)

    Uno, Kazuyuki; Yamasaki, Yuichiro; Tanaka, Ichiro

    2017-01-01

    The growth mechanisms of zinc oxide and zinc sulfide films by mist chemical vapor deposition (mist-CVD) were experimentally investigated from the viewpoint of mist behaviors and chemical reactions. The proper growth model, either vaporization or the Leidenfrost model, was studied by supplying two kinds of mists with different kinds of sources, such as H2 16O and H2 18O for ZnO growth and ZnCl2 and thiourea for ZnS growth. Moreover, the origin of the oxygen atoms of ZnO was investigated using a quantitative analysis. The role of chloro complex of zinc in the growth of ZnS from aqueous solutions was also examined by systematic studies.

  3. Structure and chemical characteristics of natural mineral deposit Terbunskaya (Lipetsk region, Russia)

    Energy Technology Data Exchange (ETDEWEB)

    Motyleva, S., E-mail: motyleva-svetlana@mail.ru; Mertvishcheva, M. [All-Russian Horticular Institute for Breeding, Agrotechnology and Nursery Russian Academy of Agricultural Sciences, Moskow (Russian Federation); Shchuchka, R.; Gulidova, V. [Yelets state university named after I. A. Bunin, Yelets (Russian Federation)

    2015-07-22

    New knowledge about the mineralogical features Terbunsky mineral. Investigated 5 fractions isolated from the incision (2-2,5 m). Terbunskaya deposit belongs to minerals Santonian age. Scanning electron microscopy and energy dispersive analysis of fractions isolated studied in detail. In the coarse fractions found ancient organic remains of algae and micro-organisms that have been sedimented together with the mineral component during geological periods. The share of organic inclusions does not exceed 1.5%. Chemical composition confirms the presence of silicon and carbonate organisms. Advantageously proportion of minerals having a layered structure with a plurality of micro and nano pore size 600 - 80-nm and an average chemical composition (wt%): Na (0,64), Mg (0,54), Al (13.48), Si (27 57), K (2.39) Ca (0.75)

  4. Laterally Stitched Heterostructures of Transition Metal Dichalcogenide: Chemical Vapor Deposition Growth on Lithographically Patterned Area

    KAUST Repository

    Li, Henan

    2016-10-31

    Two-dimensional transition metal dichalcogenides (TMDCs) have shown great promise in electronics and optoelectronics due to their unique electrical and optical properties. Heterostructured TMDC layers such as the laterally stitched TMDCs offer the advantages of better electronic contact and easier band offset tuning. Here, we demonstrate a photoresist-free focused ion beam (FIB) method to pattern as-grown TMDC monolayers by chemical vapor deposition, where the exposed edges from FIB etching serve as the seeds for growing a second TMDC material to form desired lateral heterostructures with arbitrary layouts. The proposed lithographic and growth processes offer better controllability for fabrication of the TMDC heterostrucuture, which enables the construction of devices based on heterostructural monolayers. © 2016 American Chemical Society.

  5. Characterization of the SiO2 film deposited by using plasma enhanced chemical vapor deposition (PECVD with TEOS/N2/O2

    Directory of Open Access Journals (Sweden)

    Meysam Zarchi

    2013-12-01

    Full Text Available The purpose of this study was to examine how certain parameters like temperature, pressure, and gas composition affect the characteristics of SiO2 film by Plasma Enhanced Chemical Vapor Deposition (PECVD. We used of low temperature and an inductively coupled plasma (ICP for various with gas mixtures of TEOS/N2/O2 at a given RF power and dc bias voltage. For the gas mixture with 40 sccm of N2 in TEOS, 100 standard cubic centimeters per minute (sccm of N2, and 500 sccm of O2, transparent and scratch-resistant SiO2 could be deposited with a deposition rate of 30 nm/min when RF power of 500 W and a dc-bias voltage of 350V were applied. The characteristics of the deposited SiO2, such as the composition, the binding energy, etc. were compared with the SiO2 deposited by using thermal CVD and evaporation. It was found that the SiO2 deposited by PECVD with TEOS/N2/O2 exhibited properties typical of SiO2 deposited applying thermal CVD and evaporation. The surface roughness of the 100 nm-thick SiO2 deposited by PECVD was similar to that of the substrate.

  6. Properties of silicon nitride thin overlays deposited on optical fibers — Effect of fiber suspension in radio frequency plasma-enhanced chemical vapor deposition reactor

    Energy Technology Data Exchange (ETDEWEB)

    Śmietana, M., E-mail: M.Smietana@elka.pw.edu.pl [Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, Warsaw 00-662 (Poland); Dominik, M.; Myśliwiec, M.; Kwietniewski, N. [Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, Warsaw 00-662 (Poland); Mikulic, P. [Centre de Recherche en Photonique, Université du Québec en Outaouais, 101 rue Saint-Jean-Bosco, Gatineau, J8X 3X7, Québec (Canada); Witkowski, B.S. [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, Warsaw 02-666 (Poland); Bock, W.J. [Centre de Recherche en Photonique, Université du Québec en Outaouais, 101 rue Saint-Jean-Bosco, Gatineau, J8X 3X7, Québec (Canada)

    2016-03-31

    This work discusses the effect of sample suspension in radio frequency plasma-enhanced chemical vapor deposition process on properties of the obtained overlays. Silicon nitride (SiN{sub x}) overlays were deposited on flat silicon wafers and cylindrical fused silica optical fibers. The influence of the suspension height and fiber diameter on SiN{sub x} deposition rate is investigated. It has been found that thickness of the SiN{sub x} overlay significantly increases with suspension height, and the deposition rate depends on fiber dimensions. Moreover, the SiN{sub x} overlays were also deposited on long-period gratings (LPGs) induced in optical fiber. Measurements of the LPG spectral response combined with its numerical simulations allowed for a discussion on properties of the deposited overlay. The measurements have proven higher overlay deposition rate on the suspended fiber than on flat Si wafer placed on the electrode. Results of this work are essential for precise tuning of the functional properties of new generations of optical devices such as optical sensors, filters and resonators, which typically are based on optical fibers and require the overlays with well defined properties. - Highlights: • The effect of optical fiber suspension in plasma process is discussed. • The deposition rate of silicon nitride (SiN{sub x}) overlay depends on fiber dimensions. • Thickness of the SiN{sub x} overlay strongly increases with suspension height. • Measurements and simulations of long-period grating confirms experimental results.

  7. The relationship between chemical structure and dielectric properties of plasma-enhanced chemical vapor deposited polymer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Hao [Materials Sci and Tech Applications, LLC, 409 Maple Springs Drive, Dayton OH 45458 (United States)]. E-mail: hao.jiang@wpafb.af.mil; Hong Lianggou [Materials Sci and Tech Applications, LLC, 409 Maple Springs Drive, Dayton OH 45458 (United States); Venkatasubramanian, N. [Research Institute, University of Dayton, 300 College Park, Dayton, OH 45469-0168 (United States); Grant, John T. [Research Institute, University of Dayton, 300 College Park, Dayton, OH 45469-0168 (United States); Eyink, Kurt [Air Force Research Laboratory, Materials Directorate, 3005 Hobson Way, Wright-Patterson Air Force Base, OH 45433-7707 (United States); Wiacek, Kevin [Air Force Research Laboratory, Propulsion Directorate, 1950 Fifth Street, Wright-Patterson Air Force Base, OH 45433-7251 (United States); Fries-Carr, Sandra [Air Force Research Laboratory, Propulsion Directorate, 1950 Fifth Street, Wright-Patterson Air Force Base, OH 45433-7251 (United States); Enlow, Jesse [Air Force Research Laboratory, Materials Directorate, 3005 Hobson Way, Wright-Patterson Air Force Base, OH 45433-7707 (United States); Bunning, Timothy J. [Air Force Research Laboratory, Materials Directorate, 3005 Hobson Way, Wright-Patterson Air Force Base, OH 45433-7707 (United States)

    2007-02-26

    Polymer dielectric films fabricated by plasma enhanced chemical vapor deposition (PECVD) have unique properties due to their dense crosslinked bulk structure. These spatially uniform films exhibit good adhesion to a variety of substrates, excellent chemical inertness, high thermal resistance, and are formed from an inexpensive, solvent-free, room temperature process. In this work, we studied the dielectric properties of plasma polymerized (PP) carbon-based polymer thin films prepared from two precursors, benzene and octafluorocyclobutane. Two different monomer feed locations, directly in the plasma zone or in the downstream region (DS) and two different pressures, 80 Pa (high pressure) or 6.7 Pa (low pressure), were used. The chemical structure of the PECVD films was examined by X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy. The dielectric constant ({epsilon} {sub r}) and dielectric loss (tan {delta}) of the films were investigated over a range of frequencies up to 1 MHz and the dielectric strength (breakdown voltage) (F {sub b}) was characterized by the current-voltage method. Spectroscopic ellipsometry was performed to determine the film thickness and refractive index. Good dielectric properties were exhibited, as PP-benzene films formed in the high pressure, DS region showed a F{sub b} of 610 V/{mu}m, an {epsilon} {sub r} of 3.07, and a tan {delta} of 7.0 x 10{sup -3} at 1 kHz. The PECVD processing pressure has a significant effect on final film structure and the film's physical density has a strong impact on dielectric breakdown strength. Also noted was that the residual oxygen content in the PP-benzene films significantly affected the frequency dependences of the dielectric constant and loss.

