WorldWideScience

Sample records for chelate modulates tumor

  1. Modulation of in vivo distribution through chelator: Synthesis and evaluation of a 2-nitroimidazole-dipicolylamine-(99m)Tc(CO)3 complex for detecting tumor hypoxia.

    Science.gov (United States)

    Mallia, Madhava B; Mittal, Sweety; Sarma, Haladhar D; Banerjee, Sharmila

    2016-01-01

    Previous studies have clearly demonstrated strong correlation between in vivo distribution and blood clearance of radiopharmaceuticals for the detection of hypoxia. Present study describes an attempt to improve the in vivo distribution of a previously reported 2-nitroimidazole-(99m)Tc(CO)3 complex by tuning its blood clearance pattern through structural modification of the ligand. Herein, a 2-nitroimidazole-dipicolylamine ligand (2-nitroimidazole-DPA) was synthesized in a two-step procedure and radiolabeled with (99m)Tc(CO)3 core. Subsequently, the complex was evaluated in Swiss mice bearing fibrosarcoma tumor. As intended by its design, 2-nitroimidazole-DPA-(99m)Tc(CO)3 complex was more lipophilic than previously reported 2-nitroimidazole-DETA-(99m)Tc(CO)3 complex (DETA-diethylenetriamine) and showed slower blood clearance. Consequently it showed higher tumor uptake than 2-nitroimidazole-DETA-(99m)Tc(CO)3 complex. Significantly, despite structural modifications, other parameters such as the tumor to blood ratio and tumor to muscle ratio of the 2-nitroimidazole-DPA-(99m)Tc(CO)3 complex remained comparable to that of 2-nitroimidazole-DETA-(99m)Tc(CO)3 complex. Present study demonstrates the feasibility of structural modifications for improving in vivo tumor uptake of hypoxia detecting radiopharmaceuticals. This might encourage researchers to improve suboptimal properties of a potential radiopharmaceuticals rather than ignoring it altogether. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Enhancement of 67Ga tumor-to-blood ratios by chelating agent

    International Nuclear Information System (INIS)

    Saji, Hideo; Yokoyama, Akira; Hata, Naotaka; Misaki, Atsushi; Tanaka, Hisashi.

    1980-01-01

    Chelating agent, such as, CaEDTA, CaDTPA, D-penicillamine, DMSA, desferoxamine, NTA, cysteine ethyl ester, BAL, α-MPG, phthalein complexone, were tested as a possible contrast enhancing agent for tumor imaging with 67 Ga-citrate. The intravenous administration of a chelating agent to Ehrlich's tumor bearing mice, one hour after the injection of 67 Ga-citrate, accelerated the blood clearance with only a very slight change of activity in the target, increasing the tumor-to-blood ratio, and consequently achieving a better visualization. Among the tested chelating agents, D-penicillamine showed the highest target-to-nontarget ratio at a shorter time: a good tumor-to-blood ratio, performed after 24 hr with non-treated animals, was achieved in only 1-3 hr with post-treated animals. Thus, D-penicillamine hold a considerable promise as a contrast enhancing agent for future clinical use. (author)

  3. Quilamine HQ1-44, an iron chelator vectorized toward tumor cells by the polyamine transport system, inhibits HCT116 tumor growth without adverse effect.

    Science.gov (United States)

    Renaud, Stéphanie; Corcé, Vincent; Cannie, Isabelle; Ropert, Martine; Lepage, Sylvie; Loréal, Olivier; Deniaud, David; Gaboriau, François

    2015-08-01

    Tumor cell growth requires large iron quantities and the deprivation of this metal induced by synthetic metal chelators is therefore an attractive method for limiting the cancer cell proliferation. The antiproliferative effect of the Quilamine HQ1-44, a new iron chelator vectorized toward tumor cells by a polyamine chain, is related to its high selectivity for the Polyamine Transport System (PTS), allowing its preferential uptake by tumoral cells. The difference in PTS activation between healthy cells and tumor cells enables tumor cells to be targeted, whereas the strong dependence of these cells on iron ensures a secondary targeting. Here, we demonstrated in vitro that HQ1-44 inhibits DNA synthesis and cell proliferation of HCT116 cells by modulating the intracellular metabolism of both iron and polyamines. Moreover, in vivo, in xenografted athymic nude mice, we found that HQ1-44 was as effective as cis-platin in reducing HCT116 tumor growth, without its side effects. Furthermore, as suggested by in vitro data, the depletion in exogenous or endogenous polyamines, known to activate the PTS, dramatically enhanced the antitumor efficiency of HQ1-44. These data support the need for further studies to assess the value of HQ1-44 as an adjuvant treatment in cancer. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Localization of indium-111 in human malignant tumor xenografts and control by chelators

    International Nuclear Information System (INIS)

    Watanabe, Naoyuki; Oriuchi, Noboru; Endo, Keigo; Inoue, Tomio; Tanada, Shuji; Murata, Hajime; Kim, E. Edmund; Sasaki, Yasuhito

    1999-01-01

    The kinetics of soluble indium-111 ( 111 In) in human malignant tumor xenografts and cells was investigated in combination with chelators. Firstly, without chelator, the kinetics of 111 In-chloride was investigated in vitro and in vivo using four human malignant neuroblastoma SK-N-MC, pulmonary papillary adenocarcinoma NCI-H441, pulmonary squamous cell carcinoma PC 9, and colon adenocarcinoma LS 180 cells and xenografts. 111 In was incorporated into tumor cells in vitro to a maximum level during a 60-min incubation. A maximum level of radioactivity was demonstrated in vivo in four human malignant tumors xenografted into nude mice at 24 h postinjection of 111 In-chloride. Secondly, the effect of edetate calcium disodium (CaNa 2 EDTA) on radioactivity in 111 In-labeled tumors xenografts and cells was studied in vitro and in vivo. CaNa 2 EDTA significantly reduced 111 In-activity from the labeled tumor xenografts, whereas it had no affect on the radioactivity in the labeled cells. Thirdly, the effect of CaNa 2 EDTA on radioactivity in human malignant tumors xenografted into nude mice injected with 111 In-chloride was investigated. In one group of mice CaNa 2 EDTA administered intraperitoneally at 1, 22, 34, 46, 58, and 70 h after injection of 111 In-chloride (postadministration), the localization of 111 In at the tumors was significantly decreased at 72 h compared with the control in all four tumor types. In the other group of mice, CaNa 2 EDTA administered intraperitoneally at 12 and 1 h before injection of 111 In-chloride and 1, 22, 34, 46, 58, and 70 h postinjection (pre- and postadministration), the radioactivity of tumors was also significantly decreased at 72 h, and the reduction was greater than that with use of postadministration. In a comparative study, CaNa 3 DTPA had a more powerful effect than CaNa 2 EDTA. In conclusion, 111 In-activity in tumors consists of intracellular and extracellular components, and the extracellular 111 In may be cleared by

  5. Characterization of Tumor-Avid Antibody Fragments Genetically Engineered for Mono-Specific Radionuclide Chelation

    International Nuclear Information System (INIS)

    Quinn, T.P.

    2003-01-01

    The successful clinical application of targeted-radiopharmaceuticals depends on the development of molecules that optimize tumor specific radionuclide deposition and minimize non-specific organ irradiation. To this end, this proposal outlines a research effort to identify and evaluate novel antibodies and antibody fragments that bind breast tumors. The tumor-avid antibodies will be investigated for as imaging and therapeutic agents and to gain a better understanding of the pharmacokinetics and metabolism of radiolabeled tumor-avid antibody fragments through the use of site-specifically labeled molecules. Antibodies or antibody fragments, that bind breast carcinoma carbohydrate antigens, will be obtained from hybridoma or bacteriophage library screening. More specifically, antibody fragments that bind the carcinoma-associated Thomsen-Friedenreich (T) antigen will be radiolabeled with 99m Tc and 188 Re at a natural amino acid chelation site and will be investigated in vivo for their abilities to target human breast tumors. In addition, site-specific radiolabeled antibody fragments will be biosynthesized using misacylated suppressor tRNAs. Homogeneously radiolabeled populations of antibody fragments will be used to investigate the effects of radionuclide location and chelation chemistries on their biodistribution and metabolism. It is hypothesized that site-specifically radiolabeled antibody fragments will possess enhanced tumor imaging and therapeutic properties due to optimal label location and conjugation chemistries. New insights into the factors that govern antibody metabolism in vivo are also expected from this work. Results from these studies should enhance our ability to design and synthesize radiolabeled antibody fragments that have improved pharmacokinetic properties. The studies in this proposal involve basic research into the development of antibody-based radiopharmaceuticals, with the ultimate goal of application in humans. This type of basic nuclear

  6. Modulating the Tumor Microenvironment to Enhance Tumor Nanomedicine Delivery

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2017-12-01

    Full Text Available Nanomedicines including liposomes, micelles, and nanoparticles based on the enhanced permeability and retention (EPR effect have become the mainstream for tumor treatment owing to their superiority over conventional anticancer agents. Advanced design of nanomedicine including active targeting nanomedicine, tumor-responsive nanomedicine, and optimization of physicochemical properties to enable highly effective delivery of nanomedicine to tumors has further improved their therapeutic benefits. However, these strategies still could not conquer the delivery barriers of a tumor microenvironment such as heterogeneous blood flow, dense extracellular matrix, abundant stroma cells, and high interstitial fluid pressure, which severely impaired vascular transport of nanomedicines, hindered their effective extravasation, and impeded their interstitial transport to realize uniform distribution inside tumors. Therefore, modulation of tumor microenvironment has now emerged as an important strategy to improve nanomedicine delivery to tumors. Here, we review the existing strategies and approaches for tumor microenvironment modulation to improve tumor perfusion for helping more nanomedicines to reach the tumor site, to facilitate nanomedicine extravasation for enhancing transvascular transport, and to improve interstitial transport for optimizing the distribution of nanomedicines. These strategies may provide an avenue for the development of new combination chemotherapeutic regimens and reassessment of previously suboptimal agents.

  7. Modulating the Tumor Microenvironment to Enhance Tumor Nanomedicine Delivery

    Science.gov (United States)

    Zhang, Bo; Hu, Yu; Pang, Zhiqing

    2017-01-01

    Nanomedicines including liposomes, micelles, and nanoparticles based on the enhanced permeability and retention (EPR) effect have become the mainstream for tumor treatment owing to their superiority over conventional anticancer agents. Advanced design of nanomedicine including active targeting nanomedicine, tumor-responsive nanomedicine, and optimization of physicochemical properties to enable highly effective delivery of nanomedicine to tumors has further improved their therapeutic benefits. However, these strategies still could not conquer the delivery barriers of a tumor microenvironment such as heterogeneous blood flow, dense extracellular matrix, abundant stroma cells, and high interstitial fluid pressure, which severely impaired vascular transport of nanomedicines, hindered their effective extravasation, and impeded their interstitial transport to realize uniform distribution inside tumors. Therefore, modulation of tumor microenvironment has now emerged as an important strategy to improve nanomedicine delivery to tumors. Here, we review the existing strategies and approaches for tumor microenvironment modulation to improve tumor perfusion for helping more nanomedicines to reach the tumor site, to facilitate nanomedicine extravasation for enhancing transvascular transport, and to improve interstitial transport for optimizing the distribution of nanomedicines. These strategies may provide an avenue for the development of new combination chemotherapeutic regimens and reassessment of previously suboptimal agents. PMID:29311946

  8. The microbiome modulates the tumor macroenvironment.

    Science.gov (United States)

    Erdman, Susan E; Poutahidis, Theofilos

    2014-01-01

    Earlier investigations of the tumor microenvironment unveiled systemic networks presenting novel therapeutic opportunities. It has been recently shown that gut microbes modulate whole host immune and neuroendocrine factors impacting the fate of distant preneoplastic lesions toward malignancy or regression. These findings establish a new paradigm of holobiont therapeutic engineering in emerging tumor macroenvironments.

  9. Synthesis of novel bifunctional chelators and their use in preparing monoclonal antibody conjugates for tumor targeting

    International Nuclear Information System (INIS)

    Westerberg, D.A.; Carney, P.L.; Rogers, P.E.; Kline, S.J.; Johnson, D.K.

    1989-01-01

    Bifunctional derivatives of the chelating agents ethylenediaminetetraacetic acid and diethylenetriaminepentaacetic acid, in which a p-isothiocyanatobenzyl moiety is attached at the methylene carbon atom of one carboxymethyl arm, was synthesized by reductive alkylation of the relevant polyamine with (p-nitrophenyl)pyruvic acid followed by carboxymethylation, reduction of the nitro group, and reaction with thiophosgene. The resulting isothiocyanate derivatives reacted with monoclonal antibody B72.3 to give antibody-chelator conjugates containing 3 mol of chelator per mole of immunoglobulin, without significant loss of immunological activity. Such conjugates, labeled with the radioisotopic metal indium-111, selectively bound a human colorectal carcinoma implanted in nude mice when given intravenously. Uptake into normal tissues was comparable to or lower than that reported for analogous conjugates with known bifunctional chelators. It is concluded that substitution with a protein reactive group at this position in polyaminopolycarboxylate chelators does not alter the chelating properties of these molecules to a sufficient extent to adversely affect biodistribution and thus provides a general method for the synthesis of such chelators

  10. Commensal bacteria modulate the tumor microenvironment.

    Science.gov (United States)

    Poutahidis, Theofilos; Erdman, Susan E

    2016-09-28

    It has been recently shown that gut microbes modulate whole host immune and hormonal factors impacting the fate of distant preneoplastic lesions toward malignancy or regression. This raises the possibility that the tumor microenvironment interacts with broader systemic microbial-immune networks. These accumulated findings suggest novel therapeutic opportunities for holobiont engineering in emerging tumor microenvironments. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Ascorbate status modulates reticuloendothelial iron stores and response to deferasirox iron chelation in ascorbate-deficient rats

    DEFF Research Database (Denmark)

    Brewer, Casey; Otto-Duessel, Maya; Lykkesfeldt, Jens

    2012-01-01

    Iron chelation is essential to patients on chronic blood transfusions to prevent toxicity from iron overload and remove excess iron. Deferasirox (DFX) is the most commonly used iron chelator in the United States; however, some patients are relatively refractory to DFX therapy. We postulated...... that vitamin C supplementation would improve the availability of transfusional iron to DFX treatment by promoting iron's redox cycling, increasing its soluble ferrous form and promoting its release from reticuloendothelial cells. Osteogenic dystrophy rats (n = 54) were given iron dextran injections for 10...... 12 weeks of sham chelation. Most importantly, ascorbate supplementation at 2250 ppm improved DFX efficiency, allowing DFX to remove 21% more hepatic iron than ascorbate supplementation with 900 ppm or 150 ppm (p vitamin C status modulates the release of iron from...

  12. Hybrid Calcium Phosphate-Polymeric Micelles Incorporating Gadolinium Chelates for Imaging-Guided Gadolinium Neutron Capture Tumor Therapy.

    Science.gov (United States)

    Mi, Peng; Dewi, Novriana; Yanagie, Hironobu; Kokuryo, Daisuke; Suzuki, Minoru; Sakurai, Yoshinori; Li, Yanmin; Aoki, Ichio; Ono, Koji; Takahashi, Hiroyuki; Cabral, Horacio; Nishiyama, Nobuhiro; Kataoka, Kazunori

    2015-06-23

    Gadolinium (Gd) chelates-loaded nanocarriers have high potential for achieving magnetic resonance imaging (MRI)-guided Gd neutron capture therapy (GdNCT) of tumors. Herein, we developed calcium phosphate micelles hybridized with PEG-polyanion block copolymers, and incorporated with the clinical MRI contrast agent Gd-diethylenetriaminepentaacetic acid (Gd-DTPA/CaP). The Gd-DTPA/CaP were nontoxic to cancer cells at the concentration of 100 μM based on Gd-DTPA, while over 50% of the cancer cells were killed by thermal neutron irradiation at this concentration. Moreover, the Gd-DTPA/CaP showed a dramatically increased accumulation of Gd-DTPA in tumors, leading to the selective contrast enhancement of tumor tissues for precise tumor location by MRI. The enhanced tumor-to-blood distribution ratio of Gd-DTPA/CaP resulted in the effective suppression of tumor growth without loss of body weight, indicating the potential of Gd-DTPA/CaP for safe cancer treatment.

  13. In-111 BLEDTA: a conjugate of bleomycin with a bifunctional chelating agent for tumor localization

    International Nuclear Information System (INIS)

    Goodwin, D.A.; Meares, C.F.; DeRiemer, L.H.; Diamanti, C.I.; Goode, R.L.

    1979-01-01

    BLEDTA, a bleomycin A 2 analog containing an EDTA group was labeled in the EDTA group to a specific activity of 70 mCi/mg and used for animal and human studies. KHJJ mouse tumor uptake was higher than the orange Co-57 bleomycin isomer and the tumor/organ ratios were >1 for all organs except the kidney. In 29 biopsy proven cancer patients the scan done 24 hours post I.V. with 1-2 mCi of In-111 BLEDTA was positive in all clinically known sites in 18, and in some clinically known sites in 11. The In-111 BLEDTA clinical results are similar to reported Co-57 bleomycin clinical studies, and the method is proposed as an alternate way to produce a stable biologically active bleomycin labeled with In-111

  14. Imaging Tumor Vasculature Noninvasively with Positron Emission Tomography and RGD Peptides Labeled with Copper 64 Using the Bifunctonal Chelates DOTA, Oxo-DO3A. and PCTA

    Directory of Open Access Journals (Sweden)

    Donald T.T. Yapp

    2013-06-01

    Full Text Available Two novel bifunctional chelates, 3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15,11,13-triene-3,6,9-triacetic acid (PCTA and 1-oxa-4,7,10-triazacyclododecane-4,7,10-triacetic acid (Oxo-DO3A, were found to radiolabel antibodies with copper 64 (64Cu well for positron emission tomography (PET. In this study, the same chelators were used to radiolabel peptides with 64Cu for PET imaging of angiogenesis. PCTA, Oxo-DO3A, and 1,4,7,10-tetraazacyclododecane-N,N‘,N“,N”’-tetraacetic acid (DOTA were conjugated to cyclic-(RGDyK, and their binding affinities were confirmed. Conditions for 64Cu radiolabeling were optimized for maximum yield and specific activity. The in vitro stability of the radiolabeled compounds was challenged with serum incubation. PET studies were carried out in a non-αvβ3-expressing tumor model to evaluate the compounds' specificity for proliferating tumor vasculature and their in vivo pharmacokinetics. The PCTA and Oxo-DO3A bioconjugates were labeled with 64Cu at higher effective specific activity and radiochemical yield than the DOTA bioconjugate. In the imaging studies, all the 64Cu bioconjugates could be used to visualize the tumor and the radiotracer uptake was blocked with cyclic-(RGDyK. Target uptake of each bioconjugate was similar, but differences in other tissues were observed. 64Cu-PCTA-RGD showed the best clearance from nontarget tissue and the highest tumor to nontarget ratios. PCTA was the most promising bifunctional chelate for 64Cu peptide imaging and warrants further investigation.

  15. Modulation of the tumor vasculature and oxygenation to improve therapy

    DEFF Research Database (Denmark)

    Siemann, Dietmar W; Horsman, Michael R

    2015-01-01

    The tumor microenvironment is increasingly recognized as a major factor influencing the success of therapeutic treatments and has become a key focus for cancer research. The progressive growth of a tumor results in an inability of normal tissue blood vessels to oxygenate and provide sufficient...... important are the functional consequences experienced by the tumor cells residing in such environments: adaptation to hypoxia, cell quiescence, modulation of transporters and critical signaling molecules, immune escape, and enhanced metastatic potential. Together these factors lead to therapeutic barriers...

  16. Intensity-Modulated Radiation Therapy for Primary Brain Tumors

    Institute of Scientific and Technical Information of China (English)

    Zhong-min Wang

    2004-01-01

    Radiation therapy has been used to treat primary brain tumors as standard primary and/or adjunctive therapies for decades. It is difficult for conventional radiotherapy to deliver a lethal dose of radiation to the tumors while sparing surrounding normal brain due to complicated structures and multifunction in human brain. With the understanding of radiation physics and computer technology, a number of novel and more precise radiotherapies have been developed in recent years. Intensity modulated radiotherapy (IMRT) is one of these strategies. The use of IMRT in the treatment of primary brain tumors is being increasing nowadays. It shows great promise for some of primary brain tumors and also presents some problems, This review highlights current IMRT in the treatment of mainly primary brain tumors.

  17. Effect of Chelator Conjugation Level and Injection Dose on Tumor and Organ Uptake of 111In Labeled MORAb-009, an Anti-mesothelin Antibody

    Science.gov (United States)

    Shin, I. S.; Lee, S.-M.; Kim, H. S.; Yao, Z.; Regino, C.; Sato, N.; Cheng, K. T.; Hassan, R.; Campo, M. F.; Albone, E. F.; Choyke, P. L.; Pastan, I.; Paik, C. H.

    2012-01-01

    Introduction Radiolabeling of a monoclonal antibody (mAb) with a metallic radionuclide requires the conjugation of a bifunctional chelator to the mAb. The conjugation, however, can alter the physical and immunological properties of the mAb, consequently affecting its tumor targeting pharmacokinetics. In this study, we investigated the effect of the amount of 2-(p-isothiocyanatobenzyl)-cyclohexyl-diethylenetriamine-pentaacetic acid (CHX-A″) conjugated to MORAb-009, a mAb directed against mesothelin and the effect of MORAb dose on the biodistribution of 111In labeled MORAb-009. Methods We used nude mice bearing A431/K5 tumor as a mesothelin-positive tumor model and A431 tumor as a mesothelin-negative control. To find the optimal level of CHX-A″ conjugation, CHX-A″-MORAb-009 conjugates with 2.4, 3.5, and 5.5 CHX-A″ molecules were investigated. To investigate the effect of injected MORAb-009 dose on neutralizing the shed-mesothelin in the circulation, the biodistribution studies were performed after the i.v. co-injection of the 111In labeled MORAb-009 (2.4 CHX-A″/MORAb-009) with three different doses, 0.2, 2, and 30 μg of MORAb-009. Results The tumor uptake in A431/K5 tumor was 4 times higher than that in A431 tumor, indicating that the tumor uptake in A431/K5 was mesothelin-mediated. The conjugate with 5.5 CHX-A″ showed a lower isoelectric point (pI) and lower immunoreactivity (IR) than the 2.4 CHX-A″ conjugate. These differences were reflected in biodistribution of the 111In label. The 111In labeled MORAb-009 conjugated with 2.4 CHX-A″ produced higher tumor uptake, and lower liver and spleen uptakes than the 5.5 CHX-A″ conjugate. The biodistribution studies also revealed that the tumor uptake was significantly affected by the injected MORAb-009 dose and tumor size. The 30 μg dose produced higher tumor uptake than the 0.2 and 2 μg doses whereas the 30 μg dose produced lower liver and spleen uptakes than the 0.2 μg dose. Conclusion This study

  18. Comparison of two cross-bridged macrocyclic chelators for the evaluation of 64Cu-labeled-LLP2A, a peptidomimetic ligand targeting VLA-4-positive tumors

    International Nuclear Information System (INIS)

    Jiang, Majiong; Ferdani, Riccardo; Shokeen, Monica; Anderson, Carolyn J.

    2013-01-01

    Integrin α 4 β 1 (also called very late antigen-4 or VLA-4) plays an important role in tumor growth, angiogenesis and metastasis, and there has been increasing interest in targeting this receptor for cancer imaging and therapy. In this study, we conjugated a peptidomimetic ligand known to have good binding affinity for α 4 β 1 integrin to a cross-bridged macrocyclic chelator with a methane phosphonic acid pendant arm, CB-TE1A1P. CB-TE1A1P-LLP2A was labeled with 64 Cu under mild conditions in high specific activity, in contrast to conjugates based on the “gold standard” di-acid cross-bridged chelator, CB-TE2A, which require high temperatures for efficient radiolabeling. Saturation binding assays demonstrated that 64 Cu-CB-TE1A1P-LLP2A had comparable binding affinity (1.2 nM vs 1.6 nM) but more binding sites (B max = 471 fmol/mg) in B16F10 melanoma tumor cells than 64 Cu-CB-TE2A-LLP2A (B max = 304 fmol/mg, p 64 Cu-CB-TE1A1P-LLP2A had less renal retention but higher uptake in tumor (11.4 ± 2.3 %ID/g versus 3.1 ± 0.6 %ID/g, p 64 Cu-CB-TE2A-LLP2A. At 2 h post-injection, 64 Cu-CB-TE1A1P-LLP2A also had significantly higher tumor:blood and tumor:muscle ratios than 64 Cu-CB-TE2A-LLP2A (CB-TE1A1P = 19.5 ± 3.0 and 13.0 ± 1.4, respectively, CB-TE2A = 4.2 ± 1.4 and 5.5 ± 0.9, respectively, p 64 Cu-CB-TE1A1P-LLP2A is an excellent PET radiopharmaceutical for the imaging of α 4 β 1 positive tumors and also has potential for imaging other α 4 β 1 positive cells such as those of the pre-metastatic niche

  19. DOTA-functionalized polylysine: a high number of DOTA chelates positively influences the biodistribution of enzymatic conjugated anti-tumor antibody chCE7agl.

    Science.gov (United States)

    Grünberg, Jürgen; Jeger, Simone; Sarko, Dikran; Dennler, Patrick; Zimmermann, Kurt; Mier, Walter; Schibli, Roger

    2013-01-01

    Site-specific enzymatic reactions with microbial transglutaminase (mTGase) lead to a homogenous species of immunoconjugates with a defined ligand/antibody ratio. In the present study, we have investigated the influence of different numbers of 1,4,7,10-tetraazacyclododecane-N-N'-N''-N'''-tetraacetic acid (DOTA) chelats coupled to a decalysine backbone on the in vivo behavior of the chimeric monoclonal anti-L1CAM antibody chCE7agl. The enzymatic conjugation of (DOTA)1-decalysine, (DOTA)3-decalysine or (DOTA)5-decalysine to the antibody heavy chain (via Gln295/297) gave rise to immunoconjugates containing two, six or ten DOTA moieties respectively. Radiolabeling of the immunoconjugates with (177)Lu yielded specific activities of approximately 70 MBq/mg, 400 MBq/mg and 700 MBq/mg with increasing numbers of DOTA chelates. Biodistribution experiments in SKOV3ip human ovarian cancer cell xenografts demonstrated a high and specific accumulation of radioactivity at the tumor site for all antibody derivatives with a maximal tumor accumulation of 43.6±4.3% ID/g at 24 h for chCE7agl-[(DOTA)-decalysine]2, 30.6±12.0% ID/g at 24 h for chCE7agl-[(DOTA)3-decalysine]2 and 49.9±3.1% ID/g at 48 h for chCE7agl-[(DOTA)5-decalysine)]2. The rapid elimination from the blood of chCE7agl-[(DOTA)-decalysine]2 (1.0±0.1% ID/g at 24 h) is associated with a high liver accumulation (23.2±4.6% ID/g at 24 h). This behavior changed depending on the numbers of DOTA moieties coupled to the decalysine peptide with a slower blood clearance (5.1±1.0 (DOTA)3 versus 11.7±1.4% ID/g (DOTA)5, pDOTA)3 versus 5.8±0.7 (DOTA)5, pDOTA-substituted decalysine ((DOTA)5-decalysine) to an anti-tumor antibody leads to the formation of immunoconjugates with high specific activity and excellent in vivo behavior and is a valuable option for radioimmunotherapy and potentially antibody-drug conjugates (ADCs).

  20. DOTA-functionalized polylysine: a high number of DOTA chelates positively influences the biodistribution of enzymatic conjugated anti-tumor antibody chCE7agl.

    Directory of Open Access Journals (Sweden)

    Jürgen Grünberg

    Full Text Available Site-specific enzymatic reactions with microbial transglutaminase (mTGase lead to a homogenous species of immunoconjugates with a defined ligand/antibody ratio. In the present study, we have investigated the influence of different numbers of 1,4,7,10-tetraazacyclododecane-N-N'-N''-N'''-tetraacetic acid (DOTA chelats coupled to a decalysine backbone on the in vivo behavior of the chimeric monoclonal anti-L1CAM antibody chCE7agl. The enzymatic conjugation of (DOTA1-decalysine, (DOTA3-decalysine or (DOTA5-decalysine to the antibody heavy chain (via Gln295/297 gave rise to immunoconjugates containing two, six or ten DOTA moieties respectively. Radiolabeling of the immunoconjugates with (177Lu yielded specific activities of approximately 70 MBq/mg, 400 MBq/mg and 700 MBq/mg with increasing numbers of DOTA chelates. Biodistribution experiments in SKOV3ip human ovarian cancer cell xenografts demonstrated a high and specific accumulation of radioactivity at the tumor site for all antibody derivatives with a maximal tumor accumulation of 43.6±4.3% ID/g at 24 h for chCE7agl-[(DOTA-decalysine]2, 30.6±12.0% ID/g at 24 h for chCE7agl-[(DOTA3-decalysine]2 and 49.9±3.1% ID/g at 48 h for chCE7agl-[(DOTA5-decalysine]2. The rapid elimination from the blood of chCE7agl-[(DOTA-decalysine]2 (1.0±0.1% ID/g at 24 h is associated with a high liver accumulation (23.2±4.6% ID/g at 24 h. This behavior changed depending on the numbers of DOTA moieties coupled to the decalysine peptide with a slower blood clearance (5.1±1.0 (DOTA3 versus 11.7±1.4% ID/g (DOTA5, p<0.005 at 24 h and lower radioactivity levels in the liver (21.4±3.4 (DOTA3 versus 5.8±0.7 (DOTA5, p<0.005 at 24 h. We conclude that the site-specific and stoichiometric uniform conjugation of the highly DOTA-substituted decalysine ((DOTA5-decalysine to an anti-tumor antibody leads to the formation of immunoconjugates with high specific activity and excellent in vivo behavior and is a valuable option for

  1. Conformal radiotherapy by intensity modulation of pediatrics tumors

    International Nuclear Information System (INIS)

    Leseur, J.; Le Prise, E.; Carrie, C.; Bernier, V.; Beneyton, V.; Mahe, M.A.; Supiot, S.

    2009-01-01

    The objective of this study is to take stock on the validated and potential indications of the conformal radiotherapy with intensity modulation ( intensity modulated radiotherapy I.M.R.T.) in pediatrics and to propose recommendations for its use as well as the adapted dose constraints. About 40 to 50% of children treated for a cancer are irradiated. The I.M.R.T., by linear accelerator or helical tomo-therapy has for aim to give a homogenous dose to the target volume and to save organs at risk. Its use in pediatrics seems particularly interesting because of the complexity of target volumes and the closeness of organs at risk. In compensation for these positive elements, the importance of low doses irradiation given in big volumes makes fear event consequences on growth and an increased incidence of secondary cancers in children suffering from tumors with high cure rates and long life expectancy. (N.C.)

  2. Chelating polymeric membranes

    KAUST Repository

    Peinemann, Klaus-Viktor; Villalobos Vazquez de la Parra, Luis Francisco; Hilke, Roland

    2015-01-01

    microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  3. Modulation of Autophagy-Like Processes by Tumor Viruses

    Directory of Open Access Journals (Sweden)

    Karl Munger

    2012-06-01

    Full Text Available Autophagy is an intracellular degradation pathway for long-lived proteins and organelles. This process is activated above basal levels upon cell intrinsic or environmental stress and dysregulation of autophagy has been linked to various human diseases, including those caused by viral infection. Many viruses have evolved strategies to directly interfere with autophagy, presumably to facilitate their replication or to escape immune detection. However, in some cases, modulation of autophagy appears to be a consequence of the virus disturbing the cell’s metabolic signaling networks. Here, we summarize recent advances in research at the interface of autophagy and viral infection, paying special attention to strategies that human tumor viruses have evolved.

  4. Retinoblastoma loss modulates DNA damage response favoring tumor progression.

    Directory of Open Access Journals (Sweden)

    Marcos Seoane

    Full Text Available Senescence is one of the main barriers against tumor progression. Oncogenic signals in primary cells result in oncogene-induced senescence (OIS, crucial for protection against cancer development. It has been described in premalignant lesions that OIS requires DNA damage response (DDR activation, safeguard of the integrity of the genome. Here we demonstrate how the cellular mechanisms involved in oncogenic transformation in a model of glioma uncouple OIS and DDR. We use this tumor type as a paradigm of oncogenic transformation. In human gliomas most of the genetic alterations that have been previously identified result in abnormal activation of cell growth signaling pathways and deregulation of cell cycle, features recapitulated in our model by oncogenic Ras expression and retinoblastoma (Rb inactivation respectively. In this scenario, the absence of pRb confers a proliferative advantage and activates DDR to a greater extent in a DNA lesion-independent fashion than cells that express only HRas(V12. Moreover, Rb loss inactivates the stress kinase DDR-associated p38MAPK by specific Wip1-dependent dephosphorylation. Thus, Rb loss acts as a switch mediating the transition between premalignant lesions and cancer through DDR modulation. These findings may have important implications for the understanding the biology of gliomas and anticipate a new target, Wip1 phosphatase, for novel therapeutic strategies.

  5. Modulation of Tumor Tolerance in Primary Central Nervous System Malignancies

    Directory of Open Access Journals (Sweden)

    Theodore S. Johnson

    2012-01-01

    Full Text Available Central nervous system tumors take advantage of the unique immunology of the CNS and develop exquisitely complex stromal networks that promote growth despite the presence of antigen-presenting cells and tumor-infiltrating lymphocytes. It is precisely this immunological paradox that is essential to the survival of the tumor. We review the evidence for functional CNS immune privilege and the impact it has on tumor tolerance. In this paper, we place an emphasis on the role of tumor-infiltrating myeloid cells in maintaining stromal and vascular quiescence, and we underscore the importance of indoleamine 2,3-dioxygenase activity as a myeloid-driven tumor tolerance mechanism. Much remains to be discovered regarding the tolerogenic mechanisms by which CNS tumors avoid immune clearance. Thus, it is an open question whether tumor tolerance in the brain is fundamentally different from that of peripheral sites of tumorigenesis or whether it simply stands as a particularly strong example of such tolerance.

  6. Density overwrites of internal tumor volumes in intensity modulated proton therapy plans for mobile lung tumors

    Science.gov (United States)

    Botas, Pablo; Grassberger, Clemens; Sharp, Gregory; Paganetti, Harald

    2018-02-01

    The purpose of this study was to investigate internal tumor volume density overwrite strategies to minimize intensity modulated proton therapy (IMPT) plan degradation of mobile lung tumors. Four planning paradigms were compared for nine lung cancer patients. Internal gross tumor volume (IGTV) and internal clinical target volume (ICTV) structures were defined encompassing their respective volumes in every 4DCT phase. The paradigms use different planning CT (pCT) created from the average intensity projection (AIP) of the 4DCT, overwriting the density within the IGTV to account for movement. The density overwrites were: (a) constant filling with 100 HU (C100) or (b) 50 HU (C50), (c) maximum intensity projection (MIP) across phases, and (d) water equivalent path length (WEPL) consideration from beam’s-eye-view. Plans were created optimizing dose-influence matrices calculated with fast GPU Monte Carlo (MC) simulations in each pCT. Plans were evaluated with MC on the 4DCTs using a model of the beam delivery time structure. Dose accumulation was performed using deformable image registration. Interplay effect was addressed applying 10 times rescanning. Significantly less DVH metrics degradation occurred when using MIP and WEPL approaches. Target coverage (D99≥slant 70 Gy(RBE)) was fulfilled in most cases with MIP and WEPL (D{{99}WEPL}=69.2+/- 4.0 Gy (RBE)), keeping dose heterogeneity low (D5-D{{95}WEPL}=3.9+/- 2.0 Gy(RBE)). The mean lung dose was kept lowest by the WEPL strategy, as well as the maximum dose to organs at risk (OARs). The impact on dose levels in the heart, spinal cord and esophagus were patient specific. Overall, the WEPL strategy gives the best performance and should be preferred when using a 3D static geometry for lung cancer IMPT treatment planning. Newly available fast MC methods make it possible to handle long simulations based on 4D data sets to perform studies with high accuracy and efficiency, even prior to individual treatment planning.

  7. ERF is a Potential ERK-Modulated Tumor Suppressor in Prostate Cancer

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-15-1-0277 TITLE: ERF is a Potential ERK-Modulated Tumor Suppressor in Prostate Cancer PRINCIPAL INVESTIGATOR: Dr...Rohit Bose CONTRACTING ORGANIZATION: Sloan Kettering Institute for Cancer Research New York NY 10065 REPORT DATE: October 2017 TYPE OF REPORT...4. TITLE AND SUBTITLE ERF is a Potential ERK-Modulated Tumor Suppressor in Prostate Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-15-1-0277 5c

  8. ERF is a Potential ERK Modulated Tumor Suppressor in Prostate Cancer

    Science.gov (United States)

    2016-10-01

    6/27/2016 - 6/27/2019 1.20 calendar Prostate Cancer Foundation (formerly CaP CURE) $ 75,000 Epigenetic ...AWARD NUMBER: W81XWH-15-1-0277 TITLE: ERF is a Potential ERK-Modulated Tumor Suppressor in Prostate Cancer PRINCIPAL INVESTIGATOR: Dr. Rohit...4. TITLE AND SUBTITLE ERF is a Potential ERK-Modulated Tumor Suppressor in Prostate Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-15-1-0277

  9. Glycan Sulfation Modulates Dendritic Cell Biology and Tumor Growth

    Directory of Open Access Journals (Sweden)

    Roland El Ghazal

    2016-05-01

    Full Text Available In cancer, proteoglycans have been found to play roles in facilitating the actions of growth factors, and effecting matrix invasion and remodeling. However, little is known regarding the genetic and functional importance of glycan chains displayed by proteoglycans on dendritic cells (DCs in cancer immunity. In lung carcinoma, among other solid tumors, tumor-associated DCs play largely subversive/suppressive roles, promoting tumor growth and progression. Herein, we show that targeting of DC glycan sulfation through mutation in the heparan sulfate biosynthetic enzyme N-deacetylase/N-sulfotransferase-1 (Ndst1 in mice increased DC maturation and inhibited trafficking of DCs to draining lymph nodes. Lymphatic-driven DC migration and chemokine (CCL21-dependent activation of a major signaling pathway required for DC migration (as measured by phospho-Akt were sensitive to Ndst1 mutation in DCs. Lewis lung carcinoma tumors in mice deficient in Ndst1 were reduced in size. Purified CD11c+ cells from the tumors, which contain the tumor-infiltrating DC population, showed a similar phenotype in mutant cells. These features were replicated in mice deficient in syndecan-4, the major heparan sulfate proteoglycan expressed on the DC surface: Tumors were growth-impaired in syndecan-4–deficient mice and were characterized by increased infiltration by mature DCs. Tumors on the mutant background also showed greater infiltration by NK cells and NKT cells. These findings indicate the genetic importance of DC heparan sulfate proteoglycans in tumor growth and may guide therapeutic development of novel strategies to target syndecan-4 and heparan sulfate in cancer.

  10. Curcumin and Turmeric Modulate the Tumor-Promoting Effects of Iron In Vitro.

    Science.gov (United States)

    Messner, Donald J; Robinson, Todd; Kowdley, Kris V

    2017-04-01

    Free or loosely chelated iron has tumor-promoting properties in vitro. Curcumin, a polyphenol derived from the food spice turmeric (Curcuma longa), is a potent antioxidant that binds iron. The primary aim of this study was to investigate whether curcuminoids prevent tumor-promoting effects of iron in T51B cells, a non-neoplastic rat liver epithelial cell line. Purified curcuminoids (curcumin) or a standardized turmeric extract similarly reduced oxidative stress and cytotoxicity associated with iron overload (IC 50 values near 10 μM, P turmeric for 16 wk in culture; subsequently assayed by soft agar colony formation) was nearly complete at 20 μM of total curcuminoids (P turmeric extract were taken up better by cells, had a longer half-life, and appeared more effective in blocking tumor promotion (P < 0.01), suggesting enhanced curcuminoid delivery to cells in culture. The primary finding that curcuminoids can inhibit tumor promotion caused by iron in T51B cells is tempered by evidence for an underlying increase in neoplastic transformation at lower concentrations.

  11. Chelation in Metal Intoxication

    Directory of Open Access Journals (Sweden)

    Swaran J.S. Flora

    2010-06-01

    Full Text Available Chelation therapy is the preferred medical treatment for reducing the toxic effects of metals. Chelating agents are capable of binding to toxic metal ions to form complex structures which are easily excreted from the body removing them from intracellular or extracellular spaces. 2,3-Dimercaprol has long been the mainstay of chelation therapy for lead or arsenic poisoning, however its serious side effects have led researchers to develop less toxic analogues. Hydrophilic chelators like meso-2,3-dimercaptosuccinic acid effectively promote renal metal excretion, but their ability to access intracellular metals is weak. Newer strategies to address these drawbacks like combination therapy (use of structurally different chelating agents or co-administration of antioxidants have been reported recently. In this review we provide an update of the existing chelating agents and the various strategies available for the treatment of heavy metals and metalloid intoxications.

  12. Comparative Evaluation of Using NOTA and DOTA Derivatives as Bifunctional Chelating Agents in the Preparation of 68Ga-Labeled Porphyrin: Impact on Pharmacokinetics and Tumor Uptake in a Mouse Model.

    Science.gov (United States)

    Guleria, Mohini; Das, Tapas; Amirdhanayagam, Jeyachitra; Sarma, Haladhar D; Dash, Ashutosh

    2018-02-01

    Both NOTA (1,4,7-triazacyclononane-1,4,7-triacetic acid) and DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) derivatives have been used as bifunctional chelating agents (BFCAs) for the preparation of 68 Ga-labeled target-specific agents having potential for positron emission tomography (PET) imaging of cancerous lesions. In the present work, the authors have attempted a comparative pharmacokinetic evaluation between 68 Ga-labeled porphyrins prepared using NOTA and DOTA derivatives as the BFCAs. A symmetrical porphyrin derivative, 5,10,15,20-tetrakis(p-carboxymethyleneoxyphenyl)porphyrin, was synthesized and coupled with two different BFCAs viz. p-NH 2 -benzyl-NOTA and p-NH 2 -benzyl-DOTA. Both the porphyrin-BFCA conjugates were radiolabeled with 68 Ga. A comparative bioevaluation involving pharmacokinetics and tumor affinity was performed in a tumor-bearing small animal model. Gallium-68-labeled porphyrin-amido-benzyl-NOTA and porphyrin-amido-benzyl-DOTA complexes were prepared with high radiochemical purity. Both radiolabeled complexes exhibited almost similar stability in human serum and near-identical tumor affinity and pharmacokinetic behavior in animal studies. The present study demonstrates that the pharmacokinetic behavior of 68 Ga-labeled porphyrin derivatives, prepared using either NOTA or DOTA derivatives as BFCAs, remains almost identical and hence both NOTA and DOTA derivatives could be considered equivalent for developing 68 Ga-based PET agents for imaging of tumorous lesions.

  13. Influence of different chelators (HYNIC, MAG3 and DTPA) on tumor cell accumulation and mouse biodistribution of technetium-99m labeled to antisense DNA

    International Nuclear Information System (INIS)

    Zhang, Y.M.; Liu, N.; Zhu, Z.-H.; Rusckowski, M.; Hnatowich, D.J.

    2000-01-01

    We have shown recently that cell accumulation in culture of antisense DNA is strongly influenced by the presence of a 99m Tc-MAG 3 group for radiolabeling. We have now compared the in vitro and mouse in vivo behavior of 99m Tc when radiolabeled to one antisense phosphorothioate DNA by three different methods. The 18-mer antisense DNA against the RIα subunit of PKA was conjugated via a primary amine on the 5'-end with the NHS esters of HYNIC and MAG 3 and by the cyclic anhydride of DTPA. Surface plasmon resonance measurements revealed that the association rate constant for hybridization was unchanged for all three chelators as compared with that of the native DNA. Size exclusion HPLC showed rapid and quantitative protein binding for all three chelators upon incubation of labeled DNAs in 37 C serum and cell culture medium. However, in each case, radiolabeled and intact oligonucleotide was still detectable after 24 h. Cellular uptake was tested in an RIα mRNA-positive cancer cell line. The order of cellular accumulation of 99m Tc was DTPA>HYNIC(tricine)>MAG 3 , with the differences increasing with time between 4 and 24 h. The rate of 99m Tc egress from cells was found to be MAG 3 >HYNIC>DTPA, which may explain the order of cellular accumulation. The biodistribution in normal mice was heavily influenced by the labeling method and followed a pattern similar to that seen previously by us for peptides labeled with the same chelators. In conclusion, although these studies concerned only one antisense DNA in one cell line, the results suggest that the success of antisense imaging may depend, in part, on the method of radiolabeling. (orig.)

  14. DOTA-Functionalized Polylysine: A High Number of DOTA Chelates Positively Influences the Biodistribution of Enzymatic Conjugated Anti-Tumor Antibody chCE7agl.

    OpenAIRE

    Grünberg Jürgen; Jeger Simone; Sarko Dikran; Dennler Patrick; Zimmermann Kurt; Mier Walter; Schibli Roger

    2013-01-01

    Site-specific enzymatic reactions with microbial transglutaminase (mTGase) lead to a homogenous species of immunoconjugates with a defined ligand/antibody ratio. In the present study, we have investigated the influence of different numbers of 1,4,7,10-tetraazacyclododecane-N-N'-N''-N'''-tetraacetic acid (DOTA) chelats coupled to a decalysine backbone on the in vivo behavior of the chimeric monoclonal anti-L1CAM antibody chCE7agl. The enzymatic conjugation of (DOTA)1-decalysine, (DOTA)3-decaly...

  15. Telomere length modulation in human astroglial brain tumors.

    Directory of Open Access Journals (Sweden)

    Domenico La Torre

    Full Text Available BACKGROUND: Telomeres alteration during carcinogenesis and tumor progression has been described in several cancer types. Telomeres length is stabilized by telomerase (h-TERT and controlled by several proteins that protect telomere integrity, such as the Telomere Repeat-binding Factor (TRF 1 and 2 and the tankyrase-poli-ADP-ribose polymerase (TANKs-PARP complex. OBJECTIVE: To investigate telomere dysfunction in astroglial brain tumors we analyzed telomeres length, telomerase activity and the expression of a panel of genes controlling the length and structure of telomeres in tissue samples obtained in vivo from astroglial brain tumors with different grade of malignancy. MATERIALS AND METHODS: Eight Low Grade Astrocytomas (LGA, 11 Anaplastic Astrocytomas (AA and 11 Glioblastoma Multiforme (GBM samples were analyzed. Three samples of normal brain tissue (NBT were used as controls. Telomeres length was assessed through Southern Blotting. Telomerase activity was evaluated by a telomere repeat amplification protocol (TRAP assay. The expression levels of TRF1, TRF2, h-TERT and TANKs-PARP complex were determined through Immunoblotting and RT-PCR. RESULTS: LGA were featured by an up-regulation of TRF1 and 2 and by shorter telomeres. Conversely, AA and GBM were featured by a down-regulation of TRF1 and 2 and an up-regulation of both telomerase and TANKs-PARP complex. CONCLUSIONS: In human astroglial brain tumours, up-regulation of TRF1 and TRF2 occurs in the early stages of carcinogenesis determining telomeres shortening and genomic instability. In a later stage, up-regulation of PARP-TANKs and telomerase activation may occur together with an ADP-ribosylation of TRF1, causing a reduced ability to bind telomeric DNA, telomeres elongation and tumor malignant progression.

  16. Strategies for improving chemotherapeutic delivery to solid tumors mediated by vascular permeability modulation

    Science.gov (United States)

    Roy Chaudhuri, Tista

    An essential mode of distribution of blood-borne chemotherapeutic agents within a solid tumor is via the micro-circulation. Poor tumor perfusion, because of a lack of functional vasculature or a lack of microvessels, as well as low tumor vascular permeability, can prevent adequate deposition of even low molecular-weight agents into the tumor. The modulation of tumor vascular function and density can provides numerous strategies for improving intratumor deposition of chemotherapeutic agents. Here we investigated strategies to improve drug delivery to two tumor types that share in common poor drug delivery, but differ in the underlying cause. First, in an angiogenesis-driven brain tumor model of Glioblastoma, the vascular permeability barrier, along with poorly-functional vasculature, hinders drug delivery. A strategy of nanoparticle-based tumor 'priming' to attack the vascular permeability barrier, employing sterically stabilized liposomal doxorubicin (SSL-DXR), was investigated. Functional and histological evaluation of tumor vasculature revealed that after an initial period of depressed vascular permeability and vascular pruning 3--4 days after SSL-DXR administration, vascular permeability and perfusion were restored and then elevated after 5--7 days. As a result of tumor priming, deposition of subsequently-administered nanoparticles was enhanced, and the efficacy of temozolomide (TMZ), if administered during the window of elevated permeability, was increased. The sequenced regimen resulted in a persistent reduction of the tumor proliferative index and a 40% suppression of tumor volume, compared to animals that received both agents simultaneously. Second, in a hypovascular, pancreatic ductal adenocarcinoma model, disruption of tumor-stromal communication via sonic hedgehog (sHH) signaling pathway inhibition mediated an indirect vascular proliferation and a more than 2-fold increase in intratumor nanoparticle deposition. Enhanced delivery of SSL-DXR in tumors pre

  17. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism.

    Science.gov (United States)

    Zhao, Hongyun; Yang, Lifeng; Baddour, Joelle; Achreja, Abhinav; Bernard, Vincent; Moss, Tyler; Marini, Juan C; Tudawe, Thavisha; Seviour, Elena G; San Lucas, F Anthony; Alvarez, Hector; Gupta, Sonal; Maiti, Sourindra N; Cooper, Laurence; Peehl, Donna; Ram, Prahlad T; Maitra, Anirban; Nagrath, Deepak

    2016-02-27

    Cancer-associated fibroblasts (CAFs) are a major cellular component of tumor microenvironment in most solid cancers. Altered cellular metabolism is a hallmark of cancer, and much of the published literature has focused on neoplastic cell-autonomous processes for these adaptations. We demonstrate that exosomes secreted by patient-derived CAFs can strikingly reprogram the metabolic machinery following their uptake by cancer cells. We find that CAF-derived exosomes (CDEs) inhibit mitochondrial oxidative phosphorylation, thereby increasing glycolysis and glutamine-dependent reductive carboxylation in cancer cells. Through 13C-labeled isotope labeling experiments we elucidate that exosomes supply amino acids to nutrient-deprived cancer cells in a mechanism similar to macropinocytosis, albeit without the previously described dependence on oncogenic-Kras signaling. Using intra-exosomal metabolomics, we provide compelling evidence that CDEs contain intact metabolites, including amino acids, lipids, and TCA-cycle intermediates that are avidly utilized by cancer cells for central carbon metabolism and promoting tumor growth under nutrient deprivation or nutrient stressed conditions.

  18. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism

    Science.gov (United States)

    Zhao, Hongyun; Yang, Lifeng; Baddour, Joelle; Achreja, Abhinav; Bernard, Vincent; Moss, Tyler; Marini, Juan C; Tudawe, Thavisha; Seviour, Elena G; San Lucas, F Anthony; Alvarez, Hector; Gupta, Sonal; Maiti, Sourindra N; Cooper, Laurence; Peehl, Donna; Ram, Prahlad T; Maitra, Anirban; Nagrath, Deepak

    2016-01-01

    Cancer-associated fibroblasts (CAFs) are a major cellular component of tumor microenvironment in most solid cancers. Altered cellular metabolism is a hallmark of cancer, and much of the published literature has focused on neoplastic cell-autonomous processes for these adaptations. We demonstrate that exosomes secreted by patient-derived CAFs can strikingly reprogram the metabolic machinery following their uptake by cancer cells. We find that CAF-derived exosomes (CDEs) inhibit mitochondrial oxidative phosphorylation, thereby increasing glycolysis and glutamine-dependent reductive carboxylation in cancer cells. Through 13C-labeled isotope labeling experiments we elucidate that exosomes supply amino acids to nutrient-deprived cancer cells in a mechanism similar to macropinocytosis, albeit without the previously described dependence on oncogenic-Kras signaling. Using intra-exosomal metabolomics, we provide compelling evidence that CDEs contain intact metabolites, including amino acids, lipids, and TCA-cycle intermediates that are avidly utilized by cancer cells for central carbon metabolism and promoting tumor growth under nutrient deprivation or nutrient stressed conditions. DOI: http://dx.doi.org/10.7554/eLife.10250.001 PMID:26920219

  19. Extracellular Vesicles As Modulators of Tumor Microenvironment and Disease Progression in Glioma

    Directory of Open Access Journals (Sweden)

    Abir Mondal

    2017-07-01

    Full Text Available Diffuse gliomas are lethal tumors of the central nervous system (CNS characterized by infiltrative growth, aggressive nature, and therapeutic resistance. The recent 2016 WHO classification for CNS tumors categorizes diffuse glioma into two major types that include IDH wild-type glioblastoma, which is the predominant type and IDH-mutant glioblastoma, which is less common and displays better prognosis. Recent studies suggest presence of a distinct cell population with stem cell features termed as glioma stem cells (GSCs to be causal in driving tumor growth in glioblastoma. The presence of a stem and progenitor population possibly makes glioblastoma highly heterogeneous. Significantly, tumor growth is driven by interaction of cells residing within the tumor with the surrounding milieu termed as the tumor microenvironment. It comprises of various cell types such as endothelial cells, secreted factors, and the surrounding extracellular matrix, which altogether help perpetuate the proliferation of GSCs. One of the important mediators critical to the cross talk is extracellular vesicles (EVs. These nano-sized vesicles play important roles in intercellular communication by transporting bioactive molecules into the surrounding milieu, thereby altering cellular functions and/or reprogramming recipient cells. With the growing information on the contribution of EVs in modulation of the tumor microenvironment, it is important to determine their role in both supporting as well as promoting tumor growth in glioma. In this review, we provide a comprehensive overview of the role of EVs in tumor progression and glioma pathogenesis.

  20. Volumetric Modulated Arc Therapy (VMAT) Treatment Planning for Superficial Tumors

    International Nuclear Information System (INIS)

    Zacarias, Albert S.; Brown, Mellonie F.; Mills, Michael D.

    2010-01-01

    The physician's planning objective is often a uniform dose distribution throughout the planning target volume (PTV), including superficial PTVs on or near the surface of a patient's body. Varian's Eclipse treatment planning system uses a progressive resolution optimizer (PRO), version 8.2.23, for RapidArc dynamic multileaf collimator volumetric modulated arc therapy planning. Because the PRO is a fast optimizer, optimization convergence errors (OCEs) produce dose nonuniformity in the superficial area of the PTV. We present a postsurgical cranial case demonstrating the recursive method our clinic uses to produce RapidArc treatment plans. The initial RapidArc treatment plan generated using one 360 o arc resulted in substantial dose nonuniformity in the superficial section of the PTV. We demonstrate the use of multiple arcs to produce improved dose uniformity in this region. We also compare the results of this superficial dose compensation method to the results of a recursive method of dose correction that we developed in-house to correct optimization convergence errors in static intensity-modulated radiation therapy treatment plans. The results show that up to 4 arcs may be necessary to provide uniform dose to the surface of the PTV with the current version of the PRO.

  1. Phenolic aminocarboxylic acids - new chelating agents for modifying gallium-67 biodistribution

    International Nuclear Information System (INIS)

    Hunt, F.C.; Maddalena, D.J.

    1982-01-01

    The chelating agents EDDHA and HBED were synthesised with carboxyl or sulphonyl groups in the phenolic ring to favour urinary excretion on complexing with gallium. Carboxyl EDDMA was administered to tumor-bearing rats, and its concentration in the tumours and other tissues determined by scintigraphic imaging. The chelating agents increase tumour to blood ratios by chelating gallium in vivo. (U.K.)

  2. Phenolic aminocarboxylic acids - new chelating agents for modifying gallium-67 biodistribution

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, F.C.; Maddalena, D.J. (Australian Atomic Energy Commission Research Establishment, Lucas Heights)

    The chelating agents EDDHA and HBED were synthesised with carboxyl or sulphonyl groups in the phenolic ring to favour urinary excretion on complexing with gallium. Carboxyl EDDMA was administered to tumor-bearing rats, and its concentration in the tumours and other tissues determined by scintigraphic imaging. The chelating agents increase tumour to blood ratios by chelating gallium in vivo.

  3. Tumor Architecture and Notch Signaling Modulate Drug Response in Basal Cell Carcinoma.

    Science.gov (United States)

    Eberl, Markus; Mangelberger, Doris; Swanson, Jacob B; Verhaegen, Monique E; Harms, Paul W; Frohm, Marcus L; Dlugosz, Andrzej A; Wong, Sunny Y

    2018-02-12

    Hedgehog (Hh) pathway inhibitors such as vismodegib are highly effective for treating basal cell carcinoma (BCC); however, residual tumor cells frequently persist and regenerate the primary tumor upon drug discontinuation. Here, we show that BCCs are organized into two molecularly and functionally distinct compartments. Whereas interior Hh + /Notch + suprabasal cells undergo apoptosis in response to vismodegib, peripheral Hh +++ /Notch - basal cells survive throughout treatment. Inhibiting Notch specifically promotes tumor persistence without causing drug resistance, while activating Notch is sufficient to regress already established lesions. Altogether, these findings suggest that the three-dimensional architecture of BCCs establishes a natural hierarchy of drug response in the tumor and that this hierarchy can be overcome, for better or worse, by modulating Notch. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Reciprocal modulation of mesenchymal stem cells and tumor cells promotes lung cancer metastasis

    Directory of Open Access Journals (Sweden)

    Giulia Fregni

    2018-03-01

    Full Text Available Metastasis is a multi-step process in which direct crosstalk between cancer cells and their microenvironment plays a key role. Here, we assessed the effect of paired tumor-associated and normal lung tissue mesenchymal stem cells (MSCs on the growth and dissemination of primary human lung carcinoma cells isolated from the same patients. We show that the tumor microenvironment modulates MSC gene expression and identify a four-gene MSC signature that is functionally implicated in promoting metastasis. We also demonstrate that tumor-associated MSCs induce the expression of genes associated with an aggressive phenotype in primary lung cancer cells and selectively promote their dissemination rather than local growth. Our observations provide insight into mechanisms by which the stroma promotes lung cancer metastasis. Keywords: Tumor-associated MSCs, lung cancer, metastasis, GREM1, LOXL2, ADAMTS12, ITGA11

  5. Chelating polymeric membranes

    KAUST Repository

    Peinemann, Klaus-Viktor

    2015-01-22

    The present application offers a solution to the current problems associated with recovery and recycling of precious metals from scrap material, discard articles, and other items comprising one or more precious metals. The solution is premised on a microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  6. Chelation in metal intoxication

    DEFF Research Database (Denmark)

    Aaseth, Jan; Skaug, Marit Aralt; Cao, yang

    2015-01-01

    The present review provides an update of the general principles for the investigation and use of chelating agents in the treatment of intoxications by metals. The clinical use of the old chelators EDTA (ethylenediamine tetraacetate) and BAL (2,3-dimercaptopropanol) is now limited due to the incon......The present review provides an update of the general principles for the investigation and use of chelating agents in the treatment of intoxications by metals. The clinical use of the old chelators EDTA (ethylenediamine tetraacetate) and BAL (2,3-dimercaptopropanol) is now limited due...... to the inconvenience of parenteral administration, their own toxicity and tendency to increase the neurotoxicity of several metals. The hydrophilic dithiol chelators DMSA (meso-2,3-dimercaptosuccinic acid) and DMPS (2,3-dimercapto-propanesulphonate) are less toxic and more efficient than BAL in the clinical treatment...... of heavy metal poisoning, and available as capsules for oral use. In copper overload, DMSA appears to be a potent antidote, although d-penicillamine is still widely used. In the chelation of iron, the thiols are inefficient, since iron has higher affinity for ligands with nitrogen and oxygen, but the new...

  7. HER2-Targeted Polyinosine/Polycytosine Therapy Inhibits Tumor Growth and Modulates the Tumor Immune Microenvironment.

    Science.gov (United States)

    Zigler, Maya; Shir, Alexei; Joubran, Salim; Sagalov, Anna; Klein, Shoshana; Edinger, Nufar; Lau, Jeffrey; Yu, Shang-Fan; Mizraji, Gabriel; Globerson Levin, Anat; Sliwkowski, Mark X; Levitzki, Alexander

    2016-08-01

    The development of targeted therapies that affect multiple signaling pathways and stimulate antitumor immunity is greatly needed. About 20% of patients with breast cancer overexpress HER2. Small molecules and antibodies targeting HER2 convey some survival benefits; however, patients with advanced disease succumb to the disease under these treatment regimens, possibly because HER2 is not completely necessary for the survival of the targeted cancer cells. In the present study, we show that a polyinosine/polycytosine (pIC) HER2-homing chemical vector induced the demise of HER2-overexpressing breast cancer cells, including trastuzumab-resistant cells. Targeting pIC to the tumor evoked a number of cell-killing mechanisms, as well as strong bystander effects. These bystander mechanisms included type I IFN induction, immune cell recruitment, and activation. The HER2-targeted pIC strongly inhibited the growth of HER2-overexpressing tumors in immunocompetent mice. The data presented here could open additional avenues in the treatment of HER2-positive breast cancer. Cancer Immunol Res; 4(8); 688-97. ©2016 AACR. ©2016 American Association for Cancer Research.

  8. Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model.

    Directory of Open Access Journals (Sweden)

    Debbie Liao

    2009-11-01

    Full Text Available Local inflammation associated with solid tumors commonly results from factors released by tumor cells and the tumor stroma, and promotes tumor progression. Cancer associated fibroblasts comprise a majority of the cells found in tumor stroma and are appealing targets for cancer therapy. Here, our aim was to determine the efficacy of targeting cancer associated fibroblasts for the treatment of metastatic breast cancer.We demonstrate that cancer associated fibroblasts are key modulators of immune polarization in the tumor microenvironment of a 4T1 murine model of metastatic breast cancer. Elimination of cancer associated fibroblasts in vivo by a DNA vaccine targeted to fibroblast activation protein results in a shift of the immune microenvironment from a Th2 to Th1 polarization. This shift is characterized by increased protein expression of IL-2 and IL-7, suppressed recruitment of tumor-associated macrophages, myeloid derived suppressor cells, T regulatory cells, and decreased tumor angiogenesis and lymphangiogenesis. Additionally, the vaccine improved anti-metastatic effects of doxorubicin chemotherapy and enhanced suppression of IL-6 and IL-4 protein expression while increasing recruitment of dendritic cells and CD8(+ T cells. Treatment with the combination therapy also reduced tumor-associated Vegf, Pdgfc, and GM-CSF mRNA and protein expression.Our findings demonstrate that cancer associated fibroblasts promote tumor growth and metastasis through their role as key modulators of immune polarization in the tumor microenvironment and are valid targets for therapy of metastatic breast cancer.

  9. Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model.

    Science.gov (United States)

    Liao, Debbie; Luo, Yunping; Markowitz, Dorothy; Xiang, Rong; Reisfeld, Ralph A

    2009-11-23

    Local inflammation associated with solid tumors commonly results from factors released by tumor cells and the tumor stroma, and promotes tumor progression. Cancer associated fibroblasts comprise a majority of the cells found in tumor stroma and are appealing targets for cancer therapy. Here, our aim was to determine the efficacy of targeting cancer associated fibroblasts for the treatment of metastatic breast cancer. We demonstrate that cancer associated fibroblasts are key modulators of immune polarization in the tumor microenvironment of a 4T1 murine model of metastatic breast cancer. Elimination of cancer associated fibroblasts in vivo by a DNA vaccine targeted to fibroblast activation protein results in a shift of the immune microenvironment from a Th2 to Th1 polarization. This shift is characterized by increased protein expression of IL-2 and IL-7, suppressed recruitment of tumor-associated macrophages, myeloid derived suppressor cells, T regulatory cells, and decreased tumor angiogenesis and lymphangiogenesis. Additionally, the vaccine improved anti-metastatic effects of doxorubicin chemotherapy and enhanced suppression of IL-6 and IL-4 protein expression while increasing recruitment of dendritic cells and CD8(+) T cells. Treatment with the combination therapy also reduced tumor-associated Vegf, Pdgfc, and GM-CSF mRNA and protein expression. Our findings demonstrate that cancer associated fibroblasts promote tumor growth and metastasis through their role as key modulators of immune polarization in the tumor microenvironment and are valid targets for therapy of metastatic breast cancer.

  10. Tumor hypoxia modulates podoplanin/CCL21 interactions in CCR7+ NK cell recruitment and CCR7+ tumor cell mobilization.

    Science.gov (United States)

    Tejchman, Anna; Lamerant-Fayel, Nathalie; Jacquinet, Jean-Claude; Bielawska-Pohl, Aleksandra; Mleczko-Sanecka, Katarzyna; Grillon, Catherine; Chouaib, Salem; Ugorski, Maciej; Kieda, Claudine

    2017-05-09

    Podoplanin (PDPN), an O-glycosylated, transmembrane, mucin-type glycoprotein, is expressed by cancer associated fibroblasts (CAFs). In malignant transformation, PDPN is subjected to changes and its role is yet to be established. Here we show that it is involved in modulating the activity of the CCL21/CCR7 chemokine/receptor axis in a hypoxia-dependent manner. In the present model, breast cancer MDA-MB-231 cells and NKL3 cells express the surface CCR7 receptor for CCL21 chemokine which is a potent chemoattractant able to bind to PDPN. The impact of the CCL21/CCR7 axis in the molecular mechanism of the adhesion of NKL3 cells and of MDA-MB-231 breast cancer cells was reduced in a hypoxic tumor environment. In addition to its known effect on migration, CCL21/CCR7 interaction was shown to allow NK cell adhesion to endothelial cells (ECs) and its reduction by hypoxia. A PDPN expressing model of CAFs made it possible to demonstrate the same CCL21/CCR7 axis involvement in the tumor cells to CAFs recognition mechanism through PDPN binding of CCL21. PDPN was induced by hypoxia and its overexpression undergoes a reduction of adhesion, making it an anti-adhesion molecule in the absence of CCL21, in the tumor. CCL21/CCR7 modulated NK cells/ECs and MDA-MB-231 cells/CAF PDPN-dependent interactions were further shown to be linked to hypoxia-dependent microRNAs as miRs: miR-210 and specifically miR-21, miR-29b which influence PDPN expression.

  11. Conformal radiotherapy by intensity modulation of pediatrics tumors; Radiotherapie conformationnelle par modulation d'intensite des tumeurs pediatriques

    Energy Technology Data Exchange (ETDEWEB)

    Leseur, J.; Le Prise, E. [Centre Eugene-Marquis, 35 - Rennes (France); Carrie, C. [Centre Leon Berard, 69 - Lyon (France); Bernier, V. [Centre Alexis-Vautrin, 54 - Nancy (France); Beneyton, V. [Centre Paul-Strauss, 67 - Strasbourg (France); Mahe, M.A.; Supiot, S. [Centre Rene-Gauducheau, 44 - Nantes (France)

    2009-10-15

    The objective of this study is to take stock on the validated and potential indications of the conformal radiotherapy with intensity modulation ( intensity modulated radiotherapy I.M.R.T.) in pediatrics and to propose recommendations for its use as well as the adapted dose constraints. About 40 to 50% of children treated for a cancer are irradiated. The I.M.R.T., by linear accelerator or helical tomo-therapy has for aim to give a homogenous dose to the target volume and to save organs at risk. Its use in pediatrics seems particularly interesting because of the complexity of target volumes and the closeness of organs at risk. In compensation for these positive elements, the importance of low doses irradiation given in big volumes makes fear event consequences on growth and an increased incidence of secondary cancers in children suffering from tumors with high cure rates and long life expectancy. (N.C.)

  12. Mesothelioma tumor cells modulate dendritic cell lipid content, phenotype and function.

    Directory of Open Access Journals (Sweden)

    Joanne K Gardner

    Full Text Available Dendritic cells (DCs play an important role in the generation of anti-cancer immune responses, however there is evidence that DCs in cancer patients are dysfunctional. Lipid accumulation driven by tumor-derived factors has recently been shown to contribute to DC dysfunction in several human cancers, but has not yet been examined in mesothelioma. This study investigated if mesothelioma tumor cells and/or their secreted factors promote increases in DC lipid content and modulate DC function. Human monocyte-derived DCs (MoDCs were exposed to human mesothelioma tumor cells and tumor-derived factors in the presence or absence of lipoproteins. The data showed that immature MoDCs exposed to mesothelioma cells or factors contained increased lipid levels relative to control DCs. Lipid accumulation was associated with reduced antigen processing ability (measured using a DQ OVA assay, upregulation of the co-stimulatory molecule, CD86, and production of the tolerogenic cytokine, IL-10. Increases in DC lipid content were further enhanced by co-exposure to mesothelioma-derived factors and triglyceride-rich lipoproteins, but not low-density lipoproteins. In vivo studies using a murine mesothelioma model showed that the lipid content of tumor-infiltrating CD4+ CD8α- DCs, CD4- CD8α- DCs DCs and plasmacytoid DCs increased with tumor progression. Moreover, increasing tumor burden was associated with reduced proliferation of tumor-antigen-specific CD8+ T cells in tumor-draining lymph nodes. This study shows that mesothelioma promotes DC lipid acquisition, which is associated with altered activation status and reduced capacity to process and present antigens, which may impair the ability of DCs to generate effective anti mesothelioma T cell responses.

  13. SPHINGOSINE-1 PHOSPHATE: A NEW MODULATOR OF IMMUNE PLASTICITY IN THE TUMOR MICROENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Yamila I Rodriguez

    2016-10-01

    Full Text Available In the last 15 years, increasing evidences demonstrate a strong link between sphingosine-1-phosphate (S1P in both normal physiology and progression of different diseases, including cancer and inflammation. Indeed, numerous studies show that tissue levels of this sphingolipid metabolite are augmented in many cancers, affecting survival, proliferation, angiogenesis and metastatic spread. Recent insights into the possible role of S1P as a therapeutic target has attracted enormous attention and opened new opportunities in this evolving field. In this review we will focus on the role of S1P in cancer with particular emphasis in new developments that highlight the many functions of this sphingolipid in the tumor microenvironment. We will discuss how S1P modulates phenotypic plasticity of macrophages and mast cells, tumor-induced immune evasion, differentiation and survival of immune cells in the tumor milieu, interaction between cancer and stromal cells and hypoxic response.

  14. Pharmacological and physical vessel modulation strategies to improve EPR-mediated drug targeting to tumors.

    Science.gov (United States)

    Ojha, Tarun; Pathak, Vertika; Shi, Yang; Hennink, Wim E; Moonen, Chrit T W; Storm, Gert; Kiessling, Fabian; Lammers, Twan

    2017-09-15

    The performance of nanomedicine formulations depends on the Enhanced Permeability and Retention (EPR) effect. Prototypic nanomedicine-based drug delivery systems, such as liposomes, polymers and micelles, aim to exploit the EPR effect to accumulate at pathological sites, to thereby improve the balance between drug efficacy and toxicity. Thus far, however, tumor-targeted nanomedicines have not yet managed to achieve convincing therapeutic results, at least not in large cohorts of patients. This is likely mostly due to high inter- and intra-patient heterogeneity in EPR. Besides developing (imaging) biomarkers to monitor and predict EPR, another strategy to address this heterogeneity is the establishment of vessel modulation strategies to homogenize and improve EPR. Over the years, several pharmacological and physical co-treatments have been evaluated to improve EPR-mediated tumor targeting. These include pharmacological strategies, such as vessel permeabilization, normalization, disruption and promotion, as well as physical EPR enhancement via hyperthermia, radiotherapy, sonoporation and phototherapy. In the present manuscript, we summarize exemplary studies showing that pharmacological and physical vessel modulation strategies can be used to improve tumor-targeted drug delivery, and we discuss how these advanced combination regimens can be optimally employed to enhance the (pre-) clinical performance of tumor-targeted nanomedicines. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Strong synergy of heat and modulated electromagnetic field in tumor cell killing.

    Science.gov (United States)

    Andocs, Gabor; Renner, Helmut; Balogh, Lajos; Fonyad, Laszlo; Jakab, Csaba; Szasz, Andras

    2009-02-01

    Hyperthermia is an emerging complementary method in radiooncology. Despite many positive studies and comprehensive reviews, the method is not widely accepted as a combination to radiotherapy. Modulated electrohyperthermia (mEHT; capacitive, electric field modulated, 13.56 MHz) has been used in clinical practice for almost 2 decades in Germany, Austria and Hungary. This in vivo study in nude mice xenograft tumors compares mEHT with "classic" radiative hyperthermia (radHT). Nude mice were xenografted with HT29 human colorectal carcinoma cells. 28 mice in four groups with seven animals each and two tumors per animal (totally 56 tumors) were included in the present study: group 1 as untreated control; group 2 treated with radHT at 42 degrees C; group 3 treated with mEHT at identical 42 degrees C; group 4 treated with mEHT at 38 degrees C (by intensively cooling down the tumor). 24 h after treatment, animals were sacrificed and the tumor cross sections studied by precise morphological methods for the respective relative amount of "dead" tumor cells. The effect of mEHT established a double effect as a synergy between the purely thermal (temperature-dependent) and nonthermal (not directly temperature-dependent) effects. The solely thermal enhancement ratio (TER) of cell killing was shown to be 2.9. The field enhancement ratio (FER) at a constant temperature of 42 degrees C was measured as 3.2. Their complex application significantly increased the therapeutic enhancement to 9.4. mEHT had a remarkable cancer cell-killing effect in a nude mice xenograft model.

  16. Strong synergy of heat and modulated electromagnetic field in tumor cell killing

    International Nuclear Information System (INIS)

    Andocs, Gabor; Fonyad, Laszlo; Jakab, Csaba; Szasz, Andras

    2009-01-01

    Hyperthermia is an emerging complementary method in radiooncology. Despite many positive studies and comprehensive reviews, the method is not widely accepted as a combination to radiotherapy. Modulated electrohyperthermia (mEHT; capacitive, electric field modulated, 13.56 MHz) has been used in clinical practice for almost 2 decades in Germany, Austria and Hungary. This in vivo study in nude mice xenograft tumors compares mEHT with ''classic'' radiative hyperthermia (radHT). Nude mice were xenografted with HT29 human colorectal carcinoma cells. 28 mice in four groups with seven animals each and two tumors per animal (totally 56 tumors) were included in the present study: group 1 as untreated control; group 2 treated with radHT at 42 C; group 3 treated with mEHT at identical 42 C; group 4 treated with mEHT at 38 C (by intensively cooling down the tumor). 24 h after treatment, animals were sacrificed and the tumor cross sections studied by precise morphological methods for the respective relative amount of ''dead'' tumor cells. The effect of mEHT established a double effect as a synergy between the purely thermal (temperature-dependent) and nonthermal (not directly temperature-dependent) effects. The solely thermal enhancement ratio (TER) of cell killing was shown to be 2.9. The field enhancement ratio (FER) at a constant temperature of 42 C was measured as 3.2. Their complex application significantly increased the therapeutic enhancement to 9.4. mEHT had a remarkable cancer cell-killing effect in a nude mice xenograft model. (orig.)

  17. Strong synergy of heat and modulated electromagnetic field in tumor cell killing

    Energy Technology Data Exchange (ETDEWEB)

    Andocs, Gabor [Frederic Joliot Curie National Research Inst. for Radiobiology and Radiohygiene, Budapest (Hungary)]|[St. Istvan Univ., Budapest (Hungary). Dept. of Pharmacology and Toxicology; Renner, Helmut [Klinikum Nuernberg (Germany). Clinic of Radiooncology; Balogh, Lajos [Frederic Joliot Curie National Research Inst. for Radiobiology and Radiohygiene, Budapest (Hungary); Fonyad, Laszlo [Semmelweis Univ., Budapest (Hungary). 1. Dept. of of Pathology and Experimental Cancer Research; Jakab, Csaba [St. Istvan Univ., Budapest (Hungary). Dept. of Pathology; Szasz, Andras [St. Istvan Univ., Goedoelloe (Hungary). Biotechnics Dept.

    2009-02-15

    Hyperthermia is an emerging complementary method in radiooncology. Despite many positive studies and comprehensive reviews, the method is not widely accepted as a combination to radiotherapy. Modulated electrohyperthermia (mEHT; capacitive, electric field modulated, 13.56 MHz) has been used in clinical practice for almost 2 decades in Germany, Austria and Hungary. This in vivo study in nude mice xenograft tumors compares mEHT with 'classic' radiative hyperthermia (radHT). Nude mice were xenografted with HT29 human colorectal carcinoma cells. 28 mice in four groups with seven animals each and two tumors per animal (totally 56 tumors) were included in the present study: group 1 as untreated control; group 2 treated with radHT at 42 C; group 3 treated with mEHT at identical 42 C; group 4 treated with mEHT at 38 C (by intensively cooling down the tumor). 24 h after treatment, animals were sacrificed and the tumor cross sections studied by precise morphological methods for the respective relative amount of 'dead' tumor cells. The effect of mEHT established a double effect as a synergy between the purely thermal (temperature-dependent) and nonthermal (not directly temperature-dependent) effects. The solely thermal enhancement ratio (TER) of cell killing was shown to be 2.9. The field enhancement ratio (FER) at a constant temperature of 42 C was measured as 3.2. Their complex application significantly increased the therapeutic enhancement to 9.4. mEHT had a remarkable cancer cell-killing effect in a nude mice xenograft model. (orig.)

  18. Chelation Therapy for Mercury Poisoning

    Directory of Open Access Journals (Sweden)

    Rong Guan

    2009-01-01

    Full Text Available Chelation therapy has been the major treatment for heavy metal poisoning. Various chelating agents have been developed and tested for treatment of heavy metal intoxications, including mercury poisoning. It has been clearly shown that chelating agents could rescue the toxicity caused by heavy metal intoxication, but the potential preventive role of chelating agents against heavy metal poisoning has not been explored much. Recent paper by Siddiqi and colleagues has suggested a protective role of chelating agents against mercury poisoning, which provides a promising research direction for broader application of chelation therapy in prevention and treatment of mercury poisoning.

  19. Comments on chelation therapy

    International Nuclear Information System (INIS)

    Wrenn, M.E.

    1981-01-01

    The primary purpose of actinide chelation is to decrease the risk from radiation-induced cancer. While occupational exposures in the past have mainly involved low specific activity 239 Pu, future exposures will increasingly involve high specific activity plutonium, americium, and curium - all of which clear more rapidly from the lung. This will tend to shift the cancer risk from lung to bone and liver. Although therapy with Ca- or Zn-DTPA rapidly removes 241 Am from the canine, the sub-human primate, and the human liver, improved methods for removal from bone and lung are needed. DTPA can remove 241 Am more easily from the growing skeleton of a child than from the mature skeleton of an adult. Investigators at Karlsruhe are developing chelation agents for oral administration and are investigating the reduction in local dose to bone resulting from chelation therapy

  20. Chelation Therapy for Mercury Poisoning

    OpenAIRE

    Rong Guan; Han Dai

    2009-01-01

    Chelation therapy has been the major treatment for heavy metal poisoning. Various chelating agents have been developed and tested for treatment of heavy metal intoxications, including mercury poisoning. It has been clearly shown that chelating agents could rescue the toxicity caused by heavy metal intoxication, but the potential preventive role of chelating agents against heavy metal poisoning has not been explored much. Recent paper by Siddiqi and colleagues has suggested a protective role o...

  1. Effect of low frequency magnetic fields on melanoma: tumor inhibition and immune modulation

    International Nuclear Information System (INIS)

    Nie, Yunzhong; Du, Leilei; Mou, Yongbin; Xu, Zhenjun; Weng, Leihua; Du, Youwei; Zhu, Yanan; Hou, Yayi; Wang, Tingting

    2013-01-01

    We previously found that the low frequency magnetic fields (LF-MF) inhibited gastric and lung cancer cell growth. We suppose that exposure to LF-MF may modulate immune function so as to inhibit tumor. We here investigated whether LF-MF can inhibit the proliferation and metastasis of melanoma and influence immune function. The effect of MF on the proliferation, cell cycle and ultrastracture of B16-F10 in vitro was detected by cell counting Kit-8 assay, flow cytometry, and transmission electron microscopy. Lung metastasis mice were prepared by injection of 2 × 10 5 B16-F10 melanoma cells into the tail vein in C57BL/6 mice. The mice were then exposed to an LF-MF (0.4 T, 7.5 Hz) for 43 days. Survival rate, tumor markers and the innate and adaptive immune parameters were measured. The growth of B16-F10 cells was inhibited after exposure to the LF-MF. The inhibition was related to induction of cell cycle arrest and decomposition of chromatins. Moreover, the LF-MF prolonged the mouse survival rate and inhibited the proliferation of B16-F10 in melanoma metastasis mice model. Furthermore, the LF-MF modulated the immune response via regulation of immune cells and cytokine production. In addition, the number of Treg cells was decreased in mice with the LF-MF exposure, while the numbers of T cells as well as dendritic cells were significantly increased. LF-MF inhibited the growth and metastasis of melanoma cancer cells and improved immune function of tumor-bearing mice. This suggests that the inhibition may be attributed to modulation of LF-MF on immune function and LF-MF may be a potential therapy for treatment of melanoma

  2. Using Mouse Mammary Tumor Cells to Teach Core Biology Concepts: A Simple Lab Module.

    Science.gov (United States)

    McIlrath, Victoria; Trye, Alice; Aguanno, Ann

    2015-06-18

    Undergraduate biology students are required to learn, understand and apply a variety of cellular and molecular biology concepts and techniques in preparation for biomedical, graduate and professional programs or careers in science. To address this, a simple laboratory module was devised to teach the concepts of cell division, cellular communication and cancer through the application of animal cell culture techniques. Here the mouse mammary tumor (MMT) cell line is used to model for breast cancer. Students learn to grow and characterize these animal cells in culture and test the effects of traditional and non-traditional chemotherapy agents on cell proliferation. Specifically, students determine the optimal cell concentration for plating and growing cells, learn how to prepare and dilute drug solutions, identify the best dosage and treatment time course of the antiproliferative agents, and ascertain the rate of cell death in response to various treatments. The module employs both a standard cell counting technique using a hemocytometer and a novel cell counting method using microscopy software. The experimental procedure lends to open-ended inquiry as students can modify critical steps of the protocol, including testing homeopathic agents and over-the-counter drugs. In short, this lab module requires students to use the scientific process to apply their knowledge of the cell cycle, cellular signaling pathways, cancer and modes of treatment, all while developing an array of laboratory skills including cell culture and analysis of experimental data not routinely taught in the undergraduate classroom.

