WorldWideScience

Sample records for chemchar thermolytic detoxification

  1. Mixed waste treatment using the ChemChar thermolytic detoxification technique

    Energy Technology Data Exchange (ETDEWEB)

    Kuchynka, D. [Mirage Systems, Sunnyvale, CA (United States)

    1995-10-01

    The diversity of mixed waste matrices contained at Department of Energy sites that require treatment preclude a single, universal treatment technology capable of handling sludges, solids, heterogeneous debris, aqueous and organic liquids and soils. This report describes the ChemChar thermolytic detoxification process. The process is a thermal, chemically reductive technology that converts the organic portion of mixed wastes to a synthesis gas, while simultaneously absorbing volatile inorganics on a carbon-based char.

  2. Performance evaluation of trimethylamine-carbon dioxide thermolytic draw solution for engineered osmosis

    Energy Technology Data Exchange (ETDEWEB)

    Boo, C; Khalil, YF; Elimelech, M

    2015-01-01

    We evaluated the performance of trimethylamine-carbon dioxide (TMA-CO2) as a potential thermolytic draw solution for engineered osmosis. Water flux and reverse solute flux with TMA-CO2 draw solution were measured in forward osmosis (FO) and pressure retarded osmosis (PRO) modes using thin-film composite (TFC) and cellulose triacetate (CTA) FO membranes. Water flux with the TMA-CO2 draw solution was comparable to that obtained with the more common ammonia-carbon dioxide (NH3-CO2) thermolytic draw solution at similar (1 M) concentration. Using a TFC-FO membrane, the water fluxes produced by 1 M TMA-CO2 and NH3-CO2 draw solutions with a DI water feed were, respectively, 33.4 and 35.6 L m(-2) h(-1) in PRO mode and 14.5 and 152 L m(-2) h(-1) in FO mode. Reverse draw permeation of TMA-CO2 was relatively low compared to NH3-CO2, ranging from 0.1 to 0.2 mol m(-2) h(-1) in all experiments, due to the larger molecular size of TMA. Thermal separation and recovery efficiency for TMA-CO2 was compared to NH3-CO2 by modeling low-temperature vacuum distillation utilizing low-grade heat sources. We also discuss possible challenges in the use TMA-CO2, including potential adverse impact on human health and environments. (C) 2014 Elsevier B.V. All rights reserved.

  3. Methane Production in Microbial Reverse-Electrodialysis Methanogenesis Cells (MRMCs) Using Thermolytic Solutions

    KAUST Repository

    Luo, Xi

    2014-08-05

    The utilization of bioelectrochemical systems for methane production has attracted increasing attention, but producing methane in these systems requires additional voltage to overcome large cathode overpotentials. To eliminate the need for electrical grid energy, we constructed a microbial reverse- electrodialysis methanogenesis cell (MRMC) by placing a reverse electrodialysis (RED) stack between an anode with exoelectrogenic microorganisms and a methanogenic biocathode. In the MRMC, renewable salinity gradient energy was converted to electrical energy, thus providing the added potential needed for methane evolution from the cathode. The feasibility of the MRMC was examined using three different cathode materials (stainless steel mesh coated with platinum, SS/Pt; carbon cloth coated with carbon black, CC/CB; or a plain graphite fiber brush, GFB) and a thermolytic solution (ammonium bicarbonate) in the RED stack. A maximum methane yield of 0.60 ± 0.01 mol-CH 4/mol-acetate was obtained using the SS/Pt biocathode, with a Coulombic recovery of 75 ± 2% and energy efficiency of 7.0 ± 0.3%. The CC/CB biocathode MRMC had a lower methane yield of 0.55 ± 0.02 mol-CH4/mol-acetate, which was twice that of the GFB biocathode MRMC. COD removals (89-91%) and Coulombic efficiencies (74-81%) were similar for all cathode materials. Linear sweep voltammetry and electrochemical impedance spectroscopy tests demonstrated that cathodic microorganisms enhanced electron transfer from the cathode compared to abiotic controls. These results show that the MRMC has significant potential for production of nearly pure methane using low-grade waste heat and a source of waste organic matter at the anode. © 2014 American Chemical Society.

  4. Methane production in microbial reverse-electrodialysis methanogenesis cells (MRMCs) using thermolytic solutions.

    Science.gov (United States)

    Luo, Xi; Zhang, Fang; Liu, Jia; Zhang, Xiaoyuan; Huang, Xia; Logan, Bruce E

    2014-01-01

    The utilization of bioelectrochemical systems for methane production has attracted increasing attention, but producing methane in these systems requires additional voltage to overcome large cathode overpotentials. To eliminate the need for electrical grid energy, we constructed a microbial reverse-electrodialysis methanogenesis cell (MRMC) by placing a reverse electrodialysis (RED) stack between an anode with exoelectrogenic microorganisms and a methanogenic biocathode. In the MRMC, renewable salinity gradient energy was converted to electrical energy, thus providing the added potential needed for methane evolution from the cathode. The feasibility of the MRMC was examined using three different cathode materials (stainless steel mesh coated with platinum, SS/Pt; carbon cloth coated with carbon black, CC/CB; or a plain graphite fiber brush, GFB) and a thermolytic solution (ammonium bicarbonate) in the RED stack. A maximum methane yield of 0.60 ± 0.01 mol-CH4/mol-acetate was obtained using the SS/Pt biocathode, with a Coulombic recovery of 75 ± 2% and energy efficiency of 7.0 ± 0.3%. The CC/CB biocathode MRMC had a lower methane yield of 0.55 ± 0.02 mol-CH4/mol-acetate, which was twice that of the GFB biocathode MRMC. COD removals (89-91%) and Coulombic efficiencies (74-81%) were similar for all cathode materials. Linear sweep voltammetry and electrochemical impedance spectroscopy tests demonstrated that cathodic microorganisms enhanced electron transfer from the cathode compared to abiotic controls. These results show that the MRMC has significant potential for production of nearly pure methane using low-grade waste heat and a source of waste organic matter at the anode.

  5. Methane production in microbial reverse-electrodialysis methanogenesis cells (MRMCs) using thermolytic solutions.

    Science.gov (United States)

    Luo, Xi; Zhang, Fang; Liu, Jia; Zhang, Xiaoyuan; Huang, Xia; Logan, Bruce E

    2014-01-01

    The utilization of bioelectrochemical systems for methane production has attracted increasing attention, but producing methane in these systems requires additional voltage to overcome large cathode overpotentials. To eliminate the need for electrical grid energy, we constructed a microbial reverse-electrodialysis methanogenesis cell (MRMC) by placing a reverse electrodialysis (RED) stack between an anode with exoelectrogenic microorganisms and a methanogenic biocathode. In the MRMC, renewable salinity gradient energy was converted to electrical energy, thus providing the added potential needed for methane evolution from the cathode. The feasibility of the MRMC was examined using three different cathode materials (stainless steel mesh coated with platinum, SS/Pt; carbon cloth coated with carbon black, CC/CB; or a plain graphite fiber brush, GFB) and a thermolytic solution (ammonium bicarbonate) in the RED stack. A maximum methane yield of 0.60 ± 0.01 mol-CH4/mol-acetate was obtained using the SS/Pt biocathode, with a Coulombic recovery of 75 ± 2% and energy efficiency of 7.0 ± 0.3%. The CC/CB biocathode MRMC had a lower methane yield of 0.55 ± 0.02 mol-CH4/mol-acetate, which was twice that of the GFB biocathode MRMC. COD removals (89-91%) and Coulombic efficiencies (74-81%) were similar for all cathode materials. Linear sweep voltammetry and electrochemical impedance spectroscopy tests demonstrated that cathodic microorganisms enhanced electron transfer from the cathode compared to abiotic controls. These results show that the MRMC has significant potential for production of nearly pure methane using low-grade waste heat and a source of waste organic matter at the anode. PMID:25010133

  6. Novel epoxy-silicone thermolytic transparent packaging adhesives chemical modified by ZnO nanowires for HB LEDs

    International Nuclear Information System (INIS)

    A novel high transparent thermolytic epoxy-silicone for high-brightness light-emitting diode (HB-LED) is introduced, which was synthesized by polymerization using silicone matrix via diglycidyl ether bisphenol-A epoxy resin (DGEBA) as reinforcing agent, and filling ZnO nanowires to modify thermal conductivity and control refractive index of the hybrid material. The interactions of ZnO nanowires with polymers are mediated by the ligands attached to the nanoparticles. Thus, the ligands markedly influence the properties of ZnO nanowires/epoxy-silicone composites. The refractive indices of the prepared hybrid adhesives can be tuned by the ZnO nanowires from 1.4711 to 1.5605. Light transmittance can be increased by 20% from 80 to 95%. The thermal conductivity of the transparent packaging adhesives is 0.89-0.90 W/mK.

  7. Novel epoxy-silicone thermolytic transparent packaging adhesives chemical modified by ZnO nanowires for HB LEDs

    Energy Technology Data Exchange (ETDEWEB)

    He Ying, E-mail: yinghe@staff.shu.edu.c [Shanghai University, Department of Polymer Materials, School of Materials Science and Engineering (China); Wang Junan [Shanghai University, Institute of Materials, School of Materials Science and Engineering (China); Pei Changlong; Song Jizhong; Zhu Di; Chen Jie [Shanghai University, Department of Polymer Materials, School of Materials Science and Engineering (China)

    2010-10-15

    A novel high transparent thermolytic epoxy-silicone for high-brightness light-emitting diode (HB-LED) is introduced, which was synthesized by polymerization using silicone matrix via diglycidyl ether bisphenol-A epoxy resin (DGEBA) as reinforcing agent, and filling ZnO nanowires to modify thermal conductivity and control refractive index of the hybrid material. The interactions of ZnO nanowires with polymers are mediated by the ligands attached to the nanoparticles. Thus, the ligands markedly influence the properties of ZnO nanowires/epoxy-silicone composites. The refractive indices of the prepared hybrid adhesives can be tuned by the ZnO nanowires from 1.4711 to 1.5605. Light transmittance can be increased by 20% from 80 to 95%. The thermal conductivity of the transparent packaging adhesives is 0.89-0.90 W/mK.

  8. Optimization of membrane stack configuration for efficient hydrogen production in microbial reverse-electrodialysis electrolysis cells coupled with thermolytic solutions.

    Science.gov (United States)

    Luo, Xi; Nam, Joo-Youn; Zhang, Fang; Zhang, Xiaoyuan; Liang, Peng; Huang, Xia; Logan, Bruce E

    2013-07-01

    Waste heat can be captured as electrical energy to drive hydrogen evolution in microbial reverse-electrodialysis electrolysis cells (MRECs) by using thermolytic solutions such as ammonium bicarbonate. To determine the optimal membrane stack configuration for efficient hydrogen production in MRECs using ammonium bicarbonate solutions, different numbers of cell pairs and stack arrangements were tested. The optimum number of cell pairs was determined to be five based on MREC performance and a desire to minimize capital costs. The stack arrangement was altered by placing an extra low concentration chamber adjacent to anode chamber to reduce ammonia crossover. This additional chamber decreased ammonia nitrogen losses into anolyte by 60%, increased the coulombic efficiency to 83%, and improved the hydrogen yield to a maximum of 3.5 mol H2/mol acetate, with an overall energy efficiency of 27%. These results improve the MREC process, making it a more efficient method for renewable hydrogen gas production.

  9. Optimization of membrane stack configuration for efficient hydrogen production in microbial reverse-electrodialysis electrolysis cells coupled with thermolytic solutions

    KAUST Repository

    Luo, Xi

    2013-07-01

    Waste heat can be captured as electrical energy to drive hydrogen evolution in microbial reverse-electrodialysis electrolysis cells (MRECs) by using thermolytic solutions such as ammonium bicarbonate. To determine the optimal membrane stack configuration for efficient hydrogen production in MRECs using ammonium bicarbonate solutions, different numbers of cell pairs and stack arrangements were tested. The optimum number of cell pairs was determined to be five based on MREC performance and a desire to minimize capital costs. The stack arrangement was altered by placing an extra low concentration chamber adjacent to anode chamber to reduce ammonia crossover. This additional chamber decreased ammonia nitrogen losses into anolyte by 60%, increased the coulombic efficiency to 83%, and improved the hydrogen yield to a maximum of 3.5mol H2/mol acetate, with an overall energy efficiency of 27%. These results improve the MREC process, making it a more efficient method for renewable hydrogen gas production. © 2013 Elsevier Ltd.

  10. Newer approaches to opioid detoxification

    Directory of Open Access Journals (Sweden)

    Siddharth Sarkar

    2012-01-01

    Full Text Available Opioid use disorders present with distressing withdrawal symptoms at the time of detoxification. The pharmacological agents and methods currently in use for detoxification mainly include buprenorphine, methadone, and clonidine. Many other pharmacological agents have been tried for opioid detoxification. This review takes a look at the newer pharmacological options, both opioid agonists and non-agonist medications that have been utilized for detoxification. Peer reviewed articles were identified using PubMed and PsychInfo databases. The keywords included for the search were a combination of ′opioid′ and ′detoxification′ and their synonyms. All the articles published in the last 10 years were screened for. Relevant data was extracted from identified studies. Many newer pharmacological agents have been tried in detoxification of opioids. However, the quest for a safe, efficacious, cost-effective pharmacological option which requires minimal monitoring still continues. The role of non-pharmacological measures and alternative medicine needs further evaluation.

  11. Enzyme therapeutics for systemic detoxification.

    Science.gov (United States)

    Liu, Yang; Li, Jie; Lu, Yunfeng

    2015-08-01

    Life relies on numerous biochemical processes working synergistically and correctly. Certain substances disrupt these processes, inducing living organism into an abnormal state termed intoxication. Managing intoxication usually requires interventions, which is referred as detoxification. Decades of development on detoxification reveals the potential of enzymes as ideal therapeutics and antidotes, because their high substrate specificity and catalytic efficiency are essential for clearing intoxicating substances without adverse effects. However, intrinsic shortcomings of enzymes including low stability and high immunogenicity are major hurdles, which could be overcome by delivering enzymes with specially designed nanocarriers. Extensive investigations on protein delivery indicate three types of enzyme-nanocarrier architectures that show more promise than others for systemic detoxification, including liposome-wrapped enzymes, polymer-enzyme conjugates, and polymer-encapsulated enzymes. This review highlights recent advances in these nano-architectures and discusses their applications in systemic detoxifications. Therapeutic potential of various enzymes as well as associated challenges in achieving effective delivery of therapeutic enzymes will also be discussed.

  12. Detoxification Strategy of Epoxide Hydrolase

    OpenAIRE

    Arand, Michael; Cronin, Annette; Hengstler, Jan G.; Herrero Plana, Maria Elena; Lohmann, Matthias; Oesch, Franz

    2003-01-01

    The human microsomal epoxide hydrolase, a single enzyme, has to detoxify a broad range of structurally diverse, potentially genotoxic epoxides that are formed in the course of xenobiotic metabolism. The enzyme has developed a unique strategy to combine a broad substrate specificity with a high detoxification efficacy, by immediately trapping the reactive compounds as covalent intermediates and by being expressed at high levels for high trapping capacity. Computer simulation and experimental d...

  13. Sulfide detoxification in plant mitochondria.

    Science.gov (United States)

    Birke, Hannah; Hildebrandt, Tatjana M; Wirtz, Markus; Hell, Rüdiger

    2015-01-01

    In contrast to animals, which release the signal molecule sulfide in small amounts from cysteine and its derivates, phototrophic eukaryotes generate sulfide as an essential intermediate of the sulfur assimilation pathway. Additionally, iron-sulfur cluster turnover and cyanide detoxification might contribute to the release of sulfide in mitochondria. However, sulfide is a potent inhibitor of cytochrome c oxidase in mitochondria. Thus, efficient sulfide detoxification mechanisms are required in mitochondria to ensure adequate energy production and consequently survival of the plant cell. Two enzymes have been recently described to catalyze sulfide detoxification in mitochondria of Arabidopsis thaliana, O-acetylserine(thiol)lyase C (OAS-TL C), and the sulfur dioxygenase (SDO) ethylmalonic encephalopathy protein 1 (ETHE1). Biochemical characterization of sulfide producing and consuming enzymes in mitochondria of plants is fundamental to understand the regulatory network that enables mitochondrial sulfide homeostasis under nonstressed and stressed conditions. In this chapter, we provide established protocols to determine the activity of the sulfide releasing enzyme β-cyanoalanine synthase as well as sulfide-consuming enzymes OAS-TL and SDO. Additionally, we describe a reliable and efficient method to purify OAS-TL proteins from plant material.

  14. Glutathione-Dependent Detoxification Processes in Astrocytes

    DEFF Research Database (Denmark)

    Dringen, Ralf; Brandmann, Maria; Hohnholt, Michaela C;

    2015-01-01

    component in many of the astrocytic detoxification processes is the tripeptide glutathione (GSH) which serves as electron donor in the GSH peroxidase-catalyzed reduction of peroxides. In addition, GSH is substrate in the detoxification of xenobiotics and endogenous compounds by GSH-S-transferases which...

  15. Prediction of withdrawal symptoms during opioid detoxification

    NARCIS (Netherlands)

    Dijkstra, Boukje A G; Krabbe, Paul F M; De Jong, Cor A J; van der Staak, Cees P F

    2008-01-01

    OBJECTIVE: The severity of self-reported withdrawal symptoms varies during detoxification of opioid-dependent patients. The aim of this study is to identify subgroups of withdrawal symptoms within the detoxification trajectory and to predict the severity of withdrawal symptoms on the basis of drug-r

  16. Solar detoxification of waste waters

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, J. M.

    2000-07-01

    Heterogeneous photocatalysis is a discipline which includes a large variety of reactions: mild or total oxidations, dehydrogenation, hydrogen transfer. oxygen-18 and deuterium isotopic exchange, metal deposition, water detoxification, gaseous pollutant removal, etc. In line with the latter point, it can be considered as one of the new Advanced Oxidation Technologies (AOT) for air and water purification treatment. Several books and reviews have been recently devoted to this problem (1-6). A recent review has reported more than 1200 references on the subject (7). Heterogeneous photocatalysis can be carried out in various media: gas phase, pure organic liquid phases or aqueous solutions. As for classical heterogeneous catalysis, the overall process can be decomposed into five independent steps: 1. Transfer of the reactants in the fluid to the surface. 2. Adsorption of a least one of the reactants. 3. Reaction in the adsorbed phase 4. Desorption of the product (s) 5. Removal of the products from the interface region. (Author) 11 refs.

  17. Solar Detoxification of Waste Waters

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, J.M.

    2002-07-01

    Heterogeneous photocatalysis is a discipline which includes a large variety of reactions: mild or total oxidations, dehydrogenation, hydrogen transfer, oxygen-18 and deuterium isotopic exchange, metal deposition, water detoxification, gaseous pollutant removal, etc. In line with the latter point, it can be considered as one of the new. Advanced Oxidation Technologies (AOT) for air and water purification treatment. Several books and reviews have been recently devoted to this problem (1-6). A recent review has reported more than 1200 references on the subject. Heterogeneous photocatalysis can be carried out in various media: gas phase, pure organic liquid phases or aqueous solutions. As for classical heterogeneous catalysis, the overall process can be decomposed into five independent steps: 1. Transfer of the reactants in the fluid phase to the surface 2. Adsorption of a least one of the reactants 3. Reaction in the adsorbed phase 4. Desorption of the products 5. Removal of the products from the interface region. (Author)

  18. ETS: DEVELOPMENT OF A PHOTOTHERMAL DETOXIFICATION UNIT

    Science.gov (United States)

    There has long been interest in utilizing photochemical methods for destroying hazardous organic materials. Unfortunately, the direct application of classic, low temperature photochemical processes to hazardous waste detoxification is often too slow to be practical for wide spre...

  19. Nutritional aspects of detoxification in clinical practice.

    Science.gov (United States)

    Cline, John C

    2015-01-01

    Detoxification is a vital cellular task that, if lacking, can lead to early morbidity and mortality. The process of detoxification involves the mobilization, biotransformation, and elimination of toxicants of exogenous and endogenous origin. This article discusses the phase I and phase II detoxification and biotransformation pathways and promotes using food to support these highly complex processes. The author identifies the comprehensive elimination diet as a useful therapeutic tool for clinicians and patients to use to achieve detoxification. Using this diet, the patient removes the most common allergenic foods and beverages from the diet and replaces them with nonallergenic choices for a period of 4 wk, gradually adding back the eliminated foods and observing their effects. Another effective clinical tool that the author discusses is the detox-focused core food plan, which identifies the variety of foods required to supply key nutrients that can maximize the effectiveness of detoxification. Finally, the author provides a case study in which these tools were used to help a patient suffering from major, debilitating illnesses that resulted from exposure to malathion, including severe vomiting and diarrhea, headaches, night sweats, severe arthralgias and myalgias, episcleritis, and shortness of breath. The article details the interventions used and the clinical results (ie, successful resolution of most issues after 3 mo). PMID:26026145

  20. Comparing Symptoms of Withdrawal, Rapid Detoxi-fication and Detoxification with Clonidine in Drug Dependent Patients

    OpenAIRE

    Ziaaddini, Hassan; Qahestani, Abbas; Moin Vaziri, Maryam

    2009-01-01

    Background: Considering the fear of drug addicts from hangover symptoms and the costs of withdrawal treatment and their importance in deciding to withdraw, it is helpful to identify various ways of withdrawal and their effects. This study investigated the withdrawal symptoms of two methods of detoxification with clonidine and rapid detoxification of clonidine with naltrexone. Methods: This was a clinical trial study. Patients referred to Shahid Beheshti hospital for narcotic addiction treatme...

  1. Phytochelatins: peptides involved in heavy metal detoxification.

    Science.gov (United States)

    Pal, Rama; Rai, J P N

    2010-03-01

    Phytochelatins (PCs) are enzymatically synthesized peptides known to involve in heavy metal detoxification and accumulation, which have been measured in plants grown at high heavy metal concentrations, but few studies have examined the response of plants even at lower environmentally relevant metal concentrations. Recently, genes encoding the enzyme PC synthase have been identified in plants and other species enabling molecular biological studies to untangle the mechanisms underlying PC synthesis and its regulation. The present paper embodies review on recent advances in structure of PCs, their biosynthetic regulation, roles in heavy metal detoxification and/or accumulation, and PC synthase gene expression for better understanding of mechanism involved and to improve phytoremediation efficiency of plants for wider application.

  2. General anaesthesia does not improve outcome in opioid antagonist detoxification treatment : a randomized controlled trial

    NARCIS (Netherlands)

    De Jong, Cor A J; Laheij, Robert J F; Krabbe, Paul F M

    2005-01-01

    AIM: Opioid detoxification by administering opioid-antagonists under general anaesthesia has caused considerable controversy. This study is conducted to determine whether rapid detoxification under general anaesthesia results in higher levels of opioid abstinence than rapid detoxification without an

  3. Microbial detoxification of metalaxyl in aquatic system

    Institute of Scientific and Technical Information of China (English)

    Ahmed H.Massoud; Aly S.Derbalah; El-Sayed.B.Belal

    2008-01-01

    Four microorganisms,Pseudomonas sp.(ER2),Aspergillus niger (ER6),Cladosporium herbarum (ER4) and Penicilluim sp.(ER3),were isolated from cucumber leaves previously treated with metalaxyl using enrichment technique.These isolates were evaluated for detoxification of metalaxyl at the recommended dose level in aquatic system.The effect of pH and temperature on the growth ability of the tested isolates was also investigated by measuring the intracellular protein and mycelia dry weight for bacterial and fungal isolates,respectively.Moreover,the toxicity of metalaxyl after 28 d of treatment with the tested isolates was evaluated to confirm the complete removal of any toxic materials (metalaxyl and its metabolites).The results showed that the optimum degree pH for the growth of metalaxyl degrading isolates (bacterial and fungal isolates) was 7.The temperature 30℃ appeared to be the optimum degree for the growth of either fungal or bacterial isolates.The results showed that Pseudomonas sp.(ER2) was the most effective isolate in metalaxyl degradation followed by Aspergillus niger (ER6),Cladosporium herbarum (ER4) and PeniciUuim sp.(ER3),respectively.There is no toxicity of metalaxyl detected in the supernatant after 28 d of treannent with Pseudomonas sp.(ER2).The results suggest that bioremediation by Pseudomonas sp.(ER2) isolate was considered to be effective method for detoxification of metalaxyl in aqueous media.

  4. Occurrence, detection and detoxification of mycotoxins

    Indian Academy of Sciences (India)

    Visenuo Aiko; Alka Mehta

    2015-12-01

    Mycotoxins have been identified as important toxins affecting animal species and humans ever since the discovery of aHatoxin Bl in 1960. Mycotoxigenic fungi are ubiquitous in nature and are held responsible for economic loss as they decrease crop yield and quality of food. The presence of fungi and their mycotoxins are reported not only in food grains but also in medicinal herbs and processed foods. Since prevention is not always possible, detoxification of mycotoxins have been attempted using several means; however, only few have been accepted for practical use, e.g. ammonia in the com industry. Organizations such as the World Health Organization, US Food and Drug Adminis-tration and European Union have set regulations and safety limits of important mycotoxins, viz. aHatoxins, fusarium toxins, ochratoxin, patulin zearalenone, etc., to ensure the safety of the consumers. This review article is a brief and up-to-date account of the occurrence, detection and detoxification of mycotoxins for those interested in and considering research in this area.

  5. Occurrence, detection and detoxification of mycotoxins.

    Science.gov (United States)

    Aiko, Visenuo; Mehta, Alka

    2015-12-01

    Mycotoxins have been identified as important toxins affecting animal species and humans ever since the discovery of aflatoxin B1 in 1960. Mycotoxigenic fungi are ubiquitous in nature and are held responsible for economic loss as they decrease crop yield and quality of food. The presence of fungi and their mycotoxins are reported not only in food grains but also in medicinal herbs and processed foods. Since prevention is not always possible, detoxification of mycotoxins have been attempted using several means; however, only few have been accepted for practical use, e.g. ammonia in the corn industry. Organizations such as the World Health Organization, US Food and Drug Administration and European Union have set regulations and safety limits of important mycotoxins, viz. aflatoxins, fusarium toxins, ochratoxin, patulin zearalenone, etc., to ensure the safety of the consumers. This review article is a brief and up-to-date account of the occurrence, detection and detoxification of mycotoxins for those interested in and considering research in this area.

  6. Sulfide intrusion and detoxification in seagrasses ecosystems

    DEFF Research Database (Denmark)

    Hasler-Sheetal, Harald; Holmer, Marianne

    Sulfide intrusion in seagrasses represents a global threat to seagrasses and thereby an important parameter in resilience of seagrass ecosystems. In contrast seegrasses colonize and grow in hostile sediments, where they are constantly exposed to invasion of toxic gaseous sulfide. Remarkably little...... is known about the strategies of seagrasses to survive sulfide intrusion, their potential detoxification mechanisms and sulfur nutrition in general. By a global review of sulfide intrusion, coupled with a series of field studies and in situ experiments we elucidate sulfide intrusion and different...... strategies of seagrasses to sustain sulfide intrusion. Using stable isotope tracing, scanning electron microscopy with x-ray analysis, tracing sulfur compounds combined with ecosystem parameters we found different spatial, intraspecific and interspecific strategies to cope with sulfidic sediments. 1...

  7. Sulfide intrusion and detoxification in Zostera marina

    DEFF Research Database (Denmark)

    Hasler-Sheetal, Harald; Holmer, Marianne

    2014-01-01

    Sulfide intrusion in seagrasses represents a global threat to seagrasses. In contrast seegrasses grow in hostile sediments, where they are constantly exposed to sulfide intrusion. Little is known about the strategies to survive sulfide intrusion, if there are detoxification mechanisms and sulfur...... nutrition in general. By a global review of sulfide intrusion, coupled with a series of field studies and in situ experiments we elucidate sulfide intrusion and different strategies of seagrasses to sustain sulfide intrusion. Using stable isotope tracing, scanning electron microscopy with x-ray analysis...... to trace sulfur compounds and as well as metabolomics upon sulfide and anoxia exposure we identified different strategies to cope with sulfidic sediments. 1) Avoidance, by reoxidation of gaseous sulfide in the arenchyma to elemental sulfur and sulfate; where precipitation of sulfide occurred as non...

  8. Ultra-Rapid Opioid Detoxification: Current Status and Controversies

    Directory of Open Access Journals (Sweden)

    Singh J

    2004-07-01

    Full Text Available Opioid dependence is a major health problem and a cause of increasing concern to physicians and other health professionals worldwide. A crucial first step in intervention is detoxification. Recent trends in medical practice have seen the emergence of newer techniques that claim to accelerate the detoxification procedure and ensure prevention of relapse by rapid induction onto maintenance treatment with opioid antagonists such as naltrexone. This review delves into the theoretical and methodological aspects related to ultra-rapid opioid detoxification (opioid detoxification procedure using opioid antagonists, performed under general anaesthesia or heavy sedation and discusses the status of the same in light of the available evidence regarding its applicability, safety and effectiveness. Although useful in some respects (especially in completion rates for detoxification and subsequent induction onto naltrexone maintenance, the justification of this procedure lies in (a the resolution of the ethical conflicts surrounding the procedure and (b conduction of methodologically sound long-term studies to demonstrate greater efficacy over routine/standard detoxification procedures beyond the short-term detoxification period.

  9. Detoxification of arsenic by phytochelatins in plants.

    Science.gov (United States)

    Schmöger, M E; Oven, M; Grill, E

    2000-03-01

    As is a ubiquitous element present in the atmosphere as well as in the aquatic and terrestrial environments. Arsenite and arsenate are the major forms of As intoxication, and these anions are readily taken up by plants. Both anions efficiently induce the biosynthesis of phytochelatins (PCs) ([gamma-glutamate-cysteine](n)-glycine) in vivo and in vitro. The rapid induction of the metal-binding PCs has been observed in cell suspension cultures of Rauvolfia serpentina, in seedlings of Arabidopsis, and in enzyme preparations of Silene vulgaris upon challenge to arsenicals. The rate of PC formation in enzyme preparations was lower compared with Cd-induced biosynthesis, but was accompanied by a prolonged induction phase that resulted finally in higher peptide levels. An approximately 3:1 ratio of the sulfhydryl groups from PCs to As is compatible with reported As-glutathione complexes. The identity of the As-induced PCs and of reconstituted metal-peptide complexes has unequivocally been demonstrated by electrospray ionization mass spectroscopy. Gel filtration experiments and inhibitor studies also indicate a complexation and detoxification of As by the induced PCs.

  10. Engineered photocatalysts for detoxification of waste water

    Energy Technology Data Exchange (ETDEWEB)

    Majumder, S.A.; Prairie, M.R.; Shelnutt, J.A. [Sandia National Lab., Albuquerque, NM (United States); Khan, S.U.M. [Duquesne Univ., Pittsburgh, PA (United States). Dept. of Chemistry and Biochemistry] [and others

    1996-12-01

    This report describes progress on the development of engineered photocatalysts for the detoxification of water polluted with toxic organic compounds and heavy metals. We examined a range of different oxide supports (titania, alumina, magnesia and manganese dioxide) for tin uroporphyrin and investigated the efficacy of a few different porphyrins. A water-soluble octaacetic-acid-tetraphenylporphyrin and its derivatives have been synthesized and characterized in an attempt to design a porphyrin catalyst with a larger binding pocket. We have also investigated photocatalytic processes on both single crystal and powder forms of semiconducting SiC with an ultimate goal of developing a dual-semiconductor system combining TiO{sub 2} and SiC. Mathematical modeling was also performed to identify parameters that can improve the efficiency of SiC-based photocatalytic systems. Although the conceptual TiO{sub 2}/SiC photodiode shows some promises for photoreduction processes, SiC itself was found to be an inefficient photocatalyst when combined with TiO{sub 2}. Alternative semiconductors with bandgap and band potentials similar to SiC should be tested in the future for further development and a practical utilization of the dual photodiode concept.

  11. Clinical Research on Detoxification with Acupuncture

    Institute of Scientific and Technical Information of China (English)

    HU Jun; XIN Yu-hu; ZONG Lei; IHAO Shan-xiang; LI Shen; XIAO Yuan-chun

    2003-01-01

    Purpose To confirm the effects of acupuncture, and Chinese medicines in controlling the withdrawal symptoms from the opium-like drugs. Method 96 heroin-dependent subjects were divided into four groups,which were treated respectively by western medicine (Agroup), acupuncture (B group), Chinese herbs (Cgroup), and acupuncture & Chinese herbs (D group).Before, during and after treatment, the concentration of serum testosterone and prolactin, and immune functions (serum CD3+ 、CD4+ 、CD8+ and CD4+/CD8+ ) were tested.Results After treatment, the concentration of serum testosterone in A and B group were higher than before and during treatment, and in C and D group, during treatment were higher. In the four groups, the concentration of serum prolactin before treatment was the highest. The levels of CD3+、CD4+、 CD8+ and CD4+/CD8+ were lowest before treatment and highest after treatment. Conclusion Acupuncture and Chinese medicines effective in relieving spasm and pain can control the opium-like drug withdrawal symptoms to different degrees, especially acupuncture. However, acupuncture cannot ease the withdrawal symptoms completely. Acupuncture does not strikingly cooperate with the Chinese medicines effective in relieving spasm and pain (including M-receptor antagonists). In detoxification, the Jiaji points are the primary ones and symptom-based points the secondary ones.

  12. Fermentation of lignocellulosic hydrolysates: Inhibition and detoxification

    Energy Technology Data Exchange (ETDEWEB)

    Palmqvist, E.

    1998-02-01

    The ethanol yield and productivity obtained during fermentation of lignocellulosic hydrolysates is decreased due to the presence of inhibiting compounds, such as weak acids, furans and phenolic compounds produced during hydrolysis. Evaluation of the effect of various biological, physical and chemical detoxification treatments by fermentation assays using Saccharomyces cerevisiae was used to characterise inhibitors. Inhibition of fermentation was decreased after removal of the non-volatile compounds, pre-fermentation by the filamentous fungus Trichoderma reesei, treatment with the lignolytic enzyme laccase, extraction with ether, and treatment with alkali. Yeast growth in lignocellulosic hydrolysates was inhibited below a certain fermentation pH, most likely due to high concentrations of undissociated weak acids. The effect of individual compounds were studied in model fermentations. Furfural is reduced to furfuryl alcohol by yeast dehydrogenases, thereby affecting the intracellular redox balance. As a result, acetaldehyde accumulated during furfural reduction, which most likely contributed to inhibition of growth. Acetic acid (10 g 1{sup -1}) and furfural (3 g 1{sup -1}) interacted antagonistically causing decreased specific growth rate, whereas no significant individual or interaction effects were detected by the lignin-derived compound 4-hydroxybenzoic acid (2 g 1{sup -1}). By maintaining a high cell mass density in the fermentor, the process was less sensitive to inhibitors affecting growth and to fluctuations in fermentation pH, and in addition the depletion rate of bioconvertible inhibitors was increased. A theoretical ethanol yield and high productivity was obtained in continuous fermentation of spruce hydrolysate when the cell mass concentration was maintained at a high level by applying cell recirculation 164 refs, 16 figs, 5 tabs

  13. Detoxification of arsenite through adsorption and oxidative transformation on pyrolusite

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chengshuai; Wang, Xiangqing; Li, Xiujuan; Yang, Jinyan [Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou (China); Cao, Weidong [Ministry of Agriculture Key Laboratory of Crop Nutrition and Fertilization, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing (China); Qinghai University, Xining (China)

    2012-11-15

    Adsorption and oxidative transformation processes critically affect the mobility and toxicity of arsenic (As) in the environment. In this study, the detoxification of arsenite through adsorption and oxidation by pyrolusite was systematically investigated. Disappearance of aqueous As(III) in the solution can be efficiently achieved using pyrolusite. The As(III) oxidative transformation product arsenate or As(V) was obtained both in the solution and on the pyrolusite surface. The arsenic species adsorbed on pyrolusite exist in two forms: As(III) and As(V). Furthermore, over 64.8% of the adsorbed As cannot be desorbed. They were fixed more stably in the structure of the mineral to achieve a safer removal. Lower As(III) initial concentration increased As(III) detoxification rates. Elevating the reaction pH from 4.5 to 7.9 elicited a slight effect on the disappearance rate of As(III). Efficient As(III) detoxification can be achieved by pyrolusite within the studied pH range. The addition of low-molecular-weight carboxylic acids decreased the detoxification rate of As(III) through competition for active sites on pyrolusite. Co-existing divalent metal ions, such as Ca{sup 2+}, Ni{sup 2+}, and Mn{sup 2+}, also decreased the detoxification rate of As(III). However, the trivalent ion Cr{sup 3+} largely increased the detoxification rate through co-precipitation and adsorption processes. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Mathematical model insights into arsenic detoxification

    Directory of Open Access Journals (Sweden)

    Nijhout H Frederik

    2011-08-01

    Full Text Available Abstract Background Arsenic in drinking water, a major health hazard to millions of people in South and East Asia and in other parts of the world, is ingested primarily as trivalent inorganic arsenic (iAs, which then undergoes hepatic methylation to methylarsonic acid (MMAs and a second methylation to dimethylarsinic acid (DMAs. Although MMAs and DMAs are also known to be toxic, DMAs is more easily excreted in the urine and therefore methylation has generally been considered a detoxification pathway. A collaborative modeling project between epidemiologists, biologists, and mathematicians has the purpose of explaining existing data on methylation in human studies in Bangladesh and also testing, by mathematical modeling, effects of nutritional supplements that could increase As methylation. Methods We develop a whole body mathematical model of arsenic metabolism including arsenic absorption, storage, methylation, and excretion. The parameters for arsenic methylation in the liver were taken from the biochemical literature. The transport parameters between compartments are largely unknown, so we adjust them so that the model accurately predicts the urine excretion rates of time for the iAs, MMAs, and DMAs in single dose experiments on human subjects. Results We test the model by showing that, with no changes in parameters, it predicts accurately the time courses of urinary excretion in mutiple dose experiments conducted on human subjects. Our main purpose is to use the model to study and interpret the data on the effects of folate supplementation on arsenic methylation and excretion in clinical trials in Bangladesh. Folate supplementation of folate-deficient individuals resulted in a 14% decrease in arsenicals in the blood. This is confirmed by the model and the model predicts that arsenicals in the liver will decrease by 19% and arsenicals in other body stores by 26% in these same individuals. In addition, the model predicts that arsenic

  15. Detoxification of Dissolved SO2 (Bisulfite) by Terricolous Mosses

    OpenAIRE

    BHARALI, BHAGAWAN; BATES, JEFFREY W.

    2006-01-01

    • Background and Aims The widespread calcifuge moss Pleurozium schreberi is moderately tolerant of SO2, whereas Rhytidiadelphus triquetrus is limited to calcareous soils in regions of the UK that were strongly affected by SO2 pollution in the 20th century. The proposition that tolerance of SO2 by these terricolous mosses depends on metabolic detoxification of dissolved bisulfite was investigated.

  16. Sensing and detoxification devices in public building spaces

    DEFF Research Database (Denmark)

    Traberg-Borup, Steen; Gunnarsen, Lars Bo; Afshari, Alireza

    2008-01-01

    This paper describes commonly used ventilation principles and where sensig and detoxification devices could be integrated in public buidings in an effort to warn and protect citizens against surprise attacks by toxic agents. The release of toxic agents may be outdoors, in a single indoor spot...

  17. Gamma-hydroxybutyrate detoxification by titration and tapering

    NARCIS (Netherlands)

    Jong, C.A.J. de; Kamal, R.; Dijkstra, B.A.; Haan, H.A. de

    2012-01-01

    OBJECTIVE: To determine the effectiveness and safety of a new detoxification procedure in gamma-hydroxybutyrate (GHB)-dependent patients. GHB is an endogenous inhibitory neurotransmitter and anesthetic agent that is being abused as a club drug. In many GHB-dependent patients a severe withdrawal synd

  18. Simvastatin effects on detoxification mechanisms in Danio rerio embryos.

    Science.gov (United States)

    Cunha, V; Santos, M M; Moradas-Ferreira, P; Ferreira, M

    2016-06-01

    The transcription and protein activity of defence mechanisms such as ABC transporters, phase I and II of cellular detoxification and antioxidant enzymes can be altered in the presence of emerging contaminants such as pharmaceuticals impacting the overall detoxification mechanism. The present work aimed to characterise the effects of simvastatin on the detoxification mechanisms of embryonic stages of Danio rerio. In a first approach, constitutive transcription of key genes involved in detoxification was determined. Embryos were collected at different developmental stages, and transcription patterns of genes coding for ABC transporters, phase I and II and oxidative stress were analysed. With exception of abcc2, all genes seem to be from maternal transfer (0-2 hpf). Embryos were then exposed to different concentrations of simvastatin (5 and 50 μg/L), verapamil and MK571 (10 μM; ABC protein inhibitors) and a combination of simvastatin and ABC inhibitors. mRNA expression levels of abcb4, abcc1, abcc2, abcg2, cyp1a, cyp3a65, gst, sod, cat was evaluated. Accumulation assays to measure ABC proteins activity and activity of EROD, GST, CAT and Cu/ZnSOD, were also undertaken. Simvastatin acted as a weak inhibitor of ABC proteins and increased EROD and GST activity, whereas Cu/ZnSOD and CAT activity were decreased. Simvastatin up-regulated abcb4 and cyp3a65 transcription (both concentrations), as well as abcc1 and abcc2 at 50 μg/L, and down-regulated gst, sod, cat at 5 μg/L. In conclusion, our data revealed the interaction of simvastatin with detoxification mechanisms highlighting the importance of monitoring the presence of this emerging contaminant in aquatic environments. PMID:27040680

  19. Stochastic ensembles, conformationally adaptive teamwork, and enzymatic detoxification.

    Science.gov (United States)

    Atkins, William M; Qian, Hong

    2011-05-17

    It has been appreciated for a long time that enzymes exist as conformational ensembles throughout multiple stages of the reactions they catalyze, but there is renewed interest in the functional implications. The energy landscape that results from conformationlly diverse poteins is a complex surface with an energetic topography in multiple dimensions, even at the transition state(s) leading to product formation, and this represents a new paradigm. At the same time there has been renewed interest in conformational ensembles, a new paradigm concerning enzyme function has emerged, wherein catalytic promiscuity has clear biological advantages in some cases. "Useful", or biologically functional, promiscuity or the related behavior of "multifunctionality" can be found in the immune system, enzymatic detoxification, signal transduction, and the evolution of new function from an existing pool of folded protein scaffolds. Experimental evidence supports the widely held assumption that conformational heterogeneity promotes functional promiscuity. The common link between these coevolving paradigms is the inherent structural plasticity and conformational dynamics of proteins that, on one hand, lead to complex but evolutionarily selected energy landscapes and, on the other hand, promote functional promiscuity. Here we consider a logical extension of the overlap between these two nascent paradigms: functionally promiscuous and multifunctional enzymes such as detoxification enzymes are expected to have an ensemble landscape with more states accessible on multiple time scales than substrate specific enzymes. Two attributes of detoxification enzymes become important in the context of conformational ensembles: these enzymes metabolize multiple substrates, often in substrate mixtures, and they can form multiple products from a single substrate. These properties, combined with complex conformational landscapes, lead to the possibility of interesting time-dependent, or emergent

  20. Stochastic ensembles, conformationally adaptive teamwork, and enzymatic detoxification.

    Science.gov (United States)

    Atkins, William M; Qian, Hong

    2011-05-17

    It has been appreciated for a long time that enzymes exist as conformational ensembles throughout multiple stages of the reactions they catalyze, but there is renewed interest in the functional implications. The energy landscape that results from conformationlly diverse poteins is a complex surface with an energetic topography in multiple dimensions, even at the transition state(s) leading to product formation, and this represents a new paradigm. At the same time there has been renewed interest in conformational ensembles, a new paradigm concerning enzyme function has emerged, wherein catalytic promiscuity has clear biological advantages in some cases. "Useful", or biologically functional, promiscuity or the related behavior of "multifunctionality" can be found in the immune system, enzymatic detoxification, signal transduction, and the evolution of new function from an existing pool of folded protein scaffolds. Experimental evidence supports the widely held assumption that conformational heterogeneity promotes functional promiscuity. The common link between these coevolving paradigms is the inherent structural plasticity and conformational dynamics of proteins that, on one hand, lead to complex but evolutionarily selected energy landscapes and, on the other hand, promote functional promiscuity. Here we consider a logical extension of the overlap between these two nascent paradigms: functionally promiscuous and multifunctional enzymes such as detoxification enzymes are expected to have an ensemble landscape with more states accessible on multiple time scales than substrate specific enzymes. Two attributes of detoxification enzymes become important in the context of conformational ensembles: these enzymes metabolize multiple substrates, often in substrate mixtures, and they can form multiple products from a single substrate. These properties, combined with complex conformational landscapes, lead to the possibility of interesting time-dependent, or emergent

  1. Enzymatic Mercury Detoxification: The Regulatory Protein MerR

    CERN Multimedia

    Ctortecka, B; Walsh, C T; Comess, K M

    2002-01-01

    Mercury ions and organomercurial reagents are extremely toxic due to their affinity for thiol groups. Many bacteria contain an elaborate detoxification system for a metabolic conversion of toxic Hg$^{2+}$ or organomercurials to less toxic elemental Hg$^0$. The main components of the enzymatic mercury detoxification (see Fig. 1) are the regulatory protein MerR (mercury responsive genetic switch), the organomercurial lyase MerB (cleavage of carbon mercury bonds), and the mercuric ion reductase MerA (reduction of mercuric ions). In these proteins Hg$^{2+}$ is usually coordinated by the thiol groups of cysteines. We utilize the nuclear quadrupole interaction (NQI) of ${\\rm^{199m}}$Hg detected by time differential perturbed angular correlation (TDPAC) to identify the Hg metal site geometries in these proteins in order to elucidate the molecular origin of the ultrasensitivity, selectivity and reaction mechanism of this detoxification system. The short lived TDPAC probe ${\\rm^{199m}}$Hg ($\\tau_{1/2} =$ 43 min) is su...

  2. Sulfide Intrusion and Detoxification in the Seagrass Zostera marina.

    Directory of Open Access Journals (Sweden)

    Harald Hasler-Sheetal

    Full Text Available Gaseous sulfide intrusion into seagrasses growing in sulfidic sediments causes little or no harm to the plant, indicating the presence of an unknown sulfide tolerance or detoxification mechanism. We assessed such mechanism in the seagrass Zostera marina in the laboratory and in the field with scanning electron microscopy coupled to energy dispersive X-ray spectroscopy, chromatographic and spectrophotometric methods, and stable isotope tracing coupled with a mass balance of sulfur compounds. We found that Z. marina detoxified gaseous sediment-derived sulfide through incorporation and that most of the detoxification occurred in underground tissues, where sulfide intrusion was greatest. Elemental sulfur was a major detoxification compound, precipitating on the inner wall of the aerenchyma of underground tissues. Sulfide was metabolized into thiols and entered the plant sulfur metabolism as well as being stored as sulfate throughout the plant. We conclude that avoidance of sulfide exposure by reoxidation of sulfide in the rhizosphere or aerenchyma and tolerance of sulfide intrusion by incorporation of sulfur in the plant are likely major survival strategies of seagrasses in sulfidic sediments.

  3. Rice Transcriptome Analysis to Identify Possible Herbicide Quinclorac Detoxification Genes

    Directory of Open Access Journals (Sweden)

    Wenying eXu

    2015-09-01

    Full Text Available Quinclorac is a highly selective auxin-type herbicide, and is widely used in the effective control of barnyard grass in paddy rice fields, improving the world’s rice yield. The herbicide mode of action of quinclorac has been proposed and hormone interactions affect quinclorac signaling. Because of widespread use, quinclorac may be transported outside rice fields with the drainage waters, leading to soil and water pollution and environmental health problems.In this study, we used 57K Affymetrix rice whole-genome array to identify quinclorac signaling response genes to study the molecular mechanisms of action and detoxification of quinclorac in rice plants. Overall, 637 probe sets were identified with differential expression levels under either 6 or 24 h of quinclorac treatment. Auxin-related genes such as GH3 and OsIAAs responded to quinclorac treatment. Gene Ontology analysis showed that genes of detoxification-related family genes were significantly enriched, including cytochrome P450, GST, UGT, and ABC and drug transporter genes. Moreover, real-time RT-PCR analysis showed that top candidate P450 families such as CYP81, CYP709C and CYP72A genes were universally induced by different herbicides. Some Arabidopsis genes for the same P450 family were up-regulated under quinclorac treatment.We conduct rice whole-genome GeneChip analysis and the first global identification of quinclorac response genes. This work may provide potential markers for detoxification of quinclorac and biomonitors of environmental chemical pollution.

  4. Is arsenic biotransformation a detoxification mechanism for microorganisms?

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, M. Azizur, E-mail: Mohammad.Rahman@uts.edu.au [Centre for Environmental Sustainability, School of the Environment, Faculty of Science, University of Technology, P.O. Box 123, Broadway, Sydney, NSW 2007 (Australia); Hassler, Christel [Marine and Lake Biogeochemistry, Institute F. A. Forel, University of Geneva, 10 rte de Suisse, Versoix, 1290 Switzerland (Switzerland)

    2014-01-15

    Arsenic (As) is extremely toxic to living organisms at high concentration. In aquatic systems, As exists in different chemical forms. The two major inorganic As (iAs) species are As{sup V}, which is thermodynamically stable in oxic waters, and As{sup III}, which is predominant in anoxic conditions. Photosynthetic microorganisms (e.g., phytoplankton and cyanobacteria) take up As{sup V}, biotransform it to As{sup III}, then biomethylate it to methylarsenic (MetAs) forms. Although As{sup III} is more toxic than As{sup V}, As{sup III} is much more easily excreted from the cells than As{sup V}. Therefore, majority of researchers consider the reduction of As{sup V} to As{sup III} as a detoxification process. The biomethylation process results in the conversion of toxic iAs to the less toxic pentavalent MetAs forms (monomethylarsonate; MMA{sup V}, dimethylarsonate; DMA{sup V}, and trimethylarsenic oxide; TMAO{sup V}) and trimethylarsine (TMAO{sup III}). However, biomethylation by microorganisms also produces monomethylarsenite (MMA{sup III}) and dimethylarsenite (DMA{sup III}), which are more toxic than iAs, as a result of biomethylation by the microorganisms, demonstrates the need to reconsider to what extent As biomethylation contributes to a detoxification process. In this review, we focused on the discussion of whether the biotransformation of As species in microorganisms is really a detoxification process with recent data.

  5. The Leeds Evaluation of Efficacy of Detoxification Study (LEEDS prisons project pilot study: protocol for a randomised controlled trial comparing dihydrocodeine and buprenorphine for opiate detoxification

    Directory of Open Access Journals (Sweden)

    Dalton Richard

    2007-01-01

    Full Text Available Abstract Background In the United Kingdom (UK, there is an extensive market for the class 'A' drug heroin. Many heroin users spend time in prison. People addicted to heroin often require prescribed medication when attempting to cease their drug use. The most commonly used detoxification agents in UK prisons are buprenorphine, dihydrocodeine and methadone. However, national guidelines do not state a detoxification drug of choice. Indeed, there is a paucity of research evaluating the most effective treatment for opiate detoxification in prisons. This study seeks to address the paucity by evaluating routinely used interventions amongst drug using prisoners within UK prisons. Methods/Design The Leeds Evaluation of Efficacy of Detoxification Study (LEEDS Prisons Pilot Study will use randomised controlled trial methodology to compare the open use of buprenorphine and dihydrocodeine for opiate detoxification, given in the context of routine care, within HMP Leeds. Prisoners who are eligible and give informed consent will be entered into the trial. The primary outcome measure will be abstinence status at five days post detoxification, as determined by a urine test. Secondary outcomes during the detoxification and then at one, three and six months post detoxification will be recorded.

  6. Detoxification of azo dyes in the context of environmental processes.

    Science.gov (United States)

    Rawat, Deepak; Mishra, Vandana; Sharma, Radhey Shyam

    2016-07-01

    Azo dyes account for >70% of the global industrial demand (∼9 million tons). Owing to their genotoxic/carcinogenic potential, the annual disposal of ∼4,500,000 tons of dyes and/or degraded products is an environmental and socio-economic concern. In comparison to physico-chemical methods, microbe-mediated dye degradation is considered to be low-input, cost-effective and environmentally-safe. However, under different environmental conditions, interactions of chemically diverse dyes with metabolically diverse microbes produce metabolites of varying toxicity. In addition, majority of studies on microbial dye-degradation focus on decolorization with least attention towards detoxification. Therefore, the environmental significance of microbial dye detoxification research of past >3 decades is critically evaluated with reference to dye structure and the possible influence of microbial interactions in different environments. In the absence of ecosystem-based studies, the results of laboratory-based studies on dye degradation, metabolite production and their genotoxic impact on model organisms are used to predict the possible fate and consequences of azo dyes/metabolites in the environment. In such studies, the predominance of fewer numbers of toxicological assays that too at lower levels of biological organization (molecular/cellular/organismic) suggests its limited ecological significance. Based on critical evaluation of these studies the recommendations on inclusion of multilevel approach (assessment at multiple levels of biological organization), multispecies microcosm approach and native species approach in conjunction with identification of dye metabolites have been made for future studies. Such studies will bridge the gap between the fundamental knowledge on dye-microbe-environment interactions and its application to combat dye-induced environmental toxicity. Thus an environmental perspective on dye toxicity in the background of dye structure and effects of

  7. Detoxification of azo dyes in the context of environmental processes.

    Science.gov (United States)

    Rawat, Deepak; Mishra, Vandana; Sharma, Radhey Shyam

    2016-07-01

    Azo dyes account for >70% of the global industrial demand (∼9 million tons). Owing to their genotoxic/carcinogenic potential, the annual disposal of ∼4,500,000 tons of dyes and/or degraded products is an environmental and socio-economic concern. In comparison to physico-chemical methods, microbe-mediated dye degradation is considered to be low-input, cost-effective and environmentally-safe. However, under different environmental conditions, interactions of chemically diverse dyes with metabolically diverse microbes produce metabolites of varying toxicity. In addition, majority of studies on microbial dye-degradation focus on decolorization with least attention towards detoxification. Therefore, the environmental significance of microbial dye detoxification research of past >3 decades is critically evaluated with reference to dye structure and the possible influence of microbial interactions in different environments. In the absence of ecosystem-based studies, the results of laboratory-based studies on dye degradation, metabolite production and their genotoxic impact on model organisms are used to predict the possible fate and consequences of azo dyes/metabolites in the environment. In such studies, the predominance of fewer numbers of toxicological assays that too at lower levels of biological organization (molecular/cellular/organismic) suggests its limited ecological significance. Based on critical evaluation of these studies the recommendations on inclusion of multilevel approach (assessment at multiple levels of biological organization), multispecies microcosm approach and native species approach in conjunction with identification of dye metabolites have been made for future studies. Such studies will bridge the gap between the fundamental knowledge on dye-microbe-environment interactions and its application to combat dye-induced environmental toxicity. Thus an environmental perspective on dye toxicity in the background of dye structure and effects of

  8. Single and Repeated Ultra-Rapid Detoxification Prevents Cognitive Impairment in Morphine Addicted Rats: A Privilege for Single Detoxification

    OpenAIRE

    Ghamati, Leila; Hajali, Vahid; Sheibani, Vahid; Esmaeilpour, Khadijeh; Sepehri, Gholamreza; Shojaee, Mojtaba

    2014-01-01

    Background Opioids have been shown to affect learning and memory processes. Different protocols of morphine withdrawal can substantially vary in their success to prevent opioid induced impairments of cognitive performance. In the present study, we report the effects of single and repetitive ultra-rapid detoxification (URD) on spatial learning and memory in morphine addicted rats. Methods Morphine (10 mg/kg) was intraperitoneally (IP) injected in male rats once a day over one week and after wh...

  9. Bio-inspired detoxification using 3D-printed hydrogel nanocomposites

    Science.gov (United States)

    Gou, Maling; Qu, Xin; Zhu, Wei; Xiang, Mingli; Yang, Jun; Zhang, Kang; Wei, Yuquan; Chen, Shaochen

    2014-05-01

    Rationally designed nanoparticles that can bind toxins show great promise for detoxification. However, the conventional intravenous administration of nanoparticles for detoxification often leads to nanoparticle accumulation in the liver, posing a risk of secondary poisoning especially in liver-failure patients. Here we present a liver-inspired three-dimensional (3D) detoxification device. This device is created by 3D printing of designer hydrogels with functional polydiacetylene nanoparticles installed in the hydrogel matrix. The nanoparticles can attract, capture and sense toxins, while the 3D matrix with a modified liver lobule microstructure allows toxins to be trapped efficiently. Our results show that the toxin solution completely loses its virulence after treatment using this biomimetic detoxification device. This work provides a proof-of-concept of detoxification by a 3D-printed biomimetic nanocomposite construct in hydrogel, and could lead to the development of alternative detoxification platforms.

  10. Buprenorphine versus dihydrocodeine for opiate detoxification in primary care: a randomised controlled trial

    OpenAIRE

    Adams Clive E; Tompkins Charlotte NE; Sheard Laura; Wright Nat MJ; Allgar Victoria L; Oldham Nicola S

    2007-01-01

    Abstract Background Many drug users present to primary care requesting detoxification from illicit opiates. There are a number of detoxification agents but no recommended drug of choice. The purpose of this study is to compare buprenorphine with dihydrocodeine for detoxification from illicit opiates in primary care. Methods Open label randomised controlled trial in NHS Primary Care (General Practices), Leeds, UK. Sixty consenting adults using illicit opiates received either daily sublingual b...

  11. Opioid-induced hyperalgesia and rapid opioid detoxification after tacrolimus administration.

    Science.gov (United States)

    Siniscalchi, Antonio; Piraccini, Emanuele; Miklosova, Zuzana; Taddei, Stefania; Faenza, Stefano; Martinelli, Gerardo

    2008-02-01

    Opioids can induce central sensitization and hyperalgesia, referred to as "opioid-induced hyperalgesia." Our report describes a patient who underwent intestinal transplant followed by immunosuppressant-related neuropathic pain. Her pain was treated with limited success over the course of 3 yr with different therapies, including i.v. morphine. She developed opioid-induced hyperalgesia, which was successfully treated with rapid detoxification under general anesthesia. Detoxification improved her quality of life, including the ability to resume physiotherapy. Six months after treatment, she remained opioid free. Our experience suggests that rapid detoxification under general anesthesia may be an effective treatment for opioid-induced hyperalgesia and merits comparison to traditional detoxification methods.

  12. Sulfide Intrusion and Detoxification in the Seagrass Zostera marina

    DEFF Research Database (Denmark)

    Hasler-Sheetal, Harald; Holmer, Marianne

    2015-01-01

    Gaseous sulfide intrusion into seagrasses growing in sulfidic sediments causes little or no harm to the plant, indicating the presence of an unknown sulfide tolerance or detoxification mechanism. We assessed such mechanism in the seagrass Zostera marina in the laboratory and in the field...... as sulfate throughout the plant. We conclude that avoidance of sulfide exposure by reoxidation of sulfide in the rhizosphere or aerenchyma and tolerance of sulfide intrusion by incorporation of sulfur in the plant are likely major survival strategies of seagrasses in sulfidic sediments....

  13. PEI detoxification of pretreated spruce for high solids ethanol fermentation

    DEFF Research Database (Denmark)

    Cannella, David; Sveding, Per Viktor; Jørgensen, Henning

    2014-01-01

    ethanol production from spruce performing the whole process, from pretreatment to hydrolysis and fermentation, at 30% dry matter (equivalent to similar to 20% WIS). Hydrolysis and fermentation was performed in a horizontal free fall mixing reactor enabling efficient mixing at high solids loadings....... In batch simultaneous saccharification and fermentation (SSF), up to 76% cellulose to ethanol conversion was achieved resulting in a concentration of 51 g/kg of ethanol. Key to obtaining this high ethanol yield at these conditions was the use of a detoxification technology based on applying a soluble...

  14. Study on Atherosclerosis Treated with Theory of Detoxification

    Institute of Scientific and Technical Information of China (English)

    Xu Yingchun; Wang Hualiang; Ding Jing

    2006-01-01

    Starting with the contents, classification and pathogenic characteristics of the toxic pathogen and combining the modem medical research on the correlation of atherosclerosis with inflammation and immune reaction,authors have studied and expounded the interrelationship between the toxic pathogen and atherosclerosis.The toxic pathogen affecting the whole pathological process of atherosclerosis is a key factor for the disease to remain lingering and a cause of various cardiocerebrovascular diseases. Detoxification can be used to treat atherosclerosis so as to enhance the toxin-removing ability of the body and resist the damage to the body from the toxic pathogen.

  15. Roles of vertebrate aquaglyceroporins in arsenic transport and detoxification.

    Science.gov (United States)

    Liu, Zijuan

    2010-01-01

    Aquaporins are important channel proteins that are responsible for the balance of cellular osmolarity and nutrient transport in vertebrates. Recently, new functions of these ancient channels have been found in the conduction of metalloid arsenic (As). Chronic As exposure through contaminated water and food sources is associated with multiple human diseases and endangers millions of people's health worldwide. Therefore, identification of the As transport pathways is necessary to elucidate the mechanisms of As carcinogenesis. Arsenic detoxification systems have been studied in multiple vertebrates such as mammalian mouse, rat, humans and nonmammalian vertebrates. Multiple transporters and enzymes have been shown to be involved in As translocation and cellular transformation. In these vertebrates, members ofaquaglyceroporins, which include AQP7 in kidney and AQP9 in liver, catalyze uptake of inorganic trivalent arsenite [As(III)]. AQP9, the major liver aquaglyceroporin, conducts both inorganic As(III) and organic monomethylarsonous acid [MMA(III)], an intermediate that is generated during the cellular methylation. As a channel that facilitates a downhill movement of substances dependent on the concentration gradient, AQP9 may play an important role in the simultaneous influx of inorganic As(III) from blood to liver and efflux of As metabolite MMA(III) from liver to blood. In this chapter, we will discuss the function ofaquaglyceroporins ofvertebrates in uptake and detoxification of the metalloid As.

  16. Metal-based nanotoxicity and detoxification pathways in higher plants.

    Science.gov (United States)

    Ma, Chuanxin; White, Jason C; Dhankher, Om Parkash; Xing, Baoshan

    2015-06-16

    The potential risks from metal-based nanoparticles (NPs) in the environment have increased with the rapidly rising demand for and use of nanoenabled consumer products. Plant's central roles in ecosystem function and food chain integrity ensure intimate contact with water and soil systems, both of which are considered sinks for NPs accumulation. In this review, we document phytotoxicity caused by metal-based NPs exposure at physiological, biochemical, and molecular levels. Although the exact mechanisms of plant defense against nanotoxicity are unclear, several relevant studies have been recently published. Possible detoxification pathways that might enable plant resistance to oxidative stress and facilitate NPs detoxification are reviewed herein. Given the importance of understanding the effects and implications of metal-based NPs on plants, future research should focus on the following: (1) addressing key knowledge gaps in understanding molecular and biochemical responses of plants to NPs stress through global transcriptome, proteome, and metablome assays; (2) designing long-term experiments under field conditions at realistic exposure concentrations to investigate the impact of metal-based NPs on edible crops and the resulting implications to the food chain and to human health; and (3) establishing an impact assessment to evaluate the effects of metal-based NPs on plants with regard to ecosystem structure and function.

  17. Solar photocatalytic water detoxification of paper mill effluents

    Energy Technology Data Exchange (ETDEWEB)

    Sattler, C.; Oliveira, L. de; Tzschirner, M. [German Aerospace Center, Inst. of Technical Thermodynamics Solar Research, Cologne (Germany); Machado, A.E.H. [Universidade Federal de Uberlandia, Inst. de Quimica, Uberlandia, MG (Brazil)

    2004-05-01

    To implement solar photocatalytic water detoxification in industrial processes, problems have to be identified. The effluents from paper mills contain non-biodegradable substances like polyphenolic polymer lignin. Photocatalysis is a suitable method to degrade this class of substances. Especially in good solar regions, like Brazil, solar radiation should be ideally used for that process. The German Aerospace Center and the Federal University of Uberlandia-MG, Brazil are cooperating in a project funded by the German International Bureau of the Federal Ministry of Education and Science and CNPq, Brazil to implement solar photocatalysis in the treatment of paper mill effluents. Therefore, the following tasks are worked on: model compounds for the contaminants have been identified and compared to the real effluents. Different photocatalysts and oxidizing agents were tested to shape the degradation process for use in an industrial application. Tests were carried out in lamp reactors as well as in solar reactors to determine the influence of the reactor on the degradation. The kinetic of the degradation was also determined. The test results have shown that the non-biodegradable substances can be very effectively degraded by photocatalytic treatment. Especially in solar reactors like the CPC type reactor, degradation takes place very fast. Total mineralization of the contaminants can be reached. The paper describes the project as well as the test results and will provide an outlook to the implementation of solar photocatalytic detoxification technology in Brazil. (Author)

  18. Optimality in the zonation of ammonia detoxification in rodent liver.

    Science.gov (United States)

    Bartl, Martin; Pfaff, Michael; Ghallab, Ahmed; Driesch, Dominik; Henkel, Sebastian G; Hengstler, Jan G; Schuster, Stefan; Kaleta, Christoph; Gebhardt, Rolf; Zellmer, Sebastian; Li, Pu

    2015-11-01

    The rodent liver eliminates toxic ammonia. In mammals, three enzymes (or enzyme systems) are involved in this process: glutaminase, glutamine synthetase and the urea cycle enzymes, represented by carbamoyl phosphate synthetase. The distribution of these enzymes for optimal ammonia detoxification was determined by numerical optimization. This in silico approach predicted that the enzymes have to be zonated in order to achieve maximal removal of toxic ammonia and minimal changes in glutamine concentration. Using 13 compartments, representing hepatocytes, the following predictions were generated: glutamine synthetase is active only within a narrow pericentral zone. Glutaminase and carbamoyl phosphate synthetase are located in the periportal zone in a non-homogeneous distribution. This correlates well with the paradoxical observation that in a first step glutamine-bound ammonia is released (by glutaminase) although one of the functions of the liver is detoxification by ammonia fixation. The in silico approach correctly predicted the in vivo enzyme distributions also for non-physiological conditions (e.g. starvation) and during regeneration after tetrachloromethane (CCl4) intoxication. Metabolite concentrations of glutamine, ammonia and urea in each compartment, representing individual hepatocytes, were predicted. Finally, a sensitivity analysis showed a striking robustness of the results. These bioinformatics predictions were validated experimentally by immunohistochemistry and are supported by the literature. In summary, optimization approaches like the one applied can provide valuable explanations and high-quality predictions for in vivo enzyme and metabolite distributions in tissues and can reveal unknown metabolic functions.

  19. Detoxificatie van patiënten met GHB-afhankelijkheid [Detoxification of patients with GHB dependence

    NARCIS (Netherlands)

    Weert-van Oene, G.H. de; Schellekens, A.F.A.; Dijkstra, B.A.G.; Kamal, R.M.; Jong, C.A.J. de

    2013-01-01

    background A new detoxification method for ghb dependence was developed recently in the Netherlands. The method involves the use of pharmaceutical ghb. aim To describe the characteristics of ghb dependent inpatients, the course of the detoxification process and patients' progress in the three months

  20. Detoxificatie van patiënten met GHB-afhankelijkheid [Detoxification of patients with GHB dependence

    NARCIS (Netherlands)

    Weert-van Oene, G.H. de; Schellekens, A.F.A.; Dijkstra, B.A.G.; Kamal, R.M; Jong, C.A.J. de

    2013-01-01

    BACKGROUND: A new detoxification method for GHB dependence was developed recently in the Netherlands. The method involves the use of pharmaceutical GHB. AIM: To describe the characteristics of GHB dependent inpatients, the course of the detoxification process and patients' progress in the three mont

  1. Lipid signalling couples translational surveillance to systemic detoxification in Caenorhabditis elegans.

    Science.gov (United States)

    Govindan, J Amaranath; Jayamani, Elamparithi; Zhang, Xinrui; Breen, Peter; Larkins-Ford, Jonah; Mylonakis, Eleftherios; Ruvkun, Gary

    2015-10-01

    Translation in eukaryotes is followed to detect toxins and virulence factors and coupled to the induction of defence pathways. Caenorhabditis elegans germline-specific mutations in translation components are detected by this system to induce detoxification and immune responses in distinct somatic cells. An RNA interference screen revealed gene inactivations that act at multiple steps in lipid biosynthetic and kinase pathways upstream of MAP kinase to mediate the systemic communication of translation defects to induce detoxification genes. Mammalian bile acids can rescue the defect in detoxification gene induction caused by C. elegans lipid biosynthetic gene inactivations. Extracts prepared from C. elegans with translation deficits but not from the wild type can also rescue detoxification gene induction in lipid-biosynthesis-defective strains. These eukaryotic antibacterial countermeasures are not ignored by bacteria: particular bacterial species suppress normal C. elegans detoxification responses to mutations in translation factors.

  2. A novel approach in the detoxification of intravenous buprenorphine dependence

    Science.gov (United States)

    Sarkar, Sukanto; Subramaniam, Eswaran; Konthoujam, Janet

    2016-01-01

    Background: Opioid dependence remains a significant problem in India, and of late intravenous (IV) buprenorphine use has increased in India, especially in combination with antihistamines and benzodiazepines. Its usage has many serious consequences in the form of needle-transmitted hepatitis and HIV, which is showing an increasing trend. Buprenorphine is a partial agonist at μ-opioid receptors. In tablet form (and rarely as IV), it is widely used in the treatment of opioid detoxification. We assessed the safety and efficacy of transdermal patch of buprenorphine with week long duration of action in the treatment of detoxification of IV buprenorphine dependence in view of its many advantages. Materials and Methods: Six consecutive patients with International Classification of Diseases diagnosis of Opioid Dependence Syndrome (IV buprenorphine) were given a buprenorphine patch for treatment of withdrawal symptoms after receiving consent. Severity of opioid dependence was assessed by using Severity of Opioid Dependence Questionnaire on the day of presentation. Subjective and objective rating for opioid withdrawal was done by subjective opiate withdrawal scale (SOWS) and objective opiate withdrawal scale (OOWS) prepatch and postpatch 3rd and 7th day. Buprenorphine side effect checklist was applied on a daily basis. Results: The patients had a mean age of 30 years, of whom 83.3% are males. All were educated and 50% were currently employed. All of them had additional comorbid substance use as well as a comorbid psychiatric diagnosis. Each of them received a patch of varying dosage. The patch dose used initially was based on clinical considerations alone and was fairly adequate in controlling acute withdrawal symptoms. There is a significant improvement in SOWS and OOWS while comparing the baseline (prepatch) with 3rd and 7th day (postpatch) (P ≤ 0.05). None of the patients reported any side effect with the patch. Conclusion: This study shows that transdermal

  3. Technical Procedures Management in Gas-Phase Detoxification Laboratory

    International Nuclear Information System (INIS)

    The natural cycle of Volatile Organic Compounds (VOCs) has been disturbed by the industrial and socioeconomic activities of human beings. This imbalance in the environment has affected the ecosystems and the human health. Initiatives have been planned to mitigate these adverse effects. In order to minimize the hazardous effects, initiatives have been proposed for the treatment of gaseous emissions. The solar photo catalysis appears as a clear and renewable technology in front of the conventional ones.In CIEMAT this line is being investigated as the base of a future implementation at a pre industrial scale.Technical procedures are written in this document for testing Gas-Phase detoxification at lab scale in the Renewable Energy Department (DER) CIEMAT- Madrid to eliminate the VOCs by using the solar photo catalysis technology. (Author) 34 refs

  4. Plasma application for detoxification of Jatropha phorbol esters

    Science.gov (United States)

    Kongmany, S.; Matsuura, H.; Furuta, M.; Okuda, S.; Imamura, K.; Maeda, Y.

    2013-06-01

    Atmospheric pressure non-thermal dielectric barrier discharge (DBD) plasma generated by helium gas at high voltage and input power of about 50 W was first applied to detoxification of Jatropha curcas phorbol esters (J. PEs) as well as standard phorbol ester (4β-12-O-tetradecanoyl phorbol-13-acetate, TPA) in water and methanol. Plasma irradiation on the solution sample was conducted for 15 min. In aqueous solution, only 16% of TPA was degraded and complete degradation of J. PEs was observed. On the contrary, complete degradation of both TPA and J. PEs in methanol was achieved by the same plasma irradiation condition. Hydroxyl radical (•OH) generated by plasma irradiation of the solution is expected as the main radical inducing the degradation of PEs.

  5. Application of probiotics in the xenobiotic detoxification therapy

    International Nuclear Information System (INIS)

    Many applications of probiotics have been described up to date. In this paper, it is hypothesized that probiotic microorganisms can also be used to decrease the xenobiotics intake in humans. The use of probiotic bacteria (e.g. strains of Lactobacillus sp. and Bifidobacterium Sp.) and Yeasts (Saccharomyces sp.) gives the opportunity for detoxification of various elements and compounds, considered as contaminants, directly in the lumen of human intestine. Some of these microorganisms ar known to accumulate cesium, strontium and heavy metals to a great extent and also bind mycotoxins. Certainly, during the up-coming years, their native or genetically modified strains will be a part of treatment protocols in detoxication therapy. The utilization of probiotics, in the both therapy and nutrition of people living in the countries suffering from high food contamination, could result in the reduction of annual xenobiotic dose to be incorporated in their organisms. (author)

  6. Detoxification Mechanisms of Mercury Toxicity in Plants: A Review

    Directory of Open Access Journals (Sweden)

    Shilpa Shrivastava

    2015-12-01

    Full Text Available Mercury is one of the most toxic heavy metals present in the earth’s crust. It has been considered as environmental pollutant because of its potent toxicity to plants and humans. In this review, we discuss mercury toxicity responses on plant metabolism and its detoxification mechanism by phytochelatins and antioxidant enzymes. Some light is also shed on selenium antagonistic study with mercury. Due to its potential toxicity, it has attracted attention in fields of soil science and plant nutrition. Mercury has harmful toxic effects on the molecular and physiobiochemical behavior of plants. Mostly research work has been done on seed germination, and shoot, root, and leaf morphology. Enzyme responses with respect to mercury as a result Hg accumulated in food chain is also reviewed here. Hence, this review may provide a compiled data for other researches in this direction, to provide a better mechanism or details about mercury’s noxious effect in the ecosystem.

  7. Detoxification of mycotoxin patulin by the yeast Rhodosporidium paludigenum.

    Science.gov (United States)

    Zhu, Ruiyu; Feussner, Kirstin; Wu, Tao; Yan, Fujie; Karlovsky, Petr; Zheng, Xiaodong

    2015-07-15

    Patulin is a mycotoxin produced by Penicillium species which often contaminates fruit and fruit-derived products. In this work the degradation of patulin by the yeast Rhodosporidium paludigenum was studied and the toxicity of the degradation product was determined. Patulin-degrading activity of R. paludigenum was inducible by patulin; it was located within yeast cells and the enzyme did not require a dissociable cofactor. Chromatographic behavior and molecular mass of the degradation product indicated that R. paludigenum transformed patulin into desoxypatulinic acid. The degradation product was significantly less toxic to Arabidopsis thaliana and human liver cells than patulin; it was not toxic to Escherichia coli at the highest concentration tested. The detoxification activity of R. paludigenum toward patulin is a promising tool for the control of patulin contamination in food and feed. PMID:25722132

  8. Buprenorphine versus dihydrocodeine for opiate detoxification in primary care: a randomised controlled trial

    Directory of Open Access Journals (Sweden)

    Adams Clive E

    2007-01-01

    Full Text Available Abstract Background Many drug users present to primary care requesting detoxification from illicit opiates. There are a number of detoxification agents but no recommended drug of choice. The purpose of this study is to compare buprenorphine with dihydrocodeine for detoxification from illicit opiates in primary care. Methods Open label randomised controlled trial in NHS Primary Care (General Practices, Leeds, UK. Sixty consenting adults using illicit opiates received either daily sublingual buprenorphine or daily oral dihydrocodeine. Reducing regimens for both interventions were at the discretion of prescribing doctor within a standard regimen of not more than 15 days. Primary outcome was abstinence from illicit opiates at final prescription as indicated by a urine sample. Secondary outcomes during detoxification period and at three and six months post detoxification were recorded. Results Only 23% completed the prescribed course of detoxification medication and gave a urine sample on collection of their final prescription. Risk of non-completion of detoxification was reduced if allocated buprenorphine (68% vs 88%, RR 0.58 CI 0.35–0.96, p = 0.065. A higher proportion of people allocated to buprenorphine provided a clean urine sample compared with those who received dihydrocodeine (21% vs 3%, RR 2.06 CI 1.33–3.21, p = 0.028. People allocated to buprenorphine had fewer visits to professional carers during detoxification and more were abstinent at three months (10 vs 4, RR 1.55 CI 0.96–2.52 and six months post detoxification (7 vs 3, RR 1.45 CI 0.84–2.49. Conclusion Informative randomised trials evaluating routine care within the primary care setting are possible amongst drug using populations. This small study generates unique data on commonly used treatment regimens.

  9. The Leeds Evaluation of Efficacy of Detoxification Study (LEEDS prisons project: a randomised controlled trial comparing dihydrocodeine and buprenorphine for opiate detoxification

    Directory of Open Access Journals (Sweden)

    Li Ryan

    2009-02-01

    Full Text Available Abstract Background Many opiate users entering British prisons require prescribed medication to help them achieve abstinence. This commonly takes the form of a detoxification regime. Previously, a range of detoxification agents have been prescribed without a clear evidence base to recommend a drug of choice. There are few trials and very few in the prison setting. This study compares dihydrocodeine with buprenorphine. Methods Open label, pragmatic, randomised controlled trial in a large remand prison in the North of England. Ninety adult male prisoners requesting an opiate detoxification were randomised to receive either daily sublingual buprenorphine or daily oral dihydrocodeine, given in the context of routine care. All participants gave written, informed consent. Reducing regimens were within a standard regimen of not more than 20 days and were at the discretion of the prescribing doctor. Primary outcome was abstinence from illicit opiates as indicated by a urine test at five days post detoxification. Secondary outcomes were collected during the detoxification period and then at one, three and six months post detoxification. Analysis was undertaken using relative risk tests for categorical data and unpaired t-tests for continuous data. Results 64% of those approached took part in the study. 63 men (70% gave a urine sample at five days post detoxification. At the completion of detoxification, by intention to treat analysis, a higher proportion of people allocated to buprenorphine provided a urine sample negative for opiates (abstinent compared with those who received dihydrocodeine (57% vs 35%, RR 1.61 CI 1.02–2.56. At the 1, 3 and 6 month follow-up points, there were no significant differences for urine samples negative for opiates between the two groups. Follow up rates were low for those participants who had subsequently been released into the community. Conclusion These findings would suggest that dihydrocodeine should not be routinely

  10. Celecoxib enhances the detoxification of diethylnitrosamine in rat liver cancer

    Institute of Scientific and Technical Information of China (English)

    Martha Estela Salcido-Neyoy; Adolfo Sierra-Santoyo; Olga Beltrán-Ramírez; José Roberto Macías-Pérez; Saúl Villa-Trevi(n)o

    2009-01-01

    AIM: To study the effect of celecoxib (CXB) on diethylnitrosamine activation through the regulation of cytochrome P450 in a hepatocarcinogenesis model. METHODS: Six-week-old male Sprague-Dawley rats were randomly divided into five groups, a nontreated group (NT), a diethylnitrosamine-treated group (DEN), a DEN+CXB-treated group (DEN+CXB), and CXB 8 d-treated and CXB 32 d-treated groups. The effects of celecoxib on the enzymatic activities of CYP1A1, 2A, 2B1/2, and 2E1 were assessed in hepatic microsomes 24 h after DEN administration.Changes in CYP1A1 and CYP2B1/2 protein expression were also evaluated. The rate of DEN metabolism was measured by the production of the deethylation metabolite acetaldehyde, and the denitrosation metabolite nitrite.RESULTS: DEN+CXB administration produced a significant increase in the enzymatic activities of CYP2B1/2 and 1A1, whereas it did not change the activities of CYP2A and 2E1, compared to that of the DEN group. CXB treatment for eight days did not produce a significant effect on enzymatic activity when compared to the NT group; however, when it was administered for prolonged times (CXB 32 d group), the enzymatic activities were increased in a similar pattern to those in the DEN+CXB group. The observed increase in the enzymatic activities in the DEN+CXB group was accompanied by an increase in the CYP2B1/2 protein levels; no changes were observed in the levels of CYP1A1. In vitro, CXB increased the denitrosation of DEN, a pathway of metabolic detoxification. The addition of SKF-525A, a preferential inhibitor of CYP2B, abrogated the denitrosation of DEN. CONCLUSION: These results suggest that the mechanism of action of CXB involves enhancement of the detoxification of DEN by an increasing denitrosation via CYP2B1/2.

  11. Conflicting demands on detoxification pathways influence how common brushtail possums choose their diets.

    Science.gov (United States)

    Marsh, Karen J; Wallis, Ian R; McLean, Stuart; Sorensen, Jennifer S; Foley, William J

    2006-08-01

    Most herbivores eat more and survive better when they have access to a variety of foods. One explanation involves the detoxification of plant secondary metabolites (PSMs). By feeding from a variety of plants that contain different classes of PSMs, animals can use multiple detoxification pathways and presumably consume more food. Although popular, this theory is difficult to test because it requires knowledge of the detoxification pathways of each PSM in the diet. We established that common brushtail possums (Trichosurus vulpecula) use various combinations of oxidation, hydrolysis, and conjugation with glucuronic acid (GA) or glycine to detoxify six PSMs. Compared to their ingestion of a single PSM, possums ate more when offered a choice between two diets containing PSMs that require apparently independent detoxification pathways (benzoate and 1,8-cineole, benzoate and p-cymene, benzoate and orcinol, benzoate and salicin, or orcinol and 1,8-cineole). However, possums still did not eat as much of these diets as they did of a basal diet free of PSMs. This suggests that detoxification pathways are never independent, but are separated instead by degrees. In contrast, possums offered a choice of two PSMs that require competing detoxification pathways (1,8-cineole and p-cymene, 1,8-cineole and salicin, or orcinol and salicin) ate no more than when offered diets containing one of the compounds. There was an exception: even though both rutin and orcinol are detoxified via conjugation with GA, the feeding behavior of possums did not suggest competition for detoxification pathways. This implies that the supply of GA is not limiting. This study provides the first convincing evidence that herbivorous mammals can eat more by selecting mixed diets with a diversity of PSMs that make full use of their detoxification potential. It also emphasizes that other behavioral and physiological factors, such as transient food aversions, influence feeding behavior.

  12. Decreased Skin-Mediated Detoxification Contributes to Oxidative Stress and Insulin Resistance

    OpenAIRE

    Xing-Xing Liu; Chang-Bin Sun; Ting-Tong Yang; Da Li; Chun-Yan Li; Yan-Jie Tian; Ming Guo; Yu Cao; Shi-Sheng Zhou

    2012-01-01

    The skin, the body's largest organ, plays an important role in the biotransformation/detoxification and elimination of xenobiotics and endogenous toxic substances, but its role in oxidative stress and insulin resistance is unclear. We investigated the relationship between skin detoxification and oxidative stress/insulin resistance by examining burn-induced changes in nicotinamide degradation. Rats were divided into four groups: sham-operated, sham-nicotinamide, burn, and burn-nicotinamide. Ra...

  13. P-gp expression in brown trout erythrocytes: evidence of a detoxification mechanism in fish erythrocytes

    OpenAIRE

    Emeline Valton; Christian Amblard; Ivan Wawrzyniak; Frederique Penault-Llorca; Mahchid Bamdad

    2013-01-01

    Blood is a site of physiological transport for a great variety of molecules, including xenobiotics. Blood cells in aquatic vertebrates, such as fish, are directly exposed to aquatic pollution. P-gp are ubiquitous “membrane detoxification proteins” implicated in the cellular efflux of various xenobiotics, such as polycyclic aromatic hydrocarbons (PAHs), which may be pollutants. The existence of this P-gp detoxification system inducible by benzo [a] pyrene (BaP), a highly cytotoxic PAH, was inv...

  14. Reducing dropout among traumatized alcohol patients in detoxification treatment : A pilot intervention study

    OpenAIRE

    Odenwald, Michael; Semrau, Peter

    2012-01-01

    Dropout rates from detoxification treatment are high. We tested whether high trauma event load was related to a higher dropout from alcohol detoxification. Furthermore, we studied the feasibility and effects of a short psychoeducational tool to increase retention among traumatized alcohol in-patients. Retention and treatment length were compared between treatment as usual (TAU) and standard therapy plus a psychoeducational group intervention on alcohol drinking related to stress and trauma (P...

  15. Detoxification of toxins by bacillithiol in Staphylococcus aureus.

    Science.gov (United States)

    Newton, Gerald L; Fahey, Robert C; Rawat, Mamta

    2012-04-01

    Bacillithiol (BSH), an α-anomeric glycoside of l-cysteinyl-d-glucosaminyl-l-malate, is a major low-molecular-mass thiol found in bacteria such as Bacillus sp., Staphylococcus aureus and Deinococcus radiodurans. Like other low-molecular-mass thiols such as glutathione and mycothiol, BSH is likely to be involved in protection against environmental toxins including thiol-reactive antibiotics. We report here a BSH-dependent detoxification mechanism in S. aureus. When S. aureus Newman strain was treated with monobromobimane and monochlorobimane, the cellular BSH was converted to the fluorescent S-conjugate BS-bimane. A bacillithiol conjugate amidase activity acted upon the BS-bimane to produce Cys-bimane, which was then acetylated by an N-acetyltransferase to generate N-acetyl-Cys-bimane, a mercapturic acid. An S. aureus mutant lacking BSH did not produce mercapturic acid when treated with monobromobimane and monochlorobimane, confirming the involvement of bacillithiol. Furthermore, treatment of S. aureus Newman with rifamycin, the parent compound of the first-line anti-tuberculosis drug, rifampicin, indicated that this thiol-reactive antibiotic is also detoxified in a BSH-dependent manner, since mercapturic acids of rifamycin were observed in the culture medium. These data indicate that toxins and thiol-reactive antibiotics are detoxified to less potent mercapturic acids in a BSH-dependent manner and then exported out of the cell in S. aureus.

