WorldWideScience

Sample records for chemical analysis systems

  1. Chemical laser systems analysis

    Energy Technology Data Exchange (ETDEWEB)

    Doughty, J.R.

    1988-11-01

    This paper presents a means by which the chemical laser device weight can be minimized with respect to its performance and the device power minimized with respect to the target range. Chemical laser performance parameters such as the specific power and nozzle power flux are then used in conjunction with weight and propagation models to determine system effectiveness. A measure of merit is given by which systems can be contrasted. An illustrative example is included in which DF and Iodine laser systems are compared for an airborne scenario. 14 references.

  2. Microfabricated Gas Phase Chemical Analysis Systems

    Energy Technology Data Exchange (ETDEWEB)

    FRYE-MASON,GREGORY CHARLES; HELLER,EDWIN J.; HIETALA,VINCENT M.; KOTTENSTETTE,RICHARD; LEWIS,PATRICK R.; MANGINELL,RONALD P.; MATZKE,CAROLYN M.; WONG,CHUNGNIN C.

    1999-09-16

    A portable, autonomous, hand-held chemical laboratory ({micro}ChemLab{trademark}) is being developed for trace detection (ppb) of chemical warfare (CW) agents and explosives in real-world environments containing high concentrations of interfering compounds. Microfabrication is utilized to provide miniature, low-power components that are characterized by rapid, sensitive and selective response. Sensitivity and selectivity are enhanced using two parallel analysis channels, each containing the sequential connection of a front-end sample collector/concentrator, a gas chromatographic (GC) separator, and a surface acoustic wave (SAW) detector. Component design and fabrication and system performance are described.

  3. Systems analysis of past, present, and future chemical terrorism scenarios.

    Energy Technology Data Exchange (ETDEWEB)

    Hoette, Trisha Marie

    2012-03-01

    Throughout history, as new chemical threats arose, strategies for the defense against chemical attacks have also evolved. As a part of an Early Career Laboratory Directed Research and Development project, a systems analysis of past, present, and future chemical terrorism scenarios was performed to understand how the chemical threats and attack strategies change over time. For the analysis, the difficulty in executing chemical attack was evaluated within a framework of three major scenario elements. First, historical examples of chemical terrorism were examined to determine how the use of chemical threats, versus other weapons, contributed to the successful execution of the attack. Using the same framework, the future of chemical terrorism was assessed with respect to the impact of globalization and new technologies. Finally, the efficacy of the current defenses against contemporary chemical terrorism was considered briefly. The results of this analysis justify the need for continued diligence in chemical defense.

  4. Integrated polymer waveguides for absorbance detection in chemical analysis systems

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; El-Ali, Jamil; Wolff, Anders

    2003-01-01

    A chemical analysis system for absorbance detection with integrated polymer waveguides is reported for the first time. The fabrication procedure relies on structuring of a single layer of the photoresist SU-8, so both the microfluidic channel network and the optical components, which include planar...... waveguides and fiber-to-waveguide coupler structures, are defined in the same processing step. This results in self-alignment of all components and enables a fabrication and packaging time of only one day. The fabrication scheme has recently been presented elsewhere for fluorescence excitation of beads...

  5. Treatment systems for liquid wastes generated in chemical analysis laboratories

    International Nuclear Information System (INIS)

    Linda Berrio; Oscar Beltran; Edison Agudelo; Santiago Cardona

    2012-01-01

    Nowadays, handling of liquid wastes from chemical analysis laboratories is posing problems to different public and private organizations because of its requirements of an integrated management. This article reviews various treatment technologies and its removal efficiencies in order to establish criteria for selecting the system and the appropriate variables to achieve research objectives as well as environmental sustainability. Review begins with a description of the problem and continues with the study of treatments for laboratory wastes. These technologies are segregated into physicochemical and biological treatments that comprise a variety of processes, some of which are considered in this review.

  6. Analysis and Performance Evaluations of Chemical Agent Resistant Coating Systems

    National Research Council Canada - National Science Library

    Escarsega, John

    2001-01-01

    ...% reduction in volatile organic compounds (VOCs) compared to the solvent-based (SOL) system. Compared to the solvent-based formulation, the WR polyurethane maintains required chemical agent resistance and exhibits superior properties...

  7. Thermodynamic analysis of a dual power-hydrogen production system based on chemical-looping combustion

    OpenAIRE

    Urdiales, Álvaro; Jiménez Alvaro, Ángel; Sánchez Orgaz, Susana; González Fernández, M. Celina

    2016-01-01

    Chemical-looping hydrogen generation (CLHG) is a chemical-looping combustion variant that allows simultaneous production of power and hydrogen. A thermodynamic analysis from the exergy method point of view of an integrated syngas-fueled CLHG cycle is carried out with the aim of contributing to the conceptual understanding and development of CLHG systems. The cycle working point is optimized in a range of conditions. The proposed system shows a very interesting potential for power, hydrogen an...

  8. Wet chemical analysis with a laboratory robotic system

    International Nuclear Information System (INIS)

    Burkett, S.D.; Dyches, G.M.; Spencer, W.A.

    1984-01-01

    Emphasis on laboratory automation has increased in recent years. The desire to improve analytical reliability, increase productivity, and reduce exposure of personnel to hazardous materials has been fundamental to this increase. The Savannah River Laboratory (SRL) performs research and development on nuclear materials. Development of methods to increase efficiency and safety and to reduce exposure of personnel to radioactive materials is an ongoing process at our site. Robotic systems offer a potentially attractive way to achieve these goals

  9. Quality system of the Chemical Analysis Laboratory to fulfill the requirements with Certification Organizations

    International Nuclear Information System (INIS)

    Merlo S, L.; Rodriguez L, R.; Cota S, G.

    1996-01-01

    In the present work was described the Quality System established in the Chemical Analysis Department to fulfill with the Organization requirements, personnel, measurement equipment, calibration, working procedures, etc. to get official acknowledgment by the National Assurance System for Testing laboratories, dependent of the General Standards Direction. There are described the available resources, the performance and control of each of one principal points of the system. (Author)

  10. On the graph and systems analysis of reversible chemical reaction networks with mass action kinetics

    NARCIS (Netherlands)

    Rao, Shodhan; Jayawardhana, Bayu; Schaft, Arjan van der

    2012-01-01

    Motivated by the recent progresses on the interplay between the graph theory and systems theory, we revisit the analysis of reversible chemical reaction networks described by mass action kinetics by reformulating it using the graph knowledge of the underlying networks. Based on this formulation, we

  11. Chemical Security Analysis Center

    Data.gov (United States)

    Federal Laboratory Consortium — In 2006, by Presidential Directive, DHS established the Chemical Security Analysis Center (CSAC) to identify and assess chemical threats and vulnerabilities in the...

  12. Chemical Laser Systems: An Engineering Approach. Volume I. Chemical Laser Analysis Program

    Science.gov (United States)

    1979-01-31

    primary or driver stagnation pressure (Pa). P7 - Ambient pressure (Pa). D. SYSTEM CALCULATION SECTION (SCS) Inputs to SCS provide scaling and...PRIMARY STREAM STAGtVATTON PRESSURE (PAI *INPRS 0440 C’ PT a AMBIENT PRESSURE (PAI *INPRS 0450 Co SE IPRS a CONTROL VARIABLE *I94PRS 0440 C’o OINPRS...MN2H4 vmN2N4 1390 - *121OI.E-07.(P0.iNN.,R~t1E)..20,SO/.0) VMNgIN4 1400 -*1.00551E-01O(PO*1NN24/RT! MEIO *4l,0/3.0) V0MN2M4 1410 RETURNK*TN*.03E0

  13. ANALYSIS OF THE MANAGEMENT SYSTEM IN THE FIELD OF ENVIRONMENTAL PROTECTION OF RUSSIAN CHEMICAL COMPANIES

    Directory of Open Access Journals (Sweden)

    Anna Makarov

    2018-03-01

    Full Text Available Since 2007, many chemical industrial companies in the Russian Federation have been actively involved in the Responsible Care® international voluntary program. To implement this program, vast bodies of data on environmental impact assessments needs to be collected. This allows us to analyse the environment-oriented trends in economic and social activities, and to record the achievements and problems in this field. The collected large bodies of data are in many cases heterogeneous, since the report has been a voluntary initiative. To analyse the existing trends in business processes, authors applied the methodology for system analysis of large bodies of data and used their own heuristic approximation algorithm for the treatment of accumulated data. This algorithm gives us the unique possibility of evaluating the performance of both individual chemical companies in the framework of the Responsible Care® program and the Russian chemical industry as a whole.

  14. PACSY, a relational database management system for protein structure and chemical shift analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Woonghee, E-mail: whlee@nmrfam.wisc.edu [University of Wisconsin-Madison, National Magnetic Resonance Facility at Madison, and Biochemistry Department (United States); Yu, Wookyung [Center for Proteome Biophysics, Pusan National University, Department of Physics (Korea, Republic of); Kim, Suhkmann [Pusan National University, Department of Chemistry and Chemistry Institute for Functional Materials (Korea, Republic of); Chang, Iksoo [Center for Proteome Biophysics, Pusan National University, Department of Physics (Korea, Republic of); Lee, Weontae, E-mail: wlee@spin.yonsei.ac.kr [Yonsei University, Structural Biochemistry and Molecular Biophysics Laboratory, Department of Biochemistry (Korea, Republic of); Markley, John L., E-mail: markley@nmrfam.wisc.edu [University of Wisconsin-Madison, National Magnetic Resonance Facility at Madison, and Biochemistry Department (United States)

    2012-10-15

    PACSY (Protein structure And Chemical Shift NMR spectroscopY) is a relational database management system that integrates information from the Protein Data Bank, the Biological Magnetic Resonance Data Bank, and the Structural Classification of Proteins database. PACSY provides three-dimensional coordinates and chemical shifts of atoms along with derived information such as torsion angles, solvent accessible surface areas, and hydrophobicity scales. PACSY consists of six relational table types linked to one another for coherence by key identification numbers. Database queries are enabled by advanced search functions supported by an RDBMS server such as MySQL or PostgreSQL. PACSY enables users to search for combinations of information from different database sources in support of their research. Two software packages, PACSY Maker for database creation and PACSY Analyzer for database analysis, are available from http://pacsy.nmrfam.wisc.eduhttp://pacsy.nmrfam.wisc.edu.

  15. PACSY, a relational database management system for protein structure and chemical shift analysis.

    Science.gov (United States)

    Lee, Woonghee; Yu, Wookyung; Kim, Suhkmann; Chang, Iksoo; Lee, Weontae; Markley, John L

    2012-10-01

    PACSY (Protein structure And Chemical Shift NMR spectroscopY) is a relational database management system that integrates information from the Protein Data Bank, the Biological Magnetic Resonance Data Bank, and the Structural Classification of Proteins database. PACSY provides three-dimensional coordinates and chemical shifts of atoms along with derived information such as torsion angles, solvent accessible surface areas, and hydrophobicity scales. PACSY consists of six relational table types linked to one another for coherence by key identification numbers. Database queries are enabled by advanced search functions supported by an RDBMS server such as MySQL or PostgreSQL. PACSY enables users to search for combinations of information from different database sources in support of their research. Two software packages, PACSY Maker for database creation and PACSY Analyzer for database analysis, are available from http://pacsy.nmrfam.wisc.edu.

  16. PACSY, a relational database management system for protein structure and chemical shift analysis

    Science.gov (United States)

    Lee, Woonghee; Yu, Wookyung; Kim, Suhkmann; Chang, Iksoo

    2012-01-01

    PACSY (Protein structure And Chemical Shift NMR spectroscopY) is a relational database management system that integrates information from the Protein Data Bank, the Biological Magnetic Resonance Data Bank, and the Structural Classification of Proteins database. PACSY provides three-dimensional coordinates and chemical shifts of atoms along with derived information such as torsion angles, solvent accessible surface areas, and hydrophobicity scales. PACSY consists of six relational table types linked to one another for coherence by key identification numbers. Database queries are enabled by advanced search functions supported by an RDBMS server such as MySQL or PostgreSQL. PACSY enables users to search for combinations of information from different database sources in support of their research. Two software packages, PACSY Maker for database creation and PACSY Analyzer for database analysis, are available from http://pacsy.nmrfam.wisc.edu. PMID:22903636

  17. PACSY, a relational database management system for protein structure and chemical shift analysis

    International Nuclear Information System (INIS)

    Lee, Woonghee; Yu, Wookyung; Kim, Suhkmann; Chang, Iksoo; Lee, Weontae; Markley, John L.

    2012-01-01

    PACSY (Protein structure And Chemical Shift NMR spectroscopY) is a relational database management system that integrates information from the Protein Data Bank, the Biological Magnetic Resonance Data Bank, and the Structural Classification of Proteins database. PACSY provides three-dimensional coordinates and chemical shifts of atoms along with derived information such as torsion angles, solvent accessible surface areas, and hydrophobicity scales. PACSY consists of six relational table types linked to one another for coherence by key identification numbers. Database queries are enabled by advanced search functions supported by an RDBMS server such as MySQL or PostgreSQL. PACSY enables users to search for combinations of information from different database sources in support of their research. Two software packages, PACSY Maker for database creation and PACSY Analyzer for database analysis, are available from http://pacsy.nmrfam.wisc.eduhttp://pacsy.nmrfam.wisc.edu.

  18. An Intelligent System for Modelling, Design and Analysis of Chemical Processes

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    ICAS, Integrated Computer Aided System, is a software that consists of a number of intelligent tools, which are very suitable, among others, for computer aided modelling, sustainable design of chemical and biochemical processes, and design-analysis of product-process monitoring systems. Each...... of these tools are characterized by a framework that follows an established work-flow and data-flow, developed to guide the user through the many steps of the problem solution process. At each, the specific tool knows which data, model and/or algorithm to use. The tool also provides analysis of the calculated...... results so that the user can make intelligent decisions to proceed to the next step. The tools contain in-house databases, especially designed to work in an integrated manner with tool specific ontology for efficient knowledge management. Examples highlighting the use of the tools willl be given, where...

  19. Pressure fluctuation analysis for charging pump of chemical and volume control system of nuclear power plant

    Directory of Open Access Journals (Sweden)

    Chen Qiang

    2016-01-01

    Full Text Available Equipment Failure Root Cause Analysis (ERCA methodology is employed in this paper to investigate the root cause for charging pump’s pressure fluctuation of chemical and volume control system (RCV in pressurized water reactor (PWR nuclear power plant. RCA project task group has been set up at the beginning of the analysis process. The possible failure modes are listed according to the characteristics of charging pump’s actual pressure fluctuation and maintenance experience during the analysis process. And the failure modes are analysed in proper sequence by the evidence-collecting. It suggests that the gradually untightened and loosed shaft nut in service should be the root cause. And corresponding corrective actions are put forward in details.

  20. Analysis of the trend to equilibrium of a chemically reacting system

    International Nuclear Information System (INIS)

    Kremer, Gilberto M; Bianchi, Miriam Pandolfi; Soares, Ana Jacinta

    2007-01-01

    In this present paper, a quaternary gaseous reactive mixture, for which the chemical reaction is close to its final stage and the elastic and reactive frequencies are comparable, is modelled within the Boltzmann equation extended to reacting gases. The main objective is a detailed analysis of the non-equilibrium effects arising in the reactive system A 1 + A 2 ↔ A 3 + A 4 , in a flow regime which is considered not far away from thermal, mechanical and chemical equilibrium. A first-order perturbation solution technique is applied to the macroscopic field equations for the spatially homogeneous gas system, and the trend to equilibrium is studied in detail. Adopting elastic hard-spheres and reactive line-of-centres cross sections and an appropriate choice of the input distribution functions-which allows us to distinguish the two cases where the constituents are either at same or different temperatures-explicit computations of the linearized production terms for mass, momentum and total energy are performed for each gas species. The departures from the equilibrium states of densities, temperatures and diffusion fluxes are characterized by small perturbations of their corresponding equilibrium values. For the hydrogen-chlorine system, the perturbations are plotted as functions of time for both cases where the species are either at the same or different temperatures. Moreover, the trend to equilibrium of the reaction rates is represented for the forward and backward reaction H 2 + Cl ↔ HCl + H

  1. Human Error Analysis in a Permit to Work System: A Case Study in a Chemical Plant.

    Science.gov (United States)

    Jahangiri, Mehdi; Hoboubi, Naser; Rostamabadi, Akbar; Keshavarzi, Sareh; Hosseini, Ali Akbar

    2016-03-01

    A permit to work (PTW) is a formal written system to control certain types of work which are identified as potentially hazardous. However, human error in PTW processes can lead to an accident. This cross-sectional, descriptive study was conducted to estimate the probability of human errors in PTW processes in a chemical plant in Iran. In the first stage, through interviewing the personnel and studying the procedure in the plant, the PTW process was analyzed using the hierarchical task analysis technique. In doing so, PTW was considered as a goal and detailed tasks to achieve the goal were analyzed. In the next step, the standardized plant analysis risk-human (SPAR-H) reliability analysis method was applied for estimation of human error probability. The mean probability of human error in the PTW system was estimated to be 0.11. The highest probability of human error in the PTW process was related to flammable gas testing (50.7%). The SPAR-H method applied in this study could analyze and quantify the potential human errors and extract the required measures for reducing the error probabilities in PTW system. Some suggestions to reduce the likelihood of errors, especially in the field of modifying the performance shaping factors and dependencies among tasks are provided.

  2. Chemical cloud tracking systems

    Science.gov (United States)

    Grim, Larry B.; Gruber, Thomas C., Jr.; Marshall, Martin; Rowland, Brad

    2002-02-01

    This paper describes the Chemical Cloud Tracking System (CCTS) which has been installed at Dugway Proving Ground. The CCTS allows mapping of chemical clouds in real time from a safe standoff distance. The instruments used are passive standoff chemical agent detectors (FTIRs). Each instrument individually can only measure the total of all the chemical in its line-of-site; the distance to the cloud is unknown. By merging data from multiple vantage points (either one instrument moving past the cloud or two or more instruments spaced so as to view the cloud from different directions) a map of the cloud locations can be generated using tomography. To improve the sensitivity and accuracy of the cloud map, chemical point sensors can be added to the sensor array being used. The equipment required for the CCTS is commercially available. Also, the data fusion techniques (tomography) have been demonstrated previously in the medical field. The Chemical Cloud Tracking System can monitor the movement of many chemical clouds of either military or industrial origin. Since the technique is standoff, the personnel are not exposed to toxic hazards while they follow the cloud. Also, the equipment works on-the-move which allows rapid response to emergency situations (plant explosions, tanker car accidents, chemical terrorism, etc.).

  3. Chemical process hazards analysis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

  4. Whole system chemical geothermometry

    International Nuclear Information System (INIS)

    Pang Zhonghe

    1999-01-01

    Chemical and isotopic geothermometers are equations or models based on temperature dependent chemical reactions or isotope equilibrium fractionation reactions from which equilibrium temperatures of these reactions can be calculated. The major drawback of all the conventional geothermometry methods lies in their incapability on making a judgement on the equilibrium status of the studied systems. This review will focus on two of recent approaches in this field. Zhangzhou Geothermal Field in SE China will be used as an example to demonstrate the applications

  5. A detailed pathway analysis of the chemical reaction system generating the Martian vertical ozone profile

    Science.gov (United States)

    Stock, Joachim W.; Blaszczak-Boxe, Christopher S.; Lehmann, Ralph; Grenfell, J. Lee; Patzer, A. Beate C.; Rauer, Heike; Yung, Yuk L.

    2017-07-01

    Atmospheric chemical composition is crucial in determining a planet's atmospheric structure, stability, and evolution. Attaining a quantitative understanding of the essential chemical mechanisms governing atmospheric composition is nontrivial due to complex interactions between chemical species. Trace species, for example, can participate in catalytic cycles - affecting the abundance of major and other trace gas species. Specifically, for Mars, such cycles dictate the abundance of its primary atmospheric constituent, carbon dioxide (CO2), but also for one of its trace gases, ozone (O3). The identification of chemical pathways/cycles by hand is extremely demanding; hence, the application of numerical methods, such as the Pathway Analysis Program (PAP), is crucial to analyze and quantitatively exemplify chemical reaction networks. Here, we carry out the first automated quantitative chemical pathway analysis of Mars' atmosphere with respect to O3. PAP was applied to JPL/Caltech's 1-D updated photochemical Mars model's output data. We determine all significant chemical pathways and their contribution to O3 production and consumption (up to 80 km) in order to investigate the mechanisms causing the characteristic shape of the O3 volume mixing ratio profile, i.e. a ground layer maximum and an ozone layer at ∼50 km. These pathways explain why an O3 layer is present, why it is located at that particular altitude and what the different processes forming the near-surface and middle atmosphere O3 maxima are. Furthermore, we show that the Martian atmosphere can be divided into two chemically distinct regions according to the O(3P):O3 ratio. In the lower region (below approximately 24 km altitude) O3 is the most abundant Ox (= O3 + O(3P)) species. In the upper region (above approximately 24 km altitude), where the O3 layer is located, O(3P) is the most abundant Ox species. Earlier results concerning the formation of O3 on Mars can now be explained with the help of chemical

  6. Sensitivity analysis of large system of chemical kinetic parameters for engine combustion simulation

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, H; Sanz-Argent, J; Petitpas, G; Havstad, M; Flowers, D

    2012-04-19

    In this study, the authors applied the state-of-the art sensitivity methods to downselect system parameters from 4000+ to 8, (23000+ -> 4000+ -> 84 -> 8). This analysis procedure paves the way for future works: (1) calibrate the system response using existed experimental observations, and (2) predict future experiment results, using the calibrated system.

  7. Analysis of a Stochastic Chemical System Close to a SNIPER Bifurcation of Its Mean-Field Model

    KAUST Repository

    Erban, Radek

    2009-01-01

    A framework for the analysis of stochastic models of chemical systems for which the deterministic mean-field description is undergoing a saddle-node infinite period (SNIPER) bifurcation is presented. Such a bifurcation occurs, for example, in the modeling of cell-cycle regulation. It is shown that the stochastic system possesses oscillatory solutions even for parameter values for which the mean-field model does not oscillate. The dependence of the mean period of these oscillations on the parameters of the model (kinetic rate constants) and the size of the system (number of molecules present) are studied. Our approach is based on the chemical Fokker-Planck equation. To gain some insight into the advantages and disadvantages of the method, a simple one-dimensional chemical switch is first analyzed, and then the chemical SNIPER problem is studied in detail. First, results obtained by solving the Fokker-Planck equation numerically are presented. Then an asymptotic analysis of the Fokker-Planck equation is used to derive explicit formulae for the period of oscillation as a function of the rate constants and as a function of the system size. © 2009 Society for Industrial and Applied Mathematics.

  8. A multi-time-scale analysis of chemical reaction networks: II. Stochastic systems.

    Science.gov (United States)

    Kan, Xingye; Lee, Chang Hyeong; Othmer, Hans G

    2016-11-01

    We consider stochastic descriptions of chemical reaction networks in which there are both fast and slow reactions, and for which the time scales are widely separated. We develop a computational algorithm that produces the generator of the full chemical master equation for arbitrary systems, and show how to obtain a reduced equation that governs the evolution on the slow time scale. This is done by applying a state space decomposition to the full equation that leads to the reduced dynamics in terms of certain projections and the invariant distributions of the fast system. The rates or propensities of the reduced system are shown to be the rates of the slow reactions conditioned on the expectations of fast steps. We also show that the generator of the reduced system is a Markov generator, and we present an efficient stochastic simulation algorithm for the slow time scale dynamics. We illustrate the numerical accuracy of the approximation by simulating several examples. Graph-theoretic techniques are used throughout to describe the structure of the reaction network and the state-space transitions accessible under the dynamics.

  9. Analysis and Application of GC Plus Models for Property Prediction of Organic Chemical Systems

    DEFF Research Database (Denmark)

    Mustaffa, Azizul Azri; Kontogeorgis, Georgios; Gani, Rafiqul

    2011-01-01

    In this paper, a detailed analysis of the performance and trends of predictions of vapour–liquid phase equilibrium with the UNIFAC-CI model, employing a method to predict missing group interaction parameters (GIPs) through the use of connectivity indices, are presented. The cases where the model......-CI model with the predicted GIPs in solid–liquid phase equilibria calculations involving precipitation of organic chemicals are also presented. Finally, the application of the GCPlus approach to reference modified UNIFAC (Dortmund) model is presented in terms of new and extended parameter tables....

  10. Analysis of Waste Leak and Toxic Chemical Release Accidents from Waste Feed Delivery (WFD) Diluent System

    Energy Technology Data Exchange (ETDEWEB)

    WILLIAMS, J.C.

    2000-09-15

    Radiological and toxicological consequences are calculated for 4 postulated accidents involving the Waste Feed Delivery (WFD) diluent addition systems. Consequences for the onsite and offsite receptor are calculated. This analysis contains technical information used to determine the accident consequences for the River Protection Project (RPP) Final Safety Analysis Report (FSAR).

  11. Analysis of Waste Leak and Toxic Chemical Release Accidents from Waste Feed Delivery (WFD) Diluent System

    International Nuclear Information System (INIS)

    WILLIAMS, J.C.

    2000-01-01

    Radiological and toxicological consequences are calculated for 4 postulated accidents involving the Waste Feed Delivery (WFD) diluent addition systems. Consequences for the onsite and offsite receptor are calculated. This analysis contains technical information used to determine the accident consequences for the River Protection Project (RPP) Final Safety Analysis Report (FSAR)

  12. Chemical Analysis for Nuclear Industry

    International Nuclear Information System (INIS)

    Han, Sun Ho; Kim, D. Y.; Kim, Y. B.

    2008-12-01

    Main objective of this project is to maintain chemical hot cell facility and essential chemical analysis instruments of Nuclear Chemistry Research Division(NCRD) in KAERI and is to support other nuclear R and D groups and nuclear industries providing precise data from the samples and specimens with these facility and instruments. The main items of chemical analysis were the determination of burn-up and fission gas of PWR high burn up UO 2 fuels and hydrogen in cladding material. Other Chemical analyses (element analysis by using ICP-AES, AA and EPMA; radio nuclide analysis by αβγ-spectrometer; isotope analysis by TI-MS, ICP-MS and Quadrupole MS; surface analysis by XRD, SEM; H,C,O analysis etc.) were carried out through this project from January 1st to December 31th of 2007 for the 7,263 cases from the nuclear R and D projects, from the facilities of nuclear fuel cycle examination and from the domestic nuclear industries such as nuclear power plants(KEPCO), fuel producing company(KNFC). Experiments related to the development of chemical analysis methods, A gas chromatography analysis method was established for a slightly negative pressure fission gas sample and thus the results were compared to and reviewed with those obtained by quadrupole mass spectrometer which already had been developed for the routine gas analysis support of the same sample. With using a packed molecular column and optimum temperature condition of oven, the fission gas compositions, nitrogen, krypton and xenon, could be separated clearly within 7 minute. According to the analysis results for the same fission gas samples, gas chromatograph and quadrupole mass spectrometer, the krypton analysis results of fission gases by the former was 2.65 % higher than those by the later. However analysis results of xenon by both methods were agreed well within 1 decimal point.Simultaneous multi-sample treatment system was developed to promote efficiency of chemical analysis methods and the burnup

  13. Chemical analysis of obsidian by a SIMS/EDX combined system

    Energy Technology Data Exchange (ETDEWEB)

    Kudriavtsev, Yuriy; Gallardo, Salvador; Avendaño, Miguel; Ramírez, Georgina; Asomoza, René [Departamento Ingeniería Eléctrica – SEES, CINVESTAV-IPN (Mexico); Manzanilla, Linda [Instituto de Investigaciones Antropológicas, UNAM (Mexico); Beramendi, Laura [Instituto de Geología, UNAM (Mexico)

    2015-01-15

    A recently built combined EDX–SIMS system was used for a quantitative standardless analysis of obsidians. By using the novel scheme of analysis described in the paper, concentrations of 47 elements were measured. The range of concentrations analyzed varied by up to 8 orders of magnitude, from 10{sup 15} atoms/cm{sup 3} to 10{sup 23} atoms/cm{sup 3}, which cannot be attained by any other analytical method based on electron or X-ray irradiations. The experimentally measured concentrations were compared with the data of XRF analysis: the data proved to differ in less than a factor of two for the majority of elements. The technique we suggest can be used to analyze almost any solid material.

  14. Chemical analysis of obsidian by a SIMS/EDX combined system

    International Nuclear Information System (INIS)

    Kudriavtsev, Yuriy; Gallardo, Salvador; Avendaño, Miguel; Ramírez, Georgina; Asomoza, René; Manzanilla, Linda; Beramendi, Laura

    2015-01-01

    A recently built combined EDX–SIMS system was used for a quantitative standardless analysis of obsidians. By using the novel scheme of analysis described in the paper, concentrations of 47 elements were measured. The range of concentrations analyzed varied by up to 8 orders of magnitude, from 10 15 atoms/cm 3 to 10 23 atoms/cm 3 , which cannot be attained by any other analytical method based on electron or X-ray irradiations. The experimentally measured concentrations were compared with the data of XRF analysis: the data proved to differ in less than a factor of two for the majority of elements. The technique we suggest can be used to analyze almost any solid material

  15. Development and Analysis of Group Contribution Plus Models for Property Prediction of Organic Chemical Systems

    DEFF Research Database (Denmark)

    Mustaffa, Azizul Azri

    been developed where the atom interaction parameters (AIPs) are obtained through regression against both VLE and SLE experimental data. The prediction accuracy of SLE systems using the regressed parameters has been slightly increased. Besides that, in Chapter 6, Modified (Dortmund) UNIFAC-CI has been...... parameters (GIPs) are obtained by fitting phase equilibrium data. There are, however many gaps in the UNIFAC parameter table due to lack of data. Alternative to performing measurements, which may not be feasible, values of the missing GIPs, can be predicted through the GCPlus approach. The predicted values...... is presented in Chapter 3. Furthermore in Chapter 4, as a continuation of the analysis done for systems involving C, H and O atoms, the Original UNIFAC-CI (VLE) model has been further reused and significantly expanded by including nitrogenated, chlorinated and sulfurated systems and the involved atom...

  16. RETRAN code analysis of Tsuruga-2 plant chemical volume control system (CVCS) reactor coolant leakage incident

    International Nuclear Information System (INIS)

    Kawai, H.

    2001-01-01

    JAPC purchased RETRAN, a program for transient thermal hydraulic analysis of complex fluid flow system, from the U.S. Electric Power Research Institute in 1992. Since then, JAPC has been utilizing RETRAN to evaluate safety margins of actual plant operation, in coping with troubles (investigating trouble causes and establishing countermeasures), and supporting reactor operation (reviewing operational procedures etc.). In this paper, a result of plant analysis performed on a CVCS reactor primary coolant leakage incident which occurred at JAPC's Tsuruga-2 plant (4-loop PWR, 3423 MWt, 1160 MW) on July 12 of 1999 and, based on the result, we made a plan to modify our operational procedure for reactor primary coolant leakage events in order to make earlier plant shutdown and this reduced primary coolant leakage. (author)

  17. Structural analysis of certain linear operators representing chemical network systems via the existence and uniqueness theorems of spectral resolution. II

    International Nuclear Information System (INIS)

    Arimoto, S.; Taylor, K.F.; Mezey, P.G.

    1995-01-01

    The methodology and theoretical framework of Part I of this series of articles have been further developed to the setting of the Banach algebra B(B) of all bounded operators acting on a Banach space B. Using the above setting B(B), certain dynamical systems of chemical kinetic equations are illustrated in conjunction with Part I and with the analysis of more general systems, some of which will be made in Part III of this series of articles. The main theorem and its auxiliary theorem in the present article elucidate in a unifying manner the structure and the underlying pattern of the spectral symmetry of linear operators (acting on Banach spaces and Hilbert spaces) that are investigated in each of the research fields of dynamical systems and quantum chemistry involving the spectral symmetry of alternant, hydrocarbons. 24 refs

  18. Chemical Analysis and Simulated Pyrolysis of Tobacco Heating System 2.2 Compared to Conventional Cigarettes.

    Science.gov (United States)

    Li, Xiangyu; Luo, Yanbo; Jiang, Xingyi; Zhang, Hongfei; Zhu, Fengpeng; Hu, Shaodong; Hou, Hongwei; Hu, Qingyuan; Pang, Yongqiang

    2018-01-08

    Tobacco Heating System 2.2 (THS 2.2, marketed as iQOS), is a heat-not-burn (HNB) tobacco product that has been successfully introduced to global markets. Despite its expanding market, few independent and systematic researches into THS 2.2 have been carried out to date. We tested a comprehensive list of total particulate matter (TPM), water, tar, nicotine, propylene glycol, glycerin, carbon monoxide, volatile organic compounds, aromatic amines, hydrogen cyanide, ammonia, N-nitrosamines, phenol, and polycyclic aromatic hydrocarbon under both ISO and HCI regimes. We also simulated pyrolysis of THS 2.2 heating sticks and made comparisons with conventional cigarette tobacco fillers using comprehensive gas chromatography-mass spectrometry (GC × GC-MS) to determine whether the specially designed ingredients help reduce harmful constituents. Other than some carbonyls, ammonia, and N-nitrosoanabasine (NAB), the delivered releases from THS 2.2 were at least 80% lower than those from 3R4F. Tar and nicotine remained almost the same as 3R4F. Interestingly, the normalized yield of THS 2.2 to 3R4F under the HCI regime was lower than under the ISO regime. THS 2.2 delivered fewer harmful constituents than the conventional cigarette 3R4F. Simulated pyrolysis results showed that the lower temperature instead of specially designed ingredients contributed to the distinct shift. In particular, if smoking machines are involved to evaluate the HNB products, smoking regimes of heat-not-burn tobacco products should be carefully chosen. To our knowledge, few independent studies of HNB products have been published. In this paper, a comprehensive list of chemical releases was tested systematically and compared to those from 3R4F. Although THS 2.2 generates lower levels of harmful constituents, the nicotine and tar levels were almost identical to 3R4F.The results should be discussed carefully in the future when assess the dual-use with other conventional cigarettes, nicotine dependence of HNB

  19. Molecular activation analysis for chemical speciation studies

    International Nuclear Information System (INIS)

    Chai-Chifang

    1998-01-01

    The term of Molecular Activation Analysis (MAA) refers to an activation analysis method that is able to provide information about the chemical species of elements in system of interests, though its definition has remained to be assigned. Its development is strongly stimulated by the urgent need to know the chemical species of elements, because the total concentrations are often without any meaning when assessing health or environmental risks of trace elements.In practice, the MAA is a combination of conventional instrumental or radiochemical activation analysis and physical, chemical or biochemical separation techniques. The MAA is able to play a particular role in speciation studies. However, the critical point in the MAA is that it is not permitted to change the primitive chemical species of elements in systems, or the change has to be under control; in the meantime it is not allowed to form the 'new artifact' originally not present in systems. Some practical examples of MAA for chemical species research performed recently in our laboratory will be presented as follows: Chemical species of platinum group elements in sediment; Chemical species of iodine in marine algae; Chemical species of mercury in human tissues; Chemical species of selenium in corn; Chemical species of rare earth elements in natural plant, etc. The merits and limitations of MAA will be described as well. (author)

  20. Chemical analysis report 2014

    International Nuclear Information System (INIS)

    Elbouzidi, Saliha; Elyahyaoui, Adil; Ghassan, Acil; Marah, Hamid

    2014-01-01

    This report highlights the results of chemical analyzes related to Major elements, traces and heavy metals carried out at the CNESTEN DASTE in Rabat (Morocco), on behalf of Senegal. These analyzes cover 120 samples. The report presents the analytical techniques used (parameters and methods), a legend and the results tables.

  1. Chemical analysis report 2015

    International Nuclear Information System (INIS)

    2015-01-01

    This report highlights the results of chemical analyzes of fluorides, bromides, lithium and boron carried out at the CNESTEN DASTE in Rabat (Morocco), on behalf of Senegal. These analyzes cover 120 samples. The report presents the analytical techniques used (parameters and methods), a legend and the results tables.

  2. Impact analysis of the implemented quality management system on business performances in pharmaceutical-chemical industry in Serbia

    Directory of Open Access Journals (Sweden)

    Marinković Valentina D.

    2013-01-01

    Full Text Available International quality management standard (QMS ISO 9001 became widely accepted as a framework for product and/or services quality improvement. There are recent research conducted in order to define relationships and effects between the applied QMS and financial and/or non-financial business parameters. The effects of the applied pharmaceutical quality system (PQS on the business performances in Serbian pharmaceutical-chemical industry are analyzed in this paper using multivariate linear regression analysis. The empirical data were collected using a survey that was performed among experts from Serbian pharmaceutical-chemical industrial sector during 2010. An extensive questionnaire was used in the survey, grouping the questions in eight groups: Implementation of pharmaceutical quality system (AQ, Quality/strategy planning (QP, Human resource management (HR, Supply management (SM, Customer focus (CF, Process management (PM, Continuous improvement (CI, and Business results (BR. The primary goal of the research was to analyze the effects of the elements of first seven groups (AQ, QP, HR, SM, CF, PM, and CI that present various aspects of the implementation of PQS, on the elements of business results (BR. Based on empirical data, regression relations were formed to present the effects of all considered elements of PQS implementation on the business performance parameters (BR. The positive effects of PQS implementation on the business performances such as the assessment of performance indicators, continual products and/or services quality improvement, and efficient problem solving, are confirmed in the presented research for the Serbian pharmaceutical-chemical industrial sector. The results of the presented research will create a room for the improvement of the existing models in application, and for attracting interested parties that aim to commence this business standardization process. Hence, implementation of PQS is not only the regulatory

  3. Chemical substructure analysis in toxicology

    Energy Technology Data Exchange (ETDEWEB)

    Beauchamp, R.O. Jr. [Center for Information on Toxicology and Environment, Raleigh, NC (United States)

    1990-12-31

    A preliminary examination of chemical-substructure analysis (CSA) demonstrates the effective use of the Chemical Abstracts compound connectivity file in conjunction with the bibliographic file for relating chemical structures to biological activity. The importance of considering the role of metabolic intermediates under a variety of conditions is illustrated, suggesting structures that should be examined that may exhibit potential activity. This CSA technique, which utilizes existing large files accessible with online personal computers, is recommended for use as another tool in examining chemicals in drugs. 2 refs., 4 figs.

  4. Chemical Analysis Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Uses state-of-the-art instrumentation for qualitative and quantitative analysis of organic and inorganic compounds, and biomolecules from gas, liquid, and...

  5. Microprocessors in automatic chemical analysis

    International Nuclear Information System (INIS)

    Goujon de Beauvivier, M.; Perez, J.-J.

    1979-01-01

    Application of microprocessors to programming and computing of solutions chemical analysis by a sequential technique is examined. Safety, performances reliability are compared to other methods. An example is given on uranium titration by spectrophotometry [fr

  6. On the analysis of chemical kinetics system pertaining to a fractional derivative with Mittag-Leffler type kernel.

    Science.gov (United States)

    Singh, Jagdev; Kumar, Devendra; Baleanu, Dumitru

    2017-10-01

    The pivotal aim of this paper was to analyze a new fractional model of chemical kinetics system related to a newly discovered Atangana-Baleanu derivative with fractional order having non-singular and non-local kernel. The numerical solution is derived by making use of the iterative scheme. The existence of the solution of chemical kinetics system of arbitrary order is examined by implementing the fixed-point theorem. The uniqueness of the special solution of the studied model is shown. The effect of different variables and order of arbitrary ordered derivative on concentrations is demonstrated in tabular and graphical forms. The numerical results for chemical kinetics system pertaining to the newly derivative with fractional order are compared with the chemical kinetics system involving classical derivative.

  7. Trace Chemical Analysis Methodology

    Science.gov (United States)

    1980-04-01

    Propulsion Labor - atory and analyzed by the system described above. The analytical system performed very well on these samples and the precision on...pp. S.35. Stemberger, Vida , "Analiza Mazivih ulja I smjisa Aditiva Fizikalnim Methodama Odjeljivanja I Infraervenom Spektroskopijom," Nafta Brog. 11

  8. System and method for liquid extraction electrospray-assisted sample transfer to solution for chemical analysis

    Science.gov (United States)

    Kertesz, Vilmos; Van Berkel, Gary J.

    2016-07-12

    A system for sampling a surface includes a surface sampling probe comprising a solvent liquid supply conduit and a distal end, and a sample collector for suspending a sample collection liquid adjacent to the distal end of the probe. A first electrode provides a first voltage to solvent liquid at the distal end of the probe. The first voltage produces a field sufficient to generate electrospray plume at the distal end of the probe. A second electrode provides a second voltage and is positioned to produce a plume-directing field sufficient to direct the electrospray droplets and ions to the suspended sample collection liquid. The second voltage is less than the first voltage in absolute value. A voltage supply system supplies the voltages to the first electrode and the second electrode. The first electrode can apply the first voltage directly to the solvent liquid. A method for sampling for a surface is also disclosed.

  9. Technologies and devices for micro chemical systems

    NARCIS (Netherlands)

    Gardeniers, Johannes G.E.; Schasfoort, Richardus B.M.; van den Berg, Albert

    2000-01-01

    This article describes recent developments at MESA+ in the field of miniaturised systems for chemical synthesis and analysis, also frequently referred to as "Lab-on-a-Chip". Several examples of siliconbased devices will be discussed, like micro pipettes for DNA studies, chips for cation analysis in

  10. Chemical systems, chemical contiguity and the emergence of life

    DEFF Research Database (Denmark)

    Kee, Terrence P.; Monnard, Pierre Alain

    2017-01-01

    to complex chemical systems over specific isolated functional apparatuses. We will summarize the recent advances in system chemistry and show that chemical systems in the geochemical context imply a form of chemical contiguity in the syntheses of the various molecules that precede modern biomolecules....

  11. Analysis of the Civil Defence system and service of radiation-ecological safety in nuclear and chemical accidents

    International Nuclear Information System (INIS)

    1992-01-01

    System of Civil Defense (CD) and service of radiation-ecological safety of the population of Belarus in case of nuclear and chemical accidents are analysed. Shortcomings in CD system organization are marked. Recommendations on the removal of available shortcomings are given. Necessity of modern information techniques for continuous monitoring of hazards sources is shown as well as operative control of preventive and rescue actions

  12. Molecular activation analysis for chemical species studies

    International Nuclear Information System (INIS)

    Chai Zhifang; Mao Xueying; Wang Yuqi; Sun Jingxin; Qian Qingfang; Hou Xiaolin; Zhang Peiqun; Chen Chunying; Feng Weiyu; Ding Wenjun; Li Xiaolin; Li Chunsheng; Dai Xiongxin

    2001-01-01

    The Molecular Activation Analysis (MAA) mainly refers to an activation analysis method that is able to provide information about the chemical species of elements in systems of interest, though its exact definition has remained to be assigned. Its development is strongly stimulated by the urgent need to know the chemical species of elements, because the bulk contents or concentrations are often insignificant for judging biological, environmental or geochemical effects of elements. In this paper, the features, methodology and limitation of MAA were outlined. Further, the up-to-date MAA progress made in our laboratory was introduced as well. (author)

  13. Engineered Barrier System: Physical and Chemical Environment

    International Nuclear Information System (INIS)

    Dixon, P.

    2004-01-01

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports

  14. Chemical activity and distribution of emerging pollutants: Insights from a multi-compartment analysis of a freshwater system.

    Science.gov (United States)

    Inostroza, Pedro A; Massei, Riccardo; Wild, Romy; Krauss, Martin; Brack, Werner

    2017-12-01

    Emerging pollutants are ubiquitous in the aquatic system and may pose risks to aquatic ecosystems. The quantification and prediction of environmental partitioning of these chemicals in aquatic systems between water, sediment and biota is an important step in the comprehensive assessment of their sources and final fates in the environment. In this multi-compartment field study, we applied equilibrium partitioning theory and chemical activity estimates to investigate the predictability of concentrations in Gammarus pulex as a model invertebrate from water and sediment in a typical small central European river. Furthermore, K OW -based and LSER approaches were assessed for the calculation of sediment organic carbon-, lipid-, and protein-water partitioning coefficients and activity ratios between the different compartments. Gammarid-water activity ratios close to unity have been observed for many chemicals, while sediment-water and sediment-biota chemical activity ratios exceeded unity by up to six orders of magnitudes. Causes may be: disequilibrium due to slow desorption kinetics and/or an underestimation of partition coefficients due to the presence of strongly adsorbing phases in the sediments. Water concentrations, particularly when using LSER for prediction of partition coefficients were good predictors of internal concentrations in gammarids for most emerging pollutants. Some hydrophilic chemicals such as the neonicotinoid imidacloprid tend to accumulate more in G. pulex than expected from equilibrium partitioning. This conclusion holds both for K OW as well as for LSER-based predictions and suggests previously unidentified mechanisms of bio-accumulation which may include binding to specific protein structures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Microcomputer-based systems for automatic control of sample irradiation and chemical analysis of short-lived isotopes

    International Nuclear Information System (INIS)

    Bourret, S.C.

    1974-01-01

    Two systems resulted from the need for the study of the nuclear decay of short-lived radionuclides. Automation was required for better repeatability, speed of chemical separation after irradiation and for protection from the high radiation fields of the samples. A MCS-8 computer was used as the nucleus of the automatic sample irradiation system because the control system required an extensive multiple-sequential circuit. This approach reduced the sequential problem to a computer program. The automatic chemistry control system is a mixture of a fixed and a computer-based programmable control system. The fixed control receives the irradiated liquid sample from the reactor, extracts the liquid and disposes of the used sample container. The programmable control executes the chemistry program that the user has entered through the teletype. (U.S.)

  16. Chemically Assisted Photocatalytic Oxidation System

    Science.gov (United States)

    Andino, Jean; Wu, Chang-Yu; Mazyck, David; Teixeira, Arthur A.

    2009-01-01

    The chemically assisted photocatalytic oxidation system (CAPOS) has been proposed for destroying microorganisms and organic chemicals that may be suspended in the air or present on surfaces of an air-handling system that ventilates an indoor environment. The CAPOS would comprise an upstream and a downstream stage that would implement a tandem combination of two partly redundant treatments. In the upstream stage, the air stream and, optionally, surfaces of the air-handling system would be treated with ozone, which would be generated from oxygen in the air by means of an electrical discharge or ultraviolet light. In the second stage, the air laden with ozone and oxidation products from the first stage would be made to flow in contact with a silica-titania photocatalyst exposed to ultraviolet light in the presence of water vapor. Hydroxyl radicals generated by the photocatalytic action would react with both carbon containing chemicals and microorganisms to eventually produce water and carbon dioxide, and ozone from the first stage would be photocatalytically degraded to O2. The net products of the two-stage treatment would be H2O, CO2, and O2.

  17. Rapid chemical analysis of allanite

    International Nuclear Information System (INIS)

    Nishiyama, Goro; Hayashi, Hiroshi

    1981-01-01

    Rapid chemical analysis of allanite was studied by atomic absorption spectrophotometry. Powdered sample was fused with mixture of sodium carbonate anhydrous and borax (4 : 1 weight) in platinum crucible and sample solution was prepared. SiO 2 , Fe 2 O 3 , Al 2 O 3 , MnO and rare earth metals were determined by atomic absorption spectrophotometry, CaO, MgO and Ce 2 O 3 by titration, ThO 2 by colorimetry, and La 2 O 3 by flame photometry respectively. For sample solution treated with hydrofluoric acid and sulfuric acid. Na 2 O and K 2 O were determined by atomic absorption spectrophotometry, TiO 2 and P 2 O 5 by colorimetry. Chemical analyses for four samples were carried out and gave consistent results. (author)

  18. Probabilistic risk analysis in chemical engineering

    International Nuclear Information System (INIS)

    Schmalz, F.

    1991-01-01

    In risk analysis in the chemical industry, recognising potential risks is considered more important than assessing their quantitative extent. Even in assessing risks, emphasis is not on the probability involved but on the possible extent. Qualitative assessment has proved valuable here. Probabilistic methods are used in individual cases where the wide implications make it essential to be able to assess the reliability of safety precautions. In this case, assessment therefore centres on the reliability of technical systems and not on the extent of a chemical risk. 7 figs

  19. Hydrogen production from natural gas using an iron-based chemical looping technology: Thermodynamic simulations and process system analysis

    International Nuclear Information System (INIS)

    Kathe, Mandar V.; Empfield, Abbey; Na, Jing; Blair, Elena; Fan, Liang-Shih

    2016-01-01

    Highlights: • Design of iron-based chemical looping process using moving bed for H 2 from CH 4 . • Auto-thermal operation design using thermodynamic rationale for 90% carbon capture. • Cold gas efficiency: 5% points higher than Steam Methane Reforming baseline case. • Net thermal efficiency: 6% points higher than Steam Methane Reforming baseline case. • Sensitivity analysis: Energy recovery scheme, operating pressure, no carbon capture. - Abstract: Hydrogen (H 2 ) is a secondary fuel derived from natural gas. Currently, H 2 serves as an important component in refining operations, fertilizer production, and is experiencing increased utilization in the transportation industry as a clean combustion fuel. In recent years, industry and academia have focused on developing technology that reduces carbon emissions. As a result, there has been an increase in the technological developments for producing H 2 from natural gas. These technologies aim to minimize the cost increment associated with clean energy production. The natural gas processing chemical looping technology, developed at The Ohio State University (OSU), employs an iron-based oxygen carrier and a novel gas–solid counter-current moving bed reactor for H 2 production. Specifically, this study examines the theoretical thermodynamic limits for full conversion of natural gas through iron-based oxygen carrier reactions with methane (CH 4 ), by utilizing simulations generated with ASPEN modeling software. This study initially investigates the reducer and the oxidizer thermodynamic phase diagrams then derives an optimal auto-thermal operating condition for the complete loop simulation. This complete loop simulation is initially normalized for analysis on the basis of one mole of carbon input from natural gas. The H 2 production rate is then scaled to match that of the baseline study, using a full-scale ASPEN simulation for computing cooling loads, water requirements and net parasitic energy consumption. The

  20. Calibrating Detailed Chemical Analysis of M dwarfs

    Science.gov (United States)

    Veyette, Mark; Muirhead, Philip Steven; Mann, Andrew; Brewer, John; Allard, France; Homeier, Derek

    2018-01-01

    The ability to perform detailed chemical analysis of Sun-like F-, G-, and K-type stars is a powerful tool with many applications including studying the chemical evolution of the Galaxy, assessing membership in stellar kinematic groups, and constraining planet formation theories. Unfortunately, complications in modeling cooler stellar atmospheres has hindered similar analysis of M-dwarf stars. Large surveys of FGK abundances play an important role in developing methods to measure the compositions of M dwarfs by providing benchmark FGK stars that have widely-separated M dwarf companions. These systems allow us to empirically calibrate metallicity-sensitive features in M dwarf spectra. However, current methods to measure metallicity in M dwarfs from moderate-resolution spectra are limited to measuring overall metallicity and largely rely on astrophysical abundance correlations in stellar populations. In this talk, I will discuss how large, homogeneous catalogs of precise FGK abundances are crucial to advancing chemical analysis of M dwarfs beyond overall metallicity to direct measurements of individual elemental abundances. I will present a new method to analyze high-resolution, NIR spectra of M dwarfs that employs an empirical calibration of synthetic M dwarf spectra to infer effective temperature, Fe abundance, and Ti abundance. This work is a step toward detailed chemical analysis of M dwarfs at a similar precision achieved for FGK stars.

  1. Active Chemical Sampling System for Underwater Chemical Source Localization

    Directory of Open Access Journals (Sweden)

    Ryuichi Takemura

    2016-01-01

    Full Text Available This paper investigates the effect of active water sampling to enhance chemical reception for small underwater robots. The search for a chemical source in a stagnant water environment is not an easy task because the chemical solution released from the source stays in the close vicinity of the source. No signal is obtained even if a robot with chemical sensors is placed a few centimeters from the chemical source. In the system under study, four electrochemical sensors are aligned in front of a suction pipe that draws water samples from the surroundings. Owing to the smooth laminar flow converging to the suction port, the streak of the chemical solution drawn to the sensors is shaped into a thin filamentous form. To prevent the chemical solution from passing between the sensors without touching their surfaces, slits are placed in front of the sensors to guide the incoming chemical solution from different directions to the corresponding sensors. A chemical source can be located by moving the system in the direction of the sensor showing the largest response. It is also shown that the chemical reception at the sensors can be significantly enhanced when the system is wobbled to introduce disturbances.

  2. Engineered Barrier System: Physical and Chemical Environment

    Energy Technology Data Exchange (ETDEWEB)

    P. Dixon

    2004-04-26

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.

  3. Physico-chemical studies of laser-induced plasmas for quantitative analysis of materials in nuclear systems

    International Nuclear Information System (INIS)

    Saad, Rawad

    2014-01-01

    Laser Induced Breakdown Spectroscopy (LIBS) is a multi-elemental analysis technique very well suited for analysis in hostile environments particularly in the nuclear industry. Quantitative measurements are frequently performed on liquid or solid samples but in some cases, atypical signal behaviors were observed in the LIBS experiment. To avoid or minimize any impact on measurement accuracy, it is necessary to improve the understanding of these phenomena. In the framework of a three-year PhD thesis, the objective was to study the chemical reactions occurring within laser-generated plasma in a LIBS analysis. Experiments on a model material (pure aluminum sample) highlighted the dynamics of molecular recombination according to different ambient gas. The temporal evolution of Al I atomic emission lines and molecular bands of AlO and AlN were studied. A collisional excitation effect was identified for a peculiar electronic energy level of aluminum in the case of a nitrogen atmosphere. This effect disappeared in air. The aluminum plasma was also imaged during its expansion under the different atmospheres in order to localize the areas in which the molecular recombination process takes place. Spectacular particle projections have been highlighted. (author) [fr

  4. Chemical sensing underclothing system for testing PPE

    International Nuclear Information System (INIS)

    Slabotinsky, J.; Kralik, L.; Bradka, S.; Castulik, P.

    2009-01-01

    Personal protective equipment (PPE) when worn is subjected to pressure differentials across the garment due to ambient wind flow, by body movement and breathing creating the bellows effect, which may force hazardous chemicals vapor or aerosol through the closures, joints, outlet valves and/or clothing protective fabric. Thus the design, fit, size or improper donning of the protective garment will influence chemical-agent penetration. In order to determine penetration of chemical-protective garments by chemical vapor or aerosol, it is necessary to test the entire suit system, including seams, closures, outlet valves and areas of transition with other protective equipment, that is, at the ankles, waist, wrists, neck etc. In order to identify penetration of chemical vapor or aerosol through protective assembly, the Man-in-Simulant Test (MIST) with passive adsorptive devices (PADs) is used, when adsorbed challenging agent (simulant) is desorbed from the PAD and quantified. The current MIST method is failing in complexity of leak detection, due to limited number of passive collection points fixed on human body or a mannequin and very labor extensive work associated with allocation of 20-40 PADs and quantification of adsorbed agent. The Czech approach to detect and quantify penetration/permeation of chemical agent is based on chemical sensing underclothing enable to change the color when exposed with simulant or even with real CW agent. Color intensity and shape of stains on sensing fabric are processed with Laboratory Universal Computer Image Analysis (LUCIA) allowing determining the quantity and the allocation of the penetrating noxious agent(s). This method allows for example calculate individual doses of exposure, the breakthrough coefficient of protective garment as whole and uniquely precise allocation of penetration/permeation shortfalls. Presentation is providing detailed description of imaging system with nickname 'LUCY' in combination with testing mannequin

  5. Analysis of the cleaning of root canal prepared with a rotary instrument system and different chemical substances

    Directory of Open Access Journals (Sweden)

    Marcelo dos Santos

    2008-01-01

    Full Text Available Objectives: To evaluate, by scanning electronic microscopy and computerized readings, cleaning of the root dentin surface – cervical, middle and apical thirds – in human mandibular incisor root canals, prepared by the rotary system K3√ENDO and different chemical substances. Methods: Among these, 2.5% sodium hypochlorite, (pH 11.0, Endo PTC cream reacting with 0.5% sodium hypochlorite (pH 11.0, using this in two different consistencies; its normal consistency (Endo PTC-N and a less dense version (Endo-PTC-L; and a chlorhexidine (Endogel ®. When this phase ended, the groups received irrigation-aspiration with solutions of 0.5% sodium hypochlorite (pH 11.0 and 17% EDTA-T, except for the Endogel® group, which received two irrigation regimes, in one final irrigation-aspiration with 20 mL of physiological solution and in the other, irrigation with EDTA-T. After this the samples were prepared for SEM and their images were analyzed by the Scion Image program. Results: The results revealed statistically significant difference, with the Endo-PTC-L group shown to be superior to the others in the middle and apical thirds. Whereas for the Endogel group with EDTA-T irrigation, there was no statistical difference among them, only in the middle third.Conclusion: It was concluded that the substances with the vehicle polyethylene glycol and with lower viscosities offered a better standard of cleaning.