  3. Long noncoding RNA lnc-sox5 modulates CRC tumorigenesis by unbalancing tumor microenvironment.

    Science.gov (United States)

    Wu, Kaiming; Zhao, Zhenxian; Liu, Kuanzhi; Zhang, Jian; Li, Guanghua; Wang, Liang

    2017-07-03

    Long non-coding RNAs (LncRNAs) have been recently regarded as systemic regulators in multiple biologic processes including tumorigenesis. In this study, we observed the expression of lncRNA lnc-sox5 was significantly increased in colorectal cancer (CRC). Despite the CRC cell growth, cell cycle and cell apoptosis was not affected by lnc-sox5 knock-down, lnc-sox5 knock-down suppressed CRC cell migration and invasion. In addition, xenograft animal model suggested that lnc-sox5 knock-down significantly suppressed the CRC tumorigenesis. Our results also showed that the expression of indoleamine 2,3-dioxygenase 1 (IDO1) was significantly reduced by lnc-sox5 knock-down and therefore modulated the infiltration and cytotoxicity of CD3 + CD8 + T cells. Taken together, these results suggested that lnc-sox5 unbalances tumor microenvironment to regulate colorectal cancer progression.

  4. Scaling dynamic response and destructive metabolism in an immunosurveillant anti-tumor system modulated by different external periodic interventions.

    Directory of Open Access Journals (Sweden)

    Yuanzhi Shao

    Full Text Available On the basis of two universal power-law scaling laws, i.e. the scaling dynamic hysteresis in physics and the allometric scaling metabolism in biosystem, we studied the dynamic response and the evolution of an immunosurveillant anti-tumor system subjected to a periodic external intervention, which is equivalent to the scheme of a radiotherapy or chemotherapy, within the framework of the growth dynamics of tumor. Under the modulation of either an abrupt or a gradual change external intervention, the population density of tumors exhibits a dynamic hysteresis to the intervention. The area of dynamic hysteresis loop characterizes a sort of dissipative-therapeutic relationship of the dynamic responding of treated tumors with the dose consumption of accumulated external intervention per cycle of therapy. Scaling the area of dynamic hysteresis loops against the intensity of an external intervention, we deduced a characteristic quantity which was defined as the theoretical therapeutic effectiveness of treated tumor and related with the destructive metabolism of tumor under treatment. The calculated dose-effectiveness profiles, namely the dose cumulant per cycle of intervention versus the therapeutic effectiveness, could be well scaled into a universal quadratic formula regardless of either an abrupt or a gradual change intervention involved. We present a new concept, i.e., the therapy-effect matrix and the dose cumulant matrix, to expound the new finding observed in the growth and regression dynamics of a modulated anti-tumor system.

  5. Abalone visceral extract inhibit tumor growth and metastasis by modulating Cox-2 levels and CD8+ T cell activity

    Directory of Open Access Journals (Sweden)

    II Kim Jae

    2010-10-01

    Full Text Available Abstract Background Abalone has long been used as a valuable food source in East Asian countries. Although the nutritional importance of abalone has been reported through in vitro and in vivo studies, there is little evidence about the potential anti-tumor effects of abalone visceral extract. The aim of the present study is to examine anti-tumor efficacy of abalone visceral extract and to elucidate its working mechanism. Methods In the present study, we used breast cancer model using BALB/c mouse-derived 4T1 mammary carcinoma and investigated the effect of abalone visceral extract on tumor development. Inhibitory effect against tumor metastasis was assessed by histopathology of lungs. Cox-2 productions by primary and secondary tumor were measured by real-time RT-PCR and immunoblotting (IB. Proliferation assay based on [3H]-thymidine incorporation and measurement of cytokines and effector molecules by RT-PCR were used to confirm tumor suppression efficacy of abalone visceral extract by modulating cytolytic CD8+ T cells. The cytotoxicity of CD8+ T cell was compared by JAM test. Results Oral administration of abalone visceral extract reduced tumor growth (tumor volume and weight and showed reduced metastasis as confirmed by decreased level of splenomegaly (spleen size and weight and histological analysis of the lung metastasis (gross analysis and histological staining. Reduced expression of Cox-2 (mRNA and protein from primary tumor and metastasized lung was also detected. In addition, treatment of abalone visceral extract increased anti-tumor activities of CD8+ T cells by increasing the proliferation capacity and their cytolytic activity. Conclusions Our results suggest that abalone visceral extract has anti-tumor effects by suppressing tumor growth and lung metastasis through decreasing Cox-2 expression level as well as promoting proliferation and cytolytic function of CD8+ T cells.

  6. Abalone visceral extract inhibit tumor growth and metastasis by modulating Cox-2 levels and CD8+ T cell activity.

    Science.gov (United States)

    Lee, Choong-Gu; Kwon, Ho-Keun; Ryu, Jae Ha; Kang, Sung Jin; Im, Chang-Rok; Ii Kim, Jae; Im, Sin-Hyeog

    2010-10-20

    Abalone has long been used as a valuable food source in East Asian countries. Although the nutritional importance of abalone has been reported through in vitro and in vivo studies, there is little evidence about the potential anti-tumor effects of abalone visceral extract. The aim of the present study is to examine anti-tumor efficacy of abalone visceral extract and to elucidate its working mechanism. In the present study, we used breast cancer model using BALB/c mouse-derived 4T1 mammary carcinoma and investigated the effect of abalone visceral extract on tumor development. Inhibitory effect against tumor metastasis was assessed by histopathology of lungs. Cox-2 productions by primary and secondary tumor were measured by real-time RT-PCR and immunoblotting (IB). Proliferation assay based on [3H]-thymidine incorporation and measurement of cytokines and effector molecules by RT-PCR were used to confirm tumor suppression efficacy of abalone visceral extract by modulating cytolytic CD8+ T cells. The cytotoxicity of CD8+ T cell was compared by JAM test. Oral administration of abalone visceral extract reduced tumor growth (tumor volume and weight) and showed reduced metastasis as confirmed by decreased level of splenomegaly (spleen size and weight) and histological analysis of the lung metastasis (gross analysis and histological staining). Reduced expression of Cox-2 (mRNA and protein) from primary tumor and metastasized lung was also detected. In addition, treatment of abalone visceral extract increased anti-tumor activities of CD8+ T cells by increasing the proliferation capacity and their cytolytic activity. Our results suggest that abalone visceral extract has anti-tumor effects by suppressing tumor growth and lung metastasis through decreasing Cox-2 expression level as well as promoting proliferation and cytolytic function of CD8+ T cells.

  7. Temporary organ displacement coupled with image-guided, intensity-modulated radiotherapy for paraspinal tumors

    International Nuclear Information System (INIS)

    Katsoulakis, Evangelia; Thornton, Raymond H; Yamada, Yoshiya; Solomon, Stephen B; Maybody, Majid; Housman, Douglas; Niyazov, Greg; Riaz, Nadeem; Lovelock, Michael; Spratt, Daniel E; Erinjeri, Joseph P

    2013-01-01

    To investigate the feasibility and dosimetric improvements of a novel technique to temporarily displace critical structures in the pelvis and abdomen from tumor during high-dose radiotherapy. Between 2010 and 2012, 11 patients received high-dose image-guided intensity-modulated radiotherapy with temporary organ displacement (TOD) at our institution. In all cases, imaging revealed tumor abutting critical structures. An all-purpose drainage catheter was introduced between the gross tumor volume (GTV) and critical organs at risk (OAR) and infused with normal saline (NS) containing 5-10% iohexol. Radiation planning was performed with the displaced OARs and positional reproducibility was confirmed with cone-beam CT (CBCT). Patients were treated within 36 hours of catheter placement. Radiation plans were re-optimized using pre-TOD OARs to the same prescription and dosimetrically compared with post-TOD plans. A two-tailed permutation test was performed on each dosimetric measure. The bowel/rectum was displaced in six patients and kidney in four patients. One patient was excluded due to poor visualization of the OAR; thus 10 patients were analyzed. A mean of 229 ml (range, 80–1000) of NS 5-10% iohexol infusion resulted in OAR mean displacement of 17.5 mm (range, 7–32). The median dose prescribed was 2400 cGy in one fraction (range, 2100–3000 in 3 fractions). The mean GTV D min and PTV D min pre- and post-bowel TOD IG-IMRT dosimetry significantly increased from 1473 cGy to 2086 cGy (p=0.015) and 714 cGy to 1214 cGy (p=0.021), respectively. TOD increased mean PTV D95 by 27.14% of prescription (p=0.014) while the PTV D05 decreased by 9.2% (p=0.011). TOD of the bowel resulted in a 39% decrease in mean bowel D max (p=0.008) confirmed by CBCT. TOD of the kidney significantly decreased mean kidney dose and D max by 25% (0.022). TOD was well tolerated, reproducible, and facilitated dose escalation to previously radioresistant tumors abutting critical structures while

  8. Intensity-Modulated Radiation Therapy in Oropharyngeal Carcinoma: Effect of Tumor Volume on Clinical Outcomes

    International Nuclear Information System (INIS)

    Lok, Benjamin H.; Setton, Jeremy; Caria, Nicola; Romanyshyn, Jonathan; Wolden, Suzanne L.; Zelefsky, Michael J.; Park, Jeffery; Rowan, Nicholas; Sherman, Eric J.; Fury, Matthew G.; Ho, Alan; Pfister, David G.; Wong, Richard J.; Shah, Jatin P.; Kraus, Dennis H.; Zhang, Zhigang; Schupak, Karen D.; Gelblum, Daphna Y.; Rao, Shyam D.; Lee, Nancy Y.

    2012-01-01

    Purpose: To analyze the effect of primary gross tumor volume (pGTV) and nodal gross tumor volume (nGTV) on treatment outcomes in patients treated with definitive intensity-modulated radiation therapy (IMRT) for oropharyngeal cancer (OPC). Methods and Materials: Between September 1998 and April 2009, a total of 442 patients with squamous cell carcinoma of the oropharynx were treated with IMRT with curative intent at our center. Thirty patients treated postoperatively and 2 additional patients who started treatment more than 6 months after diagnosis were excluded. A total of 340 patients with restorable treatment plans were included in this present study. The majority of the patients underwent concurrent platinum-based chemotherapy. The pGTV and nGTV were calculated using the original clinical treatment plans. Cox proportional hazards models and log-rank tests were used to evaluate the correlation between tumor volumes and overall survival (OS), and competing risks analysis tools were used to evaluate the correlation between local failure (LF), regional failure (RF), distant metastatic failure (DMF) vs. tumor volumes with death as a competing risk. Results: Median follow-up among surviving patients was 34 months (range, 5-67). The 2-year cumulative incidence of LF, RF and DF in this cohort of patients was 6.1%, 5.2%, and 12.2%, respectively. The 2-year OS rate was 88.6%. Univariate analysis determined pGTV and T-stage correlated with LF (p < 0.0001 and p = 0.004, respectively), whereas nGTV was not associated with RF. On multivariate analysis, pGTV and N-stage were independent risk factors for overall survival (p = 0.0003 and p = 0.0073, respectively) and distant control (p = 0.0008 and p = 0.002, respectively). Conclusions: In this cohort of patients with OPC treated with IMRT, pGTV was found to be associated with overall survival, local failure, and distant metastatic failure.

  9. Neural stem cell sparing by linac based intensity modulated stereotactic radiotherapy in intracranial tumors

    International Nuclear Information System (INIS)

    Oehler, Julia; Brachwitz, Tim; Wendt, Thomas G; Banz, Nico; Walther, Mario; Wiezorek, Tilo

    2013-01-01

    Neurocognitive decline observed after radiotherapy (RT) for brain tumors in long time survivors is attributed to radiation exposure of the hippocampus and the subventricular zone (SVZ). The potential of sparing capabilities for both structures by optimized intensity modulated stereotactic radiotherapy (IMSRT) is investigated. Brain tumors were irradiated by stereotactic 3D conformal RT or IMSRT using m3 collimator optimized for PTV and for sparing of the conventional OARs (lens, retina, optic nerve, chiasm, cochlea, brain stem and the medulla oblongata). Retrospectively both hippocampi and SVZ were added to the list of OAR and their dose volume histograms were compared to those from two newly generated IMSRT plans using 7 or 14 beamlets (IMSRT-7, IMSRT-14) dedicated for optimized additional sparing of these structures. Conventional OAR constraints were kept constant. Impact of plan complexity and planning target volume (PTV) topography on sparing of both hippocampi and SVZ, conformity index (CI), the homogeneity index (HI) and quality of coverage (QoC) were analyzed. Limits of agreement were used to compare sparing of stem cell niches with either IMSRT-7 or IMSRT-14. The influence of treatment technique related to the topography ratio between PTV and OARs, realized in group A-D, was assessed by a mixed model. In 47 patients CI (p ≤ 0.003) and HI (p < 0.001) improved by IMSRT-7, IMSRT-14, QoC remained stable (p ≥ 0.50) indicating no compromise in radiotherapy. 90% of normal brain was exposed to a significantly higher dose using IMSRT. IMSRT-7 plans resulted in significantly lower biologically effective doses at all four neural stem cell structures, while contralateral neural stem cells are better spared compared to ipsilateral. A further increase of the number of beamlets (IMSRT-14) did not improve sparing significantly, so IMSRT-7 and IMSRT-14 can be used interchangeable. Patients with tumors contacting neither the subventricular zone nor the cortex benefit

  10. Splenectomy inhibits non-small cell lung cancer growth by modulating anti-tumor adaptive and innate immune response

    Science.gov (United States)

    Levy, Liran; Mishalian, Inbal; Bayuch, Rachel; Zolotarov, Lida; Michaeli, Janna; Fridlender, Zvi G

    2015-01-01

    It has been shown that inhibitors of the immune system reside in the spleen and inhibit the endogenous antitumor effects of the immune system. We hypothesized that splenectomy would inhibit the growth of relatively large non-small lung cancer (NSCLC) tumors by modulating the systemic inhibition of the immune system, and in particular Myeloid Derived Suppressor Cells (MDSC). The effect of splenectomy was evaluated in several murine lung cancer models. We found that splenectomy reduces tumor growth and the development of lung metastases, but only in advanced tumors. In immune-deficient NOD-SCID mice the effect of splenectomy on tumor growth and metastatic spread disappeared. Splenectomy significantly reduced the presence of MDSC, and especially monocytic-MDSC in the circulation and inside the tumor. Specific reduction of the CCR2+ subset of monocytic MDSC was demonstrated, and the importance of the CCL2-CCR2 axis was further shown by a marked reduction in CCL2 following splenectomy. These changes were followed by changes in the macrophages contents of the tumors to become more antitumorigenic, and by increased activation of CD8+ Cytotoxic T-cells (CTL). By MDSC depletion, and adoptive transfer of MDSCs, we demonstrated that the effect of splenectomy on tumor growth was substantially mediated by MDSC cells. We conclude that the spleen is an important contributor to tumor growth and metastases, and that splenectomy can blunt this effect by depletion of MDSC, changing the amount and characteristics of myeloid cells and enhancing activation of CTL. PMID:26137413

  11. Tumor trailing strategy for intensity-modulated radiation therapy of moving targets

    International Nuclear Information System (INIS)

    Trofimov, Alexei; Vrancic, Christian; Chan, Timothy C. Y.; Sharp, Gregory C.; Bortfeld, Thomas

    2008-01-01

    Internal organ motion during the course of radiation therapy of cancer affects the distribution of the delivered dose and, generally, reduces its conformality to the targeted volume. Previously proposed approaches aimed at mitigating the effect of internal motion in intensity-modulated radiation therapy (IMRT) included expansion of the target margins, motion-correlated delivery (e.g., respiratory gating, tumor tracking), and adaptive treatment plan optimization employing a probabilistic description of motion. We describe and test the tumor trailing strategy, which utilizes the synergy of motion-adaptive treatment planning and delivery methods. We regard the (rigid) target motion as a superposition of a relatively fast cyclic component (e.g., respiratory) and slow aperiodic trends (e.g., the drift of exhalation baseline). In the trailing approach, these two components of motion are decoupled and dealt with separately. Real-time motion monitoring is employed to identify the 'slow' shifts, which are then corrected by applying setup adjustments. The delivery does not track the target position exactly, but trails the systematic trend due to the delay between the time a shift occurs, is reliably detected, and, subsequently, corrected. The ''fast'' cyclic motion is accounted for with a robust motion-adaptive treatment planning, which allows for variability in motion parameters (e.g., mean and extrema of the tidal volume, variable period of respiration, and expiratory duration). Motion-surrogate data from gated IMRT treatments were used to provide probability distribution data for motion-adaptive planning and to test algorithms that identified systematic trends in the character of motion. Sample IMRT fields were delivered on a clinical linear accelerator to a programmable moving phantom. Dose measurements were performed with a commercial two-dimensional ion-chamber array. The results indicate that by reducing intrafractional motion variability, the trailing strategy

  12. Origin of Tumor Recurrence After Intensity Modulated Radiation Therapy for Oropharyngeal Squamous Cell Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Raktoe, Sawan A.S. [Department of Radiotherapy, University Medical Center Utrecht, Utrecht (Netherlands); Dehnad, Homan, E-mail: h.dehnad@umcutrecht.nl [Department of Radiotherapy, University Medical Center Utrecht, Utrecht (Netherlands); Raaijmakers, Cornelis P.J. [Department of Radiotherapy, University Medical Center Utrecht, Utrecht (Netherlands); Braunius, Weibel [Department of ENT Head and Neck Surgery, University Medical Center Utrecht, Utrecht (Netherlands); Terhaard, Chris H.J. [Department of Radiotherapy, University Medical Center Utrecht, Utrecht (Netherlands)

    2013-01-01

    Purpose: To model locoregional recurrences of oropharyngeal squamous cell carcinomas (OSCC) treated with primary intensity modulated radiation therapy (IMRT) in order to find the origins from which recurrences grow and relate their location to original target volume borders. Methods and Materials: This was a retrospective analysis of OSCC treated with primary IMRT between January 2002 and December 2009. Locoregional recurrence volumes were delineated on diagnostic scans and coregistered rigidly with treatment planning computed tomography scans. Each recurrence was analyzed with two methods. First, overlapping volumes of a recurrence and original target were measured ('volumetric approach') and assessed as 'in-field', 'marginal', or 'out-field'. Then, the center of mass (COM) of a recurrence volume was assumed as the origin from where a recurrence expanded, the COM location was compared with original target volume borders and assessed as 'in-field', 'marginal', or 'out-field'. Results: One hundred thirty-one OSCC were assessed. For all patients alive at the end of follow-up, the mean follow-up time was 40 months (range, 12-83 months); 2 patients were lost to follow-up. The locoregional recurrence rate was 27%. Of all recurrences, 51% were local, 23% were regional, and 26% had both local and regional recurrences. Of all recurrences, 74% had imaging available for assessment. Regarding volumetric analysis of local recurrences, 15% were in-field gross tumor volume (GTV), and 65% were in-field clinical tumor volume (CTV). Using the COM approach, we found that 70% of local recurrences were in-field GTV and 90% were in-field CTV. Of the regional recurrences, 25% were volumetrically in-field GTV, and using the COM approach, we found 54% were in-field GTV. The COM of local out-field CTV recurrences were maximally 16 mm outside CTV borders, whereas for regional recurrences, this was 17 mm. Conclusions: The

  13. Synergistic effects between catalase inhibitors and modulators of nitric oxide metabolism on tumor cell apoptosis.

    Science.gov (United States)

    Scheit, Katrin; Bauer, Georg

    2014-10-01

    Inhibitors of catalase (such as ascorbate, methyldopa, salicylic acid and neutralizing antibodies) synergize with modulators of nitric oxide (NO) metabolism (such as arginine, arginase inhibitor, NO synthase-inducing interferons and NO dioxygenase inhibitors) in the singlet oxygen-mediated inactivation of tumor cell protective catalase. This is followed by reactive oxygen species (ROS)-dependent apoptosis induction. TGF-beta, NADPH oxidase-1, NO synthase, dual oxidase-1 and caspase-9 are characterized as essential catalysts in this process. The FAS receptor and caspase-8 are required for amplification of ROS signaling triggered by individual compounds, but are dispensable when the synergistic effect is established. Our findings explain the antitumor effects of catalase inhibitors and of compounds that target NO metabolism, as well as their synergy. These data may have an impact on epidemiological studies related to secondary plant compounds and open new perspectives for the establishment of novel antitumor drugs and for the improvement of established chemotherapeutics. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  14. The melatonin-MT1 receptor axis modulates tumor growth in PTEN-mutated gliomas.

    Science.gov (United States)

    Ma, Huihui; Wang, Zhen; Hu, Lei; Zhang, Shangrong; Zhao, Chenggang; Yang, Haoran; Wang, Hongzhi; Fang, Zhiyou; Wu, Lijun; Chen, Xueran

    2018-02-19

    More than 40% of glioma patients have tumors that harbor PTEN (phosphatase and tensin homologue deleted on chromosome ten) mutations; this disease is associated with poor therapeutic resistance and outcome. Such mutations are linked to increased cell survival and growth, decreased apoptosis, and drug resistance; thus, new therapeutic strategies focusing on inhibiting glioma tumorigenesis and progression are urgently needed. Melatonin, an indolamine produced and secreted predominantly by the pineal gland, mediates a variety of physiological functions and possesses antioxidant and antitumor properties. Here, we analyzed the relationship between PTEN and the inhibitory effect of melatonin in primary human glioma cells and cultured glioma cell lines. The results showed that melatonin can inhibit glioma cell growth both in culture and in vivo. This inhibition was associated with PTEN levels, which significantly correlated with the expression level of MT1 in patients. In fact, c-fos-mediated MT1 was shown to be a key modulator of the effect of melatonin on gliomas that harbor wild type PTEN. Taken together, these data suggest that melatonin-MT1 receptor complexes represent a potential target for the treatment of glioma. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Modulation of Tumor Cell Metabolism by Laser Photochemotherapy with Cisplatin or Zoledronic Acid In Vitro.

    Science.gov (United States)

    Heymann, Paul Günther Baptist; Henkenius, Katharina Sabine Elisabeth; Ziebart, Thomas; Braun, Andreas; Hirthammer, Klara; Halling, Frank; Neff, Andreas; Mandic, Robert

    2018-03-01

    Laser photochemotherapy is a new approach in cancer treatment using low-level laser therapy (LLLT) to enhance the effect of chemotherapy. In order to evaluate the effect of LLLT on tumor cells, HeLa cells were treated with cisplatin or zoledronic acid (ZA) followed by LLLT. Cell viability was evaluated with 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide assay. Oxidative phosphorylation and glycolysis were measured using extracellular flux analysis. Immunocytochemistry of heat-shock protein 70 (HSP70) and western blot analysis were performed. LLLT alone increased viability and was associated with lower oxidative phosphorylation but higher glycolysis rates. Cisplatin and ZA alone lowered cell viability, glycolysis and oxidative phosphorylation. This effect was significantly enhanced in conjunction with LLLT and was accompanied by reduced oxidative phosphorylation and collapse of glycolysis. Our observations indicate that LLLT may raise the cytotoxicity of cisplatin and ZA by modulating cellular metabolism, pointing to a possible application in cancer treatment. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  16. miR-21 modulates tumor outgrowth induced by human adipose tissue-derived mesenchymal stem cells in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Keun Koo; Lee, Ae Lim; Kim, Jee Young [Department of Physiology, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Medical Research Center for Ischemic Tissue Engineering, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); BK21 Medical Science Education Center, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Lee, Sun Young [Department of Physiology, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Medical Research Center for Ischemic Tissue Engineering, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Bae, Yong Chan [Department of Plastic Surgery, School of Medicine, Pusan National University, Pusan 602-739 (Korea, Republic of); Jung, Jin Sup, E-mail: jsjung@pusan.ac.kr [Department of Physiology, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Medical Research Center for Ischemic Tissue Engineering, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); BK21 Medical Science Education Center, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Medical Research Institute, Pusan National University, Pusan 602-739 (Korea, Republic of)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer miR-21 modulates hADSC-induced increase of tumor growth. Black-Right-Pointing-Pointer The action is mostly mediated by the modulation of TGF-{beta} signaling. Black-Right-Pointing-Pointer Inhibition of miR-21 enhances the blood flow recovery in hindlimb ischemia. -- Abstract: Mesenchymal stem cells (MSCs) have generated a great deal of interest in clinical situations, due principally to their potential use in regenerative medicine and tissue engineering applications. However, the therapeutic application of MSCs remains limited, unless the favorable effects of MSCs on tumor growth in vivo, and the long-term safety of the clinical applications of MSCs, can be more thoroughly understood. In this study, we determined whether microRNAs can modulate MSC-induced tumor outgrowth in BALB/c nude mice. Overexpression of miR-21 in human adipose-derived stem cells (hADSCs) inhibited hADSC-induced tumor growth, and inhibition of miR-21 increased it. Downregulation of transforming growth factor beta receptor II (TGFBR2), but not of signal transducer and activator of transcription 3, in hADSCs showed effects similar to those of miR-21 overexpression. Downregulation of TGFBR2 and overexpression of miR21 decreased tumor vascularity. Inhibition of miR-21 and the addition of TGF-{beta} increased the levels of vascular endothelial growth factor and interleukin-6 in hADSCs. Transplantation of miR-21 inhibitor-transfected hADSCs increased blood flow recovery in a hind limb ischemia model of nude mice, compared with transplantation of control oligo-transfected cells. These findings indicate that MSCs might favor tumor growth in vivo. Thus, it is necessary to study the long-term safety of this technique before MSCs can be used as therapeutic tools in regenerative medicine and tissue engineering.

  17. The Iron Chelator, Dp44mT, Effectively Inhibits Human Oral Squamous Cell Carcinoma Cell Growth in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Jehn-Chuan Lee

    2016-08-01

    Full Text Available Oral squamous cell carcinoma (OSCC is a common malignancy with a growing worldwide incidence and prevalence. The N-myc downstream regulated gene (NDRG family of NDRG1, 2, 3, and mammary serine protease inhibitor (Maspin gene are well-known modulators in the neoplasia process. Current research has considered iron chelators as new anti-cancer agents; however, the anticancer activities of iron chelators and their target genes in OSCC have not been well investigated. We showed that iron chelators (Dp44mT, desferrioxamine (DFO, and deferasirox all significantly inhibit SAS cell growth. Flow cytometry further indicated that Dp44mT inhibition of SAS cells growth was partly due to induction of G1 cell cycle arrest. Iron chelators enhanced expressions of NDRG1 and NDRG3 while repressing cyclin D1 expression in OSCC cells. The in vivo antitumor effect on OSCC and safety of Dp44mT were further confirmed through a xenograft animal model. The Dp44mT treatment also increased Maspin protein levels in SAS and OECM-1 cells. NDRG3 knockdown enhanced the growth of OECM-1 cells in vitro and in vivo. Our results indicated that NDRG3 is a tumor suppressor gene in OSCC cells, and Dp44mT could be a promising therapeutic agent for OSCC treatment.

  18. Mycophenolate mofetil modulates adhesion receptors of the beta1 integrin family on tumor cells: impact on tumor recurrence and malignancy

    International Nuclear Information System (INIS)

    Engl, Tobias; Makarević, Jasmina; Relja, Borna; Natsheh, Iyad; Müller, Iris; Beecken, Wolf-Dietrich; Jonas, Dietger; Blaheta, Roman A

    2005-01-01

    Tumor development remains one of the major obstacles following organ transplantation. Immunosuppressive drugs such as cyclosporine and tacrolimus directly contribute to enhanced malignancy, whereas the influence of the novel compound mycophenolate mofetil (MMF) on tumor cell dissemination has not been explored. We therefore investigated the adhesion capacity of colon, pancreas, prostate and kidney carcinoma cell lines to endothelium, as well as their beta1 integrin expression profile before and after MMF treatment. Tumor cell adhesion to endothelial cell monolayers was evaluated in the presence of 0.1 and 1 μM MMF and compared to unstimulated controls. beta1 integrin analysis included alpha1beta1 (CD49a), alpha2beta1 (CD49b), alpha3beta1 (CD49c), alpha4beta1 (CD49d), alpha5beta1 (CD49e), and alpha6beta1 (CD49f) receptors, and was carried out by reverse transcriptase-polymerase chain reaction, confocal microscopy and flow cytometry. Adhesion of the colon carcinoma cell line HT-29 was strongly reduced in the presence of 0.1 μM MMF. This effect was accompanied by down-regulation of alpha3beta1 and alpha6beta1 surface expression and of alpha3beta1 and alpha6beta1 coding mRNA. Adhesion of the prostate tumor cell line DU-145 was blocked dose-dependently by MMF. In contrast to MMF's effects on HT-29 cells, MMF dose-dependently up-regulated alpha1beta1, alpha2beta1, alpha3beta1, and alpha5beta1 on DU-145 tumor cell membranes. We conclude that MMF possesses distinct anti-tumoral properties, particularly in colon and prostate carcinoma cells. Adhesion blockage of HT-29 cells was due to the loss of alpha3beta1 and alpha6beta1 surface expression, which might contribute to a reduced invasive behaviour of this tumor entity. The enhancement of integrin beta1 subtypes observed in DU-145 cells possibly causes re-differentiation towards a low-invasive phenotype

  19. Mycophenolate mofetil modulates adhesion receptors of the beta1 integrin family on tumor cells: impact on tumor recurrence and malignancy

    Directory of Open Access Journals (Sweden)

    Beecken Wolf-Dietrich

    2005-01-01

    Full Text Available Abstract Background Tumor development remains one of the major obstacles following organ transplantation. Immunosuppressive drugs such as cyclosporine and tacrolimus directly contribute to enhanced malignancy, whereas the influence of the novel compound mycophenolate mofetil (MMF on tumor cell dissemination has not been explored. We therefore investigated the adhesion capacity of colon, pancreas, prostate and kidney carcinoma cell lines to endothelium, as well as their beta1 integrin expression profile before and after MMF treatment. Methods Tumor cell adhesion to endothelial cell monolayers was evaluated in the presence of 0.1 and 1 μM MMF and compared to unstimulated controls. beta1 integrin analysis included alpha1beta1 (CD49a, alpha2beta1 (CD49b, alpha3beta1 (CD49c, alpha4beta1 (CD49d, alpha5beta1 (CD49e, and alpha6beta1 (CD49f receptors, and was carried out by reverse transcriptase-polymerase chain reaction, confocal microscopy and flow cytometry. Results Adhesion of the colon carcinoma cell line HT-29 was strongly reduced in the presence of 0.1 μM MMF. This effect was accompanied by down-regulation of alpha3beta1 and alpha6beta1 surface expression and of alpha3beta1 and alpha6beta1 coding mRNA. Adhesion of the prostate tumor cell line DU-145 was blocked dose-dependently by MMF. In contrast to MMF's effects on HT-29 cells, MMF dose-dependently up-regulated alpha1beta1, alpha2beta1, alpha3beta1, and alpha5beta1 on DU-145 tumor cell membranes. Conclusion We conclude that MMF possesses distinct anti-tumoral properties, particularly in colon and prostate carcinoma cells. Adhesion blockage of HT-29 cells was due to the loss of alpha3beta1 and alpha6beta1 surface expression, which might contribute to a reduced invasive behaviour of this tumor entity. The enhancement of integrin beta1 subtypes observed in DU-145 cells possibly causes re-differentiation towards a low-invasive phenotype.

  20. Modulation of the tumor microenvironment by Epstein-Barr virus latent membrane protein 1 in nasopharyngeal carcinoma.

    Science.gov (United States)

    Yoshizaki, Tomokazu; Kondo, Satoru; Endo, Kazuhira; Nakanishi, Yosuke; Aga, Mitsuharu; Kobayashi, Eiji; Hirai, Nobuyuki; Sugimoto, Hisashi; Hatano, Miyako; Ueno, Takayoshi; Ishikawa, Kazuya; Wakisaka, Naohiro

    2018-02-01

    Latent membrane protein 1 (LMP1) is a primary oncogene encoded by the Epstein-Barr virus, and various portions of LMP1 are detected in nasopharyngeal carcinoma (NPC) tumor cells. LMP1 has been extensively studied since the discovery of its transforming property in 1985. LMP1 promotes cancer cell growth during NPC development and facilitates the interaction of cancer cells with surrounding stromal cells for invasion, angiogenesis, and immune modulation. LMP1 is detected in 100% of pre-invasive NPC tumors and in approximately 50% of advanced NPC tumors. Moreover, a small population of LMP1-expressing cells in advanced NPC tumor tissue is proposed to orchestrate NPC tumor tissue maintenance and development through cancer stem cells and progenitor cells. Recent studies suggest that LMP1 activity shifts according to tumor development stage, but it still has a pivotal role during all stages of NPC development. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  1. Tumor suppressor maspin as a modulator of host immune response to cancer

    Directory of Open Access Journals (Sweden)

    Sijana H. Dzinic

    2015-10-01

    Full Text Available Despite the promising clinical outcome, the primary challenge of the curative cancer immunotherapy is to overcome the dichotomy of the immune response: tumor-evoked immunostimulatory versus tumor-induced immunosuppressive. The goal needs to be two-fold, to re-establish sustainable antitumor-cancer immunity and to eliminate immunosuppression. The successful elimination of cancer cells by immunosurveillance requires the antigenic presentation of the tumor cells or tumor-associated antigens and the expression of immunostimulatory cytokines and chemokines by cancer and immune cells. Tumors are heterogeneous and as such, some of the tumor cells are thought to have stem cell characteristics that enable them to suppress or desensitize the host immunity due to acquired epigenetic changes. A central mechanism underlying tumor epigenetic instability is the increased histone deacetylase (HDAC-mediated repression of HDAC-target genes regulating homeostasis and differentiation. It was noted that pharmacological HDAC inhibitors are not effective in eliminating tumor cells partly because they may induce immunosuppression. We have shown that epithelial-specific tumor suppressor maspin, an ovalbumin-like non-inhibitory serine protease inhibitor, reprograms tumor cells toward better differentiated phenotypes by inhibiting HDAC1. Recently, we uncovered a novel function of maspin in directing host immunity towards tumor elimination. In this review, we discuss the maspin and maspin/HDAC1 interplay in tumor biology and immunology. We propose that maspin based therapies may eradicate cancer.

  2. Multifield Optimization Intensity Modulated Proton Therapy for Head and Neck Tumors: A Translation to Practice

    Energy Technology Data Exchange (ETDEWEB)

    Frank, Steven J., E-mail: sjfrank@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Cox, James D. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Gillin, Michael; Mohan, Radhe [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Garden, Adam S.; Rosenthal, David I.; Gunn, G. Brandon [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Weber, Randal S. [Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Kies, Merrill S. [Department of Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Lewin, Jan S. [Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Munsell, Mark F. [Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Palmer, Matthew B. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Sahoo, Narayan; Zhang, Xiaodong; Liu, Wei; Zhu, X. Ronald [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2014-07-15

    Background: We report the first clinical experience and toxicity of multifield optimization (MFO) intensity modulated proton therapy (IMPT) for patients with head and neck tumors. Methods and Materials: Fifteen consecutive patients with head and neck cancer underwent MFO-IMPT with active scanning beam proton therapy. Patients with squamous cell carcinoma (SCC) had comprehensive treatment extending from the base of the skull to the clavicle. The doses for chemoradiation therapy and radiation therapy alone were 70 Gy and 66 Gy, respectively. The robustness of each treatment plan was also analyzed to evaluate sensitivity to uncertainties associated with variations in patient setup and the effect of uncertainties with proton beam range in patients. Proton beam energies during treatment ranged from 72.5 to 221.8 MeV. Spot sizes varied depending on the beam energy and depth of the target, and the scanning nozzle delivered the spot scanning treatment “spot by spot” and “layer by layer.” Results: Ten patients presented with SCC and 5 with adenoid cystic carcinoma. All 15 patients were able to complete treatment with MFO-IMPT, with no need for treatment breaks and no hospitalizations. There were no treatment-related deaths, and with a median follow-up time of 28 months (range, 20-35 months), the overall clinical complete response rate was 93.3% (95% confidence interval, 68.1%-99.8%). Xerostomia occurred in all 15 patients as follows: grade 1 in 10 patients, grade 2 in 4 patients, and grade 3 in 1 patient. Mucositis within the planning target volumes was seen during the treatment of all patients: grade 1 in 1 patient, grade 2 in 8 patients, and grade 3 in 6 patients. No patient experienced grade 2 or higher anterior oral mucositis. Conclusions: To our knowledge, this is the first clinical report of MFO-IMPT for head and neck tumors. Early clinical outcomes are encouraging and warrant further investigation of proton therapy in prospective clinical trials.

  3. Multifractionated image-guided and stereotactic intensity-modulated radiotherapy of paraspinal tumors: A preliminary report

    International Nuclear Information System (INIS)

    Yamada, Yoshiya; Lovelock, D. Michael; Yenice, Kamil M.; Bilsky, Mark H.; Hunt, Margaret A.; Zatcky, Joan; Leibel, Steven A.

    2005-01-01

    Purpose: The use of image-guided and stereotactic intensity-modulated radiotherapy (IMRT) techniques have made the delivery of high-dose radiation to lesions within close proximity to the spinal cord feasible. This report presents clinical and physical data regarding the use of IMRT coupled with noninvasive body frames (stereotactic and image-guided) for multifractionated radiotherapy. Methods and Materials: The Memorial Sloan-Kettering Cancer Center (Memorial) stereotactic body frame (MSBF) and Memorial body cradle (MBC) have been developed as noninvasive immobilizing devices for paraspinal IMRT using stereotactic (MSBF) and image-guided (MBC) techniques. Patients were either previously irradiated or prescribed doses beyond spinal cord tolerance (54 Gy in standard fractionation) and had unresectable gross disease involving the spinal canal. The planning target volume (PTV) was the gross tumor volume with a 1 cm margin. The PTV was not allowed to include the spinal cord contour. All treatment planning was performed using software developed within the institution. Isocenter verification was performed with an in-room computed tomography scan (MSBF) or electronic portal imaging devices, or both. Patients were followed up with serial magnetic resonance imaging every 3-4 months, and no patients were lost to follow-up. Kaplan-Meier statistics were used for analysis of clinical data. Results: Both the MSBF and MBC were able to provide setup accuracy within 2 mm. With a median follow-up of 11 months, 35 patients (14 primary and 21 secondary malignancies) underwent treatment. The median dose previously received was 3000 cGy in 10 fractions. The median dose prescribed for these patients was 2000 cGy/5 fractions (2000-3000 cGy), which provided a median PTV V100 of 88%. In previously unirradiated patients, the median prescribed dose was 7000 cGy (5940-7000 cGy) with a median PTV V100 of 90%. The median Dmax to the cord was 34% and 68% for previously irradiated and never

  4. MHC-I modulation due to changes in tumor cell metabolism regulates tumor sensitivity to CTL and NK cells

    Science.gov (United States)

    Catalán, Elena; Charni, Seyma; Jaime, Paula; Aguiló, Juan Ignacio; Enríquez, José Antonio; Naval, Javier; Pardo, Julián; Villalba, Martín; Anel, Alberto

    2015-01-01

    Tumor cells have a tendency to use glucose fermentation to obtain energy instead of mitochondrial oxidative phosphorylation (OXPHOS). We demonstrated that this phenotype correlated with loss of ERK5 expression and with reduced MHC class I expression. Consequently, tumor cells could evade cytotoxic T lymphocyte (CTL)-mediated immune surveillance, but also increase their sensitivity to natural killer (NK) cells. These outcomes were evaluated using two cellular models: leukemic EL4 cells and L929 transformed fibroblasts and their derived ρ° cell lines, which lack mitochondrial DNA. We have also used a L929 cell sub-line that spontaneously lost matrix attachment (L929dt), reminiscent of metastasis generation, that also downregulated MHC-I and ERK5 expression. MHC-I expression is lower in ρ° cells than in the parental cell lines, but they were equally sensitive to CTL. On the contrary, ρ° cells were more sensitive to activated NK cells than parental cells. On the other hand, L929dt cells were resistant to CTL and NK cells, showed reduced viability when forced to perform OXPHOS, and surviving cells increased MHC-I expression and became sensitive to CTL. The present results suggest that when the reduction in MHC-I levels in tumor cells due to glycolytic metabolism is partial, the increase in sensitivity to NK cells seems to predominate. However, when tumor cells completely lose MHC-I expression, the combination of treatments that increase OXPHOS with CTL-mediated immunotherapy could be a promising therapeutic approach. PMID:25949869

  5. MHC-I modulation due to changes in tumor cell metabolism regulates tumor sensitivity to CTL and NK cells.

    Science.gov (United States)

    Catalán, Elena; Charni, Seyma; Jaime, Paula; Aguiló, Juan Ignacio; Enríquez, José Antonio; Naval, Javier; Pardo, Julián; Villalba, Martín; Anel, Alberto

    2015-01-01

    Tumor cells have a tendency to use glucose fermentation to obtain energy instead of mitochondrial oxidative phosphorylation (OXPHOS). We demonstrated that this phenotype correlated with loss of ERK5 expression and with reduced MHC class I expression. Consequently, tumor cells could evade cytotoxic T lymphocyte (CTL)-mediated immune surveillance, but also increase their sensitivity to natural killer (NK) cells. These outcomes were evaluated using two cellular models: leukemic EL4 cells and L929 transformed fibroblasts and their derived ρ° cell lines, which lack mitochondrial DNA. We have also used a L929 cell sub-line that spontaneously lost matrix attachment (L929dt), reminiscent of metastasis generation, that also downregulated MHC-I and ERK5 expression. MHC-I expression is lower in ρ° cells than in the parental cell lines, but they were equally sensitive to CTL. On the contrary, ρ° cells were more sensitive to activated NK cells than parental cells. On the other hand, L929dt cells were resistant to CTL and NK cells, showed reduced viability when forced to perform OXPHOS, and surviving cells increased MHC-I expression and became sensitive to CTL. The present results suggest that when the reduction in MHC-I levels in tumor cells due to glycolytic metabolism is partial, the increase in sensitivity to NK cells seems to predominate. However, when tumor cells completely lose MHC-I expression, the combination of treatments that increase OXPHOS with CTL-mediated immunotherapy could be a promising therapeutic approach.

  6. Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals

    Science.gov (United States)

    Gupta, Subash C.; Kim, Ji Hye; Prasad, Sahdeo

    2010-01-01

    Almost 25 centuries ago, Hippocrates, the father of medicine, proclaimed “Let food be thy medicine and medicine be thy food.” Exploring the association between diet and health continues today. For example, we now know that as many as 35% of all cancers can be prevented by dietary changes. Carcinogenesis is a multistep process involving the transformation, survival, proliferation, invasion, angiogenesis, and metastasis of the tumor and may take up to 30 years. The pathways associated with this process have been linked to chronic inflammation, a major mediator of tumor progression. The human body consists of about 13 trillion cells, almost all of which are turned over within 100 days, indicating that 70,000 cells undergo apoptosis every minute. Thus, apoptosis/cell death is a normal physiological process, and it is rare that a lack of apoptosis kills the patient. Almost 90% of all deaths due to cancer are linked to metastasis of the tumor. How our diet can prevent cancer is the focus of this review. Specifically, we will discuss how nutraceuticals, such as allicin, apigenin, berberine, butein, caffeic acid, capsaicin, catechin gallate, celastrol, curcumin, epigallocatechin gallate, fisetin, flavopiridol, gambogic acid, genistein, plumbagin, quercetin, resveratrol, sanguinarine, silibinin, sulforaphane, taxol, γ-tocotrienol, and zerumbone, derived from spices, legumes, fruits, nuts, and vegetables, can modulate inflammatory pathways and thus affect the survival, proliferation, invasion, angiogenesis, and metastasis of the tumor. Various cell signaling pathways that are modulated by these agents will also be discussed. PMID:20737283

  7. Plasma uric acid and tumor volume are highly predictive of outcome in nasopharyngeal carcinoma patients receiving intensity modulated radiotherapy

    International Nuclear Information System (INIS)

    Lin, Hui; Lin, Huan-Xin; Ge, Nan; Wang, Hong-Zhi; Sun, Rui; Hu, Wei-Han

    2013-01-01

    The combined predictive value of plasma uric acid and primary tumor volume in nasopharyngeal carcinoma (NPC) patients receiving intensity modulated radiation therapy (IMRT) has not yet been determined. In this retrospective study, plasma uric acid level was measured after treatment in 130 histologically-proven NPC patients treated with IMRT. Tumor volume was calculated from treatment planning CT scans. Overall (OS), progression-free (PFS) and distant metastasis-free (DMFS) survival were compared using Kaplan-Meier analysis and the log rank test, and Cox multivariate and univariate regression models were created. Patients with a small tumor volume (<27 mL) had a significantly better DMFS, PFS and OS than patients with a large tumor volume. Patients with a high post-treatment plasma uric acid level (>301 μmol/L) had a better DMFS, PFS and OS than patients with a low post-treatment plasma uric acid level. Patients with a small tumor volume and high post-treatment plasma uric acid level had a favorable prognosis compared to patients with a large tumor volume and low post-treatment plasma uric acid level (7-year overall OS, 100% vs. 48.7%, P <0.001 and PFS, 100% vs. 69.5%, P <0.001). Post-treatment plasma uric acid level and pre-treatment tumor volume have predictive value for outcome in NPC patients receiving IMRT. NPC patients with a large tumor volume and low post-treatment plasma uric acid level may benefit from additional aggressive treatment after IMRT

  8. The influence of functional groups on the permeation and distribution of antimycobacterial rhodamine chelators.

    Science.gov (United States)

    Moniz, T; Leite, A; Silva, T; Gameiro, P; Gomes, M S; de Castro, B; Rangel, M

    2017-10-01

    We formerly hypothesized a mechanism whereby the antimycobacterial efficiency of a set of rhodamine labelled iron chelators is improved via the rhodamine fluorophore which enhances the chelators' permeation properties through membranes. To validate our hypothesis in a cellular context and to understand the influence of the structure of the fluorophore on the chelator's uptake and distribution within macrophages we now report comparative confocal microscopy studies performed with a set of rhodamine labelled chelators. We identify the functional groups of the chelator's framework that favor uptake by macrophages and conclude that the antimycobacterial effect is strongly related with the capacity of the chelator to distribute within the host cell and its compartments, a property that is closely related with the chelators' ability to interact with membranes. The quantification of the chelators' interaction with membranes was assessed through measurement of the corresponding partition constants in liposomes. The overall results support that the compounds which are preferentially taken up are the most efficient antimycobacterial chelators and for that reason we infer that the biological activity is modulated by the structural features of the fluorophore. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. The expression of VE-cadherin in breast cancer cells modulates cell dynamics as a function of tumor differentiation and promotes tumor-endothelial cell interactions.

    Science.gov (United States)

    Rezaei, Maryam; Cao, Jiahui; Friedrich, Katrin; Kemper, Björn; Brendel, Oliver; Grosser, Marianne; Adrian, Manuela; Baretton, Gustavo; Breier, Georg; Schnittler, Hans-Joachim

    2018-01-01

    The cadherin switch has profound consequences on cancer invasion and metastasis. The endothelial-specific vascular endothelial cadherin (VE-cadherin) has been demonstrated in diverse cancer types including breast cancer and is supposed to modulate tumor progression and metastasis, but underlying mechanisms need to be better understood. First, we evaluated VE-cadherin expression by tissue microarray in 392 cases of breast cancer tumors and found a diverse expression and distribution of VE-cadherin. Experimental expression of fluorescence-tagged VE-cadherin (VE-EGFP) in undifferentiated, fibroblastoid and E-cadherin-negative MDA-231 (MDA-VE-EGFP) as well as in differentiated E-cadherin-positive MCF-7 human breast cancer cell lines (MCF-VE-EGFP), respectively, displayed differentiation-dependent functional differences. VE-EGFP expression reversed the fibroblastoid MDA-231 cells to an epithelial-like phenotype accompanied by increased β-catenin expression, actin and vimentin remodeling, increased cell spreading and barrier function and a reduced migration ability due to formation of VE-cadherin-mediated cell junctions. The effects were largely absent in both MDA-VE-EGFP and in control MCF-EGFP cell lines. However, MCF-7 cells displayed a VE-cadherin-independent planar cell polarity and directed cell migration that both developed in MDA-231 only after VE-EGFP expression. Furthermore, VE-cadherin expression had no effect on tumor cell proliferation in monocultures while co-culturing with endothelial cells enhanced tumor cell proliferation due to integration of the tumor cells into monolayer where they form VE-cadherin-mediated cell contacts with the endothelium. We propose an interactive VE-cadherin-based crosstalk that might activate proliferation-promoting signals. Together, our study shows a VE-cadherin-mediated cell dynamics and an endothelial-dependent proliferation in a differentiation-dependent manner.

  10. Article Commentary: Chelation Therapy for Mercury Poisoning

    Directory of Open Access Journals (Sweden)

    Rong Guan

    2009-01-01

    Full Text Available Chelation therapy has been the major treatment for heavy metal poisoning. Various chelating agents have been developed and tested for treatment of heavy metal intoxications, including mercury poisoning. It has been clearly shown that chelating agents could rescue the toxicity caused by heavy metal intoxication, but the potential preventive role of chelating agents against heavy metal poisoning has not been explored much. Recent paper by Siddiqi and colleagues has suggested a protective role of chelating agents against mercury poisoning, which provides a promising research direction for broader application of chelation therapy in prevention and treatment of mercury poisoning.

  11. Salivary Gland Tumors Treated With Adjuvant Intensity-Modulated Radiotherapy With or Without Concurrent Chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Schoenfeld, Jonathan D., E-mail: jdschoenfeld@partners.org [Department of Radiation Oncology, Harvard Radiation Oncology Program, Boston, MA (United States); Sher, David J. [Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women' s Hospital, Boston, MA (United States); Norris, Charles M. [Department of Surgery, Division of Otolaryngology, Brigham and Women' s Hospital, Boston, MA (United States); Haddad, Robert I.; Posner, Marshall R. [Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA (United States); Department of Medicine, Brigham and Women' s Hospital, Boston, MA (United States); Balboni, Tracy A.; Tishler, Roy B. [Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women' s Hospital, Boston, MA (United States)

    2012-01-01

    Purpose: To analyze the recent single-institution experience of patients with salivary gland tumors who had undergone adjuvant intensity-modulated radiotherapy (IMRT), with or without concurrent chemotherapy. Patients and Methods: We performed a retrospective analysis of 35 salivary gland carcinoma patients treated primarily at the Dana-Farber Cancer Institute between 2005 and 2010 with surgery and adjuvant IMRT. The primary endpoints were local control, progression-free survival, and overall survival. The secondary endpoints were acute and chronic toxicity. The median follow-up was 2.3 years (interquartile range, 1.2-2.8) among the surviving patients. Results: The histologic types included adenoid cystic carcinoma in 15 (43%), mucoepidermoid carcinoma in 6 (17%), adenocarcinoma in 3 (9%), acinic cell carcinoma in 3 (9%), and other in 8 (23%). The primary sites were the parotid gland in 17 (49%), submandibular glands in 6 (17%), tongue in 4 (11%), palate in 4 (11%), and other in 4 (11%). The median radiation dose was 66 Gy, and 22 patients (63%) received CRT. The most common chemotherapy regimen was carboplatin and paclitaxel (n = 14, 64%). A trend was seen for patients undergoing CRT to have more adverse prognostic factors, including Stage T3-T4 disease (CRT, n = 12, 55% vs. n = 4, 31%, p = .29), nodal positivity (CRT, n = 8, 36% vs. n = 1, 8%, p = .10), and positive margins (n = 13, 59% vs. n = 5, 38%, p = .30). One patient who had undergone CRT developed an in-field recurrence, resulting in an overall actuarial 3-year local control rate of 92%. Five patients (14%) developed distant metastases (1 who had undergone IMRT only and 4 who had undergone CRT). Acute Grade 3 mucositis, esophagitis, and dermatitis occurred in 8%, 8%, and 8% (1 each) of IMRT patients and in 18%, 5%, and 14% (4, 1, and 3 patients) of the CRT group, respectively. No acute Grade 4 toxicity occurred. The most common late toxicity was Grade 1 xerostomia (n = 8, 23%). Conclusions: Treatment of

  12. Salivary Gland Tumors Treated With Adjuvant Intensity-Modulated Radiotherapy With or Without Concurrent Chemotherapy

    International Nuclear Information System (INIS)

    Schoenfeld, Jonathan D.; Sher, David J.; Norris, Charles M.; Haddad, Robert I.; Posner, Marshall R.; Balboni, Tracy A.; Tishler, Roy B.

    2012-01-01

    Purpose: To analyze the recent single-institution experience of patients with salivary gland tumors who had undergone adjuvant intensity-modulated radiotherapy (IMRT), with or without concurrent chemotherapy. Patients and Methods: We performed a retrospective analysis of 35 salivary gland carcinoma patients treated primarily at the Dana-Farber Cancer Institute between 2005 and 2010 with surgery and adjuvant IMRT. The primary endpoints were local control, progression-free survival, and overall survival. The secondary endpoints were acute and chronic toxicity. The median follow-up was 2.3 years (interquartile range, 1.2–2.8) among the surviving patients. Results: The histologic types included adenoid cystic carcinoma in 15 (43%), mucoepidermoid carcinoma in 6 (17%), adenocarcinoma in 3 (9%), acinic cell carcinoma in 3 (9%), and other in 8 (23%). The primary sites were the parotid gland in 17 (49%), submandibular glands in 6 (17%), tongue in 4 (11%), palate in 4 (11%), and other in 4 (11%). The median radiation dose was 66 Gy, and 22 patients (63%) received CRT. The most common chemotherapy regimen was carboplatin and paclitaxel (n = 14, 64%). A trend was seen for patients undergoing CRT to have more adverse prognostic factors, including Stage T3-T4 disease (CRT, n = 12, 55% vs. n = 4, 31%, p = .29), nodal positivity (CRT, n = 8, 36% vs. n = 1, 8%, p = .10), and positive margins (n = 13, 59% vs. n = 5, 38%, p = .30). One patient who had undergone CRT developed an in-field recurrence, resulting in an overall actuarial 3-year local control rate of 92%. Five patients (14%) developed distant metastases (1 who had undergone IMRT only and 4 who had undergone CRT). Acute Grade 3 mucositis, esophagitis, and dermatitis occurred in 8%, 8%, and 8% (1 each) of IMRT patients and in 18%, 5%, and 14% (4, 1, and 3 patients) of the CRT group, respectively. No acute Grade 4 toxicity occurred. The most common late toxicity was Grade 1 xerostomia (n = 8, 23%). Conclusions: Treatment of

  13. Overview of current chelation practices

    Directory of Open Access Journals (Sweden)

    Y. Aydinok

    2011-12-01

    Full Text Available Deferoxamine (DFO is reference standard therapy for transfusional iron overload since the 1980s. Although it is a highly effective iron chelator, the compliance problem to subcutaneous administration of DFO remains as the major problem. The oral chelator Deferiprone (DFP has no marketing licence in North America, however, it has been licensed in India since 1994 and the European Union (EU granted marketing approval for DFP in 1999, specifically for patients with thalassemia major when DFO is inadequate, intolerable or unacceptable. There are still limited data available on the use of DFP in children between 6 and 10 years of age, and no data on DFP use in children under 6 years of age. Subsequently the oral chelator Deferasirox (DFX was approved by FDA and EMA for the treatment of patients with transfusional iron overload -older than 2 years of age- as first line therapy, in 2005 and 2006 respectively. The primary objective of iron chelation is to maintain body iron at safe levels at all times but once iron is accumulated, the objective of iron chelation is to reduce tissue iron to safe levels which is a slow process. The chelation regimen, dose and frequency of administration, of the chelator(s are mainly determined based on body iron burden, presence of myocardial iron and the transfusional iron loading rate. A proper monitoring of chelation is of importance for measuring the response rate to a particular regimen and providing dose adjustments to enhance chelation efficacy and to avoid toxicity. Efficacy of a chelation regimen may exhibit individual variability resulting from factors such as absorbtion and metabolism of the chelator. Tolerability and compliance are also individual variables effecting the response to chelation. Understanding of advantages and limitations of chelators, accurately determining chelation needs of patients with iron overload and designing individualized chelation regimens with less toxicity but optimum efficacy

  14. A novel proapoptotic gene PANO encodes a post-translational modulator of the tumor suppressor p14ARF

    Energy Technology Data Exchange (ETDEWEB)

    Watari, Akihiro; Li, Yang; Higashiyama, Shinji; Yutsudo, Masuo, E-mail: yutsudo@biken.osaka-u.ac.jp

    2012-02-01

    The protein p14ARF is a known tumor suppressor protein controlling cell proliferation and survival, which mainly localizes in nucleoli. However, the regulatory mechanisms that govern its activity or expression remain unclear. Here, we report that a novel proapoptotic nucleolar protein, PANO, modulates the expression and activity of p14ARF in HeLa cells. Overexpression of PANO enhances the stability of p14ARF protein by protecting it from degradation, resulting in an increase in p14ARF expression levels. Overexpression of PANO also induces apoptosis under low serum conditions. This effect is dependent on the nucleolar localization of PANO and inhibited by knocking-down p14ARF. Alternatively, PANO siRNA treated cells exhibit a reduction in p14ARF protein levels. In addition, ectopic expression of PANO suppresses the tumorigenicity of HeLa cells in nude mice. These results indicate that PANO is a new apoptosis-inducing gene by modulating the tumor suppressor protein, p14ARF, and may itself be a new candidate tumor suppressor gene.

  15. Manganese(II) chelate contrast media

    International Nuclear Information System (INIS)

    Rocklage, S.M.; Quay, S.C.

    1994-01-01

    New chelate forming compounds for use as contrast media in NMR imaging are described. Especially mentioned are manganese(II) ion chelates of N,N' dipyridoxaldiamine, N,N' diacetic acid, and salts and esters thereof. 1 fig

  16. AAZTA: an ideal chelating agent for the development of {sup 44}Sc PET imaging agents

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Gabor; Szikra, Dezso; Trencsenyi, Gyoergy [Scanomed Ltd., Debrecen (Hungary); University of Debrecen, Medical Imaging Clinic (Hungary); Fekete, Aniko [University of Debrecen, Medical Imaging Clinic (Hungary); Garai, Ildiko [Scanomed Ltd., Debrecen (Hungary); Giani, Arianna M.; Negri, Roberto [Dipartimento di Scienze del Farmaco, Universita del Piemonte Orientale, Novara (Italy); Masciocchi, Norberto [Dipartimento di Scienza e Alta Tecnologia e To.Sca.Lab, Universita degli Studi dell' Insubria, Como (Italy); Maiocchi, Alessandro; Uggeri, Fulvio [Bracco Imaging spa, Bracco Research Centre, Colleretto Giacosa (Italy); Toth, Imre [Department of Inorganic and Analytical Chemistry, University of Debrecen (Hungary); Aime, Silvio [Dipartimento di Biotecnologie Molecolari e Scienze della Salute, Centro di Imaging Molecolare e Preclinico, Universita degli Studi di Torino (Italy); Giovenzana, Giovanni B. [Dipartimento di Scienze del Farmaco, Universita del Piemonte Orientale, Novara (Italy); CAGE Chemicals srl, Novara (Italy); Baranyai, Zsolt [Bracco Imaging spa, Bracco Research Centre, Colleretto Giacosa (Italy); Department of Inorganic and Analytical Chemistry, University of Debrecen (Hungary)

    2017-02-13

    Unprecedented fast and efficient complexation of Sc{sup III} was demonstrated with the chelating agent AAZTA (AAZTA=1,4-bis(carboxymethyl)-6-[bis(carboxymethyl)] amino-6-methylperhydro-1,4-d iazepine) under mild experimental conditions. The robustness of the {sup 44}Sc(AAZTA){sup -} chelate and conjugated biomolecules thereof is further shown by in vivo PET imaging in healthy and tumor mice models. The new results pave the way towards development of efficient Sc-based radiopharmaceuticals using the AAZTA chelator. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Change of tumor target volume during waiting time for intensity-modulated radiotherapy (IMRT) in nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Chen Bo; Yi Junlin; Gao Li; Xu Guozhen; Huang Xiaodong; Zhang Zhong; Luo Jingwei; Li Suyan

    2007-01-01

    Objective: To determine the influence of change in tumor target volume of nasopharyngeal carcinoma (NPC) while waiting for intensity modulated radiation therapy (IMRT). Methods: From March 2005 to December 2005, 31 patients with nasopharyngeal carcinoma received IMRT as the initial treatment at the Cancer Hospital of Chinese Academic of Medical Sciences. The original simulation CT scan was acquired before IMRT planning. A second CT scan was acquired before the start of radiotherapy. Wait- ing time was defined as the duration between CT simulation and start of radiotherapy. CT-CT fusion was used to minimize the error of delineation between the first tumor target volume (GTV) and the second tumor target volume (sGTV). Tumor target volume was calculated by treatment planning system. T test was carried out to analyse the difference between GTV and sGTV. Pearson correlation and multivariate linear regression was used to analyse the influence factor of the change betweent GTV and sGTV. Results: Median waiting time was 18 days (range, 9-27 days). There were significant differences between GTV and sGTV of both primary tumor (P=0.009) and metastatic lymphoma (P=0.005 ). Both Pearson correlation and multivariate linear regression showed that the change of primary tumor target volume had significant correlation with the first tumor target volume but had no significant correlation with the waiting time, sex, age, T stage and N stage (1992 Chinese Fuzhou Staging Classification). Conclusions: Within the range of the waiting time ob- served in our study, large volume primary tumor would have had a significant increase in volume, but whether the therapeutic effect would be influenced or not would need to be proved by study of large number of cases. Patients with large volume tumor should be considered to reduce the influence of waiting time by enlarging gross target volume and clinical targe volume and by neoadjuveant chemotherapy. For avoiding the unnecessary high-dose to normal

  18. Exploiting the Metal-Chelating Properties of the Drug Cargo for In Vivo Positron Emission Tomography Imaging of Liposomal Nanomedicines

    DEFF Research Database (Denmark)

    Edmonds, Scott; Volpe, Alessia; Shmeeda, Hilary

    2016-01-01

    of a radiolabeled stealth liposomal nanomedicine containing alendronate that shows high uptake in primary tumors and metastatic organs. The versatility, efficiency, simplicity, and GMP compatibility of this method may enable submicrodosing imaging studies of liposomal nanomedicines containing chelating drugs...

  19. An inhibitor of K+ channels modulates human endometrial tumor-initiating cells

    Directory of Open Access Journals (Sweden)

    Leslie Kimberly K

    2011-08-01

    Full Text Available Abstract Background Many potassium ion (K+ channels function as oncogenes to sustain growth of solid tumors, but their role in cancer progression is not well understood. Emerging evidence suggests that the early progenitor cancer cell subpopulation, termed tumor initiating cells (TIC, are critical to cancer progression. Results A non-selective antagonist of multiple types of K+ channels, tetraethylammonium (TEA, was found to suppress colony formation in endometrial cancer cells via inhibition of putative TIC. The data also indicated that withdrawal of TEA results in a significant enhancement of tumorigenesis. When the TIC-enriched subpopulation was isolated from the endometrial cancer cells, TEA was also found to inhibit growth in vitro. Conclusions These studies suggest that the activity of potassium channels significantly contributes to the progression of endometrial tumors, and the antagonists of potassium channels are candidate anti-cancer drugs to specifically target tumor initiating cells in endometrial cancer therapy.

  20. Age and Space Irradiation Modulate Tumor Progression: Implications for Carcinogenesis Risk

    Data.gov (United States)

    National Aeronautics and Space Administration — Age plays a major role in tumor incidence and is an important consideration when modeling the carcinogenesis process or estimating cancer risks. Epidemiological data...

  1. Modulation of Breast Tumor Cell Response to Retinoids by Histone Deacetylase Inhibitors

    National Research Council Canada - National Science Library

    Sacchi, Nicoletta

    2003-01-01

    .... One form of RA-resistance in breast cancer can be traced to loss of expression of the tumor suppressor RAR beta, due to epigenetic changes including DNA methylation and histone deacetylation in one...

  2. Chelate chase of radiopharmaceuticals reversibly bound to monoclonal antibodies improves dosimetry

    International Nuclear Information System (INIS)

    Goodwin, D.A.; Smith, S.I.; Meares, C.F.; David, G.S.; McTigue, M.; Finston, R.A.

    1986-01-01

    One hundred micrograms of monoclonal antibody (MoAb) CHA 255 with a binding constant Kb of 4 x 10 9 was complexed with indium-111 labeled BLEDTA II, GLEDTA IV, benzyl EDTA, and an EDTA conjugate of Fab. The 24-hour tumor and organ distribution in BALB/c mice bearing KHJJ tumors was studied for each compound alone, the antibody complex, and 3 hours following a chelate chase of the antibody complex. Whole-body biological half-life was measured for 7 days with and without a chelate chase for each antibody complex. The 24-hour whole-body counts dropped 20-60% within 3 hours of administering the chelate chase. Blood concentration fell over 89% within 3 hours of administering the chase and there was a decrease in concentration in all organs, except the kidneys, of 10 to 85%. Theoretical equivalent human doses were calculated from the 24-hour organ concentrations, effective half-life, and MIRD 11 S values (absorbed dose per cumulated activity). Liver and spleen were the target organs, with the dose ranging from 0.50 to 3.91 rads per millicurie. The reduction in organ radiation dose varied up to 95% following the chelate chase. Rapid selective renal clearance of chelate labeled radiopharmaceuticals by competitive inhibition (chelate chase) of their reversible binding to monoclonal antibodies, greatly improves the radiation dosimetry of tumor imaging agents. 28 references, 5 figures, 5 tables

  3. BAG3 down-modulation reduces anaplastic thyroid tumor growth by enhancing proteasome-mediated degradation of BRAF protein.

    Science.gov (United States)

    Chiappetta, Gennaro; Basile, Anna; Arra, Claudio; Califano, Daniela; Pasquinelli, Rosa; Barbieri, Antonio; De Simone, Veronica; Rea, Domenica; Giudice, Aldo; Pezzullo, Luciano; De Laurenzi, Vincenzo; Botti, Gerardo; Losito, Simona; Conforti, Daniela; Turco, Maria Caterina

    2012-01-01

    Anaplastic thyroid tumors (ATC) express high levels of BAG3, a member of the BAG family of cochaperone proteins that is involved in regulating cell apoptosis through multiple mechanisms. The objective of the study was the investigation of the influence of B-cell lymphoma-2-associated athanogene 3 (BAG3) on ATC growth. We investigated the effects of BAG3 down-modulation, obtained by using a specific small interfering RNA, on in vitro and in vivo growth of the human ATC cell line 8505C. Because BRAF protein plays an important role in ATC cell growth, we analyzed the effects of BAG3 down-modulation on BRAF protein levels. Furthermore, by using a proteasome inhibitor, we verified whether BAG3-mediated regulation of BRAF levels involved a proteasome-dependent mechanism. BAG3 down-modulation significantly inhibits ATC growth in vitro and in vivo. BAG3 coimmunoprecipitates with BRAF protein, and its down-modulation results in a significant reduction of BRAF protein levels, which can be reverted by incubation with the proteasome inhibitor MG132. BAG3 protein sustains ATC growth in vitro and in vivo. The underlying molecular mechanism appears to rely on BAG3 binding to BRAF, thus protecting it from proteasome-dependent degradation. These results are in line with the reported ability of BAG3 to interfere with the proteasomal delivery of a number of other client proteins.

  4. A project proposal for implementing intensity modulated radiotherapy (IMRT) for treatment of head and neck tumors

    International Nuclear Information System (INIS)

    Napoles Morales, Misleidy; Garcia Yip, Fernando; Rodriguez Machado, Jorge; Yanes Lopez, Yaima; Pomares Gomez, Yenes; Mena, Yailen

    2009-01-01

    Malignant tumors located in the structures of the head and neck, excluding the skull and its contents, constitute 10% of all cancers, remains the most frequent locations, which correspond to the oral cavity between 40 to 60%. Diagnosed between 60 to 80% in early stages and a 15 to 30% in more advanced forms of the disease. Radiotherapy and surgery are the essential therapeutic tools in the treatment of these tumors planning processes and administration of radiotherapy treatments currently in a situation of rapid and radical change. Since the beginning of radiotherapy to this day the greatest advances in treatment have been linked to a better definition of the tumor irradiation thus get a reduced dose in healthy tissue. The use of radiation, can be severe sequelae affecting quality of life of the patient, organs at risk receiving high dose and advanced technique of IMRT treatment planning and allows treatments shaped fields, especially when the target of radiation is irregular, with fewer side effects by limiting the dose in the tumor tissues and organs at risk and to allow us to increase the doses in the tumor. So we decided to develop a protocol for the implementation of IMRT, taking into account that we have the appropriate equipment, trained staff to develop this technique. (Author)

  5. Nanomedicine targeting the tumor microenvironment: Therapeutic strategies to inhibit angiogenesis, remodel matrix, and modulate immune responses

    Directory of Open Access Journals (Sweden)

    Elizabeth L. Siegler

    2016-11-01

    Full Text Available Increasing attention has been given to the tumor microenvironment (TME, which includes cellular and structural components such as fibroblasts, immune cells, vasculature, and extracellular matrix (ECM that surround tumor sites. These components contribute to tumor growth and metastasis and are one reason why traditional chemotherapy often is insufficient to eradicate the tumor completely. Newer treatments that target aspects of the TME, such as antiangiogenic and immunostimulatory therapies, have seen limited clinical success despite promising preclinical results. This can be attributed to a number of reasons, including a lack of drug penetration deeper into the necrotic tumor core, nonspecific delivery, rapid clearance from serum, or toxic side effects at high doses. Nanoparticles offer a potential solution to all of these obstacles, and many recent studies have shown encouraging results using nanomedicine to target TME vasculature, ECM, and immune response. While few of these platforms have made it to clinical trials to date, these strategies are relatively new and may offer a way to improve the effects of anticancer therapies.

  6. DNER, an epigenetically modulated gene, regulates glioblastoma-derived neurosphere cell differentiation and tumor propagation.

    Science.gov (United States)

    Sun, Peng; Xia, Shuli; Lal, Bachchu; Eberhart, Charles G; Quinones-Hinojosa, Alfredo; Maciaczyk, Jarek; Matsui, William; Dimeco, Francesco; Piccirillo, Sara M; Vescovi, Angelo L; Laterra, John

    2009-07-01

    Neurospheres derived from glioblastoma (GBM) and other solid malignancies contain neoplastic stem-like cells that efficiently propagate tumor growth and resist cytotoxic therapeutics. The primary objective of this study was to use histone-modifying agents to elucidate mechanisms by which the phenotype and tumor-promoting capacity of GBM-derived neoplastic stem-like cells are regulated. Using established GBM-derived neurosphere lines and low passage primary GBM-derived neurospheres, we show that histone deacetylase (HDAC) inhibitors inhibit growth, induce differentiation, and induce apoptosis of neoplastic neurosphere cells. A specific gene product induced by HDAC inhibition, Delta/Notch-like epidermal growth factor-related receptor (DNER), inhibited the growth of GBM-derived neurospheres, induced their differentiation in vivo and in vitro, and inhibited their engraftment and growth as tumor xenografts. The differentiating and tumor suppressive effects of DNER, a noncanonical Notch ligand, contrast with the previously established tumor-promoting effects of canonical Notch signaling in brain cancer stem-like cells. Our findings are the first to implicate noncanonical Notch signaling in the regulation of neoplastic stem-like cells and suggest novel neoplastic stem cell targeting treatment strategies for GBM and potentially other solid malignancies.

  7. EGFR and its mutant EGFRvIII as modulators of tumor cell radiosensitivity

    International Nuclear Information System (INIS)

    Lammering, G.; Hewit, T.H.; Contessa, J.N.; Hawkins, W.; Lin, P.S.; Valerie, K.; Mikkelsen, R.; Dent, P.; Schmidt-Ullrich, R.K.

    2001-01-01

    Purpose: Exposure of human carcinoma and malignant glioma cells to ionizing radiation (IR)activates EGFR,which as a consequence mediates a cytoprotective response. We have demonstrated that expression of a dominant negative mutant, EGFR-CD533 disrupts this cytoprotective response, resulting in significant radiosensitization. During studies of in vivo radiosensitization with intratumoral delivery of the Adenovirus (Ad) vector, Ad-EGFR-CD533, it became apparent that xenografts from human carcinoma and malignant glioma cells invariably expressed the constitutively active EGFR mutant, EGFRvIII. This mutant EGFRvIII is frequently found in vivo in glioblastoma, breast, prostate, lung and ovarian carcinoma, but does not appear to be expressed in tumor cells under in vitro conditions. The functional consequences of EGFRvIII expression on tumor cell radiation responses are currently unknown. We have therefore investigated in a transient transfection cell system the responses of EGFRvIII and downstream signal transduction pathways to IR. In addition, the capacity of EGFR-CD533 to disrupt the function of EGFRvIII was tested. Materials and Methods: The MDA-MB-231, U-87 MG and U-373 MG cell lines were established as tumors and then intratumorally transduced with Ad-EGFR-CD533 or Ad-LacZ (control vector). The transduction efficiency was > 40% in MDA-MB-231 tumors and reached > 70% in the glioma xenografts. Radiosensitivity was measured by ex vivo colony formation and growth delay assays. The functional consequences of EGFRvIII expression on cellular IR responses were studied in transiently transfected Chinese hamster ovary (CHO) cells because tumor cells do not express EGFRvIII in vitro. Transfection with null vectors and vectors encoding either EGFRvIII or EGFR were performed and similar protein expression levels were verified by Western blot analyses. Results: The radiosensitivity of Ad-EGFR-CD533 transduced tumors was significantly increased compared with Ad-LacZ transduced

  8. Tumor suppressor protein SMAR1 modulates the roughness of cell surface: combined AFM and SEM study

    Directory of Open Access Journals (Sweden)

    Mamgain Hitesh

    2009-10-01

    Full Text Available Abstract Background Imaging tools such as scanning electron microscope (SEM and atomic force microscope (AFM can be used to produce high-resolution topographic images of biomedical specimens and hence are well suited for imaging alterations in cell morphology. We have studied the correlation of SMAR1 expression with cell surface smoothness in cell lines as well as in different grades of human breast cancer and mouse tumor sections. Methods We validated knockdown and overexpression of SMAR1 using RT-PCR as well as Western blotting in human embryonic kidney (HEK 293, human breast cancer (MCF-7 and mouse melanoma (B16F1 cell lines. The samples were then processed for cell surface roughness studies using atomic force microscopy (AFM and scanning electron microscopy (SEM. The same samples were used for microarray analysis as well. Tumors sections from control and SMAR1 treated mice as well as tissues sections from different grades of human breast cancer on poly L-lysine coated slides were used for AFM and SEM studies. Results Tumor sections from mice injected with melanoma cells showed pronounced surface roughness. In contrast, tumor sections obtained from nude mice that were first injected with melanoma cells followed by repeated injections of SMAR1-P44 peptide, exhibited relatively smoother surface profile. Interestingly, human breast cancer tissue sections that showed reduced SMAR1 expression exhibited increased surface roughness compared to the adjacent normal breast tissue. Our AFM data establishes that treatment of cells with SMAR1-P44 results into increase in cytoskeletal volume that is supported by comparative gene expression data showing an increase in the expression of specific cytoskeletal proteins compared to the control cells. Altogether, these findings indicate that tumor suppressor function of SMAR1 might be exhibited through smoothening of cell surface by regulating expression of cell surface proteins. Conclusion Tumor suppressor

  9. [Heat shock protein 90--modulator of TNFalpha-induced apoptosis of Jurkat tumor cells].

    Science.gov (United States)

    Kaĭgorodova, E V; Riazantseva, N V; Novitskiĭ, V V; Moroshkina, A N; Belkina, M V; Iakushina, V D

    2011-01-01

    rTNFalpha-induced programmed death of Jurkat tumor cells cultured with 17-AAG, a selective inhibitor of heat shock protein (Hsp90), was studied by fluorescent microscopy with the use of FITC-labeled annexin V and propidium iodide. Caspase-3 and -8 activities were determined by spectrophotometry using a caspase- 3 and -8 colorimetric assay kit. It was shown that inhibition of Hsp90 leads to activation of Jurkat cell apoptosis while Hsp90 itself suppresses this process. 17-AAG enhances rTNFa-induced apoptosis of tumor cells.

  10. Chelators for investigating zinc metalloneurochemistry

    OpenAIRE

    Radford, Robert John; Lippard, Stephen J.

    2013-01-01

    The physiology and pathology of mobile zinc signaling has become an important topic in metalloneurochemistry. To study the action of mobile zinc effectively, specialized tools are required that probe the temporal and positional changes of zinc ions within live tissue and cells. In the present article we describe the design and implementation of selective zinc chelators as antagonists to interrogate the function of mobile zinc, with an emphasis on the pools of vesicular zinc in the terminals o...

  11. Protective Effect of Prosopis cineraria Against N-Nitrosodiethylamine Induced Liver Tumor by Modulating Membrane Bound Enzymes and Glycoproteins

    Directory of Open Access Journals (Sweden)

    Naina Mohamed Pakkir Maideen

    2012-06-01

    Full Text Available Purpose: The objective of the present study was to evaluate the protective effect of methanol extract of Prosopis cineraria (MPC against N-nitrosodiethylamine (DEN, 200mg/kg induced Phenobarbital promoted experimental liver tumors in male Wistar rats. Methods: The rats were divided into four groups, each group consisting of six animals. Group 1 served as control animals. Liver tumor was induced in group 2, 3, and 4 and Group 3 animals received MPC 200mg/kg and Group 4 animals received MPC 400mg/kg. Results: Administration of DEN has brought down the levels of membrane bound enzymes like Na+/ K+ ATPase, Mg2+ ATPase and Ca2+ATPase which were later found to be increased by the administration of Prosopis cineraria (200 and 400mg/kg in dose dependent manner. The MPC extract also suppressed the levels of glycoproteins like Hexose, Hexosamine and Sialic acid when compared to liver tumor bearing animals. Conclusions: Our study suggests that MPC may extend its protective role by modulating the levels of membrane bound enzymes and suppressing glycoprotein levels.

  12. TLR9 agonists oppositely modulate DNA repair genes in tumor versus immune cells and enhance chemotherapy effects.

    Science.gov (United States)

    Sommariva, Michele; De Cecco, Loris; De Cesare, Michelandrea; Sfondrini, Lucia; Ménard, Sylvie; Melani, Cecilia; Delia, Domenico; Zaffaroni, Nadia; Pratesi, Graziella; Uva, Valentina; Tagliabue, Elda; Balsari, Andrea

    2011-10-15

    Synthetic oligodeoxynucleotides expressing CpG motifs (CpG-ODN) are a Toll-like receptor 9 (TLR9) agonist that can enhance the antitumor activity of DNA-damaging chemotherapy and radiation therapy in preclinical mouse models. We hypothesized that the success of these combinations is related to the ability of CpG-ODN to modulate genes involved in DNA repair. We conducted an in silico analysis of genes implicated in DNA repair in data sets obtained from murine colon carcinoma cells in mice injected intratumorally with CpG-ODN and from splenocytes in mice treated intraperitoneally with CpG-ODN. CpG-ODN treatment caused downregulation of DNA repair genes in tumors. Microarray analyses of human IGROV-1 ovarian carcinoma xenografts in mice treated intraperitoneally with CpG-ODN confirmed in silico findings. When combined with the DNA-damaging drug cisplatin, CpG-ODN significantly increased the life span of mice compared with individual treatments. In contrast, CpG-ODN led to an upregulation of genes involved in DNA repair in immune cells. Cisplatin-treated patients with ovarian carcinoma as well as anthracycline-treated patients with breast cancer who are classified as "CpG-like" for the level of expression of CpG-ODN modulated DNA repair genes have a better outcome than patients classified as "CpG-untreated-like," indicating the relevance of these genes in the tumor cell response to DNA-damaging drugs. Taken together, the findings provide evidence that the tumor microenvironment can sensitize cancer cells to DNA-damaging chemotherapy, thereby expanding the benefits of CpG-ODN therapy beyond induction of a strong immune response.

