WorldWideScience

Sample records for chelate modulates tumor

  1. Tumor targeting of radiolabeled antibodies using HYNIC chelate

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tae Sup; Chung, Wee Sup; Woo, Kwang Sun; Choi, Tae Hyun; Chung, Hye Kyung; Lee, Myung Jin; Kim, So Yeon; Jung, Jae Ho; Choi, Chang Woon; Lim, Sang Moo [KIRAMS, Seoul (Korea, Republic of); Darwati, Siti [National Nuclear Energy Agency, Tangerang (Indonesia)

    2004-07-01

    There is an increasing interest in the use of labeled antibodies for diagnosis of cancers as well as for therapy. Various radiolabeling methods have been used in order to obtain better tumor specific targeting for detection and therapy. It was generally used to tumor targeted immunotherapy and immunodetection that lym-1, mouse monoclonal antibody, was specific binding to surface antigen of Raji. The 3E8 antibody was produced from humanized anti-TAG-72 monoclonal antibody (AKA) by amino acid change in 95-99 residues of heavy chain complementary determinant regions (HCDRs) 3 using phage displayed library technology. In this study, we are investigating the usefulness of HYNIC chelate as a bifunctional chelating agent in radioimmunodetecton of tumor. Two types of antibodies, Lym-1 and 3E8, were used for the conjugation with HYNIC chelate. Lym-1 and 3E8 are specific antibodies to surface antigen of Non-Hogkin's lymphoma and TAG-72 antigen of colorectal carcinoma, respectively. We prepare HYNIC-antibody conjugates, determine radiolabeling yield with {sup 99m}Tc and evaluate tumor targeting in tumor bearing nude mice model.

  2. Bioavailable copper modulates oxidative phosphorylation and growth of tumors.

    Science.gov (United States)

    Ishida, Seiko; Andreux, Pénélope; Poitry-Yamate, Carole; Auwerx, Johan; Hanahan, Douglas

    2013-11-26

    Copper is an essential trace element, the imbalances of which are associated with various pathological conditions, including cancer, albeit via largely undefined molecular and cellular mechanisms. Here we provide evidence that levels of bioavailable copper modulate tumor growth. Chronic exposure to elevated levels of copper in drinking water, corresponding to the maximum allowed in public water supplies, stimulated proliferation of cancer cells and de novo pancreatic tumor growth in mice. Conversely, reducing systemic copper levels with a chelating drug, clinically used to treat copper disorders, impaired both. Under such copper limitation, tumors displayed decreased activity of the copper-binding mitochondrial enzyme cytochrome c oxidase and reduced ATP levels, despite enhanced glycolysis, which was not accompanied by increased invasiveness of tumors. The antiproliferative effect of copper chelation was enhanced when combined with inhibitors of glycolysis. Interestingly, larger tumors contained less copper than smaller tumors and exhibited comparatively lower activity of cytochrome c oxidase and increased glucose uptake. These results establish copper as a tumor promoter and reveal that varying levels of copper serves to regulate oxidative phosphorylation in rapidly proliferating cancer cells inside solid tumors. Thus, activation of glycolysis in tumors may in part reflect insufficient copper bioavailability in the tumor microenvironment.

  3. Characterization of Tumor-Avid Antibody Fragments Genetically Engineered for Mono-Specific Radionuclide Chelation

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, T.P.

    2003-12-31

    The successful clinical application of targeted-radiopharmaceuticals depends on the development of molecules that optimize tumor specific radionuclide deposition and minimize non-specific organ irradiation. To this end, this proposal outlines a research effort to identify and evaluate novel antibodies and antibody fragments that bind breast tumors. The tumor-avid antibodies will be investigated for as imaging and therapeutic agents and to gain a better understanding of the pharmacokinetics and metabolism of radiolabeled tumor-avid antibody fragments through the use of site-specifically labeled molecules. Antibodies or antibody fragments, that bind breast carcinoma carbohydrate antigens, will be obtained from hybridoma or bacteriophage library screening. More specifically, antibody fragments that bind the carcinoma-associated Thomsen-Friedenreich (T) antigen will be radiolabeled with {sup 99m}Tc and {sup 188}Re at a natural amino acid chelation site and will be investigated in vivo for their abilities to target human breast tumors. In addition, site-specific radiolabeled antibody fragments will be biosynthesized using misacylated suppressor tRNAs. Homogeneously radiolabeled populations of antibody fragments will be used to investigate the effects of radionuclide location and chelation chemistries on their biodistribution and metabolism. It is hypothesized that site-specifically radiolabeled antibody fragments will possess enhanced tumor imaging and therapeutic properties due to optimal label location and conjugation chemistries. New insights into the factors that govern antibody metabolism in vivo are also expected from this work. Results from these studies should enhance our ability to design and synthesize radiolabeled antibody fragments that have improved pharmacokinetic properties. The studies in this proposal involve basic research into the development of antibody-based radiopharmaceuticals, with the ultimate goal of application in humans. This type of basic

  4. Chelate-Thiolate-Coordinate Ligands Modulating the Configuration and Electrochemical Property of Dinitrosyliron Complexes (DNICs).

    Science.gov (United States)

    Yeh, Shih-Wey; Lin, Chih-Wei; Liu, Bai-Heng; Tsou, Chih-Chin; Tsai, Ming-Li; Liaw, Wen-Feng

    2015-11-01

    As opposed to the reversible redox reaction ({Fe(NO)2 }(10) reduced-form DNIC [(NO)2 Fe(S(CH2 )3 S)](2-) (1)⇌{Fe(NO)2 }(9) oxidized-form [(NO)2 Fe(S(CH2 )3 S)](-) ), the chemical oxidation of the {Fe(NO)2 }(10) DNIC [(NO)2 Fe(S(CH2 )2 S)](2-) (2) generates the dinuclear {Fe(NO)2 }(9) -{Fe(NO)2 }(9) complex [(NO)2 Fe(μ-SC2 H4 S)2 Fe(NO)2 ](2-) (3) bridged by two terminal [SC2 H4 S](2-) ligands. On the basis of the Fe K-edge pre-edge energy and S K-edge XAS, the oxidation of complex 1 yielding [(NO)2 Fe(S(CH2 )3 S)](-) is predominantly a metal-based oxidation. The smaller S1-Fe1-S2 bond angle of 94.1(1)° observed in complex 1 (S1-Fe1-S2 88.6(1)° in complex 2), compared to the bigger bond angle of 100.9(1)° in the {Fe(NO)2 }(9) DNIC [(NO)2 Fe(S(CH2 )3 S)](-) , may be ascribed to the electron-rich {Fe(NO)2 }(10) DNIC preferring a restricted bite angle to alleviate the electronic donation of the chelating thiolate to the electron-rich {Fe(NO)2 }(10) core. The extended transition state and natural orbitals for chemical valence (ETS-NOCV) analysis on the edt-/pdt-chelated {Fe(NO)2 }(9) and {Fe(NO)2 }(10) DNICs demonstrates how two key bonding interactions, that is, a FeS covalent σ bond and thiolate to the Fe d z 2 charge donation, between the chelating thiolate ligand and the {Fe(NO)2 }(9/10) core could be modulated by the backbone lengths of the chelating thiolate ligands to tune the electrochemical redox potential (E1/2 =-1.64 V for complex 1 and E1/2 =-1.33 V for complex 2) and to dictate structural rearrangement/chemical transformations (S-Fe-S bite angle and monomeric vs. dimeric DNICs).

  5. Hyaluronan: A modulator of the tumor microenvironment.

    Science.gov (United States)

    Chanmee, Theerawut; Ontong, Pawared; Itano, Naoki

    2016-05-28

    Tumors are cellular masses formed through dynamic interactions between tumor cells and a mixed population of stromal cells. Crosstalk between oncogenic and adjacent stromal cells contributes to the formation of a "tumor microenvironment" influencing the tumor cell behaviors of proliferation, invasion, and metastatic spread throughout cancer progression. The composition and structure of the tumor microenvironment vary among different types of tumors and are extensively remodeled in close association with tumor advancement. The tumor microenvironment is composed not only of cellular compartments, such as endothelial cells, fibroblasts, inflammatory cells, and immune cells, but also of bioactive substances, including growth factors and the extracellular matrix. Hyaluronan (HA) is a major component of the extracellular matrix, and the degree of HA accumulation is strongly correlated with a poor prognosis in advanced cancer patients. Emerging evidence has suggested that HA creates a specific microenvironment that is favorable for tumor angiogenesis, invasion, and metastasis. This review highlights the prominent roles of HA as a modulator of the tumor microenvironment and addresses the recent advances regarding HA function in cancer stem cell niches. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Ascorbate status modulates reticuloendothelial iron stores and response to deferasirox iron chelation in ascorbate-deficient rats

    DEFF Research Database (Denmark)

    Brewer, Casey; Otto-Duessel, Maya; Lykkesfeldt, Jens

    2012-01-01

    Iron chelation is essential to patients on chronic blood transfusions to prevent toxicity from iron overload and remove excess iron. Deferasirox (DFX) is the most commonly used iron chelator in the United States; however, some patients are relatively refractory to DFX therapy. We postulated...... that vitamin C supplementation would improve the availability of transfusional iron to DFX treatment by promoting iron's redox cycling, increasing its soluble ferrous form and promoting its release from reticuloendothelial cells. Osteogenic dystrophy rats (n = 54) were given iron dextran injections for 10...... 12 weeks of sham chelation. Most importantly, ascorbate supplementation at 2250 ppm improved DFX efficiency, allowing DFX to remove 21% more hepatic iron than ascorbate supplementation with 900 ppm or 150 ppm (p vitamin C status modulates the release of iron from...

  7. Tumor suppressor ARF regulates tissue microenvironment and tumor growth through modulation of macrophage polarization.

    Science.gov (United States)

    Jiménez-García, Lidia; Herranz, Sandra; Higueras, María Angeles; Luque, Alfonso; Hortelano, Sonsoles

    2016-10-11

    Tumor microenvironment has been described to play a key role in tumor growth, progression, and metastasis. Macrophages are a major cellular constituent of the tumor stroma, and particularly tumor associated macrophages (TAMs or M2-like macrophages) exert important immunosuppressive activity and a pro-tumoral role within the tumor microenvironment. Alternative-reading frame (ARF) gene is widely inactivated in human cancer. We have previously demonstrated that ARF deficiency severely impairs inflammatory response establishing a new role for ARF in the regulation of innate immunity. On the basis of these observations, we hypothesized that ARF may also regulates tumor growth through recruitment and modulation of the macrophage phenotype in the tumor microenvironment. Xenograft assays of B16F10 melanoma cells into ARF-deficient mice resulted in increased tumor growth compared to those implanted in WT control mice. Tumors from ARF-deficient mice exhibited significantly increased number of TAMs as well as microvascular density. Transwell assays showed crosstalk between tumor cells and macrophages. On the one hand, ARF-deficient macrophages modulate migratory ability of the tumor cells. And on the other, tumor cells promote the skewing of ARF-/- macrophages toward a M2-type polarization. In conclusion, these results demonstrate that ARF deficiency facilitates the infiltration of macrophages into the tumor mass and favors their polarization towards a M2 phenotype, thus promoting tumor angiogenesis and tumor growth. This work provides novel information about the critical role of ARF in the modulation of tumor microenvironment.

  8. CXC and CC Chemokines as Angiogenic Modulators in Nonhaematological Tumors

    Directory of Open Access Journals (Sweden)

    Matteo Santoni

    2014-01-01

    Full Text Available Chemokines are a superfamily of structurally homologous heparin-binding proteins that includes potent inducers and inhibitors of angiogenesis. The imbalance between angiogenic and angiostatic chemokine activities can lead to abnormalities, such as chronic inflammation, dysplastic transformation, and even tumor development and spreading. In this review, we summarize the current literature regarding the role of chemokines as modulators of tumor angiogenesis and their potential role as therapeutic targets in patients with nonhaematological tumors.