  8. Recovery of metal values from spent lithium-ion batteries with chemical deposition and solvent extraction

    Science.gov (United States)

    Nan, Junmin; Han, Dongmei; Zuo, Xiaoxi

    This paper describes a new recycling process of metal values from spent lithium-ion batteries (LIBs). After the dismantling of the spent batteries steel crusts, the leaching of battery internal substances with alkaline solution and the dissolving of the residues with H 2SO 4 solution were carried out. Then mass cobalt was chemically deposited as oxalate, and Acorga M5640 and Cyanex272 extracted the small quantities of copper and cobalt, respectively. Lithium was recovered as deposition of lithium carbonate. It is shown that about 90% cobalt was deposited as oxalate with less than 0.5% impurities, and Acorga M5640 and Cyanex272 were efficient and selective for the extraction of copper and cobalt in sulfate solution. Over 98% of the copper and 97% of the cobalt was recovered in the given process. In addition, the waste solution was treated innocuously, and LiCoO 2 positive electrode material with good electrochemical performance was also synthesized by using the recovered compounds of cobalt and lithium as precursors. The process is feasible for the recycling of spent LIBs in scale-up.

  9. Growth of High TcYBaCuO Thin Films by Metalorganic Chemical Vapor Deposition

    Science.gov (United States)

    Kirlin, Peter S.; Binder, R.; Gardiner, R.; Brown, Duncan W.

    1990-03-01

    Thin films of YBa2Cu3O7-x were grown on MgO(100) by metalorganic chemical vapor deposition (MOCVD). Low pressure growth studies were carried out between 400 and 600°C using metal β-diketonate complexes as source reagents for Y, Ba, and Cu. As-deposited films were amorphous and a two stage annealing protocol was used in which fluorine was first removed in a Ar/H20 stream between 700 and 850°C, followed by calcination in flowing oxygen between 500 and 950°C. Scanning electron microscopy, X-ray diffraction and energy dispersive analysis indicate that good compositional and dimensional uniformity could be achieved. The temperature of the oxygen annealing step was shown to have a dramatic impact on the physical and electrical properties of the YBa2Cu307-x thin films. Annealing temperatures exceeding 910°C gave large crystallites and semiconducting resistivity above Tc; annealing temperatures below 910°C yielded films with metallic conductivity whose density and superconducting transition varied inversely with maximum annealing temperature. Optimized deposition/annealing protocols yielded films with a preferred c-axis orientation, R273/R100 ratios of 2, onsets as high as 94K and zero resistance exceeding 90K.

  10. Diamond synthesis at atmospheric pressure by microwave capillary plasma chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hemawan, Kadek W.; Gou, Huiyang; Hemley, Russell J. [Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Rd., NW, Washington, DC 20015 (United States)

    2015-11-02

    Polycrystalline diamond has been synthesized on silicon substrates at atmospheric pressure, using a microwave capillary plasma chemical vapor deposition technique. The CH{sub 4}/Ar plasma was generated inside of quartz capillary tubes using 2.45 GHz microwave excitation without adding H{sub 2} into the deposition gas chemistry. Electronically excited species of CN, C{sub 2}, Ar, N{sub 2}, CH, H{sub β}, and H{sub α} were observed in the emission spectra. Raman measurements of deposited material indicate the formation of well-crystallized diamond, as evidenced by the sharp T{sub 2g} phonon at 1333 cm{sup −1} peak relative to the Raman features of graphitic carbon. Field emission scanning electron microscopy images reveal that, depending on the growth conditions, the carbon microstructures of grown films exhibit “coral” and “cauliflower-like” morphologies or well-facetted diamond crystals with grain sizes ranging from 100 nm to 10 μm.

  11. Metal Organic Chemical Vapour Deposited Thin Films of Cobalt Oxide Prepared via Cobalt Acetylacetonate

    Institute of Scientific and Technical Information of China (English)

    C.U. Mordi; M.A. Eleruja; B.A. Taleatu; G.O. Egharevba; A.V. Adedeji; 0.0. Akinwunmi; B. Olofinjana; C. Jeynes; E.O.B. Ajayi

    2009-01-01

    The single solid source precursor, cobalt (Ⅱ) acetylacetonate was prepared and characterized by infrared spec-troscopy. Thin films of cobalt oxide were deposited on soda lime glass substrates through the pyrolysis (metal organic chemical vapour deposition (MOCVD)) of single solid source precursor, cobalt acetylaceto-nate, Co[C5H7O2]2 at a temperature of 420℃. The compositional characterization carried out by rutherford backscattering spectroscopy and X-ray diffraction (XRD), showed that the films have a stoichiometry of Co2O3 and an average thickness of 227±0.2 nm. A direct energy gap of 2.15±0.01 eV was calculated by the data obtained by optical absorption spectroscopy. The morphology of the films obtained by scanning electron mi-croscopy, showed that the grains were continuous and uniformly distributed at various magnifications, while the average grain size was less than 1 micron for the deposited thin films of cobalt oxide.

  12. Chemical resistance of thin film materials based on metal oxides grown by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Sammelselg, Väino, E-mail: vaino.sammelselg@ut.ee [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia); Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu (Estonia); Netšipailo, Ivan; Aidla, Aleks; Tarre, Aivar; Aarik, Lauri; Asari, Jelena; Ritslaid, Peeter; Aarik, Jaan [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia)

    2013-09-02

    Etching rate of technologically important metal oxide thin films in hot sulphuric acid was investigated. The films of Al-, Ti-, Cr-, and Ta-oxides studied were grown by atomic layer deposition (ALD) method on silicon substrates from different precursors in large ranges of growth temperatures (80–900 °C) in order to reveal process parameters that allow deposition of coatings with higher chemical resistance. The results obtained demonstrate that application of processes that yield films with lower concentration of residual impurities as well as crystallization of films in thermal ALD processes leads to significant decrease of etching rate. Crystalline films of materials studied showed etching rates down to values of < 5 pm/s. - Highlights: • Etching of atomic layer deposited thin metal oxide films in hot H{sub 2}SO{sub 4} was studied. • Smallest etching rates of < 5 pm/s for TiO{sub 2}, Al{sub 2}O{sub 3}, and Cr{sub 2}O{sub 3} were reached. • Highest etching rate of 2.8 nm/s for Al{sub 2}O{sub 3} was occurred. • Remarkable differences in etching of non- and crystalline films were observed.

  13. Preparation of Nano-Particles (Pb,La)TiO3 Thin Films by Liquid Source Misted Chemical Deposition

    Institute of Scientific and Technical Information of China (English)

    张之圣; 曾建平; 李小图

    2004-01-01

    Nano-particles lanthanum-modified lead titanate (PLT) thin films are grown on Pt/Ti/SiO2/Si substrate by liquid source misted chemical deposition (LSMCD). PLT films are deposited for 4-8 times, and then annealed at various temperature. XRD and SEM show that the prepared films have good crystallization behavior and perovskite structure. The crystallite is about 60 nm. The deposition speed is 3 nm/min. This deposition method can exactly control stoichiometry ratios, doping concentration ratio and thickness of PLT thin films. The best annealing process is to bake at 300 ℃ for 10 min and anneal at 600 ℃ for 1 h.

  14. Comparison of laser-ablation and hot-wall chemical vapour deposition techniques for nanowire fabrication

    Science.gov (United States)

    Stern, E.; Cheng, G.; Guthrie, S.; Turner-Evans, D.; Broomfield, E.; Lei, B.; Li, C.; Zhang, D.; Zhou, C.; Reed, M. A.

    2006-06-01

    A comparison of the transport properties of populations of single-crystal, In2O3 nanowires (NWs) grown by unassisted hot-wall chemical vapour deposition (CVD) versus NWs grown by laser-ablation-assisted chemical vapour deposition (LA-CVD) is presented. For nominally identical growth conditions across the two systems, NWs fabricated at 850 °C with laser-ablation had significantly higher average mobilities at the 99.9% confidence level, 53.3 ± 5.8 cm2 V-1 s-1 versus 10.2 ± 1.9 cm2 V-1 s-1. It is also observed that increasing growth temperature decreases mobility for LA-CVD NWs. Transmission electron microscopy studies of CVD-fabricated samples indicate the presence of an amorphous In2O3 region surrounding the single-crystal core. Further, low-temperature measurements verify the presence of ionized impurity scattering in low-mobility CVD-grown NWs.

  15. Zinc oxide nanostructures by chemical vapour deposition as anodes for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Laurenti, M., E-mail: marco.laurenti@iit.it [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento, 21, 10129 Turin (Italy); Department of Applied Science and Technology – DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Garino, N. [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento, 21, 10129 Turin (Italy); Porro, S.; Fontana, M. [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento, 21, 10129 Turin (Italy); Department of Applied Science and Technology – DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Gerbaldi, C., E-mail: claudio.gerbaldi@polito.it [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento, 21, 10129 Turin (Italy); Department of Applied Science and Technology – DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy)

    2015-08-15

    Highlights: • ZnO nanostructures are grown by simple chemical vapour deposition. • Polycrystalline nanostructured porous thin film is obtained. • Film exhibits stable specific capacity (∼400 mA h g{sup −1}) after prolonged cycling. • CVD-grown ZnO nanostructures show promising prospects as Li-ion battery anode. - Abstract: ZnO nanostructures are grown by a simple chemical vapour deposition method directly on a stainless steel disc current collector and successfully tested in lithium cells. The structural/morphological characterization points out the presence of well-defined polycrystalline nanostructures having different shapes and a preferential orientation along the c-axis direction. In addition, the high active surface of the ZnO nanostructures, which accounts for a large electrode/electrolyte contact area, and the complete wetting with the electrolyte solution are considered to be responsible for the good electrical transport properties and the adequate electrochemical behaviour, as confirmed by cyclic voltammetry and galvanostatic charge/discharge cycling. Indeed, despite no binder or conducting additives are used, when galvanostatically tested in lithium cells, after an initial decay, the ZnO nanostructures can provide a rather stable specific capacity approaching 70 μA h cm{sup −2} (i.e., around 400 mA h g{sup −1}) after prolonged cycling at 1 C, with very high Coulombic efficiency and an overall capacity retention exceeding 62%.