  13. Physical interaction between Wilms tumor 1 and p73 proteins modulates their functions

    NARCIS (Netherlands)

    Scharnhorst, V.; Dekker, P.; Eb, van der A.J.; Jochemsen, A.G.

    2014-01-01

    The WT1 gene, which is heterozygously mutated or deleted in congenital anomaly syndromes and homozygously mutated in about 15% of all Wilms tumors, encodes tissue-specific developmental regulators. Through alternative mRNA splicing, four main WT1 protein isoforms are synthesized. All isoforms can

  14. Transcutaneous cervical vagal nerve stimulation modulates cardiac vagal tone and tumor necrosis factor-alpha

    DEFF Research Database (Denmark)

    Brock, C; Brock, B; Aziz, Q

    2017-01-01

    -VNS, there was an increase in cardiac vagal tone and a reduction in tumor necrosis factor-α in comparison to baseline. No change was seen in blood pressure, cardiac sympathetic index or other cytokines. These preliminary data suggest that t-VNS exerts an autonomic and a subtle antitumor necrosis factor-α effect, which...

  15. Dosimetric comparison of intensity modulated radiation, Proton beam therapy and proton arc therapy for para-aortic lymph node tumor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Hoon [Dept. of Radiation Oncology, Konyang University Hospital. Daejeon (Korea, Republic of)

    2014-12-15

    To test feasibility of proton arc therapy (PAT) in the treatment of para-aortic lymph node tumor and compare its dosimetric properties with advanced radiotherapy techniques such as intensity modulated radiation therapy (IMRT) and conventional 3D conformal proton beam therapy (PBT). The treatment plans for para-aortic lymph node tumor were planned for 9 patients treated at our institution using IMRT, PBT, and PAT. Feasibility test and dosimetric evaluation were based on comparisons of dose volume histograms (DVHs) which reveal mean dose, D{sub 30%}, D{sub 60%}, D{sub 90%}, V{sub 30%}, V{sub 60%}, V{sub 90}%, organ equivalent doses (OEDs), normal tissue complication probability (NTCP), homogeneity index (HI) and conformity index (CI). The average doses delivered by PAT to the liver, kidney, small bowel, duodenum, stomach were 7.6%, 3%, 17.3%, 26.7%, and 14.4%, of the prescription dose (PD), respectively, which is higher than the doses delivered by IMRT (0.4%, 7.2%, 14.2%, 15.9%, and 12.8%, respectively) and PBT (4.9%, 0.5%, 14.12%, 16.1% 9.9%, respectively). The average homogeneity index and conformity index of tumor using PAT were 12.1 and 1.21, respectively which were much better than IMRT (21.5 and 1.47, respectively) and comparable to PBT (13.1 and 1.23, respectively). The result shows that both NTCP and OED of PAT are generally lower than IMRT and PBT. This study demonstrates that PAT is better in target conformity and homogeneity than IMRT and PBT but worse than IMRT and PBT for most of dosimetric factor which indicate that PAT is not recommended for the treatment of para-aortic lymph node tumor.

  16. Volumetric tumor burden and its effect on brachial plexus dosimetry in head and neck intensity-modulated radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Romesser, Paul B.; Qureshi, Muhammad M.; Kovalchuk, Nataliya; Truong, Minh Tam, E-mail: mitruong@bu.edu

    2014-07-01

    To determine the effect of gross tumor volume of the primary (GTV-P) and nodal (GTV-N) disease on planned radiation dose to the brachial plexus (BP) in head and neck intensity-modulated radiotherapy (IMRT). Overall, 75 patients underwent definitive IMRT to a median total dose of 69.96 Gy in 33 fractions. The right BP and left BP were prospectively contoured as separate organs at risk. The GTV was related to BP dose using the unpaired t-test. Receiver operating characteristics curves were constructed to determine optimized volumetric thresholds of GTV-P and GTV-N corresponding to a maximum BP dose cutoff of > 66 Gy. Multivariate analyses were performed to account for factors associated with a higher maximal BP dose. A higher maximum BP dose (> 66 vs ≤ 66 Gy) correlated with a greater mean GTV-P (79.5 vs 30.8 cc; p = 0.001) and ipsilateral GTV-N (60.6 vs 19.8 cc; p = 0.014). When dichotomized by the optimized nodal volume, patients with an ipsilateral GTV-N ≥ 4.9 vs < 4.9 cc had a significant difference in maximum BP dose (64.2 vs 59.4 Gy; p = 0.001). Multivariate analysis confirmed that an ipsilateral GTV-N ≥ 4.9 cc was an independent predictor for the BP to receive a maximal dose of > 66 Gy when adjusted individually for BP volume, GTV-P, the use of a low anterior neck field technique, total planned radiation dose, and tumor category. Although both the primary and the nodal tumor volumes affected the BP maximal dose, the ipsilateral nodal tumor volume (GTV-N ≥ 4.9 cc) was an independent predictor for high maximal BP dose constraints in head and neck IMRT.

  17. Comparison of conformal and intensity modulated radiation therapy techniques for treatment of pelvic tumors. Analysis of acute toxicity

    International Nuclear Information System (INIS)

    Ferrigno, Robson; Santos, Adriana; Martins, Lidiane C; Weltman, Eduardo; Chen, Michael J; Sakuraba, Roberto; Lopes, Cleverson P; Cruz, José C

    2010-01-01

    This retrospective analysis reports on the comparative outcome of acute gastrointestinal (GI) and genitourinary (GU) toxicities between conformal radiation therapy (CRT) and intensity modulated radiation therapy (IMRT) techniques in the treatment of patients with pelvic tumors. From January 2002 to December 2008, 69 patients with pelvic tumors underwent whole pelvic CRT and 65 underwent whole pelvic IMRT to treat pelvic lymph nodes and primary tumor regions. Total dose to the whole pelvis ranged from 50 to 50.4 Gy in 25 to 28 daily fractions. Chemotherapy (CT) regimen, when employed, was based upon primary tumor. Acute GI and GU toxicities were graded by RTOG/EORTC acute radiation morbidity criteria. Absence of GI symptoms during radiotherapy (grade 0) was more frequently observed in the IMRT group (43.1% versus 8.7; p < 0.001) and medication for diarrhea (Grade 2) was more frequently used in the CRT group (65.2% versus 38.5%; p = 0.002). Acute GI grade 1 and 3 side effects incidence was similar in both groups (18.5% versus 18.8%; p = 0.95 and 0% versus 7.2%; p = 0.058, respectively). Incidence of GU toxicity was similar in both groups (grade 0: 61.5% versus 66.6%, p = 0.54; grade 1: 20% versus 8.7%, p = 0.06; grade 2: 18.5% versus 23.5%, p = 0.50 and grade 3: 0% versus 1.5%, p > 0.99). This comparative case series shows less grade 2 acute GI toxicity in patients treated with whole pelvic IMRT in comparison with those treated with CRT. Incidence of acute GU toxicity was similar in both groups

  18. Dosimetric evaluation of a moving tumor target in intensity-modulated radiation therapy (IMRT) for lung cancer patients

    Science.gov (United States)

    Kim, Sung Kyu; Kang, Min Kyu; Yea, Ji Woon; Oh, Se An

    2013-07-01

    Immobilization plays an important role in intensity-modulated radiation therapy (IMRT). The application of IMRT in lung cancer patients is very difficult due to the movement of the tumor target. Patient setup in radiation treatment demands high accuracy because IMRT employs a treatment size of a 1mm pixel unit. Hence, quality assurance of the dose delivered to patients must be at its highest. The radiation dose was evaluated for breathing rates of 9, 14, and 18 breaths per minute (bpm) for tumor targets moving up and down by 1.0 cm and 1.5 cm. The dose of the moving planned target volume (PTV) was measured by using a thermo-luminescent dosimeter (TLD) and Gafchromic™ EBT film. The measurement points were 1.0 cm away from the top, the bottom and the left and the right sides of the PTV center. The evaluated dose differences ranged from 94.2 to 103.8%, from 94.4 to 105.4%, and from 90.7 to 108.5% for 9, 14 and 18 bpm, respectively, for a tumor movement of 1.0 cm. The mean values of the doses were 101.4, 99.9, and 99.5% for 9, 14 and 18 bpm, respectively, for a tumor movement of 1.0 cm. Meanwhile, the evaluated dose differences ranged from 93.6 to 105.8%, from 95.9 to 111.5%, and from 96.2 to 111.7% for 9, 14 and 18 bpm, respectively, for a tumor movement of 1.5 cm. The mean values of the doses were 102.3, 103.4, and 103.1% for 9, 14 and 18 bpm, respectively, for a tumor movement of 1.5 cm. Therefore, we suggest that IMRT can be used in the treatment of lung cancer patients with vertical target movements within the range of 1.0 to 1.5 cm.

  19. Strategies to Genetically Modulate Dendritic Cells to Potentiate Anti-Tumor Responses in Hematologic Malignancies

    Directory of Open Access Journals (Sweden)

    Annelisa M. Cornel

    2018-05-01

    Full Text Available Dendritic cell (DC vaccination has been investigated as a potential strategy to target hematologic malignancies, while generating sustained immunological responses to control potential future relapse. Nonetheless, few clinical trials have shown robust long-term efficacy. It has been suggested that a combination of surmountable shortcomings, such as selection of utilized DC subsets, DC loading and maturation strategies, as well as tumor-induced immunosuppression may be targeted to maximize anti-tumor responses of DC vaccines. Generation of DC from CD34+ hematopoietic stem and progenitor cells (HSPCs may provide potential in patients undergoing allogeneic HSPC transplantations for hematologic malignancies. CD34+ HSPC from the graft can be genetically modified to optimize antigen presentation and to provide sufficient T cell stimulatory signals. We here describe beneficial (gene-modifications that can be implemented in various processes in T cell activation by DC, among which major histocompatibility complex (MHC class I and MHC class II presentation, DC maturation and migration, cross-presentation, co-stimulation, and immunosuppression to improve anti-tumor responses.

  20. Tumor Microenvironment Modulation via Gold Nanoparticles Targeting Malicious Exosomes: Implications for Cancer Diagnostics and Therapy

    Directory of Open Access Journals (Sweden)

    Catarina Roma-Rodrigues

    2017-01-01

    Full Text Available Exosomes are nanovesicles formed in the endosomal pathway with an important role in paracrine and autocrine cell communication. Exosomes secreted by cancer cells, malicious exosomes, have important roles in tumor microenvironment maturation and cancer progression. The knowledge of the role of exosomes in tumorigenesis prompted a new era in cancer diagnostics and therapy, taking advantage of the use of circulating exosomes as tumor biomarkers due to their stability in body fluids and targeting malignant exosomes’ release and/or uptake to inhibit or delay tumor development. In recent years, nanotechnology has paved the way for the development of a plethora of new diagnostic and therapeutic platforms, fostering theranostics. The unique physical and chemical properties of gold nanoparticles (AuNPs make them suitable vehicles to pursuit this goal. AuNPs’ properties such as ease of synthesis with the desired shape and size, high surface:volume ratio, and the possibility of engineering their surface as desired, potentiate AuNPs’ role in nanotheranostics, allowing the use of the same formulation for exosome detection and restraining the effect of malicious exosomes in cancer progression.

  1. Tumor Microenvironment Modulation via Gold Nanoparticles Targeting Malicious Exosomes: Implications for Cancer Diagnostics and Therapy.

    Science.gov (United States)

    Roma-Rodrigues, Catarina; Raposo, Luís R; Cabral, Rita; Paradinha, Fabiana; Baptista, Pedro V; Fernandes, Alexandra R

    2017-01-14

    Exosomes are nanovesicles formed in the endosomal pathway with an important role in paracrine and autocrine cell communication. Exosomes secreted by cancer cells, malicious exosomes, have important roles in tumor microenvironment maturation and cancer progression. The knowledge of the role of exosomes in tumorigenesis prompted a new era in cancer diagnostics and therapy, taking advantage of the use of circulating exosomes as tumor biomarkers due to their stability in body fluids and targeting malignant exosomes' release and/or uptake to inhibit or delay tumor development. In recent years, nanotechnology has paved the way for the development of a plethora of new diagnostic and therapeutic platforms, fostering theranostics. The unique physical and chemical properties of gold nanoparticles (AuNPs) make them suitable vehicles to pursuit this goal. AuNPs' properties such as ease of synthesis with the desired shape and size, high surface:volume ratio, and the possibility of engineering their surface as desired, potentiate AuNPs' role in nanotheranostics, allowing the use of the same formulation for exosome detection and restraining the effect of malicious exosomes in cancer progression.

  2. Laser-induced immune modulation inhibits tumor growth in vivo (Conference Presentation)

    Science.gov (United States)

    Ottaviani, Giulia; Martinelli, Valentina; Rupel, Katia; Caronni, Nicoletta; Naseem, Asma; Zandonà, Lorenzo; Perinetti, Giuseppe; Gobbo, Margherita; Di Lenarda, Roberto; Bussani, Rossana; Benvenuti, Federica; Giacca, Mauro; Biasotto, Matteo; Zacchigna, Serena

    2017-02-01

    Photobiomodulation stands as a recommended therapy for oral mucositis induced by oncological therapies. However, its mechanisms of action and, more importantly, its safety in cancer patients, are still unclear. We assessed cancer cell metabolism and proliferation in vitro and in vivo after exposure to different laser protocols. We exploited both ectopic melanoma and a more physiological oral carcinogenesis mouse model, followed by molecular, histological and immunohistochemical characterization. Laser irradiation resulted in a slightly increase in cell metabolism and proliferation in vitro, albeit each protocol exerted a difference response. Of notice, in vivo laser light reduced tumour growth and invasiveness, indicating e beneficial effect on tumor microenvironment. Laser-treated tumors were surrounded and infiltrated by immune cells, mainly lymphocytes and dendritic cells, paralleled by an enhanced secretion of type I interferons. In contrast, the number of pro-angiogenic macrophages was reduced in response to laser irradiation, with consequent normalization of the tumor vasculature. Based on these finding we have also started exploring the effect of photobiomodulation on lymphocyte response in an experimental model of vaccination. Preliminary data indicate that laser light induced antigen-specific CD8+ and CD4+ T cell responses. In conclusion, our data point toward photobiomodulation as an effective strategy to boost the immune response in vivo, with relevant, therapeutic activities in both cancer and vaccination experimental models. These results support the safe use of laser light on cancer patients and open the way to innovative therapeutic opportunities.

  3. Antitumor and chemosensitizing action of dichloroacetate implicates modulation of tumor microenvironment: A role of reorganized glucose metabolism, cell survival regulation and macrophage differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ajay; Kant, Shiva; Singh, Sukh Mahendra, E-mail: sukhmahendrasingh@yahoo.com

    2013-11-15

    Targeting of tumor metabolism is emerging as a novel therapeutic strategy against cancer. Dichloroacetate (DCA), an inhibitor of pyruvate dehydrogenase kinase (PDK), has been shown to exert a potent tumoricidal action against a variety of tumor cells. The main mode of its antineoplastic action implicates a shift of glycolysis to oxidative metabolism of glucose, leading to generation of cytotoxic reactive oxygen intermediates. However, the effect of DCA on tumor microenvironment, which in turn regulates tumor cell survival; remains speculative to a large extent. It is also unclear if DCA can exert any modulatory effect on the process of hematopoiesis, which is in a compromised state in tumor-bearing hosts undergoing chemotherapy. In view of these lacunas, the present study was undertaken to investigate the so far unexplored aspects with respect to the molecular mechanisms of DCA-dependent tumor growth retardation and chemosensitization. BALB/c mice were transplanted with Dalton's lymphoma (DL) cells, a T cell lymphoma of spontaneous origin, followed by administration of DCA with or without cisplatin. DCA-dependent tumor regression and chemosensitization to cisplatin was found to be associated with altered repertoire of key cell survival regulatory molecules, modulated glucose metabolism, accompanying reconstituted tumor microenvironment with respect to pH homeostasis, cytokine balance and alternatively activated TAM. Moreover, DCA administration also led to an alteration in the MDR phenotype of tumor cells and myelopoietic differentiation of macrophages. The findings of this study shed a new light with respect to some of the novel mechanisms underlying the antitumor action of DCA and thus may have immense clinical applications. - Highlights: • DCA modulates tumor progression and chemoresistance. • DCA alters molecules regulating cell survival, glucose metabolism and MDR. • DCA reconstitutes biophysical and cellular composition of tumor microenvironment.

  4. Antitumor and chemosensitizing action of dichloroacetate implicates modulation of tumor microenvironment: A role of reorganized glucose metabolism, cell survival regulation and macrophage differentiation

    International Nuclear Information System (INIS)

    Kumar, Ajay; Kant, Shiva; Singh, Sukh Mahendra

    2013-01-01

    Targeting of tumor metabolism is emerging as a novel therapeutic strategy against cancer. Dichloroacetate (DCA), an inhibitor of pyruvate dehydrogenase kinase (PDK), has been shown to exert a potent tumoricidal action against a variety of tumor cells. The main mode of its antineoplastic action implicates a shift of glycolysis to oxidative metabolism of glucose, leading to generation of cytotoxic reactive oxygen intermediates. However, the effect of DCA on tumor microenvironment, which in turn regulates tumor cell survival; remains speculative to a large extent. It is also unclear if DCA can exert any modulatory effect on the process of hematopoiesis, which is in a compromised state in tumor-bearing hosts undergoing chemotherapy. In view of these lacunas, the present study was undertaken to investigate the so far unexplored aspects with respect to the molecular mechanisms of DCA-dependent tumor growth retardation and chemosensitization. BALB/c mice were transplanted with Dalton's lymphoma (DL) cells, a T cell lymphoma of spontaneous origin, followed by administration of DCA with or without cisplatin. DCA-dependent tumor regression and chemosensitization to cisplatin was found to be associated with altered repertoire of key cell survival regulatory molecules, modulated glucose metabolism, accompanying reconstituted tumor microenvironment with respect to pH homeostasis, cytokine balance and alternatively activated TAM. Moreover, DCA administration also led to an alteration in the MDR phenotype of tumor cells and myelopoietic differentiation of macrophages. The findings of this study shed a new light with respect to some of the novel mechanisms underlying the antitumor action of DCA and thus may have immense clinical applications. - Highlights: • DCA modulates tumor progression and chemoresistance. • DCA alters molecules regulating cell survival, glucose metabolism and MDR. • DCA reconstitutes biophysical and cellular composition of tumor microenvironment.

  5. Intensity-modulated radiation therapy (IMRT) for locally advanced paranasal sinus tumors: incorporating clinical decisions in the optimization process

    International Nuclear Information System (INIS)

    Tsien, Christina; Eisbruch, Avraham; McShan, Daniel; Kessler, Marc; Marsh, Robin C.; Fraass, Benedick

    2003-01-01

    Purpose: Intensity-modulated radiotherapy (IMRT) plans require decisions about priorities and tradeoffs among competing goals. This study evaluates the incorporation of various clinical decisions into the optimization system, using locally advanced paranasal sinus tumors as a model. Methods and Materials: Thirteen patients with locally advanced paranasal sinus tumors were retrospectively replanned using inverse planning. Two clinical decisions were assumed: (1) Spare both optic pathways (OP), or (2) Spare only the contralateral OP. In each case, adequate tumor coverage (treated to 70 Gy in 35 fractions) was required. Two beamlet IMRT plans were thus developed for each patient using a class solution cost function. By altering one key variable at a time, different levels of risk of OP toxicity and planning target volume (PTV) compromise were compared in a systematic manner. The resulting clinical tradeoffs were analyzed using dosimetric criteria, tumor control probability (TCP), equivalent uniform dose (EUD), and normal tissue complication probability. Results: Plan comparisons representing the two clinical decisions (sparing both OP and sparing only the contralateral OP), with respect to minimum dose, TCP, V 95 , and EUD, demonstrated small, yet statistically significant, differences. However, when individual cases were analyzed further, significant PTV underdosage (>5%) was present in most cases for plans sparing both OP. In 6/13 cases (46%), PTV underdosage was between 5% and 15%, and in 3 cases (23%) was greater than 15%. By comparison, adequate PTV coverage was present in 8/13 cases (62%) for plans sparing only the contralateral OP. Mean target EUD comparisons between the two plans (including 9 cases where a clinical tradeoff between PTV coverage and OP sparing was required) were similar: 68.6 Gy and 69.1 Gy, respectively (p=0.02). Mean TCP values for those 9 cases were 56.5 vs. 61.7, respectively (p=0.006). Conclusions: In IMRT plans for paranasal sinus tumors

  6. Tumor Vesicle—Associated CD147 Modulates the Angiogenic Capability of Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Danilo Millimaggi

    2007-04-01

    Full Text Available Matrix metalloproteinase (MMP degradation of extracellular matrix is thought to play an important role in invasion, angiogenesis, tumor growth, and metastasis. Several studies have demonstrated that CD147/ extracellular MMP inducer, a membrane-spanning molecule highly expressed in tumor cells, may be involved in the progression of malignancies by regulating expression of MMP in peritumoral stromal cells. In the present study we show that CD147 is expressed in microvesicles derived from epithelial ovarian cancer cells and that CD147-positive vesicles may promote an angiogenic phenotype in endothelial cells in vitro. Vesicles shed by human ovarian carcinoma cell lines OVCAR3, SKOV3, and A2780 expressed different levels of CD147 and stimulated proangiogenic activities of human umbilical vein endothelial cells (HUVECs in a CD147-dependent fashion (OVCAR3 > SKOV3 > A2780. Moreover, vesicles shed by ovarian carcinoma cell line CABA I with low CD147 expression had no significant effect on the development of angiogenic phenotype in HUVECs. The treatment of OVCAR3 cells with small interfering RNA against CD147 suppressed the angiogenic potential of OVCAR3-derived microvesicles. However, transfection of CD147 cDNA into the CABA I cell line enabled CABA I-derived vesicles to induce angiogenesis and to promote MMP genes expression in HUVECs. We therefore conclude that vesicles shed by ovarian cancer cells may induce proangiogenic activities of HUVECs by a CD147-mediated mechanism.

  7. Theoretical and practical model for implementing intensity modulated radiotherapy (IMRT) based on openness in head and neck tumors

    International Nuclear Information System (INIS)

    Napoles Morales, Misleidy; Yanes Lopez, Yaima; Ascension, Yudith; Alfonso La Guardia, Rodolfo; Calderon, Carlos

    2009-01-01

    Certain requirements have been internationally recommended for the transition from radiation therapy (3D-CRT) to intensity modulated radiation therapy (IMRT). They have been filling in clinical practice in the physical, dosimetry and quality of treatment. Prior to the implementation of IMRT have been developed preclinical will proceed according to the treatment planning techniques in the real images of patients, validating the rationale for the transition from the point of view and radiobiological dosimetry. The comparison was based on a group of patients eligible for IMRT, which were actually treated with 3D-CRT. IMRT plans were designed and applied to virtually the same patients, simulating the IMRT treatment. The prescribed dose and fractionation were similar in both techniques, to be able to compare radiobiology. The results show the rationality of IMRT in terms of reducing complications and the possibility of scaling doses in the PTV. Were used Dose Volume Histograms (HDV) obtained from the dosimetric calculations for radiobiological evaluation of treatment plans, letting through a software: 'Albireo Target' version 4.0.1.2008 calculate the equivalent uniform dose (EUD) for tumor and organs of risks (OAR) and tumor control probability (TCP) and the likelihood of damage to healthy tissue (NTCP). The results obtained with IMRT plans were more significant than with 3D-CRT especially in terms of EUD for organs at risk and NTCP. These results allow us to create the definitive basis for the implementation of IMRT in our environment. (Author)

  8. The matricellular receptor LRP1 forms an interface for signaling and endocytosis in modulation of the extracellular tumor environment

    Directory of Open Access Journals (Sweden)

    Bart eVan Gool

    2015-11-01

    Full Text Available The membrane protein low-density lipoprotein receptor related-protein 1 (LRP1 has been attributed a role in cancer. However, its presumably often indirect involvement is far from understood. LRP1 has both endocytic and signaling activities. As a matricellular receptor it is involved in regulation, mostly by clearing, of various extracellular matrix degrading enzymes including matrix metalloproteinases, serine proteases, protease-inhibitor complexes and the endoglycosidase heparanase. Furthermore, by binding extracellular ligands including growth factors and subsequent intracellular interaction with scaffolding and adaptor proteins it is involved in regulation of various signaling cascades. LRP1 expression levels are often downregulated in cancer and some studies consider low LRP1 levels a poor prognostic factor. On the contrary, upregulation in brain cancers has been noted and clinical trials explore the use of LRP1 as cargo receptor to deliver cytotoxic agents.This mini-review focuses on LRP1’s role in tumor growth and metastasis especially by modulation of the extracellular tumor environment. In relation to this role its diagnostic, prognostic and therapeutic potential will be discussed.

  9. Intensity-Modulated Radiotherapy for Tumors of the Nasal Cavity and Paranasal Sinuses: Clinical Outcomes and Patterns of Failure

    Energy Technology Data Exchange (ETDEWEB)

    Wiegner, Ellen A.; Daly, Megan E.; Murphy, James D.; Abelson, Jonathan; Chapman, Chris H.; Chung, Melody; Yu, Yao; Colevas, A. Dimitrios; Kaplan, Michael J.; Fischbein, Nancy; Le, Quynh-Thu [Department of Radiation Oncology, Stanford University, Stanford, CA (United States); Chang, Daniel T., E-mail: dtchang@stanford.edu [Department of Radiation Oncology, Stanford University, Stanford, CA (United States)

    2012-05-01

    Purpose: To report outcomes in patients treated with intensity-modulated radiotherapy (IMRT) for tumors of the paranasal sinuses and nasal cavity (PNS/NC). Methods/Materials: Between June 2000 and December 2009, 52 patients with tumors of the PNS/NC underwent postoperative or definitive radiation with IMRT. Twenty-eight (54%) patients had squamous cell carcinoma (SCC). Twenty-nine patients (56%) received chemotherapy. The median follow-up was 26.6 months (range, 2.9-118.4) for all patients and 30.9 months for living patients. Results: Eighteen patients (35%) developed local-regional failure (LRF) at median time of 7.2 months. Thirteen local failures (25%) were observed, 12 in-field and 1 marginal. Six regional failures were observed, two in-field and four out-of-field. No patients treated with elective nodal radiation had nodal regional failure. Two-year local-regional control (LRC), in-field LRC, freedom from distant metastasis (FFDM), and overall survival (OS) were 64%, 74%, 71%, and 66% among all patients, respectively, and 43%, 61%, 61%, and 53% among patients with SCC, respectively. On multivariate analysis, SCC and >1 subsite involved had worse LRC (p = 0.0004 and p = 0.046, respectively) and OS (p = 0.003 and p = 0.046, respectively). Cribriform plate invasion (p = 0.005) and residual disease (p = 0.047) also had worse LRC. Acute toxicities included Grade {>=}3 mucositis in 19 patients (37%), and Grade 3 dermatitis in 8 patients (15%). Six patients had Grade {>=}3 late toxicity including one optic toxicity. Conclusions: IMRT for patients with PNS/NC tumors has good outcomes compared with historical series and is well tolerated. Patients with SCC have worse LRC and OS. LRF is the predominant pattern of failure.

  10. Dose reduction to normal tissues as compared to the gross tumor by using intensity modulated radiotherapy in thoracic malignancies

    Directory of Open Access Journals (Sweden)

    Bhalla NK

    2006-08-01

    Full Text Available Abstract Background and purpose Intensity modulated radiotherapy (IMRT is a powerful tool, which might go a long way in reducing radiation doses to critical structures and thereby reduce long term morbidities. The purpose of this paper is to evaluate the impact of IMRT in reducing the dose to the critical normal tissues while maintaining the desired dose to the volume of interest for thoracic malignancies. Materials and methods During the period January 2002 to March 2004, 12 patients of various sites of malignancies in the thoracic region were treated using physical intensity modulator based IMRT. Plans of these patients treated with IMRT were analyzed using dose volume histograms. Results An average dose reduction of the mean values by 73% to the heart, 69% to the right lung and 74% to the left lung, with respect to the GTV could be achieved with IMRT. The 2 year disease free survival was 59% and 2 year overall survival was 59%. The average number of IMRT fields used was 6. Conclusion IMRT with inverse planning enabled us to achieve desired dose distribution, due to its ability to provide sharp dose gradients at the junction of tumor and the adjacent critical organs.

  11. PPARα inhibition modulates multiple reprogrammed metabolic pathways in kidney cancer and attenuates tumor growth.

    Science.gov (United States)

    Abu Aboud, Omran; Donohoe, Dallas; Bultman, Scott; Fitch, Mark; Riiff, Tim; Hellerstein, Marc; Weiss, Robert H

    2015-06-01

    Kidney cancer [renal cell carcinoma (RCC)] is the sixth-most-common cancer in the United States, and its incidence is increasing. The current progression-free survival for patients with advanced RCC rarely extends beyond 1-2 yr due to the development of therapeutic resistance. We previously identified peroxisome proliferator-activating receptor-α (PPARα) as a potential therapeutic target for this disease and showed that a specific PPARα antagonist, GW6471, induced apoptosis and cell cycle arrest at G0/G1 in RCC cell lines associated with attenuation of cell cycle regulatory proteins. We now extend that work and show that PPARα inhibition attenuates components of RCC metabolic reprogramming, capitalizing on the Warburg effect. The specific PPARα inhibitor GW6471, as well as a siRNA specific to PPARα, attenuates the enhanced fatty acid oxidation and oxidative phosphorylation associated with glycolysis inhibition, and PPARα antagonism also blocks the enhanced glycolysis that has been observed in RCC cells; this effect did not occur in normal human kidney epithelial cells. Such cell type-specific inhibition of glycolysis corresponds with changes in protein levels of the oncogene c-Myc and has promising clinical implications. Furthermore, we show that treatment with GW6471 results in RCC tumor growth attenuation in a xenograft mouse model, with minimal obvious toxicity, a finding associated with the expected on-target effects on c-Myc. These studies demonstrate that several pivotal cancer-relevant metabolic pathways are inhibited by PPARα antagonism. Our data support the concept that targeting PPARα, with or without concurrent inhibition of glycolysis, is a potential novel and effective therapeutic approach for RCC that targets metabolic reprogramming in this tumor.

  12. Characterization of antibody-chelator conjugates: Determination of chelator content by terbium fluorescence titration

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, K.D.; Schnobrich, K.E.; Johnson, D.K. (Abbott Laboratories, Department 90M, Abbott Park, IL (United States))

    1991-01-01

    Fluorescence titrations were performed by adding varying mole ratios of terbium(III) to antibody conjugates formed by benzyl isothiocyanate derivatives of three different polyaminopolycarboxylate chelators (NTA, EDTA, and DTPA) and the results compared to values for average chelator content obtained by cobalt-57 binding assays. For two different murine monoclonal antibodies, the average chelator content obtained by terbium fluorescence titration correlated closely with that measured by the cobalt-57 binding assay. It is concluded that lanthanide fluorescence titrations provide a useful alternative to radiometal binding assays for the determination of chelator content in protein-chelator conjugates.

  13. Characterization of antibody-chelator conjugates: Determination of chelator content by terbium fluorescence titration

    International Nuclear Information System (INIS)

    Brandt, K.D.; Schnobrich, K.E.; Johnson, D.K.

    1991-01-01

    Fluorescence titrations were performed by adding varying mole ratios of terbium(III) to antibody conjugates formed by benzyl isothiocyanate derivatives of three different polyaminopolycarboxylate chelators (NTA, EDTA, and DTPA) and the results compared to values for average chelator content obtained by cobalt-57 binding assays. For two different murine monoclonal antibodies, the average chelator content obtained by terbium fluorescence titration correlated closely with that measured by the cobalt-57 binding assay. It is concluded that lanthanide fluorescence titrations provide a useful alternative to radiometal binding assays for the determination of chelator content in protein-chelator conjugates

  14. Beliefs about chelation among thalassemia patients

    Directory of Open Access Journals (Sweden)

    Trachtenberg Felicia L

    2012-12-01

    Full Text Available Abstract Background Understanding patients’ views about medication is crucial to maximize adherence. Thalassemia is a congenital blood disorder requiring chronic blood transfusions and daily iron chelation therapy. Methods The Beliefs in Medicine Questionnaire (BMQ was used to assess beliefs in chelation in thalassemia patients from North America and London in the Thalassemia Longitudinal Cohort (TLC of the Thalassemia Clinical Research Network (TCRN. Chelation adherence was based on patient report of doses administered out of those prescribed in the last four weeks. Results Of 371 patients (ages 5-58y, mean 24y, 93% were transfused and 92% receiving chelation (26% deferoxamine (DFO; a slow subcutaneous infusion via portable pump, 63% oral, 11% combination. Patients expressed high “necessity” for transfusion (96%, DFO chelation (92% and oral chelation (89%, with lower “concern” about treatment (48%, 39%, 19% respectively. Concern about oral chelation was significantly lower than that of DFO (p Conclusions Despite their requirement for multimodal therapy, thalassemia patients have positive views about medicine, more so than in other disease populations. Patients may benefit from education about the tolerability of chelation and strategies to effectively cope with side effects, both of which might be beneficial in lowering body iron burden. Clinicaltrials.gov identifier NCT00661804

  15. Modulated Raman spectroscopy for enhanced identification of bladder tumor cells in urine samples.

    Science.gov (United States)

    Canetta, Elisabetta; Mazilu, Michael; De Luca, Anna Chiara; Carruthers, Antonia E; Dholakia, Kishan; Neilson, Sam; Sargeant, Harry; Briscoe, Tina; Herrington, C Simon; Riches, Andrew C

    2011-03-01

    Standard Raman spectroscopy (SRS) is a noninvasive technique that is used in the biomedical field to discriminate between normal and cancer cells. However, the presence of a strong fluorescence background detracts from the use of SRS in real-time clinical applications. Recently, we have reported a novel modulated Raman spectroscopy (MRS) technique to extract the Raman spectra from the background. In this paper, we present the first application of MRS to the identification of human urothelial cells (SV-HUC-1) and bladder cancer cells (MGH) in urine samples. These results are compared to those obtained by SRS. Classification using the principal component analysis clearly shows that MRS allows discrimination between Raman spectra of SV-HUC-1 and MGH cells with high sensitivity (98%) and specificity (95%). MRS is also used to distinguish between SV-HUC-1 and MGH cells after exposure to urine for up to 6 h. We observe a marked change in the MRS of SV-HUC-1 and MGH cells with time in urine, indicating that the conditions of sample collection will be important for the application of this methodology to clinical urine samples.

  16. A selective androgen receptor modulator that reduces prostate tumor size and prevents orchidectomy-induced bone loss in rats.

    Science.gov (United States)

    Allan, George; Lai, Muh-Tsann; Sbriscia, Tifanie; Linton, Olivia; Haynes-Johnson, Donna; Bhattacharjee, Sheela; Dodds, Robert; Fiordeliso, James; Lanter, James; Sui, Zhihua; Lundeen, Scott

    2007-01-01

    The pharmacological activity of JNJ-26146900 is described. JNJ-26146900 is a nonsteroidal androgen receptor (AR) ligand with tissue-selective activity in rats. The compound was evaluated in in vitro and in vivo models of AR activity. It binds to the rat AR with a K(i) of 400nM and acts as a pure androgen antagonist in an in vitro cell-based assay. Its in vitro profile is similar to the androgen antagonist bicalutamide (Casodex). In intact rats, JNJ-26146900 reduces ventral prostate weight with an oral potency (ED(50)) of 20-30mg/kg, again comparable to that of bicalutamide. JNJ-26146900 prevented prostate tumor growth in the Dunning rat model, maximally inhibiting growth at a dose of 10mg/kg. It slowed tumor growth significantly in a CWR22-LD1 mouse xenograft model of human prostate cancer. It was tested in aged male rats for its ability to prevent bone loss and loss of lean body mass following orchidectomy. After 6 weeks of dosing, bone volume decreased by 33% in orchidectomized versus intact vehicle-treated rats with a probability (P) of less than 0.05, as measured by micro-computerized tomography analysis. At a dose of 30mg/kg, JNJ-26146900 significantly reduced castration-induced tibial bone loss as indicated by the following parameters: bone volume, trabecular connectivity, trabecular number and spacing between trabeculae. Bone mineral density decreased from 229+/-34mg/cm(3) of hydroxyapatite to 166+/-26mg/cm(3) following orchidectomy, and was maintained at 194+/-20mg/cm(3) with JNJ-26146900 treatment (Pselective androgen receptor modulators (SARMs) have the potential for anabolic effects on bone and muscle while maintaining therapeutic efficacy in prostate cancer.

  17. Bi-module sensing device to in situ quantitatively detect hydrogen peroxide released from migrating tumor cells.

    Directory of Open Access Journals (Sweden)

    Ling Yu

    Full Text Available Cell migration is one of the key cell functions in physiological and pathological processes, especially in tumor metastasis. However, it is not feasible to monitor the important biochemical molecules produced during cell migrations in situ by conventional cell migration assays. Herein, for the first time a device containing both electrochemical sensing and trans-well cell migration modules was fabricated to sensitively quantify biochemical molecules released from the cell migration process in situ. The fully assembled device with a multi-wall carbon nanotube/graphene/MnO2 nanocomposite functionalized electrode was able to successfully characterize hydrogen peroxide (H2O2 production from melanoma A375 cells, larynx carcinoma HEp-2 cells and liver cancer Hep G2 under serum established chemotaxis. The maximum concentration of H2O2 produced from A375, HEp-2 and Hep G2 in chemotaxis was 130 ± 1.3 nM, 70 ± 0.7 nM and 63 ± 0.7 nM, respectively. While the time required reaching the summit of H2O2 production was 3.0, 4.0 and 1.5 h for A375, HEp-2 and Hep G2, respectively. By staining the polycarbonate micropore membrane disassembled from the device, we found that the average migration rate of the A375, HEp-2 and Hep G2 cells were 98 ± 6%, 38 ± 4% and 32 ± 3%, respectively. The novel bi-module cell migration platform enables in situ investigation of cell secretion and cell function simultaneously, highlighting its potential for characterizing cell motility through monitoring H2O2 production on rare samples and for identifying underlying mechanisms of cell migration.

  18. The folate receptor as a molecular target for tumor-selective radionuclide delivery

    International Nuclear Information System (INIS)

    Ke, C.-Y.; Mathias, Carla J.; Green, Mark A.

    2003-01-01

    The cell-membrane folate receptor is a potential molecular target for tumor-selective drug delivery, including radiolabeled folate-chelate conjugates for diagnostic imaging. We review here some background on the folate receptor as tumor-associated molecular target for drug delivery, and briefly survey the literature on tumor-targeting with radiolabeled folate-chelate conjugates

  19. CT image-guided intensity-modulated therapy for paraspinal tumors using stereotactic immobilization

    International Nuclear Information System (INIS)

    Yenice, Kamil M.; Lovelock, D. Michael; Hunt, Margie A.; Lutz, Wendell R.; Fournier-Bidoz, Nathalie; Hua, C.-H.; Yamada, Josh; Bilsky, Mark; Lee, Henry; Pfaff, Karl; Spirou, Spiridon V.; Amols, Howard I.

    2003-01-01

    Purpose: To design and implement a noninvasive stereotactic immobilization technique with daily CT image-guided positioning to treat patients with paraspinal lesions accurately and to quantify the systematic and random patient setup errors occurring with this method. Methods and Materials: A stereotactic body frame (SBF) was developed for 'rigid' immobilization of paraspinal patients. The inherent accuracy of this system for stereotactic CT-guided treatment was evaluated with phantom studies. Seven patients with thoracic and lumbar spine lesions were immobilized with the SBF and positioned for 33 treatment fractions using daily CT scans. For all 7 patients, the daily setup errors, as assessed from the daily CT scans, were corrected at each treatment fraction. A retrospective analysis was also performed to assess what the impact on patient treatment would have been without the CT-based corrections (i.e., if patient setup had been performed only with the SBF). Results: The average magnitude of systematic and random errors from uncorrected patient setups using the SBF was approximately 2 mm and 1.5 mm (1 SD), respectively. For fixed phantom targets, the system accuracy for the SBF localization and treatment was shown to be within 1 mm (1 SD) in any direction. Dose-volume histograms incorporating these uncertainties for an intensity-modulated radiotherapy plan for lumbar spine lesions were generated, and the effects on the dose-volume histograms were studied. Conclusion: We demonstrated a very accurate and precise method of patient immobilization and treatment delivery based on a noninvasive SBF and daily image guidance for paraspinal lesions. The SBF provides excellent immobilization for paraspinal targets, with setup accuracy better than 2 mm (1 SD). However, for highly conformal paraspinal treatments, uncorrected systematic and random errors of 2 mm in magnitude can result in a significantly greater (>100%) dose to the spinal cord than planned, even though the

  20. Chelating agents in pharmacology, toxicology and therapeutics

    International Nuclear Information System (INIS)

    1988-01-01

    The proceedings contain 71 abstracts of papers. Fourteen abstracts were inputted in INIS. The topics covered include: the effects of chelating agents on the retention of 63 Ni, 109 Cd, 203 Hg, 144 Ce, 95 Nb and the excretion of 210 Po, 63 Ni, 48 V, 239 Pu, 241 Am, 54 Mn; the applications of tracer techniques for studies of the efficacy of chelation therapy in patients with heart and brain disorders; and the treatment of metal poisoning with chelating agents. (J.P.)

  1. Topography on a subcellular scale modulates cellular adhesions and actin stress fiber dynamics in tumor associated fibroblasts

    Science.gov (United States)

    Azatov, Mikheil; Sun, Xiaoyu; Suberi, Alexandra; Fourkas, John T.; Upadhyaya, Arpita

    2017-12-01

    Cells can sense and adapt to mechanical properties of their environment. The local geometry of the extracellular matrix, such as its topography, has been shown to modulate cell morphology, migration, and proliferation. Here we investigate the effect of micro/nanotopography on the morphology and cytoskeletal dynamics of human pancreatic tumor-associated fibroblast cells (TAFs). We use arrays of parallel nanoridges with variable spacings on a subcellular scale to investigate the response of TAFs to the topography of their environment. We find that cell shape and stress fiber organization both align along the direction of the nanoridges. Our analysis reveals a strong bimodal relationship between the degree of alignment and the spacing of the nanoridges. Furthermore, focal adhesions align along ridges and form preferentially on top of the ridges. Tracking actin stress fiber movement reveals enhanced dynamics of stress fibers on topographically patterned surfaces. We find that components of the actin cytoskeleton move preferentially along the ridges with a significantly higher velocity along the ridges than on a flat surface. Our results suggest that a complex interplay between the actin cytoskeleton and focal adhesions coordinates the cellular response to micro/nanotopography.

  2. Treatment planning comparison of electron arc therapy and photon intensity modulated radiotherapy for Askin's tumor of chest wall

    International Nuclear Information System (INIS)

    Jamema, Swamidas V.; Sharma, Pramod K.; Laskar, Siddhartha; Deshpande, Deepak D.; Shrivastava, Shyam K.

    2007-01-01

    Background and Purpose: A dosimetric study to quantitatively compare radiotherapy treatment plans for Askin's tumor using Electron Arc (EA) vs. photon Intensity Modulated Radiotherapy (IMRT). Materials and methods: Five patients treated with EA were included in this study. Treatment plans were generated for each patient using EA and IMRT. Plans were compared using dose volume histograms (DVH) of the Planning Target Volume (PTV) and Organs at Risk (OAR). Results: IMRT resulted in superior PTV coverage, and homogeneous dose distribution compared to EA. For EA, 92% of the PTV was covered to 85% of the dose compared to IMRT in which 96% was covered to 95% of the dose. V 107 that represents the hot spot within the PTV was more in IMRT compared to EA: 7.4(±2)% vs. 3(±0.5)%, respectively. With PTVs located close to the spinal cord (SC), the dose to SC was more with EA, whereas for PTVs located away from the SC, the dose to SC was more with IMRT. The cardiac dose profile was similar to that of SC. Ipsilateral lung received lower doses with IMRT while contralateral lung received higher dose with IMRT compared to EA. For non-OAR normal tissues, IMRT resulted in large volumes of low dose regions. Conclusions: IMRT resulted in superior PTV coverage and sparing of OAR compared to EA plans. Although IMRT seems to be superior to EA, one needs to keep in mind the volume of low dose regions associated with IMRT, especially while treating young children

  3. WISP3 (CCN6 Is a Secreted Tumor-Suppressor Protein that Modulates IGF Signaling in Inflammatory Breast Cancer

    Directory of Open Access Journals (Sweden)

    Celina G. Kleer

    2004-03-01

    Full Text Available Inflammatory breast cancer (IBC is the most lethal form of locally advanced breast cancer. We have found that WISP3 is lost in 80% of human IBC tumors and that it has growth- and angiogenesis-inhibitory functions in breast cancer in vitro and in vivo. WISP3 is a cysteine-rich, putatively secreted protein that belongs to the CCN family. It contains a signal peptide at the N-terminus and four highly conserved motifs. Here, for the first time, we investigate the function of WISP3 protein in relationship to its structural features. We found that WISP3 is secreted into the conditioned media and into the lumens of normal breast ducts. Once secreted, WISP3 was able to decrease, directly or through induction of other molecule(s, the IGF-1-induced activation of the IGF-IR, and two of its main downstream signaling molecules, IRS1 and ERK-1/2, in SUM149 IBC cells. Furthermore, WISP3 containing conditioned media decreased the growth rate of SUM149 cells. This work sheds light into the mechanism of WISP3 function by demonstrating that it is secreted and that, once in the extracellular media, it induces a series of molecular events that leads to modulation of IGF-IR signaling pathways and cellular growth in IBC cells.

  4. Deleted in Malignant Brain Tumors 1 (DMBT1 is present in hyaline membranes and modulates surface tension of surfactant

    Directory of Open Access Journals (Sweden)

    Griese Matthias

    2007-10-01

    Full Text Available Abstract Background Deleted in Malignant Brain Tumors 1 (DMBT1 is a secreted scavenger receptor cysteine-rich protein that binds various bacteria and is thought to participate in innate pulmonary host defense. We hypothesized that pulmonary DMBT1 could contribute to respiratory distress syndrome in neonates by modulating surfactant function. Methods DMBT1 expression was studied by immunohistochemistry and mRNA in situ hybridization in post-mortem lungs of preterm and full-term neonates with pulmonary hyaline membranes. The effect of human recombinant DMBT1 on the function of bovine and porcine surfactant was measured by a capillary surfactometer. DMBT1-levels in tracheal aspirates of ventilated preterm and term infants were determined by ELISA. Results Pulmonary DMBT1 was localized in hyaline membranes during respiratory distress syndrome. In vitro addition of human recombinant DMBT1 to the surfactants increased surface tension in a dose-dependent manner. The DMBT1-mediated effect was reverted by the addition of calcium depending on the surfactant preparation. Conclusion Our data showed pulmonary DMBT1 expression in hyaline membranes during respiratory distress syndrome and demonstrated that DMBT1 increases lung surface tension in vitro. This raises the possibility that DMBT1 could antagonize surfactant supplementation in respiratory distress syndrome and could represent a candidate target molecule for therapeutic intervention in neonatal lung disease.

  5. Dosimetric effect of multileaf collimator leaf width on volumetric modulated arc stereotactic radiotherapy for spine tumors

    Energy Technology Data Exchange (ETDEWEB)

    Amoush, Ahmad, E-mail: aamoush@augusta.edu [Augusta University, 1120 15th St, Augusta, GA 30912 (United States); Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195 (United States); Long, Huang [University of Utah, 1950 Circle of Hope, Salt Lake City, UT 84112 (United States); Subedi, Laxmi [Cleveland State University, 2121 Euclid Ave., Cleveland, OH 44115 (United States); Qi, Peng; Djemil, Toufik; Xia, Ping [Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195 (United States)

    2017-07-01

    This work aimed to study the dosimetric effect of multileaf collimator (MLC) leaf widths in treatment plans for patients receiving volumetric modulated arc therapy (VMAT) for spine stereotactic body radiation therapy (SBRT). Thirteen patients treated with spine SBRT were retrospectively selected for this study. The patients were treated following the protocol of the Radiation Therapy Oncology Group 0631 (RTOG 0631) for spine metastasis. The prescription dose was 16 Gy in 1 fraction to 90% of the target volume (V16 > 90%). The maximum spinal cord dose of 14 Gy and 10% of the spinal cord receiving < 10 Gy (V10) were the acceptable tolerance doses. For the purpose of this study, 2 dual-arc VMAT plans were created for each patient using 3 different MLC leaf widths: 2.5 mm, 4 mm, and 5 mm. The compliance with the RTOG 0631 protocol, conformity index (CI), dose gradient index (DGI), and number of monitor units (MUs) were compared. The average V16Gy of the targets was 91.8 ± 1.2%, 92.2 ± 2.1%, and 91.7 ± 2.3% for 2.5-mm, 4-mm, and 5-mm leaf widths, respectively (p = 0.78). Accordingly, the average CI was 1.45 ± 0.4, 1.47 ± 0.29, and 1.47 ± 0.31 (p = 0.98), respectively. The average DGI was 0.22 ± 0.04, 0.20 ± 0.06, and 0.22 ± 0.05, respectively (p = 0.77). The average maximum dose to the spinal cord was 12.45 ± 1.0 Gy, 12.80 ± 1.0 Gy, and 12.48 ± 1.1 (p = 0.62) and V10% of the spinal cord was 3.6 ± 2.1%, 5.6 ± 2.8%, and 5.5 ± 3.0% (p = 0.11) for 2.5-mm, 4-mm, and 5-mm leaf widths, respectively. Accordingly, the average number of MUs was 4341 ± 500 MU, 5019 ± 834 MU, and 4606 ± 691 MU, respectively (p = 0.053). The use of 2.5-mm, 4-mm, and 5-mm MLCs achieved similar VMAT plan quality as recommended by the RTOG 0631. The dosimetric parameters were also comparable for the 3 MLCs. In general, any of these leaf widths can be used for spine

  6. Chelation in root canal therapy reconsidered.

    Science.gov (United States)

    Zehnder, Matthias; Schmidlin, Patrick; Sener, Beatrice; Waltimo, Tuomas

    2005-11-01

    The aim of this study was to assess interactions of EDTA and citric acid (CA) with sodium hypochlorite (NaOCl), the indispensable endodontic irrigant. Other chelators were simultaneously evaluated as possible alternatives: sodium triphosphate (STP), amino tris methylenephosphonic acid (ATMA), and 1- hydroxyethylidene-1, 1-bisphosphonate (HEBP). Available chlorine was titrated in chelator-NaOCl solutions. All chelators other than HEBP and STP caused an almost complete, immediate loss of available chlorine in solution. Atomic absorbtion spectrometry and SEM evaluation of root canal walls of instrumented teeth indicated that NaOCl had no negative effect on calcium-complexing ability of chelators. STP was too weak a complexing agent to warrant further studies. Finally, CA-, EDTA-, and HEBP-NaOCl mixtures were evaluated for their antimicrobial capacity. Again, EDTA and CA negatively interfered with NaOCl, while HEBP did not.

  7. Chelates for Micronutrient Nutrition among Crops

    Indian Academy of Sciences (India)

    years, it has been recognised that compounds containing che- lated metals could .... when using small amounts and no build up of harmful levels. ... degradation of iron chelates. .... down by soil microorganisms into much smaller units for ab-.

  8. In Vivo Loss of Function Screening Reveals Carbonic Anhydrase IX as a Key Modulator of Tumor Initiating Potential in Primary Pancreatic Tumors

    Directory of Open Access Journals (Sweden)

    Nabendu Pore

    2015-06-01

    Full Text Available Reprogramming of energy metabolism is one of the emerging hallmarks of cancer. Up-regulation of energy metabolism pathways fuels cell growth and division, a key characteristic of neoplastic disease, and can lead to dependency on specific metabolic pathways. Thus, targeting energy metabolism pathways might offer the opportunity for novel therapeutics. Here, we describe the application of a novel in vivo screening approach for the identification of genes involved in cancer metabolism using a patient-derived pancreatic xenograft model. Lentiviruses expressing short hairpin RNAs (shRNAs targeting 12 different cell surface protein transporters were separately transduced into the primary pancreatic tumor cells. Transduced cells were pooled and implanted into mice. Tumors were harvested at different times, and the frequency of each shRNA was determined as a measure of which ones prevented tumor growth. Several targets including carbonic anhydrase IX (CAIX, monocarboxylate transporter 4, and anionic amino acid transporter light chain, xc- system (xCT were identified in these studies and shown to be required for tumor initiation and growth. Interestingly, CAIX was overexpressed in the tumor initiating cell population. CAIX expression alone correlated with a highly tumorigenic subpopulation of cells. Furthermore, CAIX expression was essential for tumor initiation because shRNA knockdown eliminated the ability of cells to grow in vivo. To the best of our knowledge, this is the first parallel in vivo assessment of multiple novel oncology target genes using a patient-derived pancreatic tumor model.

  9. Comprehensive modulation of tumor progression and regression with periodic fasting and refeeding circles via boosting IGFBP-3 loops and NK responses.

    Science.gov (United States)

    Chen, Xiancheng; Lin, Xiaojuan; Li, Meng

    2012-10-01

    Progressive tumor-bearing patients deserve to benefit from more realistic approaches. Here, a study revealed the impact of modified periodic fasting and refeeding regimen on tumor progression or regression with little or no loss of food intake and body weight. Human A549 lung, HepG-2 liver, and SKOV-3 ovary progressive tumor-bearing mice were established and subjected to 4 wk of periodic fasting/refeeding cycles (PFRC), including periodic 1-d fasting/6-d refeeding weekly (protocol 1) and periodic 2-d fasting/5-d refeeding weekly (P2DF/5DR, protocol 2), with ad libitum (AL)-fed hosts as controls. Afterwards, PFRC groups exhibited tumor growth arrest with some tendency towards regression; especially, complete regression of progressive tumors and metastases comprised between 43.75 and 56.25% of tumor-challenged hosts in P2DF/5DR group (P fasting/6-d refeeding weekly groups survived a 4-month study period vs. only 31.25-37.5% in AL control group. Immunological assays and Luminex microarray revealed that tumor growth remission is mainly via natural killer cell (NK) reactivity and cross-regulation of IGF-binding protein-3, IGF/IGF-receptor, and megakaryocyte growth and development factor autocrine and paracrine loops. In vivo cellular and humoral assays indicated that tumor-regressive induction by PFRC protocols could be partly terminated by NK cell and IGF-binding protein-3 blockade or replenishment of IGF-I/-II and megakaryocyte growth and development factor. These findings offer a better understanding of comprehensive modulation of periodic fasting/refeeding strategy on the balance between tumor progression and regression.

  10. Radiopharmaceutical chelates and method of external imaging

    International Nuclear Information System (INIS)

    1976-01-01

    The preparation of the following chemicals is described: chelates of technetium-99m, cobalt-57, gallium-67, gallium-68, indium-111 or indium-113m and a substituted iminodiacetic acid or an 8-hydroxyquinoline useful as a radiopharmaceutical external imaging agent. The compounds described are suitable for intravenous injection, have an excellent in vivo stability and are good organ seekers. Tin(II) choride or other tin(II) compounds are used as chelating agents

  11. Fluid extraction using carbon dioxide and organophosphorus chelating agents

    Science.gov (United States)

    Smart, Neil G.; Wai, Chien M.; Lin, Yuehe; Kwang, Yak Hwa

    1998-01-01

    Methods for extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical CO.sub.2, and a chelating agent are described. The chelating agent forms a chelate with the species, the chelate being soluble in the fluid to allow removal of the species from the material. In preferred embodiments the extraction solvent is supercritical CO.sub.2 and the chelating agent comprises an organophosphorous chelating agent, particularly sulfur-containing organophosphorous chelating agents, including mixtures of chelating agents. Examples of chelating agents include monothiophosphinic acid, di-thiophosphinic acid, phosphine sulfite, phosphorothioic acid, and mixtures thereof. The method provides an environmentally benign process for removing metal and metalloids from industrial waste solutions, particularly acidic solutions. Both the chelate and the supercritical fluid can be regenerated and the contaminant species recovered to provide an economic, efficient process.

  12. An Analysis of Plan Robustness for Esophageal Tumors: Comparing Volumetric Modulated Arc Therapy Plans and Spot Scanning Proton Planning

    International Nuclear Information System (INIS)

    Warren, Samantha; Partridge, Mike; Bolsi, Alessandra; Lomax, Anthony J.; Hurt, Chris; Crosby, Thomas; Hawkins, Maria A.

    2016-01-01

    Purpose: Planning studies to compare x-ray and proton techniques and to select the most suitable technique for each patient have been hampered by the nonequivalence of several aspects of treatment planning and delivery. A fair comparison should compare similarly advanced delivery techniques from current clinical practice and also assess the robustness of each technique. The present study therefore compared volumetric modulated arc therapy (VMAT) and single-field optimization (SFO) spot scanning proton therapy plans created using a simultaneous integrated boost (SIB) for dose escalation in midesophageal cancer and analyzed the effect of setup and range uncertainties on these plans. Methods and Materials: For 21 patients, SIB plans with a physical dose prescription of 2 Gy or 2.5 Gy/fraction in 25 fractions to planning target volume (PTV)_5_0_G_y or PTV_6_2_._5_G_y (primary tumor with 0.5 cm margins) were created and evaluated for robustness to random setup errors and proton range errors. Dose–volume metrics were compared for the optimal and uncertainty plans, with P<.05 (Wilcoxon) considered significant. Results: SFO reduced the mean lung dose by 51.4% (range 35.1%-76.1%) and the mean heart dose by 40.9% (range 15.0%-57.4%) compared with VMAT. Proton plan robustness to a 3.5% range error was acceptable. For all patients, the clinical target volume D_9_8 was 95.0% to 100.4% of the prescribed dose and gross tumor volume (GTV) D_9_8 was 98.8% to 101%. Setup error robustness was patient anatomy dependent, and the potential minimum dose per fraction was always lower with SFO than with VMAT. The clinical target volume D_9_8 was lower by 0.6% to 7.8% of the prescribed dose, and the GTV D_9_8 was lower by 0.3% to 2.2% of the prescribed GTV dose. Conclusions: The SFO plans achieved significant sparing of normal tissue compared with the VMAT plans for midesophageal cancer. The target dose coverage in the SIB proton plans was less robust to random setup errors and might be

  13. An Analysis of Plan Robustness for Esophageal Tumors: Comparing Volumetric Modulated Arc Therapy Plans and Spot Scanning Proton Planning

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Samantha, E-mail: samantha.warren@oncology.ox.ac.uk [Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, Gray Laboratories, University of Oxford, Oxford (United Kingdom); Partridge, Mike [Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, Gray Laboratories, University of Oxford, Oxford (United Kingdom); Bolsi, Alessandra; Lomax, Anthony J. [Centre for Proton Therapy, Paul Scherrer Institute, Villigen (Switzerland); Hurt, Chris [Wales Cancer Trials Unit, School of Medicine, Heath Park, Cardiff (United Kingdom); Crosby, Thomas [Velindre Cancer Centre, Velindre Hospital, Cardiff (United Kingdom); Hawkins, Maria A. [Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, Gray Laboratories, University of Oxford, Oxford (United Kingdom)

    2016-05-01

    Purpose: Planning studies to compare x-ray and proton techniques and to select the most suitable technique for each patient have been hampered by the nonequivalence of several aspects of treatment planning and delivery. A fair comparison should compare similarly advanced delivery techniques from current clinical practice and also assess the robustness of each technique. The present study therefore compared volumetric modulated arc therapy (VMAT) and single-field optimization (SFO) spot scanning proton therapy plans created using a simultaneous integrated boost (SIB) for dose escalation in midesophageal cancer and analyzed the effect of setup and range uncertainties on these plans. Methods and Materials: For 21 patients, SIB plans with a physical dose prescription of 2 Gy or 2.5 Gy/fraction in 25 fractions to planning target volume (PTV){sub 50Gy} or PTV{sub 62.5Gy} (primary tumor with 0.5 cm margins) were created and evaluated for robustness to random setup errors and proton range errors. Dose–volume metrics were compared for the optimal and uncertainty plans, with P<.05 (Wilcoxon) considered significant. Results: SFO reduced the mean lung dose by 51.4% (range 35.1%-76.1%) and the mean heart dose by 40.9% (range 15.0%-57.4%) compared with VMAT. Proton plan robustness to a 3.5% range error was acceptable. For all patients, the clinical target volume D{sub 98} was 95.0% to 100.4% of the prescribed dose and gross tumor volume (GTV) D{sub 98} was 98.8% to 101%. Setup error robustness was patient anatomy dependent, and the potential minimum dose per fraction was always lower with SFO than with VMAT. The clinical target volume D{sub 98} was lower by 0.6% to 7.8% of the prescribed dose, and the GTV D{sub 98} was lower by 0.3% to 2.2% of the prescribed GTV dose. Conclusions: The SFO plans achieved significant sparing of normal tissue compared with the VMAT plans for midesophageal cancer. The target dose coverage in the SIB proton plans was less robust to random setup

  14. The epigenetic modifier PRDM5 functions as a tumor suppressor through modulating WNT/β-catenin signaling and is frequently silenced in multiple tumors.

    Directory of Open Access Journals (Sweden)

    Xing-sheng Shu

    Full Text Available BACKGROUND: PRDM (PRDI-BF1 and RIZ domain containing proteins are zinc finger proteins involved in multiple cellular regulations by acting as epigenetic modifiers. We studied a recently identified PRDM member PRDM5 for its epigenetic abnormality and tumor suppressive functions in multiple tumorigeneses. METHODOLOGY/PRINCIPAL FINDINGS: Semi-quantitative RT-PCR showed that PRDM5 was broadly expressed in human normal tissues, but frequently silenced or downregulated in multiple carcinoma cell lines due to promoter CpG methylation, including 80% (4/5 nasopharyngeal, 44% (8/18 esophageal, 76% (13/17 gastric, 50% (2/4 cervical, and 25% (3/12 hepatocellular carcinoma cell lines, but not in any immortalized normal epithelial cell lines. PRDM5 expression could be restored by 5-aza-2'-deoxycytidine demethylation treatment in silenced cell lines. PRDM5 methylation was frequently detected by methylation-specific PCR (MSP in multiple primary tumors, including 93% (43/46 nasopharyngeal, 58% (25/43 esophageal, 88% (37/42 gastric and 63% (29/46 hepatocellular tumors. PRDM5 was further found a stress-responsive gene, but its response was impaired when the promoter was methylated. Ectopic PRDM5 expression significantly inhibited tumor cell clonogenicity, accompanied by the inhibition of TCF/β-catenin-dependent transcription and downregulation of CDK4, TWIST1 and MDM2 oncogenes, while knocking down of PRDM5 expression lead to increased cell proliferation. ChIP assay showed that PRDM5 bound to its target gene promoters and suppressed their transcription. An inverse correlation between the expression of PRDM5 and activated β-catenin was also observed in cell lines. CONCLUSIONS/SIGNIFICANCE: PRDM5 functions as a tumor suppressor at least partially through antagonizing aberrant WNT/β-catenin signaling and oncogene expression. Frequent epigenetic silencing of PRDM5 is involved in multiple tumorigeneses, which could serve as a tumor biomarker.

  15. Biological behaviour of some 67Ga and 64Cu chelates

    International Nuclear Information System (INIS)

    Leonovicova, T.; Angelis, B.; Cifka, J.; Cifkova, I.

    1984-01-01

    Chelates of 67 Ga and 64 Cu with iminodiacetic acid (IDA) and its two phenyl derivatives as well as with nitrilotriacetic acid (NTA) and benzylnitrilotriacetic acid (BNTA) were prepared. All the chelates were found to be negatively charged. A study of the biological distribution of these chelates in rats during time intervals of 3 to 180 min showed that the chelate of 67 Ga with IDA substituted at a phenyl by a hydrophobic substituent is excreted by the kidneys into the urine at a much higher rate than the IDA chelate of 67 Ga. The excretion of NTA and BNTA chelates of 67 Ga is the opposite. Blood clearance of 64 Cu chelates is more rapid than that of 67 Ga chelates. Chelates of 64 Cu accumulate in the liver and with the bile are slowly excreted into the intestines, urinary excretion is negligible. (author)

  16. Tumor Cells Surviving Exposure to Proton or Photon Radiation Share a Common Immunogenic Modulation Signature, Rendering Them More Sensitive to T Cell–Mediated Killing

    Energy Technology Data Exchange (ETDEWEB)

    Gameiro, Sofia R.; Malamas, Anthony S. [Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States); Bernstein, Michael B. [Division of Radiation Oncology, M. D. Anderson Cancer Center, Houston, Texas (United States); Tsang, Kwong Y. [Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States); Vassantachart, April; Sahoo, Narayan; Tailor, Ramesh; Pidikiti, Rajesh [Division of Radiation Oncology, M. D. Anderson Cancer Center, Houston, Texas (United States); Guha, Chandan P. [Department of Radiation Oncology, Montefiore Medical Center, Bronx, New York (United States); Hahn, Stephen M.; Krishnan, Sunil [Division of Radiation Oncology, M. D. Anderson Cancer Center, Houston, Texas (United States); Hodge, James W., E-mail: jh241d@nih.gov [Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States)

    2016-05-01

    Purpose: To provide the foundation for combining immunotherapy to induce tumor antigen–specific T cells with proton radiation therapy to exploit the activity of those T cells. Methods and Materials: Using cell lines of tumors frequently treated with proton radiation, such as prostate, breast, lung, and chordoma, we examined the effect of proton radiation on the viability and induction of immunogenic modulation in tumor cells by flow cytometric and immunofluorescent analysis of surface phenotype and the functional immune consequences. Results: These studies show for the first time that (1) proton and photon radiation induced comparable up-regulation of surface molecules involved in immune recognition (histocompatibility leukocyte antigen, intercellular adhesion molecule 1, and the tumor-associated antigens carcinoembryonic antigen and mucin 1); (2) proton radiation mediated calreticulin cell-surface expression, increasing sensitivity to cytotoxic T-lymphocyte killing of tumor cells; and (3) cancer stem cells, which are resistant to the direct cytolytic activity of proton radiation, nonetheless up-regulated calreticulin after radiation in a manner similar to non-cancer stem cells. Conclusions: These findings offer a rationale for the use of proton radiation in combination with immunotherapy, including for patients who have failed radiation therapy alone or have limited treatment options.

  17. Tumor-Derived Microvesicles Modulate Antigen Cross-Processing via Reactive Oxygen Species-Mediated Alkalinization of Phagosomal Compartment in Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Federico Battisti

    2017-09-01

    Full Text Available Dendritic cells (DCs are the only antigen-presenting cells able to prime naïve T cells and cross-prime antigen-specific CD8+ T cells. Their functionality is a requirement for the induction and maintenance of long-lasting cancer immunity. Albeit intensively investigated, the in vivo mechanisms underlying efficient antigen cross-processing and presentation are not fully understood. Several pieces of evidence indicate that antigen transfer to DCs mediated by microvesicles (MVs enhances antigen immunogenicity. This mechanism is also relevant for cross-presentation of those tumor-associated glycoproteins such as MUC1 that are blocked in HLA class II compartment when internalized by DCs as soluble molecules. Here, we present pieces of evidence that the internalization of tumor-derived MVs modulates antigen-processing machinery of DCs. Employing MVs derived from ovarian cancer ascites fluid and established tumor cell lines, we show that MV uptake modifies DC phagosomal microenvironment, triggering reactive oxygen species (ROS accumulation and early alkalinization. Indeed, tumor MVs carry radical species and the MV uptake by DCs counteracts the chemically mediated acidification of the phagosomal compartment. Further pieces of evidence suggest that efficacious antigen cross-priming of the MUC1 antigen carried by the tumor MVs results from the early signaling induced by MV internalization and the function of the antigen-processing machinery of DCs. These results strongly support the hypothesis that tumor-derived MVs impact antigen immunogenicity by tuning the antigen-processing machinery of DCs, besides being carrier of tumor antigens. Furthermore, these findings have important implications for the exploitation of MVs as antigenic cell-free immunogen for DC-based therapeutic strategies.

  18. WE-G-BRF-01: Adaptation to Intrafraction Tumor Deformation During Intensity-Modulated Radiotherapy: First Proof-Of-Principle Demonstration

    International Nuclear Information System (INIS)

    Ge, Y; OBrien, R; Shieh, C; Booth, J; Keall, P

    2014-01-01

    Purpose: Intrafraction tumor deformation limits targeting accuracy in radiotherapy and cannot be adapted to by current motion management techniques. This study simulated intrafractional treatment adaptation to tumor deformations using a dynamic Multi-Leaf Collimator (DMLC) tracking system during Intensity-modulated radiation therapy (IMRT) treatment for the first time. Methods: The DMLC tracking system was developed to adapt to the intrafraction tumor deformation by warping the planned beam aperture guided by the calculated deformation vector field (DVF) obtained from deformable image registration (DIR) at the time of treatment delivery. Seven single phantom deformation images up to 10.4 mm deformation and eight tumor system phantom deformation images up to 21.5 mm deformation were acquired and used in tracking simulation. The intrafraction adaptation was simulated at the DMLC tracking software platform, which was able to communicate with the image registration software, reshape the instantaneous IMRT field aperture and log the delivered MLC fields.The deformation adaptation accuracy was evaluated by a geometric target coverage metric defined as the sum of the area incorrectly outside and inside the reference aperture. The incremental deformations were arbitrarily determined to take place equally over the delivery interval. The geometric target coverage of delivery with deformation adaptation was compared against the delivery without adaptation. Results: Intrafraction deformation adaptation during dynamic IMRT plan delivery was simulated for single and system deformable phantoms. For the two particular delivery situations, over the treatment course, deformation adaptation improved the target coverage by 89% for single target deformation and 79% for tumor system deformation compared with no-tracking delivery. Conclusion: This work demonstrated the principle of real-time tumor deformation tracking using a DMLC. This is the first step towards the development of an

  19. Comparative dosimetric study of three-dimensional conformal, dynamic conformal arc, and intensity-modulated radiotherapy for brain tumor treatment using Novalis system

    International Nuclear Information System (INIS)

    Ding Meisong; Newman, Francis M.S.; Kavanagh, Brian D.; Stuhr, Kelly M.S.; Johnson, Tim K.; Gaspar, Laurie E.

    2006-01-01

    Purpose: To investigate the dosimetric differences among three-dimensional conformal radiotherapy (3D-CRT), dynamic conformal arc therapy (DCAT), and intensity-modulated radiotherapy (IMRT) for brain tumor treatment. Methods and Materials: Fifteen patients treated with Novalis were selected. We performed 3D-CRT, DCAT, and IMRT plans for all patients. The margin for the planning target volume (PTV) was 1 mm, and the specific prescription dose was 90% for all plans. The target coverage at the prescription dose, conformity index (CI), and heterogeneity index were analyzed for all plans. Results: For small tumors (PTV ≤2 cm 3 ), the three dosimetric parameters had approximate values for both 3D-CRT and DCAT plans. The CI for the IMRT plans was high. For medium tumors (PTV >2 to ≤100 cm 3 ), the three plans were competitive with each other. The IMRT plans had a greater CI, better target coverage at the prescription dose, and a better heterogeneity index. For large tumors (PTV >100 cm 3 ), the IMRT plan had good target coverage at the prescription dose and heterogeneity index and approximate CI values as those in the 3D-CRT and DCAT plans. Conclusion: The results of our study have shown that DCAT is suitable for most cases in the treatment of brain tumors. For a small target, 3D-CRT is useful, and IMRT is not recommended. For larger tumors, IMRT is superior to 3D-CRT and very competitive in sparing critical structures, especially for big tumors

  20. Dietary fat modulation of mammary tumor growth and metabolism demonstrated by 31P-nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Erickson, K.L.; Buckman, D.K.; Hubbard, N.E.; Ross, B.

    1986-01-01

    The relationship of dietary fat concentration and saturation on the growth and metabolic activity of line 168 was studied using syngeneic mice fed 6 experimental diets before and during tumor growth. Tumor latency was significantly greater for mice fed a diet containing the minimum of essential fatty acids (EFA, 0.5% corn oil) or 8% coconut oil (SF) than for mice fed 8 or 20% safflower oil (PUF) or 20% SF. Changes in dietary fat resulted in alterations of tumor cell and serum fatty acid composition but not the number of inflammatory cells infiltrating the tumor. 31 P-surface coil NMR was used to measure possible changes in tumor metabolism in vivo. Although pH decreased from 7.2 to 6.6 as the tumor volume increased, there was no difference in pH among dietary groups. There was an inverse relationship between both sugar phosphate (SP)/Pi and ATP/Pi ratios and tumor volume; those ratios for mice fed an EFA deficient or minimal EFA diet decreased at a different rate than ratios for mice fed diets with additional fat. Tumors of mice fed diets containing no or a low level (0.3%) of 18:2 had higher SP/ATP ratios than mice fed diets containing a moderate level (∼ 4%) of 18:2. Thus, high levels of dietary fat had a significant effect on promotion of mammary tumors during early stages of tumor growth. Differences in tumor volume associated with dietary fat may be related to changes in the levels of high energy phosphate metabolites

  1. CaNa2EDTA chelation attenuates cell damage in workers exposed to lead--a pilot study.

    Science.gov (United States)

    Čabarkapa, A; Borozan, S; Živković, L; Stojanović, S; Milanović-Čabarkapa, M; Bajić, V; Spremo-Potparević, B

    2015-12-05

    Lead induced oxidative cellular damage and long-term persistence of associated adverse effects increases risk of late-onset diseases. CaNa2EDTA chelation is known to remove contaminating metals and to reduce free radical production. The objective was to investigate the impact of chelation therapy on modulation of lead induced cellular damage, restoration of altered enzyme activities and lipid homeostasis in peripheral blood of workers exposed to lead, by comparing the selected biomarkers obtained prior and after five-day CaNa2EDTA chelation intervention. The group of smelting factory workers diagnosed with lead intoxication and current lead exposure 5.8 ± 1.2 years were administered five-day CaNa2EDTA chelation. Elevated baseline activity of antioxidant enzymes Cu, Zn-SOD and CAT as well as depleted thiols and increased protein degradation products-carbonyl groups and nitrites, pointing to Pb induced oxidative damage, were restored toward normal values following the treatment. Lead showed inhibitor potency on both RBC AChE and BChE in exposed workers, and chelation re-established the activity of BChE, while RBC AChE remained unaffected. Also, genotoxic effect of lead detected in peripheral blood lymphocytes was significantly decreased after therapy, exhibiting 18.9% DNA damage reduction. Administration of chelation reversed the depressed activity of serum PON 1 and significantly decreased lipid peroxidation detected by the post-chelation reduction of MDA levels. Lactate dehydrogenase LDH1-5 isoenzymes levels showed evident but no significant trend of restoring toward normal control values following chelation. CaNa2EDTA chelation ameliorates the alterations linked with Pb mediated oxidative stress, indicating possible benefits in reducing health risks associated with increased oxidative damage in lead exposed populations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Decomposition rates of radiopharmaceutical indium chelates in serum

    International Nuclear Information System (INIS)

    Yeh, S.M.; Meares, C.F.; Goodwin, D.A.

    1979-01-01

    The rates at which six small aminopolycarboxylate chelates of trivalent 111 In and three protein-bound chelates of 111 In deliver indium to the serum protein transferrin have been studied in sterile human serum at pH 7.3, 37 deg C. Sterically hindered chelates containing a substituent on an ethylene carbon of EDTA decompose with rates in the range 0.03 to 0.11% per day - one to two orders of magnitude slower than other chelates. Only small differences are observed between rates of decomposition for low-molecular-weight chelates and for protein-bound chelates having analogous structures. (author)

  3. Review of actinide decorporation with chelating agents

    Energy Technology Data Exchange (ETDEWEB)

    Ansoborlo, E. [CEA Valrho, Dir. de l' Energie Nucleaire (DEN/DRCP/CETAMA), 30 - Marcoule (France); Amekraz, B.; Moulin, Ch. [CEA Saclay, Dept. de Physico-Chimie (DEN/DPC/SECR), 91 - Gif sur Yvette (France); Moulin, V. [CEA Saclay, Dir. du Developpement et de l' Innovation Nucleares (DEN/DDIN/MR), 91 - Gif Sur Yvette (France); Taran, F. [CEA Saclay (DSV/DBJC/SMMCB), 91 - Gif-sur-Yvette (France); Bailly, Th.; Burgada, R. [Centre National de la Recherche Scientifique (CNRS/LCSB/UMR 7033), 93 - Bobigny (France); Henge-Napoli, M.H. [CEA Valrho, Site de Marcoule (INSTN), 30 (France); Jeanson, A.; Den Auwer, Ch.; Bonin, L.; Moisy, Ph. [CEA Valrho, Dir. de l' Energie Nucleaire (DEN/DRCP/SCPS), 30 - Marcoule (France)

    2007-10-15

    In case of accidental release of radionuclides in a nuclear facility or in the environment, internal contamination (inhalation, ingestion or wound) with actinides represents a severe health risk to human beings. It is therefore important to provide effective chelation therapy or decorporation to reduce acute radiation damage, chemical toxicity, and late radiation effects. Speciation governs bioavailability and toxicity of elements and it is a prerequisite tool for the design and success of new ligands or chelating agents. The purpose of this review is to present the state-of-the-art of actinide decorporation within biological media, to recall briefly actinide metabolism, to list the basic constraints of actinide-ligand for development, to describe main tools developed and used for decorporation studies, to review mainly the chelating agents tested for actinides, and finally to conclude on the future trends in this field. (authors)

  4. Modulation of clonogenicity, growth, and radiosensitivity of three human epidermoid tumor cell lines by a fibroblastic environment

    International Nuclear Information System (INIS)

    Gery, Bernard; Little, John B.; Coppey, Jacques

    1996-01-01

    Purpose: To develop a model vitro system to examine the influence of fibroblasts on the growth and survival of human tumor cells after exposure to ionizing radiation. Methods and Materials: The cell system consists of three epidermoid carcinoma cell lines derived from head and neck tumors having differing growth potentials and intrinsic radiosensitivities, as well as a low passage skin fibroblast strain from a normal human donor. The tumor cells were seeded for five days prior to exposure to radiation: (a) in the presence of different numbers of fibroblasts, (b) in conditioned medium from stationary fibroblast cultures, and (c) on an extracted fibroblastic matrix. Results: When grown with fibroblasts, all three tumor cell lines showed increased clonogenicity and increased radioresistance. The radioprotective effect was maximal at a density of approximately 10 5 fibroblasts/100 mm Petri dish, and was greatest in the intrinsically radiosensitive tumor cell line. On the other hand, the effects of incubation with conditioned medium or on a fibroblastic matrix varied among the tumor cell lines. Thus, the protective effect afforded by coculture with fibroblasts must involve several cellular factors related to the fibroblast itself. Conclusions: These observations emphasize the importance of cultural conditions on the apparent radiosensitivity of human tumor cell lines, and suggest that the fibroblastic connective tissue enveloping the malignant cells should be considered when the aim is to establish a radiopredictive assay from surgical tumors fragments

  5. Development and clinical evaluation of automatic fiducial detection for tumor tracking in cine megavoltage images during volumetric modulated arc therapy

    International Nuclear Information System (INIS)

    Azcona, Juan Diego; Li Ruijiang; Mok, Edward; Hancock, Steven; Xing Lei

    2013-01-01

    accuracy during treatment. Results: The algorithm was able to accurately localize the fiducial position on MV images with success rates of more than 90% per case. The percentage of images in which each fiducial was localized in the studied cases varied between 23% and 65%, with at least one fiducial having been localized between 40% and 95% of the images. This depended mainly on the modulation of the plan and fiducial blockage. The prostate movement in the presented cases varied between 0.8 and 3.5 mm (mean values). The maximum displacement detected among all patients was of 5.7 mm. Conclusions: An algorithm for automatic detection of fiducial markers in cine MV images has been developed and tested with five clinical cases. Despite the challenges posed by complex beam aperture shapes, fiducial localization close to the field edge, partial occlusion of fiducials, fast leaf and gantry movement, and inherently low MV image quality, good localization results were achieved in patient images. This work provides a technique for enabling real-time accurate fiducial detection and tumor tracking during VMAT treatments without the use of extra imaging dose.

  6. Flavonoids-induced accumulation of hypoxia-inducible factor (HIF)-1alpha/2alpha is mediated through chelation of iron.

    Science.gov (United States)

    Park, Sung-Soo; Bae, Insoo; Lee, Yong J

    2008-04-15

    Hypoxia-inducible factor-1 alpha (HIF-1alpha) is the regulatory subunit of the heterodimeric transcription factor HIF-1 that is the key regulator of cellular response to low oxygen tension. Under normoxic conditions, HIF-1alpha is continuously degraded by the ubiquitin-proteasome pathway through pVHL (von Hippel-Lindau tumor suppressor protein). Under hypoxic conditions, HIF-1alpha is stabilized and induces the transcription of HIF-1 target genes. Quercetin, a flavonoid with anti-oxidant, anti-inflammatory, and kinase modulating properties, has been found to induce HIF-1alpha accumulation and VEGF secretion in normoxia. In this study, the molecular mechanisms of quercetin-mediated HIF-1alpha accumulation were investigated. Previous studies have shown that, in addition to being induced by hypoxia, HIF-1alpha can be induced through the phosphatidylinositol 3-kinase (PI3K)/Akt and p53 signaling pathways. But our study revealed, through p53 mutant-type as well as p53 null cell lines, that neither the PI3K/Akt nor the p53 signaling pathway is required for quercetin-induced HIF-1alpha accumulation. And we observed that HIF-1alpha accumulated by quercetin is not ubiquitinated and the interaction of HIF-1alpha with pVHL is reduced, compared with HIF-1alpha accumulated by the proteasome inhibitor MG132. The use of quercetin's analogues showed that only quercetin and galangin induce HIF-1/2alpha accumulation and this effect is completely reversed by additional iron ions. This is because quercetin and galangin are able to chelate cellular iron ions that are cofactors of HIF-1/2alpha proline hydroxylase (PHD). These data suggest that quercetin inhibits the ubiquitination of HIF-1/2alpha in normoxia by hindering PHD through chelating iron ions.