  9. CXC and CC Chemokines as Angiogenic Modulators in Nonhaematological Tumors

    Science.gov (United States)

    Bracarda, Sergio; Nabissi, Massimo; Massari, Francesco; Bria, Emilio; Tortora, Giampaolo; Santoni, Giorgio; Cascinu, Stefano

    2014-01-01

    Chemokines are a superfamily of structurally homologous heparin-binding proteins that includes potent inducers and inhibitors of angiogenesis. The imbalance between angiogenic and angiostatic chemokine activities can lead to abnormalities, such as chronic inflammation, dysplastic transformation, and even tumor development and spreading. In this review, we summarize the current literature regarding the role of chemokines as modulators of tumor angiogenesis and their potential role as therapeutic targets in patients with nonhaematological tumors. PMID:24971349

  10. Imaging Tumor Vasculature Noninvasively with Positron Emission Tomography and RGD Peptides Labeled with Copper 64 Using the Bifunctonal Chelates DOTA, Oxo-DO3A. and PCTA

    Directory of Open Access Journals (Sweden)

    Donald T.T. Yapp

    2013-06-01

    Full Text Available Two novel bifunctional chelates, 3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15,11,13-triene-3,6,9-triacetic acid (PCTA and 1-oxa-4,7,10-triazacyclododecane-4,7,10-triacetic acid (Oxo-DO3A, were found to radiolabel antibodies with copper 64 (64Cu well for positron emission tomography (PET. In this study, the same chelators were used to radiolabel peptides with 64Cu for PET imaging of angiogenesis. PCTA, Oxo-DO3A, and 1,4,7,10-tetraazacyclododecane-N,N‘,N“,N”’-tetraacetic acid (DOTA were conjugated to cyclic-(RGDyK, and their binding affinities were confirmed. Conditions for 64Cu radiolabeling were optimized for maximum yield and specific activity. The in vitro stability of the radiolabeled compounds was challenged with serum incubation. PET studies were carried out in a non-αvβ3-expressing tumor model to evaluate the compounds' specificity for proliferating tumor vasculature and their in vivo pharmacokinetics. The PCTA and Oxo-DO3A bioconjugates were labeled with 64Cu at higher effective specific activity and radiochemical yield than the DOTA bioconjugate. In the imaging studies, all the 64Cu bioconjugates could be used to visualize the tumor and the radiotracer uptake was blocked with cyclic-(RGDyK. Target uptake of each bioconjugate was similar, but differences in other tissues were observed. 64Cu-PCTA-RGD showed the best clearance from nontarget tissue and the highest tumor to nontarget ratios. PCTA was the most promising bifunctional chelate for 64Cu peptide imaging and warrants further investigation.

  11. Intensity-Modulated Radiation Therapy for Primary Brain Tumors

    Institute of Scientific and Technical Information of China (English)

    Zhong-min Wang

    2004-01-01

    Radiation therapy has been used to treat primary brain tumors as standard primary and/or adjunctive therapies for decades. It is difficult for conventional radiotherapy to deliver a lethal dose of radiation to the tumors while sparing surrounding normal brain due to complicated structures and multifunction in human brain. With the understanding of radiation physics and computer technology, a number of novel and more precise radiotherapies have been developed in recent years. Intensity modulated radiotherapy (IMRT) is one of these strategies. The use of IMRT in the treatment of primary brain tumors is being increasing nowadays. It shows great promise for some of primary brain tumors and also presents some problems, This review highlights current IMRT in the treatment of mainly primary brain tumors.

  12. The iron chelator, deferasirox, as a novel strategy for cancer treatment: oral activity against human lung tumor xenografts and molecular mechanism of action.

    Science.gov (United States)

    Lui, Goldie Y L; Obeidy, Peyman; Ford, Samuel J; Tselepis, Chris; Sharp, Danae M; Jansson, Patric J; Kalinowski, Danuta S; Kovacevic, Zaklina; Lovejoy, David B; Richardson, Des R

    2013-01-01

    Deferasirox is an orally effective iron (Fe) chelator currently used for the treatment of iron-overload disease and has been implemented as an alternative to the gold standard chelator, desferrioxamine (DFO). Earlier studies demonstrated that DFO exhibits anticancer activity due to its ability to deplete cancer cells of iron. In this investigation, we examined the in vitro and in vivo activity of deferasirox against cells from human solid tumors. To date, there have been no studies to investigate the effect of deferasirox on these types of tumors in vivo. Deferasirox demonstrated similar activity at inhibiting proliferation of DMS-53 lung carcinoma and SK-N-MC neuroepithelioma cell lines compared with DFO. Furthermore, deferasirox was generally similar or slightly more effective than DFO at mobilizing cellular (59)Fe and inhibiting iron uptake from human transferrin depending on the cell type. However, deferasirox potently inhibited DMS-53 xenograft growth in nude mice when given by oral gavage, with no marked alterations in normal tissue histology. To understand the antitumor activity of deferasirox, we investigated its effect on the expression of molecules that play key roles in metastasis, cell cycle control, and apoptosis. We demonstrated that deferasirox increased expression of the metastasis suppressor protein N-myc downstream-regulated gene 1 and upregulated the cyclin-dependent kinase inhibitor p21(CIP1/WAF1) while decreasing cyclin D1 levels. Moreover, this agent increased the expression of apoptosis markers, including cleaved caspase-3 and cleaved poly(ADP-ribose) polymerase 1. Collectively, we demonstrate that deferasirox is an orally effective antitumor agent against solid tumors.

  13. Modulation of tumor microenvironment by chemopreventive natural products.

    Science.gov (United States)

    Park, Sin-Aye; Surh, Young-Joon

    2017-08-01

    The tumor microenvironment provides a niche in which cancer cells and their surrounding stromal cells reside and in which their interactions occur. The cross talk between cancer and stromal cells in the tumor microenvironment promotes many biological processes to support cancer cell growth, invasion, angiogenesis, and metastasis. Recently, not only cancer cells but also multiple types of surrounding stromal cells, including endothelial cells, immune cells, and fibroblasts in the tumor microenvironment, have been recognized to be attractive targets for reducing resistance to anticancer therapy and tumor recurrence. Many natural products present in fruits, vegetables, herbs, spices, and some marine organisms have been reported to inhibit, delay, or reverse multistage carcinogenesis and to inhibit the proliferation of cancerous cells and the self-renewal capacity of preexisting cancer stem-like cells. Some of these naturally occurring chemopreventive and anticarcinogenic substances can modulate the signal transduction involved in maintaining the activities/functions of stromal cells and their interactions with cancer cells within the tumor microenvironment. © 2017 New York Academy of Sciences.

  14. Crystal structures of Two Potential Tumor Imaging Agents and Therapeutic Agents-Copper(II)Ternary Complexes With Salicylidene-tyrosinato Schiff Base and Nitrogen-donor Chelating Lewis Base

    Institute of Scientific and Technical Information of China (English)

    Ming Zhao WANG; Guan Liang CAI; Ling XIA; Jun Jian YAO; Hong Yan CHEN; Zhao Xing MENG; Bo Li LIU

    2004-01-01

    The crystal structures of two potential tumor imaging agents and therapeutic agents -copper(II) complexes with salicylidene-tyrosinato Schiff base and nitrogen-donor chelating Lewis base,[Cu(sal-tyr)(bipy)] 1 and [Cu(sal-tyr)(phen)]·2CH3OH 2, are presented. Our work is helpful to get deep understanding of novel 64Cu tumor imaging agents and therapeutic agents.

  15. DOTA-functionalized polylysine: a high number of DOTA chelates positively influences the biodistribution of enzymatic conjugated anti-tumor antibody chCE7agl.

    Directory of Open Access Journals (Sweden)

    Jürgen Grünberg

    Full Text Available Site-specific enzymatic reactions with microbial transglutaminase (mTGase lead to a homogenous species of immunoconjugates with a defined ligand/antibody ratio. In the present study, we have investigated the influence of different numbers of 1,4,7,10-tetraazacyclododecane-N-N'-N''-N'''-tetraacetic acid (DOTA chelats coupled to a decalysine backbone on the in vivo behavior of the chimeric monoclonal anti-L1CAM antibody chCE7agl. The enzymatic conjugation of (DOTA1-decalysine, (DOTA3-decalysine or (DOTA5-decalysine to the antibody heavy chain (via Gln295/297 gave rise to immunoconjugates containing two, six or ten DOTA moieties respectively. Radiolabeling of the immunoconjugates with (177Lu yielded specific activities of approximately 70 MBq/mg, 400 MBq/mg and 700 MBq/mg with increasing numbers of DOTA chelates. Biodistribution experiments in SKOV3ip human ovarian cancer cell xenografts demonstrated a high and specific accumulation of radioactivity at the tumor site for all antibody derivatives with a maximal tumor accumulation of 43.6±4.3% ID/g at 24 h for chCE7agl-[(DOTA-decalysine]2, 30.6±12.0% ID/g at 24 h for chCE7agl-[(DOTA3-decalysine]2 and 49.9±3.1% ID/g at 48 h for chCE7agl-[(DOTA5-decalysine]2. The rapid elimination from the blood of chCE7agl-[(DOTA-decalysine]2 (1.0±0.1% ID/g at 24 h is associated with a high liver accumulation (23.2±4.6% ID/g at 24 h. This behavior changed depending on the numbers of DOTA moieties coupled to the decalysine peptide with a slower blood clearance (5.1±1.0 (DOTA3 versus 11.7±1.4% ID/g (DOTA5, p<0.005 at 24 h and lower radioactivity levels in the liver (21.4±3.4 (DOTA3 versus 5.8±0.7 (DOTA5, p<0.005 at 24 h. We conclude that the site-specific and stoichiometric uniform conjugation of the highly DOTA-substituted decalysine ((DOTA5-decalysine to an anti-tumor antibody leads to the formation of immunoconjugates with high specific activity and excellent in vivo behavior and is a valuable option for

  16. (99m)Tc-Cyclopentadienyl Tricarbonyl Chelate-Labeled Compounds as Selective Sigma-2 Receptor Ligands for Tumor Imaging.

    Science.gov (United States)

    Li, Dan; Chen, Yuanyuan; Wang, Xia; Deuther-Conrad, Winnie; Chen, Xin; Jia, Bing; Dong, Chengyan; Steinbach, Jörg; Brust, Peter; Liu, Boli; Jia, Hongmei

    2016-02-11

    We have designed and synthesized a series of cyclopentadienyl tricarbonyl rhenium complexes containing a 5,6-dimethoxyisoindoline or a 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline pharmacophore as σ2 receptor ligands. Rhenium compound 20a possessed low nanomolar σ2 receptor affinity (K(i) = 2.97 nM) and moderate subtype selectivity (10-fold). Moreover, it showed high selectivity toward vesicular acetylcholine transporter (2374-fold), dopamine D2L receptor, NMDA receptor, opiate receptor, dopamine transporter, norepinephrine transporter, and serotonin transporter. Its corresponding radiotracer [(99m)Tc]20b showed high uptake in a time- and dose-dependent manner in DU145 prostate cells and C6 glioma cells. In addition, this tracer exhibited high tumor uptake (5.92% ID/g at 240 min) and high tumor/blood and tumor/muscle ratios (21 and 16 at 240 min, respectively) as well as specific binding to σ receptors in nude mice bearing C6 glioma xenografts. Small animal SPECT/CT imaging of [(99m)Tc]20b in the C6 glioma xenograft model demonstrated a clear visualization of the tumor at 180 min after injection.

  17. Modulation of Autophagy-Like Processes by Tumor Viruses

    Directory of Open Access Journals (Sweden)

    Karl Munger

    2012-06-01

    Full Text Available Autophagy is an intracellular degradation pathway for long-lived proteins and organelles. This process is activated above basal levels upon cell intrinsic or environmental stress and dysregulation of autophagy has been linked to various human diseases, including those caused by viral infection. Many viruses have evolved strategies to directly interfere with autophagy, presumably to facilitate their replication or to escape immune detection. However, in some cases, modulation of autophagy appears to be a consequence of the virus disturbing the cell’s metabolic signaling networks. Here, we summarize recent advances in research at the interface of autophagy and viral infection, paying special attention to strategies that human tumor viruses have evolved.

  18. Retinoblastoma loss modulates DNA damage response favoring tumor progression.

    Directory of Open Access Journals (Sweden)

    Marcos Seoane

    Full Text Available Senescence is one of the main barriers against tumor progression. Oncogenic signals in primary cells result in oncogene-induced senescence (OIS, crucial for protection against cancer development. It has been described in premalignant lesions that OIS requires DNA damage response (DDR activation, safeguard of the integrity of the genome. Here we demonstrate how the cellular mechanisms involved in oncogenic transformation in a model of glioma uncouple OIS and DDR. We use this tumor type as a paradigm of oncogenic transformation. In human gliomas most of the genetic alterations that have been previously identified result in abnormal activation of cell growth signaling pathways and deregulation of cell cycle, features recapitulated in our model by oncogenic Ras expression and retinoblastoma (Rb inactivation respectively. In this scenario, the absence of pRb confers a proliferative advantage and activates DDR to a greater extent in a DNA lesion-independent fashion than cells that express only HRas(V12. Moreover, Rb loss inactivates the stress kinase DDR-associated p38MAPK by specific Wip1-dependent dephosphorylation. Thus, Rb loss acts as a switch mediating the transition between premalignant lesions and cancer through DDR modulation. These findings may have important implications for the understanding the biology of gliomas and anticipate a new target, Wip1 phosphatase, for novel therapeutic strategies.