  16. Deposition of carbon nanotubes onto aramid fibers using as-received and chemically modified fibers

    Science.gov (United States)

    Rodríguez-Uicab, O.; Avilés, F.; Gonzalez-Chi, P. I.; Canché-Escamilla, G.; Duarte-Aranda, S.; Yazdani-Pedram, M.; Toro, P.; Gamboa, F.; Mazo, M. A.; Nistal, A.; Rubio, J.

    2016-11-01

    Multiwall carbon nanotubes (MWCNTs) oxidized by an acid treatment were deposited on the surface of as-received commercial aramid fibers containing a surface coating ("sizing"), and fibers modified by either a chlorosulfonic treatment or a mixture of nitric and sulfuric acids. The surface of the aramid fiber activated by the chemical treatments presents increasing density of CO, COOH and OH functional groups. However, these chemical treatments reduced the tensile mechanical properties of the fibers, especially when the nitric and sulfuric acid mixture was used. Characterization of the MWCNTs deposited on the fiber surface was conducted by scanning electron microscopy, Raman spectroscopy mapping and X-ray photoelectron spectroscopy. These characterizations showed higher areal concentration and more homogeneous distribution of MWCNTs over the aramid fibers for as-received fibers and for those modified with chlorosulfonic acid, suggesting the existence of interaction between the oxidized MWCNTs and the fiber coating. The electrical resistance of the MWCNT-modified aramid yarns comprising ∼1000 individual fibers was in the order of MΩ/cm, which renders multifunctional properties.

  17. Suitable alkaline for graphene peeling grown on metallic catalysts using chemical vapor deposition

    Science.gov (United States)

    Karamat, S.; Sonuşen, S.; Çelik, Ü.; Uysallı, Y.; Oral, A.

    2016-04-01

    In chemical vapor deposition, the higher growth temperature roughens the surface of the metal catalyst and a delicate method is necessary for the transfer of graphene from metal catalyst to the desired substrates. In this work, we grow graphene on Pt and Cu foil via ambient pressure chemical vapor deposition (AP-CVD) method and further alkaline water electrolysis was used to peel off graphene from the metallic catalyst. We used different electrolytes i.e., sodium hydroxide (NaOH), potassium hydroxide (KOH), lithium hydroxide (LiOH) and barium hydroxide Ba(OH)2 for electrolysis, hydrogen bubbles evolved at the Pt cathode (graphene/Pt/PMMA stack) and as a result graphene layer peeled off from the substrate without damage. The peeling time for KOH and LiOH was ∼6 min and for NaOH and Ba(OH)2 it was ∼15 min. KOH and LiOH peeled off graphene very efficiently as compared to NaOH and Ba(OH)2 from the Pt electrode. In case of copper, the peeling time is ∼3-5 min. Different characterizations like optical microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy were done to analyze the as grown and transferred graphene samples.

  18. Diagnostic Techniques Used to Study Chemical-Vapor-Deposited Diamond Films

    Science.gov (United States)

    Miyoshi, Kazuhisa

    2000-01-01

    The advantages and utility of chemical-vapor-deposited (CVD) diamond as an industrial ceramic can only be realized if the price and quality are right. Until recently, this technology was of interest only to the academic and basic research community. However, interest has grown because of advances made by leading CVD diamond suppliers: 1) Reduction of the cost of CVD polycrystalline diamond deposition below $5/carat ($8/sq cm); 2) Installation of production capacity; 3) Epitaxial growth of CVD single-crystal diamond. Thus, CVD diamond applications and business are an industrial reality. At present, CVD diamond is produced in the form of coatings or wafers. CVD diamond film technology offers a broader technological potential than do natural and high-pressure synthetic diamonds because size, geometry, and eventually cost will not be as limiting. Now that they are cost effective, diamond coatings - with their extreme properties - can be used in a variety of applications. Diamond coatings can improve many of the surface properties of engineering substrate materials, including erosion, corrosion, and wear resistance. Examples of actual and potential applications, from microelectromechanical systems to the wear parts of diamond coatings and related superhard coatings are described. For example, diamond coatings can be used as a chemical and mechanical barrier for the space shuttles check valves, particularly on the guide pins and seat assemblies.

  19. Magnetic and magneto-optical properties of Co-P films prepared by chemical deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chzhan, A.V., E-mail: avchz@mail.ru [Kirensky Institute of Physics, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk 660036 (Russian Federation); Siberian Federal University, Krasnoyarsk 660041 (Russian Federation); Patrin, G.S. [Kirensky Institute of Physics, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk 660036 (Russian Federation); Siberian Federal University, Krasnoyarsk 660041 (Russian Federation); Kiparisov, S.Ya.; Seredkin, V.A.; Burkova, L.V.; Velikanov, D.A. [Kirensky Institute of Physics, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk 660036 (Russian Federation)

    2011-10-15

    Features in the formation of chemically deposited polycrystalline Co-P films with thicknesses of a few nanometers are established by analyzing film surface morphology and variation in the film magnetization. It is shown that in the thickness range below 30 nm the polar Kerr effect value {theta}{sub K} changes nonmonotonically and depends on a wavelength of the incident light. For the films thicker than 30 nm, this value depends weakly on both the thickness and the wavelength. These features in the {theta}{sub K} behavior are attributed to the Faraday effect, which is revealed at small thicknesses upon light reflection from the lower surface of a magnetic layer. It is found that the Faraday effect in the Co-P films exceeds that in the Co films by a factor of more than two. This effect is assumed to be caused by the presence of a Pd underlayer in the samples under study. - Highlights: > Chemically deposited Co-P films are investigated. > Features of the polar Kerr effect in these films with thickness from 1 to 50 nm are considered. > It is shown that the Faraday rotation angle in the Co-P films exceeds that in the Co films by a factor of two. > Hysteresis loops and magnetization values are presented.

  20. Chemical Stability of Titania and Alumina Thin Films Formed by Atomic Layer Deposition.

    Science.gov (United States)

    Correa, Gabriela C; Bao, Bo; Strandwitz, Nicholas C

    2015-07-15

    Thin films formed by atomic layer deposition (ALD) are being examined for a variety of chemical protection and diffusion barrier applications, yet their stability in various fluid environments is not well characterized. The chemical stability of titania and alumina thin films in air, 18 MΩ water, 1 M KCl, 1 M HNO3, 1 M H2SO4, 1 M HCl, 1 M KOH, and mercury was studied. Films were deposited at 150 °C using trimethylaluminum-H2O and tetrakis(dimethylamido)titanium-H2O chemistries for alumina and titania, respectively. A subset of samples were heated to 450 and 900 °C in inert atmosphere. Films were examined using spectroscopic ellipsometry, atomic force microscopy, optical microscopy, scanning electron microscopy, and X-ray diffraction. Notably, alumina samples were found to be unstable in pure water, acid, and basic environments in the as-synthesized state and after 450 °C thermal treatment. In pure water, a dissolution-precipitation mechanism is hypothesized to cause surface roughening. The stability of alumina films was greatly enhanced after annealing at 900 °C in acidic and basic solutions. Titania films were found to be stable in acid after annealing at or above 450 °C. All films showed a composition-independent increase in measured thickness when immersed in mercury. These results provide stability-processing relationships that are important for controlled etching and protective barrier layers.

  1. Plasma enhanced chemical vapor deposition of iron doped thin dioxide films, their structure and photowetting effect

    Energy Technology Data Exchange (ETDEWEB)

    Sobczyk-Guzenda, A., E-mail: anna.sobczyk-guzenda@p.lodz.pl [Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz (Poland); Owczarek, S.; Szymanowski, H. [Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz (Poland); Wypych-Puszkarz, A. [Department of Molecular Physics, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz (Poland); Volesky, L. [Technical University of Liberec, Institute for Nanomaterials, Advanced Technologies and Innovation, Studentska 1402/2, 461 17 Liberec 1 (Czech Republic); Gazicki-Lipman, M. [Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz (Poland)

    2015-08-31

    Radio frequency plasma enhanced chemical vapor deposition (RF PECVD) technique was applied for the purpose of deposition of iron doped titanium dioxide coatings from a gaseous mixture of oxygen with titanium (IV) chloride and iron (0) pentacarbonyl. Glass slides and silicon wafers were used as substrates. The coatings morphology was investigated using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Their elemental and chemical composition was studied with the help of X-ray energy dispersive spectroscopy (EDS) and Fourier transform infrared (FTIR) spectroscopy, respectively, while their phase composition was analyzed with the Raman spectroscopy. For the determination of the film optical properties, ultraviolet (UV–Vis) spectroscopy techniques were used. Iron content in the range of 0.07 to 11.5 at.% was found in the coatings. FTIR studies showed that iron was built-in in the structure of TiO{sub 2} matrix. Surface roughness, assessed with the SEM and AFM techniques, increases with an increasing content of this element. Trace amounts of iron resulted in a lowering of an absorption threshold of the films and their optical gap, but the tendency was reversed for high concentrations of that element. The effect of iron doping on UV photowettability of the films was also studied and, for coatings containing up to 5% of iron, it was stronger than that exhibited by pure TiO{sub 2}. - Highlights: • Iron doped TiO{sub 2} films were deposited with the PECVD method. • Differences of surface morphology of the films with different iron content were shown. • Depending on the iron content, the film structure is either amorphous or crystalline. • A parabolic character of the optical gap dependence on the concentration of iron was observed. • Up to a concentration of 5% of iron, doped TiO{sub 2} films exhibit a super-hydrophilic effect.