  6. Emergency destruction system for recovered chemical munitions

    Energy Technology Data Exchange (ETDEWEB)

    Shepodd, T.J.; Stofleth, J.H.; Haroldsen, B.L.

    1998-04-01

    At the request of the US Army Project Manager for Non-Stockpile Chemical Materiel, Sandia National Laboratories is developing a transportable system for destroying recovered, explosively configured, chemical warfare munitions. The system uses shaped charges to access the agent and burster followed by chemical neutralization to destroy them. The entire process takes place inside a sealed pressure vessel. In this paper, they review the design, operation, and testing of a prototype system capable of containing up to one pound of explosive.

  7. Technologies and microstructures for separation techniques in chemical analysis

    NARCIS (Netherlands)

    Spiering, Vincent L.; Spiering, V.L.; Lammerink, Theodorus S.J.; Jansen, Henricus V.; van den Berg, Albert; Fluitman, J.H.J.

    1996-01-01

    The possibilities for microtechnology in chemical analysis and separation techniques are discussed. The combination of the materials and the dimensions of structures can limit the sample and waste volumes on the one hand, but also increases the performance of the chemical systems. Especially in high

  8. Hazardous chemical tracking system (HAZ-TRAC)

    Energy Technology Data Exchange (ETDEWEB)

    Bramlette, J D; Ewart, S M; Jones, C E

    1990-07-01

    Westinghouse Idaho Nuclear Company, Inc. (WINCO) developed and implemented a computerized hazardous chemical tracking system, referred to as Haz-Trac, for use at the Idaho Chemical Processing Plant (ICPP). Haz-Trac is designed to provide a means to improve the accuracy and reliability of chemical information, which enhances the overall quality and safety of ICPP operations. The system tracks all chemicals and chemical components from the time they enter the ICPP until the chemical changes form, is used, or becomes a waste. The system runs on a Hewlett-Packard (HP) 3000 Series 70 computer. The system is written in COBOL and uses VIEW/3000, TurboIMAGE/DBMS 3000, OMNIDEX, and SPEEDWARE. The HP 3000 may be accessed throughout the ICPP, and from remote locations, using data communication lines. Haz-Trac went into production in October, 1989. Currently, over 1910 chemicals and chemical components are tracked on the system. More than 2500 personnel hours were saved during the first six months of operation. Cost savings have been realized by reducing the time needed to collect and compile reporting information, identifying and disposing of unneeded chemicals, and eliminating duplicate inventories. Haz-Trac maintains information required by the Superfund Amendment Reauthorization Act (SARA), the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and the Occupational Safety and Health Administration (OSHA).

  9. Study of Intelligent Secure Chemical Inventory Management System

    Science.gov (United States)

    Shukran, Mohd Afizi Mohd; Naim Abdullah, Muhammad; Nazri Ismail, Mohd; Maskat, Kamaruzaman; Isa, Mohd Rizal Mohd; Shahfee Ishak, Muhammad; Adib Khairuddin, Muhamad

    2017-08-01

    Chemical inventory management system has been experiencing a new revolution from traditional inventory system which is manual to an automated inventory management system. In this paper, some review of the classic and modern approaches to chemical inventory management system has been discussed. This paper also describe about both type of inventory management. After a comparative analysis of the traditional method and automated method, it can be said that both methods have some distinctive characteristics. Moreover, the automated inventory management method has higher accuracy of calculation because the calculations are handled by software, eliminating possible errors and saving time. The automated inventory system also allows users and administrators to track the availability, location and consumption of chemicals. The study of this paper can provide forceful review analysis support for the chemical inventory management related research.

  10. Chemical analysis of the Fornax Dwarf galaxy

    NARCIS (Netherlands)

    Letarte, Bruno

    2007-01-01

    This thesis is entitled “Chemical Analysis of the Fornax Dwarf Galaxy”, and it’s main goal is to determine what are the chemical elements present in the stars of this galaxy in order to try and understand it’s evolution. Galaxies are not “static” objects, they move, form stars and can interact with

  11. In situ acoustic-based analysis system for physical and chemical properties of the lower Martian atmosphere

    Science.gov (United States)

    Farrelly, F. A.; Petri, A.; Pitolli, L.; Pontuale, G.

    2004-01-01

    The environmental acoustic reconnaissance and sounding experiment (EARS), is composed of two parts: the environmental acoustic reconnaissance (EAR) instrument and the environmental acoustic sounding experiment (EASE). They are distinct, but have the common objective of characterizing the acoustic environment of Mars. The principal goal of the EAR instrument is "listening" to Mars. This could be a most significant experiment if one thinks of everyday life experience where hearing is possibly the most important sense after sight. Not only will this contribute to opening up this important area of planetary exploration, which has been essentially ignored until now, but will also bring the general public closer in contact with our most proximate planet. EASE is directed at characterizing acoustic propagation parameters, specifically sound velocity and absorption, and will provide information regarding important physical and chemical parameters of the lower Martian atmosphere; in particular, water vapor content, specific heat capacity, heat conductivity and shear viscosity, which will provide specific constraints in determining its composition. This would enable one to gain a deeper understanding of Mars and its analogues on Earth. Furthermore, the knowledge of the physical and chemical parameters of the Martian atmosphere, which influence its circulation, will improve the comprehension of its climate now and in the past, so as to gain insight on the possibility of the past presence of life on Mars. These aspect are considered strategic in the contest of its exploration, as is clearly indicated in NASA's four main objectives on "Long Term Mars Exploration Program" (http://marsweb.jpl.nasa.gov/mer/science).

  12. Modeling Complex Chemical Systems: Problems and Solutions

    Science.gov (United States)

    van Dijk, Jan

    2016-09-01

    Non-equilibrium plasmas in complex gas mixtures are at the heart of numerous contemporary technologies. They typically contain dozens to hundreds of species, involved in hundreds to thousands of reactions. Chemists and physicists have always been interested in what are now called chemical reduction techniques (CRT's). The idea of such CRT's is that they reduce the number of species that need to be considered explicitly without compromising the validity of the model. This is usually achieved on the basis of an analysis of the reaction time scales of the system under study, which identifies species that are in partial equilibrium after a given time span. The first such CRT that has been widely used in plasma physics was developed in the 1960's and resulted in the concept of effective ionization and recombination rates. It was later generalized to systems in which multiple levels are effected by transport. In recent years there has been a renewed interest in tools for chemical reduction and reaction pathway analysis. An example of the latter is the PumpKin tool. Another trend is that techniques that have previously been developed in other fields of science are adapted as to be able to handle the plasma state of matter. Examples are the Intrinsic Low Dimension Manifold (ILDM) method and its derivatives, which originate from combustion engineering, and the general-purpose Principle Component Analysis (PCA) technique. In this contribution we will provide an overview of the most common reduction techniques, then critically assess the pros and cons of the methods that have gained most popularity in recent years. Examples will be provided for plasmas in argon and carbon dioxide.

  13. Optical MEMS for chemical analysis and biomedicine

    CERN Document Server

    Jiang, Hongrui

    2016-01-01

    This book describes the current state of optical MEMS in chemical and biomedical analysis and brings together current trends and highlights topics representing the most exciting progress in recent years in the field.

  14. Maximizing Science Return on Astrobiology and Planetary Missions Using Integrated Liquid-Handling Chemical Analysis Systems - A Status Report

    Science.gov (United States)

    Willis, P. A.; Mora, M. F.; Creamer, J. S.; Kehl, F.

    2016-10-01

    Our team has been developing all components required for liquid-based analysis on planetary missions. Here we summarize our progress in this area, and highlight enhancements to science return on NASA missions that these technologies could provide.

  15. Chemical analysis of water in hydrogeology

    International Nuclear Information System (INIS)

    Flakova, R.; Zenisova, Z.; Seman, M.

    2010-01-01

    The aim of the monograph is to give complete information on the chemical analysis of water hydrogeology not only for the students program of Geology study (Bachelor degree study), Engineering Geology and Hydrogeology (Master's degree study) and Engineering Geology (doctoral level study), but also for students from other colleges and universities schools in Slovakia, as well as in the Czech Republic, dealing with the chemical composition of water and its quality, from different perspectives. The benefit would be for professionals with hydrogeological, water and environmental practices, who can find there all the necessary information about proper water sampling, the units used in the chemical analysis of water, expressing the proper chemical composition of water in its various parameters through classification of chemical composition of the water up to the basic features of physical chemistry at thermodynamic calculations and hydrogeochemical modelling.

  16. Plasma-chemical processes and systems

    International Nuclear Information System (INIS)

    Castro B, J.

    1987-01-01

    The direct applications of plasma technology on chemistry and metallurgy are presented. The physical fundaments of chemically active non-equilibrium plasma, the reaction kinetics, and the physical chemical transformations occuring in the electrical discharges, which are applied in the industry, are analysed. Some plasma chemical systems and processes related to the energy of hydrogen, with the chemical technology and with the metallurgy are described. Emphasis is given to the optimization of the energy effectiveness of these processes to obtain reducers and artificial energetic carriers. (M.C.K.) [pt

  17. Energy efficiency analysis method based on fuzzy DEA cross-model for ethylene production systems in chemical industry

    International Nuclear Information System (INIS)

    Han, Yongming; Geng, Zhiqiang; Zhu, Qunxiong; Qu, Yixin

    2015-01-01

    DEA (data envelopment analysis) has been widely used for the efficiency analysis of industrial production process. However, the conventional DEA model is difficult to analyze the pros and cons of the multi DMUs (decision-making units). The DEACM (DEA cross-model) can distinguish the pros and cons of the effective DMUs, but it is unable to take the effect of the uncertainty data into account. This paper proposes an efficiency analysis method based on FDEACM (fuzzy DEA cross-model) with Fuzzy Data. The proposed method has better objectivity and resolving power for the decision-making. First we obtain the minimum, the median and the maximum values of the multi-criteria ethylene energy consumption data by the data fuzzification. On the basis of the multi-criteria fuzzy data, the benchmark of the effective production situations and the improvement directions of the ineffective of the ethylene plants under different production data configurations are obtained by the FDEACM. The experimental result shows that the proposed method can improve the ethylene production conditions and guide the efficiency of energy utilization during ethylene production process. - Highlights: • This paper proposes an efficiency analysis method based on FDEACM (fuzzy DEA cross-model) with data fuzzification. • The proposed method is more efficient and accurate than other methods. • We obtain an energy efficiency analysis framework and process based on FDEACM in ethylene production industry. • The proposed method is valid and efficient in improvement of energy efficiency in the ethylene plants

  18. Chemical methods of rock analysis

    National Research Council Canada - National Science Library

    Jeffery, P. G; Hutchison, D

    1981-01-01

    A practical guide to the methods in general use for the complete analysis of silicate rock material and for the determination of all those elements present in major, minor or trace amounts in silicate...

  19. Tritium analysis in natural waters: experimental characteristics of the electrolitic enrichment system of the Chemical Department - Sao Carlos Federal University

    International Nuclear Information System (INIS)

    Mozeto, A.A.; Fontanetti, A.R.

    1986-01-01

    The working conditions of a system for low-level tritium analyses in natural waters were determined using eletrolytic enrichment and liquid scintillation counting techniques. The system installed at the Departamento de Quimica - UFScar is characterized by the following experimental parameters: (a) sample volume reduction factor during eletrolysis = 16.7; (b) tritium recovery factor = 80%; (c) tritium enrichment factor = 13.4; (d) counting efficiency = 12.5%; (e) background level = 11.5 cpm; (f) counting time per sample = 500 minutes; (g) sensitivity = 8.3 TU/cpm; (h) lower detection limit = 3.6 TU + - 50% and (i) analytical capacity = 30 samples/month. It is also discussed the suitability of the analytical system in terms of rain and ground water samples as well. (Author) [pt

  20. Linear systems on balancing chemical reaction problem

    Science.gov (United States)

    Kafi, R. A.; Abdillah, B.

    2018-01-01

    The concept of linear systems appears in a variety of applications. This paper presents a small sample of the wide variety of real-world problems regarding our study of linear systems. We show that the problem in balancing chemical reaction can be described by homogeneous linear systems. The solution of the systems is obtained by performing elementary row operations. The obtained solution represents the finding coefficients of chemical reaction. In addition, we present a computational calculation to show that mathematical software such as Matlab can be used to simplify completion of the systems, instead of manually using row operations.

  1. Spectroscopic Chemical Analysis Methods and Apparatus

    Science.gov (United States)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor); Bhartia, Rohit (Inventor); Lane, Arthur L. (Inventor)

    2017-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted along with photoluminescence spectroscopy (i.e. fluorescence and/or phosphorescence spectroscopy) to provide high levels of sensitivity and specificity in the same instrument.

  2. Bayesian analysis of systems with random chemical composition: renormalization-group approach to Dirichlet distributions and the statistical theory of dilution.

    Science.gov (United States)

    Vlad, Marcel Ovidiu; Tsuchiya, Masa; Oefner, Peter; Ross, John

    2002-01-01

    We investigate the statistical properties of systems with random chemical composition and try to obtain a theoretical derivation of the self-similar Dirichlet distribution, which is used empirically in molecular biology, environmental chemistry, and geochemistry. We consider a system made up of many chemical species and assume that the statistical distribution of the abundance of each chemical species in the system is the result of a succession of a variable number of random dilution events, which can be described by using the renormalization-group theory. A Bayesian approach is used for evaluating the probability density of the chemical composition of the system in terms of the probability densities of the abundances of the different chemical species. We show that for large cascades of dilution events, the probability density of the composition vector of the system is given by a self-similar probability density of the Dirichlet type. We also give an alternative formal derivation for the Dirichlet law based on the maximum entropy approach, by assuming that the average values of the chemical potentials of different species, expressed in terms of molar fractions, are constant. Although the maximum entropy approach leads formally to the Dirichlet distribution, it does not clarify the physical origin of the Dirichlet statistics and has serious limitations. The random theory of dilution provides a physical picture for the emergence of Dirichlet statistics and makes it possible to investigate its validity range. We discuss the implications of our theory in molecular biology, geochemistry, and environmental science.

  3. Chemical production processes and systems

    Science.gov (United States)

    Holladay, Johnathan E.; Muzatko, Danielle S.; White, James F.; Zacher, Alan H.

    2014-06-17

    Hydrogenolysis systems are provided that can include a reactor housing an Ru-comprising hydrogenolysis catalyst and wherein the contents of the reactor is maintained at a neutral or acidic pH. Reactant reservoirs within the system can include a polyhydric alcohol compound and a base, wherein a weight ratio of the base to the compound is less than 0.05. Systems also include the product reservoir comprising a hydrogenolyzed polyhydric alcohol compound and salts of organic acids, and wherein the moles of base are substantially equivalent to the moles of salts or organic acids. Processes are provided that can include an Ru-comprising catalyst within a mixture having a neutral or acidic pH. A weight ratio of the base to the compound can be between 0.01 and 0.05 during exposing.

  4. Systems metabolic engineering for chemicals and materials.

    Science.gov (United States)

    Lee, Jeong Wook; Kim, Tae Yong; Jang, Yu-Sin; Choi, Sol; Lee, Sang Yup

    2011-08-01

    Metabolic engineering has contributed significantly to the enhanced production of various value-added and commodity chemicals and materials from renewable resources in the past two decades. Recently, metabolic engineering has been upgraded to the systems level (thus, systems metabolic engineering) by the integrated use of global technologies of systems biology, fine design capabilities of synthetic biology, and rational-random mutagenesis through evolutionary engineering. By systems metabolic engineering, production of natural and unnatural chemicals and materials can be better optimized in a multiplexed way on a genome scale, with reduced time and effort. Here, we review the recent trends in systems metabolic engineering for the production of chemicals and materials by presenting general strategies and showcasing representative examples. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Chemical analysis of high purity graphite

    International Nuclear Information System (INIS)

    1993-03-01

    The Sub-Committee on Chemical Analysis of Graphite was organized in April 1989, under the Committee on Chemical Analysis of Nuclear Fuels and Reactor Materials, JAERI. The Sub-Committee carried out collaborative analyses among eleven participating laboratories for the certification of the Certified Reference Materials (CRMs), JAERI-G5 and G6, after developing and evaluating analytical methods during the period of September 1989 to March 1992. The certified values were given for ash, boron and silicon in the CRM based on the collaborative analysis. The values for ten elements (Al, Ca, Cr, Fe, Mg, Mo, Ni, Sr, Ti, V) were not certified, but given for information. Preparation, homogeneity testing and chemical analyses for certification of reference materials were described in this paper. (author) 52 refs

  6. Service activities of chemical analysis division

    International Nuclear Information System (INIS)

    Eom, Tae Yoon; Suh, Moo Yul; Park, Kyoung Kyun; Jung, Ki Suk; Joe, Kih Soo; Jee, Kwang Yong; Jung, Woo Sik; Sohn, Se Chul; Yeo, In Heong; Han, Sun Ho

    1988-12-01

    Progress of the Division during the year of 1988 was described on the service activities for various R and D projects carrying out in the Institute, for the fuel fabrication and conversion plant, and for the post-irradiation examination facility. Relevant analytical methodologies developed for the chemical analysis of an irradiated fuel, safeguards chemical analysis, and pool water monitoring were included such as chromatographic separation of lanthanides, polarographic determination of dissolved oxygen in water, and automation on potentiometric titration of uranium. Some of the laboratory manuals revised were also included in this progress report. (Author)

  7. SHORT COMMUNICATION CHEMICAL ANALYSIS OF THE ...

    African Journals Online (AJOL)

    CHEMICAL ANALYSIS OF THE ASSALE (ETHIOPIA) ROCK SALT DEPOSIT. Yigzaw Binega. Ministry of Mines ... GEOLOGY OF THE ROCK-SALT DEPOSIT AREA. The Danakil Depression is a ... meters thick salt rafts that exhibit prismatic polygonal fabric are commonly observed (Figure 2). [3]. EXPERIMENTAL. The rock ...

  8. Chemical Looping Combustion Reactions and Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sarofim, Adel; Lighty, JoAnn; Smith, Philip; Whitty, Kevin; Eyring, Edward; Sahir, Asad; Alvarez, Milo; Hradisky, Michael; Clayton, Chris; Konya, Gabor; Baracki, Richard; Kelly, Kerry

    2014-03-01

    , they performed a sensitivity analysis for velocity, height and polydispersity and compared results against literature data for experimental studies of CLC beds with no reaction. Finally, they present an optimization space using simple non-reactive configurations. In Subtask 5.3, through a series of experimental studies, behavior of a variety of oxygen carriers with different loadings and manufacturing techniques was evaluated under both oxidizing and reducing conditions. The influences of temperature, degree of carrier conversion and thermodynamic driving force resulting from the difference between equilibrium and system O{sub 2} partial pressures were evaluated through several experimental campaigns, and generalized models accounting for these influences were developed to describe oxidation and oxygen release. Conversion of three solid fuels with widely ranging reactivities was studied in a small fluidized bed system, and all but the least reactive fuel (petcoke) were rapidly converted by oxygen liberated from the CLOU carrier. Attrition propensity of a variety of carriers was also studied, and the carriers produced by freeze granulation or impregnation of preformed substrates displayed the lowest rates of attrition. Subtask 5.4 focused on gathering kinetic data for a copper-based oxygen carrier to assist with modeling of a functioning chemical looping reactor. The kinetics team was also responsible for the development and analysis of supported copper oxygen carrier material.

  9. Compact chemical energy system for seismic applications

    Science.gov (United States)

    Engelke, Raymond P.; Hedges, Robert O.; Kammerman, Alan B.; Albright, James N.

    1998-01-01

    A chemical energy system is formed for producing detonations in a confined environment. An explosive mixture is formed from nitromethane (NM) and diethylenetriamine (DETA). A slapper detonator is arranged adjacent to the explosive mixture to initiate detonation of the mixture. NM and DETA are not classified as explosives when handled separately and can be safely transported and handled by workers in the field. In one aspect of the present invention, the chemicals are mixed at a location where an explosion is to occur. For application in a confined environment, the chemicals are mixed in an inflatable container to minimize storage space until it is desired to initiate an explosion. To enable an inflatable container to be used, at least 2.5 wt % DETA is used in the explosive mixture. A barrier is utilized that is formed of a carbon composite material to provide the appropriate barrel geometry and energy transmission to the explosive mixture from the slapper detonator system.

  10. Chemical analysis of solids with sub-nm depth resolution by using a miniature LIMS system designed for in situ space research

    Science.gov (United States)

    Riedo, Andreas; Grimaudo, Valentine; Moreno-García, Pavel; Brigitte Neuland, Maike; Tulej, Marek; Broekmann, Peter; Wurz, Peter

    2015-04-01

    Sensitive elemental and isotope analysis of solid samples are of considerable interest in nowadays in situ space research. For context in situ analysis, high spatial resolution is also of substantial importance. While the measurements conducted with high lateral resolution can provide compositional details of the surface of highly heterogeneous materials, depth profiling measurements yield information on compositional details of surface and subsurface. The mass spectrometric analysis with the vertical resolution at sub-µm levels is of special consideration and can deliver important information on processes, which may have modified the surface. Information on space weathering effects can be readily determined when the sample composition of the surface and sub-surface is studied with high vertical resolution. In this contribution we will present vertical depth resolution measurements conducted by our sensitive miniature laser ablation ionization time-of-flight mass spectrometer (160mm x Ø 60mm) designed for in situ space research [1-3]. The mass spectrometer is equipped with a fs-laser system (~190fs pulse width, λ = 775nm), which is used for ablation and ionization of the sample material [2]. Laser radiation is focussed on the target material to a spot size of about 10-20 µm in diameter. Mass spectrometric measurements are conducted with a mass resolution (m/Δm) of about 400-500 (at 56Fe mass peak) and with a superior dynamic range of more than eight orders of magnitude. The depth profiling performance studies were conducted on 10µm thick Cu films that were deposited by an additive-assisted electrochemical procedure on Si-wafers. The presented measurement study will show that the current instrument prototype is able to conduct quantitative chemical (elemental and isotope) analysis of solids with a vertical resolution at sub-nm level. Contaminants, incorporated by using additives (polymers containing e.g. C, N, O, S) and with layer thickness of a few nanometres

  11. A portable system for nuclear, chemical agent, and explosives identification

    International Nuclear Information System (INIS)

    Parker, W.E.; Buckley, W.M.; Kreek, S.A.; Mauger, G.J.; Lavietes, A.D.; Dougan, A.D.; Caffrey, A.J.

    2001-01-01

    The FRIS/PINS hybrid integrates the LLNL-developed Field Radionuclide Identification System (FRIS) with the INEEL-developed Portable Isotopic Neutron Spectroscopy (PINS) chemical assay system to yield a combined general radioisotope, special nuclear material, and chemical weapons/explosives detection and identification system. The PINS system uses a neutron source and a high-purity germanium γ-ray detector. The FRIS system uses an electromechanically cooled germanium detector and its own analysis software to detect and identify special nuclear material and other radioisotopes. The FRIS/PINS combined system also uses the electromechanically-cooled germanium detector. There is no other currently available integrated technology that can combine a prompt-gamma neutron-activation analysis capability for CWE with a passive radioisotope measurement and identification capability for special nuclear material

  12. A Portable System for Nuclear, Chemical Agent and Explosives Identification

    International Nuclear Information System (INIS)

    Parker, W.E.; Buckley, W.M.; Kreek, S.A.; Caffrey, A.J.; Mauger, G.J.; Lavietes, A.D.; Dougan, A.D.

    2000-01-01

    The FRIS/PINS hybrid integrates the LLNL-developed Field Radionuclide Identification System (FRIS) with the INEEL-developed Portable Isotopic Neutron Spectroscopy (PINS) chemical assay system to yield a combined general radioisotope, special nuclear material, and chemical weapons/explosives detection and identification system. The PINS system uses a neutron source and a high-purity germanium γ-ray detector. The FRIS system uses an electrochemically cooled germanium detector and its own analysis software to detect and identify special nuclear material and other radioisotopes. The FRIS/PINS combined system also uses the electromechanically-cooled germanium detector. There is no other currently available integrated technology that can combine an active neutron interrogation and analysis capability for CWE with a passive radioisotope measurement and identification capability for special nuclear material

  13. Prognostic Analysis System and Methods of Operation

    Science.gov (United States)

    MacKey, Ryan M. E. (Inventor); Sneddon, Robert (Inventor)

    2014-01-01

    A prognostic analysis system and methods of operating the system are provided. In particular, a prognostic analysis system for the analysis of physical system health applicable to mechanical, electrical, chemical and optical systems and methods of operating the system are described herein.

  14. Chemical reactions in reverse micelle systems

    Science.gov (United States)

    Matson, Dean W.; Fulton, John L.; Smith, Richard D.; Consani, Keith A.

    1993-08-24

    This invention is directed to conducting chemical reactions in reverse micelle or microemulsion systems comprising a substantially discontinuous phase including a polar fluid, typically an aqueous fluid, and a microemulsion promoter, typically a surfactant, for facilitating the formation of reverse micelles in the system. The system further includes a substantially continuous phase including a non-polar or low-polarity fluid material which is a gas under standard temperature and pressure and has a critical density, and which is generally a water-insoluble fluid in a near critical or supercritical state. Thus, the microemulsion system is maintained at a pressure and temperature such that the density of the non-polar or low-polarity fluid exceeds the critical density thereof. The method of carrying out chemical reactions generally comprises forming a first reverse micelle system including an aqueous fluid including reverse micelles in a water-insoluble fluid in the supercritical state. Then, a first reactant is introduced into the first reverse micelle system, and a chemical reaction is carried out with the first reactant to form a reaction product. In general, the first reactant can be incorporated into, and the product formed in, the reverse micelles. A second reactant can also be incorporated in the first reverse micelle system which is capable of reacting with the first reactant to form a product.

  15. System chemical biology studies of endocrine disruptors

    DEFF Research Database (Denmark)

    Taboureau, Olivier; Oprea, Tudor I.

    Endocrine disrupting chemicals (EDCs) alter hormonal balance and other physiological systems through inappropriate developmental or adult exposure, perturbing the reproductive function of further generations. While disruption of key receptors (e.g., estrogen, androgen, and thyroid) at the ligand...... effects resulting in the perturbation of different proteins associated to particular diseases (e.g., cryptorchidism) were evaluated....

  16. CHEMICAL ANALYSES OF SODIUM SYSTEMS FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Greenhalgh, W. O.; Yunker, W. H.; Scott, F. A.

    1970-06-01

    BNWL-1407 summarizes information gained from the Chemical Analyses of Sodium Systems Program pursued by Battelle- Northwest over the period from July 1967 through June 1969. Tasks included feasibility studies for performing coulometric titration and polarographic determinations of oxygen in sodium, and the development of new separation techniques for sodium impurities and their subsequent analyses. The program was terminated ahead of schedule so firm conclusions were not obtained in all areas of the work. At least 40 coulometric titrations were carried out and special test cells were developed for coulometric application. Data indicated that polarographic measurements are theoretically feasible, but practical application of the method was not verified. An emission spectrographic procedure for trace metal impurities was developed and published. Trace metal analysis by a neutron activation technique was shown to be feasible; key to the success of the activation technique was the application of a new ion exchange resin which provided a sodium separation factor of 10{sup 11}. Preliminary studies on direct scavenging of trace metals produced no conclusive results.

  17. Chemical Looping Combustion Reactions and Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sarofim, Adel; Lighty, JoAnn; Smith, Philip; Whitty, Kevin; Eyring, Edward; Sahir, Asad; Alvarez, Milo; Hradisky, Michael; Clayton, Chris; Konya, Gabor; Baracki, Richard; Kelly, Kerry

    2011-07-01

    Chemical Looping Combustion (CLC) is one promising fuel-combustion technology, which can facilitate economic CO2 capture in coal-fired power plants. It employs the oxidation/reduction characteristics of a metal, or oxygen carrier, and its oxide, the oxidizing gas (typically air) and the fuel source may be kept separate. This work focused on two classes of oxygen carrier, one that merely undergoes a change in oxidation state, such as Fe3O4/Fe2O3 and one that is converted from its higher to its lower oxidation state by the release of oxygen on heating, i.e., CuO/Cu2O. This topical report discusses the results of four complementary efforts: (1) the development of process and economic models to optimize important design considerations, such as oxygen carrier circulation rate, temperature, residence time; (2) the development of high-performance simulation capabilities for fluidized beds and the collection, parameter identification, and preliminary verification/uncertainty quantification (3) the exploration of operating characteristics in the laboratory-scale bubbling bed reactor, with a focus on the oxygen carrier performance, including reactivity, oxygen carrying capacity, attrition resistance, resistance to deactivation, cost and availability (4) the identification of mechanisms and rates for the copper, cuprous oxide, and cupric oxide system using thermogravimetric analysis.

  18. ANALYTICAL SYNTHESIS OF CHEMICAL REACTOR CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    Alexander Labutin

    2017-02-01

    Full Text Available The problem of the analytical synthesis of the synergetic control system of chemical reactor for the realization of a complex series-parallel exothermal reaction has been solved. The synthesis of control principles is performed using the analytical design method of aggregated regulators. Synthesized nonlinear control system solves the problem of stabilization of the concentration of target component at the exit of reactor and also enables one to automatically transfer to new production using the equipment.

  19. Unifying Approach to Analytical Chemistry and Chemical Analysis: Problem-Oriented Role of Chemical Analysis.

    Science.gov (United States)

    Pardue, Harry L.; Woo, Jannie

    1984-01-01

    Proposes an approach to teaching analytical chemistry and chemical analysis in which a problem to be resolved is the focus of a course. Indicates that this problem-oriented approach is intended to complement detailed discussions of fundamental and applied aspects of chemical determinations and not replace such discussions. (JN)

  20. Endocrine Disrupting Chemical Impacts on Aquatic Systems

    Science.gov (United States)

    Jobling, Susan

    2014-07-01

    We often talk about the importance of water, but one area that's often overlooked is the safety of our water supply. How many people actually think about the purity of their water when they turn on the tap? We may have real reason to be concerned because our water delivery systems and treatment technology seem to be stuck in the past, relying on old water treatment and water delivery systems. While these systems still do a great job filtering out particles, parasites and bacteria, they usually fail to remove 21st century contaminants like pesticides, industrial chemicals, lead, pharmaceuticals and arsenic. Indeed our water contains already a whole plethora of things in daily commerce and pharmaceuticals are increasingly showing up in the water supply, including antibiotics, anti-convulsants, mood altering medications and sex hormones. As the world's dependence on chemicals grows, our water supplies will continue to feel the effects, which inevitably will touch every person on this planet...

  1. Multi-scenario modelling of uncertainty in stochastic chemical systems

    International Nuclear Information System (INIS)

    Evans, R. David; Ricardez-Sandoval, Luis A.

    2014-01-01

    Uncertainty analysis has not been well studied at the molecular scale, despite extensive knowledge of uncertainty in macroscale systems. The ability to predict the effect of uncertainty allows for robust control of small scale systems such as nanoreactors, surface reactions, and gene toggle switches. However, it is difficult to model uncertainty in such chemical systems as they are stochastic in nature, and require a large computational cost. To address this issue, a new model of uncertainty propagation in stochastic chemical systems, based on the Chemical Master Equation, is proposed in the present study. The uncertain solution is approximated by a composite state comprised of the averaged effect of samples from the uncertain parameter distributions. This model is then used to study the effect of uncertainty on an isomerization system and a two gene regulation network called a repressilator. The results of this model show that uncertainty in stochastic systems is dependent on both the uncertain distribution, and the system under investigation. -- Highlights: •A method to model uncertainty on stochastic systems was developed. •The method is based on the Chemical Master Equation. •Uncertainty in an isomerization reaction and a gene regulation network was modelled. •Effects were significant and dependent on the uncertain input and reaction system. •The model was computationally more efficient than Kinetic Monte Carlo

  2. Engineered Barrier System: Physical and Chemical Environment Model

    International Nuclear Information System (INIS)

    Jolley, D. M.; Jarek, R.; Mariner, P.

    2004-01-01

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports

  3. Device for high spatial resolution chemical analysis of a sample and method of high spatial resolution chemical analysis

    Science.gov (United States)

    Van Berkel, Gary J.

    2015-10-06

    A system and method for analyzing a chemical composition of a specimen are described. The system can include at least one pin; a sampling device configured to contact a liquid with a specimen on the at least one pin to form a testing solution; and a stepper mechanism configured to move the at least one pin and the sampling device relative to one another. The system can also include an analytical instrument for determining a chemical composition of the specimen from the testing solution. In particular, the systems and methods described herein enable chemical analysis of specimens, such as tissue, to be evaluated in a manner that the spatial-resolution is limited by the size of the pins used to obtain tissue samples, not the size of the sampling device used to solubilize the samples coupled to the pins.

  4. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    R. Jarek

    2004-11-23

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports.

  5. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    International Nuclear Information System (INIS)

    Jarek, R.

    2004-01-01

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports

  6. Chemical analysis of refractories by plasma spectrometry

    International Nuclear Information System (INIS)

    Coutinho, C.A.

    1990-01-01

    X-ray spectrometry has been, since the last two or three decades, the traditional procedure for the chemical analysis of refractories, due to its high degree of accuracy and speed to produce analytical results. An interesting alternative to X-ray fluorescence is provided by the Inductively Coupled Plasma Spectrometry technique, for those laboratories where wet chemistry facilities are already available or process control is not required at high speed, or investiment costs have to be low. This paper presents results obtained by plasma spectroscopy for the analysis of silico - aluminous refractories, showing calibration curves, precion and detection limits. Considerations and comparisons with X-ray fluorescence are also made. (author) [pt

  7. Quantum Chemical Strain Analysis For Mechanochemical Processes.

    Science.gov (United States)

    Stauch, Tim; Dreuw, Andreas

    2017-04-18

    The use of mechanical force to initiate a chemical reaction is an efficient alternative to the conventional sources of activation energy, i.e., heat, light, and electricity. Applications of mechanochemistry in academic and industrial laboratories are diverse, ranging from chemical syntheses in ball mills and ultrasound baths to direct activation of covalent bonds using an atomic force microscope. The vectorial nature of force is advantageous because specific covalent bonds can be preconditioned for rupture by selective stretching. However, the influence of mechanical force on single molecules is still not understood at a fundamental level, which limits the applicability of mechanochemistry. As a result, many chemists still resort to rules of thumb when it comes to conducting mechanochemical syntheses. In this Account, we show that comprehension of mechanochemistry at the molecular level can be tremendously advanced by quantum chemistry, in particular by using quantum chemical force analysis tools. One such tool is the JEDI (Judgement of Energy DIstribution) analysis, which provides a convenient approach to analyze the distribution of strain energy in a mechanically deformed molecule. Based on the harmonic approximation, the strain energy contribution is calculated for each bond length, bond angle and dihedral angle, thus providing a comprehensive picture of how force affects molecules. This Account examines the theoretical foundations of quantum chemical force analysis and provides a critical overview of the performance of the JEDI analysis in various mechanochemical applications. We explain in detail how this analysis tool is to be used to identify the "force-bearing scaffold" of a distorted molecule, which allows both the rationalization and the optimization of diverse mechanochemical processes. More precisely, we show that the inclusion of every bond, bending and torsion of a molecule allows a particularly insightful discussion of the distribution of mechanical

  8. Activation and chemical analysis of drinking waters

    International Nuclear Information System (INIS)

    Sharma, H.K.; Mittal, V.K.; Sahota, H.S.

    1989-01-01

    Ground water samples from Patiala city have been analysed for 22 trace elements using neutron activation analysis and for seven chemical parameters using standard techniques. It was found that alkali and alkaline earth metals have high concentrations in all samples whereas the concentrations of toxic metals are low in the majority of samples. However, chromium and cadmium concentrations are higher in ground water taken from the industrial belt of the city. This indicates that the overall level of pollution is low, but that some measures are still needed to inhibit various industries from polluting the ground water. (author)

  9. VALIDATION GUIDELINES FOR LABORATORIES PERFORMING FORENSIC ANALYSIS OF CHEMICAL TERRORISM

    Science.gov (United States)

    The Scientific Working Group on Forensic Analysis of Chemical Terrorism (SWGFACT) has developed the following guidelines for laboratories engaged in the forensic analysis of chemical evidence associated with terrorism. This document provides a baseline framework and guidance for...

  10. Stochastic flux analysis of chemical reaction networks.

    Science.gov (United States)

    Kahramanoğulları, Ozan; Lynch, James F

    2013-12-07

    Chemical reaction networks provide an abstraction scheme for a broad range of models in biology and ecology. The two common means for simulating these networks are the deterministic and the stochastic approaches. The traditional deterministic approach, based on differential equations, enjoys a rich set of analysis techniques, including a treatment of reaction fluxes. However, the discrete stochastic simulations, which provide advantages in some cases, lack a quantitative treatment of network fluxes. We describe a method for flux analysis of chemical reaction networks, where flux is given by the flow of species between reactions in stochastic simulations of the network. Extending discrete event simulation algorithms, our method constructs several data structures, and thereby reveals a variety of statistics about resource creation and consumption during the simulation. We use these structures to quantify the causal interdependence and relative importance of the reactions at arbitrary time intervals with respect to the network fluxes. This allows us to construct reduced networks that have the same flux-behavior, and compare these networks, also with respect to their time series. We demonstrate our approach on an extended example based on a published ODE model of the same network, that is, Rho GTP-binding proteins, and on other models from biology and ecology. We provide a fully stochastic treatment of flux analysis. As in deterministic analysis, our method delivers the network behavior in terms of species transformations. Moreover, our stochastic analysis can be applied, not only at steady state, but at arbitrary time intervals, and used to identify the flow of specific species between specific reactions. Our cases study of Rho GTP-binding proteins reveals the role played by the cyclic reverse fluxes in tuning the behavior of this network.

  11. Spectral identity mapping for enhanced chemical image analysis

    Science.gov (United States)

    Turner, John F., II

    2005-03-01

    Advances in spectral imaging instrumentation during the last two decades has lead to higher image fidelity, tighter spatial resolution, narrower spectral resolution, and improved signal to noise ratios. An important sub-classification of spectral imaging is chemical imaging, in which the sought-after information from the sample is its chemical composition. Consequently, chemical imaging can be thought of as a two-step process, spectral image acquisition and the subsequent processing of the spectral image data to generate chemically relevant image contrast. While chemical imaging systems that provide turnkey data acquisition are increasingly widespread, better strategies to analyze the vast datasets they produce are needed. The Generation of chemically relevant image contrast from spectral image data requires multivariate processing algorithms that can categorize spectra according to shape. Conventional chemometric techniques like inverse least squares, classical least squares, multiple linear regression, principle component regression, and multivariate curve resolution are effective for predicting the chemical composition of samples having known constituents, but are less effective when a priori information about the sample is unavailable. To address these problems, we have developed a fully automated non-parametric technique called spectral identity mapping (SIMS) that reduces the dependence of spectral image analysis on training datasets. The qualitative SIMS method provides enhanced spectral shape specificity and improved chemical image contrast. We present SIMS results of infrared spectral image data acquired from polymer coated paper substrates used in the manufacture of pressure sensitive adhesive tapes. In addition, we compare the SIMS results to results from spectral angle mapping (SAM) and cosine correlation analysis (CCA), two closely related techniques.

  12. Chemical detection system and related methods

    Energy Technology Data Exchange (ETDEWEB)

    Caffrey, Augustine J.; Chichester, David L.; Egger, Ann E.; Krebs, Kenneth M.; Seabury, Edward H.; Van Siclen, Clinton D.; Wharton, C. Jayson; Zabriskie, John M.

    2017-06-27

    A chemical detection system includes a frame, an emitter coupled to the frame, and a detector coupled to the frame proximate the emitter. The system also includes a shielding system coupled to the frame and positioned at least partially between the emitter and the detector, wherein the frame positions a sensing surface of the detector in a direction substantially parallel to a plane extending along a front portion of the frame. A method of analyzing composition of a suspect object includes directing neutrons at the object, detecting gamma rays emitted from the object, and communicating spectrometer information regarding the gamma rays. The method also includes presenting a GUI to a user with a dynamic status of an ongoing neutron spectroscopy process. The dynamic status includes a present confidence for a plurality of compounds being present in the suspect object responsive to changes in the spectrometer information during the ongoing process.

  13. LSENS - GENERAL CHEMICAL KINETICS AND SENSITIVITY ANALYSIS CODE

    Science.gov (United States)

    Bittker, D. A.

    1994-01-01

    LSENS has been developed for solving complex, homogeneous, gas-phase, chemical kinetics problems. The motivation for the development of this program is the continuing interest in developing detailed chemical reaction mechanisms for complex reactions such as the combustion of fuels and pollutant formation and destruction. A reaction mechanism is the set of all elementary chemical reactions that are required to describe the process of interest. Mathematical descriptions of chemical kinetics problems constitute sets of coupled, nonlinear, first-order ordinary differential equations (ODEs). The number of ODEs can be very large because of the numerous chemical species involved in the reaction mechanism. Further complicating the situation are the many simultaneous reactions needed to describe the chemical kinetics of practical fuels. For example, the mechanism describing the oxidation of the simplest hydrocarbon fuel, methane, involves over 25 species participating in nearly 100 elementary reaction steps. Validating a chemical reaction mechanism requires repetitive solutions of the governing ODEs for a variety of reaction conditions. Analytical solutions to the systems of ODEs describing chemistry are not possible, except for the simplest cases, which are of little or no practical value. Consequently, there is a need for fast and reliable numerical solution techniques for chemical kinetics problems. In addition to solving the ODEs describing chemical kinetics, it is often necessary to know what effects variations in either initial condition values or chemical reaction mechanism parameters have on the solution. Such a need arises in the development of reaction mechanisms from experimental data. The rate coefficients are often not known with great precision and in general, the experimental data are not sufficiently detailed to accurately estimate the rate coefficient parameters. The development of a reaction mechanism is facilitated by a systematic sensitivity analysis

  14. The smallest chemical reaction system with bistability

    Directory of Open Access Journals (Sweden)

    Wilhelm Thomas

    2009-09-01

    Full Text Available Abstract Background Bistability underlies basic biological phenomena, such as cell division, differentiation, cancer onset, and apoptosis. So far biologists identified two necessary conditions for bistability: positive feedback and ultrasensitivity. Results Biological systems are based upon elementary mono- and bimolecular chemical reactions. In order to definitely clarify all necessary conditions for bistability we here present the corresponding minimal system. According to our definition, it contains the minimal number of (i reactants, (ii reactions, and (iii terms in the corresponding ordinary differential equations (decreasing importance from i-iii. The minimal bistable system contains two reactants and four irreversible reactions (three bimolecular, one monomolecular. We discuss the roles of the reactions with respect to the necessary conditions for bistability: two reactions comprise the positive feedback loop, a third reaction filters out small stimuli thus enabling a stable 'off' state, and the fourth reaction prevents explosions. We argue that prevention of explosion is a third general necessary condition for bistability, which is so far lacking discussion in the literature. Moreover, in addition to proving that in two-component systems three steady states are necessary for bistability (five for tristability, etc., we also present a simple general method to design such systems: one just needs one production and three different degradation mechanisms (one production, five degradations for tristability, etc.. This helps modelling multistable systems and it is important for corresponding synthetic biology projects. Conclusion The presented minimal bistable system finally clarifies the often discussed question for the necessary conditions for bistability. The three necessary conditions are: positive feedback, a mechanism to filter out small stimuli and a mechanism to prevent explosions. This is important for modelling bistability with

  15. Gas analysis during the chemical vapor deposition of carbon

    International Nuclear Information System (INIS)

    Lieberman, M.L.; Noles, G.T.

    1973-01-01

    Gas chromatographic analyses were performed during the chemical vapor deposition of carbon in both isothermal and thermal gradient systems. Such data offer insight into the gas phase processes which occur during deposition and the interrelations which exist between gas composition, deposition rate, and resultant structure of the deposit. The results support a carbon CVD model presented previously. The application of chromatographic analysis to research, development, and full-scale facilities is shown. (U.S.)

  16. 29 CFR 1910.161 - Fixed extinguishing systems, dry chemical.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Fixed extinguishing systems, dry chemical. 1910.161 Section... § 1910.161 Fixed extinguishing systems, dry chemical. (a) Scope and application. This section applies to all fixed extinguishing systems, using dry chemical as the extinguishing agent, installed to meet a...

  17. Engineered Barrier System: Physical and Chemical Environment Model

    Energy Technology Data Exchange (ETDEWEB)

    D. M. Jolley; R. Jarek; P. Mariner

    2004-02-09

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.

  18. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    International Nuclear Information System (INIS)

    R. Jarek

    2005-01-01

    The purpose of this model report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The resulting seepage evaporation and gas abstraction models are used in the total system performance assessment for the license application (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2005 [DIRS 173782], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports. To be consistent with other project documents that address features, events, and processes (FEPs), Table 6.14.1 of the current report includes updates to FEP numbers and FEP subjects for two FEPs identified in the technical work plan (TWP) governing this report (BSC 2005 [DIRS 173782]). FEP 2.1.09.06.0A (Reduction-oxidation potential in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.06.0B (Reduction-oxidation potential in Drifts; see Table 6.14-1). FEP 2.1.09.07.0A (Reaction kinetics in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.07.0B (Reaction kinetics in Drifts; see Table 6.14-1). These deviations from the TWP are justified because they improve integration with FEPs documents. The updates

  19. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    R. Jarek

    2005-08-29

    The purpose of this model report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The resulting seepage evaporation and gas abstraction models are used in the total system performance assessment for the license application (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2005 [DIRS 173782], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports. To be consistent with other project documents that address features, events, and processes (FEPs), Table 6.14.1 of the current report includes updates to FEP numbers and FEP subjects for two FEPs identified in the technical work plan (TWP) governing this report (BSC 2005 [DIRS 173782]). FEP 2.1.09.06.0A (Reduction-oxidation potential in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.06.0B (Reduction-oxidation potential in Drifts; see Table 6.14-1). FEP 2.1.09.07.0A (Reaction kinetics in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.07.0B (Reaction kinetics in Drifts; see Table 6.14-1). These deviations from the TWP are justified because they improve integration with FEPs

  20. Chemical equilibrium of gaseous systems at high temperature

    International Nuclear Information System (INIS)

    Asahina, Tadashi; Kosaka, Mineo; Shiroyanagi, Itaru

    1979-01-01

    As an example for chemical equilibrium of gaseous systems at high temperature. N 2 O-C 2 H 2 system which was used for atomic absorption analysis of metallic elements was picked up and the equilibrium partial pressures of the generated chemical species were calculated under the assumption that the system should have the minimum free energy. It was indicated that the equilibrium compositions were affected markedly by the sprayed water consisting in the aqueous solutions. Then, the residual fractions of neutral metal were calculated by considering the reactions between these species and the metallic element assumed to be dilute infinitely and were compared with the experimentally measured intensities of absorption. The agreement was satisfactorily good. (author)

  1. Advanced development in chemical analysis of Cordyceps.

    Science.gov (United States)

    Zhao, J; Xie, J; Wang, L Y; Li, S P

    2014-01-01

    Cordyceps sinensis, also called DongChongXiaCao (winter worm summer grass) in Chinese, is a well-known and valued traditional Chinese medicine. In 2006, we wrote a review for discussing the markers and analytical methods in quality control of Cordyceps (J. Pharm. Biomed. Anal. 41 (2006) 1571-1584). Since then this review has been cited by others for more than 60 times, which suggested that scientists have great interest in this special herbal material. Actually, the number of publications related to Cordyceps after 2006 is about 2-fold of that in two decades before 2006 according to the data from Web of Science. Therefore, it is necessary to review and discuss the advanced development in chemical analysis of Cordyceps since then. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Methods of remote surface chemical analysis for asteroid missions

    International Nuclear Information System (INIS)

    Sagdeev, R.Z.; Managadze, G.G.; Shutyaev, I.Yu.; Timofeev, P.P.; Szegoe, K.

    1984-06-01

    Different remote sensing methods are discussed which can be applied to investigate the chemical composition of minor bodies of the Solar System. The secondary-ion method, remote laser mass-analysis and electron beam induced X-ray emission analysis are treated in detail. Relative advantages of these techniques are analyzed. The physical limitation of the methods: effects of solar magnetic field and solar wind on the secondary-ion and laser methods and the effect of electrostatic potential of the space apparatus on the ion and electron beam methods are described. First laboratory results of remote laser method are given. (D.Gy.)

  3. Novel integrated mechanical biological chemical treatment (MBCT) systems for the production of levulinic acid from fraction of municipal solid waste: A comprehensive techno-economic analysis.

    Science.gov (United States)

    Sadhukhan, Jhuma; Ng, Kok Siew; Martinez-Hernandez, Elias

    2016-09-01

    This paper, for the first time, reports integrated conceptual MBCT/biorefinery systems for unlocking the value of organics in municipal solid waste (MSW) through the production of levulinic acid (LA by 5wt%) that increases the economic margin by 110-150%. After mechanical separation recovering recyclables, metals (iron, aluminium, copper) and refuse derived fuel (RDF), lignocelluloses from remaining MSW are extracted by supercritical-water for chemical valorisation, comprising hydrolysis in 2wt% dilute H2SO4 catalyst producing LA, furfural, formic acid (FA), via C5/C6 sugar extraction, in plug flow (210-230°C, 25bar, 12s) and continuous stirred tank (195-215°C, 14bar, 20min) reactors; char separation and LA extraction/purification by methyl isobutyl ketone solvent; acid/solvent and by-product recovery. The by-product and pulping effluents are anaerobically digested into biogas and fertiliser. Produced biogas (6.4MWh/t), RDF (5.4MWh/t), char (4.5MWh/t) are combusted, heat recovered into steam generation in boiler (efficiency: 80%); on-site heat/steam demand is met; balance of steam is expanded into electricity in steam turbines (efficiency: 35%). Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Chemical Carcinogenesis Research Information System (CCRIS)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The CCRIS database contains chemical records with carcinogenicity, mutagenicity, tumor promotion, and tumor inhibition test results. CCRIS provides historical...

  5. Structural determination of individual chemical species in a mixed system by iterative transformation factor analysis-based X-ray absorption spectroscopy combined with UV-visible absorption and quantum chemical calculation.

    Science.gov (United States)

    Ikeda, Atsushi; Hennig, Christoph; Rossberg, André; Tsushima, Satoru; Scheinost, Andreas C; Bernhard, Gert

    2008-02-15

    A multitechnique approach using extended X-ray absorption fine structure (EXAFS) spectroscopy based on iterative transformation factor analysis (ITFA), UV-visible absorption spectroscopy, and density functional theory (DFT) calculations has been performed in order to investigate the speciation of uranium(VI) nitrate species in acetonitrile and to identify the complex structure of individual species in the system. UV-visible spectral titration suggests that there are four different species in the system, that is, pure solvated species, mono-, di-, and trinitrate species. The pure EXAFS spectra of these individual species are extracted by ITFA from the measured spectral mixtures on the basis of the speciation distribution profile calculated from the UV-visible data. Data analysis of the extracted EXAFS spectra, with the help of DFT calculations, reveals the most probable complex structures of the individual species. The pure solvated species corresponds to a uranyl hydrate complex with an equatorial coordination number (CNeq) of 5, [UO2(H2O)5]2+. Nitrate ions tend to coordinate to the uranyl(VI) ion in a bidentate fashion rather than a unidentate one in acetonitrile for all the nitrate species. The mononitrate species forms the complex of [UO2(H2O)3NO3]+ with a CNeq value of 5, while the di- and trinitrate species have a CNeq value of 6, corresponding to [UO2(H2O)2(NO3)2]0 (D2h) and [UO2(NO3)3]- (D3h), respectively.

  6. Chemical kinetic functional sensitivity analysis: Elementary sensitivities

    International Nuclear Information System (INIS)

    Demiralp, M.; Rabitz, H.

    1981-01-01

    Sensitivity analysis is considered for kinetics problems defined in the space--time domain. This extends an earlier temporal Green's function method to handle calculations of elementary functional sensitivities deltau/sub i//deltaα/sub j/ where u/sub i/ is the ith species concentration and α/sub j/ is the jth system parameter. The system parameters include rate constants, diffusion coefficients, initial conditions, boundary conditions, or any other well-defined variables in the kinetic equations. These parameters are generally considered to be functions of position and/or time. Derivation of the governing equations for the sensitivities and the Green's funciton are presented. The physical interpretation of the Green's function and sensitivities is given along with a discussion of the relation of this work to earlier research

  7. Chapter 3. System quality in chemical and radiochemical laboratories

    International Nuclear Information System (INIS)

    Rosskopfova, O.

    2006-01-01

    This chapter deals with the system quality in chemical and radiochemical laboratories. It contains following parts: requirement on management, system of management in laboratory, as well as system of the management

  8. Culturing Security System of Chemical Laboratory in Indonesia

    Directory of Open Access Journals (Sweden)

    Eka Dian Pusfitasari

    2017-04-01

    Full Text Available Indonesia has experiences on the lack of chemical security such as: a number of bombing terrors and hazardous chemicals found in food. Bomb used in terror is a homemade bomb made from chemicals which are widely spread in the research laboratories such as a mixture of pottasium chlorate, sulphur, and alumunium. Therefore, security of chemicals should be implemented to avoid the misused of the chemicals. Although it has experienced many cases of the misuse of chemicals, and many regulations and seminars related to chemical security have been held, but the implementation of chemical security is still a new thing for Indonesian citizens. The evident is coming from the interviews conducted in this study. Questions asked in this interview/survey included: the implementation of chemical safety and chemical security in laboratory; chemical inventory system and its regulation; and training needed for chemical security implementation. Respondents were basically a researcher from Government Research Institutes, University laboratories, senior high school laboratories, and service laboratories were still ambiguous in distinguishing chemical safety and chemical security. Because of this condition, most Indonesia chemical laboratories did not totally apply chemical security system. Education is very important step to raise people awareness and address this problem. Law and regulations should be sustained by all laboratory personnel activities to avoid chemical diversion to be used for harming people and environment. The Indonesia Government could also develop practical guidelines and standards to be applied to all chemical laboratories in Indonesia. These acts can help Government’s efforts to promote chemical security best practices which usually conducted by doing seminars and workshop.

  9. Chemical kinetics of Cs species in an alkali-activated municipal solid waste incineration fly ash and pyrophyllite-based system using Cs K-edge in situ X-ray absorption fine structure analysis

    Science.gov (United States)

    Shiota, Kenji; Nakamura, Takafumi; Takaoka, Masaki; Nitta, Kiyofumi; Oshita, Kazuyuki; Fujimori, Takashi; Ina, Toshiaki

    2017-05-01

    We conducted in situ X-ray absorption fine structure (in situ XAFS) analysis at the Cs K-edge to investigate the chemical kinetics of Cs species during reaction in an alkali-activated municipal solid waste incineration fly ash (MSWIFA) and pyrophyllite-based system. Understanding the kinetics of Cs is essential to the design of appropriate conditions for Cs stabilization. In situ XAFS analysis of four pastes, prepared from NaOHaq, sodium silicate solution, pyrophyllite, and MSWIFA with the addition of CsCl, was conducted in custom-built reaction cells at four curing temperatures (room temperature, 60 °C, 80 °C, 105 °C) for approximately 34 h. The results indicated that the change in Cs species during reaction at room temperature was small, while changes at higher temperatures were faster and more extreme, with the fastest conversion to pollucite occurring at 105 °C. Further analysis using a leaching test and a simple reaction model for Cs species during reaction showed that the pollucite formation rate was dependent on the curing temperature and had a significant negative correlation with Cs leaching. The activation energy of pollucite formation was estimated to be 31.5 kJ/mol. These results revealed that an important change in the chemical state of Cs occurs during reaction in the system.

  10. Equilibrium Constant as Solution to the Open Chemical Systems

    OpenAIRE

    Zilbergleyt, B.