  19. Modulation of tumor necrosis factor by microbial pathogens.

    Directory of Open Access Journals (Sweden)

    2006-02-01

    Full Text Available In response to invasion by microbial pathogens, host defense mechanisms get activated by both the innate and adaptive arms of the immune responses. TNF (tumor necrosis factor is a potent proinflammatory cytokine expressed by activated macrophages and lymphocytes that induces diverse cellular responses that can vary from apoptosis to the expression of genes involved in both early inflammatory and acquired immune responses. A wide spectrum of microbes has acquired elegant mechanisms to overcome or deflect the host responses mediated by TNF. For example, modulatory proteins encoded by multiple families of viruses can block TNF and TNF-mediated responses at multiple levels, such as the inhibition of the TNF ligand or its receptors, or by modulating key transduction molecules of the TNF signaling pathway. Bacteria, on the other hand, tend to modify TNF-mediated responses specifically by regulating components of the TNF signaling pathway. Investigation of these diverse strategies employed by viral and bacterial pathogens has significantly advanced our understanding of both host TNF responses and microbial pathogenesis. This review summarizes the diverse microbial strategies to regulate TNF and how such insights into TNF modulation could benefit the treatment of inflammatory or autoimmune diseases.

  20. MicroRNA targeting to modulate tumor microenvironment

    NARCIS (Netherlands)

    Kuninty, Praneeth R.; Schnittert, Jonas; Storm, G|info:eu-repo/dai/nl/073356328; Prakash, Jai

    2016-01-01

    Communication between stromal cells and tumor cells initiates tumor growth, angiogenesis, invasion, and metastasis. Stromal cells include cancer-associated fibroblasts, tumor-associated macrophages, pericytes, endothelial cells, and infiltrating immune cells. MicroRNAs (miRNAs) in the tumor

  1. MicorRNA targeting to modulate tumor microenvironment

    NARCIS (Netherlands)

    Kuninty, Praneeth Reddy; Schnittert, Jonas; Storm, Gerrit; Prakash, Jai

    2016-01-01

    Communication between stromal cells and tumor cells initiates tumor growth, angiogenesis, invasion, and metastasis. Stromal cells include cancer-associated fibroblasts, tumor-associated macrophages, pericytes, endothelial cells, and infiltrating immune cells. MicroRNAs (miRNAs) in the tumor

  2. MicroRNA targeting to modulate tumor microenvironment

    NARCIS (Netherlands)

    Kuninty, Praneeth R.; Schnittert, Jonas; Storm, G; Prakash, Jai

    2016-01-01

    Communication between stromal cells and tumor cells initiates tumor growth, angiogenesis, invasion, and metastasis. Stromal cells include cancer-associated fibroblasts, tumor-associated macrophages, pericytes, endothelial cells, and infiltrating immune cells. MicroRNAs (miRNAs) in the tumor microenv

  3. Modulation of Tumor Tolerance in Primary Central Nervous System Malignancies

    Directory of Open Access Journals (Sweden)

    Theodore S. Johnson

    2012-01-01

    Full Text Available Central nervous system tumors take advantage of the unique immunology of the CNS and develop exquisitely complex stromal networks that promote growth despite the presence of antigen-presenting cells and tumor-infiltrating lymphocytes. It is precisely this immunological paradox that is essential to the survival of the tumor. We review the evidence for functional CNS immune privilege and the impact it has on tumor tolerance. In this paper, we place an emphasis on the role of tumor-infiltrating myeloid cells in maintaining stromal and vascular quiescence, and we underscore the importance of indoleamine 2,3-dioxygenase activity as a myeloid-driven tumor tolerance mechanism. Much remains to be discovered regarding the tolerogenic mechanisms by which CNS tumors avoid immune clearance. Thus, it is an open question whether tumor tolerance in the brain is fundamentally different from that of peripheral sites of tumorigenesis or whether it simply stands as a particularly strong example of such tolerance.

  4. Modulation of the tumor vasculature and oxygenation to improve therapy

    DEFF Research Database (Denmark)

    Siemann, Dietmar W; Horsman, Michael R

    2015-01-01

    , and extracellular molecules which together are essential for the initiation, progression and spread of tumor cells. The physical conditions that arise are imposing and manifold, and include elevated interstitial pressure, localized extracellular acidity, and regions of oxygen and nutrient deprivation. No less...... that create a significant hindrance to the control of cancers by conventional anticancer therapies. However, the aberrant nature of the tumor microenvironments also offers unique therapeutic opportunities. Particularly interventions that seek to improve tumor physiology and alleviate tumor hypoxia...

  5. ERF is a Potential ERK Modulated Tumor Suppressor in Prostate Cancer

    Science.gov (United States)

    2016-10-01

    AWARD NUMBER: W81XWH-15-1-0277 TITLE: ERF is a Potential ERK-Modulated Tumor Suppressor in Prostate Cancer PRINCIPAL INVESTIGATOR: Dr. Rohit...Bose CONTRACTING ORGANIZATION: Sloan Kettering Institute for Cancer Research New York, NY 10065 REPORT DATE: October 2016 TYPE OF REPORT...4. TITLE AND SUBTITLE ERF is a Potential ERK-Modulated Tumor Suppressor in Prostate Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-15-1-0277

  6. Metal ions, Alzheimer's disease and chelation therapy.

    Science.gov (United States)

    Budimir, Ana

    2011-03-01

    In the last few years, various studies have been providing evidence that metal ions are critically involved in the pathogenesis of major neurological diseases (Alzheimer, Parkinson). Metal ion chelators have been suggested as potential therapies for diseases involving metal ion imbalance. Neurodegeneration is an excellent target for exploiting the metal chelator approach to therapeutics. In contrast to the direct chelation approach in metal ion overload disorders, in neurodegeneration the goal seems to be a better and subtle modulation of metal ion homeostasis, aimed at restoring ionic balance. Thus, moderate chelators able to coordinate deleterious metals without disturbing metal homeostasis are needed. To date, several chelating agents have been investigated for their potential to treat neurodegeneration, and a series of 8-hydroxyquinoline analogues showed the greatest potential for the treatment of neurodegenerative diseases.

  7. Tumor Microenvironment Modulation by Cyclopamine Improved Photothermal Therapy of Biomimetic Gold Nanorods for Pancreatic Ductal Adenocarcinomas.

    Science.gov (United States)

    Jiang, Ting; Zhang, Bo; Shen, Shun; Tuo, Yanyan; Luo, Zimiao; Hu, Yu; Pang, Zhiqing; Jiang, Xinguo

    2017-09-20

    Due to the rich stroma content and poor blood perfusion, pancreatic ductal adenocarcinoma (PDA) is a tough cancer that can hardly be effectively treated by chemotherapeutic drugs. Tumor microenvironment modulation or advanced design of nanomedicine to achieve better therapeutic benefits for PDA treatment was widely advocated by many reviews. In the present study, a new photothermal therapy strategy of PDA was developed by combination of tumor microenvironment modulation and advanced design of biomimetic gold nanorods. On one hand, biomimetic gold nanorods were developed by coating gold nanorods (GNRs) with erythrocyte membrane (MGNRs). It was shown that MGNRs exhibited significantly higher colloidal stability in vitro, stronger photothermal therapeutic efficacy in vitro, and longer circulation in vivo than GNRs. On the other hand, tumor microenvironment modulation by cyclopamine treatment successfully disrupted the extracellular matrix of PDA and improved tumor blood perfusion. Moreover, cyclopamine treatment significantly increased the accumulation of MGNRs in tumors by 1.8-fold and therefore produced higher photothermal efficiency in vivo than the control group. Finally, cyclopamine treatment combined with photothermal MGNRs achieved the most significant shrinkage of Capan-2 tumor xenografts among all the treatment groups. Therefore, with the integrated advantages of tumor microenvironment regulation and long-circulation biomimetic MGNRs, effective photothermal therapy of PDA was achieved. In general, this new strategy of combining tumor microenvironment modulation and advanced design of biomimetic nanoparticles might have great potential in PDA therapy.

  8. Glycan Sulfation Modulates Dendritic Cell Biology and Tumor Growth

    Directory of Open Access Journals (Sweden)

    Roland El Ghazal

    2016-05-01

    Full Text Available In cancer, proteoglycans have been found to play roles in facilitating the actions of growth factors, and effecting matrix invasion and remodeling. However, little is known regarding the genetic and functional importance of glycan chains displayed by proteoglycans on dendritic cells (DCs in cancer immunity. In lung carcinoma, among other solid tumors, tumor-associated DCs play largely subversive/suppressive roles, promoting tumor growth and progression. Herein, we show that targeting of DC glycan sulfation through mutation in the heparan sulfate biosynthetic enzyme N-deacetylase/N-sulfotransferase-1 (Ndst1 in mice increased DC maturation and inhibited trafficking of DCs to draining lymph nodes. Lymphatic-driven DC migration and chemokine (CCL21-dependent activation of a major signaling pathway required for DC migration (as measured by phospho-Akt were sensitive to Ndst1 mutation in DCs. Lewis lung carcinoma tumors in mice deficient in Ndst1 were reduced in size. Purified CD11c+ cells from the tumors, which contain the tumor-infiltrating DC population, showed a similar phenotype in mutant cells. These features were replicated in mice deficient in syndecan-4, the major heparan sulfate proteoglycan expressed on the DC surface: Tumors were growth-impaired in syndecan-4–deficient mice and were characterized by increased infiltration by mature DCs. Tumors on the mutant background also showed greater infiltration by NK cells and NKT cells. These findings indicate the genetic importance of DC heparan sulfate proteoglycans in tumor growth and may guide therapeutic development of novel strategies to target syndecan-4 and heparan sulfate in cancer.

  9. Glycan Sulfation Modulates Dendritic Cell Biology and Tumor Growth.

    Science.gov (United States)

    El Ghazal, Roland; Yin, Xin; Johns, Scott C; Swanson, Lee; Macal, Monica; Ghosh, Pradipta; Zuniga, Elina I; Fuster, Mark M

    2016-05-01

    In cancer, proteoglycans have been found to play roles in facilitating the actions of growth factors, and effecting matrix invasion and remodeling. However, little is known regarding the genetic and functional importance of glycan chains displayed by proteoglycans on dendritic cells (DCs) in cancer immunity. In lung carcinoma, among other solid tumors, tumor-associated DCs play largely subversive/suppressive roles, promoting tumor growth and progression. Herein, we show that targeting of DC glycan sulfation through mutation in the heparan sulfate biosynthetic enzyme N-deacetylase/N-sulfotransferase-1 (Ndst1) in mice increased DC maturation and inhibited trafficking of DCs to draining lymph nodes. Lymphatic-driven DC migration and chemokine (CCL21)-dependent activation of a major signaling pathway required for DC migration (as measured by phospho-Akt) were sensitive to Ndst1 mutation in DCs. Lewis lung carcinoma tumors in mice deficient in Ndst1 were reduced in size. Purified CD11c+ cells from the tumors, which contain the tumor-infiltrating DC population, showed a similar phenotype in mutant cells. These features were replicated in mice deficient in syndecan-4, the major heparan sulfate proteoglycan expressed on the DC surface: Tumors were growth-impaired in syndecan-4-deficient mice and were characterized by increased infiltration by mature DCs. Tumors on the mutant background also showed greater infiltration by NK cells and NKT cells. These findings indicate the genetic importance of DC heparan sulfate proteoglycans in tumor growth and may guide therapeutic development of novel strategies to target syndecan-4 and heparan sulfate in cancer.

  10. Oral iron chelators.

    Science.gov (United States)

    Kwiatkowski, Janet L

    2010-02-01

    Effective chelation therapy can prevent or reverse organ toxicity related to iron overload, yet cardiac complications and premature death continue to occur, largely related to difficulties with compliance in patients who receive parenteral therapy. The use of oral chelators may be able to overcome these difficulties and improve patient outcomes. A chelator's efficacy at cardiac and liver iron removal and side-effect profile should be considered when tailoring individual chelation regimens. Broader options for chelation therapy, including possible combination therapy, should improve clinical efficacy and enhance patient care.

  11. Tumor-derived death receptor 6 modulates dendritic cell development.

    Science.gov (United States)

    DeRosa, David C; Ryan, Paul J; Okragly, Angela; Witcher, Derrick R; Benschop, Robert J

    2008-06-01

    Studies in murine models of cancer as well as in cancer patients have demonstrated that the immune response to cancer is often compromised. This paradigm is viewed as one of the major mechanisms of tumor escape. Many therapies focus on employing the professional antigen presenting dendritic cells (DC) as a strategy to overcome immune inhibition in cancer patients. Death receptor 6 (DR6) is an orphan member of the tumor necrosis factor receptor superfamily (TNFRSF21). It is overexpressed on many tumor cells and DR6(-/-) mice display altered immunity. We investigated whether DR6 plays a role in tumorigenesis by negatively affecting the generation of anti-tumor activity. We show that DR6 is uniquely cleaved from the cell surface of tumor cell lines by the membrane-associated matrix metalloproteinase (MMP)-14, which is often overexpressed on tumor cells and is associated with malignancy. We also demonstrate that >50% of monocytes differentiating into DC die when the extracellular domain of DR6 is present. In addition, DR6 affects the cell surface phenotype of the resulting immature DC and changes their cytokine production upon stimulation with LPS/IFN-gamma. The effects of DR6 are mostly amended when these immature DC are matured with IL-1beta/TNF-alpha, as measured by cell surface phenotype and their ability to present antigen. These results implicate MMP-14 and DR6 as a mechanism tumor cells can employ to actively escape detection by the immune system by affecting the generation of antigen presenting cells.