  2. Industrialization of Hot Wire Chemical Vapor Deposition for thin film applications

    Energy Technology Data Exchange (ETDEWEB)

    Schropp, R.E.I., E-mail: r.e.i.schropp@tue.nl

    2015-11-30

    The consequences of implementing a Hot Wire Chemical Vapor Deposition (HWCVD) chamber into an existing in-line or roll-to-roll reactor are described. The hardware and operation of the HWCVD production reactor is compared to that of existing roll-to-roll reactors based on Plasma Enhanced Chemical Vapor Deposition. The most important consequences are the technical consequences and the economic consequences, which are both discussed. The technical consequences are adaptations needed to the hardware and to the processing sequences due to the different interaction of the HWCVD process with the substrate and already deposited layers. The economic consequences are the reduced investments in radio frequency (RF) supplies and RF components. This is partially offset by investments that have to be made in higher capacity pumping systems. The most mature applications of HWCVD are moisture barrier coatings for thin film flexible devices such as Organic Light Emitting Diodes and Organic Photovoltaics, and passivation layers for multicrystalline Si solar cells, high mobility field effect transistors, and silicon heterojunction cells (also known as heterojunction cells with intrinsic thin film layers). Another example is the use of Si in thin film photovoltaics. The cost perspective per unit of thin film photovoltaic product using HWCVD is estimated at 0.07 €/Wp for the Si thin film component. - Highlights: • Review of consequences of implementing Hot Wire CVD into a manufacturing plant • Aspects of scaling up to large area and continuous manufacturing are discussed • Economic advantage of introducing a HWCVD process in a production system is estimated • Using HWCVD, the cost for the Si layers in photovoltaic products is 0.08 €/Wp.

  3. Quantitative and simultaneous analysis of the polarity of polycrystalline ZnO seed layers and related nanowires grown by wet chemical deposition

    Science.gov (United States)

    Guillemin, Sophie; Parize, Romain; Carabetta, Joseph; Cantelli, Valentina; Albertini, David; Gautier, Brice; Brémond, Georges; Fong, Dillon D.; Renevier, Hubert; Consonni, Vincent

    2017-03-01

    The polarity in ZnO nanowires is an important issue since it strongly affects surface configuration and reactivity, nucleation and growth, electro-optical properties, and nanoscale-engineering device performances. However, measuring statistically the polarity of ZnO nanowire arrays grown by chemical bath deposition and elucidating its correlation with the polarity of the underneath polycrystalline ZnO seed layer grown by the sol–gel process represents a major difficulty. To address that issue, we combine resonant x-ray diffraction (XRD) at Zn K-edge using synchrotron radiation with piezoelectric force microscopy and polarity-sensitive chemical etching to statistically investigate the polarity of more than 107 nano-objects both on the macroscopic and local microscopic scales, respectively. By using high temperature annealing under an argon atmosphere, it is shown that the compact, highly c-axis oriented ZnO seed layer is more than 92% Zn-polar and that only a few small O-polar ZnO grains with an amount less than 8% are formed. Correlatively, the resulting ZnO nanowires are also found to be Zn-polar, indicating that their polarity is transferred from the c-axis oriented ZnO grains acting as nucleation sites in the seed layer. These findings pave the way for the development of new strategies to form unipolar ZnO nanowire arrays as a requirement for a number of nanoscale-engineering devices like piezoelectric nanogenerators. They also highlight the great advantage of resonant XRD as a macroscopic, non-destructive method to simultaneously and statistically measure the polarity of ZnO nanowire arrays and of the underneath ZnO seed layer.

  4. Effect of the initial structure on the electrical property of crystalline silicon films deposited on glass by hot-wire chemical vapor deposition.

    Science.gov (United States)

    Chung, Yung-Bin; Lee, Sang-Hoon; Bae, Sung-Hwan; Park, Hyung-Ki; Jung, Jae-Soo; Hwang, Nong-Moon

    2012-07-01

    Crystalline silicon films on an inexpensive glass substrate are currently prepared by depositing an amorphous silicon film and then crystallizing it by excimer laser annealing, rapid thermal annealing, or metal-induced crystallization because crystalline silicon films cannot be directly deposited on glass at a low temperature. It was recently shown that by adding HCI gas in the hot-wire chemical vapor deposition (HWCVD) process, the crystalline silicon film can be directly deposited on a glass substrate without additional annealing. The electrical properties of silicon films prepared using a gas mixture of SiH4 and HCl in the HWCVD process could be further improved by controlling the initial structure, which was achieved by adjusting the delay time in deposition. The size of the silicon particles in the initial structure increased with increasing delay time, which increased the mobility and decreased the resistivity of the deposited films. The 0 and 5 min delay times produced the silicon particle sizes of approximately 10 and approximately 28 nm, respectively, in the initial microstructure, which produced the final films, after deposition for 300 sec, of resistivities of 0.32 and 0.13 Omega-cm, mobilities of 1.06 and 1.48 cm2 V(-1) S(-1), and relative densities of 0.87 and 0.92, respectively.

  5. SiO{sub 2} coating of silver nanoparticles by photoinduced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Boies, Adam M; Girshick, Steven L [Department of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, MN 55455 (United States); Roberts, Jeffrey T [Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455 (United States); Zhang Bin; Nakamura, Toshitaka; Mochizuki, Amane, E-mail: jtrob@umn.ed, E-mail: slg@umn.ed [Nitto Denko Technical Corporation, 501 Via Del Monte, Oceanside, CA 92058 (United States)

    2009-07-22

    Gas-phase silver nanoparticles were coated with silicon dioxide (SiO{sub 2}) by photoinduced chemical vapor deposition (photo-CVD). Silver nanoparticles, produced by inert gas condensation, and a SiO{sub 2} precursor, tetraethylorthosilicate (TEOS), were exposed to vacuum ultraviolet (VUV) radiation at atmospheric pressure and varying temperatures. The VUV photons dissociate the TEOS precursor, initiating a chemical reaction that forms SiO{sub 2} coatings on the particle surfaces. Coating thicknesses were measured for a variety of operation parameters using tandem differential mobility analysis and transmission electron microscopy. The chemical composition of the particle coatings was analyzed using energy dispersive x-ray spectrometry and Fourier transform infrared spectroscopy. The highest purity films were produced at 300-400 {sup 0}C with low flow rates of additional oxygen. The photo-CVD coating technique was shown to effectively coat nanoparticles and limit core particle agglomeration at concentrations up to 10{sup 7} particles cm{sup -3}.

  6. On-line coating of glass with tin oxide by atmospheric pressure chemical vapor deposition.

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, Mark D.; Sopko, J.F. (PPF Industries, Pittsburgh, PA); Houf, William G.; Chae, Yong Kee; McDaniel, Anthony H.; Li, M. (PPF Industries, Pittsburgh, PA); McCamy, J.W. (PPF Industries, Pittsburgh, PA)

    2006-11-01

    Atmospheric pressure chemical vapor deposition (APCVD) of tin oxide is a very important manufacturing technique used in the production of low-emissivity glass. It is also the primary method used to provide wear-resistant coatings on glass containers. The complexity of these systems, which involve chemical reactions in both the gas phase and on the deposition surface, as well as complex fluid dynamics, makes process optimization and design of new coating reactors a very difficult task. In 2001 the U.S. Dept. of Energy Industrial Technologies Program Glass Industry of the Future Team funded a project to address the need for more accurate data concerning the tin oxide APCVD process. This report presents a case study of on-line APCVD using organometallic precursors, which are the primary reactants used in industrial coating processes. Research staff at Sandia National Laboratories in Livermore, CA, and the PPG Industries Glass Technology Center in Pittsburgh, PA collaborated to produce this work. In this report, we describe a detailed investigation of the factors controlling the growth of tin oxide films. The report begins with a discussion of the basic elements of the deposition chemistry, including gas-phase thermochemistry of tin species and mechanisms of chemical reactions involved in the decomposition of tin precursors. These results provide the basis for experimental investigations in which tin oxide growth rates were measured as a function of all major process variables. The experiments focused on growth from monobutyltintrichloride (MBTC) since this is one of the two primary precursors used industrially. There are almost no reliable growth-rate data available for this precursor. Robust models describing the growth rate as a function of these variables are derived from modeling of these data. Finally, the results are used to conduct computational fluid dynamic simulations of both pilot- and full-scale coating reactors. As a result, general conclusions are

  7. Suitable alkaline for graphene peeling grown on metallic catalysts using chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Karamat, S., E-mail: shumailakaramat@gmail.com [Department of Physics, Middle East Technical University, Ankara 06800 (Turkey); COMSATS Institute of Information Technology, Islamabad 54000 (Pakistan); Sonuşen, S. [Sabancı Üniversitesi (SUNUM), İstanbul 34956 (Turkey); Çelik, Ü. [Nanomagnetics Instruments, Ankara (Turkey); Uysallı, Y. [Department of Physics, Middle East Technical University, Ankara 06800 (Turkey); Oral, A., E-mail: orahmet@metu.edu.tr [Department of Physics, Middle East Technical University, Ankara 06800 (Turkey)