    2008-01-01

    According to contemporary views, equilibrium constant is relevant only to true thermodynamic equilibria in isolated systems with one chemical reaction. The paper presents a novel formula that ties-up equilibrium constant and chemical system composition at any state, isolated or open as well. Extending the logarithmic logistic map of the Discrete Thermodynamics of Chemical Equilibria, this formula maps the system population at isolated equilibrium into the population at any open equilibrium at...

  11. Quantitative Chemical Analysis of Enceladus' Plume Composition.

    Science.gov (United States)

    Peter, J.; Nordheim, T.; Hofmann, A.; Hand, K. P.

    2017-12-01

    Analyses of data from Cassini's Ion and Neutral Mass Spectrometer (INMS) taken during several close flybys of Enceladus suggest the presence of a potentially habitable ocean underneath the ice shell [1,2]. Proper identification of the molecular species sampled from Enceladus' plumes by INMS is of utmost importance for characterizing the ocean's chemical composition. Data from Cassini's Cosmic Dust Analyzer (CDA) and Visible and Infrared Mapping Spectrometer (VIMS) have provided clues for possible plume chemistry, but further analysis of the INMS data is necessary [3,4]. Here we present a novel automated algorithm for comparing INMS spectra and analogue laboratory spectra to a vast library of sample spectra provided by the National Institute of Standards and Technology (NIST). The algorithm implements a Monte Carlo simulation that computes the angular similarity between the spectrum of interest and a random sample of synthetic spectra generated at arbitrary mixing ratios of molecular species. The synthetic spectra with the highest similarity scores are then averaged to produce a convergent estimate of the mixing ratio of the spectrum of interest. Here we will discuss the application of this technique to INMS and laboratory data and the implication of our preliminary results for the ocean chemistry and habitability of Enceladus. 1. Waite, J., et al., 2009. Liquid Water on Enceladus From Observations of Ammonia and 40Ar in the Plume. Nature 460, 487-498. 2. Waite, J., et al. 2017. Cassini Finds Molecular Hydrogen in the Enceladus Plume: Evidence for Hydrothermal Processes. Science 356, 155-159. 3. Postberg, F., et al., 2008. The E Ring in the Vicinity of Enceladus II: Signatures of Enceladus in the Elemental Composition of E-Ring Particles. Icarus 193(2), 438-454. 4. Brown, R., et al., 2006. Composition and Physical Properties of Enceladus' Surface. Science 311, 1425-1428.

  12. CHEMTRAN and the Interconversion of Chemical Substructure Systems

    Science.gov (United States)

    Granito, Charles E.

    1973-01-01

    The need for the interconversion of chemical substructure systems is discussed and CHEMTRAN, a new service, designed especially for creating interconversion programs, is introduced. (7 references) (Author)

  13. Construction of a Linux based chemical and biological information system.

    Science.gov (United States)

    Molnár, László; Vágó, István; Fehér, András

    2003-01-01

    A chemical and biological information system with a Web-based easy-to-use interface and corresponding databases has been developed. The constructed system incorporates all chemical, numerical and textual data related to the chemical compounds, including numerical biological screen results. Users can search the database by traditional textual/numerical and/or substructure or similarity queries through the web interface. To build our chemical database management system, we utilized existing IT components such as ORACLE or Tripos SYBYL for database management and Zope application server for the web interface. We chose Linux as the main platform, however, almost every component can be used under various operating systems.

  14. Hazard ranking systems for chemical wastes and chemical waste sites

    International Nuclear Information System (INIS)

    Waters, R.D.; Parker, F.L.; Crutcher, M.R.

    1991-01-01

    Hazardous materials and substances have always existed in the environment. Mankind has evolved to live with some degree of exposure to toxic materials. Until recently the risk has been from natural toxins or natural background radiation. While rapid technological advances over the past few decades have improved the lifestyle of our society, they have also dramatically increased the availability, volume and types of synthetic and natural hazardous materials. Many of their effects are as yet uncertain. Products and manufacturing by-products that no longer serve a useful purpose are deemed wastes. For some waste products land disposal will always be their ultimate fate. Hazardous substances are often included in the waste products. One needs to classify wastes by degree of hazard (risk). Risk (degree of probability of loss) is usually defined for risk assessment as probability of an occurrence times the consequences of the occurrence. Perhaps even more important than the definition of risk is the choice of a risk management strategy. The choice of strategy will be strongly influenced by the decision criteria used. Those decision criteria could be utility (the greatest happiness of the greatest number), rights or technology based or some combination of the three. It is necessary to make such choices about the definition of risks and criteria for management. It is clear that these are social (i.e., political) and value choices and science has little to say on this matter. This is another example of what Alvin Weinberg has named Transcience where the subject matter is scientific and technical but the choices are social, political and moral. This paper shall deal only with the scientific and technical aspects of the hazardous waste problem to create a hazardous substances classification system

  15. chemical analysis and base- promoted hydrolysis of locally ...

    African Journals Online (AJOL)

    Wara

    ABSTRACT. The study was on the chemical analysis and base- promoted hydrolysis of extracted shea nut fat. The local method of extraction of the shea nut oil was employed in comparison with literature report. A simple cold-process alkali hydrolysis of the shea nut oil was used in producing the soap. The chemical analysis ...

  16. Chemical analysis and base-promoted hydrolysis of locally ...

    African Journals Online (AJOL)

    The study was on the chemical analysis and base- promoted hydrolysis of extracted shea nut fat. The local method of extraction of the shea nut oil was employed in comparison with literature report. A simple cold-process alkali hydrolysis of the shea nut oil was used in producing the soap. The chemical analysis of the oil ...

  17. Chemical Engineering Data Analysis Made Easy with DataFit

    Science.gov (United States)

    Brenner, James R.

    2006-01-01

    The outline for half of a one-credit-hour course in analysis of chemical engineering data is presented, along with a range of typical problems encountered later on in the chemical engineering curriculum that can be used to reinforce the data analysis skills learned in the course. This mini course allows students to be exposed to a variety of ChE…

  18. Computational Issues in Analysis and Design of Chemical-Laser Flow-Fields

    National Research Council Canada - National Science Library

    Eppard, W

    2002-01-01

    In support of the Air Force's airborne laser (ABL) development program. state-of-the-art CFD analysis and design methods have been extended to include the physical models important in chemical oxygen-iodine laser (COIL) systems...

  19. Dietary antioxidant synergy in chemical and biological systems.

    Science.gov (United States)

    Wang, Sunan; Zhu, Fan

    2017-07-24

    Antioxidant (AOX) synergies have been much reported in chemical ("test-tube" based assays focusing on pure chemicals), biological (tissue culture, animal and clinical models), and food systems during the past decade. Tentative synergies differ from each other due to the composition of AOX and the quantification methods. Regeneration mechanism responsible for synergy in chemical systems has been discussed. Solvent effects could contribute to the artifacts of synergy observed in the chemical models. Synergy in chemical models may hardly be relevant to biological systems that have been much less studied. Apparent discrepancies exist in understanding the molecular mechanisms in both chemical and biological systems. This review discusses diverse variables associated with AOX synergy and molecular scenarios for explanation. Future research to better utilize the synergy is suggested.

  20. Control and optimization system and method for chemical looping processes

    Science.gov (United States)

    Lou, Xinsheng; Joshi, Abhinaya; Lei, Hao

    2015-02-17

    A control system for optimizing a chemical loop system includes one or more sensors for measuring one or more parameters in a chemical loop. The sensors are disposed on or in a conduit positioned in the chemical loop. The sensors generate one or more data signals representative of an amount of solids in the conduit. The control system includes a data acquisition system in communication with the sensors and a controller in communication with the data acquisition system. The data acquisition system receives the data signals and the controller generates the control signals. The controller is in communication with one or more valves positioned in the chemical loop. The valves are configured to regulate a flow of the solids through the chemical loop.

  1. Systems engineering and analysis

    CERN Document Server

    Blanchard, Benjamin S

    2010-01-01

    For senior-level undergraduate and first and second year graduate systems engineering and related courses. A total life-cycle approach to systems and their analysis. This practical introduction to systems engineering and analysis provides the concepts, methodologies, models, and tools needed to understand and implement a total life-cycle approach to systems and their analysis. The authors focus first on the process of bringing systems into being--beginning with the identification of a need and extending that need through requirements determination, functional analysis and allocation, design synthesis, evaluation, and validation, operation and support, phase-out, and disposal. Next, the authors discuss the improvement of systems currently in being, showing that by employing the iterative process of analysis, evaluation, feedback, and modification, most systems in existence can be improved in their affordability, effectiveness, and stakeholder satisfaction.

  2. Introducing DAE Systems in Undergraduate and Graduate Chemical Engineering Curriculum

    Science.gov (United States)

    Mandela, Ravi Kumar; Sridhar, L. N.; Rengaswamy, Raghunathan

    2010-01-01

    Models play an important role in understanding chemical engineering systems. While differential equation models are taught in standard modeling and control courses, Differential Algebraic Equation (DAE) system models are not usually introduced. These models appear naturally in several chemical engineering problems. In this paper, the introduction…

  3. Chemical and thermal analysis for characterisation of building materials

    International Nuclear Information System (INIS)

    Kumar, S.C.; Sudersanan, M.; Ravindran, P.V.; Kalekar, B.B.; Mathur, P.K.

    2000-01-01

    Cement and other construction materials are extensively used for the construction of shielding materials for nuclear and high energy radiations. The design and optimum utilisation of such materials need an accurate analysis of their chemical composition. The moisture content and presence of bound water and other volatile materials are also important. The use of thermal analysis supplements the data obtained by chemical analysis and enables a distinction of moisture and chemically bound water. It also enables an identification of the process leading to the loss on ignition. The work carried out on the analysis of sand, cement and other aggregate materials used for the preparation of concrete is described in the paper. (author)

  4. Chemical Diversity, Origin, and Analysis of Phycotoxins

    DEFF Research Database (Denmark)

    Rasmussen, Silas Anselm; Andersen, Aaron John Christian; Andersen, Nikolaj Gedsted

    2016-01-01

    , yessotoxins, azaspiracids, brevetoxins, and pinnatoxins. Other toxins, such as ciguatoxins and maitotoxins, accumulate in fish, where, as is the case for the latter compounds, they can be metabolized to even more toxic metabolites. On the other hand, much less is known about the chemical nature of compounds...

  5. Full system chemical decontamination concept for Kori Unit 1 decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Doo Ho; Kwon, Hyuk Chul; Kim, Deok Ki [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2016-09-15

    Kori Unit 1, the first PWR (Pressurized Water Reactor) plant in Korea, began its commercial operation in 1978 and will permanently shut down on June 18, 2017. After moving the spent fuels to SFP (Spent Fuel Pool) system, Kori Unit 1 will perform a full system chemical decontamination to reduce radiation levels inside the various plant systems. This paper will describe the operation concept of the full system chemical decontamination for Kori Unit 1 based on experiences overseas.

  6. Fast analysis of narcotic drugs by optical chemical imaging

    International Nuclear Information System (INIS)

    Fisher, Michal; Bulatov, Vallery; Schechter, Israel

    2003-01-01

    A new technique is proposed for fast detection, identification and imaging of narcotic drugs in their solid phase. This technique, which requires only a tiny sample of a few microns, is based on microscopic chemical imaging. Minor sample preparation is required, and results are obtained within seconds. As far as we know, this is the most sensitive detection system available today for solid drugs. The technique can be applied for fast analysis of minute drug residues, and therefore is of considerable importance for forensic applications. It is shown that identification of drug traces in realistic matrixes is possible. Two main methods were applied in this study for detection of drugs and drug derivatives. The first method was based on direct detection and chemical imaging of the auto-fluorescence of the analyzed drugs. This method is applicable when the analyzed drug emits fluorescence under the experiment conditions, such as lysergic acid diethylamide (known as LSD). The second method was used for obtaining chemical imaging of drugs that do not fluoresce under the experiment conditions. In these cases fluorescent labeling dyes were applied to the examined samples (including the drug and the matrix). Both methods are simple and rapid, and require minor or no sample preparation at all. Detection limits are very low in the picogram range

  7. From molecular insights and chemical technologies to communications and expert systems: A few short thermodynamic stories

    International Nuclear Information System (INIS)

    Frenkel, Michael

    2007-01-01

    This Hugh M. Huffman Memorial Award Lecture illustrates the power of phenomenological and statistical thermodynamics and the unique role of thermochemical data by a variety of studies in very diverse scientific and industrial fields ranging from conformational analysis to optimization of high-tech space and mass-scale chemical technologies and from data communications to data expert systems for chemical process design

  8. Explosion of limit cycles and chaotic waves in a simple nonlinear chemical system

    DEFF Research Database (Denmark)

    Brøns, Morten; Sturis, Jeppe

    2001-01-01

    A model of an autocatalytic chemical reaction was employed to study the explosion of limit cycles and chaotic waves in a nonlinear chemical system. The bifurcation point was determined using asymptotic analysis and perturbations. Scaling laws for amplitude and period were derived. A strong...

  9. Fiscal system analysis - contractual systems

    International Nuclear Information System (INIS)

    Kaiser, M.J.

    2006-01-01

    Production sharing contracts are one of the most popular forms of contractual system used in petroleum agreements around the world, but the manner in which the fiscal terms and contract parameters impact system measures is complicated and not well understood. The purpose of this paper is to quantify the influence of private and market uncertainty in contractual fiscal systems. A meta-modelling approach is employed that couples the results of a simulation model with regression analysis to construct numerical functionals that quantify the fiscal regime. Relationships are derived that specify how the present value, rate of return, and take statistics vary as a function of the system parameters. The deepwater Girassol field development in Angola is taken as a case study. (author)

  10. Quantifying chemical reactions by using mixing analysis.

    Science.gov (United States)

    Jurado, Anna; Vázquez-Suñé, Enric; Carrera, Jesús; Tubau, Isabel; Pujades, Estanislao

    2015-01-01

    This work is motivated by a sound understanding of the chemical processes that affect the organic pollutants in an urban aquifer. We propose an approach to quantify such processes using mixing calculations. The methodology consists of the following steps: (1) identification of the recharge sources (end-members) and selection of the species (conservative and non-conservative) to be used, (2) identification of the chemical processes and (3) evaluation of mixing ratios including the chemical processes. This methodology has been applied in the Besòs River Delta (NE Barcelona, Spain), where the River Besòs is the main aquifer recharge source. A total number of 51 groundwater samples were collected from July 2007 to May 2010 during four field campaigns. Three river end-members were necessary to explain the temporal variability of the River Besòs: one river end-member is from the wet periods (W1) and two are from dry periods (D1 and D2). This methodology has proved to be useful not only to compute the mixing ratios but also to quantify processes such as calcite and magnesite dissolution, aerobic respiration and denitrification undergone at each observation point. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Recognizing chemicals in patents: a comparative analysis.

    Science.gov (United States)

    Habibi, Maryam; Wiegandt, David Luis; Schmedding, Florian; Leser, Ulf

    2016-01-01

    Recently, methods for Chemical Named Entity Recognition (NER) have gained substantial interest, driven by the need for automatically analyzing todays ever growing collections of biomedical text. Chemical NER for patents is particularly essential due to the high economic importance of pharmaceutical findings. However, NER on patents has essentially been neglected by the research community for long, mostly because of the lack of enough annotated corpora. A recent international competition specifically targeted this task, but evaluated tools only on gold standard patent abstracts instead of full patents; furthermore, results from such competitions are often difficult to extrapolate to real-life settings due to the relatively high homogeneity of training and test data. Here, we evaluate the two state-of-the-art chemical NER tools, tmChem and ChemSpot, on four different annotated patent corpora, two of which consist of full texts. We study the overall performance of the tools, compare their results at the instance level, report on high-recall and high-precision ensembles, and perform cross-corpus and intra-corpus evaluations. Our findings indicate that full patents are considerably harder to analyze than patent abstracts and clearly confirm the common wisdom that using the same text genre (patent vs. scientific) and text type (abstract vs. full text) for training and testing is a pre-requisite for achieving high quality text mining results.

  12. Some Sensitivity Studies of Chemical Transport Simulated in Models of the Soil-Plant-Litter System

    Energy Technology Data Exchange (ETDEWEB)

    Begovich, C.L.

    2002-10-28

    Fifteen parameters in a set of five coupled models describing carbon, water, and chemical dynamics in the soil-plant-litter system were varied in a sensitivity analysis of model response. Results are presented for chemical distribution in the components of soil, plants, and litter along with selected responses of biomass, internal chemical transport (xylem and phloem pathways), and chemical uptake. Response and sensitivity coefficients are presented for up to 102 model outputs in an appendix. Two soil properties (chemical distribution coefficient and chemical solubility) and three plant properties (leaf chemical permeability, cuticle thickness, and root chemical conductivity) had the greatest influence on chemical transport in the soil-plant-litter system under the conditions examined. Pollutant gas uptake (SO{sub 2}) increased with change in plant properties that increased plant growth. Heavy metal dynamics in litter responded to plant properties (phloem resistance, respiration characteristics) which induced changes in the chemical cycling to the litter system. Some of the SO{sub 2} and heavy metal responses were not expected but became apparent through the modeling analysis.

  13. Discovery of Chemical Toxicity via Biological Networks and Systems Biology

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, Edward; Habib, Tanwir; Guan, Xin; Escalon, Barbara; Falciani, Francesco; Chipman, J.K.; Antczak, Philipp; Edwards, Stephen; Taylor, Ronald C.; Vulpe, Chris; Loguinov, Alexandre; Van Aggelen, Graham; Villeneuve, Daniel L.; Garcia-Reyero, Natalia

    2010-09-30

    Both soldiers and animals are exposed to many chemicals as the result of military activities. Tools are needed to understand the hazards and risks that chemicals and new materials pose to soldiers and the environment. We have investigated the potential of global gene regulatory networks in understanding the impact of chemicals on reproduction. We characterized effects of chemicals on ovaries of the model animal system, the Fathead minnow (Pimopheles promelas) connecting chemical impacts on gene expression to circulating blood levels of the hormones testosterone and estradiol in addition to the egg yolk protein vitellogenin. We describe the application of reverse engineering complex interaction networks from high dimensional gene expression data to characterize chemicals that disrupt the hypothalamus-pituitary-gonadal endocrine axis that governs reproduction in fathead minnows. The construction of global gene regulatory networks provides deep insights into how drugs and chemicals effect key organs and biological pathways.

  14. Spectroscopic and chemical reactivity analysis of D-Myo-Inositol ...

    Indian Academy of Sciences (India)

    2017-06-20

    Jun 20, 2017 ... ... Pramana – Journal of Physics; Volume 89; Issue 1. Spectroscopic and chemical reactivity analysis of D-Myo-Inositol using quantum chemical approach and its experimental verification. DEVENDRA P MISHRA ANCHAL SRIVASTAVA R K SHUKLA. Special Issue Volume 89 Issue 1 July 2017 Article ID 12 ...

  15. Availability Analysis of Chemicals for Water Treatment: An ...

    African Journals Online (AJOL)

    Availability Analysis of Chemicals for Water Treatment: An Application to Edo and Anambra State Water Utilities Boards. ... Nigerian Journal of Technology ... This paper considers the shipment of regular supplies of large quantities of chemicals used in treating water to potable standard in a developing country. A model to ...

  16. Microbiological and physico-chemical analysis of soymilk and ...

    African Journals Online (AJOL)

    Microbiological and physico-chemical analysis of soymilk and soyflour sold in Uyo metropolis, Nigeria. A. A. Brooks, N. U. Asamudo, F. C Udoukpo. Abstract. Ten samples each of unbranded soymilk and soyflour sold in Uyo metropolis were subjected to microbiological and physico-chemical studies. The microorganisms ...

  17. Post-mission data analysis of Surveyor mission chemical data

    Science.gov (United States)

    Turkevich, A.

    1973-01-01

    Prime data from chemical analysis experiments, of Surveyor 5, 6, and 7 are critically examined and analyzed. This and associated laboratory work has given final chemical composition results for the lunar regolith at three locations. The conclusions made on the basis of the preliminary examinations of the data are confirmed and extended.

  18. Stochastic analysis of Chemical Reaction Networks using Linear Noise Approximation.

    Science.gov (United States)

    Cardelli, Luca; Kwiatkowska, Marta; Laurenti, Luca

    2016-11-01

    Stochastic evolution of Chemical Reactions Networks (CRNs) over time is usually analyzed through solving the Chemical Master Equation (CME) or performing extensive simulations. Analysing stochasticity is often needed, particularly when some molecules occur in low numbers. Unfortunately, both approaches become infeasible if the system is complex and/or it cannot be ensured that initial populations are small. We develop a probabilistic logic for CRNs that enables stochastic analysis of the evolution of populations of molecular species. We present an approximate model checking algorithm based on the Linear Noise Approximation (LNA) of the CME, whose computational complexity is independent of the population size of each species and polynomial in the number of different species. The algorithm requires the solution of first order polynomial differential equations. We prove that our approach is valid for any CRN close enough to the thermodynamical limit. However, we show on four case studies that it can still provide good approximation even for low molecule counts. Our approach enables rigorous analysis of CRNs that are not analyzable by solving the CME, but are far from the deterministic limit. Moreover, it can be used for a fast approximate stochastic characterization of a CRN. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  19. Chemical considerations in severe accident analysis

    International Nuclear Information System (INIS)

    Malinauskas, A.P.; Kress, T.S.

    1988-01-01

    The Reactor Safety Study presented the first systematic attempt to include fission product physicochemical effects in the determination of expected consequences of hypothetical nuclear reactor power plant accidents. At the time, however, the data base was sparse, and the treatment of fission product behavior was not entirely consistent or accurate. Considerable research has since been performed to identify and understand chemical phenomena that can occur in the course of a nuclear reactor accident, and how these phenomena affect fission product behavior. In this report, the current status of our understanding of the chemistry of fission products in severe core damage accidents is summarized and contrasted with that of the Reactor Safety Study

  20. An ion-neutral model to investigate chemical ionization mass spectrometry analysis of atmospheric molecules - application to a mixed reagent ion system for hydroperoxides and organic acids

    Science.gov (United States)

    Heikes, Brian G.; Treadaway, Victoria; McNeill, Ashley S.; Silwal, Indira K. C.; O'Sullivan, Daniel W.

    2018-04-01

    An ion-neutral chemical kinetic model is described and used to simulate the negative ion chemistry occurring within a mixed-reagent ion chemical ionization mass spectrometer (CIMS). The model objective was the establishment of a theoretical basis to understand ambient pressure (variable sample flow and reagent ion carrier gas flow rates), water vapor, ozone and oxides of nitrogen effects on ion cluster sensitivities for hydrogen peroxide (H2O2), methyl peroxide (CH3OOH), formic acid (HFo) and acetic acid (HAc). The model development started with established atmospheric ion chemistry mechanisms, thermodynamic data and reaction rate coefficients. The chemical mechanism was augmented with additional reactions and their reaction rate coefficients specific to the analytes. Some existing reaction rate coefficients were modified to enable the model to match laboratory and field campaign determinations of ion cluster sensitivities as functions of CIMS sample flow rate and ambient humidity. Relative trends in predicted and observed sensitivities are compared as instrument specific factors preclude a direct calculation of instrument sensitivity as a function of sample pressure and humidity. Predicted sensitivity trends and experimental sensitivity trends suggested the model captured the reagent ion and cluster chemistry and reproduced trends in ion cluster sensitivity with sample flow and humidity observed with a CIMS instrument developed for atmospheric peroxide measurements (PCIMSs). The model was further used to investigate the potential for isobaric compounds as interferences in the measurement of the above species. For ambient O3 mixing ratios more than 50 times those of H2O2, O3-(H2O) was predicted to be a significant isobaric interference to the measurement of H2O2 using O2-(H2O2) at m/z 66. O3 and NO give rise to species and cluster ions, CO3-(H2O) and NO3-(H2O), respectively, which interfere in the measurement of CH3OOH using O2-(CH3OOH) at m/z 80. The CO3-(H2O

  1. Closed loop chemical systems for energy storage and transmission (chemical heat pipe). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Vakil, H.B.; Flock, J.W.

    1978-02-01

    The work documents the anlaysis of closed loop chemical systems for energy storage and transmission, commonly referred to as the Chemical Heat Pipe (CHP). Among the various chemical reaction systems and sources investigated, the two best systems were determined to be the high temperature methane/steam reforming reaction (HTCHP) coupled to a Very High Temperature Gas Cooled Reactor (VHTR) and the lower temperature, cyclohexane dehydrogenation reaction (LTCHP) coupled to existing sources such as coal or light water reactors. Solar and other developing technologies can best be coupled to the LTCHP. The preliminary economic and technical analyses show that both systems could transport heat at an incremental cost of approximately $1.50/GJ/160 km (in excess of the primary heat cost of $2.50/GJ), at system efficiencies above 80%. Solar heat can be transported at an incremental cost of $3/GJ/160 km. The use of the mixed feed evaporator concept developed in this work contributes significantly to reducing the transportation cost and increasing the efficiency of the system. The LTCHP shows the most promise of the two systems if the technical feasibility of the cyclic closed loop chemical reaction system can be established. An experimental program for establishing this feasibility is recommended. Since the VHTR is several years away from commercial demonstration and the HTCHP chemical technology is well developed, future HTCHP programs should be aimed at VHTR and interface problems.

  2. Analysis of very thin organic fibres by means of small spots electron spectroscopy for chemical analysis

    International Nuclear Information System (INIS)

    Daiser, S.M.; Cormia, R.D.; Scharpen, L.

    1985-01-01

    ESCA analysis of very thin organic fibres as small as a few micrometer diameter is now possible using the small spot X-ray capability of the SSX100 ESCA system. The sampling method involves suspending the material in the SSX100 chamber, and illuminating it with a monochromatized X-ray beam of 150-300 μm diameter. From the small spot ESCA spectra one can determine the chemical character of the organic layer and the thickness. (Author)

  3. Survey of Ongoing Federal Chemical Information and Data Systems.

    Science.gov (United States)

    Thompson (John I.) and Co., Washington, DC.

    The purpose of the survey was to collect data relating to (1) present usage of chemical information and data in the Federal community; (2) techniques and equipment now used in the acquisition, processing, and transmission of information and data; and (3) direction of plans for future chemical information services at ongoing systems. The scope of…

  4. A Monolithically-Integrated μGC Chemical Sensor System

    Directory of Open Access Journals (Sweden)

    Davor Copic

    2011-06-01

    Full Text Available Gas chromatography (GC is used for organic and inorganic gas detection with a range of applications including screening for chemical warfare agents (CWA, breath analysis for diagnostics or law enforcement purposes, and air pollutants/indoor air quality monitoring of homes and commercial buildings. A field-portable, light weight, low power, rapid response, micro-gas chromatography (μGC system is essential for such applications. We describe the design, fabrication and packaging of mGC on monolithically-integrated Si dies, comprised of a preconcentrator (PC, μGC column, detector and coatings for each of these components. An important feature of our system is that the same mechanical micro resonator design is used for the PC and detector. We demonstrate system performance by detecting four different CWA simulants within 2 min. We present theoretical analyses for cost/power comparisons of monolithic versus hybrid μGC systems. We discuss thermal isolation in monolithic systems to improve overall performance. Our monolithically-integrated μGC, relative to its hybrid cousin, will afford equal or slightly lower cost, a footprint that is 1/2 to 1/3 the size and an improved resolution of 4 to 25%.

  5. A monolithically-integrated μGC chemical sensor system.

    Science.gov (United States)

    Manginell, Ronald P; Bauer, Joseph M; Moorman, Matthew W; Sanchez, Lawrence J; Anderson, John M; Whiting, Joshua J; Porter, Daniel A; Copic, Davor; Achyuthan, Komandoor E

    2011-01-01

    Gas chromatography (GC) is used for organic and inorganic gas detection with a range of applications including screening for chemical warfare agents (CWA), breath analysis for diagnostics or law enforcement purposes, and air pollutants/indoor air quality monitoring of homes and commercial buildings. A field-portable, light weight, low power, rapid response, micro-gas chromatography (μGC) system is essential for such applications. We describe the design, fabrication and packaging of μGC on monolithically-integrated Si dies, comprised of a preconcentrator (PC), μGC column, detector and coatings for each of these components. An important feature of our system is that the same mechanical micro resonator design is used for the PC and detector. We demonstrate system performance by detecting four different CWA simulants within 2 min. We present theoretical analyses for cost/power comparisons of monolithic versus hybrid μGC systems. We discuss thermal isolation in monolithic systems to improve overall performance. Our monolithically-integrated μGC, relative to its hybrid cousin, will afford equal or slightly lower cost, a footprint that is 1/2 to 1/3 the size and an improved resolution of 4 to 25%.

  6. Uranium complexes with macrosyclic polyethers. Synthesis and structural chemical analysis

    International Nuclear Information System (INIS)

    Elbasyouny, A.

    1983-01-01

    This dissertation reports about studies on the chemical coordination behaviour of uranium of oxidation stages IV and VI with regard to twelve different macrocyclic ligands. For the preparation of the complexes, for every system a different method has been developed. The elementary analysis of the various complexes including the uranium had been done by X-ray fluorescence analysis, and the structural characterization proceeded via vibrational, uv-vis and emission spectroscopy as well as 1 H-NMR and 13 C-spin-lattice relaxation time studies. Conformational analysis of the polyethers used allowed the structural changes in the complexes to be observed. The structural analysis of the hydrous uranium VI crown ether complexes yielded information of characteristic features of these types of complexes. The first coordination sphere of the uranyl ion with covalently bonded anion remains unchanged. As to the water content, there is a certain range. Depending upon the solvent used, the complexes have two or four H 2 O molecules per formula unit. (orig./EF) [de

  7. Analysis of blood spots for polyfluoroalkyl chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Kayoko; Wanigatunga, Amal A.; Needham, Larry L. [Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA (United States); Calafat, Antonia M., E-mail: acalafat@cdc.gov [Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA (United States)

    2009-12-10

    Polyfluoroalkyl chemicals (PFCs) have been detected in humans, in the environment, and in ecosystems around the world. The potential for developmental and reproductive toxicities of some PFCs is of concern especially to children's health. In the United States, a sample of a baby's blood, called a 'dried blood spot' (DBS), is obtained from a heel stick within 48 h of a child's birth. DBS could be useful for assessing prenatal exposure to PFCs. We developed a method based on online solid phase extraction coupled with high performance liquid chromatography-isotope dilution tandem mass spectrometry for measuring four PFCs in DBS, perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate, perfluorooctanoate (PFOA), and perfluorononanoate. The analytical limits of detection using one whole DBS ({approx}75 {mu}L of blood) were <0.5 ng mL{sup -1}. To validate the method, we analyzed 98 DBS collected in May 2007 in the United States. PFOS and PFOA were detected in all DBS at concentrations in the low ng mL{sup -1} range. These data suggest that DBS may be a suitable matrix for assessing perinatal exposure to PFCs, but additional information related to sampling and specimen storage is needed to demonstrate the utility of these measures for assessing exposure.

  8. Electron Spectroscopy: Applications for Chemical Analysis

    Science.gov (United States)

    Heercules, David M.

    2004-01-01

    The development of XPS as an effective method for surface analysis during the period 1964-1977 is presented. The study shows that unlike other surface methods, XPS data can be obtained for both conductors and insulators and a variety of samples can be handled effectively, which is one of the major reasons for the popularity of the technique.

  9. Droplet microfluidics in (bio) chemical analysis

    Czech Academy of Sciences Publication Activity Database

    Basova, E. Y.; Foret, František

    2015-01-01

    Roč. 140, č. 1 (2015), s. 22-38 ISSN 0003-2654 R&D Projects: GA ČR(CZ) GBP206/12/G014 Institutional support: RVO:68081715 Keywords : droplet chemistry * bio analysis * microfluidics * protein Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.033, year: 2015

  10. CHEMICAL ANALYSIS OF SOME NIGERIAN GYPSUM AND ...

    African Journals Online (AJOL)

    X-ray fluorescence analyzer (XRF) was employed in the analysis of some local and imported stocks of gypsum and limestone utilized by a leading cement manufacturing industry in Nigeria. In addition, the recycled dust standard reference samples were also analyzed along with the raw materials in question. The gypsum ...

  11. Chemical composition, antimicrobial activity, proximate analysis and ...

    African Journals Online (AJOL)

    Detarium senegalense JF Gmelin (Caesalpiniaceae), commonly known as tallow tree, is used traditionally for the treatment of bronchitis, pneumonia, internal complaints and skin diseases in Tropical Africa. The seed is used as a soup thickener in Eastern Nigeria. Analysis of the petroleum ether extract of the seeds with ...

  12. Chemical aspects of nuclear methods of analysis

    International Nuclear Information System (INIS)

    1985-01-01

    This final report includes papers which fall into three general areas: development of practical pre-analysis separation techniques, uranium/thorium separation from other elements for analytical and processing operations, and theory and mechanism of separation techniques. A separate abstract was prepared for each of the 9 papers

  13. Arrays in biological and chemical analysis

    DEFF Research Database (Denmark)

    Christensen, Claus Bo Vöge

    2002-01-01

    Recently a dramatic change has happened for biological and biochemical analysis. Originally developed as an academic massive parallel screening tool, industry has caught the idea as well of performing all kinds of assays in the new format of microarrays. From food manufacturers over water supply...

  14. Chemical Kinetics of Progesterone Radioimmunoassay System

    International Nuclear Information System (INIS)

    Abdel-Fattah, A.A.; Moustsfs, K.A.; El-Kolally, M.T.

    2004-01-01

    Progesterone is one of the steroids secreted by the corpus Iuteum in females during the menstrual cycle, and in a much higher amount by the placenta during pregnancy. It is also secreted in a minor quantities by the adrenal cortex in both males and females. Measurement of serum progesterone represents one of diagnostic values in menstrual disorders and infertility. The progesterone radioimmunoassay is based on the competition between unlabelled progesterone and a fixed quantity of 125 I-labeled progesterone for a limited number of binding sites on progesterone specific antibody. Allowing for a fixed amount of magnetizable immunosorbent to react, the antigen-antibody complex is bound on solid particles which are then separated by magnetic rack, and the radioactivity of the solid phase was counted using gamma counter. In this work, the chemical kinetics of the assay was followed, where the specific rate constant (K) was calculated at 4 degree and 37 degree and the activation energy (E act ) were calculated and the reaction rate was deduced

  15. Comparative analysis of pharmaceuticals versus industrial chemicals acute aquatic toxicity classification according to the United Nations classification system for chemicals. Assessment of the (Q)SAR predictability of pharmaceuticals acute aquatic toxicity and their predominant acute toxic mode-of-action.

    Science.gov (United States)

    Sanderson, Hans; Thomsen, Marianne

    2009-06-01

    Pharmaceuticals have been reported to be ubiquitously present in surface waters prompting concerns of effects of these bioactive substances. Meanwhile, there is a general scarcity of publicly available ecotoxicological data concerning pharmaceuticals. The aim of this paper was to compile a comprehensive database based on OECD's standardized measured ecotoxicological data and to evaluate if there is generally cause of greater concern with regards to pharmaceutical aquatic toxicological profiles relative to industrial chemicals. Comparisons were based upon aquatic ecotoxicity classification under the United Nations Global Harmonized System for classification and labeling of chemicals (GHS). Moreover, we statistically explored whether the predominant mode-of-action (MOA) for pharmaceuticals is narcosis. We found 275 pharmaceuticals with 569 acute aquatic effect data; 23 pharmaceuticals had chronic data. Pharmaceuticals were found to be more frequent than industrial chemicals in GHS category III. Acute toxicity was predictable (>92%) using a generic (Q)SAR ((Quantitative) Structure Activity Relationship) suggesting a narcotic MOA. Analysis of model prediction error suggests that 68% of the pharmaceuticals have a non-specific MOA. Additionally, the acute-to-chronic ratio (ACR) for 70% of the analyzed pharmaceuticals was below 25 further suggesting a non-specific MOA. Sub-lethal receptor-mediated effects may however have a more specific MOA.

  16. Study of Regulatory Mechanisms of Activity of Cardiovascular System by Method of Mathematical Analysis of Heart Rhythm in Workers of Chemical Manufactures

    Science.gov (United States)

    Dyachkova, T. V.; Berseneva, I. A.; Zavaltseva, O. A.; Mishina, O. S.

    2018-01-01

    The article presents the results of the study of heart rate variability indices of workers engaged in the production of phenol-formaldehyde plastics and plastics at the «Karbodin» plant. 112 people aged from 20 to 50 years were studied: control group-workers with experience up to 1 year, practically healthy (n = 30), 1 group-workers with work experience up to 5 years (n = 40), 2 group workers with work experience from 5 to 10 years (n = 42). As a result of the study, violations of the functioning of the heart regulation system were revealed, depending on the length of employment. The effectiveness of the method for studying the regulation of the physiological functions of the circulatory system as well as the early diagnosis of occupational pathology has been established.

  17. Soil chemical sensor and precision agricultural chemical delivery system and method

    Science.gov (United States)

    Colburn, J.W. Jr.

    1991-07-23

    A real time soil chemical sensor and precision agricultural chemical delivery system includes a plurality of ground-engaging tools in association with individual soil sensors which measure soil chemical levels. The system includes the addition of a solvent which rapidly saturates the soil/tool interface to form a conductive solution of chemicals leached from the soil. A multivalent electrode, positioned within a multivalent frame of the ground-engaging tool, applies a voltage or impresses a current between the electrode and the tool frame. A real-time soil chemical sensor and controller senses the electrochemical reaction resulting from the application of the voltage or current to the leachate, measures it by resistivity methods, and compares it against pre-set resistivity levels for substances leached by the solvent. Still greater precision is obtained by calibrating for the secondary current impressed through solvent-less soil. The appropriate concentration is then found and the servo-controlled delivery system applies the appropriate amount of fertilizer or agricultural chemicals substantially in the location from which the soil measurement was taken. 5 figures.

  18. Distribution of Complex Chemicals in Oil-Water Systems

    DEFF Research Database (Denmark)

    Riaz, Muhammad

    . In order to inhibit gas hydrate formation in subsea pipelines monoethylene glycol (MEG) and methanol are injected in large amounts. It is important to know the distribution of these chemicals in oil and water systems for economical operation of a production facility and to evaluate their impact on marine...... life. Furthermore distribution of chemicals is important information for downstream processing of oil and gas. The purpose of this project is the experimental measurement and the thermodynamic modeling of distribution of these complex chemicals in oil-water systems. Traditionally distribution...... of chemicals in oil-water system is calculated using octanol-water partition coefficients. But experiments carried out by Statoil R & D have shown that octanol-water partition coefficients (Kow) do not always mimic oil-water partition coefficients (Koil-water) and therefore calculations may not be always...

  19. Chemical analysis of rare earth elements

    International Nuclear Information System (INIS)

    Tsukahara, Ryoichi; Sakoh, Takefumi; Nagai, Iwao

    1994-01-01

    Recently attention has been paid to ICP-AES or ICP-MS, and the reports on the analysis of rare earth elements by utilizing these methods continue to increase. These reports have become to take about 30% of the reports on rare earth analysis, and this is because these methods are highly sensitive to rare earth elements, and also these methods have spread widely. In ICP-AES and ICP-MS, mostly solution samples are measured, therefore, solids must be made into solution. At the time of quantitatively determining the rare earth elements of low concentration, separation and concentration are necessary. Referring to the literatures reported partially in 1990 and from 1991 to 1993, the progress of ICP-AES and ICP-MS is reported. Rare earth oxides and the alloys containing rare earth elements are easily decomposed with acids, but the decomposition of rocks is difficult, and its method is discussed. The separation of the rare earth elements from others in geochemical samples, cation exchange process is frequently utilized. Also solvent extraction process has been studied. For the separation of rare earth elements mutually, chromatography is used. The spectral interference in spectral analysis was studied. The comparison of these methods with other methods is reported. (K.I)

  20. Chemical equilibria in actinide carbonate systems

    International Nuclear Information System (INIS)

    Grenthe, I.; Robouch, P.; Vitorge, P.

    1986-01-01

    By spectrophotometric and potentiometric methods it is shown that trimers are formed in media of high ionic strength (3 M NaClO 4 ) and total concentrations of hexavalent actinides higher than 10 -3 M. The equilibrium constants for the reactions 3 MO 2 (CO 3 ) 3 4- ↔ (MO 2 ) 3 (CO 3 ) 6 6- + 3 CO 3 2- are lg K(U)=-11.3±0.1; lg K(NP)=-10.1±0.1; lg K(Pu)=-7.4±0.2. It is demonstrated that one of the cations of the trimer can be exchanged with another actinide cation: the equilibrium constants for the reactions 2 UO 2 (CO 3 ) 3 4- + MO 2 (CO 3 ) 3 4- ↔ (UO 2 ) 2 MO 2 (CO 3 ) 6 6- + 3 CO 3 3- are lg K=-11.3±0.1, -10.0±0.2 and -8.8 respectively for M=U, Np, Pu. Thus, polynuclear complexes can be efficient solution ''carriers'' for other hexavalent actinides in waste disposal. Some properties of the solid phases MO 2 CO 3 (s) are discussed. Experimental studies of chemical equilibria of americium (III, IV) are reviewed: in carbonate media americium(III) species are AmCO 3 + , Am(CO 3 ) 2 - , Am(CO 3 ) 3 3- , (Am 2 (CO 3 ) 3 ) 6 and (NaAm(CO 3 ) 2 ) s ; for americium-(IV) lg β 5 ≅ 40. In 3 M NaClO 4 solubility measurements of neptunium(V) show that lg β 1 =5.09, lg β 2 =8.15, lg β 3 =10.46, lg Ks(NaNpO 2 CO 3 )=10.56 and lg Ks(Na 3 NpO 2 (CO 3 ) 2 )=12.44; ionic strength corrections are proposed on the basis of these results. (orig.)

  1. Studies on Semantic Systems Chemical Biology

    Science.gov (United States)

    Chen, Bin

    2012-01-01

    Current "one disease, one target and one drug" drug development paradigm is under question as relatively few drugs have reached the market in the last two decades. Increasingly research focus is being placed on the study of drug action against biological systems as a whole rather than against a single component (called "Systems…

  2. Methodology of Supervision by Analysis of Thermal Flux for Thermal Conduction of a Batch Chemical Reactor Equipped with a Monofluid Heating/Cooling System

    Directory of Open Access Journals (Sweden)

    Ghania Henini

    2012-01-01

    Full Text Available We present the thermal behavior of a batch reactor to jacket equipped with a monofluid heating/cooling system. Heating and cooling are provided respectively by an electrical resistance and two plate heat exchangers. The control of the temperature of the reaction is based on the supervision system. This strategy of management of the thermal devices is based on the usage of the thermal flux as manipulated variable. The modulation of the monofluid temperature by acting on the heating power or on the opening degrees of an air-to-open valve that delivers the monofluid to heat exchanger. The study shows that the application of this method for the conduct of the pilot reactor gives good results in simulation and that taking into account the dynamics of the various apparatuses greatly improves ride quality of conduct. In addition thermal control of an exothermic reaction (mononitration shows that the consideration of heat generated in the model representation improve the results by elimination any overshooting of the set-point temperature.

  3. Temporal Control over Transient Chemical Systems using Structurally Diverse Chemical Fuels.

    Science.gov (United States)

    Chen, Jack L-Y; Maiti, Subhabrata; Fortunati, Ilaria; Ferrante, Camilla; Prins, Leonard J

    2017-08-25

    The next generation of adaptive, intelligent chemical systems will rely on a continuous supply of energy to maintain the functional state. Such systems will require chemical methodology that provides precise control over the energy dissipation process, and thus, the lifetime of the transiently activated function. This manuscript reports on the use of structurally diverse chemical fuels to control the lifetime of two different systems under dissipative conditions: transient signal generation and the transient formation of self-assembled aggregates. The energy stored in the fuels is dissipated at different rates by an enzyme, which installs a dependence of the lifetime of the active system on the chemical structure of the fuel. In the case of transient signal generation, it is shown that different chemical fuels can be used to generate a vast range of signal profiles, allowing temporal control over two orders of magnitude. Regarding self-assembly under dissipative conditions, the ability to control the lifetime using different fuels turns out to be particularly important as stable aggregates are formed only at well-defined surfactant/fuel ratios, meaning that temporal control cannot be achieved by simply changing the fuel concentration. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. [Automation of chemical analysis in enology].

    Science.gov (United States)

    Dubernet, M

    1978-01-01

    Automatic dosages took place a short time ago in oenology laboratories. First researchs about automation of usual manual analysis have been completed by I.N.R.A. Station of Dijon during 1969--1972 years. Then, other researchs were made and in 1974 the first automatic analyser appeared in application laboratories. In all cases continuous flow method was used. First dosages which has been carried out are volatic acidity, residual sugars, total SO2. The rate of work is 30 samples an hour. Then, an original way for free SO2 was suggested. At present, about a dozen of laboratories in France use these dosages. The ethanol dosage automation, very important in oenology, is very difficult to carry out. A new method using a thermometric analyzer is tested. Research about many dosages as tartaric, malic, lactic acids, glucose, fructose, glycérol, have been performed especially by I.N.R.A. Station in Narbonne. But these dosages are not current and at present no laboratory apply them. Now, equipments price and redemption, change of tradionnal dosages for automatical methods and the level of knowledge required for operators are well known. The reproducibility and the accuracy of the continuous flow automatic dosages allow, for enough important laboratories, to make an increasing number of analysis necessary for wine quality control.

  5. Surface chemical composition analysis of heat-treated bamboo

    International Nuclear Information System (INIS)

    Meng, Fan-dan; Yu, Yang-lun; Zhang, Ya-mei; Yu, Wen-ji; Gao, Jian-min

    2016-01-01

    Highlights: • Investigate the detailed chemical components contents change of bamboo due to heating. • Chemical analysis of bamboo main components during heating. • Identify the connection between the oxygen to carbon atomic ratio changes and chemical degradation. - Abstract: In this study, the effect of heat treatment on the chemical composition of bamboo slivers was studied. The chemical properties of the samples were examined by chemical analysis. Results showed a decrease in the contents of holocellulose and α-cellulose, as well as an increase in the contents of lignin and extractives. Changes in the chemical structure of bamboo components were analyzed by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). FTIR spectroscopy results indicated that hemicellulose contents decrease, whereas lignin contents increase after heat treatment. Ester formation linked to lignin decreased the hygroscopicity of the bamboo samples and consequently improved their dimensional stability and durability. XPS spectroscopy results showed that hemicelluloses and celluloses are relatively more sensitive to the heating process than lignin. As a consequence, hemicellulose and cellulose contents decreased, whereas lignin contents increased during heat treatment. The results obtained in this study provide useful information for the future utilization of heat-treated bamboo.

  6. ChemEx: information extraction system for chemical data curation.

    Science.gov (United States)

    Tharatipyakul, Atima; Numnark, Somrak; Wichadakul, Duangdao; Ingsriswang, Supawadee

    2012-01-01

    Manual chemical data curation from publications is error-prone, time consuming, and hard to maintain up-to-date data sets. Automatic information extraction can be used as a tool to reduce these problems. Since chemical structures usually described in images, information extraction needs to combine structure image recognition and text mining together. We have developed ChemEx, a chemical information extraction system. ChemEx processes both text and images in publications. Text annotator is able to extract compound, organism, and assay entities from text content while structure image recognition enables translation of chemical raster images to machine readable format. A user can view annotated text along with summarized information of compounds, organism that produces those compounds, and assay tests. ChemEx facilitates and speeds up chemical data curation by extracting compounds, organisms, and assays from a large collection of publications. The software and corpus can be downloaded from http://www.biotec.or.th/isl/ChemEx.

  7. Aerosols in the CALIOPE air quality modelling system: evaluation and analysis of PM levels, optical depths and chemical composition over Europe

    Directory of Open Access Journals (Sweden)

    S. Basart

    2012-04-01

    Full Text Available The CALIOPE air quality modelling system is developed and applied to Europe with high spatial resolution (12 km × 12 km. The modelled daily-to-seasonal aerosol variability over Europe in 2004 is evaluated and analysed. Aerosols are estimated from two models, CMAQv4.5 (AERO4 and BSC-DREAM8b. CMAQv4.5 calculates biogenic, anthropogenic and sea salt aerosol and BSC-DREAM8b provides the natural mineral dust contribution from North African deserts. For the evaluation, we use daily PM10, PM2.5 and aerosol components data from 55 stations of the EMEP/CREATE network and total, coarse and fine aerosol optical depth (AOD data from 35 stations of the AERONET sun photometer network. Annual correlations between modelled and observed values for PM10 and PM2.5 are 0.55 and 0.47, respectively. Correlations for total, coarse and fine AOD are 0.51, 0.63, and 0.53, respectively. The higher correlations of the PM10 and the coarse mode AOD are largely due to the accurate representation of the African dust influence in the forecasting system. Overall PM and AOD levels are underestimated. The evaluation of the aerosol components highlights underestimations in the fine fraction of carbonaceous matter (EC and OC and secondary inorganic aerosols (SIA; i.e. nitrate, sulphate and ammonium. The scores of the bulk parameters are significantly improved after applying a simple model bias correction based on the observed aerosol composition. The simulated PM10 and AOD present maximum values over the industrialized and populated Po Valley and Benelux regions. SIA are dominant in the fine fraction representing up to 80% of the aerosol budget in latitudes north of 40° N. In southern Europe, high PM10 and AOD are linked to the desert dust transport from the Sahara which contributes up to 40% of the aerosol budget. Maximum seasonal ground-level concentrations (PM10 > 30 μg m−3 are

  8. Three-dimensional chemical structure of the INEL aquifer system near the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    McCurry, M.; Estes, M.; Fromm, J.; Welhan, J.; Barrash, W.

    1994-01-01

    Sampling and analysis from the Snake River Plain aquifer using a stainless-steel and teflon constructed straddle-packer system has established detailed vertical profiles of aquifer chemistry from three wells near a major source of low-level waste injection at the Idaho Chemical Processing Plant. Multiple intervals, varying from 4.6 to 6.1 m in length, were sampled between the water table (140.5 mbls - meters below land surface), and approximately 200 mbls to obtain a wide spectrum of metals, anions, radiological and organic components analyses. Measurements were also made at the well sites of important transient parameters (T, Eh, Fe 3+ , Fe 2+ , DO and SC). The principal purpose of this ongoing work is to improve our understanding of the third (i.e. vertical) dimension of aquifer chemistry at the INEL as a basis for critically evaluating site-wide monitoring procedures, and, ultimately, for improving fate and transport models for aquifer contaminants within basalt-hosted aquifers. Chemical and radiological data indicates that substantial systematic vertical and lateral variations occur in the aquifer hydrochemistry - in particular for conservative radiological nuclide concentrations. Radiological data define a three-layered zonation. Ground water within upper and lower zones contain up to 10 times higher concentrations of H-3 and I-129 than in the middle zone. Sr-90 activity is decoupled from H-3 and I-129-relatively high activity was detected within the upper zone nearest the ICPP, but activities elsewhere are very low. 27 refs., 4 figs., 1 tab

  9. Forward and Inverse Analysis of Chemical Transport Models

    Science.gov (United States)

    Ruiz-Lapuente, Pilar

    Assessing the discrepancy between modeled and observed distributions of aerosols is a persistent problem on many scales. Tools for analyzing the evolution of aerosol size distributions using the adjoint method are presented in idealized box model calculations. The ability to recover information about aerosol growth rates and initial size distributions is assessed given a range of simulated observations of evolving systems. While such tools alone could facilitate analysis of chamber measurements, improving estimates of aerosol sources on regional and global scales requires explicit consideration of many additional chemical and physical processes that govern secondary formation of atmospheric aerosols from emissions of gas-phase precursors. The adjoint of the global chemical transport model GEOS-Chem is derived, affording detailed analysis of the relationship between gas-phase aerosol precursor emissions (SOx, NOx and NH 3) and the subsequent distributions of sulfate - ammonium - nitrate aerosol. Assimilation of surface measurements of sulfate and nitrate aerosol is shown to provide valuable constraints on emissions of ammonia. Adjoint sensitivities are used to propose strategies for air quality control, suggesting, for example, that reduction of SOx emissions in the summer and NH3 emissions in the winter would most effectively reduce non-attainment of aerosol air quality standards. The ability of this model to estimate global distributions of carbonaceous aerosol is also addressed. Based on new yield data from environmental chamber studies, mechanisms for incorporating the dependence of secondary organic aerosol (SOA) formation on NOx concentrations are developed for use in global models. When NOx levels are appropriately accounted for, it is demonstrated that sources such as isoprene and aromatics, previously neglected as sources of aerosol in global models, significantly contribute to predicted SOA burdens downwind of polluted areas (owing to benzene and toluene

  10. Chemical analysis and potential health risks of hookah charcoal

    Energy Technology Data Exchange (ETDEWEB)

    Elsayed, Yehya, E-mail: yelsayed@aus.edu; Dalibalta, Sarah, E-mail: sdalibalta@aus.edu; Abu-Farha, Nedal

    2016-11-01

    Hookah (waterpipe) smoking is a very common practice that has spread globally. There is growing evidence on the hazardous consequences of smoking hookah, with studies indicating that its harmful effects are comparable to cigarette smoking if not worse. Charcoal is commonly used as a heating source for hookah smoke. Although charcoal briquettes are thought to be one of the major contributors to toxicity, their composition and impact on the smoke generated remains largely unidentified. This study aims to analyze the elemental composition of five different raw synthetic and natural charcoals by using Carbon-Hydrogen-Nitrogen (CHN) analysis, inductively coupled plasma (ICP), and scanning electron microscopy coupled with energy dispersive X-Ray spectrometry (SEM-EDS). Elemental analysis showed that the raw charcoals contain heavy metals such as zinc, iron, cadmium, vanadium, aluminum, lead, chromium, manganese and cobalt at concentrations similar, if not higher than, cigarettes. In addition, thermal desorption-gas chromatography–mass spectrometry (TD-GC–MS) was used to analyze the chemical composition of the smoke produced from burning the charcoal samples. The smoke emitted from charcoal was found to be the source of numerous compounds which could be hazardous to health. A total of seven carcinogens, 39 central nervous system depressants and 31 respiratory irritants were identified. - Highlights: • Hookah charcoals, mainly synthetic brands, contains trace/heavy metals in concentrations exceeding those in cigarettes. • The concentration of lead in synthetic charcoal briquettes may impose adverse effects on human health. • The amount of nitrogen in synthetic charcoal is comparable to that reported in cigarettes. • Chemical profiling of smoke emitted from hookah charcoal reveals many compounds associated with potential health risks.

  11. Handbook of Basic Tables for Chemical Analysis. Final report

    International Nuclear Information System (INIS)

    Bruno, T.J.; Svoronos, P.D.N.

    1988-04-01

    This work began as a slim booklet prepared by one of the authors (TJB) to accompany a course on chemical instrumentation presented at the National Bureau of Standards, Boulder Laboratories. The booklet contained tables on chromatography, spectroscopy, and chemical (wet) methods, and was intended to provide the students with enough basic data to design their own analytical methods and procedures. Shortly thereafter, with the co-authorship of Prof. Paris D. N. Svoronos, it was expanded into a more-extensive compilation entitled Basic Tables for Chemical Analysis, published as National Bureau of Standards Technical Note 1096. That work has now been expanded and updated into the present body of tables. Although there have been considerable changes since the first version of these tables, the aim has remained essentially the same. The authors have tried to provide a single source of information for those practicing scientists and research students who must use various aspects of chemical analysis in their work. In this respect, it is geared less toward the researcher in analytical chemistry than to those practitioners in other chemical disciplines who must have routine use of chemical analysis

  12. Chemical Discrimination of Cortex Phellodendri amurensis and Cortex Phellodendri chinensis by Multivariate Analysis Approach.