  12. Monodispersed calcium carbonate nanoparticles modulate local pH and inhibit tumor growth in vivo

    Science.gov (United States)

    Som, Avik; Raliya, Ramesh; Tian, Limei; Akers, Walter; Ippolito, Joseph E.; Singamaneni, Srikanth; Biswas, Pratim; Achilefu, Samuel

    2016-06-01

    The acidic extracellular environment of tumors potentiates their aggressiveness and metastasis, but few methods exist to selectively modulate the extracellular pH (pHe) environment of tumors. Transient flushing of biological systems with alkaline fluids or proton pump inhibitors is impractical and nonselective. Here we report a nanoparticles-based strategy to intentionally modulate the pHe in tumors. Biochemical simulations indicate that the dissolution of calcium carbonate nanoparticles (nano-CaCO3) in vivo increases pH asymptotically to 7.4. We developed two independent facile methods to synthesize monodisperse non-doped vaterite nano-CaCO3 with distinct size range between 20 and 300 nm. Using murine models of cancer, we demonstrate that the selective accumulation of nano-CaCO3 in tumors increases tumor pH over time. The associated induction of tumor growth stasis is putatively interpreted as a pHe increase. This study establishes an approach to prepare nano-CaCO3 over a wide particle size range, a formulation that stabilizes the nanomaterials in aqueous solutions, and a pH-sensitive nano-platform capable of modulating the acidic environment of cancer for potential therapeutic benefits.The acidic extracellular environment of tumors potentiates their aggressiveness and metastasis, but few methods exist to selectively modulate the extracellular pH (pHe) environment of tumors. Transient flushing of biological systems with alkaline fluids or proton pump inhibitors is impractical and nonselective. Here we report a nanoparticles-based strategy to intentionally modulate the pHe in tumors. Biochemical simulations indicate that the dissolution of calcium carbonate nanoparticles (nano-CaCO3) in vivo increases pH asymptotically to 7.4. We developed two independent facile methods to synthesize monodisperse non-doped vaterite nano-CaCO3 with distinct size range between 20 and 300 nm. Using murine models of cancer, we demonstrate that the selective accumulation of nano-CaCO3

  13. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism

    Science.gov (United States)

    Cancer-associated fibroblasts (CAFs) are a major cellular component of tumor microenvironment in most solid cancers. Altered cellular metabolism is a hallmark of cancer, and much of the published literature has focused on neoplastic cell-autonomous processes for these adaptations. We demonstrate tha...

  14. Modulating pharmacokinetics, tumor uptake and biodistribution by engineered nanoparticles.

    Directory of Open Access Journals (Sweden)

    Rochelle R Arvizo

    Full Text Available BACKGROUND: Inorganic nanoparticles provide promising tools for biomedical applications including detection, diagnosis and therapy. While surface properties such as charge are expected to play an important role in their in vivo behavior, very little is known how the surface chemistry of nanoparticles influences their pharmacokinetics, tumor uptake, and biodistribution. METHOD/PRINCIPAL FINDINGS: Using a family of structurally homologous nanoparticles we have investigated how pharmacological properties including tumor uptake and biodistribution are influenced by surface charge using neutral (TEGOH, zwitterionic (Tzwit, negative (TCOOH and positive (TTMA nanoparticles. Nanoparticles were injected into mice (normal and athymic either in the tail vein or into the peritoneum. CONCLUSION: Neutral and zwitterionic nanoparticles demonstrated longer circulation time via both i.p. and i.v. administration, whereas negatively and positively charged nanoparticles possessed relatively short half-lives. These pharmacological characteristics were reflected on the tumor uptake and biodistribution of the respective nanoparticles, with enhanced tumor uptake by neutral and zwitterionic nanoparticles via passive targeting.

  15. Targeted treatment of cancer with radiofrequency electromagnetic fields amplitude-modulated at tumor-specific frequencies

    Institute of Scientific and Technical Information of China (English)

    Jacquelyn W. Zimmerman; Hugo Jimenez; Michael J. Pennison; Ivan Brezovich; Desiree Morgan; Albert Mudry; Frederico P. Costa; Alexandre Barbault; Boris Pasche

    2013-01-01

    In the past century, there have been many attempts to treat cancer with low levels of electric and magnetic fields. We have developed noninvasive biofeedback examination devices and techniques and discovered that patients with the same tumor type exhibit biofeedback responses to the same, precise frequencies. Intrabuccal administration of 27.12 MHz radiofrequency (RF) electromagnetic fields (EMF), which are amplitude-modulated at tumor-specific frequencies, results in long-term objective responses in patients with cancer and is not associated with any significant adverse effects. Intrabuccal administration al ows for therapeutic delivery of very low and safe levels of EMF throughout the body as exemplified by responses observed in the femur, liver, adrenal glands, and lungs. In vitro studies have demonstrated that tumor-specific frequencies identified in patients with various forms of cancer are capable of blocking the growth of tumor cells in a tissue-and tumor-specific fashion. Current experimental evidence suggests that tumor-specific modulation frequencies regulate the expression of genes involved in migration and invasion and disrupt the mitotic spindle. This novel targeted treatment approach is emerging as an appealing therapeutic option for patients with advanced cancer given its excellent tolerability. Dissection of the molecular mechanisms accounting for the anti-cancer effects of tumor-specific modulation frequencies is likely to lead to the discovery of novel pathways in cancer.

  16. Chelation in Metal Intoxication

    Directory of Open Access Journals (Sweden)

    Swaran J.S. Flora

    2010-06-01

    Full Text Available Chelation therapy is the preferred medical treatment for reducing the toxic effects of metals. Chelating agents are capable of binding to toxic metal ions to form complex structures which are easily excreted from the body removing them from intracellular or extracellular spaces. 2,3-Dimercaprol has long been the mainstay of chelation therapy for lead or arsenic poisoning, however its serious side effects have led researchers to develop less toxic analogues. Hydrophilic chelators like meso-2,3-dimercaptosuccinic acid effectively promote renal metal excretion, but their ability to access intracellular metals is weak. Newer strategies to address these drawbacks like combination therapy (use of structurally different chelating agents or co-administration of antioxidants have been reported recently. In this review we provide an update of the existing chelating agents and the various strategies available for the treatment of heavy metals and metalloid intoxications.

  17. Modulation and Expression of Tumor Suppressor Genes by Environmental Agents.

    Science.gov (United States)

    1996-12-01

    Den Otter 1990). In a preliminary report (Windle et al. 1990), a transgenic mouse that develops intraocular neoplasms similar to human retinoblastoma...et al. 1974; McFall et al. 1978; Bogenmann and Mark 1983), and a very recent report of heritable ocular tumors in transgenic mice (Windle et al. 1990...additional pair of forceps (fine Halstead Mosquito hemostatic curved forceps 12.7 cm) were used to clamp off the retracted liver transversely just anterior to

  18. Modulation of tumor necrosis factor by microbial pathogens.

    OpenAIRE

    Rahman, Masmudur M.; Grant McFadden

    2006-01-01

    In response to invasion by microbial pathogens, host defense mechanisms get activated by both the innate and adaptive arms of the immune responses. TNF (tumor necrosis factor) is a potent proinflammatory cytokine expressed by activated macrophages and lymphocytes that induces diverse cellular responses that can vary from apoptosis to the expression of genes involved in both early inflammatory and acquired immune responses. A wide spectrum of microbes has acquired elegant mechanisms to overcom...

  19. Influence of different chelators (HYNIC, MAG{sub 3} and DTPA) on tumor cell accumulation and mouse biodistribution of technetium-99m labeled to antisense DNA

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.M.; Liu, N.; Zhu, Z.-H.; Rusckowski, M.; Hnatowich, D.J. [Div. of Nuclear Medicine, Univ. of Massachusetts Medical School, Worcester, MA (United States)

    2000-11-01

    We have shown recently that cell accumulation in culture of antisense DNA is strongly influenced by the presence of a {sup 99m}Tc-MAG{sub 3} group for radiolabeling. We have now compared the in vitro and mouse in vivo behavior of {sup 99m}Tc when radiolabeled to one antisense phosphorothioate DNA by three different methods. The 18-mer antisense DNA against the RI{alpha} subunit of PKA was conjugated via a primary amine on the 5'-end with the NHS esters of HYNIC and MAG{sub 3} and by the cyclic anhydride of DTPA. Surface plasmon resonance measurements revealed that the association rate constant for hybridization was unchanged for all three chelators as compared with that of the native DNA. Size exclusion HPLC showed rapid and quantitative protein binding for all three chelators upon incubation of labeled DNAs in 37 C serum and cell culture medium. However, in each case, radiolabeled and intact oligonucleotide was still detectable after 24 h. Cellular uptake was tested in an RI{alpha} mRNA-positive cancer cell line. The order of cellular accumulation of {sup 99m}Tc was DTPA>HYNIC(tricine)>MAG{sub 3}, with the differences increasing with time between 4 and 24 h. The rate of {sup 99m}Tc egress from cells was found to be MAG{sub 3}>HYNIC>DTPA, which may explain the order of cellular accumulation. The biodistribution in normal mice was heavily influenced by the labeling method and followed a pattern similar to that seen previously by us for peptides labeled with the same chelators. In conclusion, although these studies concerned only one antisense DNA in one cell line, the results suggest that the success of antisense imaging may depend, in part, on the method of radiolabeling. (orig.)

  20. Correlation between gamma analysis for midline and lateralized tumors by using volumetric modulated arc therapy

    Directory of Open Access Journals (Sweden)

    Syam Surendran Nair Ambika Devi

    2015-09-01

    Full Text Available Purpose: The aim of this study was to evaluate the fluence for midline and lateralized tumors for volumetric modulated arc therapy (VMAT by using a two-dimensional array.Methods: For this study, we selected 60 patients who were undergoing VMAT. The octavius phantom was computed tomography (CT scanned and imported to the planning system. Verification plans were created for each plan and exported. The measurements were performed using 2D seven29 ion chamber array. Fluence measurement values for all the delivered plans were analyzed using VeriSoft software. The TPS calculated values were then compared with the measured gamma values. Results: The gamma pass percentage for midline tumors was found to be higher than that for lateralized tumors. The standard deviations between the gamma values for midline and lateralized tumors were 1.96 and 2.86, respectively. Moreover, the standard deviations between the point doses for midline and lateralized tumors were 0.360 and 0.283, respectively. The mean gamma passing rate was 96.96% for midline tumors and 96.57% for lateralized tumors for 3%DD/3-mm criteria. There is no significance found in the gamma values for midline and lateralized tumors with p-value 0.08. Conclusion: No particular correlation was found between the gamma pass percentage for midline tumors and that for lateralized tumors. Only a marginal difference was found in the gamma pass percentage.

  1. Hypoxia-induced down-modulation of PKCepsilon promotes trail-mediated apoptosis of tumor cells.

    Science.gov (United States)

    Gobbi, Giuliana; Masselli, Elena; Micheloni, Cristina; Nouvenne, Antonio; Russo, Domenico; Santi, Patrizia; Matteucci, Alessandro; Cocco, Lucio; Vitale, Marco; Mirandola, Prisco

    2010-09-01

    Tumor oxygen status is considered as a prognostic marker that impacts on malignant progression and outcome of tumor therapy. TNF-related apoptosis inducing ligand (TRAIL) plays a key role in cancer immunity, with potential applications in cancer therapy. Protein kinase C (PKC)epsilon, a transforming oncogene, has a role in the protection of cardiomyocytes and neurons from hypoxia-induced damage while, it can also modulate the susceptibility of tumor cells to TRAIL-induced cell death. Here we demonstrate that hypoxia induces a tumor cell phenotype highly sensitive to the cytotoxic effects of TRAIL. Based on the observation that: i) PKCepsilon expression levels are impaired during hypoxia, ii) the overexpression of PKCepsilon, but not of a kinase-inactive PKCepsilon mutant, is able to revert the hypoxia-induced sensitivity to TRAIL, iii) the down-modulation of PKCepsilon levels by RNA interference, on the contrary, induces the highly TRAIL-sensitive phenotype, iv) the inhibition of hypoxia-inducible transcription factor-1alpha (HIF-1alpha) by specific siRNA blocks both the hypoxia-induced down-modulation of PKCepsilon and the induction of the highly TRAIL-sensitive phenotype; we conclude that the HIF-1alpha upregulation during hypoxia is associated to PKCepsilon down-modulation that likely represents the key molecular event promoting the apoptogenic effects of TRAIL in hypoxic tumor cells.