    2016-04-15

    Graphical abstract: - Highlights: • Graphene layers were grown on Pt and Cu foil via ambient pressure chemical vapor deposition method and for the delicate removal of graphene from metal catalysts, electrolysis method was used by using different alkaline (sodium hydroxide, potassium hydroxide, lithium hydroxide and barium hydroxide). • The delamination speed of PMMA/graphene stack was higher during the KOH and LiOH electrolysis as compare to NaOH and Ba(OH){sub 2}. Ba(OH){sub 2} is not advisable because of the residues left on the graphene surface which would further trapped in between graphene and SiO{sub 2}/Si surface after transfer. The average peeling time in case of Pt electrode is ∼6 min for KOH and LiOH and ∼15 min for NaOH and Ba(OH){sub 2}. • Electrolysis method also works for the Cu catalyst. The peeling of graphene was faster in the case of Cu foil due to small size of bubbles which moves faster between the stack and the electrode surface. The average peeling time was ∼3–5 min. • XPS analysis clearly showed that the Pt substrates can be re-used again. Graphene layer was transferred to SiO{sub 2}/Si substrates and to the flexible substrate by using the same peeling method. - Abstract: In chemical vapor deposition, the higher growth temperature roughens the surface of the metal catalyst and a delicate method is necessary for the transfer of graphene from metal catalyst to the desired substrates. In this work, we grow graphene on Pt and Cu foil via ambient pressure chemical vapor deposition (AP-CVD) method and further alkaline water electrolysis was used to peel off graphene from the metallic catalyst. We used different electrolytes i.e., sodium hydroxide (NaOH), potassium hydroxide (KOH), lithium hydroxide (LiOH) and barium hydroxide Ba(OH){sub 2} for electrolysis, hydrogen bubbles evolved at the Pt cathode (graphene/Pt/PMMA stack) and as a result graphene layer peeled off from the substrate without damage. The peeling time for KOH and Li

  8. N-type crystalline silicon films free of amorphous silicon deposited on glass by HCl addition using hot wire chemical vapour deposition.

    Science.gov (United States)

    Chung, Yung-Bin; Park, Hyung-Ki; Lee, Sang-Hoon; Song, Jean-Ho; Hwang, Nong-Moon

    2011-09-01

    Since n-type crystalline silicon films have the electric property much better than those of hydrogenated amorphous and microcrystalline silicon films, they can enhance the performance of advanced electronic devices such as solar cells and thin film transistors (TFTs). Since the formation of amorphous silicon is unavoidable in the low temperature deposition of microcrystalline silicon on a glass substrate at temperatures less than 550 degrees C in the plasma-enhanced chemical vapour deposition and hot wire chemical vapour deposition (HWCVD), crystalline silicon films have not been deposited directly on a glass substrate but fabricated by the post treatment of amorphous silicon films. In this work, by adding the HCl gas, amorphous silicon-free n-type crystalline silicon films could be deposited directly on a glass substrate by HWCVD. The resistivity of the n-type crystalline silicon film for the flow rate ratio of [HCl]/[SiH4] = 7.5 and [PH3]/[SiH4] = 0.042 was 5.31 x 10(-4) ohms cm, which is comparable to the resistivity 1.23 x 10(-3) ohms cm of films prepared by thermal annealing of amorphous silicon films. The absence of amorphous silicon in the film could be confirmed by high resolution transmission electron microscopy.

  9. Atomic layer chemical vapor deposition of ZrO2-based dielectric films: Nanostructure and nanochemistry

    Science.gov (United States)

    Dey, S. K.; Wang, C.-G.; Tang, D.; Kim, M. J.; Carpenter, R. W.; Werkhoven, C.; Shero, E.

    2003-04-01

    A 4 nm layer of ZrOx (targeted x˜2) was deposited on an interfacial layer (IL) of native oxide (SiO, t˜1.2 nm) surface on 200 mm Si wafers by a manufacturable atomic layer chemical vapor deposition technique at 300 °C. Some as-deposited layers were subjected to a postdeposition, rapid thermal annealing at 700 °C for 5 min in flowing oxygen at atmospheric pressure. The experimental x-ray diffraction, x-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, and high-resolution parallel electron energy loss spectroscopy results showed that a multiphase and heterogeneous structure evolved, which we call the Zr-O/IL/Si stack. The as-deposited Zr-O layer was amorphous ZrO2-rich Zr silicate containing about 15% by volume of embedded ZrO2 nanocrystals, which transformed to a glass nanoceramic (with over 90% by volume of predominantly tetragonal-ZrO2 (t-ZrO2) and monoclinic-ZrO2 (m-ZrO2) nanocrystals) upon annealing. The formation of disordered amorphous regions within some of the nanocrystals, as well as crystalline regions with defects, probably gave rise to lattice strains and deformations. The interfacial layer (IL) was partitioned into an upper SiO2-rich Zr silicate and the lower SiOx. The latter was substoichiometric and the average oxidation state increased from Si0.86+ in SiO0.43 (as-deposited) to Si1.32+ in SiO0.66 (annealed). This high oxygen deficiency in SiOx was indicative of the low mobility of oxidizing specie in the Zr-O layer. The stacks were characterized for their dielectric properties in the Pt/{Zr-O/IL}/Si metal oxide-semiconductor capacitor (MOSCAP) configuration. The measured equivalent oxide thickness (EOT) was not consistent with the calculated EOT using a bilayer model of ZrO2 and SiO2, and the capacitance in accumulation (and therefore, EOT and kZr-O) was frequency dispersive, trends well documented in literature. This behavior is qualitatively explained in terms of the multilayer nanostructure and nanochemistry that

  10. Model reduction and temperature uniformity control for rapid thermal chemical vapor deposition reactors

    Science.gov (United States)

    Theodoropoulou, Artemis-Georgia

    The consideration of Rapid Thermal Processing (RTP) in semiconductor manufacturing has recently been increasing. As a result, control of RTP systems has become of great importance since it is expected to help in addressing uniformity problems that, so far, have been obstructing the acceptance of the method. The spatial distribution appearing in RTP models necessitates the use of model reduction in order to obtain models of a size suitable for use in control algorithms. This dissertation addresses model reduction as well as control issues for RTP systems. A model of a three-zone Rapid Thermal Chemical Vapor Deposition (RTCVD) system is developed to study the effects of spatial wafer temperature patterns on polysilicon deposition uniformity. A sequence of simulated runs is performed, varying the lamp power profiles so that different wafer temperature modes are excited. The dominant spatial wafer thermal modes are extracted via Proper Orthogonal Decomposition and subsequently used as a set of trial functions to represent both the wafer temperature and deposition thickness. A collocation formulation of Galerkin's method is used to discretize the original modeling equations, giving a low-order model which loses little of the original, high-order model's fidelity. We make use of the excellent predictive capabilities of the reduced model to optimize power inputs to the lamp banks to achieve a desired polysilicon deposition thickness at the end of a run with minimal deposition spatial nonuniformity. Since the results illustrate that the optimization procedure benefits from the use of the reduced-order model, we further utilize the reduced order model for real time Model Based Control. The feedback controller is designed using the Internal Model Control (IMC) structure especially modified to handle systems described by ordinary differential and algebraic equations. The IMC controller is obtained using optimal control theory on singular arcs extended for multi input systems

  11. Self-Catalytic Growth of Tin Oxide Nanowires by Chemical Vapor Deposition Process

    Directory of Open Access Journals (Sweden)

    Bongani S. Thabethe

    2013-01-01

    Full Text Available We report on the synthesis of tin oxide (SnO2 nanowires by a chemical vapor deposition (CVD process. Commercially bought SnO nanopowders were vaporized at 1050°C for 30 minutes with argon gas continuously passing through the system. The as-synthesized products were characterized using UV-visible absorption spectroscopy, X-ray diffraction (XRD, scanning electron microscopy (SEM, and high-resolution transmission electron microscopy (HRTEM. The band gap of the nanowires determined from UV-visible absorption was around 3.7 eV. The SEM micrographs revealed “wool-like” structure which contains nanoribbons and nanowires with liquid droplets at the tips. Nanowires typically have diameter in the range of 50–200 nm and length 10–100 μm. These nanowires followed the vapor-liquid-solid (VLS growth mechanism.

  12. III-nitride quantum cascade detector grown by metal organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yu, E-mail: yusong@princeton.edu; Huang, Tzu-Yung; Badami, Pranav; Gmachl, Claire [Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08540 (United States); Bhat, Rajaram; Zah, Chung-En [Corning Incorporated, Corning, New York 14831 (United States)

    2014-11-03

    Quantum cascade (QC) detectors in the GaN/Al{sub x}Ga{sub 1−x}N material system grown by metal organic chemical vapor deposition are designed, fabricated, and characterized. Only two material compositions, i.e., GaN as wells and Al{sub 0.5}Ga{sub 0.5}N as barriers are used in the active layers. The QC detectors operates around 4 μm, with a peak responsivity of up to ∼100 μA/W and a detectivity of up to 10{sup 8} Jones at the background limited infrared performance temperature around 140 K.

  13. Structural and optical properties of tellurium films obtained by chemical vapor deposition(CVD)

    Institute of Scientific and Technical Information of China (English)

    MA Yu-tian; GONG Zhu-Qing; XU Wei-Hong; HUANG Jian

    2006-01-01

    Tellurium thin films were prepared by the chemical vapor deposition method. The structure, surface morphology and optical properties of the Te thin films were analyzed by powder X-ray diffraction, scanning electron microscopy, FTIR transmission,UV/VIS/NIR transmission and reflectance. The results show that the films structural and optical properties are influenced by many factors such as film thickness, crystallite size and substrate temperature. The films as thick as 111-133 nm have high IR transmission across the full 8-13 μm band and highly blocking in the solar spectral region elsewhere, which indicates that Te films thickness in this region can be used as good solar radiation shields in radiative cooling devices.