  16. Summary report on the Y-12 Sludge Detoxification Demonstration project

    International Nuclear Information System (INIS)

    The Y-12 Sludge Detoxification Demonstration was conducted in late 1988 at the Oak Ridge Gaseous Diffusion Plant (subsequently renamed the K-25 Site). The erstwhile Waste Management Technology Center (WMTC) managed the conduct of this waste treatment technology to assist the US Department of Energy/Oak Ridge Operations (DOE/ORO) in implementing the DOE Model. This demonstration was the first project selected by the Hazardous Waste Remedial Actions Program (HAZWRAP)(and funded by DOE) in which a private-sector vendor was contracted to demonstrate an innovative treatment process for treating some of the Oak Ridge Site's radioactive mixed wastes to enable their environmentally compliant disposal. Chem-Nuclear Systems, Inc. (CNSI) was the private-sector vendor selected to demonstrate its X*TRAX trademark process. Briefly, the X*TRAX trademark process consisted of thermally treating the sludge in an inert atmosphere (to remove the volatile components) to yield a dry residue (containing the nonvolatilized sludge components) and condensed liquids. The dry residue can then be immobilized in cementitious matrix for delisting and disposal in an industrial landfill; the condensed liquids can be disposed in, for example, an incinerator

  17. Aflatoxin detoxification by manganese peroxidase purified from Pleurotus ostreatus

    Directory of Open Access Journals (Sweden)

    Ramy Sayed Yehia

    2014-01-01

    Full Text Available Manganese peroxidase (MnP was produced from white rot edible mushroom Pleurotus ostreatus on the culture filtrate. The enzyme was purified to homogeneity using (NH42SO4 precipitation, DEAE-Sepharose and Sephadex G-100 column chromatography. The final enzyme activity achieved 81UmL-1, specific activity 78 U mg-1 with purification fold of 130 and recovery 1.2% of the crude enzyme. SDS-PAGE indicated that the pure enzyme have a molecular mass of approximately 42 kDa. The optimum pH was between 4-5 and the optimum temperature was 25 ºC. The pure MnP activity was enhanced by Mn2+,Cu2+,Ca2+ and K+ and inhibited by Hg+2 and Cd+2.H2O2 at 5 mM enhanced MnP activity while at 10 mM inhibited it significantly. The MnP-cDNA encoding gene was sequenced and determined (GenBank accession no. AB698450.1. The MnP-cDNA was found to consist of 497 bp in an Open Reading Frame (ORF encoding 165 amino acids. MnP from P. ostreatus could detoxify aflatoxin B1 (AFB1 depending on enzyme concentration and incubation period. The highest detoxification power (90% was observed after 48 h incubation at 1.5 U mL-1 enzyme activities.

  18. Conifer flavonoid compounds inhibit detoxification enzymes and synergize insecticides.

    Science.gov (United States)

    Wang, Zhiling; Zhao, Zhong; Cheng, Xiaofei; Liu, Suqi; Wei, Qin; Scott, Ian M

    2016-02-01

    Detoxification by glutathione S-transferases (GSTs) and esterases are important mechanisms associated with insecticide resistance. Discovery of novel GST and esterase inhibitors from phytochemicals could provide potential new insecticide synergists. Conifer tree species contain flavonoids, such as taxifolin, that inhibit in vitro GST activity. The objectives were to test the relative effectiveness of taxifolin as an enzyme inhibitor and as an insecticide synergist in combination with the organophosphorous insecticide, Guthion (50% azinphos-methyl), and the botanical insecticide, pyrethrum, using an insecticide-resistant Colorado potato beetle (CPB) Leptinotarsa decemlineata (Say) strain. Both taxifolin and its isomer, quercetin, increased the mortality of 1(st) instar CPB larvae after 48h when combined with Guthion, but not pyrethrum. Taxifolin had greater in vitro esterase inhibition compared with the commonly used esterase inhibitor, S, S, S-tributyl phosphorotrithioate (DEF). An in vivo esterase and GST inhibition effect after ingestion of taxifolin was measured, however DEF caused a greater suppression of esterase activity. This study demonstrated that flavonoid compounds have both in vitro and in vivo esterase inhibition, which is likely responsible for the insecticide synergism observed in insecticide-resistant CPB. PMID:26821651

  19. Detoxification and mineral supplementation as functions of geophagy

    Energy Technology Data Exchange (ETDEWEB)

    Johns, T.; Duquette, M. (McGill Univ., Quebec (Canada))

    1991-02-01

    Clays employed historically in the consumption of astringent acorns plus seven edible clays from Africa were examined in relation to the functional significance of human geophagy. On the basis of sorptive maxima for tannic acid ranging from 5.6 to 23.7 mg/g, we conclude that adsorption of tannic acid in traditional acorn preparation methods in California and Sardinia helped make these nuts palatable. Calcium available in solution at pH 2.0 and 0.1 mol NaCl/L was 2.10 and 0.71 mg/g for the Sardinian and Californian clays, respectively. The African clays released calcium, copper, iron, magnesium, manganese, or zinc in amounts of nutritional significance from some clays but not from others. A clay recovered from an archaeological site occupied by Homo erectus and early H. sapiens was indistinguishable mineralogically, in detoxification capacity and in available minerals, from clays used in Africa today. We suggest that the physiological significance of geophagy made it important in the evolution of human dietary behavior.

  20. Mechanistic Insight into the Biosynthesis and Detoxification of Fumonisin Mycotoxins.

    Science.gov (United States)

    Burgess, Kevin M N; Renaud, Justin B; McDowell, Tim; Sumarah, Mark W

    2016-09-16

    Fumonisins, notably FB1, FB2, FB3, and FB4, are economically important mycotoxins produced by a number Fusarium sp. that occur on corn, rice, and sorghum as well as by Aspergillus sp. on grapes. The fumonisin scaffold is comprised of a C18 polyketide backbone functionalized with two tricarballylic esters and an alanine derived amine. These functional groups contribute to fumonisin's ability to inhibit sphingolipid biosynthesis in animals, plants, and yeasts. We report for the first time the isolation and structure elucidation of two classes of nonaminated fumonisins (FPy and FLa) produced by Aspergillus welwitschiae. Using a Lemna minor (duckweed) bioassay, these new compounds were significantly less toxic in comparison to the fumonisin B mycotoxins, providing new insight into the mechanism of fumonisin toxicity. Time course fermentations monitoring the production of FB4, FPy4, and FLa4, as well as (13)C and (15)N stable isotope incorporation, suggest a novel postbiosynthetic oxidative deamination process for fumonisins. This pathway was further supported by a feeding study with FB1, a fumonisin not produced by Aspergillus sp., which resulted in its transformation to FPy1. This study demonstrates that Aspergillus have the ability to produce enzymes that could be used for fumonisin detoxification. PMID:27444057

  1. Bioremediation and detoxification of hydrocarbon pollutants in soil

    International Nuclear Information System (INIS)

    As a cleanup alterative, the bioremediation potential of soil, contaminated by spills of three medium petroleum distillates, jet fuel heating oil (No. 2 fuel oil) and diesel fuel was evaluated in controlled-temperature laboratory soil columns and in outdoor lysimeters. Solvent extraction followed by gas chromatography (GC) was used routinely for analysis of fuel residues. Occasionally, class separation and GC-mass spectrometry (GC-MS) were also used in residue characterization. The decrease in toxic residues was evaluated by Microtox and Ames tests. Seed germination and plant growth bioassays were also performed. Persistence and toxicity of the fuels increased in the order of jet fuel < heating oil < diesel fuel. Bioremediation consisting of liming, fertilization and tilling decreased the half-lives of the pollutants in soil by a factor of 2-3. Biodegradation was faster at 27C than at 17 or 37C, but hydrocarbon concentration and soil quality had only modest influence on biodegradation rates and did not preclude successful bioremediation of these contaminated soils within one growing season. Microbial activity measurements by the fluorescein diacetate hydrolysis assay confirmed that microbial activity was the principal force in hydrocarbon elimination. Bioremediation was highly effective in eliminating also the polycyclic aromatic components of diesel fuel. The bioremediation and detoxification of fuel-contaminated soil was corroborated by Microtox, Ames and plant growth bioassays

  2. Detoxification and recycling of wastewater by solar-catalytic treatment

    Energy Technology Data Exchange (ETDEWEB)

    Freudenhammer, H.; Geissen, S.-U.; Vogelpohl, A. [Technische Univ. Clausthal, Inst. fuer Thermische Verfahrenstechnik, Clausthal-Zellerfeld (Germany); Bahnemann, D.; Siemon, U. [Institut fuer Solarenergieforschung GmbH, Hannover (Germany); Bousselmi, L.; Ghrabi, A. [Institut National de Recherche Scientifique et Technique, Cite Mahrajene Tunis (Tunisia); Saleh, F. [Damascus Univ., Chemistry Dept., Damascus (Syrian Arab Republic); Si-Salah, A. [Institut Algerien du Petrole, Boumerdes (Algeria)

    1997-12-31

    An introduction to a joint research project is given which deals with the technical application of solar photocatalysis for wastewater detoxification. A non-concentrating thin-film fixed-bed reactor (TFFBR) is used to study application and areas where a solar-catalytic treatment or recycling of wastewater is possible. This reactor excels by its low cost and an easy-to-build construction using molecular oxygen in air as the oxidising agent. The design parameters of the reactor as well as the process itself have been determined from the reaction kinetics of a model substance, the hydrodynamics and the mass transfer. The treatment of different real wastewaters was successfully carried out, and biologically pre-treated textile wastewater maximum solar degradation rate was about 3{sub g} COD h{sup -1} m{sup -2}. A comparison of reaction rates with artificial and solar illumination shows the necessity of outdoor experiments. Due to the reaction rates observed, photocatalysis is suitable as the final stage of purification of biologically or physically pretreated wastewater and will offer a great opportunity for sunrich areas. (Author)

  3. Trial of Tramadol Plus Gabapentin for Opioid Detoxification

    Science.gov (United States)

    Ziaaddini, Hassan; Ziaaddini, Ahmad; Asghari, Neda; Nakhaee, Nozar; Eslami, Mahin

    2014-01-01

    Background: Substance abuse or drug addiction is one of the most important health issues in every society, which can lead to physical and mental problems. Objectives: This study aimed to compare the efficacy of tramadol plus gabapentin versus methadone use in the treatment of opiate withdrawal. Patients and Methods: Consenting male subjects who fulfilled the DSM-4 criteria for opiate dependence syndrome (opium, residue, and heroin) were randomly assigned in two groups to receive tramadol plus gabapentin or methadone. Assessment tools were Adjective Rating Scale for Withdrawal (ARSW), Clinical Opiate Withdrawal Scale (COWS) and Visual Analogue craving Scale (VAS). Fifty-nine subjects were enrolled and evaluated on days 1, 2, 3, 4, 6, and 8 during their 10 days of admission. Twenty-nine participants received methadone and the other 30 received tramadol plus gabapentin for their treatment. Results: Mean (SD) age of the patients in methadone group and tramadol plus gabapentin group were 33.9 (7.1) and 32.4. (8.1), respectively (P = 0.462). The overall ARSW (P value = 0.263) and COWS (P = 0.862) scores between the two groups were comparable. The differences in the VAS score for craving between the two groups was marginally significant (P = 0.057). The highest VAS score was at the third day of admission in both groups and it was generally higher in methadone group. Conclusions: The severity of withdrawal syndrome in two groups was not significantly different. The craving was higher in the group receiving methadone from the second day of admission even though the usage amount was higher in the tramadol plus gabapentin group. The findings of this study suggest that the combination of tramadol plus gabapentin is an efficient method for opioid detoxification. PMID:25763266

  4. Crystallins of the octopus lens. Recruitment from detoxification enzymes.

    Science.gov (United States)

    Tomarev, S I; Zinovieva, R D; Piatigorsky, J

    1991-12-15

    The eye lens crystallins of the octopus Octopus dofleini were identified by sequencing abundant proteins and cDNAs. As in squid, the octopus crystallins have subunit molecular masses of 25-30 kDa, are related to mammalian glutathione S-transferases (GST), and are encoded in at least six genes. The coding regions and deduced amino acid sequences of four octopus lens cDNAs are 75-80% identical, while their non-coding regions are entirely different. Deduced amino acid sequences show 52-57% similarity with squid GST-like crystallins, but only 20-25% similarity with mammalian GST. These data suggest that the octopus and squid lens GST-like crystallin gene families expanded after divergence of these species. Northern blot hybridization indicated that the four octopus GST-like crystallin genes examined are lens-specific. Lens extracts showed about 40 times less GST activity using 1-chloro-2,4-dinitrobenzene as substrate than liver extracts of the octopus, indicating that the major GST-like crystallins are specialized for a lens structural role. A prominent 59-kDa crystallin polypeptide, previously observed in octopus but not squid and called omega-crystallin (Chiou, S.-H. (1988) FEBS Lett. 241, 261-264), has been identified as an aldehyde dehydrogenase. Since cytoplasmic aldehyde dehydrogenase is a major protein in elephant shrew lenses (eta-crystallin; Wistow, G., and Kim, H. (1991) J. Mol. Evol. 32, 262-269) the octopus aldehyde dehydrogenase crystallin provides the first example of a similar enzyme-crystallin in vertebrates and invertebrates. The use of detoxification stress proteins (GST and aldehyde dehydrogenase) as cephalopod crystallins indicates a common strategy for recruitment of enzyme-crystallins during the convergent evolution of vertebrate and invertebrate lenses. For historical reasons we propose that the octopus GST-like crystallins, like those of the squid, are called S-crystallins. PMID:1721068

  5. BOA detoxification of four summer weeds during germination and seedling growth.

    Science.gov (United States)

    Schulz, Margot; Marocco, Adriano; Tabaglio, Vincenzo

    2012-07-01

    A recent greenhouse study revealed a significant reduction of germination and growth of redroot pigweed (Amaranthus retroflexus) and common purslane (Portulaca oleracea) by rye mulch, whereas velvetleaf (Abutilon theophrasti) and common lambsquarters (Chenopodium album) were not suppressed. Since BOA detoxification by metabolic alteration may influence the relation between the benzoxazinoid content of the soil mulch and weed suppression, we tested the dynamics in BOA detoxification in different plant organs of three and 10-day-old seedlings of four warm season weeds incubated with five BOA concentrations (4, 20, 40, 80, and 200 μmol g(-1) fresh weight). In addition, germination and length of 3-day-old seedlings were measured after exposure to 0, 0.3, 1.5, 3, 6, and 15 μmol BOA. Finally, we tested the influence of the MDR translocator inhibitors verapamil, nifedipine, and the GST inhibitor ethycrynic acid on BOA accumulation and detoxification activity. Due to BOA-detoxification, all weeds were able to grow in environments with low BOA contents. At higher contents, Abutilon theophrasti and Chenopodium album had a better chance to survive because of highly active mechanisms that avoided the uptake of BOA (A. theophrasti) and of efficient detoxification activities in youngest seedlings (C. album). The interpretation of all of the data gave the following sequence of increasing sensitivity: A. theophrasti < C. album < P. oleracea ≤ A. retroflexus. The results were in agreement with recent findings of the suppression of these weeds by rye mulches and their benzoxazinoid contents. Our studies demonstrate for the first time that the detoxification of BOA influences the survival of certain weeds in environments enriched with this allelochemical. Therefore, detoxification processes affect the potential for weed suppression by soil allelochemicals in sustainable weed management. PMID:22614450

  6. Identification of Chromobacterium violaceum genes with potential biotechnological application in environmental detoxification.

    Science.gov (United States)

    Carepo, Marta S P; Azevedo, Juliana S Nina de; Porto, Jorge I R; Bentes-Sousa, Alexandra R; Batista, Jacqueline da Silva; Silva, Artur L C da; Schneider, Maria P C

    2004-01-01

    Chromobacterium violaceum is a Gram-negative bacterium found in a wide variety of tropical and subtropical ecosystems. The complete genome sequence of C. violaceum ATCC 12472 is now available, and it has considerable biotechnological potential for various applications, such as environmental detoxification, as well as medical and agricultural use. We examined the biotechnological potential of C. violaceum for environmental detoxification. Three operons, comprising the ars operon, involved in arsenic resistance, the cyn operon, involved in cyanate detoxification, and the hcn operon, encoding a cyanase, responsible for biogenic production of cyanide, as well as an open reading frame, encoding an acid dehalogenase, were analyzed in detail. Probable catalytic mechanisms for the enzymes were determined, based on amino acid sequence comparisons and on published structural information for these types of proteins.

  7. Prediction of the performance of a solar water detoxification system under Malaysian climatic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jubran, B.A.; Ismail, A.F.; Pervez, T. [International Islamic University Malaysia, Dept. of Mechanical Engineering, Kuala Lumpur (Malaysia)

    2000-07-01

    This paper reports a prediction study for computing the ultra violet (UV) light received by two types of solar collector systems used in solar detoxification systems under Malaysian climatic conditions. Furthermore, the average daily yield outputs of two types of solar detoxification are predicted. The predicted results indicate that the average daily UV light insolation throughout the year in Malaysia is almost constant with values of 40 and 30 W/m{sup 2} for flat plate and compound parabolic concentrator (CPC) collectors, respectively. The average daily yield outputs of the solar detoxification systems investigated are 1000 l/m{sup 2} for the flat plate collector and 600 l/m{sup 2} for the CPC collector with unit costs per 1000 gallons of 36 US dollars and 42 US dollars for flat plate and CPC collectors, respectively. (Author)

  8. Ethanol from lignocellulose - Fermentation inhibitors, detoxification and genetic engineering of Saccharomyces cerevisiae for enhanced resistance

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Simona

    2000-07-01

    Ethanol can be produced from lignocellulose by first hydrolysing the material to sugars, and then fermenting the hydrolysate with the yeast Saccharomyces cerevisiae. Hydrolysis using dilute sulphuric acid has advantages over other methods, however, compounds which inhibit fermentation are generated during this kind of hydrolysis. The inhibitory effect of aliphatic acids, furans, and phenolic compounds was investigated. The generation of inhibitors during hydrolysis was studied using Norway spruce as raw material. It was concluded that the decrease in the fermentability coincided with increasing harshness of the hydrolysis conditions. The decrease in fermentability was not correlated solely to the content of aliphatic acids or furan derivatives. To increase the fermentability, detoxification is often employed. Twelve detoxification methods were compared with respect to the chemical composition of the hydrolysate and the fermentability after treatment. The most efficient detoxification methods were anion-exchange at pH 10.0, overliming and enzymatic detoxification with the phenol-oxidase laccase. Detailed analyses of ion exchange revealed that anion exchange and unspecific hydrophobic interactions greatly contributed to the detoxification effect, while cation exchange did not. The comparison of detoxification methods also showed that phenolic compounds are very important fermentation inhibitors, as their selective removal with laccase had a major positive effect on the fermentability. Selected compounds; aliphatic acids, furans and phenolic compounds, were characterised with respect to their inhibitory effect on ethanolic fermentation by S. cerevisiae. When aliphatic acids or furans were compared, the inhibitory effects were found to be in the same range, but the phenolic compounds displayed widely different inhibitory effects. The possibility of genetically engineering S. cerevisiae to achieve increased inhibitor resistance was explored by heterologous expression of

  9. Investigation of the detoxification mechanism of formaldehyde-treated tetanus toxin

    DEFF Research Database (Denmark)

    Thaysen-Andersen, Morten; Jørgensen, Sys Borcher; Wilhelmsen, Ellen Sloth;

    2007-01-01

     The tetanus vaccine is based on the extremely potent tetanus neurotoxin (TeNT), which is converted by treatment with formaldehyde and lysine into the non-toxic, but still immunogenic tetanus toxoid (TTd). This formaldehyde-induced detoxification, which to a large extend determines the quality...... and properties of the vaccine component, occurs through partly unknown chemical modifications of the toxin. The aim of this study was to gain knowledge of the detoxification mechanism in the generation of the tetanus vaccine. Two approaches were chosen: (i) the effect of changes in the concentrations of lysine...

  10. Detoxification and stress response genes expressed in a western North American bumble bee, Bombus huntii (Hymenoptera: Apidae)

    Science.gov (United States)

    Bumble bees are generalist floral visitors, meaning they pollinate a wide variety of plants. Their pollination activities expose them to both plant toxins and pesticides, yet little is known about what detoxification pathways are active in bumble bees, how the expression of detoxification genes chan...

  11. Xylitol production from wheat straw hemicellulosic hydrolysate: hydrolysate detoxification and carbon source used for inoculum preparation

    OpenAIRE

    Canilha, Larissa; Carvalho, Walter; Felipe, Maria das Graças Almeida; de Almeida e Silva, João Batista

    2008-01-01

    Wheat straw hemicellulosic hydrolysate was used for xylitol bioproduction. The use of a xylose-containing medium to grow the inoculum did not favor the production of xylitol in the hydrolysate, which was submitted to a previous detoxification treatment with 2.5% activated charcoal for optimized removal of inhibitory compounds.

  12. Motivational interviewing group at inpatient detoxification, its influence in maintaining abstinence and treatment retention after discharge.

    Science.gov (United States)

    Bachiller, Diana; Grau-López, Lara; Barral, Carmen; Daigre, Constanza; Alberich, Cristina; Rodríguez-Cintas, Laia; Valero, Sergi; Casas, Miquel; Roncero, Carlos

    2015-01-01

    The relapse rate after discharge from inpatient detoxification is high. The objective of this pilot study is to assess the sociodemographic, clinical and therapeutic factors associated with maintaining abstinence in patients who participated in a brief motivational interviewing group during admission for detoxification. A total of 46 patients, diagnosed substance dependent according to DSM -IV, and admitted to the Hospital Detoxification Unit, participated in a brief motivational interviewing group. Sociodemographic, clinical, motivation to change (University of Rhode Island Change Assessment, URICA) and satisfaction with the treatment group (Treatment Perceptions Questionnaire, CPT) data were collected. Abstinence and treatment retention two months after discharge were assessed by weekly telephone calls. A survival analysis was performed. Being male, having more cognitions of the maintenance stage of change at discharge, being satisfied with group therapy and therapist during hospitalization are associated with longer abstinence after discharge. The brief motivational interviewing group approach with patients admitted for detoxification is related to greater likelihood of maintaining abstinence and subsequent treatment retention. PMID:26132300

  13. Decreased skin-mediated detoxification contributes to oxidative stress and insulin resistance.

    Science.gov (United States)

    Liu, Xing-Xing; Sun, Chang-Bin; Yang, Ting-Tong; Li, Da; Li, Chun-Yan; Tian, Yan-Jie; Guo, Ming; Cao, Yu; Zhou, Shi-Sheng

    2012-01-01

    The skin, the body's largest organ, plays an important role in the biotransformation/detoxification and elimination of xenobiotics and endogenous toxic substances, but its role in oxidative stress and insulin resistance is unclear. We investigated the relationship between skin detoxification and oxidative stress/insulin resistance by examining burn-induced changes in nicotinamide degradation. Rats were divided into four groups: sham-operated, sham-nicotinamide, burn, and burn-nicotinamide. Rats received an intraperitoneal glucose injection (2 g/kg) with (sham-nicotinamide and burn-nicotinamide groups) or without (sham-operated and burn groups) coadministration of nicotinamide (100 mg/kg). The results showed that the mRNA of all detoxification-related enzymes tested was detected in sham-operated skin but not in burned skin. The clearance of nicotinamide and N(1)-methylnicotinamide in burned rats was significantly decreased compared with that in sham-operated rats. After glucose loading, burn group showed significantly higher plasma insulin levels with a lower muscle glycogen level than that of sham-operated and sham-nicotinamide groups, although there were no significant differences in blood glucose levels over time between groups. More profound changes in plasma H(2)O(2) and insulin levels were observed in burn-nicotinamide group. It may be concluded that decreased skin detoxification may increase the risk for oxidative stress and insulin resistance.

  14. Decreased Skin-Mediated Detoxification Contributes to Oxidative Stress and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Xing-Xing Liu

    2012-01-01

    Full Text Available The skin, the body's largest organ, plays an important role in the biotransformation/detoxification and elimination of xenobiotics and endogenous toxic substances, but its role in oxidative stress and insulin resistance is unclear. We investigated the relationship between skin detoxification and oxidative stress/insulin resistance by examining burn-induced changes in nicotinamide degradation. Rats were divided into four groups: sham-operated, sham-nicotinamide, burn, and burn-nicotinamide. Rats received an intraperitoneal glucose injection (2 g/kg with (sham-nicotinamide and burn-nicotinamide groups or without (sham-operated and burn groups coadministration of nicotinamide (100 mg/kg. The results showed that the mRNA of all detoxification-related enzymes tested was detected in sham-operated skin but not in burned skin. The clearance of nicotinamide and N1-methylnicotinamide in burned rats was significantly decreased compared with that in sham-operated rats. After glucose loading, burn group showed significantly higher plasma insulin levels with a lower muscle glycogen level than that of sham-operated and sham-nicotinamide groups, although there were no significant differences in blood glucose levels over time between groups. More profound changes in plasma H2O2 and insulin levels were observed in burn-nicotinamide group. It may be concluded that decreased skin detoxification may increase the risk for oxidative stress and insulin resistance.

  15. 38 CFR 1.478 - Disclosures to prevent multiple enrollments in detoxification and maintenance treatment programs...

    Science.gov (United States)

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Disclosures to prevent... Patient's Consent § 1.478 Disclosures to prevent multiple enrollments in detoxification and maintenance... miles away for the purpose of preventing the multiple enrollment of a patient only if: (1)...

  16. Xylitol production from wheat straw hemicellulosic hydrolysate: hydrolysate detoxification and carbon source used for inoculum preparation

    Science.gov (United States)

    Canilha, Larissa; Carvalho, Walter; Felipe, Maria das Graças Almeida; de Almeida e Silva, João Batista

    2008-01-01

    Wheat straw hemicellulosic hydrolysate was used for xylitol bioproduction. The use of a xylose-containing medium to grow the inoculum did not favor the production of xylitol in the hydrolysate, which was submitted to a previous detoxification treatment with 2.5% activated charcoal for optimized removal of inhibitory compounds. PMID:24031226

  17. Detoxification of Corncob Acid Hydrolysate with SAA Pretreatment and Xylitol Production by Immobilized Candida tropicalis

    Directory of Open Access Journals (Sweden)

    Li-Hong Deng

    2014-01-01

    Full Text Available Xylitol fermentation production from corncob acid hydrolysate has become an attractive and promising process. However, corncob acid hydrolysate cannot be directly used as fermentation substrate owing to various inhibitors. In this work, soaking in aqueous ammonia (SAA pretreatment was employed to reduce the inhibitors in acid hydrolysate. After detoxification, the corncob acid hydrolysate was fermented by immobilized Candida tropicalis cell to produce xylitol. Results revealed that SAA pretreatment showed high delignification and efficient removal of acetyl group compounds without effect on cellulose and xylan content. Acetic acid was completely removed, and the content of phenolic compounds was reduced by 80%. Furthermore, kinetic behaviors of xylitol production by immobilized C. tropicalis cell were elucidated from corncob acid hydrolysate detoxified with SAA pretreatment and two-step adsorption method, respectively. The immobilized C. tropicalis cell showed higher productivity efficiency using the corncob acid hydrolysate as fermentation substrate after detoxification with SAA pretreatment than by two-step adsorption method in the five successive batch fermentation rounds. After the fifth round fermentation, about 60 g xylitol/L fermentation substrate was obtained for SAA pretreatment detoxification, while about 30 g xylitol/L fermentation substrate was obtained for two-step adsorption detoxification.

  18. The Leeds Evaluation of Efficacy of Detoxification Study (LEEDS project: An open-label pragmatic randomised control trial comparing the efficacy of differing therapeutic agents for primary care detoxification from either street heroin or methadone [ISRCTN07752728

    Directory of Open Access Journals (Sweden)

    Sheard Laura

    2004-04-01

    Full Text Available Abstract Background Heroin is a synthetic opioid with an extensive illicit market leading to large numbers of people becoming addicted. Heroin users often present to community treatment services requesting detoxification and in the UK various agents are used to control symptoms of withdrawal. Dissatisfaction with methadone detoxification 8 has lead to the use of clonidine, lofexidine, buprenorphine and dihydrocodeine; however, there remains limited evaluative research. In Leeds, a city of 700,000 people in the North of England, dihydrocodeine is the detoxification agent of choice. Sublingual buprenorphine, however, is being introduced. The comparative value of these two drugs for helping people successfully and comfortably withdraw from heroin has never been compared in a randomised trial. Additionally, there is a paucity of research evaluating interventions among drug users in the primary care setting. This study seeks to address this by randomising drug users presenting in primary care to receive either dihydrocodeine or buprenorphine. Methods/design The Leeds Evaluation of Efficacy of Detoxification Study (LEEDS project is a pragmatic randomised trial which will compare the open use of buprenorphine with dihydrocodeine for illicit opiate detoxification, in the UK primary care setting. The LEEDS project will involve consenting adults and will be run in specialist general practice surgeries throughout Leeds. The primary outcome will be the results of a urine opiate screening at the end of the detoxification regimen. Adverse effects and limited data to three and six months will be acquired.

  19. A gendered analysis of Canadian Aboriginal individuals admitted to inpatient substance abuse detoxification: a three-year medical chart review.

    Science.gov (United States)

    Callaghan, Russell C; Cull, Randi; Vettese, Lisa C; Taylor, Lawren

    2006-01-01

    This study examined gender differences within a sample of Canadian Aboriginal individuals admitted to an inpatient, hospital-based substance abuse detoxification program. Even though alcohol was the most frequent primary drug of detoxification for both genders, women received proportionately higher rates of cocaine or opiate detoxification diagnoses. In addition to a younger age, females reported higher rates of physical and sexual abuse. Women were also administered antidepressants, antibiotic medication protocols, and more medical evaluation tests. It appears that Canadian Aboriginal women have a diverse set of psychological and medical needs. This study demonstrates the need for detoxification programs to address the substantial rates of intravenous drug use and the associated risk of infectious disease (eg, Hepatitis C, HIV) among this treatment-seeking population.

  20. Electrochemical detoxification of phenolic compounds in lignocellulosic hydrolysate for Clostridium fermentation.

    Science.gov (United States)

    Lee, Kyung Min; Min, Kyoungseon; Choi, Okkyoung; Kim, Ki-Yeon; Woo, Han Min; Kim, Yunje; Han, Sung Ok; Um, Youngsoon

    2015-01-01

    Lignocellulosic biomass is being preferred as a feedstock in the biorefinery, but lignocellulosic hydrolysate usually contains inhibitors against microbial fermentation. Among these inhibitors, phenolics are highly toxic to butyric acid-producing and butanol-producing Clostridium even at a low concentration. Herein, we developed an electrochemical polymerization method to detoxify phenolic compounds in lignocellulosic hydrolysate for efficient Clostridium fermentation. After the electrochemical detoxification for 10h, 78%, 77%, 82%, and 94% of p-coumaric acid, ferulic acid, vanillin, and syringaldehyde were removed, respectively. Furthermore, 71% of total phenolics in rice straw hydrolysate were removed without any sugar-loss. Whereas the cell growth and metabolite production of Clostridium tyrobutyricum and Clostridium beijerinckii were completely inhibited in un-detoxified hydrolysate, those in detoxifying rice straw hydrolysate were recovered to 70-100% of the control cultures. The electrochemical detoxification method described herein provides an efficient strategy for producing butanol and butyric acid through Clostridium fermentation with lignocellulosic hydrolysate. PMID:25863199

  1. Detoxification of Atrazine by Endophytic Streptomyces sp. Isolated from Sugarcane and Detection of Nontoxic Metabolite.

    Science.gov (United States)

    Mesquini, Josiane A; Sawaya, Alexandra C H F; López, Begonã G C; Oliveira, Valéria M; Miyasaka, Natalia R S

    2015-12-01

    Atrazine is still one of the most used agricultural pesticides worldwide and it has been recognized as a major contaminant of surface and ground water. The aims of this research were to isolate an endophytic microorganism from leaves of sugarcane, evaluate its ability to degrade atrazine, and investigate the formation of metabolites. By sequencing of the 16S rRNA gene, the endophytic isolate atz2 was identified as Streptomyces sp. The reduction in atrazine concentration by Streptomyces sp. atz2 was 98 % and UHPLC-MS/MS analyses showed the appearance of an unknown metabolite observed as m/z 311. Ecotoxicity tests with an aquatic organism, Daphnia similis, confirmed that this metabolite was nontoxic. This mechanism of detoxification of atrazine is different from the ones of other free-living microorganisms that inhabit the soil or rhizosphere. The results show new aspects of atrazine detoxification, highlighting a new role of endophytic bacteria in plants.

  2. Effect of ozone on aflatoxins detoxification and nutritional quality of peanuts.

    Science.gov (United States)

    Chen, Ran; Ma, Fei; Li, Pei-Wu; Zhang, Wen; Ding, Xiao-Xia; Zhang, Qi; Li, Min; Wang, Yan-Ru; Xu, Bao-Cheng

    2014-03-01

    Aflatoxins are a group of secondary metabolites produced by Aspergillus flavus and Aspergillus parasiticus with carcinogenicity, teratogenicity, and mutagenicity. Aflatoxins may be found in a wide range of agri-products, especially in grains, oilseeds, corns, and peanuts. In this study, the conditions for detoxifying peanuts by ozonation were optimised. Aflatoxins in peanuts at moisture content of 5% (w/w) were sensitive to ozone and easily degraded when reacted with 6.0mg/l of ozone for 30min at room temperature. The detoxification rates of the total aflatoxins and aflatoxin B1 (AFB1) were 65.8% and 65.9%, respectively. The quality of peanut samples was also evaluated in this research. No significant differences (P>0.05) were found in the polyphenols, resveratrol, acid value (AV), and peroxide value (PV) between treated and untreated samples. The results suggested that ozonation was a promising method for aflatoxin detoxification in peanuts.

  3. Lignocellulosic ethanol production by starch-base industrial yeast under PEG detoxification.

    Science.gov (United States)

    Liu, Xiumei; Xu, Wenjuan; Mao, Liaoyuan; Zhang, Chao; Yan, Peifang; Xu, Zhanwei; Zhang, Z Conrad

    2016-01-01

    Cellulosic ethanol production from lignocellulosic biomass offers a sustainable solution for transition from fossil based fuels to renewable alternatives. However, a few long-standing technical challenges remain to be addressed in the development of an economically viable fermentation process from lignocellulose. Such challenges include the needs to improve yeast tolerance to toxic inhibitory compounds and to achieve high fermentation efficiency with minimum detoxification steps after a simple biomass pretreatment. Here we report an in-situ detoxification strategy by PEG exo-protection of an industrial dry yeast (starch-base). The exo-protected yeast cells displayed remarkably boosted vitality with high tolerance to toxic inhibitory compounds, and with largely improved ethanol productivity from crude hydrolysate derived from a pretreated lignocellulose. The PEG chemical exo-protection makes the industrial S. cerevisiae yeast directly applicable for the production of cellulosic ethanol with substantially improved productivity and yield, without of the need to use genetically modified microorganisms. PMID:26837707

  4. Lignocellulosic ethanol production by starch-base industrial yeast under PEG detoxification

    Science.gov (United States)

    Liu, Xiumei; Xu, Wenjuan; Mao, Liaoyuan; Zhang, Chao; Yan, Peifang; Xu, Zhanwei; Zhang, Z. Conrad

    2016-02-01

    Cellulosic ethanol production from lignocellulosic biomass offers a sustainable solution for transition from fossil based fuels to renewable alternatives. However, a few long-standing technical challenges remain to be addressed in the development of an economically viable fermentation process from lignocellulose. Such challenges include the needs to improve yeast tolerance to toxic inhibitory compounds and to achieve high fermentation efficiency with minimum detoxification steps after a simple biomass pretreatment. Here we report an in-situ detoxification strategy by PEG exo-protection of an industrial dry yeast (starch-base). The exo-protected yeast cells displayed remarkably boosted vitality with high tolerance to toxic inhibitory compounds, and with largely improved ethanol productivity from crude hydrolysate derived from a pretreated lignocellulose. The PEG chemical exo-protection makes the industrial S. cerevisiae yeast directly applicable for the production of cellulosic ethanol with substantially improved productivity and yield, without of the need to use genetically modified microorganisms.

  5. Paralytic shellfish poison in Spisula solidissima: anatomical location and ozone detoxification

    Energy Technology Data Exchange (ETDEWEB)

    Blogoslawski, W.J. (National Marine Fisheries Service, Milford, CT); Stewart, M.E.

    1978-01-01

    The surf clam Spisula solidissima, when exposed to a northern bloom of the toxic dinoflagellate Gonyaulax tamarensis, concentrates paralytic shellfish poison (PSP) and retains it for periods of over 1 year. The purpose of this investigation was to identify those tissues in which S. solidissima concentrates PSP and to examine the efficacy of ozone gas in PSP detoxification. Various levels of the toxin were found in every untreated tissue examined: the mantle and gill containing high concentrations (greater than 1600 ..mu..g/100 g tissue); the visceral mass, siphon, and foot showing less toxicity (1100 to 200 ..mu..g/100 g tissue); and the adductor muscle yielding a level of toxin considered safe for human consumption (less than 60 ..mu..g/100 g tissue). Toxic clams exposed to ozonized seawater for 2 weeks exhibited rapid detoxification in all tissues examined.

  6. Enzymatic detoxification of jojoba meal and effect of the resulting meal on food intake in rats.

    Science.gov (United States)

    Bouali, Abderrahime; Bellirou, Ahmed; Boukhatem, Noureddin; Hamal, Abdellah; Bouammali, Boufelja

    2008-05-10

    When defatted jojoba meal is used as animal food, it causes food-intake reduction and growth retardation. Detoxification procedures by chemical, microbiological, and solvent extraction methods are reported by several authors. Here we report a successful detoxification of jojoba meal using enzymes. We establish reaction conditions that yield new meal which has the same nutritional qualities in proteins as the original meal. The enzymatic reaction gives rise to one major compound to which the structure of an amide is assigned on the basis of IR, 1H and 13C NMR spectra. The effect of the resulting jojoba meal on the food intake in rats is checked. In contrast, the detoxified meal containing the amide derivatives shows no toxicological activity since rats receiving oral administration of the obtained meal show normal growth. Thus, it is expected that this meal could be used as an animal feed ingredient.

  7. Functionalized Cellulose: PET Polymer Fibers with Zeolites for Detoxification Against Nerve Agents%Functionalized Cellulose:PET Polymer Fibers with Zeolites for Detoxification Against Nerve Agents

    Institute of Scientific and Technical Information of China (English)

    Agarwal Satya R; Sundarrajan Subramanian; Ramakrishna Seeram

    2012-01-01

    Presently activated carbon is used as an adsorptive material for chemical and biological warfare agents.It possess excellent surface properties such as large surface area,fire-resistance and plenty availability,but has disadvantages such as its heavy weight,low breathability (after adsorption of moisture) and disposal.In this paper,we propose to utilize novel electrospun polymeric nanostructures having zeolites as catalyst materials.In this respective,the electrospun polymer nanofibers would serve as the best possible substitutes to activated carbon based protective clothing applications.This is the first in the literature that reports the integration of these types of catalysts with nanofiberous membranes.Electrospinning of cellulose/polyethylene terephthalate (PET) blend nanofibers has been carried out.Zeolite catalysts (Linde Type A and Mordenite) for the detoxification of nerve agent stimulant-paraoxon,were prepared due to their relative simplicity of synthesis.The catalysts were then coated onto nanofiber membranes and their morphology was confirmed using SEM.This is the first report on the coating of nanofibers with zeolites and their successful demonstration against nerve agent stimulant.The UV absorption spectra clearly show the detoxification ability of the functionalized fibers and their potential to be used in textiles for protection and decontamination.

  8. Complications related to osteopenia in the thoracic spine on admission chest radiographs of substance abuse detoxification patients

    International Nuclear Information System (INIS)

    Objective. To assess the prevalence of complications related to osteopenia in the thoracic spine (anterior wedging and fish vertebrae) of patients admitted for substance abuse detoxification. Design and patients. We retrospectively identified 150 sequential patients admitted to our drug and alcohol detoxification ward in whom posteroanterior and lateral admission chest radiographs and clinical charts were available for review. There were 116 men and 34 women with a mean age of 37 years (range 19-67 years). Thirty-eight patients were admitted for drug detoxification, 37 for alcohol detoxification, and 75 for drug and alcohol detoxification. These patients were compared with 66 age- and sex-matched controls from our hospital's employee health service. Two radiologists reviewed all chest radiographs for the presence of anterior wedging and fish vertebrae in the thoracic spine and other nonspinal fractures. Serum calcium and inorganic phosphorus levels were recorded for the substance abuse detoxification patients. Results. Forty-nine percent (n=73) of detoxification patients had complications of osteopenia in the thoracic spine including: anterior wedging (n=47), fish vertebrae (n=21), or both (n=5). Twenty-four percent (n=36) of patients had an elevated serum inorganic phosphorus level and one patient had an elevated serum calcium level. Patients with anterior wedging or fish vertebrae included: 45% (n=45) of patients below age 40 years, 35% (n=12) of women, 41% (n=15) of drug detoxification patients, 58% (n=22) of alcohol detoxification patients, 48% (n=36) of drug and alcohol detoxification patients, and 47% (n=17) of patients with elevated serum inorganic phosphorus (P=NS). Six percent (n=9) of our study population had nonspinal fractures on their chest radiographs. Twenty-one percent (n=14) of controls had complications of osteopenia in the thoracic spine (all anterior wedging). This prevalence differed significantly (P<0.05, chi-squared) from the study population

  9. Detoxification of Corncob Acid Hydrolysate with SAA Pretreatment and Xylitol Production by Immobilized Candida tropicalis

    OpenAIRE

    Li-Hong Deng; Yong Tang; Yun Liu

    2014-01-01

    Xylitol fermentation production from corncob acid hydrolysate has become an attractive and promising process. However, corncob acid hydrolysate cannot be directly used as fermentation substrate owing to various inhibitors. In this work, soaking in aqueous ammonia (SAA) pretreatment was employed to reduce the inhibitors in acid hydrolysate. After detoxification, the corncob acid hydrolysate was fermented by immobilized Candida tropicalis cell to produce xylitol. Results revealed that SAA pretr...

  10. Differential transcription profiles in Aedes aegypti detoxification genes following temephos selection

    OpenAIRE

    Saavedra-Rodriguez, Karla; Strode, Clare; FLORES, ADRIANA E.; Garcia-Luna, Selene; Reyes-Solis, Guadalupe; Ranson, Hilary; Hemingway, Janet; Black, William C.

    2013-01-01

    The mosquito Aedes aegypti is the main vector of Dengue and Yellow Fever flaviviruses. The organophosphate insecticide temephos is a larvicide that is used globally to control Ae. aegypti populations; many of which have in turn evolved resistance. Target site alteration in the acetylcholine esterase of this species has not being identified. Instead, we tracked changes in transcription of metabolic detoxification genes using the Ae. aegypti ‘Detox Chip’ microarray during five generations of te...

  11. Cadmium detoxification processes in the digestive gland of cephalopods in relation to accumulated cadmium concentrations

    OpenAIRE

    Bustamante, Paco; Cosson, Richard; Gallien, Isabelle; Caurant, Florence; Miramand, Pierre

    2002-01-01

    International audience The high concentrations of cadmium recorded in the digestive gland of cephalopods from various temperate and subpolar waters suggest that these molluscs have developed efficient cadmium detoxification mechanisms. The subcellular distribution of cadmium in the digestive gland cells was investigated in seven cephalopod species from the Bay of Biscay (France) and the Faroe Islands. In most species, cadmium was mainly found in the cytosolic fraction of the digestive glan...

  12. Overexpression of multiple detoxification genes in deltamethrin resistant Laodelphax striatellus (Hemiptera: Delphacidae in China.

    Directory of Open Access Journals (Sweden)

    Lu Xu

    Full Text Available BACKGROUND: The small brown planthopper (SBPH, Laodelphax striatellus (Fallén, is one of the major rice pests in Asia and has developed resistance to multiple classes of insecticides. Understanding resistance mechanisms is essential to the management of this pest. Biochemical and molecular assays were performed in this study to systematically characterize deltamethrin resistance mechanisms with laboratory-selected resistant and susceptible strains of SBPH. METHODOLOGY/PRINCIPAL FINDINGS: Deltamethrin resistant strains of SBPH (JH-del were derived from a field population by continuously selections (up to 30 generations in the laboratory, while a susceptible strain (JHS was obtained from the same population by removing insecticide pressure for 30 generations. The role of detoxification enzymes in the resistance was investigated using synergism and enzyme activity assays with strains of different resistant levels. Furthermore, 71 cytochrome P450, 93 esterases and 12 glutathione-S-transferases cDNAs were cloned based on transcriptome data of a field collected population. Semi-quantitative RT-PCR screening analysis of 176 identified detoxification genes demonstrated that multiple P450 and esterase genes were overexpressed (>2-fold in JH-del strains (G4 and G30 when compared to that in JHS, and the results of quantitative PCR coincided with the semi-quantitative RT-PCR results. Target mutation at IIS3-IIS6 regions encoded by the voltage-gated sodium channel gene was ruled out for conferring the observed resistance. CONCLUSION/SIGNIFICANCE: As the first attempt to discover genes potentially involved in SBPH pyrethroid resistance, this study putatively identified several candidate genes of detoxification enzymes that were significantly overexpressed in the resistant strain, which matched the synergism and enzyme activity testing. The biochemical and molecular evidences suggest that the high level pyrethroid resistance in L. striatellus could be due to

  13. Lignocellulosic ethanol production by starch-base industrial yeast under PEG detoxification

    OpenAIRE

    Xiumei Liu; Wenjuan Xu; Liaoyuan Mao; Chao Zhang; Peifang Yan; Zhanwei Xu; Z. Conrad Zhang

    2016-01-01

    Cellulosic ethanol production from lignocellulosic biomass offers a sustainable solution for transition from fossil based fuels to renewable alternatives. However, a few long-standing technical challenges remain to be addressed in the development of an economically viable fermentation process from lignocellulose. Such challenges include the needs to improve yeast tolerance to toxic inhibitory compounds and to achieve high fermentation efficiency with minimum detoxification steps after a simpl...

  14. Benzo(a)pyrene activation and detoxification by human pulmonary alveolar macrophages and lymphocytes

    International Nuclear Information System (INIS)

    Comparisons of pulmonary alveolar macrophages and circulating lymphocytes from five smokers and five nonsmokers for their ability to metabolize benzo(a)pyrene as determined by high pressure liquid chromatography were carried out. Utilizing this approach, further investigation of activation and detoxification by several human cell types could provide the basis for more precise and comprehensive studies of carcinogen and drug metabolism in the human lung, and for a better assessment of cancer risk in selected populations

  15. Generation of Nutrients and Detoxification: Possible Roles of Yeasts in Leaf-Cutting Ant Nests

    OpenAIRE

    Pagnocca, Fernando C.; Ifeloju Dayo-Owoyemi; Marson, Fernando A L; Mendes, Thais D.; André Rodrigues

    2012-01-01

    The possible roles played by yeasts in attine ant nests are mostly unknown. Here we present our investigations on the plant polysaccharide degradation profile of 82 yeasts isolated from fungus gardens of Atta and Acromyrmex species to demonstrate that yeasts found in ant nests may play the role of making nutrients readily available throughout the garden and detoxification of compounds that may be deleterious to the ants and their fungal cultivar. Among the yeasts screened, 65% exhibited cellu...

  16. Heavy Metal Detoxification by Different Bacillus Species Isolated from Solar Salterns

    OpenAIRE

    Shameer Syed; Paramageetham Chinthala

    2015-01-01

    The biosorption mechanism is an alternative for chemical precipitation and ultrafiltration which have been employed to treat heavy metal contamination with a limited success. In the present study, three species of Bacillus which were isolated from solar salterns were screened for their detoxification potential of the heavy metals, lead, chromium, and copper, by biosorption. Biosorption potential of each isolate was determined by Atomic Absorption Spectroscopy (AAS), Inductively Coupled Plasma...

  17. Detoxification of Implant Surfaces Affected by Peri-Implant Disease: An Overview of Surgical Methods

    Directory of Open Access Journals (Sweden)

    Pilar Valderrama

    2013-01-01

    Full Text Available Purpose. Peri-implantitis is one of the major causes of implant failure. The detoxification of the implant surface is necessary to obtain reosseointegration. The aim of this review was to summarize in vitro and in vivo studies as well as clinical trials that have evaluated surgical approaches for detoxification of the implant body surfaces. Materials and Methods. A literature search was conducted using MEDLINE (PubMed from 1966 to 2013. The outcome variables were the ability of the therapeutic method to eliminate the biofilm and endotoxins from the implant surface, the changes in clinical parameters, radiographic bone fill, and histological reosseointegration. Results. From 574 articles found, 76 were analyzed. The findings, advantages, and disadvantages of using mechanical, chemical methods and lasers are discussed. Conclusions. Complete elimination of the biofilms is difficult to achieve. All therapies induce changes of the chemical and physical properties of the implant surface. Partial reosseointegration after detoxification has been reported in animals. Combination protocols for surgical treatment of peri-implantitis in humans have shown some positive clinical and radiographic results, but long-term evaluation to evaluate the validity and reliability of the techniques is needed.

  18. Bacterial Epimerization as a Route for Deoxynivalenol Detoxification: the Influence of Growth and Environmental Conditions.

    Science.gov (United States)

    He, Jian Wei; Hassan, Yousef I; Perilla, Norma; Li, Xiu-Zhen; Boland, Greg J; Zhou, Ting

    2016-01-01

    Deoxynivalenol (DON) is a toxic secondary metabolite produced by several Fusarium species that infest wheat and corn. Food and feed contaminated with DON pose a health risk to both humans and livestock and form a major barrier for international trade. Microbial detoxification represents an alternative approach to the physical and chemical detoxification methods of DON-contaminated grains. The present study details the characterization of a novel bacterium, Devosia mutans 17-2-E-8, that is capable of transforming DON to a non-toxic stereoisomer, 3-epi-deoxynivalenol under aerobic conditions, mild temperature (25-30°C), and neutral pH. The biotransformation takes place in the presence of rich sources of organic nitrogen and carbon without the need of DON to be the sole carbon source. The process is enzymatic in nature and endures a high detoxification capacity (3 μg DON/h/10(8) cells). The above conditions collectively suggest the possibility of utilizing the isolated bacterium as a feed treatment to address DON contamination under empirical field conditions. PMID:27148248

  19. Effects of dietary nickel on detoxification enzyme activities in the midgut of Spodoptera litura Fabricius larvae

    Institute of Scientific and Technical Information of China (English)

    SUN HongXia; ZHOU Qiang; TANG WenCheng; SHU YingHua; ZHANG GuRen

    2008-01-01

    Nickel accumulated in midugt of Spodoptera litura Fabricius could induce the expression of metal-Iothionein, one of the most important detoxification proteins in organisms. In the present study, the effects of dietary nickel on the activities of detoxification enzymes, such as carboxylesterase (CarE) and glutathione S-transferase (GST) in the midgut of S. litura larvae have been studied to get an un-derstanding of the detoxification mechanisms of S. litura larvae to excessive nickel. Results showed that CarE activities in the midgut of the 5th instar larvae decreased at lower levels of nickel (≤5 mg/kg), while increased with increasing nickel doses at higher levels of nickel (≥10 mg/kg) exposure in suc-cessive 3 generations. CarE activities of the 6th instar larvae were also characterized as inhibited at low levels of nickel exposure, and improved at higher levels in the 1st generation. CarE activities of 6th instar larvae in the 2rid and 3rd generations were all lower than that in control. However, GST activities in the midgut of the 5th and 6th instar larvae all increased with increasing nickel doses (1-20 mg/kg) in diets.

  20. Plant species forbidden in health food and their toxic constituents, toxicology and detoxification.

    Science.gov (United States)

    Xu, Xi-Lin; Shang, Yu; Jiang, Jian-Guo

    2016-02-01

    Many plants with pharmacological efficacies are widely used as ingredients in so-called "health foods", but many of them are toxic. In order to ensure the safety of "health food", the Chinese Ministry of Health has listed 59 materials that are forbidden from being used in health food and are called health food forbidden species (HFFS). This review focuses on 47 plants among the HFFS to discuss research regarding their pharmacology, toxicology, and detoxification methods. According to the literature published in the last 2 decades, the main constituents and the pharmacology of such plants are described here, especially their toxic constituents and toxicology. The toxicity mechanisms of several typical toxic components from the 47 plants are outlined and some effective detoxification methods are introduced. Although all HFFS are poisonous, they are considered to be useful in the treatment of many diseases. How to keep their pharmacological effects and at the same time decrease their toxicity is a great challenge. In the future, more attention should be paid to the application of modern science and technology in the exploration of the toxicology and detoxification of HFFS.

  1. Facilitating outpatient treatment entry following detoxification for injection drug use: a multisite test of three interventions.

    Science.gov (United States)

    Campbell, Barbara K; Fuller, Bret E; Lee, Eun Sul; Tillotson, Carrie; Woelfel, Tiffany; Jenkins, Lindsay; Robinson, James; Booth, Robert E; McCarty, Dennis

    2009-06-01

    A multisite, randomized trial within the National Drug Abuse Treatment Clinical Trials Network (CTN) was conducted to test 3 interventions to enhance treatment initiation following detoxification: (a) a single session, therapeutic alliance intervention (TA) added to usual treatment; (b) a 2-session, counseling and education, HIV/HCV risk reduction intervention (C&E), added to usual treatment; and (c) treatment as usual (TAU) only. Injection drug users (n=632) enrolled in residential detoxification at 8 community treatment programs were randomized to 1 of the 3 study conditions. TA participants reported entering outpatient treatment sooner and in greater numbers than TAU participants. Reported treatment entry for C&E fell between TA and TAU with no significant differences between C&E and the other conditions. There were no differences among the interventions in retention, as measured by weeks of outpatient treatment for all participants who reported treatment entry. Alliance building interventions appear to be effective in facilitating transfer from detoxification to outpatient treatment, but additional treatment engagement interventions may be necessary to improve retention. PMID:19586142

  2. Reducing HIV-related risk behaviors among injection drug users in residential detoxification.

    Science.gov (United States)

    Booth, Robert E; Campbell, Barbara K; Mikulich-Gilbertson, Susan K; Tillotson, Carrie J; Choi, Dongseok; Robinson, James; Calsyn, Donald A; Mandler, Raul N; Jenkins, Lindsay M; Thompson, Laetitia L; Dempsey, Catherine L; Liepman, Michael R; McCarty, Dennis

    2011-01-01

    This study of 632 drug injectors enrolled in eight residential detoxification centers within the National Drug Abuse Treatment Clinical Trials Network tested three interventions to reduce drug and sex risk behaviors. Participants were randomized to: (a) a two-session, HIV/HCV counseling and education (C&E) model added to treatment as usual (TAU), (b) a one-session, therapeutic alliance (TA) intervention conducted by outpatient counselors to facilitate treatment entry plus TAU, or (c) TAU. Significant reductions in drug and sex risk behaviors occurred for all three conditions over a 6-month follow-up period. C&E participants reported significantly greater rates of attending an HIV testing appointment, but this was not associated with better risk reduction outcomes. Reporting treatment participation within 2 months after detoxification and self-efficacy to practice safer injection behavior predicted reductions in injection risk behaviors. Findings indicate that participation in detoxification was followed by significant decreases in drug injection and risk behaviors for up to 6-months; interventions added to standard treatment offered no improvement in risk behavior outcomes. PMID:20652630

  3. Toxicity of Six Insecticides on Codling Moth (Lepidoptera: Tortricidae) and Effect on Expression of Detoxification Genes.

    Science.gov (United States)

    Yang, Xue-Qing; Wu, Zheng-Wei; Zhang, Ya-Lin; Barros-Parada, Wilson

    2016-02-01

    The codling moth, Cydia pomonella (L.), is a key worldwide fruit pest that has evolved high levels of resistance to almost all classes of conventional insecticides. Neonicotinoids, a new reduced-risk biorational insecticide class, have remained an effective control approach. In this study, the toxicity and sublethal effect of conventional and reduced-risk biorational insecticides on transcripts abundance of three detoxification genes in codling moth were determined. Bioassays on a codling moth laboratory strain suggested that acetamiprid had the highest oral toxicity against the third-instar larvae compared with the other five pesticides. Results also indicated that acetamiprid exhibits long-term efficacy against codling moth even at 120 h post feeding. Real-time quantitative polymerase chain reaction showed that the detoxification genes CYP9A61, CpGST1, and CpCE-1 were differentially induced or suppressed by deltamethrin, cypermethrin, methomyl, carbaryl, and imidacloprid, depending on the type of insecticides; in contrast, no significant difference in CYP9A61, CpGST1, and CpCE-1 expressions were observed after acetamiprid exposure, when compared with the control. These results suggest that the reduced-risk biorational insecticide acetamiprid is an effective insecticide with no induction of detoxification genes and can be integrated into the management of codling moth.

  4. Cadmium transfer and detoxification mechanisms in a soil-mulberry-silkworm system: phytoremediation potential.

    Science.gov (United States)

    Zhou, Lingyun; Zhao, Ye; Wang, Shuifeng

    2015-11-01

    Phytoremediation has been proven to be an environmentally sound alternative for the recovery of contaminated soils, and the economic profit that comes along with the process might stimulate its field use. This study investigated cadmium (Cd) transfer and detoxification mechanisms in a soil-mulberry-silkworm system to estimate the suitability of the mulberry and silkworm as an alternative method for the remediation of Cd-polluted soil; it also explored the underlying mechanisms regulating the trophic transfer of Cd. The results show that both the mulberry and silkworm have high Cd tolerance. The transfer factor suggests that the mulberry has high potential for Cd extraction from polluted soil. The subcellular distribution and chemical forms of Cd in mulberry leaves show that cell wall deposition and vacuolar compartmentalization play important role in Cd tolerance. In the presence of increasing Cd concentrations in silkworm food, detoxification mechanisms (excretion and homeostasis) were activated so that excess Cd was excreted in fecal balls, and metallothionein levels in the mid-gut, the posterior of the silk gland, and the fat body of silkworms were enhanced. And, the Cd concentrations in silk are at a low level, ranging from 0.02 to 0.21 mg kg(-1). Therefore, these mechanisms of detoxification can regulate Cd trophic transfer, and mulberry planting and silkworm breeding has high phytoremediation potential for Cd-contaminated soil.

  5. Bacterial epimerization as a route for deoxynivalenol detoxification: the influence of growth and environmental conditions.

    Directory of Open Access Journals (Sweden)

    Jian Wei eHe

    2016-04-01

    Full Text Available Deoxynivalenol (DON is a toxic secondary metabolite produced by several Fusarium species that infest wheat and corn. Food and feed contaminated with DON pose a health risk to both humans and livestock and form a major barrier for international trade. Microbial detoxification represents an alternative approach to the physical and chemical detoxification methods of DON-contaminated grains. The present study details the characterization of a novel bacterium, Devosia mutans 17-2-E-8, that is capable of transforming DON to a non-toxic stereoisomer, 3-epi-deoxynivalenol under aerobic conditions, mild temperature (25-30 oC, and neutral pH. The biotransformation takes place in the presence of rich sources of organic nitrogen and carbon without the need of DON to be the sole carbon source. The process is enzymatic in nature and endures a high detoxification capacity (3 µg DON/h/108 cells. The above conditions collectively suggest the possibility of utilizing the isolated bacterium as a feed treatment to address DON contamination under empirical field conditions.

  6. Simultaneous allergen inactivation and detoxification of castor bean cake by treatment with calcium compounds

    International Nuclear Information System (INIS)

    Ricinus communis L. is of great economic importance due to the oil extracted from its seeds. Castor oil has been used for pharmaceutical and industrial applications, as a lubricant or coating agent, as a component of plastic products, as a fungicide or in the synthesis of biodiesel fuels. After oil extraction, a castor cake with a large amount of protein is obtained. However, this by-product cannot be used as animal feed due to the presence of toxic (ricin) and allergenic (2S albumin) proteins. Here, we propose two processes for detoxification and allergen inactivation of the castor cake. In addition, we establish a biological test to detect ricin and validate these detoxification processes. In this test, Vero cells were treated with ricin, and cell death was assessed by cell counting and measurement of lactate dehydrogenase activity. The limit of detection of the Vero cell assay was 10 ng/mL using a concentration of 1.6 × 105 cells/well. Solid-state fermentation (SSF) and treatment with calcium compounds were used as cake detoxification processes. For SSF, Aspergillus niger was grown using a castor cake as a substrate, and this cake was analyzed after 24, 48, 72, and 96 h of SSF. Ricin was eliminated after 24 h of SSF treatment. The cake was treated with 4 or 8% Ca(OH)2 or CaO, and both the toxicity and the allergenic properties were entirely abolished. A by-product free of toxicity and allergens was obtained

  7. Oxidative stress and DNA repair and detoxification gene expression in adolescents exposed to heavy metals living in the Milazzo-Valle del Mela area (Sicily, Italy

    Directory of Open Access Journals (Sweden)

    Gabriele Pizzino

    2014-01-01

    Conclusions: Continuous exposure at relatively low concentrations of heavy metals is associated with increased oxidative DNA damage and impaired expression of DNA repair and detoxification genes in adolescents.

  8. The Mercury Resistance Operon: From an Origin in a Geothermal Environment to an Efficient Detoxification Machine

    Directory of Open Access Journals (Sweden)

    Eric eBoyd

    2012-10-01

    Full Text Available Mercuric mercury (Hg[II] is a highly toxic and mobile element that is likely to have had a pronounced and adverse effect on biology since Earth’s oxygenation ~2.4 Gy ago due to its high affinity for protein sulfhydryl groups, which upon binding destabilizes protein structure and decreases enzyme activity, resulting in a decreased organismal fitness. The central enzyme in the microbial mercury detoxification system is the mercuric reductase (MerA protein, which catalyzes the reduction of Hg2+ to volatile Hg0. In addition to MerA, mer operons encode for proteins involved in regulation, Hg binding, and organomercury degradation. Here, we examine the composition of 272 individual mer operons and quantitatively map the distribution of mer-encoded functions on both taxonomic SSU rRNA gene and MerA protein phylogenies. The results indicate an origin and early evolution of MerA among thermophilic bacteria and an overall increase in the complexity of mer operons and in the sophistication of transcriptional regulation through evolutionary time, suggesting continual gene recruitment and evolution leading to an improved efficiency and functionality of the Mer detoxification system. Consistent with a positive relationship between the evolutionary history and topology of MerA and SSU rRNA gene phylogeneties (Mantel R = 0.81, p < 0.01, the distribution of the majority of mer functions, when mapped on these phylograms, indicates an overall tendency to inherit mer-encoded functions through vertical descent. However, individual mer functions display evidence of a variable degree of vertical inheritance, with several genes exhibiting strong evidence for acquisition via lateral gene transfer and/or gene loss. These data suggest that (i mer has evolved from a simple system in geothermal environments to a widely distributed and more complex and efficient detoxification system, and (ii MerA is a suitable taxonomic marker for examining the functional diversity of mer.

  9. Simultaneous allergen inactivation and detoxification of castor bean cake by treatment with calcium compounds

    Directory of Open Access Journals (Sweden)

    K.V. Fernandes

    2012-11-01

    Full Text Available Ricinus communis L. is of great economic importance due to the oil extracted from its seeds. Castor oil has been used for pharmaceutical and industrial applications, as a lubricant or coating agent, as a component of plastic products, as a fungicide or in the synthesis of biodiesel fuels. After oil extraction, a castor cake with a large amount of protein is obtained. However, this by-product cannot be used as animal feed due to the presence of toxic (ricin and allergenic (2S albumin proteins. Here, we propose two processes for detoxification and allergen inactivation of the castor cake. In addition, we establish a biological test to detect ricin and validate these detoxification processes. In this test, Vero cells were treated with ricin, and cell death was assessed by cell counting and measurement of lactate dehydrogenase activity. The limit of detection of the Vero cell assay was 10 ng/mL using a concentration of 1.6 x 10(5 cells/well. Solid-state fermentation (SSF and treatment with calcium compounds were used as cake detoxification processes. For SSF, Aspergillus niger was grown using a castor cake as a substrate, and this cake was analyzed after 24, 48, 72, and 96 h of SSF. Ricin was eliminated after 24 h of SSF treatment. The cake was treated with 4 or 8% Ca(OH2 or CaO, and both the toxicity and the allergenic properties were entirely abolished. A by-product free of toxicity and allergens was obtained.

  10. Can Chlorella pyrenoidosa be a bioindicator for hazardous solid waste detoxification?

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Li-Fang, E-mail: hulif127@163.com [College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018 (China); Long, Yu-Yang; Shen, Dong-Sheng [School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012 (China); Jiang, Chen-Jing [The Second Institute of Oceanography, SOA, Hangzhou 310012 (China)

    2012-02-01

    Four kinds of solid waste residue (SWR, S1 to S4) from different stages in a sequential detoxification process were chosen. The biotoxicity of the leachates from S1 to S4 was tested by Chlorella pyrenoidosa. The growth inhibition, the chlorophyll a (chla) and chlorophyll b (chlb) concentrations, and the ultrastructural morphology of cells of C. pyrenoidosa were studied. It shows that the growth inhibition of C. pyrenoidosa significantly increased with increasing leachate concentration when exposed to the leachates from S1, S2, S3, and S4, respectively. It well reflects the toxicity difference of leachate from SWR at different treatment stages, namely S1 > S2 > S3 > S4. Correspondingly, the chla and chlb concentrations of C. pyrenoidosa increased gradually as SWR was treated deeply. Leachate disrupted chlorophyll synthesis and inhibited cell growth. The changing of the ultrastructural morphology of cells under different leachate exposures, such as volume of chloroplasts and quantity of thylakoids reducing, confirmed the toxicity decrease of leachates from different stages. C. pyrenoidosa is a good bioindicator for hazardous solid waste detoxification. The EC{sub 50} at difference scenarios also suggests that it was feasible to estimate ecological toxicity of leachates to C. pyrenoidosa after exposure times of 72 h. C. pyrenoidosa can be introduced to evaluate the effect of hazardous solid waste disposal by biotoxicity assessment. - Highlights: Black-Right-Pointing-Pointer The detoxification process of hazardous solid waste was evaluated by Chlorella pyrenoidosa. Black-Right-Pointing-Pointer The best exposure time of ecological toxicity assessment of Chlorella pyrenoidosa was presented. Black-Right-Pointing-Pointer The possible toxicity of the hazardous solid waste at different disposal stage on Chlorella pyrenoidosa was explored from cell tissue.

  11. Thiol metabolism and antioxidant systems complement each other during arsenate detoxification in Ceratophyllum demersum L.

    Science.gov (United States)

    Mishra, Seema; Srivastava, Sudhakar; Tripathi, Rudra D; Trivedi, Prabodh K

    2008-01-31

    Ceratophyllum demersum L. is known to be a potential accumulator of arsenic (As), but mechanisms of As detoxification have not been investigated so far. In the present study, we analyzed the biochemical responses of Ceratophyllum plants to arsenate (As(V); 0-250 microM) exposure to explore the underlying mechanisms of As detoxification. Plants efficiently tolerated As toxicity up to concentrations of 50 microM As(V) and durations of 4 d with no significant effect on growth by modulating various pathways in a coordinated and complementary manner and accumulated about 76 microg As g(-1)dw. Significant increases were observed in the levels of various thiols including phytochelatins (PCs), the activities of enzymes of thiolic metabolism as well as arsenate reductase (AR). These primary responses probably enabled plants to detoxify at least some part of As(V) through its reduction and subsequent complexation. The maximum proportion of As chelated by PCs was found to be about 30% (at 50 microM As(V) after 2 d). Simultaneously, a significant increase in the activities of antioxidant enzymes was observed and hence plants did not experience oxidative stress when exposed to 50 microM As(V) for 4 d. Exposure of plants to higher concentrations (250 microM As(V)) and/or for longer durations (7 d) resulted in a significant increase in the level of As (maximum 525 microgg(-1)dw at 250 microM after 7 d) and an inverse relationship between As accumulation and various detoxification strategies was observed that lead to enhanced oxidative stress and hampered growth.

  12. Combined Detoxification and In-situ Product Removal by a Single Resin During Lignocellulosic Butanol Production

    Science.gov (United States)

    Gao, Kai; Rehmann, Lars

    2016-07-01

    Phragmites australis (an invasive plant in North America) was used as feedstock for ABE (acetone-butanol-ethanol) fermentation by Clostridium saccharobutylicum. Sulphuric acid pretreated phragmites hydrolysate (SAEH) without detoxification inhibited butanol production (0.73 g/L butanol from 30 g/L sugars). The treatment of SAEH with resin L-493 prior the fermentation resulted in no inhibitory effects and an ABE titer of 14.44 g/L, including 5.49 g/L butanol was obtained, corresponding to an ABE yield and productivity of 0.49 g/g and 0.60 g/L/h, respectively. Dual functionality of the resin was realized by also using it as an in-situ product removal agent. Integrating in-situ product removal allowed for the use of high substrate concentrations without the typical product inhibition. Resin-detoxified SAEH was supplemented with neat glucose and an effective ABE titer of 33 g/L (including 13.7 g/L acetone, 16.4 g/L butanol and 1.9 g/L ethanol) was achieved with resin-based in-situ product removal, corresponding to an ABE yield and productivity of 0.41 g/g and 0.69 g/L/h, respectively. Both detoxification of the substrate and the products was achieved by the same resin, which was added prior the fermentation. Integrating hydrolysate detoxification and in-situ butanol removal in a batch process through single resin can potentially simplify cellulosic butanol production.

  13. Simultaneous allergen inactivation and detoxification of castor bean cake by treatment with calcium compounds

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, K.V.; Deus-de-Oliveira, N. [Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Rio de Janeiro, RJ (Brazil); Godoy, M.G. [Laboratório de Biotecnologia Microbiana, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Guimarães, Z.A.S. [Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Rio de Janeiro, RJ (Brazil); Nascimento, V.V. [Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Rio de Janeiro, RJ (Brazil); Melo, E.J.T. de [Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Rio de Janeiro, RJ (Brazil); Freire, D.M.G. [Laboratório de Biotecnologia Microbiana, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Dansa-Petretski, M.; Machado, O.L.T. [Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Rio de Janeiro, RJ (Brazil)

    2012-08-24

    Ricinus communis L. is of great economic importance due to the oil extracted from its seeds. Castor oil has been used for pharmaceutical and industrial applications, as a lubricant or coating agent, as a component of plastic products, as a fungicide or in the synthesis of biodiesel fuels. After oil extraction, a castor cake with a large amount of protein is obtained. However, this by-product cannot be used as animal feed due to the presence of toxic (ricin) and allergenic (2S albumin) proteins. Here, we propose two processes for detoxification and allergen inactivation of the castor cake. In addition, we establish a biological test to detect ricin and validate these detoxification processes. In this test, Vero cells were treated with ricin, and cell death was assessed by cell counting and measurement of lactate dehydrogenase activity. The limit of detection of the Vero cell assay was 10 ng/mL using a concentration of 1.6 × 10{sup 5} cells/well. Solid-state fermentation (SSF) and treatment with calcium compounds were used as cake detoxification processes. For SSF, Aspergillus niger was grown using a castor cake as a substrate, and this cake was analyzed after 24, 48, 72, and 96 h of SSF. Ricin was eliminated after 24 h of SSF treatment. The cake was treated with 4 or 8% Ca(OH){sub 2} or CaO, and both the toxicity and the allergenic properties were entirely abolished. A by-product free of toxicity and allergens was obtained.

  14. Effects and action mechanisms of Korean pear (Pyrus pyrifolia cv. Shingo) on alcohol detoxification.

    Science.gov (United States)

    Lee, Ho-Sun; Isse, Toyoshi; Kawamoto, Toshihiro; Woo, Hyun-Su; Kim, An Keun; Park, Jong Y; Yang, Mihi

    2012-11-01

    Korean pear (Pyrus pyrifolia cv. Shingo) has been used as a traditional medicine for alleviating alcohol hangover. However, scientific evidence for its effectiveness or mechanism is not clearly established. To investigate its mechanism of alcohol detoxification, both in vitro and in vivo studies were performed with an aldehyde dehydrogenase 2 (ALDH2) alternated animal model. The pear extract (10 mL/kg bw) was administered to Aldh2 normal (C57BL/6) and deficient (Aldh2 -/-) male mice. After 30 min, ethanol (1 g or 2 g/kg bw) was administered to the mice via gavage. Levels of alcohol and acetaldehyde in blood were quantified by GC/MS. First, it was observed that the pears stimulated both alcohol dehydrogenase (ADH) and ALDH activities by 2∼3-  and 1.3-fold in in vitro studies, respectively. Second, mouse PK data (AUC(∞) and C(max) ) showed that the pear extract decreased the alcohol level in blood regardless of ALDH2 genotype. Third, the pear increased the acetaldehyde level in blood in Aldh2 deficient mice but not in Aldh2 normal mice. Therefore, the consistent in vitro and in vivo data suggest that Korean pears stimulate the two key alcohol-metabolizing enzymes. These stimulations could be the main mechanism of the Korean pear for alcohol detoxification. Finally, the results suggest that polymorphisms of human ALDH2 could bring out individual variations in the effects of Korean pear on alcohol detoxification. PMID:22451246

  15. Combined Detoxification and In-situ Product Removal by a Single Resin During Lignocellulosic Butanol Production

    Science.gov (United States)

    Gao, Kai; Rehmann, Lars

    2016-01-01

    Phragmites australis (an invasive plant in North America) was used as feedstock for ABE (acetone-butanol-ethanol) fermentation by Clostridium saccharobutylicum. Sulphuric acid pretreated phragmites hydrolysate (SAEH) without detoxification inhibited butanol production (0.73 g/L butanol from 30 g/L sugars). The treatment of SAEH with resin L-493 prior the fermentation resulted in no inhibitory effects and an ABE titer of 14.44 g/L, including 5.49 g/L butanol was obtained, corresponding to an ABE yield and productivity of 0.49 g/g and 0.60 g/L/h, respectively. Dual functionality of the resin was realized by also using it as an in-situ product removal agent. Integrating in-situ product removal allowed for the use of high substrate concentrations without the typical product inhibition. Resin-detoxified SAEH was supplemented with neat glucose and an effective ABE titer of 33 g/L (including 13.7 g/L acetone, 16.4 g/L butanol and 1.9 g/L ethanol) was achieved with resin-based in-situ product removal, corresponding to an ABE yield and productivity of 0.41 g/g and 0.69 g/L/h, respectively. Both detoxification of the substrate and the products was achieved by the same resin, which was added prior the fermentation. Integrating hydrolysate detoxification and in-situ butanol removal in a batch process through single resin can potentially simplify cellulosic butanol production. PMID:27459906

  16. Unique structure and regulation of the nematode detoxification gene regulator, SKN-1: implications to understanding and controlling drug resistance.

    Science.gov (United States)

    Choe, Keith P; Leung, Chi K; Miyamoto, Michael M

    2012-08-01

    Nematodes parasitize an alarming number of people and agricultural animals globally and cause debilitating morbidity and mortality. Anthelmintics have been the primary tools used to control parasitic nematodes for the past several decades, but drug resistance is becoming a major obstacle. Xenobiotic detoxification pathways defend against drugs and other foreign chemicals in diverse organisms, and evidence is accumulating that they play a role in mediating resistance to anthelmintics in nematodes. Related antioxidation pathways may also provide filarial parasites with protection against host free-radical-mediated immune responses. Upstream regulatory pathways have received almost no attention in nematode parasites, despite their potential to coregulate multiple detoxification and antioxidation genes. The nuclear eurythroid 2-related factor 2 (NRF2) transcription factor mediates inducible detoxification and antioxidation defenses in mammals, and recent studies have demonstrated that it promotes multidrug resistance in some human tumors. Recent studies in the free-living model nematode, Caenorhabditis elegans, have defined the homologous transcription factor, SKN-1, as a master regulator of detoxification and antioxidation genes. Despite similar functions, SKN-1 and NRF2 have important differences in structure and regulatory pathways. Protein alignment and phylogenetic analyses indicate that these differences are shared among many nematodes, making SKN-1 a candidate for specifically targeting nematode detoxification and antioxidation. PMID:22656429

  17. Fungal Biosorption, An Innovative Treatment for the Decolourisation and Detoxification of Textile Effluents

    Directory of Open Access Journals (Sweden)

    Antonella Pannocchia

    2010-08-01

    Full Text Available Textile effluents are among the most difficult-to-treat wastewaters, due to their considerable amount of recalcitrant and toxic substances. Fungal biosorption is viewed as a valuable additional treatment for removing pollutants from textile wastewaters. In this study the efficiency of Cunninghamella elegans biomass in terms of contaminants, COD and toxicity reduction was tested against textile effluents sampled in different points of wastewater treatment plants. The results showed that C. elegans is a promising candidate for the decolourisation and detoxification of textile wastewaters and its versatility makes it very competitive compared with conventional sorbents adopted in industrial processes.

  18. Application of electro-Fenton oxidation for the detoxification of olive mill wastewater phenolic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Khoufi, S.; Aouissaoui, H.; Sayadi, S. [Lab. des Bioprocedes, Centre de Biotechnologie de Sfax, Sfax (Tunisia); Penninckx, M. [UPEM, Univ. Libre de Bruxelles, Bruxelles (Belgium)

    2003-07-01

    Olive mill effluent (OMW) is an example of a wastewaters containing high concentrations of recalcitrant and toxic compounds which are polyphenolics of different molecular weight. It causes disposal problems because they contain powerful pollutants. Treatment and detoxification of phenolic fraction extracted from olive mill wastewaters as well as a synthetic phenolic mixture was investigated by electro-Fenton method. Results shows that this method is highly efficient in polymerising low molecular mass phenolics and removing a large amount of recalcitrant polyphenolic compounds. This treatment decreased 78% of the toxicity which sustained a good anaerobic post-treatment. (orig.)

  19. Danio rerio embryos on Prozac - Effects on the detoxification mechanism and embryo development.

    Science.gov (United States)

    Cunha, V; Rodrigues, P; Santos, M M; Moradas-Ferreira, P; Ferreira, M

    2016-09-01

    In the past decade the presence of psychopharmaceuticals, including fluoxetine (FLU), in the aquatic environment has been associated with the increasing trend in human consumption of these substances. Aquatic organisms are usually exposed to chronic low doses and, therefore, risk assessments should evaluate the effects of these compounds in non-target organisms. Teleost fish possess an array of active defence mechanisms to cope with the deleterious effects of xenobiotics. These include ABC transporters, phase I and II of cellular detoxification and oxidative stress enzymes. Hence, the present study aimed at characterising the effect of FLU on embryo development of the model teleost zebrafish (Danio rerio) concomitantly with changes in the detoxification mechanisms during early developmental phases. Embryos were exposed to different concentrations of FLU (0.0015, 0.05, 0.1, 0.5 and 0.8μM) for 80hours post fertilization. Development was screened and the impact in the transcription of key genes, i.e., abcb4, abcc1, abcc2, abcg2, cyp1a, cyp3a65, gst, sod, cat, ahr, pxr, pparα, pparβ, pparγ, rxraa, rxrab, rxrbb, rxrga, rxrgb, raraa, rarab, rarga evaluated. In addition, accumulation assays were performed to measure the activity of ABC proteins and antioxidant enzymes (CAT and Cu/ZnSOD) after exposure to FLU. Embryo development was disrupted at the lowest FLU concentration tested (0.0015μM), which is in the range of concentrations found in WWTP effluents. Embryos exposed to higher concentrations of FLU decreased Cu/Zn SOD, and increased CAT (0.0015 and 0.5μM) enzymatic activity. Exposure to higher concentrations of FLU decreased the expression of most genes belonging to the detoxification system and upregulated cat at 0.0015μM of FLU. Most of the tested concentrations downregulated pparα, pparβ, pparγ, and raraa, rxraa, rxrab, rxrbb rxrgb and ahr gene expression while pxr was significantly up regulated at all tested concentrations. In conclusion, this study

  20. In silico multiple-targets identification for heme detoxification in the human malaria parasite Plasmodium falciparum.

    Science.gov (United States)

    Phaiphinit, Suthat; Pattaradilokrat, Sittiporn; Lursinsap, Chidchanok; Plaimas, Kitiporn

    2016-01-01

    Detoxification of hemoglobin byproducts or free heme is an essential step and considered potential targets for anti-malaria drug development. However, most of anti-malaria drugs are no longer effective due to the emergence and spread of the drug resistant malaria parasites. Therefore, it is an urgent need to identify potential new targets and even for target combinations for effective malaria drug design. In this work, we reconstructed the metabolic networks of Plasmodium falciparum and human red blood cells for the simulation of steady mass and flux flows of the parasite's metabolites under the blood environment by flux balance analysis (FBA). The integrated model, namely iPF-RBC-713, was then adjusted into two stage-specific metabolic models, which first was for the pathological stage metabolic model of the parasite when invaded the red blood cell without any treatment and second was for the treatment stage of the parasite when a drug acted by inhibiting the hemozoin formation and caused high production rate of heme toxicity. The process of identifying target combinations consisted of two main steps. Firstly, the optimal fluxes of reactions in both the pathological and treatment stages were computed and compared to determine the change of fluxes. Corresponding enzymes of the reactions with zero fluxes in the treatment stage but non-zero fluxes in the pathological stage were predicted as a preliminary list of potential targets in inhibiting heme detoxification. Secondly, the combinations of all possible targets listed in the first step were examined to search for the best promising target combinations resulting in more effective inhibition of the detoxification to kill the malaria parasites. Finally, twenty-three enzymes were identified as a preliminary list of candidate targets which mostly were in pyruvate metabolism and citrate cycle. The optimal set of multiple targets for blocking the detoxification was a set of heme ligase, adenosine transporter, myo

  1. A new pathway for heavy metal detoxification in animals. Phytochelatin synthase is required for cadmium tolerance in Caenorhabditis elegans.

    Science.gov (United States)

    Vatamaniuk, O K; Bucher, E A; Ward, J T; Rea, P A

    2001-06-15

    Increasing emissions of heavy metals such as cadmium, mercury, and arsenic into the environment pose an acute problem for all organisms. Considerations of the biochemical basis of heavy metal detoxification in animals have focused exclusively on two classes of peptides, the thiol tripeptide, glutathione (GSH, gamma-Glu-Cys-Gly), and a diverse family of cysteine-rich low molecular weight proteins, the metallothioneins. Plants and some fungi, however, not only deploy GSH and metallothioneins for metal detoxification but also synthesize another class of heavy metal binding peptides termed phytochelatins (PCs) from GSH. Here we show that PC-mediated heavy metal detoxification is not restricted to plants and some fungi but extends to animals by demonstrating that the ce-pcs-1 gene of the nematode worm Caenorhabditis elegans encodes a functional PC synthase whose activity is critical for heavy metal tolerance in the intact organism.

  2. Highly efficient detoxification of Cr(VI) by chitosan–Fe(III) complex: Process and mechanism studies

    International Nuclear Information System (INIS)

    Highlights: ► Cr(VI) detoxification by chitosan–Fe(III) complex was in high efficiency. ► XAFS and XPS were used to decipher the mechanism of Cr(VI) detoxification. ► The -OH on C-6 of chitosan served as an electron donor during Cr(VI) reduction. ► The geometrical arrangement of adsorbed Cr(VI) was similar as Cr(III). ► Mechanism for detoxification of Cr(VI) by chitosan–Fe(III) complex was elucidated. -- Abstract: Metal–biopolymer complexes has recently gained significant attention as an effective adsorbent used for the removal of Cr(VI) from water. Unfortunately, despite increasing research efforts in the field of removal efficiency, whether this kind of complex can reduce Cr(VI) to less-toxic Cr(III) and what are the mechanisms of detoxification processes are still unknown. In this study, despite the highly adsorption efficiency (maximum adsorption capacity of 173.1 mg/g in 10 min), the significant improvement of Cr(VI) reduction by chitosan–Fe(III) complex compared with normal crosslinked chitoan has been demonstrated. In addition, the structure of chitosan–Fe(III) complex and its functional groups concerned with Cr(VI) detoxification have been characterized by the powerful spectroscopic techniques X-ray absorption fine structure (XAFS) and X-ray photoelectron spectroscopy (XPS). The XPS spectra indicated that the primary alcoholic function on C-6 served as an electron donor during Cr(VI) reduction and was oxidized to a carbonyl group. The X-ray adsorption near edge spectra (XANES) of the Cr(VI)-treated chitosan–Fe(III) complex revealed the similar geometrical arrangement of Cr species as that in Cr(III)-bound chitosan–Fe(III). Overall, a possible process and mechanism for highly efficient detoxification of Cr(VI) by chitosan–Fe(III) complex has been elucidate

  3. Role of Penicillium chrysogenum XJ-1 in the detoxification and bioremediation of cadmium

    Directory of Open Access Journals (Sweden)

    Xingjian eXu

    2015-12-01

    Full Text Available Microbial bioremediation is a promising technology to treat heavy metal-contaminated soils. However, the efficiency of filamentous fungi as bioremediation agents remains unknown, and the detoxification mechanism of heavy metals by filamentous fungi remains unclear. Therefore, in this study, we investigated the cell morphology and antioxidant systems of Penicillium chrysogenum XJ-1 in response to different Cd concentrations (0–10 mM by using physico-chemical and biochemical methods. Cd in XJ-1 was mainly bound to the cell wall. The malondialdehyde (MDA level in XJ-1 cells was increased by 14.82–94.67 times with the increase in Cd concentration. The activities of superoxide dismutase (SOD, glutathione reductase (GR, and glucose-6-phosphate dehydrogenase (G6PDH peaked at 1 mM Cd, whereas that of catalase (CAT peaked at 5 mM Cd. Cd exposure increased the glutathione/oxidized glutathione ratio and the activities of GR and G6PDH in XJ-1. These results suggested that the Cd detoxification mechanism of XJ-1 included biosorption, cellular sequestration, and antioxidant defense. The application of XJ-1 in Cd-polluted soils (5–50 mg kg−1 successfully reduced bioavailable Cd and increased the plant yield, indicating that this fungus was a promising candidate for in-situ bioremediation of Cd-polluted soil.

  4. Role of Penicillium chrysogenum XJ-1 in the Detoxification and Bioremediation of Cadmium

    Science.gov (United States)

    Xu, Xingjian; Xia, Lu; Zhu, Wei; Zhang, Zheyi; Huang, Qiaoyun; Chen, Wenli

    2015-01-01

    Microbial bioremediation is a promising technology to treat heavy metal-contaminated soils. However, the efficiency of filamentous fungi as bioremediation agents remains unknown, and the detoxification mechanism of heavy metals by filamentous fungi remains unclear. Therefore, in this study, we investigated the cell morphology and antioxidant systems of Penicillium chrysogenum XJ-1 in response to different cadmium (Cd) concentrations (0–10 mM) by using physico-chemical and biochemical methods. Cd in XJ-1 was mainly bound to the cell wall. The malondialdehyde level in XJ-1 cells was increased by 14.82–94.67 times with the increase in Cd concentration. The activities of superoxide dismutase, glutathione reductase (GR), and glucose-6-phosphate dehydrogenase (G6PDH) peaked at 1 mM Cd, whereas that of catalase peaked at 5 mM Cd. Cd exposure increased the glutathione/oxidized glutathione ratio and the activities of GR and G6PDH in XJ-1. These results suggested that the Cd detoxification mechanism of XJ-1 included biosorption, cellular sequestration, and antioxidant defense. The application of XJ-1 in Cd-polluted soils (5–50 mg kg-1) successfully reduced bioavailable Cd and increased the plant yield, indicating that this fungus was a promising candidate for in situ bioremediation of Cd-polluted soil. PMID:26733967

  5. Coordinating Role of RXRα in Downregulating Hepatic Detoxification during Inflammation Revealed by Fuzzy-Logic Modeling.