  7. Labelling of bacteria with indium chelates

    International Nuclear Information System (INIS)

    Kleinert, P.; Pfister, W.; Endert, G.; Sproessig, M.

    1985-01-01

    The indium chelates were prepared by reaction of radioactive indiumchloride with 10 μg oxine, 15 μg tropolone and 3 mg acetylacetone, resp. The formed chelates have been incubated with 10 9 germs/ml for 5 minutes, with labelling outputs from 90 to 95%. Both gram-positive (Streptococcus, Staphylococcus) and gram-negative bacteria (Escherichia coli) can be labelled. The reproductive capacity of the bacteria was not impaired. The application of indium labelled bacteria allows to show the distribution of microorganisms within the living organism and to investigate problems of bacterial adherence. (author)

  8. Prostate Tumor Growth Can Be Modulated by Dietarily Targeting the 15-Lipoxygenase-1 and Cyclooxygenase-2 Enzymes

    Directory of Open Access Journals (Sweden)

    Uddhav P. Kelavkar

    2009-07-01

    Full Text Available The main objectives of our study were to determine the bioavailability of omega-3 (ω-3 to the tumor, to understand its mechanisms, and to determine the feasibility of targeting the ω-6 polyunsaturated fatty acids (PUFAs metabolizing 15-lipoxygenase-1 (15-LO-1 and cyclooxygenase-2 (COX-2 pathways. Nude mice injected subcutaneously with LAPC-4 prostate cancer cells were randomly divided into three different isocaloric (and same percent [%] of total fat diet groups: high ω-6 linoleic acid (LA, high ω-3 stearidonic acid (SDA PUFAs, and normal (control diets. Tumor growth and apoptosis were examined as end points after administration of short-term (5 weeks ω-3 and ω-6 fatty acid diets. Tumor tissue membranes were examined for growth, lipids, enzyme activities, apoptosis, and proliferation. Tumors from the LA diet-fed mice exhibited the most rapid growth compared with tumors from the control and SDA diet-fed mice. Moreover, a diet switch from LA to SDA caused a dramatic decrease in the growth of tumors in 5 weeks, whereas tumors grew more aggressively when mice were switched from an SDA to an LA diet. Evaluating tumor proliferation (Ki-67 and apoptosis (caspase-3 in mice fed the LA and SDA diets suggested increased percentage proliferation index from the ω-6 diet-fed mice compared with the tumors from the ω-3 SDA-fed mice. Further, increased apoptosis was observed in tumors from ω-3 SDA diet-fed mice versus tumors from ω-6 diet-fed mice. Levels of membrane phospholipids of red blood cells reflected dietary changes and correlated with the levels observed in tumors. Linoleic or arachidonic acid and metabolites (eicosanoid/prostaglandins were analyzed for 15-LO-1 and COX-2 activities by high-performance liquid chromatography. We also examined the percent unsaturated or saturated fatty acids in the total phospholipids, PUFA ω-6/ω-3 ratios, and other major enzymes (elongase, Delta [Δ]-5-desaturase, and Δ-6-desaturase of ω-6 catabolic

  9. Therapeutic effect and prognostic analysis of intensity-modulated radiotherapy for primary hepatocellular carcinoma with portal vein and/or inferior vena cava tumor thrombus

    Directory of Open Access Journals (Sweden)

    HUANG Long

    2015-06-01

    Full Text Available ObjectiveTo determine the efficacy and prognostic factors of intensity-modulated radiotherapy (IMRT for primary hepatocellular carcinoma (HCC with portal vein and/or inferior vena cava tumor thrombus. MethodsTwenty-three HCC patients with portal vein and/or inferior vena cava tumor thrombus received IMRT with an 8 MV linear accelerator at the Cancer Center of General Hospital of Armed Police Forces, Anhui Medical University, from April 2008 to August 2011. A single dose of 3 to 6 Gy was delivered at five fractions per week, with a total dose of 56 to 96 Gy and a median dose of 60 Gy. Survival time was recorded, and adverse reactions were evaluated. Survival rate calculation and survival analysis were performed using the Kaplan-Meier method. Comparison of categorical between two groups was made by chi-square test. ResultsOne patient did not complete radiotherapy due to upper gastrointestinal bleeding. Of 22 patients who completed IMRT, 4 achieved complete remission and 10 achieved partial remission, with an overall response rate of 63.7%. Our analysis showed that the type of tumor thrombus and tumor size were associated with tumor response rate and were significant prognostic factors (P<0.05. The median survival time was 13.4 months. The 1-, 2-, and 3-year survival rates were 59%, 27%, and 18%, respectively. The 22 patients who completed radiotherapy did not experience acute radiation injury or late adverse outcomes such as radiation-induced liver disease. ConclusionThis study suggests IMRT is a safe and effective treatment option for HCC patients with portal vein and/or inferior vena cava tumor thrombus.

  10. Diclofenac inhibits tumor growth in a murine model of pancreatic cancer by modulation of VEGF levels and arginase activity.

    Directory of Open Access Journals (Sweden)

    Nina Mayorek

    Full Text Available BACKGROUND: Diclofenac is one of the oldest anti-inflammatory drugs in use. In addition to its inhibition of cyclooxygenases (COX, diclofenac potently inhibits phospholipase A(2 (PLA(2, thus yielding a broad anti-inflammatory effect. Since inflammation is an important factor in the development of pancreatic tumors we explored the potential of diclofenac to inhibit tumor growth in mice inoculated with PANCO2 cells orthotopically. METHODOLOGY/PRINCIPAL FINDINGS: We found that diclofenac treatment (30 mg/kg/bw for 11 days of mice inoculated with PANC02 cells, reduced the tumor weight by 60%, correlating with increased apoptosis of tumor cells. Since this effect was not observed in vitro on cultured PANCO2 cells, we theorized that diclofenac beneficial treatment involved other mediators present in vivo. Indeed, diclofenac drastically decreased tumor vascularization by downregulating VEGF in the tumor and in abdominal cavity fluid. Furthermore, diclofenac directly inhibited vascular sprouting ex vivo. Surprisingly, in contrast to other COX-2 inhibitors, diclofenac increased arginase activity/arginase 1 protein content in tumor stroma cells, peritoneal macrophages and white blood cells by 2.4, 4.8 and 2 fold, respectively. We propose that the subsequent arginine depletion and decrease in NO levels, both in serum and peritoneal cavity, adds to tumor growth inhibition by malnourishment and poor vasculature development. CONCLUSION/SIGNIFICANCE: In conclusion, diclofenac shows pronounced antitumoral properties in pancreatic cancer model that can contribute to further treatment development. The ability of diclofenac to induce arginase activity in tumor stroma, peritoneal macrophages and white blood cells provides a tool to study a controversial issue of pro-and antitumoral effects of arginine depletion.

  11. Diclofenac inhibits tumor growth in a murine model of pancreatic cancer by modulation of VEGF levels and arginase activity.

    Science.gov (United States)

    Mayorek, Nina; Naftali-Shani, Nili; Grunewald, Myriam

    2010-09-15

    Diclofenac is one of the oldest anti-inflammatory drugs in use. In addition to its inhibition of cyclooxygenases (COX), diclofenac potently inhibits phospholipase A(2) (PLA(2)), thus yielding a broad anti-inflammatory effect. Since inflammation is an important factor in the development of pancreatic tumors we explored the potential of diclofenac to inhibit tumor growth in mice inoculated with PANCO2 cells orthotopically. We found that diclofenac treatment (30 mg/kg/bw for 11 days) of mice inoculated with PANC02 cells, reduced the tumor weight by 60%, correlating with increased apoptosis of tumor cells. Since this effect was not observed in vitro on cultured PANCO2 cells, we theorized that diclofenac beneficial treatment involved other mediators present in vivo. Indeed, diclofenac drastically decreased tumor vascularization by downregulating VEGF in the tumor and in abdominal cavity fluid. Furthermore, diclofenac directly inhibited vascular sprouting ex vivo. Surprisingly, in contrast to other COX-2 inhibitors, diclofenac increased arginase activity/arginase 1 protein content in tumor stroma cells, peritoneal macrophages and white blood cells by 2.4, 4.8 and 2 fold, respectively. We propose that the subsequent arginine depletion and decrease in NO levels, both in serum and peritoneal cavity, adds to tumor growth inhibition by malnourishment and poor vasculature development. In conclusion, diclofenac shows pronounced antitumoral properties in pancreatic cancer model that can contribute to further treatment development. The ability of diclofenac to induce arginase activity in tumor stroma, peritoneal macrophages and white blood cells provides a tool to study a controversial issue of pro-and antitumoral effects of arginine depletion.

  12. An Immune-Modulating Diet in Combination with Chemotherapy Prevents Cancer Cachexia by Attenuating Systemic Inflammation in Colon 26 Tumor-Bearing Mice.

    Science.gov (United States)

    Nakamura, Kentaro; Sasayama, Akina; Takahashi, Takeshi; Yamaji, Taketo

    2015-01-01

    Cancer cachexia is characterized by muscle wasting caused partly by systemic inflammation. We previously demonstrated an immune-modulating diet (IMD), an enteral diet enriched with immunonutrition and whey-hydrolyzed peptides, to have antiinflammatory effects in some experimental models. Here, we investigated whether the IMD in combination with chemotherapy could prevent cancer cachexia in colon 26 tumor-bearing mice. Forty tumor-bearing mice were randomized into 5 groups: tumor-bearing control (TB), low dose 5-fluorouracil (5-FU) and standard diet (LF/ST), low dose 5-FU and IMD (LF/IMD), high dose 5-FU and standard diet (HF/ST) and high dose 5-FU and IMD (HF/IMD). The ST and IMD mice received a standard diet or the IMD ad libitum for 21 days. Muscle mass in the IMD mice was significantly higher than that in the ST mice. The LF/IMD in addition to the HF/ST and HF/IMD mice preserved their body and carcass weights. Plasma prostaglandin E2 levels were significantly lower in the IMD mice than in the ST mice. A combined effect was also observed in plasma interleukin-6, glucose, and vascular endothelial growth factor levels. Tumor weight was not affected by different diets. In conclusion, the IMD in combination with chemotherapy prevented cancer cachexia without suppressing chemotherapeutic efficacy.

  13. Preclinical evaluation of somatostatin analogs bearing two macrocyclic chelators for high specific activity labeling with radiometals

    International Nuclear Information System (INIS)

    Storch, D.; Schmitt, J.S.; Waldherr, C.; Maecke, H.R.; Waser, B.; Reubi, J.C.

    2007-01-01

    Radiometallated analogues of the regulatory peptide somatostatin are of interest in the in vivo localization and targeted radiotherapy of somatostatin receptor-overexpressing tumors. An important aspect of their use in vivo is a fast and efficient labeling (complexation) protocol for radiometals along with a high specific activity. We describe in this manuscript synthetic methods for the coupling of two chelators (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid = DOTA) to the bioactive peptide [Tyr 3 ,Thr 8 ]-octreotide (TATE) in order to increase the specific activity (radioactivity in Bq per mole peptide). The full chelator-linker-peptide conjugate was assembled on solid support using standard Fmoc chemistry. Two DOTA-chelators were linked to the peptide using lysine or N,N'-bis(3-aminopropyl)-glycine (Apg); in addition, pentasarcosine (Sar 5 ) was used as a spacer between the chelators and the peptide to probe its influence on biology and pharmacology. Complexation rates with In 3+ and Y 3+ salts and the corresponding radiometals were high, the bis-DOTA-derivatives showed higher complexation rates and gave higher specific activity than DOTA-TATE. Pharmacological and biological data of the complexed molecules did not show significant differences if compared to the parent peptide [ 111/nat In-DOTA]-TATE except for [( 111/nat In-DOTA) 2 -Apg]-TATE which showed a lower binding affinity and rate of internalization into tumor cells. The biodistribution of [( 111/nat In-DOTA)-Lys( 111/nat In-DOTA)]-TATE in the rat tumor model (AR4-2J) showed a high and specific (as shown by a blocking experiment) tracer uptake in somatostatin receptor-positive tissue but a lower tumor uptake compared to [ 111/nat In-DOTA]-TATE. (orig.)

  14. Bone marrow and chelatable iron in patients with protein energy ...

    African Journals Online (AJOL)

    chelatable iron is present and is excreted in the urine of children with kwashiorkor ... venous blood sample was drawn for routine biochemical and haematological .... storage.l.1:m In response to chelation, the kwashiorkor children excrete large ...

  15. Modulators of Response to Tumor Necrosis-Related Apoptosis-Inducing Ligand (TRAIL) Therapy in Ovarian Cancer

    National Research Council Canada - National Science Library

    Behbakht, Kian

    2008-01-01

    .... More effective therapies are urgently needed. One of the most promising therapies in development for ovarian cancer is the use of either the Tumor Necrosis Factor-related Apoptosis Inducing Ligand (TRAIL...

  16. Radiopharmaceutical chelates and method of external imaging

    International Nuclear Information System (INIS)

    Loberg, M.D.; Callery, P.S.; Cooper, M.

    1977-01-01

    A chelate of technetium-99m, cobalt-57, gallium-67, gallium-68, indium-111 or indium-113m and a substituted iminodiacetic acid or an 8-hydroxyquinoline useful as a radiopharmaceutical external imaging agent. The invention also includes preparative methods therefor

  17. MCT1 Modulates Cancer Cell Pyruvate Export and Growth of Tumors that Co-express MCT1 and MCT4

    OpenAIRE

    Hong, Candice Sun; Graham, Nicholas A.; Gu, Wen; Espindola Camacho, Carolina; Mah, Vei; Maresh, Erin L.; Alavi, Mohammed; Bagryanova, Lora; Krotee, Pascal A.L.; Gardner, Brian K.; Behbahan, Iman Saramipoor; Horvath, Steve; Chia, David; Mellinghoff, Ingo K.; Hurvitz, Sara A.

    2016-01-01

    Monocarboxylate Transporter 1 (MCT1) inhibition is thought to block tumor growth through disruption of lactate transport and glycolysis. Here we show MCT1 inhibition impairs proliferation of glycolytic breast cancer cells co-expressing MCT1 and MCT4 via disruption of pyruvate rather than lactate export. MCT1 expression is elevated in glycolytic breast tumors, and high MCT1 expression predicts poor prognosis in breast and lung cancer patients. Acute MCT1 inhibition reduces pyruvate export but ...

  18. Diclofenac Inhibits Tumor Growth in a Murine Model of Pancreatic Cancer by Modulation of VEGF Levels and Arginase Activity

    OpenAIRE

    Mayorek, Nina; Naftali-Shani, Nili; Grunewald, Myriam

    2010-01-01

    BACKGROUND: Diclofenac is one of the oldest anti-inflammatory drugs in use. In addition to its inhibition of cyclooxygenases (COX), diclofenac potently inhibits phospholipase A(2) (PLA(2)), thus yielding a broad anti-inflammatory effect. Since inflammation is an important factor in the development of pancreatic tumors we explored the potential of diclofenac to inhibit tumor growth in mice inoculated with PANCO2 cells orthotopically. METHODOLOGY/PRINCIPAL FINDINGS: We found that diclofenac tre...

  19. Use of chelating agents as immovable phase in extraction chromatography

    International Nuclear Information System (INIS)

    Sebesta, F.

    1978-01-01

    Extraction chromatography using chelating agents is reviewed. The theory of element extraction by chelating agents and factors influencing this process (pH, extracting agent concentration in organic phase, masking agent concentration in aqueous phase) are briefly considered. The effect of kinetic factors on the extraction chromatography process is discussed. Ways of preparing columns are emphasized. Examples of using chelating reagents in various extraction chromatography systems are given. β-Diketones, oximes, hydroxamic acids, dithizon, diethyl dithiocarbamic acid are chosen as chelating agents

  20. Mesenchymal Tumors Can Derive from Ng2/Cspg4-Expressing Pericytes with β-Catenin Modulating the Neoplastic Phenotype

    Directory of Open Access Journals (Sweden)

    Shingo Sato

    2016-07-01

    Full Text Available The cell of origin for most mesenchymal tumors is unclear. One cell type that contributes to this lineages is the pericyte, a cell expressing Ng2/Cspg4. Using lineage tracing, we demonstrated that bone and soft tissue sarcomas driven by the deletion of the Trp53 tumor suppressor, or desmoid tumors driven by a mutation in Apc, can derive from cells expressing Ng2/Cspg4. Deletion of the Trp53 tumor suppressor gene in these cells resulted in the bone and soft tissue sarcomas that closely resemble human sarcomas, while stabilizing β-catenin in this same cell type caused desmoid tumors. Comparing expression between Ng2/Cspg4-expressing pericytes lacking Trp53 and sarcomas that arose from deletion of Trp53 showed inhibition of β-catenin signaling in the sarcomas. Activation of β-catenin inhibited the formation and growth of sarcomas. Thus, pericytes can be a cell of origin for mesenchymal tumors, and β-catenin dysregulation plays an important role in the neoplastic phenotype.

  1. Chelating agents as stationary phase in extraction chromatography, ch. 11

    International Nuclear Information System (INIS)

    Sebesta, F.

    1975-01-01

    Chelating agents have been used largely in extraction chromatography for separations related to activation analysis, for concentration of metals from dilute solutions, and for preparation of radiochemically pure or carrier-free radionuclides. This review deals with the theory of extraction by chelating agents, the experimental technique, and the chelating agents and systems used (β-diketones, oximes, hydroxamic acid, dithizone and diethyldithiocarbamic acid)

  2. Intensity-modulated radiotherapy for laryngeal and hypopharyngeal cancer. Minimization of late dysphagia without jeopardizing tumor control

    Energy Technology Data Exchange (ETDEWEB)

    Modesto, Anouchka; Laprie, Anne; Graff, Pierre; Rives, Michel [Institut Universitaire du Cancer, Department of Radiation Oncology, Institut Claudius Regaud, Toulouse (France); Vieillevigne, Laure [Institut Universitaire du Cancer, Department of Medical Physics, Toulouse (France); Sarini, Jerome; Vergez, Sebastien; Farenc, Jean-Claude [Institut Universitaire du Cancer, Department of Head and Neck Surgery, Toulouse (France); Delord, Jean-Pierre [Institut Universitaire du Cancer, Department of Medical Oncology, Toulouse (France); Vigarios, Emmanuelle [Centre Hospitalo Universitaire de Rangueil, Dental Surgery Department, Toulouse (France); Filleron, Thomas [Institut Universitaire du Cancer, Department of Biostatistics, Toulouse (France)

    2014-11-01

    The purpose of this work was to retrospectively determine the value of intensity-modulated radiotherapy (IMRT) in patients with laryngeal and hypopharyngeal squamous cell carcinoma (LHSCC), on outcome and treatment-related toxicity compared to 3-dimensional conformal radiotherapy (3D-CRT). A total of 175 consecutive patients were treated between 2007 and 2012 at our institution with curative intent RT and were included in this study: 90 were treated with 3D-CRT and 85 with IMRT. Oncologic outcomes were estimated using Kaplan-Meier statistics; acute and late toxicities were scored according to the Common Toxicity Criteria for Adverse Events scale v 3.0. Median follow-up was 35 months (range 32-42 months; 95% confidence interval 95 %). Two-year disease-free survival did not vary, regardless of the technique used (69 % for 3D-CRT vs. 72 %; for IMRT, p = 0.16). Variables evaluated as severe late toxicities were all statistically lower with IMRT compared with 3D-CRT: xerostomia (0 vs. 12 %; p < 0.0001), dysphagia (4 vs. 26 %; p < 0.0001), and feeding-tube dependency (1 vs 13 %; p = 0.0044). The rates of overall grade ≥ 3 late toxicities for the IMRT and 3D-CRT groups were 4.1 vs. 41.4 %, respectively (p < 0.0001). IMRT for laryngeal and hypopharyngeal cancer minimizes late dysphagia without jeopardizing tumor control and outcome. (orig.) [German] Das Ziel dieser Studie war es, retrospektiv den Nutzen der intensitaetsmodulierten Strahlentherapie (IMRT) in der Behandlung von Patienten mit Plattenepithelkarzinom von Kehlkopf und Hypopharynx (LHSCC) zu bewerten und mit dem Outcome und den Spaetfolgen der 3-D-konformalen Strahlentherapie (3D-CRT) zu vergleichen. Insgesamt wurden zwischen Januar 2007 und Dezember 2012175 LHSCC-Patienten mit einer RT behandelt und in die Studie aufgenommen: 85 Patienten wurden mit 3D-CRT und 90 Patienten mit IMRT behandelt.Das onkologische Outcome wurde mittels Kaplan-Meier-Statistik ermittelt und Akut- und Spaettoxizitaeten anhand der CTCAE

  3. Chelation therapy after the Trial to Assess Chelation Therapy: results of a unique trial

    Science.gov (United States)

    Avila, Maria D.; Escolar, Esteban; Lamas, Gervasio A.

    2014-01-01

    Purpose of review EDTA chelation therapy has been in off-label use for the treatment of atherosclerosis. We review the results of the first large-scale randomized trial of this treatment. Recent findings The trial to assess chelation therapy was a $30 million National Institutes of Health-funded study of the safety and efficacy of EDTA-based chelation infusions in 1708 post-myocardial infarction (MI) patients. The trial to assess chelation therapy demonstrated a significant (P = 0.035) 18% reduction in a combined primary endpoint of death, MI, stroke, coronary revascularization, or hospitalization for angina. In diabetic patients the benefit was more extreme, with a 41% relative reduction in risk (P = 0.0002) and a 43% reduction in total mortality (P = 0.011). Safety data were favorable. A reduction of oxidative stress by chelation of toxic metals has been proposed as a possible mechanism of action. Summary Recent research suggests that EDTA chelation may be a well-tolerated and effective treatment for post-MI patients. Future replication and mechanistic studies are important prior to implementation in all post-MI patients. PMID:25023079

  4. Adiponectin haploinsufficiency promotes mammary tumor development in MMTV-PyVT mice by modulation of phosphatase and tensin homolog activities.

    Directory of Open Access Journals (Sweden)

    Janice B B Lam

    Full Text Available Adiponectin is an adipokine possessing beneficial effects on obesity-related medical complications. A negative association of adiponectin levels with breast cancer development has been demonstrated. However, the precise role of adiponectin deficiency in mammary carcinogenesis remains elusive.In the present study, MMTV-polyomavirus middle T antigen (MMTV-PyVT transgenic mice with reduced adiponectin expressions were established and the stromal effects of adiponectin haploinsufficiency on mammary tumor development evaluated. In mice from both FVB/N and C57BL/6J backgrounds, insufficient adiponectin production promoted mammary tumor onset and development. A distinctive basal-like subtype of tumors, with a more aggressive phenotype, was derived from adiponectin haplodeficient MMTV-PyVT mice. Comparing with those from control MMTV-PyVT mice, the isolated mammary tumor cells showed enhanced tumor progression in re-implanted nude mice, accelerated proliferation in primary cultures, and hyperactivated phosphatidylinositol-3-kinase (PI3K/Akt/beta-catenin signaling, which at least partly attributed to the decreased phosphatase and tensin homolog (PTEN activities. Further analysis revealed that PTEN was inactivated by a redox-regulated mechanism. Increased association of PTEN-thioredoxin complexes was detected in tumors derived from mice with reduced adiponectin levels. The activities of thioredoxin (Trx1 and thioredoxin reductase (TrxR1 were significantly elevated, whereas treatment with either curcumin, an irreversible inhibitor of TrxR1, or adiponectin largely attenuated their activities and resulted in the re-activation of PTEN in these tumor cells. Moreover, adiponectin could inhibit TrxR1 promoter-mediated transcription and restore the mRNA expressions of TrxR1.Adiponectin haploinsufficiency facilitated mammary tumorigenesis by down-regulation of PTEN activity and activation of PI3K/Akt signalling pathway through a mechanism involving Trx1/TrxR1

  5. Transient mTOR inhibition facilitates continuous growth of liver tumors by modulating the maintenance of CD133+ cell populations.

    Directory of Open Access Journals (Sweden)

    Zhaojuan Yang

    Full Text Available The mammalian target of the rapamycin (mTOR pathway, which drives cell proliferation, is frequently hyperactivated in a variety of malignancies. Therefore, the inhibition of the mTOR pathway has been considered as an appropriate approach for cancer therapy. In this study, we examined the roles of mTOR in the maintenance and differentiation of cancer stem-like cells (CSCs, the conversion of conventional cancer cells to CSCs and continuous tumor growth in vivo. In H-Ras-transformed mouse liver tumor cells, we found that pharmacological inhibition of mTOR with rapamycin greatly increased not only the CD133+ populations both in vitro and in vivo but also the expression of stem cell-like genes. Enhancing mTOR activity by over-expressing Rheb significantly decreased CD133 expression, whereas knockdown of the mTOR yielded an opposite effect. In addition, mTOR inhibition severely blocked the differentiation of CD133+ to CD133- liver tumor cells. Strikingly, single-cell culture experiments revealed that CD133- liver tumor cells were capable of converting to CD133+ cells and the inhibition of mTOR signaling substantially promoted this conversion. In serial implantation of tumor xenografts in nude BALB/c mice, the residual tumor cells that were exposed to rapamycin in vivo displayed higher CD133 expression and had increased secondary tumorigenicity compared with the control group. Moreover, rapamycin treatment also enhanced the level of stem cell-associated genes and CD133 expression in certain human liver tumor cell lines, such as Huh7, PLC/PRC/7 and Hep3B. The mTOR pathway is significantly involved in the generation and the differentiation of tumorigenic liver CSCs. These results may be valuable for the design of more rational strategies to control clinical malignant HCC using mTOR inhibitors.

  6. [Susceptibility of enterococci to natural and synthetic iron chelators].

    Science.gov (United States)

    Lisiecki, Paweł; Mikucki, Jerzy

    2002-01-01

    A total of 79 strains of enterococci belonging to 10 species were tested for susceptibility to natural and synthetic iron chelators. All strains produced siderophores. These enterococci were susceptible to three synthetic iron chelators only: 8-hydroxyquinoline, disodium versenate (EDTA) and o-phenanthroline. They were resistant to all other synthetic chelators: ethylenediamine-di(o-hydroxyphenylacetic acid) (EDDHA), nitrilotriacetate, 2,2'-bipiridyl, salicylic acid, 8-hydroxy-5-sulphonic acid and to all natural chelators: ovotransferrine, human apotransferrine, horse apoferritine, desferrioxamine B, ferrichrome and rhodotorulic acid. The relations between susceptibility/resistance, iron assimilation and structure and stability constants of iron chelators were discussed.

  7. Comparative studies of 111In-labeled monoclonal antibody using spacer-containing and non-spacer bifunctional chelates. 2

    International Nuclear Information System (INIS)

    Sun, Baofu

    1994-01-01

    Indium-111-labeled A7 monoclonal antibodies using two spacer-containing chelates, succinimido-EGS-DTPA (EGS-DTPA: diester spacer) and maleimido-C10-Bz-EDTA (C10-Bz-EDTA: hydrocarbon spacer) were investigated in human LS180 colon tumor bearing nude mice and were compared with two non-spacer chelates, cyclic DTPA dianhydride (cDTPAA) and isothiocyanatobenzyl-EDTA (SCN-Bz-EDTA). Compared with immunoconjugates using non-spacer chelates, immunoconjugates using spacer-containing chelates, especially C10-Bz-EDTA-A7 showed lower 111 In activity in normal organs. The radioactivity in the liver for C10-Bz-EDTA-A7 decreased continuously till 96 hrs postinjection, however, this liver radioactivity for EGS-DTPA-A7 showed little change after 24 hrs. Moreover, in liver subcellular distribution study, EGS-DTPA-A7 showed a higher activity retention in mitochondrial fraction which contained lysosome, a place for metabolizing and storing of 111 In labeled antibody, than that of C10-Bz-EDTA-A7. The C10-Bz-EDTA-A7 conjugate demonstrated more preferable tumor-to-non tumor contrast on the scintigrams than that found with other three immunoconjugates. Up to 96 hrs postinjection, tumor bearing nude mice injecting with immunoconjugates using spacer-containing chelates exreted twice radioactivity from whole body than that excreted by using non-spacer chelates. Interestingly, different from other three chelates, C10-Bz-EDTA-A7 were mainly excreted via feces. We conclude that the decrease of radioactivity in normal tissues in the case of EGS-DTPA-A7 was due to the rapid decrease of activity in the blood, while in the case of C10-Bz-EDTA-A7 it was due to the quickly excreted small metabolite through faces. 111 In labeled C10-Bz-EDTA conjugate is superior, at least when conjugated with A7, to other three chelate conjugates used in this study. (author)

  8. Obligatory reduction of ferric chelates in iron uptake by soybeans.

    Science.gov (United States)

    Chaney, R L; Brown, J C; Tiffin, L O

    1972-08-01

    The contrasting Fe(2+) and Fe(3+) chelating properties of the synthetic chelators ethylenediaminedi (o-hydroxyphenylacetate) (EDDHA) and 4,7-di(4-phenylsulfonate)-1, 10-phenanthroline (bathophenanthrolinedisulfonate) (BPDS) were used to determine the valence form of Fe absorbed by soybean roots supplied with Fe(3+)-chelates. EDDHA binds Fe(3+) strongly, but Fe(2+) weakly; BPDS binds Fe(2+) strongly but Fe(3+) weakly. Addition of an excess of BPDS to nutrient solutions containing Fe(3+)-chelates inhibited soybean Fe uptake-translocation by 99+%; [Fe(II) (BPDS)(3)](4-) accumulated in the nutrient solution. The addition of EDDHA caused little or no inhibition. These results were observed with topped and intact soybeans. Thus, separation and absorption of Fe from Fe(3+)-chelates appear to require reduction of Fe(3+)-chelate to Fe(2+)-chelate at the root, with Fe(2+) being the principal form of Fe absorbed by soybean.

  9. Novel anti-cancer strategy in bone tumors by targeting molecular and cellular modulators of bone resorption.

    Science.gov (United States)

    Brounais, Bénédicte; Ruiz, Carmen; Rousseau, Julie; Lamoureux, François; Blanchard, Frédéric; Heymann, Dominique; Redini, Françoise

    2008-11-01

    Tumor cells alter the balanced process of bone formation and bone resorption mediated respectively by osteoblasts and osteoclasts, leading to the disruption of the normal equilibrium and resulting in a spectrum of osteolytic to osteoblastic lesions. This review will summarize research on molecules that play direct and essential roles in the differentiation and activity of osteoclasts, and the role of these molecules in bone destruction caused by cancer. Results from experimental models suggest that the Receptor Activator of NF-kB Ligand (RANKL), a member of the TNF superfamily is a common effector of bony lesions in osteolysis caused by primary and secondary bone tumors. Therefore, osteoclast represents an attractive target across a broad range of tumors that develop in bone. Elucidation of the mechanisms of RANKL interactions with its activator (RANK) and decoy (osteoprotegerin: OPG) receptors has enable the development of pharmacological inhibitors of RANKL (and of its signalling pathway) which have been recently patented, with potential for the treatment of cancer-induced bone disease. Blocking bone resorption by specific other drugs such as bisphosphonates, inhibitors of cathepsin K (the main enzyme involved in bone resorption mechanisms) or signalling pathways regulating osteoclast differentiation and activation is also a promising target for the treatment of osteolysis associated to bone tumors.

  10. Deleted in Malignant Brain Tumors 1 (DMBT1) is present in hyaline membranes and modulates surface tension of surfactant

    DEFF Research Database (Denmark)

    Müller, Hanna; End, Caroline; Renner, Marcus

    2007-01-01

    BACKGROUND: Deleted in Malignant Brain Tumors 1 (DMBT1) is a secreted scavenger receptor cysteine-rich protein that binds various bacteria and is thought to participate in innate pulmonary host defense. We hypothesized that pulmonary DMBT1 could contribute to respiratory distress syndrome...

  11. Tumor-promoting phorbol ester transiently down-modulates the p53 level and blocks the cell cycle

    DEFF Research Database (Denmark)

    Skouv, J.; Jensen, P O; Forchhammer, J

    1994-01-01

    Activation of the protein kinase C signaling pathway by tumor-promoting phorbol esters, such as 4 beta-phorbol 12-myristate 13-acetate (PMA), induced a decrease in the level of p53 mRNA in several serum-starved human cell lines. Also, the tumor-promoting phosphatase inhibitor okadaic acid induced...... a decrease in the p53 mRNA level in the cell lines. Normal diploid as well as various tumor cell lines were tested. Two tumor cell lines, HeLa and A549, both containing the wild-type p53 gene, but very different levels of p53 protein, were studied in detail. In both cell lines, the level of p53 m......RNA was minimal after 9 h of exposure to PMA. After approximately 120 h, the p53 mRNA level was similar to the pretreatment level. PMA induced a similar transient decrease in the level of p53 protein in the A549 cell line. The decrease in the p53 mRNA level could not be explained by changes in the transcriptional...

  12. Survivin Modulates Squamous Cell Carcinoma-Derived Stem-Like Cell Proliferation, Viability and Tumor Formation in Vivo

    Directory of Open Access Journals (Sweden)

    Roberta Lotti

    2016-01-01

    Full Text Available Squamous Cell Carcinoma-derived Stem-like Cells (SCC-SC originate from alterations in keratinocyte stem cells (KSC gene expression and sustain tumor development, invasion and recurrence. Since survivin, a KSC marker, is highly expressed in SCC-SC, we evaluate its role in SCC-SC cell growth and SCC models. Survivin silencing by siRNA decreases clonal growth of SCC keratinocytes and viability of total, rapidly adhering (RAD and non-RAD (NRAD cells from primary SCC. Similarly, survivin silencing reduces the expression of stem cell markers (OCT4, NOTCH1, CD133, β1-integrin, while it increases the level of differentiation markers (K10, involucrin. Moreover, survivin silencing improves the malignant phenotype of SCC 3D-reconstruct, as demonstrated by reduced epidermal thickness, lower Ki-67 positive cell number, and decreased expression of MMP9 and psoriasin. Furthermore, survivin depletion by siRNA in RasG12V-IκBα-derived tumors leads to smaller tumor formation characterized by lower mitotic index and reduced expression of the tumor-associated marker HIF1α, VEGF and CD51. Therefore, our results indicate survivin as a key gene in regulating SCC cancer stem cell formation and cSCC development.

  13. Decorporation of metal ions by chelating agents

    International Nuclear Information System (INIS)

    Koenig, T.

    1978-01-01

    Simple model designs to simulate the effect of therapeutical chelating agents on the behaviour of metals in mammal organisms with and without excretion have been derived and analytical solutions given for the corresponding differential equations. The possibilities of these models in the short-term description of plasma kinetics of various metals, the competition of the therapeutical ligands with proteins for the metal and of the metabolism of chelating agents were tested and the properties applying extreme conceivable parameters were analyzed. The simple models were successsively expanded in logical sequence, so that it was possible to qualitatively well describe over a long period of time, the metallic kinetics in plasma, organs and urine, the retention of the ligands and their effect on the metal excretion. Two suggestions were given to describe the so-called after-effect, an increased excretion of the metal at times when the ligand is almost completely excreted and their different behaviour after injecting the metal chelate is given. Calculations on the therapy with several ligand data as well as on dose fractionation are described resting on the ratios in the plutonium-239 chosen model parameters and the determining mechanisms analyzed. (orig./MG) [de

  14. IRON CHELATION THERAPY IN THALASSEMIA SYNDROMES

    Directory of Open Access Journals (Sweden)

    Paolo Cianciulli

    2009-06-01

    Full Text Available Transfusional hemosiderosis is a frequent complication in patients with transfusion dependent chronic diseases such as  thalassemias and severe type of sickle cell diseases. As there are no physiological mechanisms to excrete the iron contained in transfused red cells (1 unit of blood contains approximately 200 mg of iron the excess of iron is stored in various organs. Cardiomyopathy is the most severe complication covering more than 70% of the causes of death of thalassemic patients. Although the current reference standard iron chelator deferoxamine (DFO has been used clinically for over four decades, its effectiveness is limited by a demanding therapeutic regimen that leads to poor compliance. Despite poor compliance, because of the inconvenience of subcutaneous infusion, DFO improved considerably the survival and quality of life of patients with thalassemia. Deferiprone since 1998 and Deferasirox since 2005 were licensed for clinical use. The oral chelators have a better compliance because of oral use, a comparable efficacy to DFO in iron excretion and probably a better penetration to myocardial cells. Considerable increase in iron excretion was documented with combination therapy of DFO and Deferiprone. The proper use of the three chelators will improve the prevention and treatment of iron overload, it will reduce  complications, and improve survival and quality of life of transfused patients

  15. Dosimetric comparison between intensity-modulated with coplanar field and 3D conformal radiotherapy with noncoplanar field for postocular invasion tumor.

    Science.gov (United States)

    Wenyong, Tu; Lu, Liu; Jun, Zeng; Weidong, Yin; Yun, Li

    2010-01-01

    This study presents a dosimetric optimization effort aiming to compare noncoplanar field (NCF) on 3 dimensions conformal radiotherapy (3D-CRT) and coplanar field (CF) on intensity-modulated radiotherapy (IMRT) planning for postocular invasion tumor. We performed a planning study on the computed tomography data of 8 consecutive patients with localized postocular invasion tumor. Four fields NCF 3D-CRT in the transverse plane with gantry angles of 0-10 degrees , 30-45 degrees , 240-270 degrees , and 310-335 degrees degrees were isocentered at the center of gravity of the target volume. The geometry of the beams was determined by beam's eye view. The same constraints were prepared with between CF IMRT optimization and NCF 3D-CRT treatment. The maximum point doses (D max) for the different optic pathway structures (OPS) with NCF 3D-CRT treatment should differ in no more than 3% from those with the NCF IMRT plan. Dose-volume histograms (DVHs) were obtained for all targets and organ at risk (OAR) with both treatment techniques. Plans with NCF 3D-CRT and CF IMRT constraints on target dose in homogeneity were computed, as well as the conformity index (CI) and homogeneity index (HI) in the target volume. The PTV coverage was optimal with both NCF 3D-CRT and CF IMRT plans in the 8 tumor sites. No difference was noted between the two techniques for the average D(max) and D(min) dose. NCF 3D-CRT and CF IMRT will yield similar results on CI. However, HI was a significant difference between NCF 3D-CRT and CF IMRT plan (p 3D-CRT versus CF IMRT set-up is very slight. NCF3D-CRT is one of the treatment options for postocular invasion tumor. However, constraints for OARs are needed. 2010 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  16. Modulation of miR-203 and its regulators as a function of time during the development of 7, 12 dimethylbenz [a] anthracene induced mouse skin tumors in presence or absence of the antitumor agents

    International Nuclear Information System (INIS)

    Tiwari, Prakash; Gupta, Krishna P.

    2014-01-01

    We investigated the chemopreventive effects of naturally occurring compounds like butyric acid (BA), nicotinamide (NA) and calcium glucarate (CAG) individually or in combination in 7, 12-dimethylbenz [a] anthracene (DMBA) treated mouse skin at 4 and 16 weeks, the time before and after the tumor development. DMBA application did not show any skin tumors at 4 weeks but well defined tumors appeared at 16 weeks. BA, NA or CAG prevented the tumor development significantly but the protection was highly enhanced when all these compounds were given together. In order to see the molecular changes progressing with tumors, we showed the downregulation of tumor suppressor miR-203 at 16 weeks and upregulation of histone deacetylases (HDAC), DNA methyltransferase, promoter methylation of miR-203 at 4 or 16 weeks. Regulators of micro RNA biogenesis such as DICER1 and Ago2 were also deregulated by DMBA. Proto-oncogene c-myc and BMI1 were upregulated and tumor suppressor gene p16 was downregulated by DMBA as a function of time. Effects of BA, NA or CAG were more pronounced after 16 weeks as compared to 4 weeks in preventing the tumor development and altered gene expression. Concomitant administration of BA, NA and CAG tried to prevent these alterations more effectively than that of individual compound possibly by regulating miR-203 status through epigenetic or biogenetic modulations before and after the tumor development. Study provides a rationale for chemoprevention by combination of different compounds targeting miR-203. - Highlights: • DMBA modulates miR-203 and its regulator before and after the onset of tumors. • Suppression of miR-203 and p16 could be the result of gene promoter methylation. • BA, NA or CAG prevents the effects of DMBA. • Combination of BA, NA or CAG is more effective in preventing the DMBA modulations

  17. Optimal gross tumor volume definition in lung-sparing intensity modulated radiotherapy for pleural mesothelioma: an in silico study.

    Science.gov (United States)

    Botticella, Angela; Defraene, Gilles; Nackaerts, Kristiaan; Deroose, Christophe M; Coolen, Johan; Nafteux, Philippe; Peeters, Stephanie; Ricardi, Umberto; De Ruysscher, Dirk

    2016-12-01

    The gross tumor volume (GTV) definition for malignant pleural mesothelioma (MPM) is ill-defined. We therefore investigated which imaging modality is optimal: computed tomography (CT) with intravenous contrast (IVC), positron emission tomography-CT (PET/CT) or magnetic resonance imaging (MRI). Sixteen consecutive patients with untreated stage I-IV MPM were included. Patients with prior pleurodesis were excluded. CT with IVC, 18FDG-PET/CT and MRI (T2 and contrast-enhanced T1) were obtained. CT was rigidly co-registered with PET/CT and with MRI. Three sets of pleural GTVs were defined: GTV CT , GTV CT+PET/CT and GTV CT+MRI . Quantitative and qualitative evaluations of the contoured GTVs were performed. Compared to CT-based GTV definition, PET/CT identified additional tumor sites (defined as either separate nodules or greater extent of a known tumor) in 12/16 patients. Compared to either CT or PET/CT, MRI identified additional tumor sites in 15/16 patients (p = .7). The mean GTV CT , GTV CT+PET/CT and GTV CT+MRI [±standard deviation (SD)] were 630.1 cm 3 (±302.81), 640.23 cm 3 (±302.83) and 660.8 cm 3 (±290.8), respectively. Differences in mean volumes were not significant. The mean Jaccard Index was significantly lower in MRI-based contours versus all the others. As MRI identified additional pleural disease sites in the majority of patients, it may play a role in optimal target volume definition.

  18. MCT1 modulates cancer cell pyruvate export and growth of tumors that co-express MCT1 and MCT4

    Science.gov (United States)

    Hong, Candice Sun; Graham, Nicholas A.; Gu, Wen; Camacho, Carolina Espindola; Mah, Vei; Maresh, Erin L.; Alavi, Mohammed; Bagryanova, Lora; Krotee, Pascal A. L.; Gardner, Brian K.; Behbahan, Iman Saramipoor; Horvath, Steve; Chia, David; Mellinghoff, Ingo K.; Hurvitz, Sara A.; Dubinett, Steven M.; Critchlow, Susan E.; Kurdistani, Siavash K.; Goodglick, Lee; Braas, Daniel; Graeber, Thomas G.; Christofk, Heather R.

    2016-01-01

    SUMMARY Monocarboxylate Transporter 1 (MCT1) inhibition is thought to block tumor growth through disruption of lactate transport and glycolysis. Here we show MCT1 inhibition impairs proliferation of glycolytic breast cancer cells co-expressing MCT1 and MCT4 via disruption of pyruvate rather than lactate export. MCT1 expression is elevated in glycolytic breast tumors, and high MCT1 expression predicts poor prognosis in breast and lung cancer patients. Acute MCT1 inhibition reduces pyruvate export but does not consistently alter lactate transport or glycolytic flux in breast cancer cells that co-express MCT1 and MCT4. Despite the lack of glycolysis impairment, MCT1 loss-of-function decreases breast cancer cell proliferation and blocks growth of mammary fat pad xenograft tumors. Our data suggest MCT1 expression is elevated in glycolytic cancers to promote pyruvate export, which when inhibited enhances oxidative metabolism and reduces proliferation. This study presents an alternative molecular consequence of MCT1 inhibitors further supporting their use as anti-cancer therapeutics. PMID:26876179

  19. Intensity-Modulated Proton Therapy Further Reduces Normal Tissue Exposure During Definitive Therapy for Locally Advanced Distal Esophageal Tumors: A Dosimetric Study

    Energy Technology Data Exchange (ETDEWEB)

    Welsh, James, E-mail: jwelsh@mdanderson.org [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Gomez, Daniel; Palmer, Matthew B.; Riley, Beverly A.; Mayankkumar, Amin V.; Komaki, Ritsuko [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Dong, Lei; Zhu, X. Ronald [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Likhacheva, Anna; Liao, Zhongxing [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Hofstetter, Wayne L. [Department of Thoracic and Cardiovascular Surgery, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Ajani, Jaffer A. [Department of Gastrointestinal Medical Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Cox, James D. [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States)

    2011-12-01

    Purpose: We have previously found that {<=} 75% of treatment failures after chemoradiotherapy for unresectable esophageal cancer appear within the gross tumor volume and that intensity-modulated (photon) radiotherapy (IMRT) might allow dose escalation to the tumor without increasing normal tissue toxicity. Proton therapy might allow additional dose escalation, with even lower normal tissue toxicity. In the present study, we compared the dosimetric parameters for photon IMRT with that for intensity-modulated proton therapy (IMPT) for unresectable, locally advanced, distal esophageal cancer. Patients and Methods: Four plans were created for each of 10 patients. IMPT was delivered using anteroposterior (AP)/posteroanterior beams, left posterior oblique/right posterior oblique (LPO/RPO) beams, or AP/LPO/RPO beams. IMRT was delivered with a concomitant boost to the gross tumor volume. The dose was 65.8 Gy to the gross tumor volume and 50.4 Gy to the planning target volume in 28 fractions. Results: Relative to IMRT, the IMPT (AP/posteroanterior) plan led to considerable reductions in the mean lung dose (3.18 vs. 8.27 Gy, p < .0001) and the percentage of lung volume receiving 5, 10, and 20 Gy (p {<=} .0006) but did not reduce the cardiac dose. The IMPT LPO/RPO plan also reduced the mean lung dose (4.9 Gy vs. 8.2 Gy, p < .001), the heart dose (mean cardiac dose and percentage of the cardiac volume receiving 10, 20, and 30 Gy, p {<=} .02), and the liver dose (mean hepatic dose 5 Gy vs. 14.9 Gy, p < .0001). The IMPT AP/LPO/RPO plan led to considerable reductions in the dose to the lung (p {<=} .005), heart (p {<=} .003), and liver (p {<=} .04). Conclusions: Compared with IMRT, IMPT for distal esophageal cancer lowered the dose to the heart, lung, and liver. The AP/LPO/RPO beam arrangement was optimal for sparing all three organs. The dosimetric benefits of protons will need to be tailored to each patient according to their specific cardiac and pulmonary risks. IMPT for

  20. Comparison of bifunctional chelates for {sup 64}Cu antibody imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Cara L.; Crisp, Sarah; Bensimon, Corinne [MDS Nordion, Vancouver, BC (Canada); Yapp, Donald T.T.; Ng, Sylvia S.W. [British Columbia Cancer Agency Research Centre, Vancouver, BC (Canada); University of British Columba, The Faculty of Pharmaceutical Sciences, Vancouver, BC (Canada); Sutherland, Brent W. [British Columbia Cancer Agency Research Centre, Vancouver, BC (Canada); Gleave, Martin [Prostate Centre at Vancouver General Hospital, Vancouver, BC (Canada); Jurek, Paul; Kiefer, Garry E. [Macrocyclics Inc., Dallas, TX (United States)

    2010-11-15

    Improved bifunctional chelates (BFCs) are needed to facilitate efficient {sup 64}Cu radiolabeling of monoclonal antibodies (mAbs) under mild conditions and to yield stable, target-specific agents. The utility of two novel BFCs, 1-Oxa-4,7,10-triazacyclododecane-5-S-(4-isothiocyanatobenzyl)-4,7,10-triacetic acid (p-SCN-Bn-Oxo-DO3A) and 3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene-4-S-(4-isothiocyanatobenzyl)-3,6,9-triacetic acid (p-SCN-Bn-PCTA), for mAb imaging with {sup 64}Cu were compared to the commonly used S-2-(4-isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane-tetraacetic acid (p-SCN-Bn-DOTA). The BFCs were conjugated to trastuzumab, which targets the HER2/neu receptor. {sup 64}Cu radiolabeling of the conjugates was optimized. Receptor binding was analyzed using flow cytometry and radioassays. Finally, PET imaging and biodistribution studies were done in mice bearing either HER2/neu-positive or HER2/neu-negative tumors. {sup 64}Cu-Oxo-DO3A- and PCTA-trastuzumab were prepared at room temperature in >95% radiochemical yield (RCY) in <30 min, compared to only 88% RCY after 2 h for the preparation of {sup 64}Cu-DOTA-trastuzumab under the same conditions. Cell studies confirmed that the immunoreactivity of the mAb was retained for each of the bioconjugates. In vivo studies showed that {sup 64}Cu-Oxo-DO3A- and PCTA-trastuzumab had higher uptake than the {sup 64}Cu-DOTA-trastuzumab at 24 h in HER2/neu-positive tumors, resulting in higher tumor to background ratios and better tumor images. By 40 h all three of the {sup 64}Cu-BFC-trastuzumab conjugates allowed for clear visualization of the HER2/neu-positive tumors but not the negative control tumor. The antibody conjugates of PCTA and Oxo-DO3A were shown to have superior {sup 64}Cu radiolabeling efficiency and stability compared to the analogous DOTA conjugate. In addition, {sup 64}Cu-PCTA and Oxo-DO3A antibody conjugates may facilitate earlier imaging with greater target to background ratios than

  1. Chelatable trace zinc causes low, irreproducible KDAC8 activity.

    Science.gov (United States)

    Toro, Tasha B; Edenfield, Samantha A; Hylton, Brandon J; Watt, Terry J

    2018-01-01

    Acetylation is an important regulatory mechanism in cells, and emphasis is being placed on identifying substrates and small molecule modulators of this post-translational modification. However, the reported in vitro activity of the lysine deacetylase KDAC8 is inconsistent across experimental setups, even with the same substrate, complicating progress in the field. We detected trace levels of zinc, a known inhibitor of KDAC8 when present in excess, even in high-quality buffer reagents, at concentrations that are sufficient to significantly inhibit the enzyme under common reaction conditions. We hypothesized that trace zinc in solution could account for the observed variability in KDAC8 activity. We demonstrate that addition of chelators, including BSA, EDTA, and citrate, and/or the use of a phosphate-based buffer instead of the more common tris-based buffer, eliminates the inhibition from low levels of zinc as well as the dependence of specific activity on enzyme concentration. This results in high KDAC8 activity that is consistent across buffer systems, even using low concentrations of enzyme. We report conditions that are suitable for several assays to increase both enzyme activity and reproducibility. Our results have significant implications for approaches used to identify substrates and small molecule modulators of KDAC8 and interpretation of existing data. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Switch from antagonist to agonist after addition of a DOTA chelator to a somatostatin analog

    International Nuclear Information System (INIS)

    Reubi, Jean Claude; Cescato, Renzo; Waser, Beatrice; Erchegyi, Judit; Rivier, Jean E.

    2010-01-01

    Peptide receptor targeting has become an increasingly attractive method to target tumors diagnostically and radiotherapeutically. Peptides linked to a variety of chelators have been developed for this purpose. They have, however, rarely been tested for their agonistic or antagonistic properties. We report here on a somatostatin antagonist that switched to an agonist upon coupling to a DOTA chelator. Two novel somatostatin analogs, 406-040-15 and its DOTA-coupled counterpart 406-051-20, with and without cold Indium labeling, were tested for their somatostatin receptor subtypes 1-5 (sst 1 -sst 5 ) binding affinity using receptor autoradiography. Moreover, they were tested functionally for their ability to affect sst 2 and sst 3 internalization in vitro in HEK293 cells stably expressing the human sst 2 or sst 3 receptor, using an immunofluorescence microscopy-based internalization assay. All three compounds were characterized as pan-somatostatin analogs having a high affinity for all five sst. In the sst 2 internalization assay, all three compounds showed an identical behavior, namely, a weak agonistic effect complemented by a weak antagonistic effect, compatible with the behavior of a partial agonist. Conversely, in the sst 3 internalization assay, 406-040-15 was a full antagonist whereas its DOTA-coupled counterpart, 406-051-20, with and without Indium labeling, switched to a full agonist. Adding the DOTA chelator to the somatostatin analog 406-040-15 triggers a switch at sst 3 receptor from an antagonist to an agonist. This indicates that potential radioligands for tumor targeting should always be tested functionally before further development, in particular if a chelator is added. (orig.)

  3. A BMP7 Variant Inhibits Tumor Angiogenesis In Vitro and In Vivo through Direct Modulation of Endothelial Cell Biology.

    Directory of Open Access Journals (Sweden)

    Courtney M Tate

    Full Text Available Bone morphogenetic proteins (BMPs, members of the TGF-β superfamily, have numerous biological activities including control of growth, differentiation, and vascular development. Using an in vitro co-culture endothelial cord formation assay, we investigated the role of a BMP7 variant (BMP7v in VEGF, bFGF, and tumor-driven angiogenesis. BMP7v treatment led to disruption of neo-endothelial cord formation and regression of existing VEGF and bFGF cords in vitro. Using a series of tumor cell models capable of driving angiogenesis in vitro, BMP7v treatment completely blocked cord formation. Pre-treatment of endothelial cells with BMP7v significantly reduced their cord forming ability, indicating a direct effect on endothelial cell function. BMP7v activated the canonical SMAD signaling pathway in endothelial cells but targeted gene knockdown using shRNA directed against SMAD4 suggests this pathway is not required to mediate the anti-angiogenic effect. In contrast to SMAD activation, BMP7v selectively decreased ERK and AKT activation, significantly decreased endothelial cell migration and down-regulated expression of critical RTKs involved in VEGF and FGF angiogenic signaling, VEGFR2 and FGFR1 respectively. Importantly, in an in vivo angiogenic plug assay that serves as a measurement of angiogenesis, BMP7v significantly decreased hemoglobin content indicating inhibition of neoangiogenesis. In addition, BMP7v significantly decreased angiogenesis in glioblastoma stem-like cell (GSLC Matrigel plugs and significantly impaired in vivo growth of a GSLC xenograft with a concomitant reduction in microvessel density. These data support BMP7v as a potent anti-angiogenic molecule that is effective in the context of tumor angiogenesis.

  4. A BMP7 Variant Inhibits Tumor Angiogenesis In Vitro and In Vivo through Direct Modulation of Endothelial Cell Biology.

    Science.gov (United States)

    Tate, Courtney M; Mc Entire, Jacquelyn; Pallini, Roberto; Vakana, Eliza; Wyss, Lisa; Blosser, Wayne; Ricci-Vitiani, Lucia; D'Alessandris, Quintino Giorgio; Morgante, Liliana; Giannetti, Stefano; Larocca, Luigi Maria; Todaro, Matilde; Benfante, Antonina; Colorito, Maria Luisa; Stassi, Giorgio; De Maria, Ruggero; Rowlinson, Scott; Stancato, Louis

    2015-01-01

    Bone morphogenetic proteins (BMPs), members of the TGF-β superfamily, have numerous biological activities including control of growth, differentiation, and vascular development. Using an in vitro co-culture endothelial cord formation assay, we investigated the role of a BMP7 variant (BMP7v) in VEGF, bFGF, and tumor-driven angiogenesis. BMP7v treatment led to disruption of neo-endothelial cord formation and regression of existing VEGF and bFGF cords in vitro. Using a series of tumor cell models capable of driving angiogenesis in vitro, BMP7v treatment completely blocked cord formation. Pre-treatment of endothelial cells with BMP7v significantly reduced their cord forming ability, indicating a direct effect on endothelial cell function. BMP7v activated the canonical SMAD signaling pathway in endothelial cells but targeted gene knockdown using shRNA directed against SMAD4 suggests this pathway is not required to mediate the anti-angiogenic effect. In contrast to SMAD activation, BMP7v selectively decreased ERK and AKT activation, significantly decreased endothelial cell migration and down-regulated expression of critical RTKs involved in VEGF and FGF angiogenic signaling, VEGFR2 and FGFR1 respectively. Importantly, in an in vivo angiogenic plug assay that serves as a measurement of angiogenesis, BMP7v significantly decreased hemoglobin content indicating inhibition of neoangiogenesis. In addition, BMP7v significantly decreased angiogenesis in glioblastoma stem-like cell (GSLC) Matrigel plugs and significantly impaired in vivo growth of a GSLC xenograft with a concomitant reduction in microvessel density. These data support BMP7v as a potent anti-angiogenic molecule that is effective in the context of tumor angiogenesis.

  5. Remote-controlled module-assisted synthesis of O-(2-[18F]fluoroethyl)-L-tyrosine as tumor PET tracer using two different radiochemical routes

    International Nuclear Information System (INIS)

    Wang Mingwei; Yin Duanzhi; Zhang Lan; Zhou Wei; Wang Yongxian

    2006-01-01

    The positron-emitter fluorine-18 labeled amino acid O-(2-[ 18 F]fluoroethyl)-L-tyrosine ([ 18 F]FET) has shown very promising perspectives for brain tumor diagnosis with positron emission tomography (PET). There have been two existing preparation routes of [ 18 F]FET named direct nucleophilic radiofiuorination of protected L-tyrosine and radiofiuoroallcylation of unprotected L-tyrosine, respectively. A general module was designed specifically for the routine synthesis of [ 18 F]FET, which could be suitable for the present two chemical methods with simple modifications. The fluorinated intermediates and the final product were separated and purified using solid phase extraction (SPE) on the Sep-Pak silica plus cartridge instead of the time-consuming high performance liquid chromatography (HPLC) procedures. The total synthesis time was about 50-60 rain with good radiochemical yield (about 20-40%, no-decay-corrected) and good radiochemical purity (more than 97%) for both the synthetic methods. (authors)

  6. Chlorinated Water Modulates the Development of Colorectal Tumors with Chromosomal Instability and Gut Microbiota in Apc-Deficient Mice.

    Science.gov (United States)

    Sasada, Tatsunari; Hinoi, Takao; Saito, Yasufumi; Adachi, Tomohiro; Takakura, Yuji; Kawaguchi, Yasuo; Sotomaru, Yusuke; Sentani, Kazuhiro; Oue, Naohide; Yasui, Wataru; Ohdan, Hideki

    2015-01-01

    The gastrointestinal tract is continuously exposed to a variety of chemicals and commensal bacteria. Recent studies have shown that changes in gut microbial populations caused by chlorine or other chemicals in the drinking water influence the development of human colorectal cancer, although the mechanism of tumorigenesis in the gut epithelium is obfuscated by the diversity of microflora and complexity of the tumor microenvironment. In this regard, mouse models that recapitulate human colorectal cancer are an invaluable tool. In this study, we used two conditional adenomatous polyposis coli (Apc) knockout mouse models to investigate the effect of chlorinated water on tumorigenesis in the digestive tract. Mice with colon-specific carcinoma--caused by either chromosomal (CDX2P 9.5-NLS Cre;Apc(+/flox), abbreviated to CPC;Apc) or microsatellite (CDX2P9.5-G19Cre;Apc(flox/flox) and CDX2P9.5-G22Cre;Apc(flox/flox)) instability, respectively--were administered chlorinated (10.0 mg/L chlorine) or tap (0.7 mg/L chlorine) water and evaluated for colon polyp formation. In CPC;Apc mice given chlorinated drinking water, tumors tended to develop in the colon, whereas in those that drank tap water, tumors were mostly observed in the small intestine. There was no difference in the rate of tumor formation of CDX2P9.5-G19Cre;Apc(flox/flox) and CDX2P9.5-G22Cre;Apc(flox/flox) mice consuming chlorinated as compared to tap water, suggesting that microsatellite instability in the Apc gene does not significantly affect tumorigenesis. Chlorinated water altered the enteric environment by reducing the fecal populations of the obligatory anaerobes Clostridium perfringens and C. difficile, as well as species belonging to the Atopobium cluster, including Enterobacteriaceae and Staphylococcus sp., which was associated with colon tumorigenesis in CPC;Apc mice. These results suggest that differences in tumorigenesis among CPC;Apc mice consuming chlorinated versus tap water may be due to differences

  7. Mixed ligand chelates of rare earths in aqueous solution

    International Nuclear Information System (INIS)

    Lakhani, S.U.; Thakur, G.S.; Sangal, S.P.

    1981-01-01

    Mixed ligand chelates of the 1:1 trivalent lanthanoids-EDTA, HEDTA and NTA chelates-1, 2-Dihydroxybenzene (Pyrocatechol) have been investigated at 35degC and 0.2 M ionic strength maintained by NaC10 4 . The formation of mixed ligand chelates has been found in all cases. The formation of mixed ligand chelates with EDTA shows the coordination number of lanthanoids to be eight, while the mixed ligand chelates with HEDTA and NTA shows the coordination number to be seven and six respectively. The stability constants of mixed ligand chelates are smaller than the binary complexes. The order of stability constants with respect to primary ligands follows the order NTA>HEDTA>EDTA. With respect to metal ions the stability constants increases with the decrease in ionic radii such as Gd< Er< Yb. (author)

  8. Glucose-Modulated Mitochondria Adaptation in Tumor Cells: A Focus on ATP Synthase and Inhibitor Factor 1

    Directory of Open Access Journals (Sweden)

    Irene Mavelli

    2012-02-01

    Full Text Available Warburg’s hypothesis has been challenged by a number of studies showing that oxidative phosphorylation is repressed in some tumors, rather than being inactive per se. Thus, treatments able to shift energy metabolism by activating mitochondrial pathways have been suggested as an intriguing basis for the optimization of antitumor strategies. In this study, HepG2 hepatocarcinoma cells were cultivated with different metabolic substrates under conditions mimicking “positive” (activation/biogenesis or “negative” (silencing mitochondrial adaptation. In addition to the expected up-regulation of mitochondrial biogenesis, glucose deprivation caused an increase in phosphorylating respiration and a rise in the expression levels of the ATP synthase β subunit and Inhibitor Factor 1 (IF1. Hyperglycemia, on the other hand, led to a markedly decreased level of the transcriptional coactivator PGC-α suggesting down-regulation of mitochondrial biogenesis, although no change in mitochondrial mass and no impairment of phosphorylating respiration were observed. Moreover, a reduction in mitochondrial networking and in ATP synthase dimer stability was produced. No effect on β-ATP synthase expression was elicited. Notably, hyperglycemia caused an increase in IF1 expression levels, but it did not alter the amount of IF1 associated with ATP synthase. These results point to a new role of IF1 in relation to high glucose utilization by tumor cells, in addition to its well known effect upon mitochondrial ATP synthase regulation.

  9. miRNA let-7b modulates macrophage polarization and enhances tumor-associated macrophages to promote angiogenesis and mobility in prostate cancer.

    Science.gov (United States)

    Wang, Zhigang; Xu, Lu; Hu, Yinying; Huang, Yanqin; Zhang, Yujuan; Zheng, Xiufen; Wang, Shanshan; Wang, Yifan; Yu, Yanrong; Zhang, Meng; Yuan, Keng; Min, Weiping

    2016-05-09

    Macrophage polarization is a highly plastic physiological process that responds to a variety of environmental factors by changing macrophage phenotype and function. Tumor-associated macrophages (TAMs) are generally recognized as promoting tumor progression. As universal regulators, microRNAs (miRNAs) are functionally involved in numerous critical cellular processes including macrophage polarization. Let-7b, a miRNA, has differential expression patterns in inflamed tissues compared with healthy controls. However, whether and how miRNA let-7b regulates macrophage phenotype and function is unclear. In this report, we find that up-regulation of let-7b is characteristic of prostatic TAMs, and down-regulation of let-7b in TAMs leads to changes in expression profiles of inflammatory cytokines, such as IL-12, IL-23, IL-10 and TNF-α. As a result, TAMs treated with let-7b inhibitors reduce angiogenesis and prostate carcinoma (PCa) cell mobility. Let-7b may play a vital role in regulating macrophage polarization, thus modulating the prognosis of prostate cancer.

  10. The long non-coding RNA H19-derived miR-675 modulates human gastric cancer cell proliferation by targeting tumor suppressor RUNX1

    International Nuclear Information System (INIS)

    Zhuang, Ming; Gao, Wen; Xu, Jing; Wang, Ping; Shu, Yongqian

    2014-01-01

    Graphical abstract: - Highlights: • H19 regulates gastric cancer cell proliferation phenotype via miR-675. • MiR-675 modulates cell proliferation of gastric cancer cells by targeting tumor suppressor RUNX1. • The H19/miR-675/RUNX1 axis plays an important role in the tumorigenesis of gastric cancer. - Abstract: The lncRNA H19 has been recently shown to be upregulated and play important roles in gastric cancer tumorigenesis. However, the precise molecular mechanism of H19 and its mature product miR-675 in the carcinogenesis of gastric cancer remains unclear. In this study, we found that miR-675 was positively expressed with H19 and was a pivotal mediator in H19-induced gastric cancer cell growth promotion. Subsequently, the tumor suppressor Runt Domain Transcription Factor1 (RUNX1) was confirmed to be a direct target of miR-675 using a luciferase reporter assay and Western blotting analyses. A series of rescue assays indicated that RUNX1 mediated H19/miR-67-induced gastric cancer cell phenotypic changes. Moreover, the inverse relationship between the expression of RUNX1 and H19/miR-675 was also revealed in gastric cancer tissues and gastric cancer cell lines. Taken together, our study demonstrated that the novel pathway H19/miR-675/RUNX1 regulates gastric cancer development and may serve as a potential target for gastric cancer therapy

  11. Effect of stereotactic body radiotherapy versus intensity-modulated radiotherapy in primary liver cancer patients with secondary malignant tumor of vertebra

    Directory of Open Access Journals (Sweden)

    SUN Jing

    2016-06-01

    Full Text Available ObjectiveTo investigate the effect of stereotactic body radiotherapy (SBRT versus intensity-modulated radiotherapy (IMRT in primary liver cancer (PLC patients with secondary malignant tumor of vertebra. MethodsA total of 49 PLC patients with secondary metastatic tumor of vertebra, who were treated in our hospital from December 2011 to January 2014, were enrolled and divided into group A (20 patients treated with SBRT and group B (29 patients treated with IMRT. The prescribed dose was 35 Gy in 5 fractions in group A and 35 Gy in 10 fractions in group B. The time to pain relief, imaging findings, and survival analysis were used to evaluate pain-relieving effect, the condition of lesions, and survival time. The t-test was used to compare continuous data between groups, and the chi-square test was used to compare categorical data between groups. The K-M method was used to plot survival curves for both groups, and the log-rank test was used for survival difference analysis. ResultsThe proportion of patients who achieved complete or partial remission and stable disease shown by radiological examination after radiotherapy showed no significant difference between group A and group B (P=0.873. The pain relief rate also showed no significant difference between group A and group B (P=0.908. The time of pain relief showed a significant difference between group A and group B (t=-3.353, P<0.01. The overall survival showed no significant difference between the two groups (P=0.346. ConclusionRadiotherapy has a definite therapeutic effect in PLC patients with secondary malignant tumor of vertebra. SBRT and IMRT have similar pain-relieving effects. However, with the same prescribed dose, SBRT has a short time to pain relief and does not lead to serious intolerable acute or late toxic and side effects in surrounding fast-response tissues.

  12. Boswellic acid suppresses growth and metastasis of human pancreatic tumors in an orthotopic nude mouse model through modulation of multiple targets.

    Directory of Open Access Journals (Sweden)

    Byoungduck Park

    Full Text Available Pancreatic cancer (PaCa is one of the most lethal cancers, with an estimated 5-year survival of <5% even when patients are given the best treatment available. In addition, these treatments are often toxic and expensive, thus new agents which are safe, affordable and effective are urgently needed. We describe here the results of our study with acetyl-11-keto-β-boswellic acid (AKBA, an agent obtained from an Ayurvedic medicine, gum resin of Boswellia serrata. Whether AKBA has an activity against human PaCa, was examined in in vitro models and in an orthotopic nude mouse model of PaCa. We found that AKBA inhibited the proliferation of four different PaCa cell lines (AsPC-1, PANC-28, and MIA PaCa-2 with K-Ras and p53 mutations, and BxPC-3 with wild-type K-Ras and p53 mutation. These effects correlated with an inhibition of constitutively active NF-κB and suppression of NF-κB regulating gene expression. AKBA also induced apoptosis, and sensitized the cells to apoptotic effects of gemcitabine. In the orthotopic nude mouse model of PaCa, p.o. administration of AKBA alone (100 mg/kg significantly inhibited the tumor growth; this activity was enhanced by gemcitabine. In addition, AKBA inhibited the metastasis of the PaCa to spleen, liver, and lungs. This correlated with decreases in Ki-67, a biomarker of proliferation, and CD31, a biomarker of microvessel density, in the tumor tissue. AKBA produced significant decreases in the expression of NF-κB regulating genes in the tissues. Immunohistochemical analysis also showed AKBA downregulated the expression of COX-2, MMP-9, CXCR4, and VEGF in the tissues. Overall these results demonstrate that AKBA can suppress the growth and metastasis of human pancreatic tumors in an orthotopic nude mouse model that correlates with modulation of multiple targets.

  13. Icariin and its derivative, ICT, exert anti-inflammatory, anti-tumor effects, and modulate myeloid derived suppressive cells (MDSCs) functions.

    Science.gov (United States)

    Zhou, Junmin; Wu, Jinfeng; Chen, Xianghong; Fortenbery, Nicole; Eksioglu, Erika; Kodumudi, Krithika N; Pk, Epling-Burnette; Dong, Jingcheng; Djeu, Julie Y; Wei, Sheng

    2011-07-01

    3, 5,7-trihydroxy-4'-methoxy-8-(3-hydroxy-3-methylbutyl)-flavone (ICT) is a novel derivative of Icariin (ICA), the major active ingredient of Herba Epimedii, a herb used in traditional Chinese and alternative medicine. We previously demonstrated its anti-inflammatory effect in murine innate immune cells and activated human PBMCs. We report herein that ICA or ICT treatment reduces the expression of MRP8/MRP14 and toll-like receptor 4 (TLR4) on human PBMCs. Administration of ICA or ICT inhibited tumor growth in 4T1-Neu tumor-bearing mice and considerably decreased MDSC numbers in the spleen of these mice. Further, we saw a restoration of IFN-γ production by CD8+ T cells in tumor bearing mice when treated with ICA or ICT. ICA and ICT significantly decreased the amounts of nitric oxide and reactive oxygen species in MDSC in vivo. When MDSC were treated in vitro with ICT, we saw a significant reduction in the percent of these cells with concomitant differentiation into dendritic cells and macrophages. Concomitant with this cell type conversion was a down-regulation of IL-10, IL-6 and TNF-α production. Decreased expression of S100A8/9 and inhibition of activation of STAT3 and AKT may in part be responsible for the observed results. In conclusion, our results showed that ICA, and more robustly, ICT, directly modulate MDSC signaling and therefore altered the phenotype and function of these cells, in vitro and in vivo. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Role of chelates in magnetic resonance imaging studies

    Directory of Open Access Journals (Sweden)

    Tripathi Laxmi

    2009-01-01

    Full Text Available Imaging studies are tests performed with a variety of techniques that produce pictures of the inside of a patient′s body. Magnetic resonance imaging (MRI is an imaging technique based on the principles of nuclear magnetic resonance. MRI uses a powerful magnetic field, radio waves, and a computer to produce detailed pictures of organs, soft tissues, bone, and virtually all other internal body structures. Chelates have a wide application in such imaging techniques. Chelates in imaging studies are used alone as radioactive agents or conjugated to monoclonal antibodies or to DNA as radioactive agents. Technetium chelates and gadolinium chelates are being widely used as magnetic resonance contrast media.

  15. Metal regeneration of iron chelates in nitric oxide scrubbing

    Science.gov (United States)

    Chang, S.G.; Littlejohn, D.; Shi, Y.

    1997-08-19

    The present invention relates to a process of using metal particles to reduce NO to NH{sub 3}. More specifically, the invention concerns an improved process to regenerate iron (II) (CHELATE) by reduction of iron (II) (CHELATE) (NO) complex, which process comprises: (a) contacting an aqueous solution containing iron (II) (CHELATE) (NO) with metal particles at between about 20 and 90 C to reduce NO present, produce ammonia or an ammonium ion, and produce free iron (II) (CHELATE) at a pH of between about 3 and 8. The process is useful to remove NO from flue gas and reduce pollution. 34 figs.

  16. RADIATION THERAPY COMMUNICATION-REIRRADIATION OF A NASAL TUMOR IN A BRACHYCEPHALIC DOG USING INTENSITY MODULATED RADIATION THERAPY.

    Science.gov (United States)

    Rancilio, Nicholas J; Custead, Michelle R; Poulson, Jean M

    2016-09-01

    A 5-year-old spayed female Shih Tzu was referred for evaluation of a nasal transitional carcinoma. A total lifetime dose of 117 Gy was delivered to the intranasal mass in three courses over nearly 2 years using fractionated intensity modulated radiation therapy (IMRT) to spare normal tissues. Clinically significant late normal tissue side effects were limited to bilaterally diminished tear production. The patient died of metastatic disease progression 694 days after completion of radiation therapy course 1. This case demonstrates that retreatment with radiation therapy to high lifetime doses for recurrent local disease may be well tolerated with IMRT. © 2016 American College of Veterinary Radiology.

  17. Engineering an antibody with picomolar affinity to DOTA chelates of multiple radionuclides for pretargeted radioimmunotherapy and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Orcutt, Kelly Davis; Slusarczyk, Adrian L. [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Cieslewicz, Maryelise [Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Ruiz-Yi, Benjamin [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Bhushan, Kumar R. [Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215 (United States); Frangioni, John V. [Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215 (United States); Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA 02215 (United States); Wittrup, K. Dane, E-mail: wittrup@mit.ed [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2011-02-15

    Introduction: In pretargeted radioimmunotherapy (PRIT), a bifunctional antibody is administered and allowed to pre-localize to tumor cells. Subsequently, a chelated radionuclide is administered and captured by cell-bound antibody while unbound hapten clears rapidly from the body. We aim to engineer high-affinity binders to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelates for use in PRIT applications. Methods: We mathematically modeled antibody and hapten pharmacokinetics to analyze hapten tumor retention as a function of hapten binding affinity. Motivated by model predictions, we used directed evolution and yeast surface display to affinity mature the 2D12.5 antibody to DOTA, reformatted as a single chain variable fragment (scFv). Results: Modeling predicts that for high antigen density and saturating bsAb dose, a hapten-binding affinity of 100 pM is needed for near-maximal hapten retention. We affinity matured 2D12.5 with an initial binding constant of about 10 nM to DOTA-yttrium chelates. Affinity maturation resulted in a 1000-fold affinity improvement to biotinylated DOTA-yttrium, yielding an 8.2{+-}1.9 picomolar binder. The high-affinity scFv binds DOTA complexes of lutetium and gadolinium with similar picomolar affinity and indium chelates with low nanomolar affinity. When engineered into a bispecific antibody construct targeting carcinoembryonic antigen, pretargeted high-affinity scFv results in significantly higher tumor retention of a {sup 111}In-DOTA hapten compared to pretargeted wild-type scFv in a xenograft mouse model. Conclusions: We have engineered a versatile, high-affinity, DOTA-chelate-binding scFv. We anticipate it will prove useful in developing pretargeted imaging and therapy protocols to exploit the potential of a variety of radiometals.

  18. Relationship among chelator adherence, change in chelators, and quality of life in thalassemia.

    Science.gov (United States)

    Trachtenberg, Felicia L; Gerstenberger, Eric; Xu, Yan; Mednick, Lauren; Sobota, Amy; Ware, Hannah; Thompson, Alexis A; Neufeld, Ellis J; Yamashita, Robert

    2014-10-01

    Thalassemia, a chronic blood disease, necessitates life-long adherence to blood transfusions and chelation therapy to reduce iron overload. We examine stability of health-related quality of life (HRQOL) in thalassemia and adherence to chelation therapy over time, especially after changes in chelator choice. Thalassemia Longitudinal Cohort participants in the USA, UK, and Canada completed the SF-36v2 (ages 14+) and the PF-28 CHQ (parents of children health status) at baseline who made a single change in chelator, but declined among participants with multiple changes and/or high iron burden (worse health status). Mental health improved among participants with lower iron burden, but iron overload was negatively associated with social functioning. Adherence did not significantly change over follow-up except for an increase after a change from deferoxamine (DFO) infusion to oral deferasirox (p = 0.03). Predictors of lower adherence for adults/adolescents at follow-up included side effects, smoking, younger age, problems preparing DFO, increased number of days per week DFO prescribed, and lower physical quality of life . Strategies to balance medical needs with family, work, and personal life may assist in adherence.

  19. Longitudinal comparison of quality of life after real-time tumor-tracking intensity-modulated radiation therapy and radical prostatectomy in patients with localized prostate cancer

    International Nuclear Information System (INIS)

    Shinohara, Nobuo; Maruyama, Satoru; Abe, Takashige; Nonomura, Katsuya; Shimizu, Shinichi; Nishioka, Kentaro; Shirato, Hiroki; C-Hatanaka, Kanako; Oba, Koji

    2013-01-01

    The purpose of this study was to compare the quality of life (QOL) in patients with localized prostate cancer (PC) after intensity-modulated radiation therapy assisted with a fluoroscopic real-time intensity-modulated radiation therapy (RT-IMRT) tumor-tracking system versus the QOL after radical prostatectomy (RP). Between 2003 and 2006, 71 patients were enrolled in this longitudinal prospective study. Each patient was allowed to decide which treatment modality they would receive. Of the 71 patients, 23 patients underwent RT-IMRT, while 48 opted for RP. No patient received neo-adjuvant or adjuvant hormone therapy. The global QOL and disease-specific-QOL were evaluated before treatment and again at 1, 3 and 5 years after treatment. There was no significant difference in the background characteristics between the two groups. The 5-year biochemical progression-free survival was 90% in the RT-IMRT and 79% in the RP group. In the RT-IMRT group, there was no significant deterioration of the global QOL or disease-specific QOL through 5 years post-treatment. In the RP group, the urinary function, sexual function, and sexual bother indicators significantly deteriorated after treatment. Urinary and sexual function was significantly better in the RT-IMRT group at 1, 3 and 5 years post-treatment compared to the RP group. RT-IMRT may be a preferable treatment for localized PC because of similar efficacy to RP but better post-treatment QOL. (author)

  20. Comparison of anisotropic aperture based intensity modulated radiotherapy with 3D-conformal radiotherapy for the treatment of large lung tumors.

    Science.gov (United States)

    Simeonova, Anna; Abo-Madyan, Yasser; El-Haddad, Mostafa; Welzel, Grit; Polednik, Martin; Boggula, Ramesh; Wenz, Frederik; Lohr, Frank

    2012-02-01

    IMRT allows dose escalation for large lung tumors, but respiratory motion may compromise delivery. A treatment plan that modulates fluence predominantly in the transversal direction and leaves the fluence identical in the direction of the breathing motion may reduce this problem. Planning-CT-datasets of 20 patients with Stage I-IV non small cell lung cancer (NSCLC) formed the basis of this study. A total of two IMRT plans and one 3D plan were created for each patient. Prescription dose was 60 Gy to the CTV and 70 Gy to the GTV. For the 3D plans an energy of 18 MV photons was used. IMRT plans were calculated for 6 MV photons with 13 coplanar and with 17 noncoplanar beams. Robustness of the used method of anisotropic modulation toward breathing motion was tested in a 13-field IMRT plan. As a consequence of identical prescription doses, mean target doses were similar for 3D and IMRT. Differences between 3D and 13- and 17-field IMRT were significant for CTV Dmin (43 Gy vs. 49.1 Gy vs. 48.6 Gy; p3D: 12.5 Gy vs. 14.8 Gy vs. 15.8 Gy: p3D-plans. Heart D(max) was only marginally reduced with IMRT (3D vs. 13- vs. 17-field IMRT: 38.2 Gy vs. 36.8 Gy vs. 37.8 Gy). Simulated breathing motion caused only minor changes in the IMRT dose distribution (~0.5-1 Gy). Anisotropic modulation of IMRT improves dose delivery over 3D-RT and renders IMRT plans robust toward breathing induced organ motion, effectively preventing interplay effects. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  1. Dosimetric Comparison Between Intensity-Modulated with Coplanar Field and 3D Conformal Radiotherapy with Noncoplanar Field for Postocular Invasion Tumor

    International Nuclear Information System (INIS)

    Tu Wenyong; Liu Lu; Zeng Jun; Yin Weidong; Li Yun

    2010-01-01

    This study presents a dosimetric optimization effort aiming to compare noncoplanar field (NCF) on 3 dimensions conformal radiotherapy (3D-CRT) and coplanar field (CF) on intensity-modulated radiotherapy (IMRT) planning for postocular invasion tumor. We performed a planning study on the computed tomography data of 8 consecutive patients with localized postocular invasion tumor. Four fields NCF 3D-CRT in the transverse plane with gantry angles of 0-10 deg., 30-45 deg., 240-270 deg., and 310-335 deg. degrees were isocentered at the center of gravity of the target volume. The geometry of the beams was determined by beam's eye view. The same constraints were prepared with between CF IMRT optimization and NCF 3D-CRT treatment. The maximum point doses (D max) for the different optic pathway structures (OPS) with NCF 3D-CRT treatment should differ in no more than 3% from those with the NCF IMRT plan. Dose-volume histograms (DVHs) were obtained for all targets and organ at risk (OAR) with both treatment techniques. Plans with NCF 3D-CRT and CF IMRT constraints on target dose in homogeneity were computed, as well as the conformity index (CI) and homogeneity index (HI) in the target volume. The PTV coverage was optimal with both NCF 3D-CRT and CF IMRT plans in the 8 tumor sites. No difference was noted between the two techniques for the average D max and D min dose. NCF 3D-CRT and CF IMRT will yield similar results on CI. However, HI was a significant difference between NCF 3D-CRT and CF IMRT plan (p < 0.001). Physical endpoints for target showed the mean target dose to be low in the CF IMRT plan, caused by a large target dose in homogeneity (p < 0.001). The impact of NCF 3D-CRT versus CF IMRT set-up is very slight. NCF3D-CRT is one of the treatment options for postocular invasion tumor. However, constraints for OARs are needed.