  14. AB-stacked multilayer graphene synthesized via chemical vapor deposition: a characterization by hot carrier transport.

    Science.gov (United States)

    Diaz-Pinto, Carlos; De, Debtanu; Hadjiev, Viktor G; Peng, Haibing

    2012-02-28

    We report the synthesis of AB-stacked multilayer graphene via ambient pressure chemical vapor deposition on Cu foils and demonstrate a method to construct suspended multilayer graphene devices. In four-terminal geometry, such devices were characterized by hot carrier transport at temperatures down to 240 mK and in magnetic fields up to 14 T. The differential conductance (dI/dV) shows a characteristic dip at longitudinal voltage bias V = 0 at low temperatures, indicating the presence of hot electron effect due to a weak electron-phonon coupling. Under magnetic fields, the magnitude of the dI/dV dip diminishes through the enhanced intra-Landau level cyclotron phonon scattering. Our results provide new perspectives in obtaining and understanding AB-stacked multilayer graphene, important for future graphene-based applications.

  15. Preparation of carbon nanotubes with different morphology by microwave plasma enhanced chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Duraia, El-Shazly M. [Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt); Al-Farabi Kazakh National University, 71 Al-Farabi av., 050038 Almaty (Kazakhstan); Institute of Physics and Technology, Ibragimov Street 11, 050032 Almaty (Kazakhstan); Mansurov, Zulkhair [Al-Farabi Kazakh National University, 71 Al-Farabi av., 050038 Almaty (Kazakhstan); Tokmoldin, S.Zh. [Institute of Physics and Technology, Ibragimov Street 11, 050032 Almaty (Kazakhstan)

    2010-04-15

    In this work we present a part of our results about the preparation of carbon nanotube with different morphologies by using microwave plasma enhanced chemical vapour deposition MPECVD. Well aligned, curly, carbon nanosheets, coiled carbon sheets and carbon microcoils have been prepared. We have investigated the effect of the different growth condition parameters such as the growth temperature, pressure and the hydrogen to methane flow rate ratio on the morphology of the carbon nanotubes. The results showed that there is a great dependence of the morphology of carbon nanotubes on these parameters. The yield of the carbon microcoils was high when the growth temperature was 700 C. There is a linear relation between the growth rate and the methane to hydrogen ratio. The effect of the gas pressure on the CNTs was also studied. Our samples were investigated by scanning electron microscope and Raman spectroscopy (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Controlling nucleation of monolayer WSe2 during metal-organic chemical vapor deposition growth

    Science.gov (United States)

    Eichfeld, Sarah M.; Oliveros Colon, Víctor; Nie, Yifan; Cho, Kyeongjae; Robinson, Joshua A.

    2016-06-01

    Tungsten diselenide (WSe2) is a semiconducting, two-dimensional (2D) material that has gained interest in the device community recently due to its electronic properties. The synthesis of atomically thin WSe2, however, is still in its infancy. In this work we elucidate the requirements for large selenium/tungsten precursor ratios and explain the effect of nucleation temperature on the synthesis of WSe2 via metal-organic chemical vapor deposition (MOCVD). The introduction of a nucleation-step prior to growth demonstrates that increasing nucleation temperature leads to a transition from a Volmer-Weber to Frank-van der Merwe growth mode. Additionally, the nucleation step prior to growth leads to an improvement of WSe2 layer coverage on the substrate. Finally, we note that the development of this two-step technique may allow for improved control and quality of 2D layers grown via CVD and MOCVD processes.

  17. Chemical-Vapor-Deposited Graphene as Charge Storage Layer in Flash Memory Device

    Directory of Open Access Journals (Sweden)

    W. J. Liu

    2016-01-01

    Full Text Available We demonstrated a flash memory device with chemical-vapor-deposited graphene as a charge trapping layer. It was found that the average RMS roughness of block oxide on graphene storage layer can be significantly reduced from 5.9 nm to 0.5 nm by inserting a seed metal layer, which was verified by AFM measurements. The memory window is 5.6 V for a dual sweep of ±12 V at room temperature. Moreover, a reduced hysteresis at the low temperature was observed, indicative of water molecules or −OH groups between graphene and dielectric playing an important role in memory windows.

  18. Investigation of Chemical-Vapour-Deposition Diamond Alpha-Particle Detectors

    Institute of Scientific and Technical Information of China (English)

    GU Bei-Bei; WANG Lin-Jun; ZHANG Ming-Long; XIA Yi-Ben

    2004-01-01

    Diamond films with [100] texture were prepared by a hot-filament chemical vapour deposition technique to fabricate particle detectors. The response of detectors to 5.5 MeV 241 Am particles is studied. The photocurrent increases linearly and then levels off with voltage, and 7hA is obtained at bias voltage of 100 V. The timedependent photocurrent initially increases rapidly and then tends to reach saturation. Furthermore, a little increase of the dark-current after irradiation can be accounted for by the release of the charges captured by the trapping centres at low energy levels during irradiation. An obvious peak of the pulse height distribution can be observed, associated with the energy of 5.5 MeV.

  19. Microwave plasma-enhanced chemical vapour deposition growth of carbon nanostructures

    Directory of Open Access Journals (Sweden)

    Shivan R. Singh

    2010-05-01

    Full Text Available The effect of various input parameters on the production of carbon nanostructures using a simple microwave plasma-enhanced chemical vapour deposition technique has been investigated. The technique utilises a conventional microwave oven as the microwave energy source. The developed apparatus is inexpensive and easy to install and is suitable for use as a carbon nanostructure source for potential laboratory-based research of the bulk properties of carbon nanostructures. A result of this investigation is the reproducibility of specific nanostructures with the variation of input parameters, such as carbon-containing precursor and support gas flow rate. It was shown that the yield and quality of the carbon products is directly controlled by input parameters. Transmission electron microscopy and scanning electron microscopy were used to analyse the carbon products; these were found to be amorphous, nanotubes and onion-like nanostructures.

  20. Synthesis and characterization of well-aligned carbon nitrogen nanotubes by microwave plasma chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    马旭村; 徐贵昌; 王恩哥

    2000-01-01

    Well-aligned carbon nitrogen nanotube films have been synthesized successfully on meso-porous silica substrates by microwave plasma chemical vapor deposition (MWPCVD) method. Studies on their morphology, structure, and composition by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy (EDX), respectively, indicate that these nanotubes consist of linearly polymerized carbon nitrogen nanobells, and the nitrogen atoms have been doped into carbon netweork to form a new structure C1-xNx( x = 0.16±0.01). X-ray photoelectron spectroscopy (XPS) results of the samples further demonstrate that carbon bonds cova-lently with nitrogen in all the carbon nitrogen nanotube films.

  1. Study of surface morphology and alignment of MWCNTs grown by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Shukrullah, S., E-mail: zshukrullah@gmail.com, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: maizats@petronas.com.my; Mohamed, N. M., E-mail: zshukrullah@gmail.com, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: maizats@petronas.com.my; Shaharun, M. S., E-mail: zshukrullah@gmail.com, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: maizats@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 31750 Tronoh, Perak (Malaysia); Yasar, M., E-mail: Muhammad.yasar@ieee.org [Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 31750 Tronoh, Perak (Malaysia)

    2014-10-24

    In this research work, Multiwalled Carbon Nanotubes (MWCNTs) have been synthesized successfully by using floating catalytic chemical vapor deposition (FCCVD) method. Different ferrocene amounts (0.1, 0.125 and 0.15 g) were used as catalyst and ethylene was used as a carbon precursor at reaction temperature of 800°C. Characterization of the grown MWCNTs was carried out by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The obtained data showed that the catalyst weight affects the nanotubes diameter, alignment, crystallinity and growth significantly, whereas negligible influence was noticed on CNTs forest length. The dense, uniform and meadow like patterns of grown CNTs were observed for 0.15 g ferrocene. The average diameter of the grown CNTs was found in the range of 32 to 75 nm. Close inspection of the TEM images also confirmed the defects in some of the grown CNTs, where few black spots were evident in CNTs structure.

  2. Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production.

    Science.gov (United States)

    Kumar, Mukul; Ando, Yoshinori

    2010-06-01

    This review article deals with the growth mechanism and mass production of carbon nanotubes (CNTs) by chemical vapor deposition (CVD). Different aspects of CNT synthesis and growth mechanism are reviewed in the light of latest progresses and understandings in the field. Materials aspects such as the roles of hydrocarbon, catalyst and catalyst support are discussed. Many new catalysts and new carbon sources are described. Growth-control aspects such as the effects of temperature, vapor pressure and catalyst concentration on CNT diameter distribution and single- or multi-wall formation are explained. Latest reports of metal-catalyst-free CNT growth are considered. The mass-production aspect is discussed from the perspective of a sustainable CNT technology. Existing problems and challenges of the process are addressed with future directions.