    Directory of Open Access Journals (Sweden)

    Roland Keller

    2016-01-01

    Full Text Available During various inflammatory processes circulating cytokines including IL-6, IL-1β, and TNFα elicit a broad and clinically relevant impairment of hepatic detoxification that is based on the simultaneous downregulation of many drug metabolizing enzymes and transporter genes. To address the question whether a common mechanism is involved we treated human primary hepatocytes with IL-6, the major mediator of the acute phase response in liver, and characterized acute phase and detoxification responses in quantitative gene expression and (phospho-proteomics data sets. Selective inhibitors were used to disentangle the roles of JAK/STAT, MAPK, and PI3K signaling pathways. A prior knowledge-based fuzzy logic model comprising signal transduction and gene regulation was established and trained with perturbation-derived gene expression data from five hepatocyte donors. Our model suggests a greater role of MAPK/PI3K compared to JAK/STAT with the orphan nuclear receptor RXRα playing a central role in mediating transcriptional downregulation. Validation experiments revealed a striking similarity of RXRα gene silencing versus IL-6 induced negative gene regulation (rs = 0.79; P<0.0001. These results concur with RXRα functioning as obligatory heterodimerization partner for several nuclear receptors that regulate drug and lipid metabolism.

  6. A case report of inpatient detoxification after kratom (Mitragyna speciosa) dependence.

    Science.gov (United States)

    McWhirter, Laura; Morris, Siobhan

    2010-01-01

    Kratom (Mitragyna speciosa) has been used for medicinal and recreational purposes. It has reported analgesic, euphoric and antitussive effects via its action as an agonist at opioid receptors. It is illegal in many countries including Thailand, Malaysia, Myanmar, South Korea and Australia; however, it remains legal or uncontrolled in the UK and USA, where it is easily available over the Internet. We describe a case of kratom dependence in a 44-year-old man with a history of alcohol dependence and anxiety disorder. He demonstrated dependence on kratom with withdrawal symptoms consisting of anxiety, restlessness, tremor, sweating and cravings for the substance. A reducing regime of dihydrocodeine and lofexidine proved effective in treating subjective and objective measures of opioid-like withdrawal phenomena, and withdrawal was relatively short and benign. There are only few reports in the literature of supervised detoxification and drug treatment for kratom dependence. Our observations support the idea that kratom dependence syndrome is due to short-acting opioid receptor agonist activity, and suggest that dihydrocodeine and lofexidine are effective in supporting detoxification.

  7. Activated sludge respirometry to assess solar detoxification of a metal finishing effluent

    Energy Technology Data Exchange (ETDEWEB)

    Santos-Juanes, L.; Amat, A.M. [Departamento de Ingenieria Textil y Papelera, Escuela Politecnica Superior de Alcoy, Universidad Politecnica de Valencia, Plaza Ferrandiz y Carbonell s/n, E-03801 Alcoy (Spain); Arques, A. [Departamento de Ingenieria Textil y Papelera, Escuela Politecnica Superior de Alcoy, Universidad Politecnica de Valencia, Plaza Ferrandiz y Carbonell s/n, E-03801 Alcoy (Spain)], E-mail: aarques@txp.upv.es; Bernabeu, A.; Silvestre, M.; Vicente, R. [Departamento de Ingenieria Textil y Papelera, Escuela Politecnica Superior de Alcoy, Universidad Politecnica de Valencia, Plaza Ferrandiz y Carbonell s/n, E-03801 Alcoy (Spain); Ano, E. [Departamento de Gestion e Innovacion, Area de producto y desarrollo sostenible, Asociacion de Investigacion de la Industria del Juguete, Conexas y Afines (AIJU), Avda. de la industria, 23, 03440 Ibi (Spain)], E-mail: m.ambiente@aiju.info

    2008-05-30

    Inhibition of the respiration of activated sludge has been tested as a convenient method to estimate toxicity of aqueous solutions containing copper and cyanide, such as metal finishing effluents; according to this method, an EC{sub 50} of 0.5 mg/l was determined for CN{sup -} and 3.0 mg/l for copper. Solar detoxification of cyanide-containing solutions was studied using TiO{sub 2}, but this process was unfavourable because of the inhibitory role that plays the copper ions present in real effluents on the oxidation of cyanide. On the other hand, the oxidative effect of hydrogen peroxide was greatly enhanced by Cu{sup 2+} and solar irradiation, as complete elimination of free and complexed cyanide could be accomplished, together with precipitation of copper, in experiments carried out at pilot plant scale with real metal finishing effluents. Under these conditions, total detoxification was achieved according to respirometric measurements although some remaining toxicity was determined by more sensitive Vibrio fischeri luminescent assay.

  8. Chlorine/UV Process for Decomposition and Detoxification of Microcystin-LR.

    Science.gov (United States)

    Zhang, Xinran; Li, Jing; Yang, Jer-Yen; Wood, Karl V; Rothwell, Arlene P; Li, Weiguang; Blatchley Iii, Ernest R

    2016-07-19

    Microcystin-LR (MC-LR) is a potent hepatotoxin that is often associated with blooms of cyanobacteria. Experiments were conducted to evaluate the efficiency of the chlorine/UV process for MC-LR decomposition and detoxification. Chlorinated MC-LR was observed to be more photoactive than MC-LR. LC/MS analyses confirmed that the arginine moiety represented an important reaction site within the MC-LR molecule for conditions of chlorination below the chlorine demand of the molecule. Prechlorination activated MC-LR toward UV254 exposure by increasing the product of the molar absorption coefficient and the quantum yield of chloro-MC-LR, relative to the unchlorinated molecule. This mechanism of decay is fundamentally different than the conventional view of chlorine/UV as an advanced oxidation process. A toxicity assay based on human liver cells indicated MC-LR degradation byproducts in the chlorine/UV process possessed less cytotoxicity than those that resulted from chlorination or UV254 irradiation applied separately. MC-LR decomposition and detoxification in this combined process were more effective at pH 8.5 than at pH 7.5 or 6.5. These results suggest that the chlorine/UV process could represent an effective strategy for control of microcystins and their associated toxicity in drinking water supplies. PMID:27338715

  9. Earthworm tolerance to residual agricultural pesticide contamination: field and experimental assessment of detoxification capabilities.

    Science.gov (United States)

    Givaudan, Nicolas; Binet, Françoise; Le Bot, Barbara; Wiegand, Claudia

    2014-09-01

    This study investigates if acclimatization to residual pesticide contamination in agricultural soils is reflected in detoxification, antioxidant enzyme activities and energy budget of earthworms. Five fields within a joint agricultural area exhibited different chemical and farming histories from conventional cultivation to organic pasture. Soil multiresidual pesticide analysis revealed up to 9 molecules including atrazine up to 2.4 ng g(-1) dry soil. Exposure history of endogeic Aporrectodea caliginosa and Allolobophora chlorotica modified their responses to pesticides. In the field, activities of soluble glutathione-S-transferases (sGST) and catalase increased with soil pesticide contamination in A. caliginosa. Pesticide stress was reflected in depletion of energy reserves in A. chlorotica. Acute exposure of pre-adapted and naïve A. caliginosa to pesticides (fungicide Opus(®), 0.1 μg active ingredient epoxiconazole g(-1) dry soil, RoundUp Flash(®), 2.5 μg active ingredient glyphosate g(-1) dry soil, and their mixture), revealed that environmental pre-exposure accelerated activation of the detoxification enzyme sGST towards epoxiconazole. PMID:24874794

  10. Natural Detoxification Capacity to Inactivate Nerve Agents Sarin and VX in the Rat Blood

    Directory of Open Access Journals (Sweden)

    Jiří Bajgal

    2016-03-01

    Full Text Available Background: The method of continual determination of the rat blood cholinesterase activity was developed to study the changes of the blood cholinesterases following different intervetions. Aims: The aim of this study is registration of cholinesterase activity in the rat blood and its changes to demonstrate detoxification capacity of rats to inactivate sarin or VX in vivo. Methods: The groups of female rats were premedicated (ketamine and xylazine and cannulated to a. femoralis. Continual blood sampling (0.02 ml/min and monitoring of the circulating blood cholinesterase activity were performed. Normal activity was monitored 1–2 min and then the nerve agent was administered i.m. (2× LD50. Using different time intervals of the leg compression and relaxation following the agent injection, cholinesterase activity was monitored and according to the inhibition obtained, detoxification capacity was assessed. Results: Administration of sarin to the leg, then 1 and 5 min compression and 20 min later relaxation showed that further inhibition in the blood was not observed. On the other hand, VX was able to inhibit blood cholinesterases after this intervention. Conclusions: The results demonstrated that sarin can be naturally detoxified on the contrary to VX. Described method can be used as model for other studies dealing with changes of cholinesterases in the blood following different factors.

  11. Coordinating Role of RXRα in Downregulating Hepatic Detoxification during Inflammation Revealed by Fuzzy-Logic Modeling.

    Science.gov (United States)

    Keller, Roland; Klein, Marcus; Thomas, Maria; Dräger, Andreas; Metzger, Ute; Templin, Markus F; Joos, Thomas O; Thasler, Wolfgang E; Zell, Andreas; Zanger, Ulrich M

    2016-01-01

    During various inflammatory processes circulating cytokines including IL-6, IL-1β, and TNFα elicit a broad and clinically relevant impairment of hepatic detoxification that is based on the simultaneous downregulation of many drug metabolizing enzymes and transporter genes. To address the question whether a common mechanism is involved we treated human primary hepatocytes with IL-6, the major mediator of the acute phase response in liver, and characterized acute phase and detoxification responses in quantitative gene expression and (phospho-)proteomics data sets. Selective inhibitors were used to disentangle the roles of JAK/STAT, MAPK, and PI3K signaling pathways. A prior knowledge-based fuzzy logic model comprising signal transduction and gene regulation was established and trained with perturbation-derived gene expression data from five hepatocyte donors. Our model suggests a greater role of MAPK/PI3K compared to JAK/STAT with the orphan nuclear receptor RXRα playing a central role in mediating transcriptional downregulation. Validation experiments revealed a striking similarity of RXRα gene silencing versus IL-6 induced negative gene regulation (rs = 0.79; P<0.0001). These results concur with RXRα functioning as obligatory heterodimerization partner for several nuclear receptors that regulate drug and lipid metabolism.

  12. Dexmedetomidine infusion to facilitate opioid detoxification and withdrawal in a patient with chronic opioid abuse

    Directory of Open Access Journals (Sweden)

    Surjya Prasad Upadhyay

    2011-01-01

    Full Text Available Many patients are admitted to the intensive care unit (ICU for acute intoxication, serious complication of overdose, or withdrawal symptoms of illicit drugs. An acute withdrawal of drugs with addiction potential is associated with a sympathetic overactivity leading to marked psychomimetic disturbances. Acute intoxication or withdrawal of such drugs is often associated with life-threatening complications which require ICU admission and necessitate prolonged sedative analgesic medications, weaning from which is often complicated by withdrawal and other psychomimetic symptoms. Dexmedetomidine, an alpha-2 (α2 agonist, has been used successfully to facilitate withdrawal and detoxification of various drugs and also to control delirium in ICU patients. Herein, we report a case of a chronic opioid abuse (heroin patient admitted with acute overdose complications leading to a prolonged ICU course requiring sedative-analgesic medication; the drug withdrawal-related symptoms further complicated the weaning process. Dexmedetomidine infusion was successfully used as a sedative-analgesic to control the withdrawal-related psychomimetic symptoms and to facilitate smooth detoxification and weaning from opioid and other sedatives.

  13. Annotated expressed sequence tags and xenobiotic detoxification in the aphid Myzus persicae (Sulzer)

    Institute of Scientific and Technical Information of China (English)

    C.C. FIGUEROA; N. PRUNIER-LETERME; C. RISPE; F. SEPULVEDA; E. FUENTES-CONTRERAS; B. SABATER-MUNOZ; J.-C. SIMON; D. TAGU

    2007-01-01

    Aphids (Hemiptera: Aphididae) are phytophagous insects that are importantagricultural pests. The enormous negative economic impacts caused by aphids worldwide arewell known, and are mostly due to their high multiplication rate and the transmission ofphytopathogenic viruses. Aphid management strategies mainly involve chemical treatmentswhich are pollutants and are increasingly inefficient, since aphids have developed multipleinsecticide-resistant mechanisms. Among the most economically important species is thegreen peach aphid Myzuspersicae Sulzer (Aphididae: Macrosiphini), which is able to colonizea wide range of host plants belonging to many different families, and transmits numerous plantviruses. Because of its large prevalence, M. persicae has been the target of massive insecticidetreatments; consequently, it has evolved several insecticide-resistant mechanisms. In thiswork, a collection of expressed genes from M. persicae is presented in order to identify putativegenes involved in xenobiotic detoxification. After cDNA cloning and sequencing, 959expressed sequence tags (EST) were annotated. Most sequences matched known genescorresponded to metabolism proteins (26%), ribosomal proteins (23%) and structural proteins(8%). Among them, several sequences corresponded to proteins putatively involved in sensing,degradation or detoxification of plant xenobiotic products.

  14. Identifying genes and gene networks involved in chromium metabolism and detoxification in Crambe abyssinica

    Energy Technology Data Exchange (ETDEWEB)

    Zulfiqar, Asma, E-mail: asmazulfiqar08@yahoo.com [Department of Plant, Soil, and Insect Sciences, 270 Stockbridge Road, University of Massachusetts Amherst, MA 01003 (United States); Paulose, Bibin, E-mail: bpaulose@psis.umass.edu [Department of Plant, Soil, and Insect Sciences, 270 Stockbridge Road, University of Massachusetts Amherst, MA 01003 (United States); Chhikara, Sudesh, E-mail: sudesh@psis.umass.edu [Department of Plant, Soil, and Insect Sciences, 270 Stockbridge Road, University of Massachusetts Amherst, MA 01003 (United States); Dhankher, Om Parkash, E-mail: parkash@psis.umass.edu [Department of Plant, Soil, and Insect Sciences, 270 Stockbridge Road, University of Massachusetts Amherst, MA 01003 (United States)

    2011-10-15

    Chromium pollution is a serious environmental problem with few cost-effective remediation strategies available. Crambe abyssinica (a member of Brassicaseae), a non-food, fast growing high biomass crop, is an ideal candidate for phytoremediation of heavy metals contaminated soils. The present study used a PCR-Select Suppression Subtraction Hybridization approach in C. abyssinica to isolate differentially expressed genes in response to Cr exposure. A total of 72 differentially expressed subtracted cDNAs were sequenced and found to represent 43 genes. The subtracted cDNAs suggest that Cr stress significantly affects pathways related to stress/defense, ion transporters, sulfur assimilation, cell signaling, protein degradation, photosynthesis and cell metabolism. The regulation of these genes in response to Cr exposure was further confirmed by semi-quantitative RT-PCR. Characterization of these differentially expressed genes may enable the engineering of non-food, high-biomass plants, including C. abyssinica, for phytoremediation of Cr-contaminated soils and sediments. - Highlights: > Molecular mechanism of Cr uptake and detoxification in plants is not well known. > We identified differentially regulated genes upon Cr exposure in Crambe abyssinica. > 72 Cr-induced subtracted cDNAs were sequenced and found to represent 43 genes. > Pathways linked to stress, ion transport, and sulfur assimilation were affected. > This is the first Cr transcriptome study in a crop with phytoremediation potential. - This study describes the identification and isolation of differentially expressed genes involved in chromium metabolism and detoxification in a non-food industrial oil crop Crambe abyssinica.

  15. Pilot-scale study of the solar detoxification of VOC-contaminated groundwater

    International Nuclear Information System (INIS)

    The Solar Detoxification Field Experiment was designed to investigate the photocatalytic decomposition of organic contaminants in groundwater at a Superfund site at Lawrence Livermore National Laboratory (LLNL). The process uses ultraviolet (UV) energy, available in sunlight, in conjunction with the photocatalyst, titanium dioxide, to decompose organic chemicals into nontoxic compounds. The field experiment was developed by three federal laboratories: the National Renewable Energy Laboratory (NREL), Sandia National Laboratory (SNLA), and LLNL. The US Department of Energy funded the experiment. The objectives of the pilot-scale study included the advancement of the solar technology into a nonlaboratory waste-remediation environment the compilation of test data to help guide laboratory research and future demonstrations and the development of safe operational procedures. Results of the pilot study are discussed, emphasizing the effect of several process variables on the system performance. These variables include alkalinity, catalyst loading, flow velocity through the reactor, and incident solar UV radiation. The performance of the solar detoxification process are discussed as it relates to concentrating and nonconcentrating collectors

  16. The detoxification of lead in Sedum alfredii H. is not related to phytochelatins but the glutathione.

    Science.gov (United States)

    Gupta, D K; Huang, H G; Yang, X E; Razafindrabe, B H N; Inouhe, M

    2010-05-15

    Two ecotypes of S. alfredii [Pb accumulating (AE) and Pb non-accumulating (NAE)] differing in their ability in accumulating Pb were exposed to different Pb levels to evaluate the effects on plant length, photosynthetic pigments, antioxidant enzymes (SOD and APX), cysteine, non-protein thiols (NP-SH), phytochelatins (PCs) and glutathione (GSH) vis-à-vis Pb accumulation. Both ecotypes showed significant Pb accumulation in roots, however only the AE showed significant Pb accumulation in shoots. We found that both AE and NAE of S. alfredii-induced biosynthesis of GSH rather than phytochelatins in their tissue upon addition of even high Pb levels (200 microM). Root and shoot length were mostly affected in both ecotypes after addition of higher Pb concentrations and on longer durations, however photosynthetic pigments did not alter upon addition of any Pb treatment. Both superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities of AE were higher than NAE. The levels of cysteine and NP-SH were also higher in AE than in NAE. Hence, the characteristic Pb accumulation of ecotypes differed presumably in relation to their capacity for detoxification of Pb. These results suggest that enzymatic and non-enzymatic antioxidants play a key role in the detoxification of Pb-induced toxic effects in Sedum alfredii. This plant can be used as an indicator species for Pb contamination.

  17. Detoxification of a lignocellulosic biomass slurry by soluble polyelectrolyte adsorption for improved fermentation efficiency.

    Science.gov (United States)

    Carter, Brian; Squillace, Phillip; Gilcrease, Patrick C; Menkhaus, Todd J

    2011-09-01

    This study investigated the detoxification of a dilute acid pretreated Ponderosa pine slurry using the polyelectrolyte polyethyleneimine (PEI). The addition of polyelectrolyte to remove enzymatic and/or fermentation inhibitory compounds, that is, acetic acid, furfural, and 5-hydroxymethylfurfural (HMF), was performed either before or after enzymatic hydrolysis to determine the optimal process sequence. Negligible acetic acid, glucose, and xylose were removed regardless of where in the process the polymer addition was made. Maximum furfural and HMF separation was achieved with the addition of PEI to a clarified pre-enzymatic hydrolysis liquor, which showed that 88.3% of furfural and 66.4% of HMF could be removed. On the other hand, only 23.1% and 13.4% of furfural and HMF, respectively, were removed from a post-enzymatic hydrolysis sample; thus, the effects of enzymes, glucose, and wood solids on inhibitor removal were also investigated. The presence of solid particles >0.2 µm and unknown soluble components separation. The fermentability of detoxified versus undetoxified hydrolysate was also investigated. An ethanol yield of 92.6% of theoretical was achieved with Saccharomyces cerevisiae fermenting the detoxified hydrolyzate, while no significant ethanol was produced in the undetoxified hydrolyzate. These results indicate that PEI may provide a practical alternative for furan removal and detoxification of lignocellolosic hydrolysates, and that application before enzymatic hydrolysis minimizes separation interferences. PMID:21455936

  18. Detoxification of furfural in Corynebacterium glutamicum under aerobic and anaerobic conditions.

    Science.gov (United States)

    Tsuge, Yota; Hori, Yoshimi; Kudou, Motonori; Ishii, Jun; Hasunuma, Tomohisa; Kondo, Akihiko

    2014-10-01

    The toxic fermentation inhibitors in lignocellulosic hydrolysates raise serious problems for the microbial production of fuels and chemicals. Furfural is considered to be one of the most toxic compounds among these inhibitors. Here, we describe the detoxification of furfural in Corynebacterium glutamicum ATCC13032 under both aerobic and anaerobic conditions. Under aerobic culture conditions, furfuryl alcohol and 2-furoic acid were produced as detoxification products of furfural. The ratio of the products varied depending on the initial furfural concentration. Neither furfuryl alcohol nor 2-furoic acid showed any toxic effect on cell growth, and both compounds were determined to be the end products of furfural degradation. Interestingly, unlike under aerobic conditions, most of the furfural was converted to furfuryl alcohol under anaerobic conditions, without affecting the glucose consumption rate. Both the NADH/NAD(+) and NADPH/NADP(+) ratio decreased in the accordance with furfural concentration under both aerobic and anaerobic conditions. These results indicate the presence of a single or multiple endogenous enzymes with broad and high affinity for furfural and co-factors in C. glutamicum ATCC13032.

  19. Bacterial-type oxygen detoxification and iron-sulfur cluster assembly in amoebal relict mitochondria.

    Science.gov (United States)

    Maralikova, Barbora; Ali, Vahab; Nakada-Tsukui, Kumiko; Nozaki, Tomoyoshi; van der Giezen, Mark; Henze, Katrin; Tovar, Jorge

    2010-03-01

    The assembly of vital reactive iron-sulfur (Fe-S) cofactors in eukaryotes is mediated by proteins inherited from the original mitochondrial endosymbiont. Uniquely among eukaryotes, however, Entamoeba and Mastigamoeba lack such mitochondrial-type Fe-S cluster assembly proteins and possess instead an analogous bacterial-type system acquired by lateral gene transfer. Here we demonstrate, using immunomicroscopy and biochemical methods, that beyond their predicted cytosolic distribution the bacterial-type Fe-S cluster assembly proteins NifS and NifU have been recruited to function within the relict mitochondrial organelles (mitosomes) of Entamoeba histolytica. Both Nif proteins are 10-fold more concentrated within mitosomes compared with their cytosolic distribution suggesting that active Fe-S protein maturation occurs in these organelles. Quantitative immunoelectron microscopy showed that amoebal mitosomes are minute but highly abundant cellular structures that occupy up to 2% of the total cell volume. In addition, protein colocalization studies allowed identification of the amoebal hydroperoxide detoxification enzyme rubrerythrin as a mitosomal protein. This protein contains functional Fe-S centres and exhibits peroxidase activity in vitro. Our findings demonstrate the role of analogous protein replacement in mitochondrial organelle evolution and suggest that the relict mitochondrial organelles of Entamoeba are important sites of metabolic activity that function in Fe-S protein-mediated oxygen detoxification. PMID:19888992

  20. Rapid conversion and reversible conjugation of glutathione detoxification of microcystins in bighead carp (Aristichthys nobilis).

    Science.gov (United States)

    Li, Wei; Chen, Jun; Xie, Ping; He, Jun; Guo, Xiaochun; Tuo, Xun; Zhang, Wei; Wu, Laiyan

    2014-02-01

    The glutathione and cysteine conjugates of microcystin (MC-GSH and MC-Cys, respectively) are two important metabolites in the detoxification of microcystins (MCs). Although studies have quantitated both conjugates, the reason why the amounts of MC-GSH are much lower than those of MC-Cys in various animal organs remains unknown. In this study, MC-RR-GSH and MC-RR-Cys were respectively i.p. injected into the cyanobacteria-eating bighead carp (Aristichthys nobilis), to explore the biotransformation and detoxification mechanisms of the two conjugates. The contents of MC-RR, MC-RR-GSH, MC-RR-Cys and MC-RR-N-acetyl-cysteine (MC-RR-Nac, the acetylation product of MC-RR-Cys) in the liver, kidney, intestine and blood of bighead carp in both groups were quantified via liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS). In the MC-RR-GSH-treated group, the MC-RR-Cys content in the kidney increased 96.7-fold from 0.25 to 0.5h post-injection, demonstrating that MC-RR-GSH acts as a highly reactive intermediate and is rapidly converted to MC-RR-Cys. The presence of MC-RR in both MC-RR-GSH- and MC-RR-Cys-treated groups indicates, for the first time, that MC conjugation with the thiol of GSH/Cys is a reversible process in vivo. Total MC-RR concentrations dissociated from MC-RR-Cys were lower than those from MC-RR-GSH, suggesting that MC-RR-Cys is more capable of detoxifying MC-RR. MC-RR-Cys was the most effectively excreted form in both the kidney and intestine, as the ratios of MC-RR-Cys to MC-RR reached as high as 15.2, 2.9 in the MC-RR-GSH-treated group and 63.4, 19.1 in the MC-RR-Cys-treated group. Whereas MC-RR-Nac could not be found in all of the samples of the present study. Our results indicate that MC-RR-GSH was rapidly converted to MC-RR-Cys and then excreted, and that both glutathione and cysteine conjugates could release MC-RR. This study quantitatively proves the importance of the GSH detoxification pathway and furthers our understanding of the

  1. Ethanol production from rice hull using Pichia stipitis and optimization of acid pretreatment and detoxification processes.

    Science.gov (United States)

    Germec, Mustafa; Kartal, Fatma Kubra; Bilgic, Merve; Ilgin, Merve; Ilhan, Eda; Güldali, Hazal; Isci, Aslı; Turhan, Irfan

    2016-07-01

    The goal of this study was to produce ethanol from rice hull hydrolysates (RHHs) using Pichia stipitis strains and to optimize dilute acid hydrolysis and detoxification processes by response surface methodology (RSM). The optimized conditions were found as 127.14°C, solid:liquid ratio of 1:10.44 (w/v), acid ratio of 2.52% (w/v), and hydrolysis time of 22.01 min. At these conditions, the fermentable sugar concentration was 21.87 g/L. Additionally, the nondetoxified RHH at optimized conditions contained 865.2 mg/L phenolics, 24.06 g/L fermentable sugar, no hydroxymethylfurfural (HMF), 1.62 g/L acetate, 0.36 g/L lactate, 1.89 g/L glucose, and 13.49 g/L fructose + xylose. Furthermore, RHH was detoxified with various methods and the best procedures were found to be neutralization with CaO or charcoal treatment in terms of the reduction of inhibitory compounds as compared to nondetoxified RHH. After detoxification procedures, the content of hydrolysates consisted of 557.2 and 203.1 mg/L phenolics, 19.7 and 21.60 g/L fermentable sugar, no HMF, 0.98 and 1.39 g/L acetate, 0 and 0.04 g/L lactate, 1.13 and 1.03 g/L glucose, and 8.46 and 12.09 g/L fructose + xylose, respectively. Moreover, the base-line mediums (control), and nondetoxified and detoxified hydrolysates were used to produce ethanol by using P. stipitis strains. The highest yields except that of base-line mediums were achieved using neutralization (35.69 and 38.33% by P. stipitis ATCC 58784 and ATCC 58785, respectively) and charcoal (37.55% by P. stipitis ATCC 58785) detoxification methods. Results showed that the rice hull can be utilized as a good feedstock for ethanol production using P. stipitis. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:872-882, 2016. PMID:27071671

  2. Physiologically based kinetic modeling of bioactivation and detoxification of the alkenylbenzene methyleugenol in human as compared with rat

    NARCIS (Netherlands)

    Al-Subeihi, A.A.; Spenkelink, A.; Punt, A.; Boersma, M.G.; Bladeren, van P.J.; Rietjens, I.

    2012-01-01

    This study defines a physiologically based kinetic (PBK) model for methyleugenol (ME) in human based on in vitro and in silico derived parameters. With the model obtained, bioactivation and detoxification of methyleugenol (ME) at different doses levels could be investigated. The outcomes of the curr

  3. Effects of ethanol consumption and alcohol detoxification on the biomechanics and morphology the bone in rat femurs.

    Science.gov (United States)

    Garcia, J A D; Souza, A L T; Cruz, L H C; Marques, P P; Camilli, J A; Nakagaki, W R; Esteves, A; Rossi-Junior, W C; Fernandes, G J M; Guerra, F D; Soares, E A

    2015-11-01

    The objective of this study was to verify the effects of ethanol consumption and alcohol detoxification on the biomechanics, area and thickness of cortical and trabecular bone in rat femur. This was an experimental study in which 18 male Wistar rats were used, with 40 days of age, weighing 179 ± 2.5 g. The rats were divided into three groups (n=06): CT (control), AC (chronic alcoholic), DT (detoxification). After experimental procedures, the animals were euthanized by an overdose of the anesthetic and their femurs were collected for mechanical testing and histological processing. All animals did not present malnutrition or dehydration during experimentation period. Morphometric analysis of cortical and trabecular bones in rat femurs demonstrated that AC animals showed inferior dimensions and alcohol detoxification (DT) allowed an enhancement in area and thickness of cortical and trabecular bone. Material and structural properties data of AC group highlighted the harmful effects of ethanol on bone mechanical properties. The results of this study demonstrated that chronic alcoholic rats (AC) presented major bone damage in all analyzed variables. Those findings suggested that alcohol detoxification is highly suggested in pre-operative planning and this corroborates to the success of bone surgery and bone tissue repair. Thanks to the financial support offered by PROBIC - UNIFENAS.

  4. Orofacial cleft risk is increased with maternal smoking and specific detoxification-gene variants

    DEFF Research Database (Denmark)

    Shi, Min; Christensen, Kaare; Weinberg, Clarice R;

    2007-01-01

    Maternal smoking is a recognized risk factor for orofacial clefts. Maternal or fetal pharmacogenetic variants are plausible modulators of this risk. In this work, we studied 5,427 DNA samples, including 1,244 from subjects in Denmark and Iowa with facial clefting and 4,183 from parents, siblings......, or unrelated population controls. We examined 25 single-nucleotide polymorphisms in 16 genes in pathways for detoxification of components of cigarette smoke, to look for evidence of gene-environment interactions. For genes identified as related to oral clefting, we studied gene-expression profiles in fetal...... development in the relevant tissues and time intervals. Maternal smoking was a significant risk factor for clefting and showed dosage effects, in both the Danish and Iowan data. Suggestive effects of variants in the fetal NAT2 and CYP1A1 genes were observed in both the Iowan and the Danish participants...

  5. Importance of phytoalexin tolerance and detoxification for pathogenicity. Progress report, June 1983-June 1985

    International Nuclear Information System (INIS)

    Previous studies showed the lack of ability to demethylate the phytoalexin pisatin reduces the ability of N. haematococca to cause disease on pea. The detoxification of pisatin requires two components: NADPH-cytochrome c reductase and cytochrome P-450. The ability to separate and reconstitute these two components has demonstrated that the reductase from a non-demethylating isolate of N. haematococca will support demethylating activity when combined with the cytochrome P-450 from a demethylating isolate. The finding that the critical genetic factor here is the cytochrome P-450 fraction reinforces the hypothesis that the multiple pda genes of this fungus encode different cytochrome P-450 isozymes. 4 refs., 1 fig., 1 tab

  6. Heme in intestinal epithelial cell turnover, differentiation,detoxification, inflammation, carcinogenesis, absorption and motility

    Institute of Scientific and Technical Information of China (English)

    Phillip S Oates; Adrian R West

    2006-01-01

    The gastrointestinal tract is lined by a simple epithelium that undergoes constant renewal involving cell division,differentiation and cell death. In addition, the epithelial lining separates the hostile processes of digestion and absorption that occur in the intestinal lumen from the aseptic environment of the internal milieu by defensive mechanisms that protect the epithelium from being breached. Central to these defensive processes is the synthesis of heme and its catabolism by heme oxygenase (HO). Dietary heme is also an important source of iron for the body which is taken up intact by the enterocyte.This review describes the recent literature on the diverse properties of heme/HO in the intestine tract.The roles of heme/HO in the regulation of the cell cycle/apoptosis, detoxification of xenobiotics, oxidative stress,inflammation, development of colon cancer, hemeiron absorption and intestinal motility are specifically examined.

  7. [UDP-glucuronyltransferases in detoxification and activation metabolism of endogenous compounds and xenobiotics].

    Science.gov (United States)

    Fedejko, Barbara; Mazerska, Zofia

    2011-01-01

    Glucuronidation is a crucial pathway of metabolism and excretion of endogenous compounds and xenobiotics. UDP-glucuronyltransferases, UGT, catalyse transformations of bilirubine, steroids and thyroid hormones, bile acids as well as exogenous compounds, including drugs, carcinogens, environmental pollutants and nutrient components. From therapeutic point of view, the participation of UGTs in drug metabolism is of particular significance. Polymorphism of UGT1A and UGT2B genes resulted in various susceptibility of substrates to conjugation with glucuronic acid. Deactivation of xenobiotics and the following excretion of hydrophilic conjugates is a common task of glucuronidation, which should lead to detoxification. However, a lot of glucuronides were known, which expressed the comparable or even higher reactivity than that of the native compound. There are, among others, acyl glucuronides of carboxylic acids, morphine 6-O-glucuronide or retinoid glucuronides. They are able to bind cellular macromolecules with low or high strength and, as a consequence, their toxicity is saved or even increased, respectively.

  8. Reduction of Medication Costs After Detoxification for Medication-Overuse Headache

    DEFF Research Database (Denmark)

    Shah, Asif M; Bendtsen, Lars; Zeeberg, Peter;

    2013-01-01

    OBJECTIVE: To examine whether detoxifying patients with medication-overuse headache can reduce long-term medication costs. BACKGROUND: Direct costs of medications in medication-overuse headache have been reported to be very high but have never been calculated on the basis of exact register data....... Long-term economic savings obtained by detoxification have never been investigated. METHODS: We conducted a registry-based observational retrospective follow-up study on 336 medication-overuse headache patients treated and discharged from the Danish Headache Center over a 2-year period. By means of the...... Danish Register of Medicinal Product Statistics, we collected information on the costs and use of prescription-only medication 1 year before admission and 1 year after discharge from Danish Headache Center. RESULTS: The average medication costs per patient per year decreased with 24%, from US$971 before...

  9. Surface sorption and nanoparticle production as a silver detoxification mechanism of the freshwater alga Parachlorella kessleri.

    Science.gov (United States)

    Kadukova, Jana

    2016-09-01

    SEM, EDS, TEM, FTIR and UV-vis analysis were used to investigate the biosorption, bioaccumulation and bioreduction of silver by the freshwater green alga Parachlorella kessleri. The dead algal biomass showed high potential for silver removal; 75% of silver was removed within 2min. Surface sorption was the main mechanism; bioreduction contributed to the biosorption only to a small extent. In the presence of living P. kessleri cells a 68% decrease of silver concentration was observed within 24h, but subsequently the majority of silver was released back into the solution within the next 14days. According to UV-vis spectrometry, silver nanoparticles were formed in that time. The nanoparticles produced by the alga exhibited a lower toxicity against algal cells than silver ions at the same silver concentrations. The study demonstrated that living algal cells used a combination of two main mechanisms (sorption and reduction) for silver detoxification in their environment. PMID:27262095

  10. Physiologically based biokinetic (PBBK) modeling of safrole bioactivation and detoxification in humans as compared with rats.

    Science.gov (United States)

    Martati, Erryana; Boersma, Marelle G; Spenkelink, Albertus; Khadka, Dambar B; van Bladeren, Peter J; Rietjens, Ivonne M C M; Punt, Ans

    2012-08-01

    A physiologically based biokinetic (PBBK) model for the alkenylbenzene safrole in humans was developed based on in vitro- and in silico-derived kinetic parameters. With the model obtained, the time- and dose-dependent formation of the proximate and ultimate carcinogenic metabolites, 1-hydroxysafrole and 1-sulfooxysafrole in human liver were estimated and compared with previously predicted levels of these metabolites in rat liver. In addition, Monte Carlo simulations were performed to predict interindividual variation in the formation of these metabolites in the overall population. For the evaluation of the model performance, a comparison was made between the predicted total amount of urinary metabolites of safrole and the reported total levels of metabolites in the urine of humans exposed to safrole, which adequately matched. The model results revealed no dose-dependent shifts in safrole metabolism and no relative increase in bioactivation at dose levels up to 100mg/kg body weight/day. Species differences were mainly observed in the detoxification pathways of 1-hydroxysafrole, with the formation of 1-oxosafrole being a main detoxification pathway of 1-hydroxysafrole in humans but a minor pathway in rats, and glucuronidation of 1-hydroxysafrole being less important in humans than in rats. The formation of 1-sulfooxysafrole was predicted to vary 4- to 17-fold in the population (fold difference between the 95th and median, and 95th and 5th percentile, respectively), with the median being three to five times higher in human than in rat liver. Comparison of the PBBK results for safrole with those previously obtained for the related alkenylbenzenes estragole and methyleugenol revealed that differences in 1-sulfooxy metabolite formation are limited, being only twofold to fivefold.

  11. miR395 is involved in detoxification of cadmium in Brassica napus

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liu Wei; Song, Jian Bo; Shu, Xia Xia; Zhang, Yun [Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095 (China); Yang, Zhi Min, E-mail: zmyang@njau.edu.cn [Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095 (China)

    2013-04-15

    Highlights: ► Involvement of miR395 in sulfate uptake and assimilation in B. napus. ► miR395 regulation of Cd accumulation and distribution in B. napus. ► Depression of Cd-induced oxidative stress by miR395. -- Abstract: The toxic metal cadmium (Cd) constitutes one of the major inorganic contaminants in environments. microRNAs (miRNAs) are a class of endogenous non-coding small RNAs. miR395 is conserved and regulates sulfate assimilation and distribution in higher plants, but whether it is involved in detoxification of Cd in plants has not been described. In this study, transgenic rapeseed (Brassica napus) over-expressing miR395 was identified under Cd stress. miR395-over-expressing plants showed a lower degree of Cd-induced oxidative stress than wild type. By contrast, chlorophyll, glutathione and non-protein thiols contents were higher in the transformants than wild type. Determination of growth response showed that 35S::MIR395 plants accumulated higher levels of biomass and sulfur than wild type under Cd exposure. miR395 transgenic plants had higher levels of Cd in plants, particularly at the high supply of Cd in the medium, but they tended to repress Cd translocation from roots to shoots. Simultaneously, expression of metal-tolerance genes such as BnPCS1, BnHO1 and Sultr1;1 was up-regulated under Cd stress, and the expression of the genes was more pronounced in 35S::MIR395 plants than in wild type. These results suggest that miR395 would be involved in detoxification of Cd in B. napus.

  12. Flavin-dependent monooxygenases as a detoxification mechanism in insects: new insights from the arctiids (lepidoptera.

    Directory of Open Access Journals (Sweden)

    Sven Sehlmeyer

    Full Text Available Insects experience a wide array of chemical pressures from plant allelochemicals and pesticides and have developed several effective counterstrategies to cope with such toxins. Among these, cytochrome P450 monooxygenases are crucial in plant-insect interactions. Flavin-dependent monooxygenases (FMOs seem not to play a central role in xenobiotic detoxification in insects, in contrast to mammals. However, the previously identified senecionine N-oxygenase of the arctiid moth Tyria jacobaeae (Lepidoptera indicates that FMOs have been recruited during the adaptation of this insect to plants that accumulate toxic pyrrolizidine alkaloids. Identification of related FMO-like sequences of various arctiids and other Lepidoptera and their combination with expressed sequence tag (EST data and sequences emerging from the Bombyx mori genome project show that FMOs in Lepidoptera form a gene family with three members (FMO1 to FMO3. Phylogenetic analyses suggest that FMO3 is only distantly related to lepidopteran FMO1 and FMO2 that originated from a more recent gene duplication event. Within the FMO1 gene cluster, an additional gene duplication early in the arctiid lineage provided the basis for the evolution of the highly specific biochemical, physiological, and behavioral adaptations of these butterflies to pyrrolizidine-alkaloid-producing plants. The genes encoding pyrrolizidine-alkaloid-N-oxygenizing enzymes (PNOs are transcribed in the fat body and the head of the larvae. An N-terminal signal peptide mediates the transport of the soluble proteins into the hemolymph where PNOs efficiently convert pro-toxic pyrrolizidine alkaloids into their non-toxic N-oxide derivatives. Heterologous expression of a PNO of the generalist arctiid Grammia geneura produced an N-oxygenizing enzyme that shows noticeably expanded substrate specificity compared with the related enzyme of the specialist Tyria jacobaeae. The data about the evolution of FMOs within lepidopteran insects

  13. Microcystin assimilation and detoxification by Daphnia spp. in two ecosystems of different cyanotoxin concentrations

    Directory of Open Access Journals (Sweden)

    Adrianna Wojtal-Frankiewicz

    2013-02-01

    Full Text Available Microcystins (MCs, the main group of cyanotoxins, can induce oxidative stress in the cells of aquatic animals. This study evaluated the sensitivity of daphniids – from two ecosystems characterised by different trophic states and habitat levels of cyanobacteria abundance – to microcystin toxicity by analysing oxidative stress parameters and MC detoxification ability. As a study site, we chose the eutrophic Sulejow reservoir, which has regular annual toxic cyanobacterial blooms, and the mesotrophic lake Białe, where low abundances of cyanobacteria have only recently appeared. We found much higher accumulations of MCs in tissues of Daphnia spp. in lake Białe, despite low toxin concentrations in this ecosystem compared with the Sulejow reservoir. Simultaneously, high levels of lipid peroxidation (LPO and a significant decrease in glutathione (GSH were observed in daphniid cells in lake Białe, while LPO levels were generally lower and GSH concentration more stable in the Sulejow reservoir. Catalase activity, which reflects more efficient oxidative protection, was always significantly higher in the reservoir than in lake Białe. These results demonstrate that generations of daphniids from the Sulejow reservoir had more effective antioxidant systems protecting them against the accumulation of cyanobacterial toxins; thereby, they are less susceptible to toxic effects than the daphniids from lake Białe. However, the presence of conjugate forms of microcystins (MC-GSH and MC-Cys in tissues of the studied animals indicated the ability for MC detoxification by daphniids from the Sulejow reservoir and lake Białe. Nevertheless, the high effectiveness of antioxidant systems in daphniids coexisting with cyanobacteria for a long time in the Sulejow reservoir indicates the importance of a selective pressure exerted by toxic cyanobacterial strains that favours the most resistant daphniid genotypes.

  14. Effect of Acupuncture on Detoxification of Heroin Addicts at Late Stage

    Institute of Scientific and Technical Information of China (English)

    WU Jun-mei; LUO Yong-fen; WEI Dong-yan

    2005-01-01

    Objective: To study the action of acupuncture on the morbid psychology of the heroine addicts at late stage of detoxification. Methods: Four methods including acupuncture, combination of opium and acupuncture, combination of opium and buprenorphine, and combination of opium and Han's drug withdrawal instrument were adopted to study the effect of acupuncture on each factor in 90 listing symptoms of heroin addicts at late stage of detoxification by the self-evaluation scales. Result: Acupuncture had more advantages in improving obsessive symptoms, anxiety, psychogenic symptoms and No 10 factor (P< 0.01). Conclusion: Acupuncture can correct the morbid psychology of the addicts and help them enter the recovery stage smoothly.%目的:研究针刺对海洛因依赖者脱毒末期病态心理的改善作用.方法:选用针刺疗法、阿片加针刺疗法与阿片加丁丙诺啡及阿片加韩氏戒毒仪四种脱毒方法,应用症状自评量表,研究针刺对海洛因依赖者脱毒末期90项症状清单各因子的影响.结果:针刺能改善患者的病态心理,对强迫症状、焦虑、精神病性和因子十的调节更具优势(P<0.01).结论:针刺能改善患者病态心理,有希望帮助患者平稳地进入康复期.

  15. Accumulation, detoxification, and genotoxicity of heavy metals in Indian mustard (Brassica juncea L.).

    Science.gov (United States)

    Seth, C S; Misra, V; Chauhan, L K S

    2012-01-01

    Plants of Indian mustard (Brassica juncea L.) were exposed to different concentrations (15, 30, 60, 120 microM) of (Cd, Cr, Cu, Pb) for 28 and 56 d for accumulation and detoxification studies. Metal accumulation in roots and shoots were analyzed and it was observed that roots accumulated a significant amount of Cd (1980 microg g(-1) dry weight), Cr (1540 microg g(-1) dry weight), Cu (1995 microg g(-1) dry weight), and Pb (2040 microg g(-1) dry weight) after 56 d of exposure, though in shoot this was 1110, 618, 795, and 409 microg g(-1) dry weight of Cd, Cr, Cu, and Pb, respectively. In order to assess detoxification mechanisms, non-protein thiols (NP-SH), glutathione (GSH) and phytochelatins (PCs) were analyzed in plants. An increase in the quantity of NP-SH (9.55), GSH (8.30), and PCs (1.25) micromol g(-1) FW were found at 15 microM of Cd, however, a gradual decline in quantity was observed from 15 microM of Cd onwards, after 56 d of exposure. For genotoxicity in plants, cytogenetic end-points such as mitotic index (MI), micronucleus formation (MN), mitotic aberrations (MA) and chromosome aberrations (CA) were examined in root meristem cells of B. juncea. Exposure of Cd revealed a significant (P < 0.05) inhibition of MI, induction of MA, CA, and MN in the root tips for 24 h. However, cells examined at 24 h post-exposure showed concentration-wise recovery in all the endpoints. The data revealed that Indian mustard could be used as a potential accumulator of Cd, Cr, Cu, and Pb due to a good tolerance mechanisms provided by combined/concerted action of NP-SH, GSH, and PCs. Also, exposure of Cd can cause genotoxic effects in B. juncea L. through chromosomal mutations, MA, and MN formation.

  16. Identifying genes and gene networks involved in chromium metabolism and detoxification in Crambe abyssinica

    International Nuclear Information System (INIS)

    Chromium pollution is a serious environmental problem with few cost-effective remediation strategies available. Crambe abyssinica (a member of Brassicaseae), a non-food, fast growing high biomass crop, is an ideal candidate for phytoremediation of heavy metals contaminated soils. The present study used a PCR-Select Suppression Subtraction Hybridization approach in C. abyssinica to isolate differentially expressed genes in response to Cr exposure. A total of 72 differentially expressed subtracted cDNAs were sequenced and found to represent 43 genes. The subtracted cDNAs suggest that Cr stress significantly affects pathways related to stress/defense, ion transporters, sulfur assimilation, cell signaling, protein degradation, photosynthesis and cell metabolism. The regulation of these genes in response to Cr exposure was further confirmed by semi-quantitative RT-PCR. Characterization of these differentially expressed genes may enable the engineering of non-food, high-biomass plants, including C. abyssinica, for phytoremediation of Cr-contaminated soils and sediments. - Highlights: → Molecular mechanism of Cr uptake and detoxification in plants is not well known. → We identified differentially regulated genes upon Cr exposure in Crambe abyssinica. → 72 Cr-induced subtracted cDNAs were sequenced and found to represent 43 genes. → Pathways linked to stress, ion transport, and sulfur assimilation were affected. → This is the first Cr transcriptome study in a crop with phytoremediation potential. - This study describes the identification and isolation of differentially expressed genes involved in chromium metabolism and detoxification in a non-food industrial oil crop Crambe abyssinica.

  17. Detoxification of multiple heavy metals by a half-molecule ABC transporter, HMT-1, and coelomocytes of Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Marc S Schwartz

    Full Text Available BACKGROUND: Developing methods for protecting organisms in metal-polluted environments is contingent upon our understanding of cellular detoxification mechanisms. In this regard, half-molecule ATP-binding cassette (ABC transporters of the HMT-1 subfamily are required for cadmium (Cd detoxification. HMTs have conserved structural architecture that distinguishes them from other ABC transporters and allows the identification of homologs in genomes of different species including humans. We recently discovered that HMT-1 from the simple, unicellular organism, Schizosaccharomyces pombe, SpHMT1, acts independently of phytochelatin synthase (PCS and detoxifies Cd, but not other heavy metals. Whether HMTs from multicellular organisms confer tolerance only to Cd or also to other heavy metals is not known. METHODOLOGY/PRINCIPAL FINDINGS: Using molecular genetics approaches and functional in vivo assays we showed that HMT-1 from a multicellular organism, Caenorhabditis elegans, functions distinctly from its S. pombe counterpart in that in addition to Cd it confers tolerance to arsenic (As and copper (Cu while acting independently of pcs-1. Further investigation of hmt-1 and pcs-1 revealed that these genes are expressed in different cell types, supporting the notion that hmt-1 and pcs-1 operate in distinct detoxification pathways. Interestingly, pcs-1 and hmt-1 are co-expressed in highly endocytic C. elegans cells with unknown function, the coelomocytes. By analyzing heavy metal and oxidative stress sensitivities of the coelomocyte-deficient C. elegans strain we discovered that coelomocytes are essential mainly for detoxification of heavy metals, but not of oxidative stress, a by-product of heavy metal toxicity. CONCLUSIONS/SIGNIFICANCE: We established that HMT-1 from the multicellular organism confers tolerance to multiple heavy metals and is expressed in liver-like cells, the coelomocytes, as well as head neurons and intestinal cells, which are cell types

  18. DEVELOPMENT OF PROCESS CONTROL EQUATIONS TO SUPPORT DETOXIFICATION OF COPPER USING NATURAL HUMATE AMENDMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Looney, B.; Millings, M.; Halverson, N.; Nichols, R.

    2009-08-21

    Recent scientific research and changes in regulatory policies have led to reductions in the allowable discharges of several contaminant metals, including copper, into surface water. Low target concentrations and variable outfall conditions challenge the efficacy of traditional treatment technologies such as ion exchange. In reviewing various treatment options, scientists and engineers at the Savannah River Site (SRS) developed a treatment strategy focusing on toxicity reduction (rather than the removal of the copper) and demonstrated that the method is viable and promising for mitigating copper toxicity. The resulting outfall chemistry protects the ecosystem in the receiving stream in a manner that is equal to, or better than, technologies that remove copper to the emerging regulatory levels. Further, the proposed toxicity reduction strategy results in collateral beneficial changes in outfall water chemistry such that the outfall more closely matches the chemistry of natural streams for key parameters such as the dissolved organic carbon (DOC). The detoxification process is based on the EPA BLM. Specifically, modeling indicates that copper toxicity can be mitigated by modest additions of natural organic carbon and that the amount of amendment needed can be determined based on pH and stream flow. The organic carbon amendments proposed for the treatment/detoxification process are extracts of natural materials that are produced for use in organic agriculture. These extracts are known by several common names such as potassium humate, soluble humic acid, and a variety of brand trademarks. When used to reduce ecosystem toxicity in surface water, these amendments bind copper and compete with the biological receptor sites, resulting in a reduction of impacts to key food chain organisms such as the Daphnia ('water flea'). Design and implementation of the process is straightforward. The core equipment consists of storage tank(s), pH sensor(s), outfall flow monitor

  19. In situ dynamics of O2, pH and cyanobacterial transcripts associated with CCM, photosynthesis and detoxification of ROS

    DEFF Research Database (Denmark)

    Jensen, Sheila I; Steunou, Anne-Soisig; Bhaya, Devaki;

    2011-01-01

    The relative abundance of transcripts encoding proteins involved in inorganic carbon concentrating mechanisms (CCM), detoxification of reactive oxygen species (ROS) and photosynthesis in the thermophilic cyanobacterium Synechococcus OS-B' was measured in hot spring microbial mats over two diel...

  20. High titer gluconic acid fermentation by Aspergillus niger from dry dilute acid pretreated corn stover without detoxification.

    Science.gov (United States)

    Zhang, Hongsen; Zhang, Jian; Bao, Jie

    2016-03-01

    This study reported a high titer gluconic acid fermentation using dry dilute acid pretreated corn stover (DDAP) hydrolysate without detoxification. The selected fermenting strain Aspergillus niger SIIM M276 was capable of inhibitor degradation thus no detoxification on pretreated corn stover was required. Parameters of gluconic acid fermentation in corn stover hydrolysate were optimized in flasks and in fermentors to achieve 76.67 g/L gluconic acid with overall yield of 94.91%. The sodium gluconate obtained from corn stover was used as additive for extending setting time of cement mortar and similar function was obtained with starch based sodium gluconate. This study provided the first high titer gluconic acid production from lignocellulosic feedstock with potential of industrial applications. PMID:26724553

  1. High titer gluconic acid fermentation by Aspergillus niger from dry dilute acid pretreated corn stover without detoxification.

    Science.gov (United States)

    Zhang, Hongsen; Zhang, Jian; Bao, Jie

    2016-03-01

    This study reported a high titer gluconic acid fermentation using dry dilute acid pretreated corn stover (DDAP) hydrolysate without detoxification. The selected fermenting strain Aspergillus niger SIIM M276 was capable of inhibitor degradation thus no detoxification on pretreated corn stover was required. Parameters of gluconic acid fermentation in corn stover hydrolysate were optimized in flasks and in fermentors to achieve 76.67 g/L gluconic acid with overall yield of 94.91%. The sodium gluconate obtained from corn stover was used as additive for extending setting time of cement mortar and similar function was obtained with starch based sodium gluconate. This study provided the first high titer gluconic acid production from lignocellulosic feedstock with potential of industrial applications.

  2. Disability, anxiety and depression associated with medication-overuse headache can be considerably reduced by detoxification and prophylactic treatment

    DEFF Research Database (Denmark)

    Bendtsen, L; Munksgaard, Sb; Tassorelli, C;

    2014-01-01

    OBJECTIVE: The objective of this article is to investigate whether headache-related disability, depression and anxiety can be reduced by detoxification and prophylactic treatment in patients with medication-overuse headache (MOH). METHODS: Patients with MOH were included from six centres in Europe...... and Latin America in a seven-month cohort study. Before and six months after treatment, the degree of disability was measured by the Migraine Disability Assessment (MIDAS) questionnaire, while anxiety and depression were measured by the Hospital Anxiety and Depression Scale (HADS). RESULTS: A total of.......7% from 195 to 96 and number of those with anxiety was reduced by 27.1% from 284 to 207 (both P < 0.001). CONCLUSIONS: Disability, depression and anxiety were considerably reduced in patients with MOH by detoxification and prophylactic treatment. This emphasises the urgent need for increased awareness...

  3. Quantitation of cyanide detoxification product ß-cyanoalanine by LC-MS/MS in plant tissue and mitochondrial preparation

    OpenAIRE

    Wu, Jianfeng; 吳劍鋒

    2014-01-01

    β-cyanoalanine is a metabolite in the detoxification of cyanide created as a co-product in ethylene biosynthesis pathway. This reaction is catalyzed by β-cyanoalanine synthase (CAS) in the mitochondrion in the presence of cysteine as the other reactant. However, quantitative analysis of β-cyanoalanine by high performance liquid chromatography/tandem mass spectrometry (HPLC-MS/MS) has not yet been demonstrated in plant mitochondria and tissues. In this study, pear (Pyrus communis) mesocarp...

  4. Salicaceae detoxification abilities in Florida tiger swallowtail butterflies (Papilio glaucus maynardi Gauthier): Novel ability or Pleistocene holdover?

    Institute of Scientific and Technical Information of China (English)

    Matthew S.Lehnert; J.Mark Scriber

    2012-01-01

    Florida populations of the eastern tiger swallowtail butterfly,Papilio glaucus L.,have unique morphological features and ecological adaptations that have contributed to their subspecies status (P.g.maynardi Gauthier).We describe geographically unique abilities for detoxification of Carolina willow,Salix caroliniana Michx.(Salicaceae),for several Florida populations of P.g.maynardi.Of all the approximately 570 worldwide species of the Papilionidae,such Salicaceae detoxification abilities exist only in the allopatric North American western and northernmost species (P.rutulus Lucas,P.eurymedon Lucas and P.canadensis Rothschild & Jordan).Females of P.glaucus collected from populations in southeastern USA were examined for oviposition preference in 5-choice assays,and displayed a low preference for Salicaceae (<5%),but larvae from Florida populations exhibited a high survival (> 60%) on these plants.Detoxification abilities have previously shown to be autosomally inherited,and can be transferred via natural or hand-paired interspecific hybrid introgression.However,these Florida populations are at least 700-1 500 km from the nearest hybrids or the hybrid species,P.appalachiensis Pavulaan & Wright,which possess these detoxification abilities.In any case,the Z ( =X)-linked oviposition preferences for Salicaceae are lacking in these Florida populations,illustrating genetic independence of oviposition preference determination and larval survival/performance abilities.The orgins ofdetoxification abilities are unlikely to be due to recent climate-driven introgression,and may represent ancestral trait carry-overs from interglacial refugium populations of the Pleistocene epoch.

  5. Sulfamethoxazole and isoproturon degradation and detoxification by a laccase-mediator system: Influence of treatment conditions and mechanistic aspects

    OpenAIRE

    Margot, Jonas; Copin, Pierre-Jean; VON GUNTEN, Urs; Barry, David Andrew; Holliger, Christof

    2015-01-01

    The potential of laccase-mediator systems (LMS) for the removal and detoxification of two wastewater micropollutants, the antibiotic sulfamethoxazole (SMX) and the herbicide isoproturon (IPN), was assessed. The influence of various parameters on micropollutant oxidation rates, such as pH, mediator, enzyme and pollutant concentrations, was investigated with three mediators: 2,2'′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), syringaldehyde (SA) and acetosyringone (AS). Both polluta...

  6. Comparison of Oxidant/Antioxidant, Detoxification Systems in Various Tissue Homogenates and Mitochondria of Rats with Diabetes Induced by Streptozocin

    OpenAIRE

    Veysel Kenan Çelık; Zeynep Deniz Şahın; İsmail Sari; Sevtap Bakir

    2012-01-01

    Objective. Oxidative stress is considered to be the main factor in the development of diabetic complications and tissue injury. our objective was to investigate and compare the oxidant/antioxidant conditions and detoxification mechanisms of the liver, lung, kidney, cardiac tissues, and mitochondria of rats with diabetes induced by streptozocin (STZ). Methods. Rats with diabetes induced by streptozocin were anesthetized by administering 90 mg/kg ketamine hydrochloride and 3 mg/kg xylazine hydr...

  7. Analysis of the Olive Fruit Fly Bactrocera oleae Transcriptome and Phylogenetic Classification of the Major Detoxification Gene Families.

    Directory of Open Access Journals (Sweden)

    Nena Pavlidi

    Full Text Available The olive fruit fly Bactrocera oleae has a unique ability to cope with olive flesh, and is the most destructive pest of olives worldwide. Its control has been largely based on the use of chemical insecticides, however, the selection of insecticide resistance against several insecticides has evolved. The study of detoxification mechanisms, which allow the olive fruit fly to defend against insecticides, and/or phytotoxins possibly present in the mesocarp, has been hampered by the lack of genomic information in this species. In the NCBI database less than 1,000 nucleotide sequences have been deposited, with less than 10 detoxification gene homologues in total. We used 454 pyrosequencing to produce, for the first time, a large transcriptome dataset for B. oleae. A total of 482,790 reads were assembled into 14,204 contigs. More than 60% of those contigs (8,630 were larger than 500 base pairs, and almost half of them matched with genes of the order of the Diptera. Analysis of the Gene Ontology (GO distribution of unique contigs, suggests that, compared to other insects, the assembly is broadly representative for the B. oleae transcriptome. Furthermore, the transcriptome was found to contain 55 P450, 43 GST-, 15 CCE- and 18 ABC transporter-genes. Several of those detoxification genes, may putatively be involved in the ability of the olive fruit fly to deal with xenobiotics, such as plant phytotoxins and insecticides. In summary, our study has generated new data and genomic resources, which will substantially facilitate molecular studies in B. oleae, including elucidation of detoxification mechanisms of xenobiotic, as well as other important aspects of olive fruit fly biology.

  8. Employment-based abstinence reinforcement following inpatient detoxification in HIV-positive opioid and/or cocaine-dependent patients

    OpenAIRE

    Dunn, Kelly; Fingerhood, Michael; Wong, Conrad J; Svikis, Dace S.; Nuzzo, Paul; Silverman, Kenneth

    2014-01-01

    Employment-based reinforcement interventions have been used to promote abstinence from drugs among chronically unemployed injection drug users. The current study utilized an employment-based reinforcement intervention to promote opiate and cocaine abstinence among opioid-dependent, HIV-positive participants who had recently completed a brief inpatient detoxification. Participants (n=46) were randomly assigned to an Abstinence & Work group that was required to provide negative urine samples in...

  9. Differential antioxidant defense and detoxification mechanisms in photodynamically stressed rice plants treated with the deregulators of porphyrin biosynthesis, 5-aminolevulinic acid and oxyfluorfen

    Energy Technology Data Exchange (ETDEWEB)

    Phung, Thu-Ha; Jung, Sunyo, E-mail: sjung@knu.ac.kr

    2015-04-03

    This study focuses on differential molecular mechanisms of antioxidant and detoxification systems in rice plants under two different types of photodynamic stress imposed by porphyrin deregulators, 5-aminolevulinic acid (ALA) and oxyfluorfen (OF). The ALA-treated plants with white necrosis exhibited a greater decrease in photochemical quantum efficiency, F{sub v}/F{sub m}, as well as a greater increase in activity of superoxide dismutase, compared to the OF-treated plants. By contrast, the brown necrosis in OF-treated plants resulted in not only more widely dispersed H{sub 2}O{sub 2} production and greater increases in H{sub 2}O{sub 2}-decomposing enzymes, catalase and peroxidase, but also lower ascorbate redox state. In addition, ALA- and OF-treated plants markedly up-regulated transcript levels of genes involved in detoxification processes including transport and movement, cellular homeostasis, and xenobiotic conjugation, with prominent up-regulation of serine/threonine kinase and chaperone only in ALA-treated plants. Our results demonstrate that different photodynamic stress imposed by ALA and OF developed differential actions of antioxidant enzymes and detoxification. Particularly, detoxification system may play potential roles in plant protection against photodynamic stress imposed by porphyrin deregulators, thereby contributing to alleviation of photodynamic damage. - Highlights: • We employ two different types of photodynamic stress, white and brown necrosis. • We examine molecular mechanisms of antioxidative and detoxification systems. • ALA and OF develop differential actions of antioxidant and detoxification systems. • Coordinated mechanism of antioxidants and detoxification works against toxic ROS. • Detoxification system plays critical roles in protection against photodynamic stress.

  10. Differential antioxidant defense and detoxification mechanisms in photodynamically stressed rice plants treated with the deregulators of porphyrin biosynthesis, 5-aminolevulinic acid and oxyfluorfen

    International Nuclear Information System (INIS)

    This study focuses on differential molecular mechanisms of antioxidant and detoxification systems in rice plants under two different types of photodynamic stress imposed by porphyrin deregulators, 5-aminolevulinic acid (ALA) and oxyfluorfen (OF). The ALA-treated plants with white necrosis exhibited a greater decrease in photochemical quantum efficiency, Fv/Fm, as well as a greater increase in activity of superoxide dismutase, compared to the OF-treated plants. By contrast, the brown necrosis in OF-treated plants resulted in not only more widely dispersed H2O2 production and greater increases in H2O2-decomposing enzymes, catalase and peroxidase, but also lower ascorbate redox state. In addition, ALA- and OF-treated plants markedly up-regulated transcript levels of genes involved in detoxification processes including transport and movement, cellular homeostasis, and xenobiotic conjugation, with prominent up-regulation of serine/threonine kinase and chaperone only in ALA-treated plants. Our results demonstrate that different photodynamic stress imposed by ALA and OF developed differential actions of antioxidant enzymes and detoxification. Particularly, detoxification system may play potential roles in plant protection against photodynamic stress imposed by porphyrin deregulators, thereby contributing to alleviation of photodynamic damage. - Highlights: • We employ two different types of photodynamic stress, white and brown necrosis. • We examine molecular mechanisms of antioxidative and detoxification systems. • ALA and OF develop differential actions of antioxidant and detoxification systems. • Coordinated mechanism of antioxidants and detoxification works against toxic ROS. • Detoxification system plays critical roles in protection against photodynamic stress

  11. Physiological responses and detoxific mechanisms to Pb, Zn, Cu and Cd in young seedlings of Paulownia fortunei.

    Science.gov (United States)

    Wang, Jiang; Li, Weihua; Zhang, Chongbang; Ke, Shisheng

    2010-01-01

    Paulownia fortunei has been successfully used in the phytoremediation of many Pb/Zn mine tailings. However, seed germination and young seedlings of P. fortunei rarely occurred in these mine tailings. The physiological responses and detoxific mechanisms of P. fortunei young seedling to Pb, Zn, Cu and Cd stress were investigated. The germinated rate, shoot length, chlorophyll and carotenoid contents in leaves of young seedlings had a great reduction under Zn and Cu treatments, but had little decrease under Pb and Cd treatments. The production rate of O2*-, H2O2 and malondialdehyde (MDA) contents significantly increased in response to added Zn and Cu indicating great oxidative stress for young seedlings, but they had no significant change to added Pb and Cd. Young seedlings had effective detoxific mechanism to Pb and Cd, as antioxidant enzymes activities, phytochelatins (PCs-SH) and proline contents increased with increasing rates of added Pb and Cd. However, young seedlings had un-effective detoxific mechanisms to Zn and Cu stress. Results revealed the heavy metals (such as Cu) that present at low concentrations in mine tailings may be major constraint for the survival of young seedlings. PMID:21462710

  12. Analysis of plant Pb tolerance at realistic submicromolar concentrations demonstrates the role of phytochelatin synthesis for Pb detoxification.

    Science.gov (United States)

    Fischer, Sina; Kühnlenz, Tanja; Thieme, Michael; Schmidt, Holger; Clemens, Stephan

    2014-07-01

    Lead (Pb) ranks first among metals with respect to tonnage produced and released into the environment. It is highly toxic and therefore an important pollutant of worldwide concern. Plant Pb uptake, accumulation, and detoxification mobilize Pb into food webs. Still, knowledge about the underlying mechanisms is very limited. This is largely due to serious experimental challenges with respect to Pb availability. In most studies, Pb(II) concentrations in the millimolar range have been used even though the toxicity threshold is in the nanomolar range. We therefore developed a low-phosphate, low-pH assay system that is more realistic with respect to soil solution conditions. In this system the growth of Arabidopsis thaliana seedlings was significantly affected by the addition of only 0.1 μM Pb(NO3)2. Involvement of phytochelatins in the detoxification of Pb(II) could be demonstrated by investigating phytochelatin synthase mutants. They showed a stronger inhibition of root growth and a lack of Pb-activated phytochelatin synthesis. In contrast, other putative Pb hypersensitive mutants were unaffected under these conditions, further supporting the essential role of phytochelatins for Pb detoxification. Our findings demonstrate the need to monitor plant Pb responses at realistic concentrations under controlled conditions and provide a strategy to achieve this.

  13. Glycerol supplementation of the growth medium enhances in situ detoxification of furfural by Clostridium beijerinckii during butanol fermentation.

    Science.gov (United States)

    Ujor, Victor; Agu, Chidozie Victor; Gopalan, Venkat; Ezeji, Thaddeus Chukwuemeka

    2014-01-01

    Lignocellulose-derived microbial inhibitors such as furfural and 5-hydroxymethyl furfural adversely affect fermentation of lignocellulosic biomass hydrolysates to fuels and chemicals due to their toxicity on fermenting microbes. To harness the potential of lignocellulose as a cheap source of fermentable sugars, in situ detoxification of furfural and other lignocellulose-derived microbial inhibitors is essential. To enhance in situ detoxification and tolerance of furfural by Clostridium beijerinckii NCIMB 8052 during acetone-butanol-ethanol (ABE) fermentation, the effect of glycerol on NADH/NADPH generation and ABE production by furfural (4, 5, and 6 g/L)-challenged cultures was investigated in this study. In all instances, beneficial outcomes were observed. For example, the fermentation medium supplemented with glycerol and subjected to 5 g/L furfural elicited up to 1.8- and 3-fold increases, respectively, in NADH and NADPH levels in C. beijerinckii 8052 relative to the control culture. These critical changes are the likely underpinnings for the glycerol-mediated 2.3-fold increase in the rate of detoxification of 5 g/L furfural, substrate consumption, and ABE production compared to the unsupplemented medium. Collectively, these results demonstrate that increased intracellular NADH/NADPH in C. beijerinckii 8052 due to glycerol utilization engenders favorable effects on many aspects of cellular metabolism, including enhanced furfural reduction and increased ABE production.

  14. Protective effect of heat-treated cucumber (Cucumis sativus L.) juice on alcohol detoxification in experimental rats.

    Science.gov (United States)

    Bajpai, Vivek K; Kim, Na-Hyung; Kim, Ji-Eun; Kim, Kangmin; Kang, Sun Chul

    2016-05-01

    In this study, heat-treated cucumber juice was assessed for its protective effect on blood alcohol levels and hepatic alcohol metabolic enzyme system in experimental rats. Initially, during detoxification of alcohol, all groups were orally dosed to 22% alcohol (6ml/kg body weight) along with different concentrations of heat-treated cucumber juice (10, 100 and 500mg/kg) and commercial goods for hangover-removal on sale (2ml/kg). Cucumber juice was dosed before 30 min, and simultaneously after 30min of alcohol administration, and its hepatoprotective effect on blood alcohol levels and hepatic alcohol metabolic enzyme system in experimental rats was evaluated. As a result, after 7h, remarkable reduction was found in the blood alcohol levels for all concentrations of cucumber juice treatment. Treatment with cucumber juice resulted in increasing dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) enzymatic activities in rat liver at 9h after alcohol administration thereby stimulated blood alcohol metabolism as compared with control group. The effect of heat-treated cucumber juice on alcohol detoxification was observed only in the rats treated before 30min from alcohol administration. These findings indicate that heat-treated cucumber juice has significant protective effect on alcohol detoxification in experimental rats, suggesting its usefulness in the treatment of liver injury caused by alcohol consumption. PMID:27383492

  15. Forecasting Model of Gene Enzyme Polymorphism Detoxification in Patients Suffered from HFRS

    Directory of Open Access Journals (Sweden)

    G. M. Hasanova

    2016-01-01

    Full Text Available Aim: to study gene enzyme polymorphism of xenobiotic detoxification in patients suffered from HFRS influenced by disease severityProceedings : Molecular genetic checkup has been done in 292 patients suffered from HFRS and 426 seronegative donors.DNA samples isolated from lymphocytes of peripheral gene enzyme were used for molecular genetic checkup. Phenic-chloroform extraction method was applied to isolate DNA. The given DNA was used for polymerase chain reaction of DNA synthesis. Polymorphous CYP1A1 and GSTP1 gene locus analysis was performed on an automatic basis by polymerase chain reaction of DNA synthesis in a thermal cycle «Terzik» produced «DNK–techologiya» ( Moscow city with the use of locus specific and oligonucleotide primers.Outcomings: Glutathion-S-transferase class π with A313G locus of AG heterozygous genotype is typical for people of Bashkortostan due to underlying risk for HFRS. A combination of genotypes in the form of cytochrome P-450A1 with polymorphous locus A2455G and glutathione-S-transferase class π with A313G locus of AG can be found only in case of severe form of HFRS.

  16. Effects of tannins on digestion and detoxification activity in gray squirrels (Sciurus carolinensis).

    Science.gov (United States)

    Chung-MacCoubrey, A L; Hagerman, A E; Kirkpatrick, R L

    1997-01-01

    Acorn tannins may affect food preferences and foraging strategies of squirrels through effects on acorn palatability and digestibility and squirrel physiology. Captive eastern gray squirrels (Sciurus carolinensis) were fed 100% red oak (Quercus rubra) or white oak (Quercus alba) acorn diets to determine effects on intake, digestion, and detoxification activity. Red oak acorns had higher phenol and tannin levels, which may explain the lower dry matter intakes and apparent protein digestibilities and the higher glucuronidation activities observed in squirrels. Although the white oak acorn diet had lower apparent protein digestibilities than the reference diet, it did not suppress dry matter intake for a prolonged period or stimulate glucuronidation. Negative physiological effects of a 100% red oak acorn diet suggest gray squirrels may require other foods to dilute tannin intake and provide additional nutrients. To distinguish the roles of different tannin types in the observed effects of acorn diets on squirrels, squirrels were fed rat chow containing no tannins, 4% or 8% tannic acid (hydrolyzable tannin), or 3% or 6% quebracho (condensed tannin). Apparent protein digestibilities were reduced by tannic acid and quebracho diets. Only the 8% tannic acid diet tended to increase glucuronidation. Specific effects of tannins may largely depend on tannin type, composition, and source and on other nutritional and physiological factors. PMID:9231400

  17. Bioremediation and Detoxification of Synthetic Wastewater Containing Triarylmethane Dyes by Aeromonas hydrophila Isolated from Industrial Effluent

    Directory of Open Access Journals (Sweden)

    Chimezie Jason Ogugbue

    2011-01-01

    Full Text Available Economical and bio-friendly approaches are needed to remediate dye-contaminated wastewater from various industries. In this study, a novel bacterial strain capable of decolorizing triarylmethane dyes was isolated from a textile wastewater treatment plant in Greece. The bacterial isolate was identified as Aeromonas hydrophila and was shown to decolorize three triarylmethane dyes tested within 24 h with color removal in the range of 72% to 96%. Decolorization efficiency of the bacterium was a function of operational parameters (aeration, dye concentration, temperature, and pH and the optimal operational conditions obtained for decolorization of the dyes were: pH 7-8, 35∘C and culture agitation. Effective color removal within 24 h was obtained at a maximum dye concentration of 50 mg/L. Dye decolorization was monitored using a scanning UV/visible spectrophotometer which indicated that decolorization was due to the degradation of dyes into non-colored intermediates. Phytotoxicity studies carried out using Triticum aestivum, Hordeum vulgare, and Lens esculenta revealed the triarylmethane dyes exerted toxic effects on plant growth parameters monitored. However, significant reduction in toxicity was obtained with the decolorized dye metabolites thus, indicating the detoxification of the dyes following degradation by Aeromonas hydrophila.

  18. Decolorization and detoxification of two textile industry effluents by the laccase/1-hydroxybenzotriazole system.

    Science.gov (United States)

    Benzina, Ouafa; Daâssi, Dalel; Zouari-Mechichi, Héla; Frikha, Fakher; Woodward, Steve; Belbahri, Lassaad; Rodriguez-Couto, Susana; Mechichi, Tahar

    2013-08-01

    The aim of this work was to determine the optimal conditions for the decolorization and the detoxification of two effluents from a textile industry-effluent A (the reactive dye bath Bezactive) and effluent B (the direct dye bath Tubantin)-using a laccase mediator system. Response surface methodology (RSM) was applied to optimize textile effluents decolorization. A Box-Behnken design using RSM with the four variables pH, effluent concentration, 1-hydroxybenzotriazole (HBT) concentration, and enzyme (laccase) concentration was used to determine correlations between the effects of these variables on the decolorization of the two effluents. The optimum conditions for pH and concentrations of HBT, effluent and laccase were 5, 1 mM, 50 % and 0.6 U/ml, respectively, for maximum decolorization of effluent A (68 %). For effluent B, optima were 4, 1 mM, 75 %, and 0.6 U/ml, respectively, for maximum decolorization of approximately 88 %. Both effluents were treated at 30 °C for 20 h. A quadratic model was obtained for each decolorization through this design. The experimental and predicted values were in good agreement and both models were highly significant. In addition, the toxicity of the two effluents was determined before and after laccase treatment using Saccharomyces cerevisiae, Bacillus cereus, and germination of tomato seeds.

  19. Effect of carbonyl inhibitors and their H₂O₂ detoxification on lactic acid fermentation.

    Science.gov (United States)

    Li, Jing; Zhu, Caiqing; Tu, Maobing; Han, Pingping; Wu, Yonnie

    2015-04-01

    Biomass degradation compounds significantly inhibit biochemical conversion of biomass prehydrolysates to biofuels and chemicals, such as lactic acid. To characterize the structure-activity relationship of carbonyl inhibition on lactic acid fermentation, we examined effects of eight carbonyl compounds (furfural, 5-hydroxymethyl furfural, vanillin, syringaldehyde, 4-hydroxybenzaldehyde, phthalaldehyde, benzoic acid, and pyrogallol aldehyde) and creosol on lactic acid production by Lactobacillus delbrueckii. Pyrogallol aldehyde reduced the cell growth rate by 35 % at 1.0 mM and inhibited lactic acid production completely at 2.0 mM. By correlating the molecular descriptors to the inhibition constants in lactic acid fermentation, we found a good relationship between the hydrophobicity (Log P) of aldehydes and their inhibition constants in fermentation. The inhibitory effect of carbonyl inhibitors appeared to correlate with their thiol reactivity as well. In addition, we found that H2O2 detoxified pyrogallol aldehyde and phthalaldehyde inhibitory activity. H2O2 detoxification was applied to real biomass prehydrolysates in lactic acid fermentation. PMID:25666370

  20. Detoxification of Indole by an Indole-Induced Flavoprotein Oxygenase from Acinetobacter baumannii.

    Directory of Open Access Journals (Sweden)

    Guang-Huey Lin

    Full Text Available Indole, a derivative of the amino acid tryptophan, is a toxic signaling molecule, which can inhibit bacterial growth. To overcome indole-induced toxicity, many bacteria have developed enzymatic defense systems to convert indole to non-toxic, water-insoluble indigo. We previously demonstrated that, like other aromatic compound-degrading bacteria, Acinetobacter baumannii can also convert indole to indigo. However, no work has been published investigating this mechanism. Here, we have shown that the growth of wild-type A. baumannii is severely inhibited in the presence of 3.5 mM indole. However, at lower concentrations, growth is stable, implying that the bacteria may be utilizing a survival mechanism to oxidize indole. To this end, we have identified a flavoprotein oxygenase encoded by the iifC gene of A. baumannii. Further, our results suggest that expressing this recombinant oxygenase protein in Escherichia coli can drive indole oxidation to indigo in vitro. Genome analysis shows that the iif operon is exclusively present in the genomes of A. baumannii and Pseudomonas syringae pv. actinidiae. Quantitative PCR and Western blot analysis also indicate that the iif operon is activated by indole through the AraC-like transcriptional regulator IifR. Taken together, these data suggest that this species of bacteria utilizes a novel indole-detoxification mechanism that is modulated by IifC, a protein that appears to be, at least to some extent, regulated by IifR.

  1. Detoxification of Indole by an Indole-Induced Flavoprotein Oxygenase from Acinetobacter baumannii.

    Science.gov (United States)

    Lin, Guang-Huey; Chen, Hao-Ping; Shu, Hung-Yu

    2015-01-01

    Indole, a derivative of the amino acid tryptophan, is a toxic signaling molecule, which can inhibit bacterial growth. To overcome indole-induced toxicity, many bacteria have developed enzymatic defense systems to convert indole to non-toxic, water-insoluble indigo. We previously demonstrated that, like other aromatic compound-degrading bacteria, Acinetobacter baumannii can also convert indole to indigo. However, no work has been published investigating this mechanism. Here, we have shown that the growth of wild-type A. baumannii is severely inhibited in the presence of 3.5 mM indole. However, at lower concentrations, growth is stable, implying that the bacteria may be utilizing a survival mechanism to oxidize indole. To this end, we have identified a flavoprotein oxygenase encoded by the iifC gene of A. baumannii. Further, our results suggest that expressing this recombinant oxygenase protein in Escherichia coli can drive indole oxidation to indigo in vitro. Genome analysis shows that the iif operon is exclusively present in the genomes of A. baumannii and Pseudomonas syringae pv. actinidiae. Quantitative PCR and Western blot analysis also indicate that the iif operon is activated by indole through the AraC-like transcriptional regulator IifR. Taken together, these data suggest that this species of bacteria utilizes a novel indole-detoxification mechanism that is modulated by IifC, a protein that appears to be, at least to some extent, regulated by IifR. PMID:26390211

  2. Binding and detoxification of chlorpyrifos by lactic acid bacteria on rice straw silage fermentation.

    Science.gov (United States)

    Wang, Yan-Su; Wu, Tian-Hao; Yang, Yao; Zhu, Cen-Ling; Ding, Cheng-Long; Dai, Chuan-Chao

    2016-01-01

    This investigation examined the reduction of pesticide residues on straw inoculated with lactic acid bacteria (LAB) during ensiling. Lactobacillus casei WYS3 was isolated from rice straw that contained pesticide residues. Non-sterilized rice straw, which was inoculated with L. casei WYS3, showed increased removal of chlorpyrifos after ensiling, compared with rice straw that was not inoculated with L. casei WYS3 or sterilized rice straw. In pure culture, these strains can bind chlorpyrifos as indicated by high-performance liquid chromatography analysis. Viable L. casei WYS3 was shown to bind 33.3-42% of exogenously added chlorpyrifos. These results are similar to those of acid-treated cells but less than those of heat-treated cells, which were found to bind 32.0% and 77.2% of the added chlorpyrifos respectively. Furthermore, gas chromatography-mass spectrometry analysis determined that L. casei WYS3 detoxified chlorpyrifos via P-O-C cleavage. Real-time polymerized chain reaction analysis determined that organophosphorus hydrolase gene expression tripled after the addition of chlorpyrifos to LAB cultures, compared with the control group (without chlorpyrifos). This paper highlights the potential use of LAB starter cultures for the detoxification and removal of chlorpyrifos residues in the environment.

  3. Detoxification of α-tomatine by Cladosporium fulvum is required for full virulence on tomato.

    Science.gov (United States)

    Ökmen, Bilal; Etalo, Desalegn W; Joosten, Matthieu H A J; Bouwmeester, Harro J; de Vos, Ric C H; Collemare, Jérôme; de Wit, Pierre J G M

    2013-06-01

    · α-Tomatine is an antifungal glycoalkaloid that provides basal defense to tomato (Solanum lycopersicum). However, tomato pathogens overcome this basal defense barrier by the secretion of tomatinases that degrade α-tomatine into the less fungitoxic compounds β-tomatine and tomatidine. Although pathogenic on tomato, it has been reported that the biotrophic fungus Cladosporium fulvum is unable to detoxify α-tomatine. · Here, we present a functional analysis of the glycosyl hydrolase (GH10), CfTom1, which is orthologous to fungal tomatinases. · We show that C. fulvum hydrolyzes α-tomatine into tomatidine in vitro and during the infection of tomato, which is fully attributed to the activity of CfTom1, as shown by the heterologous expression of this enzyme in tomato. Accordingly, ∆cftom1 mutants of C. fulvum are more sensitive to α-tomatine and are less virulent than the wild-type fungus on tomato. · Although α-tomatine is thought to be localized in the vacuole, we show that it is also present in the apoplast, where it is hydrolyzed by CfTom1 on infection. The accumulation of tomatidine during infection appears to be toxic to tomato cells and does not suppress defense responses, as suggested previously. Altogether, our results show that CfTom1 is responsible for the detoxification of α-tomatine by C. fulvum, and is required for full virulence of this fungus on tomato.

  4. Importance of phytoalexin tolerance and detoxification for pathogenicity. Progress report, June 1983-June 1985

    International Nuclear Information System (INIS)

    This study focuses on the biochemistry of phytoalexin detoxifying enzymes. Progress is reported on purification, substrate specificity, and mechanism of several enzymes involved. Some aspects of the regulation of pisatin demethylase were studied since parallel genetic studies suggest its regulation is an important factor in the pathogenicity of Nectria haematococca. We have established that the detoxification of pisatin requires two components: NADPH-cytochrome c reductase and cytochrome P-450. The ability to separate and reconstitute these two components has allowed us to demonstrate that the reductase from a non-demethylating isolate of N. haematococca will support demethylating activity when combined with the cytochrome P-450 from a demethylating isolate. The finding that the critical genetic factor here is the cytochrome P-450 fraction reinforces the hypothesis that the multiple pda genes of this fungus encode different cytochrome P-450 isozymes. The evidence for monooxygenase catalyzed metabolism of maackiain suggests the existence of additional members of a phytoalexin detoxifying cytochrome P-450 family. 4 refs., 1 fig., 1 tab

  5. Mitochondrial Sulfide Detoxification Requires a Functional Isoform O-Acetylserine(thiol)lyase C in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Consolación (A)lvarez; Irene García; Luis C.Romero; Cecilia Gotor

    2012-01-01

    In non-cyanogenic species,the main source of cyanide derives from ethylene and camalexin biosyntheses.In mitochondria,cyanide is a potent inhibitor of the cytochrome c oxidase and is metabolized bythe β-cyanoalanine synthase CYS-C1,catalyzing the conversion of cysteine and cyanide to hydrogen sulfide and β-cyanoalanine.The hydrogen sulfide released also inhibits the cytochrome c oxidase and needs to be detoxified by the O-acetylserine(thiol)lyase mitochondrial isoform,OAS-C,which catalyzes the incorporation of sulfide to O-acetylserine to produce cysteine,thus generating a cyclic pathway in the mitochondria.The loss of functional OAS-C isoforms causes phenotypic characteristics very similar to the loss of the CYS-C1 enzyme,showing defects in root hair formation.Genetic complementation with the OAS-C gene rescues the impairment of root hair elongation,restoring the wild-type phenotype.The mitochondria compromise their capacity to properly detoxify cyanide and the resulting sulfide because the latter cannot re-assimilate into cysteine in the oas-c null mutant.Consequently,we observe an accumulation of sulfide and cyanide and of the alternative oxidase,which is unable to prevent the production of reactive oxygen species probably due to the accumulation of both toxic molecules.Our results allow us to suggest that the significance of OAS-C is related to its role in the proper sulfide and cyanide detoxification in mitochondria.

  6. Effect of lambda cyhalothrin and temephos on detoxification enzyme systems in Culex quinquefasciatus (Diptera: Culicidae).