  2. Risk Factors for Hearing Loss in Patients Treated With Intensity-Modulated Radiotherapy for Head-and-Neck Tumors

    International Nuclear Information System (INIS)

    Zuur, Charlotte L.; Simis, Yvonne J.; Lamers, Emmy A.; Hart, Augustinus A.; Dreschler, Wouter A.; Balm, Alfons J.; Rasch, Coen R.

    2009-01-01

    Purpose: Radiotherapy (RT) is a common treatment of head-and-neck carcinoma. The objective of this study was to perform a prospective multivariate assessment of the dose-effect relationship between intensity-modulated RT and hearing loss. Methods and Materials: Pure tone audiometry at 0.250-16 kHz was obtained before and after treatment in 101 patients (202 ears). All patients received full-course intensity-modulated RT (range, 56-70 Gy), with a median cochlear dose of 11.4 Gy (range, 0.2-69.7). Results: Audiometry was performed 1 week before and a median of 9 weeks (range, 1-112) after treatment. The mean hearing deterioration at pure tone average air-conduction 1-2-4 kHz was small (from 28.6 dB HL to 30.1 dB HL). However, individual patients showed clinically significant hearing loss, with 10-dB threshold shift incidences of 13% and 18% at pure tone averages air-conduction 1-2-4 kHz and 8-10-12.5 kHz, respectively. Post-treatment hearing capability was unfavorable in the case of greater inner ear radiation doses (p <0.0001), unfavorable baseline hearing capability (p <0.0001), green-eyed patients (p <0.0001), and older age (p <0.0001). Using multivariate analysis, a prediction of individual hearing capabiltity after treatment was made. Conclusion: RT-induced hearing loss in the mean population is modest. However, clinically significant hearing loss was observed in older patients with green eyes and unfavorable pretreatment hearing. In these patients, the intended radiation dose may be adjusted according to the proposed predictive model, aiming to decrease the risk of ototoxicity.

  3. NF-κB Directly Regulates Fas Transcription to Modulate Fas-mediated Apoptosis and Tumor Suppression*

    Science.gov (United States)

    Liu, Feiyan; Bardhan, Kankana; Yang, Dafeng; Thangaraju, Muthusamy; Ganapathy, Vadivel; Waller, Jennifer L.; Liles, Georgia B.; Lee, Jeffrey R.; Liu, Kebin

    2012-01-01

    Fas is a member of the death receptor family. Stimulation of Fas leads to induction of apoptotic signals, such as caspase 8 activation, as well as “non-apoptotic” cellular responses, notably NF-κB activation. Convincing experimental data have identified NF-κB as a critical promoter of cancer development, creating a solid rationale for the development of antitumor therapy that suppresses NF-κB activity. On the other hand, compelling data have also shown that NF-κB activity enhances tumor cell sensitivity to apoptosis and senescence. Furthermore, although stimulation of Fas activates NF-κB, the function of NF-κB in the Fas-mediated apoptosis pathway remains largely undefined. In this study, we observed that deficiency of either Fas or FasL resulted in significantly increased incidence of 3-methylcholanthrene-induced spontaneous sarcoma development in mice. Furthermore, Fas-deficient mice also exhibited significantly greater incidence of azoxymethane and dextran sodium sulfate-induced colon carcinoma. In addition, human colorectal cancer patients with high Fas protein in their tumor cells had a longer time before recurrence occurred. Engagement of Fas with FasL triggered NF-κB activation. Interestingly, canonical NF-κB was found to directly bind to the FAS promoter. Blocking canonical NF-κB activation diminished Fas expression, whereas blocking alternate NF-κB increased Fas expression in human carcinoma cells. Moreover, although canonical NF-κB protected mouse embryo fibroblast (MEF) cells from TNFα-induced apoptosis, knocking out p65 diminished Fas expression in MEF cells, resulting in inhibition of FasL-induced caspase 8 activation and apoptosis. In contrast, knocking out p52 increased Fas expression in MEF cells. Our observations suggest that canonical NF-κB is a Fas transcription activator and alternate NF-κB is a Fas transcription repressor, and Fas functions as a suppressor of spontaneous sarcoma and colon carcinoma. PMID:22669972

  4. Polyaminoquinoline iron chelators for vectorization of antiproliferative agents: design, synthesis, and validation.

    Science.gov (United States)

    Corcé, Vincent; Morin, Emmanuelle; Guihéneuf, Solène; Renault, Eric; Renaud, Stéphanie; Cannie, Isabelle; Tripier, Raphaël; Lima, Luís M P; Julienne, Karine; Gouin, Sébastien G; Loréal, Olivier; Deniaud, David; Gaboriau, François

    2012-09-19

    Iron chelation in tumoral cells has been reported as potentially useful during antitumoral treatment. Our aim was to develop new polyaminoquinoline iron chelators targeting tumoral cells. For this purpose, we designed, synthesized, and evaluated the biological activity of a new generation of iron chelators, which we named Quilamines, based on an 8-hydroxyquinoline (8-HQ) scaffold linked to linear polyamine vectors. These were designed to target tumor cells expressing an overactive polyamine transport system (PTS). A set of Quilamines bearing variable polyamine chains was designed and assessed for their ability to interact with iron. Quilamines were also screened for their cytostatic/cytotoxic effects and their selective uptake by the PTS in the CHO cell line. Our results show that both the 8-HQ moiety and the polyamine part participate in the iron coordination. HQ1-44, the most promising Quilamine identified, presents a homospermidine moiety and was shown to be highly taken up by the PTS and to display an efficient antiproliferative activity that occurred in the micromolar range. In addition, cytotoxicity was only observed at concentrations higher than 100 μM. We also demonstrated the high complexation capacity of HQ1-44 with iron while much weaker complexes were formed with other cations, indicative of a high selectivity. We applied the density functional theory to study the binding energy and the electronic structure of prototypical iron(III)-Quilamine complexes. On the basis of these calculations, Quilamine HQ1-44 is a strong tridentate ligand for iron(III) especially in the form of a 1:2 complex.

  5. Labeling of monoclonal antibodies with a 67Ga phenolic aminocarboxylic acid chelate. Pt. 2

    International Nuclear Information System (INIS)

    Matzku, S.; Schuhmacher, J.; Kirchgessner, H.; Brueggen, J.

    1986-01-01

    Coupling of the 67 Ga-P-EDDHA chelate via carbodiimide to the anti-melanoma monoclonal antibody (MAb) M.2.9.4 resulted in a low degree of oligomerization, but a considerable degree of intra-molecular (inter-chain) cross-linking. However, this did not impair immunoreactivity, nor did the half-life in vivo differ substantially from that of 131 I-M.2.9.4. Biodistribution analysis in normal mice showed Ga:I ratios near 1 in the blood and other tissues not involved in degradation and label excretion. In tissues of the reticulo-endothelial system (RES) and the kidneys, Ga:I ratios up to 2.51 were reached within 4 days of administration. In antigen-positive MeWo tumor tissue, retention of 67 Ga also exceeded that of 131 I, so that tumor : organ ratios (except tumor : liver) were superior for the 67 Ga-labeled MAb. It is concluded that the method of coupling pre-established 67 Ga-P-EDDHA chelate to antibody, results in a functionally intact tracer molecule, whose persistence in vivo is not significantly impaired. The major difference to I-labeled MAbs may be prolonged retention of Ga in tissues (cells) physiologically involved in antibody catabolism. (orig.)

  6. Modulation of tumor necrosis factor {alpha} expression in mouse brain after exposure to aluminum in drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Tsunoda, M.; Sharma, R.P. [Georgia Univ., Athens (Greece). College of Veterinary Medicine

    1999-11-01

    Aluminum, a known neurotoxic substance and a ground-water pollutant, is a possible contributing factor in various nervous disorders including Alzheimer's disease. It has been hypothesized that cytokines are involved in aluminum neurotoxicity. We investigated the alterations in mRNA expression of tumor necrosis factor {alpha} (TNF{alpha}), interleukin-1{beta} (IL-1{beta}), and interferon {gamma} (IFN{gamma}), cytokines related to neuronal damage, in cerebrum and peripheral immune cells of mice after exposure to aluminum through drinking water. Groups of male BALB/c mice were administered aluminum ammonium sulfate in drinking water ad libitum at 0, 5, 25, and 125 ppm aluminum for 1 month. An additional group received 250 ppm ammonium as ammonium sulfate. After treatment, the cerebrum, splenic macrophages and lymphocytes were collected. The expression of TNF{alpha} mRNA in cerebrum was significantly increased among aluminum-treated groups compared with the control, in a dose-dependent manner. Other cytokines did not show any aluminum-related effects. In peripheral cells, there were no significant differences of cytokine mRNA expressions among treatment groups. Increased expression of TNF{alpha} mRNA by aluminum in cerebrum may reflect activation of microglia, a major source of TNF{alpha} in this brain region. Because the aluminum-induced alteration in cytokine message occurred at aluminum concentrations similar to those noted in contaminated water, these results may be relevant in considering the risk of aluminum neurotoxicity in drinking water. (orig.)

  7. Tumor Cell Invasion Can Be Blocked by Modulators of Collagen Fibril Alignment That Control Assembly of the Extracellular Matrix.

    Science.gov (United States)

    Grossman, Moran; Ben-Chetrit, Nir; Zhuravlev, Alina; Afik, Ran; Bassat, Elad; Solomonov, Inna; Yarden, Yosef; Sagi, Irit

    2016-07-15

    Abnormal architectures of collagen fibers in the extracellular matrix (ECM) are hallmarks of many invasive diseases, including cancer. Targeting specific stages of collagen assembly in vivo presents a great challenge due to the involvement of various crosslinking enzymes in the multistep, hierarchical process of ECM build-up. Using advanced microscopic tools, we monitored stages of fibrillary collagen assembly in a native fibroblast-derived 3D matrix system and identified anti-lysyl oxidase-like 2 (LOXL2) antibodies that alter the natural alignment and width of endogenic fibrillary collagens without affecting ECM composition. The disrupted collagen morphologies interfered with the adhesion and invasion properties of human breast cancer cells. Treatment of mice bearing breast cancer xenografts with the inhibitory antibodies resulted in disruption of the tumorigenic collagen superstructure and in reduction of primary tumor growth. Our approach could serve as a general methodology to identify novel therapeutics targeting fibrillary protein organization to treat ECM-associated pathologies. Cancer Res; 76(14); 4249-58. ©2016 AACR. ©2016 American Association for Cancer Research.

  8. Chelate-assisted phytoextraction of lead from contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, E.M.; Sims, J.T.; Cunningham, S.D.; Huang, J.W.; Berti, W.R.

    1999-12-01

    Phytoextraction, a remediation strategy for lead (Pb)-contaminated soils that removes soil Pb through plant uptake and harvest, may be enhanced by use of synthetic chelates. The authors evaluated Pb desorption from four contaminated soils by seven chelates (CDTA, DTPA, EDDHA, EFTA, HEDTA, HEIDA, and NTA) at three rates. The three most effective chelates (CDTA, DTPA, and HEDTA) were used in greenhouse studies with an uncontaminated soil and a Pb-contaminated soil to determine the effect of chelate type and rate on growth, Pb uptake, and plant elemental composition. Lead desorption varied with chelate and soil and increased with chelate rate, averaging 948 mg Pb kg{sup {minus}1} at the 20 mmol kg{sup {minus}1} rate vs. 28 mg Pb kg{sup {minus}1} by the control. The general ranking of chelate effectiveness, based on total Pb desorbed, was HEDTA > CDTA > DTPA > EGTA > HEIDA > EDDHA {approximately} NTA. Plant uptake of Pb from the contaminated soil was enhanced by CDTA, DTPA, and HEDTA, but with even the most effective treatment (corn, high CDTA rate), the amount of Pb extracted by plants was rather low. Lead extractable by the Toxicity Characteristic Leaching Procedure (TCLP) was increased from 9 mg L{sup {minus}1} in the control to from 47 to 174 mg L{sup {minus}1} in soils treated with 20 mmol kg{sup {minus}1} CDTA or DTPA and chelates generally caused a shift in Pb from resistant to more soluble chemical fractions.

  9. Potentials and drawbacks of chelate-enhanced phytoremediation of soils

    NARCIS (Netherlands)

    Römkens, P.F.A.M.; Bouwman, L.A.; Japenga, J.; Draaisma, C.

    2002-01-01

    Chelate-enhanced phytoremediation has been proposed as an effective tool for the extraction of heavy metals from soils by plants. However, side-effects related to the addition of chelates, e.g. metal leaching and effects on soil micro-organisms, were usually neglected. Therefore, greenhouse and

  10. Chelation Treatment for Autism Spectrum Disorders: A Systematic Review

    Science.gov (United States)

    Davis, Tonya N.; O'Reilly, Mark; Kang, Soyeon; Lang, Russell; Rispoli, Mandy; Sigafoos, Jeff; Lancioni, Giulio; Copeland, Daelynn; Attai, Shanna; Mulloy, Austin

    2013-01-01

    Chelation treatment is used to eliminate specific metals from the body, such as mercury. It has been hypothesized that mercury poisoning may be a factor in autism and data suggest that perhaps 7% of individuals with autism spectrum disorder (ASD) have received chelation treatment. It would therefore seem timely to review studies investigating the…

  11. Development of iron chelators for Cooley's anemia. Final report

    International Nuclear Information System (INIS)

    Crosby, W.H.; Green, R.

    1982-01-01

    Iron chelators were screened in an iron-loaded rat model using selective radioiron probes. In all experiments, chelators D and F, in that order, induced significant loss of radioiron compared with controls. However, use of chelator D was associated with side effects, and resulted in the death of some animals. There was some evidence that chelator A also caused iron loss significantly greater than controls. Chelators B, C and E were without apparent enhancing effect on radioiron excretion. This was a blind study and the compounds used were A - 2,3-Dihydroxybenzoic acid; B - N,N1-Dimethyladipohydroxamic acid; C - DL-Phenylalanine hydroxamic acid; D - Ethylenediamine-N,N1-bis(2-hydroxphenylacetic acid); E - Propionohydroxamic acid; and F - Deferrioxamine B

  12. Modulation expression of tumor necrosis factor α in the radiation-induced lung injury by glycyrrhizic acid

    Directory of Open Access Journals (Sweden)

    Soheila Refahi

    2015-01-01

    Full Text Available To evaluate the ability of glycyrrhizic acid (GLA to reduce the tumor necrosis factor α (TNF-α, release on messenger ribonucleic acid (mRNA and protein production in the lungs using GLA in response to irradiation were studied. The animals were divided into four groups: No treatment (NT group, GLA treatment only (GLA group, irradiation only (XRT group, and GLA treatment plus irradiation (GLA/XRT group. Rats were killed at different time points. Real-time reverse transcriptase polymerase chain reaction (RT-PCR was used to evaluate the mRNA expression of TNF-α in the lungs (compared with non-irradiated lungs. An enzyme-linked immunosorbant assay (ELISA assay was used to measure the TNF-α protein level. The TNF-α mRNA expression in the lungs of the XRT rats was clearly higher at all-time points compared to the NT rats. The TNF-α mRNA expression in the lungs of the GLA/XRT rats was lower at all-time points compared to the XRT rats. Release of the TNF-α on protein level in the lungs of the XRT rats increased at all-time points compared to the NT rats. In contrast to the XRT rats, the lungs of the GLA/XRT rats revealed a reduction on TNF-α protein level at 6 h after irradiation. This study has clearly showed the immediate down-regulation of the TNF-α mRNA and protein production in the lungs using GLA in response to irradiation.

  13. Modulation expression of tumor necrosis factor α in the radiation-induced lung injury by glycyrrhizic acid.

    Science.gov (United States)

    Refahi, Soheila; Pourissa, Masoud; Zirak, Mohammad Reza; Hadadi, GholamHassan

    2015-01-01

    To evaluate the ability of glycyrrhizic acid (GLA) to reduce the tumor necrosis factor α (TNF-α), release on messenger ribonucleic acid (mRNA) and protein production in the lungs using GLA in response to irradiation were studied. The animals were divided into four groups: No treatment (NT group), GLA treatment only (GLA group), irradiation only (XRT group), and GLA treatment plus irradiation (GLA/XRT group). Rats were killed at different time points. Real-time reverse transcriptase polymerase chain reaction (RT-PCR) was used to evaluate the mRNA expression of TNF-α in the lungs (compared with non-irradiated lungs). An enzyme-linked immunosorbant assay (ELISA) assay was used to measure the TNF-α protein level. The TNF-α mRNA expression in the lungs of the XRT rats was clearly higher at all-time points compared to the NT rats. The TNF-α mRNA expression in the lungs of the GLA/XRT rats was lower at all-time points compared to the XRT rats. Release of the TNF-α on protein level in the lungs of the XRT rats increased at all-time points compared to the NT rats. In contrast to the XRT rats, the lungs of the GLA/XRT rats revealed a reduction on TNF-α protein level at 6 h after irradiation. This study has clearly showed the immediate down-regulation of the TNF-α mRNA and protein production in the lungs using GLA in response to irradiation.

  14. Pretargeting of human mammary carcinoma xenografts with bispecific anti-MUC1/anti-Ga chelate antibodies and immunoscintigraphy with PET

    International Nuclear Information System (INIS)

    Schuhmacher, Jochen; Klivenyi, Gabor; Kaul, Sepp; Henze, Marcus; Matys, Ronald; Hauser, Harald; Clorius, John

    2001-01-01

    We recently demonstrated the feasibility of combining enhanced tumor-to-tissue contrast and PET imaging for immunoscintigraphic tumor localization in pancreas and colon carcinoma bearing nude mice. Contrast enhancement was obtained with a multistep targeting technique that consists of the sequential administration of an antitumor/antihapten bispecific antibody (BS-MAb), a blocker to saturate the antihapten binding sites of the BS-MAb that remains in circulation, and a low molecular weight Ga chelate, labeled with the positron emitter 68 Ga, which serves as the hapten. To evaluate the efficacy of this pretargeting technique for breast cancer localization, we synthesized a BS-MAb from the F(ab') 2 fragments of the anti-MUC1 MAb 12H12 which reacts with the vast majority of human breast carcinomas, and the F(ab') fragment of an anti-Ga chelate MAb using a bifunctional chemical linker. The BS-MAb was tested for its affinity and its biokinetics in nude mice bearing a human mammary carcinoma. Equilibrium binding of the BS-MAb for mammary carcinoma cells was low (1.2 x 10 7 M -1 ) while the binding capacity of cells was high (8.4 x 10 6 BS-MAbs per cell). Tumor uptake of the 67 Ga labeled chelate in pretargeted animals was to 5.8 ± 0.8% iD/g resulting in a tumor-to-blood ratio of 2.6 at 1h postinjection. This compares with a ratio of 0.65 and 0.85 obtained with 125 I-labeled native 12H12 at 24h and 48h postinjection. No difference in the tumor uptake of both the 68 Ga and 67 Ga labeled chelate was observed. PET imaging of mice, started 1h postinjection of the 68 Ga chelate, clearly visualized all tumors

  15. Pretargeting of human mammary carcinoma xenografts with bispecific anti-MUC1/anti-Ga chelate antibodies and immunoscintigraphy with PET

    Energy Technology Data Exchange (ETDEWEB)

    Schuhmacher, Jochen; Klivenyi, Gabor; Kaul, Sepp; Henze, Marcus; Matys, Ronald; Hauser, Harald; Clorius, John

    2001-10-01

    We recently demonstrated the feasibility of combining enhanced tumor-to-tissue contrast and PET imaging for immunoscintigraphic tumor localization in pancreas and colon carcinoma bearing nude mice. Contrast enhancement was obtained with a multistep targeting technique that consists of the sequential administration of an antitumor/antihapten bispecific antibody (BS-MAb), a blocker to saturate the antihapten binding sites of the BS-MAb that remains in circulation, and a low molecular weight Ga chelate, labeled with the positron emitter {sup 68}Ga, which serves as the hapten. To evaluate the efficacy of this pretargeting technique for breast cancer localization, we synthesized a BS-MAb from the F(ab'){sub 2} fragments of the anti-MUC1 MAb 12H12 which reacts with the vast majority of human breast carcinomas, and the F(ab') fragment of an anti-Ga chelate MAb using a bifunctional chemical linker. The BS-MAb was tested for its affinity and its biokinetics in nude mice bearing a human mammary carcinoma. Equilibrium binding of the BS-MAb for mammary carcinoma cells was low (1.2 x 10{sup 7} M{sup -1}) while the binding capacity of cells was high (8.4 x 10{sup 6} BS-MAbs per cell). Tumor uptake of the {sup 67}Ga labeled chelate in pretargeted animals was to 5.8 {+-} 0.8% iD/g resulting in a tumor-to-blood ratio of 2.6 at 1h postinjection. This compares with a ratio of 0.65 and 0.85 obtained with {sup 125}I-labeled native 12H12 at 24h and 48h postinjection. No difference in the tumor uptake of both the {sup 68}Ga and {sup 67}Ga labeled chelate was observed. PET imaging of mice, started 1h postinjection of the {sup 68}Ga chelate, clearly visualized all tumors.

  16. MO-H-19A-02: Investigation of Modulated Electron Arc (MeArc) Therapy for the Treatment of Scalp Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Eldib, A [Fox Chase Cancer Center, Philadelphia, PA (United States); Al-Azhar University, Cairo (Egypt); Jin, L; Martin, J; Li, J; Chibani, O; Galloway, T; Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States)

    2014-06-15

    Purpose: Electron arc therapy has long been proposed as the most suitable technique for the treatment of superficial tumors that follow circularly curved surfaces. However it was challenged by unsuitability of the conventional applicators and the lack of adequate 3-D dose calculation tools for arc electron beams in the treatment planning systems (TPS). Now with the availability of an electron specific multi-leaf collimator (eMLC) and an in-house Monte Carlo (MC) based TPS, we were motivated to investigate more advanced modulated electron arc (MeARC) therapy and its beneficial outcome. Methods: We initiated the study by a film measurement conducted in a head and neck phantom, where we delivered electron arcs in a step and shoot manner using the light field as a guide to avoid fields abutments. This step was done to insure enough clearance for the arcs with eMLC. MCBEAM and MCPLAN MC codes were used for the treatment head simulation and phantom dose calculation, respectively. Treatment plans were generated for targets drawn in real patient CTs and head and neck phantom. We utilized beams eye view available from a commercial planning system to create beamlets having same isocenter and adjoined at the scalp surface. Then dose-deposition coefficients from those beamlets were calculated for all electron energies using MCPLAN. An in-house optimization code was then used to find the optimum weights needed from individual beamlets. Results: MeARC showed a nicely tailored dose distribution around the circular curved target on the scalp. Some hot spots were noticed and could be attributed to fields abutment problem owing to the bulging nature of electron profiles. Brain dose was shown to be at lower levels compared to photon treatment. Conclusion: MeARC was shown to be a promising modality for treating scalp cases and could be beneficial to all superficial tumors with a circular curvature.

  17. Phosphinic acid functionalized polyazacycloalkane chelators for radiodiagnostics and radiotherapeutics: unique characteristics and applications.

    Science.gov (United States)

    Notni, Johannes; Šimeček, Jakub; Wester, Hans-Jürgen

    2014-06-01

    Given the wide application of positron emission tomography (PET), positron-emitting metal radionuclides have received much attention recently. Of these, gallium-68 has become particularly popular, as it is the only PET nuclide commercially available from radionuclide generators, therefore allowing local production of PET radiotracers independent of an on-site cyclotron. Hence, interest in optimized bifunctional chelators for the elaboration of (68) Ga-labeled bioconjugates has been rekindled as well, resulting in the development of improved triazacyclononane-triphosphinate (TRAP) ligand structures. The most remarkable features of these ligands are unparalleled selectivity for Ga(III) , rapid Ga(III) complexation kinetics, extraordinarily high thermodynamic stability, and kinetic inertness of the respective Ga(III) chelates. As a result, TRAP chelators exhibit very favorable (68) Ga-labeling properties. Based on the scaffolds NOPO (1,4,7-triazacyclononane-1,4-bis[methylene(hydroxymethyl)phosphinic acid]-7-[methylene(2-carboxyethyl)phosphinic acid]) and TRAP-Pr, tailored for convenient preparation of (68) Ga-labeled monomeric and multimeric bioconjugates, a variety of novel (68) Ga radiopharmaceuticals have been synthesized. These include bisphosphonates, somatostatin receptor ligands, prostate-specific membrane antigen (PSMA)-targeting peptides, and cyclic RGD pentapeptides, for in vivo PET imaging of bone, neuroendocrine tumors, prostate cancer, and integrin expression, respectively. Furthermore, TRAP-based (68) Ga-labeled gadolinium(III) complexes have been proposed as bimodal probes for PET/MRI, and a cyclen-based analogue of TRAP-Pr has been suggested for the elaboration of targeted radiotherapeutics comprising radiolanthanide ions. Thus, polyazacycloalkane-based polyphosphinic acid chelators are a powerful toolbox for pharmaceutical research, particularly for the development of (68) Ga radiopharmaceuticals. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Treating Lead Toxicity: Possibilities beyond Synthetic Chelation

    Directory of Open Access Journals (Sweden)

    Shambhavi Tannir

    2013-01-01

    Full Text Available Lead, a ubiquitous metal, is one of the most abundant elements present on earth. Its easy availability and cost effectiveness made it an extremely popular component in the industrial revolution. However, its hazardous health effects were not considered at the time. Over the last few decades, with the adverse effects of lead coming to the forefront, nations across the world have started to recognize and treat lead toxicity. The most reliable and used method until now has been chelation therapy. Recent research has suggested the use of natural products and sources to treat lead poisoning with minimal or no side effects. This review has tried to summarize a few of the natural products/sources being investigated by various groups.

  19. Biodegradable gadolinium-chelated cationic poly(urethane amide) copolymers for gene transfection and magnetic resonance imaging

    International Nuclear Information System (INIS)

    Gao, Xiaolong; Wang, Gangmin; Shi, Ting; Shao, Zhihong; Zhao, Peng; Shi, Donglu; Ren, Jie; Lin, Chao; Wang, Peijun

    2016-01-01

    Theranostic nano-polyplexes containing gene and imaging agents hold a great promise for tumor diagnosis and therapy. In this work, we develop a group of new gadolinium (Gd)-chelated cationic poly(urethane amide)s for gene delivery and T 1 -weighted magnetic resonance (MR) imaging. Cationic poly(urethane amide)s (denoted as CPUAs) having multiple disulfide bonds, urethane and amide linkages were synthesized by stepwise polycondensation reaction between 1,4-bis(3-aminopropyl)piperazine and a mixture of di(4-nitrophenyl)-2, 2′-dithiodiethanocarbonate (DTDE-PNC) and diethylenetriaminepentaacetic acid (DTPA) dianhydride at varied molar ratios. Then, Gd-chelated CPUAs (denoted as GdCPUAs) were produced by chelating Gd(III) ions with DTPA residues of CPUAs. These GdCPUAs could condense gene into nanosized and positively-charged polyplexes in a physiological condition and, however, liberated gene in an intracellular reductive environment. In vitro transfection experiments revealed that the GdCPUA at a DTDE-PNC/DTPA residue molar ratio of 85/15 induced the highest transfection efficiency in different cancer cells. This efficiency was higher than that yielded with 25 kDa branched polyethylenimine as a positive control. GdCPUAs and their polyplexes exhibited low cytotoxicity when an optimal transfection activity was detected. Moreover, GdCPUAs may serve as contrast agents for T 1 -weighted magnetic resonance imaging. The results of this work indicate that biodegradable Gd-chelated cationic poly(urethane amide) copolymers have high potential for tumor theranostics. - Highlights: • Novel cationic gadolinium-chelated poly(urethane amide)s (GdCPUAs) are prepared. • GdCPUAs can induce a high transfection efficacy in different cancer cells. • GdCPUAs reveal good cyto-compatibility against cancer cells. • GdCPUAs may be applied as T 1 -contrast agents for magnetic resonance imaging. • GdCPUAs hold high potential for cancer theranostics.

  20. Chelating impact assessment of biological ad chemical chelates on metal extraction from contaminated soils

    International Nuclear Information System (INIS)

    Manwar, S.; Iram, S.

    2014-01-01

    Soil contamination is the result of uncontrolled waste dumping and poor practices by humans. Of all the pollutants heavy metals are of particular concern due to their atmospheric deposition, leaching capacity and non-biodegradability. Heavy metal containing effluent is discharged into the agricultural fields and water bodies. This results in the accumulation of heavy metals in soil and the crops grown on that soil. Studies have revealed detrimental impacts on soil fertility and the poor health of animals and humans. Phytoextraction is widely researched for remediation of heavy metal contaminated soil. To enhance the effect of phytoextraction heavy metals have to be available to the plants in soluble form. In this study the potential of different chelating agents was assessed in solubilizing the heavy metals making easy for plants to uptake them. For this purpose efficient chemical and biological chelating agent had to be identified. Along with that an optimum dose and application time for chemical chelating agent was determined. Ethylenediamine tetraacetic acid (EDTA), Diethylene triamine pentaacetic acid (DTPA), Nitriloacetic acid (NTA) were applied to the soil, containing Pb, Cr, Cu and Cd, at different concentrations and application time. Aspergillus niger and Aspergillus flavus were incubated in soil for different time periods. In correspondence with findings of the study, Pb and Cr were best solubilized by 5mM EDTA. For Cd and Cu 5mM DTPA carried out efficient chelation. NTA showed relatively inadequate solubilisation, although for Cr it performed equal to EDTA. A. niger and A. flavus instead of solubilizing adsorbed the metals in their biomass. Adsorption was mainly carried out by A. niger. (author)

  1. Modulation by angelica sinensis the expression of tumor necrosis factor αin radiation-induced damage of the lung

    International Nuclear Information System (INIS)

    Xie Conghua; Zhou Yunfeng; Peng Gang; Liu Hui; Chen Ji; Xia Mingtong

    2005-01-01

    Objective: To investigate the ability of Angelica Sinensis to affect the radiation-induced tumor necrosis factor α(TNF-α) release in the animal model, so as to find an effective method in reducing the lung toxicity after thoracic irradiation. Methods: The chest of 72 C57BL/6 mice were exposed to either sham irradiation or single fraction of 12 Gy after having been randomized into 4 groups: 1. 9 mice received neither irradiation nor Angelica Sinensis but received i. p injection of NS 20 ml/ (kg·d) (NT group); 2. 9 mice received Angelica Sinensis only but no irradiation though receiving i. p, NS(AS group); 3. 27 mice received whole lung 12 Gy irradiation and i. p, NS without Angelica Sinensis (XRT group) and 4. 27 mice received both i. p, 25% Angelica Sinensis 20 ml/(kg·d) and whole lung 12 Gy irradiation(AS/XRT group). The TNF-α mRNA expression in the lung tissue were quantified by 'real-time' quantitative reverse transcriptase polymerase chain reaction (RT-PCR). Immunohistochemical detection method (Streptavidin-Peroxidase method) and positive cell counting were used for objective quantification of TNF-α protein expression. Results: NT and AS group exhibited low level of TNF-α protein expression with positive cell counts between 8 and 17. And there was an significantly elevated level of TNF-α positive inflammatory cells in XRT group (P<0.01). The number of the positive cells in AS/XRT group was between NT and AS group and XRT group with the difference between AS/XRT group and XRT group significant (P<0.01). The results of 'real-time' quantitative RT-PCR showed that the relative mRNA expression of cytokine TNF-α in XRT group was significantly higher than the nonirradiated groups (P<0.01). The lung tissue of the mice which were treated by Angelica Sinensis revealed only a minor radiation-mediated TNF-α response on mRNA level, but the statistical comparison of the TNF-a mRNA expressions between the XRT and AS/XRT groups was not significant (P=0.078), which

  2. Under conditions of large geometric miss, tumor control probability can be higher for static gantry intensity-modulated radiation therapy compared to volume-modulated arc therapy for prostate cancer

    International Nuclear Information System (INIS)

    Balderson, Michael; Brown, Derek; Johnson, Patricia; Kirkby, Charles

    2016-01-01

    The purpose of this work was to compare static gantry intensity-modulated radiation therapy (IMRT) with volume-modulated arc therapy (VMAT) in terms of tumor control probability (TCP) under scenarios involving large geometric misses, i.e., those beyond what are accounted for when margin expansion is determined. Using a planning approach typical for these treatments, a linear-quadratic–based model for TCP was used to compare mean TCP values for a population of patients who experiences a geometric miss (i.e., systematic and random shifts of the clinical target volume within the planning target dose distribution). A Monte Carlo approach was used to account for the different biological sensitivities of a population of patients. Interestingly, for errors consisting of coplanar systematic target volume offsets and three-dimensional random offsets, static gantry IMRT appears to offer an advantage over VMAT in that larger shift errors are tolerated for the same mean TCP. For example, under the conditions simulated, erroneous systematic shifts of 15 mm directly between or directly into static gantry IMRT fields result in mean TCP values between 96% and 98%, whereas the same errors on VMAT plans result in mean TCP values between 45% and 74%. Random geometric shifts of the target volume were characterized using normal distributions in each Cartesian dimension. When the standard deviations were doubled from those values assumed in the derivation of the treatment margins, our model showed a 7% drop in mean TCP for the static gantry IMRT plans but a 20% drop in TCP for the VMAT plans. Although adding a margin for error to a clinical target volume is perhaps the best approach to account for expected geometric misses, this work suggests that static gantry IMRT may offer a treatment that is more tolerant to geometric miss errors than VMAT.

  3. Under conditions of large geometric miss, tumor control probability can be higher for static gantry intensity-modulated radiation therapy compared to volume-modulated arc therapy for prostate cancer.

    Science.gov (United States)

    Balderson, Michael; Brown, Derek; Johnson, Patricia; Kirkby, Charles

    2016-01-01

    The purpose of this work was to compare static gantry intensity-modulated radiation therapy (IMRT) with volume-modulated arc therapy (VMAT) in terms of tumor control probability (TCP) under scenarios involving large geometric misses, i.e., those beyond what are accounted for when margin expansion is determined. Using a planning approach typical for these treatments, a linear-quadratic-based model for TCP was used to compare mean TCP values for a population of patients who experiences a geometric miss (i.e., systematic and random shifts of the clinical target volume within the planning target dose distribution). A Monte Carlo approach was used to account for the different biological sensitivities of a population of patients. Interestingly, for errors consisting of coplanar systematic target volume offsets and three-dimensional random offsets, static gantry IMRT appears to offer an advantage over VMAT in that larger shift errors are tolerated for the same mean TCP. For example, under the conditions simulated, erroneous systematic shifts of 15mm directly between or directly into static gantry IMRT fields result in mean TCP values between 96% and 98%, whereas the same errors on VMAT plans result in mean TCP values between 45% and 74%. Random geometric shifts of the target volume were characterized using normal distributions in each Cartesian dimension. When the standard deviations were doubled from those values assumed in the derivation of the treatment margins, our model showed a 7% drop in mean TCP for the static gantry IMRT plans but a 20% drop in TCP for the VMAT plans. Although adding a margin for error to a clinical target volume is perhaps the best approach to account for expected geometric misses, this work suggests that static gantry IMRT may offer a treatment that is more tolerant to geometric miss errors than VMAT. Copyright © 2016 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  4. Tumor suppressors TSC1 and TSC2 differentially modulate actin cytoskeleton and motility of mouse embryonic fibroblasts.

    Directory of Open Access Journals (Sweden)

    Elena A Goncharova

    Full Text Available TSC1 and TSC2 mutations cause neoplasms in rare disease pulmonary LAM and neuronal pathfinding in hamartoma syndrome TSC. The specific roles of TSC1 and TSC2 in actin remodeling and the modulation of cell motility, however, are not well understood. Previously, we demonstrated that TSC1 and TSC2 regulate the activity of small GTPases RhoA and Rac1, stress fiber formation and cell adhesion in a reciprocal manner. Here, we show that Tsc1(-/- MEFs have decreased migration compared to littermate-derived Tsc1(+/+ MEFs. Migration of Tsc1(-/- MEFs with re-expressed TSC1 was comparable to Tsc1(+/+ MEF migration. In contrast, Tsc2(-/- MEFs showed an increased migration compared to Tsc2(+/+ MEFs that were abrogated by TSC2 re-expression. Depletion of TSC1 and TSC2 using specific siRNAs in wild type MEFs and NIH 3T3 fibroblasts also showed that TSC1 loss attenuates cell migration while TSC2 loss promotes cell migration. Morphological and immunochemical analysis demonstrated that Tsc1(-/- MEFs have a thin protracted shape with a few stress fibers; in contrast, Tsc2(-/- MEFs showed a rounded morphology and abundant stress fibers. Expression of TSC1 in either Tsc1(-/- or Tsc2(-/- MEFs promoted stress fiber formation, while TSC2 re-expression induced stress fiber disassembly and the formation of cortical actin. To assess the mechanism(s by which TSC2 loss promotes actin re-arrangement and cell migration, we explored the role of known downstream effectors of TSC2, mTORC1 and mTORC2. Increased migration of Tsc2(-/- MEFs is inhibited by siRNA mTOR and siRNA Rictor, but not siRNA Raptor. siRNA mTOR or siRNA Rictor promoted stress fiber disassembly in TSC2-null cells, while siRNA Raptor had little effect. Overexpression of kinase-dead mTOR induced actin stress fiber disassembly and suppressed TSC2-deficient cell migration. Our data demonstrate that TSC1 and TSC2 differentially regulate actin stress fiber formation and cell migration, and that only TSC2 loss promotes

  5. Tumor necrosis factor-alpha activates signal transduction in hypothalamus and modulates the expression of pro-inflammatory proteins and orexigenic/anorexigenic neurotransmitters.

    Science.gov (United States)

    Amaral, Maria E; Barbuio, Raquel; Milanski, Marciane; Romanatto, Talita; Barbosa, Helena C; Nadruz, Wilson; Bertolo, Manoel B; Boschero, Antonio C; Saad, Mario J A; Franchini, Kleber G; Velloso, Licio A

    2006-07-01

    Tumor necrosis factor-alpha (TNF-alpha) is known to participate in the wastage syndrome that accompanies cancer and severe infectious diseases. More recently, a role for TNF-alpha in the pathogenesis of type 2 diabetes mellitus and obesity has been shown. Much of the regulatory action exerted by TNF-alpha upon the control of energy stores depends on its action on the hypothalamus. In this study, we show that TNF-alpha activates canonical pro-inflammatory signal transduction pathways in the hypothalamus of rats. These signaling events lead to the transcriptional activation of an early responsive gene and to the induction of expression of cytokines and a cytokine responsive protein such as interleukin-1beta, interleukin-6, interleukin-10 and suppressor of cytokine signalling-3, respectively. In addition, TNF-alpha induces the expression of neurotransmitters involved in the control of feeding and thermogenesis. Thus, TNF-alpha may act directly in the hypothalamus inducing a pro-inflammatory response and the modulation of expression of neurotransmitters involved in energy homeostasis.

  6. The Two Translationally Controlled Tumor Protein Genes, CsTCTP1 and CsTCTP2, Are Negative Modulators in the Cucumis sativus Defense Response to Sphaerotheca fuliginea

    Directory of Open Access Journals (Sweden)

    Xiangnan Meng

    2018-04-01

    Full Text Available Pathogen stress often significantly decreases cucumber production. However, knowledge regarding the molecular mechanism and signals of cucumber disease resistance is far from complete. Here, we report two translationally controlled tumor protein genes, CsTCTP1 and CsTCTP2, that are both negative modulators in the Cucumis sativus defense response to Sphaerotheca fuliginea. Subcellular localization analysis showed that CsTCTP1 and CsTCTP2 were both localized in the cytoplasm. Expression analysis indicated that the transcript levels of CsTCTP1 and CsTCTP2 were linked to the degree of cucumber resistance to S. fuliginea. Transient overexpression of either CsTCTP1 or CsTCTP2 in cucumber cotyledons impaired resistance to S. fuliginea, whereas silencing of either CsTCTP1 or CsTCTP2 enhanced cucumber resistance to S. fuliginea. The relationship of several defense-related genes and ABA and target of rapamycin (TOR signaling pathway-related genes to the overexpressing and silencing of CsTCTP1/CsTCTP2 in non-infested cucumber plants was investigated. The results indicated that CsTCTP1 participates in the defense response to S. fuliginea by regulating the expression of certain defense-associated genes and/or ABA signaling pathway-associated genes, and CsTCTP2 participates through regulating the expression of TOR signaling pathway-associated genes. Our findings will guide enhancing the resistance of cucumber to powdery mildew.

  7. INPP4B-mediated tumor resistance is associated with modulation of glucose metabolism via hexokinase 2 regulation in laryngeal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Min, Joong Won [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Kwang Il [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Hyun-Ah; Kim, Eun-Kyu; Noh, Woo Chul [Department of Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Jeon, Hong Bae [Biomedical Research Institute, MEDIPOST Co., Ltd., Seoul (Korea, Republic of); Cho, Dong-Hyung [Graduate School of East-West Medical Science, Kyung Hee University, Gyeonggi-do (Korea, Republic of); Oh, Jeong Su [Department of Genetic Engineering, Sungkyunkwan University, Suwon (Korea, Republic of); Park, In-Chul; Hwang, Sang-Gu [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Jae-Sung, E-mail: jaesung@kirams.re.kr [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2013-10-11

    Highlights: •HIF-1α-regulated INPP4B enhances glycolysis. •INPP4B regulates aerobic glycolysis by inducing HK2 via Akt-mTOR pathway. •Blockage of INPP4B and HK2 sensitizes radioresistant laryngeal cancer cells to radiation and anticancer drug. •INPP4B is associated with HK2 in human laryngeal cancer tissues. -- Abstract: Inositol polyphosphate 4-phosphatase type II (INPP4B) was recently identified as a tumor resistance factor in laryngeal cancer cells. Herein, we show that INPP4B-mediated resistance is associated with increased glycolytic phenotype. INPP4B expression was induced by hypoxia and irradiation. Intriguingly, overexpression of INPP4B enhanced aerobic glycolysis. Of the glycolysis-regulatory genes, hexokinase 2 (HK2) was mainly regulated by INPP4B and this regulation was mediated through the Akt-mTOR pathway. Notably, codepletion of INPP4B and HK2 markedly sensitized radioresistant laryngeal cancer cells to irradiation or anticancer drug. Moreover, INPP4B was significantly associated with HK2 in human laryngeal cancer tissues. Therefore, these results suggest that INPP4B modulates aerobic glycolysis via HK2 regulation in radioresistant laryngeal cancer cells.

  8. Glyphosate, a chelating agent-relevant for ecological risk assessment?

    Science.gov (United States)

    Mertens, Martha; Höss, Sebastian; Neumann, Günter; Afzal, Joshua; Reichenbecher, Wolfram

    2018-02-01

    Glyphosate-based herbicides (GBHs), consisting of glyphosate and formulants, are the most frequently applied herbicides worldwide. The declared active ingredient glyphosate does not only inhibit the EPSPS but is also a chelating agent that binds macro- and micronutrients, essential for many plant processes and pathogen resistance. GBH treatment may thus impede uptake and availability of macro- and micronutrients in plants. The present study investigated whether this characteristic of glyphosate could contribute to adverse effects of GBH application in the environment and to human health. According to the results, it has not been fully elucidated whether the chelating activity of glyphosate contributes to the toxic effects on plants and potentially on plant-microorganism interactions, e.g., nitrogen fixation of leguminous plants. It is also still open whether the chelating property of glyphosate is involved in the toxic effects on organisms other than plants, described in many papers. By changing the availability of essential as well as toxic metals that are bound to soil particles, the herbicide might also impact soil life, although the occurrence of natural chelators with considerably higher chelating potentials makes an additional impact of glyphosate for most metals less likely. Further research should elucidate the role of glyphosate (and GBH) as a chelator, in particular, as this is a non-specific property potentially affecting many organisms and processes. In the process of reevaluation of glyphosate its chelating activity has hardly been discussed.

  9. Chelation: Harnessing and Enhancing Heavy Metal Detoxification—A Review

    Directory of Open Access Journals (Sweden)

    Margaret E. Sears

    2013-01-01

    Full Text Available Toxic metals such as arsenic, cadmium, lead, and mercury are ubiquitous, have no beneficial role in human homeostasis, and contribute to noncommunicable chronic diseases. While novel drug targets for chronic disease are eagerly sought, potentially helpful agents that aid in detoxification of toxic elements, chelators, have largely been restricted to overt acute poisoning. Chelation, that is multiple coordination bonds between organic molecules and metals, is very common in the body and at the heart of enzymes with a metal cofactor such as copper or zinc. Peptides glutathione and metallothionein chelate both essential and toxic elements as they are sequestered, transported, and excreted. Enhancing natural chelation detoxification pathways, as well as use of pharmaceutical chelators against heavy metals are reviewed. Historical adverse outcomes with chelators, lessons learned in the art of using them, and successes using chelation to ameliorate renal, cardiovascular, and neurological conditions highlight the need for renewed attention to simple, safe, inexpensive interventions that offer potential to stem the tide of debilitating, expensive chronic disease.

  10. Preparation of Ga-67 labeled monoclonal antibodies using deferoxamine as a bifunctional chelating agent

    International Nuclear Information System (INIS)

    Endo, K.; Furukawa, T.; Ohmomo, Y.

    1984-01-01

    Ga-67 labeled monoclonal IgG or F(ab')/sub 2/ fragments against α-fetoprotein and β-subunit of human choriogonadotropin (HCG), were prepared using Deferoxamine (DFO) as a bifunctional chelating agent. DFO, a well-known iron chelating agent, was conjugated with monoclonal antibodies (Ab) by a glutaraldehyde two step method and the effect of conjugation on the Ab activities was examined by RIA and Scatchard plot analysis. In both monoclonal Ab preparations, the conjugation reaction was favored as the pH increased. However, Ab-binding activities decreased as the molecular ratios of DFO to Ab increased. Preserved Ab activities were observed when Ab contained DFO per Ab molecule less than 2.1. At a ratio of over 3.3 DFO molecules per Ab, the maximal binding capacity rather than the affinity constant decreased. The inter-molecular cross linkage seemed to be responsible for the deactivation of binding activities. The obtained DFO-Ab conjugates, were then easily labeled with high efficiency and reproducibility and Ga-67 DFO-Ab complexes were highly stable both in vitro and in vivo. Thus, biodistribution of Ga-67 labeled F(ab')/sub 2/ fragments of monoclonal Ab to HCG β-subunit was attempted in nude mice transplanted with HCG-producing human teratocarcinoma. Tumor could be visualized, in spite of relatively high background imaging of liver, kidney and spleen. The use of DFO as a bifunctional chelating agent provided good evidence for its applicability to labeling monoclonal Ab with almost full retention of Ab activities. Further, availability of Ga-68 will make Ga-68 DFO-monoclonal Ab a very useful tool for positron tomography imaging of various tumors

  11. Selectivity in extraction of copper and indium with chelate extractants

    International Nuclear Information System (INIS)

    Zivkovic, D.

    2003-01-01

    Simultaneous extraction of copper and indium with chelate extractants (LIX84 and D2E11PA) was described. Stechiometry of metal-organic complexes examined using the method of equimolar ratios resulted in CuR 2 and InR 3 forms of hydrophobic extracting species. A linear correlation was obtained between logarithm of distribution coefficients and chelate agents and pH, respectively. Selectivity is generally higher with higher concentrations of chelate agents in the organic phase, and is decreased with increase of concentration of hydrogen ions in feeding phase. (Original)

  12. Mixed and chelated waste test programs with bitumen solidification

    International Nuclear Information System (INIS)

    Simpson, S.I.; Morris, M.; Vidal, H.

    1988-01-01

    This paper presents the results of bitumen solidification tests on mixed wastes and chelated wastes. The French Atomic Energy Commission (CEA) performed demonstration tests on radioactive wastes contaminated with chelating agents for Associated Technologies, Inc. (ATI). The chelated wastes were produced and concentrated by Commonwealth Edison Co. as a result of reactor decontamination at Dresden Nuclear Station, Unit 1. Law Engineering in Charlotte, N. C. produced samples and performed tests on simulated heavy metal laden radioactive waste (mixed) to demonstrate the quality of the bituminous product. The simulation is intended to represent waste produced at Oak Ridge National Labs operated by Martin-Marietta

  13. Structure-Activity Relationships and Identification of Optmized CC-Chemokine Receptor CCR1, 5, and 8 Metal-Ion Chelators

    DEFF Research Database (Denmark)

    Chalikiopoulos, Alexander; Thiele, Stefanie; Malmgaard-Clausen, Mikkel

    2013-01-01

    Chemokine receptors are involved in trafficking of leukocytes and represent targets for autoimmune conditions, inflammatory diseases, viral infections, and cancer. We recently published CCR1, CCR8, and CCR5 agonists and positive modulators based on a three metal-ion chelator series: 2,2'-bipyridi...

  14. 3-hydroxy-2(1H)-pyridinone chelating agents

    Science.gov (United States)

    Raymond, K.; Xu, J.

    1999-04-06

    Disclosed is a series of improved chelating agents and the chelates formed from these agents, which are highly effective upon both injection and oral administration. Several of the most effective are of low toxicity. These chelating agents incorporate within their structure 3-hydroxy-2-pyridinone (3,2-HOPO) moieties with a substituted carbamoyl group ortho to the hydroxy group of the hydroxypyridinone ring. The electron-withdrawing carbamoyl group increases the acidity, as well as the chemical stability towards oxidation and reduction, of the hydroxypyridinones. In the metal complexes of the chelating agents, the amide protons form very strong hydrogen bonds with the adjacent HOPO oxygen donor, making these complexes very stable at physiological conditions. The terminal N-substituents provide a certain degree of lipophilicity to the 3,2-HOPO, increasing oral activity. 2 figs.

  15. Chelation of di- and trivalent iron with some polyaminopolycarboxylic acids

    International Nuclear Information System (INIS)

    Hafez, M.B.; Sharabi, Nahid; Patti, Francois.

    1979-02-01

    The chelation of di- and trivalent iron with some polyaminopolycarboxylic acids was studied. The influence of pH on the formation of the complex was investigated, the molecular ratio and the stability constants were determined [fr

  16. Metal chelate process to remove pollutants from fluids

    Science.gov (United States)

    Chang, S.G.T.

    1994-12-06

    The present invention relates to improved methods using an organic iron chelate to remove pollutants from fluids, such as flue gas. Specifically, the present invention relates to a process to remove NO[sub x] and optionally SO[sub 2] from a fluid using a metal ion (Fe[sup 2+]) chelate wherein the ligand is a dimercapto compound wherein the --SH groups are attached to adjacent carbon atoms (HS--C--C--SH) or (SH--C--CCSH) and contain a polar functional group so that the ligand of DMC chelate is water soluble. Alternatively, the DMC is covalently attached to a water insoluble substrate such as a polymer or resin, e.g., polystyrene. The chelate is regenerated using electroreduction or a chemical additive. The dimercapto compound bonded to a water insoluble substrate is also useful to lower the concentration or remove hazardous metal ions from an aqueous solution. 26 figures.

  17. Metal Chelation as a Powerful Strategy to Probe Cellular Circuitry Governing Fungal Drug Resistance and Morphogenesis.

    Directory of Open Access Journals (Sweden)

    Elizabeth J Polvi

    2016-10-01

    Full Text Available Fungal pathogens have evolved diverse strategies to sense host-relevant cues and coordinate cellular responses, which enable virulence and drug resistance. Defining circuitry controlling these traits opens new opportunities for chemical diversity in therapeutics, as the cognate inhibitors are rarely explored by conventional screening approaches. This has great potential to address the pressing need for new therapeutic strategies for invasive fungal infections, which have a staggering impact on human health. To explore this approach, we focused on a leading human fungal pathogen, Candida albicans, and screened 1,280 pharmacologically active compounds to identify those that potentiate the activity of echinocandins, which are front-line therapeutics that target fungal cell wall synthesis. We identified 19 compounds that enhance activity of the echinocandin caspofungin against an echinocandin-resistant clinical isolate, with the broad-spectrum chelator DTPA demonstrating the greatest synergistic activity. We found that DTPA increases susceptibility to echinocandins via chelation of magnesium. Whole genome sequencing of mutants resistant to the combination of DTPA and caspofungin identified mutations in the histidine kinase gene NIK1 that confer resistance to the combination. Functional analyses demonstrated that DTPA activates the mitogen-activated protein kinase Hog1, and that NIK1 mutations block Hog1 activation in response to both caspofungin and DTPA. The combination has therapeutic relevance as DTPA enhanced the efficacy of caspofungin in a mouse model of echinocandin-resistant candidiasis. We found that DTPA not only reduces drug resistance but also modulates morphogenesis, a key virulence trait that is normally regulated by environmental cues. DTPA induced filamentation via depletion of zinc, in a manner that is contingent upon Ras1-PKA signaling, as well as the transcription factors Brg1 and Rob1. Thus, we establish a new mechanism by which

  18. A signature of epithelial-mesenchymal plasticity and stromal activation in primary tumor modulates late recurrence in breast cancer independent of disease subtype.

    Science.gov (United States)

    Cheng, Qing; Chang, Jeffrey T; Gwin, William R; Zhu, Jun; Ambs, Stefan; Geradts, Joseph; Lyerly, H Kim

    2014-07-25

    Despite improvements in adjuvant therapy, late systemic recurrences remain a lethal consequence of both early- and late-stage breast cancer. A delayed recurrence is thought to arise from a state of tumor dormancy, but the mechanisms that govern tumor dormancy remain poorly understood. To address the features of breast tumors associated with late recurrence, but not confounded by variations in systemic treatment, we compiled breast tumor gene expression data from 4,767 patients and established a discovery cohort consisting of 743 lymph node-negative patients who did not receive systemic neoadjuvant or adjuvant therapy. We interrogated the gene expression profiles of the 743 tumors and identified gene expression patterns that were associated with early and late disease recurrence among these patients. We applied this classification to a subset of 46 patients for whom expression data from microdissected tumor epithelium and stroma was available, and identified a distinct gene signature in the stroma and also a corresponding tumor epithelium signature that predicted disease recurrence in the discovery cohort. This tumor epithelium signature was then validated as a predictor for late disease recurrence in the entire cohort of 4,767 patients. We identified a novel 51-gene signature from microdissected tumor epithelium associated with late disease recurrence in breast cancer independent of the molecular disease subtype. This signature correlated with gene expression alterations in the adjacent tumor stroma and describes a process of epithelial to mesenchymal transition (EMT) and tumor-stroma interactions. Our findings suggest that an EMT-related gene signature in the tumor epithelium is related to both stromal activation and escape from disease dormancy in breast cancer. The presence of a late recurrence gene signature in the primary tumor also suggests that intrinsic features of this tumor regulate the transition of disseminated tumor cells into a dormant phenotype with

  19. Increase in tumor control and normal tissue complication probabilities in advanced head-and-neck cancer for dose-escalated intensity-modulated photon and proton therapy

    Directory of Open Access Journals (Sweden)

    Annika eJakobi

    2015-11-01

    Full Text Available Introduction:Presently used radio-chemotherapy regimens result in moderate local control rates for patients with advanced head and neck squamous cell carcinoma (HNSCC. Dose escalation (DE may be an option to improve patient outcome, but may also increase the risk of toxicities in healthy tissue. The presented treatment planning study evaluated the feasibility of two DE levels for advanced HNSCC patients, planned with either intensity-modulated photon therapy (IMXT or proton therapy (IMPT.Materials and Methods:For 45 HNSCC patients, IMXT and IMPT treatment plans were created including DE via a simultaneous integrated boost (SIB in the high-risk volume, while maintaining standard fractionation with 2 Gy per fraction in the remaining target volume. Two DE levels for the SIB were compared: 2.3 Gy and 2.6 Gy. Treatment plan evaluation included assessment of tumor control probabilities (TCP and normal tissue complication probabilities (NTCP.Results:An increase of approximately 10% in TCP was estimated between the DE levels. A pronounced high-dose rim surrounding the SIB volume was identified in IMXT treatment. Compared to IMPT, this extra dose slightly increased the TCP values and to a larger extent the NTCP values. For both modalities, the higher DE level led only to a small increase in NTCP values (mean differences < 2% in all models, except for the risk of aspiration, which increased on average by 8% and 6% with IMXT and IMPT, respectively, but showed a considerable patient dependence. Conclusions:Both DE levels appear applicable to patients with IMXT and IMPT since all calculated NTCP values, except for one, increased only little for the higher DE level. The estimated TCP increase is of relevant magnitude. The higher DE schedule needs to be investigated carefully in the setting of a prospective clinical trial, especially regarding toxicities caused by high local doses that lack a sound dose response description, e.g., ulcers.

  20. Iron chelators ICL670 and 311 inhibit HIV-1 transcription

    International Nuclear Information System (INIS)

    Debebe, Zufan; Ammosova, Tatyana; Jerebtsova, Marina; Kurantsin-Mills, Joseph; Niu, Xiaomei; Charles, Sharroya; Richardson, Des R.; Ray, Patricio E.; Gordeuk, Victor R.; Nekhai, Sergei

    2007-01-01

    HIV-1 replication is induced by an excess of iron and iron chelation by desferrioxamine (DFO) inhibits viral replication by reducing proliferation of infected cells. Treatment of cells with DFO and 2-hydroxy-1-naphthylaldehyde isonicotinoyl hydrazone (311) inhibit expression of proteins that regulate cell-cycle progression, including cycle-dependent kinase 2 (CDK2). Our recent studies showed that CDK2 participates in HIV-1 transcription and viral replication suggesting that inhibition of CDK2 by iron chelators might also affect HIV-1 transcription. Here we evaluated the effect of a clinically approved orally effective iron chelator, 4-[3,5-bis-(hydroxyphenyl)-1,2,4-triazol-1-yl]-benzoic acid (ICL670) and 311 on HIV-1 transcription. Both ICL670 and 311 inhibited Tat-induced HIV-1 transcription in CEM-T cells, 293T and HeLa cells. Neither ICL670 nor 311 induced cytotoxicity at concentrations that inhibited HIV-1 transcription. The chelators decreased cellular activity of CDK2 and reduced HIV-1 Tat phosphorylation by CDK2. Neither ICL670A or 311 decreased CDK9 protein level but significantly reduced association of CDK9 with cyclin T1 and reduced phosphorylation of Ser-2 residues of RNA polymerase II C-terminal domain. In conclusion, our findings add to the evidence that iron chelators can inhibit HIV-1 transcription by deregulating CDK2 and CDK9. Further consideration should be given to the development of iron chelators for future anti-retroviral therapeutics

  1. Dose-escalated intensity-modulated radiotherapy and irradiation of subventricular zones in relation to tumor control outcomes of patients with glioblastoma multiforme

    Directory of Open Access Journals (Sweden)

    Kusumawidjaja G

    2016-03-01

    Full Text Available Grace Kusumawidjaja,1 Patricia Zhun Hong Gan,1 Whee Sze Ong,2 Achiraya Teyateeti,3 Pittaya Dankulchai,3 Daniel Yat Harn Tan,1 Eu Tiong Chua,1 Kevin Lee Min Chua,1 Chee Kian Tham,4 Fuh Yong Wong,1 Melvin Lee Kiang Chua1,5 1Division of Radiation Oncology, National Cancer Centre, Singapore; 2Division of Clinical Trials and Epidemiological Sciences, National Cancer Centre, Singapore; 3Department of Radiology, Division of Radiation Oncology, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand; 4Division of Medical Oncology, National Cancer Centre, Singapore; 5Duke-NUS Graduate Medical School, Singapore Background: Glioblastoma multiforme (GBM is the most aggressive primary brain tumor with high relapse rate. In this study, we aimed to determine if dose-escalated (DE radiotherapy improved tumor control and survival in GBM patients. Methods: We conducted a retrospective analysis of 49 and 23 newly-diagnosed histology-proven GBM patients, treated with DE radiotherapy delivered in 70 Gy (2.33 Gy per fraction and conventional doses (60 Gy, respectively, between 2007 and 2013. Clinical target volumes for 70 and 60 Gy were defined by 0.5 and 2.0 cm expansion of magnetic resonance imaging T1-gadolinium-enhanced tumor/surgical cavity, respectively. Bilateral subventricular zones (SVZ were contoured on a co-registered pre-treatment magnetic resonance imaging and planning computed tomography dataset as a 5 mm wide structure along the lateral margins of the lateral ventricles. Survival outcomes of both cohorts were compared using log-rank test. Radiation dose to SVZ in the DE cohort was evaluated. Results: Median follow-up was 13.6 and 15.1 months for the DE- and conventionally-treated cohorts, respectively. Median overall survival (OS of patients who received DE radiotherapy was 15.2 months (95% confidence interval [CI] =11.0–18.6, while median OS of the latter cohort was 18.4 months (95% CI =12.5–31.4, P=0.253. Univariate analyses of

  2. A simplified suite of methods to evaluate chelator conjugation of antibodies: effects on hydrodynamic radius and biodistribution

    International Nuclear Information System (INIS)

    Al-Ejeh, Fares; Darby, Jocelyn M.; Thierry, Benjamin; Brown, Michael P.

    2009-01-01

    Introduction: Antibodies covalently conjugated with chelators such as 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) are required for radioimmunoscintigraphy and radioimmunotherapy, which are of growing importance in cancer medicine. Method: Here, we report a suite of simple methods that provide a preclinical assessment package for evaluating the effects of DOTA conjugation on the in vitro and in vivo performance of monoclonal antibodies. We exemplify the use of these methods by investigating the effects of DOTA conjugation on the biochemical properties of the DAB4 clone of the La/SSB-specific murine monoclonal autoantibody, APOMAB (registered) , which is a novel malignant cell death ligand. Results: We have developed a 96-well microtiter-plate assay to measure directly the concentration of DOTA and other chelators in antibody-chelator conjugate solutions. Coupled with a commercial assay for measuring protein concentration, the dual microtiter-plate method can rapidly determine chelator/antibody ratios in the same plate. The biochemical properties of DAB4 immunoconjugates were altered as the DOTA/Ab ratio increased so that: (i) mass/charge ratio decreased; (ii) hydrodynamic radius increased; (iii) antibody immunoactivity decreased; (iv) rate of chelation of metal ions and specific radioactivity both increased and in vivo, (v) tumor uptake decreased as nonspecific uptake by liver and spleen increased. Conclusion: This simplified suite of methods readily identifies biochemical characteristics of the DOTA-immunoconjugates such as hydrodynamic diameter and decreased mass/charge ratio associated with compromised immunotargeting efficiency and, thus, may prove useful for optimizing conjugation procedures in order to maximize immunoconjugate-mediated radioimmunoscintigraphy and radioimmunotherapy.

  3. The magnesium chelation step in chlorophyll biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, J.

    1990-11-01

    In photosynthetic organisms, the biogenesis of energy transducing membranes requires the coordinate synthesis of prosthetic groups, proteins, and various lipids. Two of the major prosthetic groups, chlorophyll and heme, share a common biosynthetic pathway that diverges at the point of metal insertion into protoporphyrin IX (Proto). Insertion of iron leads to the formation of hemes, while insertion of magnesium is the first step unique to chlorophyll formation. This project is directed toward identifying the enzyme(s) responsible for magnesium chelation and elucidating the mechanism which regulates the flux of precursors through the branch point enzymes in isolated chloroplasts. Using intact chloroplasts from greening cucumber cotyledons, we have confirmed the ATP requirement for Mg-Proto formation. Use of non-hydrolyzable ATP analogs, uncouplers and ionophores has led to the conclusions that ATP hydrolysis is necessary, but that this hydrolysis is not linked to the requirement for membrane intactness by transmembrane ion gradients or electrical potentials. The enzyme(s) are flexible with respect to the porphyrin substrate specificity, accepting porphyrins with -vinyl, -ethyl, or -H substituents at the 2 and 4 positions. The activity increases approximately four-fold during greening. Possible physiological feedback inhibitors such as heme, protochlorophyllide, and chlorophyllide had no specific effect on the activity. The activity has now been assayed in barely, corn and peas, with the system from peas almost ten-fold more active than the cucumber system. Work is continuing in pea chloroplasts with the development of a continuous assay and investigation of the feasibility of characterizing an active, organelle-free preparation. 6 figs.

  4. Bone tumor

    Science.gov (United States)

    Tumor - bone; Bone cancer; Primary bone tumor; Secondary bone tumor; Bone tumor - benign ... The cause of bone tumors is unknown. They often occur in areas of the bone that grow rapidly. Possible causes include: Genetic defects ...

  5. Comparison of DOTA and NODAGA as chelators for (64)Cu-labeled immunoconjugates.

    Science.gov (United States)

    Ghosh, Sukhen C; Pinkston, Kenneth L; Robinson, Holly; Harvey, Barrett R; Wilganowski, Nathaniel; Gore, Karen; Sevick-Muraca, Eva M; Azhdarinia, Ali

    2015-02-01

    Bifunctional chelators have been shown to impact the biodistribution of monoclonal antibody (mAb)-based imaging agents. Recently, radiolabeled 1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid (NODAGA)-peptide complexes have demonstrated improved in vivo stability and performance compared to their 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) counterparts. Here, we investigated if similar utility could be achieved with mAbs and compared (64)Cu-labeled DOTA and NODAGA-immunoconjugates for the detection of epithelial cell adhesion molecule (EpCAM) in a prostate cancer model. DOTA and NODAGA-immunoconjugates of an EpCAM targeting mAb (mAb7) were synthesized and radiolabeled with (64)Cu (DOTA: 40°C for 1hr; NODAGA: 25°C for 1hr). The average number of chelators per mAb was quantified by isotopic dilution, and the biological activity of the immunoconjugates was evaluated by flow cytometry and ELISA. Radioligand assays were performed to compare cellular uptake and determine the dissociation constant (Kd) and maximum number of binding sites (Bmax) for the immunoconjugates using DsRed-transfected PC3-cells. A PC3-DsRed xenograft tumor model was established in nude mice and used to perform biodistribution studies to compare organ uptake and pharmacokinetics. (64)Cu-DOTA-mAb7 and (64)Cu-NODAGA-mAb7 were prepared with chelator/protein ratios of 2-3 and obtained in comparable radiochemical yields ranging from 59 to 71%. Similar immunoreactivity was observed with both agents, and mock labeling studies indicated that incubation at room temperature or 40°C did not affect potency. (64)Cu-NODAGA-mAb7 demonstrated higher in vitro cellular uptake while (64)Cu-DOTA-mAb7 had higher Kd and Bmax values. From the biodistribution data, we found similar tumor uptake (13.44±1.21%ID/g and 13.24±4.86%ID/g for (64)Cu-DOTA-mAb7 and (64)Cu-NODAGA-mAb7, respectively) for both agents at 24hr, although normal prostate tissue was significantly lower for (64)Cu-NODAGA-mAb7

  6. Effects of zinc supplementation and zinc chelation on in vitro β-cell function in INS-1E cells

    DEFF Research Database (Denmark)

    Nygaard, Sanne Bjørn; Larsen, Agnete; Knuhtsen, Astrid

    2014-01-01

    BACKGROUND: Zinc is essential for the activities of pancreatic β-cells, especially insulin storage and secretion. Insulin secretion leads to co-release of zinc which contributes to the paracrine communication in the pancreatic islets. Zinc-transporting proteins (zinc-regulated transporter, iron......-regulated transporter-like proteins [ZIPs] and zinc transporters [ZnTs]) and metal-buffering proteins (metallothioneins, MTs) tightly regulate intracellular zinc homeostasis. The present study investigated how modulation of cellular zinc availability affects β-cell function using INS-1E cells. RESULTS: Using INS-1E...... cells, we found that zinc supplementation and zinc chelation had significant effects on insulin content and insulin secretion. Supplemental zinc within the physiological concentration range induced insulin secretion. Insulin content was reduced by zinc chelation with N,N,N',N-tektrakis(2-pyridylmethyl...

  7. Site-activated chelators derived from anti-Parkinson drug rasagiline as a potential safer and more effective approach to the treatment of Alzheimer's disease.

    Science.gov (United States)

    Zheng, Hailin; Fridkin, Mati; Youdim, Moussa B H

    2010-12-01

    chelators can modulate β-amyloid accumulation, protect against tau hyperphosphorylation, and block metal-related oxidative stress, and thereby hold considerable promise as effective anti-AD drugs. At present, a growing interest is focusing on increasing the efficacy and targeting of chelators through drug design. To this end, we have developed a new class of multifunctional prochelators from three FDA- approved drugs rasagiline, rivastigmine, and donepezil or tacrine. HLA20 A was designed by merging the important pharmacophores of rasagiline, rivastigmine, and donepezil into our newly developed multifunctional chelator HLA20. M30D was constructed using the key pharmacophoric moieties from rasagiline, rivastigmine, and tacrine. Experiments showed that both compounds possess potent anti-acetylcholinesterase (AChE) activity in vitro with weak inhibition of butyrylcholinesterase (BuChE), and without significant metal-binding activity. M30D was found also to be a highly potent MAO A inhibitor with moderate inhibition of MAO B in vitro. Both HLA20 and M30D can be activated by inhibition of AChE to release active chelators HLA20 and M30, respectively. HLA20 and M30 have been shown to be able to modulate amyloid precursor protein regulation and beta-amyloid reduction, suppress oxidative stress, and passivate excess metal ions (Fe, Cu, and Zn). Compared with the activated chelator HLA20 or M30, both HLA20A and M30D exhibited lower cytotoxicity in SH-SY5Y neuroblastoma cells, substantiating the prochelator strategy for minimizing toxicity associated with poor targeted chelators.

  8. Monitoring the progression of calcium and protein solubilisation as affected by calcium chelators during small-scale manufacture of casein-based food matrices.

    Science.gov (United States)

    McIntyre, Irene; O'Sullivan, Michael; O'Riordan, Dolores

    2017-12-15

    Calcium and protein solubilisation during small-scale manufacture of semi-solid casein-based food matrices was investigated and found to be very different in the presence or absence of calcium chelating salts. Calcium concentrations in the dispersed phase increased and calcium-ion activity (A Ca ++ ) decreased during manufacture of the matrices containing calcium chelating salts; with ∼23% of total calcium solubilised by the end of manufacture. In the absence of calcium chelating salts, these concentrations were significantly lower at equivalent processing times and remained unchanged as did A Ca ++ , throughout manufacture. The protein content of the dispersed phase was low (≤3% of total protein), but was significantly higher for matrices containing calcium chelating salts. This study elucidates the critical role of calcium chelating salts in modulating casein hydration and dispersion and gives an indication of the levels of soluble calcium and protein required to allow matrix formation during manufacture of casein-based food structures e.g. processed and analogue cheese. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Reduced Toxicity With Intensity Modulated Radiation Therapy (IMRT) for Desmoplastic Small Round Cell Tumor (DSRCT): An Update on the Whole Abdominopelvic Radiation Therapy (WAP-RT) Experience

    Energy Technology Data Exchange (ETDEWEB)

    Desai, Neil B. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Stein, Nicholas F. [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); LaQuaglia, Michael P. [Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Alektiar, Kaled M. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Kushner, Brian H.; Modak, Shakeel; Magnan, Heather M. [Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Goodman, Karyn [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Wolden, Suzanne L., E-mail: woldens@mskcc.org [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)

    2013-01-01

    Purpose: Desmoplastic small round cell tumor (DSRCT) is a rare malignancy typically involving the peritoneum in young men. Whole abdominopelvic radiation therapy (WAP-RT) using conventional 2-dimensional (2D) radiation therapy (RT) is used to address local recurrence but has been limited by toxicity. Our objectives were to assess the benefit of intensity modulated radiation therapy (IMRT) on toxicity and to update the largest series on radiation for DSRCT. Methods and Materials: The records of 31 patients with DSRCT treated with WAP-RT (22 with 2D-RT and 9 with IMRT) between 1992 and 2011 were retrospectively reviewed. All received multi-agent chemotherapy and maximal surgical debulking followed by 30 Gy of WAP-RT. A further focal boost of 12 to 24 Gy was used in 12 cases. Boost RT and autologous stem cell transplantation were nearly exclusive to patients treated with 2D-RT. Toxicities were assessed with the Common Terminology Criteria for Adverse Events. Dosimetric analysis compared IMRT and simulated 2D-RT dose distributions. Results: Of 31 patients, 30 completed WAP-RT, with a median follow-up after RT of 19 months. Acute toxicity was reduced with IMRT versus 2D-RT: P=.04 for gastrointestinal toxicity of grade 2 or higher (33% vs 77%); P=.02 for grade 4 hematologic toxicity (33% vs 86%); P=.01 for rates of granulocyte colony-stimulating factor; and P=.04 for rates of platelet transfusion. Post treatment red blood cell and platelet transfusion rates were also reduced (P=.01). IMRT improved target homogeneity ([D05-D95]/D05 of 21% vs 46%) and resulted in a 21% mean bone dose reduction. Small bowel obstruction was the most common late toxicity (23% overall). Updated 3-year overall survival and progression-free survival rates were 50% and 24%, respectively. Overall survival was associated with distant metastasis at diagnosis on multivariate analysis. Most failures remained intraperitoneal (88%). Conclusions: IMRT for consolidative WAP-RT in DSRCT improves

  10. To chelate or not to chelate in MDS: That is the question!

    Science.gov (United States)

    Zeidan, Amer M; Griffiths, Elizabeth A

    2018-03-08

    Myelodysplastic syndromes (MDS) are a heterogeneous group of hemopathies that exhibit physical manifestations with clinical consequences of bone marrow failure and inherent risk of progression to acute myeloid leukemia. Iron overload (IO) is common in MDS due to chronic transfusion support and disease-related alterations in iron metabolism. IO has been conclusively associated with inferior outcomes among MDS patients. Despite lack of randomized trials showing a survival impact of iron chelation therapy (ICT), ICT is recommended by experts and guidelines for select MDS patients with IO and is often used. The availability of effective oral ICT agents has reignited the controversy regarding ICT use in patients with MDS and IO. Here we summarize the studies evaluating the value of ICT in MDS and suggest a practical approach for use of these therapies. We also highlight controversies regarding use of ICT in MDS and discuss some ongoing efforts to answer these questions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. In vitro and in vivo evaluation of potential aluminum chelators.

    Science.gov (United States)

    Graff, L; Muller, G; Burnel, D

    1995-10-01

    The potential for aluminium (Al) chelation by different compounds was determined using 2 in vitro techniques. The formation of stable complexes with Al in an aqueous solution was evaluated using pulse polarography. This technique allowed the influence of temperature and calcium (Ca) to be studied for each compound. Certain compounds (EDDHA, HAES, citric acid and HBED) showed great chelation in the absence of Ca2+ at a temperature of 37 +/- 1 C. An ultrafiltration technique combined with Al determination by atomic emission spectroscopy allowed the efficiency of different substances to complex Al that were previously bound to serum proteins to be estimated. The kinetics of chelation and minimum efficient concentration have been determined for all products studied. EDDHA had chelation potential similar to DFO. The real efficacies of the compounds were studied in vivo to compare the effectiveness of repeated administrations of the best chelating agents (EDDHA, DFO, HAES and tartaric acid) on the distribution and excretion of Al after repeated i.p. administrations to rats. Intraperitoneal EDDHA significantly increased urinary metal (Al, Ca, Cu, Fe and Zn) excretion. These excretions may be correlated to a renal toxic potential property.

  12. The adsorption of chelating reagents on oxide minerals

    International Nuclear Information System (INIS)

    Bryson, M.A.W.

    1984-06-01

    This work constitutes a fundamental study of the interaction between chelating reagents and oxide minerals. The adsorption mechanisms have been elucidated for most of the systems generated by the oxides of copper(II) or iron(III) and chelating reagents octyl hydroxamate, N-phenylbenzohydroxamate, salicylaldoxime, 5-nitro-salicylaldoxime or 8-hydroxyquinoline. In order to better understand the adsorption process associated with copper(II) oxide, the oxide was recrystallized to produce a coarser material with a more uniform surface. This allowed the oxide surface to be viewed under the scanning electron microscope. A detailed investigation of the effect of the system variables; pH, conditioning period, concentration, temperature, surface area and dispersing reagent on the rate of precipitation of the copper chelate species of general form, Cu(chel) 2 , was made. In addition the chemical nature of the adsorbed species and the structural form of the precipitates were determined with the aid of infra-red spectroscopy and the scanning electron microscope. On the basis of these results a model has been formulated for the adsorption processes. The precipitation process was examined in more detail by the study of the adsorption of chelate on copper metal. Contact angle measurements of air bubbles on copper metal conditioned with chelate were related to the adsorption results in an attempt to isolate the optimum conditions for flotation of oxide minerals

  13. Chelation therapy to prevent diabetes-associated cardiovascular events.

    Science.gov (United States)

    Diaz, Denisse; Fonseca, Vivian; Aude, Yamil W; Lamas, Gervasio A

    2018-05-24

    For over 60 years, chelation therapy with disodium ethylene diamine tetraacetic acid (EDTA, edetate) had been used for the treatment of cardiovascular disease (CVD) despite lack of scientific evidence for efficacy and safety. The Trial to Assess Chelation Therapy (TACT) was developed and received funding from the National Institutes of Health (NIH) to ascertain the safety and efficacy of chelation therapy in patients with CVD. This pivotal trial demonstrated an improvement in outcomes in postmyocardial infarction (MI) patients. Interestingly, it also showed a particularly large reduction in CVD events and all-cause mortality in the prespecified subgroup of patients with diabetes. The TACT results may support the concept of metal chelation to reduce metal-catalyzed oxidation reactions that promote the formation of advanced glycation end products, a precursor of diabetic atherosclerosis. In this review, we summarize the epidemiological and basic evidence linking toxic metal accumulation and diabetes-related CVD, supported by the salutary effects of chelation in TACT. If the ongoing NIH-funded TACT2, in diabetic post-MI patients, proves positive, this unique therapy will enter the armamentarium of endocrinologists and cardiologists seeking to reduce the atherosclerotic risk of their diabetic patients.

  14. Transition Metal Chelator Induces Progesterone Production in Mouse Cumulus-Oocyte Complexes and Corpora Lutea.

    Science.gov (United States)

    Tian, X; Anthony, K; Diaz, Francisco J

    2017-04-01

    Progesterone production is upregulated in granulosa cells (cumulus and mural) after the LH surge, but the intra-follicular mechanisms regulating this transition are not completely known. Recent findings show that the transition metal chelator, N,N,N',N'-tetrakis-(2-pyridylmethyl)-ethylenediamine (TPEN), impairs ovarian function. In this study, we provide evidence that chelating transition metals, including zinc, enhances progesterone production. The findings show that TPEN (transition metal chelator) increases abundance of Cyp11a1 and Star messenger RNA (mRNA) between 8- and 20-fold and progesterone production more than 3-fold in cultured cumulus-oocyte complexes (COC). Feeding a zinc-deficient diet for 10 days, but not 3 days, increased Star, Hsd3b, and prostaglandin F2 alpha receptor (Ptgfr) mRNA ~2.5-fold, suggesting that the effect of TPEN is through modulation of zinc availability. Progesterone from cumulus cells promotes oocyte developmental potential. Blocking progesterone production with epostane during maturation reduced subsequent blastocyst formation from 89 % in control to 18 % in epostane-treated complexes, but supplementation with progesterone restored blastocyst developmental potential to 94 %. Feeding a zinc-deficient diet for 5 days before ovulation did not affect the number of CL, STAR protein, or serum progesterone. However, incubating luteal tissue with TPEN increased abundance of Star, Hsd3b, and Ptgfr mRNA 2-3-fold and increased progesterone production 3-fold. TPEN is known to abolish SMAD2/3 signaling in cumulus cells. However, treatment of COC with the SMAD2/3 phosphorylation inhibitor, SB421542, did not by itself induce steroidogenic transcripts but did potentiate EGF-induced Star mRNA expression. Collectively, the results show that depletion of transition metals with TPEN acutely enhances progesterone biosynthesis in COC and luteal tissue.

  15. Bifunctional chelates of Rh-105 and Au-199 as potential radiotherapeutic agents

    International Nuclear Information System (INIS)

    Troutner, D.E.; Schlemper, E.O.