    Science.gov (United States)

    Sun, Hui; Wang, Huiyu; Zhang, Aihua; Yan, Guangli; Han, Ying; Li, Yuan; Wu, Xiuhong; Meng, Xiangcai; Wang, Xijun

    2016-01-01

    As herbal medicines have an important position in health care systems worldwide, their current assessment, and quality control are a major bottleneck. Cortex Phellodendri chinensis (CPC) and Cortex Phellodendri amurensis (CPA) are widely used in China, however, how to identify species of CPA and CPC has become urgent. In this study, multivariate analysis approach was performed to the investigation of chemical discrimination of CPA and CPC. Principal component analysis showed that two herbs could be separated clearly. The chemical markers such as berberine, palmatine, phellodendrine, magnoflorine, obacunone, and obaculactone were identified through the orthogonal partial least squared discriminant analysis, and were identified tentatively by the accurate mass of quadruple-time-of-flight mass spectrometry. A total of 29 components can be used as the chemical markers for discrimination of CPA and CPC. Of them, phellodenrine is significantly higher in CPC than that of CPA, whereas obacunone and obaculactone are significantly higher in CPA than that of CPC. The present study proves that multivariate analysis approach based chemical analysis greatly contributes to the investigation of CPA and CPC, and showed that the identified chemical markers as a whole should be used to discriminate the two herbal medicines, and simultaneously the results also provided chemical information for their quality assessment. Multivariate analysis approach was performed to the investigate the herbal medicineThe chemical markers were identified through multivariate analysis approachA total of 29 components can be used as the chemical markers. UPLC-Q/TOF-MS-based multivariate analysis method for the herbal medicine samples Abbreviations used: CPC: Cortex Phellodendri chinensis, CPA: Cortex Phellodendri amurensis, PCA: Principal component analysis, OPLS-DA: Orthogonal partial least squares discriminant analysis, BPI: Base peaks ion intensity.

  13. Effects of industrial chemicals and radioactive materials in biological systems

    International Nuclear Information System (INIS)

    Gangopadhyay, A.; Chatterjee, S.

    1987-01-01

    Much has been written on the effects of radiation and toxic chemicals on biological systems. In this communication general considerations regarding these topics will be discussed very briefly; the major emphasis will be focused on the effects of chemicals, namely ethyl methane sulfonate (EMS) on Amoeba, Advantages to the use of amoeba for studying the effects of radiation and chemicals include the following: large mononucleate unicellular organisms having a long generation time; opportunity to study cellular organelles and biochemical and genetic alterations in a single cell system; and a long cell cycle, the stages of which can be synchronized without resorting to chemical treatment or temperature shock and thereby readily permitting study at defined stages of the cell's life cycle. This, in turn, is discussed in light of current disposal methods for this type of waste and how it might be safely disposed of

  14. Versatile Dual Photoresponsive System for Precise Control of Chemical Reactions.

    Science.gov (United States)

    Xu, Can; Bing, Wei; Wang, Faming; Ren, Jinsong; Qu, Xiaogang

    2017-08-22

    A versatile method for photoregulation of chemical reactions was developed through a combination of near-infrared (NIR) and ultraviolet (UV) light sensitive materials. This regulatory effect was achieved through photoresponsive modulation of reaction temperature and pH values, two prominent factors influencing reaction kinetics. Photothermal nanomaterial graphene oxide (GO) and photobase reagent malachite green carbinol base (MGCB) were selected for temperature and pH regulation, respectively. Using nanocatalyst- and enzyme-mediated chemical reactions as model systems, we demonstrated the feasibility and high efficiency of this method. In addition, a photoresponsive, multifunctional "Band-aid"-like hydrogel platform was presented for programmable wound healing. Overall, this simple, efficient, and reversible system was found to be effective for controlling a wide variety of chemical reactions. Our work may provide a method for remote and sustainable control over chemical reactions for industrial and biomedical applications.

  15. Membrane-organized Chemical Photoredox Systems

    Energy Technology Data Exchange (ETDEWEB)

    Britt, R. David [Univ. of California, Davis, CA (United States)

    2016-09-01

    The key photoredox process in photosynthesis is the accumulation of oxidizing equivalents on a tetranuclear manganese cluster that then liberates electrons and protons from water and forms oxygen gas. Our primary goal in this project is to characterize inorganic systems that can perform this same water-splitting chemistry. One such species is the dinuclear ruthenium complex known as the blue dimer. Starting at the Ru(III,III) oxidation state, the blue dimer is oxidized up to a putative Ru(V,V) level prior to O-O bond formation. We employ electron paramagnetic resonance spectroscopy to characterize each step in this reaction cycle to gain insight into the molecular mechanism of water oxidation.

  16. Development of chemical analysis techniques: pt. 3

    International Nuclear Information System (INIS)

    Kim, K.J.; Chi, K.Y.; Choi, G.C.

    1981-01-01

    For the purpose of determining trace rare earths a spectrofluorimetric method has been studied. Except Ce and Tb, the fluorescence intensities are not enough to allow satisfactory analysis. Complexing agents such as tungstate and hexafluoroacetylacetone should be employed to increase fluorescence intensities. As a preliminary experiment for the separation of individual rare earth element and uranium, the distribution coefficient, % S here, are obtained on the Dowex 50 W against HCl concentration by a batch method. These % S data are utilized to obtain elution curves. The % S data showed a minimum at around 4 M HCl. To understand this previously known phenomenon the adsorption of Cl - on Dowex 50 W is examined as a function of HCl concentration and found to be decreasing while % S of rare earths increasing. It is interpreted that Cl - and rare earth ions are moved into the resin phase separately and that the charge and the charge densities of these ions are responsible for the different % S curves. Dehydration appears to play an important role in the upturn of the % S curves at higher HCl concentrations

  17. Membrane-Organized Chemical Photoredox Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, James K.

    2014-09-18

    This project has three interrelated goals relevant to solar water photolysis, which are to develop: (1) vesicle-organized assemblies for H2 photoproduction that utilize pyrylium and structurally related compounds as combined photosensitizers and cyclic electroneutral transmembrane electron carriers; (2) transmembrane redox systems whose reaction rates can be modulated by light; and (3) homogeneous catalysts for water oxidation. . In area (1), initial efforts to photogenerate H2 from vectorially-organized vesicles containing occluded colloidal Pt and commonly available pyrylium ions as transmembrane redox mediators were unsuccessful. New pyrylium compounds with significantly lower reduction potentials have been synthesized to address this problem, their apparent redox potentials in functioning systems have been now evaluated by using a series of occluded viologens, and H2 photoproduction has been demonstrated in continuous illumination experiments. In area (2), spirooxazine-quinone dyads have been synthesized and their capacity to function as redox mediators across bilayer membranes has been evaluated through continuous photolysis and transient spectrophotometric measurements. Photoisomerization of the spiro moiety to the ring-open mero form caused net quantum yields to decrease significantly, providing a basis for photoregulation of transmembrane redox. Research on water oxidation (area 3) has been directed at understanding mechanisms of catalysis by cis,cis-[(bpy)2Ru(OH2)]2O4+ and related polyimine complexes. Using a variety of physical techniques, we have: (i) identified the redox state of the complex ion that is catalytically active; (ii) shown using 18O isotopic labeling that there are two reaction pathways, both of which involve participation of solvent H2O; and (iii) detected and characterized by EPR and resonance Raman spectroscopies new species which may be key intermediates in the catalytic cycle.

  18. ASTP chemical and microbiological analysis of potable water

    Science.gov (United States)

    Sauer, R. L.; Leslie, S. A.

    1976-01-01

    The Apollo-Soyuz Test Project procedures for potable water system servicing and the results of preflight and postflight chemical and microbiological analyses of the water are discussed. Tables show results of the analyses. The effectiveness of the water system is evaluated.

  19. Radiolytic production of chemical fuels in fusion reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Fish, J D

    1977-06-01

    Miley's energy flow diagram for fusion reactor systems is extended to include radiolytic production of chemical fuel. Systematic study of the economics and the overall efficiencies of fusion reactor systems leads to a criterion for evaluating the potential of radiolytic production of chemical fuel as a means of enhancing the performance of a fusion reactor system. The ecumenicity of the schema is demonstrated by application to (1) tokamaks, (2) mirror machines, (3) theta-pinch reactors, (4) laser-heated solenoids, and (5) inertially confined, laser-pellet devices. Pure fusion reactors as well as fusion-fission hybrids are considered.

  20. Radiolytic production of chemical fuels in fusion reactor systems

    International Nuclear Information System (INIS)

    Fish, J.D.

    1977-06-01

    Miley's energy flow diagram for fusion reactor systems is extended to include radiolytic production of chemical fuel. Systematic study of the economics and the overall efficiencies of fusion reactor systems leads to a criterion for evaluating the potential of radiolytic production of chemical fuel as a means of enhancing the performance of a fusion reactor system. The ecumenicity of the schema is demonstrated by application to (1) tokamaks, (2) mirror machines, (3) theta-pinch reactors, (4) laser-heated solenoids, and (5) inertially confined, laser-pellet devices. Pure fusion reactors as well as fusion-fission hybrids are considered

  1. Systemic Chemical Education Reform [SCER] in the global era ...

    African Journals Online (AJOL)

    Systemic chemical education reform [SCER] has gained a great importance internationally due to the competitive job market and global market economy which create global challenges and stresses on our current educational system. SCER is a dynamic process that requires constant communication, evaluation and has ...

  2. Chemical and Metallurgy Research (CMR) Sample Tracking System Design Document

    International Nuclear Information System (INIS)

    Bargelski, C. J.; Berrett, D. E.

    1998-01-01

    The purpose of this document is to describe the system architecture of the Chemical and Metallurgy Research (CMR) Sample Tracking System at Los Alamos National Laboratory. During the course of the document observations are made concerning the objectives, constraints and limitations, technical approaches, and the technical deliverables

  3. Process Equipment Failure Mode Analysis in a Chemical Industry

    Directory of Open Access Journals (Sweden)

    J. Nasl Seraji

    2008-04-01

    Full Text Available Background and aims   Prevention of potential accidents and safety promotion in chemical processes requires systematic safety management in them. The main objective of this study was analysis of important process equipment components failure modes and effects in H2S and CO2  isolation from extracted natural gas process.   Methods   This study was done in sweetening unit of an Iranian gas refinery. Failure Mode and Effect Analysis (FMEA used for identification of process equipments failures.   Results   Totally 30 failures identified and evaluated using FMEA. P-1 blower's blade breaking and sour gas pressure control valve bearing tight moving had maximum risk Priority number (RPN, P-1 body corrosion and increasing plug lower side angle of reach DEAlevel control valve  in tower - 1 were minimum calculated RPN.   Conclusion   By providing a reliable documentation system for equipment failures and  incidents recording, maintaining of basic information for later safety assessments would be  possible. Also, the probability of failures and effects could be minimized by conducting preventive maintenance.

  4. Digital Systems Analysis

    Science.gov (United States)

    Martin, Vance S.

    2009-01-01

    There have been many attempts to understand how the Internet affects our modern world. There have also been numerous attempts to understand specific areas of the Internet. This article applies Immanuel Wallerstein's World Systems Analysis to our informationalist society. Understanding this world as divided among individual core, semi-periphery,…

  5. VENTILATION TECHNOLOGY SYSTEMS ANALYSIS

    Science.gov (United States)

    The report gives results of a project to develop a systems analysis of ventilation technology and provide a state-of-the-art assessment of ventilation and indoor air quality (IAQ) research needs. (NOTE: Ventilation technology is defined as the hardware necessary to bring outdoor ...

  6. ANALYSIS OF SAMPLES FROM TANK 5F CHEMICAL CLEANING

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M.; Fink, S.

    2011-03-07

    The Savannah River Site (SRS) is preparing Tank 5F for closure. The first step in preparing the tank for closure is mechanical sludge removal. Following mechanical sludge removal, SRS performed chemical cleaning with oxalic acid to remove the sludge heel. Personnel are currently assessing the effectiveness of the chemical cleaning. SRS personnel collected liquid samples during chemical cleaning and submitted them to Savannah River National Laboratory (SRNL) for analysis. Following chemical cleaning, they collected a solid sample (also known as 'process sample') and submitted it to SRNL for analysis. The authors analyzed these samples to assess the effectiveness of the chemical cleaning process. The conclusions from this work are: (1) With the exception of iron, the dissolution of sludge components from Tank 5F agreed with results from the actual waste demonstration performed in 2007. The fraction of iron removed from Tank 5F by chemical cleaning was significantly less than the fraction removed in the SRNL demonstrations. The likely cause of this difference is the high pH following the first oxalic acid strike. (2) Most of the sludge mass remaining in the tank is iron and nickel. (3) The remaining sludge contains approximately 26 kg of barium, 37 kg of chromium, and 37 kg of mercury. (4) Most of the radioactivity remaining in the residual material is beta emitters and {sup 90}Sr. (5) The chemical cleaning removed more than {approx} 90% of the uranium isotopes and {sup 137}Cs. (6) The chemical cleaning removed {approx} 70% of the neptunium, {approx} 83% of the {sup 90}Sr, and {approx} 21% of the {sup 60}Co. (7) The chemical cleaning removed less than 10% of the plutonium, americium, and curium isotopes. (8) The chemical cleaning removed more than 90% of the aluminium, calcium, and sodium from the tank. (9) The cleaning operations removed 61% of lithium, 88% of non-radioactive strontium, and 65% of zirconium. The {sup 90}Sr and non-radioactive strontium were

  7. Infrared DIAL system for remote sensing of hazardous chemical agents

    Science.gov (United States)

    Vaicikauskas, Viktoras V.; Kabelka, Vidmantas; Kuprionis, Zenonas; Svedas, Vitas; Kaucikas, M.; Maldutis, Evaldas K.

    2004-12-01

    We describe a new project (acronym LISATNAS) approved by the Lithuanian Research Council in 2003 devoted to the development of differential absorption lidar (DIAL) and stationary spectrometric systems based on the mid-infrared tunable Optical Parametric Oscillator (OPO), pumped by compact Q-switched lasers. The purpose of the project is to construct a mobile infrared lidar, assembled in the truck for selective pollutant analysis - possessing spatial resolution of a few meters in the distance range extending from hundred of meters to a few kilometers. A reliable cascade mid-IR generation scheme was developed. Pulse energies up to milijoule in mid-IR have been already obtained using nonlinear AgGaSe2 crystal. Optoacoustic and multipass cells were constructed for stationary spectrometers. Preliminary results with detection of CO2, CH4, H2O and other gases in the ppm concentration range show good sensitivity. Special pollutants were synthesized by chemical group of the project for spectrometric experiments: multiatomic nitrocompounds, such as trinitrotoluen (TNT) or trotyl, DNT (dinitrotoluoen), MNT (mononitrotoluoen) and RDX (heksahydro-1.3.5-triazyn). The mobile DIAL system based on the tunable laser in the 8-12 μm region, 10" goldmirror telescope, MCT cooled detector with control electronics is under construction and should be finished in 2005.

  8. Process Control Systems in the Chemical Industry: Safety vs. Security

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey Hahn; Thomas Anderson

    2005-04-01

    Traditionally, the primary focus of the chemical industry has been safety and productivity. However, recent threats to our nation’s critical infrastructure have prompted a tightening of security measures across many different industry sectors. Reducing vulnerabilities of control systems against physical and cyber attack is necessary to ensure the safety, security and effective functioning of these systems. The U.S. Department of Homeland Security has developed a strategy to secure these vulnerabilities. Crucial to this strategy is the Control Systems Security and Test Center (CSSTC) established to test and analyze control systems equipment. In addition, the CSSTC promotes a proactive, collaborative approach to increase industry's awareness of standards, products and processes that can enhance the security of control systems. This paper outlines measures that can be taken to enhance the cybersecurity of process control systems in the chemical sector.

  9. Modeling drug- and chemical- induced hepatotoxicity with systems biology approaches

    Directory of Open Access Journals (Sweden)

    Sudin eBhattacharya

    2012-12-01

    Full Text Available We provide an overview of computational systems biology approaches as applied to the study of chemical- and drug-induced toxicity. The concept of ‘toxicity pathways’ is described in the context of the 2007 US National Academies of Science report, Toxicity testing in the 21st Century: A Vision and A Strategy. Pathway mapping and modeling based on network biology concepts are a key component of the vision laid out in this report for a more biologically-based analysis of dose-response behavior and the safety of chemicals and drugs. We focus on toxicity of the liver (hepatotoxicity – a complex phenotypic response with contributions from a number of different cell types and biological processes. We describe three case studies of complementary multi-scale computational modeling approaches to understand perturbation of toxicity pathways in the human liver as a result of exposure to environmental contaminants and specific drugs. One approach involves development of a spatial, multicellular virtual tissue model of the liver lobule that combines molecular circuits in individual hepatocytes with cell-cell interactions and blood-mediated transport of toxicants through hepatic sinusoids, to enable quantitative, mechanistic prediction of hepatic dose-response for activation of the AhR toxicity pathway. Simultaneously, methods are being developing to extract quantitative maps of intracellular signaling and transcriptional regulatory networks perturbed by environmental contaminants, using a combination of gene expression and genome-wide protein-DNA interaction data. A predictive physiological model (DILIsymTM to understand drug-induced liver injury (DILI, the most common adverse event leading to termination of clinical development programs and regulatory actions on drugs, is also described. The model initially focuses on reactive metabolite-induced DILI in response to administration of acetaminophen, and spans multiple biological scales.

  10. Hyperchaos and chaotic hierarchy in low-dimensional chemical systems

    Science.gov (United States)

    Baier, Gerold; Sahle, Sven

    1994-06-01

    Chemical reaction chains with feedback of one of the products on the source of the chain are considered. A strategy is presented in terms of ordinary differential equations which creates one, two, and three positive Lyapunov exponents as the finite dimension of the system is increased. In particular, a nonlinear inhibition loop in a chemical reaction sequence controls the type of chaos. The bifurcation scenarios are studied and chaos and hyperchaos are found for broad regions of bifurcation parameter. Some implications for the occurrence of higher chaos in real systems are discussed.

  11. Method for fractional solid-waste sampling and chemical analysis

    DEFF Research Database (Denmark)

    Riber, Christian; Rodushkin, I.; Spliid, Henrik

    2007-01-01

    Chemical characterization of solid waste is a demanding task due to the heterogeneity of the waste. This article describes how 45 material fractions hand-sorted from Danish household waste were subsampled and prepared for chemical analysis of 61 substances. All material fractions were subject...... to repeated particle-size reduction, mixing, and mass reduction until a sufficiently small but representative sample was obtained for digestion prior to chemical analysis. The waste-fraction samples were digested according to their properties for maximum recognition of all the studied substances. By combining...... four subsampling methods and five digestion methods, paying attention to the heterogeneity and the material characteristics of the waste fractions, it was possible to determine 61 substances with low detection limits, reasonable variance, and high accuracy. For most of the substances of environmental...

  12. A spectral identity mapper for chemical image analysis.

    Science.gov (United States)

    Turner, John F; Zhang, Jing; O'Connor, Anne

    2004-11-01

    Generating chemically relevant image contrast from spectral image data requires multivariate processing algorithms that can categorize spectra according to shape. Conventional chemometric techniques like inverse least squares, classical least squares, multiple linear regression, principle component regression, and multivariate curve resolution are effective for predicting the chemical composition of samples having known constituents, but they are less effective when a priori information about the sample is unavailable. We have developed a multivariate technique called spectral identity mapping (SIM) that reduces the dependence of spectral image analysis on training datasets. The qualitative SIM method provides enhanced spectral shape specificity and improved chemical image contrast. We present SIM results of spectral image data acquired from polymer-coated paper substrates used in the manufacture of pressure sensitive adhesive tapes. In addition, we compare the SIM results to results from spectral angle mapping (SAM) and cosine correlation analysis (CCA), two closely related techniques.

  13. Actinide isotopic analysis systems

    International Nuclear Information System (INIS)

    Koenig, Z.M.; Ruhter, W.D.; Gunnink, R.

    1990-01-01

    This manual provides instructions and procedures for using the Lawrence Livermore National Laboratory's two-detector actinide isotope analysis system to measure plutonium samples with other possible actinides (including uranium, americium, and neptunium) by gamma-ray spectrometry. The computer program that controls the system and analyzes the gamma-ray spectral data is driven by a menu of one-, two-, or three-letter options chosen by the operator. Provided in this manual are descriptions of these options and their functions, plus detailed instructions (operator dialog) for choosing among the options. Also provided are general instructions for calibrating the actinide isotropic analysis system and for monitoring its performance. The inventory measurement of a sample's total plutonium and other actinides content is determined by two nondestructive measurements. One is a calorimetry measurement of the sample's heat or power output, and the other is a gamma-ray spectrometry measurement of its relative isotopic abundances. The isotopic measurements needed to interpret the observed calorimetric power measurement are the relative abundances of various plutonium and uranium isotopes and americium-241. The actinide analysis system carries out these measurements. 8 figs

  14. Modular verification of chemical reaction network encodings via serializability analysis

    Science.gov (United States)

    Lakin, Matthew R.; Stefanovic, Darko; Phillips, Andrew

    2015-01-01

    Chemical reaction networks are a powerful means of specifying the intended behaviour of synthetic biochemical systems. A high-level formal specification, expressed as a chemical reaction network, may be compiled into a lower-level encoding, which can be directly implemented in wet chemistry and may itself be expressed as a chemical reaction network. Here we present conditions under which a lower-level encoding correctly emulates the sequential dynamics of a high-level chemical reaction network. We require that encodings are transactional, such that their execution is divided by a “commit reaction” that irreversibly separates the reactant-consuming phase of the encoding from the product-generating phase. We also impose restrictions on the sharing of species between reaction encodings, based on a notion of “extra tolerance”, which defines species that may be shared between encodings without enabling unwanted reactions. Our notion of correctness is serializability of interleaved reaction encodings, and if all reaction encodings satisfy our correctness properties then we can infer that the global dynamics of the system are correct. This allows us to infer correctness of any system constructed using verified encodings. As an example, we show how this approach may be used to verify two- and four-domain DNA strand displacement encodings of chemical reaction networks, and we generalize our result to the limit where the populations of helper species are unlimited. PMID:27325906

  15. Modular verification of chemical reaction network encodings via serializability analysis.

    Science.gov (United States)

    Lakin, Matthew R; Stefanovic, Darko; Phillips, Andrew

    2016-06-13

    Chemical reaction networks are a powerful means of specifying the intended behaviour of synthetic biochemical systems. A high-level formal specification, expressed as a chemical reaction network, may be compiled into a lower-level encoding, which can be directly implemented in wet chemistry and may itself be expressed as a chemical reaction network. Here we present conditions under which a lower-level encoding correctly emulates the sequential dynamics of a high-level chemical reaction network. We require that encodings are transactional, such that their execution is divided by a "commit reaction" that irreversibly separates the reactant-consuming phase of the encoding from the product-generating phase. We also impose restrictions on the sharing of species between reaction encodings, based on a notion of "extra tolerance", which defines species that may be shared between encodings without enabling unwanted reactions. Our notion of correctness is serializability of interleaved reaction encodings, and if all reaction encodings satisfy our correctness properties then we can infer that the global dynamics of the system are correct. This allows us to infer correctness of any system constructed using verified encodings. As an example, we show how this approach may be used to verify two- and four-domain DNA strand displacement encodings of chemical reaction networks, and we generalize our result to the limit where the populations of helper species are unlimited.

  16. Network systems security analysis

    Science.gov (United States)

    Yilmaz, Ä.°smail

    2015-05-01

    Network Systems Security Analysis has utmost importance in today's world. Many companies, like banks which give priority to data management, test their own data security systems with "Penetration Tests" by time to time. In this context, companies must also test their own network/server systems and take precautions, as the data security draws attention. Based on this idea, the study cyber-attacks are researched throughoutly and Penetration Test technics are examined. With these information on, classification is made for the cyber-attacks and later network systems' security is tested systematically. After the testing period, all data is reported and filed for future reference. Consequently, it is found out that human beings are the weakest circle of the chain and simple mistakes may unintentionally cause huge problems. Thus, it is clear that some precautions must be taken to avoid such threats like updating the security software.

  17. Continuous-flow centrifugation to collect suspended sediment for chemical analysis

    Science.gov (United States)

    Conn, Kathleen E.; Dinicola, Richard S.; Black, Robert W.; Cox, Stephen E.; Sheibley, Richard W.; Foreman, James R.; Senter, Craig A.; Peterson, Norman T.

    2016-12-22

    Recent advances in suspended-sediment monitoring tools and surrogate technologies have greatly improved the ability to quantify suspended-sediment concentrations and to estimate daily, seasonal, and annual suspended-sediment fluxes from rivers to coastal waters. However, little is known about the chemical composition of suspended sediment, and how it may vary spatially between water bodies and temporally within a single system owing to climate, seasonality, land use, and other natural and anthropogenic drivers. Many water-quality contaminants, such as organic and inorganic chemicals, nutrients, and pathogens, preferentially partition in sediment rather than water. Suspended sediment-bound chemical concentrations may be undetected during analysis of unfiltered water samples, owing to small water sample volumes and analytical limitations. Quantification of suspended sediment‑bound chemical concentrations is needed to improve estimates of total chemical concentrations, chemical fluxes, and exposure levels of aquatic organisms and humans in receiving environments. Despite these needs, few studies or monitoring programs measure the chemical composition of suspended sediment, largely owing to the difficulty in consistently obtaining samples of sufficient quality and quantity for laboratory analysis.A field protocol is described here utilizing continuous‑flow centrifugation for the collection of suspended sediment for chemical analysis. The centrifuge used for development of this method is small, lightweight, and portable for the field applications described in this protocol. Project scoping considerations, deployment of equipment and system layout options, and results from various field and laboratory quality control experiments are described. The testing confirmed the applicability of the protocol for the determination of many inorganic and organic chemicals sorbed on suspended sediment, including metals, pesticides, polycyclic aromatic hydrocarbons, and

  18. Chemical and antimicrobial analysis of husk fiber aqueous extract ...

    African Journals Online (AJOL)

    Chemical and antimicrobial analysis of husk fiber aqueous extract from Cocos nucifera L. Davi Oliveira e Silva, Gabriel Rocha Martins, Antônio Jorge Ribeiro da Silva, Daniela Sales Alviano, Rodrigo Pires Nascimento, Maria Auxiliadora Coelho Kaplan, Celuta Sales Alviano ...

  19. Physico-chemical analysis and sensory evaluation of bread ...

    African Journals Online (AJOL)

    This study carried out the physico-chemical analysis and sensory evaluation of bread produced using different indigenous yeast isolates in order to offer an insight into the overall quality of the bread. Four (4) different yeast species were isolated from sweet orange, pineapple and palm wine. The yeasts were characterized ...

  20. Bark chemical analysis explains selective bark damage by rodents

    Czech Academy of Sciences Publication Activity Database

    Heroldová, Marta; Jánová, Eva; Suchomel, J.; Purchart, L.; Homolka, Miloslav

    2009-01-01

    Roč. 2, č. 2 (2009), s. 137-140 ISSN 1803-2451 R&D Projects: GA MZe QH72075 Institutional research plan: CEZ:AV0Z60930519 Keywords : bark damage * bark selection * bark chemical analysis * rowan * beech * spruce * mountain forest regeneration Subject RIV: GK - Forestry

  1. Chemical Analysis of Some Limestone Samples from the Middle Belt ...

    African Journals Online (AJOL)

    Abstract. Chemical analysis of fifteen (15) limestone samples, 13 of which were locally sourced, was carried out using gravimetric as well as flame emission and uv- visible spectroscopic methods. The range of parameters ... and some other filler applications. Keywords: Industrial, Ink, Limestone, Local Source, Spectroscopy.

  2. Chemical analysis of steel by optical emission spectrometry

    International Nuclear Information System (INIS)

    Hayakawa, M.O.; Kajita, T.; Jeszensky, G.

    1981-01-01

    The development of the chemical analysis for special steels by optical emission spectrometry direct reading method with computer, at the Siderurgica N.S. Aparecida S.A. is presented. Results are presented for the low alloy steels and high speed steel. Also, the contribution of this method to the special steel preparation is commented. (Author) [pt

  3. Comparative Analysis on Chemical Composition of Bentonite Clays ...

    African Journals Online (AJOL)

    2017-09-12

    Sep 12, 2017 ... Abdullahi and Audu. 35. Comparative Analysis on Chemical Composition of Bentonite Clays. Obtained from Ashaka and Tango Deposits in Gombe State, Nigeria. Abdullahi S.L1 and Audu A.A2. 1Kano State Polytechnic, Kano - Nigeria. 2Department of Pure and Industrial Chemistry, Bayero University Kano ...

  4. Chemical Engineering Education in a Bologna Three Cycle Degree System

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    For the purpose of harmonization of European higher education, Europe’s education system has been going through major changes under what is commonly known as the ”Bologna Process”. The Bologna declaration in 1999 was the start of the introduction of a three cycle degree system in higher education...... such as applied chemistry and process engineering throughout Europe. The result has been a set of recommendations for the first (BS), second (MS) and third (PhD) cycle chemical engineering education aligned to the Bologna Process. They recommend that students studying towards bachelor and masters qualifications...... in Europe. To date, many European universities have adopted this degree structure. The Working Party on Education (WPE) of the European Federation of Chemical Engineering (EFCE) carried out research to determine the contents of higher education in chemical engineering (ChE) and related disciplines...

  5. Microplasmas for chemical analysis: analytical tools or research toys?

    International Nuclear Information System (INIS)

    Karanassios, Vassili

    2004-01-01

    An overview of the activities of the research groups that have been involved in fabrication, development and characterization of microplasmas for chemical analysis over the last few years is presented. Microplasmas covered include: miniature inductively coupled plasmas (ICPs); capacitively coupled plasmas (CCPs); microwave-induced plasmas (MIPs); a dielectric barrier discharge (DBD); microhollow cathode discharge (MCHD) or microstructure electrode (MSE) discharges, other microglow discharges (such as those formed between 'liquid' electrodes); microplasmas formed in micrometer-diameter capillary tubes for gas chromatography (GC) or high-performance liquid chromatography (HPLC) applications, and a stabilized capacitive plasma (SCP) for GC applications. Sample introduction into microplasmas, in particular, into a microplasma device (MPD), battery operation of a MPD and of a mini- in-torch vaporization (ITV) microsample introduction system for MPDs, and questions of microplasma portability for use on site (e.g., in the field) are also briefly addressed using examples of current research. To emphasize the significance of sample introduction into microplasmas, some previously unpublished results from the author's laboratory have also been included. And an overall assessment of the state-of-the-art of analytical microplasma research is provided

  6. DART system analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Boggs, Paul T.; Althsuler, Alan (Exagrid Engineering); Larzelere, Alex R. (Exagrid Engineering); Walsh, Edward J.; Clay, Ruuobert L.; Hardwick, Michael F. (Sandia National Laboratories, Livermore, CA)

    2005-08-01

    The Design-through-Analysis Realization Team (DART) is chartered with reducing the time Sandia analysts require to complete the engineering analysis process. The DART system analysis team studied the engineering analysis processes employed by analysts in Centers 9100 and 8700 at Sandia to identify opportunities for reducing overall design-through-analysis process time. The team created and implemented a rigorous analysis methodology based on a generic process flow model parameterized by information obtained from analysts. They also collected data from analysis department managers to quantify the problem type and complexity distribution throughout Sandia's analyst community. They then used this information to develop a community model, which enables a simple characterization of processes that span the analyst community. The results indicate that equal opportunity for reducing analysis process time is available both by reducing the ''once-through'' time required to complete a process step and by reducing the probability of backward iteration. In addition, reducing the rework fraction (i.e., improving the engineering efficiency of subsequent iterations) offers approximately 40% to 80% of the benefit of reducing the ''once-through'' time or iteration probability, depending upon the process step being considered. Further, the results indicate that geometry manipulation and meshing is the largest portion of an analyst's effort, especially for structural problems, and offers significant opportunity for overall time reduction. Iteration loops initiated late in the process are more costly than others because they increase ''inner loop'' iterations. Identifying and correcting problems as early as possible in the process offers significant opportunity for time savings.

  7. Micro Coriolis mass flow sensor for chemical micropropulsion systems

    NARCIS (Netherlands)

    Wiegerink, Remco J.; Lammerink, Theodorus S.J.; Groenesteijn, Jarno; Dijkstra, Pieter J.; Lötters, Joost Conrad

    2012-01-01

    We have designed a micromachined micro Coriolis flow sensor for the measurement of hydrazine (N2H4, High Purity Grade) propellant flow in micro chemical propulsion systems. The sensor measures mass flow up to 10 mg/s for a single thruster or up to 40 mg/s for four thrusters. The sensor will first be

  8. Dutch Risk Assessment System for New Chemicals: Soil Groundwater Module

    NARCIS (Netherlands)

    Swartjes FA; van der Linden AMA; van den Berg R

    1993-01-01

    A new Soil-Groundwater Module has been developed for incorporation in the Dutch Risk Assessment System for New Chemicals. In this module, the exposure of humans and the environment to xenobiotic substances due to sewage sludge application have been determined. Exposure criteria were: 1.

  9. Computer program determines chemical composition of physical system at equilibrium

    Science.gov (United States)

    Kwong, S. S.

    1966-01-01

    FORTRAN 4 digital computer program calculates equilibrium composition of complex, multiphase chemical systems. This is a free energy minimization method with solution of the problem reduced to mathematical operations, without concern for the chemistry involved. Also certain thermodynamic properties are determined as byproducts of the main calculations.

  10. The periodic system of chemical elements: old and new developments

    International Nuclear Information System (INIS)

    Kibler, M.

    1987-09-01

    Some historical facts about the construction of a periodic system of chemical elements are reviewed. The Madelung rule is used to generate an unusual format for the periodic table. Following the work of Byakov, Kulakov, Rumer and Fet, such a format is further refined on the basis of a chain of groups starting with SU(2)xS0(4.2)

  11. Chemical analysis of plasma-assisted antimicrobial treatment on cotton

    Science.gov (United States)

    Kan, C. W.; Lam, Y. L.; Yuen, C. W. M.; Luximon, A.; Lau, K. W.; Chen, K. S.

    2013-06-01

    This paper explores the use of plasma treatment as a pretreatment process to assist the application of antimicrobial process on cotton fabric with good functional effect. In this paper, antimicrobial finishing agent, Microfresh Liquid Formulation 9200-200 (MF), and a binder (polyurethane dispersion, Microban Liquid Formulation R10800-0, MB) will be used for treating the cotton fabric for improving the antimicrobial property and pre-treatment of cotton fabric by plasma under atmospheric pressure will be employed to improve loading of chemical agents. The chemical analysis of the treated cotton fabric will be conducted by Fourier transform Infrared Spectroscopy.

  12. Software for analysis of chemical mixtures--composition, occurrence, distribution, and possible toxicity

    Science.gov (United States)

    Scott, Jonathon C.; Skach, Kenneth A.; Toccalino, Patricia L.

    2013-01-01

    The composition, occurrence, distribution, and possible toxicity of chemical mixtures in the environment are research concerns of the U.S. Geological Survey and others. The presence of specific chemical mixtures may serve as indicators of natural phenomena or human-caused events. Chemical mixtures may also have ecological, industrial, geochemical, or toxicological effects. Chemical-mixture occurrences vary by analyte composition and concentration. Four related computer programs have been developed by the National Water-Quality Assessment Program of the U.S. Geological Survey for research of chemical-mixture compositions, occurrences, distributions, and possible toxicities. The compositions and occurrences are identified for the user-supplied data, and therefore the resultant counts are constrained by the user’s choices for the selection of chemicals, reporting limits for the analytical methods, spatial coverage, and time span for the data supplied. The distribution of chemical mixtures may be spatial, temporal, and (or) related to some other variable, such as chemical usage. Possible toxicities optionally are estimated from user-supplied benchmark data. The software for the analysis of chemical mixtures described in this report is designed to work with chemical-analysis data files retrieved from the U.S. Geological Survey National Water Information System but can also be used with appropriately formatted data from other sources. Installation and usage of the mixture software are documented. This mixture software was designed to function with minimal changes on a variety of computer-operating systems. To obtain the software described herein and other U.S. Geological Survey software, visit http://water.usgs.gov/software/.

  13. Release mitigation spray safety systems for chemical demilitarization applications.

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, Jonathan; Tezak, Matthew Stephen; Brockmann, John E.; Servantes, Brandon; Sanchez, Andres L.; Tucker, Mark David; Allen, Ashley N.; Wilson, Mollye C.; Lucero, Daniel A.; Betty, Rita G.

    2010-06-01

    Sandia National Laboratories has conducted proof-of-concept experiments demonstrating effective knockdown and neutralization of aerosolized CBW simulants using charged DF-200 decontaminant sprays. DF-200 is an aqueous decontaminant, developed by Sandia National Laboratories, and procured and fielded by the US Military. Of significance is the potential application of this fundamental technology to numerous applications including mitigation and neutralization of releases arising during chemical demilitarization operations. A release mitigation spray safety system will remove airborne contaminants from an accidental release during operations, to protect personnel and limit contamination. Sandia National Laboratories recently (November, 2008) secured funding from the US Army's Program Manager for Non-Stockpile Chemical Materials Agency (PMNSCMA) to investigate use of mitigation spray systems for chemical demilitarization applications. For non-stockpile processes, mitigation spray systems co-located with the current Explosive Destruction System (EDS) will provide security both as an operational protective measure and in the event of an accidental release. Additionally, 'tented' mitigation spray systems for native or foreign remediation and recovery operations will contain accidental releases arising from removal of underground, unstable CBW munitions. A mitigation spray system for highly controlled stockpile operations will provide defense from accidental spills or leaks during routine procedures.

  14. Fourier transform infrared spectra applications to chemical systems

    CERN Document Server

    Ferraro, John R

    1978-01-01

    Fourier Transform Infrared Spectroscopy: Applications to Chemical Systems presents the chemical applications of the Fourier transform interferometry (FT-IR).The book contains discussions on the applications of FT-IR in the fields of chromatography FT-IR, polymers and biological macromolecules, emission spectroscopy, matrix isolation, high-pressure interferometry, and far infrared interferometry. The final chapter is devoted to the presentation of the use of FT-IR in solving national technical problems such as air pollution, space exploration, and energy related subjects.Researc

  15. Hydrogen fluoride (HF) substance flow analysis for safe and sustainable chemical industry.

    Science.gov (United States)

    Kim, Junbeum; Hwang, Yongwoo; Yoo, Mijin; Chen, Sha; Lee, Ik-Mo

    2017-11-01

    In this study, the chemical substance flow of hydrogen fluoride (hydrofluoric acid, HF) in domestic chemical industries in 2014 was analyzed in order to provide a basic material and information for the establishment of organized management system to ensure safety during HF applications. A total of 44,751 tons of HF was made by four domestic companies (in 2014); import amount was 95,984 tons in 2014 while 21,579 tons of HF was imported in 2005. The export amount of HF was 2180 tons, of which 2074 ton (China, 1422 tons, U.S. 524 tons, and Malaysia, 128 tons) was exported for the manufacturing of semiconductors. Based on the export and import amounts, it can be inferred that HF was used for manufacturing semiconductors. The industries applications of 161,123 tons of HF were as follows: manufacturing of basic inorganic chemical substance (27,937 tons), manufacturing of other chemical products such as detergents (28,208 tons), manufacturing of flat display (24,896 tons), and manufacturing of glass container package (22,002 tons). In this study, an analysis of the chemical substance flow showed that HF was mainly used in the semiconductor industry as well as glass container manufacturing. Combined with other risk management tools and approaches in the chemical industry, the chemical substance flow analysis (CSFA) can be a useful tool and method for assessment and management. The current CSFA results provide useful information for policy making in the chemical industry and national systems. Graphical abstract Hydrogen fluoride chemical substance flows in 2014 in South Korea.

  16. The collection and field chemical analysis of water samples

    International Nuclear Information System (INIS)

    Korte, N.E.; Ealey, D.T.; Hollenbach, M.H.

    1984-01-01

    A successful water sampling program requires a clear understanding of appropriate measurement and sampling procedures in order to obtain reliable field data and representative samples. It is imperative that the personnel involved have a thorough knowledge of the limitations of the techniques being used. Though this seems self-evident, many sampling and field-chemical-analysis programs are still not properly conducted. Recognizing these problems, the Department of Energy contracted with Bendix Field Engineering Corporation through the Technical Measurements Center to develop and select procedures for water sampling and field chemical analysis at waste sites. The fundamental causese of poor field programs are addressed in this paper, largely through discussion of specific field-measurement techniques and their limitations. Recommendations for improvement, including quality-assurance measures, are also presented

  17. Endocrine-disrupting Chemicals: Review of Toxicological Mechanisms Using Molecular Pathway Analysis

    Science.gov (United States)

    Yang, Oneyeol; Kim, Hye Lim; Weon, Jong-Il; Seo, Young Rok

    2015-01-01

    Endocrine disruptors are known to cause harmful effects to human through various exposure routes. These chemicals mainly appear to interfere with the endocrine or hormone systems. As importantly, numerous studies have demonstrated that the accumulation of endocrine disruptors can induce fatal disorders including obesity and cancer. Using diverse biological tools, the potential molecular mechanisms related with these diseases by exposure of endocrine disruptors. Recently, pathway analysis, a bioinformatics tool, is being widely used to predict the potential mechanism or biological network of certain chemicals. In this review, we initially summarize the major molecular mechanisms involved in the induction of the above mentioned diseases by endocrine disruptors. Additionally, we provide the potential markers and signaling mechanisms discovered via pathway analysis under exposure to representative endocrine disruptors, bisphenol, diethylhexylphthalate, and nonylphenol. The review emphasizes the importance of pathway analysis using bioinformatics to finding the specific mechanisms of toxic chemicals, including endocrine disruptors. PMID:25853100

  18. Adlayers of dimannoside thiols on gold: surface chemical analysis.

    Science.gov (United States)

    Dietrich, Paul M; Horlacher, Tim; Girard-Lauriault, Pierre-Luc; Gross, Thomas; Lippitz, Andreas; Min, Hyegeun; Wirth, Thomas; Castelli, Riccardo; Seeberger, Peter H; Unger, Wolfgang E S

    2011-04-19

    Carbohydrate films on gold based on dimannoside thiols (DMT) were prepared, and a complementary surface chemical analysis was performed in detail by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), near-edge X-ray absorption fine structure (NEXAFS), FT-IR, and contact angle measurements in order to verify formation of ω-carbohydrate-functionalized alkylthiol films. XPS (C 1s, O 1s, and S 2p) reveals information on carbohydrate specific alkoxy (C-O) and acetal moieties (O-C-O) as well as thiolate species attached to gold. Angle-resolved synchrotron XPS was used for chemical speciation at ultimate surface sensitivity. Angle-resolved XPS analysis suggests the presence of an excess top layer composed of unbound sulfur components combined with alkyl moieties. Further support for DMT attachment on Au is given by ToF-SIMS and FT-IR analysis. Carbon and oxygen K-edge NEXAFS spectra were interpreted by applying the building block model supported by comparison to data of 1-undecanethiol, poly(vinyl alcohol), and polyoxymethylene. No linear dichroism effect was observed in the angle-resolved C K-edge NEXAFS. © 2011 American Chemical Society

  19. Cluster analysis to evaluate stable chemical elements and physical-chemical parameters behavior on uranium mining waste

    International Nuclear Information System (INIS)

    Pereira, Wagner de Souza; Py Junior, Delcy de Azevedo; Goncalves, Simone; Kelecom, Alphonse; Morais, Gustavo Ferrari de; Campelo, Emanuele Lazzaretti Cordova; Dores, Luis Augusto de Carvalho Bresser

    2011-01-01

    The Ore Treating Unit (UTM, in portuguese) is a deactivated uranium mine. A cluster analysis was used to evaluate the behavior of stable chemical elements and physical-chemical parameters in their effluents. The utilization of the cluster analysis proved itself effective in the assessment, allowing the identification of groups of chemical elements, physical-chemical parameters and their joint analysis (elements and parameters). As a result we may assert, based on data analysis, that there is a strong link between calcium and magnesium and between aluminum and rare-earth oxides on UTM's effluents. Sulphate was also identified as strongly linked to total and dissolved solids, and those to electrical conductivity. There were other associations, but not so strongly linked. Further gathering, to seasonal evaluation, are required in order to confirm those analysis. Additional statistical analysis (factor analysis) must be used to try to identify the origin of the identified groups on this analysis. (author)

  20. Shotgun lipidomic analysis of chemically sulfated sterols compromises analytical sensitivity

    DEFF Research Database (Denmark)

    Casanovas, Albert; Hannibal-Bach, Hans Kristian; Jensen, Ole Nørregaard

    2014-01-01

    Shotgun lipidomics affords comprehensive and quantitative analysis of lipid species in cells and tissues at high-throughput [1 5]. The methodology is based on direct infusion of lipid extracts by electrospray ionization (ESI) combined with tandem mass spectrometry (MS/MS) and/or high resolution F...... low ionization efficiency in ESI [7]. For this reason, chemical derivatization procedures including acetylation [8] or sulfation [9] are commonly implemented to facilitate ionization, detection and quantification of sterols for global lipidome analysis [1-3, 10]....

  1. Chemical system integrated on micro-chip. Effects expected for liquid phase micro-space; Maikuro chippu ni shusekikashita kagaku shisutemu. ekiso bisho kukan ni kitaisuru koka toha?

    Energy Technology Data Exchange (ETDEWEB)

    hisamoto, H.; Kitamori, T. [The Univ. of Tokyo, Tokyo (Japan)

    2000-11-01

    Integrated chemical system is a system that integrates units required for transportation, reaction, separation, analysis, which are important for chemical experiment, on a glass substrate in a similar way as semiconductor device. Among it, a system to integrate analysis system is called analysis system>, and is attracting worldwide attention for DNA electrophoresis analysis. Integrated chemical system has merits such as reduction in waste and high speed reaction, which can be expected from micronization, as well as short molecular diffusion distance, large relative interface surface, and small heat capacity, which are large advantages for high-efficient chemical reaction. The authors, with paying attention this technology, have realized analysis devices such as gene diagnosis, cancer immunity analysis, and environmental analysis, which are difficult by conventional analyzers. On the other hand, this technology is hopeful for organic synthesis and is expected as a technology to invite a large renovation in the chemical technology in the 21st century. (NEDO)

  2. A robust platform for chemical genomics in bacterial systems.

    Science.gov (United States)

    French, Shawn; Mangat, Chand; Bharat, Amrita; Côté, Jean-Philippe; Mori, Hirotada; Brown, Eric D

    2016-03-15

    While genetic perturbation has been the conventional route to probing bacterial systems, small molecules are showing great promise as probes for cellular complexity. Indeed, systematic investigations of chemical-genetic interactions can provide new insights into cell networks and are often starting points for understanding the mechanism of action of novel chemical probes. We have developed a robust and sensitive platform for chemical-genomic investigations in bacteria. The approach monitors colony volume kinetically using transmissive scanning measurements, enabling acquisition of growth rates and conventional endpoint measurements. We found that chemical-genomic profiles were highly sensitive to concentration, necessitating careful selection of compound concentrations. Roughly 20,000,000 data points were collected for 15 different antibiotics. While 1052 chemical-genetic interactions were identified using the conventional endpoint biomass approach, adding interactions in growth rate resulted in 1564 interactions, a 50-200% increase depending on the drug, with many genes uncharacterized or poorly annotated. The chemical-genetic interaction maps generated from these data reveal common genes likely involved in multidrug resistance. Additionally, the maps identified deletion backgrounds exhibiting class-specific potentiation, revealing conceivable targets for combination approaches to drug discovery. This open platform is highly amenable to kinetic screening of any arrayable strain collection, be it prokaryotic or eukaryotic. © 2016 French et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  3. Logical analysis of biological systems

    DEFF Research Database (Denmark)

    Mardare, Radu Iulian

    2005-01-01

    R. Mardare, Logical analysis of biological systems. Fundamenta Informaticae, N 64:271-285, 2005.......R. Mardare, Logical analysis of biological systems. Fundamenta Informaticae, N 64:271-285, 2005....

  4. Comparative analysis of pharmaceuticals versus industrial chemicals acute aquatic toxicity classification according to the United Nations classification system for chemicals. Assessment of the (Q)SAR predictability of pharmaceuticals acute aquatic toxicity and their predominant acute toxic mode-of-action

    DEFF Research Database (Denmark)

    Sanderson, Hans; Thomsen, Marianne

    2009-01-01

    data. Pharmaceuticals were found to be more frequent than industrial chemicals in GHS category III. Acute toxicity was predictable (>92%) using a generic (Q)SAR ((Quantitative) Structure Activity Relationship) suggesting a narcotic MOA. Analysis of model prediction error suggests that 68...

  5. Multivariate Analysis of Multiple Datasets: a Practical Guide for Chemical Ecology.

    Science.gov (United States)

    Hervé, Maxime R; Nicolè, Florence; Lê Cao, Kim-Anh

    2018-03-01

    Chemical ecology has strong links with metabolomics, the large-scale study of all metabolites detectable in a biological sample. Consequently, chemical ecologists are often challenged by the statistical analyses of such large datasets. This holds especially true when the purpose is to integrate multiple datasets to obtain a holistic view and a better understanding of a biological system under study. The present article provides a comprehensive resource to analyze such complex datasets using multivariate methods. It starts from the necessary pre-treatment of data including data transformations and distance calculations, to the application of both gold standard and novel multivariate methods for the integration of different omics data. We illustrate the process of analysis along with detailed results interpretations for six issues representative of the different types of biological questions encountered by chemical ecologists. We provide the necessary knowledge and tools with reproducible R codes and chemical-ecological datasets to practice and teach multivariate methods.

  6. Chemical reaction network approaches to Biochemical Systems Theory.

    Science.gov (United States)

    Arceo, Carlene Perpetua P; Jose, Editha C; Marin-Sanguino, Alberto; Mendoza, Eduardo R

    2015-11-01

    This paper provides a framework to represent a Biochemical Systems Theory (BST) model (in either GMA or S-system form) as a chemical reaction network with power law kinetics. Using this representation, some basic properties and the application of recent results of Chemical Reaction Network Theory regarding steady states of such systems are shown. In particular, Injectivity Theory, including network concordance [36] and the Jacobian Determinant Criterion [43], a "Lifting Theorem" for steady states [26] and the comprehensive results of Müller and Regensburger [31] on complex balanced equilibria are discussed. A partial extension of a recent Emulation Theorem of Cardelli for mass action systems [3] is derived for a subclass of power law kinetic systems. However, it is also shown that the GMA and S-system models of human purine metabolism [10] do not display the reactant-determined kinetics assumed by Müller and Regensburger and hence only a subset of BST models can be handled with their approach. Moreover, since the reaction networks underlying many BST models are not weakly reversible, results for non-complex balanced equilibria are also needed. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Building an R&D chemical registration system

    Directory of Open Access Journals (Sweden)

    Martin Elyette

    2012-05-01

    Full Text Available Abstract Small molecule chemistry is of central importance to a number of R&D companies in diverse areas such as the pharmaceutical, nutraceutical, food flavoring, and cosmeceutical industries. In order to store and manage thousands of chemical compounds in such an environment, we have built a state-of-the-art master chemical database with unique structure identifiers. Here, we present the concept and methodology we used to build the system that we call the Unique Compound Database (UCD. In the UCD, each molecule is registered only once (uniqueness, structures with alternative representations are entered in a uniform way (normalization, and the chemical structure drawings are recognizable to chemists and to a cartridge. In brief, structural molecules are entered as neutral entities which can be associated with a salt. The salts are listed in a dictionary and bound to the molecule with the appropriate stoichiometric coefficient in an entity called “substance”. The substances are associated with batches. Once a molecule is registered, some properties (e.g., ADMET prediction, IUPAC name, chemical properties are calculated automatically. The UCD has both automated and manual data controls. Moreover, the UCD concept enables the management of user errors in the structure entry by reassigning or archiving the batches. It also allows updating of the records to include newly discovered properties of individual structures. As our research spans a wide variety of scientific fields, the database enables registration of mixtures of compounds, enantiomers, tautomers, and compounds with unknown stereochemistries.

  8. Building an R&D chemical registration system.

    Science.gov (United States)

    Martin, Elyette; Monge, Aurélien; Duret, Jacques-Antoine; Gualandi, Federico; Peitsch, Manuel C; Pospisil, Pavel

    2012-05-31

    Small molecule chemistry is of central importance to a number of R&D companies in diverse areas such as the pharmaceutical, nutraceutical, food flavoring, and cosmeceutical industries. In order to store and manage thousands of chemical compounds in such an environment, we have built a state-of-the-art master chemical database with unique structure identifiers. Here, we present the concept and methodology we used to build the system that we call the Unique Compound Database (UCD). In the UCD, each molecule is registered only once (uniqueness), structures with alternative representations are entered in a uniform way (normalization), and the chemical structure drawings are recognizable to chemists and to a cartridge. In brief, structural molecules are entered as neutral entities which can be associated with a salt. The salts are listed in a dictionary and bound to the molecule with the appropriate stoichiometric coefficient in an entity called "substance". The substances are associated with batches. Once a molecule is registered, some properties (e.g., ADMET prediction, IUPAC name, chemical properties) are calculated automatically. The UCD has both automated and manual data controls. Moreover, the UCD concept enables the management of user errors in the structure entry by reassigning or archiving the batches. It also allows updating of the records to include newly discovered properties of individual structures. As our research spans a wide variety of scientific fields, the database enables registration of mixtures of compounds, enantiomers, tautomers, and compounds with unknown stereochemistries.

  9. Use of cold neutron sources in chemical analysis

    International Nuclear Information System (INIS)

    Zeisler, R.

    1989-01-01

    Modern chemical analysis is concerned with more than determining elemental composition. Needed is the ability to obtain information about the spatial distribution, chemical form, structure, etc., of the elements in investigated materials. Nuclear techniques can play an expanded role in the understanding of the structure and composition of materials. During the past decade, a number of research reactors have installed highly efficient neutron guides with cold neutron sources that are attractive for analytical chemistry uses. Neutron capture prompt gamma activation analysis (PGAA) and neutron depth profiling (NDP) are already established analytical techniques that will greatly benefit from these installations. The guides result in higher neutron fluxes in the sample position as well as increased reaction rates due to the lower energy neutron spectrum. Simultaneously, the background is significantly lower than in today's PGAA and NDP instruments. These factors will lead to lower detection limits and better resolution power of cold neutron beam instruments. The possibility of focusing cold neutron beams may further enhance the sensitivity of chemical assays. Initial applications of parallel and focused beams of cold neutrons in PGAA have demonstrated these advantages

  10. Transferring Knowledge: A Parallel between Teaching Chemical Engineering and Developing Expert Systems.

    Science.gov (United States)

    Roberge, P. R.

    1990-01-01

    Discussed are expert systems development and teaching, the representation and processing of knowledge, knowledge representation in chemical engineering, and expert systems in chemical engineering. The seven phases of expert system development are illustrated. (CW)

  11. QSAR modeling and chemical space analysis of antimalarial compounds

    Science.gov (United States)

    Sidorov, Pavel; Viira, Birgit; Davioud-Charvet, Elisabeth; Maran, Uko; Marcou, Gilles; Horvath, Dragos; Varnek, Alexandre

    2017-05-01

    Generative topographic mapping (GTM) has been used to visualize and analyze the chemical space of antimalarial compounds as well as to build predictive models linking structure of molecules with their antimalarial activity. For this, a database, including 3000 molecules tested in one or several of 17 anti- Plasmodium activity assessment protocols, has been compiled by assembling experimental data from in-house and ChEMBL databases. GTM classification models built on subsets corresponding to individual bioassays perform similarly to the earlier reported SVM models. Zones preferentially populated by active and inactive molecules, respectively, clearly emerge in the class landscapes supported by the GTM model. Their analysis resulted in identification of privileged structural motifs of potential antimalarial compounds. Projection of marketed antimalarial drugs on this map allowed us to delineate several areas in the chemical space corresponding to different mechanisms of antimalarial activity. This helped us to make a suggestion about the mode of action of the molecules populating these zones.

  12. Analysis of chemical composition of high viscous oils

    Directory of Open Access Journals (Sweden)

    Irina Germanovna Yashchenko

    2014-07-01

    Full Text Available The spatial distribution of viscous oils which are considered as an important reserve for oil-production in future were studied on base of information from global database on oil physical and chemical properties. Changes in chemical composition of viscous oils in different basins and continents were analyzed as well. It is shown, on average, viscous oils are sulfur-bearing, low paraffin, highly resinous oils with an average content of asphaltenes and low content of the fraction boiling at 200 C. Study results of viscous oils peculiarities of Canada, Russia and Venezuela are given. The analysis results can be used to determine the optimal layouts and conditions of oil transportation, to improve the search methods of geochemical exploration, and to solve other problems in the oil chemistry.