    Science.gov (United States)

    Muthusamy, R; Shivakumar, M S

    2015-01-01

    Mosquitoes serve as vector for transmitting diseases. Among mosquitoes, Culex quinquefasciatus transmits lymphatic filariasis, yellow fever Japanese encephalitis etc. Application of chemical insecticides is still the best option for vector control programmes. Continuous use of these chemicals on mosquito reduces its effects. The present study determined the baseline susceptibility of Cx. quinquefasciatus in response to λ-cyhalothrin and temephos treatments. In addition, the biochemical mechanisms and zymogram analysis involved in insecticide detoxification among larval mosquitoes were studied. The larval bioassay indicated high LC50 value for λ-cyhalothrin (0.1484ppm) as compared to temephos (0.01092ppm). While AChE assay showed increased activity in temephos treatments, glutathione reductase (GR) and esterase levels were increased at both the treatments. Esterase quantitative analysis revealed the expression of three bands at 43kDa, 67kDa and 245kDa. The findings suggest that insensitivity of AChE, esterase and high GR activity may play an important role in developing resistance to synthetic pyrethroid and organophosphate insecticides in Cx. quinquefasciatus population. PMID:26536798

  7. Differential transcription profiles in Aedes aegypti detoxification genes after temephos selection.

    Science.gov (United States)

    Saavedra-Rodriguez, K; Strode, C; Flores, A E; Garcia-Luna, S; Reyes-Solis, G; Ranson, H; Hemingway, J; Black, W C

    2014-04-01

    The mosquito Aedes aegypti is the main vector of Dengue and Yellow Fever flaviviruses. The organophosphate insecticide temephos is a larvicide that is used globally to control Ae. aegypti populations; many of which have in turn evolved resistance. Target site alteration in the acetylcholine esterase of this species has not being identified. Instead, we tracked changes in transcription of metabolic detoxification genes using the Ae. aegypti 'Detox Chip' microarray during five generations of temephos selection. We selected for temephos resistance in three replicates in each of six collections, five from Mexico, and one from Peru. The response to selection was tracked in terms of lethal concentrations. Uniform upregulation was seen in the epsilon class glutathione-S-transferase (eGST) genes in strains from Mexico prior to laboratory selection, while eGSTs in the Iquitos Peru strain became upregulated after five generations of temephos selection. While expression of many carboxyl/cholinesterase esterase (CCE) genes increased with selection, no single esterase was consistently upregulated and this same pattern was noted in the cytochrome P450 monooxygenase (CYP) genes and in other genes involved in reduction or oxidation of xenobiotics. Bioassays using glutathione-S-transferase (GST), CCE and CYP inhibitors suggest that various CCEs instead of GSTs are the main metabolic mechanism conferring resistance to temephos. We show that temephos-selected strains show no cross resistance to permethrin and that genes associated with temephos selection are largely independent of those selected with permethrin in a previous study. PMID:24299217

  8. Effects of depleted uranium on oxidative stress, detoxification, and defence parameters of zebrafish Danio rerio.

    Science.gov (United States)

    Gagnaire, Beatrice; Cavalie, Isabelle; Camilleri, Virginie; Adam-Guillermin, Christelle

    2013-01-01

    In this study, we investigated the effects of depleted uranium (DU), the by-product of nuclear enrichment of uranium, on several parameters related to oxidative stress, detoxification, and the defence system in the zebrafish Danio rerio. Several parameters were recorded: phenoloxidase-like (PO) activity, reactive oxygen species (ROS) production, and 7-ethoxyresrufin-O-deethylase (EROD) activity. Experiments were performed on adult and larvae D. rerio. Adult fish were exposed for 28 days at 20 μg U/L followed by a 27-day depuration period. Eggs of D. rerio were exposed for 4 days at 0, 20, 100, 250, 500, and 1,000 μg U/L. Results showed that DU increased ROS production both in adult and in larvae even at the low concentrations tested and even during the depuration period for adult D. rerio. DU also modified PO-like activity, both in the D. rerio adult and larvae experiments, but in a more transient manner. EROD activity was not modified by DU, but sex effects were shown. Results are discussed by way of comparison with other known effects of uranium in fish. Overall, these results show that the mechanisms of action of DU in fish tend to be similar to the ones existing for mammals. These results encourage the development and use of innate immune biomarkers to understand the effects of uranium and, more generally, radionuclides on the fish immune system. PMID:23052361

  9. Binding and detoxification of chlorpyrifos by lactic acid bacteria on rice straw silage fermentation.

    Science.gov (United States)

    Wang, Yan-Su; Wu, Tian-Hao; Yang, Yao; Zhu, Cen-Ling; Ding, Cheng-Long; Dai, Chuan-Chao

    2016-01-01

    This investigation examined the reduction of pesticide residues on straw inoculated with lactic acid bacteria (LAB) during ensiling. Lactobacillus casei WYS3 was isolated from rice straw that contained pesticide residues. Non-sterilized rice straw, which was inoculated with L. casei WYS3, showed increased removal of chlorpyrifos after ensiling, compared with rice straw that was not inoculated with L. casei WYS3 or sterilized rice straw. In pure culture, these strains can bind chlorpyrifos as indicated by high-performance liquid chromatography analysis. Viable L. casei WYS3 was shown to bind 33.3-42% of exogenously added chlorpyrifos. These results are similar to those of acid-treated cells but less than those of heat-treated cells, which were found to bind 32.0% and 77.2% of the added chlorpyrifos respectively. Furthermore, gas chromatography-mass spectrometry analysis determined that L. casei WYS3 detoxified chlorpyrifos via P-O-C cleavage. Real-time polymerized chain reaction analysis determined that organophosphorus hydrolase gene expression tripled after the addition of chlorpyrifos to LAB cultures, compared with the control group (without chlorpyrifos). This paper highlights the potential use of LAB starter cultures for the detoxification and removal of chlorpyrifos residues in the environment. PMID:26852781

  10. Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants.

    Science.gov (United States)

    Sharma, Shanti S; Dietz, Karl-Josef; Mimura, Tetsuro

    2016-05-01

    Plant cells orchestrate an array of molecular mechanisms for maintaining plasmatic concentrations of essential heavy metal (HM) ions, for example, iron, zinc and copper, within the optimal functional range. In parallel, concentrations of non-essential HMs and metalloids, for example, cadmium, mercury and arsenic, should be kept below their toxicity threshold levels. Vacuolar compartmentalization is central to HM homeostasis. It depends on two vacuolar pumps (V-ATPase and V-PPase) and a set of tonoplast transporters, which are directly driven by proton motive force, and primary ATP-dependent pumps. While HM non-hyperaccumulator plants largely sequester toxic HMs in root vacuoles, HM hyperaccumulators usually sequester them in leaf cell vacuoles following efficient long-distance translocation. The distinct strategies evolved as a consequence of organ-specific differences particularly in vacuolar transporters and in addition to distinct features in long-distance transport. Recent molecular and functional characterization of tonoplast HM transporters has advanced our understanding of their contribution to HM homeostasis, tolerance and hyperaccumulation. Another important part of the dynamic vacuolar sequestration syndrome involves enhanced vacuolation. It involves vesicular trafficking in HM detoxification. The present review provides an updated account of molecular aspects that contribute to the vacuolar compartmentalization of HMs. PMID:26729300

  11. Aflatoxin B1: Toxicity, bioactivation and detoxification in the polyphagous caterpillar Trichoplusia ni

    Institute of Scientific and Technical Information of China (English)

    Ren Sen Zeng; Zhimou Wen; Guodong Niu; May R.Berenbaum

    2013-01-01

    Trichoplusia ni caterpillars are polyphagous foliage-feeders and rarely likely to encounter aflatoxin B1 (AFB1),a mycotoxin produced by Aspergillus flavus and A.parasiticus,in their host plants.To determine how T.ni copes with AFB1,we evaluated the toxicity ofAFB1 to T.ni caterpillars at different developmental stages and found that AFB1 tolerance significantly increases with larval development.Diet incorporation of AFB1 at 1μg/g completely inhibited larval growth and pupation of newly hatched larvae,but 3μg/g AFB1 did not have apparent toxic effects on larval growth and pupation of caterpillars that first consume this compound 10 days after hatching.Piperonyl butoxide,a general inhibitor of cytochrome P450 monooxygenases (P450s),reduced the toxicity of AFB1,suggesting that AFB1 is bioactivated in T.ni and this bioactivation is mediated by P450s.Some plant allelochemicals,including flavonoids such as flavones,furanocoumarins such as xanthotoxin and imperatorin,and furanochromones such as visnagin,that induce P450s in other lepidopteran larvae ameliorated AFB1 toxicity,suggesting that P450s are also involved in AFB1 detoxification in T.ni.

  12. Effects of depleted uranium chronic exposure on detoxification systems in vivo and in vitro

    International Nuclear Information System (INIS)

    Uranium (U) is a heavy metal naturally presents in the environment. The aim of this work is to study effects of a U exposure on organs involved in the detoxification: the kidney and the liver (and notably the xenobiotics metabolizing enzymes (XME)). In order to mimic population chronic exposure, rats were contaminated during 9 months through the drinking water (40 mg/L). In vivo results show that U, in our experimental conditions, does not induce neither nephrotoxicity nor sensitivity to increase a renal toxicity induced by gentamicin. In the liver, U provokes impairments on the XME gene expression, particularly CYP3A. Nevertheless, paracetamole metabolism is modified only if it is administrated at a hepatotoxic dose. The in vitro results suggest an indirect effect of uranium on the XME, probably dependant of body adaptation mechanisms. Besides, in vitro studies were underline cytotoxic properties of U as well as the localisation of its soluble and/or participated forms in cytoplasmic and nuclear compartment. (author)

  13. Detoxification of Aflatoxin-Contaminated Maize by Neutral Electrolyzed Oxidizing Water

    Directory of Open Access Journals (Sweden)

    Samantha Jardon-Xicotencatl

    2015-10-01

    Full Text Available Aflatoxins, a group of extremely toxic mycotoxins produced by Aspergillus flavus, A. parasiticus and A. nomius, can occur as natural contaminants of certain agricultural commodities, particularly maize. These toxins have been shown to be hepatotoxic, carcinogenic, mutagenic and cause severe human and animal diseases. The effectiveness of neutral electrolyzed oxidizing water (NEW on aflatoxin detoxification was investigated in HepG2 cells using several validation methodologies such as the 3-(4,5-dimethylthiazol-2-yl-2,5- diphenyltetrazolium bromide assay, the induction of lipid peroxidation, the oxidative damage by means of glutathione modulation, the Ames test and the alkaline Comet assay. Our results showed that, after the aflatoxin-contaminated maize containing 360 ng/g was soaked in NEW (60 mg/L available chlorine, pH 7.01 during 15 min at room temperature, the aflatoxin content did not decrease as confirmed by the immunoaffinity column and ultra performance liquid chromatography methods. Aflatoxin fluorescence strength of detoxified samples was similar to untreated samples. However, aflatoxin-associated cytotoxicity and OPEN ACCESS Toxins 2015, 7 4295 genotoxicity effects were markedly reduced upon treatment. According to these results, NEW can be effectively used to detoxify aflatoxin-contaminated maize.

  14. Chitosan beads immobilized manganese peroxidase catalytic potential for detoxification and decolorization of textile effluent.

    Science.gov (United States)

    Bilal, Muhammad; Asgher, Muhammad; Iqbal, Munawar; Hu, Hongbo; Zhang, Xuehong

    2016-08-01

    Textile industry has led to severe environmental pollution and is posing a serious threat to the ecosystems. Immobilized biocatalysts have gained importance as potential bio-remediating agent. Manganese peroxidase (MnP) was immobilized onto glutaraldehyde activated chitosan beads by crosslinking and employed for the degradation and detoxification of dyes in textile effluents. The efficiency of chitosan-immobilized MnP (CI-MnP) was evaluated on the basis of decolorization, water quality improvement and toxicity reduction. Maximum color removal of 97.31% was recorded and up to 82.40%, 78.30% and 91.7% reductions in COD, TOC, and BOD were achieved, respectively. The cytotoxicity of bio-treated effluents reduced significantly and 38.46%, 43.47% and 41.83% Allium cepa root length, root count and mitotic index were increased, respectively, whereas brine shrimp nauplii death reduced up to 63.64%. Mutagenicity (Ames test) reduced up to 73.44% and 75.43% for TA98 and TA100 strains, respectively. The CI-MnP retained 60% activity after 10 repeated decolorization batches. The CI-MnP showed excellent efficiency for the bioremediation of textile effluents and can be used for the remediation of toxic agents in wastewater. The monitoring of processed wastewater using bioassays is suggested to evaluate bio-efficiency of treatment method for safe disposal of effluents into water bodies. PMID:27130652

  15. Structure of soybean [beta]-cyanoalanine synthase and the molecular basis for cyanide detoxification in plants

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Hankuil; Juergens, Matthew; Jez, Joseph M. (WU)

    2012-09-07

    Plants produce cyanide (CN{sup -}) during ethylene biosynthesis in the mitochondria and require {beta}-cyanoalanine synthase (CAS) for CN{sup -} detoxification. Recent studies show that CAS is a member of the {beta}-substituted alanine synthase (BSAS) family, which also includes the Cys biosynthesis enzyme O-acetylserine sulfhydrylase (OASS), but how the BSAS evolved distinct metabolic functions is not understood. Here we show that soybean (Glycine max) CAS and OASS form {alpha}-aminoacrylate reaction intermediates from Cys and O-acetylserine, respectively. To understand the molecular evolution of CAS and OASS in the BSAS enzyme family, the crystal structures of Gm-CAS and the Gm-CAS K95A mutant with a linked pyridoxal phosphate (PLP)-Cys molecule in the active site were determined. These structures establish a common fold for the plant BSAS family and reveal a substrate-induced conformational change that encloses the active site for catalysis. Comparison of CAS and OASS identified residues that covary in the PLP binding site. The Gm-OASS T81M, S181M, and T185S mutants altered the ratio of OASS:CAS activity but did not convert substrate preference to that of a CAS. Generation of a triple mutant Gm-OASS successfully switched reaction chemistry to that of a CAS. This study provides new molecular insight into the evolution of diverse enzyme functions across the BSAS family in plants.

  16. Bioremediation and Detoxification of Synthetic Wastewater Containing Triarylmethane Dyes by Aeromonas hydrophila Isolated from Industrial Effluent.

    Science.gov (United States)

    Ogugbue, Chimezie Jason; Sawidis, Thomas

    2011-01-01

    Economical and bio-friendly approaches are needed to remediate dye-contaminated wastewater from various industries. In this study, a novel bacterial strain capable of decolorizing triarylmethane dyes was isolated from a textile wastewater treatment plant in Greece. The bacterial isolate was identified as Aeromonas hydrophila and was shown to decolorize three triarylmethane dyes tested within 24 h with color removal in the range of 72% to 96%. Decolorization efficiency of the bacterium was a function of operational parameters (aeration, dye concentration, temperature, and pH) and the optimal operational conditions obtained for decolorization of the dyes were: pH 7-8, 35°C and culture agitation. Effective color removal within 24 h was obtained at a maximum dye concentration of 50 mg/L. Dye decolorization was monitored using a scanning UV/visible spectrophotometer which indicated that decolorization was due to the degradation of dyes into non-colored intermediates. Phytotoxicity studies carried out using Triticum aestivum, Hordeum vulgare, and Lens esculenta revealed the triarylmethane dyes exerted toxic effects on plant growth parameters monitored. However, significant reduction in toxicity was obtained with the decolorized dye metabolites thus, indicating the detoxification of the dyes following degradation by Aeromonas hydrophila. PMID:21808740

  17. First and second line mechanisms of cadmium detoxification in the lichen photobiont Trebouxia impressa (Chlorophyta)

    Energy Technology Data Exchange (ETDEWEB)

    Sanita di Toppi, L. [Dipartimento di Biologia Evolutiva e Funzionale, viale G.P. Usberti 11/A, Universita di Parma, 43100 Parma (Italy)], E-mail: luigi.sanitaditoppi@unipr.it; Pawlik-Skowronska, B. [Centre for Ecological Research, Polish Academy of Sciences, Experimental Station, Niecala 18/3, 20080 Lublin (Poland); Vurro, E. [Dipartimento di Biologia Evolutiva e Funzionale, viale G.P. Usberti 11/A, Universita di Parma, 43100 Parma (Italy); Vattuone, Z. [Dipartimento di Biologia Evolutiva e Funzionale, viale G.P. Usberti 11/A, Universita di Parma, 43100 Parma (Italy); Centre for Ecological Research, Polish Academy of Sciences, Experimental Station, Niecala 18/3, 20080 Lublin (Poland); Kalinowska, R. [Centre for Ecological Research, Polish Academy of Sciences, Experimental Station, Niecala 18/3, 20080 Lublin (Poland); Restivo, F.M. [Dipartimento di Genetica, Biologia dei Microrganismi, Antropologia, Evoluzione, viale G.P. Usberti 11/A, Universita di Parma, 43100 Parma (Italy); Musetti, R. [Dipartimento di Biologia Applicata alla Difesa delle Piante, via delle Scienze 208, Universita di Udine, 33100 Udine (Italy); Skowronski, T. [Centre for Ecological Research, Polish Academy of Sciences, Experimental Station, Niecala 18/3, 20080 Lublin (Poland)

    2008-01-15

    'First line' defence mechanisms, such as phytochelatin biosynthesis, and 'second line' mechanisms, such as stress protein induction, were investigated in cadmium-exposed cells of Trebouxia impressa Ahmadjian, a green microalgal species that is a common photobiont of the lichen Physcia adscendens (Fr.) H. Olivier. When T. impressa cells were exposed to 0, 9 and 18 {mu}M Cd for 6, 18 and 48 h, glutathione and phytochelatins efficiently protected the cells against Cd damage. By contrast, the highest Cd concentration (36 {mu}M) at the longest exposure-time (48 h) caused marked drops in glutathione and phytochelatin content, several types of ultrastructural damage, and decreases in cell density and total chlorophyll concentration. In this case, induction of stress proteins was observed, but only long after the induction of phytochelatins. Thus, stress proteins could represent a 'second line' mechanism to counteract Cd stress, activated when there is a decline in the 'first line' mechanism of Cd detoxification given by phytochelatins. - Trebouxia impressa photobionts protect themselves against cadmium stress by means of phytochelatins and stress proteins.

  18. Differential transcription profiles in Aedes aegypti detoxification genes after temephos selection.

    Science.gov (United States)

    Saavedra-Rodriguez, K; Strode, C; Flores, A E; Garcia-Luna, S; Reyes-Solis, G; Ranson, H; Hemingway, J; Black, W C

    2014-04-01

    The mosquito Aedes aegypti is the main vector of Dengue and Yellow Fever flaviviruses. The organophosphate insecticide temephos is a larvicide that is used globally to control Ae. aegypti populations; many of which have in turn evolved resistance. Target site alteration in the acetylcholine esterase of this species has not being identified. Instead, we tracked changes in transcription of metabolic detoxification genes using the Ae. aegypti 'Detox Chip' microarray during five generations of temephos selection. We selected for temephos resistance in three replicates in each of six collections, five from Mexico, and one from Peru. The response to selection was tracked in terms of lethal concentrations. Uniform upregulation was seen in the epsilon class glutathione-S-transferase (eGST) genes in strains from Mexico prior to laboratory selection, while eGSTs in the Iquitos Peru strain became upregulated after five generations of temephos selection. While expression of many carboxyl/cholinesterase esterase (CCE) genes increased with selection, no single esterase was consistently upregulated and this same pattern was noted in the cytochrome P450 monooxygenase (CYP) genes and in other genes involved in reduction or oxidation of xenobiotics. Bioassays using glutathione-S-transferase (GST), CCE and CYP inhibitors suggest that various CCEs instead of GSTs are the main metabolic mechanism conferring resistance to temephos. We show that temephos-selected strains show no cross resistance to permethrin and that genes associated with temephos selection are largely independent of those selected with permethrin in a previous study.

  19. Preoperative ultra-rapid opiate detoxification for the treatment of post-operative surgical pain.

    Science.gov (United States)

    Blum, James M; Biel, Sarang S; Hilliard, Paul E; Jutkiewicz, Emily M

    2015-06-01

    Over the past two decades, the prescription of high dose opiate therapy has continued to accelerate in an attempt to treat patients with chronic pain. This presents a substantial challenge when patients on high dose opiate therapy require surgery, as opiate pain relief is a cornerstone of postoperative pain management. These patients have exceptionally challenging pain to control. This is likely due to downregulation of existing opiate receptors and the reluctance of clinicians to increase doses of opiates to exceptionally high levels to facilitate pain relief. We hypothesize that using the method of ultra-rapid opiate detoxification (UROD), it would be possible to rapidly increase the number of opiate receptors and return patients to a more naive state, which would be susceptible to exogenous opiate administration. Validation of this hypothesis is supported by two mechanisms, the first of which are reports of patients that underwent UROD for opiate addition that subsequently suffer respiratory arrests when beginning to rapidly abuse opiates shortly after treatment. Additionally there are data demonstrating the tapering of opiate therapy prior to elective surgery results in better pain control. In conclusion, we hypothesize that patients on chronic high dose opiates could obtain substantially better pain relief if they underwent UROD prior to surgery. This technique could be administered shortly before surgery and may dramatically improve the patients' recoveries.

  20. Differences in depression severity and frequency of relapses in opiate addicts treated with methadone or opiate blocker after detoxification

    Directory of Open Access Journals (Sweden)

    Jovanović Tatjana

    2012-01-01

    Full Text Available Background/Aim. Relapse of opiate dependence is a common occurrence after detoxification and introduction of opiate addicts in abstinence from opiates. Clinical evaluation showed that over 90% of opiate addicts exhibit depressive manifestations during detoxification, or develop post-detoxification depression. The aim of this study was to determine differences in the frequency of relapses, severity and course of depression during a of 6-month period, and previous patterns of use of opioids in the two groups of opiate addicts treated by two different therapeutic modalities. Methods. The results of the two groups of opiate addicts were compared: the patients on substitution methadone treatment (M and the patients treated with opiate blocker naltrexone (B. In all the patients, clinical and instrumental evaluations confirmed depressive syndrome. Opioid relapses were diagnosed by the panel test for rapid detection of metabolites of opiates in urine. Then they were brought in connection with scores of depression and addiction variables. The Hamilton Depression Scale (HAMD and Zunge Depression Scale were the applied instruments for measuring the level of depression. All the subjects completed a questionnaire Pompidou (short version. Psychological measurements were carried out during a 6-month follow-up on three occasions. The presence of opiate metabolites in urine was controlled every two weeks. Results. Both groups of patients (M and B had high scores on HAMD during the study. The group on methadone had a strong depression in all three measurements. There was a drop in the level of depression in both experimental groups over time, which was accompanied by a decrease in the incidence of recurrence. In both tested groups the frequency of relapses was positively correlated with earlier addiction variables - intravenous application of opioids, the experience of overdose, the absence of immunization against hepatitis C and hepatitis C virus carriers

  1. ATP Binding Cassette Transporter Mediates Both Heme and Pesticide Detoxification in Tick Midgut Cells.

    Science.gov (United States)

    Lara, Flavio Alves; Pohl, Paula C; Gandara, Ana Caroline; Ferreira, Jessica da Silva; Nascimento-Silva, Maria Clara; Bechara, Gervásio Henrique; Sorgine, Marcos H F; Almeida, Igor C; Vaz, Itabajara da Silva; Oliveira, Pedro L

    2015-01-01

    In ticks, the digestion of blood occurs intracellularly and proteolytic digestion of hemoglobin takes place in a dedicated type of lysosome, the digest vesicle, followed by transfer of the heme moiety of hemoglobin to a specialized organelle that accumulates large heme aggregates, called hemosomes. In the present work, we studied the uptake of fluorescent metalloporphyrins, used as heme analogs, and amitraz, one of the most regularly used acaricides to control cattle tick infestations, by Rhipicephalus (Boophilus) microplus midgut cells. Both compounds were taken up by midgut cells in vitro and accumulated inside the hemosomes. Transport of both molecules was sensitive to cyclosporine A (CsA), a well-known inhibitor of ATP binding cassette (ABC) transporters. Rhodamine 123, a fluorescent probe that is also a recognized ABC substrate, was similarly directed to the hemosome in a CsA-sensitive manner. Using an antibody against conserved domain of PgP-1-type ABC transporter, we were able to immunolocalize PgP-1 in the digest vesicle membranes. Comparison between two R. microplus strains that were resistant and susceptible to amitraz revealed that the resistant strain detoxified both amitraz and Sn-Pp IX more efficiently than the susceptible strain, a process that was also sensitive to CsA. A transcript containing an ABC transporter signature exhibited 2.5-fold increased expression in the amitraz-resistant strain when compared with the susceptible strain. RNAi-induced down-regulation of this ABC transporter led to the accumulation of metalloporphyrin in the digestive vacuole, interrupting heme traffic to the hemosome. This evidence further confirms that this transcript codes for a heme transporter. This is the first report of heme transport in a blood-feeding organism. While the primary physiological function of the hemosome is to detoxify heme and attenuate its toxicity, we suggest that the use of this acaricide detoxification pathway by ticks may represent a new

  2. Functions, Evolution, and Application of the Supramolecular Machines of Hg Detoxification

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Susan M.

    2009-11-27

    The bacterial mercury resistance (mer) operon functions in Hg biogeochemistry and bioremediation by converting reactive inorganic [Hg(II)] and organic [RHg(I)] mercurials to relatively inert monoatomic mercury vapor, Hg(0). Its genes regulate expression (MerR, MerD, MerOP), import Hg(II) (MerT, MerP, and MerC), and demethylate (MerB) and reduce (MerA) mercurials. We focus on how these components interact with each other and with the host cell to allow cells to survive and detoxify Hg compounds. Understanding how this ubiquitous detoxification system fits into the biology and ecology of its bacterial host is essential to guide interventions that support and enhance Hg remediation. At a more basic level, studies of interactions between the metal ion trafficking proteins in this pathway provide insights into general mechanisms used by proteins in pathways involved in trafficking of other metal ions in cells of all types of organisms, including pathways for essential metal ions such as Cu and Zn and other toxic metal ions such as Cd. In this project we focused on investigations of proteins from mer operons found in gamma-proteobacteria with specific objectives to use biophysical and biochemical approaches to detect and define (1) interactions between the structural components of the key detoxifying mer operon enzyme, mercuric ion reductase (MerA), (2) interactions between the components of MerA and the other mer operon enzyme, organomercurial lyase (MerB), and (3) to investigate the structure and interactions of integral membrane transport proteins, MerT and MerC, with MerA.

  3. Removal of triclosan via peroxidases-mediated reactions in water: Reaction kinetics, products and detoxification.

    Science.gov (United States)

    Li, Jianhua; Peng, Jianbiao; Zhang, Ya; Ji, Yuefei; Shi, Huanhuan; Mao, Liang; Gao, Shixiang

    2016-06-01

    This study investigated and compared reaction kinetics, product characterization, and toxicity variation of triclosan (TCS) removal mediated by soybean peroxidase (SBP), a recognized potential peroxidase for removing phenolic pollutants, and the commonly used horseradish peroxidase (HRP) with the goal of assessing the technical feasibility of SBP-catalyzed removal of TCS. Reaction conditions such as pH, H2O2 concentration and enzyme dosage were found to have a strong influence on the removal efficiency of TCS. SBP can retain its catalytic ability to remove TCS over broad ranges of pH and H2O2 concentration, while the optimal pH and H2O2 concentration were 7.0 and 8μM, respectively. 98% TCS was removed with only 0.1UmL(-1) SBP in 30min reaction time, while an HRP dose of 0.3UmL(-1) was required to achieve the similar conversion. The catalytic performance of SBP towards TCS was more efficient than that of HRP, which can be explained by catalytic rate constant (KCAT) and catalytic efficiency (KCAT/KM) for the two enzymes. MS analysis in combination with quantum chemistry computation showed that the polymerization products were generated via CC and CO coupling pathways. The polymers were proved to be nontoxic through growth inhibition of green alga (Scenedesmus obliquus). Taking into consideration of the enzymatic treatment cost, SBP may be a better alternative to HRP upon the removal and detoxification of TCS in water/wastewater treatment. PMID:26921508

  4. Dual effects of phloretin on aflatoxin B1 metabolism: activation and detoxification of aflatoxin B1.

    Science.gov (United States)

    Gao, Shang Shang; Chen, Xiao Yan; Zhu, Ri Zhe; Choi, Byung-Min; Kim, Sun Jun; Kim, Bok-Ryang

    2012-01-01

    Typically, chemopreventive agents involve either induction of phase II detoxifying enzymes and/or inhibition of cytochrome P450 enzymes (CYPs) that are required for the activation of procarcinogens. In this study, we investigated the protective effects of phloretin against aflatoxin B1 (AFB1) activation to the ultimate carcinogenic intermediate, AFB(1)-8, 9-epoxide (AFBO), and its subsequent detoxification. Phloretin markedly inhibited formation of the epoxide with human liver microsomes in a dose-dependent manner. Phloretin also inhibited the activities of nifedipine oxidation and ethoxyresorufin O-deethylase (EROD) in human liver microsomes. These data show that phloretin strongly inhibits CYP1A2 and CYP3A4 activities, which are involved in the activation of AFB1. Phloretin increased glutathione S-transferase (GST) activity of alpha mouse liver 12 (AML 12) cells in a dose-dependent manner. GST activity toward AFBO in cell lysates treated with 20 μM phloretin was 23-fold that of untreated control cell lysates. The expression of GSTA3, GSTA4, GSTM1, GSTP1 and GSTT1 was induced by phloretin in a dose-dependent manner in AML 12 cells. GSTP1, GSTM1, and GSTT1 were able to significantly increase the conjugation of AFBO with glutathione. Concurrently, induction of the GST isozyme genes was partially associated with the Nrf2/ARE pathway. Taken together, the results demonstrate that phloretin has a strong chemopreventive effect against AFB1 through its inhibitory effect on CYP1A2, CYP3A4, and its inductive effect on GST activity. PMID:22253071

  5. Physiologically based biokinetic (PBBK) model for safrole bioactivation and detoxification in rats.

    Science.gov (United States)

    Martati, E; Boersma, M G; Spenkelink, A; Khadka, D B; Punt, A; Vervoort, J; van Bladeren, P J; Rietjens, I M C M

    2011-06-20

    A physiologically based biokinetic (PBBK) model for alkenylbenzene safrole in rats was developed using in vitro metabolic parameters determined using relevant tissue fractions. The performance of the model was evaluated by comparison of the predicted levels of 1,2-dihydroxy-4-allylbenzene and 1'-hydroxysafrole glucuronide to levels of these metabolites reported in the literature to be excreted in the urine of rats exposed to safrole and by comparison of the predicted amount of total urinary safrole metabolites to the reported levels of safrole metabolites in the urine of safrole exposed rats. These comparisons revealed that the predictions adequately match observed experimental values. Next, the model was used to predict the relative extent of bioactivation and detoxification of safrole at different oral doses. At low as well as high doses, P450 mediated oxidation of safrole mainly occurs in the liver in which 1,2-dihydroxy-4-allylbenzene was predicted to be the major P450 metabolite of safrole. A dose dependent shift in P450 mediated oxidation leading to a relative increase in bioactivation at high doses was not observed. Comparison of the results obtained for safrole with the results previously obtained with PBBK models for the related alkenylbenzenes estragole and methyleugenol revealed that the overall differences in bioactivation of the three alkenylbenzenes to their ultimate carcinogenic 1'-sulfooxy metabolites are limited. This is in line with the generally less than 4-fold difference in their level of DNA binding in in vitro and in vivo studies and their almost similar BMDL(10) values (lower confidence limit of the benchmark dose that gives 10% increase in tumor incidence over background level) obtained in in vivo carcinogenicity studies. It is concluded that in spite of differences in the rates of specific metabolic conversions, overall the levels of bioactivation of the three alkenylbenzenes are comparable which is in line with their comparable

  6. Establishing an animal model for National Acupuncture Detoxification Association (NADA) auricular acupuncture protocol.

    Science.gov (United States)

    Kattalai Kailasam, Vasanth; Anand, Preeti; Melyan, Zara

    2016-06-15

    The use of opioids in the treatment of chronic pain has increased dramatically in the past few decades making them one of the most commonly prescribed medications in the US. However, long-term use of opioids is limited by development of tolerance (decreased antinociceptive efficacy) and opioid-induced hyperalgesia - paradoxical sensitization to noxious (hyperalgesia) and non-noxious (allodynia) stimuli. Novel adjunctive therapies are needed to increase the efficacy and prolong the duration of action of opioids in chronic pain treatment. Acupuncture is often used as an adjunct therapy for the treatment of symptoms induced by non-clinical use of opioids. The National Acupuncture Detoxification Association (NADA) auricular acupuncture protocol is the most common form of acupuncture treatment for substance abuse. The standardized, easy to use and virtually painless procedure make it an attractive complementary treatment option for patients suffering from opioid-induced adverse effects. Clinical trials designed to test the efficacy of the NADA protocol yielded contradictory results. The mechanism by which NADA acupuncture could serve as a successful treatment remains unknown. Therefore, establishing an animal model of NADA acupuncture can provide a tool for investigating the efficacy and cellular mechanisms of NADA treatment. Previous studies have shown that repeated morphine administration in rodents can produce locomotor sensitization and reduce analgesic potency of a challenge dose of morphine, indicating development of morphine tolerance. Here we show that NADA acupuncture treatment can both reduce morphine-induced locomotor sensitization and prevent the development of morphine tolerance in rats, thus validating a new model for NADA acupuncture studies. Our data provides support for evidence-based use of NADA acupuncture as a new adjunctive approach that can potentially improve the side-effect profile of morphine and other prescription opioids.

  7. Tyrosine Detoxification Is an Essential Trait in the Life History of Blood-Feeding Arthropods.

    Science.gov (United States)

    Sterkel, Marcos; Perdomo, Hugo D; Guizzo, Melina G; Barletta, Ana Beatriz F; Nunes, Rodrigo D; Dias, Felipe A; Sorgine, Marcos H F; Oliveira, Pedro L

    2016-08-22

    Blood-feeding arthropods are vectors of infectious diseases such as dengue, Zika, Chagas disease, and malaria [1], and vector control is essential to limiting disease spread. Because these arthropods ingest very large amounts of blood, a protein-rich meal, huge amounts of amino acids are produced during digestion. Previous work on Rhodnius prolixus, a vector of Chagas disease, showed that, among all amino acids, only tyrosine degradation enzymes were overexpressed in the midgut compared to other tissues [2]. Here we demonstrate that tyrosine detoxification is an essential trait in the life history of blood-sucking arthropods. We found that silencing Rhodnius tyrosine aminotransferase (TAT) and 4-hydroxyphenylpyruvate dioxygenase (HPPD), the first two enzymes of the phenylalanine/tyrosine degradation pathway, caused the death of insects after a blood meal. This was confirmed by using the HPPD inhibitor mesotrione, which selectively killed hematophagous arthropods but did not affect non-hematophagous insects. In addition, mosquitoes and kissing bugs died after feeding on mice that had previously received a therapeutic effective oral dose (1 mg/kg) of nitisinone, another HPPD inhibitor used in humans for the treatment of tyrosinemia type I [3]. These findings indicate that HPPD (and TAT) can be a target for the selective control of blood-sucking disease vector populations. Because HPPD inhibitors are extensively used as herbicides and in medicine, these compounds may provide an alternative less toxic to humans and more environmentally friendly than the conventional neurotoxic insecticides that are currently used, with the ability to affect only hematophagous arthropods. PMID:27476595

  8. Functional characterization of an α-esterase gene involving malathion detoxification in Bactrocera dorsalis (Hendel).

    Science.gov (United States)

    Wang, Luo-Luo; Lu, Xue-Ping; Meng, Li-Wei; Huang, Yong; Wei, Dong; Jiang, Hong-Bo; Smagghe, Guy; Wang, Jin-Jun

    2016-06-01

    Extensive use of insecticides in many orchards has prompted resistance development in the oriental fruit fly, Bactrocera dorsalis (Hendel). In this study, a laboratory selected strain of B. dorsalis (MR) with a 21-fold higher resistance to malathion was used to examine the resistance mechanisms to this organophosphate insecticide. Carboxylesterase (CarE) was found to be involved in malathion resistance in B. dorsalis from the synergism bioassay by CarE-specific inhibitor triphenylphosphate (TPP). Molecular studies further identified a previously uncharacterized α-esterase gene, BdCarE2, that may function in the development of malathion resistance in B. dorsalis via gene upregulation. This gene is predominantly expressed in the Malpighian tubules, a key insect tissue for detoxification. The transcript levels of BdCarE2 were also compared between the MR and a malathion-susceptible (MS) strain of B. dorsalis, and it was significantly more abundant in the MR strain. No sequence mutation or gene copy changes were detected between the two strains. Functional studies using RNA interference (RNAi)-mediated knockdown of BdCarE2 significantly increased the malathion susceptibility in the adult files. Furthermore, heterologous expression of BdCarE2 combined with cytotoxicity assay in Sf9 cells demonstrated that BdCarE2 could probably detoxify malathion. Taken together, the current study bring new molecular evidence supporting the involvement of CarE-mediated metabolism in resistance development against malathion in B. dorsalis and also provide bases on functional analysis of insect α-esterase associated with insecticide resistance. PMID:27155483

  9. Role of glucuronidation for hepatic detoxification and urinary elimination of toxic bile acids during biliary obstruction.

    Directory of Open Access Journals (Sweden)

    Martin Perreault

    Full Text Available Biliary obstruction, a severe cholestatic condition, results in a huge accumulation of toxic bile acids (BA in the liver. Glucuronidation, a conjugation reaction, is thought to protect the liver by both reducing hepatic BA toxicity and increasing their urinary elimination. The present study evaluates the contribution of each process in the overall BA detoxification by glucuronidation. Glucuronide (G, glycine, taurine conjugates, and unconjugated BAs were quantified in pre- and post-biliary stenting urine samples from 12 patients with biliary obstruction, using liquid chromatography-tandem mass spectrometry (LC-MS/MS. The same LC-MS/MS procedure was used to quantify intra- and extracellular BA-G in Hepatoma HepG2 cells. Bile acid-induced toxicity in HepG2 cells was evaluated using MTS reduction, caspase-3 and flow cytometry assays. When compared to post-treatment samples, pre-stenting urines were enriched in glucuronide-, taurine- and glycine-conjugated BAs. Biliary stenting increased the relative BA-G abundance in the urinary BA pool, and reduced the proportion of taurine- and glycine-conjugates. Lithocholic, deoxycholic and chenodeoxycholic acids were the most cytotoxic and pro-apoptotic/necrotic BAs for HepG2 cells. Other species, such as the cholic, hyocholic and hyodeoxycholic acids were nontoxic. All BA-G assayed were less toxic and displayed lower pro-apoptotic/necrotic effects than their unconjugated precursors, even if they were able to penetrate into HepG2 cells. Under severe cholestatic conditions, urinary excretion favors the elimination of amidated BAs, while glucuronidation allows the conversion of cytotoxic BAs into nontoxic derivatives.

  10. ATP Binding Cassette Transporter Mediates Both Heme and Pesticide Detoxification in Tick Midgut Cells.

    Directory of Open Access Journals (Sweden)

    Flavio Alves Lara

    Full Text Available In ticks, the digestion of blood occurs intracellularly and proteolytic digestion of hemoglobin takes place in a dedicated type of lysosome, the digest vesicle, followed by transfer of the heme moiety of hemoglobin to a specialized organelle that accumulates large heme aggregates, called hemosomes. In the present work, we studied the uptake of fluorescent metalloporphyrins, used as heme analogs, and amitraz, one of the most regularly used acaricides to control cattle tick infestations, by Rhipicephalus (Boophilus microplus midgut cells. Both compounds were taken up by midgut cells in vitro and accumulated inside the hemosomes. Transport of both molecules was sensitive to cyclosporine A (CsA, a well-known inhibitor of ATP binding cassette (ABC transporters. Rhodamine 123, a fluorescent probe that is also a recognized ABC substrate, was similarly directed to the hemosome in a CsA-sensitive manner. Using an antibody against conserved domain of PgP-1-type ABC transporter, we were able to immunolocalize PgP-1 in the digest vesicle membranes. Comparison between two R. microplus strains that were resistant and susceptible to amitraz revealed that the resistant strain detoxified both amitraz and Sn-Pp IX more efficiently than the susceptible strain, a process that was also sensitive to CsA. A transcript containing an ABC transporter signature exhibited 2.5-fold increased expression in the amitraz-resistant strain when compared with the susceptible strain. RNAi-induced down-regulation of this ABC transporter led to the accumulation of metalloporphyrin in the digestive vacuole, interrupting heme traffic to the hemosome. This evidence further confirms that this transcript codes for a heme transporter. This is the first report of heme transport in a blood-feeding organism. While the primary physiological function of the hemosome is to detoxify heme and attenuate its toxicity, we suggest that the use of this acaricide detoxification pathway by ticks may

  11. Proteomic and Physiological Analyses Reveal Detoxification and Antioxidation Induced by Cd Stress in Kandelia candel Roots

    Institute of Scientific and Technical Information of China (English)

    Zhaoxia Weng; Lingxia Wang; Fanglin Tan; Li Huang; Jianhong Xing; Shipin Chen; Chilien Cheng

    2012-01-01

    The heavy metal Cadmium (Cd),added to the water bodies through weathering of rocks and human activities,constitutes one of the major environmental pollutants toxic to plants.This study examines the proteome changes in roots of actively growing Kandelia candel (L.) Druce when challenged with Cd.This mangrove-like species proliferates in estuaries and bays and is a potential choice for phytoremediation of Cd.A total of 53 proteins were up-or down-regulated following a short-term Cd treatment.The identities of the differentially expressed proteins were determined by MALDI-TOF/TOF.Approximately half of the up-regulated proteins are involved in oxidative response,including antioxidant enzymes,enzymes required for glutathione biosynthesis,enzymes in TCA and PPP cycles for generating ATP,NADH and NADPH.These results support the prediction that a prompt antioxidative response is necessary for the reduction of the oxidative stress caused by Cd and set the stage for further investigating of Cd up-regulated proteins in Kandelia candel.In summary,this investigation of global proteomic changes in K.candel roots reveals a complex cellular network affected by Cd stress.The network covers a broad range of metabolic processes,including protein synthesis,antioxidative/detoxifying reactions,energy generation,and metabolites production against Cd stress.Particularly important,our results support the predicted key roles of glutathione biosynthesis,ascorbate-glutathione cycle and antioxidative defense system in Cd detoxification in K.candel roots.This understanding is necessary for developing the woody plant K.candel for phytoremediation of Cd and other heavy metals and may be critical for maintaining health mangrove ecology.

  12. An Aluminum-Inducible IREG Gene is Required for Internal Detoxification of Aluminum in Buckwheat.

    Science.gov (United States)

    Yokosho, Kengo; Yamaji, Naoki; Mitani-Ueno, Namiki; Shen, Ren Fang; Ma, Jian Feng

    2016-06-01

    Buckwheat (Fagopyrum esculentum Moench) is able to detoxify aluminum (Al) both externally and internally, but the molecular mechanisms underlying its high Al tolerance are not understood. We functionally characterized a gene (FeIREG1) belonging to IRON REGULATED/ferroportin in buckwheat, which showed high expression in our previous genome-wide transcriptome analysis. FeIREG1 was mainly expressed in the roots, and its expression was up-regulated by Al, but not by other metals and low pH. Furthermore, in contrast to AtIREG1 and AtIREG2 in Arabidopsis, the expression of FeIREG1 was not induced by Fe deficiency. Spatial expression analysis showed that the Al-induced expression of FeIREG1 was found in the root tips and higher expression was detected in the outer layers of this part. Immunostaining also showed that FeIREG1 was localized at the outer cell layers in the root tip. A FeIREG1-green fluorescent protein (GFP) fusion protein was localized to the tonoplast when transiently expressed in onion epidermal cells. Overexpression of FeIREG1 in Arabidopsis resulted in increased Al tolerance, but did not alter the tolerance to Cd, Co and Fe. The tolerance to Ni was slightly enhanced in the overexpression lines. Mineral analysis showed that the accumulation of total root Al and other essential mineral elements was hardly altered in the overexpression lines. Taken together, our results suggest that FeIREG1 localized at the tonoplast plays an important role in internal Al detoxification by sequestering Al into the root vacuoles in buckwheat. PMID:27053033

  13. Detoxification of Hg(II) from aqueous and enzyme media: Pristine vs. tailored calcium alginate hydrogels.

    Science.gov (United States)

    Sarkar, Kangkana; Ansari, Zarina; Sen, Kamalika

    2016-10-01

    Calcium alginate (CA) hydrogels were tailored using phenolic compounds (PC) like, thymol, morin, catechin, hesperidin, during their preparation. The PC incorporated gels show modified surface features as indicated by scanning electron microscopic images (SEM). The rheological studies show that excepting the hesperidin incorporated gels all the other kinds including calcium alginate pristine have similar mechanical strength. The hesperidine incorporated CA gels had the maximum capacity to adsorb Hg. The Freundlich adsorption isotherms show higher values of adsorption capacity for all PC incorporated CA beads than the pristine CA (PCA). The hesperidin incorporated CA gels were found to show the best adsorption condition at neutral pH and an optimum contact time of 2.5h at 25°C. Considering the possibility of ingested Hg detoxification from human alimentary tract, the hesperidin and morin incorporated CA beads were further modified through incorporation of cod liver oil as the digestion time of fat in stomach is higher. In vitro uptake capacities of Hg in pepsin and pancreatin containing enzyme media were studied with hesperidin and morin incorporated beads and their corresponding fat incorporated beads also. In the pepsin medium, there was no uptake by hesperidin and fat-hesperidin incorporated beads, which is possibly due to the higher acidity of the medium. But in pancreatin medium Hg was taken up by both kinds of beads. Morin and morin-fat incorporated beads were efficient to uptake Hg from both the pepsin and pancreatin medium. The tailored CA beads may therefore serve as efficient scaffolds to rescue Hg ingested individuals. PMID:27208797

  14. An integrated biochemical system for nitrate assimilation and nitric oxide detoxification in Bradyrhizobium japonicum.

    Science.gov (United States)

    Cabrera, Juan J; Salas, Ana; Torres, María J; Bedmar, Eulogio J; Richardson, David J; Gates, Andrew J; Delgado, María J

    2016-02-01

    Rhizobia are recognized to establish N2-fixing symbiotic interactions with legume plants. Bradyrhizobium japonicum, the symbiont of soybeans, can denitrify and grow under free-living conditions with nitrate (NO3 (-)) or nitrite (NO2 (-)) as sole nitrogen source. Unlike related bacteria that assimilate NO3 (-), genes encoding the assimilatory NO3 (-) reductase (nasC) and NO2 (-) reductase (nirA) in B. japonicum are located at distinct chromosomal loci. The nasC gene is located with genes encoding an ABC-type NO3 (-) transporter, a major facilitator family NO3 (-)/NO2 (-) transporter (NarK), flavoprotein (Flp) and single-domain haemoglobin (termed Bjgb). However, nirA clusters with genes for a NO3 (-)/NO2 (-)-responsive regulator (NasS-NasT). In the present study, we demonstrate NasC and NirA are both key for NO3 (-) assimilation and that growth with NO3 (-), but not NO2 (-) requires flp, implying Flp may function as electron donor to NasC. In addition, bjgb and flp encode a nitric oxide (NO) detoxification system that functions to mitigate cytotoxic NO formed as a by-product of NO3 (-) assimilation. Additional experiments reveal NasT is required for NO3 (-)-responsive expression of the narK-bjgb-flp-nasC transcriptional unit and the nirA gene and that NasS is also involved in the regulatory control of this novel bipartite assimilatory NO3 (-)/NO2 (-) reductase pathway. PMID:26564204

  15. Sequence Analysis of Insecticide Action and Detoxification-Related Genes in the Insect Pest Natural Enemy Pardosa pseudoannulata.

    Science.gov (United States)

    Meng, Xiangkun; Zhang, Yixi; Bao, Haibo; Liu, Zewen

    2015-01-01

    The pond wolf spider Pardosa pseudoannulata, an important natural predatory enemy of rice planthoppers, is found widely distributed in paddy fields. However, data on the genes involved in insecticide action, detoxification, and response are very limited for P. pseudoannulata, which inhibits the development and appropriate use of selective insecticides to control insect pests on rice. We used transcriptome construction from adult spider cephalothoraxes to analyze and manually identify genes enconding metabolic enzymes and target receptors related to insecticide action and detoxification, including 90 cytochrome P450s, 14 glutathione S-transferases (GSTs), 17 acetylcholinesterases (AChEs), 17 nicotinic acetylcholine receptors (nAChRs), and 17 gamma-aminobutyric acid (GABA) receptors, as well as 12 glutamate-gated chloride channel (GluCl) unigenes. Sequence alignment and phylogenetic analysis revealed the different subclassifications of P450s and GSTs, some important sequence diversities in nAChRs and GABA receptors, polymorphism in AChEs, and high similarities in GluCls. For P450s in P. pseudoannulata, the number of unigenes belonging to the CYP2 clade was much higher than that in CYP3 and CYP4 clades. The results differed from insects in which most P450 genes were in CYP3 and CYP4 clades. For GSTs, most unigenes belonged to the delta and sigma classes, and no epsilon GST class gene was found, which differed from the findings for insects and acarina. Our results will be useful for studies on insecticide action, selectivity, and detoxification in the spider and other related animals, and the sequence differences in target genes between the spider and insects will provide important information for the design of selective insecticides. PMID:25923714

  16. Sequence Analysis of Insecticide Action and Detoxification-Related Genes in the Insect Pest Natural Enemy Pardosa pseudoannulata.

    Directory of Open Access Journals (Sweden)

    Xiangkun Meng

    Full Text Available The pond wolf spider Pardosa pseudoannulata, an important natural predatory enemy of rice planthoppers, is found widely distributed in paddy fields. However, data on the genes involved in insecticide action, detoxification, and response are very limited for P. pseudoannulata, which inhibits the development and appropriate use of selective insecticides to control insect pests on rice. We used transcriptome construction from adult spider cephalothoraxes to analyze and manually identify genes enconding metabolic enzymes and target receptors related to insecticide action and detoxification, including 90 cytochrome P450s, 14 glutathione S-transferases (GSTs, 17 acetylcholinesterases (AChEs, 17 nicotinic acetylcholine receptors (nAChRs, and 17 gamma-aminobutyric acid (GABA receptors, as well as 12 glutamate-gated chloride channel (GluCl unigenes. Sequence alignment and phylogenetic analysis revealed the different subclassifications of P450s and GSTs, some important sequence diversities in nAChRs and GABA receptors, polymorphism in AChEs, and high similarities in GluCls. For P450s in P. pseudoannulata, the number of unigenes belonging to the CYP2 clade was much higher than that in CYP3 and CYP4 clades. The results differed from insects in which most P450 genes were in CYP3 and CYP4 clades. For GSTs, most unigenes belonged to the delta and sigma classes, and no epsilon GST class gene was found, which differed from the findings for insects and acarina. Our results will be useful for studies on insecticide action, selectivity, and detoxification in the spider and other related animals, and the sequence differences in target genes between the spider and insects will provide important information for the design of selective insecticides.

  17. Sequence Analysis of Insecticide Action and Detoxification-Related Genes in the Insect Pest Natural Enemy Pardosa pseudoannulata.

    Science.gov (United States)

    Meng, Xiangkun; Zhang, Yixi; Bao, Haibo; Liu, Zewen

    2015-01-01

    The pond wolf spider Pardosa pseudoannulata, an important natural predatory enemy of rice planthoppers, is found widely distributed in paddy fields. However, data on the genes involved in insecticide action, detoxification, and response are very limited for P. pseudoannulata, which inhibits the development and appropriate use of selective insecticides to control insect pests on rice. We used transcriptome construction from adult spider cephalothoraxes to analyze and manually identify genes enconding metabolic enzymes and target receptors related to insecticide action and detoxification, including 90 cytochrome P450s, 14 glutathione S-transferases (GSTs), 17 acetylcholinesterases (AChEs), 17 nicotinic acetylcholine receptors (nAChRs), and 17 gamma-aminobutyric acid (GABA) receptors, as well as 12 glutamate-gated chloride channel (GluCl) unigenes. Sequence alignment and phylogenetic analysis revealed the different subclassifications of P450s and GSTs, some important sequence diversities in nAChRs and GABA receptors, polymorphism in AChEs, and high similarities in GluCls. For P450s in P. pseudoannulata, the number of unigenes belonging to the CYP2 clade was much higher than that in CYP3 and CYP4 clades. The results differed from insects in which most P450 genes were in CYP3 and CYP4 clades. For GSTs, most unigenes belonged to the delta and sigma classes, and no epsilon GST class gene was found, which differed from the findings for insects and acarina. Our results will be useful for studies on insecticide action, selectivity, and detoxification in the spider and other related animals, and the sequence differences in target genes between the spider and insects will provide important information for the design of selective insecticides.

  18. Glutathione S-Transferase (GST Gene Diversity in the Crustacean Calanus finmarchicus--Contributors to Cellular Detoxification.

    Directory of Open Access Journals (Sweden)

    Vittoria Roncalli

    Full Text Available Detoxification is a fundamental cellular stress defense mechanism, which allows an organism to survive or even thrive in the presence of environmental toxins and/or pollutants. The glutathione S-transferase (GST superfamily is a set of enzymes involved in the detoxification process. This highly diverse protein superfamily is characterized by multiple gene duplications, with over 40 GST genes reported in some insects. However, less is known about the GST superfamily in marine organisms, including crustaceans. The availability of two de novo transcriptomes for the copepod, Calanus finmarchicus, provided an opportunity for an in depth study of the GST superfamily in a marine crustacean. The transcriptomes were searched for putative GST-encoding transcripts using known GST proteins from three arthropods as queries. The identified transcripts were then translated into proteins, analyzed for structural domains, and annotated using reciprocal BLAST analysis. Mining the two transcriptomes yielded a total of 41 predicted GST proteins belonging to the cytosolic, mitochondrial or microsomal classes. Phylogenetic analysis of the cytosolic GSTs validated their annotation into six different subclasses. The predicted proteins are likely to represent the products of distinct genes, suggesting that the diversity of GSTs in C. finmarchicus exceeds or rivals that described for insects. Analysis of relative gene expression in different developmental stages indicated low levels of GST expression in embryos, and relatively high expression in late copepodites and adult females for several cytosolic GSTs. A diverse diet and complex life history are factors that might be driving the multiplicity of GSTs in C. finmarchicus, as this copepod is commonly exposed to a variety of natural toxins. Hence, diversity in detoxification pathway proteins may well be key to their survival.

  19. Cadmium detoxification strategies in two phytoplankton species: Metal binding by newly synthesized thiolated peptides and metal sequestration in granules

    International Nuclear Information System (INIS)

    The aim of this study was to evaluate whether intracellular detoxification mechanisms could explain, at least partially, the different sensitivity to Cd of two freshwater green algae, Chlamydomonas reinhardtii and Pseudokirchneriella subcapitata. Subcellular Cd distribution and the synthesis of metal-binding thiolated peptides were thus examined in both algae exposed to a range of free [Cd2+] from 0.7 to 253 nM. Cadmium partitioning among five subcellular fractions (cellular debris, granules, organelles, heat-denaturable proteins - HDP, and heat-stable proteins - HSP) was determined after differential centrifugation of algal homogenates. Thiolated-peptides, phytochelatins (PCn) and precursors, were analyzed by HPLC with pre-column monobromobimane derivatization. Cadmium accumulation per cell was 2-4 times greater for C. reinhardtii than for P. subcapitata, yet C. reinhardtii was more resistant to Cd with an EC50 of 273 nM Cd2+ [244-333 nM Cd2+ CI95%]) compared to 127 nM Cd2+ [111-143 nM Cd2+ CI95%] for P. subcapitata. Although [Cd] generally increased in the organelle fractions when free [Cd2+] increased in the experimental media, their relative contributions to the total Cd cellular content decreased, suggesting that partial protection of some metal sensitive sites was achieved by the initiation of cellular detoxification mechanisms. An increase in the proportion of Cd in the granules fraction was observed for C. reinhardtii between 6 and 15 nM Cd2+ (i.e., at [Cd2+] n, but with longer oligomers for C. reinhardtii. Unknown thiolated compounds (Xn), which were not canonical or hydroxymethyl PCn, were also found in both algae but at much higher concentrations for C. reinhardtii than for P. subcapitata. This difference in thiol synthesis could also be involved in the higher Cd resistance of C. reinhardtii with respect to P. subcapitata. This study demonstrates the importance of metal detoxification strategies in explaining the Cd sensitivity of different algal species

  20. The expression of proteins involved in digestion and detoxification are regulated in Helicoverpa armigera to cope up with chlorpyrifos insecticide.

    Science.gov (United States)

    Dawkar, Vishal V; Chikate, Yojana R; More, Tushar H; Gupta, Vidya S; Giri, Ashok P

    2016-02-01

    Helicoverpa armigera is a key pest in many vital crops, which is mainly controlled by chemical strategies. To manage this pest is becoming challenging due to its ability and evolution of resistance against insecticides. Further, its subsequent spread on nonhost plant is remarkable in recent times. Hence, decoding resistance mechanism against phytochemicals and synthetic insecticides is a major challenge. The present work describes that the digestion, defense and immunity related enzymes are associated with chlorpyrifos resistance in H. armigera. Proteomic analysis of H. armigera gut tissue upon feeding on chlorpyrifos containing diet (CH) and artificial diet (AD) using nano-liquid chromatography-mass spectrometry identified upregulated 23-proteins in CH fed larvae. Database searches combined with gene ontology analysis revealed that the identified gut proteins engrossed in digestion, proteins crucial for immunity, adaptive responses to stress, and detoxification. Biochemical and quantitative real-time polymerase chain reaction analysis of candidate proteins indicated that insects were struggling to get nutrients and energy in presence of CH, while at the same time endeavoring to metabolize chlorpyrifos. Moreover, we proposed a potential processing pathway of chlorpyrifos in H. armigera gut by examining the metabolites using gas chromatography-mass spectrometry. H. armigera exhibit a range of intriguing behavioral, morphological adaptations and resistance to insecticides by regulating expression of proteins involved in digestion and detoxification mechanisms to cope up with chlorpyrifos. In these contexts, as gut is a rich repository of biological information; profound analysis of gut tissues can give clues of detoxification and resistance mechanism in insects. PMID:25284010

  1. Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation.

    Science.gov (United States)

    Mishra, Seema; Srivastava, S; Tripathi, R D; Kumar, R; Seth, C S; Gupta, D K

    2006-11-01

    Coontail (Ceratophyllum demersum L.) plants when exposed to various concentrations of Pb (1-100microM) for 1-7days, exhibited both phytotoxic and tolerance responses. The specific responses were function of concentration and duration. Plants accumulated 1748mugPbg(-1) dw after 7d which reflected its metal accumulation ability, however most of the metal (1222microgg(-1) dw, 70%) was accumulated after 1d exposure only. The toxic effect and oxidative stress caused by Pb were evident by the reduction in biomass and photosynthetic pigments and increase in malondialddehyde (MDA) content and electrical conductivity with increase in metal concentration and exposure duration. Morphological symptoms of senescence phenomena such as chlorosis and fragmentation of leaves were observed after 7d. The metal tolerance and detoxification strategy adopted by the plant was investigated with reference to antioxidant system and synthesis of phytochelatins. Protein and antioxidant enzymes viz., superoxide dismutase (SOD, EC 1.15.1.1), guaiacol peroxidase (GPX, EC 1.11.1.7) ascorbate peroxidase (APX, EC 1.11.1.11), catalase (CAT, EC 1.11.1.6) and glutathione reductase (GR, EC 1.6.4.2) showed induction at lower concentration and duration followed by decline. All enzymes except GPX showed maximum activity after 1d. An increase in cysteine, non-protein thiols (NP-SH) and glutathione (GSH) content was observed at moderate exposure conditions followed by decline. Phytochelatins (PC(2) and PC(3)) were synthesized to significant levels at 10 and 50microM Pb with concomitant decrease in GSH levels. Thus production of PCs seems important for the detoxification of metal, however it may lead to depletion of GSH and consequently oxidative stress. Results suggest that plants responded positively to moderate Pb concentrations and accumulated high amount of metal. Due to metal accumulation coupled with detoxification potential, the plant appears to have potential for its use as phytoremediator species

  2. Glutathione S-Transferase (GST) Gene Diversity in the Crustacean Calanus finmarchicus--Contributors to Cellular Detoxification.

    Science.gov (United States)

    Roncalli, Vittoria; Cieslak, Matthew C; Passamaneck, Yale; Christie, Andrew E; Lenz, Petra H

    2015-01-01

    Detoxification is a fundamental cellular stress defense mechanism, which allows an organism to survive or even thrive in the presence of environmental toxins and/or pollutants. The glutathione S-transferase (GST) superfamily is a set of enzymes involved in the detoxification process. This highly diverse protein superfamily is characterized by multiple gene duplications, with over 40 GST genes reported in some insects. However, less is known about the GST superfamily in marine organisms, including crustaceans. The availability of two de novo transcriptomes for the copepod, Calanus finmarchicus, provided an opportunity for an in depth study of the GST superfamily in a marine crustacean. The transcriptomes were searched for putative GST-encoding transcripts using known GST proteins from three arthropods as queries. The identified transcripts were then translated into proteins, analyzed for structural domains, and annotated using reciprocal BLAST analysis. Mining the two transcriptomes yielded a total of 41 predicted GST proteins belonging to the cytosolic, mitochondrial or microsomal classes. Phylogenetic analysis of the cytosolic GSTs validated their annotation into six different subclasses. The predicted proteins are likely to represent the products of distinct genes, suggesting that the diversity of GSTs in C. finmarchicus exceeds or rivals that described for insects. Analysis of relative gene expression in different developmental stages indicated low levels of GST expression in embryos, and relatively high expression in late copepodites and adult females for several cytosolic GSTs. A diverse diet and complex life history are factors that might be driving the multiplicity of GSTs in C. finmarchicus, as this copepod is commonly exposed to a variety of natural toxins. Hence, diversity in detoxification pathway proteins may well be key to their survival. PMID:25945801

  3. The structure of Aquifex aeolicus sulfide:quinone oxidoreductase, a basis to understand sulfide detoxification and respiration

    OpenAIRE

    Marcia, Marco; Ermler, Ulrich; Peng, Guohong; Michel, Hartmut

    2009-01-01

    Sulfide:quinone oxidoreductase (SQR) is a flavoprotein with homologues in all domains of life except plants. It plays a physiological role both in sulfide detoxification and in energy transduction. We isolated the protein from native membranes of the hyperthermophilic bacterium Aquifex aeolicus, and we determined its X-ray structure in the “as-purified,” substrate-bound, and inhibitor-bound forms at resolutions of 2.3, 2.0, and 2.9 Å, respectively. The structure is composed of 2 Rossmann doma...

  4. Polymorphism Of Detoxification Genes And Predisposition To The Development Of Parkinson’s Disease In Uzbek Individuals

    Directory of Open Access Journals (Sweden)

    Khanifa Khalimova

    2011-10-01

    Full Text Available According to our research, Uzbek individuals with Parkinson’s disease have high prevalence of 0/0 polymorphisms of GSTT1 and GSTM1 genes, as well as combinations of GSTT1 (0/0/GSTM1/(0/0 genotypes. These mutations are associated with an earlier debut of the disease, its mixed form, and rapid rate of progression. Determination of mutations in GSTT1 and GSTM1 genes of xenobiotic detoxification in patients with Parkinson’s disease confirms multifactorial nature of this pathology and the role of the influence of various external factors in the modification of clinical signs of disease and its prognosis.

  5. Overexpression of Catalase Enhances Benzo(a)pyrene Detoxification in Endothelial Microsomes

    Science.gov (United States)

    Yang, Fang; Yang, Hong; Ramesh, Aramandla; Goodwin, J. Shawn; Okoro, Emmanuel U.; Guo, ZhongMao

    2016-01-01

    We previously reported that overexpression of catalase upregulated xenobiotic- metabolizing enzyme (XME) expression and diminished benzo(a)pyrene (BaP) intermediate accumulation in mouse aortic endothelial cells (MAECs). Endoplasmic reticulum (ER) is the most active organelle involved in BaP metabolism. To examine the involvement of ER in catalase-induced BaP detoxification, we compared the level and distribution of XMEs, and the profile of BaP intermediates in the microsomes of wild-type and catalase transgenic endothelial cells. Our data showed that endothelial microsomes were enriched in cytochrome P450 (CYP) 1A1, CYP1B1 and epoxide hydrolase 1 (EH1), and contained considerable levels of NAD(P)H: quinone oxidoreductase-1 (NQO1) and glutathione S-transferase-pi (GSTP). Treatment of wild-type MAECs with 1μM BaP for 2 h increased the expression of microsomal CYP1A1, 1B1 and NQO1 by ~300, 64 and 116%, respectively. However, the same treatment did not significantly alter the expression of EH1 and GSTP. Overexpression of catalase did not significantly increase EH1, but upregulated BaP-induced expression of microsomal CYP1A1, 1B1, NQO1 and GSTP in the following order: 1A1>NQO1>GSTP>1B1. Overexpression of catalase did not alter the distribution of each of these enzymes in the microsomes. In contrast to our previous report showing lower level of BaP phenols versus BaP diols/diones in the whole-cell, this report demonstrated that the sum of microsomal BaP phenolic metabolites were ~60% greater than that of the BaP diols/diones after exposure of microsomes to BaP. Overexpression of catalase reduced the concentrations of microsomal BaP phenols and diols/diones by ~45 and 95%, respectively. This process enhanced the ratio of BaP phenol versus diol/dione metabolites in a potent manner. Taken together, upregulation of phase II XMEs and CYP1 proteins, but not EH1 in the ER might be the mechanism by which overexpression of catalase reduces the levels of all the BaP metabolites

  6. Transepithelial transport and enzymatic detoxification of gluten in gluten-sensitive rhesus macaques.

    Directory of Open Access Journals (Sweden)

    Michael T Bethune

    Full Text Available BACKGROUND AND AIMS: In a previous report, we characterized a condition of gluten sensitivity in juvenile rhesus macaques that is similar in many respects to the human condition of gluten sensitivity, celiac disease. This animal model of gluten sensitivity may therefore be useful toward studying both the pathogenesis and the treatment of celiac disease. Here, we perform two pilot experiments to demonstrate the potential utility of this model for studying intestinal permeability toward an immunotoxic gluten peptide and pharmacological detoxification of gluten in vivo by an oral enzyme drug candidate. METHODS: Intestinal permeability was investigated in age-matched gluten-sensitive and control macaques by using mass spectrometry to detect and quantify an orally dosed, isotope labeled 33-mer gluten peptide delivered across the intestinal epithelium to the plasma. The protective effect of a therapeutically promising oral protease, EP-B2, was evaluated in a gluten-sensitive macaque by administering a daily gluten challenge with or without EP-B2 supplementation. ELISA-based antibody assays and blinded clinical evaluations of this macaque and of an age-matched control were conducted to assess responses to gluten. RESULTS: Labeled 33-mer peptide was detected in the plasma of a gluten-sensitive macaque, both in remission and during active disease, but not in the plasma of healthy controls. Administration of EP-B2, but not vehicle, prevented clinical relapse in response to a dietary gluten challenge. Unexpectedly, a marked increase in anti-gliadin (IgG and IgA and anti-transglutaminase (IgG antibodies was observed during the EP-B2 treatment phase. CONCLUSIONS: Gluten-sensitive rhesus macaques may be an attractive resource for investigating important aspects of celiac disease, including enhanced intestinal permeability and pharmacology of oral enzyme drug candidates. Orally dosed EP-B2 exerts a protective effect against ingested gluten. Limited data

  7. Microbial detoxification of bifenthrin by a novel yeast and its potential for contaminated soils treatment.

    Directory of Open Access Journals (Sweden)

    Shaohua Chen

    Full Text Available Bifenthrin is one the most widespread pollutants and has caused potential effect on aquatic life and human health, yet little is known about microbial degradation in contaminated regions. A novel yeast strain ZS-02, isolated from activated sludge and identified as Candida pelliculosa based on morphology, API test and 18S rDNA gene analysis, was found highly effective in degrading bifenthrin over a wide range of temperatures (20-40 °C and pH (5-9. On the basis of response surface methodology (RSM, the optimal degradation conditions were determined to be 32.3 °C and pH 7.2. Under these conditions, the yeast completely metabolized bifenthrin (50 mg · L(-1 within 8 days. This strain utilized bifenthrin as the sole carbon source for growth as well as co-metabolized it in the presence of glucose, and tolerated concentrations as high as 600 mg · L(-1 with a q(max, K(s and K(i of 1.7015 day(-1, 86.2259 mg · L(-1 and 187.2340 mg · L(-1, respectively. The yeast first degraded bifenthrin by hydrolysis of the carboxylester linkage to produce cyclopropanecarboxylic acid and 2-methyl-3-biphenylyl methanol. Subsequently, 2-methyl-3-biphenylyl methanol was further transformed by biphenyl cleavage to form 4-trifluoromethoxy phenol, 2-chloro-6-fluoro benzylalcohol, and 3,5-dimethoxy phenol, resulting in its detoxification. Eventually, no persistent accumulative product was detected by gas chromatopraphy-mass spectrometry (GC-MS analysis. This is the first report of a novel pathway of degradation of bifenthrin by hydrolysis of ester linkage and cleavage of biphenyl in a microorganism. Furthermore, strain ZS-02 degraded a variety of pyrethroids including bifenthrin, cyfluthrin, deltamethrin, fenvalerate, cypermethrin, and fenpropathrin. In different contaminated soils introduced with strain ZS-02, 65-75% of the 50 mg · kg(-1 bifenthrin was eliminated within 10 days, suggesting the yeast could be a promising candidate for remediation of environments affected

  8. Biodegradation and detoxification of textile azo dyes by bacterial consortium under sequential microaerophilic/aerobic processes.

    Science.gov (United States)

    Lade, Harshad; Kadam, Avinash; Paul, Diby; Govindwar, Sanjay

    2015-01-01

    Release of textile azo dyes to the environment is an issue of health concern while the use of microorganisms has proved to be the best option for remediation. Thus, in the present study, a bacterial consortium consisting of Providencia rettgeri strain HSL1 and Pseudomonas sp. SUK1 has been investigated for degradation and detoxification of structurally different azo dyes. The consortium showed 98-99 % decolorization of all the selected azo dyes viz. Reactive Black 5 (RB 5), Reactive Orange 16 (RO 16), Disperse Red 78 (DR 78) and Direct Red 81 (DR 81) within 12 to 30 h at 100 mg L(-1) concentration at 30 ± 0.2 °C under microaerophilic, sequential aerobic/microaerophilic and microaerophilic/aerobic processes. However, decolorization under microaerophilic conditions viz. RB 5 (0.26 mM), RO 16 (0.18 mM), DR 78 (0.20 mM) and DR 81 (0.23 mM) and sequential aerobic/microaerophilic processes viz. RB 5 (0.08 mM), RO 16 (0.06 mM), DR 78 (0.07 mM) and DR 81 (0.09 mM) resulted into the formation of aromatic amines. In distinction, sequential microaerophilic/ aerobic process doesn't show the formation of amines. Additionally, 62-72 % reduction in total organic carbon content was observed in all the dyes decolorized broths under sequential microaerophilic/aerobic processes suggesting the efficacy of method in mineralization of dyes. Notable induction within the levels of azoreductase and NADH-DCIP reductase (97 and 229 % for RB 5, 55 and 160 % for RO 16, 63 and 196 % for DR 78, 108 and 258 % for DR 81) observed under sequential microaerophilic/aerobic processes suggested their critical involvements in the initial breakdown of azo bonds, whereas, a slight increase in the levels of laccase and veratryl alcohol oxidase confirmed subsequent oxidation of formed amines. Also, the acute toxicity assay with Daphnia magna revealed the nontoxic nature of the dye-degraded metabolites under sequential microaerophilic/aerobic processes. As biodegradation under sequential microaerophilic

  9. Cysteine biosynthesis, in concert with a novel mechanism, contributes to sulfide detoxification in mitochondria of Arabidopsis thaliana.

    Science.gov (United States)

    Birke, Hannah; Haas, Florian H; De Kok, Luit J; Balk, Janneke; Wirtz, Markus; Hell, Rüdiger

    2012-07-15

    In higher plants, biosynthesis of cysteine is catalysed by OAS-TL [O-acetylserine(thiol)lyase], which replaces the activated acetyl group of O-acetylserine with sulfide. The enzyme is present in cytosol, plastids and mitochondria of plant cells. The sole knockout of mitochondrial OAS-TL activity (oastlC) leads to significant reduction of growth in Arabidopsis thaliana. The reason for this phenotype is still enigmatic, since mitochondrial OAS-TL accounts only for approximately 5% of total OAS-TL activity. In the present study we demonstrate that sulfide specifically intoxicates Complex IV activity, but not electron transport through Complexes II and III in isolated mitochondria of oastlC plants. Loss of mitochondrial OAS-TL activity resulted in significant inhibition of dark respiration under certain developmental conditions. The abundance of mitochondrially encoded proteins and Fe-S cluster-containing proteins was not affected in oastlC. Furthermore, oastlC seedlings were insensitive to cyanide, which is detoxified by β-cyano-alanine synthase in mitochondria at the expense of cysteine. These results indicate that in situ biosynthesis of cysteine in mitochondria is not mandatory for translation, Fe-S cluster assembly and cyanide detoxification. Finally, we uncover an OAS-TL-independent detoxification system for sulfide in mitochondria of Arabidopsis that allows oastlC plants to cope with high sulfide levels caused by abiotic stresses.

  10. Detoxification of phytotoxic compounds by TiO2 photocatalysis in a recycling hydroponic cultivation system of asparagus.

    Science.gov (United States)

    Sunada, Kayano; Ding, Xin Geng; Utami, Melia Sandya; Kawashima, Yoko; Miyama, Yoko; Hashimoto, Kazuhito

    2008-06-25

    TiO 2 photocatalytic decomposition and detoxification of phytotoxic compounds released by the roots of asparagus ( Asparagus officinalis L.) were investigated from the viewpoint of conservation-oriented cultivation. The phytotoxically active fraction was extracted either from dried asparagus roots or from the recycled nutrient solution of an asparagus hydroponic cultivation system. We found that the phytotoxic activity gradually decreased in the fraction with TiO 2 powder under irradiation with ultraviolet (UV) light at an intensity of 1.0 mW/cm (2). The growth of asparagus plants under actual cultivation conditions was also investigated by comparing asparagus grown in a hydroponic system where recycled waste nutrient solution was photocatalytically treated with solar light and a system with untreated recycled waste nutrient solution. The results showed, as measured by growth indices such as stem length and stem thickness, that asparagus growth in the photocatalytically treated system was superior to the untreated one. Furthermore, the yield of asparagus spears was 1.6-fold greater in the photocatalytically treated system, demonstrating the detoxification effect on the phytotoxic compounds and also the killing effect on pathogenic microorganisms.

  11. Identification of essential histidine residues involved in heme binding and Hemozoin formation in heme detoxification protein from Plasmodium falciparum.

    Science.gov (United States)

    Nakatani, Keisuke; Ishikawa, Haruto; Aono, Shigetoshi; Mizutani, Yasuhisa

    2014-01-01

    Malaria parasites digest hemoglobin within a food vacuole to supply amino acids, releasing the toxic product heme. During the detoxification, toxic free heme is converted into an insoluble crystalline form called hemozoin (Hz). Heme detoxification protein (HDP) in Plasmodium falciparum is one of the most potent of the hemozoin-producing enzymes. However, the reaction mechanisms of HDP are poorly understood. We identified the active site residues in HDP using a combination of Hz formation assay and spectroscopic characterization of mutant proteins. Replacement of the critical histidine residues His122, His172, His175, and His197 resulted in a reduction in the Hz formation activity to approximately 50% of the wild-type protein. Spectroscopic characterization of histidine-substituted mutants revealed that His122 binds heme and that His172 and His175 form a part of another heme-binding site. Our results show that the histidine residues could be present in the individual active sites and could be ligated to each heme. The interaction between heme and the histidine residues would serve as a molecular tether, allowing the proper positioning of two hemes to enable heme dimer formation. The heme dimer would act as a seed for the crystal growth of Hz in P. falciparum. PMID:25138161

  12. Biodegradation and detoxification potential of rotating biological contactor (RBC) with Irpex lacteus for remediation of dye-containing wastewater.

    Science.gov (United States)

    Malachova, Katerina; Rybkova, Zuzana; Sezimova, Hana; Cerven, Jiri; Novotny, Cenek

    2013-12-01

    Use of fungal organisms in rotating biological contactors (RBC) for bioremediation of liquid industrial wastes has so far been limited in spite of their significant biodegradation potential. The purpose was to investigate the power of RBC using Irpex lacteus for decolorization and detoxification of industrial dyes and dyeing textile liquors. Recalcitrant dye Methylene Blue (150 mg L(-1)) was decolorized within 70 days, its mutagenicity removed, and the biological toxicity decreased more than 10-fold. I. lacteus biofilm in the RBC completely decolorized within 26 and 47 days dyeing liquors containing disperse or reactive dyes adjusted to pH4.5 and 5-fold diluted with the growth medium, respectively. Their respective biological toxicity values were reduced 10- to 10(4)-fold in dependence of the test used. A battery of toxicity tests comprising Vibrio fisheri, Lemna minor and Sinapis alba was efficient to monitor the toxicity of textile dyes and wastewaters. Strong decolorization and detoxification power of RBC using I. lacteus biofilms was demonstrated.

  13. Investigation of Direct Causes of Drug Relapse and Abstainers' Demands in a Compulsive Detoxification Center in Wuhan City of China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To identify the direct causes of drug relapse and abstainers' demand,and to develop programs for the prevention of dmg relapse.Methods Abstainers in a Compulsive Detoxification Center in Wuhan City,capital of Hubei Province were randomly selected. An investigation on the direct causes of drug relapse and abstainers' demands was conducted with multiple-choice questionnaires and face to face interviews. Data were analyzed with SPSS 12.0.Results The direct causes leading to drug relapse included:temptation to use drug again by themselves or by their drug mates,seeking pleasure and ecstasy from drug use,relatively well off living,mental stress,irritation,demoralization,family conflicts,unemployment,feeling distrusted by the family,lack of care and love from the family,and discrimination by others.abstainers' demands after detoxification and returning to the society included:care and support from the family,employment assistance,changing living environment,understanding by others,support from the society,and keeping far away from drugs.Conclusions Environmental factors are the direct causes of drug relapse,and negative irritation is its predisposing causes. Leaving former residence,more care and help given by both the family and the society and raising their overall quality of life are the demands of abstainers.

  14. Identification of transcriptome involved in atrazine detoxification and degradation in alfalfa (Medicago sativa) exposed to realistic environmental contamination.

    Science.gov (United States)

    Zhang, Jing Jing; Lu, Yi Chen; Zhang, Shu Hao; Lu, Feng Fan; Yang, Hong

    2016-08-01

    Plants are constantly exposed to a variety of toxic compounds (or xenobiotics) such as pesticides (or herbicides). Atrazine (ATZ) as herbicide has become one of the environmental contaminants due to its intensive use during crop production. Plants have evolved strategies to cope with the adverse impact of ATZ. However, the mechanism for ATZ degradation and detoxification in plants is largely unknown. Here we employed a global RNA-sequencing (RNA-Seq) strategy to dissect transcriptome variation in alfalfa (Medicago sativa) exposed to ATZ. Four libraries were constructed including Root-ATZ (root control, ATZ-free), Shoot-ATZ, Root+ATZ (root treated with ATZ) and Shoot+ATZ. Hierarchical clustering was performed to display the expression patterns for all differentially expressed genes (DEGs) under ATZ exposure. Transcripts involved in ATZ detoxification, stress responses (e.g. oxidation and reduction, conjugation and hydrolytic reactions), and regulations of cysteine biosynthesis were identified. Several genes encoding glycosyltransferases, glutathione S-transferases or ABC transporters were up-regulated notably. Also, many other genes involved in oxidation-reduction, conjugation, and hydrolysis for herbicide degradation were differentially expressed. These results suggest that ATZ in alfalfa can be detoxified or degraded through different pathways. The expression patterns of some DEGs by high-throughput sequencing were well confirmed by qRT-PCR. Our results not only highlight the transcriptional complexity in alfalfa exposed to ATZ but represent a major improvement for analyzing transcriptional changes on a large scale as well. PMID:27092973

  15. Membrane phospholipid augments cytochrome P4501a enzymatic activity by modulating structural conformation during detoxification of xenobiotics.

    Directory of Open Access Journals (Sweden)

    Manik C Ghosh

    Full Text Available Cytochrome P450 is a superfamily of membrane-bound hemoprotein that gets involved with the degradation of xenobiotics and internal metabolites. Accumulated body of evidence indicates that phospholipids play a crucial role in determining the enzymatic activity of cytochrome P450 in the microenvironment by modulating its structure during detoxification; however, the structure-function relationship of cytochrome P4501A, a family of enzymes responsible for degrading lipophilic aromatic hydrocarbons, is still not well defined. Inducibility of cytochrome P4501A in cultured catfish hepatocytes in response to carbofuran, a widely used pesticide around the world, was studied earlier in our laboratory. In this present investigation, we observed that treating catfish with carbofuran augmented total phospholipid in the liver. We examined the role of phospholipid on the of cytochrome P4501A-marker enzyme which is known as ethoxyresorufin-O-deethylase (EROD in the context of structure and function. We purified the carbofuran-induced cytochrome P4501A protein from catfish liver. Subsequently, we examined the enzymatic activity of purified P4501A protein in the presence of phospholipid, and studied how the structure of purified protein was influenced in the phospholipid environment. Membrane phospholipid appeared to accelerate the enzymatic activity of EROD by changing its structural conformation and thus controlling the detoxification of xenobiotics. Our study revealed the missing link of how the cytochrome P450 restores its enzymatic activity by changing its structural conformation in the phospholipid microenvironment.

  16. Insight of EDX analysis and EFTEM: are spherocrystals located in Strombidae digestive gland implied in detoxification of trace metals?

    Science.gov (United States)

    Volland, Jean-Marie; Lechaire, Jean-Pierre; Frebourg, Ghislaine; Aranda, Dalila Aldana; Ramdine, Gaëlle; Gros, Olivier

    2012-04-01

    Digestive tubules of Strombidae are composed by three cell types: digestive cells, vacuolated cells, and crypt cells. The last one is characterized by the presence of intracellular granules identified as spherocrystals. Such structures are known to occur in basophilic cells of gastropod digestive gland, where they are supposed to be involved in the regulation of some minerals and in detoxification. In this study, energy-dispersive X-ray analysis (EDX) and energy filtered transmission electron microscopy (EFTEM) were used to determine the elemental content of spherocrystals in two Strombidae, Strombus gigas and Strombus pugilis. In freshly collected individuals of both species, the following elements were detected: Ca, Fe, Mg, P, and Zn. Aluminum and Mn were also detected in S. gigas. Their presence in spherocrystals indicates that, in Strombidae, spherocrystals are involved in the regulation of minerals and essential trace metals. In order to answer the question "are spherocrystals involved in nonessential trace metals scavenging?," artificial cadmium and lead exposure by both waterborne and dietary pathways was applied to S. pugilis. No evidence of cadmium (Cd(NO(3))(2)) or lead (Pb(NO(3))(2)) provided by food was found in spherocrystals. Cadmium provided in water (Cd(NO(3))(2) and CdCl(2)) causes structural modifications of the digestive gland; however, this element was not trapped in spherocrystals. These results suggest that spherocrystals are not involved in detoxification of such nonessential trace metals. PMID:21919125

  17. Zinc Detoxification Is Required for Full Virulence and Modification of the Host Leaf Ionome by Xylella fastidiosa.

    Science.gov (United States)

    Navarrete, Fernando; De La Fuente, Leonardo

    2015-04-01

    Zinc (Zn) is an essential element for all forms of life because it is a structural or catalytic cofactor of many proteins, but it can have toxic effects at high concentrations; thus, microorganisms must tightly regulate its levels. Here, we evaluated the role of Zn homeostasis proteins in the virulence of the xylem-limited bacterium Xylella fastidiosa, causal agent of Pierce's disease of grapevine, among other diseases. Two mutants of X. fastidiosa 'Temecula' affected in genes which regulate Zn homeostasis (zur) and Zn detoxification (czcD) were constructed. Both knockouts showed increased sensitivity to Zn at physiologically relevant concentrations and increased intracellular accumulation of this metal compared with the wild type. Increased Zn sensitivity was correlated with decreased growth in grapevine xylem sap, reduced twitching motility, and downregulation of exopolysaccharide biosynthetic genes. Tobacco plants inoculated with either knockout mutant showed reduced foliar symptoms and a much reduced (czcD) or absent (zur) modification of the leaf ionome (i.e., the mineral nutrient and trace element composition), as well as reduced bacterial populations. The results show that detoxification of Zn is crucial for the virulence of X. fastidiosa and verifies our previous findings that modification of the host leaf ionome correlates with bacterial virulence. PMID:25561271

  18. Detoxification of phytotoxic compounds by TiO2 photocatalysis in a recycling hydroponic cultivation system of asparagus.

    Science.gov (United States)

    Sunada, Kayano; Ding, Xin Geng; Utami, Melia Sandya; Kawashima, Yoko; Miyama, Yoko; Hashimoto, Kazuhito

    2008-06-25

    TiO 2 photocatalytic decomposition and detoxification of phytotoxic compounds released by the roots of asparagus ( Asparagus officinalis L.) were investigated from the viewpoint of conservation-oriented cultivation. The phytotoxically active fraction was extracted either from dried asparagus roots or from the recycled nutrient solution of an asparagus hydroponic cultivation system. We found that the phytotoxic activity gradually decreased in the fraction with TiO 2 powder under irradiation with ultraviolet (UV) light at an intensity of 1.0 mW/cm (2). The growth of asparagus plants under actual cultivation conditions was also investigated by comparing asparagus grown in a hydroponic system where recycled waste nutrient solution was photocatalytically treated with solar light and a system with untreated recycled waste nutrient solution. The results showed, as measured by growth indices such as stem length and stem thickness, that asparagus growth in the photocatalytically treated system was superior to the untreated one. Furthermore, the yield of asparagus spears was 1.6-fold greater in the photocatalytically treated system, demonstrating the detoxification effect on the phytotoxic compounds and also the killing effect on pathogenic microorganisms. PMID:18500814

  19. Induced thiacloprid insensitivity in honeybees (Apis mellifera L.) is associated with up-regulation of detoxification genes.