    1990-01-01

    Since last year we have: continued the synthesis of pentadentate bifunctional chelating agents based on diethylene triamine; studied the chelation Rh-105, Au-198 (as model for Au-199) and Tc-99m with these agents as well as chelation of Pd-109, Cu-67, In-111, and Co-57 with some of them; synthesized a new class of potential bifunctional chelating agents based on phenylene diamine; investigated the behavior of Au-198 as a model for Au-199; begun synthesis of bifunctional chelating agents based on terpyridly and similar ligands; and continued attempts to produce tetradentate bifunctional chelates based on diaminopropane. Each of these will be addressed in this report

  16. Albumin microspheres labeled with Ga-67 by chelation: concise communication

    International Nuclear Information System (INIS)

    Hnatowich, D.J.; Schlegel, P.

    1981-01-01

    Albumin microspheres have been synthesized with EDTA and DTPA chelating groups covalently bound to their surface. The microspheres may be labeled with Ga-67 at high yield (97 +- 2%) by transcomplexation from a 0.1 M Ga-67 acetate solution. With EDTA microspheres the resulting label dissociates only slightly after 24 hr in 50% plasma at 37 0 C, whereas with DTPA microspheres the label shows no detectable dissociation over this period. By contrast, microspheres without chelating groups lose their label virtually completely under these conditions. Following intravenous administration of sized Ga-67 DTPA microspheres in mice, about (84 +- 16)% of the activity localizes in the lungs at 5 min, with (60 +- 7)% remaining after 2 h. Since labeling is by chelation, the microspheres may also be tagged with other metallic radionuclides

  17. Evaluation of macrocyclic hydroxyisophthalamide ligands as chelators for zirconium-89.

    Science.gov (United States)

    Bhatt, Nikunj B; Pandya, Darpan N; Xu, Jide; Tatum, David; Magda, Darren; Wadas, Thaddeus J

    2017-01-01

    The development of bifunctional chelators (BFCs) for zirconium-89 immuno-PET applications is an area of active research. Herein we report the synthesis and evaluation of octadentate hydroxyisophthalamide ligands (1 and 2) as zirconium-89 chelators. While both radiometal complexes could be prepared quantitatively and with excellent specific activity, preparation of 89Zr-1 required elevated temperature and an increased reaction time. 89Zr-1 was more stable than 89Zr-2 when challenged in vitro by excess DTPA or serum proteins and in vivo during acute biodistribution studies. Differences in radiometal complex stability arise from structural changes between the two ligand systems, and suggest further ligand optimization is necessary to enhance 89Zr chelation.

  18. Evaluation of macrocyclic hydroxyisophthalamide ligands as chelators for zirconium-89.

    Directory of Open Access Journals (Sweden)

    Nikunj B Bhatt

    Full Text Available The development of bifunctional chelators (BFCs for zirconium-89 immuno-PET applications is an area of active research. Herein we report the synthesis and evaluation of octadentate hydroxyisophthalamide ligands (1 and 2 as zirconium-89 chelators. While both radiometal complexes could be prepared quantitatively and with excellent specific activity, preparation of 89Zr-1 required elevated temperature and an increased reaction time. 89Zr-1 was more stable than 89Zr-2 when challenged in vitro by excess DTPA or serum proteins and in vivo during acute biodistribution studies. Differences in radiometal complex stability arise from structural changes between the two ligand systems, and suggest further ligand optimization is necessary to enhance 89Zr chelation.

  19. Inositol hexa-phosphate: a potential chelating agent for uranium

    International Nuclear Information System (INIS)

    Cebrian, D.; Tapia, A.; Real, A.; Morcillo, M.A.

    2007-01-01

    Chelation therapy is an optimal method to reduce the radionuclide-related risks. In the case of uranium incorporation, the treatment of choice is so far i.v infusion of a 1.4% sodium bicarbonate solution, but the efficacy has been proved to be not very high. In this study, we examine the efficacy of some substances: bicarbonate, citrate, diethylenetriamine pentaacetic acid (DTPA), ethidronate (EHBP) and inositol hexa-phosphate (phytic acid) to chelate uranium using a test developed by Braun et al. Different concentrations of phytic acid, an abundant component of plant seeds that is widely distributed in animal cells and tissues in substantial levels, were tested and compared to the same concentrations of sodium citrate, bicarbonate, EHBP and DTPA. The results showed a strong affinity of inositol hexa-phosphate for uranium, suggesting that it could be an effective chelating agent for uranium in vivo. (authors)

  20. Labeling of monoclonal antibodies with a /sup 67/Ga phenolic aminocarboxylic acid chelate. Pt. 2. Comparison of immunoreactivity and biodistribution of monoclonal antibodies labeled with the /sup 67/Ga chelate or with /sup 131/I

    Energy Technology Data Exchange (ETDEWEB)

    Matzku, S.; Schuhmacher, J.; Kirchgessner, H.; Brueggen, J.

    1986-11-01

    Coupling of the /sup 67/Ga-P-EDDHA chelate via carbodiimide to the anti-melanoma monoclonal antibody (MAb) M.2.9.4 resulted in a low degree of oligomerization, but a considerable degree of intra-molecular (inter-chain) cross-linking. However, this did not impair immunoreactivity, nor did the half-life in vivo differ substantially from that of /sup 131/I-M.2.9.4. Biodistribution analysis in normal mice showed Ga:I ratios near 1 in the blood and other tissues not involved in degradation and label excretion. In tissues of the reticulo-endothelial system (RES) and the kidneys, Ga:I ratios up to 2.51 were reached within 4 days of administration. In antigen-positive MeWo tumor tissue, retention of /sup 67/Ga also exceeded that of /sup 131/I, so that tumor : organ ratios (except tumor : liver) were superior for the /sup 67/Ga-labeled MAb. It is concluded that the method of coupling pre-established /sup 67/Ga-P-EDDHA chelate to antibody, results in a functionally intact tracer molecule, whose persistence in vivo is not significantly impaired. The major difference to I-labeled MAbs may be prolonged retention of Ga in tissues (cells) physiologically involved in antibody catabolism.

  1. Labeling of monoclonal antibodies with a 67Ga-phenolic aminocarboxylic acid chelate. Part II. Comparison of immunoreactivity and biodistribution of monoclonal antibodies labeled with the 67Ga-chelate or with 131I.

    Science.gov (United States)

    Matzku, S; Schuhmacher, J; Kirchgessner, H; Brüggen, J

    1986-01-01

    Coupling of the 67Ga-P-EDDHA chelate via carbodiimide to the anti-melanoma monoclonal antibody (Mab) M.2.9.4 resulted in a low degree of oligomerization, but a considerable degree of intra-molecular (inter-chain) cross-linking. However, this did not impair immunoreactivity, nor did the half-life in vivo differ substantially from that of 131I-M.2.9.4. Biodistribution analysis in normal mice showed Ga:I ratios near 1 in the blood and other tissues not involved in degradation and label excretion. In tissues of the reticulo-endothelial system (RES) and the kidneys, Ga:I ratios up to 2.51 were reached within 4 days of administration. In antigen-positive MeWo tumor tissue, retention of 67Ga also excreted that of 131I, so that tumor; organ ratios (except tumor:liver) were superior for the 67Ga-labeled MAb. It is concluded that the method of coupling pre-established 67Ga-P-EDDHA chelate to antibody results in a functionally intact tracer molecule, whose persistence in vivo is not significantly impaired. The major difference to I-labeled MAbs may be a prolonged retention of Ga in tissues (cells) physiologically involved in antibody catabolism.

  2. Tasquinimod (ABR-215050, a quinoline-3-carboxamide anti-angiogenic agent, modulates the expression of thrombospondin-1 in human prostate tumors

    Directory of Open Access Journals (Sweden)

    Isaacs John T

    2010-05-01

    Full Text Available Abstract Background The orally active quinoline-3-carboxamide tasquinimod [ABR-215050; CAS number 254964-60-8, which currently is in a phase II-clinical trial in patients against metastatic prostate cancer, exhibits anti-tumor activity via inhibition of tumor angiogenesis in human and rodent tumors. To further explore the mode of action of tasquinimod, in vitro and in vivo experiments with gene microarray analysis were performed using LNCaP prostate tumor cells. The array data were validated by real-time semiquantitative reversed transcriptase polymerase chain reaction (sqRT-PCR and protein expression techniques. Results One of the most significant differentially expressed genes both in vitro and in vivo after exposure to tasquinimod, was thrombospondin-1 (TSP1. The up-regulation of TSP1 mRNA in LNCaP tumor cells both in vitro and in vivo correlated with an increased expression and extra cellular secretion of TSP1 protein. When nude mice bearing CWR-22RH human prostate tumors were treated with oral tasquinimod, there was a profound growth inhibition, associated with an up-regulation of TSP1 and a down- regulation of HIF-1 alpha protein, androgen receptor protein (AR and glucose transporter-1 protein within the tumor tissue. Changes in TSP1 expression were paralleled by an anti-angiogenic response, as documented by decreased or unchanged tumor tissue levels of VEGF (a HIF-1 alpha down stream target in the tumors from tasquinimod treated mice. Conclusions We conclude that tasquinimod-induced up-regulation of TSP1 is part of a mechanism involving down-regulation of HIF1α and VEGF, which in turn leads to reduced angiogenesis via inhibition of the "angiogenic switch", that could explain tasquinimods therapeutic potential.

  3. Protracted chelate therapy after incorporation of plutonium 239 in rats

    International Nuclear Information System (INIS)

    Gemenetzis, E.

    1976-01-01

    The author has tested in how far 239 Pu can be mobilized by Ca and Zn, Desfenioxamin B(DFDA) and by combined doses of Ca-DTPA and DFDA. The pre-experiment covered the 239 Pu-metabolism in untreated male and female rats and the distribution in dependence of the way of application. If treatment is started immediately by multiple chelate doses, the first two injections play the main part in the decorporation of 239 Pu. The combination Ca-DTPA30 + DFDA30 μMol x kg -1 is proved to be the best means of decorporation for the whole body. The efficiency of another therapy depends essentially on the treatment used, a daily treatment showing the best effects. If treatment is started later with multiple chelate doses, the total decorporation efficiency is of less value, especially in the skeleton. Aequimolar doses of Ca-DTPA and Zn-DTPA have the same degree of efficiency. This indicates that during protracted chelate treatment starting later, Ca-DTPA could be substituted by the less toxic Zn-DTPA after incorporation of 239 Pu. These results show that intermittant administration of the week's dose is more efficient than a single chelate administration of the whole week's dose at once. Permanent chelate infusion does not seem necessary in any case since it has the same effect as 3 to 5 injections per week and is difficult to carry out in medical practice. Thus, it seems advisable to divide up the weekly dose into 3-5 injections. In case of a wound contamination, the efficiency of immediate intensive treatment depends on the 239 Pu compound used, on the chelate used, and on its dosage. (orig.) [de

  4. EDTA chelation therapy for cardiovascular disease: a systematic review

    Directory of Open Access Journals (Sweden)

    Wu Ping

    2005-11-01

    Full Text Available Abstract Background Numerous practitioners of both conventional and complementary and alternative medicine throughout North America and Europe claim that chelation therapy with EDTA is an effective means to both control and treat cardiovascular disease. These claims are controversial, and several randomized controlled trials have been completed dealing with this topic. To address this issue we conducted a systematic review to evaluate the best available evidence for the use of EDTA chelation therapy in the treatment of cardiovascular disease. Methods We conducted a systematic review of 7 databases from inception to May 2005. Hand searches were conducted in review articles and in any of the trials found. Experts in the field were contacted and registries of clinical trials were searched for unpublished data. To be included in the final systematic review, the studies had to be randomized controlled clinical trials. Results A total of seven articles were found assessing EDTA chelation for the treatment of cardiovascular disease. Two of these articles were subgroup analyses of one RCT that looked at different clinical outcomes. Of the remaining five studies, two smaller studies found a beneficial effect whereas the other three exhibited no benefit for cardiovascular disease from the use of EDTA chelation therapy. Adverse effects were rare but those of note included a few cases of hypocalcemia and a single case of increased creatinine in a patient on the EDTA intervention. Conclusion The best available evidence does not support the therapeutic use of EDTA chelation therapy in the treatment of cardiovascular disease. Although not considered to be a highly invasive or harmful therapy, it is possible that the use of EDTA chelation therapy in lieu of proven therapy may result in causing indirect harm to the patient.

  5. Heavy metal displacement in chelate-irrigated soil during phytoremediation

    Science.gov (United States)

    Madrid, F.; Liphadzi, M. S.; Kirkham, M. B.

    2003-03-01

    Heavy metals in wastewater sewage sludge (biosolids), applied to land, contaminate soils. Phytoremediation, the use of plants to clean up toxic heavy metals, might remove them. Chelating agents are added to soil to solubilize the metals for enhanced phytoextraction. Yet no studies follow the displacement and leaching of heavy metals in soil with and without roots following solubilization with chelates. The objective of this work was to determine the mobility of heavy metals in biosolids applied to the surface of soil columns (76 cm long; 17 cm diam.) with or without plants (barley; Hordeum vulgare L.). Three weeks after barley was planted, all columns were irrigated with the disodium salt of the chelating agent, EDTA (ethylenediamine tetraacetic acid) (0.5 g/kg soil). Drainage water, soil, and plants were analyzed for heavy metals (Cd, Cu, Fe, Mn, Ni, Pb, Zn). Total concentrations of the heavy metals in all columns at the end of the experiment generally were lower in the top 30 cm of soil with EDTA than without EDTA. The chelate increased concentrations of heavy metals in shoots. With or without plants, the EDTA mobilized Cd, Fe, Mn, Ni, Pb, and Zn, which leached to drainage water. Drainage water from columns without EDTA had concentrations of these heavy metals below detection limits. Only Cu did not leach in the presence of EDTA. Even though roots retarded the movement of Cd, Fe, Mn, Ni, Pb, and Zn through the EDTA-treated soil from 1 d (Cd) to 5 d (Fe), the drainage water from columns with EDTA had concentrations of Cd, Fe, Mn, and Pb that exceeded drinking water standards by 1.3, 500, 620, and 8.6 times, respectively. Because the chelate rendered Cd, Fe, Mn, Ni, Pb, and Zn mobile, it is suggested that the theory for leaching of soluble salts, put forward by Nielsen and associates in 1965, could be applied to control movement of the heavy metals for maximum uptake during chelate-assisted phytoremediation.

  6. Combinational chelation therapy abrogates lead-induced neurodegeneration in rats

    International Nuclear Information System (INIS)

    Pachauri, Vidhu; Saxena, Geetu; Mehta, Ashish; Mishra, Deepshikha; Flora, Swaran J.S.

    2009-01-01

    Lead, a ubiquitous and potent neurotoxicant causes oxidative stress which leads to numerous neurobehavioral and physiological alterations. The ability of lead to bind sulfhydryl groups or compete with calcium could be one of the reasons for its debilitating effects. In the present study, we addressed: i) if chelation therapy could circumvent the altered oxidative stress and prevent neuronal apoptosis in chronic lead-intoxicated rats, ii) whether chelation therapy could reverse biochemical and behavioral changes, and iii) if mono or combinational therapy with captopril (an antioxidant) and thiol chelating agents (DMSA/MiADMSA) is more effective than individual thiol chelator in lead-exposed rats. Results indicated that lead caused a significant increase in reactive oxygen species, nitric oxide, and intracellular free calcium levels along with altered behavioral abnormalities in locomotor activity, exploratory behavior, learning, and memory that were supported by changes in neurotransmitter levels. A fall in membrane potential, release of cytochrome c, and DNA damage indicated mitochondrial-dependent apoptosis. Most of these alterations showed significant recovery following combined therapy with captopril with MiADMSA and to a smaller extend with captopril + DMSA over monotherapy with these chelators. It could be concluded from our present results that co-administration of a potent antioxidant (like captopril) might be a better treatment protocol than monotherapy to counter lead-induced oxidative stress. The major highlight of the work is an interesting experimental evidence of the efficacy of combinational therapy using an antioxidant with a thiol chelator in reversing neurological dystrophy caused due to chronic lead exposure in rats.

  7. Interaction of chelating agents with cadmium in mice and rats

    International Nuclear Information System (INIS)

    Eybl, V.; Sykora, J.; Koutensky, J.; Caisova, D.; Schwartz, A.; Mertl, F.

    1984-01-01

    The influence of several chelating agents (CaDTPA, ZnDTPA, CaEDTA, ZnEDTA, DMSA, D-penicillamine and DMPS, DMP and DDC) on the acute toxicity of CdCl 2 and on the whole body retention and tissue distribution of cadmium after the IV application of /sup 115mCdCl 2 was compared in mice. The chelating agents were applied immediately after the application of cadmium. CaDTPA, ZnDTPA and DMSA appeared to be the most effective antidotes. However, DMSA increased the amount of cadmium retained in kidneys. The treatement of cadmium-poisoned mice with the combination of DMSA (IP) and ZnDTPA (SC) (all the compounds were injected in equimolar dose) decreased the toxicity of cadmium more than treatment with one chelating agents (given in a 2:1 dose). However, by studying the effect of these chelating agents and their combination application of the antidotes showed little or no improvement over the results obtained with the most effective of the individual components. In the urine of rats injected with CdCl 2 and treated with the chelating agents (CaDTPA, ZnDTPA, DMSA), the presence of cadmium complexes was demonstrated. The formation of mixed ligand chelates in vivo was not proved. Experiments in mice given a single injection of /sup 115m/Cd-labeled Cd complexes of DMPS, DMSA and DTPA showed a high retention of cadmium in the organisms after the IV application of CdDMPS and CdDMSA complexes

  8. Interaction of chelating agents with cadmium in mice and rats.

    Science.gov (United States)

    Eybl, V; Sýkora, J; Koutenský, J; Caisová, D; Schwartz, A; Mertl, F

    1984-01-01

    The influence of several chelating agents (CaDTPA, ZnDTPA, CaEDTA, ZnEDTA, DMSA, D-penicillamine and DMPS, DMP and DDC) on the acute toxicity of CdCl2 and on the whole body retention and tissue distribution of cadmium after the IV application of 115mCdCl2 was compared in mice. The chelating agents were applied immediately after the application of cadmium. CaDTPA, ZnDTPA and DMSA appeared to be the most effective antidotes. However, DMSA increased the amount of cadmium retained in kidneys. The treatment of cadmium-poisoned mice with the combination of DMSA (IP) and ZnDTPA (SC) (all the compounds were injected in equimolar dose) decreased the toxicity of cadmium more than treatment with one chelating agents (given in a 2:1 dose). However, by studying the effect of these chelating agents and their combination of the retention and distribution of Cd in mice, it was demonstrated that the combined application of the antidotes showed little or no improvement over the results obtained with the most effective of the individual components. In the urine of rats injected with CdCl2 and treated with the chelating agents (CaDTPA, ZnDTPA, DMSA), the presence of cadmium complexes was demonstrated. The formation of mixed ligand chelates in vivo was not proved. Experiments in mice given a single injection of 115mCd-labeled Cd complexes of DMPS, DMSA and DTPA showed a high retention of cadmium in the organisms after the IV application of CdDMPS and CdDMSA complexes. PMID:6734561

  9. Chelation therapy in intoxications with mercury, lead and copper

    DEFF Research Database (Denmark)

    Cao, yang; Skaug, Marit Aralt; Andersen, Ole

    2015-01-01

    In the present review we provide an update of the appropriate use of chelating agents in the treatment of intoxications with compounds of mercury, lead and copper. The relatively new chelators meso-2,3-dimercaptosuccinic acid (DMSA) and 2,3-dimercapto-propanesulphonate (DMPS) can effectively...... mobilize deposits of mercury as well as of lead into the urine. These drugs can be administered orally and have relatively low toxicity compared to the classical antidote dimercaptopropanol (BAL). d-Penicillamine has been widely used in copper overload, although 2,3-dimercaptosuccinic acid...

  10. Potentiometric study of Nd3+ chelates of substituted salicylhydroxamic acids

    International Nuclear Information System (INIS)

    Deshpande, R.G.; Jahagirdar, D.V.

    1976-01-01

    The interaction of Nd 3+ ion with salicylhydroxamic acid and 5-methyl, 5-chloro, 5-bromo, 5-nitro, 4-chloro, 4-bromo and 3-chloro salicylhydroxamic acids is investigated potentiometrically by Calvin-Bjerrum titration technique at 30 0 +- 0.1 0 and ionic strength μ=0.1 M(NaClO 4 ) in 50% v/v dioxane-water mixtures. Nd 3+ forms only 1:1 chelates with these ligands. The validity of the log K= apk + b relationship is examined for these chelates. (author)

  11. Biological behavior of 188Re-biotin chelate for multistep therapy with the avidin-biotin system

    International Nuclear Information System (INIS)

    Choi, T. H.; Ahn, S. H.; Choi, C. W.; Woo, K. S.; Jung, W. S.; Lim, S. J.; Lim, S. M.

    1999-01-01

    The purpose of this study was to test the three-step targeting of tumors in mice using biotinylated antibody, streptavidin and radiolabeled biotin for radioimmunotherapy (RAIT). Three-step pretargetting can potentially decreases harmful radiation to normal tissues in radioimmunotherapy. 188 Re from 188 W- 188 Re generator, is recently introduced in therapeutic nuclear medicine and made it possible to use whenever needed. We studied biotin-chelates MGB for use in the avidin/biotin pretargetting system. Chelates that hold radiometals with high stability under physiological conditions are essential to avoid excessive radiation damage to non-target cells. We synthesized MAG 2 GABA-Biocytin (MGB), labeled with 188 Re and evaluated biological behavior of 188 Re-MGB. biotinyl MAG 2 GABA bind the therapeutic radiometal 188 Re with excellent in vitro stability and have the required physiological properties for pretargetted therapy. In normal mice, 188 Re-MGB was excreted via hepatobiliary pathway, %ID/g of GI tract was 52.1 at 120min. In Raji cells tumor bearing nude mice, liver and colon were higher than those of normal mouse. Tumor uptake at 120min was 0.05%ID/g. 188 Re-MGB may have a role in pretargetted radioimmunotherapy

  12. Bone tumors

    International Nuclear Information System (INIS)

    Unni, K.K.

    1988-01-01

    This book contains the proceedings on bone tumors. Topics covered include: Bone tumor imaging: Contribution of CT and MRI, staging of bone tumors, perind cell tumors of bone, and metastatic bone disease

  13. Systemic agonistic anti-CD40 treatment of tumor bearing mice modulates hepatic myeloid suppressive cells and causes immune-mediated liver damage

    Science.gov (United States)

    Medina-Echeverz, José; Ma, Chi; Duffy, Austin; Eggert, Tobias; Hawk, Nga; Kleiner, David E.; Korangy, Firouzeh; Greten, Tim F.

    2015-01-01

    Immune stimulatory monoclonal antibodies are currently evaluated as anti tumor agents. Although overall toxicity appears to be moderate, liver toxicities have been reported and are not completely understood. We studied the effect of systemic CD40 antibody treatment on myeloid cells in spleen and liver. Naïve and tumor-bearing mice were treated systemically with agonistic anti-CD40 antibody. Immune cell subsets in liver and spleen, serum transaminases and liver histologies were analyzed after antibody administration. Nox2−/−, Cd40−/− as well as bone marrow chimeric mice were used to study the mechanism by which agonistic anti-CD40 mediates its effects in vivo. Suppressor function of murine and human tumor-induced myeloid derived suppressive cells was studied upon CD40 ligation. Agonistic CD40 antibody caused liver damage within 24 hours after injection in two unrelated tumor models and mice strains. Using bone marrow chimeras we demonstrated that CD40 antibody-induced hepatitis in tumor-bearing mice was dependent on the presence of CD40-expressing hematopoietic cells. Agonistic CD40 ligation-dependent liver damage was induced by the generation of reactive oxygen species. Furthermore, agonistic CD40 antibody resulted in increased CD80 and CD40 positive liver CD11b+Gr-1+ immature myeloid cells. CD40 ligation on tumor-induced murine and human CD14+HLA-DRlow PBMC from cancer patients reduced their immune suppressor function. Collectively, agonistic CD40 antibody treatment activated tumor-induced, myeloid cells, caused myeloid dependent hepatotoxicity and ameliorated the suppressor function of murine and human MDSC. Collectively, our data suggests that CD40 may mature immunosuppressive myeloid cells and thereby cause liver damage in mice with an accumulation of tumor-induced hepatic MDSC. PMID:25637366

  14. Biodegradable gadolinium-chelated cationic poly(urethane amide) copolymers for gene transfection and magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Xiaolong [Department of Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065 (China); Wang, Gangmin [Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040 (China); Shi, Ting [The Institute for Translational Nanomedicine, Shanghai East Hospital, Institute for Biomedical Engineering and Nanoscience, Tongji University School of Medicine, Shanghai 200092 (China); Shao, Zhihong [Department of Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065 (China); Zhao, Peng; Shi, Donglu [The Institute for Translational Nanomedicine, Shanghai East Hospital, Institute for Biomedical Engineering and Nanoscience, Tongji University School of Medicine, Shanghai 200092 (China); Ren, Jie [Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804 (China); Lin, Chao, E-mail: chaolin@tongji.edu.cn [The Institute for Translational Nanomedicine, Shanghai East Hospital, Institute for Biomedical Engineering and Nanoscience, Tongji University School of Medicine, Shanghai 200092 (China); Wang, Peijun, E-mail: tjpjwang@sina.com [Department of Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065 (China)

    2016-08-01

    Theranostic nano-polyplexes containing gene and imaging agents hold a great promise for tumor diagnosis and therapy. In this work, we develop a group of new gadolinium (Gd)-chelated cationic poly(urethane amide)s for gene delivery and T{sub 1}-weighted magnetic resonance (MR) imaging. Cationic poly(urethane amide)s (denoted as CPUAs) having multiple disulfide bonds, urethane and amide linkages were synthesized by stepwise polycondensation reaction between 1,4-bis(3-aminopropyl)piperazine and a mixture of di(4-nitrophenyl)-2, 2′-dithiodiethanocarbonate (DTDE-PNC) and diethylenetriaminepentaacetic acid (DTPA) dianhydride at varied molar ratios. Then, Gd-chelated CPUAs (denoted as GdCPUAs) were produced by chelating Gd(III) ions with DTPA residues of CPUAs. These GdCPUAs could condense gene into nanosized and positively-charged polyplexes in a physiological condition and, however, liberated gene in an intracellular reductive environment. In vitro transfection experiments revealed that the GdCPUA at a DTDE-PNC/DTPA residue molar ratio of 85/15 induced the highest transfection efficiency in different cancer cells. This efficiency was higher than that yielded with 25 kDa branched polyethylenimine as a positive control. GdCPUAs and their polyplexes exhibited low cytotoxicity when an optimal transfection activity was detected. Moreover, GdCPUAs may serve as contrast agents for T{sub 1}-weighted magnetic resonance imaging. The results of this work indicate that biodegradable Gd-chelated cationic poly(urethane amide) copolymers have high potential for tumor theranostics. - Highlights: • Novel cationic gadolinium-chelated poly(urethane amide)s (GdCPUAs) are prepared. • GdCPUAs can induce a high transfection efficacy in different cancer cells. • GdCPUAs reveal good cyto-compatibility against cancer cells. • GdCPUAs may be applied as T{sub 1}-contrast agents for magnetic resonance imaging. • GdCPUAs hold high potential for cancer theranostics.

  15. Metal chelate conjugated monoclonal antibodies, wherein the metal is an α emitter

    International Nuclear Information System (INIS)

    Gansow, O.A.; Strand, M.

    1984-01-01

    Methods of manufacturing and purifying metal chelate conjugated monoclonal antibodies are described, wherein the chelated metal emits alpha radiation. The conjugates are suited for therapeutic uses being substantially free of nonchelated radiometal. (author)

  16. Chelating ligands: enhancers of quality and purity of biogas ...

    African Journals Online (AJOL)

    The quality of biogas depends largely on the percentage of methane and hydrogen sulphide gas present. High concentration of hydrogen sulphide results in low quality biogas. This work employed the use of chelating ligands in scrubbing hydrogen sulphide gas while improving the yield of methane gas. Experimental ...

  17. Studies on effect of Microbial Iron Chelators on Candida Albican

    International Nuclear Information System (INIS)

    Rehmani, Fouzia S.; Milicent, S.; Zaheer-Uddin

    2005-01-01

    Iron is an essential for the life of all microbe cells. It generally exists in the oxidized form Fe(III). Even under anaerobic reducing condition the metal appear to be taken up as Fe(III). Thus free-living microorganisms require specific and effective ferric ion transport system to cope with low availability of the metal. In iron deficient environment they produce a low molecular weight specific chelators called siderphores or microbial iron chelators. Siderphores compete for limited supplied of iron. These compounds came out of the cell but can not re-enter without iron due to high affinity of these siderphores often have more than one catechol/hydroxamate functions and are multidentate (usually hexadentate ligands). The aim of the present research is to check the effect of iron chelators, namely gallic acid and salisyl hydroxamate on the growth of Candida albican in vitro. C. albican is the opportunistic paltogen present as the normal flora inside human body. In vivo the growth of C. albican is distributed by the use of antibiotics and immuno suppressers. In cases of iron over-dosage in human being, the patients are treated with certain a-iron chelators. Hence an attempt is made to notice the effect that might be inhibition or enhancement of the organism in vitro. (author)

  18. Laccase Immobilization by Chelated Metal Ion Coordination Chemistry

    Directory of Open Access Journals (Sweden)

    Qingqing Wang

    2014-09-01

    Full Text Available In this work, amidoxime polyacrylonitrile (AOPAN nanofibrous membrane was prepared by a reaction between PAN nanofibers and hydroxylamine hydrochloride. The AOPAN nanofibrous membranes were used for four metal ions (Fe3+, Cu2+, Ni2+, Cd2+ chelation under different conditions. Further, the competition of different metal ions coordinating with AOPAN nanofibrous membrane was also studied. The AOPAN chelated with individual metal ion (Fe3+, Cu2+, Ni2+, Cd2+ and also the four mixed metal ions were further used for laccase (Lac immobilization. Compared with free laccase, the immobilized laccase showed better resistance to pH and temperature changes as well as improved storage stability. Among the four individual metal ion chelated membranes, the stability of the immobilized enzymes generally followed the order as Fe–AOPAN–Lac > Cu–AOPAN–Lac > Ni–AOPAN–Lac > Cd–AOPAN–Lac. In addition, the immobilized enzyme on the carrier of AOPAN chelated with four mixed metal ions showed the best properties.

  19. Chelation of thallium by combining deferasirox and desferrioxamine in rats.

    Science.gov (United States)

    Saljooghi, Amir Shokooh; Babaie, Maryam; Mendi, Fatemeh Delavar; Zahmati, Maliheh; Saljooghi, Zoheir Shokouh

    2016-01-01

    The hypothesis that two known chelators deferasirox (4-[3,5-bis(2-hydroxyphenyl)-1,2,4-triazol-1-yl]-benzoic acid) and desferrioxamine (DFO) might be more efficient as combined treatment than as monotherapies in removing thallium from the body was tested in a new acute rat model. 7-week-old male Wistar rats received chelators: deferasirox (orally), DFO (intraperitoneal; i.p.), or deferasirox + DFO as 75 or 150 mg/kg dose half an hour after a single i.p. administration of 8 mg thallium/kg body weight in the form of chloride. Serum thallium concentration, urinary thallium, and iron excretions were determined by graphite furnace atomic absorption spectrometry. Both chelators were effective only at the higher dose level, while DFO was more effective than deferasirox in enhancing urinary thallium excretion, deferasirox was more effective than DFO in enhancing urinary iron excretion. In the combined treatment group, deferasirox did not increase the DFO effect on thallium and DFO did not increase the effect of deferasirox on iron elimination. Our results support the usefulness of this animal model for preliminary in vivo testing of thallium chelators. Urinary values were more useful because of the high variability of serum results. © The Author(s) 2013.

  20. Mixed ligand chelate therapy for plutonium and cadmium poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, J; Derr, S K [Hope Coll., Holland, MI (USA)

    1978-09-28

    Some experiments with mice are described in which complete removal of tissue deposits of /sup 239/Pu and prevention of mortality in animals given lethal doses of Cd were achieved using a mixed ligand chelate treatment (MLC). The mixed ligand consisted of diethylenetriaminepentaacetic acid and salicylic acid.

  1. Iron chelating activity, phenol and flavonoid content of some ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-09-17

    Sep 17, 2008 ... require regular blood transfusions in order to improve both quality of ... fused red blood cells and the excess iron is deposited as ... potentiation of reactive oxygen species (ROS) and .... The percentage inhibition of ferrozine–Fe2+ complex formation was ... estimation of the chelating activity of the coexisting.

  2. Bone marrow and chelatable iron in patients with protein energy ...

    African Journals Online (AJOL)

    Objectives: To examine the iron status of malnourished children by comparing bone marrow iron deposits in children with protein energy malnutrition with those in well-nourished controls, and measuring chelatable urinary iron excretion in children with kwashiorkor. Design: Bone marrow iron was assessed histologicaHy in ...

  3. Encouraging Early Clinical Outcomes With Helical Tomotherapy–Based Image-Guided Intensity-Modulated Radiation Therapy for Residual, Recurrent, and/or Progressive Benign/Low-Grade Intracranial Tumors: A Comprehensive Evaluation

    International Nuclear Information System (INIS)

    Gupta, Tejpal; Wadasadawala, Tabassum; Master, Zubin; Phurailatpam, Reena; Pai-Shetty, Rajershi; Jalali, Rakesh

    2012-01-01

    Purpose: To report early clinical outcomes of helical tomotherapy (HT)-based image-guided intensity-modulated radiation therapy (IMRT) in brain tumors of varying shape, size, and location. Materials and Methods: Patients with residual, recurrent, and/or progressive low-grade intracranial and skull-base tumors were treated on a prospective protocol of HT-based IMRT and followed clinicoradiologically. Standardized metrics were used for plan evaluation and outcome analysis. Results: Twenty-seven patients with 30 lesions were treated to a median radiotherapy dose of 54 Gy in 30 fractions. All HT plans resulted in excellent target volume coverage with steep dose-gradients. The mean (standard deviation) dose homogeneity index and conformity index was 0.07 (0.05) and 0.71 (0.08) respectively. At first response assessment, 20 of 30 lesions were stable, whereas 9 showed partial regression. One patient with a recurrent clival chordoma though neurologically stable showed imaging-defined progression, whereas another patient with stable disease on serial imaging had sustained neurologic worsening. With a median follow-up of 19 months (interquartile range, 11–26 months), the 2-year clinicoradiological progression-free survival and overall survival was 93.3% and 100% respectively. Conclusions: Careful selection of radiotherapy technique is warranted for benign/low-grade brain tumors to achieve durable local control with minimum long-term morbidity. Large or complex-shaped tumors benefit most from IMRT. Our early clinical experience of HT-based IMRT for brain tumors has been encouraging.

  4. Encouraging Early Clinical Outcomes With Helical Tomotherapy-Based Image-Guided Intensity-Modulated Radiation Therapy for Residual, Recurrent, and/or Progressive Benign/Low-Grade Intracranial Tumors: A Comprehensive Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Tejpal [Department of Radiation Oncology, ACTREC/TMH, Tata Memorial Centre, Kharghar, Navi Mumbai (India); Wadasadawala, Tabassum; Master, Zubin; Phurailatpam, Reena; Pai-Shetty, Rajershi; Jalali, Rakesh [Department of Radiation Oncology, ACTREC/TMH, Tata Memorial Centre, Kharghar, Navi Mumbai (India)

    2012-02-01

    Purpose: To report early clinical outcomes of helical tomotherapy (HT)-based image-guided intensity-modulated radiation therapy (IMRT) in brain tumors of varying shape, size, and location. Materials and Methods: Patients with residual, recurrent, and/or progressive low-grade intracranial and skull-base tumors were treated on a prospective protocol of HT-based IMRT and followed clinicoradiologically. Standardized metrics were used for plan evaluation and outcome analysis. Results: Twenty-seven patients with 30 lesions were treated to a median radiotherapy dose of 54 Gy in 30 fractions. All HT plans resulted in excellent target volume coverage with steep dose-gradients. The mean (standard deviation) dose homogeneity index and conformity index was 0.07 (0.05) and 0.71 (0.08) respectively. At first response assessment, 20 of 30 lesions were stable, whereas 9 showed partial regression. One patient with a recurrent clival chordoma though neurologically stable showed imaging-defined progression, whereas another patient with stable disease on serial imaging had sustained neurologic worsening. With a median follow-up of 19 months (interquartile range, 11-26 months), the 2-year clinicoradiological progression-free survival and overall survival was 93.3% and 100% respectively. Conclusions: Careful selection of radiotherapy technique is warranted for benign/low-grade brain tumors to achieve durable local control with minimum long-term morbidity. Large or complex-shaped tumors benefit most from IMRT. Our early clinical experience of HT-based IMRT for brain tumors has been encouraging.

  5. f-Element Ion Chelation in Highly Basic Media

    International Nuclear Information System (INIS)

    Paine, R.T.

    2000-01-01

    A large body of data has been collected over the last fifty years on the chemical behavior of f-element ions. The ions undergo rapid hydrolysis reactions in neutral or basic aqueous solutions that produce poorly understood oxide-hydroxide species; therefore, most of the fundamental f-element solution chemistry has allowed synthetic and separations chemists to rationally design advanced organic chelating ligands useful for highly selective partitioning and separation of f-element ions from complex acidic solution matrices. These ligands and new examples under development allow for the safe use and treatment of solutions containing highly radioactive species. This DOE/EMSP project was undertaken to address the following fundamental objectives: (1) study the chemical speciation of Sr and lanthanide (Ln) ions in basic aqueous media containing classical counter anions found in waste matrices; (2) prepare pyridine N-oxide phosphonates and phosphonic acids that might act as selective chelators for Ln ions in model basic pH waste streams; (3) study the binding of the new chelators toward Ln ions and (4) examine the utility of the chelators as decontamination and dissolution agents under basic solution conditions. The project has been successful in attacking selected aspects of the very difficult problems associated with basic pH solution f-element waste chemistry. In particular, the project has (1) shed additional light on the initial stages of Ln ion sol-gel-precipitate formulation under basic solution conditions; (2) generated new families of pyridine phosphonic acid chelators; (3) characterized the function of the chelators and (4) examined their utility as oxide-hydroxide dissolution agents. These findings have contributed significantly to an improved understanding of the behavior of Ln ions in basic media containing anions found in typical waste sludges as well as to the development of sludge dissolution agents. The new chelating reagents are easily made and could be

  6. The impact of computed tomography slice thickness on the assessment of stereotactic, 3D conformal and intensity-modulated radiotherapy of brain tumors.

    Science.gov (United States)

    Caivano, R; Fiorentino, A; Pedicini, P; Califano, G; Fusco, V

    2014-05-01

    To evaluate radiotherapy treatment planning accuracy by varying computed tomography (CT) slice thickness and tumor size. CT datasets from patients with primary brain disease and metastatic brain disease were selected. Tumor volumes ranging from about 2.5 to 100 cc and CT scan at different slice thicknesses (1, 2, 4, 6 and 10 mm) were used to perform treatment planning (1-, 2-, 4-, 6- and 10-CT, respectively). For any slice thickness, a conformity index (CI) referring to 100, 98, 95 and 90 % isodoses and tumor size was computed. All the CI and volumes obtained were compared to evaluate the impact of CT slice thickness on treatment plans. The smallest volumes reduce significantly if defined on 1-CT with respect to 4- and 6-CT, while the CT slice thickness does not affect target definition for the largest volumes. The mean CI for all the considered isodoses and CT slice thickness shows no statistical differences when 1-CT is compared to 2-CT. Comparing the mean CI of 1- with 4-CT and 1- with 6-CT, statistical differences appear only for the smallest volumes with respect to 100, 98 and 95 % isodoses-the CI for 90 % isodose being not statistically significant for all the considered PTVs. The accuracy of radiotherapy tumor volume definition depends on CT slice thickness. To achieve a better tumor definition and dose coverage, 1- and 2-CT would be suitable for small targets, while 4- and 6-CT are suitable for the other volumes.

  7. HIGD1A Regulates Oxygen Consumption, ROS Production, and AMPK Activity during Glucose Deprivation to Modulate Cell Survival and Tumor Growth

    Directory of Open Access Journals (Sweden)

    Kurosh Ameri

    2015-02-01

    Full Text Available Hypoxia-inducible gene domain family member 1A (HIGD1A is a survival factor induced by hypoxia-inducible factor 1 (HIF-1. HIF-1 regulates many responses to oxygen deprivation, but viable cells within hypoxic perinecrotic solid tumor regions frequently lack HIF-1α. HIGD1A is induced in these HIF-deficient extreme environments and interacts with the mitochondrial electron transport chain to repress oxygen consumption, enhance AMPK activity, and lower cellular ROS levels. Importantly, HIGD1A decreases tumor growth but promotes tumor cell survival in vivo. The human Higd1a gene is located on chromosome 3p22.1, where many tumor suppressor genes reside. Consistent with this, the Higd1a gene promoter is differentially methylated in human cancers, preventing its hypoxic induction. However, when hypoxic tumor cells are confronted with glucose deprivation, DNA methyltransferase activity is inhibited, enabling HIGD1A expression, metabolic adaptation, and possible dormancy induction. Our findings therefore reveal important new roles for this family of mitochondrial proteins in cancer biology.

  8. Chelator induced phytoextraction and in situ soil washing of Cu

    International Nuclear Information System (INIS)

    Kos, Bostjan; Lestan, Domen

    2004-01-01

    In a soil column experiment, we investigated the effect of 5 mmol kg -1 soil addition of citric acid, ethylenediamine tetraacetate (EDTA), diethylenetriamine-pentaacetate (DTPA) and [S,S]-stereoisomer of ethylenediamine-disuccinate (EDDS) on phytoextraction of Cu from a vineyard soil with 162.6 mg kg -1 Cu, into the test plant Brassica rapa var. pekinensis. We also examined the use of a horizontal permeable barrier, composed of layers of nutrient enriched sawdust and apatite, for reduction of chelator induced Cu leaching. The addition of all chelators, except citric acid, enhanced Cu mobility and caused leaching of 19.5-23% of initial total Cu from the soil column. However, Cu plant uptake did not increase accordingly; the most effective was the EDDS treatment, in which plant Cu concentration reached 37.8±1.3 mg kg -1 Cu and increased by 3.3-times over the control treatment. The addition of none of the chelators in the concentration range from 5 to 15 mmol kg -1 exerted any toxic effect on respiratory soil microorganisms. When EDDS was applied into the columns with horizontal permeable barriers, only 0.53±0.32% of the initial total Cu was leached. Cu (36.7%) was washed from the 18 cm soil layer above the barrier and accumulated in the barrier. Our results indicate that rather than for a reduction of Cu leaching during rather ineffective chelate induced Cu phytoextraction, horizontal permeable barriers could be more effective in a new remediation technique of controlled in situ soil washing of Cu with biodegradable chelates

  9. Copper chelators: chemical properties and bio-medical applications.

    Science.gov (United States)

    Tegoni, M; Valensin, D; Toso, L; Remelli, M

    2014-01-01

    Copper is present in different concentrations and chemical forms throughout the earth crust, surface and deep water and even, in trace amounts, in the atmosphere itself. Copper is one of the first metals used by humans, the first artifacts dating back 10,000 years ago. Currently, the world production of refined copper exceeds 16,000 tons/year. Copper is a micro-element essential to life, principally for its red-ox properties that make it a necessary cofactor for many enzymes, like cytochrome-c oxidase and superoxide dismutase. In some animal species (e.g. octopus, snails, spiders, oysters) copper-hemocyanins also act as carriers of oxygen instead of hemoglobin. However, these red-ox properties also make the pair Cu(+)/Cu(2+) a formidable catalyst for the formation of reactive oxygen species, when copper is present in excess in the body or in tissues. The treatment of choice in cases of copper overloading or intoxication is the chelation therapy. Different molecules are already in clinical use as chelators or under study or clinical trial. It is worth noting that chelation therapy has also been suggested to treat some neurodegenerative diseases or cardiovascular disorders. In this review, after a brief description of the homeostasis and some cases of dyshomeostasis of copper, the main (used or potential) chelators are described; their properties in solution, even in relation to the presence of metal or ligand competitors, under physiological conditions, are discussed. The legislation of the most important Western countries, regarding both the use of chelating agents and the limits of copper in foods, drugs and cosmetics, is also outlined.

  10. CXCL12 MODULATION OF CXCR4 AND CXCR7 ACTIVITY IN HUMAN GLIOBLASTOMA STEM-LIKE CELLS AND REGULATION OF THE TUMOR MICROENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Roberto eWurth

    2014-05-01

    Full Text Available Chemokines are crucial autocrine and paracrine players in tumor development. In particular, CXCL12, through its receptors CXCR4 and CXCR7, affects tumor progression by controlling cancer cell survival, proliferation and migration, and, indirectly, via angiogenesis or recruiting immune cells.Glioblastoma (GBM is the most prevalent primary malignant brain tumor in adults and despite current multimodal therapies it remains almost incurable. The aggressive and recurrent phenotype of GBM is ascribed to high growth rate, invasiveness to normal brain, marked angiogenesis, ability to escape the immune system and resistance to standard of care therapies. Tumor molecular and cellular heterogeneity severely hinders GBM therapeutic improvement. In particular, a subpopulation of chemo- and radio-therapy resistant tumorigenic cancer stem–like cells (CSCs is believed to be the main responsible for tumor cell dissemination to the brain.GBM cells display heterogeneous expression levels of CXCR4 and CXCR7 that are overexpressed in CSCs, representing a molecular correlate for the invasive potential of GBM. The microenvironment contribution in GBM development is increasingly emphasized. An interplay exists between CSCs, differentiated GBM cells, and the microenvironment, mainly through secreted chemokines (e.g. CXCL12 causing recruitment of fibroblasts, endothelial, mesenchymal and inflammatory cells to the tumor, via specific receptors such as CXCR4.This review covers recent developments on the role of CXCL12/CXCR4-CXCR7 networks in GBM progression and the potential translational impact of their targeting. The biological and molecular understanding of the heterogeneous GBM cell behavior, phenotype and signaling is still limited. Progress in the identification of chemokine-dependent mechanisms that affect GBM cell survival, trafficking and chemo-attractive functions, opens new perspectives for development of more specific therapeutic approaches that include

  11. Short-term arginine deprivation results in large-scale modulation of hepatic gene expression in both normal and tumor cells: microarray bioinformatic analysis

    Directory of Open Access Journals (Sweden)

    Sabo Edmond

    2006-09-01

    Full Text Available Abstract Background We have reported arginine-sensitive regulation of LAT1 amino acid transporter (SLC 7A5 in normal rodent hepatic cells with loss of arginine sensitivity and high level constitutive expression in tumor cells. We hypothesized that liver cell gene expression is highly sensitive to alterations in the amino acid microenvironment and that tumor cells may differ substantially in gene sets sensitive to amino acid availability. To assess the potential number and classes of hepatic genes sensitive to arginine availability at the RNA level and compare these between normal and tumor cells, we used an Affymetrix microarray approach, a paired in vitro model of normal rat hepatic cells and a tumorigenic derivative with triplicate independent replicates. Cells were exposed to arginine-deficient or control conditions for 18 hours in medium formulated to maintain differentiated function. Results Initial two-way analysis with a p-value of 0.05 identified 1419 genes in normal cells versus 2175 in tumor cells whose expression was altered in arginine-deficient conditions relative to controls, representing 9–14% of the rat genome. More stringent bioinformatic analysis with 9-way comparisons and a minimum of 2-fold variation narrowed this set to 56 arginine-responsive genes in normal liver cells and 162 in tumor cells. Approximately half the arginine-responsive genes in normal cells overlap with those in tumor cells. Of these, the majority was increased in expression and included multiple growth, survival, and stress-related genes. GADD45, TA1/LAT1, and caspases 11 and 12 were among this group. Previously known amino acid regulated genes were among the pool in both cell types. Available cDNA probes allowed independent validation of microarray data for multiple genes. Among genes downregulated under arginine-deficient conditions were multiple genes involved in cholesterol and fatty acid metabolism. Expression of low-density lipoprotein receptor was

  12. Role of vitamin D3 in modulation of ΔNp63α expression during UVB induced tumor formation in SKH-1 mice.

    Directory of Open Access Journals (Sweden)

    Natasha T Hill

    Full Text Available ΔNp63α, a proto-oncogene, is up-regulated in non-melanoma skin cancers and directly regulates the expression of both Vitamin D receptor (VDR and phosphatase and tensin homologue deleted on chromosome ten (PTEN. Since ΔNp63α has been shown to inhibit cell invasion via regulation of VDR, we wanted to determine whether dietary Vitamin D3 protected against UVB induced tumor formation in SKH-1 mice, a model for squamous cell carcinoma development. We examined whether there was a correlation between dietary Vitamin D3 and ΔNp63α, VDR or PTEN expression in vivo in SKH-1 mice chronically exposed to UVB radiation and fed chow containing increasing concentrations of dietary Vitamin D3. Although we observed differential effects of the Vitamin D3 diet on ΔNp63α and VDR expression in chronically irradiated normal mouse skin as well as UVB induced tumors, Vitamin D3 had little effect on PTEN expression in vivo. While low-grade papillomas in mice exposed to UV and fed normal chow displayed increased levels of ΔNp63α, expression of both ΔNp63α and VDR was reduced in invasive tumors. Interestingly, in mice fed high Vitamin D3 chow, elevated levels of ΔNp63α were observed in both local and invasive tumors but not in normal skin suggesting that oral supplementation with Vitamin D3 may increase the proliferative potential of skin tumors by increasing ΔNp63α levels.

  13. A project proposal for the implementation of Intensity Modulated Radiation Therapy (IMRT) for treatment of tumors of the central nervous system (CNS)

    International Nuclear Information System (INIS)

    Alert Silva, Jose; Chon Rivas, Ivon; Ascension Ibarra, Yudy; Yanez Lopez, Yaima; Rodriguez Zayas, Michel; Diaz Moreno, Rogelio

    2009-01-01

    Radiotherapy, together with the surgery, one of the essential therapeutic tools in the treatment of CNS tumors. The use of radiation, can be severe sequelae affecting quality of life of the patient, organs at risk receiving high dose and advanced technique of IMRT treatment planning and allows treatments shaped fields, especially when the target of radiation is irregular, with fewer side effects by limiting the dose in the tumor tissues and organs at risk and to allow us to increase the doses in the tumor .. So we decided to develop a protocol for the implementation of IMRT, taking into account that we have the appropriate equipment, trained staff to develop this technique. The main objective of this proposal is to allow us to establish the parameters necessary to perform IMRT, and then escalate the dose of radiation to the tumor, with reduced toxicity to healthy tissues. Inclusion criteria. It included 6 patients with histological diagnosis of CNS tumors, specifically astrocytomas grade II, III and IV, glioblastoma multiforme, where radiation is the main treatment, or associated with surgery. It excludes patients who have previously received radiation therapy or are unable to receive treatment without having movements that do not suffer another debilitating disease and to sign informed consent. Be held position and will be used as masks thermo deformed stun, then planning CT performed in all cases. Be designed later volumes (GTV, CTV and PTV, and OR, as established by the ICRU reports 52 and 60, the IAEA), will define the dose, and restrictions on healthy tissue technique is defined treatment according proposed objectives in the planning system. Once approved, is made conventional simulation, verification of the treatment plan on your computer with web plates and implementation of treatment in 1220 of INOR LINAC. Be made patient-specific quality controls and verification of DRR plan once a week for each patient treated. Monitoring will be conducted weekly during

  14. Development of a new radiolabel (lead-203) and new chelating agents for labeling monoclonal anntibodies for imaging

    International Nuclear Information System (INIS)

    Srivastava, S.C.; Mease, R.C.; Meinken, G.E.; Mausner, L.F.; Steplewski, Z.

    1988-01-01

    High liver uptake and slow body clearance presently limit the usefulness of 111 In labeled antibodies for tumor imaging. We have investigated 203 Pb as an alternate and better antibody label. The DTPA and cyclohexyl EDTA (CDTA) conjugates of an anticolon carcinoma antibody, 17-1A were labeled (bicyclic anhydride method) with 203 Pb and 111 In with 60 and 90% labeling yields, respectively. The biodistribution of 203 Pb-17-1A conjugates was compared with the corresponding 111 In-labeled preparations and with 203 Pb-DTPA, 203 Pb-nitrate and nonrelevant antibody controls in normal and human tumor (SW948) xenografted nude mice at 24, and 96 hr. Lead-203-labeled CDTA and DTPA antibody conjugates gave similar in vivo distributions. Even though the lead bound to these chelate-antibody conjugates was more labile in serum and in vivo, compared to indium, it cleared much faster from the liver and the whole body. A new series of chelating agents based on the incorporation of a trans-1,2- diaminocyclohexane moiety into the carbon backbone of polyaminocarboxylates is being synthesized. These are expected to provide stronger complexing ability for lead and produce greater in vivo stability. These ligands are also expected to be superior to EDTA and DTPA for labeling antibodies with other radiometals, including indium. 32 refs., 3 tabs

  15. Comparison of the octadentate bifunctional chelator DFO*-pPhe-NCS and the clinically used hexadentate bifunctional chelator DFO-pPhe-NCS for {sup 89}Zr-immuno-PET

    Energy Technology Data Exchange (ETDEWEB)

    Vugts, Danielle J.; Klaver, Chris; Sewing, Claudia; Poot, Alex J.; Adamzek, Kevin; Visser, Gerard W.M.; Dongen, Guus A.M.S. van [VU University Medical Center, Department of Radiology and Nuclear Medicine, Amsterdam (Netherlands); Huegli, Seraina; Mari, Cristina; Gasser, Gilles [University of Zurich, Department of Chemistry, Zurich (Switzerland); Valverde, Ibai E. [University of Basel Hospital, Division of Radiopharmaceutical Chemistry, Basel (Switzerland); Mindt, Thomas L. [Institute of Pharmaceutical Sciences, ETH Zurich, Zurich (Switzerland); General Hospital of Vienna, Ludwig Boltzmann Institute for Applied Diagnostics, Vienna (Austria)

    2017-02-15

    All clinical {sup 89}Zr-immuno-PET studies are currently performed with the chelator desferrioxamine (DFO). This chelator provides hexadentate coordination to zirconium, leaving two coordination sites available for coordination with, e.g., water molecules, which are relatively labile ligands. The unsaturated coordination of DFO to zirconium has been suggested to result in impaired stability of the complex in vivo and consequently in unwanted bone uptake of {sup 89}Zr. Aiming at clinical improvements, we report here on a bifunctional isothiocyanate variant of the octadentate chelator DFO* and the in vitro and in vivo comparison of its {sup 89}Zr-DFO*-mAb complex with {sup 89}Zr-DFO-mAb. The bifunctional chelator DFO*-pPhe-NCS was prepared from previously reported DFO* and p-phenylenediisothiocyanate. Subsequently, trastuzumab was conjugated with either DFO*-pPhe-NCS or commercial DFO-pPhe-NCS and radiolabeled with Zr-89 according to published procedures. In vitro stability experiments were carried out in saline, a histidine/sucrose buffer, and blood serum. The in vivo performance of the chelators was compared in N87 tumor-bearing mice by biodistribution studies and PET imaging. In 0.9 % NaCl {sup 89}Zr-DFO*-trastuzumab was more stable than {sup 89}Zr-DFO-trastuzumab; after 72 h incubation at 2-8 C 95 % and 58 % intact tracer were left, respectively, while in a histidine-sucrose buffer no difference was observed, both products were ≥ 92 % intact. In vivo uptake at 144 h post injection (p.i.) in tumors, blood, and most normal organs was similar for both conjugates, except for skin, liver, spleen, ileum, and bone. Tumor uptake was 32.59 ± 11.95 and 29.06 ± 8.66 % ID/g for {sup 89}Zr-DFO*-trastuzumab and {sup 89}Zr-DFO-trastuzumab, respectively. The bone uptake was significantly lower for {sup 89}Zr-DFO*-trastuzumab compared to {sup 89}Zr-DFO-trastuzumab. At 144 h p.i. for {sup 89}Zr-DFO*-trastuzumab and {sup 89}Zr-DFO-trastuzumab, the uptake in sternum was 0.92

  16. Removal of cadmium from fish sauce using chelate resin.

    Science.gov (United States)

    Sasaki, Tetsuya; Araki, Ryohei; Michihata, Toshihide; Kozawa, Miyuki; Tokuda, Koji; Koyanagi, Takashi; Enomoto, Toshiki

    2015-04-15

    Fish sauce that is prepared from squid organs contains cadmium (Cd), which may be present at hazardous concentrations. Cd molecules are predominantly protein bound in freshly manufactured fish sauce, but are present in a liberated form in air-exposed fish sauce. In the present study, we developed a new method for removing both Cd forms from fish sauce using chelate resin and a previously reported tannin treatment. Sixteen-fold decreases in Cd concentrations were observed (0.78-0.05 mg/100 mL) following the removal of liberated Cd using chelate resin treatment, and the removal of protein-bound Cd using tannin treatment. Major nutritional components of fish sauce were maintained, including free amino acids and peptides, and angiotensin I-converting enzyme inhibitory and antioxidant activities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Improved paramagnetic chelate for molecular imaging with MRI

    International Nuclear Information System (INIS)

    Winter, Patrick; Athey, Phillip; Kiefer, Garry; Gulyas, Gyongyi; Frank, Keith; Fuhrhop, Ralph; Robertson, David; Wickline, Samuel; Lanza, Gregory

    2005-01-01

    The relaxivity and transmetallation of two lipophilic paramagnetic chelates incorporated onto perfluorocarbon nanoparticles, i.e., gadolinium-methoxy-tetraazacyclododecane-tetraacetic acid phosphatidylethanolamine (Gd-MeO-DOTA-PE) and gadolinium-methoxy-tetraazacyclododecane-tetraacetic acid triglycine phosphatidylethanolamine (Gd-MeO-DOTA-triglycine-PE (Gd-MeO-DOTA-triglycine-PE)), were compared to a prototypic gadolinium-diethylene-triamine-pentaacetic acid bis-oleate (Gd-DTPA-BOA) paramagnetic formulation. Nanoparticles with MeO-DOTA-based chelates demonstrated higher relaxivity (40% higher for Gd-MeO-DOTA-PE and 55% higher for Gd-MeO-DOTA-triglycine-PE) and less transmetallation than the original Gd-DTPA-BOA-based agent

  18. MULTIDENTATE TEREPHTHALAMIDATE AND HYDROXYPYRIDONATE LIGANDS: TOWARDS NEW ORALLY ACTIVE CHELATORS

    Energy Technology Data Exchange (ETDEWEB)

    Abergel, Rebecca J.; Raymond, Kenneth N.

    2011-07-13

    The limitations of current therapies for the treatment of iron overload or radioisotope contamination have stimulated efforts to develop new orally bioavailable iron and actinide chelators. Siderophore-inspired tetradentate, hexadentate and octadentate terephthalamidate and hydroxypyridonate ligands were evaluated in vivo as selective and efficacious iron or actinide chelating agents, with several metal loading and ligand assessment procedures, using {sup 59}Fe, {sup 238}Pu, and {sup 241}Am as radioactive tracers. The compounds presented in this study were compared to commercially available therapeutic sequestering agents [deferoxamine (DFO) for iron and diethylenetriaminepentaacetic acid (DPTA) for actinides] and are unrivaled in terms of affinity, selectivity and decorporation efficacy, which attests to the fact that high metal affinity may overcome the low bioavailability properties commonly associated to multidenticity.

  19. Treatment of some radioactive wastes by using new chelating membranes

    International Nuclear Information System (INIS)

    Hegazy, S.A.; El-Adham, K.; Abdel Geleel, M.; Soliman, S.A.

    2000-01-01

    The preparation of chelating membranes containing nitrile and carboxylic acid as functional groups was investigated. The modification of such membranes by chemical treatments to produce significant changes in their properties was studied. This modification results in a higher rate of exchange and higher capacity. The applicability of such modified membranes in the removal of Co-60 and Cs-137 from their wastes were tested. The dependence of these radioactive nuclides uptake on the time and degree of grafting for H CI-, NH 2 OH-and KOH-treated membranes was investigated. It was found that the adsorption rate and capacity were higher for KOH-treated membrane than those for the NH 2 OH and H CI treated ones. The prepared grafted membranes have a good affinity towards the adsorption or chelation with Co-60 and Cs-137. This result may make such prepared materials acceptable for practicable use in some radioactive waste treatments and recovery

  20. Chelation studies involving decontamination of light lanthanides by polyaminopolycarboxylic

    International Nuclear Information System (INIS)

    Hassan, N.E.H.

    1985-01-01

    The present thesis constitutes chelation studies involving decontamination of light lanthanides, cobalt , and uranium with 2,2-bis-acryloyliminomethylene- acid (BAETA) using the spectrophotometric method. the work carried out aimed to clear up the effectiveness of BAETA as a decontaminating agent for radioactive nuclides from human body . the thesis includes a general introduction , outlines the aim of work and contains three main chapters . the results of the work are discussed at the end of the thesis. the first chapter deals with a comprehensive survey of the relevant literature. this includes the metabolism and toxicity of cerium, uranium, cobalt and Ln +3 elements, general methodologies of internal decontamination, choice and effectiveness of chelating agents

  1. Iron overload and chelation therapy in myelodysplastic syndromes.

    Science.gov (United States)

    Temraz, Sally; Santini, Valeria; Musallam, Khaled; Taher, Ali

    2014-07-01

    Iron overload remains a concern in MDS patients especially those requiring recurrent blood transfusions. The consequence of iron overload may be more relevant in patients with low and intermediate-1 risk MDS who may survive long enough to experience such manifestations. It is a matter of debate whether this overload has time to yield organ damage, but it is quite evident that cellular damage and DNA genotoxic effect are induced. Iron overload may play a critical role in exacerbating pre-existing morbidity or even unmask silent ones. Under these circumstances, iron chelation therapy could play an integral role in the management of these patients. This review entails an in depth analysis of iron overload in MDS patients; its pathophysiology, effect on survival, associated risks and diagnostic options. It also discusses management options in relation to chelation therapy used in MDS patients and the impact it has on survival, hematologic response and organ function. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Encapsulation and retention of chelated-copper inside hydrophobic nanoparticles

    DEFF Research Database (Denmark)

    Hervella, Pablo; Ortiz, Elisa Parra; Needham, David

    2016-01-01

    ) Chelate copper into the octaethyl porphyrin; (3) Encapsulate OEP-Cu in nanoparticles: the encapsulation efficiency of copper into liquid nanoparticles (LNP), solid nanoparticles (SNP) and phospholipid liposomes (PL) was evaluated by UV-Vis and atomic absorption spectroscopy; (4) Retain the encapsulated...... OEP-Cu in the liquid or solid cores of the nanoparticles in the presence of a lipid sink. RESULTS: (1) The size of the nanoparticles was found to be strongly dependent on the Reynolds number and the initial concentration of components for the fast injection technique. At high Reynolds number (2181......), a minimum value for the particle diameter of ∼30nm was measured. (2) Copper was chelated by OEP in a 1:1mol ratio with an association constant of 2.57×10(5)M(-1). (3) The diameter of the nanoparticles was not significantly affected by the presence of OEP or OEP-Cu. The percentage of encapsulation of copper...

  3. Iron chelates: a challenge to chemists and Moessbauer spectroscopists

    Energy Technology Data Exchange (ETDEWEB)

    Homonnay, Z., E-mail: homonnay@chem.elte.hu; Szilagyi, P. A.; Vertes, A. [Eoetvoes Lorand University, Laboratory of Nuclear Chemistry, Institute of Chemistry (Hungary); Kuzmann, E. [Hungarian Academy of Sciences, Department of Nuclear Chemistry, Chemical Research Center (Hungary); Sharma, V. K. [Florida Institute of Technology (United States); Molnar, G.; Bousseksou, A. [CNRS UPR-8241, Laboratoire de Chimie de Coordination (France); Greneche, J.-M. [Universite du Maine, Laboratoire de Physique de l' Etat Condense, CNRS UMR 6087 (France); Brausam, A.; Meier, R.; Eldik, R. van [University of Erlangen-Nuernberg, Institute for Inorganic Chemistry (Germany)

    2008-02-15

    The speciation of iron in aqueous solutions containing Fe{sup 3+} and selected chelates such as EDTA, EDDA, CDTA and HEDTA has been studied using transmission {sup 57}Fe Moessbauer spectrometry in frozen solutions. The protonation of various complexes as well as binuclear complex formation could be detected as a function of pH. Autoreduction of Fe{sup 3+} to Fe{sup 2+} was observed in several cases. Reaction with hydrogen peroxide proved to be rather different for the four ligands, while the dihapto complex [XFe({eta}{sup 2}-O{sub 2})]{sup 3-} had surprisingly identical Moessbauer parameters for X = EDTA, CDTA or HEDTA. Paramagnetic spin relaxation observed in the Moessbauer spectra was found to be strongly influenced by the identity of the chelating ligand, despite the basically spin-spin origin of the phenomenon.

  4. Improved paramagnetic chelate for molecular imaging with MRI

    Science.gov (United States)

    Winter, Patrick; Athey, Phillip; Kiefer, Garry; Gulyas, Gyongyi; Frank, Keith; Fuhrhop, Ralph; Robertson, David; Wickline, Samuel; Lanza, Gregory

    2005-05-01

    The relaxivity and transmetallation of two lipophilic paramagnetic chelates incorporated onto perfluorocarbon nanoparticles, i.e., gadolinium-methoxy-tetraazacyclododecane-tetraacetic acid phosphatidylethanolamine (Gd-MeO-DOTA-PE) and gadolinium-methoxy-tetraazacyclododecane-tetraacetic acid triglycine phosphatidylethanolamine (Gd-MeO-DOTA-triglycine-PE (Gd-MeO-DOTA-triglycine-PE)), were compared to a prototypic gadolinium-diethylene-triamine-pentaacetic acid bis-oleate (Gd-DTPA-BOA) paramagnetic formulation. Nanoparticles with MeO-DOTA-based chelates demonstrated higher relaxivity (40% higher for Gd-MeO-DOTA-PE and 55% higher for Gd-MeO-DOTA-triglycine-PE) and less transmetallation than the original Gd-DTPA-BOA-based agent.

  5. Mir-513a-3p contributes to the controlling of cellular migration processes in the A549 lung tumor cells by modulating integrin β-8 expression.

    Science.gov (United States)

    da Silveira, Marina Bonfogo; Lima, Kelvin Furtado; da Silva, Andrea Renata; Dos Santos, Robson Augusto Souza; Moraes, Karen C M

    2017-12-04

    Lung tumors are a frequent type of cancer in humans and a leading cause of death, and the late diagnostic contributes to high mortality rates. New therapeutic strategies are needed, and the heptapeptide angiotensin-(1-7) [ang-(1-7)] demonstrated the ability to control cancer growth rates and migration in vitro and in vivo. However, the possible use of the heptapeptide in clinical trials demands deeper analyses to elucidate molecular mechanisms of its effect in the target cells. In this study, we investigated relevant elements that control pro-inflammatory environment and cellular migration, focusing in the post-transcription mechanism using lung tumor cell line. In our cellular model, the microRNA-513a-3p was identified as a novel element targeting ITG-β8, thereby controlling the protein level and its molecular function in the controlling of migration and pro-inflammatory environment. These findings provide useful information for future studies, using miR-513a-3p as an innovative molecular tool to control lung tumor cell migration, which will support more effective clinical treatment of the patients with the widely used chemotherapeutic agents, increasing survival rates.

  6. Self-assembled polymeric chelate nanoparticles as potential theranostic agents

    Czech Academy of Sciences Publication Activity Database

    Škodová, Michaela; Černoch, Peter; Štěpánek, Petr; Chánová, Eliška; Kučka, Jan; Kálalová, Zuzana; Kaňková, Dana; Hrubý, Martin

    2012-01-01

    Roč. 13, č. 18 (2012), s. 4244-4250 ISSN 1439-4235 R&D Projects: GA ČR GPP207/10/P054; GA ČR GA202/09/2078; GA ČR GAP304/12/0950 Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : chelate s * nanoparticles * polymers Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.349, year: 2012

  7. Decontamination of process equipment using recyclable chelating solvent

    Energy Technology Data Exchange (ETDEWEB)

    Jevec, J.; Lenore, C.; Ulbricht, S. [Babcock & Wilcox, Co., R& DD, Alliance, OH (United States)

    1995-10-01

    The Department of Energy (DOE) is now faced with the task of meeting decontamination and decommissioning obligations at numerous facilities by the year 2019. Due to the tremendous volume of material involved, innovative decontamination technologies are being sought that can reduce the volumes of contaminated waste materials and secondary wastes requiring disposal. This report describes the results of the performance testing of chelates and solvents for the dissolution of uranium.

  8. Polymeric metal chelates with piperazine(bis)dithiocarbamate

    International Nuclear Information System (INIS)

    Larionov, S.V.; Kosareva, L.A.; Ikorskij, V.N.; Uskov, E.M.

    1982-01-01

    Roentgenoamorphous polymer chelates of Fe 3 , Co 2 , Ni 2 , Cu 2 , Zn 2 , Cd 2 , Pb 2 with tetradentate bridge ligand piperazine-(bis) dithiocarbamate have been synthesized. IR spectra in the region 200-400 cm - 1 point to coordination of sulphur atoms of groups CS 2- with metals. It is found that among the polymers synthesized CuLxH 2 O possesses the lowest electric resistance

  9. Flue gas desulfurization/denitrification using metal-chelate additives

    Science.gov (United States)

    Harkness, J.B.L.; Doctor, R.D.; Wingender, R.J.

    1985-08-05

    A method of simultaneously removing SO/sub 2/ and NO from oxygen-containing flue gases resulting from the combustion of carbonaceous material by contacting the flue gas with an aqueous scrubber solution containing an aqueous sulfur dioxide sorbent and an active metal chelating agent which promotes a reaction between dissolved SO/sub 2/ and dissolved NO to form hydroxylamine N-sulfonates. The hydroxylamine sulfonates are then separated from the scrubber solution which is recycled. 3 figs.

  10. Reaction of gadolinium chelates with ozone and hydroxyl radicals.

    Science.gov (United States)

    Cyris, Maike; Knolle, Wolfgang; Richard, Jessica; Dopp, Elke; von Sonntag, Clemens; Schmidt, Torsten C

    2013-09-03

    Gadolinium chelates are used in increasing amounts as contrast agents in magnetic resonance imaging, and their fate in wastewater treatment has recently become the focus of research. Oxidative processes, in particular the application of ozone, are currently discussed or even implemented for advanced wastewater treatment. However, reactions of the gadolinium chelates with ozone are not yet characterized. In this study, therefore, rate constants with ozone were determined for the three commonly used chelates Gd-DTPA, Gd-DTPA-BMA, and Gd-BT-DO3A, which were found to be 4.8 ± 0.88, 46 ± 2.5, and 24 ± 1.5 M(-1) s(-1), respectively. These low rate constants indicate that a direct reaction with ozone in wastewater is negligible. However, application of ozone in wastewater leads to substantial yields of (•)OH. Different methods have been applied and compared for determination of k((•)OH+Gd chelate). From rate constants determined by pulse radiolysis experiments (k((•)OH+Gd-DTPA) = 2.6 ± 0.2 × 10(9) M(-1) s(-1), k((•)OH+Gd-DTPA-BMA) = 1.9 ± 0.7 × 10(9) M(-1) s(-1), k((•)OH+Gd-BT-DO3A) = 4.3 ± 0.2 × 10(9) M(-1) s(-1)), it is concluded that a reaction in wastewater via (•)OH radicals is feasible. Toxicity has been tested for educt and product mixtures of both reactions. Cytotoxicity (MTT test) and genotoxicity (micronuclei assay) were not detectable.

  11. Mercury removal in utility wet scrubber using a chelating agent

    Science.gov (United States)

    Amrhein, Gerald T.

    2001-01-01

    A method for capturing and reducing the mercury content of an industrial flue gas such as that produced in the combustion of a fossil fuel or solid waste adds a chelating agent, such as ethylenediaminetetraacetic acid (EDTA) or other similar compounds like HEDTA, DTPA and/or NTA, to the flue gas being scrubbed in a wet scrubber used in the industrial process. The chelating agent prevents the reduction of oxidized mercury to elemental mercury, thereby increasing the mercury removal efficiency of the wet scrubber. Exemplary tests on inlet and outlet mercury concentration in an industrial flue gas were performed without and with EDTA addition. Without EDTA, mercury removal totaled 42%. With EDTA, mercury removal increased to 71%. The invention may be readily adapted to known wet scrubber systems and it specifically provides for the removal of unwanted mercury both by supplying S.sup.2- ions to convert Hg.sup.2+ ions into mercuric sulfide (HgS) and by supplying a chelating agent to sequester other ions, including but not limited to Fe.sup.2+ ions, which could otherwise induce the unwanted reduction of Hg.sup.2+ to the form, Hg.sup.0.

  12. Effectiveness of chelation therapy with time after acute uranium intoxication

    International Nuclear Information System (INIS)

    Domingo, J.L.; Ortega, A.; Llobet, J.M.; Corbella, J.

    1990-01-01

    The effect of increasing the time interval between acute uranium exposure and chelation therapy was studied in male Swiss mice. Gallic acid, 4,5-dihydroxy-1,3- benzenedisulfonic acid (Tiron), diethylenetriaminepentaacetic acid (DTPA), and 5-aminosalicylic acid (5-AS) were administered ip at 0, 0.25, 1, 4, and 24 hr after sc injection of 10 mg/kg of uranyl acetate dihydrate. Chelating agents were given at doses equal to one-fourth of their respective LD50 values. Daily elimination of uranium into urine and feces was determined for 4 days after which time the mice were killed, and the concentration of uranium was measured in kidney, spleen, and bone. The excretion of uranium was especially rapid in the first 24 hr. Treatment with Tiron or gallic acid at 0, 0.25, or 1 hr after uranium exposure significantly increased the total excretion of the metal. In kidney and bone, only administration of Tiron at 0, 0.25, or 1 hr after uranium injection, or gallic acid at 1 hr after uranium exposure significantly reduced tissue uranium concentrations. Treatment at later times (4 to 24 hr) did not increase the total excretion of the metal and did not decrease the tissue uranium concentrations 4 days after uranyl acetate administration. The results show that the length of time before initiating chelation therapy for acute uranium intoxication greatly influences the effectiveness of this therapy

  13. Hydroxyurea could be a good clinically relevant iron chelator.

    Science.gov (United States)

    Italia, Khushnooma; Colah, Roshan; Ghosh, Kanjaksha

    2013-01-01

    Our previous study showed a reduction in serum ferritin of β-thalassemia patients on hydroxyurea therapy. Here we aimed to evaluate the efficacy of hydroxyurea alone and in combination with most widely used iron chelators like deferiprone and deferasirox for reducing iron from experimentally iron overloaded mice. 70 BALB/c mice received intraperitonial injections of iron-sucrose. The mice were then divided into 8 groups and were orally given hydroxyurea, deferiprone or deferasirox alone and their combinations for 4 months. CBC, serum-ferritin, TBARS, sTfr and hepcidin were evaluated before and after iron overload and subsequently after 4 months of drug therapy. All animals were then killed. Iron staining of the heart and liver tissue was done using Perl's Prussian Blue stain. Dry weight of iron in the heart and liver was determined by atomic absorption spectrometry. Increased serum-ferritin, TBARS, hepcidin and dry weight of iron in the liver and heart showed a significant reduction in groups treated with iron chelators with maximum reduction in the group treated with a combination of deferiprone, deferasirox and hydroxyurea. Thus hydroxyurea proves its role in reducing iron from iron overloaded mice. The iron chelating effect of these drugs can also be increased if given in combination.

  14. Chelate forms of biometalls. Theoretical aspects of obtaining and characteristics

    Directory of Open Access Journals (Sweden)

    A. Kapustyan

    2017-04-01

    Full Text Available The problem of microelements bioavailability is highlighted and the correct ways of its solution are substantiated as a result of generalization of theoretical aspects of obtaining of the biometals chelate forms. The characteristics of the main biogenic elements, their physiological significance, electrochemical properties are presented. The main examples of the participation of biometals in various biological processes are given. The properties and the structure peculiarities of biometals coordination complexes are considered in detail. It is shown that in obtaining of biometals chelate forms, there is the mutual selectivity and the affinity of biometals and ligands. The main factors of obtaining a hard metal complex are given. Potential bioligands for obtaining bioavailable forms of microelements are detailed. Among them there are amino acids, peptides, proteins, nucleic acids, carbohydrates. The possible character of complexation depending on the nature of the bioligand is indicated. Practical examples of preparation of biometals mixed ligand complexes are given. The expediency of using metabolic products and processing of lactic acid bacteria as promising components of mixed ligand chelate complexes is substantiated. These substances contain in their composition a mass of potential donor atoms that are capable to form covalent and coordination bonds with biomethalles, and also possess high biological and immunotropic activities. The use of this system in the biocoordination compounds of the "metals of life" can provide a synergistic effect of the components, significantly to expand the range of their physiological activity and to increase the degree of assimilation by the body.

  15. High precision isotopic ratio analysis of volatile metal chelates

    International Nuclear Information System (INIS)

    Hachey, D.L.; Blais, J.C.; Klein, P.D.

    1980-01-01

    High precision isotope ratio measurements have been made for a series of volatile alkaline earth and transition metal chelates using conventional GC/MS instrumentation. Electron ionization was used for alkaline earth chelates, whereas isobutane chemical ionization was used for transition metal studies. Natural isotopic abundances were determined for a series of Mg, Ca, Cr, Fe, Ni, Cu, Cd, and Zn chelates. Absolute accuracy ranged between 0.01 and 1.19 at. %. Absolute precision ranged between +-0.01-0.27 at. % (RSD +- 0.07-10.26%) for elements that contained as many as eight natural isotopes. Calibration curves were prepared using natural abundance metals and their enriched 50 Cr, 60 Ni, and 65 Cu isotopes covering the range 0.1-1010.7 at. % excess. A separate multiple isotope calibration curve was similarly prepared using enriched 60 Ni (0.02-2.15 at. % excess) and 62 Ni (0.23-18.5 at. % excess). The samples were analyzed by GC/CI/MS. Human plasma, containing enriched 26 Mg and 44 Ca, was analyzed by EI/MS. 1 figure, 5 tables

  16. Hydroxyurea could be a good clinically relevant iron chelator.

    Directory of Open Access Journals (Sweden)

    Khushnooma Italia

    Full Text Available Our previous study showed a reduction in serum ferritin of β-thalassemia patients on hydroxyurea therapy. Here we aimed to evaluate the efficacy of hydroxyurea alone and in combination with most widely used iron chelators like deferiprone and deferasirox for reducing iron from experimentally iron overloaded mice. 70 BALB/c mice received intraperitonial injections of iron-sucrose. The mice were then divided into 8 groups and were orally given hydroxyurea, deferiprone or deferasirox alone and their combinations for 4 months. CBC, serum-ferritin, TBARS, sTfr and hepcidin were evaluated before and after iron overload and subsequently after 4 months of drug therapy. All animals were then killed. Iron staining of the heart and liver tissue was done using Perl's Prussian Blue stain. Dry weight of iron in the heart and liver was determined by atomic absorption spectrometry. Increased serum-ferritin, TBARS, hepcidin and dry weight of iron in the liver and heart showed a significant reduction in groups treated with iron chelators with maximum reduction in the group treated with a combination of deferiprone, deferasirox and hydroxyurea. Thus hydroxyurea proves its role in reducing iron from iron overloaded mice. The iron chelating effect of these drugs can also be increased if given in combination.

  17. Antibacterial and antibiofilm effects of iron chelators against Prevotella intermedia.

    Science.gov (United States)

    Moon, Ji-Hoi; Kim, Cheul; Lee, Hee-Su; Kim, Sung-Woon; Lee, Jin-Yong

    2013-09-01

    Prevotella intermedia, a major periodontopathogen, has been shown to be resistant to many antibiotics. In the present study, we examined the effect of the FDA-approved iron chelators deferoxamine (DFO) and deferasirox (DFRA) against planktonic and biofilm cells of P. intermedia in order to evaluate the possibility of using these iron chelators as alternative control agents against P. intermedia. DFRA showed strong antimicrobial activity (MIC and MBC values of 0.16 mg ml(-1)) against planktonic P. intermedia. At subMICs, DFRA partially inhibited the bacterial growth and considerably prolonged the bacterial doubling time. DFO was unable to completely inhibit the bacterial growth in the concentration range tested and was not bactericidal. Crystal violet binding assay for the assessment of biofilm formation by P. intermedia showed that DFRA significantly decreased the biofilm-forming activity as well as the biofilm formation, while DFO was less effective. DFRA was chosen for further study. In the ATP-bioluminescent assay, which reflects viable cell counts, subMICs of DFRA significantly decreased the bioactivity of biofilms in a concentration-dependent manner. Under the scanning electron microscope, P. intermedia cells in DFRA-treated biofilm were significantly elongated compared to those in untreated biofilm. Further experiments are necessary to show that iron chelators may be used as a therapeutic agent for periodontal disease.