  2. Strategies for improving chemotherapeutic delivery to solid tumors mediated by vascular permeability modulation

    Science.gov (United States)

    Roy Chaudhuri, Tista

    An essential mode of distribution of blood-borne chemotherapeutic agents within a solid tumor is via the micro-circulation. Poor tumor perfusion, because of a lack of functional vasculature or a lack of microvessels, as well as low tumor vascular permeability, can prevent adequate deposition of even low molecular-weight agents into the tumor. The modulation of tumor vascular function and density can provides numerous strategies for improving intratumor deposition of chemotherapeutic agents. Here we investigated strategies to improve drug delivery to two tumor types that share in common poor drug delivery, but differ in the underlying cause. First, in an angiogenesis-driven brain tumor model of Glioblastoma, the vascular permeability barrier, along with poorly-functional vasculature, hinders drug delivery. A strategy of nanoparticle-based tumor 'priming' to attack the vascular permeability barrier, employing sterically stabilized liposomal doxorubicin (SSL-DXR), was investigated. Functional and histological evaluation of tumor vasculature revealed that after an initial period of depressed vascular permeability and vascular pruning 3--4 days after SSL-DXR administration, vascular permeability and perfusion were restored and then elevated after 5--7 days. As a result of tumor priming, deposition of subsequently-administered nanoparticles was enhanced, and the efficacy of temozolomide (TMZ), if administered during the window of elevated permeability, was increased. The sequenced regimen resulted in a persistent reduction of the tumor proliferative index and a 40% suppression of tumor volume, compared to animals that received both agents simultaneously. Second, in a hypovascular, pancreatic ductal adenocarcinoma model, disruption of tumor-stromal communication via sonic hedgehog (sHH) signaling pathway inhibition mediated an indirect vascular proliferation and a more than 2-fold increase in intratumor nanoparticle deposition. Enhanced delivery of SSL-DXR in tumors pre

  3. The Chelate Effect Redefined.

    Science.gov (United States)

    da Silva, J. J. R. Frausto

    1983-01-01

    Discusses ambiguities of the accepted definition of the chelate effect, suggesting that it be defined in terms of experimental observation rather than mathematical abstraction. Indicates that the effect depends on free energy change in reaction, ligand basicity, pH of medium, type of chelates formed, and concentration of ligands in solution. (JN)

  4. VAMP-associated protein B (VAPB) promotes breast tumor growth by modulation of Akt activity.

    Science.gov (United States)

    Rao, Meghana; Song, Wenqiang; Jiang, Aixiang; Shyr, Yu; Lev, Sima; Greenstein, David; Brantley-Sieders, Dana; Chen, Jin

    2012-01-01

    VAPB (VAMP- associated protein B) is an ER protein that regulates multiple biological functions. Although aberrant expression of VAPB is associated with breast cancer, its function in tumor cells is poorly understood. In this report, we provide evidence that VAPB regulates breast tumor cell proliferation and AKT activation. VAPB protein expression is elevated in primary and metastatic tumor specimens, and VAPB mRNA expression levels correlated negatively with patient survival in two large breast tumor datasets. Overexpression of VAPB in mammary epithelial cells increased cell growth, whereas VAPB knockdown in tumor cells inhibited cell proliferation in vitro and suppressed tumor growth in orthotopic mammary gland allografts. The growth regulation of mammary tumor cells controlled by VAPB appears to be mediated, at least in part, by modulation of AKT activity. Overexpression of VAPB in MCF10A-HER2 cells enhances phosphorylation of AKT. In contrast, knockdown of VAPB in MMTV-Neu tumor cells inhibited pAKT levels. Pharmacological inhibition of AKT significantly reduced three-dimensional spheroid growth induced by VAPB. Collectively, the genetic, functional and mechanistic analyses suggest a role of VAPB in tumor promotion in human breast cancer.

  5. VAMP-associated protein B (VAPB promotes breast tumor growth by modulation of Akt activity.

    Directory of Open Access Journals (Sweden)

    Meghana Rao

    Full Text Available VAPB (VAMP- associated protein B is an ER protein that regulates multiple biological functions. Although aberrant expression of VAPB is associated with breast cancer, its function in tumor cells is poorly understood. In this report, we provide evidence that VAPB regulates breast tumor cell proliferation and AKT activation. VAPB protein expression is elevated in primary and metastatic tumor specimens, and VAPB mRNA expression levels correlated negatively with patient survival in two large breast tumor datasets. Overexpression of VAPB in mammary epithelial cells increased cell growth, whereas VAPB knockdown in tumor cells inhibited cell proliferation in vitro and suppressed tumor growth in orthotopic mammary gland allografts. The growth regulation of mammary tumor cells controlled by VAPB appears to be mediated, at least in part, by modulation of AKT activity. Overexpression of VAPB in MCF10A-HER2 cells enhances phosphorylation of AKT. In contrast, knockdown of VAPB in MMTV-Neu tumor cells inhibited pAKT levels. Pharmacological inhibition of AKT significantly reduced three-dimensional spheroid growth induced by VAPB. Collectively, the genetic, functional and mechanistic analyses suggest a role of VAPB in tumor promotion in human breast cancer.

  6. Extracellular Vesicles As Modulators of Tumor Microenvironment and Disease Progression in Glioma

    Directory of Open Access Journals (Sweden)

    Abir Mondal

    2017-07-01

    Full Text Available Diffuse gliomas are lethal tumors of the central nervous system (CNS characterized by infiltrative growth, aggressive nature, and therapeutic resistance. The recent 2016 WHO classification for CNS tumors categorizes diffuse glioma into two major types that include IDH wild-type glioblastoma, which is the predominant type and IDH-mutant glioblastoma, which is less common and displays better prognosis. Recent studies suggest presence of a distinct cell population with stem cell features termed as glioma stem cells (GSCs to be causal in driving tumor growth in glioblastoma. The presence of a stem and progenitor population possibly makes glioblastoma highly heterogeneous. Significantly, tumor growth is driven by interaction of cells residing within the tumor with the surrounding milieu termed as the tumor microenvironment. It comprises of various cell types such as endothelial cells, secreted factors, and the surrounding extracellular matrix, which altogether help perpetuate the proliferation of GSCs. One of the important mediators critical to the cross talk is extracellular vesicles (EVs. These nano-sized vesicles play important roles in intercellular communication by transporting bioactive molecules into the surrounding milieu, thereby altering cellular functions and/or reprogramming recipient cells. With the growing information on the contribution of EVs in modulation of the tumor microenvironment, it is important to determine their role in both supporting as well as promoting tumor growth in glioma. In this review, we provide a comprehensive overview of the role of EVs in tumor progression and glioma pathogenesis.

  7. Tyrosine Phosphorylation Modulates the Vascular Responses of Mesenteric Arteries from Human Colorectal Tumors

    Directory of Open Access Journals (Sweden)

    Eduardo Ferrero

    2013-01-01

    Full Text Available The aim of this study was to analyze whether tyrosine phosphorylation in tumoral arteries may modulate their vascular response. To do this, mesenteric arteries supplying blood flow to colorectal tumors or to normal intestine were obtained during surgery and prepared for isometric tension recording in an organ bath. Increasing tyrosine phosphorylation with the phosphatase inhibitor, sodium orthovanadate produced arterial contraction which was lower in tumoral than in control arteries, whereas it reduced the contraction to noradrenaline in tumoral but not in control arteries and reduced the relaxation to bradykinin in control but not in tumoral arteries. Protein expression of VEGF-A and of the VEGF receptor FLT1 was similar in control and tumoral arteries, but expression of the VEGF receptor KDR was increased in tumoral compared with control arteries. This suggests that tyrosine phosphorylation may produce inhibition of the contraction in tumoral mesenteric arteries, which may increase blood flow to the tumor when tyrosine phosphorylation is increased by stimulation of VEGF receptors.

  8. miRNAs modulate the drug response of tumor cells

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Chemotherapy is one of the major treatments of malignant carcinomas. However,its efficiency is affected by both intrinsic and acquired resistance to anticancer drugs. The cellular mechanisms of drug resistance include the overexpression of energy-dependent transporters that eject anticancer drugs from cells such as p-glycoprotein and multidrug resistance related protein (MRP),the mutation of drug targets,the activation of DNA repair pathways,the defects in cellular death pathways and so on. The genetic and epigenetic changes of these genes can lead to cancer drug resistance. Among these mechanisms,microRNAs (miRNAs) which are critical and essential for many important processes such as development,differentiation,and even carcinogenesis have been reported to regulate the chemosen-sitivity of tumor cells. In this paper we briefly review the relationship between miRNA and cancer drug resistance.

  9. miRNAs modulate the drug response of tumor cells

    Institute of Scientific and Technical Information of China (English)

    WU XueMei; XIAO HuaSheng

    2009-01-01

    Chemotherapy is one of the major treatments of malignant carcinomas. However, its efficiency is af-fected by both intrinsic and acquired resistance to anticancer drugs. The cellular mechanisms of drug resistance include the overexpression of energy-dependent transporters that eject anticancer drugs from cells such as p-glycoprotein and multidrug resistance related protein (MRP), the mutation of drug targets, the activation of DNA repair pathways, the defects in cellular death pathways and so on. The genetic and epigenetic changes of these genes can lead to cancer drug resistance. Among these mechanisms, microRNAs (miRNAs) which are critical and essential for many important processes such as development, differentiation, and even carcinogenesis have been reported to regulate the chemo-sensitivity of tumor cells. In this paper we briefly review the relationship between miRNA and cancer drug resistance.

  10. Modulation of topoisomerase activities by tumor necrosis factor.

    Science.gov (United States)

    Baloch, Z; Cohen, S; Fresa, K; Coffman, F D

    1995-01-01

    A number of chemotherapeutic agents which inhibit the DNA topoisomerases markedly potentiate cell death mediated by tumor necrosis factor, suggesting a role for these enzymes in the TNF cytotoxic mechanism. To investigate this possibility, topoisomerase I and II activities were assayed following TNF addition to murine L929 cells. Topoisomerase I and II activities increased within 15 min of TNF addition and returned to baseline levels within 1 and 2 hr, respectively. The increases in both topoisomerase activities were blocked by H-7 (but not H-8) and similar increases were seen following PMA addition. However, concentrations of H-7 which blocked the increased topoisomerase activities had no effect on TNF cytotoxicity nor on the enhancement of TNF cytotoxicity by topoisomerase inhibitors. Thus, in these cells topoisomerase activities are directly modified by TNF during the initial phases of a cytotoxic response. However, neither TNF cytotoxicity nor the enhancement of TNF cytotoxicity by topoisomerase inhibitors appears to require the TNF-mediated increases in topoisomerase activities.

  11. Tumorer

    DEFF Research Database (Denmark)

    Prause, J.U.; Heegaard, S.

    2005-01-01

    oftalmologi, øjenlågstumorer, conjunctivale tumorer, malignt melanom, retinoblastom, orbitale tumorer......oftalmologi, øjenlågstumorer, conjunctivale tumorer, malignt melanom, retinoblastom, orbitale tumorer...

  12. Enhanced tumor-targeting selectivity by modulating bispecific antibody binding affinity and format valence

    Science.gov (United States)

    Mazor, Yariv; Sachsenmeier, Kris F.; Yang, Chunning; Hansen, Anna; Filderman, Jessica; Mulgrew, Kathy; Wu, Herren; Dall’Acqua, William F.

    2017-01-01

    Bispecific antibodies are considered attractive bio-therapeutic agents owing to their ability to target two distinct disease mediators. Cross-arm avidity targeting of antigen double-positive cancer cells over single-positive normal tissue is believed to enhance the therapeutic efficacy, restrict major escape mechanisms and increase tumor-targeting selectivity, leading to reduced systemic toxicity and improved therapeutic index. However, the interplay of factors regulating target selectivity is not well understood and often overlooked when developing clinically relevant bispecific therapeutics. We show in vivo that dual targeting alone is not sufficient to endow selective tumor-targeting, and report the pivotal roles played by the affinity of the individual arms, overall avidity and format valence. Specifically, a series of monovalent and bivalent bispecific IgGs composed of the anti-HER2 trastuzumab moiety paired with affinity-modulated VH and VL regions of the anti-EGFR GA201 mAb were tested for selective targeting and eradication of double-positive human NCI-H358 non-small cell lung cancer target tumors over single-positive, non-target NCI-H358-HER2 CRISPR knock out tumors in nude mice bearing dual-flank tumor xenografts. Affinity-reduced monovalent bispecific variants, but not their bivalent bispecific counterparts, mediated a greater degree of tumor targeting selectivity, while the overall efficacy against the targeted tumor was not substantially affected. PMID:28067257

  13. TPEN, a Specific Zn(2+) Chelator, Inhibits Sodium Dithionite and Glucose Deprivation (SDGD)-Induced Neuronal Death by Modulating Apoptosis, Glutamate Signaling, and Voltage-Gated K(+) and Na(+) Channels.