    Science.gov (United States)

    Alptekin, S; Bass, C; Nicholls, C; Paine, M J I; Clark, S J; Field, L; Moores, G D

    2016-04-01

    Honey bees, Apis mellifera, are markedly less sensitive to neonicotinoid insecticides containing a cyanoimino pharmacophore than to those with a nitroimino group. Although previous work has suggested that this results from enhanced metabolism of the former by detoxification enzymes, the specific enzyme(s) involved remain to be characterized. In this work, a pretreatment of honey bees with a sublethal dose of thiacloprid resulted in induced insensitivity to the same compound immediately following thiacloprid feeding. A longer pretreatment time resulted in no, or increased, sensitivity. Transcriptome profiling, using microarrays, identified a number of genes encoding detoxification enzymes that were over-expressed significantly in insecticide-treated bees compared with untreated controls. These included five P450s, CYP6BE1, CYP305D1, CYP6AS5, CYP315A1, CYP301A1, and a carboxyl/cholinesterase (CCE) CCE8. Four of these P450s were functionally expressed in Escherichia coli and their ability to metabolize thiacloprid examined by liquid chromatography-mass spectrometry (LC-MS) analysis. PMID:26790026

  20. A mollusk VDR/PXR/CAR-like (NR1J) nuclear receptor provides insight into ancient detoxification mechanisms.

    Science.gov (United States)

    Cruzeiro, Catarina; Lopes-Marques, Mónica; Ruivo, Raquel; Rodrigues-Oliveira, Nádia; Santos, Miguel M; Rocha, Maria João; Rocha, Eduardo; Castro, L Filipe C

    2016-05-01

    The origin and diversification of the metazoan endocrine systems represents a fundamental research issue in biology. Nuclear receptors are critical components of these systems. A particular group named VDR/PXR/CAR (NR1I/J) is central in the mediation of detoxification responses. While orthologues have been thoroughly characterized in vertebrates, a sparse representation is currently available for invertebrates. Here, we provide the first isolation and characterization of a lophotrochozoan protostome VDR/PXR/CAR nuclear receptor (NR1J), in the estuarine bivalve the peppery furrow shell (Scrobicularia plana). Using a reporter gene assay, we evaluated the xenobiotic receptor plasticity comparing the human PXR with the S. plana NR1Jβ. Our results show that the molluscan receptor responds to a natural toxin (okadaic acid) in a similar fashion to that reported for other invertebrates. In contrast, the pesticide esfenvalerate displayed a unique response, since it down regulated transactivation at higher concentrations, while for triclosan no response was observed. Additionally, we uncovered lineage specific gene duplications and gene loss in the gene group encoding NRs in protostomes with likely impacts on the complexity of detoxification mechanisms across different phyla. Our findings pave the way for the development of multi-specific sensor tools to screen xenobiotic compounds acting via the NR1I/J group.

  1. Copper chaperone Atox1 interacts with the metal-binding domain of Wilson's disease protein in cisplatin detoxification.

    Science.gov (United States)

    Dolgova, Nataliya V; Nokhrin, Sergiy; Yu, Corey H; George, Graham N; Dmitriev, Oleg Y

    2013-08-15

    Human copper transporters ATP7B (Wilson's disease protein) and ATP7A (Menkes' disease protein) have been implicated in tumour resistance to cisplatin, a widely used anticancer drug. Cisplatin binds to the copper-binding sites in the N-terminal domain of ATP7B, and this binding may be an essential step of cisplatin detoxification involving copper ATPases. In the present study, we demonstrate that cisplatin and a related platinum drug carboplatin produce the same adduct following reaction with MBD2 [metal-binding domain (repeat) 2], where platinum is bound to the side chains of the cysteine residues in the CxxC copper-binding motif. This suggests the same mechanism for detoxification of both drugs by ATP7B. Platinum can also be transferred to MBD2 from copper chaperone Atox1, which was shown previously to bind cisplatin. Binding of the free cisplatin and reaction with the cisplatin-loaded Atox1 produce the same protein-bound platinum intermediate. Transfer of platinum along the copper-transport pathways in the cell may serve as a mechanism of drug delivery to its target in the cell nucleus, and explain tumour-cell resistance to cisplatin associated with the overexpression of copper transporters ATP7B and ATP7A.

  2. Identification of transcriptome involved in atrazine detoxification and degradation in alfalfa (Medicago sativa) exposed to realistic environmental contamination.

    Science.gov (United States)

    Zhang, Jing Jing; Lu, Yi Chen; Zhang, Shu Hao; Lu, Feng Fan; Yang, Hong

    2016-08-01

    Plants are constantly exposed to a variety of toxic compounds (or xenobiotics) such as pesticides (or herbicides). Atrazine (ATZ) as herbicide has become one of the environmental contaminants due to its intensive use during crop production. Plants have evolved strategies to cope with the adverse impact of ATZ. However, the mechanism for ATZ degradation and detoxification in plants is largely unknown. Here we employed a global RNA-sequencing (RNA-Seq) strategy to dissect transcriptome variation in alfalfa (Medicago sativa) exposed to ATZ. Four libraries were constructed including Root-ATZ (root control, ATZ-free), Shoot-ATZ, Root+ATZ (root treated with ATZ) and Shoot+ATZ. Hierarchical clustering was performed to display the expression patterns for all differentially expressed genes (DEGs) under ATZ exposure. Transcripts involved in ATZ detoxification, stress responses (e.g. oxidation and reduction, conjugation and hydrolytic reactions), and regulations of cysteine biosynthesis were identified. Several genes encoding glycosyltransferases, glutathione S-transferases or ABC transporters were up-regulated notably. Also, many other genes involved in oxidation-reduction, conjugation, and hydrolysis for herbicide degradation were differentially expressed. These results suggest that ATZ in alfalfa can be detoxified or degraded through different pathways. The expression patterns of some DEGs by high-throughput sequencing were well confirmed by qRT-PCR. Our results not only highlight the transcriptional complexity in alfalfa exposed to ATZ but represent a major improvement for analyzing transcriptional changes on a large scale as well.

  3. GENETIC DELETION OF DETOXIFIC ENZYME GSTM1 AND GSTT1 AS A HOST SUSCEPTIBLE FACTOR FOR NASOPHARYNGEAL CARCINOMA

    Institute of Scientific and Technical Information of China (English)

    邓卓霖; 韦义萍; 马韵

    2004-01-01

    Objective: To study the gene polymorphisms of GSTT1 and GSTM1 in nasopharyngeal carcinoma (NPC) patients and controls in an incidental area to evaluate the relationship between specific genotype and genotype combinations of these polymorphisms with the risk of NPC.Methods: Cases and controls all came from the Southwestern Guangxi. DNAs were extracted from their WBC. PCR technique was used to calculate the deletion rate of the two detoxific enzyme genes. Results: In this high risk area of NPC, the residents had high level deletion rates of 47.4% (64/135) M1 and T1 40.7% (55/135). The deletion rates were even higher in NPC patients, 61.5% (56/91) for M1 and 59.3% (54/91) for T1 respectively. There were statistical significances compared with control, P<0.05 and P<0.01 for M1 and T1 respectively. The difference was more significant in terms of combined M1 and T1 deletion between patients and controls x2=12.533, P=0.002.Conclusion: The combined deletion of detoxific enzyme genes GSTM1 and GSTT1 may be an important genetic susceptible factor for NPC in Guangxi.

  4. Stable overexpression of arginase I and ornithine transcarbamylase in HepG2 cells improves its ammonia detoxification.

    Science.gov (United States)

    Tang, Nanhong; Wang, Yan; Wang, Xiaoqian; Zhou, Liangyi; Zhang, Feiyuan; Li, Xiujin; Chen, Yanlin

    2012-02-01

    HepG2 is an immortalized human hepatoma cell line that has been used for research into bioartificial liver systems. However, a low level of ammonia detoxification is its biggest drawback. In this work, a recombinant HepG2 cell line with stable overexpression of human arginase I (hArgI) and human ornithine transcarbamylase (hOTC), HepG2/(hArgI + hOTC)4, was developed using a eukaryotic dual gene expression vector pBudCE4.1. (1) The hArgI and hOTC enzymatic activity in HepG2/(hArgI + hOTC)4 cells were higher than in the control cells. (2) The ammonia tolerance capacity of HepG2/(hArgI + hOTC)4 cells was three times that of HepG2 cells and 37.5% of that of primary human hepatocytes in cultivation. In the experiment of ammonia detoxification, HepG2/(hArgI + hOTC)4 cells produced 3.1 times more urea (at 180 mM NH(4) Cl) and 3.1 times more glutamine (at 120 mM NH(4) Cl and 15 mM glutamate) than HepG2 cells, reaching 63.1% and 36.0% that of primary human hepatocytes, respectively. (3) The hArgI and hOTC overexpression did not influence the growth of HepG2 cells and also promoted the expression of other ammonia detoxification associated proteins including glutamine synthetase (GS), arginase II (ArgII), arginosuccinate synthase (ASS) and arginosuccinate lyase (ASL) in HepG2 cells. This work illustrates that the modification reported here made significant progress in the improvement of HepG2 cell function and the HepG2/(hArgI + hOTC)4 cells will provide a better selection for the application of bioartificial liver system. PMID:21938740

  5. Cadmium detoxification strategies in two phytoplankton species: Metal binding by newly synthesized thiolated peptides and metal sequestration in granules

    Energy Technology Data Exchange (ETDEWEB)

    Lavoie, Michel; Le Faucheur, Severine [Institut National de la Recherche Scientifique-Eau, Terre et Environnement (INRS-ETE), 490 de la Couronne, G1K 9A9 Quebec (Canada); Fortin, Claude [Institut National de la Recherche Scientifique-Eau, Terre et Environnement (INRS-ETE), 490 de la Couronne, G1K 9A9 Quebec (Canada)], E-mail: fortincl@ete.inrs.ca; Campbell, Peter G.C. [Institut National de la Recherche Scientifique-Eau, Terre et Environnement (INRS-ETE), 490 de la Couronne, G1K 9A9 Quebec (Canada)

    2009-04-09

    The aim of this study was to evaluate whether intracellular detoxification mechanisms could explain, at least partially, the different sensitivity to Cd of two freshwater green algae, Chlamydomonas reinhardtii and Pseudokirchneriella subcapitata. Subcellular Cd distribution and the synthesis of metal-binding thiolated peptides were thus examined in both algae exposed to a range of free [Cd{sup 2+}] from 0.7 to 253 nM. Cadmium partitioning among five subcellular fractions (cellular debris, granules, organelles, heat-denaturable proteins - HDP, and heat-stable proteins - HSP) was determined after differential centrifugation of algal homogenates. Thiolated-peptides, phytochelatins (PC{sub n}) and precursors, were analyzed by HPLC with pre-column monobromobimane derivatization. Cadmium accumulation per cell was 2-4 times greater for C. reinhardtii than for P. subcapitata, yet C. reinhardtii was more resistant to Cd with an EC{sub 50} of 273 nM Cd{sup 2+} [244-333 nM Cd{sup 2+} CI{sub 95%}]) compared to 127 nM Cd{sup 2+} [111-143 nM Cd{sup 2+} CI{sub 95%}] for P. subcapitata. Although [Cd] generally increased in the organelle fractions when free [Cd{sup 2+}] increased in the experimental media, their relative contributions to the total Cd cellular content decreased, suggesting that partial protection of some metal sensitive sites was achieved by the initiation of cellular detoxification mechanisms. An increase in the proportion of Cd in the granules fraction was observed for C. reinhardtii between 6 and 15 nM Cd{sup 2+} (i.e., at [Cd{sup 2+}] < the threshold for growth inhibition) suggesting the involvement of granules in protecting against the occurrence of toxic effects in C. reinhardtii. Both species also produced also high levels of PC{sub n}, but with longer oligomers for C. reinhardtii. Unknown thiolated compounds (X{sub n}), which were not canonical or hydroxymethyl PC{sub n}, were also found in both algae but at much higher concentrations for C. reinhardtii than

  6. ACTIVATION AND DETOXIFICATION OF UICC CROCIDOLITE - THE EFFECT OF CONVERSION OF OXIDATION-STATE OF IRON ON THE TOXICITY OF THE FIBERS

    NARCIS (Netherlands)

    GULUMIAN, M; POLLAK, H

    1993-01-01

    Detoxification of crocidolite, an asbestiform riebeckite with a coating of ferric salt, converted some of the ferrous ions into ferric ions and therefore decreased the activity of the fibres to catalyse the reduction of oxygen and hydrogen peroxide. The H-2-activation of crocidolite fibres on the ot

  7. A computational study of detoxification of lewisite warfare agents by British anti-lewisite: catalytic effects of water and ammonia on reaction mechanism and kinetics.

    Science.gov (United States)

    Sahu, Chandan; Pakhira, Srimanta; Sen, Kaushik; Das, Abhijit K

    2013-04-25

    trans-2-Chlorovinyldichloroarsine (lewisite, L agent, Lew-I) acts as a blistering agents. British anti-lewisite (BAL, 2,3-dimercaptopropanol) has long been used as an L-agent antidote. The main reaction channels for the detoxification proceed via breaking of As-Cl bonds and formation of As-S bonds, producing stable, nontoxic ring product [(2-methyl-1,3,2-dithiarsolan-4-yl)methanol]. M06-2X/GENECP calculations have been carried out to establish the enhanced rate of detoxification mechanism in the presence of NH3 and H2O catalysts in both gas and solvent phases, which has been modeled by use of the polarized continuum model (PCM). In addition, natural bond orbital (NBO) and atoms in molecules (AIM) analysis have been performed to characterize the intermolecular hydrogen bonding in the transition states. Transition-state theory (TST) calculation establishes that the rates of NH3-catalyzed (2.88 × 10(-11) s(-1)) and H2O-catalyzed (2.42 × 10(-11) s(-1)) reactions are reasonably faster than the uncatalyzed detoxification (5.44 × 10(-13) s(-1)). The results obtained by these techniques give new insight into the mechanism of the detoxification process, identification and thermodynamic characterization of the relevant stationary species, the proposal of alternative paths on modeled potential energy surfaces for uncatalyzed reaction, and the rationalization of the mechanistic role played by catalysts and solvents. PMID:23540856

  8. Dilute sulfuric acid pretreatment of corn stover for enzymatic hydrolysis and efficient ethanol production by recombinant Escherichia coli FBR5 without detoxification

    Science.gov (United States)

    A pretreatment strategy for dilute H2SO4 pretreatment of corn stover was developed for the purpose of reducing the generation of inhibitory substances during pretreatment so that a detoxification step is not required prior to fermentation while maximizing the sugar yield. We have optimized dilute su...

  9. Differential antioxidant defense and detoxification mechanisms in photodynamically stressed rice plants treated with the deregulators of porphyrin biosynthesis, 5-aminolevulinic acid and oxyfluorfen.

    Science.gov (United States)

    Phung, Thu-Ha; Jung, Sunyo

    2015-04-01

    This study focuses on differential molecular mechanisms of antioxidant and detoxification systems in rice plants under two different types of photodynamic stress imposed by porphyrin deregulators, 5-aminolevulinic acid (ALA) and oxyfluorfen (OF). The ALA-treated plants with white necrosis exhibited a greater decrease in photochemical quantum efficiency, Fv/Fm, as well as a greater increase in activity of superoxide dismutase, compared to the OF-treated plants. By contrast, the brown necrosis in OF-treated plants resulted in not only more widely dispersed H2O2 production and greater increases in H2O2-decomposing enzymes, catalase and peroxidase, but also lower ascorbate redox state. In addition, ALA- and OF-treated plants markedly up-regulated transcript levels of genes involved in detoxification processes including transport and movement, cellular homeostasis, and xenobiotic conjugation, with prominent up-regulation of serine/threonine kinase and chaperone only in ALA-treated plants. Our results demonstrate that different photodynamic stress imposed by ALA and OF developed differential actions of antioxidant enzymes and detoxification. Particularly, detoxification system may play potential roles in plant protection against photodynamic stress imposed by porphyrin deregulators, thereby contributing to alleviation of photodynamic damage. PMID:25735982

  10. One-Step Synthesis of Hollow Titanate (Sr/Ba Ceramic Fibers for Detoxification of Nerve Agents

    Directory of Open Access Journals (Sweden)

    Satya R. Agarwal

    2012-01-01

    Full Text Available Poly(vinyl pyrrolidone(PVP/(strontium/barium acetate/titanium isopropoxide composite fibers were prepared by electrospinning technique via sol-gel process. Diameters of fibers prepared by calcinations of PVP composite fibers were 80–140 nm (solid and 1.2-2.2 μm (hollow fibers prepared by core-shell method. These fibers were characterized using scanning electron microscope (SEM, X-ray diffraction (XRD, and transmission electron microscope (TEM analytical techniques. XRD results showed better crystalline nature of the materials when calcined at higher temperatures. SEM and TEM results clearly showed the formation of hollow submicrometer tubes. The surface area of the samples determined by BET analysis indicated that hollow fibers have ~20% higher surface area than solid fibers. The UV studies indicate better detoxification properties of the hollow fibers compared to solid fibers.

  11. Exploring metal detoxification and accumulation potential during vermicomposting of Tea factory coal ash: sequential extraction and fluorescence probe analysis.

    Science.gov (United States)

    Goswami, Linee; Pratihar, Sanjay; Dasgupta, Suman; Bhattacharyya, Pradip; Mudoi, Pronab; Bora, Jayanta; Bhattacharya, Satya Sundar; Kim, Ki Hyun

    2016-01-01

    Metal contamination from coal ashes (CAs) is widely recognized as a significant environmental concern. To learn more about metal detoxification and accumulation potential of earthworm species, metal-rich tea factory coal ashes (TFCA) were fed to Eisenia fetida and Lampito mauritii by employing a fluorescent tag detection method. Fascinatingly, on feeding fluorescence probed Zn and Cd along with cow dung to Eisenia fetida, the detection of the gut-proteins with a molecular mass higher than 100 kDa was a distinct evidence of metal binding. Significant increases were observed in the content of humified organic C [humic acid (HAC) and fulvic acid C (FAC)] and degree of humification during vermicomposting. Concurrently, considerably large amount of toxic metals (Cr, Cd, Pb, and Zn) was transformed from exchangeable to recalcitrant (organic matter and mineral bound) fractions. Moreover, total metal concentrations were reduced with high removal efficiency upon vermicomposting. PMID:27456167

  12. Biodegradation and detoxification of melanoidin from distillery effluent using an aerobic bacterial strain SAG5 of Alcaligenes faecalis.

    Science.gov (United States)

    Santal, Anita Rani; Singh, N P; Saharan, Baljeet Singh

    2011-10-15

    Distillery effluent retains very dark brown color even after anaerobic treatment due to presence of various water soluble, recalcitrant and coloring compounds mainly melanoidins. In laboratory conditions, melanoidin decolorizing bacteria was isolated and optimized the cultural conditions at various incubation temperatures, pH, carbon sources, nitrogen sources and combined effect of both carbon and nitrogen sources. The optimum decolorization (72.6 ± 0.56%) of melanoidins was achieved at pH 7.5 and temperature 37 °C on 5th day of cultivation. The toxicity evaluation with mung bean (Vigna radiata) revealed that the raw distillery effluent was environmentally highly toxic as compared to biologically treated distillery effluent, which indicated that the effluent after bacterial treatment is environmentally safe. This proves to be novel biological treatment technique for biodegradation and detoxification of melanoidin from distillery effluent using the bacterial strain SAG(5). PMID:21880418

  13. Exploring metal detoxification and accumulation potential during vermicomposting of Tea factory coal ash: sequential extraction and fluorescence probe analysis

    Science.gov (United States)

    Goswami, Linee; Pratihar, Sanjay; Dasgupta, Suman; Bhattacharyya, Pradip; Mudoi, Pronab; Bora, Jayanta; Bhattacharya, Satya Sundar; Kim, Ki Hyun

    2016-07-01

    Metal contamination from coal ashes (CAs) is widely recognized as a significant environmental concern. To learn more about metal detoxification and accumulation potential of earthworm species, metal-rich tea factory coal ashes (TFCA) were fed to Eisenia fetida and Lampito mauritii by employing a fluorescent tag detection method. Fascinatingly, on feeding fluorescence probed Zn and Cd along with cow dung to Eisenia fetida, the detection of the gut-proteins with a molecular mass higher than 100 kDa was a distinct evidence of metal binding. Significant increases were observed in the content of humified organic C [humic acid (HAC) and fulvic acid C (FAC)] and degree of humification during vermicomposting. Concurrently, considerably large amount of toxic metals (Cr, Cd, Pb, and Zn) was transformed from exchangeable to recalcitrant (organic matter and mineral bound) fractions. Moreover, total metal concentrations were reduced with high removal efficiency upon vermicomposting.

  14. Detoxification of corn stover prehydrolyzate by trialkylamine extraction to improve the ethanol production with Pichia stipitis CBS 5776.

    Science.gov (United States)

    Zhu, Junjun; Yong, Qiang; Xu, Yong; Yu, Shiyuan

    2011-01-01

    In order to realize the separated ethanol fermentation of glucose and xylose, prehydrolysis of corn stover with sulfuric acid at moderate temperature was applied, while inhibitors were produced inevitably. A complex extraction was adopted to detoxify the prehydrolyzate before fermentation to ethanol with Pichia stipitis CBS 5776. The best proportion of mixed extractant was 30% trialkylamine-50% n-octanol -20% kerosene. Detoxification results indicated that 73.3% of acetic acid, 45.7% of 5-hydroxymethylfurfural and 100% of furfural could be removed. Compared with the undetoxified prehydrolyzate, the fermentability of the detoxified prehydrolyzate was significantly improved. After 48 h fermentation of the detoxified prehydrolyzate containing 7.80 g/l of glucose and 52.8 g/l of xylose, the sugar utilization ratio was 93.2%; the ethanol concentration reached its peak value of 21.8 g/l, which was corresponding to 82.3% of the theoretical value. PMID:20952191

  15. The role of metallothioneins, selenium and transfer to offspring in mercury detoxification in Franciscana dolphins (Pontoporia blainvillei).

    Science.gov (United States)

    Romero, M B; Polizzi, P; Chiodi, L; Das, K; Gerpe, M

    2016-08-15

    The concentrations of mercury (Hg), selenium (Se) and metallothioneins (MT) were evaluated in fetuses, calves, juveniles and adults of the endangered coastal Franciscana dolphin (Pontoporia blainvillei) from Argentina. Mercury concentrations varied among analyzed tissues (liver, kidney, muscle and brain), with liver showing the higher concentrations in all specimens. An age-dependent accumulation was found in liver, kidney and brain. No significant relationship between Hg and MT concentrations was found for all tissues analyzed. Hepatic Hg molar concentrations were positively correlated with those of Se, indicating a great affinity between these two elements. Furthermore, dark granules of HgSe were observed in Kupffer cells in the liver by electron microscopy, suggesting the role of this macrophage in the detoxification of Hg. A transfer of Hg through placenta was proved. The presence of Hg in brain in all age classes did not show concentrations associated with neurotoxicity. PMID:27210558

  16. Effect of Detoxification, Removing Stasis and Nourishing Yin Method on Corticosteroid-induced Hyperlipidemia in Patients with Systemic Lupus Erythematosus

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective: To observe the effect of TCM therapy for detoxification, removing stasis, and nourishing yin on corticosteroid-induced hyperlipemia in patients with systemic lupus erythematosus (SLE), and to investigate its mechanism. Methods: One hundred and seventy patients with SLE were randomly assigned to the integrative medicine group (IM group) and the Western medicine group (WM group), 85 in each group. Also, 30 healthy subjects selected from blood donors were enrolled in the normal control (NC) group. All patients were treated mainly with prednisone,while those in the IM group were given TCM therapy additionally, and the therapeutic course for both groups was 6 successive months. The changes of serum total cholesterol (TC), triglyceride (TG), high density lipoprotein cholesterol (HDL-C), Iow density lipoprotein cholesterol (LDL-C), very low density lipoprotein cholesterol (VLDL-C) and apolipoprotein A (ApoA) were determined and observed. A 2-year follow-up study was carried out in 16 patients of the WM group and 25 of the IM group. Results: Before treatment, no significant difference had been found among the three groups in the serum levels of lipids and lipoproteins. After the 6-month treatment, as compared with the WM group, the IM group showed lower levels of TC, TG, LDL-C, and VLDL-C (P<0.05 or P<0.01) and higher levels of HDL-C and ApoA (P<0.05). A similar effect was also shown by the follow-up study in the IM group (P<0.05 or P<0.01).Conclusion: TCM therapy for detoxification, removing stasis, and nourishing yin can effectively regulate the levels of serum lipids and lipoproteins in preventing and treating SLE patients with corticosteroidinduced hyperlipemia.

  17. Comparative bacterial degradation and detoxification of model and kraft lignin from pulp paper wastewater and its metabolites

    Science.gov (United States)

    Abhishek, Amar; Dwivedi, Ashish; Tandan, Neeraj; Kumar, Urwashi

    2015-05-01

    Continuous discharge of lignin containing colored wastewater from pulp paper mill into the environment has resulted in building up their high level in various aquatic systems. In this study, the chemical texture of kraft lignin in terms of pollution parameters (COD, TOC, BOD, etc.) was quite different and approximately twofold higher as compared to model lignin at same optical density (OD 3.7 at 465 nm) and lignin content (2000 mg/L). For comparative bacterial degradation and detoxification of model and kraft lignin two bacteria Citrobacter freundii and Serratia marcescens were isolated, screened and applied in axenic and mixed condition. Bacterial mixed culture was found to decolorize 87 and 70 % model and kraft lignin (2000 mg/L), respectively; whereas, axenic culture Citrobacter freundii and Serratia marcescens decolorized 64, 60 % model and 50, 55 % kraft lignin, respectively, at optimized condition (34 °C, pH 8.2, 140 rpm). In addition, the mixed bacterial culture also showed the removal of 76, 61 % TOC; 80, 67 % COD and 87, 65 % lignin from model and kraft lignin, respectively. High pollution parameters (like TOC, COD, BOD, sulphate) and toxic chemicals slow down the degradation of kraft lignin as compared to model lignin. The comparative GC-MS analysis has suggested that the interspecies collaboration, i.e., each bacterial strain in culture medium has cumulative enhancing effect on growth, and degradation of lignin rather than inhibition. Furthermore, toxicity evaluation on human keratinocyte cell line after bacterial treatment has supported the degradation and detoxification of model and kraft lignin.

  18. Effect of benzo[a]pyrene on detoxification and the activity of antioxidant enzymes of marine microalgae

    Science.gov (United States)

    Shen, Chen; Miao, Jingjing; Li, Yun; Pan, Luqing

    2016-04-01

    The objective of this study was to examine the effect of benzo[a]pyrene (BaP) on the detoxification and antioxidant systems of two microalgae, Isochrysis zhanjiangensis and Platymonas subcordiformis. In our study, these two algae were exposed to BaP for 4 days at three different concentrations including 0.5 μg L-1 (low), 3 μg L-1 (mid) and 18 μg L-1 (high). The activity of detoxification enzymes, ethoxyresorufin O-deethylase (EROD) and glutathione S-transferase (GST) increased in P. subcordiformis in all BaP-treated groups. In I. zhanjiangensis, the activity of these two enzymes increased at the beginning of exposure, and then decreased in the groups treated with mid- and high BaP. The activity of antioxidant enzyme superoxide dismutase (SOD) increased in I. zhanjiangensis in all BaP-treated groups, and then decreased in high BaP-treated group, while no significant change was observed in P. subcordiformis. The activity of antioxidant enzyme catalase (CAT) increased in I. zhanjiangensis and P. subcordiformis in all BaPtreated groups. The content of malondialdehyde (MDA) in Isochrysis zhanjiangensis increased first, and then decreased in high BaP-treated group, while no change occurred in P. subcordiformis. These results demonstrated that BaP significantly influenced the activity of detoxifying and antioxidant enzymes in microalgae. The metabolic related enzymes (EROD, GST and CAT) may serve as sensitive biomarkers of measuring the contamination level of BaP in marine water.

  19. Employment-based abstinence reinforcement following inpatient detoxification in HIV-positive opioid and/or cocaine-dependent patients.

    Science.gov (United States)

    Dunn, Kelly E; Fingerhood, Michael; Wong, Conrad J; Svikis, Dace S; Nuzzo, Paul; Silverman, Kenneth

    2014-02-01

    Employment-based reinforcement interventions have been used to promote abstinence from drugs among chronically unemployed injection drug users. The current study used an employment-based reinforcement intervention to promote opioid and cocaine abstinence among opioid and/or cocaine-dependent, HIV-positive participants who had recently completed a brief inpatient detoxification. Participants (n = 46) were randomly assigned to an abstinence and work group that was required to provide negative urine samples in order to enter the workplace and to earn incentives for work (n = 16), a work-only group that was permitted to enter the workplace and to earn incentives independent of drug use (n = 15), and a no-voucher control group that did not receive any incentives for working (n = 15) over a 26-week period. The primary outcome was urinalysis-confirmed opioid, cocaine, and combined opioid/cocaine abstinence. Participants were 78% male and 89% African American. Results showed no significant between-groups differences in urinalysis-verified drug abstinence or HIV risk behaviors during the 6-month intervention. The work-only group had significantly greater workplace attendance, and worked more minutes per day when compared to the no-voucher group. Several features of the study design, including the lack of an induction period, setting the threshold for entering the workplace too high by requiring immediate abstinence from several drugs, and increasing the risk of relapse by providing a brief detoxification that was not supported by any continued pharmacological intervention, likely prevented the workplace from becoming established as a reinforcer that could be used to promote drug abstinence. However, increases in workplace attendance have important implications for adult training programs. PMID:24490712

  20. Quantitatively evaluating detoxification of the hepatotoxic microcystins through the glutathione and cysteine pathway in the cyanobacteria-eating bighead carp.

    Science.gov (United States)

    He, Jun; Chen, Jun; Xie, Ping; Zhang, Dawen; Li, Guangyu; Wu, Laiyan; Zhang, Wei; Guo, Xiaochun; Li, Shangchun

    2012-07-15

    Glutathione (GSH) and cysteine (Cys) conjugation have long been recognized to be important in the detoxification of microcystins (MCs) in animal organs, however, studies quantitatively estimating this process are rare, especially those simultaneously determining multiple toxins and their metabolites. This paper, for the first time, simultaneously quantified MC-LR (leucine arginine), MC-RR (arginine arginine), MCLR-GSH/Cys and MCRR-GSH/Cys in the liver, kidney, intestine and muscle of the cyanobacteria-eating bighead carp i.p. injected with two doses of MCs using liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS). MCLR-Cys and MCRR-Cys content were much higher in kidney than in liver, intestine and muscle, suggesting the organotropism to kidney, while MCLR-GSH and MCRR-GSH were always below the detection limit. Bighead carp effectively metabolized MC-LR and MC-RR into the cysteine conjugates in kidney, as the ratios of MCLR-Cys to MC-LR and MCRR-Cys to MC-RR reached as high as 9.04 and 19.10, respectively. MC-LR and MC-RR were excreted mostly in the form of MCLR/RR-Cys rather than MCLR/RR-GSH, while MCs-GSH might act as mid-metabolites and changed to the more stable MCs-Cys rapidly. Cysteine conjugation of MCs appears to be an important biochemical mechanism for the cyanobacteria-eating fish to resist toxic cyanobacteria. A comparison of such detoxification mechanisms between fish and mammals would be interesting in the future studies. PMID:22466356

  1. Possible Roles of Plant Sulfurtransferases in Detoxification of Cyanide, Reactive Oxygen Species, Selected Heavy Metals and Arsenate

    Directory of Open Access Journals (Sweden)

    Parvin Most

    2015-01-01

    Full Text Available Plants and animals have evolved various potential mechanisms to surmount the adverse effects of heavy metal toxicity. Plants possess low molecular weight compounds containing sulfhydryl groups (-SH that actively react with toxic metals. For instance, glutathione (γ-Glu-Cys-Gly is a sulfur-containing tripeptide thiol and a substrate of cysteine-rich phytochelatins (γ-Glu-Cys2–11-Gly (PCs. Phytochelatins react with heavy metal ions by glutathione S-transferase in the cytosol and afterwards they are sequestered into the vacuole for degradation. Furthermore, heavy metals induce reactive oxygen species (ROS, which directly or indirectly influence metabolic processes. Reduced glutathione (GSH attributes as an antioxidant and participates to control ROS during stress. Maintenance of the GSH/GSSG ratio is important for cellular redox balance, which is crucial for the survival of the plants. In this context, sulfurtransferases (Str, also called rhodaneses, comprise a group of enzymes widely distributed in all phyla, paving the way for the transfer of a sulfur atom from suitable sulfur donors to nucleophilic sulfur acceptors, at least in vitro. The best characterized in vitro reaction is the transfer of a sulfane sulfur atom from thiosulfate to cyanide, leading to the formation of sulfite and thiocyanate. Plants as well as other organisms have multi-protein families (MPF of Str. Despite the presence of Str activities in many living organisms, their physiological role has not been clarified unambiguously. In mammals, these proteins are involved in the elimination of cyanide released from cyanogenic compounds. However, their ubiquity suggests additional physiological functions. Furthermore, it is speculated that a member of the Str family acts as arsenate reductase (AR and is involved in arsenate detoxification. In summary, the role of Str in detoxification processes is still not well understood but seems to be a major function in the organism.

  2. Employment-based abstinence reinforcement following inpatient detoxification in HIV-positive opioid and/or cocaine-dependent patients.

    Science.gov (United States)

    Dunn, Kelly E; Fingerhood, Michael; Wong, Conrad J; Svikis, Dace S; Nuzzo, Paul; Silverman, Kenneth

    2014-02-01

    Employment-based reinforcement interventions have been used to promote abstinence from drugs among chronically unemployed injection drug users. The current study used an employment-based reinforcement intervention to promote opioid and cocaine abstinence among opioid and/or cocaine-dependent, HIV-positive participants who had recently completed a brief inpatient detoxification. Participants (n = 46) were randomly assigned to an abstinence and work group that was required to provide negative urine samples in order to enter the workplace and to earn incentives for work (n = 16), a work-only group that was permitted to enter the workplace and to earn incentives independent of drug use (n = 15), and a no-voucher control group that did not receive any incentives for working (n = 15) over a 26-week period. The primary outcome was urinalysis-confirmed opioid, cocaine, and combined opioid/cocaine abstinence. Participants were 78% male and 89% African American. Results showed no significant between-groups differences in urinalysis-verified drug abstinence or HIV risk behaviors during the 6-month intervention. The work-only group had significantly greater workplace attendance, and worked more minutes per day when compared to the no-voucher group. Several features of the study design, including the lack of an induction period, setting the threshold for entering the workplace too high by requiring immediate abstinence from several drugs, and increasing the risk of relapse by providing a brief detoxification that was not supported by any continued pharmacological intervention, likely prevented the workplace from becoming established as a reinforcer that could be used to promote drug abstinence. However, increases in workplace attendance have important implications for adult training programs.

  3. Genetic variability of glutathione S-transferase enzymes in human populations: functional inter-ethnic differences in detoxification systems.

    Science.gov (United States)

    Polimanti, Renato; Carboni, Cinzia; Baesso, Ilenia; Piacentini, Sara; Iorio, Andrea; De Stefano, Gian Franco; Fuciarelli, Maria

    2013-01-01

    Glutathione S-Transferase enzymes (GSTs) constitute the principal Phase II superfamily which plays a key role in cellular detoxification and in other biological processes. Studies of GSTs have revealed that genetic polymorphisms are present in these enzymes and that some of these are Loss-of-Function (LoF) variants, which affect enzymatic functions and are related to different aspects of human health. The aim of this study was to analyze functional genetic differences in GST enzymes among human populations. Attention was focused on LoF polymorphisms of GSTA1, GSTM1, GSTO1, GSTO2, GSTP1 and GSTT1 genes. These LoF variants were analyzed in 668 individuals belonging to six human groups with different ethnic backgrounds: Amhara and Oromo from Ethiopia; Colorado and Cayapa Amerindians and African Ecuadorians from Ecuador; and one sample from central Italy. The HapMap database was used to compare our data with reference populations and to analyze the haplotype and Linkage Disequilibrium diversity in different ethnic groups. Our results highlighted that ethnicity strongly affects the genetic variability of GST enzymes. In particular, GST haplotypes/variants with functional impact showed significant differences in human populations, according to their ethnic background. These data underline that human populations have different structures in detoxification genes, suggesting that these ethnic differences influence disease risk or response to drugs and therefore have implications for genetic association studies involving GST enzymes. In conclusion, our investigation provides data about the distribution of important LoF variants in GST genes in human populations. This information may be useful for designing and interpreting genetic association studies.

  4. Interaction of toxic trace metals and mechanisms of detoxification in the planktonic diatoms Ditylum brightwellii and Thalassiosira pseudonana.

    Science.gov (United States)

    Rijstenbil, J W; Sandee, A; Van Drie, J; Wijnholds, J A

    1994-08-01

    Effects of cadmium (10 nM), copper (80 nM) and zinc (150 nM) additions were studied in the marine diatom Ditylum brightwellii and the riverine diatom Thalassiosira pseudonana. Defense against oxidative stress via cellular thiol (SH) pools and superoxide dismutase (SOD) activation, detoxification via phytochelatins and cell damage were monitored in metal-exposed exponential-phase cells and controls, grown in estuarine medium. Total SH and reduced+oxidized glutathione (GSH+GSSG) in T. pseudonana were much higher than in D. brightwellii. In T. pseudonana, total SH and GSH decreased at 322 nM Zn, and GSH increased at 80 nM Cu but decreased at 119 nM Cu. GSH:GSSG ratios were low, while phytochelatins were not detectable in metal-exposed D. brightwellii. Cd-exposed T. pseudonana made more phytochelatins than Cu-exposed cells, and in different proportions. At 322 nM Zn, SOD activity decreased in T. pseudonana. Zn caused a major, and Cu a minor increase of SOD activity in D. brightwellii; inhibition of photosynthesis was observed in Cu-exposed D. brightwellii, probably due to oxidative damage. The C:N ratios were higher and protein contents lower in Cu-exposed cells of both species, which might indicate excretion due to a loss of cell membrane integrity. From these results, it is hypothesized that T. pseudonana has evolved an effective detoxification mechanism as a result of a more severe exposure to toxic metals in rivers and estuaries. In contrast, D. brightwellii, a marine-estuarine species, cannot adjust well to metal exposure. Its poor defense against metal toxicity was marked by low SH-contents. PMID:7917426

  5. Expression profiling of Crambe abyssinica under arsenate stress identifies genes and gene networks involved in arsenic metabolism and detoxification

    Directory of Open Access Journals (Sweden)

    Kandasamy Suganthi

    2010-06-01

    Full Text Available Abstract Background Arsenic contamination is widespread throughout the world and this toxic metalloid is known to cause cancers of organs such as liver, kidney, skin, and lung in human. In spite of a recent surge in arsenic related studies, we are still far from a comprehensive understanding of arsenic uptake, detoxification, and sequestration in plants. Crambe abyssinica, commonly known as 'abyssinian mustard', is a non-food, high biomass oil seed crop that is naturally tolerant to heavy metals. Moreover, it accumulates significantly higher levels of arsenic as compared to other species of the Brassicaceae family. Thus, C. abyssinica has great potential to be utilized as an ideal inedible crop for phytoremediation of heavy metals and metalloids. However, the mechanism of arsenic metabolism in higher plants, including C. abyssinica, remains elusive. Results To identify the differentially expressed transcripts and the pathways involved in arsenic metabolism and detoxification, C. abyssinica plants were subjected to arsenate stress and a PCR-Select Suppression Subtraction Hybridization (SSH approach was employed. A total of 105 differentially expressed subtracted cDNAs were sequenced which were found to represent 38 genes. Those genes encode proteins functioning as antioxidants, metal transporters, reductases, enzymes involved in the protein degradation pathway, and several novel uncharacterized proteins. The transcripts corresponding to the subtracted cDNAs showed strong upregulation by arsenate stress as confirmed by the semi-quantitative RT-PCR. Conclusions Our study revealed novel insights into the plant defense mechanisms and the regulation of genes and gene networks in response to arsenate toxicity. The differential expression of transcripts encoding glutathione-S-transferases, antioxidants, sulfur metabolism, heat-shock proteins, metal transporters, and enzymes in the ubiquitination pathway of protein degradation as well as several unknown

  6. Physiologically based kinetic modeling of bioactivation and detoxification of the alkenylbenzene methyleugenol in human as compared with rat

    International Nuclear Information System (INIS)

    This study defines a physiologically based kinetic (PBK) model for methyleugenol (ME) in human based on in vitro and in silico derived parameters. With the model obtained, bioactivation and detoxification of methyleugenol (ME) at different doses levels could be investigated. The outcomes of the current model were compared with those of a previously developed PBK model for methyleugenol (ME) in male rat. The results obtained reveal that formation of 1′-hydroxymethyleugenol glucuronide (1′HMEG), a major metabolic pathway in male rat liver, appears to represent a minor metabolic pathway in human liver whereas in human liver a significantly higher formation of 1′-oxomethyleugenol (1′OME) compared with male rat liver is observed. Furthermore, formation of 1′-sulfooxymethyleugenol (1′HMES), which readily undergoes desulfonation to a reactive carbonium ion (CA) that can form DNA or protein adducts (DA), is predicted to be the same in the liver of both human and male rat at oral doses of 0.0034 and 300 mg/kg bw. Altogether despite a significant difference in especially the metabolic pathways of the proximate carcinogenic metabolite 1′-hydroxymethyleugenol (1′HME) between human and male rat, the influence of species differences on the ultimate overall bioactivation of methyleugenol (ME) to 1′-sulfooxymethyleugenol (1′HMES) appears to be negligible. Moreover, the PBK model predicted the formation of 1′-sulfooxymethyleugenol (1′HMES) in the liver of human and rat to be linear from doses as high as the benchmark dose (BMD10) down to as low as the virtual safe dose (VSD). This study shows that kinetic data do not provide a reason to argue against linear extrapolation from the rat tumor data to the human situation. -- Highlights: ► A PBK model is made for bioactivation and detoxification of methyleugenol in human. ► Comparison to the PBK model in male rat revealed species differences. ► PBK results support linear extrapolation from high to low dose

  7. Core-shell polymer nanoparticles for prevention of GSH drug detoxification and cisplatin delivery to breast cancer cells

    Science.gov (United States)

    Surnar, Bapurao; Sharma, Kavita; Jayakannan, Manickam

    2015-10-01

    Platinum drug delivery against the detoxification of cytoplasmic thiols is urgently required for achieving efficacy in breast cancer treatment that is over expressed by glutathione (GSH, thiol-oligopeptide). GSH-resistant polymer-cisplatin core-shell nanoparticles were custom designed based on biodegradable carboxylic functional polycaprolactone (PCL)-block-poly(ethylene glycol) diblock copolymers. The core of the nanoparticle was fixed as 100 carboxylic units and the shell part was varied using various molecular weight poly(ethylene glycol) monomethyl ethers (MW of PEGs = 100-5000 g mol-1) as initiator in the ring-opening polymerization. The complexation of cisplatin aquo species with the diblocks produced core-shell nanoparticles of 75 nm core with precise size control the particles up to 190 nm. The core-shell nanoparticles were found to be stable in saline solution and PBS and they exhibited enhanced stability with increase in the PEG shell thickness at the periphery. The hydrophobic PCL layer on the periphery of the cisplatin core behaved as a protecting layer against the cytoplasmic thiol residues (GSH and cysteine) and exhibited polycaprolactone (PCL)-block-poly(ethylene glycol) diblock copolymers. The core of the nanoparticle was fixed as 100 carboxylic units and the shell part was varied using various molecular weight poly(ethylene glycol) monomethyl ethers (MW of PEGs = 100-5000 g mol-1) as initiator in the ring-opening polymerization. The complexation of cisplatin aquo species with the diblocks produced core-shell nanoparticles of 75 nm core with precise size control the particles up to 190 nm. The core-shell nanoparticles were found to be stable in saline solution and PBS and they exhibited enhanced stability with increase in the PEG shell thickness at the periphery. The hydrophobic PCL layer on the periphery of the cisplatin core behaved as a protecting layer against the cytoplasmic thiol residues (GSH and cysteine) and exhibited <5% of drug

  8. Insight on trace element detoxification in the Black-tailed Godwit (Limosa limosa) through genetic, enzymatic and metallothionein analyses

    Energy Technology Data Exchange (ETDEWEB)

    Lucia, Magali, E-mail: m.lucia33@laposte.net [Littoral, Environnement et Societes (LIENSs), UMR 7266 CNRS-Universite de La Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle (France); Bocher, Pierrick [Littoral, Environnement et Societes (LIENSs), UMR 7266 CNRS-Universite de La Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle (France); Cosson, Richard P. [Mer Molecules Sante (MMS), Universite de Nantes, EA 2663, 2 rue de la Houssiniere, BP 92208, 44322 Nantes Cedex 3 (France); Churlaud, Carine; Robin, Frederic; Bustamante, Paco [Littoral, Environnement et Societes (LIENSs), UMR 7266 CNRS-Universite de La Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle (France)

    2012-04-15

    Trace element concentrations (Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, Zn) were investigated in the liver, kidneys, muscle and feathers of 31 black-tailed godwits (Limosa limosa) accidentally killed during catches by mist net in the Pertuis Charentais, Atlantic coast of France. Analyses of carbon and nitrogen stable isotope ratios were carried out in liver, muscle and feathers in order to elucidate dietary patterns and to determine whether differences in diet explained the variation in elemental uptake. This study also aimed to have a preliminary assessment of sub-lethal effects triggered by trace elements through the investigation of gene expressions by quantitative real-time PCR, antioxidant enzyme activities (catalase, superoxide dismutase, glutathione peroxidase), and metallothionein (MT) levels. The results showed that Cr and Ni concentrations in tissues of adults were lower than in juveniles in part because adults may have eliminated these trace elements through moulting. Except for Cd and Ni, trace element concentrations were negatively correlated to the body mass of godwits. Ag, As, Hg and Se concentrations were positively linked with the trophic position of birds. The diet could be considered as a fundamental route of exposure for these elements demonstrating therefore the qualitative linkage between dietary habits of godwits and their contaminant concentrations. Our results strongly suggest that even though trace element concentrations were mostly below toxicity threshold level, the elevated concentrations of As, Ag, Cd, Cu, Fe and Se may however trigger sub-lethal effects. Trace elements appear to enhance expression of genes involved in oxidative stress defence, which indicates the production of reactive oxygen species. Moreover, birds with the highest concentrations appeared to have an increased mitochondrial metabolism suggesting that the fight against trace element toxicity requires additional energetic needs notably to produce detoxification

  9. 蓖麻饼粕的脱毒及综合开发利用%The Detoxification and Comprehensive Development and Utilization of Castor Bean Meal

    Institute of Scientific and Technical Information of China (English)

    张树军; 狄建军; 白靓; 黄凤兰; 穆莎茉莉; 魏永春; 张国文

    2011-01-01

    Castor bean meal is a by-product after oil extraction,it contains rich protein and amino acids castor bean hulls and a spot of castor toxins,has a high utilization value.This paper reviewes the detoxification of castor bean meal,the development and utilization of proteins in detoxificated castor bean meal,castor toxins and castor bean hull.%蓖麻饼粕是蓖麻籽榨油后的副产品,含有丰富的蛋白和氨基酸、蓖麻壳及少量的蓖麻毒素,具有较高的综合利用价值.本文综述了蓖麻饼的脱毒,脱毒蓖麻饼蛋白质、蓖麻饼中毒素及蓖麻壳的开发利用.

  10. Development of a yeast strain for xylitol production without hydrolysate detoxification as part of the integration of co-product generation within the lignocellulosic ethanol process.

    Science.gov (United States)

    Huang, Chiung-Fang; Jiang, Yi-Feng; Guo, Gia-Luen; Hwang, Wen-Song

    2011-02-01

    The present study verified an applicable technology of xylitol bioconversion as part of the integration of co-product generation within second-generation bioethanol processes. A newly isolated yeast strain, Candida tropicalis JH030, was shown to have a capacity for xylitol production from hemicellulosic hydrolysate without detoxification. The yeast gives a promising xylitol yield of 0.71 g(p) g(s)(-1) from non-detoxified rice straw hydrolysate that had been prepared by the dilute acid pretreatment under severe conditions. The yeast's capacity was also found to be practicable with various other raw materials, such as sugarcane bagasse, silvergrass, napiergrass and pineapple peel. The lack of a need to hydrolysate detoxification enhances the potential of this newly isolated yeast for xylitol production and this, in turn, has the capacity to improve economics of lignocellulosic ethanol production. PMID:21095119

  11. Comparative study of in vitro prooxidative properties and genotoxicity induced by aflatoxin B1 and its laccase-mediated detoxification products.

    Science.gov (United States)

    Zeinvand-Lorestani, Hamed; Sabzevari, Omid; Setayesh, Neda; Amini, Mohsen; Nili-Ahmadabadi, Amir; Faramarzi, Mohammad Ali

    2015-09-01

    In this paper, the enzymatic detoxification of aflatoxin B1 (AFB1) by laccase was studied, and the prooxidant properties and mutagenicity of the detoxification products were compared with those of AFB1. The optimal enzymatic reaction occurred in 0.1M of citrate buffer containing 20% DMSO at 35 °C, a pH of 4.5, and a laccase activity of 30 U mL(-1). After 2 d, sixty-seven percent of the toxic substrate was removed. The prooxidative properties of the detoxified products (27% versus 86%) and the mutagenicity were significantly decreased in comparison with the parent toxin. Unlike AFB1, which promoted metabolism-dependent genetic mutations by base-pair substitution, the detoxified products did not induce genotoxicity. Comparison of the Km values for AFB1 and riboflavin, a valuable food nutrient, indicated that laccase showed greater affinity for the toxin than for riboflavin. PMID:25876029

  12. Mercury-Selenium Relationships in Liver of Guiana Dolphin: The Possible Role of Kupffer Cells in the Detoxification Process by Tiemannite Formation

    OpenAIRE

    José Lailson-Brito; Renato Cruz; Paulo Renato Dorneles; Leonardo De Andrade; Alexandre de Freitas Azevedo; Ana Bernadete Fragoso; Lara Gama Vidal; Marianna Badini Costa; Tatiana Lemos Bisi; Ronaldo de Almeida; Dario Pires de Carvalho; Wanderley Rodrigues Bastos; Olaf Malm

    2012-01-01

    Top marine predators present high mercury concentrations in their tissues as consequence of biomagnification of the most toxic form of this metal, methylmercury (MeHg). The present study concerns mercury accumulation by Guiana dolphins (Sotalia guianensis), highlighting the selenium-mediated methylmercury detoxification process. Liver samples from 19 dolphins incidentally captured within Guanabara Bay (Rio de Janeiro State, Brazil) from 1994 to 2006 were analyzed for total mercury (THg), meth...

  13. Identification of Genes Putatively Involved in Chitin Metabolism and Insecticide Detoxification in the Rice Leaf Folder (Cnaphalocrocis medinalis) Larvae through Transcriptomic Analysis

    OpenAIRE

    Hai-Zhong Yu; De-Fu Wen; Wan-Lin Wang; Lei Geng; Yan Zhang; Jia-Ping Xu

    2015-01-01

    The rice leaf roller (Cnaphalocrocis medinalis) is one of the most destructive agricultural pests. Due to its migratory behavior, it is difficult to control worldwide. To date, little is known about major genes of C. medinalis involved in chitin metabolism and insecticide detoxification. In order to obtain a comprehensive genome dataset of C. medinalis, we conducted de novo transcriptome sequencing which focused on the major feeding stage of fourth-instar larvae, and our work revealed usef...

  14. Patients' Beliefs About Medications are Associated with Stated Preference for Methadone, Buprenorphine, Naltrexone, or no Medication-Assisted Therapy Following Inpatient Opioid Detoxification.

    Science.gov (United States)

    Uebelacker, Lisa A; Bailey, Genie; Herman, Debra; Anderson, Bradley; Stein, Michael

    2016-07-01

    Subsequent to initial opioid detoxification, people with opioid use disorder are typically advised to engage in follow-up treatment to prevent relapse. Medication-assisted treatments (MATs) - i.e., the opioid agonist methadone (MMT) or partial agonist/antagonist, buprenorphine/naltrexone (BUP) -- are the maintenance treatment options with the best research support for positive outcomes. A third MAT, injectable extended-release naltrexone (XR-NTX), was approved by the FDA for opioid dependence in 2010 and shows promise. However, relatively few eligible patients choose to initiate one of these MATs following initial detoxification treatment. Consistent with the health belief model, we hypothesized that beliefs about 1) efficacy of each MAT; 2) safety of each MAT; and 3) perceived consistency with being drug-free would predict stated patient preferences for a particular MAT or for no MAT. We also hypothesized that perceived structural barriers (e.g., time, transportation) would decrease the likelihood of stating a preference for a given MAT. To assess these hypotheses, we surveyed 372 people undergoing inpatient opioid detoxification treatment. Results supported hypotheses for all 3 sets of patient beliefs, with the patient group stating that they preferred a particular MAT having significantly more positive beliefs about that MAT relative to other groups (p<.001). The group that preferred "no MAT" had the most negative beliefs about all MATs. Perceived structural barriers were not related to stated preferences, except that people who preferred BUP were more likely to endorse barriers to MMT than any of the other 3 groups. Notably, a relatively high proportion (32%) of participants were most interested in XR-NTX despite a lack of prior experience with this medication. These results suggest that efforts to increase MAT enrollment following detoxification might benefit from including patient beliefs as one set of factors to assess and target for change. PMID:27211996

  15. 阿片类成瘾者脱毒后感受的质性研究%Qualitative research on feelings after detoxification for opiates addicts

    Institute of Scientific and Technical Information of China (English)

    邢小珍; 杜荣荣; 张景明; 夏瑛

    2012-01-01

    Objective To study the feelings after detoxification by mcthadonc maintenance treatment for opiates addicts. Method Interview 14 opiates addicts after detoxification by phenomenology method from qualitative research. Result Conclude 3 themes by generic analysis, namely effective mcthadonc maintenance treatment, lonely and helpless, coping methods to avoiding re-addiction. Conclusion Opiates addicts arc facing many mental and social problems in community rehabilitation after detoxification. A community rehabilitation system should be established to help them return to the society.%目的 了解阿片类成瘾者经美沙酮维持治疗脱毒后的心理感受.方法 采用质性研究中的现象学方法,对14名脱毒者进行访谈.结果 采用类属分析法升华出3个主题:美沙酮替代治疗效果显著;孤独无助;避免复吸而采取各种应对方式.结论 阿片类成瘾者脱毒后,在社区康复中面临着诸多心理社会问题,需要建立社区康复机制以促进脱毒者的社会回归.

  16. Detoxification and color removal of Congo red by a novel Dietzia sp. (DTS26) - a microcosm approach.

    Science.gov (United States)

    Satheesh Babu, S; Mohandass, C; Vijayaraj, A S; Dhale, Mohan A

    2015-04-01

    The present study deals with the decolorization and detoxification of Congo red (CR) by a novel marine bacterium Dietzia sp. (DTS26) isolated from Divar Island, Goa, India. The maximum decolorization of 94.5% (100 mg L(-1)) was observed under static condition within 30 h at pH 8 and temperature 32±2°C. Bacterially treated samples could enhance the light intensity by 38% and the primary production levels 5 times higher than the untreated. The strain was also able to reduce COD by 86.4% within 30 h at 100 mg L(-1) of CR dye. The degraded metabolites of CR dye were analyzed by FTIR, HPLC, GC-MS and the end product closely matches with 4-amino-3-naphthol-1-sulfonate which is comparatively less toxic than CR. Bioassay experiments conducted in treated samples for Artemia franciscana showed better survival rates (after 72 h) at higher concentration of CR (500 mg L(-1)). This work suggests the potential application of DTS26 in bioremediation of dye wastes and its safe disposal into coastal environment.

  17. Bioconversion of sugarcane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation.

    Science.gov (United States)

    Canilha, Larissa; Kumar Chandel, Anuj; dos Santos Milessi, Thais Suzane; Fernandes Antunes, Felipe Antônio; da Costa Freitas, Wagner Luiz; das Graças Almeida Felipe, Maria; da Silva, Silvio Silvério

    2012-01-01

    Depleted supplies of fossil fuel, regular price hikes of gasoline, and environmental damage have necessitated the search for economic and eco-benign alternative of gasoline. Ethanol is produced from food/feed-based substrates (grains, sugars, and molasses), and its application as an energy source does not seem fit for long term due to the increasing fuel, food, feed, and other needs. These concerns have enforced to explore the alternative means of cost competitive and sustainable supply of biofuel. Sugarcane residues, sugarcane bagasse (SB), and straw (SS) could be the ideal feedstock for the second-generation (2G) ethanol production. These raw materials are rich in carbohydrates and renewable and do not compete with food/feed demands. However, the efficient bioconversion of SB/SS (efficient pretreatment technology, depolymerization of cellulose, and fermentation of released sugars) remains challenging to commercialize the cellulosic ethanol. Among the technological challenges, robust pretreatment and development of efficient bioconversion process (implicating suitable ethanol producing strains converting pentose and hexose sugars) have a key role to play. This paper aims to review the compositional profile of SB and SS, pretreatment methods of cane biomass, detoxification methods for the purification of hydrolysates, enzymatic hydrolysis, and the fermentation of released sugars for ethanol production.

  18. Bioconversion of sugarcane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation.

    Science.gov (United States)

    Canilha, Larissa; Kumar Chandel, Anuj; dos Santos Milessi, Thais Suzane; Fernandes Antunes, Felipe Antônio; da Costa Freitas, Wagner Luiz; das Graças Almeida Felipe, Maria; da Silva, Silvio Silvério

    2012-01-01

    Depleted supplies of fossil fuel, regular price hikes of gasoline, and environmental damage have necessitated the search for economic and eco-benign alternative of gasoline. Ethanol is produced from food/feed-based substrates (grains, sugars, and molasses), and its application as an energy source does not seem fit for long term due to the increasing fuel, food, feed, and other needs. These concerns have enforced to explore the alternative means of cost competitive and sustainable supply of biofuel. Sugarcane residues, sugarcane bagasse (SB), and straw (SS) could be the ideal feedstock for the second-generation (2G) ethanol production. These raw materials are rich in carbohydrates and renewable and do not compete with food/feed demands. However, the efficient bioconversion of SB/SS (efficient pretreatment technology, depolymerization of cellulose, and fermentation of released sugars) remains challenging to commercialize the cellulosic ethanol. Among the technological challenges, robust pretreatment and development of efficient bioconversion process (implicating suitable ethanol producing strains converting pentose and hexose sugars) have a key role to play. This paper aims to review the compositional profile of SB and SS, pretreatment methods of cane biomass, detoxification methods for the purification of hydrolysates, enzymatic hydrolysis, and the fermentation of released sugars for ethanol production. PMID:23251086

  19. Shotgun proteomic analysis unveils survival and detoxification strategies by Caulobacter crescentus during exposure to uranium, chromium, and cadmium.

    Science.gov (United States)

    Yung, Mimi C; Ma, Jincai; Salemi, Michelle R; Phinney, Brett S; Bowman, Grant R; Jiao, Yongqin

    2014-04-01

    The ubiquitous bacterium Caulobacter crescentus holds promise to be used in bioremediation applications due to its ability to mineralize U(VI) under aerobic conditions. Here, cell free extracts of C. crescentus grown in the presence of uranyl nitrate [U(VI)], potassium chromate [Cr(VI)], or cadmium sulfate [Cd(II)] were used for label-free proteomic analysis. Proteins involved in two-component signaling and amino acid metabolism were up-regulated in response to all three metals, and proteins involved in aerobic oxidative phosphorylation and chemotaxis were down-regulated under these conditions. Clustering analysis of proteomic enrichment revealed that the three metals also induce distinct patterns of up- or down-regulated expression among different functional classes of proteins. Under U(VI) exposure, a phytase enzyme and an ABC transporter were up-regulated. Heat shock and outer membrane responses were found associated with Cr(VI), while efflux pumps and oxidative stress proteins were up-regulated with Cd(II). Experimental validations were performed on select proteins. We found that a phytase plays a role in U(VI) and Cr(VI) resistance and detoxification and that a Cd(II)-specific transporter confers Cd(II) resistance. Interestingly, analysis of promoter regions in genes associated with differentially expressed proteins suggests that U(VI) exposure affects cell cycle progression.

  20. Biodegradation and detoxification of textile dye Disperse Red 54 by Brevibacillus laterosporus and determination of its metabolic fate.

    Science.gov (United States)

    Kurade, Mayur B; Waghmode, Tatoba R; Khandare, Rahul V; Jeon, Byong-Hun; Govindwar, Sanjay P

    2016-04-01

    Bioremediation is one of the milestones achieved by the biotechnological innovations. It is generating superior results in waste management such as removal of textile dyes, which are considered xenobiotic compounds and recalcitrant to biodegradation. In the present bioremedial approach, Brevibacillus laterosporus was used as an effective microbial tool to decolorize disperse dye Disperse Red 54 (DR54). Under optimized conditions (pH 7, 40°C), B. laterosporus led to 100% decolorization of DR54 (at 50 mg L(-1)) within 48 h. Yeast extract and peptone, supplemented in medium enhanced the decolorization efficiency of the bacterium. During the decolorization process, activities of enzymes responsible for decolorization, such as tyrosinase, veratryl alcohol oxidase and NADH--DCIP reductase were induced by 1.32-, 1.51- and 4.37-fold, respectively. The completely different chromatographic/spectroscopic spectrum of metabolites obtained after decolorization confirmed the biodegradation of DR54 as showed by High pressure liquid chromatography, High pressure thin layer chromatography and Fourier transform infrared spectroscopy. Gas chromatography-Mass spectroscopy studies suggested the parent dye was biodegraded into simple final product, N-(1λ(3)-chlorinin-2-yl)acetamide. Phytotoxicity study suggested that the metabolites obtained after biodegradation of DR54 were non-toxic as compared to the untreated dye signifying the detoxification of the DR54 by B. laterosporus.

  1. Exploiting the efficacy of Lysinibacillus sp. RGS for decolorization and detoxification of industrial dyes, textile effluent and bioreactor studies.

    Science.gov (United States)

    Saratale, Rijuta G; Saratale, Ganesh D; Govindwar, Sanjay P; Kim, Dong S

    2015-01-01

    Complete decolorization and detoxification of Reactive Orange 4 within 5 h (pH 6.6, at 30°C) by isolated Lysinibacillus sp. RGS was observed. Significant reduction in TOC (93%) and COD (90%) was indicative of conversion of complex dye into simple products, which were identified as naphthalene moieties by various analytical techniques (HPLC, FTIR, and GC-MS). Supplementation of agricultural waste extract considered as better option to make the process cost effective. Oxido-reductive enzymes were found to be involved in the degradation mechanism. Finally Loofa immobilized Lysinibacillus sp. cells in a fixed-bed bioreactor showed significant decolorization with reduction in TOC (51 and 64%) and COD (54 and 66%) for synthetic and textile effluent at 30 and 35 mL h(-1) feeding rate, respectively. The degraded metabolites showed non-toxic nature revealed by phytotoxicity and photosynthetic pigments content study for Sorghum vulgare and Phaseolus mungo. In addition nitrogen fixing and phosphate solubilizing microbes were less affected in treated wastewater and thus the treated effluent can be used for the irrigation purpose. This work could be useful for the development of efficient and ecofriendly technologies to reduce dye content in the wastewater to permissible levels at affordable cost.

  2. Detoxification strategies and regulation of oxygen production and flowering of Platanus acerifolia under lead (Pb) stress by transcriptome analysis.

    Science.gov (United States)

    Wang, Limin; Yang, Haijiao; Liu, Rongning; Fan, Guoqiang

    2015-08-01

    Toxic metal pollution is a major environmental problem that has received wide attention. Platanus acerifolia (London plane tree) is an important greening tree species that can adapt to environmental pollution. The genetic basis and molecular mechanisms associated with the ability of P. acerifolia to respond lead (Pb) stress have not been reported so far. In this study, 16,246 unigenes differentially expressed unigenes that were obtained from P. acerifolia under Pb stress using next-generation sequencing. Essential pathways such as photosynthesis, and gibberellins and glutathione metabolism were enriched among the differentially expressed unigenes. Furthermore, many important unigenes, including antioxidant enzymes, plants chelate compounds, and metal transporters involved in defense and detoxification mechanisms, were differentially expressed in response to Pb stress. The unigenes encoding the oxygen-evolving enhancer Psb and OEE protein families were downregulated in Pb-stressed plants, implying that oxygen production might decrease in plants under Pb stress. The relationship between gibberellin and P. acerifolia flowering is also discussed. The information and new insights obtained in this study will contribute to further investigations into the molecular regulation mechanisms of Pb accumulation and tolerance in greening tree species. PMID:25913316

  3. Śodhana: An Ayurvedic process for detoxification and modification of therapeutic activities of poisonous medicinal plants

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Maurya

    2015-01-01

    Full Text Available Ayurveda involves the use of drugs obtained from plants, animals, and mineral origin. All the three sources of drugs can be divided under poisonous and nonpoisonous category. There are various crude drugs, which generally possess unwanted impurities and toxic substances, which can lead to harmful health problems. Many authors have reported that not all medicinal plants are safe to use since they can bear many toxic and harmful phytoconstituents in them. Śodhana (detoxification/purification is the process, which involves the conversion of any poisonous drug into beneficial, nonpoisonous/nontoxic ones. Vatsanābha (Aconitum species, Semecarpus anacardium, Strychnos nux-vomica, Acorus calamus, Abrus precatorius etc., are some of the interesting examples of toxic plants, which are still used in the Indian system of medicine. Aconite, bhilawanols, strychnine, β-asarone, abrin are some of the toxic components present in these plants and are relatively toxic in nature. Śodhana process involves the purification as well as reduction in the levels of toxic principles which sometimes results in an enhanced therapeutic efficacy. The present review is designed to extensively discuss and understand the scientific basis of the alternative use of toxic plants as a medicine after their purification process.

  4. Śodhana: An Ayurvedic process for detoxification and modification of therapeutic activities of poisonous medicinal plants.

    Science.gov (United States)

    Maurya, Santosh Kumar; Seth, Ankit; Laloo, Damiki; Singh, Narendra Kumar; Gautam, Dev Nath Singh; Singh, Anil Kumar

    2015-01-01

    Ayurveda involves the use of drugs obtained from plants, animals, and mineral origin. All the three sources of drugs can be divided under poisonous and nonpoisonous category. There are various crude drugs, which generally possess unwanted impurities and toxic substances, which can lead to harmful health problems. Many authors have reported that not all medicinal plants are safe to use since they can bear many toxic and harmful phytoconstituents in them. Śodhana (detoxification/purification) is the process, which involves the conversion of any poisonous drug into beneficial, nonpoisonous/nontoxic ones. Vatsanābha (Aconitum species), Semecarpus anacardium, Strychnos nux-vomica, Acorus calamus, Abrus precatorius etc., are some of the interesting examples of toxic plants, which are still used in the Indian system of medicine. Aconite, bhilawanols, strychnine, β-asarone, abrin are some of the toxic components present in these plants and are relatively toxic in nature. Śodhana process involves the purification as well as reduction in the levels of toxic principles which sometimes results in an enhanced therapeutic efficacy. The present review is designed to extensively discuss and understand the scientific basis of the alternative use of toxic plants as a medicine after their purification process.

  5. Identification and characterization of Cd-induced peptides in Egeria densa (water weed): Putative role in Cd detoxification

    International Nuclear Information System (INIS)

    Egeria densa has ability to grow in heavy metal contaminated and polluted bodies of water. Shoots exposed to Cd at concentrations up to 300 μM for 7 days showed a pronounced decrease in chlorophyll a and in total protein concentration. Thiol-containing compounds and low-molecular-weight polypeptides were detected in Cd-treated plant extracts by gel filtration chromatography. Two Cd-binding fractions, a thiol-enriched fraction and a non-thiol fraction with a lower molecular weight were identified in extracts by gel filtration. The main fraction of thiol-containing polypeptide, purified by gel filtration and anion-exchange chromatography had a molecular weight of ∼10 kDa. This peptide was characterized by a broad absorption band specific to mercaptide bonds and Cd-sensitive fluorescence emission of aromatic amino acid residues. Our results indicate that cadmium exposure of plants resulted in both a formation of thiol-enriched cadmium complexing peptides and a synthesis of low-molecular-weight metal chelators. The putative role of these compounds in Cd detoxification is discussed.

  6. Lactobacillus casei stimulates phase-II detoxification system and rescues malathion-induced physiological impairments in Caenorhabditis elegans.

    Science.gov (United States)

    Kamaladevi, Arumugam; Ganguli, Abhijit; Balamurugan, Krishnaswamy

    2016-01-01

    Malathion, an organophosphorus insecticide, is renowned for its inhibitory action on acetylcholinesterase (AChE) enzyme that eventually leads to widespread disturbance in the normal physiological and behavioral activities of any organism. Lactic acid bacteria (LAB) are still an underexploited and inexhaustible source of significant pharmaceutical thrust. In the present study, Caenorhabditis elegans was employed to identify and characterize the indigenous LAB isolated from different traditional food against malathion-induced toxicity. The results demonstrated that malathion at its LD50 concentration decreased various C. elegans physiological parameters such as survival, feeding, and locomotion. Among the screened isolates, L. casei exhibited an excellent protective efficacy against malathion-induced toxicity by increasing the level of AChE and thereby rescued all physiological parameters of C. elegans. In addition, short-term exposure and food choice assay divulged that L. casei could serve as a better food to protect C. elegans from noxious environment. The expression analysis unveiled that L. casei gavage upregulated the phase-II detoxification enzymes coding genes metallothioneins (mtl-1 and mtl-2) and glutathione-S-transferase (gst-8) and thereby eliminated malathion from the host system. Furthermore, the upregulation of ace-3 along with down-regulation of cyp35a in the nematodes supplemented with L. casei could be attributed to attenuate the malathion-induced physiological defects in C. elegans. Thus, the present study reports that an indigenous LAB-L. casei could serve as a promising protective agent against the harmful effects of pesticide. PMID:26297616

  7. Evaluation of detoxification methods on toxic and antinutritional composition and nutritional quality of proteins in Jatropha curcas meal.

    Science.gov (United States)

    Xiao, Jianhui; Zhang, Hui; Niu, Liya; Wang, Xingguo; Lu, Xia

    2011-04-27

    The Jatropha curcas meal was detoxified by different methods, and the effect of detoxification was evaluated in this study. The method that hydrolysis of enzymes (cellulase plus pectinase) followed by washing with ethanol (65%) had a significant (p antinutritional components, and nutritional quality of proteins. After this treatment, the phorbolesters (PEs) were decreased by 100%. The antinutritional components (phytates, tannins, saponins, protease inhibitor, and lectin activities) were decreased to tolerable levels, which were lower than those in soybean meal. The crude protein in detoxified meal was 74.68%, and the total content of amino acids was 66.87 g/100 g of dry matter. The in vitro protein digestibility (IVPD) increased from 82.14 to 92.37%. The pepsin-insoluble nitrogen was only 4.57% of the total nitrogen, and about 90% of the protein was true protein. The protein-digestibility-corrected amino acid score (PDCAAS) of the meal was 0.75. The results showed that this treatment was a promising way to detoxify J. curcas meal, and the nutritional quality of detoxified meal can be simultaneously enriched and improved. PMID:21410262

  8. Multiple abiotic stress tolerance in Vigna mungo is altered by overexpression of ALDRXV4 gene via reactive carbonyl detoxification.

    Science.gov (United States)

    Singh, Preeti; Kumar, Deepak; Sarin, Neera Bhalla

    2016-06-01

    Vigna mungo (blackgram) is an important leguminous pulse crop, which is grown for its protein rich edible seeds. Drought and salinity are the major abiotic stresses which adversely affect the growth and productivity of crop plants including blackgram. The ALDRXV4 belongs to the aldo-keto reductase superfamily of enzymes that catalyze the reduction of carbonyl metabolites in the cells and plays an important role in the osmoprotection and detoxification of the reactive carbonyl species. In the present study, we developed transgenic plants of V. mungo using Agrobacterium mediated transformation. The transgene integration was confirmed by Southern blot analysis whereas the expression was confirmed by RT-PCR, Western blot and enzyme activity. The T1 generation transgenic plants displayed improved tolerance to various environmental stresses, including drought, salt, methyl viologen and H2O2 induced oxidative stress. The increased aldose reductase activity, higher sorbitol content and less accumulation of the toxic metabolite, methylglyoxal in the transgenic lines under non-stress and stress (drought and salinity) conditions resulted in increased protection through maintenance of better photosynthetic efficiency, higher relative water content and less photooxidative damage. The accumulation of reactive oxygen species was remarkably decreased in the transgenic lines as compared with the wild type plants. This study of engineering multiple stress tolerance in blackgram, is the first report to date and this strategy for trait improvement is proposed to provide a novel germplasm for blackgram production on marginal lands.

  9. Integrated detoxification methodology of hazardous phenolic wastewaters in environmentally based trickle-bed reactors: Experimental investigation and CFD simulation

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Rodrigo J.G., E-mail: rodrigo@eq.uc.pt [Centro de Investigacao em Engenharia dos Processos Quimicos e Produtos da Floresta (CIEPQPF), GERSE - Group on Environmental, Reaction and Separation Engineering, Department of Chemical Engineering, University of Coimbra, Rua Silvio Lima, Polo II - Pinhal de Marrocos, 3030-790 Coimbra (Portugal); Almeida, Teresa S.A.; Quinta-Ferreira, Rosa M. [Centro de Investigacao em Engenharia dos Processos Quimicos e Produtos da Floresta (CIEPQPF), GERSE - Group on Environmental, Reaction and Separation Engineering, Department of Chemical Engineering, University of Coimbra, Rua Silvio Lima, Polo II - Pinhal de Marrocos, 3030-790 Coimbra (Portugal)

    2011-05-15

    Centralized environmental regulations require the use of efficient detoxification technologies for the secure disposal of hazardous wastewaters. Guided by federal directives, existing plants need reengineering activities and careful analysis to improve their overall effectiveness and to become environmentally friendly. Here, we illustrate the application of an integrated methodology which encompasses the experimental investigation of catalytic wet air oxidation and CFD simulation of trickle-bed reactors. As long as trickle-bed reactors are determined by the flow environment coupled with chemical kinetics, first, on the optimization of prominent numerical solution parameters, the CFD model was validated with experimental data taken from a trickle bed pilot plant specifically designed for the catalytic wet oxidation of phenolic wastewaters. Second, several experimental and computational runs were carried out under unsteady-state operation to evaluate the dynamic performance addressing the TOC concentration and temperature profiles. CFD computations of total organic carbon conversion were found to agree better with experimental data at lower temperatures. Finally, the comparison of test data with simulation results demonstrated that this integrated framework was able to describe the mineralization of organic matter in trickle beds and the validated consequence model can be exploited to promote cleaner remediation technologies of contaminated waters.

  10. Direct surfactin-gramicidin S antagonism supports detoxification in mixed producer cultures of Bacillus subtilis and Aneurinibacillus migulanus.

    Science.gov (United States)

    Rautenbach, Marina; Eyéghé-Bickong, Hans André; Vlok, Nicolas Maré; Stander, Marietjie; de Beer, Abré

    2012-12-01

    Antibiotic production as a defence mechanism is a characteristic of a wide variety of organisms. In natural evolutionary adaptation, cellular events such as sporulation, biofilm formation and resistance to antibiotics enable some micro-organisms to survive environmental and antibiotic stress conditions. The two antimicrobial cyclic peptides in this study, gramicidin S (GS) from Aneurinibacillus migulanus and the lipopeptide surfactin (Srf) from Bacillus subtilis, have been shown to affect both membrane and intercellular components of target organisms. Many functions, other than that of antimicrobial activity, have been assigned to Srf. We present evidence that an additional function may exist for Srf, namely that of a detoxifying agent that protects its producer from the lytic activity of GS. We observed that Srf producers were more resistant to GS and could be co-cultured with the GS producer. Furthermore, exogenous Srf antagonized the activity of GS against both Srf-producing and non-producing bacterial strains. A molecular interaction between the anionic Srf and the cationic GS was observed with circular dichroism and electrospray MS. Our results indicate that the formation of an inactive complex between GS and Srf supports resistance towards GS, with the anionic Srf forming a chemical barrier to protect its producer. This direct detoxification combined with the induction of protective stress responses in B. subtilis by Srf confers resistance toward GS from A. migulanus and allows survival in mixed cultures. PMID:23103974

  11. Biodegradation and detoxification of melanoidin from distillery effluent using an aerobic bacterial strain SAG{sub 5} of Alcaligenes faecalis

    Energy Technology Data Exchange (ETDEWEB)

    Santal, Anita Rani, E-mail: anita.gangotra@gmail.com [Department of Microbiology, Maharshi Dayanand University, Rohtak-124001, Haryana (India); Singh, N.P. [Centre for Biotechnology, Maharshi Dayanand University, Rohtak-124001, Haryana (India); Saharan, Baljeet Singh [Department of Microbiology, Kurukshetra University, Kurukshetra-136119, Haryana (India)

    2011-10-15

    Highlights: {yields} The Alcaligenes faecalis strain SAG{sub 5} decolorizes 72.6 {+-} 0.56% of melanoidins. {yields} The decolorization was achieved at pH 7.5 and temperature 37 {sup o}C on 5th day. {yields} The distillery effluent after biological treatment is environmentally safe. - Abstract: Distillery effluent retains very dark brown color even after anaerobic treatment due to presence of various water soluble, recalcitrant and coloring compounds mainly melanoidins. In laboratory conditions, melanoidin decolorizing bacteria was isolated and optimized the cultural conditions at various incubation temperatures, pH, carbon sources, nitrogen sources and combined effect of both carbon and nitrogen sources. The optimum decolorization (72.6 {+-} 0.56%) of melanoidins was achieved at pH 7.5 and temperature 37 {sup o}C on 5th day of cultivation. The toxicity evaluation with mung bean (Vigna radiata) revealed that the raw distillery effluent was environmentally highly toxic as compared to biologically treated distillery effluent, which indicated that the effluent after bacterial treatment is environmentally safe. This proves to be novel biological treatment technique for biodegradation and detoxification of melanoidin from distillery effluent using the bacterial strain SAG{sub 5}.

  12. Detoxification of selenite and mercury by reduction and mutual protection in the assimilation of both elements by Pseudomonas fluorescens

    International Nuclear Information System (INIS)

    A study on the assimilation and detoxification of selenium and mercury and on the interaction between these two elements was conducted on Pseudomonas fluorescens. P. fluorescens was able to convert separately both elements to their elemental forms, which are less toxic and biologically less available. To study the converting mechanism of selenite to elemental Se, cells were grown in the presence of various selenite concentrations and several parameters such as extracellular protein concentrations, pH, carbohydrate concentrations, isocitrate dehydrogenase (ICDH) and malic enzyme were monitored. Transmission electron microscopy (TEM) and various analytical methods were applied to confirm the interaction between selenium and cell. The former appeared as a red precipitate localized predominantly in the consumed culture medium. P. fluorescens also resisted to the toxic effect of mercury by converting Hg2+ to the volatile and less toxic form Hg . Mercury reductase was likely responsible for the conversion of Hg2+ to Hg . More importantly, the interaction between mercury and selenium was also studied. The presence of selenite significantly reduced the accumulation of mercury in P. fluorescens. It was also interesting to note that mercury appeared to behave as a protecting agent against selenium intoxication as the bioaccumulation of Se was also inhibited by this metal. The formation of Se-Hg complexes could explain this mutual protective effect. No precipitate of elemental Se could be detected when Hg was present in the cultures

  13. Metabolomics to Detect Response of Lettuce (Lactuca sativa) to Cu(OH)2 Nanopesticides: Oxidative Stress Response and Detoxification Mechanisms.

    Science.gov (United States)

    Zhao, Lijuan; Ortiz, Cruz; Adeleye, Adeyemi S; Hu, Qirui; Zhou, Hongjun; Huang, Yuxiong; Keller, Arturo A

    2016-09-01

    There has been an increasing influx of nanopesticides into agriculture in recent years. Understanding the interaction between nanopesticides and edible plants is crucial in evaluating the potential impact of nanotechnology on the environment and agriculture. Here we exposed lettuce plants to Cu(OH)2 nanopesticides (1050-2100 mg/L) through foliar spray for one month. Inductively coupled plasma-mass spectrometry (ICP-MS) results indicate that 97-99% (1353-2501 mg/kg) of copper was sequestered in the leaves and only a small percentage (1-3%) (17.5-56.9 mg/kg) was translocated to root tissues through phloem loading. Gas chromatography-time-of-flight mass spectrometry (GC-TOF-MS) based metabolomics combined with partial least squares-discriminant analysis (PLS-DA) multivariate analysis revealed that Cu(OH)2 nanopesticides altered metabolite levels of lettuce leaves. Tricarboxylic (TCA) cycle and a number of amino acid-related biological pathways were disturbed. Some antioxidant levels (cis-caffeic acid, chlorogenic acid, 3,4-dihydroxycinnamic acid, dehydroascorbic acid) were significantly decreased compared to the control, indicating that oxidative stress and a defense response occurred. Nicotianamine, a copper chelator, increased by 12-27 fold compared to the control, which may represent a detoxification mechanism. The up-regulation of polyamines (spermidine and putrescine) and potassium may mitigate oxidative stress and enhance tolerance. The data presented here provide a molecular-scale perspective on the response of plants to copper nanopesticides. PMID:27483188

  14. Integrated detoxification methodology of hazardous phenolic wastewaters in environmentally based trickle-bed reactors: Experimental investigation and CFD simulation.

    Science.gov (United States)

    Lopes, Rodrigo J G; Almeida, Teresa S A; Quinta-Ferreira, Rosa M

    2011-05-15

    Centralized environmental regulations require the use of efficient detoxification technologies for the secure disposal of hazardous wastewaters. Guided by federal directives, existing plants need reengineering activities and careful analysis to improve their overall effectiveness and to become environmentally friendly. Here, we illustrate the application of an integrated methodology which encompasses the experimental investigation of catalytic wet air oxidation and CFD simulation of trickle-bed reactors. As long as trickle-bed reactors are determined by the flow environment coupled with chemical kinetics, first, on the optimization of prominent numerical solution parameters, the CFD model was validated with experimental data taken from a trickle bed pilot plant specifically designed for the catalytic wet oxidation of phenolic wastewaters. Second, several experimental and computational runs were carried out under unsteady-state operation to evaluate the dynamic performance addressing the TOC concentration and temperature profiles. CFD computations of total organic carbon conversion were found to agree better with experimental data at lower temperatures. Finally, the comparison of test data with simulation results demonstrated that this integrated framework was able to describe the mineralization of organic matter in trickle beds and the validated consequence model can be exploited to promote cleaner remediation technologies of contaminated waters. PMID:21377790

  15. Natural variations in expression of regulatory and detoxification related genes under limiting phosphate and arsenate stress in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Tapsi eShukla

    2015-10-01

    Full Text Available Abiotic stress including nutrient deficiency and heavy metal toxicity severely affects plant growth, development, and productivity. Genetic variations within and in between species are one of the important factors in establishing interactions and responses of plants with the environment. In the recent past, natural variations in Arabidopsis thaliana have been used to understand plant development and response towards different stresses at genetic level. Phosphorus (Pi deficiency negatively affects plant growth and metabolism and modulates expression of the genes involved in Pi homeostasis. Arsenate, As(V, a chemical analogue of Pi, is taken up by the plants via phosphate transport system. Studies suggest that during Pi deficiency, enhanced As(V uptake leads to increased toxicity in plants. Here, the natural variations in Arabidopsis have been utilized to study the As(V stress response under limiting Pi condition. The primary root length was compared to identify differential response of three Arabidopsis accessions (Col-0, Sij-1 and Slavi-1 under limiting Pi and As(V stress. To study the molecular mechanisms responsible for the differential response, comprehensive expression profiling of the genes involved in uptake, detoxification and regulatory mechanisms was carried out. Analysis suggests genetic variation-dependent regulatory mechanisms may affect differential response of Arabidopsis natural variants towards As(V stress under limiting Pi condition. Therefore, it is hypothesized that detailed analysis of the natural variations under multiple stress conditions might help in the better understanding of the biological processes involved in stress tolerance and adaptation.

  16. Problematic detoxification of estrogen quinones by NAD(P)H-dependent quinone oxidoreductase and glutathione-S-transferase.

    Science.gov (United States)

    Chandrasena, R Esala P; Edirisinghe, Praneeth D; Bolton, Judy L; Thatcher, Gregory R J

    2008-07-01

    Estrogen exposure through early menarche, late menopause, and hormone replacement therapy increases the risk factor for hormone-dependent cancers. Although the molecular mechanisms are not completely established, DNA damage by quinone electrophilic reactive intermediates, derived from estrogen oxidative metabolism, is strongly implicated. A current hypothesis has 4-hydroxyestrone-o-quinone (4-OQE) acting as the proximal estrogen carcinogen, forming depurinating DNA adducts via Michael addition. One aspect of this hypothesis posits a key role for NAD(P)H-dependent quinone oxidoreductase (NQO1) in the reduction of 4-OQE and protection against estrogen carcinogenesis, despite two reports that 4-OQE is not a substrate for NQO1. 4-OQE is rapidly and efficiently trapped by GSH, allowing measurement of NADPH-dependent reduction of 4-OQE in the presence and absence of NQO1. 4-OQE was observed to be a substrate for NQO1, but the acceleration of NADPH-dependent reduction by NQO1 over the nonenzymic reaction is less than 10-fold and at more relevant nanomolar concentrations of substrate is less than 2-fold. An alternative detoxifying enzyme, glutathione-S-transferase, was observed to be a target for 4-OQE, rapidly undergoing covalent modification. These results indicate that a key role for NQO1 and GST in direct detoxification of 4-hydroxy-estrogen quinones is problematic. PMID:18588320

  17. Trends in detoxification enzymes and heavy metal accumulation in ground beetles (Coleoptera: Carabidae) inhabiting a gradient of pollution.

    Science.gov (United States)

    Stone, David; Jepson, Paul; Laskowski, Ryszard

    2002-05-01

    Non-specfic carboxylesterase and glutathione S-transferase activity was measured in the ground beetle, Pterosthicus oblongopunctatus (Coleoptera: Carabidae), from five sites along a gradient of heavy metal pollution. A previous study determined that beetles from the two most polluted sites (site codes OLK2 and OLK3) were more susceptible to additional stressors compared with beetles from the reference site (Stone et al., Environ. Pollut. 113, 239-244 2001), suggesting the possibility of physiological impairment. Metal body burdens in ground beetles from five sites along the gradient ranged from 79 to 201 microg/g Zn, 0.174 to 8.66 microg/g Pb and 1.14 to 10.8 microg/g Cd, whereas Cu seemed to be efficiently regulated regardless of metal levels in the soil. Beetle mid- and hindguts were homogenized and the soluble fraction containing glutathione S-transferase (GST) and carboxylesterase (CaE) was assayed using kinetic analyses. Significantly higher levels of GST were found only in female beetles from the most polluted sites (OLK2 and OLK3; P=0.049, P<0.001, respectively) compared with the reference site (OLK7). In addition, OLK3 females had significantly higher levels of CaE compared with the reference beetles (P=0.01). Male beetles did not differ in enzyme activity along the metal gradient. Overall, obvious trends in detoxification enzymes were not detected in ground beetles in association with metal body burdens.