  18. Copper and Zinc Chelation as a Treatment of Alzheimer's Disease

    Science.gov (United States)

    Hodak, Miroslav; Bernholc, Jerry

    2014-03-01

    Alzheimer's disease (AD) is a neurodegenerative disorder affecting millions of people in the U.S. The cause of the disease remains unknown, but amyloid- β (A β), a short peptide, is considered causal its pathogenesis. At cellular level, AD is characterized by deposits mainly composed of A β that also contain elevated levels of transition metals ions. Targeting metals is a promising new strategy for AD treatment, which uses moderately strong metal chelators to sequester them from A β or the environment. PBT2 is a chelating compound that has been the most promising in clinical trials. In our work, we use computer simulations to investigate complexes of a close analog of PBT2 with Cu2+ and Zn2+ ions. The calculations employ KS/FD DFT method, which combines Kohn-Sham DFT with the frozen-density DFT to achieve efficient description of explicit solvent beyond the first solvation shell. Our work is based on recent experiments and examines both 1:1 and 2:1 chelator-metal stochiometries detected experimentally. The results show that copper attaches more strongly than zinc, find that 1:1 complexes involve water in the first coordination shell and determine which one of several possible 2:1 geometries is the most preferable.

  19. f-Element Ion Chelation in Highly Basic Media

    International Nuclear Information System (INIS)

    Paine, Robert T.

    1999-01-01

    High-level radioactive waste (HLW) generated in the DOE complex is stored in tanks at several sites, but predominantly it is found at the Hanford reservation. Much of the material has been exposed to high pHs, consequently the waste exists in a complex, poorly understood mixture of solids, gels and solutions. The final waste remediation plan may involve chemical separation of fractions and a suitable, well developed molecular chemistry basis for performing these separations is not available. Indeed, the fundamental chemical behavior of most radioactive nuclides in basic media is not known. The goal of this project is to undertake fundamental studies of the coordination chemistry of f-element species in basic aqueous solutions containing common waste treatment ions (e.g., NO3 -, CO3 2-, organic carboxylates, and EDTA), as well as new waste scrubbing chelators produced in this study. The experimental agenda includes: 1. Studies of the speciation of Sr and Ln ions in basic solutions wit h and without common counterions; 2. Preparations of new multifunctional ligands that may act as strong, ion-specific chelators for Sr and/or Ln ions in basic media; and 3. Studies of the coordination and dissolution behavior of oxide-hydroxide species, as well as in insoluble sols, gels, and precipitates in combination with new chelating ligands. It is anticipated that this coordination chemistry will facilitate the design of advanced separation schemes required for handling the complex waste matrices found at the Hanford HLW facility

  20. COSMIC: A Regimen of Intensity Modulated Radiation Therapy Plus Dose-Escalated, Raster-Scanned Carbon Ion Boost for Malignant Salivary Gland Tumors: Results of the Prospective Phase 2 Trial

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Alexandra D., E-mail: alexdjensen@gmx.de [Department of Radiation Oncology, University of Heidelberg, Heidelberg (Germany); Nikoghosyan, Anna V.; Lossner, Karen [Department of Radiation Oncology, University of Heidelberg, Heidelberg (Germany); Haberer, Thomas; Jäkel, Oliver [Heidelberg Ion Beam Therapy Centre, Heidelberg (Germany); Münter, Marc W.; Debus, Jürgen [Department of Radiation Oncology, University of Heidelberg, Heidelberg (Germany)

    2015-09-01

    Purpose: To investigate the effect of intensity modulated radiation therapy (IMRT) and dose-escalated carbon ion (C12) therapy in adenoid cystic carcinoma (ACC) and other malignant salivary gland tumors (MSGTs) of the head and neck. Patients and Methods: COSMIC (combined treatment of malignant salivary gland tumors with intensity modulated radiation therapy and carbon ions) is a prospective phase 2 trial of 24 Gy(RBE) C12 followed by 50 Gy IMRT in patients with pathologically confirmed MSGT. The primary endpoint is mucositis Common Terminology Criteria grade 3; the secondary endpoints are locoregional control (LC), progression-free survival (PFS), overall survival (OS), and toxicity. Toxicity was scored according to the Common Terminology Criteria for Adverse Events version 3; treatment response was scored according to Response Evaluation Criteria in Solid Tumors 1.1. Results: Between July 2010 and August 2011, 54 patients were accrued, and 53 were available for evaluation. The median follow-up time was 42 months; patients with microscopically incomplete resections (R1, n=20), gross residual disease (R2, n=17), and inoperable disease (n=16) were included. Eighty-nine percent of patients had ACC, and 57% had T4 tumors. The most common primary sites were paranasal sinus (34%), submandibular gland, and palate. At the completion of radiation therapy, 26% of patients experienced grade 3 mucositis, and 20 patients reported adverse events of the ear (38%). The most common observed late effects were grade 1 xerostomia (49%), hearing impairment (25%, 2% ipsilateral hearing loss), and adverse events of the eye (20%), but no visual impairment or loss of vision. Grade 1 central nervous system necrosis occurred in 6%, and 1 grade 4 ICA hemorrhage without neurologic sequelae. The best response was 54% (complete response/partial remission). At 3 years, the LC, PFS, and OS were 81.9%, 57.9%, and 78.4%, respectively. No difference was found regarding resection status. The

  1. Desferrioxamine, an iron chelator, enhances HIF-1α accumulation via cyclooxygenase-2 signaling pathway

    International Nuclear Information System (INIS)

    Woo, Kyung Jin; Lee, Tae-Jin; Park, Jong-Wook; Kwon, Taeg Kyu

    2006-01-01

    Cyclooxygenase-2 (COX-2) is an important inducible enzyme in inflammation and is overexpressed in a variety of cancers. Evidence is rapidly accumulating that chronic inflammation may contribute to carcinogenesis through increase of cell proliferation, angiogenesis, and metastasis in a number of neoplasms, including colorectal carcinoma. In the present study, we investigated some mechanistic aspects of DFX-induced hypoxia-driven COX-2 expression. Desferrioxamine (DFX), an iron chelator, is known to upregulate inflammatory mediators. DFX induced the expression of COX-2 and accumulation of HIF-1α protein in dose-dependent manners, but hypoxia mimetic agent cobalt chloride (CoCl 2 ) induced accumulation of HIF-1α protein but not increase of COX-2 expression. DFX-induced increase of COX-2 expression and HIF-1α protein level was attenuated by addition of ferric citrate. This result suggested that the iron chelating function of DFX was important to induce the increase of COX-2 and HIF-1α protein. PD98059 significantly inhibited the induction of COX-2 protein and accumulation of HIF-1α, suggesting that DFX-induced increase of HIF-1α and COX-2 protein was mediated, at least in part, through the ERK signaling pathway. In addition, pretreatment with NS-398 to inhibit COX-2 activity also effectively suppressed DFX-induced HIF-1α accumulation in human colon cancer cells, providing the evidence that COX-2 plays as a regulator of HIF-1α accumulation in DFX-treated colon cancer cells. Together, our findings suggest that iron metabolism may regulate stabilization of HIF-1α protein by modulating cyclooxygenase-2 signaling pathway

  2. Prospective Randomized Trial of Prone Accelerated Intensity Modulated Breast Radiation Therapy With a Daily Versus Weekly Boost to the Tumor Bed

    International Nuclear Information System (INIS)

    Cooper, Benjamin T.; Formenti-Ujlaki, George F.; Li, Xiaochun; Shin, Samuel M.; Fenton-Kerimian, Maria; Guth, Amber; Roses, Daniel F.; Hitchen, Christine J.; Rosenstein, Barry S.; Dewyngaert, J. Keith; Goldberg, Judith D.; Formenti, Silvia C.

    2016-01-01

    Purpose: To report the results of a prospective randomized trial comparing a daily versus weekly boost to the tumor cavity during the course of accelerated radiation to the breast with patients in the prone position. Methods and Materials: From 2009 to 2012, 400 patients with stage 0 to II breast cancer who had undergone segmental mastectomy participated in an institutional review board–approved trial testing prone breast radiation therapy to 40.5 Gy in 15 fractions 5 d/wk to the whole breast, after randomization to a concomitant daily boost to the tumor bed of 0.5 Gy, or a weekly boost of 2 Gy, on Friday. The present noninferiority trial tested the primary hypothesis that a weekly boost produced no more acute toxicity than did a daily boost. The recurrence-free survival was estimated for both treatment arms using the Kaplan-Meier method; the relative risk of recurrence or death was estimated, and the 2 arms were compared using the log-rank test. Results: At a median follow-up period of 45 months, no deaths related to breast cancer had occurred. The weekly boost regimen produced no more grade ≥2 acute toxicity than did the daily boost regimen (8.1% vs 10.4%; noninferiority Z = −2.52; P=.006). No statistically significant difference was found in the cumulative incidence of long-term fibrosis or telangiectasia of grade ≥2 between the 2 arms (log-rank P=.923). Two local and two distant recurrences developed in the daily treatment arm and three local and one distant developed in the weekly arm. The 4-year recurrence-free survival rate was not different between the 2 treatment arms (98% for both arms). Conclusions: A tumor bed boost delivered either daily or weekly was tolerated similarly during accelerated prone breast radiation therapy, with excellent control of disease and comparable cosmetic results.

  3. Genetic and biochemical evidence that haploinsufficiency of the Nf1 tumor suppressor gene modulates melanocyte and mast cell fates in vivo.

    Science.gov (United States)

    Ingram, D A; Yang, F C; Travers, J B; Wenning, M J; Hiatt, K; New, S; Hood, A; Shannon, K; Williams, D A; Clapp, D W

    2000-01-03

    Neurofibromatosis type 1 (NF1) is a common autosomal-dominant disorder characterized by cutaneous neurofibromas infiltrated with large numbers of mast cells, melanocyte hyperplasia, and a predisposition to develop malignant neoplasms. NF1 encodes a GTPase activating protein (GAP) for Ras. Consistent with Knudson's "two hit" model of tumor suppressor genes, leukemias and malignant solid tumors in NF1 patients frequently demonstrate somatic loss of the normal NF1 allele. However, the phenotypic and biochemical consequences of heterozygous inactivation of Nf1 are largely unknown. Recently neurofibromin, the protein encoded by NF1, was shown to negatively regulate Ras activity in Nf1-/- murine myeloid hematopoietic cells in vitro through the c-kit receptor tyrosine kinase (dominant white spotting, W). Since the W and Nf1 locus appear to function along a common developmental pathway, we generated mice with mutations at both loci to examine potential interactions in vivo. Here, we show that haploinsufficiency at Nf1 perturbs cell fates in mast cells in vivo, and partially rescues coat color and mast cell defects in W(41) mice. Haploinsufficiency at Nf1 also increased mast cell proliferation, survival, and colony formation in response to Steel factor, the ligand for c-kit. Furthermore, haploinsufficiency was associated with enhanced Ras-mitogen-activated protein kinase activity, a major downstream effector of Ras, via wild-type and mutant (W(41)) c-kit receptors. These observations identify a novel interaction between c-kit and neurofibromin in vivo, and offer experimental evidence that haploinsufficiency of Nf1 alters both cellular and biochemical phenotypes in two cell lineages that are affected in individuals with NF1. Collectively, these data support the emerging concept that heterozygous inactivation of tumor suppressor genes may have profound biological effects in multiple cell types.

  4. Prospective Randomized Trial of Prone Accelerated Intensity Modulated Breast Radiation Therapy With a Daily Versus Weekly Boost to the Tumor Bed

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Benjamin T.; Formenti-Ujlaki, George F. [Department of Radiation Oncology, New York University School of Medicine and Langone Medical Center, New York, New York (United States); Li, Xiaochun [Division of Biostatistics, Departments of Population Health and Environmental Medicine, New York University School of Medicine, New York, New York (United States); Shin, Samuel M.; Fenton-Kerimian, Maria [Department of Radiation Oncology, New York University School of Medicine and Langone Medical Center, New York, New York (United States); Guth, Amber; Roses, Daniel F. [Department of Surgery, New York University School of Medicine and Langone Medical Center, New York, New York (United States); Hitchen, Christine J. [Department of Radiation Oncology, New York University School of Medicine and Langone Medical Center, New York, New York (United States); Rosenstein, Barry S. [Department of Radiation Oncology, New York University School of Medicine and Langone Medical Center, New York, New York (United States); Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, New York (United States); Dewyngaert, J. Keith [Department of Radiation Oncology, New York University School of Medicine and Langone Medical Center, New York, New York (United States); Goldberg, Judith D. [Division of Biostatistics, Departments of Population Health and Environmental Medicine, New York University School of Medicine, New York, New York (United States); Formenti, Silvia C., E-mail: formenti@med.cornell.edu [Department of Radiation Oncology, New York University School of Medicine and Langone Medical Center, New York, New York (United States)

    2016-06-01

    Purpose: To report the results of a prospective randomized trial comparing a daily versus weekly boost to the tumor cavity during the course of accelerated radiation to the breast with patients in the prone position. Methods and Materials: From 2009 to 2012, 400 patients with stage 0 to II breast cancer who had undergone segmental mastectomy participated in an institutional review board–approved trial testing prone breast radiation therapy to 40.5 Gy in 15 fractions 5 d/wk to the whole breast, after randomization to a concomitant daily boost to the tumor bed of 0.5 Gy, or a weekly boost of 2 Gy, on Friday. The present noninferiority trial tested the primary hypothesis that a weekly boost produced no more acute toxicity than did a daily boost. The recurrence-free survival was estimated for both treatment arms using the Kaplan-Meier method; the relative risk of recurrence or death was estimated, and the 2 arms were compared using the log-rank test. Results: At a median follow-up period of 45 months, no deaths related to breast cancer had occurred. The weekly boost regimen produced no more grade ≥2 acute toxicity than did the daily boost regimen (8.1% vs 10.4%; noninferiority Z = −2.52; P=.006). No statistically significant difference was found in the cumulative incidence of long-term fibrosis or telangiectasia of grade ≥2 between the 2 arms (log-rank P=.923). Two local and two distant recurrences developed in the daily treatment arm and three local and one distant developed in the weekly arm. The 4-year recurrence-free survival rate was not different between the 2 treatment arms (98% for both arms). Conclusions: A tumor bed boost delivered either daily or weekly was tolerated similarly during accelerated prone breast radiation therapy, with excellent control of disease and comparable cosmetic results.

  5. Chelated mineral supplements for Nelore: quality and early embryonic development

    Directory of Open Access Journals (Sweden)

    Camila Pasa

    2014-01-01

    Full Text Available ABSTRACT. Pasa C., Hatamoto-Zervoudakis L.K., Zervoudakis J.T. & Soares L. [Chelated mineral supplements for Nelore: quality and early embryonic development.] Suplementos minerais quelatados para vacas Nelore: qualidade e desenvolvimento embrionário inicial. Revista Brasileira de Medicina Veterinária, 36(1:29-34, 2014. Programa de Pós-Graduação em Ciência Animal, Faculdade de Agronomia e Medicina Veterinária, Universidade Federal do Mato Grosso, Av. Fernando Corrêa da Costa, 2367, Bairro Boa Esperança, Cuiabá, MT 78060-900, Brasil. E-mail: pasa_camila@hotmail.com The objective of this study was to evaluate the quality and early development of embryos produced with oocytes of cows supplemented with copper, zinc and selenium in a non-chelated and chelated. The experiment was conducted in Cuiabá-MT during the months April to July 2009. We used 24 adult Nellore multiparous, aged, average weights of the initial 36 months, 395 kg and mean body condition score 4.8, respectively randomly divided into 2 groups: control group (CG, supplemented with conventional mineral and Supplemented Group (GS, animals supplemented with zinc, copper and selenium chelated. Each group was kept in a paddock of Brachiaria brizantha cv Marandu received 1 kg of animal per day. chelated mineral supplementation (GS and conventional mineral (GC delivered via the protein supplement was given during a period of 99 days with daily average 1kg/cabeça. During the experimental period were two follicular aspirations, one to 59 days and another at 99 days of supplementation. Every two weeks the animals were weighed and ECC evaluated. oocytes viable (grades I, II and III were used for in vitro production of embryos. The experiment was completely randomized and data were analyzed by ANOVA and a significance level of 10%. There was no effect (p> 0.10 of supplementation with chelated minerals on the percentage of cleaved oocytes, total embryos produced, percentage of produced

  6. Tumor imaging with monoclonal antibodies

    International Nuclear Information System (INIS)

    Haisma, H.; Hilgers, J.

    1987-01-01

    Many monoclonal antibodies directed against tumor-associated antigens have been identified, but so far none of these are tumor specific. Polyclonal and monoclonal antibodies have been used for imaging of a wide variety of tumors with success. Radiolabeling of antibody is usually done with iodine isotopes of which 123 I is the best candidate for radioimmunodetection purposes. The labeling of antibodies through chelates makes it possible to use metal radioisotopes like 111 In, which is the best radioisotope for imaging with monoclonal antibodies due to its favorable half-life of 2.5 days. Usually imaging cannot be performed within 24 h after injection, but clearance of antibody can be increased by using F(ab) 2 of Fab. Another approach is to clear non-bound antibody by a second antibody, directed against the first. The detection limit of immunoimaging is about 2 cm, but will be improved by tomography or SPECT. There is still a high false positive and false negative rate, which makes it impossible to use radioimmunodetection as the only technique for diagnosis of tumors. In combination with other detection techniques, tumor imaging with monoclonal antibodies can improve diagnosis. 44 refs.; 3 tabs

  7. A Modulator of FGFs in Breast Cancer

    National Research Council Canada - National Science Library

    Kagan, Benjamin

    2000-01-01

    .... In addition, FGF-BP is expressed in squamous cell carcinoma (SCC) and colon cancer and modulation of FGF-BP expression in these tumor types results in a significant effect on tumor growth and angiogenesis...

  8. Isotope release cytotoxicity assay applicable to human tumors: the use of 111-indium

    Energy Technology Data Exchange (ETDEWEB)

    Frost, P; Wiltrout, R; Maciorowski, Z; Rose, N R

    1977-01-01

    We have demonstrated that human tumors can be labelled efficiently with the 111indium-oxine chelate. Subsequently, this isotope can be released by cytotoxic lymphoid cells. Both natural and induced cytotoxicity can be demonstrated utilizing this isotope release method. Because of the slow spontaneous release of 111indium and its efficient labelling of human tumor cells, this isotope release assay can be utilized in long-term cytotoxic assays in the study of human tumor immunology.

  9. Comparison of two heterogeneity correction algorithms in pituitary gland treatments with intensity-modulated radiation therapy; Comparacao de dois algoritmos de correcao de heterogeneidade em tratamentos de tumores de hipofise com radioterapia de intensidade modulada

    Energy Technology Data Exchange (ETDEWEB)

    Albino, Lucas D.; Santos, Gabriela R.; Ribeiro, Victor A.B.; Rodrigues, Laura N., E-mail: lucasdelbem1@gmail.com [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Faculdade de Medicina. Instituto de Radiologia; Weltman, Eduardo; Braga, Henrique F. [Instituto do Cancer do Estado de Sao Paulo, Sao Paulo, SP (Brazil). Servico de Radioterapia

    2013-12-15

    The dose accuracy calculated by a treatment planning system is directly related to the chosen algorithm. Nowadays, several calculation doses algorithms are commercially available and they differ in calculation time and accuracy, especially when individual tissue densities are taken into account. The aim of this study was to compare two different calculation algorithms from iPlan®, BrainLAB, in the treatment of pituitary gland tumor with intensity-modulated radiation therapy (IMRT). These tumors are located in a region with variable electronic density tissues. The deviations from the plan with no heterogeneity correction were evaluated. To initial validation of the data inserted into the planning system, an IMRT plan was simulated in a anthropomorphic phantom and the dose distribution was measured with a radiochromic film. The gamma analysis was performed in the film, comparing it with dose distributions calculated with X-ray Voxel Monte Carlo (XVMC) algorithm and pencil beam convolution (PBC). Next, 33 patients plans, initially calculated by PBC algorithm, were recalculated with XVMC algorithm. The treatment volumes and organs-at-risk dose-volume histograms were compared. No relevant differences were found in dose-volume histograms between XVMC and PBC. However, differences were obtained when comparing each plan with the plan without heterogeneity correction. (author)

  10. Acute Toxicity and Tumor Response in Locally Advanced Rectal Cancer After Preoperative Chemoradiation Therapy With Shortening of the Overall Treatment Time Using Intensity-Modulated Radiation Therapy With Simultaneous Integrated Boost: A Phase 2 Trial

    Energy Technology Data Exchange (ETDEWEB)

    But-Hadzic, Jasna, E-mail: jbut@onko-i.si [Division of Radiotherapy, Institute of Oncology, Ljubljana (Slovenia); Anderluh, Franc [Division of Radiotherapy, Institute of Oncology, Ljubljana (Slovenia); Brecelj, Erik; Edhemovic, Ibrahim [Division of Surgery, Institute of Oncology, Ljubljana (Slovenia); Secerov-Ermenc, Ajra; Hudej, Rihard; Jeromen, Ana [Division of Radiotherapy, Institute of Oncology, Ljubljana (Slovenia); Kozelj, Miran; Krebs, Bojan [Division of Surgery, University Medical Centre Maribor, Maribor (Slovenia); Oblak, Irena [Division of Radiotherapy, Institute of Oncology, Ljubljana (Slovenia); Omejc, Mirko [Division of Surgery, University Medical Centre Lubljana, Ljubljana (Slovenia); Vogrin, Andrej [Division of Diagnostics, Institute of Oncology, Ljubljana (Slovenia); Velenik, Vaneja [Division of Radiotherapy, Institute of Oncology, Ljubljana (Slovenia)

    2016-12-01

    Background and Purpose: This phase 2 study investigated the efficacy and safety of preoperative intensity modulated radiation therapy with a simultaneous integrated boost (IMRT-SIB) without dose escalation, concomitant with standard capecitabine chemotherapy in locally advanced rectal cancer. Methods and Materials: Between January 2014 and March 2015, 51 patients with operable stage II-III rectal adenocarcinoma received preoperative IMRT with pelvic dose of 41.8 Gy and simultaneously delivered 46.2 Gy to T2/3 and 48.4 Gy to T4 tumor in 22 fractions, concomitant with capecitabine, 825 mg/m{sup 2}/12 hours, including weekends. The primary endpoint was pathologic complete response (pCR). Results: Fifty patients completed preoperative treatment according to the protocol, and 47 underwent surgical resection. The sphincter preservation rate for the low rectal tumors was 62%, and the resection margins were free in all but 1 patient. Decrease in tumor and nodal stage was observed in 32 (68%) and 39 (83%) patients, respectively, with pCR achieved in 12 (25.5%) patients. There were only 2 G ≥ 3 acute toxicities, with infectious enterocolitis in 1 patient and dermatitis over the sacral area caused by the bolus effect of the treatment table in the second patient. Conclusions: Preoperative IMRT-SIB without dose escalation is well tolerated, with a low acute toxicity profile, and can achieve a high rate of pCR and downstaging.

  11. Differential Ratios of Omega Fatty Acids (AA/EPA+DHA Modulate Growth, Lipid Peroxidation and Expression of Tumor Regulatory MARBPs in Breast Cancer Cell Lines MCF7 and MDA-MB-231.

    Directory of Open Access Journals (Sweden)

    Prakash P Mansara

    Full Text Available Omega 3 (n3 and Omega 6 (n6 polyunsaturated fatty acids (PUFAs have been reported to exhibit opposing roles in cancer progression. Our objective was to determine whether different ratios of n6/n3 (AA/EPA+DHA FAs could modulate the cell viability, lipid peroxidation, total cellular fatty acid composition and expression of tumor regulatory Matrix Attachment Region binding proteins (MARBPs in breast cancer cell lines and in non-cancerous, MCF10A cells. Low ratios of n6/n3 (1:2.5, 1:4, 1:5, 1:10 FA decreased the viability and growth of MDA-MB-231 and MCF7 significantly compared to the non-cancerous cells (MCF10A. Contrarily, higher n6/n3 FA (2.5:1, 4:1, 5:1, 10:1 decreased the survival of both the cancerous and non-cancerous cell types. Lower ratios of n6/n3 selectively induced LPO in the breast cancer cells whereas the higher ratios induced in both cancerous and non-cancerous cell types. Interestingly, compared to higher n6/n3 FA ratios, lower ratios increased the expression of tumor suppressor MARBP, SMAR1 and decreased the expression of tumor activator Cux/CDP in both breast cancer and non-cancerous, MCF10A cells. Low n6/n3 FAs significantly increased SMAR1 expression which resulted into activation of p21WAF1/CIP1 in MDA-MB-231 and MCF7, the increase being ratio dependent in MDA-MB-231. These results suggest that increased intake of n3 fatty acids in our diet could help both in the prevention as well as management of breast cancer.

  12. Rates of cuticular penetration of chelated Fe(III): role of humidity, concentration, adjuvants, temperature, and type of chelate.

    Science.gov (United States)

    Schönherr, Jörg; Fernández, Victoria; Schreiber, Lukas

    2005-06-01

    Time courses of cuticular penetration of FeCl3 and Fe(III) complexes of citric acid, EDTA, EDDHA (Sequestrene 138Fe), imidodisuccinic acid (IDHA), and ligninsulfonic acid (Natrel) were studied using astomatous cuticular membranes (CMs) isolated from Populus x canescens leaves. At 100% relative humidity, the Fe(III) chelates disappeared exponentially with time from the surface of the CMs; that is, penetration was a first-order process that can be described using rate constants or half-times of penetration (t(1/2)). Half-times ranged from 20 to 30 h. At 90% humidity, penetration rates were insignificant with the exception of Natrel, for which t(1/2) amounted to 58 h. Rate constants were independent of temperature (15, 25, and 35 degrees C). Permeability decreased with increasing Fe chelate concentration (IDHA and EDTA). At 100% humidity, half-times measured with FeIDHA were 11 h (2 mmol L(-1)), 17 h (10 mmol L(-1)) and 36 h (20 mmol L(-1)), respectively. In the presence of FeEDTA, penetration of CaCl2 was slowed greatly. Half-times for penetration of CaCl2, which were 1.9 h in the absence of FeEDTA, rose to 3.12 h in the presence of an equimolar concentration of EDTA and 13.3 h when the FeEDTA concentration was doubled. Hence, Fe chelates reduced permeability of CMs to CaCl2 and to the Fe chelates themselves. It is suggested that Fe chelates reduced the size of aqueous pores. This view is supported by the fact that rate constants for calcium salts were about 5 times higher than for Fe chelates with the same molecular weights. Adding Tween 20 (5 g L(-1)) as a humectant did not increase permeability to FeIDHA at 90% humidity and below, while addition of glycine betaine did. Penetration of FeCl3 applied at 5 g L(-1) (pH 1.5) was not a first order process as rate constants decreased rapidly with time. Only 2% of the dose penetrated during the first 2 h and less than that in the subsequent 8 h. Recovery was only 70%. This was attributed to the formation of insoluble Fe

  13. Study of cyclization of chelating compounds using electrospray ionization mass spectrometry

    International Nuclear Information System (INIS)

    Shi Ying; Campbell, J.A.

    2000-01-01

    Electrospray ionization mass spectrometry (ESI-MS) was used for the study of cyclization of organic chelating compounds (chelators). Four chelating compounds were studied: Symmetrical ethylenediaminediacetic acid (s-EDDA), Unsymmetrical ethylenediaminediacetic acid (u-EDDA), N-(2-hydroxyethyl) ethylenediaminetriacetic acid (HEDTA), and N-(2-hydroxyethyl)iminodiacetic acid (HEIDA). The chelators were cyclized with treatments of acids and heating. The open and cyclized form of the chelators were semi-quantified by both positive and negative ion modes ESI-MS. The kinetics of chelator cyclization was studied as a function of reaction temperature and the pH of the matrix. The cyclization of s-EDDA was found to be a pseudo-first order reaction in s-EDDA and overall second order. The cyclizations of HEIDA and HEDTA are reversible reactions. Higher temperature and lower pH favors cyclization. (author)

  14. Investigation of a potential macromolecular MRI contrast agent prepared from PPI (G = 2, polypropyleneimine, generation 2) dendrimer bifunctional chelates

    Science.gov (United States)

    Wang, Jianxin Steven

    The long-term objective is to develop magnetic resonance (MR) contrast agents that actively and passively target tumors for diagnosis and therapy. Many diagnostic imaging techniques for cancer lack specificity. A dendrimer based magnetic resonance imaging contrast agent has been developed with large proton relaxation enhancements and high molecular relaxivities. A new type of linear dendrimer based MRI contrast agent that is built from the polypropyleneimine and polyamidoamine dendrimers in which free amines have been conjugated to the chelate DTPA, which further formed the complex with Gadolinium (Gd) was studied. The specific research goals were to test the hypothesis that a linear chelate with macromolecular agents can be used in vitro and in vivo. This work successfully examined the adequacy and viability of the application for this agent in vitro and in vivo. A small animal whole body counter was designed and constructed to allow us to monitor biodistribution and kinetic mechanisms using a radioisotope labeled complex. The procedures of metal labeling, separation and purification have been established from this work. A biodistribution study has been performed using radioisotope induced organ/tissue counting and gamma camera imaging. The ratio of percentage of injected dose per gram organ/tissue for kidney and liver is 3.71 from whole body counter and 3.77 from the gamma camera. The results suggested that retention of Gd (III) is too high and a more kinetically stable chelate should be developed. The pharmacokinetic was evaluated in the whole animal model with the whole body clearance, and a kinetics model was developed. The pharmacokinetic results showed a bi-exponential decay in the animal model with two component excretion constants 1.43e(-5) and 0.0038511, which give half-lives of 3 hours and 33.6 days, respectively. Magnetic resonance imaging of this complex resulted in a 52% contrast enhancement in the rat kidney following the agents' administration in

  15. Modulator effects of interleukin-1beta and tumor necrosis factor-alpha on AMPA-induced excitotoxicity in mouse organotypic hippocampal slice cultures

    DEFF Research Database (Denmark)

    Bernardino, Liliana; Xapelli, Sara; Silva, Ana P

    2005-01-01

    The inflammatory cytokines interleukin-1beta and tumor necrosis factor-alpha (TNF-alpha) have been identified as mediators of several forms of neurodegeneration in the brain. However, they can produce either deleterious or beneficial effects on neuronal function. We investigated the effects...... of mouse recombinant TNF-alpha (10 ng/ml) enhanced excitotoxicity when the cultures were simultaneously exposed to AMPA and to this cytokine. Decreasing the concentration of TNF-alpha to 1 ng/ml resulted in neuroprotection against AMPA-induced neuronal death independently on the application protocol....... By using TNF-alpha receptor (TNFR) knock-out mice, we demonstrated that the potentiation of AMPA-induced toxicity by TNF-alpha involves TNF receptor-1, whereas the neuroprotective effect is mediated by TNF receptor-2. AMPA exposure was associated with activation and proliferation of microglia as assessed...

  16. Effect of other metals on iron bioavailability in presence of a selective chelator

    International Nuclear Information System (INIS)

    Rehman, F.S.

    1995-01-01

    Iron (III) is generally very easily chelated by a number of chelators in the biological environment, either supplied by food or already present there. One of the these chelator is gallic acid. The stability constants of the complexes formed between gallic acid and other trace metals have been determined by a potentiometric method. The data obtained was computed with the help of computer program B est . The resulted Beta values were compared with already known values of iron gallic acid complexes. (author)

  17. Photocatalyzed removal of lead ion from lead-chelator solution

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Young Hyun; Na, Jung Won; Sung, Ki Woung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-07-01

    The present study was undertaken to examine the influence of such chelating agents on the ease and speed of photocatalyzed metal removal and deposition. With excess EDTA, the free EDTA competes with Pb for oxidation, and at a ten fold excess, no lead oxidation (hence removal) occurs. With insufficient EDTA, the corresponding initial concentration of Pb-EDTA is decreased; after its destruction, the remaining Pb{sup 2+} is removed more slowly, at rates found with lead nitrate solution. The net result is that the maximum rate of lead deposition occurs at the stoichiometric ratio of 1:1 EDTA : Pb{sup 2+}.

  18. Optimized conditions for chelation of yttrium-90-DOTA immunoconjugates.

    Science.gov (United States)

    Kukis, D L; DeNardo, S J; DeNardo, G L; O'Donnell, R T; Meares, C F

    1998-12-01

    Radioimmunotherapy (RIT) with 90Y-labeled immunoconjugates has shown promise in clinical trials. The macrocyclic chelating agent 1,4,7,10-tetraazacyclododecane-N,N',N",N"'-tetraacetic acid (DOTA) binds 90Y with extraordinary stability, minimizing the toxicity of 90Y-DOTA immunoconjugates arising from loss of 90Y to bone. However, reported 90Y-DOTA immunoconjugate product yields have been typically only BAD) was conjugated to the monoclonal antibody Lym-1 via 2-iminothiolane (2IT). The immunoconjugate product, 2IT-BAD-Lym-1, was labeled in excess yttrium in various buffers over a range of concentrations and pH. Kinetic studies were performed in selected buffers to estimate radiolabeling reaction times under prospective radiopharmacy labeling conditions. The effect of temperature on reaction kinetics was examined. Optimal radiolabeling conditions were identified and used in eight radiolabeling experiments with 2IT-BAD-Lym-1 and a second immunoconjugate, DOTA-peptide-chimeric L6, with 248-492 MBq (6.7-13.3 mCi) of 90Y. Ammonium acetate buffer (0.5 M) was associated with the highest uptake of yttrium. On the basis of kinetic data, the time required to chelate 94% of 90Y (four half-times) under prospective radiopharmacy labeling conditions in 0.5 M ammonium acetate was 17-148 min at pH 6.5, but it was only 1-10 min at pH 7.5. Raising the reaction temperature from 25 degrees C to 37 degrees C markedly increased the chelation rate. Optimal radiolabeling conditions were identified as: 30-min reaction time, 0.5 M ammonium acetate buffer, pH 7-7.5 and 37 degrees C. In eight labeling experiments under optimal conditions, a mean product yield (+/- s.d.) of 91%+/-8% was achieved, comparable to iodination yields. The specific activity of final products was 74-130 MBq (2.0-3.5 mCi) of 90Y per mg of monoclonal antibody. The immunoreactivity of 90Y-labeled immunoconjugates was 100%+/-11%. The optimization of 90Y-DOTA chelation conditions represents an important advance in 90Y RIT

  19. Acidizing reservoirs while chelating iron with sulfosalicylic acid

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, W A; Berkshire, D C

    1980-09-30

    A well treating process is described in which an aqueous solution of a strong acid capable of dissolving solids in a manner increasing the permeability of a subterranean earth formation is injected into a subterranean reservoir that contains an asphaltenic oil. At least the first injected portion of the aqueous acid and a solution or homogeneous dispersion of at least enough 5-sulfosalicylic acid to chelate with and prevent the formation of iron-asphaltene solids are included with substantially all of the ferric ions that become dissolved within the strong acid solution that enters the earth formation. 10 claims.

  20. Characterization and thermogravimetric analysis of lanthanide hexafluoroacetylacetone chelates.

    Science.gov (United States)

    Shahbazi, Shayan; Stratz, S Adam; Auxier, John D; Hanson, Daniel E; Marsh, Matthew L; Hall, Howard L

    2017-01-01

    This work reports the thermodynamic characterizations of organometallic species as a vehicle for the rapid separation of volatile nuclear fission products via gas chromatography due to differences in adsorption enthalpy. Because adsorption and sublimation thermodynamics are linearly correlated, there is considerable motivation to determine sublimation enthalpies. A method of isothermal thermogravimetric analysis, TGA-MS and melting point analysis are employed on thirteen lanthanide 1,1,1,5,5,5-hexafluoroacetylacetone complexes to determine sublimation enthalpies. An empirical correlation is used to estimate adsorption enthalpies of lanthanide complexes on a quartz column from the sublimation data. Additionally, four chelates are characterized by SC-XRD, elemental analysis, FTIR and NMR.

  1. Uranium and neodymium biosorption using novel chelating polysaccharide.

    Science.gov (United States)

    Elsalamouny, Ahmed R; Desouky, Osman A; Mohamed, Saad A; Galhoum, Ahmed A; Guibal, Eric

    2017-11-01

    A direct reaction is described to prepare hydrophobic α-aminomethylphosphonic acid as a novel chitosan-based material. It exhibits chelating properties for polyvalent metal ions such as U(VI) and Nd(III) ions. The new sorbent was fully characterized using Elemental analysis, scanning electron microscope (SEM) and FTIR spectra. Different parameters were examined in order to evaluate the optimum conditions for U(VI) and Nd(III) ions biosorption. Sorption mechanisms of metal ions were investigated using kinetic and isotherm models. In addition, the sorbent selectivity was tested for both metal ions together in a binary solution. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Chelating capture and magnetic removal of non-magnetic heavy metal substances from soil

    OpenAIRE

    Liren Fan; Jiqing Song; Wenbo Bai; Shengping Wang; Ming Zeng; Xiaoming Li; Yang Zhou; Haifeng Li; Haiwei Lu

    2016-01-01

    A soil remediation method based on magnetic beneficiation is reported. A new magnetic solid chelator powder, FS@IDA (core-shell Fe3O4@SiO2 nanoparticles coated with iminodiacetic acid chelators), was used as a reactive magnetic carrier to selectively capture non-magnetic heavy metals in soil by chelation and removal by magnetic separation. FS@IDA was prepared via inorganic-organic and organic synthesis reactions that generated chelating groups on the surface of magnetic, multi-core, core-shel...

  3. Spectroscopy, modeling and computation of metal chelate solubility in supercritical CO2. 1998 annual progress report

    International Nuclear Information System (INIS)

    Brennecke, J.F.; Chateauneuf, J.E.; Stadtherr, M.A.

    1998-01-01

    'This report summarizes work after 1 year and 8 months (9/15/96-5/14/98) of a 3 year project. Thus far, progress has been made in: (1) the measurement of the solubility of metal chelates in SC CO 2 with and without added cosolvents, (2) the spectroscopic determination of preferential solvation of metal chelates by cosolvents in SC CO 2 solutions, and (3) the development of a totally reliable computational technique for phase equilibrium computations. An important factor in the removal of metals from solid matrices with CO 2 /chelate mixtures is the equilibrium solubility of the metal chelate complex in the CO 2 .'

  4. Sinus Tumors

    Science.gov (United States)

    ... RESOURCES Medical Societies Patient Education About this Website Font Size + - Home > CONDITIONS > Sinus Tumors Adult Sinusitis Pediatric ... and they vary greatly in location, size and type. Care for these tumors is individualized to each ...

  5. Tumors markers

    International Nuclear Information System (INIS)

    Yamaguchi-Mizumoto, N.H.

    1989-01-01

    In order to study blood and cell components alterations (named tumor markers) that may indicate the presence of a tumor, several methods are presented. Aspects as diagnostic, prognostic, therapeutic value and clinical evaluation are discussed. (M.A.C.)

  6. Wilms tumor

    Science.gov (United States)

    ... suggested. Alternative Names Nephroblastoma; Kidney tumor - Wilms Images Kidney anatomy Wilms tumor References Babaian KN, Delacroix SE, Wood CG, Jonasch E. Kidney cancer. In: Skorecki K, Chertow GM, Marsden PA, ...

  7. A synthetic peptide derived from alpha-fetoprotein inhibits the estradiol-induced proliferation of mammary tumor cells in culture through the modulation of p21.

    Science.gov (United States)

    Sierralta, Walter D; Epuñan, María J; Reyes, José M; Valladares, Luis E; Pino, Ana M

    2008-01-01

    A stable cyclized 9-mer peptide (cP) containing the active site of alpha-alpha fetoprotein (alphaFP) has been shown to be effective for prevention of estrogen-stimulated tumor cell proliferation in culture or of xenographt growth in immunodeficient mice. cP does not block 17beta-estradiol (E2) binding to its receptors, but rather appears to interfere with intracellular processing of the signal that supports growth. To obtain insight on that mechanism we studied the effect of cP on the proliferation of MCF-7 cells in culture. Proliferation in the presence of 2 microM E2 is decreased up to 40% upon addition of 2 microg ml(-1) cP to the medium; the presence of cP did not increase cell death, cP reduced also the proliferation of estrogen-dependent ZR75-1 cells but had no effect on autonomous MDA-MB-231 cells, cP did not modify the number of binding sites for labeled E2 or affected cell death. We detected increased nuclear p21Cip1 immunoreactivity after cP treatment. Our results suggest that cP acts via p21Cip1 to slow the process of MCF-7 cells through the cycle.

  8. Synthesis of LaNiO3 perovskite type by chelating precursor method using EDTA: optimization of chelating content

    International Nuclear Information System (INIS)

    Santos, Jose Carlos dos; Pedrosa, Anne Michelle Garrido; Mesquita, Maria Eliane; Souza, Marcelo Jose Barros de

    2011-01-01

    The perovskites are strategic materials due their catalytic, electronic and magnetic properties. These properties are influenced by the calcination and synthesis conditions. In this work was carried out the synthesis of LaNiO 3 perovskite type by chelating precursor method using EDTA and also was studied the optimization of the EDTA content in the synthesis. The synthesized materials were characterized by X-ray diffraction (XRD), thermal gravimetric analysis (TG) and Infrared Spectroscopy (FTIR). In the optimization of the EDTA content the lowest ratio of metal / EDTA used was 1.0 / 0.1, where it was possible to obtain monophasic perovskite. (author)

  9. Spinal tumors

    International Nuclear Information System (INIS)

    Goethem, J.W.M. van; Hauwe, L. van den; Oezsarlak, Oe.; Schepper, A.M.A. de; Parizel, P.M.

    2004-01-01

    Spinal tumors are uncommon lesions but may cause significant morbidity in terms of limb dysfunction. In establishing the differential diagnosis for a spinal lesion, location is the most important feature, but the clinical presentation and the patient's age and gender are also important. Magnetic resonance (MR) imaging plays a central role in the imaging of spinal tumors, easily allowing tumors to be classified as extradural, intradural-extramedullary or intramedullary, which is very useful in tumor characterization. In the evaluation of lesions of the osseous spine both computed tomography (CT) and MR are important. We describe the most common spinal tumors in detail. In general, extradural lesions are the most common with metastasis being the most frequent. Intradural tumors are rare, and the majority is extramedullary, with meningiomas and nerve sheath tumors being the most frequent. Intramedullary tumors are uncommon spinal tumors. Astrocytomas and ependymomas comprise the majority of the intramedullary tumors. The most important tumors are documented with appropriate high quality CT or MR images and the characteristics of these tumors are also summarized in a comprehensive table. Finally we illustrate the use of the new World Health Organization (WHO) classification of neoplasms affecting the central nervous system

  10. Brain Tumors

    Science.gov (United States)

    A brain tumor is a growth of abnormal cells in the tissues of the brain. Brain tumors can be benign, with no cancer cells, ... cancer cells that grow quickly. Some are primary brain tumors, which start in the brain. Others are ...

  11. Urogenital tumors

    Energy Technology Data Exchange (ETDEWEB)

    Weller, R.E.

    1994-03-01

    An overview is provided for veterinary care of urogenital tumors in companion animals, especially the dog. Neoplasms discussed include tumors of the kidney, urinary bladder, prostate, testis, ovary, vagina, vulva and the canine transmissible venereal tumor. Topics addressed include description, diagnosis and treatment.

  12. Detoxication and removal of uranium by phenolic chelating agents

    International Nuclear Information System (INIS)

    Luo Meichu; Chen Guibao; Li Landi

    1992-01-01

    The use of phenolic chelating agents for detoxication and removal of uranyl nitrate in mice and rats is reported. Antidotal test: 8102, 7601 and 811 were given 2 mM/kg subcutaneously to mice and 1 mM/kg intramuscularly to rats when the animals were injected i.p. with different doses (100-500 mg/kg) of uranyl nitrate. The results showed that the antidotal effects of 8102 and 7601 were better than 811 in augmenting survival, survival time (day) and renal factor (kidney weight/body weight x100). 8102 was superior to 7601 against higher dose of uranyl nitrate intoxication. Removal test: five phenolic chelating agents (8102, 7601, 811, 7603 and 8307) were studied in rats. The results obtained demonstrated that 8102 and 7601 were better than 811, 7603 and 8307 in increasing U excretion in the urine after acute uranyl nitrate intoxication. The effects of different doses (300-1000 μM/kg) of 8102 was superior to 7601 in increasing U excretion in the urine and decreasing U deposition in the tissues. The toxicity and dose of 8102 in treating uranium intoxication are discussed

  13. Selective separation of indium by iminodiacetic acid chelating resin

    International Nuclear Information System (INIS)

    Fortes, M.C.B.; Benedetto, J.S.; Martins, A.H.

    2007-01-01

    - Indium can be recovered by treating residues, flue dusts, slags, and metallic intermediates in zinc smelting. This paper investigates the adsorption characteristics of indium and iron on an iminodiacetic acid chelating resin, Amberlite R IRC748 (Rohm and Haas Co.-USA). High concentrations of iron are always present in the aqueous feed solution of indium recovery. In addition, the chemical behaviour of iron in adsorptive systems is similar to that of indium. The metal concentrations in the aqueous solution were based on typical indium sulfate leach liquor obtained from zinc hydrometallurgical processing in a Brazilian plant. The ionic adsorption experiments were carried out by the continuous column method. Amberlite R IRC748 resin had a high affinity for indium under acidic conditions. Indium ions adsorbed onto the polymeric resin were eluted with a 0.5 mol/dm 3 sulphuric acid solution passed through the resin bed in the column. 99.5% pure indium sulfate aqueous solution was obtained using the iminodiacetic acid chelating resin Amberlite R IRC748. (author)

  14. Dosimetric impact of inter-observer variability for 3D conformal radiotherapy and volumetric modulated arc therapy: the rectal tumor target definition case

    International Nuclear Information System (INIS)

    Lobefalo, Francesca; Cozzi, Luca; Scorsetti, Marta; Mancosu, Pietro; Bignardi, Mario; Reggiori, Giacomo; Tozzi, Angelo; Tomatis, Stefano; Alongi, Filippo; Fogliata, Antonella; Gaudino, Anna; Navarria, Piera

    2013-01-01

    To assess the dosimetric effect induced by inter-observer variability in target definition for 3D-conformal RT (3DCRT) and volumetric modulated arc therapy by RapidArc (RA) techniques for rectal cancer treatment. Ten patients with rectal cancer subjected to neo-adjuvant RT were randomly selected from the internal database. Four radiation oncologists independently contoured the clinical target volume (CTV) in blind mode. Planning target volume (PTV) was defined as CTV + 7 mm in the three directions. Afterwards, shared guidelines between radiation oncologists were introduced to give general criteria for the contouring of rectal target and the four radiation oncologists defined new CTV following the guidelines. For each patient, six intersections (I) and unions (U) volumes were calculated coupling the contours of the various oncologists. This was repeated for the contours drawn after the guidelines. Agreement Index (AI = I/U) was calculated pre and post guidelines. Two RT plans (one with 3DCRT technique using 3–4 fields and one with RA using a single modulated arc) were optimized on each radiation oncologist’s PTV. For each plan the PTV volume receiving at least 95% of the prescribed dose (PTV V95%) was calculated for both target and non-target PTVs. The inter-operator AI pre-guidelines was 0.57 and was increased up to 0.69 post-guidelines. The maximum volume difference between the various CTV couples, drawn for each patient, passed from 380 ± 147 cm 3 to 137 ± 83 cm 3 after the introduction of guidelines. The mean percentage for the non-target PTV V95% was 93.7 ± 9.2% before and 96.6 ± 4.9%after the introduction of guidelines for the 3DCRT, for RA the increase was more relevant, passing from 86.5 ± 13.8% (pre) to 94.5 ± 7.5% (post). The OARs were maximally spared with VMAT technique while the variability between pre and post guidelines was not relevant in both techniques. The contouring inter-observer variability has dosimetric effects in the PTV coverage

  15. Biomolecule conjugation strategy using novel water-soluble phosphine-based chelating agents

    Science.gov (United States)

    Katti, Kattesh V.; Gali, Hariprasad; Volkert, Wynn A.

    2004-08-24

    This invention describes a novel strategy to produce phosphine-functionalized biomolecules (e.g. peptides or proteins) for potential use in the design and development of site-specific radiopharmaceuticals for diagnosis or therapy of specific cancers. Hydrophilic alkyl phosphines, in general, tend to be oxidatively unstable. Therefore, incorporation of such phosphine functionalities on peptide (and other biomolecule) backbones, without oxidizing the P.sup.III centers, is difficult. In this context this discovery reports on a new technology by which phosphines, in the form of bifunctional chelating agents, can be directly incorporated on biomolecular backbones using manual synthetic or solid phase peptide synthesis methodologies. The superior ligating abilities of phosphine ligands, with various diagnostically (e.g. TC-99m) or therapeutically (e.g. Re186/188, Rh-105, Au-199) useful radiometals, coupled with the findings that the resulting complexes demonstrate high in vivo stability makes this approach useful in the development of radiolabeled biomolecules for applications in the design of tumor-specific radiopharmaceuticals.

  16. SU-G-TeP1-06: Fast GPU Framework for Four-Dimensional Monte Carlo in Adaptive Intensity Modulated Proton Therapy (IMPT) for Mobile Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Botas, P [Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Heidelberg University, Heidelberg (Germany); Grassberger, C; Sharp, G; Paganetti, H [Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Qin, N; Jia, X; Jiang, S [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: To demonstrate the feasibility of fast Monte Carlo (MC) treatment planning and verification using four-dimensional CT (4DCT) for adaptive IMPT for lung cancer patients. Methods: A validated GPU MC code, gPMC, has been linked to the patient database at our institution and employed to compute the dose-influence matrices (Dij) on the planning CT (pCT). The pCT is an average of the respiratory motion of the patient. The Dijs and patient structures were fed to the optimizer to calculate a treatment plan. To validate the plan against motion, a 4D dose distribution averaged over the possible starting phases is calculated using the 4DCT and a model of the time structure of the delivered spot map. The dose is accumulated using vector maps created by a GPU-accelerated deformable image registration program (DIR) from each phase of the 4DCT to the reference phase using the B-spline method. Calculation of the Dij matrices and the DIR are performed on a cluster, with each field and vector map calculated in parallel. Results: The Dij production takes ∼3.5s per beamlet for 10e6 protons, depending on the energy and the CT size. Generating a plan with 4D simulation of 1000 spots in 4 fields takes approximately 1h. To test the framework, IMPT plans for 10 lung cancer patients were generated for validation. Differences between the planned and the delivered dose of 19% in dose to some organs at risk and 1.4/21.1% in target mean dose/homogeneity with respect to the plan were observed, suggesting potential for improvement if adaptation is considered. Conclusion: A fast MC treatment planning framework has been developed that allows reliable plan design and verification for mobile targets and adaptation of treatment plans. This will significantly impact treatments for lung tumors, as 4D-MC dose calculations can now become part of planning strategies.

  17. Inflammatory microenvironment and tumor necrosis factor alpha as modulators of periostin and CCN2 expression in human non-healing skin wounds and dermal fibroblasts.

    Science.gov (United States)

    Elliott, Christopher G; Forbes, Thomas L; Leask, Andrew; Hamilton, Douglas W

    2015-04-01

    Non-healing skin wounds remain a significant clinical burden, and in recent years, the regulatory role of matricellular proteins in skin healing has received significant attention. Periostin and CCN2 are both upregulated at day 3 post-wounding in murine skin, where they regulate aspects of the proliferative phase of repair including mesenchymal cell infiltration and myofibroblast differentiation. In this study, we examined 1) the wound phenotype and expression patterns of periostin and CCN2 in non-healing skin wounds in humans and 2) the regulation of their expression in wound fibroblasts by tumor necrosis factor α (TNFα) and transforming growth factor-β1 (TGF-β1). Chronic skin wounds had a pro-inflammatory phenotype, characterized by macrophage infiltration, TNFα immunoreactivity, and neutrophil infiltration. Periostin, but not CCN2, was significantly suppressed in non-healing wound edge tissue at the mRNA and protein level compared with non-involved skin. In vitro, human wound edge fibroblasts populations were still able to proliferate and contract collagen gels. Compared to cells from non-involved skin, periostin and α-SMA mRNA levels increased significantly in the presence of TGF-β1 in wound cells and were significantly decreased by TNFα, but not those of Col1A2 or CCN2. In the presence of both TGF-β1 and TNFα, periostin and α-SMA mRNA levels were significantly reduced compared to TGF-β1 treated wound cells. Effects of TGF-β1 and TNFα on gene expression were also more pronounced in wound edge cells compared to non-involved fibroblasts. We conclude that variations in the expression of periostin and CCN2, are related to an inflammatory microenvironment and the presence of TNFα in human chronic wounds. Copyright © 2015. Published by Elsevier B.V.

  18. Tumor immunology

    International Nuclear Information System (INIS)

    Otter, W. den

    1987-01-01

    Tumor immunology, the use of immunological techniques for tumor diagnosis and approaches to immunotherapy of cancer are topics covered in this multi-author volume. Part A, 'Tumor Immunology', deals with present views on tumor-associated antigens, the initiation of immune reactions of tumor cells, effector cell killing, tumor cells and suppression of antitumor immunity, and one chapter dealing with the application of mathematical models in tumor immunology. Part B, 'Tumor Diagnosis and Imaging', concerns the use of markers to locate the tumor in vivo, for the histological diagnosis, and for the monitoring of tumor growth. In Part C, 'Immunotherapy', various experimental approaches to immunotherapy are described, such as the use of monoclonal antibodies to target drugs, the use of interleukin-2 and the use of drugs inhibiting suppression. In the final section, the evaluation, a pathologist and a clinician evaluate the possibilities and limitations of tumor immunology and the extent to which it is useful for diagnosis and therapy. refs.; figs.; tabs

  19. Integrated beam orientation and scanning-spot optimization in intensity-modulated proton therapy for brain and unilateral head and neck tumors.

    Science.gov (United States)

    Gu, Wenbo; O'Connor, Daniel; Nguyen, Dan; Yu, Victoria Y; Ruan, Dan; Dong, Lei; Sheng, Ke

    2018-04-01

    Intensity-Modulated Proton Therapy (IMPT) is the state-of-the-art method of delivering proton radiotherapy. Previous research has been mainly focused on optimization of scanning spots with manually selected beam angles. Due to the computational complexity, the potential benefit of simultaneously optimizing beam orientations and spot pattern could not be realized. In this study, we developed a novel integrated beam orientation optimization (BOO) and scanning-spot optimization algorithm for intensity-modulated proton therapy (IMPT). A brain chordoma and three unilateral head-and-neck patients with a maximal target size of 112.49 cm 3 were included in this study. A total number of 1162 noncoplanar candidate beams evenly distributed across 4π steradians were included in the optimization. For each candidate beam, the pencil-beam doses of all scanning spots covering the PTV and a margin were calculated. The beam angle selection and spot intensity optimization problem was formulated to include three terms: a dose fidelity term to penalize the deviation of PTV and OAR doses from ideal dose distribution; an L1-norm sparsity term to reduce the number of active spots and improve delivery efficiency; a group sparsity term to control the number of active beams between 2 and 4. For the group sparsity term, convex L2,1-norm and nonconvex L2,1/2-norm were tested. For the dose fidelity term, both quadratic function and linearized equivalent uniform dose (LEUD) cost function were implemented. The optimization problem was solved using the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA). The IMPT BOO method was tested on three head-and-neck patients and one skull base chordoma patient. The results were compared with IMPT plans created using column generation selected beams or manually selected beams. The L2,1-norm plan selected spatially aggregated beams, indicating potential degeneracy using this norm. L2,1/2-norm was able to select spatially separated beams and achieve

  20. Synthesis and evaluation of novel bifunctional chelating agents based on 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid for radiolabeling proteins

    International Nuclear Information System (INIS)

    Chappell, L.L.; Ma, D.; Milenic, D.E.; Garmestani, K.; Venditto, V.; Beitzel, M.P.; Brechbiel, M.W.

    2003-01-01

    Detailed synthesis of the bifunctional chelating agents 2-methyl-6-(p-isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane-1,4,7,10 -tetraacetic acid (1B4M-DOTA) and 2-(p-isothiocyanatobenzyl)-5, 6-cyclohexano-1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetraacetate (CHX-DOTA) are reported. These chelating agents were compared to 2-(p-isothiocyanatobenzyl)-1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetraacetic acid (C-DOTA) and 1, 4, 7, 10-Tetraaza-N-(1-carboxy-3-(4-nitrophenyl)propyl)-N', N'', N'''-tris(acetic acid) cyclododecane (PA-DOTA) as their 177 Lu radiolabeled conjugates with Herceptin TM . In vitro stability of the immunoconjugates radiolabeled with 177 Lu was assessed by serum stability studies. The in vivo stability of the radiolabeled immunoconjugates and their targeting characteristics were determined by biodistribution studies in LS-174T xenograft tumor-bearing mice. Relative radiolabeling rates and efficiencies were determined for all four immunoconjugates. Insertion of the 1B4M moiety into the DOTA backbone increases radiometal chelation rate and provides complex stability comparable to C-DOTA and PA-DOTA while the CHX-DOTA appears to not form as stable a 177 Lu complex while exhibiting a substantial increase in formation rate. The 1B4M-DOTAmay have potential for radioimmunotherapy applications. Published by Elsevier Inc. All rights reserved

  1. KINETICS OF THE OXIDATION OF FERROUS CHELATES OF EDTA AND HEDTA IN AQUEOUS-SOLUTION

    NARCIS (Netherlands)

    WUBS, HJ; BEENACKERS, AACM

    1993-01-01

    The kinetics of the reaction of oxygen with ferrous chelates of EDTA and HEDTA was studied in a stirred cell reactor under industrial conditions. The temperature was varied from 20 to 60-degrees-C and the concentration of the ferrous chelate ranged from 0 to 100 mol/m3. The initial pH was 7.5. Under

  2. Antioxidant, Iron-chelating and Anti-glucosidase Activities of Typha ...

    African Journals Online (AJOL)

    Iron chelating activity was assessed using a ferrozine-based assay. Anti- glucosidase activity was determined using 4-nitrophenyl ... flavonoid (TF) content was determined based an aluminum chloride colorimetric assay [6]. TF content was ..... Dietary iron restriction or iron chelation protects from diabetes and loss of β-cell.

  3. Cervical Gross Tumor Volume Dose Predicts Local Control Using Magnetic Resonance Imaging/Diffusion-Weighted Imaging—Guided High-Dose-Rate and Positron Emission Tomography/Computed Tomography—Guided Intensity Modulated Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Dyk, Pawel; Jiang, Naomi; Sun, Baozhou; DeWees, Todd A. [Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri (United States); Fowler, Kathryn J.; Narra, Vamsi [Department of Diagnostic Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri (United States); Garcia-Ramirez, Jose L.; Schwarz, Julie K. [Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri (United States); Grigsby, Perry W., E-mail: pgrigsby@wustl.edu [Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri (United States); Division of Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri (United States); Division of Gynecologic Oncology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri (United States); Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri (United States)

    2014-11-15

    Purpose: Magnetic resonance imaging/diffusion weighted-imaging (MRI/DWI)-guided high-dose-rate (HDR) brachytherapy and {sup 18}F-fluorodeoxyglucose (FDG) — positron emission tomography/computed tomography (PET/CT)-guided intensity modulated radiation therapy (IMRT) for the definitive treatment of cervical cancer is a novel treatment technique. The purpose of this study was to report our analysis of dose-volume parameters predicting gross tumor volume (GTV) control. Methods and Materials: We analyzed the records of 134 patients with International Federation of Gynecology and Obstetrics stages IB1-IVB cervical cancer treated with combined MRI-guided HDR and IMRT from July 2009 to July 2011. IMRT was targeted to the metabolic tumor volume and lymph nodes by use of FDG-PET/CT simulation. The GTV for each HDR fraction was delineated by use of T2-weighted or apparent diffusion coefficient maps from diffusion-weighted sequences. The D100, D90, and Dmean delivered to the GTV from HDR and IMRT were summed to EQD2. Results: One hundred twenty-five patients received all irradiation treatment as planned, and 9 did not complete treatment. All 134 patients are included in this analysis. Treatment failure in the cervix occurred in 24 patients (18.0%). Patients with cervix failures had a lower D100, D90, and Dmean than those who did not experience failure in the cervix. The respective doses to the GTV were 41, 58, and 136 Gy for failures compared with 67, 99, and 236 Gy for those who did not experience failure (P<.001). Probit analysis estimated the minimum D100, D90, and Dmean doses required for ≥90% local control to be 69, 98, and 260 Gy (P<.001). Conclusions: Total dose delivered to the GTV from combined MRI-guided HDR and PET/CT-guided IMRT is highly correlated with local tumor control. The findings can be directly applied in the clinic for dose adaptation to maximize local control.

  4. Fluoride ion recognition by chelating and cationic boranes.

    Science.gov (United States)

    Hudnall, Todd W; Chiu, Ching-Wen; Gabbaï, François P

    2009-02-17

    Because of the ubiquity of fluoride ions and their potential toxicity at high doses, researchers would like to design receptors that selectively detect this anion. Fluoride is found in drinking water, toothpaste, and osteoporosis drugs. In addition, fluoride ions also can be detected as an indicator of uranium enrichment (via hydrolysis of UF(6)) or of the chemical warfare agent sarin, which releases the ion upon hydrolysis. However, because of its high hydration enthalpy, the fluoride anion is one of the most challenging targets for anion recognition. Among the various recognition strategies that are available, researchers have focused a great deal of attention on Lewis acidic boron compounds. These molecules typically interact with fluoride anions to form the corresponding fluoroborate species. In the case of simple triarylboranes, the fluoroborates are formed in organic solvents but not in water. To overcome this limitation, this Account examines various methods we have pursued to increase the fluoride-binding properties of boron-based receptors. We first considered the use of bifunctional boranes, which chelate the fluoride anion, such as 1,8-diborylnaphthalenes or heteronuclear 1-boryl-8-mercurio-naphthalenes. In these molecules, the neighboring Lewis acidic atoms can cooperatively interact with the anionic guest. Although the fluoride binding constants of the bifunctional compounds exceed those of neutral monofunctional boranes by several orders of magnitude, the incompatibility of these systems with aqueous media limits their utility. More recently, we have examined simple triarylboranes whose ligands are decorated by cationic ammonium or phosphonium groups. These cationic groups increase the electrophilic character of these boranes, and unlike their neutral analogs, they are able to complex fluoride in aqueous media. We have also considered cationic boranes, which form chelate complexes with fluoride anions. Our work demonstrates that Coulombic and chelate

  5. Synthesis and characterization of dihexyldithiocarbamate as a chelating agent in extraction of gold(III)

    Energy Technology Data Exchange (ETDEWEB)

    Fatimah, Soja Siti, E-mail: soja-sf@upi.edu [Departemen Pendidikan Kimia, Universitas Pendidikan Indonesia, Jl. Dr. Setiabudhi No. 229, Bandung 40154 (Indonesia); Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang, Km. 21, Jatinangor (Indonesia); Bahti, Husein H.; Hastiawan, Iwan [Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang, Km. 21, Jatinangor (Indonesia); Permanasari, Anna [Departemen Pendidikan Kimia, Universitas Pendidikan Indonesia, Jl. Dr. Setiabudhi No. 229, Bandung 40154 (Indonesia)

    2016-02-08

    The use of dialkyldithiocarbamates as chelating agents of transition metals have been developing for decades. Many chelating agents have been synthesized and used in the extraction of the metals. Studies on particular aspects of extraction of the metals, such as the effect of increasing hydrophobicity of chelating agents on the effectiveness of the extraction, have been done. However, despite the many studies on the synthesis and applications of this type of chelating agents, interests in the aspect of molecular structure of the synthesized ligands and of their complexes, have been limited. This study aimed at synthesizing and characterizing dihexylthiocarbamate, and using the ligand for the extraction of gold III). Characterization of the ligand and of its metal complex were done by using elemental analysis, DTG, and spectroscopic methods to include NMR, ({sup 1}H, and {sup 13}C), FTIR, and MS-ESI. Data on the synthesis, characterization, and the application of the ligand as a chelating agent are presented.

  6. Synthesis and characterization of dihexyldithiocarbamate as a chelating agent in extraction of gold(III)

    Science.gov (United States)

    Fatimah, Soja Siti; Bahti, Husein H.; Hastiawan, Iwan; Permanasari, Anna

    2016-02-01

    The use of dialkyldithiocarbamates as chelating agents of transition metals have been developing for decades. Many chelating agents have been synthesized and used in the extraction of the metals. Studies on particular aspects of extraction of the metals, such as the effect of increasing hydrophobicity of chelating agents on the effectiveness of the extraction, have been done. However, despite the many studies on the synthesis and applications of this type of chelating agents, interests in the aspect of molecular structure of the synthesized ligands and of their complexes, have been limited. This study aimed at synthesizing and characterizing dihexylthiocarbamate, and using the ligand for the extraction of gold III). Characterization of the ligand and of its metal complex were done by using elemental analysis, DTG, and spectroscopic methods to include NMR, (1H, and 13C), FTIR, and MS-ESI. Data on the synthesis, characterization, and the application of the ligand as a chelating agent are presented.

  7. Preparation, characterization, magnetic and thermal studies of some chelate polymers of first series transition metal ions

    International Nuclear Information System (INIS)

    Ukey, Vaishali V.; Juneja, H.D.; Borkar, S.D.; Ghubde, R.S.; Naz, S.

    2006-01-01

    Azelaoyl-bis-hydroxamic acid used as bis ligand for the preparation of chelate polymers of Mn(II), Co(II), Ni(II) and Zn(II). These chelate polymers have been synthesized by refluxing the metal acetate and bis ligand as 1:1 stoichiometry. In the present work, structural determination of these newly synthesized chelate polymers has been studied on the basis of elemental analyses, infrared and reflectance spectral, magnetic and thermal studies. The decomposition temperature and the order of reaction have been determined by TGA analysis. On the basis of these studies, the Zn(II) chelate polymer has tetrahedral geometry, whereas Mn(II), Co(II) and Ni(II) chelate polymers have octahedral geometry and have the thermal stability in the order Ni(II) > Mn(II) > Zn(II) > Co(II)

  8. Studies of the competition for thorium ion between chelating agents and bovine serum albumin

    International Nuclear Information System (INIS)

    Luo Meichu; Zhang Meizhen; Sun Meizhen; Chen Shijie

    1995-01-01

    Fourteen chelation agents (polyaminopolcarboxylate type--TTHA, DTPA, EDTA; phenolicpolycarboxylate type--811, 8102, 7601, 7602, 7603, 7616, 7711, 7724, 7803, 7804, 8307) were studied their competitive ability to mobilize the thorium with bovine serum albumin (BSA). The experimental results showed that the competitive ability of TTHA, 8102, 811 to chelate Thorium with BSA were the strongest, and EDTA was the worst in all chelating agents. The measured order of the competitive ability of chelators is basically consistent with animal experimental results in vivo. The parameter F is defined as the competitive ability of chelators. F is taken as a screening criterion for de-corporate thorium which is simple, quick and effective method in vitro

  9. Red Blood Cell Transfusion Independence Following the Initiation of Iron Chelation Therapy in Myelodysplastic Syndrome

    Directory of Open Access Journals (Sweden)

    Maha A. Badawi

    2010-01-01

    Full Text Available Iron chelation therapy is often used to treat iron overload in patients requiring transfusion of red blood cells (RBC. A 76-year-old man with MDS type refractory cytopenia with multilineage dysplasia, intermediate-1 IPSS risk, was referred when he became transfusion dependent. He declined infusional chelation but subsequently accepted oral therapy. Following the initiation of chelation, RBC transfusion requirement ceased and he remained transfusion independent over 40 months later. Over the same time course, ferritin levels decreased but did not normalize. There have been eighteen other MDS patients reported showing improvement in hemoglobin level with iron chelation; nine became transfusion independent, nine had decreased transfusion requirements, and some showed improved trilineage myelopoiesis. The clinical features of these patients are summarized and possible mechanisms for such an effect of iron chelation on cytopenias are discussed.

  10. Tumor immunotherapy : clinics of cytokines and monoclonal antibodies

    NARCIS (Netherlands)

    Nieken, Judith

    1999-01-01

    Tumor immunotherapy is defines as treatment that induces anti-tumor responses via the modulation of both cellular and homoral components of the host immune system. Its concept is based on hte assumption that tumor cells express unique protiens, so-calles tumor antigens, that can be identified as

  11. Low-Molecular-Weight Iron Chelates May Be an Alternative to Gadolinium-based Contrast Agents for T1-weighted Contrast-enhanced MR Imaging.

    Science.gov (United States)

    Boehm-Sturm, Philipp; Haeckel, Akvile; Hauptmann, Ralf; Mueller, Susanne; Kuhl, Christiane K; Schellenberger, Eyk A

    2018-02-01

    Purpose To synthesize two low-molecular-weight iron chelates and compare their T1 contrast effects with those of a commercial gadolinium-based contrast agent for their applicability in dynamic contrast material-enhanced (DCE) magnetic resonance (MR) imaging. Materials and Methods The animal experiments were approved by the local ethics committee. Two previously described iron (Fe) chelates of pentetic acid (Fe-DTPA) and of trans-cyclohexane diamine tetraacetic acid (Fe-tCDTA) were synthesized with stability constants several orders of magnitude higher than those of gadolinium-based contrast agents. The T1 contrast effects of the two chelates were compared with those of gadopentetate dimeglumine in blood serum phantoms at 1.5 T, 3 T, and 7 T. For in vivo studies, a human breast cancer cell line (MDA-231) was implanted in five mice per group. The dynamic contrast effects of the chelates were compared by performing DCE MR imaging with intravenous application of Fe-DTPA or Fe-tCDTA on day 1 and DCE MR imaging in the same tumors with gadopentetate dimeglumine on day 2. Quantitative DCE maps were generated with software and were compared by means of a one-tailed Pearson correlation test. Results Relaxivities in serum (0.94 T at room temperature) of Fe-tCDTA (r1 = 2.2 mmol -1 · sec -1 , r2 = 2.5 mmol -1 · sec -1 ) and Fe-DTPA (r1 = 0.9 mmol -1 · sec -1 , r2 = 0.9 mmol -1 · sec -1 ) were approximately twofold and fivefold lower, respectively, compared with those of gadopentetate dimeglumine (r1 = 4.1 mmol -1 · sec -1 , r2 = 4.8 mmol -1 · sec -1 ). Used at moderately higher concentrations, however, iron chelates generated similar contrast effects at T1-weighted MR imaging in vitro in serum, in vivo in blood, and for DCE MR imaging of breast cancer xenografts. The volume transfer constant values for Fe-DTPA and Fe-tCDTA in the same tumors correlated well with those observed for gadopentetate dimeglumine (Fe-tCDTA Pearson R, 0.99; P = .0003; Fe-DTPA Pearson R, 0.97; P

  12. Preparation, Spectroscopic Investigation and Biological Activity of New Mixed Ligand Chelates

    International Nuclear Information System (INIS)

    Alassbaly, F.S.; Ajaily, M.M.E.

    2014-01-01

    Preparation and investigation of new Co(II), Ni(II), Zn(II) and Cr(III) chelates with mixed ligands including Schiff base (L1) formed from the condensation of 4-dimethylaminobenzaldehyde with 2-aminophenol and anthranilic acid (L2) were studied. The obtained Schiff base and mixed ligand chelates were subjected to several physiochemical techniques, in terms of CHN elemental analyses, molar conductivity, magnetic moment measurements, infrared, proton nuclear magnetic resonance, electronic and mass spectra. The analytical data showed the formation of the Schiff base compound and the ratio of metal to ligands of the chelates are 1:1:1(M:L1:L2). The infrared spectral data exhibited that the used ligands behaving as bidentate ligands towards the metal ions. The proton nuclear magnetic resonance spectral data showed the signals of the active groups in the ligands which entered in chelation with Zn(II) metal ion. The electronic spectral results showed the existence of pie (phenyl ring) and n = pie (C=N) of the ligands and suggested the geometrical structures of the chelates. Meanwhile, the mass spectral data revealed the fragmentations of the Schiff base, anthranilic acid and their Ni(II) mixed ligand chelate has been preformed the only chelate conducted for justification. All the prepared mixed chelates were non-electrolyte in nature. The antibacterial activity of the Schiff base, anthranilic acid, metal salts and mixed ligand chelates were studied and found to be that mixed ligand chelates have the most biological activity in comparison to the free ligands and salts. (author)

  13. Modeling systemic and renal gadolinium chelate transport with MRI

    Energy Technology Data Exchange (ETDEWEB)

    Votaw, John R.; Martin, Diego [Emory University Hospital, Department of Radiology, Atlanta, GA (United States)

    2008-01-15

    The advent of modern MRI scanners and computer equipment permits the rapid sequential collection of images of gadolinium chelate (Gd) transit through the kidney. The excellent spatial and temporal (0.9 s) resolution permits analyzing the shape of the recovered curves with a sophisticated model that includes both space and time. The purpose of this manuscript is to present such a mathematical model. By building into the model significant physical processes that contribute to the shape of the measured curve, quantitative values can be assigned to important parameters. In this work, quantitative values are determined for blood dispersion through the cardio-pulmonary system, systemic clearance rate of Gd, blood flow into each kidney, blood transit time in each kidney, the extraction rate of Gd across the capillary membrane, interstitial distribution volume, and the GFR for each kidney. (orig.)

  14. Kinetic study of ion exchange in phosphoric acid chelating resin

    International Nuclear Information System (INIS)

    Brikci-Nigassa, Mounir; Hamouche, Hafida

    1995-11-01

    Uranium may be recovered as a by product of wet phosphoric acid using a method based on specific ion exchange resins. These resins called chelates contain amino-phosphonic functional groups. The resin studied in this work is a purolite S-940; uranium may be loaded on this resin from 30% P2O5 phosphoric acid in its reduced state. The influence of different parameters on the successive steps of the process have been studied in batch experiments: uranium reduction, loading and oxydation. Uranium may be eluted with ammonium carbonate and the resin regeneration may be done with hydrochloric acid.Ferric ions reduce the effective resin capacity considerably and inert fixation conditions are proposed to enhance uranium loading

  15. 3,4,5-trihydroxybenzoic acid as chelating agent

    International Nuclear Information System (INIS)

    Agrawal, M.D.; Bhandari, C.S.; Dixit, M.K.; Sogani, N.C.

    1976-01-01

    Stability constants of praseodymium chelates of 3,4,5-trihydroxy sodium benzoate are determined by using Bjerrum-Calvin pH titration techniques at constant ionic strength 0.1M-sodium perchlorate and at 28+-0.1 0 C. Values calculated by different methods are in good agreement. The study reveals that during complexation only one proton of the ligand molecule is replaced by the metal and oxygen of adjacent phenolic group acts as a coordinating atom. IR and NMR spectral studies of the ligand reveal that one of the OH groups (in meta position to carboxylic group) remains free while two other phenolic groups are involved in intramolecular hydrogen bonding. One water molecule is found attached in crystalline gallic acid. (author)

  16. Mesoporous organosilica nanotubes containing a chelating ligand in their walls

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiao; Goto, Yasutomo; Maegawa, Yoshifumi; Inagaki, Shinji, E-mail: inagaki@mosk.tytlabs.co.jp [Toyota Central R and D Laboratories, Inc., Nagakute, Aichi 480-1192 (Japan); Japan Science and Technology Agency (JST)/ACT-C, Nagakute, Aichi, 480-1192 (Japan); Ohsuna, Tetsu [Toyota Central R and D Laboratories, Inc., Nagakute, Aichi 480-1192 (Japan)

    2014-11-01

    We report the synthesis of organosilica nanotubes containing 2,2′-bipyridine chelating ligands within their walls, employing a single-micelle-templating method. These nanotubes have an average pore diameter of 7.8 nm and lengths of several hundred nanometers. UV-vis absorption spectra and scanning transmission electron microscopy observations of immobilized nanotubes with an iridium complex on the bipyridine ligands showed that the 2,2′-bipyridine groups were homogeneously distributed in the benzene-silica walls. The iridium complex, thus, immobilized on the nanotubes exhibited efficient catalytic activity for water oxidation using Ce{sup 4+}, due to the ready access of reactants to the active sites in the nanotubes.

  17. Thermometric studies on the Fe(III)-EDTA chelate.

    Science.gov (United States)

    Dot, K

    1978-02-01

    A DeltaH of -11.5 +/- 0.5 kJ/mole has been determined for the formation of the Fe(III)-EDTA chelate at 25.0 degrees and mu = 0.1(= [HClO(4)] + [NaClO(4)]) by a direct thermometric titration procedure. The entropy change, DeltaS, has been calculated to be 440 J.mole(-1) .deg(-1) by combining the result of the heat measurements with the free energy change obtained from the stability constant previously determined. A relationship between the DeltaS values and the standard partial molal entropies of the tervalent metal ions is discussed. In addition, conditions for the thermometric titration of Fe(III) with NA(4)EDTA at room temperature have been investigated. Iron(III) can be determined in the presence of fairly large amounts of phosphate, Cr(III), Mn(II) and Al(III).

  18. Mesoporous organosilica nanotubes containing a chelating ligand in their walls

    Directory of Open Access Journals (Sweden)

    Xiao Liu

    2014-11-01

    Full Text Available We report the synthesis of organosilica nanotubes containing 2,2′-bipyridine chelating ligands within their walls, employing a single-micelle-templating method. These nanotubes have an average pore diameter of 7.8 nm and lengths of several hundred nanometers. UV-vis absorption spectra and scanning transmission electron microscopy observations of immobilized nanotubes with an iridium complex on the bipyridine ligands showed that the 2,2′-bipyridine groups were homogeneously distributed in the benzene-silica walls. The iridium complex, thus, immobilized on the nanotubes exhibited efficient catalytic activity for water oxidation using Ce4+, due to the ready access of reactants to the active sites in the nanotubes.

  19. Chelation and stabilization of berkelium in oxidation state +IV

    Science.gov (United States)

    Deblonde, Gauthier J.-P.; Sturzbecher-Hoehne, Manuel; Rupert, Peter B.; An, Dahlia D.; Illy, Marie-Claire; Ralston, Corie Y.; Brabec, Jiri; de Jong, Wibe A.; Strong, Roland K.; Abergel, Rebecca J.

    2017-09-01

    Berkelium (Bk) has been predicted to be the only transplutonium element able to exhibit both +III and +IV oxidation states in solution, but evidence of a stable oxidized Bk chelate has so far remained elusive. Here we describe the stabilization of the heaviest 4+ ion of the periodic table, under mild aqueous conditions, using a siderophore derivative. The resulting Bk(IV) complex exhibits luminescence via sensitization through an intramolecular antenna effect. This neutral Bk(IV) coordination compound is not sequestered by the protein siderocalin—a mammalian metal transporter—in contrast to the negatively charged species obtained with neighbouring trivalent actinides americium, curium and californium (Cf). The corresponding Cf(III)-ligand-protein ternary adduct was characterized by X-ray diffraction analysis. Combined with theoretical predictions, these data add significant insight to the field of transplutonium chemistry, and may lead to innovative Bk separation and purification processes.

  20. Tumoral tracers

    International Nuclear Information System (INIS)

    Camargo, E.E.

    1979-01-01

    Direct tumor tracers are subdivided in the following categories:metabolite tracers, antitumoral tracers, radioactive proteins and cations. Use of 67 Ga-citrate as a clinically important tumoral tracer is emphasized and gallium-67 whole-body scintigraphy is discussed in detail. (M.A.) [pt

  1. Characterization of commercial iron chelates and their behavior in an alkaline and calcareous soil.

    Science.gov (United States)

    Cantera, Rodrigo G; Zamarreño, Angel M; García-Mina, José M

    2002-12-18

    Iron deficiency is a common problem for many plants grown in alkaline and calcareous soils. To correct this problem, iron is supplied to plants as chelates. Several iron chelates are sold under diverse trademarks with different characteristics. This work evaluated 18 commercial products containing the most representative chelated iron sources used in agricultural practice in Spain when the study was done, namely the ferric chelates of EDDHA, EDDHMA, EDDCHA, EDDHSA, EDTA, and DTPA. The chelates were comprehensively characterized and quantitated by several techniques, including several chromatographic methods. Iron and chelate dynamics in soil were also studied in a model alkaline and calcareous soil. Results indicate that, in this model soil, among the different iron compounds studied only FeEDDHA and analogues have the capacity to maintain soluble iron in soil solution over time. These results are in agreement with general experience under field conditions. Furthermore, among the different ortho-ortho isomers of FeEDDHA's, FeEDDHSA and FeEDDCHA showed greater capacity than FeEDDHA and FeEDDHMA to maintain the chelated iron in soil solution over time.

  2. MRI marrow observations in thalassemia: the effects of the primary disease, transfusional therapy, and chelation

    International Nuclear Information System (INIS)

    Levin, T.L.; Sheth, S.S.; Ruzal-Shapiro, C.; Abramson, S.; Piomelli, S.; Berdon, W.E.