  13. QSAR modeling and chemical space analysis of antimalarial compounds.

    Science.gov (United States)

    Sidorov, Pavel; Viira, Birgit; Davioud-Charvet, Elisabeth; Maran, Uko; Marcou, Gilles; Horvath, Dragos; Varnek, Alexandre

    2017-05-01

    Generative topographic mapping (GTM) has been used to visualize and analyze the chemical space of antimalarial compounds as well as to build predictive models linking structure of molecules with their antimalarial activity. For this, a database, including ~3000 molecules tested in one or several of 17 anti-Plasmodium activity assessment protocols, has been compiled by assembling experimental data from in-house and ChEMBL databases. GTM classification models built on subsets corresponding to individual bioassays perform similarly to the earlier reported SVM models. Zones preferentially populated by active and inactive molecules, respectively, clearly emerge in the class landscapes supported by the GTM model. Their analysis resulted in identification of privileged structural motifs of potential antimalarial compounds. Projection of marketed antimalarial drugs on this map allowed us to delineate several areas in the chemical space corresponding to different mechanisms of antimalarial activity. This helped us to make a suggestion about the mode of action of the molecules populating these zones.

  14. Miniaturised wireless smart tag for optical chemical analysis applications.

    Science.gov (United States)

    Steinberg, Matthew D; Kassal, Petar; Tkalčec, Biserka; Murković Steinberg, Ivana

    2014-01-01

    A novel miniaturised photometer has been developed as an ultra-portable and mobile analytical chemical instrument. The low-cost photometer presents a paradigm shift in mobile chemical sensor instrumentation because it is built around a contactless smart card format. The photometer tag is based on the radio-frequency identification (RFID) smart card system, which provides short-range wireless data and power transfer between the photometer and a proximal reader, and which allows the reader to also energise the photometer by near field electromagnetic induction. RFID is set to become a key enabling technology of the Internet-of-Things (IoT), hence devices such as the photometer described here will enable numerous mobile, wearable and vanguard chemical sensing applications in the emerging connected world. In the work presented here, we demonstrate the characterisation of a low-power RFID wireless sensor tag with an LED/photodiode-based photometric input. The performance of the wireless photometer has been tested through two different model analytical applications. The first is photometry in solution, where colour intensity as a function of dye concentration was measured. The second is an ion-selective optode system in which potassium ion concentrations were determined by using previously well characterised bulk optode membranes. The analytical performance of the wireless photometer smart tag is clearly demonstrated by these optical absorption-based analytical experiments, with excellent data agreement to a reference laboratory instrument. © 2013 Elsevier B.V. All rights reserved.

  15. Stepwise Evolution of Nonliving to Living Chemical Systems

    Science.gov (United States)

    Lindahl, Paul A.

    2004-08-01

    Steps by which a nonliving chemical system could have transformed into a living system are described and discussed, assuming general features of Wächtershäuser's chemo-autotrophic surface theory of the origin of life. Environmental species such as CO2 and H2S are proposed to have reacted to form a quasi-steady state metal-bound intermediate (CH3-M) that slowly decayed into waste (CH4). Unpredictable dispersive reactions expanded the system to include surface-bound forms of the citric acid cycle intermediates (oxaloacetate --> citrate). Further reaction yielded an autocatalytic system in which raw materials are converted into the system at exponential rates. Combinatorial dispersive reactions that improved the performance of this system were automatically selected and incorporated into it. Systems evolved critical features of living systems (proteins, membranes, proteins, nucleic acids, etc.) using two related mechanisms called grafting and waste-conversion. Such living systems were transformed from less recognizable types (characterized by autocatalytic spreading, decentralization, poorly defined boundaries, etc.) into more recognizable ones (encapsulated by membranes, controlled by single-molecule genomes, etc.) that self-replicated by a cell division cycle and could evolve by the standard gene-based Darwinian mechanism. The resulting systems are viewed as having an autocatalytic network composed of three linked autocatalytic subreactions.

  16. Modelling of the chemical state in groundwater infiltration systems

    International Nuclear Information System (INIS)

    Zysset, A.

    1993-01-01

    Groundwater is replenished by water stemming either from precipitations, lakes or rivers. The area where such an infiltration occurs is characterized by a change in the environmental conditions, such as a decrease of the flow velocity and an increase in the solid surface marking the boundary of the flow field. With these changes new chemical processes may become relevant to the transport behavior of contaminants. Since the rates of chemical processes usually are a function of the concentrations of several species, an understanding of infiltration sites may require a multicomponent approach. The present study aims at formulating a mathematical model together with its numerical solution for groundwater infiltration sites. Such a model should improve the understanding of groundwater quality changes related to infiltrating contaminants. The groundwater quality is of vital interest to men because at many places most of the drinking water originates from groundwater. In the first part of the present study two partial models are formulated: one accounting for the transport in a one-dimensional, homogeneous and saturated porous medium, the other accounting for chemical reactions. This second model is initially stated for general kinetic systems. Then, it is specified for two systems, namely for a system governed only by reactions which are fast compared to the transport processes and for a system with biologically mediated redox reactions of dissolved substrates. In the second part of the study a numerical solution to the model is developed. For this purpose, the two partial models are coupled. The coupling is either iterative as in the case of a system with fast reactions or sequential as in all other cases. The numerical solutions of simple test cases are compared to analytical solutions. In the third part the model is evaluated using observations of infiltration sites reported in the literature. (author) figs., tabs., 155 refs

  17. Self-regulating chemo-mechano-chemical systems

    Science.gov (United States)

    Aizenberg, Joanna; He, Ximin; Aizenberg, Michael

    2017-05-16

    A chemo-mechano-chemical (C.sub.1-M-C.sub.2) system includes a base supporting an actuatable structure, said structure comprising a functionalized portion and being embedded in an environmentally responsive gel capable of volume change in response to an environmental stimulus; a first fluid layer disposed over the base and in contact with the actuatable structure, said first fluid layer comprising the environmentally responsive gel; and a second fluid layer in contact with the actuatable structure, wherein the layers are positioned such that the functionalized portion is in contact with the second layer in a first relaxed state and in contact with the first layer in a second actuated state and wherein the functionalized portion interacts with at least one of the layers to provide a chemical or physical response.

  18. Tillage, fertilization systems and chemical attributes of a Paleudult

    Directory of Open Access Journals (Sweden)

    Evelyn Penedo Dorneles

    2015-02-01

    Full Text Available Tillage and fertilization methods may affect soil fertility. With the aim of assessing changes in soil chemical properties over a period of ten years, soil samples of a Paleudult were collected over nine seasons at three layer depths (0-5, 5-10, 10-20 cm and were chemically analyzed. Grain yield and nutrient export in two summer crops, soybean (Glycine max and corn (Zea mays, in a field experiment set in Eldorado do Sul, in the state of Rio Grande do Sul, Brazil, were determined. Three soil tillage systems were evaluated, conventional (CT, reduced (RT and no-tillage (NT, combined with mineral (lime and fertilizers and organic (poultry litter fertilization. The no-tillage system stood out as compared to the others, especially in the surface layer, in terms of values of organic matter, soil pH, available phosphorus, cation exchange capacity and base saturation. Phosphorus content was higher under organic than mineral fertilization due to the criteria used for the establishment of fertilizer doses. Under organic fertilization, soil pH values were similar to those obtained in limed soil samples because of the cumulative effect of the organic fertilizer. Soybean yield was lower under NT in comparison to the RT and CT systems. Consequently, soybean grain exported a lower content of nutrients than maize grain. Maize yield was not affected by either tillage or fertilization systems.

  19. Virtual Exploration of the Ring Systems Chemical Universe.

    Science.gov (United States)

    Visini, Ricardo; Arús-Pous, Josep; Awale, Mahendra; Reymond, Jean-Louis

    2017-11-27

    Here, we explore the chemical space of all virtually possible organic molecules focusing on ring systems, which represent the cyclic cores of organic molecules obtained by removing all acyclic bonds and converting all remaining atoms to carbon. This approach circumvents the combinatorial explosion encountered when enumerating the molecules themselves. We report the chemical universe database GDB4c containing 916 130 ring systems up to four saturated or aromatic rings and maximum ring size of 14 atoms and GDB4c3D containing the corresponding 6 555 929 stereoisomers. Almost all (98.6%) of these ring systems are unknown and represent chiral 3D-shaped macrocycles containing small rings and quaternary centers reminiscent of polycyclic natural products. We envision that GDB4c can serve to select new ring systems from which to design analogs of such natural products. The database is available for download at www.gdb.unibe.ch together with interactive visualization and search tools as a resource for molecular design.

  20. Problems in the development of autonomous mobile laser systems based on a cw chemical DF laser

    International Nuclear Information System (INIS)

    Aleksandrov, B P; Bashkin, A S; Beznozdrev, V N; Parfen'ev, M V; Pirogov, N A; Semenov, S N

    2003-01-01

    The problems involved in designing autonomous mobile laser systems based on high-power cw chemical DF lasers, whose mass and size parameters would make it possible to install them on various vehicles, are discussed. The need for mobility of such lasers necessitates special attention to be paid to the quest for ways and means of reducing the mass and size of the main laser systems. The optimisation of the parameters of such lasers is studied for various methods of scaling their systems. A complex approach to analysis of the optical scheme of the laser system is developed. (special issue devoted to the 80th anniversary of academician n g basov's birth)

  1. Systems analysis of a security alarm system

    International Nuclear Information System (INIS)

    Schiff, A.

    1975-01-01

    When the Lawrence Livermore Laboratory found that its security alarm system was causing more false alarms and maintenance costs than LLL felt was tolerable, a systems analysis was undertaken to determine what should be done about the situation. This report contains an analysis of security alarm systems in general and ends with a review of the existing Security Alarm Control Console (SACC) and recommendations for its improvement, growth and change. (U.S.)

  2. Determination of air pollutants by nuclear chemical analysis

    International Nuclear Information System (INIS)

    Lesny, J.; Toelgyessy, J.

    1975-01-01

    Nuclear analytical methods are discussed with a view to their applicability in the determination of air pollutants. It is shown that some methods (use of radioactive kryptonates in automatic analyzers, application of activation analysis, X-ray fluorescence methods) are developed in theory and proven in practice in such an extent to be widely used in the near future in the control of the environment. Many other methods are becoming increasingly important for the solution of specific problems of environmental protection (such as the control of sudden environmental contamination in the proximity of chemical plants and industrial centers). (author)

  3. Chemical phase analysis of seed mediated synthesized anisotropic silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bharti, Amardeep, E-mail: abharti@pu.ac.in; Goyal, Navdeep [Department of Physics, Panjab University, Chandigarh, INDIA-160014 (India); Singh, Suman; Singla, M. L. [Agrionics, Central Scientific Instruments Organization, CSIR, Chandigarh, INDIA-160030 (India)

    2015-08-28

    Noble-metal nanoparticles are of great interest because of its broad applications almost in every stream (i.e. biology, chemistry and engineering) due to their unique size/shape dependant properties. In this paper, chemical phase of seed mediated synthesized anisotropic silver nanoparticle (AgNPs) has been investigated via fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). These nanaoparticles were synthesized by seed-growth method controlled by urea and dextrose results to highly stable 12-20 nm particle size revealed by zeta potential and transmission electron microscopy (TEM)

  4. Analysis of the chemical equilibrium of combustion at constant volume

    Directory of Open Access Journals (Sweden)

    Marius BREBENEL

    2014-04-01

    Full Text Available Determining the composition of a mixture of combustion gases at a given temperature is based on chemical equilibrium, when the equilibrium constants are calculated on the assumption of constant pressure and temperature. In this paper, an analysis of changes occurring when combustion takes place at constant volume is presented, deriving a specific formula of the equilibrium constant. The simple reaction of carbon combustion in pure oxygen in both cases (constant pressure and constant volume is next considered as example of application, observing the changes occurring in the composition of the combustion gases depending on temperature.

  5. Chemical analysis of dairy cattle feed from Brazil

    International Nuclear Information System (INIS)

    Luis Gustavo Cofani dos Santos; De Nadai Fernandes, E.A.; Marcio Arruda Bacchi; Lucimara Blumer; Gabriel Adrian Sarries; Fernando Barbosa Junior

    2009-01-01

    The bovine dairy cattle demand diets of high nutritional value being essential to know chemical composition of feed supplied to cows to achieve high levels of quality, safety and productivity of milk. Different roughages and concentrates from Minas Gerais and Rio Grande do Sul states, Brazil, were analyzed by instrumental neutron activation analysis (INAA) and inductively coupled plasma mass spectrometry (ICP-MS). Concentrate and roughage samples were differentiated by mass fractions of As, Ba, Mg, P, Rb and Sr. Samples of concentrate from both origins were differentiated by mass fractions of As, Cd, Co, Cr, Cs, Ni and Rb. (author)

  6. The Impact of Flow Injection on Modern Chemical Analysis

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    to implement procedures which previously were difficult or, actually, impossible to execute by conventional means. Clever examples are exploitation of bio-or chemiluminescence, methods relying on kinetic discrimination schemes, assay of metastable constituents, or the use of on-line separation......There is no doubt that Flow Injection Analysis (FIA) has had a profound impact on the ways and means that modern analytical chemical procedures are performed. This is amply reflected in the voluminous scientific literature, which by the middle of 2004 passed more than 14,500 FIA...

  7. Tissue chemical analysis with muonic X-rays

    International Nuclear Information System (INIS)

    Hutson, R.L.; Reidy, J.J.; Springer, K.; Daniel, H.; Knowles, H.B.

    1976-01-01

    The stopped muon channel at the Clinton P. Anderson Meson Physics Facility (LAMPF) was used as a source of muons for studying the elemental composition of tissue with muonic X rays. The X ray spectra from several types of tissue were used to determine the amounts of carbon, nitrogen, and oxygen present. These determinations agree with the results of more conventional chemical analysis. The results show that muonic X rays offer a non-invasive technique for determining the amounts of the more abundant elements present in selected regions of the body. (orig.) [de

  8. Physcio chemical analysis of browning inhibitors treated solanum turberosum powder

    International Nuclear Information System (INIS)

    Alizai, M.N.K.; Abid, H.

    2008-01-01

    White potatoes (Solanum turberosum) were procured from agriculture Research Institute Tarnab Farm Peshawar to use for the preparation of potato powder. The process involves sorting. Washing, peeling slicing, blanching, treating with poly phenol oxidase inhibitors, dehydration, grinding and packing. All these parameters used in process were standardized. Chemical analysis of fresh potato and potato powder were carried out. Microbiological examination, functional properties and storage life studies of the potato powder were also performed. The product prepared by drying in cabinet dryer at 55 C for 7 hours was off white colour potatoes chips which was grinded to make off white potato powder. The potato powder possessed taste and texture. (author)

  9. QUALITY ASSURANCE GUIDELINES FOR LABORATORIES PERFORMING FORENSIC ANALYSIS OF CHEMICAL TERRORISM

    Science.gov (United States)

    The Scientific Working Group on Forensic Analysis of Chemical Terrorism (SWGFACT) has developed the following quality assurance guidelines to provide laboratories engaged in forensic analysis of chemical evidence associated with terrorism a framework to implement a quality assura...

  10. Some comments on misuse of terms related to chemical analysis

    International Nuclear Information System (INIS)

    Complet text of publication follows. I have been involved in scientific studies involving chemical analysis for more than 49 years. Over this period I have observed an increasing tendency to incorrect use of terms 'analysis' and 'determination' and the corresponding verbum forms. According to correct terminology in English, samples are analyzed, analytes (e.g., trace elements) are determined. However, too often expressions such as 'analysis of copper in blood' are seen in the literature, especially in papers written by non-chemists. The reason why I am raising this point at the present time in that I observed the problem in several recent titles of papers published over the last few years in the Journal of Radioanalytical and Nuclear Chemistry: Preconcentration and neutron activation analysis of thorium and uranium in natural waters. Use of activated carbon as pre-separation agent in NAA of selenium, cobalt and iodine. Recent developments in the analysis of transuranics (Np, Pu, Am) in sea water. Automated radiochemical analysis of total 99 Tc in aged nuclear waste processing streams. Photon activation analysis of carbon in glasses for fiber amplifiers by using the flow method for the rapid separation of 11 C. Preconcentration neutron activation analysis of lanthanides by cloudpoint extraction using PAN. Analysis of the chemical elements in leaves infected by fumagina by X-ray fluorescence technique. Rapid method for 226 Ra and 228 Ra analysis in water samples. The above list is far from exhaustive. I believe that this incorrect use of terminology should be avoided at least in the titles of scientific papers, in Journal of Radioanalytical and Nuclear Chemistry as well as in other scientific journals. In some of the above cases replacing 'of' with 'for the determination of', or just with 'for', would have solved the problem. In other cases it would be preferable to reverse the order of words in the sentence, such as e.g., 'Determination of selenium, cobalt and

  11. Comparison of descriptive sensory analysis and chemical analysis for oxidative changes in milk

    DEFF Research Database (Denmark)

    Hedegaard, R V; Kristensen, D; Nielsen, Jacob Holm

    2006-01-01

    and lipolytic changes occurring in the milk during chill storage for 4 d. Sensory analysis and chemical analysis showed high correlation between the typical descriptors for oxidation such as cardboard, metallic taste, and boiled milk and specific chemical markers for oxidation such as hexanal. Notably, primary......Oxidation in 3 types of bovine milk with different fatty acid profiles obtained through manipulation of feed was evaluated by analytical methods quantifying the content of potential antioxidants, the tendency of formation of free radicals, and the accumulation of primary and secondary oxidation...... products. The milk samples were evaluated in parallel by descriptive sensory analysis by a trained panel, and the correlation between the chemical analysis and the descriptive sensory analysis was evaluated. The fatty acid composition of the 3 types of milk was found to influence the oxidative...

  12. Analysis and feasibility of chemical recording using thermosensitive liposomes

    Science.gov (United States)

    Tanner, Maria E.; Vasievich, Elizabeth A.; Protz, Jonathan M.

    2007-12-01

    A new generation of inertial measurement technology is being developed enabling a 10-micron particle to be "aware" of its geospatial location and respond to this information. The proposed approach combines an inertially-sensitive nanostructure or nano fluid/structure system with a nano-sized chemical reactor that functions as an analog computer. Originally, a cantilever-controlled valve used to control a first order chemical reaction was proposed. The feasibility of this concept was evaluated, resulting in a device with significant size reductions, comparable gain, and lower bandwidth than current accelerometers. New concepts with additional refinements have been investigated. Buoyancy-driven convection coupled with a chemical recording technique is explored as a possible alternative. Using a micro-track containing regions of different temperatures and thermosensitive liposomes (TSL), a range of accelerations can be recorded and the position determined. Through careful design, TSL can be developed that have unique transition temperatures and each class of TSL will contain a unique DNA sequence that serves as an identifier. Acceleration can be detected through buoyancy-driven convection. As the liposomes travel to regions of warmer temperature, they will release their contents at the recording site, thus documenting the acceleration. This paper will outline the concept and present the feasibility.

  13. JOVIAN STRATOSPHERE AS A CHEMICAL TRANSPORT SYSTEM: BENCHMARK ANALYTICAL SOLUTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xi; Shia Runlie; Yung, Yuk L., E-mail: xiz@gps.caltech.edu [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States)

    2013-04-20

    We systematically investigated the solvable analytical benchmark cases in both one- and two-dimensional (1D and 2D) chemical-advective-diffusive systems. We use the stratosphere of Jupiter as an example but the results can be applied to other planetary atmospheres and exoplanetary atmospheres. In the 1D system, we show that CH{sub 4} and C{sub 2}H{sub 6} are mainly in diffusive equilibrium, and the C{sub 2}H{sub 2} profile can be approximated by modified Bessel functions. In the 2D system in the meridional plane, analytical solutions for two typical circulation patterns are derived. Simple tracer transport modeling demonstrates that the distribution of a short-lived species (such as C{sub 2}H{sub 2}) is dominated by the local chemical sources and sinks, while that of a long-lived species (such as C{sub 2}H{sub 6}) is significantly influenced by the circulation pattern. We find that an equator-to-pole circulation could qualitatively explain the Cassini observations, but a pure diffusive transport process could not. For slowly rotating planets like the close-in extrasolar planets, the interaction between the advection by the zonal wind and chemistry might cause a phase lag between the final tracer distribution and the original source distribution. The numerical simulation results from the 2D Caltech/JPL chemistry-transport model agree well with the analytical solutions for various cases.

  14. Characterizing chemical systems with on-line computers and graphics

    International Nuclear Information System (INIS)

    Frazer, J.W.; Rigdon, L.P.; Brand, H.R.; Pomernacki, C.L.

    1979-01-01

    Incorporating computers and graphics on-line to chemical experiments and processes opens up new opportunities for the study and control of complex systems. Systems having many variables can be characterized even when the variable interactions are nonlinear, and the system cannot a priori be represented by numerical methods and models. That is, large sets of accurate data can be rapidly acquired, then modeling and graphic techniques can be used to obtain partial interpretation plus design of further experimentation. The experimenter can thus comparatively quickly iterate between experimentation and modeling to obtain a final solution. We have designed and characterized a versatile computer-controlled apparatus for chemical research, which incorporates on-line instrumentation and graphics. It can be used to determine the mechanism of enzyme-induced reactions or to optimize analytical methods. The apparatus can also be operated as a pilot plant to design control strategies. On-line graphics were used to display conventional plots used by biochemists and three-dimensional response-surface plots

  15. Chemical and texture characteristics and sensory properties of “mozzarella” cheese from different feeding systems

    Directory of Open Access Journals (Sweden)

    R. Rubino

    2010-02-01

    Full Text Available The aim of this study was describing the chemical composition, the rheological characteristics and the sensory properties of “mozzarella” cheese produced with milk from buffalos fed with different diets. The study involved two farms and four feeding systems. In farm C, one group was mostly fed with Ryegrass Hay (RH and the other group with Ryegrass Silage (RS. In farm T, instead, one group was mostly fed with Corn Silage (CS and the other one with a Sorghum Silage (SS. In summer, three cheesemakings, for each farm and for each feeding system, were carried out at C.R.A. of Bella. In each farm, data were processed by the analysis of variance in order to compare the effects of two feeding systems. Some parameters of chemical and texture characteristics and sensory properties were influenced by the feeding system. Results were remarkable for the DOP products.

  16. Combustion chemical vapor deposited coatings for thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Hampikian, J.M.; Carter, W.B. [Georgia Institute of Technology, Atlanta, GA (United States). School of Materials Science and Engineering

    1995-12-31

    The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings. In this report, the evaluation of alumina and ceria coatings on a nickel-chromium alloy is described.

  17. Culturing Security System of Chemical Laboratory in Indonesia

    OpenAIRE

    Pusfitasari, Eka Dian

    2017-01-01

    Indonesia has experiences on the lack of chemical security such as: a number of bombing terrors and hazardous chemicals found in food. Bomb used in terror is a homemade bomb made from chemicals which are widely spread in the research laboratories such as a mixture of pottasium chlorate, sulphur, and alumunium. Therefore, security of chemicals should be implemented to avoid the misused of the chemicals. Although it has experienced many cases of the misuse of chemicals, and many regulations and...

  18. Microbiological and chemical analysis of land snails commercialised in Sicily

    Directory of Open Access Journals (Sweden)

    Antonello Cicero

    2015-05-01

    Full Text Available In this study 160 samples of snails belonging to the species Helix aspersa maxima and Helix aspersa muller were examined for chemical and microbiological analysis. Samples came from Greece and Poland. Results showed mean concentration of cadmium (0.35±0.036 mg/kg and lead (0.05±0.013 mg/kg much higher than the limit of detection. Mercury levels in both species were not detected. Microbiological analysis revealed the absence of Salmonella spp. and Clostridium spp. in both examined species. E. coli and K. oxytoca were observed in Helix aspersa maxima and Helix aspersa muller. Furthermore, one case of fungi positivity in samples of Helix aspersa muller was found. The reported investigations highlight the need to create and adopt a reference legislation to protect the health of consumers.

  19. Chemical analysis for waste management in paint industries

    International Nuclear Information System (INIS)

    Nawaz, Z.; Naveed, S.; Shiekh, N.A.; Sagheer, K.

    2005-01-01

    The chemical analysis of paint industries waste has been carried out; the main emission sources are the heating of raw materials and lacquer. Also the waste from other applications and production contains high concentration of heavy metals, VOC's, COD, TDS with notable acidity and alkalinity. Based on the analysis it was observed that the major losses of production could be minimized. Further toxic effects of the waste material can be minimized. In this reference measures to minimize production losses should be adopted along with the proper management. These laboratory results also lead to the areas of emissions and waste production during manufacturing process. Solutions have been proposed for process development and integrated waste minimization. (author)

  20. Cosmetics chemical composition characterization by instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Ana Paula; Pereira, Gustavo Jose; Amaral, Angela Maria; Ferreira, Andrea Vidal, E-mail: ana_allves2008@hotmail.co [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2009-07-01

    Brazil is in the third position in the world's cosmetics market. It is an expanding and growing market where new products and manufacturing processes are in a constant and steady expansion. Therefore, it is mandatory that the composition of the products is well known in order to guarantee safety and quality of daily used cosmetics. The Brazilian National Health Surveillance Agency (ANVISA) has issued a resolution, RDC No. 48, March 16, 2006, which defines a 'List of Substances which can not be used in personal hygiene products, cosmetics and perfumes'. In this work, samples of locally manufactured and imported cosmetics (lipsticks, eye shadows, etc.) were analyzed using the Instrumental Neutron Activation Analysis technique. The samples were irradiated in the TRIGA IPR-R1 reactor of the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN), on a 100kW thermal power, with a thermal neutron fluence rate about 8x10{sup 11}ncm{sup -2}s{sup -1}. The analysis has detected the chemical elements Br, Ba, Ga, Na, K, Sc, Fe, Cr, Zn, Sm, W, La, Rb, Cs, Ta, Ge, Co, U, Ti, V, Cl, Al, Mn and Cu. The concentrations of these elements are on a range from 5 to 3000mug.g{sup -1}. Some chemical elements observed in samples (Cl, Br, Cr, U) are included at ANVISA prohibitive list. (author)

  1. Chemical and spectroscopic analysis of lignin in isolated flax fibers.

    Science.gov (United States)

    Morrison, W H; Himmelsbach, D S; Akin, D E; Evans, J D

    2003-04-23

    The chemistry of pure flax fibers, free of contaminating nonfiber components, has not been determined. Fibers from the center sections of the stem of seed and fiber flax (Linum usitatissium L.), which had been retted after soaking in water and removal of the epidermis by hand, underwent chemical and spectroscopic analysis. Wet chemical analysis showed only trace indications of aromatics and no long chain fatty acids or alcohols in fibers. Pyrolysis mass spectroscopy (PyMS) and pyrolysis gas chromatography mass spectrometry (PyGCMS) showed only trace amounts of aromatic constituents that could be attributed to the presence of lignin. Mid-infrared (Mid-IR) and Raman spectroscopy of these fibers showed no aromatic compounds present. This study suggests that earlier work reporting the presence of lignin ranging from 1 to 4% may be the result of residual shive or epidermis/cuticle material remaining after the retting process which may be responsible for the favorable properties desired by the composites industry.

  2. Chemical Analysis of Wastewater from Unconventional Drilling Operations

    Directory of Open Access Journals (Sweden)

    Jonathan B. Thacker

    2015-04-01

    Full Text Available Trillions of liters of wastewater from oil and gas extraction are generated annually in the US. The contribution from unconventional drilling operations (UDO, such as hydraulic fracturing, to this volume will likely continue to increase in the foreseeable future. The chemical content of wastewater from UDO varies with region, operator, and elapsed time after production begins. Detailed chemical analyses may be used to determine its content, select appropriate treatment options, and identify its source in cases of environmental contamination. In this study, one wastewater sample each from direct effluent, a disposal well, and a waste pit, all in West Texas, were analyzed by gas chromatography-mass spectrometry, inductively coupled plasma-optical emission spectroscopy, high performance liquid chromatography-high resolution mass spectrometry, high performance ion chromatography, total organic carbon/total nitrogen analysis, and pH and conductivity analysis. Several compounds known to compose hydraulic fracturing fluid were detected among two of the wastewater samples including 2-butoxyethanol, alkyl amines, and cocamide diethanolamines, toluene, and o-xylene. Due both to its quantity and quality, proper management of wastewater from UDO will be essential.

  3. Cosmetics chemical composition characterization by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Alves, Ana Paula; Pereira, Gustavo Jose; Amaral, Angela Maria; Ferreira, Andrea Vidal

    2009-01-01

    Brazil is in the third position in the world's cosmetics market. It is an expanding and growing market where new products and manufacturing processes are in a constant and steady expansion. Therefore, it is mandatory that the composition of the products is well known in order to guarantee safety and quality of daily used cosmetics. The Brazilian National Health Surveillance Agency (ANVISA) has issued a resolution, RDC No. 48, March 16, 2006, which defines a 'List of Substances which can not be used in personal hygiene products, cosmetics and perfumes'. In this work, samples of locally manufactured and imported cosmetics (lipsticks, eye shadows, etc.) were analyzed using the Instrumental Neutron Activation Analysis technique. The samples were irradiated in the TRIGA IPR-R1 reactor of the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN), on a 100kW thermal power, with a thermal neutron fluence rate about 8x10 11 ncm -2 s -1 . The analysis has detected the chemical elements Br, Ba, Ga, Na, K, Sc, Fe, Cr, Zn, Sm, W, La, Rb, Cs, Ta, Ge, Co, U, Ti, V, Cl, Al, Mn and Cu. The concentrations of these elements are on a range from 5 to 3000μg.g -1 . Some chemical elements observed in samples (Cl, Br, Cr, U) are included at ANVISA prohibitive list. (author)

  4. On an layer-by-layer analysis of impurity profiles by ions of chemically active gases

    International Nuclear Information System (INIS)

    Kornich, G.V.; Kornilova, L.O.; Teplov, S.V.

    1992-01-01

    A phenomenological model of layer-by-layer analysis by oxygen ions has been described with account taken of the chemical interaction of the bombarding ions with the matrix impurity atoms. The results of the layer-by-layer analysis for a two-layer system of impurity Mg in the Si matrix have been calculated in the framework of the model. It has been concluded that the use of oxygen ions for profiles of Mg and Ca in Si improves the resolvability and increases the sensitivity of the layer-by-layer analysis method

  5. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  6. Safety- and Risk Analysis Activities in Chemical Industry in Europe

    International Nuclear Information System (INIS)

    Kozine, Igor; Duijm, Nijs Jan; Lauridsen Kurt

    2001-01-01

    The current paper gives an overview of the legislation and the methods used in safety and risk management in the chemical industry within Europe and in particular within the European Union. The paper is based on a report that has been written for the SOS-1 project under the Nordic nuclear safety research (NKS). Safety- and risk-related matters in the process industry, in particular, in chemical, within the EU are subject to consideration at three levels: (1) EU legislation, (2) European/intemational standardisation, and (3) socio-economic analysis. EC Directives define the 'essential requirements', e.g., protection of health and safety, that must be fulfilled when goods are placed on the market or some industry is put into operation. The European standards bodies (CEN, CENELEC and ETSI) have the task of establishing the corresponding technical specifications, meeting the essential requirements of the Directives, compliance with which will provide a presumption of conformity with the essential requirements. Such specifications are referred to as 'harmonised standards'. Compliance with harmonised standards remains voluntary, and manufacturers are free to choose any other technical solution that provides compliance with the essential requirements. This view is stated in the 'New Approach' to technical harmonisation and standardisation (details can be found on the web page: http://europe.eu.int/comm/enterprise/newapproach/standardization/index .html). Standardisation as well as the regulation of technical risks is increasingly being undertaken at European or international level. The European legislator limits its role to the affirmation of overall objectives, and leaves it to the economic players to draw up the technical procedures and standards to specify in detail the ways and means of attaining them. Many countries have introduced requirements that new legislation and/or administrative regulations be subject to socio-economic analysis. In this respect there is a

  7. SRS: Site ranking system for hazardous chemical and radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Rechard, R.P.; Chu, M.S.Y.; Brown, S.L.

    1988-05-01

    This report describes the rationale and presents instructions for a site ranking system (SRS). SRS ranks hazardous chemical and radioactive waste sites by scoring important and readily available factors that influence risk to human health. Using SRS, sites can be ranked for purposes of detailed site investigations. SRS evaluates the relative risk as a combination of potentially exposed population, chemical toxicity, and potential exposure of release from a waste site; hence, SRS uses the same concepts found in a detailed assessment of health risk. Basing SRS on the concepts of risk assessment tends to reduce the distortion of results found in other ranking schemes. More importantly, a clear logic helps ensure the successful application of the ranking procedure and increases its versatility when modifications are necessary for unique situations. Although one can rank sites using a detailed risk assessment, it is potentially costly because of data and resources required. SRS is an efficient approach to provide an order-of-magnitude ranking, requiring only readily available data (often only descriptive) and hand calculations. Worksheets are included to make the system easier to understand and use. 88 refs., 19 figs., 58 tabs.

  8. SRS: Site ranking system for hazardous chemical and radioactive waste

    International Nuclear Information System (INIS)

    Rechard, R.P.; Chu, M.S.Y.; Brown, S.L.

    1988-05-01

    This report describes the rationale and presents instructions for a site ranking system (SRS). SRS ranks hazardous chemical and radioactive waste sites by scoring important and readily available factors that influence risk to human health. Using SRS, sites can be ranked for purposes of detailed site investigations. SRS evaluates the relative risk as a combination of potentially exposed population, chemical toxicity, and potential exposure of release from a waste site; hence, SRS uses the same concepts found in a detailed assessment of health risk. Basing SRS on the concepts of risk assessment tends to reduce the distortion of results found in other ranking schemes. More importantly, a clear logic helps ensure the successful application of the ranking procedure and increases its versatility when modifications are necessary for unique situations. Although one can rank sites using a detailed risk assessment, it is potentially costly because of data and resources required. SRS is an efficient approach to provide an order-of-magnitude ranking, requiring only readily available data (often only descriptive) and hand calculations. Worksheets are included to make the system easier to understand and use. 88 refs., 19 figs., 58 tabs

  9. Systems analysis made simple computerbooks

    CERN Document Server

    Antill, Lyn

    1980-01-01

    Systems Analysis: Made Simple Computerbooks introduces the essential elements of information systems analysis and design and teaches basic technical skills required for the tasks involved. The book covers the aspects to the design of an information system; information systems and the organization, including the types of information processing activity and computer-based information systems; the role of the systems analyst; and the human activity system. The text also discusses information modeling, socio-technical design, man-machine interface, and the database design. Software specification

  10. Temporal effects of organic and conventional farming systems on the chemical properties of vineyard

    OpenAIRE

    Erdal, Ulfet; Ongun, Ali Rıza; Sökmen, Ömer

    2016-01-01

    In this study, It is aim to compare the effects of chemical properties in organic and conventional vineyard farming system for 9 year long between 2000-2009.in Manisa,Salihli, in Aegean Region. The study was carried out in 5 replicates completely randomized design According to soil analysis results, certified fertilizer and green manure and ground pruned branches were applied as plant nutrition material in organic plots. On the other hand, 21% ammonium sulphate, 26% ammonium nitrate, 43% trip...

  11. On-stream analysis systems

    International Nuclear Information System (INIS)

    Howarth, W.J.; Watt, J.S.

    1982-01-01

    An outline of some commercially available on-stream analysis systems in given. Systems based on x-ray tube/crystal spectrometers, scintillation detectors, proportional detectors and solid-state detectors are discussed

  12. Calibration of a portable cost-effective chemical residue detection system with adaptive neural net control

    Science.gov (United States)

    Tripp, Alan C.; Walker, James C.

    2003-07-01

    The Sensory Research Institute at the Florida State University has quantitatively characterized a chemical residue detection system with adaptive neural net data processing. Two separate configurations, "Stormy" and "Gaea", were trained by exposure to decreasing amounts of n-amyl acetate from chemical emitters randomly distributed among a collection of non-emitters. The concentration of chemical in the sampled air stream was controlled precisely. The detection threshold for "Stormy" was 1.14 ppt; that for "Gaea" was 1.9 ppt. Cycle time for sampling and chemical analysis of each sample port was on the order of seconds. Possible effects on the sensors of environmental factors such as ambient humidity, temperature, and air velocity were not considered. Besides processing individual air sample data, the neural nets can sense concentration gradients and track to chemical source. The adaptive neural nets are accessed by a voice recognition system and are capable of point testing or free-ranging search. The service life of the detectors, the neural net processors, and auxiliary packaging is approximately 8 years under normal field use. Maintenance requires a good quality kibble and an occasional romp in the park.

  13. SCADA system analysis

    International Nuclear Information System (INIS)

    Tuneski, Atanasko; Zaev, Emil

    2000-01-01

    This paper reviews one SCADA (Supervisory Control And Data Acquisition) system and its components. The SCADA system is used to monitor and to control a plant or an equipment. Basically the SCADA system is composed of the following: Field Instrumentation, Remote Stations, Communications Stations, Central Monitoring Station. This paper gives the answer where to use the SCADA, description of all its components and functionality. Since the SCADA is usually used for automatic control of a plant or an equipment, a system which is controlled becomes more productive and easy to work with. (Author)

  14. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform.

    Science.gov (United States)

    Hanwell, Marcus D; Curtis, Donald E; Lonie, David C; Vandermeersch, Tim; Zurek, Eva; Hutchison, Geoffrey R

    2012-08-13

    The Avogadro project has developed an advanced molecule editor and visualizer designed for cross-platform use in computational chemistry, molecular modeling, bioinformatics, materials science, and related areas. It offers flexible, high quality rendering, and a powerful plugin architecture. Typical uses include building molecular structures, formatting input files, and analyzing output of a wide variety of computational chemistry packages. By using the CML file format as its native document type, Avogadro seeks to enhance the semantic accessibility of chemical data types. The work presented here details the Avogadro library, which is a framework providing a code library and application programming interface (API) with three-dimensional visualization capabilities; and has direct applications to research and education in the fields of chemistry, physics, materials science, and biology. The Avogadro application provides a rich graphical interface using dynamically loaded plugins through the library itself. The application and library can each be extended by implementing a plugin module in C++ or Python to explore different visualization techniques, build/manipulate molecular structures, and interact with other programs. We describe some example extensions, one which uses a genetic algorithm to find stable crystal structures, and one which interfaces with the PackMol program to create packed, solvated structures for molecular dynamics simulations. The 1.0 release series of Avogadro is the main focus of the results discussed here. Avogadro offers a semantic chemical builder and platform for visualization and analysis. For users, it offers an easy-to-use builder, integrated support for downloading from common databases such as PubChem and the Protein Data Bank, extracting chemical data from a wide variety of formats, including computational chemistry output, and native, semantic support for the CML file format. For developers, it can be easily extended via a powerful

  15. Systems Engineering Analysis

    Directory of Open Access Journals (Sweden)

    Alexei Serna M.

    2013-07-01

    Full Text Available The challenges proposed by the development of the new computer systems demand new guidance related to engineer´s education, because they will solve these problems. In the XXI century, system engineers must be able to integrate a number of topics and knowledge disciplines that complement that traditionally has been known as Computer Systems Engineering. We have enough software development engineers, today we need professional engineers for software integration, leaders and system architects that make the most of the technological development for the benefit of society, leaders that integrate sciences to the solutions they build and propose. In this article the current situation of Computer Systems Engineering is analyzed and is presented a theory proposing the need for modifying the approach Universities have given to these careers, to achieve the education of leader engineers according to the needs of this century.

  16. Preliminary evaluation of a regional atmospheric chemical data assimilation system for environmental surveillance.

    Science.gov (United States)

    Lee, Pius; Liu, Yang

    2014-12-01

    We report the progress of an ongoing effort by the Air Resources Laboratory, NOAA to build a prototype regional Chemical Analysis System (ARLCAS). The ARLCAS focuses on providing long-term analysis of the three dimensional (3D) air-pollutant concentration fields over the continental U.S. It leverages expertise from the NASA Earth Science Division-sponsored Air Quality Applied Science Team (AQAST) for the state-of-science knowledge in atmospheric and data assimilation sciences. The ARLCAS complies with national operational center requirement protocols and aims to have the modeling system to be maintained by a national center. Meteorology and chemistry observations consist of land-, air- and space-based observed and quality-assured data. We develop modularized testing to investigate the efficacies of the various components of the ARLCAS. The sensitivity testing of data assimilation schemes showed that with the increment of additional observational data sets, the accuracy of the analysis chemical fields also increased incrementally in varying margins. The benefit is especially noted for additional data sets based on a different platform and/or a different retrieval algorithm. We also described a plan to apply the analysis chemical fields in environmental surveillance at the Centers for Disease Control and Prevention.

  17. Hyperspectral analysis for extraction of chemical characteristics in dehydrated bones

    Directory of Open Access Journals (Sweden)

    Carolina Blanch-Perez-del-Notario

    2017-09-01

    Full Text Available Gelatin, a valuable commodity in food processing, pharmaceuticals and photography, is produced by boiling the connective tissues, bones and skins of animals. To be able to predict the quality of the resulting gelatin, a number of parameters, such as percentage of fat, protein, water and mineral content, are measured in the raw bones. We evaluate in this paper whether hyperspectral imaging can perform the required fast and accurate prediction of these parameters based on the spectral response of bone samples. This would allow replacing the time-consuming chemical analysis. The spectral response of nine different bone batches in the 600–1000 nm range (Vis-NIR is correlated by means of Partial Least Square regression with the measured parameters. Our results show that high prediction accuracy can be obtained for all measured parameters based on the Vis-NIR spectral response. We can then conclude that hyperspectral imaging is a promising metric for the estimation of these chemical characteristics.

  18. Methods of chemical and phase composition analysis of gallstones

    Science.gov (United States)

    Suvorova, E. I.; Pantushev, V. V.; Voloshin, A. E.

    2017-11-01

    This review presents the instrumental methods used for chemical and phase composition investigation of gallstones. A great body of data has been collected in the literature on the presence of elements and their concentrations, obtained by fluorescence microscopy, X-ray fluorescence spectroscopy, neutron activation analysis, proton (particle) induced X-ray emission, atomic absorption spectroscopy, high-resolution gamma-ray spectrometry, electron paramagnetic resonance. Structural methods—powder X-ray diffraction, infrared spectroscopy, Raman spectroscopy—provide information about organic and inorganic phases in gallstones. Stone morphology was studied at the macrolevel with optical microscopy. Results obtained by analytical scanning and transmission electron microscopy with X-ray energy dispersive spectrometry are discussed. The chemical composition and structure of gallstones determine the strategy of removing stone from the body and treatment of patients: surgery or dissolution in the body. Therefore one chapter of the review describes the potential of dissolution methods. Early diagnosis and appropriate treatment of the disease depend on the development of clinical methods for in vivo investigation, which gave grounds to present the main characteristics and potential of ultrasonography (ultrasound scanning), magnetic resonance imaging, and X-ray computed tomography.

  19. ANALYSIS OF THERMAL-CHEMICAL CHARACTERISTICS OF BIOMASS ENERGY PELLETS

    Directory of Open Access Journals (Sweden)

    Zorica Gluvakov

    2014-09-01

    Full Text Available In modern life conditions, when emphasis is on environmental protection and sustainable development, fuels produced from biomass are increasingly gaining in importance, and it is necessary to consider the quality of end products obtained from biomass. Based on the existing European standards, collected literature and existing laboratory methods, this paper presents results of testing individual thermal - chemical properties of biomass energy pellets after extrusion and cooling the compressed material. Analysing samples based on standard methods, data were obtained on the basis of which individual thermal-chemical properties of pellets were estimated. Comparing the obtained results with the standards and literature sources, it can be said that moisture content, ash content and calorific values are the most important parameters for quality analysis which decide on applicability and use-value of biomass energy pellets, as biofuel. This paper also shows the impact of biofuels on the quality of environmental protection. The conclusion provides a clear statement of quality of biomass energy pellets.

  20. Stochastic chemical kinetics theory and (mostly) systems biological applications

    CERN Document Server

    Érdi, Péter; Lente, Gabor

    2014-01-01

    This volume reviews the theory and simulation methods of stochastic kinetics by integrating historical and recent perspectives, presents applications, mostly in the context of systems biology and also in combustion theory. In recent years, due to the development in experimental techniques, such as optical imaging, single cell analysis, and fluorescence spectroscopy, biochemical kinetic data inside single living cells have increasingly been available. The emergence of systems biology brought renaissance in the application of stochastic kinetic methods.

  1. Energy Usage Analysis System

    Data.gov (United States)

    General Services Administration — The EUAS application is a web based system which serves Energy Center of Expertise, under the Office of Facilitates Management and Service Programs. EUAS is used for...

  2. Computational analysis of RNA structures with chemical probing data.

    Science.gov (United States)

    Ge, Ping; Zhang, Shaojie

    2015-06-01

    RNAs play various roles, not only as the genetic codes to synthesize proteins, but also as the direct participants of biological functions determined by their underlying high-order structures. Although many computational methods have been proposed for analyzing RNA structures, their accuracy and efficiency are limited, especially when applied to the large RNAs and the genome-wide data sets. Recently, advances in parallel sequencing and high-throughput chemical probing technologies have prompted the development of numerous new algorithms, which can incorporate the auxiliary structural information obtained from those experiments. Their potential has been revealed by the secondary structure prediction of ribosomal RNAs and the genome-wide ncRNA function annotation. In this review, the existing probing-directed computational methods for RNA secondary and tertiary structure analysis are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Chemical analysis of ancient relicts in the Milky Way disk

    Directory of Open Access Journals (Sweden)

    Tautvaišienė G.

    2012-02-01

    Full Text Available We present detailed analysis of two groups of F- and G- type stars originally found to have similarities in their orbital parameters. The distinct kinematic properties suggest that they might originate from ancient accretion events in the Milky Way. From high resolution spectra taken with the spectrograph FIES at the Nordic Optical Telescope, La Palma, we determined abundances of oxygen, alpha- and r-process elements. Our results indicate that the sample of investigated stars is chemically homogeneous and the abundances of oxygen, alpha and r-process elements are overabundant in comparison with Galactic disk dwarfs. This provides the additional evidence that those stellar groups had the common formation and possible origin from disrupted satellites.

  4. Chemical analysis of ancient relicts in the Milky Way disk

    Science.gov (United States)

    Stonkutė, E.; Ženovienė, R.; Tautvaišienė, G.; Nordström, B.

    2012-02-01

    We present detailed analysis of two groups of F- and G- type stars originally found to have similarities in their orbital parameters. The distinct kinematic properties suggest that they might originate from ancient accretion events in the Milky Way. From high resolution spectra taken with the spectrograph FIES at the Nordic Optical Telescope, La Palma, we determined abundances of oxygen, alpha- and r-process elements. Our results indicate that the sample of investigated stars is chemically homogeneous and the abundances of oxygen, alpha and r-process elements are overabundant in comparison with Galactic disk dwarfs. This provides the additional evidence that those stellar groups had the common formation and possible origin from disrupted satellites.

  5. Pooled calibrations and retainment of outliers improve chemical analysis

    DEFF Research Database (Denmark)

    Andersen, Jens; Alfaloje, Haedar S.H.

    2012-01-01

    Analytical chemistry has a large responsibility in society, and credibility and reliability are important concepts associated with chemical analysis. Metrology and Quality Assurance (QA) are key areas of interest in contemporary research. Quality in measurements is illustrated by a series...... of experiments with several analytical technologies comprising of ICP-MS, GC-MS and AAS. The scientific methodology relies on the concept of reproducibility that depends on type of analyte and type of apparatus. By applying the principle of pooled calibrations it is shown that the performance of the apparatus...... indicate that the procedures outlined in the Eurachem/CITAC Guide are of tremendous value to analytical sciences because they direct researcher's attention towards the concept of consensus values rather than towards true values. Introduction of certified reference materials (CRM’s) in metrology has...

  6. Noodle based analytical devices for cost effective green chemical analysis.

    Science.gov (United States)

    Kiwfo, Kanokwan; Wongwilai, Wasin; Paengnakorn, Pathinan; Boonmapa, Sasithorn; Sateanchok, Suphasinee; Grudpan, Kate

    2018-05-01

    Noodle based analytical devices are proposed for cost effective green chemical analysis. Two noodle based analytical platforms have been examined. Conditions for flow with laminar behaviors could be established. Detection may be via a webcam camera or a flatbed scanner. Acid-base reactions were chosen as a model study. The assays of acetic acid and sodium hydroxide were investigated. Apart from bromothymol blue, simple aqueous extract of butterfly pea flower was used as a natural reagent. Another model was the assay of copper (Cu 2+ ) which was based on the redox reaction of copper (Cu 2+ ) with iodide to produce tri-iodide forming brown/black product with starch which already exists in the noodle platform. Demonstration to apply the noodle platforms for real samples was made. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. [Quality assurance of the chemical analysis measurements of foods].

    Science.gov (United States)

    Matsuda, Rieko

    2012-01-01

    This document outlined the quality assurance of measurements in the chemical analysis practiced in the food testing in Japan. The quality required for a measurement is the confidence, but necessary degree of confidence is dependent on the intended use of the measurement. The recognition of the purpose of measurement is important in quality assurance of measurements. Once the required quality is decided, the quality of the measurement is assured by various quality assurance means. The international documents about quality assurance of measurement are introduced in this document, as well as the domestic notifications enforced in Japan. Means such as the validation of analytical method and the internal quality control are explained. The concept of the measurement uncertainty is also introduced.

  8. Synthetic and systems biology for microbial production of commodity chemicals.

    Science.gov (United States)

    Chubukov, Victor; Mukhopadhyay, Aindrila; Petzold, Christopher J; Keasling, Jay D; Martín, Héctor García

    2016-01-01

    The combination of synthetic and systems biology is a powerful framework to study fundamental questions in biology and produce chemicals of immediate practical application such as biofuels, polymers, or therapeutics. However, we cannot yet engineer biological systems as easily and precisely as we engineer physical systems. In this review, we describe the path from the choice of target molecule to scaling production up to commercial volumes. We present and explain some of the current challenges and gaps in our knowledge that must be overcome in order to bring our bioengineering capabilities to the level of other engineering disciplines. Challenges start at molecule selection, where a difficult balance between economic potential and biological feasibility must be struck. Pathway design and construction have recently been revolutionized by next-generation sequencing and exponentially improving DNA synthesis capabilities. Although pathway optimization can be significantly aided by enzyme expression characterization through proteomics, choosing optimal relative protein expression levels for maximum production is still the subject of heuristic, non-systematic approaches. Toxic metabolic intermediates and proteins can significantly affect production, and dynamic pathway regulation emerges as a powerful but yet immature tool to prevent it. Host engineering arises as a much needed complement to pathway engineering for high bioproduct yields; and systems biology approaches such as stoichiometric modeling or growth coupling strategies are required. A final, and often underestimated, challenge is the successful scale up of processes to commercial volumes. Sustained efforts in improving reproducibility and predictability are needed for further development of bioengineering.

  9. Scanning photoelectron microscope for nanoscale three-dimensional spatial-resolved electron spectroscopy for chemical analysis.

    Science.gov (United States)

    Horiba, K; Nakamura, Y; Nagamura, N; Toyoda, S; Kumigashira, H; Oshima, M; Amemiya, K; Senba, Y; Ohashi, H

    2011-11-01

    In order to achieve nondestructive observation of the three-dimensional spatially resolved electronic structure of solids, we have developed a scanning photoelectron microscope system with the capability of depth profiling in electron spectroscopy for chemical analysis (ESCA). We call this system 3D nano-ESCA. For focusing the x-ray, a Fresnel zone plate with a diameter of 200 μm and an outermost zone width of 35 nm is used. In order to obtain the angular dependence of the photoelectron spectra for the depth-profile analysis without rotating the sample, we adopted a modified VG Scienta R3000 analyzer with an acceptance angle of 60° as a high-resolution angle-resolved electron spectrometer. The system has been installed at the University-of-Tokyo Materials Science Outstation beamline, BL07LSU, at SPring-8. From the results of the line-scan profiles of the poly-Si/high-k gate patterns, we achieved a total spatial resolution better than 70 nm. The capability of our system for pinpoint depth-profile analysis and high-resolution chemical state analysis is demonstrated. © 2011 American Institute of Physics

  10. Two energy system analysis - cases

    DEFF Research Database (Denmark)

    Lund, Henrik; Antonoff, Jayson; Andersen, Anders N.

    2004-01-01

    The chapter presents tow cases of energy system analysis, illustrating the types of tools and methodologies presently being used for these studies in Denamrk and elsewhere.......The chapter presents tow cases of energy system analysis, illustrating the types of tools and methodologies presently being used for these studies in Denamrk and elsewhere....

  11. Low level exposure to chemicals and immune system

    International Nuclear Information System (INIS)

    Colosio, C.; Birindelli, S.; Corsini, E.; Galli, C.L.; Maroni, M.

    2005-01-01

    Industrialized countries are facing an increase of diseases attributable to an alteration of the immune system function, and concern is growing that this trend could be at least partially attributable to new and modified patterns of exposure to chemicals. Among chemicals matter of concern, pesticides can be included. The Authors have reviewed the existing evidence of pesticide immunotoxicity in humans, showing that existing data are inadequate to raise conclusions on the immunotoxic risk related to these compounds. The limits of existing studies are: poor knowledge on exposure levels, heterogeneity of the approach, and difficulty in giving a prognostic significance to the slight changes often observed. To overcome these limits, the Authors have proposed a tier approach, based on three steps: the first, addressed at pointing out a possible immunomodulation; the second, at refining the results and the third one, when needed, to finalize the study and to point out concordance with previous results. Studies should preferably be carried out through comparison of pre- and post-exposure findings in the same groups of subjects to be examined immediately after the end of the exposure. A simplification of the first step approach can be used by the occupational health physician and the occupational toxicologist. Conclusions on the prognostic significance of the slight changes often observed will be reached only by validating the hypothesis generated by field studies with an epidemiological approach. In this field, the most useful option is represented by longitudinal perspective studies

  12. Chemical effects in materials studies using Auger analysis

    International Nuclear Information System (INIS)

    Rye, R.R.

    1985-01-01

    Core-valence-valence Auger spectra (AES) afford a unique local view of valence electron structure. The direct involvement in the Auger process of both core and valence states means that the transition matrix element will have a large value only for that portion of the valence electron density which covers the same spatial extent as the core wave function. Thus, the information content of AES is local to the atomic site containing the initial core hole. Our approach in understanding the local information content of AES has been mainly experimental through the intercomparison of model systems, both molecular and solid. The use of molecules in this regard is particularly useful since the vast array of molecular species of known geometric and electronic structures allows one to both vary these properties in a systematic fashion to observe trends and to choose a molecule to probe a specific chemical question

  13. Rietveld analysis system RIETAN (translation)

    International Nuclear Information System (INIS)

    Izumi, Fujio

    1991-09-01

    This is the manual of the RIETAN system (a Rietveld analysis program) which is originally written in Japanese by Fujio Izumi. The manual consists of two parts. Part I is a general description of the fundamental concepts and methods of the RIETAN system. Part II is the user's manual of the RIETAN which mainly describes in detail how to create user's data sets, procedures of Rietveld analysis and how to read the results of analysis. (author)

  14. Illustrating Chemical Concepts through Food Systems: Introductory Chemistry Experiments.

    Science.gov (United States)

    Chambers, E., IV; Setser, C. S.

    1980-01-01

    Demonstrations involving foods that illustrate chemical concepts are described, including vaporization of liquids and Graham's law of diffusion, chemical reaction rates, adsorption, properties of solutions, colloidal dispersions, suspensions, and hydrogen ion concentration. (CS)

  15. Integrated system reliability analysis

    DEFF Research Database (Denmark)

    Gintautas, Tomas; Sørensen, John Dalsgaard

    Specific targets: 1) The report shall describe the state of the art of reliability and risk-based assessment of wind turbine components. 2) Development of methodology for reliability and risk-based assessment of the wind turbine at system level. 3) Describe quantitative and qualitative measures...... (indicators) that can be used to assess the reliability of innovations and new technologies....