  18. Lactobacillus casei stimulates phase-II detoxification system and rescues malathion-induced physiological impairments in Caenorhabditis elegans.

    Science.gov (United States)

    Kamaladevi, Arumugam; Ganguli, Abhijit; Balamurugan, Krishnaswamy

    2016-01-01

    Malathion, an organophosphorus insecticide, is renowned for its inhibitory action on acetylcholinesterase (AChE) enzyme that eventually leads to widespread disturbance in the normal physiological and behavioral activities of any organism. Lactic acid bacteria (LAB) are still an underexploited and inexhaustible source of significant pharmaceutical thrust. In the present study, Caenorhabditis elegans was employed to identify and characterize the indigenous LAB isolated from different traditional food against malathion-induced toxicity. The results demonstrated that malathion at its LD50 concentration decreased various C. elegans physiological parameters such as survival, feeding, and locomotion. Among the screened isolates, L. casei exhibited an excellent protective efficacy against malathion-induced toxicity by increasing the level of AChE and thereby rescued all physiological parameters of C. elegans. In addition, short-term exposure and food choice assay divulged that L. casei could serve as a better food to protect C. elegans from noxious environment. The expression analysis unveiled that L. casei gavage upregulated the phase-II detoxification enzymes coding genes metallothioneins (mtl-1 and mtl-2) and glutathione-S-transferase (gst-8) and thereby eliminated malathion from the host system. Furthermore, the upregulation of ace-3 along with down-regulation of cyp35a in the nematodes supplemented with L. casei could be attributed to attenuate the malathion-induced physiological defects in C. elegans. Thus, the present study reports that an indigenous LAB-L. casei could serve as a promising protective agent against the harmful effects of pesticide.

  19. Accumulation and detoxification dynamics of microcystin-LR and antioxidant responses in male red swamp crayfish Procambarus clarkii.

    Science.gov (United States)

    Yuan, Julin; Gu, Zhimin; Zheng, Yao; Zhang, Yingying; Gao, Jiancao; Chen, Shu; Wang, Zaizhao

    2016-08-01

    MC-LR is one of major microcystin isoforms with potent hepatotoxicity. In the present study, we aim to: 1) explore the dynamics of MC-LR accumulation and elimination in different tissues of male red swamp crayfish Procambarus clarkii; 2) reveal the mechanisms underlying hepatic antioxidation and detoxification. In the semi-static toxicity tests under the water temperature of 25±2°C, P. clarkii were exposed to 0.1, 1, 10 and 100μg/L MC-LR for 7days for accumulation and subsequently relocated to freshwater for another 7days to depurate MC-LR. MC-LR was measured in the hepatopancreas, intestine, abdominal muscle and gill by HPLC. The enzyme activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione S-transferase (GST), content of glutathione (GSH), and transcripts of Mn-sod, cat, gpx1, Mu-gst, heat shock protein90 (hsp90), hsp70 and hsp60 in hepatopancreas were detected. The results showed that P. clarkii accumulated more MC-LR in intestine, and less in abdominal muscle and gill during accumulation period and eliminated the toxin more quickly in gill and abdominal muscle, and comparatively slowly in intestine during depuration period. The fast increase of SOD and CAT activities at early stage, subsequent decrease at later stage of accumulation period and then fast increase during depuration period were partially consistent with the transcriptional changes of their respective genes. GPx was activated by longer MC-LR exposure and gpx1 mRNA expression showed uncoordinated regulation pattern compared with its enzyme. Hsp genes were up-regulated when P. clarkii was exposed to MC-LR. PMID:27218425

  20. Detoxification and protein quality control markers in the mussel Mytilus edulis (Linnaeus) exposed to crude oil: Salinity-induced modulation

    Science.gov (United States)

    Lysenko, Liudmila; Sukhovskaya, Irina; Borvinskaya, Ekaterina; Krupnova, Marina; Kantserova, Nadezda; Bakhmet, Igor'; Nemova, Nina

    2015-12-01

    Marine and coastal ecosystems are influenced by oil from chronic contamination or sporadic oil spills. An oil spill was simulated in an aquarium-based experiment designed to reproduce interactions of crude oil with inert environmental components, particularly adhesion on shore gravel and dissolution in sea water. Total experimental oil concentrations were in the range of comparable hydrocarbon concentrations following an oil spill. Furthermore, the possible interaction of a chemical (anthropogenic) stressor, such as oil PAHs, and a "natural" stressor like desalination, was simulated. In order to assess the biological effects of crude oil contamination and desalination (each individually and in combination) on the blue mussel Mytilus edulis L., biochemical responses were estimated including: detoxification capacity by glutathione-S-transferase (GST) activity, reduced glutathione (GSH) level, and protein quality control by autophagy-related proteases cathepsin B (CatB), cathepsin D (CatD), and calcium-dependent calpain-like proteases. Oil treatment stimulated defense system response in the mussels with primary effects on GST and protease-mediated reactions such as the activation of CatB, CatD, and calpains. Most of biomarkers responded to oil in a dose- and time-dependent manner. Additional environmental stress, such as desalination, promoted the oil-induced activation of GST and CatD while resulting in a delay or impairement of the defense response to oil by GSH and proteases CatB and calpains. Thus, biomarker data shows that combined effects of oil compounds and desalination can be realized in both a synergistic and an antagonistic manner. The evaluated interaction between oil pollution effects and sub-optimal salinity on M. edulis indicates the potential risk of maladaptation to the biota of estuaries.

  1. Aromatic inhibitors derived from ammonia-pretreated lignocellulose hinder bacterial ethanologenesis by activating regulatory circuits controlling inhibitor efflux and detoxification

    Directory of Open Access Journals (Sweden)

    David H. Keating

    2014-08-01

    Full Text Available Efficient microbial conversion of lignocellulosic hydrolysates to biofuels is a key barrier to the economically viable deployment of lignocellulosic biofuels. A chief contributor to this barrier is the impact on microbial processes and energy metabolism of lignocellulose-derived inhibitors, including phenolic carboxylates, phenolic amides (for ammonia-pretreated biomass, phenolic aldehydes, and furfurals. To understand the bacterial pathways induced by inhibitors present in ammonia-pretreated biomass hydrolysates, which are less well studied than acid-pretreated biomass hydrolysates, we developed and exploited synthetic mimics of ammonia-pretreated corn stover hydrolysate (ACSH. To determine regulatory responses to the inhibitors normally present in ACSH, we measured transcript and protein levels in an Escherichia coli ethanologen using RNA-seq and quantitative proteomics during fermentation to ethanol of synthetic hydrolysates containing or lacking the inhibitors. Our study identified four major regulators mediating these responses, the MarA/SoxS/Rob network, AaeR, FrmR, and YqhC. Induction of these regulons was correlated with a reduced rate of ethanol production, buildup of pyruvate, depletion of ATP and NAD(PH, and an inhibition of xylose conversion. The aromatic aldehyde inhibitor 5-hydroxymethylfurfural appeared to be reduced to its alcohol form by the ethanologen during fermentation whereas phenolic acid and amide inhibitors were not metabolized. Together, our findings establish that the major regulatory responses to lignocellulose-derived inhibitors are mediated by transcriptional rather than translational regulators, suggest that energy consumed for inhibitor efflux and detoxification may limit biofuel production, and identify a network of regulators for future synthetic biology efforts.

  2. ROS detoxification and proinflammatory cytokines are linked by p38 MAPK signaling in a model of mature astrocyte activation.

    Directory of Open Access Journals (Sweden)

    Adrian Nahirnyj

    Full Text Available Astrocytes are the most abundant glial cell in the retinal nerve fiber layer (NFL and optic nerve head (ONH, and perform essential roles in maintaining retinal ganglion cell (RGC detoxification and homeostasis. Mature astrocytes are relatively quiescent, but rapidly undergo a phenotypic switch in response to insult, characterized by upregulation of intermediate filament proteins, loss of glutamate buffering, secretion of pro-inflammatory cytokines, and increased antioxidant production. These changes result in both positive and negative influences on RGCs. However, the mechanism regulating these responses is still unclear, and pharmacologic strategies to modulate select aspects of this switch have not been thoroughly explored. Here we describe a system for rapid culture of mature astrocytes from the adult rat retina that remain relatively quiescent, but respond robustly when challenged with oxidative damage, a key pathogenic stress associated with inner retinal injury. When primary astrocytes were exposed to reactive oxygen species (ROS we consistently observed characteristic changes in activation markers, along with increased expression of detoxifying genes, and secretion of proinflammatory cytokines. This in vitro model was then used for a pilot chemical screen to target specific aspects of this switch. Increased activity of p38α and β Mitogen Activated Protein Kinases (MAPKs were identified as a necessary signal regulating expression of MnSOD, and heme oxygenase 1 (HO-1, with consequent changes in ROS-mediated injury. Additionally, multiplex cytokine profiling detected p38 MAPK-dependent secretion of IL-6, MCP-1, and MIP-2α, which are proinflammatory signals recently implicated in damage to the inner retina. These data provide a mechanism to link increased oxidative stress to proinflammatory signaling by astrocytes, and establish this assay as a useful model to further dissect factors regulating the reactive switch.

  3. Accumulation and detoxification of metals and arsenic in tissues of cattle (Bos taurus), and the risks for human consumption

    Energy Technology Data Exchange (ETDEWEB)

    Roggeman, Saskia, E-mail: saskiaroggeman@gmail.com [Laboratory for Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171/U7, 2020 Antwerp (Belgium); de Boeck, Gudrun [Laboratory for Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171/U7, 2020 Antwerp (Belgium); De Cock, Hilde [General Medical Laboratory (Medvet/AML), Department of Pathology, Emiel Vloorsstraat 9, 2020 Antwerpen (Belgium); Blust, Ronny; Bervoets, Lieven [Laboratory for Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171/U7, 2020 Antwerp (Belgium)

    2014-01-01

    The aim of this study was to investigate metal accumulation and detoxification processes in cattle from polluted and unpolluted areas. Therefore dairy cows from farms and free ranging Galloway cows from nature reserves were used as study animals. The concentrations of Ag, Cd, Pb, Al, Cr, Mn, Fe, Co, Ni, Cu, Zn and As were determined in muscle, kidney, liver and lungs of cattle from polluted and reference areas in Belgium. In kidney and liver also the metallothionein concentrations were measured. For Ag, Mn, Co, Cu, Zn and As the concentrations in the different tissues were significantly higher in the sampled Galloways than in the sampled dairy cows. On the other hand Cd and Pb were significantly higher in tissues of both cattle breeds from polluted sites. Cadmium seemed to be the most important metal for metallothionein induction in kidneys whereas Zn seemed to be the most important metal for the induction of metallothionein in the liver. This study also suggested that only for Mn and Cd a significant part of the uptake occurs via the lungs. Although in muscle none of the Cd and Pb levels exceeded the European limits for human consumption, 40% of the livers and 85% of the kidneys of all examined cows were above the European limit for cadmium. Based on the existing minimum risk levels (MRLs) for chronic oral exposure, the present results suggested that a person of 70 kg should not eat more than 150 g cow meat per day because of the Cr levels in the muscles. - Highlights: •Cadmium induced metallothionein in kidney while Zn induced metallothionein in liver. •For Mn and Cd a significant part of the uptake happens via the lungs. •40% of the livers and 85% of the kidneys exceeded the European limit for cadmium. •A person of 70 kg should not eat more than 150 g bovine meat per day.

  4. Lactate and glucose concomitant consumption as a self-regulated pH detoxification mechanism in HEK293 cell cultures.

    Science.gov (United States)

    Liste-Calleja, Leticia; Lecina, Martí; Lopez-Repullo, Jonatan; Albiol, Joan; Solà, Carles; Cairó, Jordi Joan

    2015-12-01

    One of the most important limitations of mammalian cell-based processes is the secretion and accumulation of lactate as a by-product of their metabolism. Among the cell lines commonly used in industrial bioprocesses, HEK293 has been gaining importance over the last years. Up recently, HEK293 cells were known to consume lactate in late stages of cell culture usually when glucose and/or glutamine were depleted from media. Remarkably, in both scenarios, no significant cell growth was reported. However, we have observed a different metabolic behavior regarding lactate production and consumption in HEK293 cultures. HEK293 cells were able to co-metabolize glucose and lactate simultaneously, even in exponentially growing cell cultures. Our deep study of the effects of environmental conditions on lactate metabolism revealed that pH was the key to trigger the metabolic shift from lactate production to lactate and glucose concomitant consumption. Remarkably, this shift could be triggered at will when pH was set at 6.8. Even more interesting was the fact that lowering pH to 6.6 and supplementing media with exogenous lactate resulted in co-consumption of glucose and lactate from the beginning of cell culture, without affecting cell growth or protein productivity. On the contrary, cell growth was clearly hampered at this low pH if extracellular lactate was lacking. From our results, we hypothesize that HEK293 cells metabolize extracellular lactate as a strategy for pH detoxification, by means of co-transporting extracellular protons together with lactate into the cytosol. This novel hypothesis for unraveling lactate metabolism in HEK293 cells could open a door to re-direct genetic engineering strategies in order to obtain more efficient cell lines and also to further develop animal cell technology applications.

  5. Cyanide detoxification of mining wastewaters with TiO{sub 2} nanoparticles and its recovery by electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, V.; Casillas, H.M. [Department of Metallurgy and Materials Science, Institute of Technology of Saltillo, Saltillo Coahuila (Mexico); Valenzuela, J.L. [Department of Chemical Engineering and Metallurgy, University of Sonora, Hermosillo Sonora (Mexico); Parga, J.R.

    2009-12-15

    Due to the widespread use of cyanide in mining operations, its recovery and destruction is important for both the environmental aspects of wastewater and its treatment, and the economic aspects associated with the high consumption of chemicals by the process itself. A photoelectrocatalytic detoxification technique with titanium dioxide microelectrodes is one of the most innovative ways for the treatment of wastewater containing cyanide. However, this technique has a disadvantage for industrial application in that the separation of titanium dioxide after the photocatalytic degradation of cyanide is rather difficult due to the fineness of the particles, and therefore, the reuse of the titanium dioxide has not been attained for the treatment of cyanide-containing wastewater. To overcome this weak point, an electrocoagulation (EC) technique is used to recover the titanium dioxide from its aqueous suspensions. The results show that photodegradation of cyanide is 93 % in 30 min using a 450 W halogen lamp. The recovery of anatase with the EC process is 98 %. The results indicate that this technique has the potential to serve as a reliable and economical method because sunlight can be used efficiently as the power source. The Langmuir isotherm is used to obtain the thermodynamic parameters, i.e., free energy, enthalpy and entropy. The evaluation of these parameters, i.e., {delta}G =-37 kJ/mol, {delta}H =-54 kJ/mol and {delta}S =0.524 kJ/mol K, indicates the spontaneous and exothermic nature of the adsorption of the anatase particles on the iron species. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  6. Phytochelatin synthesis is essential for the detoxification of excess zinc and contributes significantly to the accumulation of zinc.

    Science.gov (United States)

    Tennstedt, Pierre; Peisker, Daniel; Böttcher, Christoph; Trampczynska, Aleksandra; Clemens, Stephan

    2009-02-01

    The synthesis of phytochelatins (PCs) is essential for the detoxification of nonessential metals and metalloids such as cadmium and arsenic in plants and a variety of other organisms. To our knowledge, no direct evidence for a role of PCs in essential metal homeostasis has been reported to date. Prompted by observations in Schizosaccharomyces pombe and Saccharomyces cerevisiae indicating a contribution of PC synthase expression to Zn2+ sequestration, we investigated a known PC-deficient Arabidopsis (Arabidopsis thaliana) mutant, cad1-3, and a newly isolated second strong allele, cad1-6, with respect to zinc (Zn) homeostasis. We found that in a medium with low cation content PC-deficient mutants show pronounced Zn2+ hypersensitivity. This phenotype is of comparable strength to the well-documented Cd2+ hypersensitivity of cad1 mutants. PC deficiency also results in significant reduction in root Zn accumulation. To be able to sensitively measure PC accumulation, we established an assay using capillary liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry of derivatized extracts. Plants grown under control conditions consistently showed PC2 accumulation. Analysis of plants treated with same-effect concentrations revealed that Zn2+-elicited PC2 accumulation in roots reached about 30% of the level of Cd2+-elicited PC2 accumulation. We conclude from these data that PC formation is essential for Zn2+ tolerance and provides driving force for the accumulation of Zn. This function might also help explain the mysterious occurrence of PC synthase genes throughout the plant kingdom and in a wide range of other organisms.

  7. HYR1-mediated detoxification of reactive oxygen species is required for full virulence in the rice blast fungus.

    Directory of Open Access Journals (Sweden)

    Kun Huang

    2011-04-01

    Full Text Available During plant-pathogen interactions, the plant may mount several types of defense responses to either block the pathogen completely or ameliorate the amount of disease. Such responses include release of reactive oxygen species (ROS to attack the pathogen, as well as formation of cell wall appositions (CWAs to physically block pathogen penetration. A successful pathogen will likely have its own ROS detoxification mechanisms to cope with this inhospitable environment. Here, we report one such candidate mechanism in the rice blast fungus, Magnaporthe oryzae, governed by a gene we refer to as MoHYR1. This gene (MGG_07460 encodes a glutathione peroxidase (GSHPx domain, and its homologue in yeast was reported to specifically detoxify phospholipid peroxides. To characterize this gene in M. oryzae, we generated a deletion mutantΔhyr1 which showed growth inhibition with increased amounts of hydrogen peroxide (H₂O₂. Moreover, we observed that the fungal mutants had a decreased ability to tolerate ROS generated by a susceptible plant, including ROS found associated with CWAs. Ultimately, this resulted in significantly smaller lesion sizes on both barley and rice. In order to determine how this gene interacts with other (ROS scavenging-related genes in M. oryzae, we compared expression levels of ten genes in mutant versus wild type with and without H₂O₂. Our results indicated that the HYR1 gene was important for allowing the fungus to tolerate H₂O₂ in vitro and in planta and that this ability was directly related to fungal virulence.

  8. [Complex effects of simulated acid rain and Cu on the physiological characteristics of Paulownia fortunei and its detoxification mechanism].

    Science.gov (United States)

    Wang, Jiang; Zhang, Chong-Bang; Ke, Shi-Sheng; Qian, Bao-Ying

    2010-03-01

    A pot experiment was conducted to study the effects of simulated acid rain (pH 4.0, 5.0) and Cu (0-200 mg x kg(-1)) on the physiological characteristics of Paulownia fortunei and its detoxification mechanism. With no Cu addition, the leaf chlorophyll, carotenoid, O2 division by, H2O2, and MDA contents of P. fortunei had no significant differences between the two acid rain treatments. However, with the addition of 100 and 200 mg Cu x kg(-1), the chlorophyll and carotenoid contents of treatment pH 4.0 were lower, while the O2 divided by, H2O2 and MDA contents were higher thanthose of treatment pH 5.0. The chlorophyll a/b ratio of treatments Cu was higher than that of the control. The leaf Cu content decreased obviously with the increasing acidity of stimulated acid rain, but the root Cu content was in reverse. With increasing Cu addition, both the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) and the total contents of phytochelatins (PCs) and glutathione (GSH) in treatment pH 5.0 increased, while the activities of SOD, POD, CAT and APX in treatment pH 4.0 decreased after an initial increase, and the total contents of glutathione (GSH) decreased greatly in treatment 200 mg Cu x kg(-1). All of these demonstrated that the oxidative stress of high Cu concentration to P. fortunei was aggravated by stimulated acid rain. PMID:20560310

  9. Detoxification of Toxic Phorbol Esters from Malaysian Jatropha curcas Linn. Kernel by Trichoderma spp. and Endophytic Fungi

    Directory of Open Access Journals (Sweden)

    Azhar Najjar

    2014-02-01

    Full Text Available The presence of phorbol esters (PEs with toxic properties limits the use of Jatropha curcas kernel in the animal feed industry. Therefore, suitable methods to detoxify PEs have to be developed to render the material safe as a feed ingredient. In the present study, the biological treatment of the extracted PEs-rich fraction with non-pathogenic fungi (Trichoderma harzianum JQ350879.1, T. harzianum JQ517493.1, Paecilomyces sinensis JQ350881.1, Cladosporium cladosporioides JQ517491.1, Fusarium chlamydosporum JQ350882.1, F. chlamydosporum JQ517492.1 and F. chlamydosporum JQ350880.1 was conducted by fermentation in broth cultures. The PEs were detected by liquid chromatography-diode array detector-electrospray ionization mass spectrometry (LC-DAD-ESIMS and quantitatively monitored by HPLC using phorbol-12-myristate 13-acetate as the standard. At day 30 of incubation, two T. harzianum spp., P. sinensis and C. cladosporioides significantly (p < 0.05 removed PEs with percentage losses of 96.9%–99.7%, while F. chlamydosporum strains showed percentage losses of 88.9%–92.2%. All fungal strains could utilize the PEs-rich fraction for growth. In the cytotoxicity assay, cell viabilities of Chang liver and NIH 3T3 fibroblast cell lines were less than 1% with the untreated PEs-rich fraction, but 84.3%–96.5% with the fungal treated PEs-rich fraction. There was no inhibition on cell viability for normal fungal growth supernatants. To conclude, Trichoderma spp., Paecilomyces sp. and Cladosporium sp. are potential microbes for the detoxification of PEs.

  10. Comparison of the Detoxification Effects of Acupuncture, Chinese Herbs and Acupuncture Plus Chinese Herbs on Heroin Addiction

    Institute of Scientific and Technical Information of China (English)

    ZONG Lei; HU Jun; LI Yu; LU Ying; XIN Yu-hu; CUI Xue-jun

    2005-01-01

    对海洛因依赖者分别以针刺、中药、针药结合疗法戒断,并与西药治疗对照,动态观察20 d的戒断症状记分.戒断治疗48 h时,针刺的疗效优于西药(P<0.05);治疗到72 h时针刺优于其他各种方法(P<0.01).针刺、中药、针药结合疗法脱毒具有一定疗效,以针刺疗法效果明显,但治疗开始后3 d内均不能完全改善戒断症状,也不能完全改善激烈的戒断症状.针刺与中药的结合应用未出现协同效应.%Heroin addicts were treated with acupuncture, Chinese herbs, and acupuncture plus Chinese herbs respectively, their effects were compared with that of Western medicine.The scores of withdrawal symptoms were observed continuously for 20 days. The effect of acupuncture was better than that of Western medicine 48 hours after the withdrawal treatment (P< 0.05), and better than that of other three methods 72 hours after the withdrawal treatment, (P < 0.01). Acupuncture, Chinese herbs, and acupuncture plus Chinese herbs have the detoxification effects of varying degrees, in particular acupuncture' effect was the best. But all the therapies could not completely improve the withdrawal symptoms in the first 3 days of treatment, and acupuncture plus Chinese herbs had no synergetic effect in treating withdrawal symptoms.

  11. Genes of cell-cell interactions, chemotherapy detoxification and apoptosis are induced during chemotherapy of acute myeloid leukemia

    International Nuclear Information System (INIS)

    The molecular changes in vivo in acute myeloid leukemia cells early after start of conventional genotoxic chemotherapy are incompletely understood, and it is not known if early molecular modulations reflect clinical response. The gene expression was examined by whole genome 44 k oligo microarrays and 12 k cDNA microarrays in peripheral blood leukocytes collected from seven leukemia patients before treatment, 2–4 h and 18–24 h after start of chemotherapy and validated by real-time quantitative PCR. Statistically significantly upregulated genes were classified using gene ontology (GO) terms. Parallel samples were examined by flow cytometry for apoptosis by annexin V-binding and the expression of selected proteins were confirmed by immunoblotting. Significant differential modulation of 151 genes were found at 4 h after start of induction therapy with cytarabine and anthracycline, including significant overexpression of 31 genes associated with p53 regulation. Within 4 h of chemotherapy the BCL2/BAX and BCL2/PUMA ratio were attenuated in proapoptotic direction. FLT3 mutations indicated that non-responders (5/7 patients, 8 versus 49 months survival) are characterized by a unique gene response profile before and at 4 h. At 18–24 h after chemotherapy, the gene expression of p53 target genes was attenuated, while genes involved in chemoresistance, cytarabine detoxification, chemokine networks and T cell receptor were prominent. No signs of apoptosis were observed in the collected cells, suggesting the treated patients as a physiological source of pre-apoptotic cells. Pre-apoptotic gene expression can be monitored within hours after start of chemotherapy in patients with acute myeloid leukemia, and may be useful in future determination of therapy responders. The low number of patients and the heterogeneity of acute myeloid leukemia limited the identification of gene expression predictive of therapy response. Therapy-induced gene expression reflects the complex

  12. Hemozoin is a product of heme detoxification in the gut of the most medically important species of the family Opisthorchiidae.

    Science.gov (United States)

    Lvova, Maria; Zhukova, Mariya; Kiseleva, Elena; Mayboroda, Oleg; Hensbergen, Paul; Kizilova, Elena; Ogienko, Anna; Besprozvannykh, Vladimir; Sripa, Banchob; Katokhin, Alexey; Mordvinov, Viatcheslav

    2016-03-01

    Many species of trematodes such as Schistosoma spp., Fasciola hepatica and Echinostoma trivolvis are blood-feeding parasites. Nevertheless, there is no consensus on the feeding habits of the family Opisthorchiidae (Opisthorchis felineus, Opisthorchis viverrini and Clonorchis sinensis). Previously, histological studies of O. felineus and C. sinensis revealed some dark stained material in their gut lumen. In this study we conducted a comprehensive analysis of the gut contents of three members of the family Opisthorchiidae (O. felineus, O. viverrini and C. sinensis). Using transmission electron microscopy, we demonstrated for the first known time the presence of disintegrating blood cells in the gut of O. felineus as well as electron-dense crystals in the gut of O. felineus and C. sinensis. Electron energy loss spectroscopy revealed iron atoms in these crystals, and mass spectrometry of the purified pigment demonstrated the presence of heme. Fourier-transform infrared spectroscopy identified the signature peaks of the common iron-carboxylate bond characteristic in crystals isolated from O. felineus and C. sinensis. Scanning electron microscopy showed layered ovoid crystals of various sizes from 50 nm to 2 μm. Morphological, chemical and paramagnetic properties of these crystals were similar to those of hemozoin from Schistosoma mansoni. Crystal formation occurs on the surface of lipid droplets in O. felineus and C. sinensis guts. Our results suggest that the diet of O. felineus and C. sinensis includes blood. Detoxification of the free heme produced during the digestion proceeds via formation of insoluble crystals that contain iron and heme dimers, i.e. crystals of hemozoin. Furthermore, we believe that biocrystallisation of hemozoin takes place on the surface of the lipid droplets, similar to S. mansoni. Hemozoin was not detected in the closely related species O. viverrini. PMID:26812025

  13. The crystal structures of the tryparedoxin-tryparedoxin peroxidase couple unveil the structural determinants of Leishmania detoxification pathway.

    Directory of Open Access Journals (Sweden)

    Annarita Fiorillo

    Full Text Available Leishmaniasis is a neglected disease caused by Leishmania, an intracellular protozoan parasite which possesses a unique thiol metabolism based on trypanothione. Trypanothione is used as a source of electrons by the tryparedoxin/tryparedoxin peroxidase system (TXN/TXNPx to reduce the hydroperoxides produced by macrophages during infection. This detoxification pathway is not only unique to the parasite but is also essential for its survival; therefore, it constitutes a most attractive drug target. Several forms of TXNPx, with very high sequence identity to one another, have been found in Leishmania strains, one of which has been used as a component of a potential anti-leishmanial polyprotein vaccine. The structures of cytosolic TXN and TXNPx from L. major (LmTXN and LmTXNPx offer a unique opportunity to study peroxide reduction in Leishmania parasites at a molecular level, and may provide new tools for multienzyme inhibition-based drug discovery. Structural analyses bring out key structural features to elucidate LmTXN and LmTXNPx function. LmTXN displays an unusual N-terminal α-helix which allows the formation of a stable domain-swapped dimer. In LmTXNPx, crystallized in reducing condition, both the locally unfolded (LU and fully folded (FF conformations, typical of the oxidized and reduced protein respectively, are populated. The structural analysis presented here points to a high flexibility of the loop that includes the peroxidatic cysteine which facilitates Cys52 to form an inter-chain disulfide bond with the resolving cysteine (Cys173, thereby preventing over-oxidation which would inactivate the enzyme. Analysis of the electrostatic surface potentials of both LmTXN and LmTXNPx unveils the structural elements at the basis of functionally relevant interaction between the two proteins. Finally, the structural analysis of TXNPx allows us to identify the position of the epitopes that make the protein antigenic and therefore potentially suitable

  14. Fermented wheat aleurone induces enzymes involved in detoxification of carcinogens and in antioxidative defence in human colon cells.

    Science.gov (United States)

    Stein, Katrin; Borowicki, Anke; Scharlau, Daniel; Glei, Michael

    2010-10-01

    Dietary fibre is fermented by the human gut flora resulting mainly in the formation of SCFA, for example, acetate, propionate and butyrate. SCFA, in particular butyrate, may be important for secondary cancer prevention by inducing apoptosis and inhibiting cell growth of cancer cells, thereby inhibiting the promotion and/or progression of cancer. Furthermore, SCFA could also act on primary cancer prevention by activation of detoxifying and antioxidative enzymes. We investigated the effects of fermented wheat aleurone on the expression of genes involved in stress response and toxicity, activity of drug-metabolising enzymes and anti-genotoxic potential. Aleurone was digested and fermented in vitro to obtain samples that reflect the content of the colon. HT29 cells and colon epithelial stripes were incubated with the resulting fermentation supernatant fractions (fs) and effects on mRNA expression of CAT, GSTP1 and SULT2B1 and enzyme activity of glutathione S-transferase (GST) and catalase (CAT) were measured. Fermented aleurone was also used to study the protection against H2O2-induced DNA damage in HT29 cells. The fs of aleurone significantly induced the mRNA expression of CAT, GSTP1 and SULT2B1 (HT29) and GSTP1 (epithelial stripes), respectively. The enzyme activities of GST (HT29) and CAT (HT29, epithelial stripes) were also unambiguously increased (1.4- to 3.7-fold) by the fs of aleurone. DNA damage induced by H2O2 was significantly reduced by the fs of aleurone after 48 h, whereupon no difference was observed compared with the faeces control. In conclusion, fermented aleurone is able to act on primary prevention by inducing mRNA expression and the activity of enzymes involved in detoxification of carcinogens and antioxidative defence.

  15. Accumulation and detoxification of metals and arsenic in tissues of cattle (Bos taurus), and the risks for human consumption

    International Nuclear Information System (INIS)

    The aim of this study was to investigate metal accumulation and detoxification processes in cattle from polluted and unpolluted areas. Therefore dairy cows from farms and free ranging Galloway cows from nature reserves were used as study animals. The concentrations of Ag, Cd, Pb, Al, Cr, Mn, Fe, Co, Ni, Cu, Zn and As were determined in muscle, kidney, liver and lungs of cattle from polluted and reference areas in Belgium. In kidney and liver also the metallothionein concentrations were measured. For Ag, Mn, Co, Cu, Zn and As the concentrations in the different tissues were significantly higher in the sampled Galloways than in the sampled dairy cows. On the other hand Cd and Pb were significantly higher in tissues of both cattle breeds from polluted sites. Cadmium seemed to be the most important metal for metallothionein induction in kidneys whereas Zn seemed to be the most important metal for the induction of metallothionein in the liver. This study also suggested that only for Mn and Cd a significant part of the uptake occurs via the lungs. Although in muscle none of the Cd and Pb levels exceeded the European limits for human consumption, 40% of the livers and 85% of the kidneys of all examined cows were above the European limit for cadmium. Based on the existing minimum risk levels (MRLs) for chronic oral exposure, the present results suggested that a person of 70 kg should not eat more than 150 g cow meat per day because of the Cr levels in the muscles. - Highlights: •Cadmium induced metallothionein in kidney while Zn induced metallothionein in liver. •For Mn and Cd a significant part of the uptake happens via the lungs. •40% of the livers and 85% of the kidneys exceeded the European limit for cadmium. •A person of 70 kg should not eat more than 150 g bovine meat per day

  16. Energy Capture from Thermolytic Solutions in Microbial Reverse-Electrodialysis Cells

    KAUST Repository

    Cusick, R. D.

    2012-03-01

    Reverse electrodialysis allows for the capture of energy from salinity gradients between salt and fresh waters, but potential applications are currently limited to coastal areas and the need for a large number of membrane pairs. Using salt solutions that could be continuously regenerated with waste heat (≥40°C) and conventional technologies would allow much wider applications of salinity-gradient power production. We used reverse electrodialysis ion-exchange membrane stacks in microbial reverse- electrodialysis cells to efficiently capture salinity-gradient energy from ammonium bicarbonate salt solutions. The maximum power density using acetate reached 5.6 watts per square meter of cathode surface area, which was five times that produced without the dialysis stack, and 3.0 ± 0.05 watts per square meter with domestic wastewater. Maximum energy recovery with acetate reached 30 ± 0.5%.

  17. 海洛因依赖者脱毒后心理状态分析%A Study of Psychological Health Status of Heroin Addicts after Detoxification

    Institute of Scientific and Technical Information of China (English)

    李国海; 黄明生; 李静

    2001-01-01

    目的:研究海洛因依赖者脱毒后的心理状态。方法:对58例海洛因依赖者在脱毒后作SCL-90测评。结果:海洛因依赖者脱毒后在躯体化、忧郁、焦虑、恐怖、精神病性等因子分上均高于国内常模,男性依赖者在强迫、敌对性、偏执等因子分上高于女性。结论:海洛因依赖者脱毒后存在躯体稽延症状及焦虑、抑郁情绪,需使用有关药物并进行心理社会干预以防复吸。%Objective:To study psychological health status of heroin addicts after detoxification.Methods:Fifty-eight cases of heroin addicts were rated by SCL-90 after detoxification.Results:Heroin addicts had higher factor scores of somatization,melancholia,anxiety,phobia,and psychosis compared with the norm,and the male addicts had higher scores of obsession,hostility,and paranoid than the females.Conclusion:Heroin addicts have somatic symptoms,anxiety,and depressive mood after detoxification,and it suggests that some drugs should be used and psychosocial interventions be made to prevent from relapsing.

  18. Identification of Genes Putatively Involved in Chitin Metabolism and Insecticide Detoxification in the Rice Leaf Folder (Cnaphalocrocis medinalis Larvae through Transcriptomic Analysis

    Directory of Open Access Journals (Sweden)

    Hai-Zhong Yu

    2015-09-01

    Full Text Available The rice leaf roller (Cnaphalocrocis medinalis is one of the most destructive agricultural pests. Due to its migratory behavior, it is difficult to control worldwide. To date, little is known about major genes of C. medinalis involved in chitin metabolism and insecticide detoxification. In order to obtain a comprehensive genome dataset of C. medinalis, we conducted de novo transcriptome sequencing which focused on the major feeding stage of fourth-instar larvae, and our work revealed useful information on chitin metabolism and insecticide detoxification and target genes of C. medinalis. We acquired 29,367,797 Illumina reads and assembled these reads into 63,174 unigenes with an average length of 753 bp. Among these unigenes, 31,810 were annotated against the National Center for Biotechnology Information non-redundant (NCBI nr protein database, resulting in 24,246, 8669 and 18,176 assigned to Swiss-Prot, clusters of orthologous group (COG, and gene ontology (GO, respectively. We were able to map 10,043 unigenes into 285 pathways using the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG. Specifically, 16 genes, including five chitin deacetylases, two chitin synthases, five chitinases and four other related enzymes, were identified to be putatively involved in chitin biosynthesis and degradation, whereas 360 genes, including cytochrome P450s, glutathione S-transferases, esterases, and acetylcholinesterases, were found to be potentially involved in insecticide detoxification or as insecticide targets. The reliability of the transcriptome data was determined by reverse transcription quantitative PCR (RT-qPCR for the selected genes. Our data serves as a new and valuable sequence resource for genomic studies on C. medinalis. The findings should improve our understanding of C. medinalis genetics and contribute to management of this important agricultural pest.

  19. Identification of Genes Putatively Involved in Chitin Metabolism and Insecticide Detoxification in the Rice Leaf Folder (Cnaphalocrocis medinalis) Larvae through Transcriptomic Analysis

    Science.gov (United States)

    Yu, Hai-Zhong; Wen, De-Fu; Wang, Wan-Lin; Geng, Lei; Zhang, Yan; Xu, Jia-Ping

    2015-01-01

    The rice leaf roller (Cnaphalocrocis medinalis) is one of the most destructive agricultural pests. Due to its migratory behavior, it is difficult to control worldwide. To date, little is known about major genes of C. medinalis involved in chitin metabolism and insecticide detoxification. In order to obtain a comprehensive genome dataset of C. medinalis, we conducted de novo transcriptome sequencing which focused on the major feeding stage of fourth-instar larvae, and our work revealed useful information on chitin metabolism and insecticide detoxification and target genes of C. medinalis. We acquired 29,367,797 Illumina reads and assembled these reads into 63,174 unigenes with an average length of 753 bp. Among these unigenes, 31,810 were annotated against the National Center for Biotechnology Information non-redundant (NCBI nr) protein database, resulting in 24,246, 8669 and 18,176 assigned to Swiss-Prot, clusters of orthologous group (COG), and gene ontology (GO), respectively. We were able to map 10,043 unigenes into 285 pathways using the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG). Specifically, 16 genes, including five chitin deacetylases, two chitin synthases, five chitinases and four other related enzymes, were identified to be putatively involved in chitin biosynthesis and degradation, whereas 360 genes, including cytochrome P450s, glutathione S-transferases, esterases, and acetylcholinesterases, were found to be potentially involved in insecticide detoxification or as insecticide targets. The reliability of the transcriptome data was determined by reverse transcription quantitative PCR (RT-qPCR) for the selected genes. Our data serves as a new and valuable sequence resource for genomic studies on C. medinalis. The findings should improve our understanding of C. medinalis genetics and contribute to management of this important agricultural pest. PMID:26378520

  20. Structural Analysis and Biological Toxicity of Aflatoxins B1 and B2 Degradation Products Following Detoxification by Ocimum basilicum and Cassia fistula Aqueous Extracts

    Science.gov (United States)

    Iram, Wajiha; Anjum, Tehmina; Iqbal, Mazhar; Ghaffar, Abdul; Abbas, Mateen; Khan, Abdul Muqeet

    2016-01-01

    This study showed the comparison between Ocimum basilicum and Cassia fistula (leaves and branch) aqueous extracts for their ability to detoxify of aflatoxins B1 and B2 (AFB1; 100 μg L-1 and AFB2; 50 μg L-1) by In Vitro assays and decontamination studies. Results indicated that O. basilicum leaves extract was found to be highly significant (P Brine shrimps bioassay further confirmed the low toxicity of degraded products, showing that O. basilicum leaves extract can be used as an effective tool for the detoxification of aflatoxins. PMID:27471501

  1. Solar water detoxification: state of the art of the research in Spain; Detoxificacion solar de aguas residuales y desinfeccion: estado actual de la investigacion en Espana

    Energy Technology Data Exchange (ETDEWEB)

    Perez Martinez, M.; Cuesta Santianes, J.; Cabrera Jimenez, J. A.; Garcia Garcia, D.; Trevino Sanchez, A. C.; Berges Garcia, A.

    2010-07-01

    The CIEMAT's Foresight and Technology Watch Unit, whose technology watch management system is certified by Aenor as per standards UNE 16006:2006, has developed this study in order to review the state of the art of national research on solar water detoxification. to reach this goal, data bases of scientific publications, research projects and patents have been used. The technology watch information management solution VICUBO, developed by E-intelligent, was used as support tool for the afore-mentioned standard. (Author) 3 refs.

  2. The mechanisms of detoxification of As(III), dimethylarsinic acid (DMA) and As(V) in the microalga Chlorella vulgaris.

    Science.gov (United States)

    Pantoja Munoz, L; Purchase, D; Jones, H; Raab, A; Urgast, D; Feldmann, J; Garelick, H

    2016-06-01

    The response of Chlorella vulgaris when challenged by As(III), As(V) and dimethylarsinic acid (DMA) was assessed through experiments on adsorption, efflux and speciation of arsenic (reduction, oxidation, methylation and chelation with glutathione/phytochelatin [GSH/PC]). Our study indicates that at high concentrations of phosphate (1.62mM of HPO4(2-)), upon exposure to As(V), cells are able to shift towards methylation of As(V) rather than PC formation. Treatment with As(V) caused a moderate decrease in intracellular pH and a strong increase in the concentration of free thiols (GSH). Passive surface adsorption was found to be negligible for living cells exposed to DMA and As(V). However, adsorption of As(III) was observed to be an active process in C. vulgaris, because it did not show saturation at any of the exposure periods. Chelation of As(III) with GS/PC and to a lesser extent hGS/hPC is a major detoxification mechanism employed by C. vulgaris cells when exposed to As(III). The increase of bound As-GS/PC complexes was found to be strongly related to an increase in concentration of As(III) in media. C. vulgaris cells did not produce any As-GS/PC complex when exposed to As(V). This may indicate that a reduction step is needed for As(V) complexation with GSH/PC. C. vulgaris cells formed DMAS(V)-GS upon exposure to DMA independent of the exposure period. As(III) triggers the formation of arsenic complexes with PC and homophytochelatins (hPC) and their compartmentalisation to vacuoles. A conceptual model was devised to explain the mechanisms involving ABCC1/2 transport. The potential of C. vulgaris to bio-remediate arsenic from water appeared to be highly selective and effective without the potential hazard of reducing As(V) to As(III), which is more toxic to humans.

  3. Arsenic detoxification by phytoremediation

    OpenAIRE

    Ashraf Hossain Talukder; Shahin Mahmud; Shoaib Mahmud Shaon; Rafsan Zani Tanvir; Mithun Kumar Saha; Abdullah Al Imran; Md. Shariful Islam

    2015-01-01

    Heavy metals pollution is amongst the commonest form of environmental pollution. These metals have accumulated over time from the smelting and mining activities of man, from poor waste disposal practices and from modernization. Recently the impact of heavy metal pollution of the environment is stirring up serious concerns since the discovery that some edible plants accumulate these metals to a level, toxic to both themselves and to the animals that consumes them. Common features of heavily po...

  4. Microbial detoxification of mycotoxins

    Science.gov (United States)

    Mycotoxins are fungal natural products that are toxic to vertebrate animals. Microbes have been identified that enzymatically convert aflatoxin, zearalenone, ochratoxin, patulin, fumonisin, deoxynivalenol, and T-2 toxin to less toxic products. Mycotoxin-degrading fungi and bacteria have been isolate...

  5. Modified Nanodiamonds for Detoxification

    Science.gov (United States)

    Gibson, Natalie Marie

    Nanodiamonds (NDs) are an emerging class of biomaterials that are reaching worldwide attention due to their biocompatible, nontoxic properties and abundant surface chemistries that lend them to a wide range of biomedical applications. Furthermore, surface functional groups of NDs can easily be tailored to exhibit desirable chemical, physical and biological properties. Such characteristics naturally allow for NDs' surface to be considered as ideal carriers for various molecules and biomolecules intended for the delivery or removal of molecules in vivo. NDs have already shown to have a high affinity for various biological molecules, including DNA and proteins. This dissertation, however, expands NDs' use to the adsorption of carcinogenic mycotoxins, aflatoxin B1 (AfB1) and ochratoxin A (OTA). It has been estimated that myocotoxins are found in approximately 25 % of the world's crops each year. Ingestion of mycotoxins contaminated crops has been linked to hepatocellular carcinoma, disease and death. Therefore, we aim to develop ND enterosorbents, for the binding and removal of mycotoxins within the gastrointestinal (GI) tract, thereby eliminating the effects of these toxins. While NDs are readily available, raw, unmodified NDs, like those typically received from vendors, possess inhomogeneous aggregate sizes and surface characteristics. Our research first explored several ND modification techniques to enhance ND's adsorption of AfB1 and OTA. Modification methods assessed in this research include size reduction techniques, plasma treatments, silane surface coatings and homogenous surface group termination, including carboxylation, hydrogenation and hydroxylation. The effectiveness of these NDs for mycotoxins removal was determined by calculations of maximum capacities and binding constants, as obtained through the Langmuir isotherm and related transform equations. Several of these treatments also showed heightening of the NDs' inherent zeta potentials (ZPs), which were essential for interacting with charged molecules, like OTA. Furthermore, the increased ZPs lead to improved colloidal stabilities over a wide range of pH, which is important for their interaction in the GI tract. While the dyes and OTA illustrated primarily electrostatic adsorption mechanisms, neutrally charged AfB1's adsorption was predominantly based upon the aggregate size of the ND substrate. In addition to mycotoxins, fluorescent dyes, including propidium iodide, pyranine and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), were initially utilized during methodological development. Fluorescent dye investigations helped assesses the adsorption mechanisms of NDs and demonstrated the significance of electrostatic interactions. Beyond electrostatic adsorption mechanisms, surface functional groups were also responsible for the amount of dye adsorbed, as was also true in OTA adsorption. Therefore, surface characterization was carried out for several ND samples by FTIR, TOF-SIMS and TDMS analysis. Final results of our studies show that our modified NDs perform better than yeast cells walls and other NDs but comparable to activated charcoal in the adsorption of AfB1, and outperform clay minerals in OTA studies. Moreover, it was demonstrated that adsorption can be maintained in a wide range of pH, thereby, increasing the possibility of NDs use in mycotoxins enterosorbent applications.

  6. A novel aldo-keto reductase from Jatropha curcas L. (JcAKR) plays a crucial role in the detoxification of methylglyoxal, a potent electrophile.

    Science.gov (United States)

    Mudalkar, Shalini; Sreeharsha, Rachapudi Venkata; Reddy, Attipalli Ramachandra

    2016-05-20

    Abiotic stress leads to the generation of reactive oxygen species (ROS) which further results in the production of reactive carbonyls (RCs) including methylglyoxal (MG). MG, an α, β-dicarbonyl aldehyde, is highly toxic to plants and the mechanism behind its detoxification is not well understood. Aldo-keto reductases (AKRs) play a role in detoxification of reactive aldehydes and ketones. In the present study, we cloned and characterised a putative AKR from Jatropha curcas (JcAKR). Phylogenetically, it forms a small clade with AKRs of Glycine max and Rauwolfia serpentina. JcAKR was heterologously expressed in Escherichia coli BL-21(DE3) cells and the identity of the purified protein was confirmed through MALDI-TOF analysis. The recombinant protein had high enzyme activity and catalytic efficiency in assays containing MG as the substrate. Protein modelling and docking studies revealed MG was efficiently bound to JcAKR. Under progressive drought and salinity stress, the enzyme and transcript levels of JcAKR were higher in leaves compared to roots. Further, the bacterial and yeast cells expressing JcAKR showed more tolerance towards PEG (5%), NaCl (200mM) and MG (5mM) treatments compared to controls. In conclusion, our results project JcAKR as a possible and potential target in crop improvement for abiotic stress tolerance. PMID:26995646

  7. Role of the reactor configuration in the biological detoxification of a dump site-polychlorobiphenyl-contaminated soil in lab-scale slurry phase conditions

    Energy Technology Data Exchange (ETDEWEB)

    Fava, F.; Di Gioia, D.; Marchetti, L. [Bologna Univ. (Italy). Dipt. di Chimica Applicata e Scienza dei Materiali

    2000-07-01

    The biotreatability of a xenobiotic contaminated soil is frequently determined through a bioslurry treatment usually performed in lab-scale shaken baffled flasks. In this study, a 3-1 unconventional stirred tank reactor was developed and tested in the slurry-phase treatment of a soil heavily contaminated by polychlorobiphenyls (PCBs) derived from an Italian dump site, in the absence and in the presence of biphenyl and of the exogenous PCB aerobically dechlorinating co-culture ECO3. The data obtained were compared with those obtained on the same soil in experiments performed in parallel in 3-l baffled shaken flask reactors. Considerably higher PCB removal and soil detoxification yields (determined through the Lepidium sativum germination test and the Collembola mortality test) were attained in the stirred tank reactors, which generally displayed a higher slurry-phase homogeneity and a higher availability of biphenyl- and chlorobenzoic acid-degarding bacteria compared to the corresponding shaken flask reactors. Moreover, enhanced soil PCB biodegradation and detoxification yields were observed when the developed reactor was supplemented with biphenyl and the exogenous ECO3 bacteria. In conclusion, the results of the soil biotreatability experiments commonly performed in bioslurry lab-scale reactors are significantly influenced by the reactor configuration; the use of the unconventional stirred tank reactor system developed in this work is recommended. (orig.)

  8. De novo cloning and annotation of genes associated with immunity, detoxification and energy metabolism from the fat body of the oriental fruit fly, Bactrocera dorsalis.

    Directory of Open Access Journals (Sweden)

    Wen-Jia Yang

    Full Text Available The oriental fruit fly, Bactrocera dorsalis, is a destructive pest in tropical and subtropical areas. In this study, we performed transcriptome-wide analysis of the fat body of B. dorsalis and obtained more than 59 million sequencing reads, which were assembled into 27,787 unigenes with an average length of 591 bp. Among them, 17,442 (62.8% unigenes matched known proteins in the NCBI database. The assembled sequences were further annotated with gene ontology, cluster of orthologous group terms, and Kyoto encyclopedia of genes and genomes. In depth analysis was performed to identify genes putatively involved in immunity, detoxification, and energy metabolism. Many new genes were identified including serpins, peptidoglycan recognition proteins and defensins, which were potentially linked to immune defense. Many detoxification genes were identified, including cytochrome P450s, glutathione S-transferases and ATP-binding cassette (ABC transporters. Many new transcripts possibly involved in energy metabolism, including fatty acid desaturases, lipases, alpha amylases, and trehalose-6-phosphate synthases, were identified. Moreover, we randomly selected some genes to examine their expression patterns in different tissues by quantitative real-time PCR, which indicated that some genes exhibited fat body-specific expression in B. dorsalis. The identification of a numerous transcripts in the fat body of B. dorsalis laid the foundation for future studies on the functions of these genes.

  9. Dynamic model-based analysis of furfural and HMF detoxification by pure and mixed batch cultures of S. cerevisiae and S. stipitis.

    Science.gov (United States)

    Hanly, Timothy J; Henson, Michael A

    2014-02-01

    Inhibitory compounds that result from biomass hydrolysis are an obstacle to the efficient production of second-generation biofuels. Fermentative microorganisms can reduce compounds such as furfural and 5-hydroxymethyl furfural (HMF), but detoxification is accompanied by reduced growth rates and ethanol yields. In this study, we assess the effects of these furan aldehydes on pure and mixed yeast cultures consisting of a respiratory deficient mutant of Saccharomyces cerevisiae and wild-type Scheffersomyces stipitis using dynamic flux balance analysis. Uptake kinetics and stoichiometric equations for the intracellular reduction reactions associated with each inhibitor were added to genome-scale metabolic reconstructions of the two yeasts. Further modification of the S. cerevisiae metabolic network was necessary to satisfactorily predict the amount of acetate synthesized during HMF reduction. Inhibitory terms that captured the adverse effects of the furan aldehydes and their corresponding alcohols on cell growth and ethanol production were added to attain qualitative agreement with batch experiments conducted for model development and validation. When the two yeasts were co-cultured in the presence of the furan aldehydes, inoculums that reduced the synthesis of highly toxic acetate produced by S. cerevisiae yielded the highest ethanol productivities. The model described here can be used to generate optimal fermentation strategies for the simultaneous detoxification and fermentation of lignocellulosic hydrolysates by S. cerevisiae and/or S. stipitis.

  10. YNL134C from Saccharomyces cerevisiae encodes a novel protein with aldehyde reductase activity for detoxification of furfural derived from lignocellulosic biomass.

    Science.gov (United States)

    Zhao, Xianxian; Tang, Juan; Wang, Xu; Yang, Ruoheng; Zhang, Xiaoping; Gu, Yunfu; Li, Xi; Ma, Menggen

    2015-05-01

    Furfural and 5-hydroxymethylfurfural (HMF) are the two main aldehyde compounds derived from pentoses and hexoses, respectively, during lignocellulosic biomass pretreatment. These two compounds inhibit microbial growth and interfere with subsequent alcohol fermentation. Saccharomyces cerevisiae has the in situ ability to detoxify furfural and HMF to the less toxic 2-furanmethanol (FM) and furan-2,5-dimethanol (FDM), respectively. Herein, we report that an uncharacterized gene, YNL134C, was highly up-regulated under furfural or HMF stress and Yap1p and Msn2/4p transcription factors likely controlled its up-regulated expression. Enzyme activity assays showed that YNL134C is an NADH-dependent aldehyde reductase, which plays a role in detoxification of furfural to FM. However, no NADH- or NADPH-dependent enzyme activity was observed for detoxification of HMF to FDM. This enzyme did not catalyse the reverse reaction of FM to furfural or FDM to HMF. Further studies showed that YNL134C is a broad-substrate aldehyde reductase, which can reduce multiple aldehydes to their corresponding alcohols. Although YNL134C is grouped into the quinone oxidoreductase family, no quinone reductase activity was observed using 1,2-naphthoquinone or 9,10-phenanthrenequinone as a substrate, and phylogenetic analysis indicates that it is genetically distant to quinone reductases. Proteins similar to YNL134C in sequence from S. cerevisiae and other microorganisms were phylogenetically analysed.

  11. Mercury species, selenium, metallothioneins and glutathione in two dolphins from the southeastern Brazilian coast: Mercury detoxification and physiological differences in diving capacity.

    Science.gov (United States)

    Kehrig, Helena A; Hauser-Davis, Rachel A; Seixas, Tercia G; Pinheiro, Ana Beatriz; Di Beneditto, Ana Paula M

    2016-06-01

    In the present study, the concentration of trace elements, total mercury (Hg) and selenium (Se) and mercury forms (MeHg, Hginorg and HgSe) in the vulnerable coastal dolphins Pontoporia blainvillei and Sotalia guianensis were appraised and compared, using metallothioneins (MT) and glutathione (GSH) as biomarkers for trace element exposure. The trace element concentrations varied between muscle and liver tissues, with liver of all dolphin specimens showing higher Hg and Se concentrations than those found in muscle. Hg, MeHg and Hginorg molar concentrations showed a clear increase with Se molar concentrations in the liver of both dolphins, and Se concentrations were higher than those of Hg on a molar basis. Se plays a relevant role in the detoxification of MeHg in the hepatic tissue of both dolphins, forming Hg-Se amorphous crystals in liver. In contrast, MT were involved in the detoxification process of Hginorg in liver. GSH levels in P. blainvillei and S. guianensis muscle tissue suggest that these dolphins have different diving capacities. Muscle Hg concentrations were associated to this tripeptide, which protects dolphin cells against Hg stress. PMID:27038210

  12. Effective selenium detoxification in the seed proteins of a hyperaccumulator plant: the analysis of selenium-containing proteins of monkeypot nut (Lecythis minor) seeds.

    Science.gov (United States)

    Németh, Anikó; Dernovics, Mihály

    2015-01-01

    A shotgun proteomic approach was applied to characterize the selenium (Se)-containing proteins of the selenium hyperaccumulator monkeypot nut (Lecythis minor) seeds. The exceptionally high Se content (>4,000 mg kg(-1)) of the sample enabled a straightforward procedure without the need for multiple preconcentration and fractionation steps. The proteins identified were sulfur-rich seed proteins, namely, 11S globulin (Q84ND2), 2S albumin (B6EU54), 2S sulfur-rich seed storage proteins (P04403 and P0C8Y8) and a 11S globulin-like protein (A0EM48). Database directed search for theoretically selenium-containing peptides was assisted by manual spectra evaluation to achieve around 25% coverage on sulfur analogues. Remarkable detoxification mechanisms on the proteome level were revealed in the form of multiple selenomethionine-methionine substitution and the lack of selenocysteine residues. The degree of selenomethionine substitution could be characterized by an exponential function that implies the inhibition of protein elongation by selenomethionine. Our results contribute to the deeper understanding of selenium detoxification procedures in hyperaccumulator plants. PMID:25373701

  13. Progress on Detoxification of Ochratoxin A by the Microorganisms%微生物对赭曲霉毒素A脱毒作用研究进展

    Institute of Scientific and Technical Information of China (English)

    龙淼; 李颜鹏; 任艳苗; 何润霞; 张燚; 何剑斌

    2014-01-01

    赭曲霉毒素 A (ochratoxin A,OTA)是霉菌毒素中常见的一种毒素。OTA 对粮食谷物的污染在全球范围内广泛的存在,大量受 OTA 污染的谷物严重危害了人和动物的健康。由于不可能把受污染的粮食全部销毁,因此,需要将不适合作为口粮的污染粮食经过处理后当作动物饲料,但 OTA 对动物的毒性也非常大,所以迫切需要找到对 OTA 的脱毒方法。传统的脱毒方法会破坏食物原有的营养成分,并会引起食品和饲料中化学药品的残留。随着生物技术的进步,OTA 的脱毒方法开始向生物脱毒的方向发展。论文简要介绍了 OTA 的物理化学脱毒方法,主要讨论了细菌、真菌对 OTA 的脱毒作用及其机制,为今后的研究提供参考。%Ochratoxin A is a common kind of toxic mycotoxins.The contamination of ochratoxin A in the food grains is in a wide range of the world.A large amount of polluted grain by ochratoxin A causes seri-ous harm to human and animal health.Since it is not possible to destroy all the contaminated food,it is re-ally need to treat the pollution food which is not suitable as rations and turn them as animal feed.Howev-er,ochratoxin A is also very harm to the animals.It is urgent need to find the method to detoxification of ochratoxin A.Traditional detoxification methods can destroy the original nutrients of the food and cause the chemical residues in food and feed.With the progress of biotechnology,the biological methods of de-toxification of ochratoxin A are beginning to develop.This paper briefly introduced the physical and chem-ical detoxification methods of ochratoxin A and mainly discussed the role and the mechanism of the bacteria and fungi on the detoxification of ochratoxin A.It can provide a reference for future research.

  14. 黄曲霉毒素对家禽的危害与脱毒技术%The Hazard of Aflatoxins on Poultry and Its Detoxification

    Institute of Scientific and Technical Information of China (English)

    谢庆; 常文环; 刘国华; 蔡辉益; 王金全; 吕春生

    2014-01-01

    Aflatoxins are secondary metabolites from some aspergillus with strong teratogenic, carcinogenic and mutagenic functions. One of those, aflatoxin B1 is the most toxic, which may result in injury to digestive func-tion, immunologic suppression, reduction of growth performance, such as feed utilization, accumulate in tis-sues ( such as liver, kidney and muscle) , and also potential risk to animal’ s health and food safety. Aflatoxi-cosis usually occurs in infant chicks, ducklings and turkeys. Especially, the chicks and ducklings at 2 to 6 weeks of age are extremely sensitive to AFB1. The detoxification methods of aflatoxins are mainly physical, chemical, adsorbent, and biological methods at present. The hazards of aflatoxins on poultry, the detoxification theory and research situation of detoxification technology as well as the application prospect were summarized in this paper.%黄曲霉毒素是由某些曲霉真菌产生的次级代谢产物,具有较强的致畸、致癌、致突变作用。其中黄曲霉毒素B1的毒性最强,能严重损害动物机体的消化机能和免疫系统,导致动物饲料转化率等生产性能降低,并能够在肝脏、肾脏、肌肉等组织中蓄积,严重危害动物健康以及人类的食品安全。黄曲霉毒素中毒常见于幼龄的鸡、鸭和火鸡,特别是以2~6周龄的雏鸡和雏鸭敏感性最高。目前黄曲霉毒素脱毒技术主要有物理脱毒法、化学脱毒法、吸附剂法和生物脱毒法。本文阐述了黄曲霉毒素对家禽的危害,分析了各种脱毒技术的脱毒原理与研究现状,并对其应用前景进行了展望。

  15. Efficacy and safety of integrative medical program based on blood cooling and detoxification recipe in treating patients with hepatitis B virus related acute-on-chronic liver failure:a randomized controlled clinical study

    Institute of Scientific and Technical Information of China (English)

    刘慧敏

    2014-01-01

    Objective To evaluate the clinical efficacy and safety of integrative medical program based on blood cooling and detoxification recipe(BCDR)in treating patients with hepatitis B virus related acute-on-chronic liver failure(HBV-ACLF)of heat-toxicity accumulation syndrome(HTAS).Methods Adopting randomized controlled

  16. Optimization of detoxification techniques of starfish Asterias amurensis by an orthogonal test%多棘海盘车柠檬酸脱毒工艺的优化研究

    Institute of Scientific and Technical Information of China (English)

    李莎; 张国琛; 张倩; 李秀辰; 牟春发

    2016-01-01

    为研究多棘海盘车 Asterias amurensis柠檬酸脱毒的最佳工艺条件,采用正交试验法进行了有关试验研究。结果表明:单因素试验中,增大柠檬酸浓度、提高脱毒温度、延长脱毒时间均可提高多棘海盘车的皂苷脱除率,但也会造成多棘海盘车蛋白质保留率显著降低(P脱毒时间>料液比>柠檬酸浓度。研究表明,当柠檬酸浓度为0.10 mol/L,脱毒温度为50℃,料液比为1∶8,脱毒时间为3 h时,多棘海盘车具有较好的脱毒效果和蛋白质保留率,其皂苷脱除率和蛋白质保留率分别为70.96%和91.29%,综合评分为1.982。%The optimum conditions of detoxification technology were investigated carried out in starfish Asterias amurensis by an orthogonal test. Single factor tests showed that saponin desorption rates were improved and protein retention rates were decreased under high citric acid concentration, high temperature and long detoxification period. Protein retention rates was reduced by increasing ratio of material to liquid, with the maximal saponin desorption rate at ratio of material to liquid ratio =1∶10 . The detoxification conditions of starfish were optimized through the orthogonal test based on single factor tests, and the significance order of the factors affecting the detoxification was expressed as detoxification period > temperature> ratio of material to liquid >citric acid concentration. The better detoxification was observed under conditions of citric acid concentration of 0. 10 mol/L, temperature of 50℃, ratio of material to liquid = 1∶8, and 3 h detoxification period, with saponin desorption rate of 70. 96%, protein reten-tion rate of 91 . 29% and comprehensive score of 1 . 982 .

  17. 强制隔离戒毒的治理理念纠偏及创新--基于社会工作与强制隔离戒毒相融入的视角%The Rectification of Management Idea and Innovation of Compulsory Isolated Detoxification Charged---on the Combined Perspective of Social Work and Compulsory Isolated Detoxification

    Institute of Scientific and Technical Information of China (English)

    许书萍

    2014-01-01

    In the process of detoxification via labor transited to the compulsory isolated detoxification, judi-cial administration departments face a bottleneck in many aspects, such as unclear function orientation, difficulties to change the attitude of drug abuser, and the intense relationship between correctional officers and drug addicts, etc..To break the shackles of compulsory isolated detoxification and implement its innovation, we shall know a-bout the concepts and methods of social work, Three aspects of the work shall be carried out:1) rationalizing the relationship between management and service and fully understanding the drug addicts'principal status;2) diversi-fying governments subjects to strengthen correctional officers'guidance, self -management, peer education and social work organizations to participate in the work of governance;3 ) accelerating the legalization of compulsory i-solated detoxification to safeguard human rights and provide the legal guarantee of drug addicts.%司法行政部门的劳教戒毒向强制隔离戒毒转变的过程中,面临着多方面的瓶颈,如职能定位不清、定位转变难、管教人员与戒毒人员之间的关系紧张等。为突破强制隔离戒毒工作的发展桎梏,实现强制隔离戒毒机构的治理创新,应借鉴社会工作专业的理念与方法,开展三方面的工作:一要理顺管理与服务之间的关系,充分认识戒毒人员的主体地位;二是实现治理主体的多元化,不仅要加强管教人员的引导,还需加强戒毒人员的自我管理、同伴管理以及社工机构的参与;三是推进强制隔离戒毒的治理法制化工作,为保障戒毒人员的人权提供法律保障。

  18. Biochemical studies of some non-conventional sources of proteins. Part 7. Effect of detoxification treatments on the nutritional quality of apricot kernels.

    Science.gov (United States)

    el-Adawy, T A; Rahma, E H; el-Badawey, A A; Gomaa, M A; Lásztity, R; Sarkadi, L

    1994-01-01

    Detoxification of apricot kernels by soaking in distilled water and ammonium hydroxide for 30 h at 47 degrees C decreased the total protein, non-protein nitrogen, total ash, glucose, sucrose, minerals, non-essential amino acids, polar amino acids, acidic amino acids, aromatic amino acids, antinutritional factors, hydrocyanic acid, tannins and phytic acid. On the other hand, removal of toxic and bitter compounds from apricot kernels increased the relative content of crude fibre, starch, total essential amino acids. Higher in-vitro protein digestibility and biological value was also observed. Generally, the detoxified apricot kernels were nutritionally well balanced. Utilization and incorporation of detoxified apricot kernel flours in food products is completely safe from the toxicity point of view. PMID:8145802

  19. Effect of the Detoxification on the Shrinkage Temperature and pH of Chromium Leather Waste, Another Promising Way for the Tannery Pollution

    Directory of Open Access Journals (Sweden)

    A. Malek

    2008-01-01

    Full Text Available The leather tannery industry produces a significant amount of solid chromium waste. Environmental concerns and escalating landfill costs are becoming increasingly serious problems to the leather industry and alternative disposal methods are needed. This research describes the possibility of decrease of the shrinkage temperature and to increase the pH value of leather waste by detoxification treatment with use of tartrate potassium. Through this investigation, we have established that is more possible to reduce the shrinkage temperature and neutralizing the acidity of this waste without his degradation or digestion and with decreasing of his chromium content about 95%. The use of reaction time of 72 h generates the optimal decreasing of the shrinkage temperature of waste leather about 42°C close to the one of hide at native state (before tanning process which reveal another ecological and simple way for the treatment of the chromium containing leather waste.

  20. Technical Procedures Management in Gas-Phase Detoxification Laboratory; Procedimientos Tecnicos de Ensayo en el Laboratorio de Destoxificacion en Fase Gas

    Energy Technology Data Exchange (ETDEWEB)

    Cardona Garcia, A. I.; Sanchez Cabrero, B

    2000-07-01

    The natural cycle of Volatile Organic Compounds (VOCs) has been disturbed by the industrial and socioeconomic activities of human beings. This imbalance in the environment has effects the ecosystems and and the human health. Initiatives have been planned to mitigate these adverse effects. In order to minimize the hazardous effects, initiatives have been proposed for the treatment of gaseous emissions. The solar photocatalysis appears as a clear and renewable technology in front of the conventional ones. In CIEMAT this lines is being investigated as the base of a future implementation at a preindustrial scale. Technical procedures are written in this document for testing Gas-Phase detoxification at lab scale in the Renewable Energy Department (DER) CIEMAT-Madrid to eliminate the VOCs by using the solar photocatalysis technology. (Author) 18 refs.

  1. Biocatalytic preparation and absolute configuration of enantiomerically pure fungistatic anti-2-benzylindane derivatives. Study of the detoxification mechanism by Botrytis cinerea.

    Science.gov (United States)

    Pinedo-Rivilla, Cristina; Aleu, Josefina; Grande Benito, Manuel; Collado, Isidro G

    2010-08-21

    Enantiomerically pure 2-benzylindane derivatives were prepared using biocatalytic methods and their absolute configuration determined. (1R,2S)-2-Benzylindan-1-ol ((1R,2S)-2) and (S)-2-benzylindan-1-one ((S)-3) were produced by fermenting baker's yeast. Lipase-mediated esterifications and hydrolysis of the corresponding racemic substrates gave rise to the enantiopure compounds (1S,2R)-2-benzylindan-1-ol ((1S,2R)-2) and (1R,2S)-2-benzylindan-1-ol ((1R,2S)-2), respectively. The antifungal activity of these products against two strains of the plant pathogen Botrytis cinerea was tested. The metabolism of anti-(+/-)-2-benzylindan-1-ol (anti-(+/-)-2) by B. cinerea as part of the fungal detoxification mechanism is also described and revealed interesting differences in the genome of both strains.

  2. Detoxification of ammonia in mouse cortical GABAergic cell cultures increases neuronal oxidative metabolism and reveals an emerging role for release of glucose-derived alanine

    DEFF Research Database (Denmark)

    Leke, Renata; Bak, Lasse Kristoffer; Anker, Malene;

    2011-01-01

    Cerebral hyperammonemia is believed to play a pivotal role in the development of hepatic encephalopathy (HE), a debilitating condition arising due to acute or chronic liver disease. In the brain, ammonia is thought to be detoxified via the activity of glutamine synthetase, an astrocytic enzyme...... in a mouse neuronal-astrocytic co-culture model of the GABAergic system. We found that 5 mM ammonium chloride affected energy metabolism by increasing the neuronal TCA cycle activity and switching the astrocytic TCA cycle toward synthesis of substrate for glutamine synthesis. Furthermore, ammonia exposure...... enhanced the synthesis and release of alanine. Collectively, our results demonstrate that (1) formation of glutamine is seminal for detoxification of ammonia; (2) neuronal oxidative metabolism is increased in the presence of ammonia; and (3) synthesis and release of alanine is likely to be important...

  3. Simultaneous Cellulase Production, Saccharification and Detoxification Using Dilute Acid Hydrolysate of S. spontaneum with Trichoderma reesei NCIM 992 and Aspergillus niger.

    Science.gov (United States)

    Sateesh, Lanka; Rodhe, Adivikatla Vimala; Naseeruddin, Shaik; Yadav, Kothagauni Srilekha; Prasad, Yenumulagerard; Rao, Linga Venkateswar

    2012-06-01

    Bioethanol production from lignocellulosic materials has several limitations. One aspect is the high production cost of cellulases used for saccharification of substrate and inhibition of fermenting yeast due to inhibitors released in acid hydrolysis. In the present work we have made an attempt to achieve simultaneous cellulases production, saccharification and detoxification using dilute acid hydrolysate of Saccharum spontaneum with and without addition of nutrients, supplemented with acid hydrolyzed biomass prior to inoculation in one set and after 3 days of inoculation in another set. Organisms used were T. reesei NCIM 992, and Aspergillus niger isolated in our laboratory. Cellulase yield obtained was 0.8 IU/ml on fourth day with T. reesei. Sugars were found to increase from fourth to fifth day, when hydrolysate was supplemented with nutrients and acid hydrolyzed biomass followed by inoculation with T. reesei. Phenolics were also found to decrease by 67%. PMID:23729891

  4. Interaction affinity of Delta and Epsilon class glutathione-s-transferases (GSTs to bind with DDT for detoxification and conferring resistance in Anopheles gambiae, a malaria vector

    Directory of Open Access Journals (Sweden)

    V. Aravindan

    2014-01-01

    Full Text Available Background & objectives: The enzyme glutathione-s-transferases (GSTs are associated with detoxification of DDT, as experimentally proved in Anopheles gambiae. Insect GSTs are classified into six classes and among them Delta and Epsilon class GSTs have been implicated in detoxification of organochlorine insecticides. Both Delta and Epsilon GSTs produce, in total, 24 transcripts that result in the production of corresponding enzyme proteins. However, the conventional assay estimates the level of total GSTs and relates to development of resistance to DDT. Hence, it would be more reliable to estimate the level of the specific class GSTs that shows higher affinity with DDT. This would also lead to design a specific molecular tool for resistance diagnosis. Methods: Of the 24 GSTs, computational models for 23 GSTs, which are available in Swiss-Prot database, were retrieved and for the remaining one, D7-2, for which no model is available in the data bank, a structural model was developed using the sequence of An. dirus B with a PDB ID of 1R5A as the template. All the models were docked with DDT in the presence of reduced glutathione. Results: The energy output showed that Delta, D6 has the highest interaction affinity with DDT. Hence, this particular GST (D6 is likely to get elevated on exposure of mosquitoes to DDT. Interpretation & conclusion: It would be, therefore, possible to design a specific molecular assay to determine the expression level of such high affinity transcript(s and to use for resistance diagnosis reliably in the vector surveillance programme.

  5. Progress on toxicity and detoxification methods of Jatropha curcas L.seed cake%小桐子饼的毒性及脱毒研究进展

    Institute of Scientific and Technical Information of China (English)

    龚宽俊; 向诚; 角仕云; 何静; 贾文倩; 王舒怡; 李宝才; 廖云波; 苟平

    2013-01-01

    Jatropha curcas L.seed cake is the by-product of Jatropha curcas L.seed after oil extraction,which is a potential source of high quality vegetable protein.As phorbol esters are the main toxic composition in Jatropha curcas L.seed cake,the cake used as animal protein feed is restricted.The development of detoxification methods of Jatropha curcas L.seed cake is a hot point.The physicochemical properties and toxicity of phorbol esters were summarized,and four detoxification methods were induced.Solvent extraction-hot alkali treatment and microbial fermentation were feasible in removing phorbol esters completely.%小桐子饼是小桐子种仁或种子榨油后的副产物,产量大,是潜在的优质植物蛋白资源.但其含有的毒性成分佛波醇酯,阻碍了小桐子饼作为动物饲料的开发.如何对小桐子饼进行脱毒,是目前的研究热点之一.主要总结了佛波醇酯的理化性质及毒性,依据其特性归纳了4种佛波醇酯的脱毒方法.通过对比,目前比较可行的是溶剂浸出-热碱处理法和微生物发酵法,这两种方法基本都能将佛波醇酯完全去除.

  6. Influence of bacterial N-acyl-homoserinelactones on growth parameters, pigments, antioxidative capacities and the xenobiotic phase II detoxification enzymes in barley and yam bean

    Directory of Open Access Journals (Sweden)

    Christine eGoetz-Roesch

    2015-04-01

    Full Text Available Bacteria are able to communicate with each other and sense their environment in a population density dependent mechanism known as quorum sensing (QS. N-acyl-homoserine lactones (AHLs are the QS signalling compounds of Gram-negative bacteria which are frequent colonizers of rhizospheres. While cross-kingdom signalling and AHL-dependent gene expression in plants has been confirmed, the responses of enzyme activities in the eukaryotic host upon AHLs are unknown. Since AHL are thought to be used as so-called plant boosters or strengthening agents, which might change their resistance towards radiation and/or xenobiotic stress, we have examined the plants’ pigment status and their antioxidative and detoxifying capacities upon AHL treatment. Because the yield of a crop plant should not be negatively influenced, we have also checked for growth and root parameters.We investigated the influence of three different AHLs, namely N-hexanoyl- (C6-HSL, N-octanoyl- (C8-HSL and N-decanoyl- homoserine lactone (C10-HSL on two agricultural crop plants. The AHL-effects on Hordeum vulgare (L. as an example of a monocotyledonous crop and on the tropical leguminous crop plant Pachyrhizus erosus (L were compared. While plant growth and pigment contents in both plants showed only small responses to the applied AHLs, AHL treatment triggered tissue- and compound-specific changes in the activity of important detoxification enzymes. The activity of dehydroascorbate reductase (DHAR in barley shoots after C10-HSL treatment for instance increased up to 384% of control plant levels, whereas superoxide dismutase (SOD activity in barley roots was decreased down to 23% of control levels upon C6-HSL treatment. Other detoxification enzymes reacted similarly within this range, with interesting clusters of positive or negative answers towards AHL treatment. In general the changes on the enzyme level were more severe in barley than in yam bean which might be due to the different

  7. The role of cysteine conjugation in the detoxification of microcystin-LR in liver of bighead carp (Aristichthys nobilis): a field and laboratory study.

    Science.gov (United States)

    Zhang, Dawen; Yang, Qiang; Xie, Ping; Deng, Xuwei; Chen, Jun; Dai, Ming

    2012-01-01

    The role of glutathione (GSH) and cysteine (Cys) conjugates in the detoxification of microcystin-LR (MC-LR) in bighead carp (Aristichthys nobilis) was examined under laboratory and field conditions. Wild individuals of bighead carp were collected from 5 eutrophic lakes along the Yangtze River, while in laboratory experiment, bighead carp were injected intraperitoneally with 500 μg purified MC-LR/kg body weight (bw). Contents of MC-LR and its glutathione (MC-LR-GSH) and cysteine conjugates (MC-LR-Cys) in the liver of bighead carp were determined by liquid chromatography electrospray ionization mass spectrum (LC-ESI-MS). In laboratory experiment, low concentrations of MC-LR-GSH (mean: 0.042 μg/g dry weight (DW)) were always detectable, and the mean ratio of MC-LR-Cys to MC-LR-GSH was 6.55. While, in field study, relatively high MC-LR-Cys concentration (mean: 0.22 μg/g DW) was detected, whereas MC-LR-GSH was occasionally detectable, and the average ratio of MC-LR-Cys to MC-LR-GSH was as high as 71.49. A positive correlation was found between MC-LR-Cys concentration in the liver of bighead carp and MC-LR content in seston from the five lakes (r = 0.85). These results suggest that MC-LR-Cys might be much more important than MC-LR-GSH in the detoxification of MC-LR in fish liver, and that cysteine conjugation of MC-LR might be a physiological mechanism for the phytoplanktivorous bighead carp to counteract toxic cyanobacteria. PMID:21901442

  8. Acid and base hydrolysis of lipid A from Enterobacter agglomerans as monitored by electrospray ionization mass spectrometry: pertinence to detoxification mechanisms.

    Science.gov (United States)

    Wang, Y; Cole, R B

    1996-02-01

    Lipopolysaccharides (LPS), which are endotoxins found in the cell wall of Gram-negative bacteria, are common components of organic dusts that cause or contribute to symptoms associated with organic dust diseases. The lipid A subgroup within LPS is believed to be responsible for the toxicity. Acid and base treatments, which can be effective detoxification methods, were performed on lipid A from Enterobacter agglomerans (EA), a bacterium commonly found in field cotton. Negative-ion electrospray ionization mass spectrometry was employed to characterize the post-treatment structural changes to lipid A. Acid treatment (1% acetic acid, 100 degrees C) hydrolyzed the ester side-chains of lipid A. It was found that the ester-linked palmitoyl group was the most labile to acid hydrolysis. Hydrolysis of the palmitoyl moiety conformed to pseudo-first-order chemical reaction kinetics with a rate constant for decomposition of heptacyl-lipid A from Enterobacter agglomerans of approximately 3.3 x 10(-3) min-1. An order of lability of lipid A acyl side-chains to acid hydrolysis was also deduced: R4' (palmitoyl) > R1' (myristoyl or hydroxymyristoyl) > R3 (hydroxymyristoyl at position 3) > R1 (oxymyristoyl group at position 3') > R2' (lauroyl). Base treatment (0.05 M NaOH in 95% EtOH, 65 degrees C) was shown to be more effective at cleaving ester-linked side-chains. In addition, mass spectral evidence suggests that opening of the pyranose rings of the disaccharide backbone of lipid A and/or removal of the phosphoryl groups may be occurring during base treatment. This study sheds light on mechanistic aspects of treatment procedures leading to the detoxification of endotoxins.

  9. An integrated QSAR-PBK/D modelling approach for predicting detoxification and DNA adduct formation of 18 acyclic food-borne α,β-unsaturated aldehydes

    International Nuclear Information System (INIS)

    Acyclic α,β-unsaturated aldehydes present in food raise a concern because the α,β-unsaturated aldehyde moiety is considered a structural alert for genotoxicity. However, controversy remains on whether in vivo at realistic dietary exposure DNA adduct formation is significant. The aim of the present study was to develop physiologically based kinetic/dynamic (PBK/D) models to examine dose-dependent detoxification and DNA adduct formation of a group of 18 food-borne acyclic α,β-unsaturated aldehydes without 2- or 3-alkylation, and with no more than one conjugated double bond. Parameters for the PBK/D models were obtained using quantitative structure–activity relationships (QSARs) defined with a training set of six selected aldehydes. Using the QSARs, PBK/D models for the other 12 aldehydes were defined. Results revealed that DNA adduct formation in the liver increases with decreasing bulkiness of the molecule especially due to less efficient detoxification. 2-Propenal (acrolein) was identified to induce the highest DNA adduct levels. At realistic dietary intake, the predicted DNA adduct levels for all aldehydes were two orders of magnitude lower than endogenous background levels observed in disease free human liver, suggesting that for all 18 aldehydes DNA adduct formation is negligible at the relevant levels of dietary intake. The present study provides a proof of principle for the use of QSAR-based PBK/D modelling to facilitate group evaluations and read-across in risk assessment. - Highlights: • Physiologically based in silico models were made for 18 α,β-unsaturated aldehydes. • Kinetic parameters were determined by in vitro incubations and a QSAR approach. • DNA adduct formation was negligible at levels relevant for dietary intake. • The use of QSAR-based PBK/D modelling facilitates group evaluations and read-across

  10. Effects of dietary tert-butylhydroquinone on domoic acid metabolism and transcription of detoxification-related liver genes in red sea bream Pagrus major

    Institute of Scientific and Technical Information of China (English)

    HE Shan; LIANG XuFang; SHEN Dan; ZHANG WenBing; MAI KangSen

    2013-01-01

    Domoic acid (DA) is a neuroexcitatory amino acid that is produced by Pseudo-nitzschia during harmful algal blooms (HAB).Accumulation of DA can be transferred through food chain and cause neuronal damage in marine animal and in human.Like other algal toxins,DA was suggested to increase the oxidative stress and increase the detoxification-related gene expression in fish.The widely used food antioxidant,tert-butylhydroquinone (tBHQ),was known to induce a wide range of antioxidative potentials such as elevation of the glutathione levels and glutathione S-transferases (GSTs),via the activation of antioxidant response elements (AREs).In this study,the influences of dietary tBHQ on domoic acid (DA) metabolism and detoxification-related gene transcription were investigated both in vivo and in vitro.Oral administration of tBHQ resulted in significant decreases of DA accumulation of liver tissues in which red sea bream were fed with a single dose of 10 mg DA and 100 mg tBHQ per kg body weight per fish.Real-time PCR further revealed that the mRNA levels of AHR/ARNT/CYP1A1/GSTA1/GSTR were up-regulated in the above liver tissues at 72 h post tBHQ treatment.In consistence,tBHQ exposure also resulted in increased mRNA transcription of GSTA1,GSTA2 and GSTR in cultured red sea bream hepatocytes.Collectively,our findings in this research suggested that the dietary intake of tBHQ accelerated DA metabolism in fish,through mechanisms involving altered transcription of detoxificationrelated liver genes.

  11. Screening of Yeasts for Selection of Potential Strains and Their Utilization for In Situ Microbial Detoxification (ISMD) of Sugarcane Bagasse Hemicellulosic Hydrolysate.

    Science.gov (United States)

    Soares, Luma C S R; Chandel, Anuj K; Pagnocca, Fernando C; Gaikwad, Swapnil C; Rai, Mahendra; da Silva, Silvio S

    2016-06-01

    Many toxic compounds are produced and released in the hemicellulosic hydrolyzates during the acid pretreatment step, which are required for the disruption of the lignocelluloses matrix and sugars release. The conventional methods of detoxification i.e. overliming, activated charcoal, ion exchange or even membrane-based separations have the limitations in removal of these toxic inhibitors in fermentation process. Hence, it is imperative to explore biological methods to overcome the inhibitors by minimizing the filtration steps, sugar loss and chemical additions. In the present study we screened sixty-four strains of yeasts to select potential strains for detoxification of furfural, acetic acid, ferulic acid, 5-hydroxymethyl furfural (5-HMF) as carbon and energy source. Among these strains Pichia occidentalis M1, Y1'a, Y1'b and Y3' showed a significant decrease in the toxic compounds but we selected two best yeast strains i.e. P. occidentalis Y1'a and P. occidentalis M1 for the further experiments with an aim to remove the fermentation inhibitors. The yeasts P. occidentalis Y1'a and P. occidentalis M1 were grown aerobically in sugarcane bagasse hemicellulose hydrolysate under submerged cultivation. For each yeast, a 2(2) full factorial design was performed considering the variables-pH (4.0 or 5.0) and agitation rate (100 or 300 rpm), and the percentage removal of HMF, furfural, acetic acid and phenols from hemicellulosic hydrolysates were responsive variables. After 96 h of biological treatment, P. occidentalis M1 and P. occidentalis Y1'a showed 42.89 and 46.04 % cumulative removal of inhibitors, respectively. PMID:27570309

  12. An integrated QSAR-PBK/D modelling approach for predicting detoxification and DNA adduct formation of 18 acyclic food-borne α,β-unsaturated aldehydes

    Energy Technology Data Exchange (ETDEWEB)

    Kiwamoto, R., E-mail: reiko.kiwamoto@wur.nl; Spenkelink, A.; Rietjens, I.M.C.M.; Punt, A.

    2015-01-01

    Acyclic α,β-unsaturated aldehydes present in food raise a concern because the α,β-unsaturated aldehyde moiety is considered a structural alert for genotoxicity. However, controversy remains on whether in vivo at realistic dietary exposure DNA adduct formation is significant. The aim of the present study was to develop physiologically based kinetic/dynamic (PBK/D) models to examine dose-dependent detoxification and DNA adduct formation of a group of 18 food-borne acyclic α,β-unsaturated aldehydes without 2- or 3-alkylation, and with no more than one conjugated double bond. Parameters for the PBK/D models were obtained using quantitative structure–activity relationships (QSARs) defined with a training set of six selected aldehydes. Using the QSARs, PBK/D models for the other 12 aldehydes were defined. Results revealed that DNA adduct formation in the liver increases with decreasing bulkiness of the molecule especially due to less efficient detoxification. 2-Propenal (acrolein) was identified to induce the highest DNA adduct levels. At realistic dietary intake, the predicted DNA adduct levels for all aldehydes were two orders of magnitude lower than endogenous background levels observed in disease free human liver, suggesting that for all 18 aldehydes DNA adduct formation is negligible at the relevant levels of dietary intake. The present study provides a proof of principle for the use of QSAR-based PBK/D modelling to facilitate group evaluations and read-across in risk assessment. - Highlights: • Physiologically based in silico models were made for 18 α,β-unsaturated aldehydes. • Kinetic parameters were determined by in vitro incubations and a QSAR approach. • DNA adduct formation was negligible at levels relevant for dietary intake. • The use of QSAR-based PBK/D modelling facilitates group evaluations and read-across.