  3. Characterization of doped hydrogenated nanocrystalline silicon films prepared by plasma enhanced chemical vapour deposition

    Institute of Scientific and Technical Information of China (English)

    Wang Jin-Liang; Wu Er-Xing

    2007-01-01

    The B-and P-doped hydrogenated nanocrystalline silicon films (nc-Si:H) are prepared by plasma-enhanced chemical vapour deposition (PECVD) .The microstructures of doped nc-Si:H films are carefully and systematically char acterized by using high resolution electron microscopy (HREM) ,Raman scattering,x-ray diffraction (XRD) ,Auger electron spectroscopy (AES) ,and resonant nucleus reaction (RNR) .The results show that as the doping concentration of PH3 increases,the average grain size (d) tends to decrease and the crystalline volume percentage (Xc) increases simultaneously.For the B-doped samples,as the doping concentration of B2H6 increases,no obvious change in the value of d is observed,but the value of Xc is found to decrease.This is especially apparent in the case of heavy B2H6 doped samples,where the films change from nanocrystalline to amorphous.

  4. Lead-Free Piezoelectric Diaphragm Biosensors Based on Micro-Machining Technology and Chemical Solution Deposition.

    Science.gov (United States)

    Li, Xiaomeng; Wu, Xiaoqing; Shi, Peng; Ye, Zuo-Guang

    2016-01-12

    In this paper, we present a new approach to the fabrication of integrated silicon-based piezoelectric diaphragm-type biosensors by using sodium potassium niobate-silver niobate (0.82KNN-0.18AN) composite lead-free thin film as the piezoelectric layer. The piezoelectric diaphragms were designed and fabricated by micro-machining technology and chemical solution deposition. The fabricated device was very sensitive to the mass changes caused by various targets attached on the surface of diaphragm. The measured mass sensitivity value was about 931 Hz/μg. Its good performance shows that the piezoelectric diaphragm biosensor can be used as a cost-effective platform for nucleic acid testing.

  5. Fabrication of Rare Earth-Doped Transparent Glass Ceramic Optical Fibers by Modified Chemical Vapor Deposition

    CERN Document Server

    Blanc, Wilfried; Nguyen, Luan; Bhaktha, S N B; Sebbah, Patrick; Pal, Bishnu P; Dussardier, Bernard

    2011-01-01

    Rare earth (RE) doped silica-based optical fibers with transparent glass ceramic (TGC) core was fabricated through the well-known modified chemical vapor deposition (MCVD) process without going through the commonly used stage of post-ceramming. The main characteristics of the RE-doped oxyde nanoparticles namely, their density and mean diameter in the fibers are dictated by the concentration of alkaline earth element used as phase separating agent. Magnesium and erbium co-doped fibers were fabricated. Optical transmission in term of loss due to scattering as well as some spectroscopic characteristics of the erbium ions was studied. For low Mg content, nano-scale particles could be grown with and relatively low scattering losses were obtained, whereas large Mg-content causes the growth of larger particles resulting in much higher loss. However in the latter case, certain interesting alteration of the spectroscopic properties of the erbium ions were observed. These initial studies should be useful in incorporati...

  6. Magnetic and cytotoxic properties of hot-filament chemical vapour deposited diamond

    Energy Technology Data Exchange (ETDEWEB)

    Zanin, Hudson, E-mail: hudsonzanin@gmail.com [Faculdade de Engenharia Eletrica e Computacao, Departamento de Semicondutores, Instrumentos e Fotonica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N.400, CEP 13 083-852 Campinas, Sao Paulo (Brazil); Peterlevitz, Alfredo Carlos; Ceragioli, Helder Jose [Faculdade de Engenharia Eletrica e Computacao, Departamento de Semicondutores, Instrumentos e Fotonica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N.400, CEP 13 083-852 Campinas, Sao Paulo (Brazil); Rodrigues, Ana Amelia; Belangero, William Dias [Laboratorio de Biomateriais em Ortopedia, Faculdade de Ciencias Medicas, Universidade Estadual de Campinas, Rua Cinco de Junho 350 CEP 13083970, Campinas, Sao Paulo (Brazil); Baranauskas, Vitor [Faculdade de Engenharia Eletrica e Computacao, Departamento de Semicondutores, Instrumentos e Fotonica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N.400, CEP 13 083-852 Campinas, Sao Paulo (Brazil)

    2012-12-01

    Microcrystalline (MCD) and nanocrystalline (NCD) magnetic diamond samples were produced by hot-filament chemical vapour deposition (HFCVD) on AISI 316 substrates. Energy Dispersive X-ray Spectroscopy (EDS) measurements indicated the presence of Fe, Cr and Ni in the MCD and NCD samples, and all samples showed similar magnetisation properties. Cell viability tests were realised using Vero cells, a type of fibroblastic cell line. Polystyrene was used as a negative control for toxicity (NCT). The cells were cultured under standard cell culture conditions. The proliferation indicated that these magnetic diamond samples were not cytotoxic. - Highlights: Black-Right-Pointing-Pointer Polycrystalline diamonds doped with Fe, Cr and Ni acquire ferromagnetic properties. Black-Right-Pointing-Pointer CVD diamonds have been prepared with magnetic and semiconductor properties. Black-Right-Pointing-Pointer Micro/nanocrystalline diamonds show good cell viability with fibroblast proliferation.

  7. Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper

    Science.gov (United States)

    Banszerus, Luca; Schmitz, Michael; Engels, Stephan; Dauber, Jan; Oellers, Martin; Haupt, Federica; Watanabe, Kenji; Taniguchi, Takashi; Beschoten, Bernd; Stampfer, Christoph

    2015-01-01

    Graphene research has prospered impressively in the past few years, and promising applications such as high-frequency transistors, magnetic field sensors, and flexible optoelectronics are just waiting for a scalable and cost-efficient fabrication technology to produce high-mobility graphene. Although significant progress has been made in chemical vapor deposition (CVD) and epitaxial growth of graphene, the carrier mobility obtained with these techniques is still significantly lower than what is achieved using exfoliated graphene. We show that the quality of CVD-grown graphene depends critically on the used transfer process, and we report on an advanced transfer technique that allows both reusing the copper substrate of the CVD growth and making devices with mobilities as high as 350,000 cm2 V–1 s–1, thus rivaling exfoliated graphene. PMID:26601221

  8. Tungsten-Carbon X-ray Multilayered Mirror Prepared by Photo-Chemical Vapor Deposition

    Science.gov (United States)

    Suzuki, Yoshihiko

    1989-05-01

    A tungsten-carbon(W/C) X-ray multilayered mirror was prepared by photoinduced chemical vapor deposition (photo-CVD) using a low-pressure mercury lamp and an argon-fluoride (ArF) excimer laser. The 40% reflectivity of this mirror was measured using a small-angle X-ray diffractometer with Cu-Kα radiation. This reflectivity is lower than the theoretical reflectivity of 80%. From observations of the transmission electron micrograph from this multilayered mirror, it seems that the reduction of the reflectivity was caused by the indistinct interfaces of the diffused films, and by the roughness of the films introduced by partial crystallization of the tungsten films.

  9. Al-Induced Crystallization Growth of Si Films by Inductively Coupled Plasma Chemical Vapour Deposition

    Institute of Scientific and Technical Information of China (English)

    LI Jun-Shuai; WANG Jin-Xiao; YIN Min; GAO Ping-Qi; HE De-Yan

    2006-01-01

    Polycrystalline Si (poly-Si) films are in situ grown on Al-coated glass substrates by inductively coupled plasma chemical vapour deposition at a temperature as low as 350 C. Compared to the traditional annealing crystallization of amorphous Si/Al-layer structures, no layer exchange is observed and the resultant poly-Si film is much thicker than Al layer. By analysing the depth profiles of the elemental composition, no remains of Al atoms are detected in Si layer within the limit (< 0.01 at. %) of the used evaluations. It is indicated that the poly-Si material obtained by Al-induced crystallization growth has more potential applications than that prepared by annealing the amorphous Si/Al-layer structures.

  10. Elaboration of strontium ruthenium oxide thin films on metal substrates by chemical solution deposition

    Energy Technology Data Exchange (ETDEWEB)

    Seveno, R. [Universite de Nantes, Institut de Recherche en Electrotechnique et Electronique de Nantes Atlantique (IREENA), 2, rue de la Houssiniere, BP 92208, 44322 Nantes Cedex 3 (France)]. E-mail: raynald.seveno@univ-nantes.fr; Braud, A. [Universite de Nantes, Institut de Recherche en Electrotechnique et Electronique de Nantes Atlantique (IREENA), 2, rue de la Houssiniere, BP 92208, 44322 Nantes Cedex 3 (France); Gundel, H.W. [Universite de Nantes, Institut de Recherche en Electrotechnique et Electronique de Nantes Atlantique (IREENA), 2, rue de la Houssiniere, BP 92208, 44322 Nantes Cedex 3 (France)

    2005-12-22

    In order to improve the structural interface between a metal substrate and a lead zirconate titanate (Pb(ZrTi)O{sub 3}, PZT) ferroelectric thin film, the elaboration of strontium ruthenium oxide (SrRuO{sub 3}) by chemical solution deposition is studied. The SrRuO{sub 3} thin films were realized by multiple spin-coating technique and the temperature of the rapid thermal annealing process was optimized. The crystallization behavior was examined by X-ray diffraction; surface analyses using scanning electron microscope and atomic force microscope techniques showed the influence of the SrRuO{sub 3} layer at the interface PZT/metal on the morphology of the ferroelectric thin film. From the electrical measurements, a coercive electric field around 25 kV/cm and a remanent polarization of approximately 30 {mu}C/cm were found.