  16. Proceedings of the DOE chemical energy storage and hydrogen energy systems contracts review

    Energy Technology Data Exchange (ETDEWEB)

    1980-02-01

    Sessions were held on electrolysis-based hydrogen storage systems, hydrogen production, hydrogen storage systems, hydrogen storage materials, end-use applications and system studies, chemical heat pump/chemical energy storage systems, systems studies and assessment, thermochemical hydrogen production cycles, advanced production concepts, and containment materials. (LHK)

  17. A non-chemical system for online weed control.

    Science.gov (United States)

    Rueda-Ayala, Victor; Peteinatos, Gerassimos; Gerhards, Roland; Andújar, Dionisio

    2015-03-30

    Non-chemical weed control methods need to be directed towards a site-specific weeding approach, in order to be able to compete the conventional herbicide equivalents. A system for online weed control was developed. It automatically adjusts the tine angle of a harrow and creates different levels of intensity: from gentle to aggressive. Two experimental plots in a maize field were harrowed with two consecutive passes. The plots presented from low to high weed infestation levels. Discriminant capabilities of an ultrasonic sensor were used to determine the crop and weed variability of the field. A controlling unit used ultrasonic readings to adjust the tine angle, producing an appropriate harrowing intensity. Thus, areas with high crop and weed densities were more aggressively harrowed, while areas with lower densities were cultivated with a gentler treatment; areas with very low densities or without weeds were not treated. Although the weed development was relatively advanced and the soil surface was hard, the weed control achieved by the system reached an average of 51% (20%-91%), without causing significant crop damage as a result of harrowing. This system is proposed as a relatively low cost, online, and real-time automatic harrow that improves the weed control efficacy, reduces energy consumption, and avoids the usage of herbicide.

  18. Data Systems Task Analysis.

    Science.gov (United States)

    1979-08-01

    QUALITY CCNTROL SUPERVISOR/NCOIC 369. PROGRAMMER 07?. PROGRAMMER ANALYST C7l, PROGRAMMING/ANALYSIS SUPERVISCR 󈨌. UALITY CONTROL PETTY OFFICER/CLERK...CLASSIFICATION OF THE FACILITY OR SITE THAT YOU ARE PRESENTLY WORKING IN? 01. CDPA (CENTRAL DESIGN PROGRAMMING ACTIVITY) 02. RASC (REGIONAL AUTOMATED...CARDS MANUALLY I)9. COORDINATE WITH CfFICES CF PFIMARY RESPONSIBILITY (OPR) ON NEW OR REVISED REPORTING REQUIREMENTS 115. DETERMINE ALTERNATE METHODS

  19. Systems analysis with an integrated medical analysis system (IMAS)

    Science.gov (United States)

    Koelsch, John; Mabry, Susan L.; Rodriquez, Samuel; Takemura, Paul

    1998-05-01

    This paper describes the integrated medical analysis system (IMAS) The evolving system consists of an integrated suite of models and tools providing quantitative and dynamic analysis from multiple physiological function models, clinical care patient input, medical device data, and integrated medical systems. The system is being developed for requirements definition, patient assessment, control theory, training, instrumentation testing and validation. Traditionally, human models and simulations are performed on small scale, isolated problems, usually consisting of detached mathematical models or measurements studies. These systems are not capable of portraying the interactive effects of such systems and certainly are not capable of integrating multiple external entities such as device data, patient data, etc. The human body in and of itself is a complex, integrated system. External monitors, treatments, and medical conditions interact at yet another level. Hence, a highly integrated, interactive simulation system with detailed subsystem models is required for effective quantitative analysis. The current prototype emphasizes cardiovascular, respiratory and thermoregulatory functions with integration of patient device data. Unique system integration of these components is achieved through four facilitators. These facilitators include a distributed interactive computing architecture, application of fluid and structural engineering principles to the models, real-time scientific visualization, and application of strong system integration principles. The IMAS forms a complex analytical tool with emphasis on integration and interaction at multiple levels between components. This unique level of integration and interaction facilitates quantitative analysis for multiple purposes and varying levels of fidelity. An overview of the project and preliminary findings are introduced.

  20. A spectroscopic analysis of the chemically peculiar star HD 207561

    Science.gov (United States)

    Joshi, S.; Semenko, E.; Martinez, P.; Sachkov, M.; Joshi, Y. C.; Seetha, S.; Chakradhari, N. K.; Mary, D. L.; Girish, V.; Ashoka, B. N.

    2012-08-01

    In this paper we present a high-resolution spectroscopic analysis of the chemically peculiar star HD 207561. During a survey programme to search for new rapidly oscillating Ap (roAp) stars in the Northern hemisphere, Joshi et al. observed significant photometric variability on two consecutive nights in the year 2000. The amplitude spectra of the light curves obtained on these two nights showed oscillations with a frequency of 2.79 mHz (P ˜ 6 min). However, subsequent follow-up observations could not confirm any rapid variability. In order to determine the spectroscopic nature of HD 207561, high-resolution spectroscopic and spectropolarimetric observations were carried out. A reasonable fit of the calculated Hβ line profile to the observed one yields an effective temperature (Teff) and surface gravity (log g) of 7300 K and 3.7 dex, respectively. The derived projected rotational velocity (v sin i) for HD 207561 is 74 km s-1, indicative of a relatively fast rotator. The position of HD 207561 in the Hertzsprung-Russell diagram implies that this is slightly evolved from the main-sequence and located well within the δ-Scuti instability strip. The abundance analysis indicates the star has slight underabundances of Ca and Sc and mild overabundances of iron-peak elements. The spectropolarimetric study of HD 207561 shows that the effective magnetic field is within the observational error of 100 G. The spectroscopic analysis revealed that the star has most of the characteristics similar to an Am star, rather than an Ap star, and that it lies in the δ-Scuti instability strip; hence roAp pulsations are not expected in HD 207561, but low-overtone modes might be excited. The present work is based on the analysis of data collected with the Russian 6-m telescope BTA operated by the Special Astrophysical Observatory of the Russian Academy of Sciences (SAO RAS).

  1. Meta-Analysis of the Chemical and Non-Chemical Stressors Affecting Childhood Obesity

    Science.gov (United States)

    Worldwide, approximately 42 million children under the age of 5 years are considered overweight or obese. While much research has focused on individual behaviors impacting obesity, little research has emphasized the complex interactions of numerous chemical and non-chemical stres...

  2. Physical and chemical properties of SSM-discharge in the system gas-liquid

    International Nuclear Information System (INIS)

    Chernyak, V.Ya.; Olszewski, S.V.; Evstigneev, M.A.; Tsybulev, P.N.; Voronin, P.N.

    1996-01-01

    Investigation on the influence of solved Na 2 SO 4 and NaOH concentrations on discharge plasma contacting solution, and on the influence of discharge parameters on metal precipitation speed, as well as chemical analysis of precipitant in the system plasma - water solution were performed. After plasma treatment of water solutions of Zn and Al nitrates flake-like and snow-white precipitations appear. Differential thermal and atom-adsorption analysis of precipitations show that metals precipitate as hydroxides. Investigation of the influence of SSM-discharge polarity on plasma-chemical precipitation efficiency show that positive polarity of liquid electrode is more preferable. Probably, this fact takes place because plasma electrode of the second subsystem is the cathode, and thus reactions of cations (metal ions) are more intensive near it. (authors)

  3. Arctic Climate Systems Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ivey, Mark D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Robinson, David G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Boslough, Mark B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Backus, George A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Peterson, Kara J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); van Bloemen Waanders, Bart G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Swiler, Laura Painton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Desilets, Darin Maurice [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reinert, Rhonda Karen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    This study began with a challenge from program area managers at Sandia National Laboratories to technical staff in the energy, climate, and infrastructure security areas: apply a systems-level perspective to existing science and technology program areas in order to determine technology gaps, identify new technical capabilities at Sandia that could be applied to these areas, and identify opportunities for innovation. The Arctic was selected as one of these areas for systems level analyses, and this report documents the results. In this study, an emphasis was placed on the arctic atmosphere since Sandia has been active in atmospheric research in the Arctic since 1997. This study begins with a discussion of the challenges and benefits of analyzing the Arctic as a system. It goes on to discuss current and future needs of the defense, scientific, energy, and intelligence communities for more comprehensive data products related to the Arctic; assess the current state of atmospheric measurement resources available for the Arctic; and explain how the capabilities at Sandia National Laboratories can be used to address the identified technological, data, and modeling needs of the defense, scientific, energy, and intelligence communities for Arctic support.

  4. 40 CFR 749.68 - Hexavalent chromium-based water treatment chemicals in cooling systems.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Hexavalent chromium-based water... Cooling Systems § 749.68 Hexavalent chromium-based water treatment chemicals in cooling systems. (a) Chemicals subject to this section. Hexavalent chromium-based water treatment chemicals that contain...

  5. Study on chemical control indicators for circulating cooling systems water chemistry at power plants

    OpenAIRE

    Кишневский, Виктор Афанасьевич; Чиченин, Вадим Валентинович

    2014-01-01

    An analysis of applied stability indices, used for water chemistry control of circulating cooling systems at TPP and NPP is given in the paper.The spectrum of controlled indicators of circulating and make-up water during long-term operation of various water chemistries on scale models of circulating cooling systems at TPP and NPP is investigated.The results of chemical control of water chemistry with dosing mineral acid to make-up water and acrylic water chemistry without dosing mineral acid ...

  6. Biogeographical Analysis of Chemical Co-Occurrence Data to ...

    Science.gov (United States)

    A challenge with multiple chemical risk assessment is the need to consider the joint behavior of chemicals in mixtures. To address this need, pharmacologists and toxicologists have developed methods over the years to evaluate and test chemical interaction. In practice, however, testing of chemical interaction more often comprises ad hoc binary combinations and rarely examines higher order combinations. One explanation for this practice is the belief that there are simply too many possible combinations of chemicals to consider. Indeed, under stochastic conditions the possible number of chemical combinations scales geometrically as the pool of chemicals increases. However, the occurrence of chemicals in the environment is determined by factors, economic in part, which favor some chemicals over others. We investigate methods from the field of biogeography, originally developed to study avian species co-occurrence patterns, and adapt these approaches to examine chemical co-occurrence. These methods were applied to a national survey of pesticide residues in 168 child care centers from across the country. Our findings show that pesticide co-occurrence in the child care center was not random but highly structured, leading to the co-occurrence of specific pesticide combinations. Thus, ecological studies of species co-occurrence parallel the issue of chemical co-occurrence at specific locations. Both are driven by processes that introduce structure in the pattern of co-o

  7. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform

    Directory of Open Access Journals (Sweden)

    Hanwell Marcus D

    2012-08-01

    Full Text Available Abstract Background The Avogadro project has developed an advanced molecule editor and visualizer designed for cross-platform use in computational chemistry, molecular modeling, bioinformatics, materials science, and related areas. It offers flexible, high quality rendering, and a powerful plugin architecture. Typical uses include building molecular structures, formatting input files, and analyzing output of a wide variety of computational chemistry packages. By using the CML file format as its native document type, Avogadro seeks to enhance the semantic accessibility of chemical data types. Results The work presented here details the Avogadro library, which is a framework providing a code library and application programming interface (API with three-dimensional visualization capabilities; and has direct applications to research and education in the fields of chemistry, physics, materials science, and biology. The Avogadro application provides a rich graphical interface using dynamically loaded plugins through the library itself. The application and library can each be extended by implementing a plugin module in C++ or Python to explore different visualization techniques, build/manipulate molecular structures, and interact with other programs. We describe some example extensions, one which uses a genetic algorithm to find stable crystal structures, and one which interfaces with the PackMol program to create packed, solvated structures for molecular dynamics simulations. The 1.0 release series of Avogadro is the main focus of the results discussed here. Conclusions Avogadro offers a semantic chemical builder and platform for visualization and analysis. For users, it offers an easy-to-use builder, integrated support for downloading from common databases such as PubChem and the Protein Data Bank, extracting chemical data from a wide variety of formats, including computational chemistry output, and native, semantic support for the CML file format

  8. Chemically modified carbonic anhydrases useful in carbon capture systems

    Science.gov (United States)

    Novick, Scott; Alvizo, Oscar

    2013-01-15

    The present disclosure relates to chemically modified carbonic anhydrase polypeptides and soluble compositions, homogenous liquid formulations comprising them. The chemically modified carbonic anhydrase polypeptides have improved properties relative to the same carbonic anhydrase polypeptide that is not chemically modified including the improved properties of increased activity and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides methods of preparing the chemically modified polypeptides and methods of using the chemically modified polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering.

  9. Chemically modified carbonic anhydrases useful in carbon capture systems

    Energy Technology Data Exchange (ETDEWEB)

    Novick, Scott J; Alvizo, Oscar

    2013-10-29

    The present disclosure relates to chemically modified carbonic anhydrase polypeptides and soluble compositions, homogenous liquid formulations comprising them. The chemically modified carbonic anhydrase polypeptides have improved properties relative to the same carbonic anhydrase polypeptide that is not chemically modified including the improved properties of increased activity and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides methods of preparing the chemically modified polypeptides and methods of using the chemically modified polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering.

  10. ACTINIDE REMOVAL PROCESS SAMPLE ANALYSIS, CHEMICAL MODELING, AND FILTRATION EVALUATION

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C.; Herman, D.; Pike, J.; Peters, T.

    2014-06-05

    Filtration within the Actinide Removal Process (ARP) currently limits the throughput in interim salt processing at the Savannah River Site. In this process, batches of salt solution with Monosodium Titanate (MST) sorbent are concentrated by crossflow filtration. The filtrate is subsequently processed to remove cesium in the Modular Caustic Side Solvent Extraction Unit (MCU) followed by disposal in saltstone grout. The concentrated MST slurry is washed and sent to the Defense Waste Processing Facility (DWPF) for vitrification. During recent ARP processing, there has been a degradation of filter performance manifested as the inability to maintain high filtrate flux throughout a multi-batch cycle. The objectives of this effort were to characterize the feed streams, to determine if solids (in addition to MST) are precipitating and causing the degraded performance of the filters, and to assess the particle size and rheological data to address potential filtration impacts. Equilibrium modelling with OLI Analyzer{sup TM} and OLI ESP{sup TM} was performed to determine chemical components at risk of precipitation and to simulate the ARP process. The performance of ARP filtration was evaluated to review potential causes of the observed filter behavior. Task activities for this study included extensive physical and chemical analysis of samples from the Late Wash Pump Tank (LWPT) and the Late Wash Hold Tank (LWHT) within ARP as well as samples of the tank farm feed from Tank 49H. The samples from the LWPT and LWHT were obtained from several stages of processing of Salt Batch 6D, Cycle 6, Batch 16.

  11. Ultrasonic nebulization extraction/low pressure photoionization mass spectrometry for direct analysis of chemicals in matrices.

    Science.gov (United States)

    Liu, Chengyuan; Zhu, Yanan; Zhou, Zhongyue; Yang, Jiuzhong; Qi, Fei; Pan, Yang

    2015-09-03

    A novel ultrasonic nebulization extraction/low-pressure photoionization (UNE-LPPI) system has been designed and employed for the rapid mass spectrometric analysis of chemicals in matrices. An ultrasonic nebulizer was used to extract the chemicals in solid sample and nebulize the solvent in the nebulization cell. Aerosols formed by ultrasonic were evaporated by passing through a transferring tube, and desolvated chemicals were ionized by the emitted light (10.6 eV) from a Krypton discharge lamp at low pressure (∼68 Pa). First, a series of semi/non-volatile compounds with different polarities, such as polycyclic aromatic hydrocarbons (PAHs), amino acids, dipeptides, drugs, nucleic acids, alkaloids, and steroids were used to test the system. Then, the quantification capability of UNE-LPPI was checked with: 1) pure chemicals, such as 9,10-phenanthrenequinone and 1,4-naphthoquinone dissolved in solvent; 2) soil powder spiked with different amounts of phenanthrene and pyrene. For pure chemicals, the correlation coefficient (R(2)) for the standard curve of 9,10-phenanthrenequinone in the range of 3 ng-20 μg mL(-1) was 0.9922, and the measured limits of detection (LOD) was 1 ng ml(-1). In the case of soil powder, linear relationships for phenanthrene and pyrene from 10 to 400 ng mg(-1) were obtained with correlation coefficients of 0.9889 and 0.9893, respectively. At last, the feasibility of UNE-LPPI for the detection of chemicals in real matrices such as tablets and biological tissues (tea, Citrus aurantium peel and sage (Salvia officinalis) leaf) were successfully demonstrated. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Systems analysis-independent analysis and verification

    Energy Technology Data Exchange (ETDEWEB)

    Badin, J.S.; DiPietro, J.P. [Energetics, Inc., Columbia, MD (United States)

    1995-09-01

    The DOE Hydrogen Program is supporting research, development, and demonstration activities to overcome the barriers to the integration of hydrogen into the Nation`s energy infrastructure. Much work is required to gain acceptance of hydrogen energy system concepts and to develop them for implementation. A systems analysis database has been created that includes a formal documentation of technology characterization profiles and cost and performance information. Through a systematic and quantitative approach, system developers can understand and address important issues and thereby assure effective and timely commercial implementation. This project builds upon and expands the previously developed and tested pathway model and provides the basis for a consistent and objective analysis of all hydrogen energy concepts considered by the DOE Hydrogen Program Manager. This project can greatly accelerate the development of a system by minimizing the risk of costly design evolutions, and by stimulating discussions, feedback, and coordination of key players and allows them to assess the analysis, evaluate the trade-offs, and to address any emerging problem areas. Specific analytical studies will result in the validation of the competitive feasibility of the proposed system and identify system development needs. Systems that are investigated include hydrogen bromine electrolysis, municipal solid waste gasification, electro-farming (biomass gasifier and PEM fuel cell), wind/hydrogen hybrid system for remote sites, home electrolysis and alternate infrastructure options, renewable-based electrolysis to fuel PEM fuel cell vehicle fleet, and geothermal energy used to produce hydrogen. These systems are compared to conventional and benchmark technologies. Interim results and findings are presented. Independent analyses emphasize quality, integrity, objectivity, a long-term perspective, corporate memory, and the merging of technical, economic, operational, and programmatic expertise.

  13. Modular approach to analysis of chemically recuperated gas turbine cycles

    Energy Technology Data Exchange (ETDEWEB)

    Carcasci, C.; Facchini, B. [University of Florence, `Sergio Stecco` (Italy). Dept. of Energy Engineering; Harvey, S. [Chalmers Institute of Technology, Goeteberg (Sweden). Dept. of Heat and Power Technology

    1998-12-31

    Current research programmes such as the CAGT programme investigate the opportunity for advanced power generation cycles based on state-of-the-art aeroderivative gas turbine technology. Such cycles would be primarily aimed at intermediate duty applications. Compared to industrial gas turbines, aeroderivatives offer high simple cycle efficiency, and the capability to start quickly and frequently without a significant maintenance cost penalty. A key element for high system performance is the development of improved heat recovery systems, leading to advanced cycles such as the humid air turbine (HAT) cycle, the chemically recuperated gas turbine (CRGT) cycle and the Kalina combined cycle. When used in combination with advanced technologies and components, screening studies conducted by research programmes such as the CAGT programme predict that such advanced cycles could theoretically lead to net cycle efficiencies exceeding 60%. In this paper, the authors present the application of the modular approach to cycle simulation and performance predictions of CRGT cycles. The paper first presents the modular simulation code concept and the main characteristics of CRGT cycles. The paper next discusses the development of the methane-steam reformer unit model used for the simulations. The modular code is then used to compute performance characteristics of a simple CRGT cycle and a reheat CRGT cycle, both based on the General Electric LM6000 aeroderivative gas turbine. (author)

  14. Evaluating Systemic Toxicity in Rabbits after Acute Ocular Exposure to Irritant Chemicals

    Directory of Open Access Journals (Sweden)

    Reshma Sebastian Cherian

    2014-01-01

    Full Text Available Acute systemic toxicity via ocular exposure route is not a well understood aspect. Any material/drug/chemical that comes in contact with the eye can evade the first pass metabolism and enter the systemic circulation through the conjunctival blood vessels or via the nasolacrimal route. In this study, the effect of ocular irritant chemicals on the systemic toxicity was assessed in rabbit. Eyes of rabbits were exposed to known ocular irritant (cetyl pyridinium chloride, sodium salicylate, imidazole, acetaminophen, and nicotinamide for 24 h and scored. After a period of 72 h, blood was collected from the animals for examining the hematological and biochemical parameters. The animals were then sacrificed and the eyes were collected for histopathology and cytokine analysis by ELISA. Splenocyte proliferation was assessed by tritiated thymidine incorporation assay. The liver and brain of the treated animals were retrieved for evaluating oxidative damage. The chemicals showed moderate to severe eye irritation. Inflammation was not evident in the histopathology but proinflammatory markers were significantly high. The splenocyte proliferation capacity was undeterred. And there was minimal oxidative stress in the brain and liver. In conclusion, acute exposure of ocular irritants was incapable of producing a prominent systemic side effect in the current scenario.

  15. Chemical analysis of outgassing contaminants on spacecraft surfaces

    Science.gov (United States)

    Mcnutt, R. C.

    1973-01-01

    Methods for analyzing and characterizing outgassing contaminants from such materials as RTV 501 potting compound and S 13 G paint are presented. Fractional distillation of a gross distillate from RTV 501 rubber was carried out and the distilled fractions examined as to their ultraviolet and infrared spectra by gas liquid chromatography. A sensitive technique for structural analysis and molecular identification was found to consist of a gas chromatography-mass spectroscopy system, which was determined to be economically unfeasible at present.

  16. The Global Food System as a Transport Pathway for Hazardous Chemicals: The Missing Link between Emissions and Exposure

    OpenAIRE

    Ng, Carla A.; von Goetz, Natalie

    2016-01-01

    Background: Food is a major pathway for human exposure to hazardous chemicals. The modern food system is becoming increasingly complex and globalized, but models for food-borne exposure typically assume locally derived diets or use concentrations directly measured in foods without accounting for food origin. Such approaches may not reflect actual chemical intakes because concentrations depend on food origin, and representative analysis is seldom available. Processing, packaging, storage, and ...

  17. Chemical sensors for breath gas analysis: the latest developments at the Breath Analysis Summit 2013.

    Science.gov (United States)

    Tisch, Ulrike; Haick, Hossam

    2014-06-01

    Profiling the body chemistry by means of volatile organic compounds (VOCs) in the breath opens exciting new avenues in medical diagnostics. Gas sensors could provide ideal platforms for realizing portable, hand-held breath testing devices in the near future. This review summarizes the latest developments and applications in the field of chemical sensors for diagnostic breath testing that were presented at the Breath Analysis Summit 2013 in Wallerfangen, Germany. Considerable progress has been made towards clinically applicable breath testing devices, especially by utilizing chemo-sensitive nanomaterials. Examples of several specialized breath testing applications are presented that are either based on stand-alone nanomaterial-based sensors being highly sensitive and specific to individual breath compounds over others, or on combinations of several highly specific sensors, or on experimental nanomaterial-based sensors arrays. Other interesting approaches include the adaption of a commercially available MOx-based sensor array to indirect breath testing applications, using a sample pre-concentration method, and the development of compact integrated GC-sensor systems. The recent trend towards device integration has led to the development of fully integrated prototypes of point-of-care devices. We describe and compare the performance of several prototypes that are based on different sensing technologies and evaluate their potential as low-cost and readily available next-generation medical devices.

  18. SUBSURFACE VISUAL ALARM SYSTEM ANALYSIS

    International Nuclear Information System (INIS)

    D.W. Markman

    2001-01-01

    The ''Subsurface Fire Hazard Analysis'' (CRWMS M andO 1998, page 61), and the document, ''Title III Evaluation Report for the Surface and Subsurface Communication System'', (CRWMS M andO 1999a, pages 21 and 23), both indicate the installed communication system is adequate to support Exploratory Studies Facility (ESF) activities with the exception of the mine phone system for emergency notification purposes. They recommend the installation of a visual alarm system to supplement the page/party phone system The purpose of this analysis is to identify data communication highway design approaches, and provide justification for the selected or recommended alternatives for the data communication of the subsurface visual alarm system. This analysis is being prepared to document a basis for the design selection of the data communication method. This analysis will briefly describe existing data or voice communication or monitoring systems within the ESF, and look at how these may be revised or adapted to support the needed data highway of the subsurface visual alarm. system. The existing PLC communication system installed in subsurface is providing data communication for alcove No.5 ventilation fans, south portal ventilation fans, bulkhead doors and generator monitoring system. It is given that the data communication of the subsurface visual alarm system will be a digital based system. It is also given that it is most feasible to take advantage of existing systems and equipment and not consider an entirely new data communication system design and installation. The scope and primary objectives of this analysis are to: (1) Briefly review and describe existing available data communication highways or systems within the ESF. (2) Examine technical characteristics of an existing system to disqualify a design alternative is paramount in minimizing the number of and depth of a system review. (3) Apply general engineering design practices or criteria such as relative cost, and degree

  19. PLACE OF PRODUCTION COSTS SYSTEM ANALYSIS IN SYSTEM ANALYSIS

    Directory of Open Access Journals (Sweden)

    Mariia CHEREDNYCHENKO

    2016-12-01

    Full Text Available Current economic conditions require the development and implementation of an adequate system of production costs, which would ensure a steady profit growth and production volumes in a highly competitive, constantly increasing input prices and tariffs. This management system must be based on an integrated production costs system analysis (PCSA, which would provide all operating costs management subsystems necessary information to design and make better management decisions. It provides a systematic analysis of more opportunities in knowledge, creating conditions of integrity mechanism knowledge object consisting of elements that show intersystem connections, each of which has its own defined and limited objectives, relationship with the environment.

  20. Computerized ECT data analysis system

    International Nuclear Information System (INIS)

    Miyake, Y.; Fukui, S.; Iwahashi, Y.; Matsumoto, M.; Koyama, K.

    1988-01-01

    For the analytical method of the eddy current testing (ECT) of steam generator tubes in nuclear power plants, the authors have developed the computerized ECT data analysis system using a large-scale computer with a high-resolution color graphic display. This system can store acquired ECT data up to 15 steam generators, and ECT data can be analyzed immediately on the monitor in dialogue communication with a computer. Analyzed results of ECT data are stored and registered in the data base. This system enables an analyst to perform sorting and collecting of data under various conditions and obtain the results automatically, and also to make a plan of tube repair works. This system has completed the test run, and has been used for data analysis at the annual inspection of domestic plants. This paper describes an outline, features and examples of the computerized eddy current data analysis system for steam generator tubes in PWR nuclear power plants

  1. Chemical energy storage: Part of a systemic solution

    Science.gov (United States)

    Schlögl, Robert

    2017-07-01

    This paper is a primer into concepts and opportunities of chemical energy storage. Starting from the quest for decarbonisation we reveal the possibilities of chemical energy storage. We briefly discuss the critical role of catalysis as enabling technology. We concentrate on options of large-scale production of chemicals from CO2 and green hydrogen. We discuss one potential application of fueling future combustion engines that could run with minimal regulated emissions without exhaust purifications and legal tricks.

  2. Method of chemical analysis of silicate rocks (1962)

    International Nuclear Information System (INIS)

    Pouget, R.

    1962-01-01

    A rapid method of analysis for the physical and chemical determination of the major constituents of silicate rocks is described. Water losses at 100 deg. C and losses of volatile elements at 1000 deg. C are estimated after staying in oven for these temperatures, or by mean of a thermo-balance. The determination of silica is made by a double insolubilization with hydrochloric acid on attack solution with sodium carbonate; total iron and aluminium, both with calcium and magnesium, after ammoniacal precipitation of Fe and Al, are determined on the filtration product of silica by titrimetry-photometry of their complexes with EDTA. The alkalis Na and K by flame spectrophotometry, Mn by colorimetry of the permanganate, and Ti by mean of his complex with H 2 O 2 , are determined on fluosulfuric attack solution. Phosphorus is determined by his complex with 'molybdenum blue' on a fluoro-nitro-boric attack solution; iron is estimated by potentiometry, with the help of bichromate on hydrofluoric solution. (author) [fr

  3. Wellbore stability analysis in chemically active shale formations

    Directory of Open Access Journals (Sweden)

    Shi Xiang-Chao

    2016-01-01

    Full Text Available Maintaining wellbore stability involves significant challenges when drilling in low-permeability reactive shale formations. In the present study, a non-linear thermo-chemo-poroelastic model is provided to investigate the effect of chemical, thermal, and hydraulic gradients on pore pressure and stress distributions near the wellbores. The analysis indicates that when the solute concentration of the drilling mud is higher than that of the formation fluid, the pore pressure and the effective radial and tangential stresses decrease, and v. v. Cooling of the lower salinity formation decreases the pore pressure, radial and tangential stresses. Hole enlargement is the combined effect of shear and tensile failure when drilling in high-temperature shale formations. The shear and tensile damage indexes reveal that hole enlargement occurs in the vicinity of the wellbore at an early stage of drilling. This study also demonstrates that shale wellbore stability exhibits a time-delay effect due to changes in the pore pressure and stress. The delay time computed with consideration of the strength degradation is far less than that without strength degradation.

  4. From dynamic self-assembly to networked chemical systems.

    Science.gov (United States)

    Grzybowski, Bartosz A; Fitzner, Krzysztof; Paczesny, Jan; Granick, Steve

    2017-09-18

    Although dynamic self-assembly, DySA, is a relatively new area of research, the past decade has brought numerous demonstrations of how various types of components - on scales from (macro)molecular to macroscopic - can be arranged into ordered structures thriving in non-equilibrium, steady states. At the same time, none of these dynamic assemblies has so far proven practically relevant, prompting questions about the field's prospects and ultimate objectives. The main thesis of this Review is that formation of dynamic assemblies cannot be an end in itself - instead, we should think more ambitiously of using such assemblies as control elements (reconfigurable catalysts, nanomachines, etc.) of larger, networked systems directing sequences of chemical reactions or assembly tasks. Such networked systems would be inspired by biology but intended to operate in environments and conditions incompatible with living matter (e.g., in organic solvents, elevated temperatures, etc.). To realize this vision, we need to start considering not only the interactions mediating dynamic self-assembly of individual components, but also how components of different types could coexist and communicate within larger, multicomponent ensembles. Along these lines, the review starts with the discussion of the conceptual foundations of self-assembly in equilibrium and non-equilibrium regimes. It discusses key examples of interactions and phenomena that can provide the basis for various DySA modalities (e.g., those driven by light, magnetic fields, flows, etc.). It then focuses on the recent examples where organization of components in steady states is coupled to other processes taking place in the system (catalysis, formation of dynamic supramolecular materials, control of chirality, etc.). With these examples of functional DySA, we then look forward and consider conditions that must be fulfilled to allow components of multiple types to coexist, function, and communicate with one another within the

  5. An automated activation analysis system

    International Nuclear Information System (INIS)

    Minor, M.M.; Hensley, W.K.; Denton, M.M.; Garcia, S.R.

    1982-01-01

    An automated delayed neutron counting and instrumental neutron activation analysis system has been developed at Los Alamos National Laboratory's Omega West Reactor (OWR) to analyze samples for uranium and 31 additional elements with a maximum throughput of 400 samples per day. The system and its mode of operation for a large reconnaissance survey will be described. (author)

  6. Automated activation-analysis system

    International Nuclear Information System (INIS)

    Minor, M.M.; Hensley, W.K.; Denton, M.M.; Garcia, S.R.

    1981-01-01

    An automated delayed neutron counting and instrumental neutron activation analysis system has been developed at Los Alamos National Laboratory's Omega West Reactor (OWR) to analyze samples for uranium and 31 additional elements with a maximum throughput of 400 samples per day. The system and its mode of operation for a large reconnaissance survey are described

  7. Static Analysis for Systems Biology

    DEFF Research Database (Denmark)

    Nielson, Flemming; Nielson, Hanne Riis; Rosa, D. Schuch da

    2004-01-01

    This paper shows how static analysis techniques can help understanding biological systems. Based on a simple example we illustrate the outcome of performing three different analyses extracting information of increasing precision. We conclude by reporting on the potential impact and exploitation o...... of these techniques in systems biology....

  8. Analysis of the Chemical Representations in Secondary Lebanese Chemistry Textbooks

    Science.gov (United States)

    Shehab, Saadeddine Salim; BouJaoude, Saouma

    2017-01-01

    This study focused on the requirements that chemical representations should meet in textbooks in order to enhance conceptual understanding. Specifically, the purpose of this study was to evaluate the chemical representations that are present in 7 secondary Lebanese chemistry textbooks. To achieve the latter purpose, an instrument adapted from…

  9. Nonradiological chemical pathway analysis and identification of chemicals of concern for environmental monitoring at the Hanford Site

    International Nuclear Information System (INIS)

    Blanton, M.L.; Cooper, A.T.; Castleton, K.J.

    1995-11-01

    Pacific Northwest's Surface Environmental Surveillance Project (SESP) is an ongoing effort tot design, review, and conducted monitoring on and off the Hanford site. Chemicals of concern that were selected are listed. Using modeled exposure pathways, the offsite cancer incidence and hazard quotient were calculated and a retrospective pathway analysis performed to estimate what onsite concentrations would be required in the soil for each chemical of concern and other detected chemicals that would be required to obtain an estimated offsite human-health risk of 1.0E-06 cancer incidence or 1.0 hazard quotient. This analysis indicates that current nonradiological chemical contamination occurring on the site does not pose a significant offsite human-health risk; the highest cancer incidence to the offsite maximally exposed individual was from arsenic (1.76E-10); the highest hazard quotient was chromium(VI) (1.48E-04). The most sensitive pathways of exposure were surfacewater and aquatic food consumption. Combined total offsite excess cancer incidence was 2.09E-10 and estimated hazard quotient was 2.40E-04. Of the 17 identified chemicals of concern, the SESP does not currently (routinely) monitor arsenic, benzo(a)pyrene, bis(2- ethylhexyl)phthalate (BEHP), and chrysene. Only 3 of the chemicals of concern (arsenic, BEHP, chloroform) could actually occur in onsite soil at concern high enough to cause a 1.0E-06 excess cancer incidence or a 1.0 hazard index for a given offsite exposure pathway. During the retrospective analysis, 20 other chemicals were also evaluated; only vinyl chloride and thallium could reach targeted offsite risk values

  10. for simulating kinetic profiles of multi-step chemical systems

    African Journals Online (AJOL)

    Preferred Customer

    time and as a consequence it is necessary to use the medium of calculus to write and solve these equations [4]. Detailed chemical kinetic models incorporate elementary ... mix of experimentation, literature search for existing information and the application of theory. When studying a chemical reaction experimentally, some ...

  11. Group behaviour in physical, chemical and biological systems

    Indian Academy of Sciences (India)

    2014-03-15

    Mar 15, 2014 ... a gel; the collection of finite clusters is a sol, a complex entity that retains properties of a fluid.7 ... lowest internal energy).8 The physico-chemical approach to studying the behaviour of biological .... 12 The relative abundances of the chemical elements are explained by invoking a particular history of the ...

  12. Noise and vibration analysis system

    International Nuclear Information System (INIS)

    Johnsen, J.R.; Williams, R.L.

    1985-01-01

    The analysis of noise and vibration data from an operating nuclear plant can provide valuable information that can identify and characterize abnormal conditions. Existing plant monitoring equipment, such as loose parts monitoring systems (LPMS) and neutron flux detectors, may be capable of gathering noise data, but may lack the analytical capability to extract useful meanings hidden in the noise. By analyzing neutron noise signals, the structural motion and integrity of core components can be assessed. Computer analysis makes trending of frequency spectra within a fuel cycle and from one cycle to another a practical means of core internals monitoring. The Babcock and Wilcox Noise and Vibration Analysis System (NVAS) is a powerful, compact system that can automatically perform complex data analysis. The system can acquire, process, and store data, then produce report-quality plots of the important parameter. Software to perform neutron noise analysis and loose parts analysis operates on the same hardware package. Since the system is compact, inexpensive, and easy to operate, it allows utilities to perform more frequency analyses without incurring high costs and provides immediate results

  13. Methodology for national risk analysis and prioritization of toxic industrial chemicals.

    Science.gov (United States)

    Taxell, Piia; Engström, Kerstin; Tuovila, Juha; Söderström, Martin; Kiljunen, Harri; Vanninen, Paula; Santonen, Tiina

    2013-01-01

    The identification of chemicals that pose the greatest threat to human health from incidental releases is a cornerstone in public health preparedness for chemical threats. The present study developed and applied a methodology for the risk analysis and prioritization of industrial chemicals to identify the most significant chemicals that pose a threat to public health in Finland. The prioritization criteria included acute and chronic health hazards, physicochemical and environmental hazards, national production and use quantities, the physicochemical properties of the substances, and the history of substance-related incidents. The presented methodology enabled a systematic review and prioritization of industrial chemicals for the purpose of national public health preparedness for chemical incidents.

  14. The ALICE analysis train system

    CERN Document Server

    Zimmermann, Markus

    2015-01-01

    In the ALICE experiment hundreds of users are analyzing big datasets on a Grid system. High throughput and short turn-around times are achieved by a centralized system called the LEGO trains. This system combines analysis from different users in so-called analysis trains which are then executed within the same Grid jobs thereby reducing the number of times the data needs to be read from the storage systems. The centralized trains improve the performance, the usability for users and the bookkeeping in comparison to single user analysis. The train system builds upon the already existing ALICE tools, i.e. the analysis framework as well as the Grid submission and monitoring infrastructure. The entry point to the train system is a web interface which is used to configure the analysis and the desired datasets as well as to test and submit the train. Several measures have been implemented to reduce the time a train needs to finish and to increase the CPU efficiency.

  15. Gaussian approximations for stochastic systems with delay: Chemical Langevin equation and application to a Brusselator system

    International Nuclear Information System (INIS)

    Brett, Tobias; Galla, Tobias

    2014-01-01

    We present a heuristic derivation of Gaussian approximations for stochastic chemical reaction systems with distributed delay. In particular, we derive the corresponding chemical Langevin equation. Due to the non-Markovian character of the underlying dynamics, these equations are integro-differential equations, and the noise in the Gaussian approximation is coloured. Following on from the chemical Langevin equation, a further reduction leads to the linear-noise approximation. We apply the formalism to a delay variant of the celebrated Brusselator model, and show how it can be used to characterise noise-driven quasi-cycles, as well as noise-triggered spiking. We find surprisingly intricate dependence of the typical frequency of quasi-cycles on the delay period

  16. Gaussian approximations for stochastic systems with delay: chemical Langevin equation and application to a Brusselator system.

    Science.gov (United States)

    Brett, Tobias; Galla, Tobias

    2014-03-28

    We present a heuristic derivation of Gaussian approximations for stochastic chemical reaction systems with distributed delay. In particular, we derive the corresponding chemical Langevin equation. Due to the non-Markovian character of the underlying dynamics, these equations are integro-differential equations, and the noise in the Gaussian approximation is coloured. Following on from the chemical Langevin equation, a further reduction leads to the linear-noise approximation. We apply the formalism to a delay variant of the celebrated Brusselator model, and show how it can be used to characterise noise-driven quasi-cycles, as well as noise-triggered spiking. We find surprisingly intricate dependence of the typical frequency of quasi-cycles on the delay period.

  17. An analysis of chemical ingredients network of Chinese herbal formulae for the treatment of coronary heart disease.

    Directory of Open Access Journals (Sweden)

    Fan Ding

    Full Text Available As a complex system, the complicated interactions between chemical ingredients, as well as the potential rules of interactive associations among chemical ingredients of traditional Chinese herbal formulae are not yet fully understood by modern science. On the other hand, network analysis is emerging as a powerful approach focusing on processing complex interactive data. By employing network approach in selected Chinese herbal formulae for the treatment of coronary heart disease (CHD, this article aims to construct and analyze chemical ingredients network of herbal formulae, and provide candidate herbs, chemical constituents, and ingredient groups for further investigation. As a result, chemical ingredients network composed of 1588 ingredients from 36 herbs used in 8 core formulae for the treatment of CHD was produced based on combination associations in herbal formulae. In this network, 9 communities with relative dense internal connections are significantly associated with 14 kinds of chemical structures with P<0.001. Moreover, chemical structural fingerprints of network communities were detected, while specific centralities of chemical ingredients indicating different levels of importance in the network were also measured. Finally, several distinct herbs, chemical ingredients, and ingredient groups with essential position in the network or high centrality value are recommended for further pharmacology study in the context of new drug development.

  18. Chemical analysis and antioxidant activity in vitro of polysaccharides extracted from Boletus edulis.

    Science.gov (United States)

    Zhang, Anqiang; Xiao, Nannan; He, Pengfei; Sun, Peilong

    2011-12-01

    Boletus edulis is a well-known delicious mushroom. In this study, three crude polysaccharides (BEPF30, BEPF60 and BEPF80) were isolated from the fruiting bodies of B. edulis with boiling water. Chemical and physical characteristics of the three crude polysaccharides were investigated by the combination of chemical and instrumental analysis methods. Their antioxidant activities were investigated in vitro systems including hydroxyl assay, superoxide radical assay, reducing power and chelating activity. Among these three polysaccharides, BEPF60 showed more significant reducing power and chelating activity; and highest inhibitory effects on superoxide radical and hydroxyl radical. These results indicated that polysaccharides extracted from B. edulis might be employed as ingredients in healthy and functional food to alleviate the oxidative stress. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Analysis of Properties of Hard Coatings and Wear Resistance of Chemical Vapour Deposition (PVD Coated Technology

    Directory of Open Access Journals (Sweden)

    Pavel Hudeček

    2015-01-01

    Full Text Available Modern coating methods are having become an important part of industry. Wear resistance, durability, toughness (breakage resistance and hot hardness (high hardness and chemical stability at high temperature are the four main technological properties necessary for durability and long life time. These proprieties are for productivity, economy and ecology very important point. This resource deals with the analysis of properties of hard coatings and wear resistance of chemical vapour deposition (PVD coated technology. It focuses on the preparation, execution and evaluation of test coatings on the front ball-milling cutters. Examination of these characteristic properties may give into an insight to the reason why some systems show excellent wear characteristic.

  20. Microssistemas de análises químicas: introdução, tecnologias de fabricação, instrumentação e aplicações Micro chemical analysis systems: Introduction, fabrication technologies, instrumentation and applications

    Directory of Open Access Journals (Sweden)

    Wendell Karlos Tomazelli Coltro

    2007-01-01

    Full Text Available The amazing world of micro total analysis systems has provided a true revolution in analytical chemistry in recent years. The application of the microfluidic devices for chemical and biochemical processing has attracted considerable interest due to its advantages such as reduced sample and reagent consumption, processing time, energy, waste, cost, and portability. The aim of the present report is to disseminate the state of the art related to the miniaturization science in Analytical Chemistry. Historical progress, microfabrication technologies, required instrumentation and applications of the mTAS are presented in the current article, with special attention to the Brazilian contributions.

  1. Indoor Air Nuclear, Biological, and Chemical Health Modeling and Assessment System

    Energy Technology Data Exchange (ETDEWEB)

    Stenner, Robert D.; Hadley, Donald L.; Armstrong, Peter R.; Buck, John W.; Hoopes, Bonnie L.; Janus, Michael C.

    2001-03-01

    Indoor air quality effects on human health are of increasing concern to public health agencies and building owners. The prevention and treatment of 'sick building' syndrome and the spread of air-borne diseases in hospitals, for example, are well known priorities. However, increasing attention is being directed to the vulnerability of our public buildings/places, public security and national defense facilities to terrorist attack or the accidental release of air-borne biological pathogens, harmful chemicals, or radioactive contaminants. The Indoor Air Nuclear, Biological, and Chemical Health Modeling and Assessment System (IA-NBC-HMAS) was developed to serve as a health impact analysis tool for use in addressing these concerns. The overall goal was to develop a user-friendly fully functional prototype Health Modeling and Assessment system, which will operate under the PNNL FRAMES system for ease of use and to maximize its integration with other modeling and assessment capabilities accessible within the FRAMES system (e.g., ambient air fate and transport models, water borne fate and transport models, Physiologically Based Pharmacokinetic models, etc.). The prototype IA-NBC-HMAS is designed to serve as a functional Health Modeling and Assessment system that can be easily tailored to meet specific building analysis needs of a customer. The prototype system was developed and tested using an actual building (i.e., the Churchville Building located at the Aberdeen Proving Ground) and release scenario (i.e., the release and measurement of tracer materials within the building) to ensure realism and practicality in the design and development of the prototype system. A user-friendly "demo" accompanies this report to allow the reader the opportunity for a "hands on" review of the prototype system's capability.

  2. 30 CFR 75.1101-16 - Dry powder chemical systems; sensing and fire-suppression devices.

    Science.gov (United States)

    2010-07-01

    ... activate the fire-control system, sound an alarm and stop the conveyor drive motor in the event of a rise... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Dry powder chemical systems; sensing and fire... Protection § 75.1101-16 Dry powder chemical systems; sensing and fire-suppression devices. (a) Each self...

  3. Understanding Land Use Impacts on Groundwater Quality Using Chemical Analysis

    Science.gov (United States)

    Nitka, A.; Masarik, K.; Masterpole, D.; Johnson, B.; Piette, S.

    2017-12-01

    Chippewa County, in western Wisconsin, has a unique historical set of groundwater quality data. The county conducted extensive groundwater sampling of private wells in 1985 (715 wells) and 2007 (800 wells). In 2016, they collaborated with UW-Extension and UW-Stevens Point to evaluate the current status of groundwater quality in Chippewa County by sampling of as many of the previously studied wells as possible. Nitrate was a primary focus of this groundwater quality inventory. Of the 744 samples collected, 60 were further analyzed for chemical indicators of agricultural and septic waste, two major sources of nitrate contamination. Wells for nitrate source analysis were selected from the 2016 participants based upon certain criteria. Only wells with a Wisconsin Unique Well Number were considered to ensure well construction information was available. Next, an Inverse Distance Weighting tool in ESRI ArcMap was used to assign values categorizing septic density. Two-thirds of the wells were selected in higher density areas and one-third in lower density areas. Equally prioritized was an even distribution of nitrate - N concentrations, with 28 of the wells having nitrate - N concentrations higher than the drinking water standard of 10 mg/L and 32 wells with concentrations between 2 and 10 mg/L. All wells with WUWN and nitrate - N concentrations greater than 20 mg/L were selected. The results of the nitrate source analyses will aid in determining temporal changes and spatial relationships of groundwater quality to soils, geology and land use in Chippewa County.

  4. Meta-Analysis of the Chemical and Non-Chemical Stressors Affecting Childhood Obesity?

    Science.gov (United States)

    Background: Worldwide, approximately 42 million children under the age of 5 years are considered overweight or obese. While much research has focused on individual behaviors impacting obesity, little research has emphasized the complex interactions of numerous chemical and non-ch...

  5. A Chemical Plant Safety and Hazard Analysis Course.

    Science.gov (United States)

    Gupta, J. P.

    1989-01-01

    Describes a course for teaching chemical engineering students about safety and hazards. Summarizes the course content including topics for term papers and disciplines related to this course. Lists 18 references. (YP)

  6. Association rule mining data for census tract chemical exposure analysis

    Data.gov (United States)

    U.S. Environmental Protection Agency — Chemical concentration, exposure, and health risk data for U.S. census tracts from National Scale Air Toxics Assessment (NATA). This dataset is associated with the...

  7. Isolation and chemical analysis of nanoparticles from English ivy (Hedera helix L.).

    Science.gov (United States)

    Lenaghan, Scott C; Burris, Jason N; Chourey, Karuna; Huang, Yujian; Xia, Lijin; Lady, Belinda; Sharma, Ritin; Pan, Chongle; LeJeune, Zorabel; Foister, Shane; Hettich, Robert L; Stewart, C Neal; Zhang, Mingjun

    2013-10-06

    Bio-inspiration for novel adhesive development has drawn increasing interest in recent years with the discovery of the nanoscale morphology of the gecko footpad and mussel adhesive proteins. Similar to these animal systems, it was discovered that English ivy (Hedera helix L.) secretes a high strength adhesive containing uniform nanoparticles. Recent studies have demonstrated that the ivy nanoparticles not only contribute to the high strength of this adhesive, but also have ultraviolet (UV) protective abilities, making them ideal for sunscreen and cosmetic fillers, and may be used as nanocarriers for drug delivery. To make these applications a reality, the chemical nature of the ivy nanoparticles must be elucidated. In the current work, a method was developed to harvest bulk ivy nanoparticles from an adventitious root culture system, and the chemical composition of the nanoparticles was analysed. UV/visible spectroscopy, inductively coupled plasma mass spectrometry, Fourier transform infrared spectroscopy and electrophoresis were used in this study to identify the chemical nature of the ivy nanoparticles. Based on this analysis, we conclude that the ivy nanoparticles are proteinaceous.

  8. Summer 2012 Testing and Analysis of the Chemical Mixture Methodology -- Part I

    Energy Technology Data Exchange (ETDEWEB)

    Glantz, Clifford S.; Yu, Xiao-Ying; Coggin, Rebekah L.; Ponder, Lashaundra A.; Booth, Alexander E.; Petrocchi, Achille J.; Horn, Sarah M.; Yao, Juan

    2012-07-01

    This report presents the key findings made by the Chemical Mixture Methodology (CMM) project team during the first stage of their summer 2012 testing and analysis of the CMM. The study focused on answering the following questions: o What is the percentage of the chemicals in the CMM Rev 27 database associated with each Health Code Number (HCN)? How does this result influence the relative importance of acute HCNs and chronic HCNs in the CMM data set? o What is the benefit of using the HCN-based approach? Which Modes of Action and Target Organ Effects tend to be important in determining the HCN-based Hazard Index (HI) for a chemical mixture? o What are some of the potential issues associated with the current HCN-based approach? What are the opportunities for improving the performance and/or technical defensibility of the HCN-based approach? How would those improvements increase the benefit of using the HCN-based approach? o What is the Target Organ System Effect approach and how can it be used to improve upon the current HCN-based approach? How does the benefits users would derive from using the Target Organ System Approach compare to the benefits available from the current HCN-based approach?

  9. Chemical Pressure Maps of Molecules and Materials: Merging the Visual and Physical in Bonding Analysis.

    Science.gov (United States)

    Osman, Hussien H; Salvadó, Miguel A; Pertierra, Pilar; Engelkemier, Joshua; Fredrickson, Daniel C; Recio, J Manuel

    2018-01-09

    The characterization of bonding interactions in molecules and materials is one of the major applications of quantum mechanical calculations. Numerous schemes have been devised to identify and visualize chemical bonds, including the electron localization function, quantum theory of atoms in molecules, and natural bond orbital analysis, whereas the energetics of bond formation are generally analyzed in qualitative terms through various forms of energy partitioning schemes. In this Article, we illustrate how the chemical pressure (CP) approach recently developed for analyzing atomic size effects in solid state compounds provides a basis for merging these two approaches, in which bonds are revealed through the forces of attraction and repulsion acting between the atoms. Using a series of model systems that include simple molecules (H 2 , CO 2 , and S 8 ), extended structures (graphene and diamond), and systems exhibiting intermolecular interactions (ice and graphite), as well as simple representatives of metallic and ionic bonding (Na and NaH, respectively), we show how CP maps can differentiate a range of bonding phenomena. The approach also allows for the partitioning of the potential and kinetic contributions to the interatomic interactions, yielding schemes that capture the physical model for the chemical bond offered by Ruedenberg and co-workers.

  10. Chemical technology of the systems, partitioning and separation, disposal

    International Nuclear Information System (INIS)

    Volk, V.I.

    1997-01-01

    A reactor-accelerator reprocessing complex is described. The complex comprises an electronuclear transmutation installation and chemical and technological support units for maintenance of the steady-state of the blanket, separation of short-lived transmutation products to be disposed of from other components of the blanket, chemical conversion to relevant stable species of products to be disposed of for interim storage and disposal

  11. Distribution system modeling and analysis

    CERN Document Server

    Kersting, William H

    2001-01-01

    For decades, distribution engineers did not have the sophisticated tools developed for analyzing transmission systems-often they had only their instincts. Things have changed, and we now have computer programs that allow engineers to simulate, analyze, and optimize distribution systems. Powerful as these programs are, however, without a real understanding of the operating characteristics of a distribution system, engineers using the programs can easily make serious errors in their designs and operating procedures. Distribution System Modeling and Analysis helps prevent those errors. It gives readers a basic understanding of the modeling and operating characteristics of the major components of a distribution system. One by one, the author develops and analyzes each component as a stand-alone element, then puts them all together to analyze a distribution system comprising the various shunt and series devices for power-flow and short-circuit studies. He includes the derivation of all models and includes many num...

  12. Analysis of retted and non retted flax fibres by chemical and enzymatic means

    NARCIS (Netherlands)

    Mooney, C.; Stolle-Smits, T.; Schols, H.A.; Jong, de E.J.

    2001-01-01

    Flax fibres (Linum usitatissimum L.) were subjected to chemical and enzymatic analysis in order to determine the compositional changes brought about by the retting process and also to determine the accessibility of the fibre polymers to enzymatic treatment. Chemical analysis involved subjecting both

  13. Chemical structure of wood charcoal by infrared spectroscopy and multivariate analysis

    Science.gov (United States)

    Nicole Labbe; David Harper; Timothy Rials; Thomas Elder

    2006-01-01

    In this work, the effect of temperature on charcoal structure and chemical composition is investigated for four tree species. Wood charcoal carbonized at various temperatures is analyzed by mid infrared spectroscopy coupled with multivariate analysis and by thermogravimetric analysis to characterize the chemical composition during the carbonization process. The...

  14. Requirements analysis and system design

    CERN Document Server

    Maciaszek, Leszek A

    2007-01-01

    An examination of the methods and techniques used in the analysis and design phases of Information System development. Emphasis is placed upon the application of object technology in enterprise information systems (EIS) with UML being used throughout. Through its excellent balance of practical explanation and theoretical insight the book manages to avoid unnecessary, complicating details without sacrificing rigor. Examples of real-world scenarios are used throughout, giving the reader an understanding of what really goes on within the field of Software Engineering.

  15. Mictrostructured sensor systems for chemical gas analysis - 'MISCHGAS'. Vol. 1: Reports 1 - 6. Final report; Mikrostrukturierte Sensorsysteme fuer die chemische Gasanalyse - 'MISCHGAS'. Bd. 1: Teilberichte 1 - 6. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The project MISCHGAS was aimed at low-power microstructured multisensor systems for analyses of complex gas mixtures. This comprised 1. the development of the sensor chip (sensor layout, sandwich sensor systems, ultrathin carrier materials, and sol-gel technologies), 2. investigation of atomistic and electrical sensor mechanism, 3. design and construction (glues, materials, noble metal free contact systems), 4. generation and reading of the sensor signal, 5. investigation of the analytical properties of the sensors, 6. user-oriented specialised gas analysis systems. [German] Ziel des Projektes MISCHGAS sind leistungsarme, mikrostrukturierte, multisensor-geeignete Systeme fuer die Analyse sowohl einzelner als auch mehrerer Kompoenten komplexer Gasgemische. Dazu wurden die notwendigen Teilbereiche: technologische Entwicklungen des Sensorchips, Klaerung atomistischer sowie elektrischer Sensormechanismen, Aufbau und Verbindungstechnik, Generierung und Auslesung des Sensorsignals, Ermittlung der analytischen Eigenschaften der Sensoren, anwenderorientierte spezialisierte Gasmesssysteme von den Verbundpartnern bearbeitet. Hauptpunkte neuer technologischer Entwicklungen waren Sensorlayout, Sensorschichtsysteme sowie ultraduenne Traegermaterialien ueber die 'porous silicon sacrificial layer'-Technik sowie Sol-Gel-Technologien. Damit konnten leistungsarme Traeger hergestellt werden. Materialien waren SnO{sub 2} und V{sub 2}O{sub 5}. Der Einfluss von Pt auf die Sensorreaktion konnte beschrieben werden. Das Verstaendnis phaenomenologischer Zusammenhaenge von Sensormechanismen und deren physikalisch-chemisch-analytischer Erfassung sowie der festkoerperphysikalischen Beschreibung wurde deutlich verbessert. Technologie und Prozesstechnik wurden auf Gesichtspunkte wie Qualitaetssicherung, und Transferierbarkeit ausgerichtet. Weitere Arbeitsbereiche sind die Gehaeuseentwicklung und Fixierung im Gehaeuse. In der AVT gab es Fortschritte bei Kleber und Aufbauhilfsstoffen

  16. Chemical Analysis of Tire Traces in Traffic Accidents Investigation

    Directory of Open Access Journals (Sweden)

    Line Gueissaz

    2015-01-01

    Full Text Available The aim of the forensic investigation of traffic accidents is to help establish the nature and/or the circumstances of the event. This might be done with the purpose of determining the legal responsibilities of each person involved or to provide families, with a reconstruction of the events, to help understand why their relatives were injured or killed. A methodology for the comparison of chemical profiles of tire traces and tire tread samples obtained by pyrolysis-gas chromatography/mass spectrometry has been developed. Chemical profiles are represented by relative abundances of 86 compounds. The variability of the tread within and between 12 tires was assessed. Considering the level of the source as "brand and model" the intra-variability was found to be smaller than the inter-variability, leading to the complete discrimination of the 12 tires of the sample set. Braking tests were carried out on a racetrack in order to produce tire traces which origin was known. The results obtained with a supervised classification method showed that more than 94% of the replicates of the traces were correctly assigned to the class membership (i.e., brand and model of the tire at their origin. These results support that the chemical profile of one trace does not differ from the chemical profile of the tire at its origin but differs generally from the other chemical profiles of the sample set.