    Science.gov (United States)

    Zhang, Feng; Ma, Xue-Ling; Wang, Yu-Xiang; He, Cong-Cong; Tian, Kun; Wang, Hong-Gang; An, Di; Heng, Bin; Xie, Lai-Hua; Liu, Yan-Qiang

    2017-03-01

    Hypoxia-ischemia-induced neuronal death is an important pathophysiological process that accompanies ischemic stroke and represents a major challenge in preventing ischemic stroke. To elucidate factors related to and a potential preventative mechanism of hypoxia-ischemia-induced neuronal death, primary neurons were exposed to sodium dithionite and glucose deprivation (SDGD) to mimic hypoxic-ischemic conditions. The effects of N,N,N',N'-tetrakis (2-pyridylmethyl) ethylenediamine (TPEN), a specific Zn(2+)-chelating agent, on SDGD-induced neuronal death, glutamate signaling (including the free glutamate concentration and expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor (GluR2) and N-methyl-D-aspartate (NMDA) receptor subunits (NR2B), and voltage-dependent K(+) and Na(+) channel currents were also investigated. Our results demonstrated that TPEN significantly suppressed increases in cell death, apoptosis, neuronal glutamate release into the culture medium, NR2B protein expression, and I K as well as decreased GluR2 protein expression and Na(+) channel activity in primary cultured neurons exposed to SDGD. These results suggest that TPEN could inhibit SDGD-induced neuronal death by modulating apoptosis, glutamate signaling (via ligand-gated channels such as AMPA and NMDA receptors), and voltage-gated K(+) and Na(+) channels in neurons. Hence, Zn(2+) chelation might be a promising approach for counteracting the neuronal loss caused by transient global ischemia. Moreover, TPEN could represent a potential cell-targeted therapy.

  14. Chelating polymeric membranes

    KAUST Repository

    Peinemann, Klaus-Viktor

    2015-01-22

    The present application offers a solution to the current problems associated with recovery and recycling of precious metals from scrap material, discard articles, and other items comprising one or more precious metals. The solution is premised on a microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  15. Chelation in metal intoxication

    DEFF Research Database (Denmark)

    Aaseth, Jan; Skaug, Marit Aralt; Cao, yang

    2015-01-01

    The present review provides an update of the general principles for the investigation and use of chelating agents in the treatment of intoxications by metals. The clinical use of the old chelators EDTA (ethylenediamine tetraacetate) and BAL (2,3-dimercaptopropanol) is now limited due to the incon......The present review provides an update of the general principles for the investigation and use of chelating agents in the treatment of intoxications by metals. The clinical use of the old chelators EDTA (ethylenediamine tetraacetate) and BAL (2,3-dimercaptopropanol) is now limited due...... to the inconvenience of parenteral administration, their own toxicity and tendency to increase the neurotoxicity of several metals. The hydrophilic dithiol chelators DMSA (meso-2,3-dimercaptosuccinic acid) and DMPS (2,3-dimercapto-propanesulphonate) are less toxic and more efficient than BAL in the clinical treatment...... of heavy metal poisoning, and available as capsules for oral use. In copper overload, DMSA appears to be a potent antidote, although d-penicillamine is still widely used. In the chelation of iron, the thiols are inefficient, since iron has higher affinity for ligands with nitrogen and oxygen, but the new...

  16. Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model.

    Directory of Open Access Journals (Sweden)

    Debbie Liao

    Full Text Available BACKGROUND: Local inflammation associated with solid tumors commonly results from factors released by tumor cells and the tumor stroma, and promotes tumor progression. Cancer associated fibroblasts comprise a majority of the cells found in tumor stroma and are appealing targets for cancer therapy. Here, our aim was to determine the efficacy of targeting cancer associated fibroblasts for the treatment of metastatic breast cancer. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrate that cancer associated fibroblasts are key modulators of immune polarization in the tumor microenvironment of a 4T1 murine model of metastatic breast cancer. Elimination of cancer associated fibroblasts in vivo by a DNA vaccine targeted to fibroblast activation protein results in a shift of the immune microenvironment from a Th2 to Th1 polarization. This shift is characterized by increased protein expression of IL-2 and IL-7, suppressed recruitment of tumor-associated macrophages, myeloid derived suppressor cells, T regulatory cells, and decreased tumor angiogenesis and lymphangiogenesis. Additionally, the vaccine improved anti-metastatic effects of doxorubicin chemotherapy and enhanced suppression of IL-6 and IL-4 protein expression while increasing recruitment of dendritic cells and CD8(+ T cells. Treatment with the combination therapy also reduced tumor-associated Vegf, Pdgfc, and GM-CSF mRNA and protein expression. CONCLUSIONS/SIGNIFICANCE: Our findings demonstrate that cancer associated fibroblasts promote tumor growth and metastasis through their role as key modulators of immune polarization in the tumor microenvironment and are valid targets for therapy of metastatic breast cancer.

  17. Mesothelioma tumor cells modulate dendritic cell lipid content, phenotype and function.

    Directory of Open Access Journals (Sweden)

    Joanne K Gardner

    Full Text Available Dendritic cells (DCs play an important role in the generation of anti-cancer immune responses, however there is evidence that DCs in cancer patients are dysfunctional. Lipid accumulation driven by tumor-derived factors has recently been shown to contribute to DC dysfunction in several human cancers, but has not yet been examined in mesothelioma. This study investigated if mesothelioma tumor cells and/or their secreted factors promote increases in DC lipid content and modulate DC function. Human monocyte-derived DCs (MoDCs were exposed to human mesothelioma tumor cells and tumor-derived factors in the presence or absence of lipoproteins. The data showed that immature MoDCs exposed to mesothelioma cells or factors contained increased lipid levels relative to control DCs. Lipid accumulation was associated with reduced antigen processing ability (measured using a DQ OVA assay, upregulation of the co-stimulatory molecule, CD86, and production of the tolerogenic cytokine, IL-10. Increases in DC lipid content were further enhanced by co-exposure to mesothelioma-derived factors and triglyceride-rich lipoproteins, but not low-density lipoproteins. In vivo studies using a murine mesothelioma model showed that the lipid content of tumor-infiltrating CD4+ CD8α- DCs, CD4- CD8α- DCs DCs and plasmacytoid DCs increased with tumor progression. Moreover, increasing tumor burden was associated with reduced proliferation of tumor-antigen-specific CD8+ T cells in tumor-draining lymph nodes. This study shows that mesothelioma promotes DC lipid acquisition, which is associated with altered activation status and reduced capacity to process and present antigens, which may impair the ability of DCs to generate effective anti mesothelioma T cell responses.

  18. Strong synergy of heat and modulated electromagnetic field in tumor cell killing

    Energy Technology Data Exchange (ETDEWEB)

    Andocs, Gabor [Frederic Joliot Curie National Research Inst. for Radiobiology and Radiohygiene, Budapest (Hungary)]|[St. Istvan Univ., Budapest (Hungary). Dept. of Pharmacology and Toxicology; Renner, Helmut [Klinikum Nuernberg (Germany). Clinic of Radiooncology; Balogh, Lajos [Frederic Joliot Curie National Research Inst. for Radiobiology and Radiohygiene, Budapest (Hungary); Fonyad, Laszlo [Semmelweis Univ., Budapest (Hungary). 1. Dept. of of Pathology and Experimental Cancer Research; Jakab, Csaba [St. Istvan Univ., Budapest (Hungary). Dept. of Pathology; Szasz, Andras [St. Istvan Univ., Goedoelloe (Hungary). Biotechnics Dept.

    2009-02-15

    Hyperthermia is an emerging complementary method in radiooncology. Despite many positive studies and comprehensive reviews, the method is not widely accepted as a combination to radiotherapy. Modulated electrohyperthermia (mEHT; capacitive, electric field modulated, 13.56 MHz) has been used in clinical practice for almost 2 decades in Germany, Austria and Hungary. This in vivo study in nude mice xenograft tumors compares mEHT with 'classic' radiative hyperthermia (radHT). Nude mice were xenografted with HT29 human colorectal carcinoma cells. 28 mice in four groups with seven animals each and two tumors per animal (totally 56 tumors) were included in the present study: group 1 as untreated control; group 2 treated with radHT at 42 C; group 3 treated with mEHT at identical 42 C; group 4 treated with mEHT at 38 C (by intensively cooling down the tumor). 24 h after treatment, animals were sacrificed and the tumor cross sections studied by precise morphological methods for the respective relative amount of 'dead' tumor cells. The effect of mEHT established a double effect as a synergy between the purely thermal (temperature-dependent) and nonthermal (not directly temperature-dependent) effects. The solely thermal enhancement ratio (TER) of cell killing was shown to be 2.9. The field enhancement ratio (FER) at a constant temperature of 42 C was measured as 3.2. Their complex application significantly increased the therapeutic enhancement to 9.4. mEHT had a remarkable cancer cell-killing effect in a nude mice xenograft model. (orig.)

  19. Cytotoxicity of Ru(II) piano-stool complexes with chloroquine and chelating ligands against breast and lung tumor cells: Interactions with DNA and BSA.

    Science.gov (United States)

    Colina-Vegas, Legna; Villarreal, Wilmer; Navarro, Maribel; de Oliveira, Clayton Rodrigues; Graminha, Angélica E; Maia, Pedro Ivo da S; Deflon, Victor M; Ferreira, Antonio G; Cominetti, Marcia Regina; Batista, Alzir A

    2015-12-01

    The synthesis and spectroscopic characterization of nine π-arene piano-stool ruthenium (II) complexes with aromatic dinitrogen chelating ligands or containing chloroquine (CQ), are described in this study: [Ru(η(6)-C10H14)(phen)Cl]PF6 (1), [Ru(η(6)-C10H14)(dphphen)Cl]PF6 (2), [Ru(η(6)-C10H14)(bipy)Cl]PF6 (3), [Ru(η(6)-C10H14)(dmebipy)Cl]PF6 (4) and [Ru(η(6)-C10H14)(bdutbipy)Cl]PF6 (5), [Ru(η(6)-C10H14)(phen)CQ](PF6)2 (6), [Ru(η(6)-C10H14)(dphphen)CQ](PF6)2 (7), [Ru(η(6)-C10H14)(bipy)CQ](PF6)2 (8), [Ru(η(6)-C10H14)(dmebipy)CQ](PF6)2 (9): [1,10-phenanthroline (phen), 4,7-diphenyl-1,10-phenanthroline (dphphen), 2,2'-bipyridine (bipy), 5,5'-dimethyl-2,2'-bipyridine (dmebipy), and 4,4'-di-t-butyl-2,2'-bipyridine (dbutbipy)]. The solid state structures of five ruthenium complexes (1-5) were determined by X-ray crystallography. Electrochemical experiments were performed by cyclic voltammetry to estimate the redox potential of the Ru(II)/Ru(III) couple in each case. Their interactions with DNA and BSA, and activity against four cell lines (L929, A549, MDA-MB-231 and MCF-7) were evaluated. Compounds 2, 6 through 9, interact with DNA which was comparable to the one observed for free chloroquine. The results of fluorescence titration revealed that these complexes strongly quenched the intrinsic fluorescence of BSA following a static quenching procedure. Binding constants (Kb) and the number of binding sites (n~1) were calculated using modified Stern-Volmer equations. The thermodynamic parameters ΔG at different temperatures were calculated and subsequently the values of ΔH and ΔS were also calculated, which revealed that hydrophobic and electrostatic interactions play a major role in the BSA-complex association. The MTT assay results indicated that complexes 2, 5 and 7 showed cytostatic effects at appreciably lower concentrations than those needed for cisplatin, chloroquine and doxorubicin.