  13. Anti-influenza A virus effect of Yuye detoxification particles%玉叶解毒颗粒抗甲1型流感病毒的作用

    Institute of Scientific and Technical Information of China (English)

    杨丽; 邹节明; 刘妮; 李向阳; 徐培平; 张奉学

    2011-01-01

    OBJECTIVE To investigate the inhibitory effect of Yuye detoxification particles on influenza A virus in vivo and in vitro. METHODS In vivo, the effect of Yuye detoxification particles inhibiting mice pneumonia was evaluated. While in vitro, the influences of Yuye detoxification particles inhibiting influenza A virus in culture MDCK was explored. RESULTS Yuye detoxification particles could eliminate the virus in mice lung,it also alleviated the inflammatory lesions of the mice lung.Furthermore it could inhibit influenza A virus when the nontoxic concentration was 125 g·L-1. CONCLUSION Yuye detoxification particles might inhibit influenza A virus in vivo and in vitro.%目的:研究玉叶解毒颗粒体内外抗甲1.型流感病毒(Influenza virus)作用.方法:体内试验检测玉叶解毒颗粒对小鼠感染流感病毒所致肺炎的抑制作用和死亡保护;体外实验通过对狗肾细胞(MDCK)的培养,探讨玉叶解毒颗粒在细胞上对感染流感病毒的抑制作用.结果:玉叶解毒颗粒对小鼠肺内的流感病毒有一定的清除作用,能减轻小鼠肺内的炎性病变,在剂量为15 g·kg-1时对小鼠有死亡保护作用,体外实验在125 g·L-1时能抑制流感病毒.结论:玉叶解毒颗粒在体内外具有明显的抗流感病毒作用.

  14. Clinical observation of physiological and psychological reactions to electric stimulation of the amygdaloid nucleus and the nucleus accumbens in heroin addicts after detoxification

    Institute of Scientific and Technical Information of China (English)

    FANG Jun; GU Jian-wen; YANG Wen-tao; QIN Xue-ying; HU Yong-hua

    2012-01-01

    Background Stereotactic surgery has been used to treat heroin abstinence in China since 2000 by ablating the amygdaloid nucleus (AMY) and the nucleus accumbens (NAc),which also provides opportunity to identify the relationship between these nuclei and addiction.Our study aimed to explore the physiological and psychological effects of electrically stimulating the AMY and the NAc in herein addicts after detoxification by observing changes of heart rate,arterial pressure and occurrence of euphoria similar to heroin induced euphoria.Methods A total of 70 heroin addicts after detoxification were recruited,and 61 of them were eligible to be given stereotactic surgery for heroin abstinence.The operation was carried out after determining the coordinates of all target nucleuses,and stimulation was performed at the AMY and the NAc solely or jointly.Heart rate,arterial pressure and occurrence of euphoria similar to heroin induced euphoria were recorded and analyzed.Results The average heat rate was (66±10) beats/min before electric stimulation,and significantly increased to (84±14) beats/min during stimulation,and changed to (73±12) beats/min 10 minutes after stimulation.There was a significant elevation of the average arterial pressure from 83 mmHg before stimulation to 98 mmHg during the stimulation,and it then decreased to 90 mmHg after stimulation.Forty-three of the 61 patients showed intense euphoria similar to heroin induced euphoria.The largest number (118/186) of euphoric responses occurred when the AMY and the NAc were stimulated at the same time.Odds ratio was 5.4 (95% CI: 2.4-11.9,P <0.0001) to quantify the association.Results from a Logistic regression model showed a positive correlation between unilateral stimulation of either the AMY or NAC and induction of euphoria (OR >1 ),especially when the left AMY or left NAc was stimulated (P <0.05).Conclusions Our data are consistent with existing results that the AMY and the NAc are related to addiction

  15. Nrf2, a master regulator of detoxification and also antioxidant, anti-inflammatory and other cytoprotective mechanisms, is raised by health promoting factors.

    Science.gov (United States)

    Pall, Martin L; Levine, Stephen

    2015-02-25

    The transcription factor Nrf2, nuclear factor erythroid-2-related factor 2, activates the transcription of over 500 genes in the human genome, most of which have cytoprotective functions. Nrf2 produces cytoprotection by detoxification mechanisms leading to increased detoxification and excretion of both organic xenobiotics and toxic metals; its action via over two dozen genes increases highly coordinated antioxidant activities; it produces major anti-inflammatory changes; it stimulates mitochondrial biogenesis and otherwise improves mitochondrial function; and it stimulates autophagy, removing toxic protein aggregates and dysfunctional organelles. Health-promoting nutrients and other factors act, at least in part by raising Nrf2 including: many phenolic antioxidants; gamma- and delta-tocopherols and tocotrienols; long chain omega-3 fatty acids DHA and EPA; many carotenoids of which lycopene may be the most active; isothiocyanates from cruciferous vegetables; sulfur compounds from allium vegetables; terpenoids. Other health promoting, Nrf2 raising factors include low level oxidative stress (hormesis), exercise and caloric restriction. Raising Nrf2 has been found to prevent and/or treat a large number of chronic inflammatory diseases in animal models and/or humans including various cardiovascular diseases, kidney diseases, lung diseases, diseases of toxic liver damage, cancer (prevention), diabetes/metabolic syndrome/obesity, sepsis, autoimmune diseases, inflammatory bowel disease, HIV/AIDS and epilepsy. Lesser evidence suggests that raising Nrf2 may lower 16 other diseases. Many of these diseases are probable NO/ONOO(-) cycle diseases and Nrf2 lowers effects of NO/ONOO(-) cycle elements. The most healthful diets known, traditional Mediterranean and Okinawan, are rich in Nrf2 raising nutrients as apparently was the Paleolithic diet that our ancestors ate. Modern diets are deficient in such nutrients. Nrf2 is argued to be both lifespan and healthspan extending

  16. Alcohol detoxification in Ysbyty Gwynedd: Two small sips or one big gulp? Two-step screening more reliable for identification of alcohol dependency syndrome at risk of delirium tremens for routine care

    OpenAIRE

    Salman, Muhammad; Subbe, Christian

    2015-01-01

    Compliance with pathways for hospitalised patients with alcohol dependency syndrome is often poor. A pathway for recognition and treatment of alcohol dependency was redesigned as part of a 12 month service improvement project in the acute medical unit using plan, do, study, act (PDSA) cycles. A needs assessment was undertaken: Audit data from 2013 showed over-prescription of chlordiazepoxide for detoxification treatment (DT) leading to prolonged hospital admissions with an average length of s...

  17. 女性海洛因依赖者回归社会前感受的质性研究%The experience of women with heroin dependence in compulsory detoxification before the society-return: A qualitative study

    Institute of Scientific and Technical Information of China (English)

    郑红; 庄淑梅; 安士慧; 张广福; 陈芳; 赵岳

    2014-01-01

    Objective To understand the experience of women with heroin dependence in compulsory detoxification before the society-return.Methods A semi-structured interview was conducted with 15 women with heroin dependence in compulsory detoxification.Data were analyzed based on Colaizzi phenomenological research method.Results The feelings of women with heroin dependence in compulsory detoxification were classified into 3 themes,including negative self-concept,loneliness and helplessness,uncertainty about the future.Conclusions Nurses should pay attention to problems about women with heroin dependence in compulsory detoxification and provide effective measures to improve their physical and psychological health and help them to return to the society.%目的 探讨女性海洛因依赖者回归社会前的感受.方法 采用半结构式访谈法,对15名海洛因强制隔离戒毒者进行访谈,采用Colaizzi现象学研究法分析资料.结果 海洛因强制隔离戒毒者回归社会前的感受可归纳为3个主题:自我概念消极,孤独失助,对未来的不确定感.结论 护理人员应重视戒毒者回归社会前面临的问题,并提供有效的应对措施改善戒毒者的身心状况,帮助戒毒者重返社会.

  18. From Laboratory Studies to the Field Applications of Advanced Oxidation Processes: A Case Study of Technology Transfer from Switzerland to Burkina Faso on the Field of Photochemical Detoxification of Biorecalcitrant Chemical Pollutants in Water

    Directory of Open Access Journals (Sweden)

    S. Kenfack

    2009-01-01

    Full Text Available The Fenton and photo-Fenton detoxification of non-biodegradable chemical pollution in water was investigated under simulated UV light in the laboratory and under direct sunlight in Ouagadougou, Burkina Faso. The laboratory experiments enable one to make a systematic diagnosis among three types of wastewaters, identifying a biorecalcitrant wastewater containing the Chloro-hydroxy-Pryridine (CHYPR. The application of the photo-Fenton process on effluent containing the CHYPR showed not to stimulate the generation of biodegradable by-products. Optimal conditions for detoxification of effluent containing the CHYPR were found at pH=2.8, [Fe2+]=5.2 mM, initial [H2O2]=768 mM, for an effluent concentrated at 2.2 mM of CHYPR. The application of the photochemical process on a field pilot solar photoreactor for the detoxification of water polluted with a pesticide made with Endosulfan showed very promising results, with potential biodegradable effluents obtained at the end of the photochemical treatment. Optimal conditions of the applied study were found at pH=3. [H2O2]=8 mM and [Fe2+]=0.18 mM for an initial concentration of 0.36 mM of Endosulfan.

  19. Structural basis of thiol-based regulation of formaldehyde detoxification in H. influenzae by a MerR regulator with no sensor region.

    Science.gov (United States)

    Couñago, Rafael M; Chen, Nathan H; Chang, Chiung-Wen; Djoko, Karrera Y; McEwan, Alastair G; Kobe, Bostjan

    2016-08-19

    Pathogenic bacteria such as Haemophilus influenzae, a major cause of lower respiratory tract diseases, must cope with a range of electrophiles generated in the host or by endogenous metabolism. Formaldehyde is one such compound that can irreversibly damage proteins and DNA through alkylation and cross-linking and interfere with redox homeostasis. Its detoxification operates under the control of HiNmlR, a protein from the MerR family that lacks a specific sensor region and does not bind metal ions. We demonstrate that HiNmlR is a thiol-dependent transcription factor that modulates H. influenzae response to formaldehyde, with two cysteine residues (Cys54 and Cys71) identified to be important for its response against a formaldehyde challenge. We obtained crystal structures of HiNmlR in both the DNA-free and two DNA-bound forms, which suggest that HiNmlR enhances target gene transcription by twisting of operator DNA sequences in a two-gene operon containing overlapping promoters. Our work provides the first structural insights into the mechanism of action of MerR regulators that lack sensor regions. PMID:27307602

  20. Preparation and characterization of ZnO-TiO{sub 2} nanocomposite for photocatalytic disinfection of bacteria and detoxification of cyanide under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Karunakaran, C., E-mail: karunakaranc@rediffmail.com [Department of Chemistry, Annamalai University, Annamalainagar 608002, Tamilnadu (India); Abiramasundari, G.; Gomathisankar, P.; Manikandan, G. [Department of Chemistry, Annamalai University, Annamalainagar 608002, Tamilnadu (India); Anandi, V. [Division of Microbiology, Rajah Muthiah Medical College, Annamalai University, Annamalainagar 608002, Tamilnadu (India)

    2011-10-15

    Highlights: {yields} ZnO-TiO{sub 2} nanocomposite, obtained by modified ammonia-evaporation-induced synthetic method, absorbs visible light. {yields} ZnO-TiO{sub 2} nanoparticles catalyze bacteria disinfection and cyanide detoxification under sunlight. {yields} ZnO-TiO{sub 2} nanocomposite is selective in photocatalysis. -- Abstract: ZnO-TiO{sub 2} nanocomposite was prepared by modified ammonia-evaporation-induced synthetic method. It was characterized by powder X-ray diffraction, transmission electron microscopy, selected area electron diffraction, and energy dispersive X-ray, UV-visible diffuse reflectance, photoluminescence and electrochemical impedance spectroscopies. Incorporation of ZnO leads to visible light absorption, larger charge transfer resistance and lower capacitance. The nanocomposite effectively catalyzes the inactivation of E. coli under visible light. Further, the prepared nanocomposite displays selective photocatalysis. While its photocatalytic efficiency to detoxify cyanide with visible light is higher than that of TiO{sub 2} P25, its efficiency to degrade methylene blue, sunset yellow and rhodamine B dyes under UV-A light is less than that of TiO{sub 2} P25.

  1. Dilute sulfuric acid pretreatment of corn stover for enzymatic hydrolysis and efficient ethanol production by recombinant Escherichia coli FBR5 without detoxification.

    Science.gov (United States)

    Avci, Ayse; Saha, Badal C; Kennedy, Gregory J; Cotta, Michael A

    2013-08-01

    A pretreatment strategy for dilute H2SO4 pretreatment of corn stover was developed for the purpose of reducing the generation of inhibitory substances during pretreatment so that a detoxification step is not required prior to fermentation while maximizing sugar yield. The optimal conditions for pretreatment of corn stover (10%, w/v) were: 0.75% H2SO4, 160°C, and 0-5 min holding time. The conditions were chosen based on maximum glucose release after enzymatic hydrolysis, minimum loss of pentose sugars and minimum formation of sugar degradation products such as furfural and hydroxymethyl furfural. The pretreated corn stover after enzymatic saccharification generated 63.2 ± 2.2 and 63.7 ± 2.3 g total sugars per L at 0 and 5 min holding time, respectively. Furfural production was 0.45 ± 0.1 and 0.87 ± 0.4 g/L, respectively. The recombinant Escherichia coli strain FBR5 efficiently fermented non-detoxified corn stover hydrolyzate if the furfural content is <0.5 g/L.

  2. Mineralization and Detoxification of the Carcinogenic Azo Dye Congo Red and Real Textile Effluent by a Polyurethane Foam Immobilized Microbial Consortium in an Upflow Column Bioreactor.

    Science.gov (United States)

    Lade, Harshad; Govindwar, Sanjay; Paul, Diby

    2015-06-16

    A microbial consortium that is able to grow in wheat bran (WB) medium and decolorize the carcinogenic azo dye Congo red (CR) was developed. The microbial consortium was immobilized on polyurethane foam (PUF). Batch studies with the PUF-immobilized microbial consortium showed complete removal of CR dye (100 mg·L-1) within 12 h at pH 7.5 and temperature 30 ± 0.2 °C under microaerophilic conditions. Additionally, 92% American Dye Manufactureing Institute (ADMI) removal for real textile effluent (RTE, 50%) was also observed within 20 h under the same conditions. An upflow column reactor containing PUF-immobilized microbial consortium achieved 99% CR dye (100 mg·L-1) and 92% ADMI removal of RTE (50%) at 35 and 20 mL·h-l flow rates, respectively. Consequent reduction in TOC (83 and 79%), COD (85 and 83%) and BOD (79 and 78%) of CR dye and RTE were also observed, which suggested mineralization. The decolorization process was traced to be enzymatic as treated samples showed significant induction of oxidoreductive enzymes. The proposed biodegradation pathway of the dye revealed the formation of lower molecular weight compounds. Toxicity studies with a plant bioassay and acute tests indicated that the PUF-immobilized microbial consortium favors detoxification of the dye and textile effluents.

  3. Harm and Detoxification Methods of Aflatoxin Toxin in Feed%饲料中黄曲霉毒素的危害及脱毒方法

    Institute of Scientific and Technical Information of China (English)

    杨忠诚; 刘镜; 龚铭; 龚俞

    2016-01-01

    Aflatoxin toxin is a kind of biological toxin produced by aspergillus flavus,and toxic to humans and animals,cause a great loss to the live ̄stock breeding industry. The contamination of aflatoxin in feed is seasonal and regional,southern summer high temperature and high humidity climate is very easy to occur feed aflatoxin contamination. In this paper, the harm of the livestock and poultry,the detection method of aflatoxin and the method of detoxification were summarized.%黄曲霉毒素是由黄曲霉菌产生的对人体和畜禽有毒的一类生物毒素,给畜牧养殖业造成了极大的损失。黄曲霉毒素对饲料的污染具有季节性和区域性,南方夏季高温高湿的气候极易发生饲料黄曲霉毒素污染。文章主要从黄曲霉毒素对畜禽的危害、黄曲霉毒素的检测方法及脱毒方法进行概述。

  4. Structural Analysis and Biological Toxicity of Aflatoxins B1 and B2 Degradation Products Following Detoxification by Ocimum basilicum and Cassia fistula Aqueous Extracts

    Science.gov (United States)

    Iram, Wajiha; Anjum, Tehmina; Iqbal, Mazhar; Ghaffar, Abdul; Abbas, Mateen; Khan, Abdul Muqeet

    2016-01-01

    This study showed the comparison between Ocimum basilicum and Cassia fistula (leaves and branch) aqueous extracts for their ability to detoxify of aflatoxins B1 and B2 (AFB1; 100 μg L-1 and AFB2; 50 μg L-1) by In Vitro assays and decontamination studies. Results indicated that O. basilicum leaves extract was found to be highly significant (P aflatoxins, under optimized conditions, i.e., pH 8, temperature 30°C and incubation period of 72 h. Moreover the antifungal activity of these plants extracts were also tested. The findings depicted that O. basilicum leaves extract showed maximum growth inhibition of aflatoxigenic isolates, i.e., 82–87% as compared to other tested plants extracts. The structural elucidation of degraded toxin products by LCMS/MS analysis showed that nine degraded products of AFB1 and AFB2 were formed. MS/MS spectra showed that most of the products were formed by the removal of double bond in the terminal furan ring and modification of lactone group indicating less toxicity as compared to parent compounds. Brine shrimps bioassay further confirmed the low toxicity of degraded products, showing that O. basilicum leaves extract can be used as an effective tool for the detoxification of aflatoxins. PMID:27471501

  5. Butylated hydroxyanisole induces distinct expression patterns of Nrf2 and detoxification enzymes in the liver and small intestine of C57BL/6 mice.

    Science.gov (United States)

    Luo, Lin; Chen, Yeru; Wu, Deqi; Shou, Jiafeng; Wang, Shengcun; Ye, Jie; Tang, Xiuwen; Wang, Xiu Jun

    2015-11-01

    Butylated hydroxyanisole (BHA) is widely used as an antioxidant and preservative in food, food packaging and medicines. Its chemopreventive properties are attributing to its ability to activate the transcription factor NF-E2 p45-related factor 2 (Nrf2), which directs central genetic programs of detoxification and protection against oxidative stress. This study was to investigate the histological changes of Nrf2 and its regulated phase II enzymes Nqo1, AKR1B8, and Ho-1 in wild-type (WT) and Nrf2(-/-) mice induced by BHA. The mice were given a 200mg/kg oral dose of BHA daily for three days. Immunohistochemistry revealed that, in the liver from WT mice, BHA increased Nqo1 staining in hepatocytes, predominately in the pericentral region. In contrast, the induction of AKR1B8 appeared mostly in hepatocytes in the periportal region. The basal and inducible Ho-1 was located almost exclusively in Kupffer cells. In the small intestine from WT mice, the inducible expression patterns of Nqo1 and AKR1B8 were nearly identical to that of Nrf2, with more intense staining in the villus than that the crypt. Conversely, Keap1 was more highly expressed in the crypt, where the proliferative cells reside. Our study demonstrates that BHA elicited differential expression patterns of phase II-detoxifying enzymes in the liver and small intestine from WT but not Nrf2(-/-) mice, demonstrating a cell type specific response to BHA in vivo. PMID:26291391

  6. Effects of music therapy on drug avoidance self-efficacy in patients on a detoxification unit: a three-group randomized effectiveness study.

    Science.gov (United States)

    Silverman, Michael J

    2014-01-01

    Self-efficacy is a component of Bandura's social cognitive theory and can lead to abstinence and a reduction of relapse potential for people who have substance abuse disorders. To date, no music therapy researcher has utilized this theoretical model to address abstinence and reduce the likelihood of relapse in people who have addictions. The purpose of this study was to determine the effects of music therapy on drug avoidance self-efficacy in a randomized three-group wait-list control design with patients on a detoxification unit. Participants (N = 131) were cluster randomized to one of three single-session conditions: music therapy, verbal therapy, or wait-list control. Music therapy participants received a group lyric analysis intervention, verbal therapy participants received a group talk therapy session, and wait-list control participants eventually received a group recreational music therapy intervention. Although there was no significant between-group difference in drug avoidance self-efficacy, participants in the music therapy condition tended to have the highest mean drug avoidance self-efficacy scores. Posttest written comments supported the use of both music therapy and verbal therapy sessions. Two music therapy participants specifically noted that their initial skepticism had dissipated after receiving music therapy. Despite a lack of significant differences, the theoretical support of self-efficacy for substance abuse rehabilitation suggests that this may be an area of continued clinical focus and empirical investigation. Clinical anecdotes, limitations of the study, and suggestions for future research are provided.

  7. Alternation of light/dark period priming enhances clomazone tolerance by increasing the levels of ascorbate and phenolic compounds and ROS detoxification in tobacco (Nicotiana tabacum L.) plantlets.

    Science.gov (United States)

    Darwish, Majd; Lopez-Lauri, Félicie; Vidal, Véronique; El Maâtaoui, Mohamed; Sallanon, Huguette

    2015-07-01

    The effect of the alternation of light/dark periods (AL) (16/8 min light/dark cycles and a photosynthetic photon flux density (PPFD) of 50 μmol photons m(-2) s(-1) for three days) to clarify the mechanisms involved in the clomazone tolerance of tobacco plantlets primed with AL was studied. Clomazone decreased PSII activity, the net photosynthetic rate (Pn), and the ascorbate and total polyphenol contents and increased H2O2 and starch grain accumulation and the number of the cells that underwent programmed cell death (PCD). The pretreatment with AL reduced the inhibitory effect of clomazone on the PSII activity and photosynthesis, as indicated by the decreases in the H2O2 and starch grain accumulation and the PCD levels, and increased the content of ascorbate and certain phenolic compounds, such as chlorogenic acid, neochlorogenic acid and rutin. The AL treatment could promote photorespiration via post-illumination burst (PIB) effects. This alternative photorespiratory electron pathway may reduce H2O2 generation via the consumption of photochemical energy, such as NADH+H(+). At 10 days (D10) of AL treatment, this process induced moderate stress which stimulates H2O2 detoxification systems by increasing the activity of antioxidant enzymes and the biosynthesis of antioxidant components. Therefore, the PCD levels provoked by clomazone were noticeably decreased.

  8. Mineralization and Detoxification of the Carcinogenic Azo Dye Congo Red and Real Textile Effluent by a Polyurethane Foam Immobilized Microbial Consortium in an Upflow Column Bioreactor.

    Science.gov (United States)

    Lade, Harshad; Govindwar, Sanjay; Paul, Diby

    2015-06-01

    A microbial consortium that is able to grow in wheat bran (WB) medium and decolorize the carcinogenic azo dye Congo red (CR) was developed. The microbial consortium was immobilized on polyurethane foam (PUF). Batch studies with the PUF-immobilized microbial consortium showed complete removal of CR dye (100 mg·L-1) within 12 h at pH 7.5 and temperature 30 ± 0.2 °C under microaerophilic conditions. Additionally, 92% American Dye Manufactureing Institute (ADMI) removal for real textile effluent (RTE, 50%) was also observed within 20 h under the same conditions. An upflow column reactor containing PUF-immobilized microbial consortium achieved 99% CR dye (100 mg·L-1) and 92% ADMI removal of RTE (50%) at 35 and 20 mL·h-l flow rates, respectively. Consequent reduction in TOC (83 and 79%), COD (85 and 83%) and BOD (79 and 78%) of CR dye and RTE were also observed, which suggested mineralization. The decolorization process was traced to be enzymatic as treated samples showed significant induction of oxidoreductive enzymes. The proposed biodegradation pathway of the dye revealed the formation of lower molecular weight compounds. Toxicity studies with a plant bioassay and acute tests indicated that the PUF-immobilized microbial consortium favors detoxification of the dye and textile effluents. PMID:26086710

  9. Overview of studies on detoxification effect of Smilacis Glabrae Rhizoma on mercury poisoning%土茯苓解汞毒的研究概况

    Institute of Scientific and Technical Information of China (English)

    徐笑飞; 陈红风; 叶媚娜

    2012-01-01

    Mercury-containing preparations are widely used in surgery department of traditional Chinese medicine and have made remarkable achievements. But they are toxic to human kidney, nerve, immune, etc. Smilacis Clabrae Rhizoma is sweet, tasteless and neutral in nature and able to enter liver and stomach channels and detoxify mercury poisoning. This article summarizes the mercury poisoning and the detoxification effect of Smilacis Clabrae Rhizoma in ancient records, pharmaceutical studies and clinical application , in order to provide ideas and methods for the safe use of mercury-containing preparations in surgery department of traditional Chinese medicine.%含汞制剂在中医外科中应用广泛,作用显著,然因含汞而在人体肾脏、神经、免疫等方面有明显的毒性.土茯苓性甘、淡、平,归肝、胃两经,有解汞毒之功效.该文通过汞的毒性、土茯苓解汞毒的古籍记载、土茯苓解毒的药理研究及其临床应用等方面,综述土茯苓解汞毒的相关研究概况,为中医外科临床安全使用含汞制剂提供可行的思路与方法.

  10. Molecular Mechanism of Heavy Metal Toxicity and Tolerance in Plants: Central Role of Glutathione in Detoxification of Reactive Oxygen Species and Methylglyoxal and in Heavy Metal Chelation

    Directory of Open Access Journals (Sweden)

    Mohammad Anwar Hossain

    2012-01-01

    Full Text Available Heavy metal (HM toxicity is one of the major abiotic stresses leading to hazardous effects in plants. A common consequence of HM toxicity is the excessive accumulation of reactive oxygen species (ROS and methylglyoxal (MG, both of which can cause peroxidation of lipids, oxidation of protein, inactivation of enzymes, DNA damage and/or interact with other vital constituents of plant cells. Higher plants have evolved a sophisticated antioxidant defense system and a glyoxalase system to scavenge ROS and MG. In addition, HMs that enter the cell may be sequestered by amino acids, organic acids, glutathione (GSH, or by specific metal-binding ligands. Being a central molecule of both the antioxidant defense system and the glyoxalase system, GSH is involved in both direct and indirect control of ROS and MG and their reaction products in plant cells, thus protecting the plant from HM-induced oxidative damage. Recent plant molecular studies have shown that GSH by itself and its metabolizing enzymes—notably glutathione S-transferase, glutathione peroxidase, dehydroascorbate reductase, glutathione reductase, glyoxalase I and glyoxalase II—act additively and coordinately for efficient protection against ROS- and MG-induced damage in addition to detoxification, complexation, chelation and compartmentation of HMs. The aim of this review is to integrate a recent understanding of physiological and biochemical mechanisms of HM-induced plant stress response and tolerance based on the findings of current plant molecular biology research.

  11. Membrane Stabilization and Detoxification of Acetaminophen-Mediated Oxidative Onslaughts in the Kidneys of Wistar Rats by Standardized Fraction of Zea mays L. (Poaceae, Stigma maydis

    Directory of Open Access Journals (Sweden)

    S. Sabiu

    2016-01-01

    Full Text Available This study evaluated membrane stabilization and detoxification potential of ethyl acetate fraction of Zea mays L., Stigma maydis in acetaminophen-induced oxidative onslaughts in the kidneys of Wistar rats. Nephrotoxic rats were orally pre- and posttreated with the fraction and vitamin C for 14 days. Kidney function, antioxidative and histological analyses were thereafter evaluated. The acetaminophen-mediated significant elevations in the serum concentrations of creatinine, urea, uric acid, sodium, potassium, and tissue levels of oxidized glutathione, protein-oxidized products, lipid peroxidized products, and fragmented DNA were dose-dependently assuaged in the fraction-treated animals. The fraction also markedly improved creatinine clearance rate, glutathione, and calcium concentrations as well as activities of superoxide dismutase, catalase, glutathione reductase, and glutathione peroxidase in the nephrotoxic rats. These improvements may be attributed to the antioxidative and membrane stabilization activities of the fraction. The observed effects compared favorably with that of vitamin C and are informative of the fraction’s ability to prevent progression of renal pathological conditions and preserve kidney functions as evidently supported by the histological analysis. Although the effects were prominently exhibited in the fraction-pretreated groups, the overall data from the present findings suggest that the fraction could prevent or extenuate acetaminophen-mediated oxidative renal damage via fortification of antioxidant defense mechanisms.

  12. Membrane Stabilization and Detoxification of Acetaminophen-Mediated Oxidative Onslaughts in the Kidneys of Wistar Rats by Standardized Fraction of Zea mays L. (Poaceae), Stigma maydis.

    Science.gov (United States)

    Sabiu, S; O'Neill, F H; Ashafa, A O T

    2016-01-01

    This study evaluated membrane stabilization and detoxification potential of ethyl acetate fraction of Zea mays L., Stigma maydis in acetaminophen-induced oxidative onslaughts in the kidneys of Wistar rats. Nephrotoxic rats were orally pre- and posttreated with the fraction and vitamin C for 14 days. Kidney function, antioxidative and histological analyses were thereafter evaluated. The acetaminophen-mediated significant elevations in the serum concentrations of creatinine, urea, uric acid, sodium, potassium, and tissue levels of oxidized glutathione, protein-oxidized products, lipid peroxidized products, and fragmented DNA were dose-dependently assuaged in the fraction-treated animals. The fraction also markedly improved creatinine clearance rate, glutathione, and calcium concentrations as well as activities of superoxide dismutase, catalase, glutathione reductase, and glutathione peroxidase in the nephrotoxic rats. These improvements may be attributed to the antioxidative and membrane stabilization activities of the fraction. The observed effects compared favorably with that of vitamin C and are informative of the fraction's ability to prevent progression of renal pathological conditions and preserve kidney functions as evidently supported by the histological analysis. Although the effects were prominently exhibited in the fraction-pretreated groups, the overall data from the present findings suggest that the fraction could prevent or extenuate acetaminophen-mediated oxidative renal damage via fortification of antioxidant defense mechanisms. PMID:27579048

  13. Mineralization and Detoxification of the Carcinogenic Azo Dye Congo Red and Real Textile Effluent by a Polyurethane Foam Immobilized Microbial Consortium in an Upflow Column Bioreactor

    Directory of Open Access Journals (Sweden)

    Harshad Lade

    2015-06-01

    Full Text Available A microbial consortium that is able to grow in wheat bran (WB medium and decolorize the carcinogenic azo dye Congo red (CR was developed. The microbial consortium was immobilized on polyurethane foam (PUF. Batch studies with the PUF-immobilized microbial consortium showed complete removal of CR dye (100 mg·L−1 within 12 h at pH 7.5 and temperature 30 ± 0.2 °C under microaerophilic conditions. Additionally, 92% American Dye Manufactureing Institute (ADMI removal for real textile effluent (RTE, 50% was also observed within 20 h under the same conditions. An upflow column reactor containing PUF-immobilized microbial consortium achieved 99% CR dye (100 mg·L−1 and 92% ADMI removal of RTE (50% at 35 and 20 mL·h−l flow rates, respectively. Consequent reduction in TOC (83 and 79%, COD (85 and 83% and BOD (79 and 78% of CR dye and RTE were also observed, which suggested mineralization. The decolorization process was traced to be enzymatic as treated samples showed significant induction of oxidoreductive enzymes. The proposed biodegradation pathway of the dye revealed the formation of lower molecular weight compounds. Toxicity studies with a plant bioassay and acute tests indicated that the PUF-immobilized microbial consortium favors detoxification of the dye and textile effluents.

  14. Low-Cost Biodegradation and Detoxification of Textile Azo Dye C.I. Reactive Blue 172 by Providencia rettgeri Strain HSL1

    Directory of Open Access Journals (Sweden)

    Harshad Lade

    2015-01-01

    Full Text Available Present study focuses on exploitation of agricultural waste wheat bran (WB as growth medium for degradation of textile azo dye C.I. Reactive Blue 172 (RB 172 using a single bacterium P. rettgeri strain HSL1 (GenBank accession number JX853768.1. The bacterium was found to completely decolorize 50 mg L−1 of dye RB 172 within 20 h at 30 ± 0.2°C under microaerophilic incubation conditions. Additionally, significant reduction in COD (85% and TOC (52% contents of dye decolorized medium was observed which suggested its mineralization. Induction in the activities of azoreductase (159% and NADH-DCIP reductase (88% provided an evidence for reductive cleavage of dye RB 172. The HPLC, FTIR, and GC-MS analysis of decolorized products confirmed the degradation of dye into various metabolites. The proposed metabolic pathway for biodegradation of RB 172 has been elucidated which showed the formation of 2 intermediate metabolites, namely, 4-(ethenylsulfonyl aniline and 1-amino-1-(4-aminophenyl propan-2-one. The acute and phytotoxicity evaluation of degraded metabolites suggests that bacterial strain favors the detoxification of dye RB 172. Thus, WB could be utilized as a low-cost growth medium for the enrichment of bacteria and their further use for biodegradation of azo dyes and its derivatives containing wastes into nontoxic form.

  15. The detection results of HIV antibody in compulsory detoxification and investigation on their attitude for HIV infection%强制戒毒人员HIV抗体检测结果及对HIV感染态度调查分析

    Institute of Scientific and Technical Information of China (English)

    张宜强

    2015-01-01

    Objective:To survey and analyze the situation of HIV infection in compulsory detoxification and their HIV infected attitude.Methods:250 cases of compulsory detoxification detected HIV antibody were selected,then we analyzed their attitude for HIV infection.Results:In those 250 patients,there were 11 cases(4.40%) with HIV antibody positive.All of them were intravenous drug users and drug history more than 3 years,in which there were 7 male and 4 female;the cognitive situation for HIV infection was poor among compulsory detoxification,and majority of patients had a negative attitude,which is unfavourable for the treatment and control of HIV infection.Conclusion:Strengthening the education of HIV infection related knowledge for compulsory detoxification,and improving the quality of life and social environment after the expiration of drug detoxification have a positive significance to the control of HIV infection.%目的:调查分析强制戒毒人员的HIV感染情况和对HIV感染的态度。方法:对强制戒毒所收治的250例强制戒毒人员 HIV 抗体进行检测,并调查分析其对 HIV 感染的态度。结果:本组250例入选者 HIV 抗体阳11例(4.40%),均为静脉吸毒者且吸毒史>3年,男7例,女4例;强制戒毒人员对HIV感染的认知情况不佳,多数患者存在消极态度,对HIV感染的治疗和控制十分不利。结论:加强对强制戒毒人员的HIV感染相关知识教育、改善强制戒毒人员戒毒期满后的生活质量和社会环境对HIV感染的控制具有积极意义。

  16. 解毒机对蔬菜中剧毒有机磷农药降解效果的评价%Evaluation on degradation effect for highly toxic organophosphorus pesticide in vegetable by a detoxification machine

    Institute of Scientific and Technical Information of China (English)

    周金森; 刘赐敏; 龙军标; 刘钰钗

    2013-01-01

    [Objective] To understand the degradation effect of highly toxic organophosphorus pesticide in vegetable treated by a detoxification machine.[Methods] The vegetables,including lettuce,Brassicachinensis L,green bean and cucumber polluted by methamidophos,monocrotophos,dimethoate,parathion were treated by a detoxification machine,while the tap water soak was taken as comparison.In the end,their degradation effects were assessed by a capillary gas chromatography.[Results] The optimal detoxification time for machine was 20 min.The degradation rates of methamidophos in 4 kinds of vegetables were 72.13%-79.86%,monocrotophos were 74.58%-81.99%,dimethoate were 49.33%-55.08%,parathion were 57.34%-60.03%The optimal detoxification time for tap water was 30 min,the degradation rates of 4 kinds of organophosphorus pesticide in vegetables were 19.74%-35.91%.[Conclusion] The detoxification machine is quick to degrade highly toxic organophosphorus pesticide in vegetables with good effect.%目的 了解解毒机对蔬菜中多种剧毒有机磷农药降解情况.方法 将残留在生菜、上海青、四季豆、黄瓜上的甲胺磷、久效磷、乐果和对硫磷,用解毒机进行清洗,同时用自来水浸泡作对照,然后采用毛细管柱气相色谱法测定,计算降解率,评价其降解效果.结果 解毒机清洗蔬菜20 min达最佳,在4种蔬菜中甲胺磷的降解率为72.13% ~79.86%,久效磷为74.58%~ 81.99%,乐果为49.33% ~ 55.08%,对硫磷为57.34% ~60.03%.自来水浸泡蔬菜30 min达最佳,在4种蔬菜中4种农药的降解率在19.74% ~35.91%之间.结论 解毒机对蔬菜中剧毒有机磷农药降解速度快,效果好.

  17. Structural Analysis and Biological Toxicity of Aflatoxins B1 and B2 Degradation Products Following Detoxification by Ocimum basilicum and Cassia fistula Aqueous Extracts.

    Science.gov (United States)

    Iram, Wajiha; Anjum, Tehmina; Iqbal, Mazhar; Ghaffar, Abdul; Abbas, Mateen; Khan, Abdul Muqeet

    2016-01-01

    This study showed the comparison between Ocimum basilicum and Cassia fistula (leaves and branch) aqueous extracts for their ability to detoxify of aflatoxins B1 and B2 (AFB1; 100 μg L(-1) and AFB2; 50 μg L(-1)) by In Vitro assays and decontamination studies. Results indicated that O. basilicum leaves extract was found to be highly significant (P < 0.05) in degrading AFB1 and AFB2, i.e., 90.4 and 88.6%, respectively. However, O. basilicum branch, C. fistula leaves and branch extracts proved to be less efficient in degrading these aflatoxins, under optimized conditions, i.e., pH 8, temperature 30°C and incubation period of 72 h. Moreover the antifungal activity of these plants extracts were also tested. The findings depicted that O. basilicum leaves extract showed maximum growth inhibition of aflatoxigenic isolates, i.e., 82-87% as compared to other tested plants extracts. The structural elucidation of degraded toxin products by LCMS/MS analysis showed that nine degraded products of AFB1 and AFB2 were formed. MS/MS spectra showed that most of the products were formed by the removal of double bond in the terminal furan ring and modification of lactone group indicating less toxicity as compared to parent compounds. Brine shrimps bioassay further confirmed the low toxicity of degraded products, showing that O. basilicum leaves extract can be used as an effective tool for the detoxification of aflatoxins. PMID:27471501

  18. A novel formaldehyde metabolic pathway plays an important role during formaldehyde metabolism and detoxification in tobacco leaves under liquid formaldehyde stress.

    Science.gov (United States)

    Wang, Ru; Zeng, Zhidong; Liu, Ting; Liu, Ang; Zhao, Yan; Li, Kunzhi; Chen, Limei

    2016-08-01

    Tobacco and Arabidopsis are two model plants often used in botany research. Our previous study indicated that the formaldehyde (HCHO) uptake and assimilation capacities of tobacco leaves were weaker than those of Arabidopsis leaves. After treatment with a 2, 4 or 6 mM HCHO solution for 24 h, detached tobacco leaves absorbed approximately 40% of the HCHO from the treatment solution. (13)C-NMR analysis detected a novel HCHO metabolic pathway in 2 mM H(13)CHO-treated tobacco leaves. [4-(13)C]Asn, [3-(13)C]Gln and [U-(13)C]oxalic acid (OA) were produced from this pathway after H(13)COOH generation during H(13)CHO metabolism in tobacco leaves. Pretreatments of cyclosporin A (CSA) and dark almost completely inhibited the generation of [4-(13)C]Asn, [3-(13)C]Gln and [U-(13)C]OA from this pathway but did not suppressed the production of H(13)COOH in 2 mM H(13)CHO-treated tobacco leaves. The evidence suggests that this novel pathway has an important role during the metabolic detoxification of HCHO in tobacco leaves. The analysis of the chlorophyll and Rubisco contents indicated that CSA and dark pretreatments did not severely affect the survival of leaf cells but significantly inhibited the HCHO uptake by tobacco leaves. Based on the effects of CSA and dark pretreatments on HCHO uptake and metabolism, it is estimated that the contribution of this novel metabolic pathway to HCHO uptake is approximately 60%. The data obtained from the (13)C-NMR analysis revealed the mechanism underlying the weaker HCHO uptake and assimilation of tobacco leaves compared to Arabidopsis leaves. PMID:27116371

  19. Plant Pathogenic Bacteria Utilize Biofilm Growth-associated Repressor (BigR), a Novel Winged-helix Redox Switch, to Control Hydrogen Sulfide Detoxification under Hypoxia*

    Science.gov (United States)

    Guimarães, Beatriz G.; Barbosa, Rosicler L.; Soprano, Adriana S.; Campos, Bruna M.; de Souza, Tiago A.; Tonoli, Celisa C. C.; Leme, Adriana F. P.; Murakami, Mario T.; Benedetti, Celso E.

    2011-01-01

    Winged-helix transcriptional factors play important roles in the control of gene expression in many organisms. In the plant pathogens Xylella fastidiosa and Agrobacterium tumefaciens, the winged-helix protein BigR, a member of the ArsR/SmtB family of metal sensors, regulates transcription of the bigR operon involved in bacterial biofilm growth. Previous studies showed that BigR represses transcription of its own operon through the occupation of the RNA polymerase-binding site; however, the signals that modulate its activity and the biological function of its operon are still poorly understood. Here we show that although BigR is a homodimer similar to metal sensors, it functions as a novel redox switch that derepresses transcription upon oxidation. Crystal structures of reduced and oxidized BigR reveal that formation of a disulfide bridge involving two critical cysteines induces conformational changes in the dimer that remarkably alter the topography of the winged-helix DNA-binding interface, precluding DNA binding. This structural mechanism of DNA association-dissociation is novel among winged-helix factors. Moreover, we demonstrate that the bigR operon is required for hydrogen sulfide detoxification through the action of a sulfur dioxygenase (Blh) and sulfite exporter. As hydrogen sulfide strongly inhibits cytochrome c oxidase, it must be eliminated to allow aerobic growth under low oxygen tension, an environmental condition found in bacterial biofilms, xylem vessels, and root tissues. Accordingly, we show that the bigR operon is critical to sustain bacterial growth under hypoxia. These results suggest that BigR integrates the transcriptional regulation of a sulfur oxidation pathway to an oxidative signal through a thiol-based redox switch. PMID:21632538

  20. Application of non-thermal plasma reactor for degradation and detoxification of high concentrations of dye Reactive Black 5 in water

    Directory of Open Access Journals (Sweden)

    Dojčinović Biljana P.

    2016-01-01

    Full Text Available Degradation and detoxification efficiency of high concentrations of commercially available reactive textile dye Reactive Black 5 solution (40, 80, 200, 500, 1000 mg L-1, were studied. Advanced oxidation processes in water falling film based dielectric barrier discharge as a non-thermal plasma reactor were used. For the first time, this reactor was used for the treatment of high concentrations of organic pollutants such as reactive textile dye Reactive Black 5 in water. Solution of the dye is treated by plasma as thin water solution film that is constantly regenerated. Basically, the reactor works as a continuous flow reactor and the electrical discharge itself takes place at the gas-liquid interphase. The dye solution was recirculated through the reactor with an applied energy density of 0-374 kJ L-1. Decolorization efficiency (% was monitored by UV-VIS spectrophotometric technique. Samples were taken after every recirculation (~ 22 kJ L-1 and decolorization percent was measured after 5 min and 24 h of plasma treatment. The efficiency of degradation (i.e. mineralization and possible degradation products were also tracked by determination of the chemical oxygen demand (COD and by ion chromatography (IC. Initial toxicity and toxicity of solutions after the treatment were studied with Artemia salina test organisms. Efficiency of decolorization decreased with the increase of the dye concentration. Complete decolorization, high mineralization and non-toxicity of the solution (<10 % were acomplished after plasma treatment using energy density of 242 kJ L-1, while the initial concentrations of Reactive Black 5 were 40 and 80 mg L-1. [Projekat Ministarstva nauke Republike Srbije, br. 172030 i br. 171034

  1. Genomics study of the exposure effect of Gymnodinium catenatum, a paralyzing toxin producer, on Crassostrea gigas' defense system and detoxification genes.

    Directory of Open Access Journals (Sweden)

    Norma García-Lagunas

    Full Text Available BACKGROUND: Crassostrea gigas accumulates paralytic shellfish toxins (PST associated with red tide species as Gymnodinium catenatum. Previous studies demonstrated bivalves show variable feeding responses to toxic algae at physiological level; recently, only one study has reported biochemical changes in the transcript level of the genes involved in C. gigas stress response. PRINCIPAL FINDINGS: We found that 24 h feeding on toxic dinoflagellate cells (acute exposure induced a significant decrease in clearance rate and expression level changes of the genes involved in antioxidant defense (copper/zinc superoxide dismutase, Cu/Zn-SOD, cell detoxification (glutathione S-transferase, GST and cytochrome P450, CPY450, intermediate immune response activation (lipopolysaccharide and beta glucan binding protein, LGBP, and stress responses (glutamine synthetase, GS in Pacific oysters compared to the effects with the non-toxic microalga Isochrysis galbana. A sub-chronic exposure feeding on toxic dinoflagellate cells for seven and fourteen days (30×10³ cells mL⁻¹ showed higher gene expression levels. A significant increase was observed in Cu/Zn-SOD, GST, and LGBP at day 7 and a major increase in GS and CPY450 at day 14. We also observed that oysters fed only with G. catenatum (3×10³ cells mL⁻¹ produced a significant increase on the transcription level than in a mixed diet (3×10³ cells mL⁻¹ of G. catenatum+0.75×10⁶ cells mL⁻¹ I. galbana in all the analyzed genes. CONCLUSIONS: Our results provide gene expression data of PST producer dinoflagellate G. catenatum toxic effects on C. gigas, a commercially important bivalve. Over expressed genes indicate the activation of a potent protective mechanism, whose response depends on both cell concentration and exposure time against these toxic microalgae. Given the importance of dinoflagellate blooms in coastal environments, these results provide a more comprehensive overview of how oysters respond to

  2. Identification of okadaic acid binding protein 2 in reconstituted sponge cell clusters from Halichondria okadai and its contribution to the detoxification of okadaic acid.

    Science.gov (United States)

    Konoki, Keiichi; Okada, Kayo; Kohama, Mami; Matsuura, Hiroki; Saito, Kaori; Cho, Yuko; Nishitani, Goh; Miyamoto, Tomofumi; Fukuzawa, Seketsu; Tachibana, Kazuo; Yotsu-Yamashita, Mari

    2015-12-15

    Okadaic acid (OA) and OA binding protein 2 (OABP2) were previously isolated from the marine sponge Halichondria okadai. Because the amino acid sequence of OABP2 is completely different from that of protein phosphatase 2A, a well-known target of OA, we have been investigating the production and function of OABP2. In the present study, we hypothesized that OABP2 plays a role in the detoxification of OA in H. okadai and that the OA concentrations are in proportional to the OABP2 concentrations in the sponge specimens. Based on the OA concentrations and the OABP2 concentrations in the sponge specimens collected in various places and in different seasons, however, we could not determine a positive correlation between OA and OABP2. We then attempted to determine distribution of OA and OABP2 in the sponge specimen. When the mixture of dissociated sponge cells and symbiotic species were separated with various pore-sized nylon meshes, most of the OA and OABP2 was detected from the same 0-10 μm fraction. Next, when sponge cell clusters were prepared from a mixture of dissociated sponge cells and symbiotic species in the presence of penicillin and streptomycin, we identified the 18S rDNA of H. okadai and the gene of OABP2 in the analysis of genomic DNA but could not detect OA by LC-MS/MS. We thus concluded that the sponge cells express OABP2, and that OA was not apparently present in the sponge cells but could be colocalized with OABP2 in the sponge cells at a concentration less than the limit of detection.

  3. Tolerance to clomazone herbicide is linked to the state of LHC, PQ-pool and ROS detoxification in tobacco (Nicotiana tabacum L.).

    Science.gov (United States)

    Darwish, Majd; Vidal, Véronique; Lopez-Lauri, Félicie; Alnaser, Osama; Junglee, Sanders; El Maataoui, Mohamed; Sallanon, Huguette

    2015-03-01

    In this study, plantlets of two tobacco (Nicotiana tabacum L.) varieties that are clomazone-tolerant (cv. Xanthi) and clomazone-sensitive (cv. Virginie vk51) were subjected to low concentration of clomazone herbicide. The oxygen-evolving rate of isolated chloroplasts, chlorophyll a fluorescence transients, JIP-test responses, hydrogen peroxide contents, antioxidant enzyme activities, cytohistological results and photosynthetic pigment contents were recorded. The results indicated that the carotenoid content was 2-fold higher in Virginie, which had greater clomazone sensitivity than Xanthi. Virginie exhibited noticeable decreases in the LHC content (Chl a/b ratio), the maximum photochemical quantum efficiency of PSII (Fv/Fm), the performance index on the absorption basis (PIabs), and the electron flux beyond the first PSII QA evaluated as (1-VJ) with VJ=(FJ-F0)/(Fm-F0) as well as increases in the rate of photon absorption (ABS/RC) and the energy dissipation as heat (DI0/RC). These results suggest that PSII photoinhibition occurred as a consequence of more reduced PQ-pool and accumulated QA(-). The oxygen evolution measurements indicate that PSI electron transport activity was not affected by clomazone. The more significant accumulation of H2O2 in Virginie compared to Xanthi was due to the absence of ROS-scavenging enzymes, and presumably induced programmed cell death (PCD). The symptoms of PCD were observed by cytohistological analysis, which also indicated that the leaf tissues of clomazone-treated Virginie exhibited significant starch accumulation compared to Xanthi. Taken together, these results indicate that the variable tolerance to clomazone observed between Virginie and Xanthi is independent of the carotenoid content and could be related to the state of the LHC, the redox state of the PQ-pool, and the activity of detoxification enzymes.

  4. Gene expression analysis and enzyme assay reveal a potential role of the carboxylesterase gene CpCE-1 from Cydia pomonella in detoxification of insecticides.

    Science.gov (United States)

    Yang, Xue-Qing

    2016-05-01

    Carboxylesterases (CarEs) are responsible for metabolism of xenobiotics including insecticides in insects. Understanding the expression patterns of a such detoxifying gene and effect of insecticides on its enzyme activity are important to clarify the function of this gene relevant to insecticides-detoxifying process, but little information is available in the codling moth Cydia pomonella (L.). In this study, we investigated the expression profiles of CarE gene CpCE-1 at different developmental stages and in different tissues of C. pomonella, as well as the larvae exposed to chlorpyrifos-ethyl and lambda-cyhalothrin by using absolute real-time quantitative PCR (absolute RT-qPCR). Results indicated that CpCE-1 expression was significantly altered during C. pomonella development stages, and this expression differed between sexes, with a higher transcript in females than males. Meanwhile, CpCE-1 is overexpressed in cuticle, midgut and head than silk gland, fat body and Malpighian tubules. Exposure of third instar larvae to a non-lethal dosage of chlorpyrifos-ethyl and lambda-cyhalothrin resulted in induction of CpCE-1 transcript. The total carboxylesterase enzyme activity was inhibited by chlorpyrifos-ethyl in vivo; in contrast, the activity of Escherichia coli produced recombinant CpCE-1 was significantly inhibited by both lambda-cyhalothrin and chlorpyrifos-ethyl in vitro. These results suggested that CpCE-1 in C. pomonella is potentially involved in the development and in detoxification of chlorpyrifos-ethyl and lambda-cyhalothrin. PMID:27017882

  5. Knocking out ACR2 does not affect arsenic redox status in Arabidopsis thaliana: implications for as detoxification and accumulation in plants.

    Directory of Open Access Journals (Sweden)

    Wenju Liu

    Full Text Available Many plant species are able to reduce arsenate to arsenite efficiently, which is an important step allowing detoxification of As through either efflux of arsenite or complexation with thiol compounds. It has been suggested that this reduction is catalyzed by ACR2, a plant homologue of the yeast arsenate reductase ScACR2. Silencing of AtACR2 was reported to result in As hyperaccumulation in the shoots of Arabidopsis thaliana. However, no information of the in vivo As speciation has been reported. Here, we investigated the effect of AtACR2 knockout or overexpression on As speciation, arsenite efflux from roots and As accumulation in shoots. T-DNA insertion lines, overexpression lines and wild-type (WT plants were exposed to different concentrations of arsenate for different periods, and As speciation in plants and arsenite efflux were determined using HPLC-ICP-MS. There were no significant differences in As speciation between different lines, with arsenite accounting for >90% of the total extractable As in both roots and shoots. Arsenite efflux to the external medium represented on average 77% of the arsenate taken up during 6 h exposure, but there were no significant differences between WT and mutants or overexpression lines. Accumulation of As in the shoots was also unaffected by AtACR2 knockout or overexpression. Additionally, after exposure to arsenate, the yeast (Saccharomyces cerevisiae strain with ScACR2 deleted showed similar As speciation as the WT with arsenite-thiol complexes being the predominant species. Our results suggest the existence of multiple pathways of arsenate reduction in plants and yeast.

  6. The Contribution of Nicotinamide Nucleotide Transhydrogenase to Peroxide Detoxification Is Dependent on the Respiratory State and Counterbalanced by Other Sources of NADPH in Liver Mitochondria.

    Science.gov (United States)

    Ronchi, Juliana Aparecida; Francisco, Annelise; Passos, Luiz Augusto Correa; Figueira, Tiago Rezende; Castilho, Roger Frigério

    2016-09-16

    The forward reaction of nicotinamide nucleotide transhydrogenase (NNT) reduces NADP(+) at the expense of NADH oxidation and H(+) movement down the electrochemical potential across the inner mitochondrial membrane, establishing an NADPH/NADP(+) ratio severalfold higher than the NADH/NAD(+) ratio in the matrix. In turn, NADPH drives processes, such as peroxide detoxification and reductive biosynthesis. In this study, we generated a congenic mouse model carrying a mutated Nnt(C57BL/6J) allele from the C57BL/6J substrain. Suspensions of isolated mitochondria from Nnt(+/+), Nnt(+/-), and Nnt(-/-) mouse liver were biochemically evaluated and challenged with exogenous peroxide under different respiratory states. The respiratory substrates were also varied, and the participation of concurrent NADPH sources (i.e. isocitrate dehydrogenase-2, malic enzymes, and glutamate dehydrogenase) was assessed. The principal findings include the following: Nnt(+/-) and Nnt(-/-) exhibit ∼50% and absent NNT activity, respectively, but the activities of concurrent NADPH sources are unchanged. The lack of NNT activity in Nnt(-/-) mice impairs peroxide metabolism in intact mitochondria. The contribution of NNT to peroxide metabolism is decreased during ADP phosphorylation compared with the non-phosphorylating state; however, it is accompanied by increased contributions of concurrent NADPH sources, especially glutamate dehydrogenase. NNT makes a major contribution to peroxide metabolism during the blockage of mitochondrial electron transport. Interestingly, peroxide metabolism in the Nnt(+/-) mitochondria matched that in the Nnt(+/+) mitochondria. Overall, this study demonstrates that the respiratory state and/or substrates that sustain energy metabolism markedly influence the relative contribution of NNT (i.e. varies between nearly 0 and 100%) to NADPH-dependent mitochondrial peroxide metabolism. PMID:27474736

  7. RESEARCH ON KNOWLEDGE OF METHADONE MAINTENANCE TREATMENT AMONG DRUG ADDICTS IN COMPULSORY DETOXIFICATION CENTERS%强制隔离戒毒人员中美沙酮维持治疗的认知相关因素研究

    Institute of Scientific and Technical Information of China (English)

    段琳; 王志锋; 郑振玉; 阿尔帕提·沙迪克; 荣念赫; 贾金忠; 杨震; 郭伟龙; 张和龙; 杨蕾

    2012-01-01

    Objective:To learn about the knowledge of methadone maintenance treatment ( MMT) and related risk factors among drug addicts, hence to provide evidence to targeted health education. Methods-1015 drug addicts from five compulsory detoxification centers in Sichuan,Hunan and Guangxi Province were typically sampled and investigated with self - designed questionnaires. Results: (1) The knowledge level of MMT among drug addicts in compulsory detoxification centers was low with average rate of awareness 48.0%. (2)The associated factors of knowledge level of MMT among drug addicts in compulsory detoxification centers included gender, educational level and history of drug abuse. The level was higher among the people who are female, highly educated or with drug abuse history of 10 to 20 years. In addition,drug addicts who had been involved in MMT before as well as those who had been provided MMT related services in compulsory detoxification centers had much higher knowledge level of MMT. Conclusion: Compulsory detoxification centers have to emphasize on the education of MMT for drug addicts. Great emphasis should be placed on the female, the Han and the addicts with low educational level and very long or short drug abuse history , and the minority should continue to be concerned. Moreover, MMT referral model should be expanded across the country and gradually explored to bring it into compulsory detoxification centers.%目的:研究强制隔离戒毒人员对美沙酮维持治疗相关知识的认知情况及其相关因素,为针对性地开展健康宣传教育工作提供依据.方法:采用典型抽样与整群抽样结合的方法,使用自行设计的问卷对四川、湖南、广西三省共5家强制隔离戒毒所的1015名戒毒人员进行调查.结果:(1)强制隔离戒毒人员对美沙酮维持治疗相关知识的总体认知水平尚低,平均知晓率仅为48.0%.(2)认知情况男性好于女性,文化程度高者好于文化程度低者,吸毒史为10

  8. Effect of Detoxification on Violet Photosynthetic Bacteria Utilization Pyrolysis Liquid and Levoglucosan%脱毒对热解液中内醚糖及紫色光合菌利用热解液的影响

    Institute of Scientific and Technical Information of China (English)

    陈育如; 赵乙萱; 孙欢; 刘军利; 卫民; 李慧英

    2013-01-01

    研究了不同脱毒材料和处理方式对热解液中内醚糖及紫色光合菌利用热解液的影响.实验结果表明,脱毒处理能显著改善紫色光合菌对热解液的利用效率,不同的脱毒材料对热解液中的内醚糖吸附程度有较大的差异.以氢氧化钙和活性炭联用处理后,紫色光合菌对热解液的利用效果最好,对内醚糖的利用率在培养的第4 d即达到77.7%,培养6 d对热解液的利用率达到94.1%,远高于未脱毒处理时的利用效率(61.9%,14 d).几种脱毒处理方式中,以氢氧化钙处理时对内醚糖的吸附最少(15.1%),而以717阴离子交换树脂处理时对内醚糖的吸附量最高(68.8%).%Effect of different detoxification materials and treatments on the absorption of levoglucosan in pyrolysis liquid and utilization of pyrolysis liquid by Photosynthetic bacteria are studied. The results show that it greatly promotes the utilization of pyrolysis liquid after detoxification. Moreover, absorptions of levoglucosan in pyrolysis liquid are greatly different after treatment with different detoxification materials. Utilization of pyrolysis liquid is optimal by using activated carbon add Ca(OH)2 treatment method. The results show that utilization rate are 77. 7% and 94. 1% after cultured 4 d and 6 d respectively,which are much higher than those before detoxification(61. 9%,14 d). In those treatment methods, absorption of levoglucosan is the lowest by Ca(OH)2 treatment method(15. 1%),while 717 anion-exchang resin treatment method is hightest(68. 8%).

  9. Effect of different detoxification methods on ethanol production from corn stover hydrolysate%不同脱毒方法对玉米秸秆水解液酒精发酵的影响

    Institute of Scientific and Technical Information of China (English)

    张强; Anders Thygesen; Anne Belinda Thomsen

    2011-01-01

    利用湿热预处理(195℃,15 min)后的玉米秸秆水解液,考察了3种不同脱毒方法(中和法、饱和生石灰法和Na2SO3法)对水解液中的抑制剂的去除效果,研究了树干毕赤酵母(Pichia stipitis 58376)对脱毒后的水解液酒精发酵情况.结果表明:玉米秸秆水解液经过3种方法脱毒处理后,醛类抑制荆(糠醛和5-羟甲基糠醛)平均减少41%,总酚类最高去除28.4%,酒精得率都得到明显提高.最佳的脱毒方法是饱和生石灰法,理论酒精得率达到69.31%,对应的酒精浓度和生产效率分别为12.2 g/L和0.056 g/(L·h).饱和生石灰法是一种有效实用的脱毒方法.%The influence of three different detoxification methods (neutralization, overliming and Na2SO3 addition ) on inhibitors were evaluated by using corn stover hydrolysate prepared with hydrothermal pretreatment ( 195 ℃, 15 min ) . Ethanol fermentability of detoxified corn stover hydrolysate was investigated by Pichia stipitis 58376. The results showed that all the employed detoxification methods resulted in a 41% reduction in average total furans and highest 28.4% reduction in total phenols. Fermentation performance was greatly enhanced by employed detoxification methods.Ethanol yield of 69.31% of the theoretical value based on reducing sugar was obtained by overliming.The corresponding ethanol concentration and volumetric productivity were 12.2 g/L and 0.056 g/( L·h ).Overliming was the most efficient detoxification method.

  10. Gender and racial/ethnic differences in addiction severity, HIV risk, and quality of life among adults in opioid detoxification: results from the National Drug Abuse Treatment Clinical Trials Network

    Directory of Open Access Journals (Sweden)

    Bruce Burchett

    2010-12-01

    Full Text Available Li-Tzy Wu1,2, Walter Ling3, Bruce Burchett1, Dan G Blazer1,2, Jack Shostak2, George E Woody41Department of Psychiatry and Behavioral Sciences, School of Medicine, 2Duke Clinical Research Institute, Duke University Medical Center, Durham, NC, USA; 3David Geffen School of Medicine, NPI/Integrated Substance Abuse Programs, University of California, Los Angeles, CA, USA; 4Department of Psychiatry, School of Medicine, University of Pennsylvania and Treatment Research Institute, Philadelphia, PA, USAPurpose: Detoxification often serves as an initial contact for treatment and represents an opportunity for engaging patients in aftercare to prevent relapse. However, there is limited information concerning clinical profiles of individuals seeking detoxification, and the opportunity to engage patients in detoxification for aftercare often is missed. This study examined clinical profiles of a geographically diverse sample of opioid-dependent adults in detoxification to discern the treatment needs of a growing number of women and whites with opioid addiction and to inform interventions aimed at improving use of aftercare or rehabilitation.Methods: The sample included 343 opioid-dependent patients enrolled in two national multisite studies of the National Drug Abuse Treatment Clinical Trials Network (CTN001-002. Patients were recruited from 12 addiction treatment programs across the nation. Gender and racial/ethnic differences in addiction severity, human immunodeficiency virus (HIV risk, and quality of life were examined.Results: Women and whites were more likely than men and African Americans to have greater psychiatric and family/social relationship problems and report poorer health-related quality of life and functioning. Whites and Hispanics exhibited higher levels of total HIV risk scores and risky injection drug use scores than African Americans, and Hispanics showed a higher level of unprotected sexual behaviors than whites. African Americans were

  11. 上海市社区戒毒(康复)的效果及其成本-效益评价%EFFECT AND ECONOMIC EVALUATION OF COMMUNITY - BASED DRUG DETOXIFICATION (REHABILITATION) IN SHANGHAI

    Institute of Scientific and Technical Information of China (English)

    王清亮; 刘志民

    2013-01-01

    目的:通过相关面上数据收集和社区抽样调查,对上海市开展社区戒毒(康复)的效果和经济效益进行评价.方法:在上海市禁毒相关部门、机构或组织收集课题所需面上数据;采用分层随机整群抽样方法,并根据样本量要求,在上海市抽取4个区,在抽中的区中抽取8个社区,对社区内所有参加社区戒毒(康复)人员进行问卷调查,并对数据进行相应的统计分析.结果:在上海市禁毒委员会办公室、上海市卫生局、上海市自强社会服务总社,以及抽样地区的社区(街道)禁毒办(7个)、禁毒社工站(4个)、社区禁毒社工点(8个)等戒毒/康复相关部门、机构或组织收集了课题所需面上数据,并对773名社区戒毒(康复)人员进行了问卷调查.数据分析结果显示,所调查8个社区的社区戒毒(康复)工作取得了较好成效:2008-2010年,戒断3年及以上人数持续增加,现有登记在册海洛因滥用者人数逐年下降,新滋生海洛因滥用者人数总体呈下降趋势.成本-效益分析结果显示,这8个社区2010年开展社区戒毒(康复)的经济投入为968.6万元,产生的经济效益为5173.5万元,成本-效益比值为1:5.3,即在社区戒毒(康复)上每投入1元,可节约毒品问题导致的社会和个人经济支出5.3元.结论:上海市社区戒毒(康复)的实施取得了预期成效,其中禁毒社工队伍在社区戒毒(康复)工作中发挥了重要作用;经济学评价结果表明,社区戒毒(康复)工作经济效益显著.%To evaluate the effect and economic benefit of the community - based drug detoxification ( rehabilitation) for drug addicts in Shanghai. Methods-. In the present study, a part of data was collected from the departments, institutes, or organizations related to drug control in Shanghai. Stratified randomized cluster sampling method was used in the present study, and eight communities, belonged to 4 districts, were sampled. The subjects community

  12. The analysis of 75 cases of drug addicts swallowed abnormal substance will be given compelled detoxification%75例拟强戒吸毒人员吞食异物情况分析

    Institute of Scientific and Technical Information of China (English)

    王庆珍; 王博; 宗建强

    2015-01-01

    Objective:To investigate and analyze the condition of drug addicts swallowed abnormal substance who will be given compelled separation and detoxification,then to put in corresponding measures. Methods:Through checking on 1072 cases of drug ad-dicts will be given compelled separation and detoxification,we find 75 cases of them swallowed abnormal substance and obviously af-fected their compelled detoxification,then the related data are retrospectively analyzed. Results:The drug addicts swallowed abnormal substance are more common in males,mainly of young people,and low level of culture. Their motivation and in order to avoid com-pelled detoxification. Meanwhile we find the kinds of abnormal substance are diversified and complicated. Conclusion:We need strengthen the propaganda work about the harm of drugs,and the program control. The additional punishment should be given to those swallowed abnormal substance,so as to block the adverse example effect.%目的:调查分析拟强制隔离戒毒吸毒人员吞食异物情况,提出应对措施。方法:对拟强制隔离戒毒的吸毒人员1072例进行相关检查,检出有吞食异物且影响强制戒毒的人员75例,对相关资料进行回顾性分析。结果:吞食异物者男性居多、以青壮年为主,且文化水平偏低。其主要动机是逃避强制戒毒治疗。吞食异物种类复杂。结论:应加大毒品危害等相关知识的宣传工作,强化环节控制,建议对吞食异物者追加处罚、阻断不良示范效应。

  13. 高效降解棉酚菌株的分离鉴定及诱变选育%Isolation, identification and mutation breeding of high gossypol detoxification strain

    Institute of Scientific and Technical Information of China (English)

    孙中超; 方慧英; 诸葛斌; 张濛; 诸葛健

    2011-01-01

    As a protein resource, only a little of cottonseed meal was used in feed industry due to the presence of toxin, gossypol. To obtain strains for gossypol detoxification, 16 soil samples were collected from China and 144 strains were isolated. Among them, a strain (Y-2) possess gossypol detoxification markedly. The strain Y-2 was identified as Pichia guilliermondii by traditional and molecular genetic identification. This strain was non-pathogenic yeast, and was first reported used on degradation of gossypol. Mutant YUV-51 with the highest detoxification was obtained by UV mutation. The detoxification rate of gossypol was up to 58% under optimized culture conditions: inoculation of 0.025g wet cell/g cottonseed meal, 30 ℃, initial moisture content of solid substrate 50%, 48 h. Moreover, to avoid degradation of a large part of free gossypol before the fermentation, a great lot of energy could be saved with no heat-moisture treatment.%作为一种蛋白资源,棉籽粕因其含有毒素--游离棉酚限制了其在饲料工业中的应用.为获得能高效降解棉籽粕中棉酚的菌株,以醋酸棉酚为唯一碳源培养基从16份样品中筛选出一株高效降解棉酚菌株(Y-2),经生理生化及18S rDNA鉴定为Pichia guilliermondii,此菌种为非致病酵母,且首次报道用于棉酚的降解,在工业生产中具有潜在的应用前景.通过紫外诱变获得一株棉酚降解率更高的突变株YUV-51.通过对突变株YUV-51发酵温度、时间及接种量的初步优化,获得其固态发酵优化条件:30℃培养48 h,接种量0.025 g湿菌体/g棉籽粕,初始水分含量50%.为避免游离棉酚在前处理中大量降解棉籽粕,不进行湿热处理,经接种发酵后脱毒率可达到58%.这使微生物脱毒在实际生产中应用成为可能.

  14. Accumulation and detoxification of paralytic shellfish poison (PSP) in hard clam Meretrix meretrix%麻痹性贝毒在文蛤体内的累积及净化技术研究

    Institute of Scientific and Technical Information of China (English)

    沈和定; 付金花; 冉福

    2011-01-01

    There were two stages in the experiment, accumulation and detoxification. Accumulation PSP by hard clam Meretrix meretrix achieved by feeding clams certain amount paralytic shellfish poison (PSP) every day and detecting PSP periodically. The detoxification was determined by method of"inner discharge and out purification". We found that the clam had a low ability to accumulate PSP. It reached to 884μg/100g after exposed to toxic A. tamarense for 15 d and the toxins in the viscera were higher than in other muscles, accounting to 77.4% - 89.1%. The amounts of PSP decreased in three groups with the elimination rates of the control group 30.1%, ozone purified group 32.8%, group of inner discharge and out purification 47.2% during detoxification. This research showed that "inner discharge and out purification" could accelerate PSP detoxification.%试验研究分毒素累积和解毒两个阶段,丈蛤(Meretrix meretrix)对麻痹性贝毒(Paralytic Shellfish Poisoning,PSP)的累积能力试验中每天投喂一定量塔玛亚历山大藻(Alexandrium tamarense),定期测定丈蛤体内的毒素含量;解毒试验通过投喂饵料和水体消毒的“内排外解”法进行。结果表明:文蛤对麻痹性贝毒的累积能力较弱,累积试验末期(15d)的内脏毒素累积量仅为884μg/100g,内脏中毒素累积量高于肌肉,占全贝的77.4%~89.1%。15d的解毒试验

  15. SeGSTo, a novel glutathione S-transferase from the beet armyworm (Spodoptera exigua), involved in detoxification and oxidative stress.

    Science.gov (United States)

    Xu, Pengfei; Han, Ningning; Kang, Tinghao; Zhan, Sha; Lee, Kwang Sik; Jin, Byung Rae; Li, Jianhong; Wan, Hu

    2016-09-01

    Members of the glutathione S-transferase superfamily can protect organisms against oxidative stress. In this study, we characterized an omega glutathione S-transferase from Spodoptera exigua (SeGSTo). The SeGSTo gene contains an open reading frame (ORF) of 744 nucleotides encoding a 248-amino acid polypeptide. The predicted molecular mass and isoelectric point of SeGSTo are 29007 Da and 7.74, respectively. Multiple amino acid sequence alignment analysis shows that the SeGSTo sequence is closely related to the class 4 GSTo of Bombyx mori BmGSTo4 (77 % protein sequence similarity). Homologous modeling and molecular docking reveal that Cys35 may play an essential role in the catalytic process. Additionally, the phylogenetic tree indicates that SeGSTo belongs to the omega group of the GST superfamily. During S. exigua development, SeGSTo is expressed in the midgut of the fifth instar larval stage, but not in the epidermis or fat body. Identification of recombinant SeGSTo via SDS-PAGE and Western blot shows that its molecular mass is 30 kDa. The recombinant SeGSTo was able to protect super-coiled DNA from damage in a metal-catalyzed oxidation (MCO) system and catalyze the 1-chloro-2,4-dinitrobenzene (CDNB), but not 1,2-dichloro-4-nitrobenzene (DCNB), 4-nitrophenethyl bromide (4-NPB), or 4-nitrobenzyl chloride (4-NBC). The optimal reaction pH and temperature were 8 and 50 °C, respectively, in the catalysis of CDNB by recombinant SeGSTo. The mRNA expression of SeGSTo was up-regulated by various oxidative stresses, such as CdCl2, CuSO4, and isoprocarb, and the catalytic activity of recombinant SeGSTo was noticeably inhibited by heavy metals (Cu(2+) and Cd(2+)) and various pesticides. Taken together, these results indicate that SeGSTo plays an important role in the antioxidation and detoxification of pesticides. PMID:27230212

  16. The Clinical Application and Effect Observation of Several Effective Detoxification Drugs in Common Use%几种常用特效解毒药物的临床应用及疗效体会

    Institute of Scientific and Technical Information of China (English)

    杨务彬

    2011-01-01

    Objective To explore the clinical application and effect observation of several effective detoxification drugs in common use. Methods Information of clinical diagnosis and treatment of 36 cases of acute poisoning admitted to our hospital from September 2005 to September 2010 were collected and analyzed.Results Hospitalization time 1-20 days,35 patients were cured, no adverse effects,total cure rate 97.22% ,1 case died of metal poisoning caused respiratory failure,making the mortality rate 12.5%. Conclusion Effective detoxification drugs used in the clinical of different types of poisoning has positive and safe effect.%目的 探讨几种常用特效解毒药物的临床应用及疗效体会.方法 收集分析2005年9月至2010年9月本院急性中毒患者36例的临床诊断和治疗资料.结果 患者住院1 ~20 d,治愈35例,未发生不良反应,总治愈率97.22%,其中有1例金属中毒患者死于呼吸衰竭,病死率12.5%.结论 特效解毒药物应用于临床中不同类型的中毒疗效肯定、安全.

  17. Analyze the investigation of voluntary detoxification in 186 cases of heroin addicts and provide some countermeasures%海洛因依赖者186例自愿戒毒调查分析及对策

    Institute of Scientific and Technical Information of China (English)

    王婧聃; 王茜; 刘翠

    2014-01-01

    Objective:To acquaintance the characteristics of voluntary detoxification and seek better abstinence method.Methods:186 cases of voluntary drug addicts were selected from September 2010 to February 2013.They were investigated by doctor of drug rehabilitation center using self-designed questionnaire.Results: Heroin abusers were mainly jobless young men and junior high school culture and individual.Iron absorption was the major way of abuse, but the injection ratio increased with the increase of drug use fixed number of year into a rising trend.Another remarkable characteristic was the variety of drug abuse increase, especially triazolam and tramadol.Conclusion:On the base of good voluntary detoxification treatment,we should strengthen the propaganda against drugs,and strengthen scientific treatment,in order to improve the effectiveness of detoxification further.%目的:了解自愿戒毒者的特征和寻求较好的戒治方法。方法:2010年9月-2013年2月收治自愿戒毒人员186例,采用自拟调查表,由本科分管戒毒所医生进行问卷调查。结果:海洛因滥用者以男性青年、初中文化、无业及个体居多,烫吸是主要的滥用方式,但注射比例随着吸毒年限的增加而成上升趋势。另一显著特点是滥用药物的品种增加,尤其是三唑仑、曲马多。结论:在做好自愿戒毒者治疗工作的基础上,加强宣传毒品的危害,加强提倡科学戒毒,进一步提高戒毒效果。

  18. 单端孢霉烯族毒素及其脱毒微生物国外研究进展%Foreign research progress on trichothecenes and microbes of detoxification

    Institute of Scientific and Technical Information of China (English)

    邹忠义; 贺稚非; 李洪军; 韩鹏飞

    2012-01-01

    Trichothecenes were a large class of mycotoxins,which were highly toxic to humans and animals.They were commonly found in grain and in animal feed and in human food produced from contaminated grain.It was not only a concern for food safety, but also highly relevant to the livestock industry.Methods of controlling trichothecenes in food and feed were being studied, among which bio-detoxification was a hot research at present,such as the use of microorganisms and enzymes,to convert the toxins into non or less toxic compounds. Bio-detoxification had a broad prospect, as it had lots of advantages.This review described the chemical structures and toxicity functional groups of trichothecenes,and researched progress of microbes of detoxification of trichothecenes, hoped to provide some reference for study on transformation and degradation of trichothecenes.%单端孢霉烯族毒素是一大类霉菌毒素,对人与动物具有非常大的毒性。它们广泛存在于粮食、饲料及以被污染粮食为原料的食品中,不仅给食品安全带来了一定的隐患,也影响到畜牧业生产。许多学者正在研究食品和饲料中单端孢霉烯族毒素的控制方法,其中生物脱毒是目前的研究热点,例如利用微生物将毒素转化成无毒或低毒的化合物。由于生物脱毒具有许多优点,因而具有广阔的前景。本文综述了单端孢霉烯族毒素的结构与毒性官能团,以及单端孢霉烯族毒素脱毒微生物方面的研究进展,旨在为单端孢霉烯族毒素的转化降解研究提供参考。

  19. Evaluation of the Preventive Effect of Clean Needle on IDUs in Detoxification Centre%戒毒所独立调查评价静脉吸毒人员清洁针具干预效果

    Institute of Scientific and Technical Information of China (English)

    朵林; 朱靖; 薛皓铭; 杨丽华; 张建萍; 杨佳

    2012-01-01

    目的 通过戒毒所内学员调查,探索第三方独立评估云南中澳项目静脉吸毒人员干预效果.方法 云南省19个县戒毒所为调查点,非项目执行机构每半年每县随机抽取30名新人所3个月的静脉吸毒强戒学员为调查对象,采用自行设计经预实验的问卷,收集人戎毒所前接受外展服务内容频次质量,高危注射及性行为等方面资料,进行分析.结果 共调查669人,415人(59.4%)接受过外展人员服务,256人(36.6%)接受过清洁针具,是否接受外展服务与目标人员间共用针具及与临时性伴是否使用安全套存在显著差异,P< 0.036和P<0.002.接受外展清洁针具及服务频率减少为目标人群与它人共用针具的主要影响因素,OR=0.76及OR=1.81.结论 外展人员服务提高了吸毒人员安全注射及安全性行为,外展提供清洁针具及较高频率服务有助于减少共用针具情况发生,戒毒所学员调查方法有助于了解实际干预覆盖面,可对当地静脉吸毒人员干预效果及质量进行相对客观的公正评价.%Objective To explore how to use independent participant evaluates IDU intervention project effectiveness by investigating the Injection Drug User ( IDU) in detoxification center. Methods 19 drug detoxification centers were selected as survey sites, independent participant randomly chose 30 IDUs new admitted less than three months in each county every half a year as investigation objects. Self-designed pre-test questionnaire was used to collect pre-detoxification center outreach services, high-risk injection and sexual behavior with SPSS17. 0 analysis. Results 669 people were investigated, and 415 (59.4%) had accepted outreach personnel service, 256 (36.6%) had accepted clean needles. There were significant differences, P < 0.036 and P < 0.002 between whether ever accepted the outreach services and shared needles & condoms using with temporary sexual partners. Clean needles and low frequency

  20. 棉秆脱毒水解液发酵生产2,3-丁二醇的工艺优化%Process optimization for producing 2, 3-butanediol by fermentation of cotton stalk hydrolysate after detoxification

    Institute of Scientific and Technical Information of China (English)

    张根林; 江英兰; 班丽丽

    2011-01-01

    2,3-Butanediol is an important chemical product. Utilization of cotton stalk hydrolysate instead of starch for 2,3 -butanediol production can ensure food security and reduce costs. Cotton stalk was hydrolyzed by dilute acid in this research. The detoxification of furfural and phenol from cotton stalk dilute acid hydrolysate was performed by microwave assistant heating-activated carbon adsorption method, the optimized technical conditions were determined as activated carbon 1%, microwave power 330 W and detoxification time 10 min. The detoxification ratio of furfural was 81.2% and 92.3% of phenol, and the loss of total sugar was only 10.6%. The batch cultures showed that the biomass of Klebsiella pneumoniae XJ-Li and the yield of 2,3-butanediol reached to peak value when the total sugar concentration was 40 g/L in media. The results of research demonstrated that the inhibition effect of high concentration of cotton stalk hydrolysate on the growth and metabolic of microorganism could be reduced by fed-batch fermentation. The multiplexed regulation method of adding 60 mg/L of vitamin C into media and maintaining pH of broth at 5.5 was applied, and 45.1 g/L of 2,3-butanediol was reached with the yield of 0.45 g/g. The cornhusk dilute acid hydrolysate after detoxification can be the substitution of glucose as a carbon source for producing succinic acid by anaerobic fermentation.Fermentation experiments showed that it is feasible to produce 2,3-butanediol by fermentation using cotton stalks hydrolyzate detoxified as a carbon source.%2,3-丁二醇是一种重要的化工产品,利用棉秆水解液替代淀粉原料制备2,3-丁二醇可保证粮食安全并降低成本.该文以棉秆稀酸水解液为基础,研究了其中糠醛和苯酚微波辅助加热-活性炭吸附的脱毒条件,优化结果为:活性炭用量1%、微波功率330 W、作用时间10 min.在此工艺条件下,糠醛的去除率为81.2%,苯酚的脱除率为92.3%,总糖的损失为10.6%.脱

  1. A Study on Dignity Issues of the Compulsory Isolation Detoxification Personnel Based on Bioethics%生命伦理视域下我国强制隔离戒毒人员的尊严问题

    Institute of Scientific and Technical Information of China (English)

    韩跃红; 龙昆平

    2013-01-01

    当前,我国实行强制隔离戒毒的效果并不理想。从生命伦理学的视角看,强制隔离戒毒长期限制戒毒人员的人身自由,戒毒人员的人身安全和医疗救治得不到保障,有偿劳动难以落实,从而严重伤害了戒毒人员的心理尊严、生命尊严和劳动尊严。进行有尊严的戒毒改革,需变强制性、大规模隔离戒毒为自愿的、社区服务治疗为主的小规模隔离戒毒,变劳动康复与社区戒毒就业安置为行为治疗及与社会接轨的职业技能培训,并发放最低生活保障金,鼓励其参与正常就业竞聘、实现自我价值,以保护戒毒人员“做人”的尊严和生命尊严,重塑戒毒人员的社会尊严和人格尊严。有尊严的戒毒将成为未来社会戒毒的主导模式和戒毒改革的努力方向。%At present,China’s compulsory isolation detoxification is not very effective from the perspective of bioethics in that compulsory isolation detoxification restricts the personal freedom of the addicts for so long a time that the personal safety and medical treatment of the patients abstained from drugs cannot be guaranteed and it is difficult to implement the system of paid laboring,thus seriously injuring their psychological dignity, life dignity and labor dignity.In order to reform the current detoxification system,it is necessary to change the large-scale isolation detoxification for the small-scale voluntary and mandatory community-oriented service treatment,to change the laboring rehabilitation and community rehabilitation of job -providing to behavioral therapy and society-adaptation-oriented vocational skill training,and to offer the minimum living allowance to them so as to encourage their participation in employment competition and the realization of self value after they are released.In this way,the "human"dignity and life dignity of the patients abstained from drugs can be maintained,and their social dignity and

  2. 论构建互动持续综合支持戒毒(康复)模式%ABOUT THE ESTABLISHING OF DRUG DETOXIFICATION AND REHABILITATION MODEL WITH INTERACTIVE, CONTINUOUS AND COMPREHENSIVE SUPPORT

    Institute of Scientific and Technical Information of China (English)

    孙安清

    2011-01-01

    本文从复吸毒品的多因素分析为切入点,探索强化决心、互动帮教、家庭协同、社会综合、同伴互助、适时跟进支持等方法,构建持续综合支持戒毒康复模式,以改变过去较单一的戒毒康复模式,提高戒毒康复效果,降低复吸率.%This paper cut - in with the analysis of the reasons for drug relapse explained the model of drug detoxification and rehabilitation with the skills of strengthening motivation, interactive education, family cooperation, social integration, peer education, timely follow -up support to make changes in the former treatment methods. The aim is to improve drug treatment effects and reduce drug relapse.

  3. T-2毒素的产生、毒性及脱毒研究进展%Advance on researches of production, toxicity and detoxification of T-2 toxin

    Institute of Scientific and Technical Information of China (English)

    王虎军; 薛华丽; 赵军; 毕阳; 蒲陆梅; 毛学荣; 王毅

    2014-01-01

    T-2 toxin belongs to a large group of trichothecenes produced by various Fusarium spp. It is commonly found as contaminants in cereals grains from planting, storage and procession. It also has caused much loss to the economy. The production of T-2 was influenced by the type and infection time of fungal strains, the external environment and the type of host. T-2 toxin belongs to sesquiterpenoids, and epoxy ring, double bond between C9-C10, hydroxy, and acetoxyl group are toxicity functional groups. The major toxicity is the cells and immune system toxicity. It is teratogenic, carcinogenic, mutagenic, and also possessa severe threat to human and animal health. The methods of detoxification include physical, chemical and biological technologies. The biological methods are concerned because of its unique advantage, including the source of prevention and control and the degradation of the toxin itself after infection. The interrelation of the injection, the growth and the production of toxicity are mainly studied in the former; the natural extracts of animals, plants and some microbes are used for the direct detoxification in the latter. In this paper, the advance of detoxification was discussed in detail to provide theoretical foundation for the detoxification technique of T-2 toxin.%T-2毒素是由多种镰刀菌代谢产生的一种单端孢霉烯族类毒素,广泛存在于田间作物及贮藏加工过程的谷物中,对经济造成了很大程度的损失。产毒菌株的菌种及侵染时间、外界环境、宿主均可影响T-2毒素的产生。该毒素是倍半萜类化合物,环氧环、C9-C10间双键、羟基、乙酰氧基为其毒性官能团,其毒性主要表现为细胞毒性和免疫系统毒性,具有致畸、致癌、致突变的“三致”作用,对人畜健康具有潜在的致癌威胁。目前脱除方法有物理法、化学法及生物法,生物法因其独特优势成为当前研究热点,该方法包括源头的预防控

  4. Application of isolated bacterial consortium in UMBR for detoxification of textile effluent: comparative analysis of resultant oxidative stress and genotoxicity in catfish (Heteropneustes fossilis) exposed to raw and treated effluents.

    Science.gov (United States)

    Banerjee, Priya; Sarkar, Sandeep; Dey, Tanmoy Kumar; Bakshi, Madhurima; Swarnakar, Snehasikta; Mukhopadhayay, Aniruddha; Ghosh, Sourja

    2014-08-01

    A bacterial consortium isolated from activated sludge was identified to be Bacillus sp., Pseudomonas sp., Shigella sp. and E. coli. and was found capable of 98.62 % decolourization of highly toxic textile effluent, when applied in an ultrafiltration (UF) membrane bioreactor (UMBR). Ceramic capillary UF membranes prepared over low cost support proved to be highly efficient in adverse experimental conditions. The UMBR permeate and untreated textile effluent (40 % (v/v)) was then used to treat Heteropneustes fossilis for a comparative assessment of their toxicity. Micronucleus count in peripheral blood erythrocytes and comet assay carried out in liver and gill cells showed significantly lower nuclear and tissue specific DNA damage respectively in organisms exposed to membrane permeate and was further supported by considerably lower oxidative stress response enzyme activities in comparison to raw effluent treated individuals. The results indicate efficient detoxification of textile effluent by the UMBR treatment using the isolated bacterial consortium. PMID:24804625

  5. The first commercial project of Solar Detoxification: the solar plant of Albaida S.A.; Primer paso en la comercializacion de la tecnologia de fotocatalisis solar: planta solar de Albaida, S. A.

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, J.; Malato, S.; Maldonado, M. I.; Fernandez, P.; Oller, I.; Gernjak, W.; Alarcon, D.