  17. Emergency Response System for Pollution Accidents in Chemical Industrial Parks, China

    Directory of Open Access Journals (Sweden)

    Weili Duan

    2015-07-01

    Full Text Available In addition to property damage and loss of lives, environment pollution, such as water pollution and air pollution caused by accidents in chemical industrial parks (CIPs is a significant issue in China. An emergency response system (ERS was therefore planned to properly and proactively cope with safety incidents including fire and explosions occurring in the CIPs in this study. Using a scenario analysis, the stages of emergency response were divided into three levels, after introducing the domino effect, and fundamental requirements of ERS design were confirmed. The framework of ERS was composed mainly of a monitoring system, an emergency command center, an action system, and a supporting system. On this basis, six main emergency rescue steps containing alarm receipt, emergency evaluation, launched corresponding emergency plans, emergency rescue actions, emergency recovery, and result evaluation and feedback were determined. Finally, an example from the XiaoHu Chemical Industrial Park (XHCIP was presented to check on the integrality, reliability, and maneuverability of the ERS, and the result of the first emergency drill with this ERS indicated that the developed ERS can reduce delays, improve usage efficiency of resources, and raise emergency rescue efficiency.

  18. Emergency Response System for Pollution Accidents in Chemical Industrial Parks, China.

    Science.gov (United States)

    Duan, Weili; He, Bin

    2015-07-10

    In addition to property damage and loss of lives, environment pollution, such as water pollution and air pollution caused by accidents in chemical industrial parks (CIPs) is a significant issue in China. An emergency response system (ERS) was therefore planned to properly and proactively cope with safety incidents including fire and explosions occurring in the CIPs in this study. Using a scenario analysis, the stages of emergency response were divided into three levels, after introducing the domino effect, and fundamental requirements of ERS design were confirmed. The framework of ERS was composed mainly of a monitoring system, an emergency command center, an action system, and a supporting system. On this basis, six main emergency rescue steps containing alarm receipt, emergency evaluation, launched corresponding emergency plans, emergency rescue actions, emergency recovery, and result evaluation and feedback were determined. Finally, an example from the XiaoHu Chemical Industrial Park (XHCIP) was presented to check on the integrality, reliability, and maneuverability of the ERS, and the result of the first emergency drill with this ERS indicated that the developed ERS can reduce delays, improve usage efficiency of resources, and raise emergency rescue efficiency.

  19. The Theory of Thermodynamics for Chemical Reactions in Dispersed Heterogeneous Systems

    Science.gov (United States)

    Yongqiang; Baojiao; Jianfeng

    1997-07-01

    In this paper, the expressions of Gibbs energy change, enthalpy change, entropy change, and equilibrium constant for chemical reactions in dispersed heterogeneous systems are derived using classical thermodynamics theory. The thermodynamical relations for the same reaction system between the dispersed and the block state are also derived. The effects of degree of dispersion on thermodynamical properties, reaction directions, and chemical equilibria are discussed. The results show that the present equation of thermodynamics for chemical reactions is only a special case of the above-mentioned formulas and that the effect of the dispersity of a heterogeneous system on the chemical reaction obeys the Le Chatelier principle of movement of equilibria.

  20. Chemical analysis of a new kinematically identified stellar group .

    Science.gov (United States)

    Ženovienė, R.; Tautvaišienė, G.; Nordström, B.; Stonkutė, E.

    We have started a study of chemical composition of a new kinematically identified group of stars in the Galactic disc. Based on dynamical properties those stars were suspected to belong to a disrupted satellite. The main atmospheric parameters and chemical composition were determined for thirty-two stars from high resolution spectra obtained at the Nordic Optical Telescope with the spectrograph FIES. In this contribution the preliminary results of chemical composition study are presented. The metallicity of the investigated stars lie in the interval -0.2 < [Fe/H] < -0.6, their abundances of oxygen and alpha-elements are overabundant in comparison to the Galactic thin disc dwarfs at this metallicity range. This provides further evidences of their common and possibly extragalactic origin.

  1. Automated activation-analysis system

    International Nuclear Information System (INIS)

    Minor, M.M.; Garcia, S.R.; Denton, M.M.

    1982-01-01

    An automated delayed neutron counting and instrumental neutron activation analysis system has been developed at Los Alamos National Laboratory's Omega West Reactor (OWR) to analyze samples for uranium and 31 additional elements with a maximum throughput of 400 samples per day

  2. New directions for systems analysis

    NARCIS (Netherlands)

    Stamper, R.K.; Felipe, J.

    2000-01-01

    Information systems analysis and design is stagnant. It exists largely as an adjunct to software engineering to facilitate the application of computers. Its fundamental ideas, which have scarcely advanced since the 1950s, are based a paradigm that makes us think with a technical bias. This paper

  3. A standard analysis method (SAM) for the automated analysis of polychlorinated biphenyls (PCBs) in soils using the chemical analysis automation (CAA) paradigm: validation and performance

    International Nuclear Information System (INIS)

    Rzeszutko, C.; Johnson, C.R.; Monagle, M.; Klatt, L.N.

    1997-10-01

    The Chemical Analysis Automation (CAA) program is developing a standardized modular automation strategy for chemical analysis. In this automation concept, analytical chemistry is performed with modular building blocks that correspond to individual elements of the steps in the analytical process. With a standardized set of behaviors and interactions, these blocks can be assembled in a 'plug and play' manner into a complete analysis system. These building blocks, which are referred to as Standard Laboratory Modules (SLM), interface to a host control system that orchestrates the entire analytical process, from sample preparation through data interpretation. The integrated system is called a Standard Analysis Method (SAME). A SAME for the automated determination of Polychlorinated Biphenyls (PCB) in soils, assembled in a mobile laboratory, is undergoing extensive testing and validation. The SAME consists of the following SLMs: a four channel Soxhlet extractor, a High Volume Concentrator, column clean up, a gas chromatograph, a PCB data interpretation module, a robot, and a human- computer interface. The SAME is configured to meet the requirements specified in U.S. Environmental Protection Agency's (EPA) SW-846 Methods 3541/3620A/8082 for the analysis of pcbs in soils. The PCB SAME will be described along with the developmental test plan. Performance data obtained during developmental testing will also be discussed

  4. Analysis of forward and inverse problems in chemical dynamics and spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rabitz, H. [Princeton Univ., NJ (United States)

    1993-12-01

    The overall scope of this research concerns the development and application of forward and inverse analysis tools for problems in chemical dynamics and chemical kinetics. The chemical dynamics work is specifically associated with relating features in potential surfaces and resultant dynamical behavior. The analogous inverse research aims to provide stable algorithms for extracting potential surfaces from laboratory data. In the case of chemical kinetics, the focus is on the development of systematic means to reduce the complexity of chemical kinetic models. Recent progress in these directions is summarized below.

  5. ICAS-PAT: A Software for Design, Analysis and Validation of PAT Systems

    DEFF Research Database (Denmark)

    Singh, Ravendra; Gernaey, Krist; Gani, Rafiqul

    2010-01-01

    In chemicals based product manufacturing, as in pharmaceutical, food and agrochemical industries, efficient and consistent process monitoring and analysis systems (PAT systems) have a very important role. These PAT systems ensure that the chemicals based product is manufactured with the specified...

  6. Embedded Fragments from U.S. Military Personnel—Chemical Analysis and Potential Health Implications

    Directory of Open Access Journals (Sweden)

    José A. Centeno

    2014-01-01

    Full Text Available Background: The majority of modern war wounds are characterized by high-energy blast injuries containing a wide range of retained foreign materials of a metallic or composite nature. Health effects of retained fragments range from local or systemic toxicities to foreign body reactions or malignancies, and dependent on the chemical composition and corrosiveness of the fragments in vivo. Information obtained by chemical analysis of excised fragments can be used to guide clinical decisions regarding the need for fragment removal, to develop therapeutic interventions, and to better anticipate future medical problems from retained fragment related injuries. In response to this need, a new U.S Department of Defense (DoD directive has been issued requiring characterization of all removed fragments to provide a database of fragment types occurring in combat injuries. Objectives: The objective of this study is to determine the chemical composition of retained embedded fragments removed from injured military personnel, and to relate results to histological findings in tissue adjacent to fragment material. Methods: We describe an approach for the chemical analysis and characterization of retained fragments and adjacent tissues, and include case examples describing fragments containing depleted uranium (DU, tungsten (W, lead (Pb, and non-metal foreign bodies composed of natural and composite materials. Fragments obtained from four patients with penetrating blast wounds to the limbs were studied employing a wide range of chemical and microscopy techniques. Available adjacent tissues from three of the cases were histologically, microscopically, and chemically examined. The physical and compositional properties of the removed foreign material surfaces were examined with energy dispersive x-ray fluorescence spectrometry (EDXRF, scanning electron microscopy (SEM, laser ablation inductively-coupled plasma mass-spectrometry (LA-ICP-MS, and confocal laser Raman

  7. Embedded Fragments from U.S. Military Personnel—Chemical Analysis and Potential Health Implications

    Science.gov (United States)

    Centeno, José A.; Rogers, Duane A.; van der Voet, Gijsbert B.; Fornero, Elisa; Zhang, Lingsu; Mullick, Florabel G.; Chapman, Gail D.; Olabisi, Ayodele O.; Wagner, Dean J.; Stojadinovic, Alexander; Potter, Benjamin K.

    2014-01-01

    Background: The majority of modern war wounds are characterized by high-energy blast injuries containing a wide range of retained foreign materials of a metallic or composite nature. Health effects of retained fragments range from local or systemic toxicities to foreign body reactions or malignancies, and dependent on the chemical composition and corrosiveness of the fragments in vivo. Information obtained by chemical analysis of excised fragments can be used to guide clinical decisions regarding the need for fragment removal, to develop therapeutic interventions, and to better anticipate future medical problems from retained fragment related injuries. In response to this need, a new U.S Department of Defense (DoD) directive has been issued requiring characterization of all removed fragments to provide a database of fragment types occurring in combat injuries. Objectives: The objective of this study is to determine the chemical composition of retained embedded fragments removed from injured military personnel, and to relate results to histological findings in tissue adjacent to fragment material. Methods: We describe an approach for the chemical analysis and characterization of retained fragments and adjacent tissues, and include case examples describing fragments containing depleted uranium (DU), tungsten (W), lead (Pb), and non-metal foreign bodies composed of natural and composite materials. Fragments obtained from four patients with penetrating blast wounds to the limbs were studied employing a wide range of chemical and microscopy techniques. Available adjacent tissues from three of the cases were histologically, microscopically, and chemically examined. The physical and compositional properties of the removed foreign material surfaces were examined with energy dispersive x-ray fluorescence spectrometry (EDXRF), scanning electron microscopy (SEM), laser ablation inductively-coupled plasma mass-spectrometry (LA-ICP-MS), and confocal laser Raman

  8. International Research Project on the Effects of Chemical Ageing of Polymers on Performance Properties: Chemical and Thermal Analysis

    Science.gov (United States)

    Bulluck, J. W.; Rushing, R. A.

    1996-01-01

    Work during the past six months has included significant research in several areas aimed at further clarification of the aging and chemical failure mechanism of thermoplastics (PVDF or Tefzel) pipes. Among the areas investigated were the crystallinity changes associated with both the Coflon and Tefzel after various simulated environmental exposures using X-ray diffraction analysis. We have found that significant changes in polymer crystallinity levels occur as a function of the exposures. These crystallinity changes may have important consequences on the fracture, fatigue, tensile, and chemical resistance of the materials. We have also noted small changes in the molecular weight distribution. Again these changes may result in variations in the mechanical and chemical properties in the material. We conducted numerous analytical studies with methods including X-ray Diffraction, Gel Permeation Chromatography, Fourier Transform Infrared Spectroscopy, Ultra- Violet Scanning Analysis, GC/Mass Spectrometry, Differential Scanning Calorimetry and Thermomechanical Analysis. In the ultra-violet analysis we noted the presence of an absorption band indicative of triene formation. We investigated a number of aged samples of both Tefzel and Coflon that were forwarded from MERL. We also cast films at SWT and subjected these films to a refluxing methanol 1% ethylene diamine solution. An updated literature search was conducted using Dialog and DROLLS to identify any new papers that may have been published in the open literature since the start of this project. The updated literature search and abstracts are contained in the Appendix section of this report.

  9. Chemical Mechanisms and Their Applications in the Goddard Earth Observing System (GEOS) Earth System Model.

    Science.gov (United States)

    Nielsen, J Eric; Pawson, Steven; Molod, Andrea; Auer, Benjamin; da Silva, Arlindo M; Douglass, Anne R; Duncan, Bryan; Liang, Qing; Manyin, Michael; Oman, Luke D; Putman, William; Strahan, Susan E; Wargan, Krzysztof

    2017-12-01

    NASA's Goddard Earth Observing System (GEOS) Earth System Model (ESM) is a modular, general circulation model (GCM), and data assimilation system (DAS) that is used to simulate and study the coupled dynamics, physics, chemistry, and biology of our planet. GEOS is developed by the Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center. It generates near-real-time analyzed data products, reanalyses, and weather and seasonal forecasts to support research targeted to understanding interactions among Earth System processes. For chemistry, our efforts are focused on ozone and its influence on the state of the atmosphere and oceans, and on trace gas data assimilation and global forecasting at mesoscale discretization. Several chemistry and aerosol modules are coupled to the GCM, which enables GEOS to address topics pertinent to NASA's Earth Science Mission. This paper describes the atmospheric chemistry components of GEOS and provides an overview of its Earth System Modeling Framework (ESMF)-based software infrastructure, which promotes a rich spectrum of feedbacks that influence circulation and climate, and impact human and ecosystem health. We detail how GEOS allows model users to select chemical mechanisms and emission scenarios at run time, establish the extent to which the aerosol and chemical components communicate, and decide whether either or both influence the radiative transfer calculations. A variety of resolutions facilitates research on spatial and temporal scales relevant to problems ranging from hourly changes in air quality to trace gas trends in a changing climate. Samples of recent GEOS chemistry applications are provided.

  10. Radiation Accident Dosimetry System Based on Chemical Dosimetry and an Optoelectronic Reader

    International Nuclear Information System (INIS)

    Ilijas, B.; Razem, D.; Miljanic, S.; Cerovac, Z.; Orehovec, Z.

    2003-01-01

    There are many potential sources of mass irradiation in today's world. Threats of a classic nuclear encounter or of an accident of some nuclear facility are now accompanied with a real possibility of nuclear terrorism, in context of which a threat of radiological emergency is very probable. Mass irradiation and radiological contamination of large areas and structures pose great problems to medical and emergency staff in the peacetime or to army troops in a war. The only reliable and sufficiently rapidly accessible data about the dose absorbed by any person can be achieved by means of personal dosimetry. These data are of the utmost importance for medical treatment and triage, as well as for determining the capability of military troops. Personal dosimetry system for this purpose must fulfill some specific requirements on reliability, dose range and cost. Chemical radiation dosimetry system based on the chemical CET dosimeter and an optoelectronic reader is designed primarily for this purpose. Its characteristics are, among others, nearly equal sensitivity to gamma and neutron irradiation, dose range between 0.2 and 14.0 Gy, the possibility of electronic processing of data and a low cost. It is intended for a large number of persons and therefore can give enough data for statistical analysis, yet the separate data for any single person can give a reliable basis for the individual medical treatment. The possibility of connection with a PC enables the formation of large data bases for further processing and analysis. (author)

  11. Computing Equilibrium Chemical Compositions

    Science.gov (United States)

    Mcbride, Bonnie J.; Gordon, Sanford

    1995-01-01

    Chemical Equilibrium With Transport Properties, 1993 (CET93) computer program provides data on chemical-equilibrium compositions. Aids calculation of thermodynamic properties of chemical systems. Information essential in design and analysis of such equipment as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical-processing equipment. CET93/PC is version of CET93 specifically designed to run within 640K memory limit of MS-DOS operating system. CET93/PC written in FORTRAN.

  12. Mass transfer and chemical reaction in gas-liquid-liquid systems

    NARCIS (Netherlands)

    Brilman, Derk Willem Frederik

    1998-01-01

    Gas-liquid-liquid reaction systems may be encountered in several important fields of application as e.g. hydroformylation, alkylation, carboxylation, polymerisation, hydrometallurgy, biochemical processes and fine chemicals manufacturing. However, the reaction engineering aspects of these systems

  13. Photoacoustic physio-chemical analysis and its implementation in deep tissue with a catheter setup

    Science.gov (United States)

    Xu, Guan; Meng, Zhou-xian; Lin, Jian-die D.; Cheng, Qian; Wang, Xueding

    2015-03-01

    Photoacoustic (PA) measurements encode the information associated with both physical microstructures and chemical contents in biological tissues. A two-dimensional physio-chemical spectrogram (PCS) can be formulated by combining the power spectra of PA signals acquired at a series of optical wavelengths. The analysis of PCS, or namely PA physio-chemical analysis (PAPCA), enables the quantification of the relative concentrations and the spatial distributions of a variety of chemical components in the tissue. This study validated the feasibility of PAPCA in characterizing liver conditions during the progression of non-alcoholic fatty liver disease. A catheter based setup facilitating measurement in deep tissues was also tested.

  14. Chemical diversity analysis of Tunisian Lawsonia inermis L ...

    African Journals Online (AJOL)

    Lawsonia inermis L. (commonly known as henna) is a cosmetic and medicinal plant cultivated from North-east Africa to India. The objective of this study was to evaluate the diversity of 25 L. inermis Tunisian populations, based on chemical markers. The populations were collected from the region of Gabès. The leaves and ...

  15. Portfolio Assessment on Chemical Reactor Analysis and Process Design Courses

    Science.gov (United States)

    Alha, Katariina

    2004-01-01

    Assessment determines what students regard as important: if a teacher wants to change students' learning, he/she should change the methods of assessment. This article describes the use of portfolio assessment on five courses dealing with chemical reactor and process design during the years 1999-2001. Although the use of portfolio was a new…

  16. Analysis of physical and chemical composition of honey samples in ...

    African Journals Online (AJOL)

    The study analyzed the physical and chemical compositions of seven honey samples, which were obtained from selected markets in Ibadan metropolis. Seven samples of honey were obtained namely from sample A (Forestry honey Ibadan), Sample B (Pure honey), Sample C (Mr. honey), Sample D (Taraba honey), sample ...

  17. Chemical analysis of the Assale (Ethiopia) rock salt deposit | Binega ...

    African Journals Online (AJOL)

    contaminants) elements found in the Assale (Ethiopia) rock salt. The results showed that the rock salt is found to be the best natural common salt. This was proved by comparison with the chemical requirement and trace elements in common ...

  18. Chemical analysis and biological potential of Valerian root as used ...

    African Journals Online (AJOL)

    The herb prepared from this plant was studied to determine the chemical composition of its essential oil, carried out phytochemical screening and biological activities on ... rat paw oedema model comparable to aspirin, indicating anti-inflammatory activity; but lacked analgesic activity on the acetic acid-induced writhing test.

  19. Chemical constituent analysis of the crown-of-thorns starfish ...

    African Journals Online (AJOL)

    The crown-of-thorns starfish Acanthaster planci is a major management issue on coral reefs and the exploring of effective control methods to the starfish is an interesting goal. In this study, the chemical constituent of the starfish were analyzed and the toxicity of the starfish was tested when it was used as mice diet.

  20. HBCUs and Chemical Engineering: Analysis of Baccalaureate Programs

    Science.gov (United States)

    Reeves, Sheena; Thompson, Audie

    2018-01-01

    Historically Black Colleges and Universities (HBCUs) provide significant STEM degrees to African Americans. Initiatives toward increasing diversity in STEM fields have been implemented by government and industry leaders. HBCUs annually award over 20% of all African American baccalaureate chemical engineering degrees. This speaks volume to the…

  1. Nanoscale chemical analysis and imaging of solid oxide cells

    DEFF Research Database (Denmark)

    Hauch, Anne; Bowen, Jacob R.; Kuhn, Luise Theil

    2008-01-01

    of the interface between the dense ceramic electrolyte and the porous metallic/ceramic hydrogen electrode of an SOC using focused ion beam milling. We show combined TEM/scanning TEM/energy-dispersive spectroscopy investigations of the nanostructure at the TPBs in a high-performance SOC. The chemical composition...

  2. Analysis Of Chemical Bonding Using Ab Initio Valence Bond Theory

    NARCIS (Netherlands)

    Engelberts, J.J.

    2017-01-01

    In this thesis, theoretical chemical research is presented in which the Valence Bond (VB) Theory plays a central role. For the last three chapters, the VB method is used, in combination with Magnetically Induced Ring Currents, to analyze the aromaticity of several conjugated molecules. The

  3. Chemical diversity analysis of Tunisian Lawsonia inermis L ...

    African Journals Online (AJOL)

    Administrator

    2011-06-08

    Jun 8, 2011 ... Lawsonia inermis L. (commonly known as henna) is a cosmetic and medicinal plant cultivated from. North-east Africa to India. The objective of this study was to evaluate the diversity of 25 L. inermis. Tunisian populations, based on chemical markers. The populations were collected from the region of. Gabès ...

  4. Comparative Analysis on Chemical Composition of Bentonite Clays ...

    African Journals Online (AJOL)

    2017-09-12

    ) contents of bentonite from. Tango (GT) (49.87 wt%, .... MgO. 2.08. 2.08. K. 2. O. 1.60. 1.76. TiO. 2. 0.94. 0.87. P. 2. O. 5. 1.06. 1.01. Fig 1: Chemical Compositions of the Bentonite Samples Analysed by XRF. Fourier transform ...

  5. Spectroscopic and chemical reactivity analysis of D-Myo-Inositol ...

    Indian Academy of Sciences (India)

    2017-06-20

    Jun 20, 2017 ... It was found that the optimized parameters thus obtained are almost in agreement with the experimental ones. A detailed ... The global reactivity descriptors like chemical potential, electronegativity, hardness, softness and electrophilicity index, have been calculated using DFT. The thermodynamic ...

  6. availability analysis of chemicals for water treatment: an application ...

    African Journals Online (AJOL)

    NIJOTECH

    The time horizon of the model is between 1 and 5 years. Estimates of future demands and supplies of chemicals and the associated costs are used as endogenous and exogenous parameters in the model. The model should assist water utility decision makers during current and subsequent periods in order to determine an.

  7. Impact analysis of different chemical pre-treatments on colour of apple discs during drying process

    Directory of Open Access Journals (Sweden)

    Jasmina Lukinac

    2009-01-01

    Full Text Available The main purpose of this study was to compare colour changes of chemically pre-treated dried apple discs. Changes were observed by chromameter in L*a*b* colour model by using Minolta chromameter CR-400 and by image analysis system in RGB colour model. Apple discs variety "Gold Rush" were pre-treated and dried in laboratory tray drier at drying temperature 70 °C and at airflow velocity of 1.5 ms-1. Different chemical pre-treatments were applied on apple discs (dipping in 0.5% ascorbic acid solution; 0.3% L–cysteine solution; 0.1% 4–hexyl resorcinol solution and 1% sodium metabisulphite solution. Mean values of colour parameters, colour changes and correlation coefficients for apple discs were calculated for both colour models. The analysis showed statistically significant influence of pre-treatment method on total colour changes for both chosen colour models of dried apples. Calculated correlation coefficient between colour changes for used models was found to be 0.894. According to colour characteristics the best results were achieved when samples were pre-treated with 0.5% ascorbic acid solution. According to calculated results it was found that image analysis method as well as colorimetric method can be used to observe the colour changes on dried apple discs.

  8. Biocatalysis. Biological systems for the production of chemicals

    OpenAIRE

    Held, M.; Schmid, A.; van Beilen, J. B.; Witholt, B.

    2017-01-01

    Biocatalysis harnesses the catalytic potential of enzymes to produce building blocks and end-products for the pharmaceutical and chemical industry. Located at the interface between fermentation processes and petrol-based chemistry, biotransformation processes broaden the toolbox for bioconversion of organic compounds to functionalized products

  9. Human exploration of near earth asteroids: Mission analysis for chemical and electric propulsion

    Science.gov (United States)

    Herman, Jonathan F. C.; Zimmer, Aline K.; Reijneveld, Johannes P. J.; Dunlop, Kathryn L.; Takahashi, Yu; Tardivel, Simon; Scheeres, Daniel J.

    2014-11-01

    This paper presents a mission analysis comparison of human missions to asteroids using two distinct architectures. The objective is to determine if either architecture can reduce launch mass with respect to the other, while not sacrificing other performance metrics such as mission duration. One architecture relies on chemical propulsion, the traditional workhorse of space exploration. The second combines chemical and electric propulsion into a hybrid architecture that attempts to utilize the strengths of each, namely the short flight times of chemical propulsion and the propellant efficiency of electric propulsion. The architectures are thoroughly detailed, and accessibility of the known asteroid population is determined for both. The most accessible asteroids are discussed in detail. Aspects such as mission abort scenarios and vehicle reusability are also discussed. Ultimately, it is determined that launch mass can be greatly reduced with the hybrid architecture, without a notable increase in mission duration. This demonstrates that significant performance improvements can be introduced to the next step of human space exploration with realistic electric propulsion system capabilities. This leads to immediate cost savings for human exploration and simultaneously opens a path of technology development that leads to technologies enabling access to even further destinations in the future.

  10. Modeling and analysis of time-dependent processes in a chemically reactive mixture

    Science.gov (United States)

    Ramos, M. P.; Ribeiro, C.; Soares, A. J.

    2018-01-01

    In this paper, we study the propagation of sound waves and the dynamics of local wave disturbances induced by spontaneous internal fluctuations in a reactive mixture. We consider a non-diffusive, non-heat conducting and non-viscous mixture described by an Eulerian set of evolution equations. The model is derived from the kinetic theory in a hydrodynamic regime of a fast chemical reaction. The reactive source terms are explicitly computed from the kinetic theory and are built in the model in a proper way. For both time-dependent problems, we first derive the appropriate dispersion relation, which retains the main effects of the chemical process, and then investigate the influence of the chemical reaction on the properties of interest in the problems studied here. We complete our study by developing a rather detailed analysis using the Hydrogen-Chlorine system as reference. Several numerical computations are included illustrating the behavior of the phase velocity and attenuation coefficient in a low-frequency regime and describing the spectrum of the eigenmodes in the small wavenumber limit.

  11. Novel duplex vapor: Electrochemical method for silicon solar cells. [chemical reactor for a silicon sodium reaction system

    Science.gov (United States)

    Nanis, L.; Sanjurjo, A.; Sancier, K.

    1979-01-01

    The scaled up chemical reactor for a SiF4-Na reaction system is examined for increased reaction rate and production rate. The reaction system which now produces 5 kg batches of mixed Si and NaF is evaluated. The reactor design is described along with an analysis of the increased capacity of the Na chip feeder. The reactor procedure is discussed and Si coalescence in the reaction products is diagnosed.

  12. systemic chemical education reform [scer] in the global era

    African Journals Online (AJOL)

    IICBA01

    growing the systemic way of thinking of our students that is one of the most important characteristics of Global Era. Here is the systemic education reform which means the change of our educational system from linearity to systemic in which we design the curriculum and write content systemically, which presented by SATL ...

  13. An ontology on property for physical, chemical, and biological systems.

    Science.gov (United States)

    Dybkaer, René

    2004-01-01

    modifiers 'nominal', 'ordinal', 'differential', and 'rational' before '...property'. Other possibilities are given, based on the literature, especially the stepwise division into "nominal property" and "quantity"; "ordinal quantity" and "unitary quantity"; "differential unitary quantity" and "rational unitary quantity". As top concepts, , , , , and are i.a. divided homologously to . The term 'observation' and the modifiers 'qualitative', 'semi-quantitative', and 'quantitative' are avoided. "Metrological unit" and "system of metrological units" are defined together with a number of specific concepts. Some problems with characteristics of "SI unit" are discussed and an alternative system shown. The conceptions of "metrological dimension" are outlined, leading to a definition and specific concepts. The generally accepted IUPAC/IFCC syntax for designations of instantiated properties is 'System (specification)--Component(specification); kind-of-property (specification)', and' 'dedicatedkind-of-property" is defined as 'kind-of-property with given sort of system and any pertinent sorts of component'. The related systematic terms may be generated according to ENV 1614 using generative patterns from ENV 12264. The elements of the appellation and examination result of a singular rational property are diagrammed. Finally, the possibilities of representing properties and their results by the formalisms of relation and function from Set Theory and Object-Oriented Analysis are exemplified.

  14. CHEMICAL ANALYSIS OF DENSE-GAS EXTRACTS FROM LIME FLOWERS

    Directory of Open Access Journals (Sweden)

    Demyanenko DV

    2015-04-01

    Full Text Available The purpose of this work was to make qualitative and quantitative analysis of phenolic biologically active substances (BAS in the extracts produced from lime flowers with condensed gases, using method of high-performance liquid chromatography (HPLC. Materials and methods: materials for this study were the extracts obtained by consequent processing of the herbal drug and marcs thereof with various condensed gases: difluorochloromethane (Freon R22, difluoromethane (Freon R32, azeotropic mixture of difluoromethane with pentafluoroethane (Freon 410A and freon-ammonium mixture. Extracts obtained with the latter were subjected to further fractionation by liquidliquid separation into hexane, chloroform, ethyl acetate and aqueous-alcohol phases. Besides, the supercritical СО2 extract, obtained from the herbal drug under rather strong conditions (at temperature 60°С and pressure 400 bar, was studied in our previous research. Presence of phenolic BAS and their quantity in the researched samples were determined by method of HPLC with UVspectrometric detection. Results and discussion: It has been found that Freon R22 extracted trace amounts of rutin from lime flowers – its content was only 0.08% of the total extract weight. On the other hand, Freons R32 and R410А showed good selectivity to moderately polar BAS of lime flowers (derivatives of flavonoids and hydroxycinnamic acids: in particular, the extract obtained with freon R32 contained about 1.3% of the total phenolic substances, and it was the only one of the investigated condensed gases used by us which took the basic flavonoid of lime flowers tiliroside – its content was 0.42% of extract weight. Also Freons R32 and R410А were able to withdraw another compound dominating among phenolic substances in the yielded extracts. Its quantity was rather noticeable – up to 0.87% of extract weight. This substance was not identified by existing database, but its UV-spectrum was similar to those of

  15. Radiation chemical behaviour of actinides in extraction system

    International Nuclear Information System (INIS)

    Vladimirova, M.V.; Fedoseev, D.A.; Bojkova, I.A.; Milovanova, A.S.

    1984-01-01

    Pu(4) physicochemical state (valent, complex, aggregation states) in γ-irradiated (Esub(γ)=3H10sup(5) Gr) TBP solutions in dodecane in the presence of U(6) macroamounts has been studied. Pu(4) concertration in extractant constitutes 4x10 -3 - 7x10 -3 mol/l, J(6) concentration is from 2x10 -2 up to 1.25x10 -1 mol/l, HNO 3 concentration is approximately equal to 0.5 mol/l. It has been established on the base of analysis of absorption spectrum of γ-irradiated solution that a change of Pu(4) valency does not take place, and plutonium di-n-buthyl-phosphate complex is formed. A decrease of a solution optical density with a growth of γ-irradiation dose testifies on complex formation. Spectrophotometric (SP) titration of allowed one to determine effective (seeming) complexing consU(6) and Pu(4) solut ons has been carried out. SP titration tants of Pu(4) and U(6) with DBPK and some peculiarities of this complexing. Identity of qualitative and quantitative characteristics of absorption spectra of model and γ-irradiated solutions allows one to consider the latter as two-component (in an optical respect) and closed (in the absence of deposits) systems. This permits to use the Firordt equations for the calculation of Pu(4) and U(6) complex concentrations in irradiated systems. Possibility to calculate radiation yields of PU(4) complexes with di-n-buthylphosphate acid for Pu(4) concentrations -2 mol/l both in the presence of this complex and without it has been revealed

  16. High resolution Physio-chemical Tissue Analysis: Towards Non-invasive In Vivo Biopsy

    Science.gov (United States)

    Xu, Guan; Meng, Zhuo-Xian; Lin, Jian-Die; Deng, Cheri X.; Carson, Paul L.; Fowlkes, J. Brian; Tao, Chao; Liu, Xiaojun; Wang, Xueding

    2016-02-01

    Conventional gold standard histopathologic diagnosis requires information of both high resolution structural and chemical changes in tissue. Providing optical information at ultrasonic resolution, photoacoustic (PA) technique could provide highly sensitive and highly accurate tissue characterization noninvasively in the authentic in vivo environment, offering a replacement for histopathology. A two-dimensional (2D) physio-chemical spectrogram (PCS) combining micrometer to centimeter morphology and chemical composition simultaneously can be generated for each biological sample with PA measurements at multiple optical wavelengths. This spectrogram presents a unique 2D “physio-chemical signature” for any specific type of tissue. Comprehensive analysis of PCS, termed PA physio-chemical analysis (PAPCA), can lead to very rich diagnostic information, including the contents of all relevant molecular and chemical components along with their corresponding histological microfeatures, comparable to those accessible by conventional histology. PAPCA could contribute to the diagnosis of many diseases involving diffusive patterns such as fatty liver.

  17. Possibility of the development of a Serbian protection system against chemical accidents

    Directory of Open Access Journals (Sweden)

    Dejan R. Inđić

    2012-10-01

    Full Text Available The paper presents a draft of a system model for responding in case of chemical accidents in accordance with the current legislation regarding the environment protection, the structure and elements of the existing response system in case of chemical accidents, other works dealing with the issue as well as the prospects planned by those responsible for the environmental protection. The paper discuss the possibilities of different institutions and agencies of the Republic of Serbia to engage in specialized methods of cooperation and protection against chemical hazards in accordance with Article X of the Convention on the Prohibition of Chemical Weapons.

  18. Chemical study of sediments from Solimoes and Negro rivers by Instrumental Neutron Activation Analysis (INAA)

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Jose O. dos [Coordenacao de Cursos Tecnicos e Superiores. Instituto Federal de Educacao, Ciencia e Tecnologia de Sergipe, Lagarto, SE (Brazil); Munita, Casimiro S., E-mail: camunita@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Soares, Emilio A.A., E-mail: easores@ufam.edu.br [Departamento de Geociencias. Universidade Federal do Amazonas (UFAM), Manaus, AM (Brazil)

    2011-07-01

    The events of the last 70,000 yrs of the history of the Solimoes-Amazon river system are recorded in the fluvial terraces at region of confluence of the Negro and Solimoes rivers, and are markers of changes in the landscape of the Amazon region and it can be observed by analyzing the sedimentary deposits quaternary in Amazon fluvial system. The aim of this work was to contribute with the characterization sedimentological - stratigraphic of Pleistocene succession of the confluence zone of the Negro and Solimoes rivers by means of elemental chemical analysis. To provenance study, 24 elements were determined by Instrumental Neutron Activation Analysis from sediment samples collected at confluence of Negro and Solimoes rivers and the results were interpreted using cluster and linear discriminant analysis, which classification to priori were samples previously defined according to Pleistocene stratigraphic units individualized at study area. According to discriminant analysis, one can infer that samples from the basin of the Solimoes River and Parana do Ariau grabens (GPA) are not significantly different, but there was a clear separation of sediments from Negro and GPA groups. It was also obtained that samples from highest and lowest terraces that the of the Solimoes river and Parana do Ariau are different, suggesting that it is a process that reflects the influence of chemical weathering on the uppermost terrace deposits. Thus, this work contributes to determine the contribution of the sediments deposited by the Solimoes and Negro rivers in the filling of tectonic depressions and in the variations of degree of weathering between younger and older units, and provides additional subsidies to build the geological evolution of the area. (author)

  19. Chemical study of sediments from Solimoes and Negro rivers by Instrumental Neutron Activation Analysis (INAA)

    International Nuclear Information System (INIS)

    Santos, Jose O. dos; Munita, Casimiro S.; Soares, Emilio A.A.

    2011-01-01

    The events of the last 70,000 yrs of the history of the Solimoes-Amazon river system are recorded in the fluvial terraces at region of confluence of the Negro and Solimoes rivers, and are markers of changes in the landscape of the Amazon region and it can be observed by analyzing the sedimentary deposits quaternary in Amazon fluvial system. The aim of this work was to contribute with the characterization sedimentological - stratigraphic of Pleistocene succession of the confluence zone of the Negro and Solimoes rivers by means of elemental chemical analysis. To provenance study, 24 elements were determined by Instrumental Neutron Activation Analysis from sediment samples collected at confluence of Negro and Solimoes rivers and the results were interpreted using cluster and linear discriminant analysis, which classification to priori were samples previously defined according to Pleistocene stratigraphic units individualized at study area. According to discriminant analysis, one can infer that samples from the basin of the Solimoes River and Parana do Ariau grabens (GPA) are not significantly different, but there was a clear separation of sediments from Negro and GPA groups. It was also obtained that samples from highest and lowest terraces that the of the Solimoes river and Parana do Ariau are different, suggesting that it is a process that reflects the influence of chemical weathering on the uppermost terrace deposits. Thus, this work contributes to determine the contribution of the sediments deposited by the Solimoes and Negro rivers in the filling of tectonic depressions and in the variations of degree of weathering between younger and older units, and provides additional subsidies to build the geological evolution of the area. (author)

  20. A Human Body Analysis System

    Directory of Open Access Journals (Sweden)

    Girondel Vincent

    2006-01-01

    Full Text Available This paper describes a system for human body analysis (segmentation, tracking, face/hands localisation, posture recognition from a single view that is fast and completely automatic. The system first extracts low-level data and uses part of the data for high-level interpretation. It can detect and track several persons even if they merge or are completely occluded by another person from the camera's point of view. For the high-level interpretation step, static posture recognition is performed using a belief theory-based classifier. The belief theory is considered here as a new approach for performing posture recognition and classification using imprecise and/or conflicting data. Four different static postures are considered: standing, sitting, squatting, and lying. The aim of this paper is to give a global view and an evaluation of the performances of the entire system and to describe in detail each of its processing steps, whereas our previous publications focused on a single part of the system. The efficiency and the limits of the system have been highlighted on a database of more than fifty video sequences where a dozen different individuals appear. This system allows real-time processing and aims at monitoring elderly people in video surveillance applications or at the mixing of real and virtual worlds in ambient intelligence systems.

  1. Silica sol as grouting material: a physio-chemical analysis.

    Science.gov (United States)

    Sögaard, Christian; Funehag, Johan; Abbas, Zareen

    2018-01-01

    At present there is a pressing need to find an environmentally friendly grouting material for the construction of tunnels. Silica nanoparticles hold great potential of replacing the organic molecule based grouting materials currently used for this purpose. Chemically, silica nanoparticles are similar to natural silicates which are essential components of rocks and soil. Moreover, suspensions of silica nanoparticles of different sizes and desired reactivity are commercially available. However, the use of silica nanoparticles as grouting material is at an early stage of its technological development. There are some critical parameters such as long term stability and functionality of grouted silica that need to be investigated in detail before silica nanoparticles can be considered as a reliable grouting material. In this review article we present the state of the art regarding the chemical properties of silica nanoparticles commercially available, as well as experience gained from the use of silica as grouting material. We give a detailed description of the mechanisms underlying the gelling of silica by different salt solutions such as NaCl and KCl and how factors such as particle size, pH, and temperature affect the gelling and gel strength development. Our focus in this review is on linking the chemical properties of silica nanoparticles to the mechanical properties to better understand their functionality and stability as grouting material. Along the way we point out areas which need further research.

  2. Safety management system in a Swiss chemical company

    International Nuclear Information System (INIS)

    Vouillamoz, R.

    1996-01-01

    Through the implementation of the fine chemical strategy, i.e. the manufacture of products with a higher value, the Lonza AG was confronted with a drastic increase of complexity in safety and disposal. In this connection, a concept of risk reduction was developed and carried out. This concept is based on 3 different steps: - prevention, - reduction, - provision. The details of these steps are explained here and illustrated with concrete examples. (author) 5 figs., tabs

  3. Chemical reactions in ventilation systems : Ozonolysis of monoterpenes

    OpenAIRE

    Fick, Jerker

    2003-01-01

    Chemicals in indoor air, either emitted from a source or from a reaction, have been suggested to cause ill health in buildings. However, no clear correlations between exposure and health effects have been made. In this thesis we studied the reaction between monoterpenes, a group of biogenic unsaturated C10 hydrocarbons, and ozone. Ozonolysis of monoterpenes was used as model reactions for unsaturated compounds in ambient air. Also the products formed from these reactions have been suggested a...

  4. Integrated assessment of chemical stressors and ecological impact in mixed land use stream systems

    DEFF Research Database (Denmark)

    Sonne, Anne Thobo

    of these mixed land use stream systems causes critical changes and thus jeopardizes the health of the stream ecosystems. The various chemical sources result in a highly diverse group of chemical stressors leading to a decrease in the chemical quality of the different stream compartments (i.e. stream water......, hyporheic zone and bed sediment). These compartment(s) will be impacted differently by the various chemicals present in the system, depending on e.g. the stressor’s pathway to the stream, their physico-chemical properties, and controlling hydrological and biogeochemical processes. The resulting impairment...... activities, including contaminated sites. To determine potential impacts, the chemical quality of both organic (i.e. pharmaceuticals, gasoline constituents, chlorinated solvents, and pesticides) and inorganic (i.e. metals, general water chemistry and macroions) compounds was assessed in all three stream...

  5. Systems analysis department annual progress report 1986

    International Nuclear Information System (INIS)

    Grohnheit, P.E.; Larsen, H.; Vestergaard, N.K.

    1987-02-01

    The report describes the work of the Systems Analysis Department at Risoe National Laboratory during 1986. The activities may be classified as energy systems analysis and risk and reliability analysis. The report includes a list of staff members. (author)

  6. End-to-End Trajectory for Conjunction Class Mars Missions Using Hybrid Solar-Electric/Chemical Transportation System

    Science.gov (United States)

    Chai, Patrick R.; Merrill, Raymond G.; Qu, Min

    2016-01-01

    NASA's Human Spaceflight Architecture Team is developing a reusable hybrid transportation architecture in which both chemical and solar-electric propulsion systems are used to deliver crew and cargo to exploration destinations. By combining chemical and solar-electric propulsion into a single spacecraft and applying each where it is most effective, the hybrid architecture enables a series of Mars trajectories that are more fuel efficient than an all chemical propulsion architecture without significant increases to trip time. The architecture calls for the aggregation of exploration assets in cislunar space prior to departure for Mars and utilizes high energy lunar-distant high Earth orbits for the final staging prior to departure. This paper presents the detailed analysis of various cislunar operations for the EMC Hybrid architecture as well as the result of the higher fidelity end-to-end trajectory analysis to understand the implications of the design choices on the Mars exploration campaign.

  7. Film analysis systems and applications

    Energy Technology Data Exchange (ETDEWEB)

    Yonekura, Y.; Brill, A.B.

    1981-01-01

    The different components that can be used in modern film analysis systems are reviewed. TV camera and charge-coupled device sensors coupled to computers provide low cost systems for applications such as those described. The autoradiography (ARG) method provides an important tool for medical research and is especially useful for the development of new radiopharmaceutical compounds. Biodistribution information is needed for estimation of radiation dose, and for interpretation of the significance of observed patterns. The need for such precise information is heightened when one seeks to elucidate physiological principles/factors in normal and experimental models of disease. The poor spatial resolution achieved with current PET-imaging systems limits the information on radioreceptor mapping, neutrotransmitter, and neuroleptic drug distribution that can be achieved from patient studies. The artful use of ARG in carefully-controlled animal studies will be required to provide the additional information needed to fully understand results obtained with this new important research tool. (ERB)

  8. Film analysis systems and applications

    International Nuclear Information System (INIS)

    Yonekura, Y.; Brill, A.B.

    1981-01-01

    The different components that can be used in modern film analysis systems are reviewed. TV camera and charge-coupled device sensors coupled to computers provide low cost systems for applications such as those described. The autoradiography (ARG) method provides an important tool for medical research and is especially useful for the development of new radiopharmaceutical compounds. Biodistribution information is needed for estimation of radiation dose, and for interpretation of the significance of observed patterns. The need for such precise information is heightened when one seeks to elucidate physiological principles/factors in normal and experimental models of disease. The poor spatial resolution achieved with current PET-imaging systems limits the information on radioreceptor mapping, neutrotransmitter, and neuroleptic drug distribution that can be achieved from patient studies. The artful use of ARG in carefully-controlled animal studies will be required to provide the additional information needed to fully understand results obtained with this new important research tool

  9. Sample preparation for combined chemical analysis and bioassay application in water quality assessment

    NARCIS (Netherlands)

    Kolkman, A.; Schriks, M.; Brand, W; Bäuerlein, P.S.; van der Kooi, M.M.E.; van Doorn, R.H.; Emke, E.; Reus, A.; van der Linden, S.; de Voogt, P.; Heringa, M.B.

    2013-01-01

    The combination of in vitro bioassays and chemical screening can provide a powerful toolbox to determine biologically relevant compounds in water extracts. In this study, a sample preparation method is evaluated for the suitability for both chemical analysis and in vitro bioassays. A set of 39

  10. Forecasting global developments in the basic chemical industry for environmental policy analysis

    NARCIS (Netherlands)

    Broeren, M.L.M.; Saygin, D.; Patel, M.K.

    The chemical sector is the largest industrial energy user, but detailed analysis of its energy use developments lags behind other energy-intensive sectors. A cost-driven forecasting model for basic chemicals production is developed, accounting for regional production costs, demand growth and stock

  11. Laser applications to chemical and environmental analysis: introduction to the feature issue.

    Science.gov (United States)

    Allen, M G; Shaw, R W; Sick, V

    1999-03-20

    This issue of Applied Optics features 16 papers describing chemical and environmental measurements made possible by lasers. Many of these contributions were presented at the Optical Society of America Topical Meeting on Laser Applications to Chemical and Environmental Analysis, held in Orlando, Florida, 9-11 March 1998.

  12. CHEMKIN-III: A FORTRAN chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Kee, R.J.; Rupley, F.M.; Meeks, E.; Miller, J.A.

    1996-05-01

    This document is the user`s manual for the third-generation CHEMKIN package. CHEMKIN is a software package whose purpose is to facilitate the formation, solution, and interpretation of problems involving elementary gas-phase chemical kinetics. It provides a flexible and powerful tool for incorporating complex chemical kinetics into simulations of fluid dynamics. The package consists of two major software components: an Interpreter and a Gas-Phase Subroutine Library. The Interpreter is a program that reads a symbolic description of an elementary, user-specified chemical reaction mechanism. One output from the Interpreter is a data file that forms a link to the Gas-Phase Subroutine Library. This library is a collection of about 100 highly modular FORTRAN subroutines that may be called to return information on equations of state, thermodynamic properties, and chemical production rates. CHEMKIN-III includes capabilities for treating multi-fluid plasma systems, that are not in thermal equilibrium. These new capabilities allow researchers to describe chemistry systems that are characterized by more than one temperature, in which reactions may depend on temperatures associated with different species; i.e. reactions may be driven by collisions with electrons, ions, or charge-neutral species. These new features have been implemented in such a way as to require little or no changes to CHEMKIN implementation for systems in thermal equilibrium, where all species share the same gas temperature. CHEMKIN-III now has the capability to handle weakly ionized plasma chemistry, especially for application related to advanced semiconductor processing.

  13. Scanning Electron Microscope Analysis System

    Data.gov (United States)

    Federal Laboratory Consortium — This facility provides the capability to examine surfaces microscopically with high resolution (5 nanometers), perform micro chemical analyses of these surfaces, and...

  14. Identification of chemical components in Zataria multiflora callus by GC-Mass analysis

    Directory of Open Access Journals (Sweden)

    P. Golkar

    2017-11-01

    Full Text Available Background and objectives: A modern biotechnological technique to obtain useful natural products from plants is to isolate them from their callus. Zataria multiflora is a bushy herb of the Lamiaceae family known for its stimulant, antibacterial, antioxidant and expectorant effects in Iranian folk medicine.  The present study has investigated the induction of callus tissue and identification of its chemical compounds by GC-Mass analysis. Methods: The plant seeds of were sterilized and cultured in petri dishes lined with MS medium. After the emergence of seedlings, leaf segments were transferred to another MS medium supplemented with 2 mg/L 2,4- Dichlorophenoxyacetic acid + 1 mg/L  Kinetin. The petri dishes were incubated in a growth chamber at 24 °C with photoperiod of 16/8 (light/dark. The methanol extract of the calli were extracted after 2 month of callus induction and the chemicals were analyzed by gas chromatography-mass spectrometry (GC-MS. Reults: GC-MS analysis showed 20 different compound including different fatty acids, phytosterolls and phenolic compounds. Linolenic acid methyl ester (13.38%, thymol (10.34%, cyclohexasiloxane dodecamethyl (7.50% and р-cymen (7.30% were the dominant compounds, respectively. Conclusion: This novel   finding showed that in vitro production of thymol and other terpenoids by callus culture could be optimized for wide industrial and pharmaceutical applications via bioreactor systems employment.

  15. Risk analysis in the chemical industry; Analisis de riesgos en la industria quimica

    Energy Technology Data Exchange (ETDEWEB)

    Rea Soto, Rogelio; Sandoval Valenzuela, Salvador [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)

    2000-07-01

    The Instituto de Investigaciones Electricas has a group of risk analysis (GAR), specialized in the most advanced methodologies to apply them in diverse industries of the productive sector, such as the nuclear, the oil and the chemical industries. In this work the integrated methodology that the GAR uses to make risk analysis in the chemical and oil industries is described. These analyses have as an objective to make a meticulous evaluation of the system design, the operation practices, the maintenance and inspection policies and the emergency plans. [Spanish] El Instituto de Investigaciones Electricas cuenta con un grupo de analisis de riesgo (GAR), especializado en las metodologias mas avanzadas para aplicarlas en diversas industrias del sector productivo, como lo son la nuclear, la petrolera y la quimica. En este trabajo se describe la metodologia integrada que el GAR utiliza para realizar analisis de riesgos en las industrias quimica y petrolera. Estos analisis tienen como objetivo realizar una minuciosa evaluacion del diseno del sistema, las practicas de operacion, las politicas de mantenimiento e inspeccion y los planes de emergencia.

  16. Sampling and chemical analysis of smoke gas components from the SP Industry Calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Maansson, M.; Blomqvist, P.; Isaksson, I.; Rosell, L.

    1995-12-31

    This report describes the sampling and chemical analyses of smoke gas components for combustion performed in the SP Industry Calorimeter, where continuous measurements of oxygen, carbon dioxide and carbon monoxide are an integrated part of the Calorimeter system. On-line measurements of nitrogen oxides and total amounts of unburnt hydrocarbons were performed. Hydrogen cyanide, hydrogen chloride and ammonia in the smoke were sampled and absorbed in impinger bottles and subsequently analyzed using wet chemical techniques. An adsorbent sampling system was designed to allow the identification and quantitative analysis of individual organic compounds in the smoke. Gas chromatography was utilized with a mass spectrometric detector for the identification and a FID for quantification of the total amounts as well as individual components. A procedure for cleaning the smoke gas duct in between the combustion experiments was designed and found to be effective. The materials studied were Nylon 66, polypropylene, polystyrene (with and without fire retardant), PVC, and chlorobenzene. A total of 19 large-scale tests were carried out. The mass of sample burnt ranged from 20 kg to 125 kg in an experiment. 14 refs, 11 tabs

  17. Knowledge of Chemical Indicators of Eggs from Hens Reared in Conventional and Free Range System

    Directory of Open Access Journals (Sweden)

    Lucia Iuliana Cotfas

    2014-11-01

    Full Text Available Introduction Many consumers prefer nowadays eggs from alternative production systems because of their concerns about its own food safety and welfare of laying hens (Anderson. K. E., 2009. According to the regulations, a free range egg is obtained in poultry farms were laying hens have access to outdoor paddock, where they can show all the instincts of physiological and ethological (Usturoi M.G., 2004. Aims: The aim of this research was the correct information on the quality of these products and comparative study of chemical characteristics of eggs obtain from different production systems (conventional and free range. Materials and Methods: Chemical indicators’ determination was made through specific methods, in according with actual standards and consists in establishing of water, proteins, fats, ash and non-nitrogenous extractive substances contents. The biological material was represented by 90 eggs produced by Lohmann Brown laying hens aged 33 weeks: 45 gathered from birds exploited in free range system and 45 from birds reared in cages agreed by EU. Results: Egg obtained from free range system have a slightly higher content of protein (10.35±0.12 % vs. 9.97±0.03 % compared with conventional system, from albumen and from yolk (17.46±0.00 % vs. 17.19±0.01 %, this fact was happened because of aport of green grass from the outside paddock (Morris T.R., 2004. Comparative with conventional system, eggs from free range system have a higher content of lipids of yolk with 2.23%.Chemical analysis of melange from studied eggs showed a higher rate of dry matter at free range eggs (23.374% vs. 22.969%, but also for proteins (12.952% vs. 12.520% and lipids (7.676% vs. 7.398%. Conclusions: The increase in freedom of laying hens (free range caused a qualitative improvement of dry components of both the egg components (yolk and albumen but also the quantitative one, and eggs obtained has a high nutritional value  

  18. Method for the Collection, Gravimetric and Chemical Analysis of Nonvolatile Residue (NVR) on Surfaces

    Science.gov (United States)

    Gordon, Keith; Rutherford, Gugu; Aranda, Denisse

    2017-01-01

    Nonvolatile residue (NVR), sometimes referred to as molecular contamination is the term used for the total composition of the inorganic and high boiling point organic components in particulates and molecular films deposited on critical surfaces surrounding space structures, with the particulate and NVR contamination originating primarily from pre-launch operations. The "nonvolatile" suggestion from the terminology NVR implies that the collected residue will not experience much loss under ambient conditions. NVR has been shown to have a dramatic impact on the ability to perform optical measurements from platforms based in space. Such contaminants can be detected early by the controlled application of various detection techniques and contamination analyses. Contamination analyses are the techniques used to determine if materials, components, and subsystems can be expected to meet the performance requirements of a system. Of particular concern is the quantity of NVR contaminants that might be deposited on critical payload surfaces from these sources. Subsequent chemical analysis of the contaminant samples by infrared spectroscopy and gas chromatography mass spectrometry identifies the components, gives semi-quantitative estimates of contaminant thickness, indicates possible sources of the NVR, and provides guidance for effective cleanup procedures. In this report, a method for the collection and determination of the mass of NVR was generated by the authors at NASA Langley Research Center. This report describes the method developed and implemented for collecting NVR contaminants, and procedures for gravimetric and chemical analysis of the residue obtained. The result of this NVR analysis collaboration will help pave the way for Langley's ability to certify flight hardware outgassing requirements in support of flight projects such as Stratospheric Aerosol and Gas Experiment III (SAGE III), Clouds and the Earth's Radiant Energy System (CERES), Materials International

  19. Human Pluripotent Stem Cell Based Developmental Toxicity Assays for Chemical Safety Screening and Systems Biology Data Generation.