  20. Development of the Japanese version of the Pediatric Quality of Life Inventory™ Brain Tumor Module

    Directory of Open Access Journals (Sweden)

    Terasaki Mizuhiko

    2010-04-01

    Full Text Available Abstract Background The Pediatric Quality of Life Inventory™ (PedsQL™ is a widely-used modular instrument for measuring health-related quality of life in children aged 2 to 18 years. The PedsQL™ Brain Tumor Module is comprised of six scales: Cognitive Problems, Pain and Hurt, Movement and Balance, Procedural Anxiety, Nausea, and Worry. In the present study, we developed the Japanese version of the PedsQL™ Brain Tumor Module and investigated its feasibility, reliability, and validity among Japanese children and their parents. Methods Translation equivalence and content validity were verified using the standard back-translation method and cognitive debriefing tests. Participants were recruited from 6 hospitals in Japan and the Children's Cancer Association of Japan, and questionnaires were completed by 137 children with brain tumors and 166 parents. Feasibility of the questionnaire was determined based on the amount of time required to complete the form and the percentage of missing values. Internal consistency was assessed using Cronbach's coefficient alpha. Test-retest reliability was assessed by retesting 22 children and 27 parents. Factorial validity was verified by exploratory factor analyses. Known-groups validity was described with regard to whole brain irradiation, developmental impairment, infratentorial tumors, paresis, and concurrent chemotherapy. Convergent and discriminant validity were determined using Generic Core Scales and State-Trait Anxiety Inventory for children. Results Internal consistency was relatively high for all scales (Cronbach's coefficient alpha > 0.70 except the Pain and Hurt scale for the child-report, and sufficient test-retest reliability was demonstrated for all scales (intraclass correlation coefficient = 0.45-0.95. Factorial validity was supported through exploratory factor analysis (factor-item correlation = 0.33-0.96 for children, 0.55-1.00 for parents. Evaluation of known-groups validity confirmed

  1. Chelation Therapy for Mercury Poisoning

    Directory of Open Access Journals (Sweden)

    Rong Guan

    2009-01-01

    Full Text Available Chelation therapy has been the major treatment for heavy metal poisoning. Various chelating agents have been developed and tested for treatment of heavy metal intoxications, including mercury poisoning. It has been clearly shown that chelating agents could rescue the toxicity caused by heavy metal intoxication, but the potential preventive role of chelating agents against heavy metal poisoning has not been explored much. Recent paper by Siddiqi and colleagues has suggested a protective role of chelating agents against mercury poisoning, which provides a promising research direction for broader application of chelation therapy in prevention and treatment of mercury poisoning.

  2. Chelation Therapy for Mercury Poisoning

    OpenAIRE

    Rong Guan; Han Dai

    2009-01-01

    Chelation therapy has been the major treatment for heavy metal poisoning. Various chelating agents have been developed and tested for treatment of heavy metal intoxications, including mercury poisoning. It has been clearly shown that chelating agents could rescue the toxicity caused by heavy metal intoxication, but the potential preventive role of chelating agents against heavy metal poisoning has not been explored much. Recent paper by Siddiqi and colleagues has suggested a protective role o...

  3. Modulation of genotoxic effects in asbestos-exposed primary human mesothelial cells by radical scavengers, metal chelators and a glutathione precursor.

    Science.gov (United States)

    Poser, Ina; Rahman, Qamar; Lohani, Mohtashim; Yadav, Santosh; Becker, Hans-Henner; Weiss, Dieter G; Schiffmann, Dietmar; Dopp, Elke

    2004-04-11

    The genotoxicity of asbestos fibers is generally mediated by reactive oxygen species (ROS) and by insufficient antioxidant protection. To further elucidate which radicals are involved in asbestos-mediated genotoxicity and to which extent, we have carried out experiments with the metal chelators deferoxamine (DEF) and phytic acid (PA), and with the radical scavengers superoxide dismutase (SOD), dimethylthiourea (DMTU) and the glutathione precursor Nacystelyn trade mark (NAL). We investigated the influence of these compounds on the potency of crocidolite, an amphibole asbestos fiber with a high iron content (27%), and chrysotile, a serpentine asbestos fiber with a low iron content (2%), to induce micronuclei (MN) in human mesothelial cells (HMC) after an exposure time of 24-72 h. Our results show that the number of crocidolite-induced MN is significantly reduced after pretreatment of fibers with PA and DEF. This effect was not observed with chrysotile. In contrast, simultaneous treatment of cells with asbestos and the OH*scavenging DMTU or the O2- -scavenging SOD significantly decreased the number of MN induced by chrysotile and crocidolite. In particular, DMTU almost completely suppressed micronucleus induction by both fiber types. A similar effect was observed in the presence of the H(2)O(2)-scavenging NAL after chrysotile treatment of HMC. By means of kinetochore analysis, it could be shown that the number of clastogenic events is decreased after PA and DEF pretreatment of fibers as well as after application of the above-mentioned scavengers. Our results show that chrysotile asbestos induces an increased release of H(2)O(2) in contrast to crocidolite. Also, the iron content of the fiber plays an important role in radical formation, but nevertheless, chrysotile produces oxy radicals to a similar extent as crocidolite, probably by phagocytosis-mediated oxidative bursting.

  4. Modulation of cell death in human colorectal and breast cancer cells through a manganese chelate by involving GSH with intracellular p53 status.

    Science.gov (United States)

    Banerjee, Kaushik; Das, Satyajit; Majumder, Saikat; Majumdar, Subrata; Biswas, Jaydip; Choudhuri, Soumitra Kumar

    2017-03-01

    Chemotherapy is central to current treatment modality especially for advanced and metastatic colorectal and breast cancers. Targeting the key molecular events of the neoplastic cells may open a possibility to treat cancer. Although some improvements in understanding of colorectal and breast cancer treatment have been recorded, the involvement of glutathione (GSH) and dependency of p53 status on the modulation of GSH-mediated treatment efficacy have been largely overlooked. Herein, we tried to decipher the underlying mechanism of the action of Mn-N-(2-hydroxyacetophenone) glycinate (MnNG) against differential p53 status bearing Hct116, MCF-7, and MDA-MB-468 cells on the backdrop of intracellular GSH level and reveal the role of p53 status in modulating GSH-dependant abrogation of MnNG-induced apoptosis in these cancer cells. Present study discloses that MnNG targets specifically wild-type-p53 expressing Hct116 and MCF-7 cells by significantly depleting both cytosolic, mitochondrial GSH, and modulating nuclear GSH through Glutathione reductase and Glutamate-cysteine ligase depletion that may in turn induce p53-mediated intrinsic apoptosis in them. Thus GSH addition abrogates p53-mediated apoptosis in wild-type-p53 expressing cells. GSH addition also overrides MnNG-induced modulation of phase II detoxifying parameters in them. However, GSH addition partially replenishes the down-regulated or modulated GSH pool in cytosol, mitochondria, and nucleus, and relatively abrogates MnNG-induced intrinsic apoptosis in p53-mutated MDA-MB-468 cells. On the contrary, although MnNG induces significant cell death in p53-null Hct116 cells, GSH addition fails to negate MnNG-induced cell death. Thus p53 status with intracellular GSH is critical for the modulation of MnNG-induced apoptosis.

  5. microRNA expression pattern modulates temozolomide response in GBM tumors with cancer stem cells.

    Science.gov (United States)

    Tezcan, Gulcin; Tunca, Berrin; Bekar, Ahmet; Preusser, Matthias; Berghoff, Anna Sophie; Egeli, Unal; Cecener, Gulsah; Ricken, Gerda; Budak, Ferah; Taskapılıoglu, Mevlut Ozgur; Kocaeli, Hasan; Tolunay, Sahsine

    2014-07-01

    Temozolomide (TMZ) is widely used to treat glioblastoma multiforme (GBM). Although the MGMT gene methylation status is postulated to correlate with TMZ response, some patients with a methylated MGMT gene still do not benefit from TMZ therapy. Cancer stem cells (CSCs) may be one of the causes of therapeutic resistance, but the molecular mechanism underlying this resistance is unclear. microRNA (miRNA) deregulation has been recognized as another chemoresistance modulating mechanism. Thus, we aimed to evaluate the miRNA expression patterns associated with chemoresistance that is dependent on the CSC status in GBM tumors to identify therapeutic biomarkers. CSCs were identified in 5 of 20 patients' tumor tissues using magnetic separation. CSC (+) tumors displayed a significant induction of CpG island methylation in the MGMT gene promoter (p = 0.009). Using real-time reverse transcription polymerase chain reaction (qRT-PCR), 9 miRNAs related to GBM (mir-181b, miR-153, miR-137, miR-145, miR-10a, miR-10b, let-7d, miR-9, and miR-455-3p), which are associated with cell cycle and invasion was analyzed in tumor samples. Low miR-181b and high miR-455-3p expression levels were detected (p = 0.053, p = 0.004; respectively) in CSC (+) tumors. Analysis revealed a significant correlation between miR-455-3p expression and Smad2 protein levels as analyzed by immunohistochemistry in CSC (+) tumors (p = 0.002). Thus, miR-455-3p may be involved in TMZ resistance in MGMT methylated CSC (+) GBM patients. Further studies and evaluations are required, but this miRNA may provide novel therapeutic molecular targets for GBM treatment and new directions for the development of anticancer drugs.

  6. miR-137 Modulates a Tumor Suppressor Network-Inducing Senescence in Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Mathieu Neault

    2016-03-01

    Full Text Available Activating K-Ras mutations occurs frequently in pancreatic cancers and is implicated in their development. Cancer-initiating events, such as oncogenic Ras activation, lead to the induction of cellular senescence, a tumor suppressor response. During senescence, the decreased levels of KDM4A lysine demethylase contribute to p53 activation, however, the mechanism by which KDM4A is downregulated is unknown. We show that miR-137 targets KDM4A mRNA during Ras-induced senescence and activates both p53 and retinoblastoma (pRb tumor suppressor pathways. Restoring the KDM4A expression contributed to bypass of miR-137-induced senescence and inhibition of endogenous miR-137 with an miRNA sponge-compromised Ras-induced senescence. miR-137 levels are significantly reduced in human pancreatic tumors, consistent with previous studies revealing a defective senescence response in this cancer type. Restoration of miR-137 expression inhibited proliferation and promoted senescence of pancreatic cancer cells. These results suggest that modulating levels of miR-137 may be important for triggering tumor suppressor networks in pancreatic cancer.

  7. Modulation of junction tension by tumor suppressors and proto-oncogenes regulates cell-cell contacts.

    Science.gov (United States)

    Bosveld, Floris; Guirao, Boris; Wang, Zhimin; Rivière, Mathieu; Bonnet, Isabelle; Graner, François; Bellaïche, Yohanns

    2016-02-15

    Tumor suppressors and proto-oncogenes play crucial roles in tissue proliferation. Furthermore, de-regulation of their functions is deleterious to tissue architecture and can result in the sorting of somatic rounded clones minimizing their contact with surrounding wild-type (wt) cells. Defects in the shape of somatic clones correlate with defects in proliferation, cell affinity, cell-cell adhesion, oriented cell division and cortical contractility. Combining genetics, live-imaging, laser ablation and computer simulations, we aim to analyze whether distinct or similar mechanisms can account for the common role of tumor suppressors and proto-oncogenes in cell-cell contact regulation. In Drosophila epithelia, the tumor suppressors Fat (Ft) and Dachsous (Ds) regulate cell proliferation, tissue morphogenesis, planar cell polarity and junction tension. By analyzing the evolution over time of ft mutant cells and clones, we show that ft clones reduce their cell-cell contacts with the surrounding wt tissue in the absence of concomitant cell divisions and over-proliferation. This contact reduction depends on opposed changes of junction tensions in the clone bulk and its boundary with neighboring wt tissue. More generally, either clone bulk or boundary junction tension is modulated by the activation of Yorkie, Myc and Ras, yielding similar contact reductions with wt cells. Together, our data highlight mechanical roles for proto-oncogene and tumor suppressor pathways in cell-cell interactions.

  8. MFSD2A is a novel lung tumor suppressor gene modulating cell cycle and matrix attachment

    Directory of Open Access Journals (Sweden)

    Shames David S

    2010-03-01

    Full Text Available Abstract Background MFSD2A (major facilitator superfamily domain containing 2 gene maps on chromosome 1p34 within a linkage disequilibrium block containing genetic elements associated with progression of lung cancer. Results Here we show that MFSD2A expression is strongly downregulated in non-small cell lung cancer cell lines of different histotypes and in primary lung adenocarcinomas. Experimental modulation of MFSD2A in lung cancer cells is associated with alteration of mRNA levels of genes involved in cell cycle control and interaction with the extracellular matrix. Exogenous expression of MFSD2A in lung cancer cells induced a G1 block, impaired adhesion and migration in vitro, and significantly reduced tumor colony number in vitro (4- to 27-fold, P in vivo (~3-fold, P Conclusion Together these data suggest that MFSD2A is a novel lung cancer tumor suppressor gene that regulates cell cycle progression and matrix attachment.