    2004-07-01

    The important R&D activity developed by CIEMAT has made possible the first commercial project of Solar Detoxification to the recycling of pesticide plastic bottles from the intensive greenhouse agriculture in the province of Almeria. This recycling process produce water contaminated with the pesticide residue present in the shredded plastic bottles after washing. This water must be obviously treated and the Solar Photocatalytic processes are a suitable technique to this application as it has been demonstrated by the investigations carried out at PSA. The plant is based on the Photo-Fenton process due to its higher efficiency against the TiO2 photocatalysis and can yearly recycle 750,000 bottles with a solar collector surface of 150 m2. (Author)

  6. Detoxification of lignocellulosic prehydrolyzate using imidazolium-based ionic liquid%咪唑类离子液体对木质纤维预水解液的脱毒

    Institute of Scientific and Technical Information of China (English)

    杨金龙; 荣亚运; 高露; 朱均均; 徐勇; 勇强; 欧阳嘉; 余世袁

    2016-01-01

    Aiming at the effect of inhibitors on yeast ethanol fermentation during the fuel ethanol biorefinery process, a new green detoxification technology-ionic liquid extraction was developed for detoxification of the prehydrolyzate obtained from washed acid-catalyzed steam-exploded corn stover (ASC). The extractive performances of two kinds of imidazolium-based ionic liquids (alkylimidazolium hexafluorophosphate [Cnmim][PF6](n=4,6,8) and alkylimidazolium tetrafluoroborate [Cnmim][BF4](n=6,8)) for the ASC prehydrolyzate were investigated and compared. The results indicated that the extraction efficiency of the inhibitors decreased with the increase of alkyl chain length on the cation of ionic liquids. Ionic liquid with4BF− anion had much higher extraction efficiency for the inhibitors than those with6PF− anion because of the stronger effective charge in4BF−. Compared to the extraction efficiency of sugars and inhibitors, [C8mim][BF4] was selected as the extractant for detoxification of the ASC prehydrolyzate. Its detoxification results indicated that 85.13% of 5-hydroxymethylfurfural, 53.22% of formic acid, 47.53% of acetic acid and 65.05% of total phenols could be removed, while the loss of sugars was less than 6%.%针对燃料乙醇生物炼制过程中抑制物对酵母乙醇发酵的抑制作用,以水洗稀酸蒸汽爆破预处理玉米秸秆得到的预水解液为研究对象,采用新型绿色脱毒技术——离子液体进行萃取脱毒,研究比较了两种咪唑类离子液体[烷基咪唑六氟磷酸盐离子液体[Cnmim][PF6](n=4,6,8)和烷基咪唑四氟硼酸盐离子液体[Cnmim][BF4](n=6,8)]对预水解液的萃取性能。结果表明,随着咪唑类离子液体阳离子烷基链长度的增加,离子液体对抑制物的萃取性能下降,具有更强电负性的阴离子为4BF−的离子液体比阴离子为6PF−的离子液体萃取效率更高。通过比较糖与抑制物的萃取率,最终选择[C8mim][BF4]作为

  7. 戒毒片合并电厌恶疗法治疗酒依赖68例疗效观察%A Study of Rapid Detoxification Tablets and Electric Aversion Therapy in Treatiny 68 Alcohol Dependence Patients

    Institute of Scientific and Technical Information of China (English)

    胡福生; 刘庆梅

    2001-01-01

    目的观察戒毒片合并电厌恶疗法对酒依赖的治疗效果。方法选择符合CCMD-2-R酒依赖诊断标准的68例男性患者,入院后先给予促大脑代谢药物和戒毒片治疗一周,然后进行电厌恶治疗,每日或隔日一次,连续7~10次。结果 68例患者经上述方法治疗均达痊愈。一年后随访戒酒成功率为92.79%。结论戒毒片合并电厌恶疗法治疗酒依赖可加速体内酒精代谢产物排泄,改善营养状况,建立厌恶条件反射,方法可靠。%Objective To observe the effect of rapid detoxification tablets and electric aversion therapy in treating alcohol dependence. Methods 68 male patients with a CCMD-Ⅱ-R diagnosis of alcohol dependence were treated with the drug promoting the brain supersession and rapid detoxification tablets for one week, then gave themelectric aversion therapy, once a day or two days, keeping 7-10 times. Results All patients were fully recovered,one year later,92.79% of them were successful. Conclusion The effects were very good with rapid detoxifcation tablets and electric aversion therapy in treating alcohol dependence, this method can be popularized in practice.

  8. 昆虫抗药性机理:行为和生理改变及解毒代谢增强%Behavioral change, physiological modification, and metabolic detoxification: mechanisms of insecticide resistance

    Institute of Scientific and Technical Information of China (English)

    刘喃喃; 朱芳; 徐强; Julia W.PRIDGEON; 高希武

    2006-01-01

    Insecticide resistance is "the development of an ability in a strain of some organisms to tolerate doses of a toxicant which would prove lethal to a majority of individuals in a normal population of the same species".Mechanisms of resistance, such as behavioral change, physiological modification or metabolic detoxification, decrease the effective dose available at the target site. Behavioral resistance is defined as any behavior that reduces an insect's exposure to toxic compounds or that allows an insect to survive in an environment that is harmful and/or fatal to the majority of insects. Physiological modification mechanisms permit insects to survive lethal doses of a toxicant through decreased penetration of insecticides, increased sequestration/storage of insecticides, and accelerated excretion of insecticides. Metabolic detoxification is conferred by cytochrome P450 monooxygenases (cytochrome P450s),hydrolases, and glutathione transferases (GSTs). Cytochrome P450s constitute the largest gene superfamily and are critical for the detoxification and/or activation of xenobiotics and the metabolism of endogenous compounds. Increased P450-mediated detoxification has been found in many insect species, resulting in enhanced insecticide resistance.Glutathione transferases (GSTs) are soluble dimeric proteins involved in the metabolism, detoxification, and excretion of a large number of endogenous and exogenous compounds. Elevated GST activities have been implicated in resistance in many insect species. Hydrolases or esterases, a group of heterogeneous enzymes, have been identified as the active agents promoting hydrolase-mediated resistance that protect insects by either binding and sequestering insecticides through overproduction of proteins, or enhancing the metabolism of insecticides through increased enzyme activities.%杀虫剂抗性是指"生物的一个品系发展了对该生物正常种群中大多数个体具有致死作用剂量的杀虫药剂的能力".行

  9. 疏风解毒胶囊治疗急性化脓性扁桃体炎57例%Shufeng Detoxification Capsules for Treating Acute Suppurative Tonsillitis in 57 Cases

    Institute of Scientific and Technical Information of China (English)

    李东彤

    2015-01-01

    Objective To observe the clinical efficacy of Shufeng Detoxification Capsules in treating acute suppurative tonsillitis. Methods Totally 110 patients with acute suppurative tonsillitis were randomized into the treatment group( n=57)and the control group( n=53) according to the sequence of seeing doctor. The control group received cefuroxime and other conventional treatment,while on this basis the treatment group was added with Shufeng Detoxification Capsules. According to the clinical situation,the fever patients was given the defervesce treatment. The sore throat disappearance time,defervesce time and clinical effect after 5 d were observed and compared between the two groups. The throat condition was followed up. Results The sore throat disappearance time and defervesce time in the treatment group were significantly shorter than those in the control group( P < 0. 05);the effective rate in the observation group was 98. 25%,which is significantly higher than 86. 79% in the control group with( P < 0. 05);the follow up after 1 month showed that 4 cases of pharyngeal discomfort in the treatment group had the history of chronic tonsillitis,while in 11 cases of pharyngeal discomfort in the control group,9 cases had the history of chronic tonsillitis,the difference was statistically significant( P < 0. 05). Conclusion Shufeng Detoxification Capsules combined with the anti-infective therapy can accelerate the recovery in the patients with acute suppu-rative tonsillitis,especially can block the chronic process of acute attack of chronic tonsillitis and reach the long term efficacy.%目的:观察疏风解毒胶囊治疗急性化脓性扁桃体炎的临床疗效。方法将110例患者按就诊顺序随机分为治疗组57例和对照组53例。对照组患者给予头孢呋辛等常规治疗,治疗组患者在对照组基础上加用疏风解毒胶囊治疗;发热患者根据临床情况给予退热治疗。观察两组患者咽痛消失时间、退热时间,5d后

  10. Detoxification of dilute acid pretreated corn stover prehydrolyzate by two methods%玉米秸秆稀酸预水解液两种脱毒方法的研究

    Institute of Scientific and Technical Information of China (English)

    朱均均; 勇强; 徐勇; 陈牧; 龚泽颖; 余世袁

    2011-01-01

    Two kinds of detoxification methods, vacuum evaporation and complex extraction were applied to remove inhibitors presented in the dilute acid pretreated corn stover prehydrolyzate. The results showed that furfural was completely removed, while 5-hydroxymethylfurfural was not removed at all by only vacuum evaporation. When the prehydrolyzate was condensed to 5. 80 times, the concentration of acetic acid in the condensed prehydrolyzate and its removal ratio were 4.06 g/L and 60.45 % , respectively. The optimal conditions of complex extraction detoxification were that 30 % trial-kylamine +50 % n-octanol +20 % kerosene was at the ratio of organic to aqueous phase of 2: 1, and 25℃ for 60 min. At this time, the concentration of acetic acid was 1.43 g/L, and the removal ratio of acetic acid, furfural and 5-hydroxymethylfurfural were 52. 33 % , 100 % and 27. 78 % , respectively.%以玉米秸秆稀酸预水解液为原料,研究了减压蒸发和络合萃取两种脱毒方法对乙酸等抑制物的去除隋况.结果表明:玉米秸秆稀酸预水解液减压蒸发脱毒,糠醛完全被去除,而5-羟甲基糠醛则基本不能被去除;当水解液浓缩5.80倍时,其浓缩液中乙酸质量浓度和去除率分别为4.06 g/L和60.45%.络合萃取脱毒的最佳条件:络合萃取剂的组成为30%三烷基胺+50%正辛醇+20%煤油,油水相比2:1,温度25℃,时间60 min,此时脱毒液中乙酸质量浓度和去除率分别为1.43 g/L和52.33%,糠醛完全被去除,5-羟甲基糠醛的去除率为27.78%.

  11. Comparison of the Efficacy of Fast Detoxification Therapy in Conscious State vs Naloxone Stosstherapy for Heroin Addicts%海洛因依赖者清醒状态快速脱毒与纳曲酮冲击疗法的比较分析

    Institute of Scientific and Technical Information of China (English)

    王文甫; 邬志美; 杨梅; 肖杰屏; 姜国清; 阳文; 王红; 王昊

    2011-01-01

    [目的]比较海洛因依赖者清醒状态下快速脱毒与纳曲酮冲击疗法的优劣.[方法]海洛因依赖者清醒状态下用丁丙诺啡,纳洛酮注射液进行快速脱毒为A组(30例);选择年龄、性别、滥用史、滥用方式、末周日滥用量基本一致者,采用纳曲酮冲击疗法者为B组(30例)进行对照.按纳曲酮冲击疗法操作程序准备及用药.比较两组住院至冲击治疗时间,冲击治疗中反应及治疗后戒断症状,不良反应等.A组患者治疗前后进行血常规、肝功能、肾功能及心电图检查.[结果]A组患者平均住院4 d左右完成脱毒,较B组(平均6.4 d)明显提前完成脱毒(P<0.01).A组治疗时间,平均2 h,病人一直处于清醒状态,治疗期间各项生命体征正常、平稳.治疗后戒断症状轻,无不良反应.治疗时间明显短于B组(P<0.01),对肝功能、肾功能、心电图没有明显影响,冲击成功率100%.[结论]海洛因依赖者清醒状态下快速脱毒安全性更高、依从性更好、可操作性更强、戒断症状及不良反应更轻;是目前较好的快速脱毒方法,很有临床实用价值.%[Objective] To compare the advantages and disadvantage of fast detoxification therapy in conscious state vs naltrexone stosstherapy for heroin dependents. [Methods] Thirty heroin dependents(group A)accepted the fast detoxification therapy in conscious state, while other 30 cases(group B) matched to cases in group A with age, sex, drug abuse history as control accepted naltrexone stosstherapy. Withdrawal symptoms and side effects were evaluated and compared between the two groups. Cases in group A also received ECGs,liver function test, kidney test and blood routine test before and after detoxification therapy. [Results] The average time intervals from admission to acceptance of detoxification therapy in group A were 4 days in hospital which was shorter than those in group B(6.4 days)( P <0.01). The average time of detoxification treatment

  12. Research Progress of Side Effects of LeiGongTeng on the Female Reproductive System and Detoxification Methods%雷公藤对女性生殖系统的毒副作用及解毒方法研究进展

    Institute of Scientific and Technical Information of China (English)

    周玲贞

    2011-01-01

    To summarized research status for LeiGongTeng from toxic and side effects, mechanism of injury, detoxification methods. In order to provide reference for future research.%综述了雷公藤对女性生殖系统的毒副作用、损伤机制及解毒方法等方面的研究现状,以期为今后的研究提供参考.

  13. Differences in the Detoxification Metabolism between Two clonal Lineages of the Aphid Myzus persicae (Sulzer) (Hemiptera: Aphididae) Reared on Tobacco (Nicotiana tabacum L.) Diferencias en el Metabolismo de Detoxificación entre dos Linajes Clonales del Áfido Myzus persicae (Sulzer) (Hemiptera: Aphididae) creados sobre tabaco (Nicotiana tabacum L.)

    OpenAIRE

    Marco A Cabrera-Brandt; Eduardo Fuentes-Contreras; Christian C Figueroa

    2010-01-01

    Myzus persicae (Sulzer) is a highly polyphagous aphid species, with a subspecies (M. persicae nicotianae) well adapted to tobacco (Nicotiana tabacum L.). We evaluated the effect of this host plant on the aphid performance and detoxification enzymes, in order to test the participation of xenobiotic metabolism on the ability of this aphid to overcome the tobacco chemical defences. Two genotypes, one corresponding to the only M. persicae nicotianae genotype reported in Chile on tobacco, and one ...

  14. 纳洛酮快速脱毒后纳曲酮长效缓释剂植入术患者的护理%Nursing care of patients with naltrexone long-term sustained-release implantation after naloxone rapid detoxification

    Institute of Scientific and Technical Information of China (English)

    王杜

    2014-01-01

    Objective:To explore the nursing care before and after the rapid detoxification and before and after operation of patients with naltrexone long-term sustained-release implantation after naloxone rapid detoxification.Methods:100 patients with naltrexone long-term sustained-release implantation were selected from May 2012 to December 2013.All kinds of nursing were given before and after detoxification and before and after operation.Results: The operation time was 20~30 min,and length of hospital stay 3~5 days.The postoperative half year personal integrity rate was 96.8% .It greatly reduced the relapse rate. Conclusion:The naltrexone long-term sustained-release implantation after naloxone rapid detoxification and its nursing have exact curative effect,and it can greatly reduce the relapse rate.%目的:探讨纳洛酮快速脱毒后纳曲酮长效缓释剂植入术患者的快速脱毒前后与手术前后的护理。方法:2012年5月-2013年12月收治纳曲酮长效缓释剂植入术患者100例,脱毒前后与手术前后给予相应的护理。观察其疗效。结果:手术时间20~30 min,住院时间3~5 d。术后半年操守率达96.8%。结论:纳洛酮快速脱毒后纳曲酮长效缓释剂植入术及其护理疗效确定,并能大大降低复吸率。

  15. Alcohol detoxification in Ysbyty Gwynedd: Two small sips or one big gulp? Two-step screening more reliable for identification of alcohol dependency syndrome at risk of delirium tremens for routine care.

    Science.gov (United States)

    Salman, Muhammad; Subbe, Christian

    2015-01-01

    Compliance with pathways for hospitalised patients with alcohol dependency syndrome is often poor. A pathway for recognition and treatment of alcohol dependency was redesigned as part of a 12 month service improvement project in the acute medical unit using plan, do, study, act (PDSA) cycles. A needs assessment was undertaken: Audit data from 2013 showed over-prescription of chlordiazepoxide for detoxification treatment (DT) leading to prolonged hospital admissions with an average length of stay of 5.5 days in 2012/2013. Acceptability of screening tools was tested: Common screening tools (CEWA, AUDIT) were rejected by junior doctors due to the high number of questions as too cumbersome for routine practice. Compliance with usage in random samples over a three month period was persistently (n=10%. Testing of an abbreviated AUDIT questionnaire with only two questions and a specified threshold showed a AUROC of 1 (ptool was implemented in several PDSAs cycles. After the final cycle a random sample of 100 patients was reviewed for pathway compliance over a three months period. Eighty-six patients were screened with the two-question tool of these 18 were identified as possible risk. Of these 16 patients had the full AUDIT questionnaire, only eight with elevated values were started on DT. Overall compliance with the pathway increased to 84%. PMID:26734413

  16. Alcohol detoxification in Ysbyty Gwynedd: Two small sips or one big gulp? Two-step screening more reliable for identification of alcohol dependency syndrome at risk of delirium tremens for routine care.

    Science.gov (United States)

    Salman, Muhammad; Subbe, Christian

    2015-01-01

    Compliance with pathways for hospitalised patients with alcohol dependency syndrome is often poor. A pathway for recognition and treatment of alcohol dependency was redesigned as part of a 12 month service improvement project in the acute medical unit using plan, do, study, act (PDSA) cycles. A needs assessment was undertaken: Audit data from 2013 showed over-prescription of chlordiazepoxide for detoxification treatment (DT) leading to prolonged hospital admissions with an average length of stay of 5.5 days in 2012/2013. Acceptability of screening tools was tested: Common screening tools (CEWA, AUDIT) were rejected by junior doctors due to the high number of questions as too cumbersome for routine practice. Compliance with usage in random samples over a three month period was persistently (n=10%. Testing of an abbreviated AUDIT questionnaire with only two questions and a specified threshold showed a AUROC of 1 (p<0.001 for correct identification). The screening tool was implemented in several PDSAs cycles. After the final cycle a random sample of 100 patients was reviewed for pathway compliance over a three months period. Eighty-six patients were screened with the two-question tool of these 18 were identified as possible risk. Of these 16 patients had the full AUDIT questionnaire, only eight with elevated values were started on DT. Overall compliance with the pathway increased to 84%.

  17. Alcohol detoxification in Ysbyty Gwynedd: Two small sips or one big gulp? Two-step screening more reliable for identification of alcohol dependency syndrome at risk of delirium tremens for routine care

    Science.gov (United States)

    Salman, Muhammad; Subbe, Christian

    2015-01-01

    Compliance with pathways for hospitalised patients with alcohol dependency syndrome is often poor. A pathway for recognition and treatment of alcohol dependency was redesigned as part of a 12 month service improvement project in the acute medical unit using plan, do, study, act (PDSA) cycles. A needs assessment was undertaken: Audit data from 2013 showed over-prescription of chlordiazepoxide for detoxification treatment (DT) leading to prolonged hospital admissions with an average length of stay of 5.5 days in 2012/2013. Acceptability of screening tools was tested: Common screening tools (CEWA, AUDIT) were rejected by junior doctors due to the high number of questions as too cumbersome for routine practice. Compliance with usage in random samples over a three month period was persistently (n=10%. Testing of an abbreviated AUDIT questionnaire with only two questions and a specified threshold showed a AUROC of 1 (p<0.001 for correct identification). The screening tool was implemented in several PDSAs cycles. After the final cycle a random sample of 100 patients was reviewed for pathway compliance over a three months period. Eighty-six patients were screened with the two-question tool of these 18 were identified as possible risk. Of these 16 patients had the full AUDIT questionnaire, only eight with elevated values were started on DT. Overall compliance with the pathway increased to 84%. PMID:26734413

  18. 菜籽粕混合菌固体发酵脱毒条件的响应面优化研究%Detoxification Conditions of Solid-State Fermentation from Rapeseed Meal by Mixture Strains Using Response Surface Methodology

    Institute of Scientific and Technical Information of China (English)

    兰时乐; 毛小伟; 肖调义; 王红权; 邓元元; 谭斌

    2013-01-01

    为找到一种脱毒较为彻底且稳定的菜籽粕脱毒方法,以复合芽孢杆菌为发酵剂,采用单因素试验研究了葡萄糖和硫酸铵添加量、料水比、接种量、起始pH、发酵温度及发酵时间等发酵条件对硫代葡萄糖苷降解率的影响.在此试验结果的基础上,采用响应面法评价了料水比、接种量、发酵温度和发酵时间及其交互作用对硫代葡萄糖苷降解率的影响,用Design Expert 7.1.6软件分析试验数据建立了菜籽粕混合菌固体发酵条件的一个二次多项式数学模型.结果表明:该模型极显著(P <0.001),拟合度良好.得出混菌固体发酵脱毒过程的工艺参数为:接种量7.7%,发酵温度44℃,料水比1.000:0.585,发酵时间53 h.在此条件下,硫代葡萄糖苷降解率达到了94.850 6%.本试验确定了混合菌发酵菜籽粕脱毒的最佳条件,为混合菌发酵菜籽粕降低硫代葡萄糖苷含量的研究提供了相应的工艺参数和理论依据.%In order to obtain an effective and stable method of the detoxification of rapeseed meal, the effects of fermentation conditions such as glucose addition, ammonium sulfate addition, the ratio of substrate to water, inoculation amount, initial pH value, fermentation temperature and fermentation time on the degradation rate of glucosinolate were studied by using a single-factor test. Then, the effects of ratio of substrate to water, inoculation amount, fermentation temperature and fermentation time and their interactions on the degradation rate of glucosinolate were evaluated by using a response surface methodology. Data were analyzed with Design-Expert 7.1.6 software. The results showed that a good quadratic polynomial model of conditions of solid-state fermentation from rapeseed meal was obtained, the model was significant (P <0. 001) , and there was no lack of fit. The high degradation rate of glucosinolate was observed in fermentation processes under the optimal conditions; the

  19. 80例男性强制戒毒人员人格障碍研究%The study of personality disorder of 80 male drug addicts in a compulsive detoxification unit

    Institute of Scientific and Technical Information of China (English)

    王振宏; 吴明霞

    2015-01-01

    Objective:To understand the personality disorder of male drug addicts in a compulsive detoxification unit. Methods:Using PDQ-4 + to measure 80 male drug addicts in a drug rehabilitation center of Chongqing. Results:Male Addicts on 12 kinds of personality disorder types and out of scores were significantly higher than the general population;Different relationship status of male addicts exist significant difference on the total score and the score of schizoid,schizotypal,narcissistic,and compulsive personality dis-order. On the schizoid score,married and single drug addicts is significantly higher than divorced,married cohabitation is significantly higher than at the same time;On the schizotypal score,married state is significantly higher than other intimate relationship;On the narcissistic score,married is significantly higher than single and divorce;On the compulsive score,significantly higher than single and love;On the personality disorder total score,married is significantly higher than single,love and divorce;there was no significant differences between different education in personality disorder. Conclusion:There was serious personality disorder in male drug addicts in a compulsive detoxification unit.%目的:了解男性强戒吸毒人员的人格障碍状况。方法:对重庆市某强戒所吸毒人员进行人格障碍测量。结果:男性强制戒毒人员在12种人格障碍类型及其总分上的得分都显著高于普通人群;不同亲密关系状态的男性强制戒毒人员在分裂样、分裂型、自恋型、强迫型和人格障碍总分上存在显著差异。在分裂样得分上,单身和已婚的强戒吸毒人员显著高于离异,同时已婚显著高于同居;在分裂型得分上,已婚显著高于其他亲密关系状态;在自恋型得分上,已婚显著高于单身和离异;在强迫型得分上,已婚显著高于单身和恋爱;在人格障碍总分上,已婚显著高于单身、恋爱和离异;不

  20. Growth of Bacillus methanolicus in 2 M methanol at 50 °C: the effect of high methanol concentration on gene regulation of enzymes involved in formaldehyde detoxification by the ribulose monophosphate pathway.

    Science.gov (United States)

    Bozdag, Ahmet; Komives, Claire; Flickinger, Michael C

    2015-07-01

    Bacillus methanolicus MGA3 is a Gram-positive aerobic methylotroph growing optimally at 50-53°C. Methylotrophy in B. methanolicus is encoded on pBM19 and by two chromosomal copies of the methanol dehydrogenase (mdh), hexulose phosphate synthase (hps) and phosphohexuloisomerase (phi) genes. However, there are no published studies on the regulation of methylotrophy or the dominant mechanism of detoxification of intracellular formaldehyde in response to high methanol concentration. The µ max of B. methanolicus MGA3 was assessed on methanol, mannitol and glucose. B. methanolicus achieved a µ max at 25 mM initial methanol of 0.65 ± 0.007 h(-1), which decreased to 0.231 ± 0.004 h(-1) at 2 M initial methanol. Slow growth was also observed with initial methanol concentrations of >2 M. The µ max on mannitol and glucose are 0.532 ± 0.002 and 0.336 ± 0.003 h(-1), respectively. Spiking cultures with additional methanol (100 mM) did not disturb the growth rate of methanol-grown cells, whereas, a 50 mM methanol spike halted the growth in mannitol. Surprisingly, growth in methanol was inhibited by 1 mM formaldehyde, while mannitol-grown cells tolerated 2 mM. Moreover, mannitol-grown cells removed formaldehyde faster than methanol-grown cells. Further, we show that methanol oxidation in B. methanolicus MGA3 is mainly carried out by the pBM19-encoded mdh. Formaldehyde and formate addition down-regulate the mdh and hps genes in methanol-grown cells. Similarly, they down-regulate mdh genes in mannitol-grown cells, but up-regulate hps. Phosphofructokinase (pfk) is up-regulated in both methanol and mannitol-grown cells, which suggests that pfk may be a possible synthetic methylotrophy target to reduce formaldehyde growth toxicity at high methanol concentrations.

  1. Cell-specific activation and detoxification of benzene metabolites in mouse and human bone marrow: Identification of target cells and a potential role for modulation of apoptosis in benzene toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Ross, D.; Siegel, D.; Schattenberg, D.G. [Univ. of Colorado Health Sciences Center, Denver, CO (United States)] [and others

    1996-12-01

    The role of cell-specific metabolism in benzene toxicity was examined in both murine and human bone marrow. Hemopoietic progenitor cells and stromal cells are important control points for regulation of hemopoiesis. We show that the selective toxicity of hydroquinone at the level of the macrophage in murine bone marrow stroma may be explained by a high peroxidase/nicotanimicle adenine dinucleotide phosphate, reduced [NAD(P)H]:quinone oxidoreductase (NQO1) ratio. Peroxidases metabolize hydroquinone to the reactive 1,4-benzoquinone, whereas NQO1 reduces the quinones formed, resulting in detoxification. Peroxidase and NQO1 activity in human stromal cultures vary as a function of time in culture, with peroxidase activity decreasing and NQO1 activity increasing with time. Peroxidase activity and, more specifically, myeloperoxidase, which had previously been considered to be expressed at the promyelocyte level, was detected in murine lineage-negative and human CD34{sup +} progenitor cells. This provides a metabolic mechanism whereby phenolic metabolites of benzene can be bioactivated in progenitor cells, which are considered initial target cells for the development of leukemias. Consequences of a high peroxidase/NQO1 ratio in HL-60 cells were shown to include hydroquinone-induced apoptosis. Hydroquinone can also inhibit proteases known to play a role in induction of apoptosis, suggesting that it may be able to inhibit apoptosis induced by other stimuli. Modulation of apoptosis may lead to aberrant hemopoiesis and neoplastic progression. This enzyme-directed approach has identified target cells of the phenolic metabolites of benzene in bone marrow and provided a metabolic basis for benzene-induced toxicity at the level of the progenitor cell in both murine and human bone marrow. 60 refs., 8 figs.

  2. 男性海洛因依赖者脱毒期间合并高血压106例临床观察%106 cases of male heroin addicts:clinical observation with hypertension during detoxification

    Institute of Scientific and Technical Information of China (English)

    王茜; 段黔琳; 王婧聃

    2014-01-01

    目的:分析男性海洛因依赖者脱毒期间引起高血压的因素。方法:2006年10月~2011年11月收治海洛因依赖者1822例,对其进行问卷调查。结果:106例确诊高血压。人口学特征:均为男性,年龄31~50岁(69.81%)年龄段为主,主要为文化程度较低者。海洛因滥用方式:以静注或肌注为主。其他危险因素包括吸烟、饮酒、喜高盐饮食、喜甜食、肥胖和高血压家族史等。结论:男性海洛因依赖者发生高血压受多种因素影响,有待于在今后的工作中进一步总结。%Objective: To analyse the male heroin addicts during detoxification factors lead to high blood pressure.Methods: From October 2006 to November 2011 ,1822 cases of heroin dependence were carried on the questionnaire survey.Results: 106 cases diagnosed high blood pressure.Demographic characteristics: they are all men, mainly aged 31~50 years old (69.81% ), and mainly for the lower cultural degree.Heroin abuse way: give priority to with vein or intramuscular injection.Other risk factors including smoking, drinking, like high salt diet, like sweet, obesity and family history of high blood pressure, etc.Conclusion: Male heroin addicts in high blood pressure is influenced by many factors.It remains to be further summary in the future work.

  3. 从负性情绪记忆调控角度探索心理干预海洛因戒毒的新思路%Exploration on the Psychological Intervention of Heroin Detoxification from Negative Emotional Memory Control

    Institute of Scientific and Technical Information of China (English)

    王儒芳

    2012-01-01

    Domestic users, particularly addicts of heroin in recent years are increasing. However, the heroin withdrawal rate is very low. At present,psychosocial interventions have been widely applied to heroin withdrawal process,achieving certain effect. It is confirmed by many studies that heroin addicts' negative emotional memory is the relapse factor. This article is to explore the psychosocial interventions of heroin detoxification methods from the negative emotional memory control, in the hope of rehabilitation practice. We want to carry out a targeted therapy, trying to explore the scientific connotation about the negative emotional memory control mechanism,hoping the prognostic value on patients of heroin dependence.%近几十年来,国内吸毒人数持续增加,特别是以海洛因为主的毒品滥用者数量迅速上升.而与此相对的是海洛因戒断率非常低.目前,心理干预已被广泛地运用到海洛因戒断过程中,并取得了一定的疗效.许多研究证实,海洛因依赖者的负性情绪记忆存在是导致复吸的重要因素.文章从负性情绪记忆调控的角度,探索心理干预海洛因戒毒的方法,希望在戎毒实践中,积极开展有针对性的心理治疗,努力探求其负性情绪记忆调控机制的科学内涵,以期对海洛因依赖者的康复和预后判定有较高的价值.

  4. Clinical observation of XuanJu detoxification gel in treatment of pregnancy gingivitis%玄菊解毒凝胶治疗妊娠期龈炎的临床观察

    Institute of Scientific and Technical Information of China (English)

    左渝陵; 李必泽; 赵娟

    2015-01-01

    Objective To evaluate the clinical effects of XuanJu detoxification gel in the treatment of pregnancy gingivitis . Methods Clinical data of 54 outpatients with pregnancy gingivitis in Affiliated Hospital of Chengdu University of TCM from Sep.2013 to Dec.2014 were selected.All patients were divided into group A , B and C according to different therapeutic methods with each group 18 cases.Group A:Washing affected teeth with 5 mL 1%H2O2 and 5 mL saline per teeth.group B:Besides the therapy above, applying XuanJu detoxification gel ( 0.5 mL per teeth ) .Group C: Using the gel only .The treatment indicators were observed: ①Sulcus bleeding index (SBI), plaque index (PI), periodontal pocket depth (PPD).②Nterleukin-1β(IL-1β), tumour necrosis factor-α( TNF-α) of gingival crevicular fluid .③ subjective symptoms , the improvement of halitosis .Results ① There were significant differences in PI , SBI, IL-1β, TNF-α, subjective symptoms, and the degree of halitosis before and after treatment of group B and group C (P<0.05).It found that only subjective symptoms had significant difference before and after treatment in group A.②All indicators in Group B were superior to group A and group C after treatment except PPD (P<0.05).Conclusion XuanJu detoxification gel combined with basic treatment has a good effect in the treatment of pregnancy gingivitis which has the advantages of simple prescription and superior dosage form .%目的:观察玄菊解毒凝胶治疗妊娠期龈炎临床疗效。方法选取2013年9月至2014年12月在成都中医药大学附属医院口腔科就诊的54例妊娠期龈炎患者的临床资料,根据治疗用药不同分为A、B、C 3组。1%双氧水5 mL/牙+生理盐水5 mL/牙冲洗治疗的患者纳入A组(18例);1%双氧水5 mL/牙+生理盐水5 mL/牙冲洗治疗基础上,联合玄菊解毒凝胶0.5 mL/牙治疗的患者纳入B组(18例);单纯玄菊解毒凝胶0.5 mL/

  5. 解毒化瘀方对肝硬化轻微型肝性脑病患者生存质量及中医证候的影响%Effect of the Detoxification and Dissipation Blood Stasis Formula on Quality of Life and Syndrome of Traditional Chinese Medicine in Hepatic Cirrhosis With Minimal Hepatic Encephalopathy

    Institute of Scientific and Technical Information of China (English)

    姚春; 王萌; 黄国初; 张玉娥; 姚凡; 牛登峰

    2014-01-01

    目的:观察解毒化瘀方对肝硬化轻微型肝性脑病( MHE)患者生存质量及中医证候的影响。方法80例肝硬化MHE患者,随机分为对照组、解毒化瘀方组,每组40例,2组均给予低蛋白饮食及复合维生素B治疗,其中解毒化瘀方组加用解毒化瘀颗粒,10g/包,冲服,2次/日,7天为1个疗程。分别观察治疗前、后数字连接试验-A( NCT-A)、脑电图、WHO生存质量评定量表简表( WHO QOL-BREF)及中医证候积分的变化。结果解毒化瘀方能显著缩短肝硬化MHE病患者NCT-A完成时间,提高患者生存质量,改善其脑电图及中医证候,且疗效优于对照组(P<0.05)。结论解毒化瘀方具有改善肝硬化MHE患者生存质量及中医证候的作用。%Objective To observe the curative effect of the detoxification and dissipation blood stasis formula on quality of life and syndrome of traditional Chinese medicine in hepatic cirrhosis with minimal hepatic encephalopathy ( MHE).Methods 80 cases hepatic cirrhosis MHE patients were randomly divided into controlled group , detoxification and dissipation blood stasis formula group .Each group had 40 cases.All groups were given low protein diet and the Vitamin B treatment , which detoxification and dissipation blood stasis formula group were treated with detoxification and dissipation blood stasis particles , 10g/package, p.o, bid.7 days were a course of treatment .At the beginning and the ending the number connection test-A ( NCT-A ) , electroencephalogram , WHO QOL-BREF and syndrome of traditional Chinese medicine were respectively examined and difference were found .Results Detoxification and dissipation blood stasis formula could significantly reduce the time of hepatic cirrhosis with MHE completing NCT-A, improve the quality of life , electroencephalogram and syndrome of Traditional Chinese medicine in cirrhosis patients with MHE .The curative effect rate was higher than the

  6. Construction of compulsory isolation detoxification in physical rehabilitation work procedure%试论强制隔离戒毒人员身体康复工作流程的设计

    Institute of Scientific and Technical Information of China (English)

    贾东明; 郭崧

    2015-01-01

    《禁毒法》明确了强制隔离戒毒人员(以下简称“戒毒人员”)的“违法者、病人和受害者”这一多重性,同时要求“国家采取各种措施帮助吸毒人员戒除毒瘾、教育和挽救吸毒人员”。身体康复相比较医疗、心理、认知和习艺而言,其内涵和外延均未有一个科学和规范的定义,从而也就导致了当前对于戒毒人员的“身体康复”存在着众多的“乱象”,由此带来了“身体康复”在实践工作中的模糊性和随意性,要使身体康复手段在戒毒工作中真正发挥其应有的效用,就需要结合场所的戒治工作和专业机构设置情况以及戒毒工作的流程对其进行一次“由点即线,由线到面”的整理和梳理,并构建出科学和规范的运行体系。%《ANTI-DRUG LAW》showed that the person of compulsory isolation detoxification (as“addicts”)has multiple character of offender,patients and victims,and need “the state measures to help drug addicts of addiction,education and life”.Physical reha-bilitation compared to medical,psychological,cognitive and brouwer,its connotation and extension has no clear and standardized defi-nition,which also led to many“mess”,the “physical rehabilitation”was operating with the fuzziness and randomness in the practical work,our work should really play its due effect,combining site treatment and professional institutions to a“from the point to line,then to round”in rehabilitation work processes,and build scientific and standard operation system.

  7. Pb胁迫下接种丛枝菌根真菌对茶树解毒能力的影响%Effects of Arbuscular Mycorrhizal Fungi(AMF) Inoculation on Detoxification Capacity of Tea Tree under Pb Stress

    Institute of Scientific and Technical Information of China (English)

    陈卫莉; 赵晓改; 王浩; 袁祖丽

    2014-01-01

    Potted tea trees were inoculated with arbuscular mycorrhizal fungi(Glomus intraradices) under Pb stress to investigate the effects of inoculation on detoxification apacity of tea tree. Methods including acetate ink staining,Coomassie brilliant blue,inductively coupled plasma(ICP-MS) and UV spectrophotometry method respectively were used to determine tea tree root colonization rate of mycelium,content of Glomalin-related soil protein(GRSP),Pb content in tea tree roots,leaves,soil and GRSP,and antioxidant enzyme activity of leaves. The results showed that AMF inoculation rate in tea tree roots was 60.13%,tea tree biomass and 100-bud weight increased significantly. The total GRSP content also increased remarkably after inoculation with AFM. For GRSP chelated Pb in soil,the bioavailability of Pb in soils reduced greatly. For the total contents of Pb in roots and leaves decreased,and more Pb deposited in roots after inoculation,the Pb contents in leaves decreased significantly, and the antioxidant enzyme activity correspondingly reduced.%采用盆栽试验研究了接种丛枝菌根真菌(Arbuscular mycorrhizal fungi,AMF)对铅(Pb)胁迫下茶树解除Pb毒性能力的影响,分别用醋酸墨水染色法、考马斯亮蓝法、电感耦合等离子体(ICP-MS)、紫外分光光度法等方法研究了接种AMF后茶树根系菌丝的侵染率,土壤中球囊霉素(Glomalin-related soil protein,GRSP)含量,茶树根系、叶片、土壤中及GRSP中Pb含量及叶片的抗氧化酶活性.结果表明,接种AMF后,茶树根系菌丝侵染率为60.13%,茶树的生物量、百芽重和显著增加,并极显著地提高土壤中总GRSP含量,由于GRSP对Pb的大量螯合作用,使得土壤中Pb的生物有效性大大降低,加之茶树根系、叶片中对Pb的总吸收量减少,且根系Pb含量增加,因此,叶片中Pb含量显著下降,抗氧化酶活性也相应地下降.

  8. Detoxification of snake venom using ionizing radiation

    International Nuclear Information System (INIS)

    It is generally recognized that energy absorbed by ionizing radiation (gamma rays) can inactivate biological material in tow ways. A direct effects occurs when the primary event, i.e., ionization, is produced in the molecule itself. This is the case when a compound is irradiated in dry state. When a compound is irradiated in a solution, the indirect effect joins the direct. Since water is the most abundant constituent of biological material, it is important to consider the species produced by excitation and ionization of water itself, and the reaction of these species with the target molecules of biological importance. This indirect effect results from the reactions among the studied molecules and the products of radiation interaction with water or other solvents. Highly reactive compounds, the so-called free radicals, which are formed many reactions among themselves, with the dissolved gas, and with other molecules in the solution. With water, the excitation is less important than ionization which is followed within picosecond by the formation of free hydroxyl radicals and hydrated electrons. Alexander and Hamilton showed that irradiation of proteins has revealed damage to aminoacid side chains, production of new groups, splitting of peptide bonds and formation of intramolecular and intermolecular cross-links. With these results it would be possible to use ionizing radiation to change those proteins molecules in order to improve some of their properties according to the necessity. On the other hand, it is recognized that venoms in general are poorly immunogenic, yet fairly toxic. This cause problems because serotherapy is the treatment of choice in snakebite envenomations, and horse antivenom availability is dependent upon. (author)

  9. Catabolism and detoxification of 1-aminoalkylphosphonic acids

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; McSorley, Fern R.; Zechel, David L.

    2012-01-01

    In Escherichia coli uptake and catabolism of organophosphonates are governed by the phnCDEFGHIJKLMNOP operon. The phnO cistron is shown to encode aminoalkylphosphonate N-acetyltransferase, which utilizes acetylcoenzyme A as acetyl donor and aminomethylphosphonate, (S)- and (R)-1-aminoethylphospho...

  10. Detoxification of Heavy Metal Contaminated Soils

    Directory of Open Access Journals (Sweden)

    Floarea Damian

    2007-01-01

    Full Text Available The concentration of the heavy metals in the soils from the strong affected zones because of the mining and metallurgical industry, Baia Mare and Zlatna (Romania, is significant due to the high values of the contents and association of the four metals Pb, Cu, Zn, Cd. The efficacy of the natural zeolites in heavy metals immobilization from the studied soils was evaluated in experiments in which the plant growth was observed. Heavy metals contaminated soils have been treated with a mixture of organic substance and zeolites (organo – zeolitic material. Zeolitic tuffs were roll-crushed and ground in small grains with dimensions between 0.05 and 2.0 mm. Clinoptilolite is the predominant zeolite and appears as compact masses of tabular and prismatic micron – sized crystals that are evident in SEM images. In the mixture, the polluted soil represents 83% and the organo – zeolitic material represents 17%. The soils used in the experiment are excessive contaminated with Pb (40375-1054ppm in association with Zn (1175-490ppm, Cd (24.2-13.2ppm and Cu (409.5-37.6ppm in Baia Mare zone and with Cu (7000-360ppm in association with Zn (3100-1900ppm, Cd (80-40ppm and Pb (2000-50ppm in Zlatna zone. The original soil and the treated soil have been planted with Lolium perenne. The growth of the plants has demonstrated that the soil treated with organo–zeolitic material allows the growth of vegetation much faster than the original soil. These results show that growth of the plants was possible because the organo–zeolitic material mixed with the soil provides the substances necessary for the plants to develop (ammonium, humus, potassium, calcium. At the same time, heavy metals that inhibit the plant development are blocked through the cationic exchange mechanism that makes them enter the zeolites structure and they no longer directly have access to the plant roots.

  11. EB detoxification of liquid hazardous wastes

    International Nuclear Information System (INIS)

    In the work, an engineering approach to technical solutions, considering accelerated electron beams as radiation source, is carried out, in order to allow and evaluate an effective recovery of drinking water from highly chemically polluted groundwaters. In connection with different engineering technical and economic parameters (suitable doses, EB-machine type, plant features, etc.) and with reference to 1-100 ton/hr contaminated stream flowrate range (2-50 kGy as considered absorbed dose range), a specifically developed computer code was run. Analysis results, based on investment and functioning cost figures evaluated with reference to industrial plant management scenarios, are treatment unit costs showing a noticeable economic attractiveness of radiation EB-technologies in the field of considered applications

  12. Olive Mill wastewater bioremediation towards detoxification

    OpenAIRE

    Paixão, Susana M.; Ribeiro, Belina; Sàágua, M. C.; Baeta-Hall, Lina; Correia, Anabela; Duarte, José Cardoso

    2011-01-01

    Olive oil production is a traditional agricultural industry in Mediterranean countries and Portugal is one of the ten major producers. This industry generates an effluent, olive mill wastewater (OMW), which does not undergo any treatment and, usually, is stored in evaporation lagoons or spread on the land. Disposal of olive oil mill wastewaters is a serious environmental problem due to its high organic loading, presence of polyphenols and tannins, high content in suspended solids and acidity,...

  13. EB detoxification of liquid hazardous wastes

    Energy Technology Data Exchange (ETDEWEB)

    Tata, A.; Giuliani, S. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dip. Innovazione; Diaco, L. [Hitesys s.p.a., Aprilia, Rome (Italy)

    1996-07-01

    In the work, an engineering approach to technical solutions, considering accelerated electron beams as radiation source, is carried out, in order to allow and evaluate an effective recovery of drinking water from highly chemically polluted groundwaters. In connection with different engineering technical and economic parameters (suitable doses, EB-machine type, plant features, etc.) and with reference to 1-100 ton/hr contaminated stream flowrate range (2-50 kGy as considered absorbed dose range), a specifically developed computer code was run. Analysis results, based on investment and functioning cost figures evaluated with reference to industrial plant management scenarios, are treatment unit costs showing a noticeable economic attractiveness of radiation EB-technologies in the field of considered applications.

  14. Detoxification of snake venom using ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Rogero, J.R.; Nascimento, N. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Supervisao de Radiobiologia

    1995-07-01

    It is generally recognized that energy absorbed by ionizing radiation (gamma rays) can inactivate biological material in tow ways. A direct effects occurs when the primary event, i.e., ionization, is produced in the molecule itself. This is the case when a compound is irradiated in dry state. When a compound is irradiated in a solution, the indirect effect joins the direct. Since water is the most abundant constituent of biological material, it is important to consider the species produced by excitation and ionization of water itself, and the reaction of these species with the target molecules of biological importance. This indirect effect results from the reactions among the studied molecules and the products of radiation interaction with water or other solvents. Highly reactive compounds, the so-called free radicals, which are formed many reactions among themselves, with the dissolved gas, and with other molecules in the solution. With water, the excitation is less important than ionization which is followed within picosecond by the formation of free hydroxyl radicals and hydrated electrons. Alexander and Hamilton showed that irradiation of proteins has revealed damage to aminoacid side chains, production of new groups, splitting of peptide bonds and formation of intramolecular and intermolecular cross-links. With these results it would be possible to use ionizing radiation to change those proteins molecules in order to improve some of their properties according to the necessity. On the other hand, it is recognized that venoms in general are poorly immunogenic, yet fairly toxic. This cause problems because serotherapy is the treatment of choice in snakebite envenomations, and horse antivenom availability is dependent upon. (author)

  15. DETOXIFICATION BY MAGNETOTACTIC BACTERIA IN SEDIMENTS

    Science.gov (United States)

    The ability of certain bacteria to take up iron in the environment and biosynthesis magnetic materials such as magnetite (Fe3O4) and greigite (Fe3S4) has been recognized (Blakemore, 1982; Bazylinski and Frankel, 2000). Two different mechanisms, biologically induced mineralizat...

  16. Sistemas primários de transporte de prótons integram os mecanismos de desintoxicação do mesotrione em plantas de milho Proton transport primary systems used as mechanisms of mesotrione detoxification in corn plants

    Directory of Open Access Journals (Sweden)

    J. Ogliari

    2009-01-01

    ão variaram mais do que 20 a 60% das atividades obtidas em vesículas de membranas oriundas de plantas não tratadas (controle. Os resultados demonstraram que o mesotrione promove uma ativação diferencial dos principais sistemas primários de transporte de H+, indicando que essas bombas iônicas são enzimas transportadoras essenciais aos mecanismos relacionados com o processo de desintoxicação das plantas de milho, possivelmente ao energizar a compartimentalização das moléculas do herbicida mesotrione no vacúolo ou a exceção celular através das membranas plasmáticas.The herbicide Mesotrione herbicides are very effective in the control of a wide range of weeds that infest corn (Zea mays fields. However, the biochemical and molecular bases of corn seedling tolerance to this herbicide have not been established so far. To understand the mechanisms of mesotrione detoxification in corn plants, the activities of the main primary proton (H+ ion transport systems of the vacuolar and plasma membranes (H+-ATPases V- and P-types, and H+-PPase of the cells from different tissues were analyzed, after post-emergence herbicide application. Thus, cell fractionation procedures on root, leaf and mesocotyl tissues were performed using differential membrane vesicle centrifugation and purification in sucrose density gradient. Hydrolytic activities of the proton pumps were measured by using a colorimetric method for phosphate released through enzymatic hydrolysis of the substrates adenosine-5'-triphosphate (ATP and pyrophosphate (PPi. Photosynthetic parameters were analyzed as physiological markers of the different stages of plant detoxification. Such analysis demonstrated that, three days after herbicide application (DAA, mesotrione induced a reduction in the photosynthetic rate and Fv/Fm ratio, but no significant effect could be found after the fifth DAA. These data suggest that the treatment with mesotrione promoted a spatial and temporal regulation of the H+ pump activities. In all

  17. 异病酚静脉全麻下复合氯胺酮或曲马多行纳屈酮快速阿片脱毒的效果比较%The comparison of effects of rapid opiate detoxification with ketamine complex and with tramadol and naltrexone under general anesthesia with propofol

    Institute of Scientific and Technical Information of China (English)

    黄位耀; 肖晓山; 刘瑛; 廖秀清; 周代伟; 戴航

    2002-01-01

    Objective To release the heroin addicts' sufferings,we made rapid opiate detoxification by injecting naloxine under the general anesthesia. Method 160 volunteers were divided at random into two groups:Group A were performed under the combined anesthesia with propofol, midazolam and ketamine,Group B were performed under the combined anesthesia with propofol with midazolam and tramadol. The vital signs were recorded and the withdrawal syndrome of the volunteers were assessed during the whole process.Result All of the withdrawal symptoms scores 24 hours after ROD in group B were lower than its pre-treatment;The symptoms of the thirst, sleeping disturbance,nausea and vomiting,skeletal muscular pains and anorexia scores in group A were also lower than its pre-treatment;and no too much difference between group A and group B.But tearing,anxiety and diarrhea scores in group A were almost the same as the pre-treatment and higher than group B.Both groups received of the naloxone treatment smoothly,and remained in the hospital for about 3 days. Conclusion The effect of rapid opiate detoxification of naltrexone with the ketamine or tramadol under anesthesia is obvious. The tramadol is better than others.

  18. Effects of host plants on the activities of some detoxification enzymes and protective enzymes in the meadow moth%寄主植物对草地螟中肠解毒酶及保护性酶活性的影响

    Institute of Scientific and Technical Information of China (English)

    尹姣; 冯红林; 李克斌; 曹雅忠

    2012-01-01

    [Objective] Effects of host plants on the activities of some detoxification enzymes and protective enzymes in the meadow moth were explored to provide the basis for studying the physiological mechanisms of the meadow moth, Loxostege sticticalis, to different plants. [Method]In our experiments, the temporal variation of the activities of 3 detoxification enzymes (carboxylesterase, acetylcholinesterase and glutathione-s-transferase) and 3 protective enzymes (superoxide dismutase, peroxidase and catalase) in the midgut of the moths fed with different plants, including lambsquarters, soybean, corn and potato, was tested. [ResultjThe results indicated that the enzyme activity was significantly affected by different host plants. The detoxification enzyme activity in the moths fed with suitable hosts was higher than those fed with unsuitable ones. However, with the feeding time prolonged, the fast-growing enzyme activity in the moths feeding on non-suitable host plants reduced the difference a-mong the moths feeding on different host plants. And the variation trend of protective enzymes was similar to that of the detoxification enzymes. [Conclusion]The results indicated that the variation of the detoxification enzymes and protective enzymes to different plants is the reason why the larvae are adapted to non-suitable host plants.%[目的]探讨寄主植物对草地螟中肠解毒酶及保护性酶活性的影响,为研究草地螟对不同寄主植物的生理适应机制奠定基础.[方法]测定草地螟幼虫取食藜、大豆、向日葵、玉米和马铃薯等5种不同寄主植物后中肠解毒酶羧酸酯酶、谷胱甘肽S转移酶、乙酰胆碱酯酶和保护酶超氧化物歧化酶、过氧化氢酶、过氧化物酶活力的时序变化.[结果]取食不同寄主植物会显著影响幼虫中肠解毒酶活性.取食适宜寄主植物时幼虫中肠解毒酶活力在初期明显高于取食非适宜寄主植物的,但随着取食时间的延长,取食非适

  19. Task-related functional connectivity of nucleus accumbens in opiate drug addicts during physical detoxification: a cue-elicited task fMRI study%生理脱毒期阿片类药物依赖者线索诱发作业下伏隔核功能连接的fMRI研究

    Institute of Scientific and Technical Information of China (English)

    韩易; 傅先明; 钱若兵; 林彬; 袁季; 魏祥品; 牛朝诗; 汪业汉

    2014-01-01

    目的 探讨生理脱毒期阿片类药物依赖者线索诱发作业下与伏隔核存在异常功能连接的脑区及其在戒断复吸中的作用.方法 生理脱毒期阿片类药物依赖组和健康对照组各18例,在观看与阿片类药物依赖线索相关视频时进行功能磁共振成像扫描,分别选取左、右侧伏隔核为感兴趣区进行功能连接分析,确定与双侧伏隔核存在功能连接的脑区.结果 与健康对照组相比,生理脱毒期阿片类药物依赖组的伏隔核与前额叶(46,29,-9)、岛叶(31,25,-7)、后扣带回(4,-59,19)、楔前叶(4,-63,22)、枕叶(6,71,16)、舌回(11,-37,-8)和距状回(3,-45,7)的功能连接明显高于健康对照组,而与丘脑(-8,-13,2)、前扣带回(-2,44,20)功能连接明显低于健康对照组(P<0.05).结论 生理脱毒期阿片类药物依赖者线索诱导下的伏隔核存在功能异常,这可能是其容易复吸的重要原因之一.%Objective To explore the brain areas which have abnormal functional connectivity with nucleus accumbens in opiate drug addicts during physical detoxification nsing a cue-elicited task-related functional magnetic resonance imaging (fMRI),and to find out the role of nucleus accumbens dysfunction in the relapse of opiate drug dependence during physical detoxification.Methods Eighteen participants of opiate drug addicts during physical detoxification,and eighteen healthy controls performed a cue-elicited craving task in a MRI scanner while signal data were collected.The left and right nucleus accumbens were selected as regions of interest (ROIs) respectively,and calculated the linear correlation between the nucleus accumbens and the entire brain to find out the functional connectivity of the nucleus accumbens.Results Compared with the controls,the functional connectivity between the nucleus accumbens and the prefrontal cortex (46,29,-9),insula(3 1,25,-7),posterior cingutate (4,-59,19),precuneus(4,-63,22),occipital lobe(6,71,16),lingual

  20. The status and related factors of self-efficacy of convalescent patients with heroin dependence in compulsory detoxification%康复期海洛因依赖强制隔离戒毒者自我效能的相关因素分析

    Institute of Scientific and Technical Information of China (English)

    郑红; 庄淑梅; 安士慧; 张广福; 陈芳; 赵岳

    2013-01-01

    目的 探讨康复期海洛因依赖强制隔离戒毒者的自我效能水平及其相关因素.方法 采用一般情况调查表、一般自我效能量表、社会支持评定量表及Zung自评抑郁量表,对90例康复期海洛因依赖强制隔离戒毒者进行调查,并对调查结果进行分析.结果 90例康复期海洛因依赖强制隔离戒毒者自我效能得分均值为(20.97±2.26)分,多元回归分析显示,抑郁、社会支持、海洛因日使用量是其自我效能感的主要影响因素,共解释59.1%的变异量.结论 提高海洛因依赖者的自我效能,可以改善其身心健康水平,降低复吸率.%Objective To investigate the status and influencing factors of convalescent patients with heroin dependence in compulsory detoxification.Methods A total of 90 convalescent patients with heroin dependence in compulsory detoxification were recruited and investigated with a self-designed scale,General Self-efficacy Scale (GSES),Social Support Assessment Scale (SSRS) and Self-rating Depression Scale (SDS).Results The mean score of the self-efficacy was (20.97±2.26) points.Multiple regression analysis showed that depression,social support and daily dose of heroin use were influencing factors of the self-efficacy,which could explain 59.1% of the variance.Conclusions Improving the self-efficacy of convalescent patients with heroin dependence in compulsory detoxification can enhance physical and psychological health and decrease the relapse.

  1. Xylitol production from wheat straw hemicellulosic hydrolysate: hydrolysate detoxification and carbon source used for inoculum preparation Produção de xilitol em hidrolisado hemicelulósico de palha de trigo: destoxificação do hidrolisado e fonte de carbono utilizada para o preparo do inóculo

    Directory of Open Access Journals (Sweden)

    Larissa Canilha

    2008-06-01

    Full Text Available Wheat straw hemicellulosic hydrolysate was used for xylitol bioproduction. The use of a xylose-containing medium to grow the inoculum did not favor the production of xylitol in the hydrolysate, which was submitted to a previous detoxification treatment with 2.5% activated charcoal for optimized removal of inhibitory compounds.Hidrolisado hemicelulósico de palha de trigo foi utilizado para a bioprodução de xilitol. O uso de meio contendo xilose para crescer o inóculo não favoreceu a produção de xilitol no hidrolisado, que foi submetido a um tratamento prévio de destoxificação com 2.5% de carvão ativo para remoção otimizada de compostos inibitórios.

  2. 中药海尔福口服液对砷中毒小鼠的解毒效果研究%Detoxification effects of traditional Chinese medicine of Haier Fu oral liquid on mice with arsenic poisoning

    Institute of Scientific and Technical Information of China (English)

    何胜; 陆晓峰; 银彩林; 李红妃; 梁海燕; 林洁; 周国荃; 张树球

    2012-01-01

    目的 探讨砷对动物的毒性作用及中药对其解毒效果.方法 用亚砷酸钠毒物染毒小鼠(造模),然后用海尔福口服液(中药制剂)分别按小剂量(治疗1组)和大剂量(治疗2组)灌胃治疗.同时设染毒不治疗组(即模型组)和正常组做对照.实验连续30 d.测定染毒前、后和治疗后的血红蛋白(Hb).实验结束,从眼球取血,分离血清,测定丙氨酸氨基转移酶(ALT),尿素;处死动物后,取肝脏作病理研究,取大脑制成10%脑匀浆,测定超氧阴离子自由基清除率.结果 正常组、模型组、治疗1组、治疗2组,造模前Hb,各组比较(P>0.05)差异无统计学意义;造模后(治疗前)Hb依次分别为143.77 +7.11、120.47±14.23、117.66±7.01、125.66±6.86(g/L),正常组明显高于造模的三个组,差异有统计学意义(P<0.01),其中最低为治疗l组,同时造模后的三个组均明显低于其造模前水平,差异有统计学意义(P<0.01).治疗后Hb分别为152.37±13.69、122.46±12.52、137.62±11.29、151.00 ±9.09(g/L),模型组最低,明显低于正常组和治疗2组,差异有统计学意义(P <0.05或P<0.01),治疗1组、治疗2组治疗后明显高于治疗前水平,差异有统计学意义(P<0.01),而模型组治疗前后比较,差异无统计学意义(P>0.05).病理研究结果表明,砷对肝脏有损害作用,模型组肝损害较严重,治疗组较轻.脑对超氧阴离子自由基清除率和肝ALT活性,各组间也有一定变化.结论 砷对造血系统有明显的抑制作用和对肝脏有明显损害作用,中药海尔福治疗后恢复明显.%Objective To explore the role of arsenic toxicity to animals and detoxification effects of traditional Chinese medicine. Methods Using sodium arsenide toxicant to contaminate mice ( mice model) , and then gave mice gastric lavage treatment with Haier Fu oral liquid (traditional Chinese medicine). The mice were divided into group 1 with small dose of Haier Fu oral liquid and group 2

  3. Clinical Research on Qi-Replenishing,Yin-Nourishing and Detoxification Prescription Combined with Chemotherapy in the Treatment of Non-Small Cell Lung Cancer%益气养阴解毒方联合化疗治疗非小细胞肺癌临床研究

    Institute of Scientific and Technical Information of China (English)

    邱芝琳; 葛信国

    2014-01-01

    Objective:To explore the Clinical therapeutic effect of Qi-Replenishing,Yin-Nourishing and Detoxification Prescription on ad-vanced non-small-cell lung cancer. Methods:40 patients with advanced NSCLC were randomly divided into the treatment group(Qi-Re-plenishing,Yin-Nourishing and Detoxification Recipe + chemotherapy)and the control group(only chemotherapy),each of 20 patients. The treatment was carried out in two cycles,each lasting for 21 days. After the two cycles,differences in indicators,including clinical therapeutic effect,TCM symptoms,physical conditions and toxic and side effects of each group between before and after treatment,as well as between the two groups after treatment were compared and the therapeutic effect was evaluated. Results:Comparing clinical cura-tive effect of the two groups had no significant difference(P > 0. 05). In TCM symptoms,the total effective rate of the treatment group after treatment was 70% ,the total effective rate of the control group after treatment was 20% ,the treatment group was better than con-trol group(P 0. 05),after treatment the curative effect of treatment group was obviously better than that of the treatment group the control group(P 0. 05). Conclusion:Treatment of advanced NSCLC with Qi-Replenishing,Yin-Nourishing and Detoxification Recipe combined with chemotherapy has significant advantages over treatment with chemotherapy only,in improving physical condition and relieving TCM symptoms of the patients. To a certain extent,it can reduce the toxicity of the blood,alleviate digestive tract reaction,improve the patients with advanced non-small cell lung cancer chemotherapy toler-ance.%目的:探讨益气养阴解毒方联合化疗治疗晚期非小细胞肺癌的临床疗效。方法:随机将40例晚期非小细胞肺癌患者分为治疗组(益气养阴解毒方+化疗)和对照组(单纯化疗),每组各20例,治疗2个周期,每周期为21 d。2个周期后对各组治疗前后及两组治

  4. 探讨曲唑酮对甲基苯丙胺依赖者脱毒后睡眠障碍和焦虑情绪的疗效分析%The Clinical Efficacy of Trazodone for Sleep Disorders and Anxiety in Methamphetamine Addicts After Detoxification

    Institute of Scientific and Technical Information of China (English)

    王丹

    2015-01-01

    目的:探讨曲唑酮对甲基苯丙胺依赖者脱毒后睡眠障碍和焦虑情绪的临床效果。方法选取2013年1月—2015年1月期间在该院接受治疗的甲基苯丙胺依赖者100例,随机数字法将患者分为观察组与对照组,每组50例。观察组患者以曲唑酮进行治疗,对照组患者以安慰剂进行治疗,比较两组患者治疗前后的匹兹堡睡眠质量指数量表(PSQI)与汉密尔顿焦虑量表(HAMA)改善情况。结果治疗后比较,观察组患者的PSQI与HAMA量表比较均低于对照组,组间比较差异有统计学意义(P<0.05)。结论曲唑酮对甲基苯丙胺依赖者脱毒后睡眠障碍和焦虑情绪具有较好的改善作用。%Objective To observe clinical effect of trazodone for sleep disorders and anxiety in methamphetamine addicts after detoxification. Methods From January 2013 to January 2015, 100 cases of methamphetamine addicts accepted by our hospital were randomly divided into observation group and control group under randomized?method, 50 cases in each group. Observation group was treated with trazodone, while control group was treated with a placebo, Comparing change of PSQI score and HAMA score betwwen the two groups before and after treatment. Results After treatment, the PSQI score and HAMA score of observation group were both lower than those of control group, and the differences were statistically signifi-cant (P<0.05). Conclusion Trazodone has a good improvement effect for sleep disorders and anxiety in methamphetamine addicts after detoxification.

  5. Clinical Observation on the Effect of Kidney and Blood Detoxification in Treatment of Patients with Gout at the Remission Stage%滋肾补血解毒合剂对缓解期痛风患者治疗的临床观察

    Institute of Scientific and Technical Information of China (English)

    王艳

    2009-01-01

    Objective To observe the Clinical effect of kidney and blood detoxification in treatment of patients with gout at the remission stage. Methods 51 cases of patients with gout at remission were randomly divided into two groups, with treatment group 26 cases using blood detoxifieation nourishing the kid-hey treatment, 25 cases of the control group under the condition of oral probenecid, benzbromarone and sodium bicarbonate treatment, to compare the clinical in-dicators, efficacy and safety of the two groups after treatment. Results The total effective rate was 92.3% in the treatment group, while the total effective rate was 80.0% in the control group. There was no significant difference between the total effective rates (P >0.05); there was no significant difference in comparison of serum uric acid before and after treatment between the two groups(P >0.05); but there was more significant difference in comparison of serum uric acid before and after treatment in each group(P 0.05.两组治疗前后血尿酸组间比较无显著差异,P>0.05;两组治疗前后血尿酸组内比较有极显著差异,P<0.01.结论 滋肾补血解毒合剂治疗缓解期痛风的疗效可靠,且无不良反应.

  6. Therapeutic detoxification of quercetin against carbon tetrachloride-induced acute liver injury in mice and its mechanism%槲皮素对四氯化碳引起的小鼠急性肝损伤治疗作用及其机理

    Institute of Scientific and Technical Information of China (English)

    Jia-qi ZHANG; Liang SHI; Xi-ning XU; Si-chong HUANG; Bin LU; Li-li JI; Zheng-tao WANG

    2014-01-01

    This study observes the therapeutic detoxification of quercetin, a wel-known flavonoid, against carbon tetrachloride (CCl4) induced acute liver injuryin vivo and explores its mechanism. Quercetin decreased CCl4-increased serum activities of alanine and aspartate aminotransferases (ALT/AST) when orally taken 30 min after CCl4 intoxica-tion. The results of a histological evaluation further evidenced the ability of quercetin to protect against CCl4-induced liver injury. Quercetin decreased the CCl4-increased malondialdehyde (MDA) and reduced the glutathione (GSH) amounts in the liver. It also reduced the enhanced immunohistochemical staining of the 4-hydroxynonenal (4-HNE) in the liver induced by CCl4. Peroxiredoxin (Prx) 1, 2, 3, 5, 6, thioredoxin reductase 1 and 2 (TrxR1/2), thioredoxin 1 and 2 (Trx1/2), nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) al play critical roles in maintaining celular redox homeostasis. Real-time polymerase chain reaction (PCR) results demonstrated that quercetin reversed the decreased mRNA expression of al those genes induced by CCl4. In conclusion, our results demonstrate that quercetin ameliorates CCl4-induced acute liver injuryin vivo via aleviating oxidative stress injuries when oraly taken after CCl4 intoxication. This protection may be caused by the elevation of the antioxidant capacity induced by quercetin.

  7. The Ethical Thinking on Protecting the Rights of AIDS Treatment of Compulsory Isolation Detoxification Personnel: Taking Yunnan Province as an Example%强制隔离戒毒人员艾滋病治疗权利保障的伦理审思——以云南为例

    Institute of Scientific and Technical Information of China (English)

    陈桂荣

    2011-01-01

    吸毒人员虽是违法者,但同时也是病人和受害者。除了考虑如何对他们施行有效的管控外,如何保障他们的艾滋病治疗权,维护其理应享有的生命尊严,这是当下亟待解决的问题。针对目前强制隔离戒毒所普遍面临的防艾困境,有必要从伦理学的维度重新加以审思,探寻更合理和有效的路径。%The drug users are not only offenders, and also patients and victims. It is should consider how to implement effective management of them, and also need to consider how to guarantee the rights of their AIDS treatment, to maintain their dignity of life. This is the current problem to be solved. In view of the current com- pulsory isolation detoxification are generally facing the AIDS dilemma, it is necessary to reconsider this problem with an ethical dimension, in order to explore more reasonable and effective oath.

  8. A 1-year follow-up study on the drug use pattern of heroin addicts who return to society after detoxification%海洛因依赖者戒毒回归社会后一年转归情况随访研究

    Institute of Scientific and Technical Information of China (English)

    江海峰; 李质彬; 杜江; 潘淑均; 陈红; 钟娜; 赵敏

    2013-01-01

    目的 了解海洛因依赖者戒毒回归社会后1年内药物滥用的结局与转归,分析海洛因依赖者戒断后1年复吸的预后因素.方法 使用自制个案调查表、应激感觉量表(PSS)和成瘾行为严重度指数量表(ASI)对563例回归社会后1年的海洛因依赖者进行访谈评估,并使用自然病程问卷(NHI)跟踪随访1年内复吸发生情况,对操守时间进行生存分析.结果 共249例完成1年随访面谈,其中发生复吸者为111例(44.6%),平均操守时间为(8.3±0.3)个月;复吸者心理渴求程度[(3.69±3.60)分∶(0.40±1.46)分;P<0.01]、PSS评分[(19.0±4.7)分∶(17.6±4.6)分;P<0.05]及ASI的躯体状况[0.00(0.00 ~0.33)分∶0.00(0.00 ~0.02)分;P<0.01]、就业状况[(0.83±0.27)分∶(0.67±0.30)分;P<0.01]、毒品使用状况[0.14(0.00 ~0.25)分∶0.00(0.00 ~ 0.00)分;P<0.01]、酒精滥用情况[0.00(0.00 ~0.08)分∶0.00(0.00 ~0.00)分;P<0.05]、法律状况[(0.00(0.00 ~0.05)分∶0.00(0.00 ~0.00)分;P<0.01]、家庭支持[0.13(0.04 ~0.26)分∶0.10(0.00 ~0.18)分;P<0.01]和精神状况[0.00(0.09 ~0.36)分∶0.00(0.00 ~0.00)分;P<0.01]因子分均高于操守者;Cox回归分析显示,基线心理渴求程度是复吸的危险因素(OR=1.226,P<0.01).结论 海洛因依赖者戒毒后回归社会后1年内发生复吸行为比例高,有无发生复吸的海洛因依赖者具有不同的临床特征,降低毒品的心理渴求程度可降低回归社会后复吸的风险.%Objective To examine the drug use pattern of detoxificated heroin addicts after 1 year from return to society after detoxification,and to identify predictors of relapse.Methods 563 heroin addicts were accessed by case questionnaire and the Perceived Stress Scall(PPS),Addiction Severity Index (ASI),and followed after 1 year by the Nature History Interview (NHI) from return to society after detoxification."Relapse" was defined as any heroin use during 1 year

  9. Heroin-dependence and detoxification in the expression of brain-derived neurotrophic factor in rat%吗啡依赖及戒断对大鼠脑源性神经营养因子表达的影响

    Institute of Scientific and Technical Information of China (English)

    罗庆华; 马祚田; 余会平; 杜向东; 蒙华庆

    2005-01-01

    BACKGROUND: Multiple applications of opium medicines can induce the accommodative changes of morphology and function in some intracerebral nerve positions. These accommodative changes are important neurobiological bases inducing drug-desire and re-addiction after detoxification. However, the actual molecular mechanism is unclear at present.OBJECTIVE: To investigate the impacts of the generation of heroin-dependence and detoxification on brain-derived neurotrophic factor (BDNF) in rat to provide a laboratorial gist for the participation of BDNS in heroin-dependence and detoxification.DESIGN: A randomized controlled study by employing experimental animals as subjectsSETTING: Mental health center of a medical university affiliated hospital MATERIALS: The study was conducted in the Laboratory of Pharmacology,Faculty of Pharmacology, Chongqing Medical University between March 2004and July 2004. Totally 30 inbreeding clean male SD rats with a bodymass between 200 g and 250 g were obtained from the Experimental Animal Center of the Third Military Medical University of Chinese PLA. Rats were randomly divided into blank control group(control group), heroin-dependent group (heroin group), and naloxone detoxification group(naloxone group) with 10rats each.METHODS: Morphine was subcutaneously injected into the rat with dose-increasing method to establish heroin-dependence rat model. Rats of naloxone group received subcutaneously injection of 2 mg/kg of naloxone to excite abstinent symptoms. The same dose of normal saline (NS) was injected in rats of control group. Model rats of each group were observed biologically and behaviorally. BDNF expression at different brain zone of rats in three different groups was tested with immunohistochemistry and digoxin-labeled oligonucleoide probe in situ hybridization technique.Comparison of the evaluation of abstinent symptoms in rats of each group.RESULTS: In the heroin group, the relative content of BDNF protein was higher in frontal lobe

  10. Evaluation of trazodone for treatment of sleep disorders and anxiety in methamphetamine addicts after detoxification%曲唑酮对甲基苯丙胺依赖者脱毒后睡眠障碍和焦虑情绪的临床疗效观察

    Institute of Scientific and Technical Information of China (English)

    刘悦; 黄燕燕; 沈雯雯; 张建兵; 周文华

    2015-01-01

    Objective To observe the effect of trazodone on sleep disorders and anxiety in methamphetamine addicts after detoxification. Methods One hundred and six cases were randomly divided into control group(n=53)and treatment group(n=53).Patients in treatment group were given trazodone, while the controls were given placebo, when the detection of methamphetamine in urine were all negative.All of them were toxicity-free and were accessed by pittsburgh sleep quality index ( PSQI) and hamilton anxiety scale ( HAMA) before treatment and at the end of the first week, the second week and the fourth week.The effect of trazodone on sleep quality and anxiety in methamphetamine addicts were observed.The treatment emergent symptom scale ( TESS ) was used to make safety evaluation.Results Compared with the control group, the data PSQI and HAMA decreased significantly in the treatment group at the end of the second week and the fourth week (P<0.05).Conclusion Trazodone is effective in improving sleep disorders and reducinganxiety of methamphetamine addict after detoxification.It cansignificantly prevent relapse.%目的:观察曲唑酮对甲基苯丙胺依赖者脱毒后睡眠障碍和焦虑情绪的临床疗效。方法入选甲基苯丙胺依赖者106例为研究对象,随机分为治疗组(n=53)给予曲唑酮和对照组(n=53)给予安慰剂。2组患者均经过住院脱毒治疗后,尿甲基苯丙胺检测转阴性。用匹兹堡睡眠质量指数量表( PSQI)和汉密顿焦虑量表( HAMA)分别于治疗前、治疗1,2,4周末进行问卷调查,观察曲唑酮对甲基苯丙胺依赖者睡眠质量和焦虑情绪的影响,用不良反应症状量表( TESS)评价安全性。结果治疗2周及4周后,与对照组比较,治疗组PSQI明显降低,差异有统计学意义(P<0.05)。与对照组比较,治疗组HAMA评分显著降低,差异有统计学意义( P<0.05)。结论曲唑酮可有效改善甲基苯丙胺依赖者

  11. Differences in the Detoxification Metabolism between Two clonal Lineages of the Aphid Myzus persicae (Sulzer (Hemiptera: Aphididae Reared on Tobacco (Nicotiana tabacum L. Diferencias en el Metabolismo de Detoxificación entre dos Linajes Clonales del Áfido Myzus persicae (Sulzer (Hemiptera: Aphididae creados sobre tabaco (Nicotiana tabacum L.

    Directory of Open Access Journals (Sweden)

    Marco A Cabrera-Brandt

    2010-12-01

    Full Text Available Myzus persicae (Sulzer is a highly polyphagous aphid species, with a subspecies (M. persicae nicotianae well adapted to tobacco (Nicotiana tabacum L.. We evaluated the effect of this host plant on the aphid performance and detoxification enzymes, in order to test the participation of xenobiotic metabolism on the ability of this aphid to overcome the tobacco chemical defences. Two genotypes, one corresponding to the only M. persicae nicotianae genotype reported in Chile on tobacco, and one genotype belonging to M. persicae sensu stricto were reared on tobacco and pepper (Capsicum annuum L., respectively. M. persicae nicotianae showed a significantly higher intrinsic rate of increase (r m on pepper than on tobacco, and M. persicae s.s. performed similarly, but with no reproduction at all on tobacco. In order to evaluate the effect of tobacco on detoxification enzymes, esterases, glutathione S-transferases (GST and cytochrome P-450 monooxygenases (MO were determined in both selected aphid genotypes after 12, 24, 36, 48 and 72 h of rearing on tobacco and pepper. M. persicae nicotianae exhibited the higher total esterase activities when reared on tobacco than on pepper after 48 h of rearing, while the activities of GST and MO did not show any significant difference between host-plants and duration of treatment. For M. persicae s.s., no significant differences were observed among host-plants for the studied enzymes. These results suggest a participation of the esterases, on the ability of this M. persicae nicotianae to overcome the tobacco defences.Myzus persicae (Sulzer es un áfido polífago que incluye a Myzus persicae nicotianae, una subespecie altamente adaptada sobre tabaco (Nicotiana tabacum L.. Evaluamos el efecto del tabaco sobre el desempeño biológico y sobre determinadas enzimas de detoxificación en áfidos, para estudiar su participación en la capacidad de M. persicae nicotianae de superar las defensas químicas del tabaco. Dos

  12. 米糠和光皮树籽粕对平菇受铅、汞毒害的缓解作用%Detoxification of rice bran and Swida wilsoniana oilcake on toxicity of Pb2+ and Hg2+ to mycelium growth of Pleurotus Ostreatus

    Institute of Scientific and Technical Information of China (English)

    焦帅; 阮榕生; 刘玉环; 刘建强; 彭红

    2011-01-01

    通过平板培养试验及袋栽试验,观察米糠和光皮树籽粕对平菇受铅、汞毒害的缓解效果.结果表明:当Pb(2+)、Hg(2+)的质量浓度分别达到50、15 mg/L时,对应的基础培养基中平菇菌丝的生长受到显著抑制;在正常的培养基中添加米糠和光皮树籽粕能显著促进平菇菌丝的生长(20.0 g/L最佳),同时米糠和光皮树籽粕对pb(2+)、Hg(2+)具有螯合作用;在受到50 mg/L Pb(2+)或15 mg/L Hg(2+)污染的培养基中,添加米糠或光皮树籽粕都具有显著的螯合解毒效果,受pb(2+)、Hg(2+)毒害的平菇菌丝可以恢复生长.袋栽试验中,在被污染的栽培料中添加米糠或光皮树籽粕,表现出很强的螯合解毒和增产效果,其平菇子实体中的Pb(2+)、Hg(2+)含量都较相应的对照栽培处理配方有显著降低.%To alleviate the toxic effects of heavy metals on Pleurotus ostreatus, detoxification of rice bran and Swida wilsoniana oilcake to heavy metals was studied through a series of plate cultivation and sawdust cultivation. The results showed that the mycelium growth of Pleurotus ostreatus were all significantly inhibited when the basic cultivating medium was contaminated by 50 mg/L Pbz+ or 15 mg/L Hg2+ , respectively. Both of rice bran and Swida wilsoniana oilcake can promote the mycelium growth of Pleurotus ostreatus remarkably when they was added to the basic medium, and the best concentration was 20 g/L. Meanwhile, rice bran and Swida wilsoniana oilcake can take chelation on Pb2+ or Hg2+. The chelation capacity of rice bran on Hg2+ is one order of magnitude stronger than that of Swida wilsoniana oilcake. When rice bran and Swida wilsoniana oilcake are added in the medium contaminated by Pbz+ or Hg2+ respectively, the toxicity of Pb2+, Hg2+ to mycelium growth was decreased and the growth of Pleurotus ostreatus was recovered. In cultivation experiments, rice bran and Swida wilsoniana oilcake showed a very strong effects on chelate detoxification

  13. 寄主植物对朱砂叶螨药剂敏感性及解毒酶活性的短期诱导研究%Short-term induction effects of different host plants on the insecticide susceptibilities and detoxification enzymes of Tetranychus cinnabarinus

    Institute of Scientific and Technical Information of China (English)

    戴宇婷; 张友军; 吴青君; 谢文; 王少丽

    2013-01-01

    将继代饲养在菜豆上的朱砂叶螨Tetranychus cinnabarinus(Boisduval)分别转移到黄瓜、甘蓝和茄子上饲养3代后,测定不同寄主植物对叶螨的药剂敏感性及其解毒酶系活性的诱导作用.结果表明,从菜豆上转养到黄瓜、甘蓝和茄子上后,后3个寄主上叶螨种群对阿维菌素的敏感度均有所上升,对联苯菊酯的敏感度有升有降,甘蓝、茄子上的叶螨种群LC50值分别是菜豆种群的0.27倍和0.44倍.各寄主上饲养的朱砂叶螨的解毒酶活性也发生了不同程度的变异,黄瓜种群上MFO、CarE活性均显著高于其它3种寄主,菜豆种群的GST活性显著高于转养的3种寄主,而甘蓝种群的AchE活性是菜豆种群的3.37倍.研究结果表明不同寄主植物短期饲养可改变朱砂叶螨的药剂敏感性及其解毒酶活性,这种改变随寄主不同而异.%Induction effects of different host plants on the insecticide susceptibilities and detoxification enzymes of the spider mite, Tetranychus cinnabarinus ( Boisduval) were measured in mites that had been reared on beans, cucumbers, cabbages, and eggplants for 3 generations. The founders of each mite population had been obtained from bean plants. Mites fed on cucumber, cabbage, and eggplant displayed increased susceptibility to abamectin, whereas susceptibility to bifenthrin was more variable. The LC50 values of mites on cabbage and eggplant were, respectively, 0.27 times and 0.44 times that of those on beans. The activities of mites' detoxification enzymes differed on different host plants. The activities of MFO and CarE in mites on cucumbers were significantly higher than in those on the other 3 host plants and GST activity of mites on beans was significantly higher than in those on other plants. The AchE activity of T. cinnabarinus on cabbage was 3.37 times higher than that of those on beans. These results show that short-term rearing of T. cinnabarinus on different vegetable crops can induce

  14. Susceptibility to acaricides and detoxification enzyme activity of four field populations of Panonychus citri%柑橘全爪螨田间种群敏感性测定及三种主要解毒酶活性比较

    Institute of Scientific and Technical Information of China (English)

    丁天波; 牛金志; 夏文凯; 孙倩倩; 豆威; 王进军

    2012-01-01

    The susceptibility of four Chongqing populations of the citrus red mite Panonychus citri ( McGregor) to four commonly used acaricides, abamectin, azocyclotin, pyridaben and spirodiclofen, was investigated. The results show that all four populations were least sensitive to azocyclotin, with LC50 values ranging from 209. 9 to 370. 9 mg/L, relative to the other three acaricides. The Bishan population exhibited the highest level of sensitivity to abamectin; LC50 values of the Wulong and Zhongxian populations were 12-and 11-times higher than that of Bishan population. Although the Beibei population had significantly higher resistance to pyridaben, it had a low LC50 value to spirodiclofen. Investigation of the activities of the main detoxification enzymes ( cytochrome P450 momooxygenases, glutathione S-transferase, carboxylesterase) indicated that there was no significant correlation between resistance levels and detoxification enzyme activity. These could possibly be caused by different strategies of applying acaricides in the field, differences in mode of action between different acaricides and different resistance mechanisms in the four populations.%为明确重庆地区柑橘全爪螨Panonychus citri (McGregor)对常用杀螨剂的抗性水平,本研究采用阿维菌素、哒螨灵、三唑锡、螺螨酯4种不同类型杀螨剂对柑橘全爪螨重庆北碚种群、璧山种群、武隆种群和忠县种群进行了田间敏感性测定.结果表明,柑橘全爪螨4个种群对三唑锡表现最不敏感,致死中浓度LC50在209.9 ~370.9mg/L之间.璧山种群对阿维菌素敏感性最高,武隆种群和忠县种群对阿维菌素的相对抗性分别达12倍和11倍.哒螨灵监测结果表明,北碚种群的抗性水平显著高于其他3个种群.而北碚种群对螺螨酯的LC50仅为1.2 mg/L,显著低于其他种群.柑橘全爪螨4个种群解毒酶活性研究发现,解毒酶活性的高低与不同种群抗性水平之间并没有明显相关性,这

  15. Selective Detoxification of Steam Explosion Pretreated Stream from Corn Stover with Anion Exchange Resin%阴离子交换树脂对玉米秸秆蒸汽爆破预处理液的选择性脱毒

    Institute of Scientific and Technical Information of China (English)

    徐勇; 江寅申; 左志凤; 张行星; 勇强; 余世袁

    2012-01-01

    The selective adsorption detoxification capacity (SADC) were experimentally compared among 4 anion exchange resin products respectively in the simulated solution (SS) by mixed sugars,organic acids,furan aldehydes and the steam explosion pretreated stream from corn stover (SES). A macroporous styrene series,i. e. weakly alkaline anion exchange resin D301 ,was then selected due to its better adsorbing priority to inhibitors of acids and furan aldehydes than sugars in SS and SES. Resin D301 could adsorb most inhibitors but little sugars in SS. For resin D301 ,acids adsorption was in agreement to Freundlish multilayer isothermal adsorption feature but sugars and furan aldehydes adsorption were in agreement with Langmuir monolayer isothermal adsorption feature. Resin D301 still showed its SADC in SES. It was different from SS in SES that the total inhibitors adsorption ratio decreased markedly by 36.6 % from 70.2 % to 44. 5 % ,but on the contrary,the monosaccharide adsorption ratio raised sharply by 20-31 times from 1.2% to 25. 5 % -37. 9 % . The adsorption ratio of xylo-oligosaccharide and gluco-oligosaccharide reached 13.7 % and 10.6 % respectively because of unknown components interference. 69. 1 % of acids,94.4 % of furan aldehydes,75.4 % of colored substances and 33.9 % of degraded lignin were removed together with 16.3 % of sugars in SES by the combined method of vacuum evaporation and resin D301 adsorption. Although the combined method for detoxification of SES showed a promising future in effectively improving the fermentability of SES,we still have to face the big gap from industrial production. It was noticed that the wider and deeper study is needed to develop the detoxification technology of pretreated lignocellulosic biomass.%分别以糖-酸-醛模拟液和玉米秸秆蒸汽爆破预处理液为实验材料,比较了4种典型的阴离子交换树脂的选择性交换吸附脱毒性能,从中筛选出大孔型苯乙烯系阴离子交换树脂D301.D301

  16. Ga[OSi(O(t)Bu)3]3·THF, a thermolytic molecular precursor for high surface area gallium-containing silica materials of controlled dispersion and stoichiometry.

    Science.gov (United States)

    Dombrowski, James P; Johnson, Gregory R; Bell, Alexis T; Tilley, T Don

    2016-07-01

    The molecular precursor tris[(tri-tert-butoxy)siloxy]gallium, as the tetrahydrofuran adduct Ga[OSi(O(t)Bu)3]3·THF (), was synthesized via the salt metathesis reaction of gallium trichloride with NaOSi(O(t)Bu)3. This complex serves as a model for isolated gallium in a silica framework. Complex decomposes thermally in hydrocarbon solvent, eliminating isobutylene, water, and tert-butanol to generate high surface area gallium-containing silica at low temperatures. When thermal decomposition was performed in the presence of P-123 Pluronic as a templating agent the generated material displayed uniform vermicular pores. Textural mesoporosity was evident in untemplated material. Co-thermolysis of with HOSi(O(t)Bu)3 in the presence of P-123 Pluronic led to materials with Ga : Si ratios ranging from 1 : 3 to 1 : 50, denoted UCB1-GaSi3, UCB1-GaSi10, UCB1-GaSi20 and UCB1-GaSi50. After calcination at 500 °C these materials exhibited decreasing surface areas and broadening pore distributions with increasing silicon content, indicating a loss of template effects. The position and dispersion of the gallium in UCB1-GaSi materials was investigated using (71)Ga MAS-NMR, powder XRD, and STEM/EDS elemental mapping. The results indicate a high degree of gallium dispersion in all samples, with gallium oxide clusters or oligomers present at higher gallium content. PMID:27312519