    Science.gov (United States)

    Shinde, Vaibhav; Klima, Stefanie; Sureshkumar, Perumal Srinivasan; Meganathan, Kesavan; Jagtap, Smita; Rempel, Eugen; Rahnenführer, Jörg; Hengstler, Jan Georg; Waldmann, Tanja; Hescheler, Jürgen; Leist, Marcel; Sachinidis, Agapios

    2015-06-17

    Efficient protocols to differentiate human pluripotent stem cells to various tissues in combination with -omics technologies opened up new horizons for in vitro toxicity testing of potential drugs. To provide a solid scientific basis for such assays, it will be important to gain quantitative information on the time course of development and on the underlying regulatory mechanisms by systems biology approaches. Two assays have therefore been tuned here for these requirements. In the UKK test system, human embryonic stem cells (hESC) (or other pluripotent cells) are left to spontaneously differentiate for 14 days in embryoid bodies, to allow generation of cells of all three germ layers. This system recapitulates key steps of early human embryonic development, and it can predict human-specific early embryonic toxicity/teratogenicity, if cells are exposed to chemicals during differentiation. The UKN1 test system is based on hESC differentiating to a population of neuroectodermal progenitor (NEP) cells for 6 days. This system recapitulates early neural development and predicts early developmental neurotoxicity and epigenetic changes triggered by chemicals. Both systems, in combination with transcriptome microarray studies, are suitable for identifying toxicity biomarkers. Moreover, they may be used in combination to generate input data for systems biology analysis. These test systems have advantages over the traditional toxicological studies requiring large amounts of animals. The test systems may contribute to a reduction of the costs for drug development and chemical safety evaluation. Their combination sheds light especially on compounds that may influence neurodevelopment specifically.

  20. Integrated Process Design, Control and Analysis of Intensified Chemical Processes

    DEFF Research Database (Denmark)

    Mansouri, Seyed Soheil

    distillation column. Next, these design methods are extended using element concept to also include ternary as well as multicomponent reactive distillation processes. The element concept is used to translate a ternary system of compounds (A + B ↔ C) to a binary system of elements (WA and WB). When only two...... elements are needed to represent the reacting system of more than two compounds, a binary element system is identified. In the case of multi-element reactive distillation processes (where more than two elements are encountered) the equivalent element concept is used to translate a multicomponent (multi......-element) system of compounds (A + B ↔ C + D) to a binary system of key elements (elements WHK and WLK). For an energy-efficient design, non-reactive driving force (for binary non-reactive distillation), reactive driving force (for binary element systems) and binary-equivalent driving force (for multicomponent...

  1. Temporal cross-correlation asymmetry and departure from equilibrium in a bistable chemical system.

    Science.gov (United States)

    Bianca, C; Lemarchand, A

    2014-06-14

    This paper aims at determining sustained reaction fluxes in a nonlinear chemical system driven in a nonequilibrium steady state. The method relies on the computation of cross-correlation functions for the internal fluctuations of chemical species concentrations. By employing Langevin-type equations, we derive approximate analytical formulas for the cross-correlation functions associated with nonlinear dynamics. Kinetic Monte Carlo simulations of the chemical master equation are performed in order to check the validity of the Langevin equations for a bistable chemical system. The two approaches are found in excellent agreement, except for critical parameter values where the bifurcation between monostability and bistability occurs. From the theoretical point of view, the results imply that the behavior of cross-correlation functions cannot be exploited to measure sustained reaction fluxes in a specific nonlinear system without the prior knowledge of the associated chemical mechanism and the rate constants.

  2. Crystal-Chemical Analysis Martian Minerals in Gale Crater

    Science.gov (United States)

    Morrison, S. M.; Downs, R. T.; Blake, D. F.; Bish, D. L.; Ming, D. W.; Morris, R. V.; Yen, A. S.; Chipera, S. J.; Treiman, A. H.; Vaniman, D. T.; hide

    2015-01-01

    The CheMin instrument on the Mars Science Laboratory rover Curiosity performed X-ray diffraction analyses on scooped soil at Rocknest and on drilled rock fines at Yellowknife Bay (John Klein and Cumberland samples), The Kimberley (Windjana sample), and Pahrump (Confidence Hills sample) in Gale crater, Mars. Samples were analyzed with the Rietveld method to determine the unit-cell parameters and abundance of each observed crystalline phase. Unit-cell parameters were used to estimate compositions of the major crystalline phases using crystal-chemical techniques. These phases include olivine, plagioclase and clinopyroxene minerals. Comparison of the CheMin sample unit-cell parameters with those in the literature provides an estimate of the chemical compositions of the major crystalline phases. Preliminary unit-cell parameters, abundances and compositions of crystalline phases found in Rocknest and Yellowknife Bay samples were reported in. Further instrument calibration, development of 2D-to- 1D pattern conversion corrections, and refinement of corrected data allows presentation of improved compositions for the above samples.

  3. On the tracks of sandarac, review and chemical analysis.

    Science.gov (United States)

    Azémard, Clara; Ménager, Matthieu; Vieillescazes, Cathy

    2017-12-01

    The sandarac resin (Tetraclinis articulata) has been long used for its properties, mostly as a varnish component. Called juniper resin until the nineteenth century, the real botanical origin of sandarac is still unclear. The first approach to this issue is the review of the evolution of the etymology, terminology, and botanical description of sandarac through time. It seems that sandarac was mainly coming from T. articulata but the use of some juniper resins before the twentieth century is not to be excluded. The second approach is a chemical one; we used gas chromatography coupled to mass spectrometry to characterise the resin. As sandarac was the main component of the famous Italian varnish Vernice liquida, its characterisation is important for old paintings studies. However, although we could hope to differentiate sandarac, Juniperus communis and Juniperus oxycedrus resins by looking at their chemical composition, it appears that these resins are very similar. Besides, we notice a lack of old varnishes containing sandarac which complicates our work.

  4. Stochastic analysis of biochemical systems

    CERN Document Server

    Anderson, David F

    2015-01-01

    This book focuses on counting processes and continuous-time Markov chains motivated by examples and applications drawn from chemical networks in systems biology.  The book should serve well as a supplement for courses in probability and stochastic processes.  While the material is presented in a manner most suitable for students who have studied stochastic processes up to and including martingales in continuous time, much of the necessary background material is summarized in the Appendix. Students and Researchers with a solid understanding of calculus, differential equations, and elementary probability and who are well-motivated by the applications will find this book of interest.    David F. Anderson is Associate Professor in the Department of Mathematics at the University of Wisconsin and Thomas G. Kurtz is Emeritus Professor in the Departments of Mathematics and Statistics at that university. Their research is focused on probability and stochastic processes with applications in biology and other ar...

  5. Thermocouple-based Temperature Sensing System for Chemical Cell Inside Micro UAV Device

    Science.gov (United States)

    Han, Yanhui; Feng, Yue; Lou, Haozhe; Zhang, Xinzhao

    2018-03-01

    Environmental temperature of UAV system is crucial for chemical cell component inside. Once the temperature of this chemical cell is over 259 °C and keeps more than 20 min, the high thermal accumulation would result in an explosion, which seriously damage the whole UAV system. Therefore, we develop a micro temperature sensing system for monitoring the temperature of chemical cell thermally influenced by UAV device deployed in a 300 °C temperature environment, which is quite useful for insensitive munitions and UAV safety enhancement technologies.

  6. Automation for System Safety Analysis

    Science.gov (United States)

    Malin, Jane T.; Fleming, Land; Throop, David; Thronesbery, Carroll; Flores, Joshua; Bennett, Ted; Wennberg, Paul

    2009-01-01

    This presentation describes work to integrate a set of tools to support early model-based analysis of failures and hazards due to system-software interactions. The tools perform and assist analysts in the following tasks: 1) extract model parts from text for architecture and safety/hazard models; 2) combine the parts with library information to develop the models for visualization and analysis; 3) perform graph analysis and simulation to identify and evaluate possible paths from hazard sources to vulnerable entities and functions, in nominal and anomalous system-software configurations and scenarios; and 4) identify resulting candidate scenarios for software integration testing. There has been significant technical progress in model extraction from Orion program text sources, architecture model derivation (components and connections) and documentation of extraction sources. Models have been derived from Internal Interface Requirements Documents (IIRDs) and FMEA documents. Linguistic text processing is used to extract model parts and relationships, and the Aerospace Ontology also aids automated model development from the extracted information. Visualizations of these models assist analysts in requirements overview and in checking consistency and completeness.

  7. A multi-attribute Systemic Risk Index for comparing and prioritizing chemical industrial areas

    International Nuclear Information System (INIS)

    Reniers, G.L.L.; Sörensen, K.; Dullaert, W.

    2012-01-01

    Measures taken to decrease interdependent risks within chemical industrial areas should be based on quantitative data from a holistic (cluster-based) point of view. Therefore, this paper examines the typology of networks representing industrial areas to formulate recommendations to more effectively protect a chemical cluster against existing systemic risks. Chemical industrial areas are modeled as two distinct complex networks and are prioritized by computing two sub-indices with respect to existing systemic safety and security risks (using Domino Danger Units) and supply chain risks (using units from an ordinal expert scale). Subsequently, a Systemic Risk Index for the industrial area is determined employing the Borda algorithm, whereby the systemic risk index considers both a safety and security network risk index and a supply chain network risk index. The developed method allows decreasing systemic risks within chemical industrial areas from a holistic (inter-organizational and/or inter-cluster) perspective. An illustrative example is given.

  8. Essentials of water systems design in the oil, gas, and chemical processing industries

    CERN Document Server

    Bahadori, Alireza; Boyd, Bill

    2013-01-01

    Essentials of Water Systems Design in the Oil, Gas and Chemical Processing Industries provides valuable insight for decision makers by outlining key technical considerations and requirements of four critical systems in industrial processing plants—water treatment systems, raw water and plant water systems, cooling water distribution and return systems, and fire water distribution and storage facilities. The authors identify the key technical issues and minimum requirements related to the process design and selection of various water supply systems used in the oil, gas, and chemical processing industries. This book is an ideal, multidisciplinary work for mechanical engineers, environmental scientists, and oil and gas process engineers.

  9. Tailor-made materials for tailor-made applications : application of molecular imprints in chemical analysis

    NARCIS (Netherlands)

    Ensing, K; de Boer, Theo

    The development of new selective analytical methods and sample enrichment techniques remains of interest. The implementation of molecular imprints in chemical analysis may offer advantages over existing methodologies. Criteria for the applicability of molecular imprints in separation methods,

  10. Literature survey of chemical analysis by thermal neutron induced capture gamma ray spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Gladney, E.S.

    1979-09-01

    A brief discussion of the principles and techniques of chemical analysis by neutron capture gamma radiation is presented, and the widely scattered literature is collected into a single table arranged by element measured.

  11. Literature survey of chemical analysis by thermal neutron induced capture gamma ray spectrometry

    International Nuclear Information System (INIS)

    Gladney, E.S.

    1979-09-01

    A brief discussion of the principles and techniques of chemical analysis by neutron capture gamma radiation is presented, and the widely scattered literature is collected into a single table arranged by element measured

  12. Chemical risk evaluation, importance of the risk analysis framework uses: Latin America development restrictions

    International Nuclear Information System (INIS)

    Carrillo, M.

    2013-01-01

    The power point presentation is about reach and results of the risk analysis in Venezuela, chemical dangers in food, human damage, injuries , technologies news in fodd development, toxicity, microbiological risk, technical recommendations

  13. Origin of spontaneous wave generation in an oscillatory chemical system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yi-Xue; Foerster, P.; Ross, J. [Stanford Univ., CA (United States)

    1992-10-29

    The origin of spontaneously generated chemical waves in an oscillatory Belousov-Zhabotinskii reaction has been investigated by numerical calculations of the deterministic reaction-diffusion equations of a modified Oregonator model and by equilibrium stochastic calculations. From numerical calculations, we obtain threshold perturbations in the phase of oscillations and in the concentrations of HBrO{sub 2} and Br{sup {minus}} within areas of space with varying radii necessary to initiate trigger waves. Inward propagating trigger waves initiated by a phase shift in the perturbed region with respect to the bulk solution have been observed in the calculations for the first time. Perturbations smaller than the threshold perturbations or in regions with smaller radii lead to phase-diffusion waves. Our equilibrium stochastic calculations show that the recurrence time for a thermal fluctuation to induce a change in the HBrO{sub 2} concentration of sufficient magnitude within a sufficient volume for a trigger wave to propagate is many orders of magnitude larger than the observation time of traveling wave experiments. We concluded that an internal thermal fluctuation is highly unlikely to generate a trigger wave in an oscillatory chemical solution. 22 refs., 5 figs., 7 tabs.

  14. WAR DSS: A DECISION SUPPORT SYSTEM FOR ENVIRONMENTALLY CONSCIOUS CHEMICAL PROCESS DESIGN

    Science.gov (United States)

    The second generation of the Waste Reduction (WAR) Algorithm is constructed as a decision support system (DSS) in the design of chemical manufacturing facilities. The WAR DSS is a software tool that can help reduce the potential environmental impacts (PEIs) of industrial chemical...

  15. Mass transfer accompanied with complete reversible chemical reactions in gas-liquid systems: an overview

    NARCIS (Netherlands)

    van Swaaij, Willibrordus Petrus Maria; Versteeg, Geert

    1992-01-01

    In many processes in the chemical industry mass transfer accompanied with reversible, complex chemical reactions in gas-liquid systems are frequently encountered. In point of view of design purposes it is very important that the absorption rates of the transferred reactants can estimated

  16. Environmental Impact Assessment for Socio-Economic Analysis of Chemicals

    DEFF Research Database (Denmark)

    Calow, Peter; Biddinger, G; Hennes, C

    This report describes the requirements for, and illustrates the application of, a methodology for a socio-economic analysis (SEA) especially as it might be adopted in the framework of REACH.......This report describes the requirements for, and illustrates the application of, a methodology for a socio-economic analysis (SEA) especially as it might be adopted in the framework of REACH....

  17. Rigorous evaluation of chemical measurement uncertainty: liquid chromatographic analysis methods using detector response factor calibration

    Science.gov (United States)

    Toman, Blaza; Nelson, Michael A.; Bedner, Mary

    2017-06-01

    Chemical measurement methods are designed to promote accurate knowledge of a measurand or system. As such, these methods often allow elicitation of latent sources of variability and correlation in experimental data. They typically implement measurement equations that support quantification of effects associated with calibration standards and other known or observed parametric variables. Additionally, multiple samples and calibrants are usually analyzed to assess accuracy of the measurement procedure and repeatability by the analyst. Thus, a realistic assessment of uncertainty for most chemical measurement methods is not purely bottom-up (based on the measurement equation) or top-down (based on the experimental design), but inherently contains elements of both. Confidence in results must be rigorously evaluated for the sources of variability in all of the bottom-up and top-down elements. This type of analysis presents unique challenges due to various statistical correlations among the outputs of measurement equations. One approach is to use a Bayesian hierarchical (BH) model which is intrinsically rigorous, thus making it a straightforward method for use with complex experimental designs, particularly when correlations among data are numerous and difficult to elucidate or explicitly quantify. In simpler cases, careful analysis using GUM Supplement 1 (MC) methods augmented with random effects meta analysis yields similar results to a full BH model analysis. In this article we describe both approaches to rigorous uncertainty evaluation using as examples measurements of 25-hydroxyvitamin D3 in solution reference materials via liquid chromatography with UV absorbance detection (LC-UV) and liquid chromatography mass spectrometric detection using isotope dilution (LC-IDMS).

  18. Construction of a technique plan repository and evaluation system based on AHP group decision-making for emergency treatment and disposal in chemical pollution accidents

    International Nuclear Information System (INIS)

    Shi, Shenggang; Cao, Jingcan; Feng, Li; Liang, Wenyan; Zhang, Liqiu

    2014-01-01

    Highlights: • Different chemical pollution accidents were simplified using the event tree analysis. • Emergency disposal technique plan repository of chemicals accidents was constructed. • The technique evaluation index system of chemicals accidents disposal was developed. • A combination of group decision and analytical hierarchy process (AHP) was employed. • Group decision introducing similarity and diversity factor was used for data analysis. - Abstract: The environmental pollution resulting from chemical accidents has caused increasingly serious concerns. Therefore, it is very important to be able to determine in advance the appropriate emergency treatment and disposal technology for different types of chemical accidents. However, the formulation of an emergency plan for chemical pollution accidents is considerably difficult due to the substantial uncertainty and complexity of such accidents. This paper explains how the event tree method was used to create 54 different scenarios for chemical pollution accidents, based on the polluted medium, dangerous characteristics and properties of chemicals involved. For each type of chemical accident, feasible emergency treatment and disposal technology schemes were established, considering the areas of pollution source control, pollutant non-proliferation, contaminant elimination and waste disposal. Meanwhile, in order to obtain the optimum emergency disposal technology schemes as soon as the chemical pollution accident occurs from the plan repository, the technique evaluation index system was developed based on group decision-improved analytical hierarchy process (AHP), and has been tested by using a sudden aniline pollution accident that occurred in a river in December 2012

  19. Naval Research Laboratory Industrial Chemical Analysis and Respiratory Filter Standards Development

    Science.gov (United States)

    2017-09-29

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6360--17-9750 Naval Research Laboratory Industrial Chemical Analysis and Respiratory...LIMITATION OF ABSTRACT Naval Research Laboratory Industrial Chemical Analysis and Respiratory Filter Standards Development Thomas E. Sutto Naval Research ...09-2017 NRL Memorandum Report 2009 – 2016 63-4974-07 Naval Research Laboratory, Code 6362 4555 Overlook Avenue, SW Washington, DC 20375-5320 NRL 6.1

  20. The ATLAS distributed analysis system

    International Nuclear Information System (INIS)

    Legger, F

    2014-01-01

    In the LHC operations era, analysis of the multi-petabyte ATLAS data sample by globally distributed physicists is a challenging task. To attain the required scale the ATLAS Computing Model was designed around the concept of Grid computing, realized in the Worldwide LHC Computing Grid (WLCG), the largest distributed computational resource existing in the sciences. The ATLAS experiment currently stores over 140 PB of data and runs about 140,000 concurrent jobs continuously at WLCG sites. During the first run of the LHC, the ATLAS Distributed Analysis (DA) service has operated stably and scaled as planned. More than 1600 users submitted jobs in 2012, with 2 million or more analysis jobs per week, peaking at about a million jobs per day. The system dynamically distributes popular data to expedite processing and maximally utilize resources. The reliability of the DA service is high and steadily improving; Grid sites are continually validated against a set of standard tests, and a dedicated team of expert shifters provides user support and communicates user problems to the sites. Both the user support techniques and the direct feedback of users have been effective in improving the success rate and user experience when utilizing the distributed computing environment. In this contribution a description of the main components, activities and achievements of ATLAS distributed analysis is given. Several future improvements being undertaken will be described.

  1. The ATLAS distributed analysis system

    Science.gov (United States)

    Legger, F.; Atlas Collaboration

    2014-06-01

    In the LHC operations era, analysis of the multi-petabyte ATLAS data sample by globally distributed physicists is a challenging task. To attain the required scale the ATLAS Computing Model was designed around the concept of Grid computing, realized in the Worldwide LHC Computing Grid (WLCG), the largest distributed computational resource existing in the sciences. The ATLAS experiment currently stores over 140 PB of data and runs about 140,000 concurrent jobs continuously at WLCG sites. During the first run of the LHC, the ATLAS Distributed Analysis (DA) service has operated stably and scaled as planned. More than 1600 users submitted jobs in 2012, with 2 million or more analysis jobs per week, peaking at about a million jobs per day. The system dynamically distributes popular data to expedite processing and maximally utilize resources. The reliability of the DA service is high and steadily improving; Grid sites are continually validated against a set of standard tests, and a dedicated team of expert shifters provides user support and communicates user problems to the sites. Both the user support techniques and the direct feedback of users have been effective in improving the success rate and user experience when utilizing the distributed computing environment. In this contribution a description of the main components, activities and achievements of ATLAS distributed analysis is given. Several future improvements being undertaken will be described.

  2. Chemical Fingerprint Analysis and Quantitative Analysis of Rosa rugosa by UPLC-DAD

    Directory of Open Access Journals (Sweden)

    Sanawar Mansur

    2016-12-01

    Full Text Available A method based on ultra performance liquid chromatography with a diode array detector (UPLC-DAD was developed for quantitative analysis of five active compounds and chemical fingerprint analysis of Rosa rugosa. Ten batches of R. rugosa collected from different plantations in the Xinjiang region of China were used to establish the fingerprint. The feasibility and advantages of the used UPLC fingerprint were verified for its similarity evaluation by systematically comparing chromatograms with professional analytical software recommended by State Food and Drug Administration (SFDA of China. In quantitative analysis, the five compounds showed good regression (R2 = 0.9995 within the test ranges, and the recovery of the method was in the range of 94.2%–103.8%. The similarities of liquid chromatography fingerprints of 10 batches of R. rugosa were more than 0.981. The developed UPLC fingerprint method is simple, reliable, and validated for the quality control and identification of R. rugosa. Additionally, simultaneous quantification of five major bioactive ingredients in the R. rugosa samples was conducted to interpret the consistency of the quality test. The results indicated that the UPLC fingerprint, as a characteristic distinguishing method combining similarity evaluation and quantification analysis, can be successfully used to assess the quality and to identify the authenticity of R. rugosa.

  3. Investigations on the optimum design of chemical addition system for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Byong Hoon [Junior College of Inchon, Inchon (Korea, Republic of); Chung, Chang Kyu; Choi, Han Rim; Kim, Eun Kee; Ro, Tae Sun [Korea Power Engineering Company, Inc. Taejon (Korea, Republic of)

    1997-12-31

    Mixing characteristics of the chemical additives in the chemical injection tank of the chemical and volume control system(CVCS) were investigated for the Yonggwang Nuclear units 5 and 6. Numerical calculations were performed with a low-Reynolds number turbulence model. Studies were also conducted for the injection tank with a disk located at 1/4H, 2/4H, and 3/4H from the inlet in order to see the effect in the enhancement of chemical mixing. Results show that the optimum arrangement is to locate a disk close to the inlet. 10 refs., 4 figs. (Author)

  4. Probabilistic thermo-chemical analysis of a pultruded composite rod

    DEFF Research Database (Denmark)

    Baran, Ismet; Tutum, Cem Celal; Hattel, Jesper Henri

    2012-01-01

    In the present study the deterministic thermo-chemical pultrusion simulation of a composite rod taken from the literature [7] is used as a validation case. The predicted centerline temperature and cure degree profiles of the rod match well with those in the literature [7]. Following the validation...... case, the probabilistic design of the pultrusion process, which has not been considered until now, is performed. The effect of statistical variations in the material (i.e. fiber and resin) and resin kinetic properties, as well as process parameters such as pulling speed and inlet temperature...... on the product quality (degree of cure) are examined by means of Monte Carlo Simulation (MCS) with Latin Hypercube Sampling (LHS) technique. The variations in the activation energy as well as the density of the resin are found to have a strong influence on the centerline degree of cure at the exit whereas...

  5. Stability analysis of nonlinear systems

    CERN Document Server

    Lakshmikantham, Vangipuram; Martynyuk, Anatoly A

    2015-01-01

    The book investigates stability theory in terms of two different measure, exhibiting the advantage of employing families of Lyapunov functions and treats the theory of a variety of inequalities, clearly bringing out the underlying theme. It also demonstrates manifestations of the general Lyapunov method, showing how this technique can be adapted to various apparently diverse nonlinear problems. Furthermore it discusses the application of theoretical results to several different models chosen from real world phenomena, furnishing data that is particularly relevant for practitioners. Stability Analysis of Nonlinear Systems is an invaluable single-sourse reference for industrial and applied mathematicians, statisticians, engineers, researchers in the applied sciences, and graduate students studying differential equations.

  6. Structural and chemical analysis of materials with high spatial resolution

    International Nuclear Information System (INIS)

    Benthem, K. van; Kraemer, S.; Sigle, W.; Ruehle, M.

    2002-01-01

    An understanding of the correlation between microstructures and properties of materials require the characterization of the material on many different length scales. Often the properties depend primarily on the atomistics of defects, such as dislocations and interfaces. The different techniques of transmission electron microscopy allow the characterization of the structure and of the chemical composition of materials with high spatial resolution to the atomic level: high resolution transmission electron microscopy allows the determination of the position of the columns of atoms (ions) with high accuracy. The accuracy which can be achieved in these measurements depends not only on the instrumentation but also on the quality of the transmitted specimen and on the scattering power of the atoms (ions) present in the analyzed column. The chemical composition can be revealed from investigations by analytical microscopy which includes energy dispersive x-ray spectroscopy, mainly quantitatively applied for heavy elements, and electron energy-loss spectroscopy. Furthermore, the energy-loss near-edge structure of EELS data results in information on the local band structure of unoccupied states of the excited atoms and, therefore, on bonding. A quantitative evaluation of convergent beam electron diffraction results in information on the electron charge density distribution of the bulk (defect-free) material. The different techniques are described and applied to different problems in materials science. lt will be shown that nearly atomic resolution can be achieved in high resolution electron microscopy and in analytical electron microscopy. Recent developments in electron microscopy instrumentation will result in atomic resolution in the foreseeable future. (author)

  7. Capacitive chemical sensor

    Science.gov (United States)

    Manginell, Ronald P; Moorman, Matthew W; Wheeler, David R

    2014-05-27

    A microfabricated capacitive chemical sensor can be used as an autonomous chemical sensor or as an analyte-sensitive chemical preconcentrator in a larger microanalytical system. The capacitive chemical sensor detects changes in sensing film dielectric properties, such as the dielectric constant, conductivity, or dimensionality. These changes result from the interaction of a target analyte with the sensing film. This capability provides a low-power, self-heating chemical sensor suitable for remote and unattended sensing applications. The capacitive chemical sensor also enables a smart, analyte-sensitive chemical preconcentrator. After sorption of the sample by the sensing film, the film can be rapidly heated to release the sample for further analysis. Therefore, the capacitive chemical sensor can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.

  8. Experimental research of the impact of the dosing of chemical reagents on the dynamic behavior of regulation system of cycle chemistry

    Science.gov (United States)

    Yegoshina, O. V.; Bolshakova, N. A.

    2017-11-01

    Organization of reliable chemical control for maintaining cycle chemistry is one of the most important problems to be solved at the present time the design and operation of thermal power plants. To maintain optimal parameters of cycle chemistry are used automated chemical control system and regulation system of dosing chemical reagents. Reliability and stability analyzer readings largely determine the reliability of the water cycle chemistry. Now the most common reagents are ammonia, alkali and film-forming amines. In this paper are presented the results of studies of the impact of concentration and composition of chemical reagents for readings stability of automatic analyzers and transients time of control systems for cycles chemistry. Research of the impact of chemical reagents on the dynamic behavior of regulation system for cycle chemistry was conducted at the experimental facility of the Department of thermal power stations of the Moscow Engineering Institute. This experimental facility is model of the work of regulation system for cycle chemistry close to the actual conditions on the energy facilities CHP. Analysis of results of the impact of chemical reagent on the dynamic behavior of ammonia and film forming amines dosing systems showed that the film-forming amines dosing system is more inertia. This emphasizes the transition process of the system, in which a half times longer dosing of ammonia. Results of the study can be used to improve the monitoring systems of water chemical treatment.

  9. Studying chemical reactions in biological systems with MBN Explorer

    DEFF Research Database (Denmark)

    Sushko, Gennady B.; Solov'yov, Ilia A.; Verkhovtsev, Alexey V.

    2016-01-01

    The concept of molecular mechanics force field has been widely accepted nowadays for studying various processes in biomolecular systems. In this paper, we suggest a modification for the standard CHARMM force field that permits simulations of systems with dynamically changing molecular topologies....

  10. Chemical analysis of useful trace elements in sea water

    International Nuclear Information System (INIS)

    Katoh, Shunsaku; Fujii, Ayako; Miyai, Yoshitaka; Sakane, Kohji; Ogata, Noboru.

    1983-01-01

    The methods for the analysis of useful trace elements in sea water which have been tried so far are reviewed, and these methods are described briefly from the standpoint of studying the collection of resources. Ag and Au can be determined by concentrating sea water by ion-exchange method, solvent extraction method and electrodeposition method, then the elements are measured quantitatively by activation analysis and atomic absorption spectrochemical analysis. Sr, B and Li, which exist in relatively high concentration in sea water, are determined easily by atomic absorption spectrochemical analysis and absorption spectrometry. U, Mo and V are measured suitably by concentrating the elements by coprecipitation or solvent extraction method, and measuring by fluorescence analysis and arsenazo-3 method for U and through graphite-atomic absorption analysis for Mo and V. It has been revealed that the concentration of Ag and Au in sea water is extremely low, accordingly the recovery study is not conducted recently. On the other hand, the adsorption method using hydrated titanium oxide and amidoxim adsorbents for U, Mo and V, the adsorption method using aluminum adsorbent for Li, and the adsorption method using magnesium oxide and zirconium hydroxide and the solvent extraction method for B are hopeful to recover these elements. (Yoshitake, I.)

  11. Analysis of entry of additional energy to gunpowder in electrothermal chemical shot

    Science.gov (United States)

    Burkin, Viktor; Ishchenko, Alexandr; Kasimov, Vladimir; Samorokova, Nina; Sidorov, Aleksey

    2017-11-01

    In the article two series of ballistic experiments conducted according to the scheme of electrothermal chemical control of ballistic parameters of the shot at the Research Institute of Applied Mathematics and Mechanics of Tomsk State University (RIAMM TSU, Russia) are considered. The experimental part of the work is described. The analysis of the electro physical data of ballistic experiments is carried out. A methodical approach that allows to take into account the entry of an electric discharge plasma in a gunpowder in the mathematical model of internal ballistic processes in barrel systems is proposed and tested. Under the conditions of these experiments, the effects of various characteristics of the plasmatron on the nature of the energy entry are estimated.

  12. Glass Formation, Chemical Properties and Surface Analysis of Cu-Based Bulk Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Akihisa Inoue

    2011-04-01

    Full Text Available This paper reviews the influence of alloying elements Mo, Nb, Ta and Ni on glass formation and corrosion resistance of Cu-based bulk metallic glasses (BMGs. In order to obtain basic knowledge for application to the industry, corrosion resistance of the Cu–Hf–Ti–(Mo, Nb, Ta, Ni and Cu–Zr–Ag–Al–(Nb bulk glassy alloy systems in various solutions are reported in this work. Moreover, X-ray photoelectron spectroscopy (XPS analysis is performed to clarify the surface-related chemical characteristics of the alloy before and after immersion in the solutions; this has lead to a better understanding of the correlation between the surface composition and the corrosion resistance.

  13. Genomic analysis of thermophilic Bacillus coagulans strains: efficient producers for platform bio-chemicals.

    Science.gov (United States)

    Su, Fei; Xu, Ping

    2014-01-29

    Microbial strains with high substrate efficiency and excellent environmental tolerance are urgently needed for the production of platform bio-chemicals. Bacillus coagulans has these merits; however, little genetic information is available about this species. Here, we determined the genome sequences of five B. coagulans strains, and used a comparative genomic approach to reconstruct the central carbon metabolism of this species to explain their fermentation features. A novel xylose isomerase in the xylose utilization pathway was identified in these strains. Based on a genome-wide positive selection scan, the selection pressure on amino acid metabolism may have played a significant role in the thermal adaptation. We also researched the immune systems of B. coagulans strains, which provide them with acquired resistance to phages and mobile genetic elements. Our genomic analysis provides comprehensive insights into the genetic characteristics of B. coagulans and paves the way for improving and extending the uses of this species.

  14. GREENER CHEMICAL PROCESS DESIGN ALTERNATIVES ARE REVEALED USING THE WASTE REDUCTION DECISION SUPPORT SYSTEM (WAR DSS)

    Science.gov (United States)

    The Waste Reduction Decision Support System (WAR DSS) is a Java-based software product providing comprehensive modeling of potential adverse environmental impacts (PEI) predicted to result from newly designed or redesigned chemical manufacturing processes. The purpose of this so...

  15. SRD Exhibits ONR Funded Chemical Detector Technology & Supporting Gas Delivery Systems (GDS) AT PITTCON 2005

    National Research Council Canada - National Science Library

    Harmon, Andrew

    2005-01-01

    SRD attended PITTCON 2005 in Orlando, Florida with an exhibitor booth to showcase their chemical detector technology being developed for The Office of Naval Research as well as gas delivery systems (GDS...

  16. An integrated computer aided system for integrated design of chemical processes

    DEFF Research Database (Denmark)

    Gani, Rafiqul; Hytoft, Glen; Jaksland, Cecilia

    1997-01-01

    In this paper, an Integrated Computer Aided System (ICAS), which is particularly suitable for solving problems related to integrated design of chemical processes; is presented. ICAS features include a model generator (generation of problem specific models including model simplification and model...... and communicates with all other computational tools available in ICAS. A large range of thermodynamic models for estimation of the necessary thermo-physical properties, a large range of computational algorithms for determination of various types of phase diagrams, algorithms for process synthesis, design, control...... reduction), a simulator (use of problem specific simulation strategies for steady state and dynamic simulation), toolboxes (thermodynamic toolbox, synthesis toolbox, control toolbox, design toolbox and analysis toolbox), and an interface for problem defintion. Each toolbox solves aspecific set of problems...

  17. Vacuum Enhanced X-Ray Florescent Scanner Allows On-The-Spot Chemical Analysis

    Science.gov (United States)

    2004-01-01

    Marshall Space Flight Center engineers have teamed with KeyMaster Technologies, Kennewick, Washington, to develop a portable vacuum analyzer that performs on-the-spot chemical analyses under field conditions, a task previously only possible in a chemical laboratory. The new capability is important not only to the aerospace industry, but holds potential for broad applications in any industry that depends on materials analysis, such as the automotive and pharmaceutical industries. Weighing in at a mere 4 pounds, the newly developed handheld vacuum X-ray fluorescent analyzer can identify and characterize a wide range of elements, and is capable of detecting chemical elements with low atomic numbers, such as sodium, aluminum and silicon. It is the only handheld product on the market with that capability. Aluminum alloy verification is of particular interest to NASA because vast amounts of high-strength aluminum alloys are used in the Space Shuttle propulsion system such as the External Tank, Main Engine, and Solid Rocket Boosters. This capability promises to be a boom to the aerospace community because of unique requirements, for instance, the need to analyze Space Shuttle propulsion systems on the launch pad. Those systems provide the awe-inspiring rocket power that propels the Space Shuttle from Earth into orbit in mere minutes. The scanner development also marks a major improvement in the quality assurance field, because screws, nuts, bolts, fasteners, and other items can now be evaluated upon receipt and rejected if found to be substandard. The same holds true for aluminum weld rods. The ability to validate the integrity of raw materials and partially finished products before adding value to them in the manufacturing process will be of benefit not only to businesses, but also to the consumer, who will have access to a higher value product at a cheaper price. Three vacuum X-ray scanners are already being used in the Space Shuttle Program. The External Tank Project

  18. Combustion flame-plasma hybrid reactor systems, and chemical reactant sources

    Science.gov (United States)

    Kong, Peter C

    2013-11-26

    Combustion flame-plasma hybrid reactor systems, chemical reactant sources, and related methods are disclosed. In one embodiment, a combustion flame-plasma hybrid reactor system comprising a reaction chamber, a combustion torch positioned to direct a flame into the reaction chamber, and one or more reactant feed assemblies configured to electrically energize at least one electrically conductive solid reactant structure to form a plasma and feed each electrically conductive solid reactant structure into the plasma to form at least one product is disclosed. In an additional embodiment, a chemical reactant source for a combustion flame-plasma hybrid reactor comprising an elongated electrically conductive reactant structure consisting essentially of at least one chemical reactant is disclosed. In further embodiments, methods of forming a chemical reactant source and methods of chemically converting at least one reactant into at least one product are disclosed.

  19. Determination of solute organic concentration in contaminated soils using a chemical-equilibrium soil column system

    DEFF Research Database (Denmark)

    Gamst, Jesper; Kjeldsen, Peter; Christensen, Thomas Højlund

    2007-01-01

    Groundwater risk assessment of contaminated soils implies determination of the solute concentration leaching out of the soil. Determination based on estimation techniques or simple experimental batch approach has proven inadequate. Two chemical equilibrium soil column leaching tests...... for determination of solute concentration in a contaminated soil were developed; (1) a chemical Equilibrium and Recirculation column test for Volatile organic chemicals (ER-V) and (2) a chemical Equilibrium and Recirculation column test for Hydrophobic organic chemicals (ER-H). The two test systems were evaluated...... using two soils with different content of organic carbon (f(oc) of 1.5 and 6.5%, respectively). A quadruple blind test of the ER-V system using glass beads in stead of soil showed an acceptable recovery (65-85%) of all of the 11 VOCs tested. Only for the most volatile compound (heptane, K-H similar...

  20. Practical Fourier transform infrared spectroscopy: industrial and laboratory chemical analysis

    National Research Council Canada - National Science Library

    Ferraro, John R; Krishnan, K

    1990-01-01

    ... in any form or by any means , electroni c or mechanical , includin g photo - copy, recording , or any informatio n storag e and retrieva l system, withou t permissio n in writin g from the publish...

  1. Comparative chemical analysis of commercial creosotes and solvent refined coal-II materials by high resolution gas chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Wright, C.W.; Later, D.W.; Wilson, B.W.

    1985-06-01

    The chemical composition of a commercially available creosote was compared to a direct coal liquefaction product, i.e., solvent refined coal-II fuel oil blend (SRC-II FOB) using high resolution gas chromatography (HRGC). In addition, hydrogenated products of these materials were studied. Samples were fractionated by chemical class on neutral alumina. Those fractions previously shown to be the most mutagenic and tumorigenic in laboratory bioassays of coal-derived materials were analyzed and compared by HRGC and gas chromatography/mass spectrometry (GC/MS). Individual components were tentatively identified and quantitated. Although similar chemical components were present in the creosote and SRC-II FOB fractions studied, the creosotes had higher concentrations of heavy molecular weight materials and a lower ratio of alkylated to parent polycyclic aromatic compounds than the coal liquefaction products. The creosote samples also had a significantly higher concentration of components which eluted in the polycyclic aromatic hydrocarbon (PAH) chemical class fraction. Amino-substituted PAH were present in both nonhydrogenated coal liquid and creosote materials. The creosote and SRC-II FOB crudes and nitrogen-containing polycyclic aromatic compound (NPAC) chemical class fractions expressed similar microbial mutagenicity. Based on chemical analysis data, the predicted tumorigenic potency of the creosote in laboratory bioassay systems would be equivalent to or greater than the SRC-II FOB. 16 references, 2 figures, 4 tables.

  2. Modular high voltage power supply for chemical analysis

    Science.gov (United States)

    Stamps, James F [Livermore, CA; Yee, Daniel D [Dublin, CA

    2008-07-15

    A high voltage power supply for use in a system such as a microfluidics system, uses a DC-DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC-DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

  3. Nonequilibrium thermodynamics transport and rate processes in physical, chemical and biological systems

    CERN Document Server

    Demirel, Yasar

    2014-01-01

    Natural phenomena consist of simultaneously occurring transport processes and chemical reactions. These processes may interact with each other and may lead to self-organized structures, fluctuations, instabilities, and evolutionary systems. Nonequilibrium Thermodynamics, 3rd edition emphasizes the unifying role of thermodynamics in analyzing the natural phenomena. This third edition updates and expands on the first and second editions by focusing on the general balance equations for coupled processes of physical, chemical, and biological systems. The new edition contains a new chapte

  4. Toward systems metabolic engineering of Aspergillus and Pichia species for the production of chemicals and biofuels

    DEFF Research Database (Denmark)

    Caspeta, Luis; Nielsen, Jens

    2013-01-01

    trends in systems biology of Aspergillus and Pichia species, highlighting the relevance of these developments for systems metabolic engineering of these organisms for the production of hydrolytic enzymes, biofuels and chemicals from biomass. Metabolic engineering is moving from traditional methods...... for the production of hydrolytic enzymes, biofuels and chemicals from biomass. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim....

  5. The ATLAS Distributed Analysis System

    CERN Document Server

    Legger, F; The ATLAS collaboration; Pacheco Pages, A; Stradling, A

    2013-01-01

    In the LHC operations era, analysis of the multi-petabyte ATLAS data sample by globally distributed physicists is a challenging task. To attain the required scale the ATLAS Computing Model was designed around the concept of grid computing, realized in the Worldwide LHC Computing Grid (WLCG), the largest distributed computational resource existing in the sciences. The ATLAS experiment currently stores over 140 PB of data and runs about 140,000 concurrent jobs continuously at WLCG sites. During the first run of the LHC, the ATLAS Distributed Analysis (DA) service has operated stably and scaled as planned. More than 1600 users submitted jobs in 2012, with 2 million or more analysis jobs per week, peaking at about a million jobs per day. The system dynamically distributes popular data to expedite processing and maximally utilize resources. The reliability of the DA service is high but steadily improving; grid sites are continually validated against a set of standard tests, and a dedicated team of expert shifters ...

  6. The ATLAS Distributed Analysis System

    CERN Document Server

    Legger, F; The ATLAS collaboration

    2014-01-01

    In the LHC operations era, analysis of the multi-petabyte ATLAS data sample by globally distributed physicists is a challenging task. To attain the required scale the ATLAS Computing Model was designed around the concept of grid computing, realized in the Worldwide LHC Computing Grid (WLCG), the largest distributed computational resource existing in the sciences. The ATLAS experiment currently stores over 140 PB of data and runs about 140,000 concurrent jobs continuously at WLCG sites. During the first run of the LHC, the ATLAS Distributed Analysis (DA) service has operated stably and scaled as planned. More than 1600 users submitted jobs in 2012, with 2 million or more analysis jobs per week, peaking at about a million jobs per day. The system dynamically distributes popular data to expedite processing and maximally utilize resources. The reliability of the DA service is high but steadily improving; grid sites are continually validated against a set of standard tests, and a dedicated team of expert shifters ...

  7. An Integrated Surface Acoustic Wave-Based Chemical Microsensor Array for Gas-Phase Chemical Analysis Microsystems

    Energy Technology Data Exchange (ETDEWEB)

    Casalnuovo, stephen A.; Frye-Mason, Gregory C.; Heller, Edwin J.; Hietala, Vincent M.; Kottenstette, Richard J.; Lewis, Patrick R.; Manginell, Ronald P.; Matzke, Carolyn M.

    1999-07-20

    This paper describes preliminary results in the development of an acoustic wave (SAW) microsensor array. The array is based on a novel configuration that allows for three sensors and a phase reference. Two configurations of the integrated array are discussed: a hybrid multichip-module based on a quartz SAW sensor with GaAs microelectronics and a fully monolithic GaAs-based SAW. Preliminary data are also presented for the use of the integrated SAW array in a gas-phase chemical micro system that incorporates microfabricated sample collectors and concentrators along with gas chromatography (GC) columns.

  8. Chemical Safety Alert: Fire Hazard from Carbon Adsorption Deodorizing Systems

    Science.gov (United States)

    Activated carbon systems used to adsorb vapors for odor control may pose a fire hazard when used for certain types of substances, such as crude sulfate turpentine. Facilities should take precautions and proper procedures to avoid or mitigate these hazards.

  9. IMMUNE SYSTEM MATURITY AND SENSITIVITY TO CHEMICAL EXPOSURE

    Science.gov (United States)

    It is well established that human diseases associated with abnormal immune function, including some common infectious diseases and asthma, are considerably more prevalent at younger ages. The immune system continues to mature after birth, and functional immaturity accounts for m...

  10. Precise tillage systems for enhanced non-chemical weed management

    NARCIS (Netherlands)

    Kurstjens, D.A.G.

    2007-01-01

    Soil and residue manipulation can assist weed management by killing weeds mechanically, interfering in weed lifecycles, facilitating operations and enhancing crop establishment and growth. Current tillage systems often compromise these functions, resulting in heavy reliance on herbicides,

  11. Hydrocarbon analysis using desorption atmospheric pressure chemical ionization

    KAUST Repository

    Jjunju, Fred Paul Mark

    2013-07-01

    Characterization of the various petroleum constituents (hydronaphthalenes, thiophenes, alkyl substituted benzenes, pyridines, fluorenes, and polycyclic aromatic hydrocarbons) was achieved under ambient conditions without sample preparation by desorption atmospheric pressure chemical ionization (DAPCI). Conditions were chosen for the DAPCI experiments to control whether ionization was by proton or electron transfer. The protonated molecule [M+H]+ and the hydride abstracted [MH]+ form were observed when using an inert gas, typically nitrogen, to direct a lightly ionized plasma generated by corona discharge onto the sample surface in air. The abundant water cluster ions generated in this experiment react with condensed-phase functionalized hydrocarbon model compounds and their mixtures at or near the sample surface. On the other hand, when naphthalene was doped into the DAPCI gas stream, its radical cation served as a charge exchange reagent, yielding molecular radical cations (M+) of the hydrocarbons. This mode of sample ionization provided mass spectra with better signal/noise ratios and without unwanted side-products. It also extended the applicability of DAPCI to petroleum constituents which could not be analyzed through proton transfer (e.g., higher molecular PAHs such as chrysene). The thermochemistry governing the individual ionization processes is discussed and a desorption/ionization mechanism is inferred. © 2012 Elsevier B.V.

  12. Comprehensive Analysis Competence and Innovative Approaches for Sustainable Chemical Production.

    Science.gov (United States)

    Appel, Joerg; Colombo, Corrado; Dätwyler, Urs; Chen, Yun; Kerimoglu, Nimet

    2016-01-01

    Humanity currently sees itself facing enormous economic, ecological, and social challenges. Sustainable products and production in specialty chemistry are an important strategic element to address these megatrends. In addition to that, digitalization and global connectivity will create new opportunities for the industry. One aspect is examined in this paper, which shows the development of comprehensive analysis of production networks for a more sustainable production in which the need for innovative solutions arises. Examples from data analysis, advanced process control and automated performance monitoring are shown. These efforts have significant impact on improved yields, reduced energy and water consumption, and better product performance in the application of the products.

  13. Mars Hybrid Propulsion System Trajectory Analysis. Part I; Crew Missions

    Science.gov (United States)

    Chai, Patrick R.; Merrill, Raymond G.; Qu, Min

    2015-01-01

    NASAs Human spaceflight Architecture team is developing a reusable hybrid transportation architecture in which both chemical and electric propulsion systems are used to send crew and cargo to Mars destinations such as Phobos, Deimos, the surface of Mars, and other orbits around Mars. By combining chemical and electrical propulsion into a single space- ship and applying each where it is more effective, the hybrid architecture enables a series of Mars trajectories that are more fuel-efficient than an all chemical architecture without significant increases in flight times. This paper provides the analysis of the interplanetary segments of the three Evolvable Mars Campaign crew missions to Mars using the hybrid transportation architecture. The trajectory analysis provides departure and arrival dates and propellant needs for the three crew missions that are used by the campaign analysis team for campaign build-up and logistics aggregation analysis. Sensitivity analyses were performed to investigate the impact of mass growth, departure window, and propulsion system performance on the hybrid transportation architecture. The results and system analysis from this paper contribute to analyses of the other human spaceflight architecture team tasks and feed into the definition of the Evolvable Mars Campaign.

  14. 'RECASS'. Radioecological analysis support system

    International Nuclear Information System (INIS)

    Shershakov, V.

    1998-01-01

    The RECASS is developed as a computer system designed for radiation monitoring and decision-making support in a nuclear emergency. The RECASS system has excellent capabilities for collecting, storing, and presenting data from the radiological situation of contaminated areas. It is well designed for modeling radionuclide migration in the environmental media and for assessing countermeasures in terms of doses received by population groups as a result of radioactive contamination. For RECASS to be used as a basis for solving the problems of radioecological analysis, it is essential that mapping facilities are provided and that scaling capabilities allow data to be presented with the necessary degree of detail and accuracy. Because of the on-line links with the operating network of radiological monitoring, RECASS is capable of collecting meteorological and radiological data from across the country and storing this information in its databases. The availability of data from the network of radiological monitoring makes it possible to develop RECASS as a real-time emergency response system. (R.P.)

  15. Toward systems metabolic engineering of Aspergillus and Pichia species for the production of chemicals and biofuels.

    Science.gov (United States)

    Caspeta, Luis; Nielsen, Jens

    2013-05-01

    Recently genome sequence data have become available for Aspergillus and Pichia species of industrial interest. This has stimulated the use of systems biology approaches for large-scale analysis of the molecular and metabolic responses of Aspergillus and Pichia under defined conditions, which has resulted in much new biological information. Case-specific contextualization of this information has been performed using comparative and functional genomic tools. Genomics data are also the basis for constructing genome-scale metabolic models, and these models have helped in the contextualization of knowledge on the fundamental biology of Aspergillus and Pichia species. Furthermore, with the availability of these models, the engineering of Aspergillus and Pichia is moving from traditional approaches, such as random mutagenesis, to a systems metabolic engineering approach. Here we review the recent trends in systems biology of Aspergillus and Pichia species, highlighting the relevance of these developments for systems metabolic engineering of these organisms for the production of hydrolytic enzymes, biofuels and chemicals from biomass. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Artificial intelligence/fuzzy logic method for analysis of combined signals from heavy metal chemical sensors

    Energy Technology Data Exchange (ETDEWEB)

    Turek, M. [Institute of Nano- and Biotechnologies (INB), Aachen University of Applied Sciences, Campus Juelich, Juelich (Germany); Institute of Bio- and Nanosystems (IBN), Research Centre Juelich GmbH, Juelich (Germany); Heiden, W.; Riesen, A. [Bonn-Rhein-Sieg University of Applied Sciences, Sankt Augustin (Germany); Chhabda, T.A. [Institute of Nano- and Biotechnologies (INB), Aachen University of Applied Sciences, Campus Juelich, Juelich (Germany); Schubert, J.; Zander, W. [Institute of Bio- and Nanosystems (IBN), Research Centre Juelich GmbH, Juelich (Germany); Krueger, P. [Institute of Biochemistry and Molecular Biology, RWTH Aachen, Aachen (Germany); Keusgen, M. [Institute for Pharmaceutical Chemistry, Philipps-University Marburg, Marburg (Germany); Schoening, M.J. [Institute of Nano- and Biotechnologies (INB), Aachen University of Applied Sciences, Campus Juelich, Juelich (Germany); Institute of Bio- and Nanosystems (IBN), Research Centre Juelich GmbH, Juelich (Germany)], E-mail: m.j.schoening@fz-juelich.de

    2009-10-30

    The cross-sensitivity of chemical sensors for several metal ions resembles in a way the overlapping sensitivity of some biological sensors, like the optical colour receptors of human retinal cone cells. While it is difficult to assign crisp classification values to measurands based on complex overlapping sensory signals, fuzzy logic offers a possibility to mathematically model such systems. Current work goes into the direction of mixed heavy metal solutions and the combination of fuzzy logic with heavy metal-sensitive, silicon-based chemical sensors for training scenarios of arbitrary sensor/probe combinations in terms of an electronic tongue. Heavy metals play an important role in environmental analysis. As trace elements as well as water impurities released from industrial processes they occur in the environment. In this work, the development of a new fuzzy logic method based on potentiometric measurements performed with three different miniaturised chalcogenide glass sensors in different heavy metal solutions will be presented. The critical validation of the developed fuzzy logic program will be demonstrated by means of measurements in unknown single- and multi-component heavy metal solutions. Limitations of this program and a comparison between calculated and expected values in terms of analyte composition and heavy metal ion concentration will be shown and discussed.

  17. Analysis and modelling of the energy consumption of chemical batch plants

    Energy Technology Data Exchange (ETDEWEB)

    Bieler, P.S.

    2004-07-01

    This report for the Swiss Federal Office of Energy (SFOE) describes two different approaches for the energy analysis and modelling of chemical batch plants. A top-down model consisting of a linear equation based on the specific energy consumption per ton of production output and the base consumption of the plant is postulated. The model is shown to be applicable to single and multi-product batches for batch plants with constant production mix and multi-purpose batch plants in which only similar chemicals are produced. For multipurpose batch plants with highly varying production processes and changing production mix, the top-down model produced inaccurate results. A bottom-up model is postulated for such plants. The results obtained are discussed that show that the electricity consumption for infrastructure equipment was significant and responsible for about 50% of total electricity consumption. The specific energy consumption for the different buildings was related to the degree of automation and the production processes. Analyses of the results of modelling are presented. More detailed analyses of the energy consumption of this apparatus group show that about 30 to 40% of steam energy is lost and thus a large potential for optimisation exists. Various potentials for making savings, ranging from elimination of reflux conditions to the development of a new heating/cooling-system for a generic batch reactor, are identified.

  18. Controlling organic chemical hazards in food manufacturing: a hazard analysis critical control points (HACCP) approach.

    Science.gov (United States)

    Ropkins, K; Beck, A J

    2002-08-01

    Hazard analysis by critical control points (HACCP) is a systematic approach to the identification, assessment and control of hazards. Effective HACCP requires the consideration of all hazards, i.e., chemical, microbiological and physical. However, to-date most 'in-place' HACCP procedures have tended to focus on the control of microbiological and physical food hazards. In general, the chemical component of HACCP procedures is either ignored or limited to applied chemicals, e.g., food additives and pesticides. In this paper we discuss the application of HACCP to a broader range of chemical hazards, using organic chemical contaminants as examples, and the problems that are likely to arise in the food manufacturing sector. Chemical HACCP procedures are likely to result in many of the advantages previously identified for microbiological HACCP procedures: more effective, efficient and economical than conventional end-point-testing methods. However, the high costs of analytical monitoring of chemical contaminants and a limited understanding of formulation and process optimisation as means of controlling chemical contamination of foods are likely to prevent chemical HACCP becoming as effective as microbiological HACCP.

  19. Environmental Risk Assessment: Spatial Analysis of Chemical Hazards and Risks in South Korea

    Science.gov (United States)

    Yu, H.; Heo, S.; Kim, M.; Lee, W. K.; Jong-Ryeul, S.

    2017-12-01

    This study identified chemical hazard and risk levels in Korea by analyzing the spatial distribution of chemical factories and accidents. The number of chemical factories and accidents in 5-km2 grids were used as the attribute value for spatial analysis. First, semi-variograms were conducted to examine spatial distribution patterns and to identify spatial autocorrelation of chemical factories and accidents. Semi-variograms explained that the spatial distribution of chemical factories and accidents were spatially autocorrelated. Second, the results of the semi-variograms were used in Ordinary Kriging to estimate chemical hazard and risk level. The level values were extracted from the Ordinary Kriging result and their spatial similarity was examined by juxtaposing the two values with respect to their location. Six peaks were identified in both the hazard and risk estimation result, and the peaks correlated with major cities in Korea. Third, the estimated hazard and risk levels were classified with geometrical interval and could be classified into four quadrants: Low Hazard and Low Risk (LHLR), Low Hazard and High Risk (LHHR), High Hazard and Low Risk (HHLR), and High Hazard and High Risk (HHHR). The 4 groups identified different chemical safety management issues in Korea; relatively safe LHLR group, many chemical reseller factories were found in HHLR group, chemical transportation accidents were in the LHHR group, and an abundance of factories and accidents were in the HHHR group. Each quadrant represented different safety management obstacles in Korea, and studying spatial differences can support the establishment of an efficient risk management plan.

  20. X-ray spectroscopy of chemical systems in liquids phase

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Zhong; Kubicek, Katharina [Max Planck Institute for Biophysical Chemistry, Goettingen (Germany); Deutsches Elektronen Synchrotron DESY, Hamburg (Germany); Techert, Simone; Rajkovic, Ivan [Max Planck Institute for Biophysical Chemistry, Goettingen (Germany); Foehlisch, Alexander [Helmholtz Zentrum Berlin, Berlin (Germany); University of Potsdam (Germany); Wernet, Philippe; Quevedo, Wilson [Helmholtz Zentrum Berlin, Berlin (Germany)

    2013-07-01

    Based on their ability to salt in or salt out macromolecules salt ions are classified according to the Hofmeister series. While the macroscopic effect is known for over 100 years, the origin of the effect on the molecular level is still not understood. We present X-ray emission spectroscopy (XES) on the oxygen K-edge of water in aqueous solutions of inorganic salts using BESSY II synchrotron (Berlin, Germany) X-rays. The FlexRIXS end station utilized a liquid micro jet for sample delivery. The element- and site-specific XES method contains information about occupied and unoccupied molecular orbitals and is therefore sensitive to the chemical environment. The aim of our measurements was to reveal the influence of the water-ion interactions on the local water structure further elucidating the understanding of the structure maker and structure breaker concept. Structural changes while utilizing different salts were expected to show as spectral changes in the oxygen K-edge spectra, e.g. of peak shapes or intensities.