  11. Growth inhibition to enhance conformal coverage in thin film chemical vapor deposition.

    Science.gov (United States)

    Kumar, Navneet; Yanguas-Gil, Angel; Daly, Scott R; Girolami, Gregory S; Abelson, John R

    2008-12-31

    We introduce the use of a growth inhibitor to enhance thin film conformality in low temperature chemical vapor deposition. Films of TiB(2) grown from the single source precursor Ti(BH(4))(3)(dme) are much more highly conformal when grown in the presence of one of the film growth byproducts, 1,2-dimethoxyethane (dme). This effect can be explained in terms of two alternative inhibitory mechanisms: one involving blocking of surface reactive sites, which is equivalent to reducing the rate of the forward reaction leading to film growth, the other analogous to Le Chatelier's principle, in which the addition of a reaction product increases the rate of the back reaction. The reduction in growth rate corresponds to a reduction in the sticking probability of the precursor, which enhances conformality by enabling the precursor to diffuse deeper into a recessed feature before it reacts.

  12. Plasma environment during hot cathode direct current discharge plasma chemical vapor deposition of diamond films

    Institute of Scientific and Technical Information of China (English)

    朱晓东; 詹如娟; 周海洋; 胡敏; 温晓辉; 周贵恩; 李凡庆

    1999-01-01

    The plasma characteristics have been investigated in situ by using optical emission spectroscopy (OES) and the Langmuir probe during hot cathode direct current discharge plasma chemical vapor deposition of diamond films. The changes of atomic H and CH radical in the ground state have been calculated quantitatively according to the results of OES and the Langmuir probe measurement as discharge current density varied. It is shown that atomic H and CH radicals both in the ground state and in the excited state increase with the enhancement of the discharge current density in the plasma. The electron density and CH emission intensity increase linearly with the enhancement of discharge current densities. The generation of different carbon-containing radicals is related to the elevation of electron temperature. Combining the growth process of diamond films and the diagnostic results, it is shown that atomic H in the excited state may improve the diamond growth efficiently, and the increase of electron temperat

  13. MICROSTRUCTURE OF SiOx:H FILMS PREPARED BY PLASMA ENHANCED CHEMICAL VAPOR DEPOSITION

    Institute of Scientific and Technical Information of China (English)

    MA ZHI-XUN; LIAO XIAN-BO; KONG GUANG-LIN; CHU JUN-HAO

    2000-01-01

    The micro-Raman spectroscopy and infrared (IR) spectroscopy have been performed for the study of the microstructure of amorphous hydrogenated oxidized silicon (a-SiOx:H) films prepared by Plasma Enhanced Chemical Vapor Deposition technique. It is found that a-SiOx :H consists of two phases: an amorphous silicon-rich phase and an oxygen-rich phase mainly comprised of HSi-SiO2 and HSi-O3. The Raman scattering results exhibit that the frequency of TO-like mode of amorphous silicon red-shifts with decreasing size of silicon-rich region. This is related to the quantum confinement effects, similar to the nanocrystalline silicon.

  14. Chemical vapour deposition of tungsten and tungsten silicide layers for applications in novel silicon technology

    CERN Document Server

    Li, F X

    2002-01-01

    This work was a detailed investigation into the Chemical Vapour Deposition (CVD) of tungsten and tungsten silicide for potential applications in integrated circuit (IC) and other microelectronic devices. These materials may find novel applications in contact schemes for transistors in advanced ICs, buried high conductivity layers in novel Silicon-On-Insulator (SOI) technology and in power electronic devices. The CVD techniques developed may also be used for metal coating of recessed or enclosed features which may occur in novel electronic or electromechanical devices. CVD of tungsten was investigated using the silicon reduction reaction of WF sub 6. W layers with an optimum self-limiting thickness of 100 nm and resistivity 20 mu OMEGA centre dot cm were produced self-aligned to silicon. A hydrogen passivation technique was developed as part of the wafer pre-clean schedule and proved essential in achieving optimum layer thickness. Layers produced by this approach are ideal for intimate contact to shallow junct...

  15. Preparation of nanosized sililcon carbide powders by chemical vapor deposition at low temperatures

    Institute of Scientific and Technical Information of China (English)

    LI Bin; ZHANG Changrui; HU Haifeng; QI Gongjin

    2007-01-01

    Liquid carbosilane was synthesized and analyzed by infrared(IR) and H-NMR(nuclear magnetic resonance)spectroscopy.Silicon carbide(SiC)powders were prepared by chemical vapor deposition (CVD)at 850℃ and 900℃ from liquid carbosilanes.The product powders were characterized by IR spectroscopy,X-ray diffractometry(XRD)and scanning electron microscopy (SEM).Results show that liquid carbosilane synthesized was the mixture of several oligomers that had a Si-C backbone.The powders prepared at 850℃ contain some organic segments,and those prepared at 900℃ are pure nanosized SiC powders,which are partly crystallized,the size of which is about 50-70 nm.

  16. High Resistive ZnO/Diamond/Si Films Grown via Metal-organic Chemical Vapour Deposition

    Institute of Scientific and Technical Information of China (English)

    YANG Hong-jun; ZHAO Bai-jun; FANG Xiu-jun; DU Guo-tong; LIU Da-li; GAO Chun-xiao; LIU Xi-zhe

    2005-01-01

    Piezoelectric ZnO layers with high resistivity for surface acoustic wave applications were prepared on polycrystalline diamond/Si substrates with (111) orientation via metal-organic chemical vapour deposition.The characteristics of the films were optimized through different growth methods. The comparative study of the X-ray diffraction spectra and scanning electron microscopic images showed that the final-prepared ZnO films were dominantly c-axis oriented. Zn and O elements in the final prepared ZnO films were investigated through X-ray photoelectron spectroscopy. According to the statistical results, the n(Zn)/n(O) ratio is near 1. The Raman scattering was also performed in back scattering configuration. E2 mode was observed for the final films, which indicated that the better quality ZnO films had been obtained. The resistivity of the films was also enhanced via the modification of the growth methods.

  17. Carbon nanotubes for supercapacitors: Consideration of cost and chemical vapor deposition techniques

    Institute of Scientific and Technical Information of China (English)

    Chao Zheng; Weizhong Qian; Chaojie Cui; Guanghui Xu; Mengqiang Zhao; Guili Tian; Fei Wei

    2012-01-01

    In this topic,we first discussed the requirement and performance of supercapacitors using carbon nanotubes (CNTs) as the electrode,including specific surface area,purity and cost.Then we reviewed the preparation technique of single walled CNTs (SWNTs) in relatively large scale by chemical vapor deposition method.Its catalysis on the decomposition of methane and other carbon source,the reactor type and the process control strategies were discussed.Special focus was concentrated on how to increase the yield,selectivity,and purity of SWNTs and how to inhibit the formation of impurities,including amorphous carbon,multiwalled CNTs and the carbon encapsulated metal particles,since these impurities seriously influenced the performance of SWNTs in supercapacitors.Wish it be helpful to further decrease its product cost and for the commercial use in supercapacitors.

  18. Growth of GaN micro/nanolaser arrays by chemical vapor deposition

    Science.gov (United States)

    Liu, Haitao; Zhang, Hanlu; Dong, Lin; Zhang, Yingjiu; Pan, Caofeng

    2016-09-01

    Optically pumped ultraviolet lasing at room temperature based on GaN microwire arrays with Fabry-Perot cavities is demonstrated. GaN microwires have been grown perpendicularly on c-GaN/sapphire substrates through simple catalyst-free chemical vapor deposition. The GaN microwires are [0001] oriented single-crystal structures with hexagonal cross sections, each with a diameter of ˜1 μm and a length of ˜15 μm. A possible growth mechanism of the vertical GaN microwire arrays is proposed. Furthermore, we report room-temperature lasing in optically pumped GaN microwire arrays based on the Fabry-Perot cavity. Photoluminescence spectra exhibit lasing typically at 372 nm with an excitation threshold of 410 kW cm-2. The result indicates that these aligned GaN microwire arrays may offer promising prospects for ultraviolet-emitting micro/nanodevices.

  19. Oxidation Kinetics of Chemically Vapor-Deposited Silicon Carbide in Wet Oxygen

    Science.gov (United States)

    Opila, Elizabeth J.

    1994-01-01

    The oxidation kinetics of chemically vapor-deposited SiC in dry oxygen and wet oxygen (P(sub H2O) = 0.1 atm) at temperatures between 1200 C and 1400 C were monitored using thermogravimetric analysis. It was found that in a clean environment, 10% water vapor enhanced the oxidation kinetics of SiC only very slightly compared to rates found in dry oxygen. Oxidation kinetics were examined in terms of the Deal and Grove model for oxidation of silicon. It was found that in an environment containing even small amounts of impurities, such as high-purity Al2O3 reaction tubes containing 200 ppm Na, water vapor enhanced the transport of these impurities to the oxidation sample. Oxidation rates increased under these conditions presumably because of the formation of less protective sodium alumino-silicate scales.

  20. Layer-dependent supercapacitance of graphene films grown by chemical vapor deposition on nickel foam

    KAUST Repository

    Chen, Wei

    2013-03-01

    High-quality, large-area graphene films with few layers are synthesized on commercial nickel foams under optimal chemical vapor deposition conditions. The number of graphene layers is adjusted by varying the rate of the cooling process. It is found that the capacitive properties of graphene films are related to the number of graphene layers. Owing to the close attachment of graphene films on the nickel substrate and the low charge-transfer resistance, the specific capacitance of thinner graphene films is almost twice that of the thicker ones and remains stable up to 1000 cycles. These results illustrate the potential for developing high-performance graphene-based electrical energy storage devices. © 2012 Elsevier B.V. All rights reserved.