    1995-01-01

    The magnetic resonance bone marrow patterns in thalassemia were evaluated to determine changes produced by transfusion and chelation therapy. Thirteen patients had T1- and T2-weighted images of the spine, pelvis and femurs. Three received no therapy (age range 2.5-3 years). Three were ''hypertransfused'' (transfused to maintain a hemoglobin greater than 10 g/dl) and not chelated because of age (age range 6 months-8 years). Seven were ''hypertransfused'' and chelated (age range 12-35 years). Signal characteristics of marrow were compared with those of surrounding muscle and fat. Fatty marrow (isointense with subcutaneous fat) was compared with red marrow (hypointense to fat and slightly hyperintense to muscle). Marrow hypointense to muscle was identified as iron deposition within red marrow. The untreated group demonstrated signal consistent with red marrow throughout the central and peripheral skeleton. Hypertransfused but not chelated patients demonstrated marked iron deposition in the central and peripheral skeleton. Hypertransfused and chelated patients demonstrated iron deposition in the central skeleton and a mixed appearance of marrow in the peripheral skeleton. The MR appearance of marrow in thalassemia is a reflection of the patient's transfusion and chelation therapy. Iron deposition occurs despite chelation therapy in sites of active red marrow. As red marrow retreats centrally with age, so does the pattern of iron deposition. The long-term biological effects of this iron deposition are unknown. (orig.). With 8 figs., 1 tab

  3. Chelating capture and magnetic removal of non-magnetic heavy metal substances from soil

    Science.gov (United States)

    Fan, Liren; Song, Jiqing; Bai, Wenbo; Wang, Shengping; Zeng, Ming; Li, Xiaoming; Zhou, Yang; Li, Haifeng; Lu, Haiwei

    2016-02-01

    A soil remediation method based on magnetic beneficiation is reported. A new magnetic solid chelator powder, FS@IDA (core-shell Fe3O4@SiO2 nanoparticles coated with iminodiacetic acid chelators), was used as a reactive magnetic carrier to selectively capture non-magnetic heavy metals in soil by chelation and removal by magnetic separation. FS@IDA was prepared via inorganic-organic and organic synthesis reactions that generated chelating groups on the surface of magnetic, multi-core, core-shell Fe3O4@SiO2 (FS) nanoparticles. These reactions used a silane coupling agent and sodium chloroacetate. The results show that FS@IDA could chelate the heavy metal component of Cd, Zn, Pb, Cu and Ni carbonates, lead sulfate and lead chloride in water-insoluble salt systems. The resulting FS@IDA-Cd and FS@IDA-Pb chelates could be magnetically separated, resulting in removal rates of approximately 84.9% and 72.2% for Cd and Pb, respectively. FS@IDA could not remove the residual heavy metals and those bound to organic matter in the soil. FS@IDA did not significantly alter the chemical composition of the soil, and it allowed for fast chelating capture, simple magnetic separation and facilitated heavy metal elution. FS@IDA could also be easily prepared and reprocessed.

  4. Animal tumors

    International Nuclear Information System (INIS)

    Gillette, E.L.

    1983-01-01

    There are few trained veterinary radiation oncologists and the expense of facilities has limited the extent to which this modality is used. In recent years, a few cobalt teletherapy units and megavoltage x-ray units have been employed in larger veterinary institutions. In addition, some radiation oncologists of human medical institutions are interested and willing to cooperate with veterinarians in the treatment of animal tumors. Carefully designed studies of the response of animal tumors to new modalities serve two valuable purposes. First, these studies may lead to improved tumor control in companion animals. Second, these studies may have important implications to the improvement of therapy of human tumors. Much remains to be learned of animal tumor biology so that appropriate model systems can be described for such studies. Many of the latter studies can be sponsored by agencies interested in the improvement of cancer management

  5. Different photoluminescent properties of binary and ternary europium chelates doped in PMMA

    International Nuclear Information System (INIS)

    Liu Hongguo; Park, Seongtae; Jang, Kiwan; Zhang Wansong; Seo, Hyo-Jin; Lee, Yong-Ill

    2003-01-01

    Two kinds of europium-β-diketone chelates, binary Eu(DBM) 3 and ternary Eu(DBM) 3 phen were doped in poly(methyl methacrylate) (PMMA). These chelates show very different photoluminescent (PL) behaviors: the hypersensitive 5 D 0 → 7 F 2 emission bands of Eu(DBM) 3 phen change slightly with the molar ratios, while those of Eu(DBM) 3 change obviously and regularly with the molar ratios. The results of the luminescent lifetimes of 5 D 0 levels show that the binary chelate exists as two kinds of species in the doped systems, and the lifetimes and contents of each species change with the molar ratios, while the ternary chelate exists as one kind of species in the doped systems. X-ray diffraction (XRD) patterns of the binary chelate doped systems give some diffraction peaks that are different from those of pure chelate and change with the molar ratios, indicating new kinds of crystal structures formed, and consequently, the first coordination sphere of Eu 3+ ion changes; while those of the ternary chelate doped systems just show amorphous diffraction halos of the host, indicating that the ternary chelate exist in an amorphous state and disperse well in the host. The FTIR spectra of PMMA also change gradually with increasing the molar ratios of the doped two kinds of chelates, and the XRD patterns show that the amorphous halos of PMMA in the doped systems are different from those of pure PMMA and change with the molar ratios, too, suggesting the interaction between the guest and the host

  6. Study of Anti-Fatigue Effect in Rats of Ferrous Chelates Including Hairtail Protein Hydrolysates

    Directory of Open Access Journals (Sweden)

    Saibo Huang

    2015-12-01

    Full Text Available The ability of ferrous chelates including hairtail protein hydrolysates to prevent and reduce fatigue was studied in rats. After hydrolysis of hairtail surimi with papain, the hairtail protein hydrolysates (HPH were separated into three groups by range of relative molecular weight using ultrafiltration membrane separation. Hairtail proteins were then chelated with ferrous ions, and the antioxidant activity, the amino acid composition and chelation rate of the three kinds of ferrous chelates including hairtail protein hydrolysates (Fe-HPH were determined. Among the three groups, the Fe-HPH chelate showing the best conditions was selected for the anti-fatigue animal experiment. For it, experimental rats were randomly divided into seven groups. Group A was designated as the negative control group given distilled water. Group B, the positive control group, was given glutathione. Groups C, D and E were designated as the Fe-HPH chelate treatment groups and given low, medium, and high doses, respectively. Group F was designated as HPH hydrolysate treatment group, and Group G was designated as FeCl2 treatment group. The different diets were orally administered to rats for 20 days. After that time, rats were subjected to forced swimming training after 1 h of gavage. Rats given Fe-FPH chelate had higher haemoglobin regeneration efficiency (HRE, longer exhaustive swimming time and higher SOD activity. Additionally, Fe-FPH chelate was found to significantly decrease the malondialdehyde content, visibly enhance the GSH-Px activity in liver and reduce blood lactic acid of rats. Fe-HPH chelate revealed an anti-fatigue effect, similar to or better than the positive control substance and superior to HPH or Fe when provided alone.

  7. Chelating extractants of improved selectivity. Progress report, September 1, 1976--October 31, 1977

    International Nuclear Information System (INIS)

    Freiser, H.

    1977-07-01

    New means of characterizing metal chelating reagent selectivity have been developed and incorporated into a theoretical factor analysis of the chelate stability constants of 24 metal ions with 14 ligands of the EDTA family. The factor analysis will be extended to extracting ligand families. A computer-controlled automated metal chelate stability constant apparatus has been assembled and successfully tested. A high performance liquid chromatograph has been set up and preliminary examination of comparison of reversed phase chromatographic separation of metal ions with their solvent extraction behavior begun

  8. [Bifunctional chelates of Rh-105, Au-199, and other metallic radionuclides as potential radiotherapeutic agents

    International Nuclear Information System (INIS)

    1991-01-01

    Progress during this period is reported under the following headings: Diethylenetriamine based and related bifunctional chelating agents and their complexation with Rh-105, Au-198, Pd-109, cu-67, In-111, and Co-57; studies of Pd-109, Rh-105 and Tc-99m with bifunctional chelates based on phenylenediamine; establishment of an appropriate protein assay method for conjugated proteins; studies of new bifunctional Bi, Tri and tetradentate amine oxime ligands with Rh-105; IgG and antibody B72.3 conjugation studies by HPLC Techniques with bifunctional metal chelates; and progress on ligand systems for Au(III)

  9. [Bifunctional chelates of Rh-105, Au-199, and other metallic radionuclides as potential radiotherapeutic agents

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    Progress during this period is reported under the following headings: Diethylenetriamine based and related bifunctional chelating agents and their complexation with Rh-105, Au-198, Pd-109, cu-67, In-111, and Co-57; studies of Pd-109, Rh-105 and Tc-99m with bifunctional chelates based on phenylenediamine; establishment of an appropriate protein assay method for conjugated proteins; studies of new bifunctional Bi, Tri and tetradentate amine oxime ligands with Rh-105; IgG and antibody B72.3 conjugation studies by HPLC Techniques with bifunctional metal chelates; and progress on ligand systems for Au(III).

  10. (Bifunctional chelates of Rh-105, Au-199, and other metallic radionuclides as potential radiotherapeutic agents)

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    Progress during this period is reported under the following headings: Diethylenetriamine based and related bifunctional chelating agents and their complexation with Rh-105, Au-198, Pd-109, cu-67, In-111, and Co-57; studies of Pd-109, Rh-105 and Tc-99m with bifunctional chelates based on phenylenediamine; establishment of an appropriate protein assay method for conjugated proteins; studies of new bifunctional Bi, Tri and tetradentate amine oxime ligands with Rh-105; IgG and antibody B72.3 conjugation studies by HPLC Techniques with bifunctional metal chelates; and progress on ligand systems for Au(III).

  11. Design, synthesis, and evaluation of polyhydroxamate chelators for selective complexation of actinides

    International Nuclear Information System (INIS)

    Gopalan, A.; Jacobs, H.; Koshti, N.; Stark, P.; Huber, V.; Dasaradhi, L.; Caswell, W.; Smith, P.; Jarvinen, G.

    1995-01-01

    Specific chelating polymers targeted for actinides have much relevance to problems involving remediation of nuclear waste. Goal is to develop polymer supported, ion specific extraction systems for removing actinides and other hazardous metal ions from wastewaters. This is part of an effort to develop chelators for removing actinide ions such as Pu from soils and waste streams. Selected ligands are being attached to polymeric backbones to create novel chelating polymers. These polymers and other water soluble and insoluble polymers have been synthesized and are being evaluated for ability to selectively remove target metal ions from process waste streams

  12. Assessment of the body burden of chelatable lead: a model and its application to lead workers

    Energy Technology Data Exchange (ETDEWEB)

    Araki, S.; Ushio, K.

    1982-05-01

    A hypothetical model was introduced to estimate the body burden of chelatable lead from the mobilisation yield of lead by calcium disodium ethylenediamine tetra-acetate. It was estimated that, on average, 14 and 19% of the body burden was mobilized into the urine during the 24 hours after an injection of 53.4 mumol and 107 mumol CaEDTA per kg bodyweight, respectively. The body burden of chelatable lead ranged from 4 mumol to 120 mumol in lead workers with blood lead concentrations of 0.3-2.9 mumol/kg. There were linear relationships between blood lead concentrations and body burden of chelatable lead on a log scale.

  13. The effect of macrocyclic chelators on the targeting properties of the 68Ga-labeled gastrin releasing peptide receptor antagonist PEG2-RM26

    International Nuclear Information System (INIS)

    Varasteh, Zohreh; Mitran, Bogdan; Rosenström, Ulrika; Velikyan, Irina; Rosestedt, Maria; Lindeberg, Gunnar; Sörensen, Jens; Larhed, Mats; Tolmachev, Vladimir; Orlova, Anna

    2015-01-01

    Introduction: Overexpression of gastrin-releasing peptide receptors (GRPR) has been reported in several cancers. Bombesin (BN) analogs are short peptides with a high affinity for GRPR. Different BN analogs were evaluated for radionuclide imaging and therapy of GRPR-expressing tumors. We have previously investigated an antagonistic analog of BN (D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH 2 , RM26) conjugated to NOTA via a PEG 2 spacer (NOTA-PEG 2 -RM26) labeled with 68 Ga, 111 In and Al 18 F. 68 Ga-labeled NOTA-PEG 2 -RM26 showed high tumor-to-organ ratios. Methods: The influence of different macrocyclic chelators (NOTA, NODAGA, DOTA and DOTAGA) on the targeting properties of 68 Ga-labeled PEG 2 -RM26 was studied in vitro and in vivo. Results: All conjugates were labeled with generator-produced 68 Ga with high yields and demonstrated high stability and specific binding to GRPR. The IC 50 values of nat Ga-X-PEG 2 -RM26 (X = NOTA, DOTA, NODAGA, DOTAGA) were 2.3 ± 0.2, 3.0 ± 0.3, 2.9 ± 0.3 and 10.0 ± 0.6 nM, respectively. The internalization of the conjugates by PC-3 cells was low. However, the DOTA-conjugated analog demonstrated a higher internalization rate compared to other analogs. GRPR-specific uptake was found in receptor-positive normal tissues and PC-3 xenografts for all conjugates. The biodistribution of the conjugates was influenced by the choice of the chelator moiety. Although all radiotracers cleared rapidly from the blood, [ 68 Ga]Ga-NOTA-PEG 2 -RM26 showed significantly lower uptake in lung, muscle and bone compared to the other analogs. The uptake in tumors (5.40 ± 1.04 %ID/g at 2 h p.i.) and the tumor-to-organ ratios (25 ± 3, 157 ± 23 and 39 ± 4 for blood, muscle and bone, respectively) were significantly higher for the NOTA-conjugate than the other analogs. Conclusions: Chelators had a clear influence on the biodistribution and targeting properties of 68 Ga-labeled antagonistic BN analogs. Positively charged [ 68 Ga]Ga-NOTA-PEG 2 -RM26 provided

  14. Chelating ion exchange with macroreticular hydroxamic acid resins

    International Nuclear Information System (INIS)

    Phillips, R.J.

    1980-01-01

    The synthesis, reactions, and analytical applications of hydroxamic acids, including chelating resins with this functional group, are reviewed. A procedure for attaching N-phenyl hydroxamic acid groups to Amberlite XAD-4 is described. The extraction of 20 metal ions from 2 M hydrochloric acid by this resin is discussed. Conditions for the quantitative extraction and back-extraction of 9 ions are reported. Results are compared with work on solvent extraction with N-phenylbenzohydroxamic acid. Procedures for attaching N-methyl and N-unsubstituted hydroxamic acid groups to Amberlite XAD-4 are described. The N-phenyl, N-methyl, and N-unsubstituted hydroxamic acid resins are compared with respect to metal-ion complexation. The scope of applications for hydroxamic acid resins is investigated by studying the extraction of 19 metal ions as a function of pH. The resins are especially suitable for the extraction of zirconium(IV), titanium(IV), and uranium(IV) from strongly acidic solution. Aluminum(III) is separated from calcium and phosphate by extraction at pH 4. The use of the resins for the purification of reagents, concentration of trace constituents, and chromatographic separation is demonstrated

  15. Synthesis of a novel bicyclic bifunctional chelating agent

    International Nuclear Information System (INIS)

    Sweet, M.P.; Mease, R.C.; Joshi, V.; Srivastava, S.C.

    1994-01-01

    Semi-rigid ligands such as cyclohexyl EDTA (CDTA) and 4-isothiocyanato-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid (4-ICE) form chelates that are more stable in vivo compared to those of EDTA or DTPA. The authors have synthesized a new class of ligands in which the metal-binding polyaminocarboxylate groups are incorporated onto the rigid bicyclo[2.2.2]octane ring system. These ligands are expected to contribute to even higher in vivo stability of radiometal complexes. The synthesis of the first in this series of ligands (2.3-diaminobicyclo[2.2.2]octane-N,N,N',N'-tetraacetic acid, BODTA) began with a Diels-Alder reaction of 1,3-diacetylimidazolin-2-one and 1,3-cyclohexadiene. Base hydrolysis afforded the diamine. Following alkylation of the diamine with ethyl iodoacetate and hydrogenation of the double bond, hydrolysis of the esters gave BODTA. For initial conjugation with proteins, an average of one carboxylic acid of BODTA was converted into an NHS ester. In vivo testing of radioimmunoconjugates, prepared using this method, is in progress

  16. Assessment of toxicity on chelating agent DTPA (diethylenetriaminepentaacetic acid)

    International Nuclear Information System (INIS)

    Fukuda, Satoshi

    1989-01-01

    DTPA (diethylenetriaminepentaacetic acid) is a very important chelating agent to decorporate the radionuclides such as plutonium and americium from human body. However, before DTPA will be administered to humans, the toxicity should be clarified. This report described the summary on data of DTPA toxicities obtained from animal experiments and assessment on the safety for humans, based on the results that compared their data among animal species. In short, Ca-DTPA is less toxic than Zn-DTPA when it is injected intravenously, while Zn-DTPA is less toxic than Ca-DTPA when it is administered orally. Both DTPAs acted on the serum calcium metabolism and induced the functional damages of cardiovascular system. Particularly, it is stressed that Zn-DTPA by intravenous injection occurred the heart failure, increases of blood pressure and pulse with hypocalcemia in even normal rats and beagle dogs. Other side effects by both DTPAs were also observed in the intestine, liver, kidney and bone. It is estimated that there are almost no species differences on DTPA toxicity between animals and humans. As a result, it is concluded that DTPA should be used very carefully for humans, with reference to the results obtained from animal experiments. (author) 61 refs

  17. Assessment of toxicity on chelating agent DTPA (diethylenetriaminepentaacetic acid)

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Satoshi (National Inst. of Radiological Sciences, Chiba (Japan))

    1989-09-01

    DTPA (diethylenetriaminepentaacetic acid) is a very important chelating agent to decorporate the radionuclides such as plutonium and americium from human body. However, before DTPA will be administered to humans, the toxicity should be clarified. This report described the summary on data of DTPA toxicities obtained from animal experiments and assessment on the safety for humans, based on the results that compared their data among animal species. In short, Ca-DTPA is less toxic than Zn-DTPA when it is injected intravenously, while Zn-DTPA is less toxic than Ca-DTPA when it is administered orally. Both DTPAs acted on the serum calcium metabolism and induced the functional damages of cardiovascular system. Particularly, it is stressed that Zn-DTPA by intravenous injection occurred the heart failure, increases of blood pressure and pulse with hypocalcemia in even normal rats and beagle dogs. Other side effects by both DTPAs were also observed in the intestine, liver, kidney and bone. It is estimated that there are almost no species differences on DTPA toxicity between animals and humans. As a result, it is concluded that DTPA should be used very carefully for humans, with reference to the results obtained from animal experiments. (author) 61 refs.

  18. Chelating water-soluble polymers for waste minimization

    International Nuclear Information System (INIS)

    Smith, B.; Cournoyer, M.; Duran, B.; Ford, D.; Gibson, R.; Lin, M.; Meck, A.; Robinson, P.; Robison, T.

    1996-01-01

    Within the DOE complex and in industry there is a tremendous need for advanced metal ion recovery and waste minimization techniques. This project sought to employ capabilities for ligand-design and separations chemistry in which one can develop and evaluate water- soluble chelating polymers for recovering actinides and toxic metals from various process streams. Focus of this work was (1) to develop and select a set of water-soluble polymers suitable for a selected waste stream and (2) demonstrate this technology in 2 areas: removal of (a) actinides and toxic RCRA metals from waste water and (b) recovery of Cu and other precious metals from industrial process streams including from solid catalysts and aqueous waste streams. The R ampersand D was done in 4 phases for each of the 2 target areas: polymer synthesis for scaleup, equipment assembly, process demonstration at a DOE or industrial site, and advanced ligand/polymer synthesis. The TA- 50 site at Los Alamos was thought to be appropriate due to logistics and to its being representative of similar problems throughout the DOE complex

  19. Mechanisms of oxide dissolution by acid chelating agents

    International Nuclear Information System (INIS)

    Blesa, M.A.; Maroto, A.J.G.

    1982-01-01

    In this paper, the different possible rate controlling processes in the dissolution of metallic oxides are examined. In particular, the following situations are assessed: mass-transfer control; coupling of mass-transfer and reactions at the interface; interface equilibration with the solution; various interface disruption and reconstruction phenomena. For each of the above mentioned cases, the influence of variables such as reagent concentration, temperature, pH, fluid hydrodynamics and general and specific catalysts is discussed. Depending upon the particular situation it is found that a more rational basis for the development of reagent is given by these considerations. The influence of chelating agents on both the thermodynamics and kinetics of the process is discussed, and the results of experimental studies in batch on magnetite and various ferrites are presented and discussed. For this purpose, several reagents were studied, including some very effective ones like thioglycolic acid, and others commonly used in actual decontamination, like ethylenediaminetetraacetic acid and oxalic acid. The relation to other (reductive) chemical decontamination procedures is discussed. The relevance of these studies to decontamination of metallic surfaces is discussed

  20. ATMP-stabilized iron nanoparticles: chelator-controlled nanoparticle synthesis

    Science.gov (United States)

    Greenlee, Lauren F.; Rentz, Nikki S.

    2014-11-01

    In this study, we characterize iron nanoparticles synthesized in water in the presence of a phosphonate chelator, amino tris(methylene phosphonic acid) (ATMP) for a range of molar ratios of ATMP to iron. An increase in the molar ratio from 0.05 to 0.8 decreases nanoparticle size from approximately 150 nm to less than 10 nm. Zeta potential measurements were used to evaluate colloidal stability. Zeta potential values varied as a function of pH, and zeta potential values decreased with increasing pH. At lower molar ratios of ATMP to iron, the zeta potential varied between 15 and -40 mV, passing through an isoelectric point at pH 7.5. At higher ratios, the zeta potential was negative across the measured pH range of 2-12 and varied from -2 to -55 mV. Diffraction analysis indicates that ATMP-stabilized iron nanoparticles may have a nano-crystalline structure, potentially with regions of amorphous iron. Characterization results of ATMP-stabilized iron nanoparticles are compared to results obtained for carboxymethyl cellulose (CMC)-stabilized iron nanoparticles. CMC stabilization caused similar peak broadening in diffraction spectra as for ATMP, suggesting similar nano-crystalline/amorphous structure; however, an increase in the molar ratio of CMC to iron did not cause the same reduction in nanoparticle size as was observed for ATMP-stabilized iron nanoparticles.

  1. Metal chelators and neurotoxicity: lead, mercury, and arsenic.

    Science.gov (United States)

    Bjørklund, Geir; Mutter, Joachim; Aaseth, Jan

    2017-12-01

    This article reviews the clinical use of the metal chelators sodium 2,3-dimercapto-1-propanesulfonate (DMPS), meso-2,3-dimercaptosuccinic acid (DMSA), and calcium disodium edetate (CaEDTA, calcium EDTA) in overexposure and poisonings with salts of lead (Pb), mercury (Hg), and arsenic (As). DMSA has considerably lower toxicity than the classic heavy metal antagonist BAL (2,3-dimercaptopropanol) and is also less toxic than DMPS. Because of its adverse effects, CaEDTA should be replaced by DMSA as the antidote of choice in treating moderate Pb poisoning. Combination therapy with BAL and CaEDTA was previously recommended in cases of severe acute Pb poisoning with encephalopathy. We suggest that BAL in such cases acted as a shuttling Pb transporter from the intra- to the extracellular space. The present paper discusses if a combination of the extracellularly distributed DMSA with the ionophore, Monensin may provide a less toxic combination for Pb mobilization by increasing both the efflux of intracellularly deposited Pb and the urinary Pb excretion. Anyhow, oral therapy with DMSA should be continued with several intermittent courses. DMPS and DMSA are also promising antidotes in Hg poisoning, whereas DMPS seems to be a more efficient agent against As poisoning. However, new insight indicates that a combination of low-dosed BAL plus DMPS could be a preferred antidotal therapy to obtain mobilization of the intracerebral deposits into the circulation for subsequent rapid urinary excretion.

  2. Pituitary Tumors

    Science.gov (United States)

    ... Association (ABTA) International RadioSurgery Association National Brain Tumor Society National Institute of Child Health and Human Development ... Definition The pituitary is a small, bean-sized gland ...

  3. Hypothalamic tumor

    Science.gov (United States)

    ... in the brain to reduce spinal fluid pressure. Risks of radiation therapy include damage to healthy brain cells when tumor cells are destroyed. Common side effects from chemotherapy include loss of appetite, nausea and vomiting, and fatigue.

  4. The performance of 2-nitroso-1-naphthol chelating pigment in paint ...

    African Journals Online (AJOL)

    The performance of 2-nitroso-1-naphthol chelating pigment in paint formulation with gum Arabic and polyvinyl acetate as binders, Paper I: UV- visible spectroscopy, viscosity and breaking stress of the paints.

  5. Study of chelating agent as a surface modifier for retarding corrosion attack on ferrous metal

    International Nuclear Information System (INIS)

    Nur Ubaidah Saidin; Muhamad Daud; Siti Radiah Mohd Kamarudin; Zaifol Samsu; Azali Muhamad; Rusni Rejab; Mohd Saari Ripin; Mohd Shariff Sattar

    2010-01-01

    A different concentration of chelating agents in electrolyte of 3.5 % NaCl was applied to bare ferrous metal and tested for their effectiveness as a corrosion retardant. The performance of the samples was measured using corrosion measurement system. The results indicated that the contribution of chelating agent was expediting the reduction of the passive film. The anodic behavior was clearly found to be influenced by the concentration of the chelating agent. It was also found that some of the corrosion was apparently converted to protective layer over a period of time. Excessive moisture caused breakdown of film by removing the unreacted chelating agent and causing regrowth of the existing rust. (author)

  6. Bifunctional chelating agent for the design and development of site specific radiopharmaceuticals and biomolecule conjugation strategy

    Science.gov (United States)

    Katti, Kattesh V.; Prabhu, Kandikere R.; Gali, Hariprasad; Pillarsetty, Nagavara Kishore; Volkert, Wynn A.

    2003-10-21

    There is provided a method of labeling a biomolecule with a transition metal or radiometal in a site specific manner to produce a diagnostic or therapeutic pharmaceutical compound by synthesizing a P.sub.2 N.sub.2 -bifunctional chelating agent intermediate, complexing the intermediate with a radio metal or a transition metal, and covalently linking the resulting metal-complexed bifunctional chelating agent with a biomolecule in a site specific manner. Also provided is a method of synthesizing the --PR.sub.2 containing biomolecules by synthesizing a P.sub.2 N.sub.2 -bifunctional chelating agent intermediate, complexing the intermediate with a radiometal or a transition metal, and covalently linking the resulting radio metal-complexed bifunctional chelating agent with a biomolecule in a site specific manner. There is provided a therapeutic or diagnostic agent comprising a --PR.sub.2 containing biomolecule.

  7. Effect of calcium chelators on physical changes in casein micelles in concentrated micellar casein solutions

    NARCIS (Netherlands)

    Kort, de E.J.P.; Minor, M.; Snoeren, T.H.M.; Hooijdonk, van A.C.M.; Linden, van der E.

    2011-01-01

    The effect of calcium chelators on physical changes of casein micelles in concentrated micellar casein solutions was investigated by measuring calcium-ion activity, viscosity and turbidity, and performing ultracentrifugation. The highest viscosities were measured on addition of sodium

  8. Click-to-Chelate: Development of Technetium and Rhenium-Tricarbonyl Labeled Radiopharmaceuticals

    Directory of Open Access Journals (Sweden)

    Thomas L. Mindt

    2013-03-01

    Full Text Available The Click-to-Chelate approach is a highly efficient strategy for the radiolabeling of molecules of medicinal interest with technetium and rhenium-tricarbonyl cores. Reaction of azide-functionalized molecules with alkyne prochelators by the Cu(I-catalyzed azide-alkyne cycloaddition (CuAAC; click reaction enables the simultaneous synthesis and conjugation of tridentate chelating systems for the stable complexation of the radiometals. In many cases, the functionalization of (biomolecules with the ligand system and radiolabeling can be achieved by convenient one-pot procedures. Since its first report in 2006, Click-to-Chelate has been applied to the development of numerous novel radiotracers with promising potential for translation into the clinic. This review summarizes the use of the Click-to-Chelate approach in radiopharmaceutical sciences and provides a perspective for future applications.

  9. A Zinc Chelator TPEN Attenuates Airway Hyperresponsiveness Airway Inflammation in Mice In Vivo

    Directory of Open Access Journals (Sweden)

    Satoru Fukuyama

    2011-01-01

    Conclusions: In pulmonary allergic inflammation induced in mice immunized with antigen without alum, zinc chelator inhibits airway inflammation and hyperresponsiveness. These findings suggest that zinc may be a therapeutic target of allergic asthma.

  10. Hydrolysis of Some C,N-Chelated Organotin(IV) Species Used in Catalysis

    OpenAIRE

    Švec, P.

    2012-01-01

    This work deals with the reactivity of the selected C, N-chelated organotin (IV) species towards cyclohexene oxide, ethylene carbonate, and CO2. Structure of organotin(IV) hydrolytic products isolated from respective reaction mixtures was described.

  11. Diagnostic compositions containing a chelate of radioactive indium and 8-hydroxyquinoline

    International Nuclear Information System (INIS)

    Goedemans, W.T.

    1981-01-01

    There are disclosed aqueous, radioassaying solutions of a chelate of radioactive indium and an 8-hydroxyquinoline, having an essential absence of an organic solvent, e.g., alcohol or chloroform. The solutions are useful in radioassaying warmblooded animals. (author)

  12. Theoretical analysis of the influence of chelate-ring size and vicinal effects on electronic circular dichroism spectra of cobalt(III) EDDA-type complexes.

    Science.gov (United States)

    Wang, Ai; Wang, Yuekui; Jia, Jie; Feng, Lixia; Zhang, Chunxia; Liu, Linlin

    2013-06-20

    To assess the contributions of configurational and vicinal effects as well as chelate-ring size to rotational strengths, the geometries of a series of cobalt(III) complexes [Co(EDDA-type)(L)](±) with the tetradentate EDDA-type ligands, EDDA (ethylenediamine-N,N'-diacetate), DMEDDA (N,N'-dimethylethylenediamine-N,N'-diacetate), DEEDDA (N,N'-diethylethylenediamine-N,N'-diacetate), and a bidentate ancillary ligand L (L = ethylenediamine, oxalate, carbonate, (S)-alanine, and malonate) in aqueous solution have been optimized at the DFT/B3LYP/6-311++G(2d,p) level of theory. Based on the optimized geometries, the excitation energies and oscillator and rotational strengths have been calculated using the time-dependent density functional theory (TDDFT) method with the same functional and basis set. The calculated circular dichroism (CD) curves are in excellent agreement with the observed ones except for some small red or blue shifts in peak wavelengths. For the influence of chelate-ring size of the bidentate ligands on the CD intensities, a qualitative analysis together with the quantitative TDDFT calculation reveal that it depends on the symmetry of the cobalt-EDDA backbone. For the s-cis-isomers, the influence is negligible due to the perturbation is symmetric. For the uns-cis-isomers, the perturbation is unsymmetric. Since a small ring size means a large perturbation, this leads to the integral CD intensities decreasing with increasing the chelate ring size. The vicinal effects of asymmetric nitrogens incorporate both the substitutent effects and conformational relaxation effects, with the former being dominant. By analyzing the contributions of chiral arrays to rotational strengths, we found that the part of contributions dominated by the S-type chiral nitrogens could be considered as a good measure for the vicinal effects of chiral nitrogens. In addition, we found that the twist form (δ/λ) of the backbone ethylenediamine ring (E-ring) of the coordinated EDDA

  13. Iron overload of organism and current options of chelation treatment in onco haematology

    International Nuclear Information System (INIS)

    Guman, T.; Rothova, E.; Kafkova, A.; Fricova, M.; Dulova, I.; Stecova, N.; Hlebaskova, M.; Surova, M.; Takac, V.

    2011-01-01

    The article summarizes the biological importance of iron in the organism, primary and secondary causes of iron overload, complications in function of liver, heart and endocrine organs due to overload of iron, the pathophysiology of iron overload, transfusion risks associated with the iron overload, assessment of risk groups of patients suitable for chelation treatment fulfilling the indication criteria, treatment modalities of chelation therapy and its significance regarding the prevention and treatment effectiveness. (author)

  14. Synthesis, Characterization and Chelating Properties of 4-Butyrylsemicarbazone-1-phenyl-3-methyl-2-pyrazolin-5-one

    Directory of Open Access Journals (Sweden)

    J. D. Patel

    2010-01-01

    Full Text Available 4-Butyrylsemicarbazone-1-phenyl-3-methyl-2-pyrazolin-5-one (BUMP-SC was prepared and its metal chelates of Cu2+, Ni2+, Co2+, Mn2+, Fe2+, Fe3+, Cr3+, UO2 and OV were prepared. The ligands and its chelates were characterized by elemental analysis, metal:ligand (M:L stoichiometry, IR-electronic spectral studies and magnetic properties. The compounds also were screened for their antimicrobial activity.

  15. Chelation therapy and cardiovascular disease: connecting scientific silos to benefit cardiac patients.

    Science.gov (United States)

    Peguero, Julio G; Arenas, Ivan; Lamas, Gervasio A

    2014-08-01

    Medical practitioners have treated atherosclerotic disease with chelation therapy for over 50 years. Lack of strong of evidence led conventional practitioners to abandon its use in the 1960s and 1970s. This relegated chelation therapy to complementary and alternative medicine practitioners, who reported good anecdotal results. Concurrently, the epidemiologic evidence linking xenobiotic metals with cardiovascular disease and mortality gradually accumulated, suggesting a plausible role for chelation therapy. On the basis of the continued use of chelation therapy without an evidence base, the National Institutes of Health released a Request for Applications for a definitive trial of chelation therapy. The Trial to Assess Chelation Therapy (TACT) was formulated as a 2 × 2 factorial randomized controlled trial of intravenous EDTA-based chelation vs. placebo and high-dose oral multivitamins and multiminerals vs. oral placebo. The composite primary endpoint was death, reinfarction, stroke, coronary revascularization, or hospitalization for angina. A total of 1708 post-MI patients who were 50 years or older with a creatinine of 2.0 or less were enrolled and received 55,222 infusions of disodium EDTA or placebo with a median follow-up of 55 months. Patients were on evidence-based post-MI medications including statins. EDTA proved to be safe. EDTA chelation therapy reduced cardiovascular events by 18%, with a 5-year number needed to treat (NNT) of 18. Prespecified subgroup analysis revealed a robust benefit in patients with diabetes mellitus with a 41% reduction in the primary endpoint (5-year NNT = 6.5), and a 43% 5-year relative risk reduction in all-cause mortality (5-year NNT = 12). The magnitude of benefit is such that it suggests urgency in replication and implementation, which could, due to the excellent safety record, occur simultaneously. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. A review of pitfalls and progress in chelation treatment of metal poisonings.

    Science.gov (United States)

    Andersen, Ole; Aaseth, Jan

    2016-12-01

    Most acute and chronic human metal poisonings are due to oral or inhalation exposure. Almost 80% of published animal experiments on chelation in metal poisoning used single or repeated intraperitoneal, intramuscular or intravenous administration of metal and chelator, impeding extrapolation to clinical settings. Intramuscular administration of dimercaptopropanol (BAL) has until now been used in acute arsenic, lead, and mercury poisonings, but repeated BAL administration increased the brain uptake of As, Pb and Hg in experimental animals. Also, diethyl dithiocarbamate (DDC) has been used as antidote in acute experimental animal parenteral Cd poisoning, and both DDC and tetraethylthiuram disulfide (TTD, disulfiram, Antabuse) have been used in nickel allergic patients. However, even one dose of DDC given immediately after oral Cd or Ni increased their brain uptake considerably. The calcium salt of ethylenediamminetetraacetic acid (CaEDTA) but not dimercaptosuccinic acid (DMSA) increased the brain uptake of Pb. In oral Cd or Hg poisoning, early oral administration of DMSA or dimercaptopropane sulfonate (DMPS) increased survival and reduced intestinal metal uptake. Oral administration of Prussian Blue or resins with fixed chelating groups that are not absorbed offer chelation approaches for decorporation after oral exposure to various metals. Diethylenetriaminepentaacetic acid (DTPA) nebulizers for pulmonary chelation after inhalation exposure need further development. Also, combined chelation with more than one compound may offer extensive advances. Solid knowledge on the chemistry of metal chelates together with relevant animal experiments should guide development of chelation procedures to alleviate and not aggravate the clinical status of poisoned patients. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. Mathematical modeling of the effects of aerobic and anaerobic chelate biodegradation on actinide speciation

    International Nuclear Information System (INIS)

    Banaszak, J.E.; VanBriesen, J.; Rittmann, B.E.; Reed, D.T.

    1998-01-01

    Biodegradation of natural and anthropogenic chelating agents directly and indirectly affects the speciation, and, hence, the mobility of actinides in subsurface environments. We combined mathematical modeling with laboratory experimentation to investigate the effects of aerobic and anaerobic chelate biodegradation on actinide [Np(IV/V), Pu(IV)] speciation. Under aerobic conditions, nitrilotriacetic acid (NTA) biodegradation rates were strongly influenced by the actinide concentration. Actinide-chelate complexation reduced the relative abundance of available growth substrate in solution and actinide species present or released during chelate degradation were toxic to the organisms. Aerobic bio-utilization of the chelates as electron-donor substrates directly affected actinide speciation by releasing the radionuclides from complexed form into solution, where their fate was controlled by inorganic ligands in the system. Actinide speciation was also indirectly affected by pH changes caused by organic biodegradation. The two concurrent processes of organic biodegradation and actinide aqueous chemistry were accurately linked and described using CCBATCH, a computer model developed at Northwestern University to investigate the dynamics of coupled biological and chemical reactions in mixed waste subsurface environments. CCBATCH was then used to simulate the fate of Np during anaerobic citrate biodegradation. The modeling studies suggested that, under some conditions, chelate degradation can increase Np(IV) solubility due to carbonate complexation in closed aqueous systems

  18. Chelating effect of silver nitrate by chitosan on its toxicity and growth performance in broiler chickens

    Directory of Open Access Journals (Sweden)

    Yemdjie Mane Divine Doriane

    2017-06-01

    Full Text Available Objective: This study was conducted to investigate the chelating effect of silver nitrate (AgNO3 by chitosan on growth performances, hematological and biochemical parameters, and the histopathological structure of the liver and the kidney in broiler chicken. Materials and methods: A total of 192 day-old Cobb 500 strain chicks were randomly assigned to 3 treatments of 64 chicks each. Control group was fed on basal diet without supplement (R0 and the two others groups were fed on rations supplemented with 10 mg of unchelated (RAg or chelated (RCs-Ag AgNO3 per Kg of feed, respectively. Parameters that have been studied consisted of feed intake, weight gain, blood and serum biochemical, and histopathological analyses of liver and kidney. Results: Results revealed that chelation of AgNO3 by chitosan did not have any effect on growth performances and hematological parameters in chicken. However, chelated and unchelated AgNO3 increased the serum content in triglyceride, and cholesterol and decreased the serum content in creatinin, albumin and alanine aminotransferase (ALAT. Chelating AgNO3 with chitosan prevented and corrected the toxicity induced on the histological structure of liver and kidney. Conclusion: Chitosan can be used as a chelating agent to alleviate the harmful effects of AgNO3 as silver ion for poultry. [J Adv Vet Anim Res 2017; 4(2.000: 187-193

  19. Mathematical modelling of the effects of aerobic and anaerobic chelate biodegradation on actinide speciation

    International Nuclear Information System (INIS)

    Banaszak, J.E.; VanBriesen, J.M.; Rittmann, B.E.; Reed, D.T.

    1998-01-01

    Biodegradation of natural and anthropogenic chelating agents directly and indirectly affects the speciation, and hence, the mobility of actinides in subsurface environments. We combined mathematical modelling with laboratory experimentation to investigate the effects of aerobic and anaerobic chelate biodegradation on actinide [Np(IV/V), Pu(IV)] speciation. Under aerobic conditions, nitrilotriacetic acid (NTA) biodegradation rates were strongly influenced by the actinide concentration. Actinide-chelate complexation reduced the relative abundance of available growth substrate in solution and actinide species present or released during chelate degradation were toxic to the organisms. Aerobic bioutilization of the chelates as electron-donor substrates directly affected actinide speciation by releasing the radionuclides from complexed form into solution, where their fate was controlled by inorganic ligands in the system. Actinide speciation was also indirectly affected by pH changes caused by organic biodegradation. The two concurrent processes of organic biodegradation and actinide aqueous chemistry were accurately linked and described using CCBATCH, a computer model developed at Northwestern University to investigate the dynamics of coupled biological and chemical reactions in mixed waste subsurface environments. CCBATCH was then used to simulate the fate of Np during anaerobic citrate biodegradation. The modelling studies suggested that, under some conditions, chelate degradation can increase Np(IV) solubility due to carbonate complexation in closed aqueous systems. (orig.)

  20. ELECTED PROBLEMS RELATED TO ENVIRONMENTAL HEAVY METALS EXPOSURE AND CHELATION THERAPY

    Directory of Open Access Journals (Sweden)

    Anna Skoczyńska

    2010-09-01

    Full Text Available Background: Exposure to heavy metals leads to functional and metabolic disturbances and many of them are included in pathogenesis of common diseases (arterial hypertension, atherosclerosis, neurodegenerative processes. In this context new therapeutic and prophylactic strategies are necessary. Patients diagnosed with chronic heavy metals intoxication usually require chelation to increase mobilisation of metals from tissues and elimination of them via urine. Acute poisoning with toxic metal may be difficult to diagnosis, especially in case of accidental intoxication or suicidal intention. Patients also require chelation after causative factor is identified. Objectives: To describe some problems connected with toxicity of metals poisoning and to review pharmacologic therapies that could have a role in poisoning with metals. Methods: A review of the literature was carried out and expert opinion expressed. Results/conclusion: Chelation is a common therapy in case of poisoning with toxic metals but it is satisfied only partially. A combined therapy with structurally different chelators or long-term acting chelators could become viable alternatives in the future. A combined therapy with an antioxidant plus chelator may be a good choice in patients chronically poisoned with metals. Exposure to lead should be taken into account during estimation of global cardiovascular risk.

  1. Chelation therapy to treat atherosclerosis, particularly in diabetes: is it time to reconsider?

    Science.gov (United States)

    Lamas, Gervasio A; Ergui, Ian

    2016-08-01

    Case reports and case series have suggested a possible beneficial effect of chelation therapy in patients with atherosclerotic disease. Small randomized trials conducted in patients with angina or peripheral artery disease, however, were not sufficiently powered to provide conclusive evidence on clinical outcomes. The Trial to Assess Chelation Therapy (TACT) was the first randomized trial adequately powered to detect the effects of chelation therapy on clinical endpoints. We discuss results and future research. Expert commentary: Chelation reduced adverse cardiovascular events in a post myocardial infarction (MI) population. Patients with diabetes demonstrated even greater benefit, with a number needed to treat of 6.5 patients to prevent a cardiac event over 5 years, with a 41% relative reduction in risk of a cardiac event (p = 0.0002). These results led to the revision of the ACC/AHA guideline recommendations for chelation therapy, changing its classification from class III to class IIb. TACT2, a replicative trial, will assess the effects of chelation therapy on cardiovascular outcomes in diabetic patients with a prior myocardial infarction. We are seeking participating sites for TACT2.

  2. Deaths associated with hypocalcemia from chelation therapy--Texas, Pennsylvania, and Oregon, 2003-2005.

    Science.gov (United States)

    2006-03-03

    Chelating agents bind lead in soft tissues and are used in the treatment of lead poisoning to enhance urinary and biliary excretion of lead, thus decreasing total lead levels in the body. During the past 30 years, environmental and dietary exposures to lead have decreased substantially, resulting in a considerable decrease in population blood lead levels (BLLs) and a corresponding decrease in the number of patients requiring chelation therapy. Chelating agents also increase excretion of other heavy metals and minerals, such as zinc and, in certain cases, calcium. This report describes three deaths associated with chelation-therapy--related hypocalcemia that resulted in cardiac arrest. Several drugs are used in the treatment of lead poisoning, including edetate disodium calcium (CaEDTA), dimercaperol (British anti-Lewisite), D-penicillamine, and meso-2,3-dimercaptosuccinic acid (succimer). Health-care providers who are unfamiliar with chelating agents and are considering this treatment for lead poisoning should consult an expert in the chemotherapy of lead poisoning. Hospital pharmacies should evaluate whether continued stocking of Na2EDTA is necessary, given the established risk for hypocalcemia, the availability of less toxic alternatives, and an ongoing safety review by the Food and Drug Administration (FDA). Health-care providers and pharmacists should ensure that Na2EDTA is not administered to children during chelation therapy.

  3. Tumor Types: Understanding Brain Tumors

    Science.gov (United States)

    ... May cause excessive secretion of hormones Common among men and women in their 50s-80s Accounts for about 13 percent of all brain tumors Symptoms Headache Depression Vision loss Nausea or vomiting Behavioral and cognitive ...

  4. Tumor immunology.

    Science.gov (United States)

    Mocellin, Simone; Lise, Mario; Nitti, Donato

    2007-01-01

    Advances in tumor immunology are supporting the clinical implementation of several immunological approaches to cancer in the clinical setting. However, the alternate success of current immunotherapeutic regimens underscores the fact that the molecular mechanisms underlying immune-mediated tumor rejection are still poorly understood. Given the complexity of the immune system network and the multidimensionality of tumor/host interactions, the comprehension of tumor immunology might greatly benefit from high-throughput microarray analysis, which can portrait the molecular kinetics of immune response on a genome-wide scale, thus accelerating the discovery pace and ultimately catalyzing the development of new hypotheses in cell biology. Although in its infancy, the implementation of microarray technology in tumor immunology studies has already provided investigators with novel data and intriguing new hypotheses on the molecular cascade leading to an effective immune response against cancer. Although the general principles of microarray-based gene profiling have rapidly spread in the scientific community, the need for mastering this technique to produce meaningful data and correctly interpret the enormous output of information generated by this technology is critical and represents a tremendous challenge for investigators, as outlined in the first section of this book. In the present Chapter, we report on some of the most significant results obtained with the application of DNA microarray in this oncology field.

  5. Development of chelate tagging method of protein at low temperature

    International Nuclear Information System (INIS)

    Oida, Shigeru; Sekiya, Keizo

    1999-01-01

    This study aimed at development of a protein labelling method at a low temperature, available for functional proteins, such as antibodies and enzymes mostly unstable at high temperatures. A solution of anti-mouse IgG antibody added with EDTA was incubated with 51 CrCl 3 at 4degC for 24 hours. After stopping the reaction with 100-fold amount of EDTA-2Na, the solution was fractionated into antibody fraction and metal fraction by HPLC. After incubation, non-specific Cr adsorption on the antibody in no relation to the chelate reagent was chased with 10-fold amount of CrCl 3 . To remove free Cr, the sample solution was incubated with 10 to 50-fold ICB-EDTA solution containing N,N-dimethyl-formamide. Then, the amount of Cr-labelling on the antibody was determined. In Western-blotting, chick actin was applied onto SDS-polyacrylamide gel electrophoresis. One part of the lane was stained with brilliant-blue and the other was transferred on nitrocellulose membrane by semi-dry method and stained with panceau-S. Anti-actin monoclonal antibody and anti-mouse IgG antibody were used as the first antibody and the second one, respectively. When incubated with ICB-EDTA for 3 days, labelling reached the maximum level. Although labelling of the second antibody was performed with maleimido-C 3 -benzyl EDTA and 45 Ca as a substitute for 51 Cr, the rate of labelling was lower than the rate for a combination of ICB-EDTA and 51 Cr. Autoradiography of the anti-mouse IgG preparation after SDS-acrylamide gel electrophoresis revealed that radioactivity was detected on the site of H-chain but not L-chain. This indicates that 51 Cr labelling of protein is stable even under the conditions of SDS denaturation. (M.N.)

  6. Resinas quelantes amidoxímicas Amidoxime chelating resins

    Directory of Open Access Journals (Sweden)

    Fernanda M. B. Coutinho

    1999-12-01

    Full Text Available Resinas quelantes com grupos amidoxima foram sintetizadas por copolimerização em suspensão de acrilonitrila (AN e divinilbenzeno (DVB e subsequente modificação química dos grupos ciano por reação com hidroxilamina. Na copolimerização, a proporção de divinilbenzeno e o grau de diluição foram variados. Gelatina e carbonato de cálcio foram usados como estabilizadores de suspensão e sulfato de sódio foi adicionado para reduzir a solubilidade da acrilonitrila em água, por meio do efeito salting out. Os copolímeros de AN/DVB e as resinas amidoxímicas obtidos foram caracterizados por meio de densidade aparente, área específica, volume de poros e teor de nitrogênio. As resinas amidoxímicas foram também avaliadas em relação a capacidade de complexação de íons cobre.Chelating resins with amidoxime groups were synthesized by suspension copolymerization of acrylonitrile (AN and divinylbenzene (DVB and subsequent chemical modification of cyano groups by reaction with hydroxylamine. In the copolymerization, the proportion of divinylbenzene and the dilution degree were varied. Gelatin and calcium carbonate were used as suspension stabilizers and sodium sulphate was added in order to reduce acrylonitrile solubility in water, by salting out effect. The AN/DVB copolymers and amidoxime resins obtained were characterized by apparent density, surface area, pore volume and by the content of nitrogen. The amidoxime resins were also evaluated in relation to the complexation capacity of copper ion.

  7. Chelation of intracellular calcium blocks insulin action in the adipocyte

    International Nuclear Information System (INIS)

    Pershadsingh, H.A.; Shade, D.L.; Delfert, D.M.; McDonald, J.M.

    1987-01-01

    The hypothesis that intracellular Ca 2+ is an essential component of the intracellular mechanism of insulin action in the adipocyte was evaluated. Cells were loaded with the Ca 2+ chelator quin-2, by preincubating them with quin-2 AM, the tetrakis(acetoxymethyl) ester of quin-2. Quin-2 loading inhibited insulin-stimulated glucose transport without affecting basal activity. The ability of insulin to stimulate glucose uptake in quin-2-loaded cells could be partially restored by preincubating cells with buffer supplemented with 1.2 mM CaCl 2 and the Ca 2+ ionophore A23187. These conditions had no effect on basal activity and omission of CaCl 2 from the buffer prevented the restoration of insulin-stimulated glucose uptake by A23187. Quin-2 loading also inhibited insulin-stimulated glucose oxidation and the ability of insulin to inhibit cAMP-stimulated lipolysis without affecting their basal activities. Incubation of cells with 100 μM quin-2 or quin-2 AM had no effect on intracellular ATP concentration or the specific binding of 125 I=labeled insulin to adipocytes. These findings suggest that intracellular Ca 2+ is an essential component in the coupling of the insulin-activated receptor complex to cellular physiological/metabolic machinery. Furthermore, differing quin-2 AM dose-response profiles suggest the presence of dual Ca 2+ -dependent pathways in the adipocyte. One involves insulin stimulation of glucose transport and oxidation, whereas the other involves the antilipolytic action of insulin

  8. Decontamination of process equipment using recyclable chelating solvent

    International Nuclear Information System (INIS)

    Jevec, J.; Lenore, C.; Ulbricht, S.

    1995-01-01

    The Department of Energy (DOE) is now faced with the task of meeting decontamination and decommissioning obligations at numerous facilities by the year 2019. Due to the tremendous volume of material involved, innovative decontamination technologies are being sought that can reduce the volumes of contaminated waste materials and secondary wastes requiring disposal. With sufficient decontamination, some of the material from DOE facilities could be released as scrap into the commercial sector for recycle, thereby reducing the volume of radioactive waste requiring disposal. Although recycling may initially prove to be more costly than current disposal practices, rapidly increasing disposal costs are expected to make recycling more and more cost effective. Additionally, recycling is now perceived as the ethical choice in a world where the consequences of replacing resources and throwing away reusable materials are impacting the well-being of the environment. Current approaches to the decontamination of metals most often involve one of four basic process types: (1) chemical, (2) manual and mechanical, (3) electrochemical, and (4) ultrasonic. open-quotes Hardclose quotes chemical decontamination solutions, capable of achieving decontamination factors (Df's) of 50 to 100, generally involve reagent concentrations in excess of 5%, tend to physically degrade the surface treated, and generate relatively large volumes of secondary waste. open-quotes Softclose quotes chemical decontamination solutions, capable of achieving Df's of 5 to 10, normally consist of reagents at concentrations of 0.1 to 1%, generally leave treated surfaces in a usable condition, and generate relatively low secondary waste volumes. Under contract to the Department of Energy, the Babcock ampersand Wilcox Company is developing a chemical decontamination process using chelating agents to remove uranium compounds and other actinide species from process equipment

  9. Pancreatic islet cell tumor

    Science.gov (United States)

    ... cell tumors; Islet of Langerhans tumor; Neuroendocrine tumors; Peptic ulcer - islet cell tumor; Hypoglycemia - islet cell tumor ... stomach acid. Symptoms may include: Abdominal pain Diarrhea ... and small bowel Vomiting blood (occasionally) Glucagonomas make ...

  10. Imaging of brain tumors

    International Nuclear Information System (INIS)

    Gaensler, E.H.L.

    1995-01-01

    The contents are diagnostic approaches, general features of tumors -hydrocephalus, edema, attenuation and/or intensity value, hemorrhage, fat, contrast enhancement, intra-axial supratentorial tumors - tumors of glial origin, oligodendrogliomas, ependymomas, subependymomas, subependymal giant cell astrocytomas, choroid plexus papilloma; midline tumors - colloid cysts, craniopharyngiomas; pineal region tumors and miscellaneous tumors i.e. primary intracerebral lymphoma, primitive neuroectodermal tumors, hemangioblastomas; extraaxial tumors - meningiomas; nerve sheath tumors -schwannomas, epidermoids, dermoids, lipomas, arachnoid cysts; metastatic tumors (8 refs.)

  11. Imaging of brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Gaensler, E H.L. [California Univ., San Francisco, CA (United States). Dept. of Radiology

    1996-12-31

    The contents are diagnostic approaches, general features of tumors -hydrocephalus, edema, attenuation and/or intensity value, hemorrhage, fat, contrast enhancement, intra-axial supratentorial tumors - tumors of glial origin, oligodendrogliomas, ependymomas, subependymomas, subependymal giant cell astrocytomas, choroid plexus papilloma; midline tumors - colloid cysts, craniopharyngiomas; pineal region tumors and miscellaneous tumors i.e. primary intracerebral lymphoma, primitive neuroectodermal tumors, hemangioblastomas; extraaxial tumors - meningiomas; nerve sheath tumors -schwannomas, epidermoids, dermoids, lipomas, arachnoid cysts; metastatic tumors (8 refs.).

  12. CARDIAC FUNCTION AND IRON CHELATION IN THALASSEMIA MAJOR AND INTERMEDIA: A REVIEW OF THE UNDERLYING PATHOPHYSIOLOGY AND APPROACH TO CHELATION MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Athanasios Aessopos

    2009-07-01

    Full Text Available Heart disease is the leading cause of mortality and one of the main causes of morbidity in beta-thalassemia. Patients with homozygous thalassemia may have either a severe phenotype which is usually transfusion dependent or a milder form that is thalassemia intermedia.  The two main factors that determine cardiac disease in homozygous β thalassemia are the high output state that results from chronic tissue hypoxia, hypoxia-induced compensatory reactions and iron overload.  The high output state playing a major role in thalassaemia intermedia and the iron load being more significant in the major form. Arrhythmias, vascular involvement that leads to an increased pulmonary vascular resistance and an increased systemic vascular stiffness and valvular abnormalities also contribute to the cardiac dysfunction in varying degrees according to the severity of the phenotype.  Endocrine abnormalities, infections, renal function and medications can also play a role in the overall cardiac function.  For thalassaemia major, regular and adequate blood transfusions and iron chelation therapy are the mainstays of management. The approach to thalassaemia intermedia, today, is aimed at monitoring for complications and initiating, timely, regular transfusions and/or iron chelation therapy.  Once the patients are on transfusions, then they should be managed in the same way as the thalassaemia major patients.  If cardiac manifestations of dysfunction are present in either form of thalassaemia, high pre transfusion Hb levels need to be maintained in order to reduce cardiac output and appropriate intensive chelation therapy needs to be instituted.  In general recommendations on chelation, today, are usually made according to the Cardiac Magnetic Resonance findings, if available.  With the advances in the latter technology and the ability to tailor chelation therapy according to the MRI findings as well as the availability of three iron chelators, together with

  13. Positron emission tomography based analysis of long-circulating cross-linked triblock polymeric micelles in a U87MG mouse xenograft model and comparison of DOTA and CB-TE2A as chelators of copper-64.

    Science.gov (United States)

    Jensen, Andreas I; Binderup, Tina; Kumar EK, Pramod; Kjær, Andreas; Rasmussen, Palle H; Andresen, Thomas L

    2014-05-12

    Copolymers of ABC-type (PEG-PHEMA-PCMA) architecture were prepared by atom transfer radical polymerization and formulated as micelles with functionalizable primary alcohols in the shell-region (PHEMA-block) to which the metal-ion chelators DOTA or CB-TE2A were conjugated. Using this micelle system we compared the in vivo stabilities of DOTA and CB-TE2A as chelators of (64)Cu in micelle nanoparticles. The coumarin polymer (PCMA-block) micelle core was cross-linked by UV irradiation at 2 W/cm(2) for 30 min. The cross-linked micelles were labeled with (64)Cu at room temperature for 2 h (DOTA) or 80 °C for 3 h (CB-TE2A), giving labeling efficiencies of 60-76% (DOTA) and 40-47% (CB-TE2A). (64)Cu-micelles were injected into tumor-bearing mice (8 mg/kg) and PET/CT scans were carried out at 1, 22, and 46 h postinjection. The micelles showed good blood stability (T1/2: 20-26 h) and tumor uptake that was comparable with other nanoparticle systems. The DOTA micelles showed a biodistribution similar to the CB-TE2A micelles and the tumor uptake was comparable for both micelle types at 1 h (1.9% ID/g) and 22 h (3.9% ID/g) but diverged at 46 h with 3.6% ID/g (DOTA) and 4.9% ID/g (CB-TE2A). On the basis of our data, we conclude that cross-linked PEG-PHEMA-PCMA micelles have long circulating properties resulting in tumor accumulation and that DOTA and CB-TE2A (64)Cu-chelates show similar in vivo stability for the studied micelle system.

  14. Metal-chelating active packaging film enhances lysozyme inhibition of Listeria monocytogenes.

    Science.gov (United States)

    Roman, Maxine J; Decker, Eric A; Goddard, Julie M

    2014-07-01

    Several studies have demonstrated that metal chelators enhance the antimicrobial activity of lysozyme. This study examined the effect of metal-chelating active packaging film on the antimicrobial activity of lysozyme against Listeria monocytogenes. Polypropylene films were surface modified by photoinitiated graft polymerization of acrylic acid (PP-g-PAA) from the food contact surface of the films to impart chelating activity based on electrostatic interactions. PP-g-PAA exhibited a carboxylic acid density of 113 ± 5.4 nmol cm(-2) and an iron chelating activity of 53.7 ± 9.8 nmol cm(-2). The antimicrobial interaction of lysozyme and PP-g-PAA depended on growth media composition. PP-g-PAA hindered lysozyme activity at low ionic strength (2.48-log increase at 64.4 mM total ionic strength) and enhanced lysozyme activity at moderate ionic strength (5.22-log reduction at 120 mM total ionic strength). These data support the hypothesis that at neutral pH, synergy between carboxylate metal-chelating films (pKa(bulk) 6.45) and lysozyme (pI 11.35) is optimal in solutions of moderate to high ionic strength to minimize undesirable charge interactions, such as lysozyme absorption onto film. These findings suggest that active packaging, which chelates metal ions based on ligand-specific interactions, in contrast to electrostatic interactions, may improve antimicrobial synergy. This work demonstrates the potential application of metal-chelating active packaging films to enhance the antimicrobial activity of membrane-disrupting antimicrobials, such as lysozyme.

  15. Synergy and antagonism between iron chelators and antifungal drugs in Cryptococcus.

    Science.gov (United States)

    Lai, Yu-Wen; Campbell, Leona T; Wilkins, Marc R; Pang, Chi Nam Ignatius; Chen, Sharon; Carter, Dee A

    2016-10-01

    Fungal infections remain very difficult to treat, and developing new antifungal drugs is difficult and expensive. Recent approaches therefore seek to augment existing antifungals with synergistic agents that can lower the therapeutic dose, increase efficacy and prevent resistance from developing. Iron limitation can inhibit microbial growth, and iron chelators have been employed to treat fungal infections. In this study, chequerboard testing was used to explore combinations of iron chelators with antifungal agents against pathogenic Cryptococcus spp. with the aim of determining how disruption to iron homeostasis affects antifungal susceptibility. The iron chelators ethylenediaminetetraacetic acid (EDTA), deferoxamine (DFO), deferiprone (DFP), deferasirox (DSX), ciclopirox olamine and lactoferrin (LF) were paired with the antifungal agents amphotericin B (AmB), fluconazole, itraconazole, voriconazole and caspofungin. All chelators except for DFO increased the efficacy of AmB, and significant synergy was seen between AmB and LF for all Cryptococcus strains. Addition of exogenous iron rescued cells from the antifungal effect of LF alone but could not prevent inhibition by AmB + LF, indicating that synergy was not due primarily to iron chelation but to other properties of LF that were potentiated in the presence of AmB. Significant synergy was not seen consistently for other antifungal-chelator combinations, and EDTA, DSX and DFP antagonised the activity of azole drugs in strains of Cryptococcus neoformans var. grubii. This study highlights the range of interactions that can be induced by chelators and indicates that most antifungal drugs are not enhanced by iron limitation in Cryptococcus. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  16. Enhanced in vitro activity of tigecycline in the presence of chelating agents.

    Science.gov (United States)

    Deitchman, Amelia N; Singh, Ravi Shankar Prasad; Rand, Kenneth H; Derendorf, Hartmut

    2018-05-01

    The lack of availability of novel antibiotic agents and the rise of resistance to existing therapies has led clinicians to utilise combination therapy to adequately treat bacterial infections. Here we examined how chelators may impact the in vitro activity of tigecycline (TIG) against Pseudomonas aeruginosa, Escherichia coli and Klebsiella pneumoniae. Minimum inhibitory concentrations (MICs) were determined by broth dilution with and without various combinations of chelators (EDTA and other tetracyclines) and metal ions (i.e. calcium, magnesium). Trimethoprim (TMP) was used as a non-chelating control. Addition of metal ions led to increases in MICs, whilst addition of EDTA led to decreases in MICs. The chelating effects of EDTA were reversed by addition of magnesium and most profoundly calcium. Similar effects of EDTA and calcium were observed for tetracycline (TET) and TMP. When other tetracyclines (TET, oxytetracycline (OXY) and chlortetracycline (CHL)) were used as chelators at concentrations below their MICs, TIG MICs decreased for P. aeruginosa but not for E. coli. Some decreases in TIG MICs were observed for K. pneumoniae when TET and CHL were added. A dose-dependent decrease in TIG MIC was observed for TET and was reversed by the addition of calcium. The presence of effects of EDTA and calcium on TMP MICs indicates that mechanisms outside of TIG chelation likely play a role in enhanced activity. Full characterisation of an unexpected interaction such as TIG-TET with different microorganisms could provide valuable insights into the underlying mechanisms and design of physiologically viable chelators as candidates for future combinations regimens. Copyright © 2018 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  17. Olivine-type cathode for rechargeable batteries: Role of chelating agents

    International Nuclear Information System (INIS)

    Kandhasamy, Sathiyaraj; Singh, Pritam; Thurgate, Stephen; Ionescu, Mihail; Appadoo, Dominique; Minakshi, Manickam

    2012-01-01

    Highlights: ► Olivine powder was synthesized by sol–gel method using a range of chelating agents. ► Role of chelating agents in olivine cathode was investigated for battery application. ► Battery was fabricated with olivine cathode, Zn anode and aqueous electrolyte. ► Synergetic effect of additives (CA + TEA + PVP) led to improved storage capacity. - Abstract: Olivine (LiCo 1/3 Mn 1/3 Ni 1/3 PO 4 ) powders were synthesized at 550–600 °C for 6 h in air by a sol–gel method using multiple chelating agents and used as a cathode material for rechargeable batteries. Range of chelating agents like a weak organic acid (citric acid – CA), emulsifier (triethanolamine – TEA) and non-ionic surfactant (polyvinylpyrrolidone – PVP) in sol–gel wet chemical synthesis were used. The dependence of the physicochemical properties of the olivine powders such as particle size, morphology, structural bonding and crystallinity on the chelating agent was extensively investigated. Among the chelating agents used, unique cycling behavior (75 mAh/g after 25 cycles) is observed for the PVP assisted olivine. This is due to volumetric change in trapped organic layer for first few cycles. The trapped organic species in the electrode–electrolyte interface enhances the rate of lithium ion diffusion with better capacity retention. In contrast, CA and TEA showed a gradual capacity fade of 30 and 38 mAh/g respectively after multiple cycles. The combination of all the three mixed chelating agents showed an excellent electrochemical behavior of 100 mAh/g after multiple cycles and the synergistic effect of these agents are discussed.

  18. Organically complexed copper, zinc, and chelating agents in the rivers of Western Puerto Rico

    International Nuclear Information System (INIS)

    Montgomery, J.R.; Echevarria, J.E.

    1975-01-01

    The method for determining soluble chelators gives their concentration in copper-equivalent chelating capacity units in fresh or slightly brackish (less than 3 percent salinity) water. The mean concentration of chelators in the Rio Guanajibo for December 1973 and January 1974 was 0.4 mg of copper per liter of water (N = 21, SD = 0.2) and for February 1974, 0.9 mg/liter (N = 8, SD = 0.4). The combined mean for the Rio Anasco and Culebrinas was 0.5 mg/liter (N = 7, SD = 0.4) in January and February 1974. The mean concentration of ionic copper was 0.5 μg/liter (N = 7, SD = 0.6) and of ionic zinc, 0.2 μg/liter (N = 8, SD = 0.1) in the Rio Guanajibo from November 1972 to February 1973. The concentration of organically bound copper was 0.3 μ/liter (N = 7, SD = 0.2) and that of organically bound zinc was 0.6 μg/liter (N = 8, SD = 0.6); this indicates that there was more than a sufficient quantity of chelator available in the river to complex all the soluble copper. The presence of a high ratio of Ca 2+ to Cu 2+ probably prevents the formation of larger concentrations of organically complexed copper. The mean concentration of chelating agents in the Guanajibo River seems to be directly related to the increased organic input from municipalities and a sugar mill. The concentration of chelators in tropical rivers appears to be higher than that found in Canadian lakes. The mean concentration for particulate organic carbon (POC) was 3653 μg atoms/liter (SD = 3653, N = 29). The dissolved reactive phosphate (DRP) ranged from a mean of 1.1 μg atom/liter. No significant correlation could be found between POC, DRP, and the concentration of chelators

  19. Tumor-Associated Macrophages in Oncolytic Virotherapy: Friend or Foe?

    Directory of Open Access Journals (Sweden)

    Nicholas L. Denton

    2016-07-01

    Full Text Available Cancer therapy remains a challenge due to toxicity limitations of chemotherapy and radiation therapy. Oncolytic viruses that selectively replicate and destroy cancer cells are of increasing interest. In addition to direct cell lysis, these vectors stimulate an anti-tumor immune response. A key regulator of tumor immunity is the tumor-associated macrophage population. Macrophages can either support oncolytic virus therapy through pro-inflammatory stimulation of the anti-tumor response at the cost of hindering direct oncolysis or through immunosuppressive protection of virus replication at the cost of hindering the anti-tumor immune response. Despite similarities in macrophage interaction between adult and pediatric tumors and the abundance of research supporting macrophage modulation in adult tumors, there are few studies investigating macrophage modulation in pediatric cancers or modulation of immunotherapy. We review the current state of knowledge regarding macrophages in cancers and their influence on oncolytic virotherapy.

  20. Bone tumors

    International Nuclear Information System (INIS)

    Moylan, D.J.; Yelovich, R.M.

    1991-01-01

    Primary bone malignancies are relatively rare with less than 4,000 new cases per year. Multiple myeloma (more correctly a hematologic malignancy) accounts for 40%; osteosarcomas, 28%; chondrosarcomas, 13%; fibrosarcomas arising in bone, 4%; and Ewing's sarcoma, 7%. The authors discuss various treatments for bone tumors, including radiotherapy, chemotherapy and surgery

  1. Wilms Tumor

    Science.gov (United States)

    ... a child's general health and to detect any adverse side effects (such as low red or white blood cell ... medicine needed, which helps reduce long-term side effects. The most common ... can be completely removed by surgery. About 41% of all Wilms tumors are stage ...

  2. Nephrogenic tumors

    International Nuclear Information System (INIS)

    Wiesbauer, P.

    2008-01-01

    Nephroblastomas are the most common malignant renal tumors in childhood. According to the guidelines of the SIOP (Societe Internationale d'Oncologie Pediatrique) and GPOH (Gesellschaft fuer Paediatrische Onkologie und Haematologie) pre-operative chemotherapy can be started without histological confirmation and thus initial imaging studies, in particular ultrasound, play an outstanding role for diagnostic purposes

  3. A study on the adsorption and subsurface transport of radioactive solutes in the presence of chelating agents

    International Nuclear Information System (INIS)

    Baik, Min Hoon

    1994-02-01

    In this study, adsorption and transport models were developed to analyze the effect of chelating agents on the adsorption and subsurface transport of radioactive solutes. The effect of chelating agents on the adsorption of radioactive solutes was analyzed by developing an adsorption model based upon the extended concept of distribution coefficient reflecting the presence of chelating agents. Also, a batch adsorption experiment was conducted in order to validate the developed adsorption model and to investigate the effect of chelating agent on the adsorption of radioactive metal solutes. In this experiment, a Cobalt(II)/EDTA/Bentonite system was considered as a representative chelation/adsorption system. It was found from the results that the presence of chelating agents significantly reduced the adsorbing capacity of geologic media such as clay minerals and soils. Thus it was concluded that the presence of chelating agents even in a small amount could contribute to the mobilization of radioactive solutes from radioactive waste burial sites by reducing the adsorbing capacity of geologic media. The effect of chelating agents on the transport of radioactive solutes in subsurface porous media was analyzed by formulating an advective-dispersive transport model which incorporated chelate formation, adsorption, decay, and degradations and by introducing the concept of a tenad. Particularly the governing equation for the tenad of radioactive solutes, M, was presented as a linear partial differential form by introducing the extended distribution coefficient, K D . The calculated results from the model showed that the transport rate of the chelated radionuclides was much greater than that of the free ionic radionuclides. This much faster transport of the chelated radionuclides was found to be due to the lower retardation factor of the chelated radionuclides than the free ionic radionuclides. The effect of parameters on the transport of radioactive solutes was also analyzed

  4. The biodistribution study of 99mTc labelled anti-CEA monoclonal antibody in tumor bearing nude mice

    International Nuclear Information System (INIS)

    Lou Zongxin

    1992-01-01

    The author report the optimal condition of 99m Tc labelling with anti-CEA monoclonal antibody using chelating of 99m Tc with dimethylformamide. The labelling rate of this method is 60%-80%, the radiochemical purity of labelling antibody over 90% and maintain its better immuno activity. The biodistribution of the tumor bearing nude mice demonstrates that as compared with the control group, 24 hours after the intraperitoneal injection the injected labelled antibody has its specific concentration in tumor tissue

  5. N-acetylcysteine protects rats with chronic renal failure from gadolinium-chelate nephrotoxicity.

    Directory of Open Access Journals (Sweden)

    Leonardo Victor Barbosa Pereira

    Full Text Available The aim of this study was to evaluate the effect of Gd-chelate on renal function, iron parameters and oxidative stress in rats with CRF and a possible protective effect of the antioxidant N-Acetylcysteine (NAC. Male Wistar rats were submitted to 5/6 nephrectomy (Nx to induced CRF. An ionic-cyclic Gd (Gadoterate Meglumine was administrated (1.5 mM/KgBW, intravenously 21 days after Nx. Clearance studies were performed in 4 groups of anesthetized animals 48 hours following Gd- chelate administration: 1--Nx (n = 7; 2--Nx+NAC (n = 6; 3--Nx+Gd (n = 7; 4--Nx+NAC+Gd (4.8 g/L in drinking water, initiated 2 days before Gd-chelate administration and maintained during 4 days (n = 6. This group was compared with a control. We measured glomerular filtration rate, GFR (inulin clearance, ml/min/kg BW, proteinuria (mg/24 hs, serum iron (µg/dL; serum ferritin (ng/mL; transferrin saturation (%, TIBC (µg/dL and TBARS (nmles/ml. Normal rats treated with the same dose of Gd-chelate presented similar GFR and proteinuria when compared with normal controls, indicating that at this dose Gd-chelate is not nephrotoxic to normal rats. Gd-chelate administration to Nx-rats results in a decrease of GFR and increased proteinuria associated with a decrease in TIBC, elevation of ferritin serum levels, transferrin oversaturation and plasmatic TBARS compared with Nx-rats. The prophylactic treatment with NAC reversed the decrease in GFR and the increase in proteinuria and all alterations in iron parameters and TBARS induced by Gd-chelate. NAC administration to Nx rat did not modify the inulin clearance and iron kinetics, indicating that the ameliorating effect of NAC was specific to Gd-chelate. These results suggest that NAC can prevent Gd-chelate nephrotoxicity in patients with chronic renal failure.

  6. Targeted Catalytic Inactivation of Angiotensin Converting Enzyme by Lisinopril-Coupled Transition Metal Chelates

    Science.gov (United States)

    Joyner, Jeff C.; Hocharoen, Lalintip; Cowan, J. A.

    2012-01-01

    A series of compounds that target reactive transition metal chelates to somatic Angiotensin Converting Enzyme (sACE-1) have been synthesized. Half maximal inhibitory concentrations (IC50) and rate constants for both inactivation and cleavage of full length sACE-1 have been determined and evaluated in terms of metal-chelate size, charge, reduction potential, coordination unsaturation, and coreactant selectivity. Ethylenediamine-tetraacetic acid (EDTA), nitrilotriacetic acid (NTA), 1,4,7,10-tetraazacyclo-dodecane-1,4,7,10-tetraacetic acid (DOTA), and tripeptide GGH were linked to the lysine sidechain of lisinopril by EDC/NHS coupling. The resulting amide-linked chelate-lisinopril (EDTA-lisinopril, NTA-lisinopril, DOTA-lisinopril, and GGH-lisinopril) conjugates were used to form coordination complexes with iron, cobalt, nickel and copper, such that lisinopril could mediate localization of the reactive metal chelates to sACE-1. ACE activity was assayed by monitoring cleavage of the fluorogenic substrate Mca-RPPGFSAFK(Dnp)-OH, a derivative of bradykinin, following pre-incubation with metal-chelate-lisinopril compounds. Concentration-dependent inhibition of sACE-1 by metal-chelate-lisinopril complexes revealed IC50 values ranging from 44 nM to 4,500 nM for Ni-NTA-lisinopril and Ni-DOTA-lisinopril, respectively, versus 1.9 nM for lisinopril. Stronger inhibition was correlated with smaller size and lower negative charge of the attached metal chelates. Time-dependent inactivation of sACE-1 by metal-chelate-lisinopril complexes revealed a remarkable range of catalytic activities, with second order rate constants as high as 150,000 M−1min−1 (Cu-GGH-lisinopril), while catalyst-mediated cleavage of sACE-1 typically occurred at much lower rates, indicating that inactivation arose primary from sidechain modification. Optimal inactivation of sACE-1 was observed when the reduction potential for the metal center was poised near 1000 mV, reflecting the difficulty of protein

  7. Targeted catalytic inactivation of angiotensin converting enzyme by lisinopril-coupled transition-metal chelates.

    Science.gov (United States)

    Joyner, Jeff C; Hocharoen, Lalintip; Cowan, J A

    2012-02-22

    A series of compounds that target reactive transition-metal chelates to somatic angiotensin converting enzyme (sACE-1) have been synthesized. Half-maximal inhibitory concentrations (IC(50)) and rate constants for both inactivation and cleavage of full-length sACE-1 have been determined and evaluated in terms of metal chelate size, charge, reduction potential, coordination unsaturation, and coreactant selectivity. Ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), and tripeptide GGH were linked to the lysine side chain of lisinopril by 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide hydrochloride/N-hydroxysuccinimide coupling. The resulting amide-linked chelate-lisinopril (EDTA-lisinopril, NTA-lisinopril, DOTA-lisinopril, and GGH-lisinopril) conjugates were used to form coordination complexes with iron, cobalt, nickel, and copper, such that lisinopril could mediate localization of the reactive metal chelates to sACE-1. ACE activity was assayed by monitoring cleavage of the fluorogenic substrate Mca-RPPGFSAFK(Dnp)-OH, a derivative of bradykinin, following preincubation with metal chelate-lisinopril compounds. Concentration-dependent inhibition of sACE-1 by metal chelate-lisinopril complexes revealed IC(50) values ranging from 44 to 4500 nM for Ni-NTA-lisinopril and Ni-DOTA-lisinopril, respectively, versus 1.9 nM for lisinopril. Stronger inhibition was correlated with smaller size and lower negative charge of the attached metal chelates. Time-dependent inactivation of sACE-1 by metal chelate-lisinopril complexes revealed a remarkable range of catalytic activities, with second-order rate constants as high as 150,000 M(-1) min(-1) (Cu-GGH-lisinopril), while catalyst-mediated cleavage of sACE-1 typically occurred at much lower rates, indicating that inactivation arose primarily from side chain modification. Optimal inactivation of sACE-1 was observed when the reduction potential for the

  8. Influence of macrocyclic chelators on the targeting properties of (68Ga-labeled synthetic affibody molecules: comparison with (111In-labeled counterparts.

    Directory of Open Access Journals (Sweden)

    Joanna Strand

    Full Text Available Affibody molecules are a class of small (7 kDa non-immunoglobulin scaffold-based affinity proteins, which have demonstrated substantial potential as probes for radionuclide molecular imaging. The use of positron emission tomography (PET would further increase the resolution and quantification accuracy of Affibody-based imaging. The rapid in vivo kinetics of Affibody molecules permit the use of the generator-produced radionuclide (68Ga (T1/2=67.6 min. Earlier studies have demonstrated that the chemical nature of chelators has a substantial influence on the biodistribution properties of Affibody molecules. To determine an optimal labeling approach, the macrocyclic chelators 1,4,7,10-tetraazacylododecane-1,4,7,10-tetraacetic acid (DOTA, 1,4,7-triazacyclononane-N,N,N-triacetic acid (NOTA and 1-(1,3-carboxypropyl-1,4,7- triazacyclononane-4,7-diacetic acid (NODAGA were conjugated to the N-terminus of the synthetic Affibody molecule ZHER2:S1 targeting HER2. Affibody molecules were labeled with (68Ga, and their binding specificity and cellular processing were evaluated. The biodistribution of (68Ga-DOTA-ZHER2:S1, (68Ga-NOTA-ZHER2:S1 and (68Ga-NODAGA-ZHER2:S1, as well as that of their (111In-labeled counterparts, was evaluated in BALB/C nu/nu mice bearing HER2-expressing SKOV3 xenografts. The tumor uptake for (68Ga-DOTA-ZHER2:S1 (17.9 ± 0.7%IA/g was significantly higher than for both (68Ga-NODAGA-ZHER2:S1 (16.13 ± 0.67%IA/g and (68Ga-NOTA-ZHER2:S1 (13 ± 3%IA/g at 2 h after injection. (68Ga-NODAGA-ZHER2:S1 had the highest tumor-to-blood ratio (60 ± 10 in comparison with both (68Ga-DOTA-ZHER2:S1 (28 ± 4 and (68Ga-NOTA-ZHER2:S1 (42 ± 11. The tumor-to-liver ratio was also higher for (68Ga-NODAGA-ZHER2:S1 (7 ± 2 than the DOTA and NOTA conjugates (5.5 ± 0.6 vs.3.3 ± 0.6. The influence of chelator on the biodistribution and targeting properties was less pronounced for (68Ga than for (111In. The results of this study demonstrate that macrocyclic

  9. Mechanism and efficiency of cell death of type II photosensitizers: effect of zinc chelation.

    Science.gov (United States)

    Pavani, Christiane; Iamamoto, Yassuko; Baptista, Maurício S

    2012-01-01

    A series of meso-substituted tetra-cationic porphyrins, which have methyl and octyl substituents, was studied in order to understand the effect of zinc chelation and photosensitizer subcellular localization in the mechanism of cell death. Zinc chelation does not change the photophysical properties of the photosensitizers (all molecules studied are type II photosensitizers) but affects considerably the interaction of the porphyrins with membranes, reducing mitochondrial accumulation. The total amount of intracellular reactive species induced by treating cells with photosensitizer and light is similar for zinc-chelated and free-base porphyrins that have the same alkyl substituent. Zinc-chelated porphyrins, which are poorly accumulated in mitochondria, show higher efficiency of cell death with features of apoptosis (higher MTT response compared with trypan blue staining, specific acridine orange/ethidium bromide staining, loss of mitochondrial transmembrane potential, stronger cytochrome c release and larger sub-G1 cell population), whereas nonchelated porphyrins, which are considerably more concentrated in mitochondria, triggered mainly necrotic cell death. We hypothesized that zinc-chelation protects the photoinduced properties of the porphyrins in the mitochondrial environment. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  10. Self-diffusion coefficient of iron as affected by chelating agents using tracer technique

    Energy Technology Data Exchange (ETDEWEB)

    Massoud, M.A.; Abd-El-Sabour, M.F. (Agriculture Dept. for Soil and Water Research, Nuclear Research Centre, A.E.A., Cairo (Egyp