  9. Cytokines from the tumor microenvironment modulate sirtinol cytotoxicity in A549 lung carcinoma cells.

    Science.gov (United States)

    Pal, Shyama; Shankar, Bhavani S; Sainis, Krishna B

    2013-10-01

    Cytokines in tumor microenvironment play an important role in the success or failure of molecular targeted therapies. We have chosen tumor necrosis factor α (TNF-α), TNF related apoptosis inducing ligand (TRAIL), insulin-like growth factor 1 (IGF-1) and transforming growth factor β (TGF-β) as representative pro-inflammatory, pro-apoptotic, anti-apoptotic and anti-inflammatory tumor derived cytokines. Analysis of Oncomine database revealed the differential expression of these cytokines in a subset of cancer patients. The effects of these cytokines on cytotoxicity of FDA approved drugs - cisplatin and taxol and inhibitors of epidermal growth factor receptor - AG658, Janus kinase - AG490 and SIRT1 - sirtinol were assessed in A549 lung cancer cells. TRAIL augmented cytotoxicity of sirtinol and IGF-1 had a sparing effect. Since TRAIL and IGF-1 differentially modulated sirtinol cytotoxicity, further studies were carried out to identify the mechanisms. Sirtinol or knockdown of SIRT1 increased the expression of death receptors DR4 and DR5 and sensitized A549 cells to TRAIL. Increased cell death in presence of TRAIL and sirtinol was caspase independent and demonstrated classical features of necroptosis. Inhibition of iNOS increased caspase activity and switched the mode of cell death to caspase mediated apoptosis. Interestingly, sirtinol or SIRT1 knockdown did not increase IGF-1R expression. Instead, it abrogated ligand induced downregulation of IGF-1R and increased cell survival through PI3K-AKT pathway. In conclusion, these findings reveal that the tumor microenvironment contributes to modulation of cytotoxicity of drugs and that combination therapy, with agents that increase TRAIL signaling and suppress IGF-1 pathway may potentiate anticancer effect.

  10. Calcium-dependent potassium channels as a target protein for modulation of the blood-brain tumor barrier.

    Science.gov (United States)

    Ningaraj, Nagendra S; Rao, Mamatha; Black, Keith L

    2003-06-01

    Even though the blood-brain tumor barrier (BTB) is more permeable than the blood-brain barrier (BBB), the BTB still significantly restricts the delivery of anticancer drugs to brain tumors. Brain tumor capillaries that form the BTB, however, express certain unique protein markers that are absent or barely detectable in normal brain capillaries. We were able to biochemically modulate one such protein marker, the calcium-dependent potassium (K(Ca)) channel, by using a specific K(Ca) channel agonist, NS-1619, to obtain sustained enhancement of selective drug delivery, including molecules of varying sizes, to tumors in rat syngeneic and xenograft brain tumor models. Immunolocalization and potentiometric studies showed increased K(Ca) channel distribution on tumor cells compared with normal cells, suggesting that tumor cell-specific signals might induce overexpression of K(Ca) channels in capillary endothelial cells, leading to increased BTB permeability. We also demonstrated that the cellular mechanism for K(Ca) channel-mediated BTB permeability increase is due to accelerated formation of pinocytotic vesicles, which can transport therapeutic molecules across the BTB. This concept was investigated by using NS-1619 to facilitate increased delivery of carboplatin to brain tumor leading to enhanced survival in rats with brain tumors. Additionally, we showed that K(Ca) channel modulation resulted in enhanced permeability to macromolecules, including Her-2 monoclonal antibody and green fluorescent protein-adenoviral vectors, in a human, primary brain-tumor xenograft model. Therefore, K(Ca) channels are a potential, promising target for biochemical modulation of BTB permeability to increase antineoplastic drug delivery selectively to brain tumors.

  11. Appropriate modulation of autophagy sensitizes malignant peripheral nerve sheath tumor cells to treatment with imatinib mesylate.

    Science.gov (United States)

    Okano, Munehiro; Sakata, Naoki; Ueda, Satoshi; Takemura, Tsukasa

    2014-04-01

    Malignant peripheral nerve sheath tumor (MPNST), very rare in childhood, is a highly aggressive soft-tissue tumor. We experienced a case of a 7-year-old boy with MPNST who was treated with imatinib mesylate (imatinib) after the identification of platelet-derived growth factor receptor expression in his tumor. We were unable to observe clinical benefits of imatinib in this patient. Therefore, cellular reactions of imatinib were investigated in vitro using 3 MPNST cell lines. Imatinib induced cytotoxicity in vitro with variable IC50 values (11.7 to >30 μM). Induction of apoptosis was not a pivotal mechanism in the inhibitory effects. We found that the treatment of MPNST cell lines with imatinib induced autophagy. Suppression of the initiation of autophagy by 3-methyladenine or small interfering RNA (siRNA) against beclin-1 attenuated the imatinib-mediated cytotoxicity. In contrast, blocking the formation of autophagosomes or the development of autolysosomes using siRNA against microtubule-associated protein light chain 3B, bafilomycin A1, chloroquine, or an MEK1/2 inhibitor (U0126) enhanced the imatinib-induced cytotoxicity in MPNST cells. Our data showed that the imatinib-mediated autophagy can function as a cytotoxic mechanism and that appropriate modulation of autophagy may sensitize MPNST cells to imatinib, which in turn may be a novel therapeutic strategy for MPNST.

  12. Using Mouse Mammary Tumor Cells to Teach Core Biology Concepts: A Simple Lab Module.

    Science.gov (United States)

    McIlrath, Victoria; Trye, Alice; Aguanno, Ann

    2015-06-18

    Undergraduate biology students are required to learn, understand and apply a variety of cellular and molecular biology concepts and techniques in preparation for biomedical, graduate and professional programs or careers in science. To address this, a simple laboratory module was devised to teach the concepts of cell division, cellular communication and cancer through the application of animal cell culture techniques. Here the mouse mammary tumor (MMT) cell line is used to model for breast cancer. Students learn to grow and characterize these animal cells in culture and test the effects of traditional and non-traditional chemotherapy agents on cell proliferation. Specifically, students determine the optimal cell concentration for plating and growing cells, learn how to prepare and dilute drug solutions, identify the best dosage and treatment time course of the antiproliferative agents, and ascertain the rate of cell death in response to various treatments. The module employs both a standard cell counting technique using a hemocytometer and a novel cell counting method using microscopy software. The experimental procedure lends to open-ended inquiry as students can modify critical steps of the protocol, including testing homeopathic agents and over-the-counter drugs. In short, this lab module requires students to use the scientific process to apply their knowledge of the cell cycle, cellular signaling pathways, cancer and modes of treatment, all while developing an array of laboratory skills including cell culture and analysis of experimental data not routinely taught in the undergraduate classroom.

  13. Exercise modulation of the host-tumor interaction in an orthotopic model of murine prostate cancer.

    Science.gov (United States)

    Jones, Lee W; Antonelli, Jodi; Masko, Elizabeth M; Broadwater, Gloria; Lascola, Christopher D; Fels, Diane; Dewhirst, Mark W; Dyck, Jason R B; Nagendran, Jeevan; Flores, Catherine T; Betof, Allison S; Nelson, Erik R; Pollak, Michael; Dash, Rajesh C; Young, Martin E; Freedland, Stephen J

    2012-07-01

    The purpose of this study is to investigate the effects of exercise on cancer progression, metastasis, and underlying mechanisms in an orthotopic model of murine prostate cancer. C57BL/6 male mice (6-8 wk of age) were orthotopically injected with transgenic adenocarcinoma of mouse prostate C-1 cells (5 × 10(5)) and randomly assigned to exercise (n = 28) or a non-intervention control (n = 31) groups. The exercise group was given voluntary access to a wheel 24 h/day for the duration of the study. Four mice per group were serially killed on days 14, 31, and 36; the remaining 38 mice (exercise, n = 18; control, n = 20) were killed on day 53. Before death, MRI was performed to assess tumor blood perfusion. Primary tumor growth rate was comparable between groups, but expression of prometastatic genes was significantly modulated in exercising animals with a shift toward reduced metastasis. Exercise was associated with increased activity of protein kinases within the MEK/MAPK and PI3K/mTOR signaling cascades with subsequent increased intratumoral protein levels of HIF-1α and VEGF. This was associated with improved tumor vascularization. Multiplex ELISAs revealed distinct reductions in plasma concentrations of several angiogenic cytokines in the exercise group, which was associated with increased expression of angiogenic and metabolic genes in the skeletal muscle. Exercise-induced stabilization of HIF-1α and subsequent upregulation of VEGF was associated with "productive" tumor vascularization with a shift toward suppressed metastasis in an orthotopic model of prostate cancer.

  14. Chelated minerals for poultry

    Directory of Open Access Journals (Sweden)

    SL Vieira

    2008-06-01

    Full Text Available Organic minerals have been subject of an increasing number of investigations recently. These compounds can be considered the most significant event regarding commercial forms of minerals targeting animal supplementation in the last decades. Minerals, especially metals, are usually supplemented in poultry feeds using cheap saline sources and have never required a lot of attention in terms of quality. On the other hand, definitions of organic minerals are very broad and frequently lead to confusion when decision-making becomes necessary. Organic minerals include any mineral bound to organic compounds, regardless of the type of existing bond between mineral and organic molecules. Proteins and carbohydrates are the most frequent candidates in organic mineral combinations. Organic fraction size and bond type are not limitations in organic mineral definition; however, essential metals (Cu, Fe, Zn, and Mn can form coordinated bonds, which are stable in intestinal lumen. Metals bound to organic ligands by coordinated bonds can dissociate within animal metabolism whereas real covalent bonds cannot. Chelated minerals are molecules that have a metal bound to an organic ligand through coordinated bonds; but many organic minerals are not chelates or are not even bound through coordinated bonds. Utilization of organic minerals is largely dependent on the ligand; therefore, amino acids and other small molecules with facilitated access to the enterocyte are supposed to be better utilized by animals. Organic minerals with ligands presenting long chains may require digestion prior to absorption. After absorption, organic minerals may present physiological effects, which improve specific metabolic responses, such as the immune response. Many studies have demonstrated the benefits of metal-amino acid chelates on animal metabolism, but the detection positive effects on live performance is less consistent.

  15. Tumor-promoting phorbol ester transiently down-modulates the p53 level and blocks the cell cycle

    DEFF Research Database (Denmark)

    Skouv, J; Jensen, P O; Forchhammer, J

    1994-01-01

    Activation of the protein kinase C signaling pathway by tumor-promoting phorbol esters, such as 4 beta-phorbol 12-myristate 13-acetate (PMA), induced a decrease in the level of p53 mRNA in several serum-starved human cell lines. Also, the tumor-promoting phosphatase inhibitor okadaic acid induced...... rate or the p53 mRNA stability. The protein synthesis inhibitor cycloheximide completely abolished the PMA-induced down-modulation of the p53 mRNA, suggesting that a short-lived protein was involved in the down-modulation. Flow cytometric cell cycle analysis showed that the phorbol ester treatment...

  16. Modulating the tumor immune microenvironment as an ovarian cancer treatment strategy

    Science.gov (United States)

    Scarlett, Uciane K.; Conejo-Garcia, Jose R.

    2013-01-01

    After more than 30 years of iterations of surgical debulking plus chemotherapy, the need for complementary ovarian cancer treatments has become clear. In the ovarian cancer microenvironment, myeloid immunosuppressive leukocytes, lymphocytes, fibroblasts and endothelial cells, as well as their secreted products, surface molecules and paracrine survival factors, all provide opportunities for novel interventions. The potential of targeting microenvironmental elements in ovarian cancer patients is underscored by recently successful anti-angiogenic therapies. The compartmentalized nature of ovarian cancer, its immunogenicity and its accessibility make it an ideal disease for targeting non-tumor host cells. This review discusses the ‘state-of-the-art’ of the field, with an emphasis on the potential of modulating the activity of abundant microenvironmental immune cells, which govern both angiogenesis and immunosuppression. PMID:24039628

  17. Synergistic effects between catalase inhibitors and modulators of nitric oxide metabolism on tumor cell apoptosis.

    Science.gov (United States)

    Scheit, Katrin; Bauer, Georg

    2014-10-01

    Inhibitors of catalase (such as ascorbate, methyldopa, salicylic acid and neutralizing antibodies) synergize with modulators of nitric oxide (NO) metabolism (such as arginine, arginase inhibitor, NO synthase-inducing interferons and NO dioxygenase inhibitors) in the singlet oxygen-mediated inactivation of tumor cell protective catalase. This is followed by reactive oxygen species (ROS)-dependent apoptosis induction. TGF-beta, NADPH oxidase-1, NO synthase, dual oxidase-1 and caspase-9 are characterized as essential catalysts in this process. The FAS receptor and caspase-8 are required for amplification of ROS signaling triggered by individual compounds, but are dispensable when the synergistic effect is established. Our findings explain the antitumor effects of catalase inhibitors and of compounds that target NO metabolism, as well as their synergy. These data may have an impact on epidemiological studies related to secondary plant compounds and open new perspectives for the establishment of novel antitumor drugs and for the improvement of established chemotherapeutics.

  18. The impact of intensity modulated radiotherapy on the skin dose for deep seated tumors

    Institute of Scientific and Technical Information of China (English)

    H. S. Abou-Elenein; Ehab M. Attalla; Hany Ammar; Ismail Eldesoky; Mohamed Farouk; Shaimaa Shoer

    2013-01-01

    Objective: The purpose of this study was to investigate the impact of intensity modulated radiotherapy (IMRT) on surface doses for brain, abdomen and pelvis deep located tumors treated with 6 MV photon and to evaluate the skin dose calculation accuracy of the XIO 4.04 treatment planning system. Methods: More investigations for the influences of IMRT on skin doses would increase its applications for many treatment sites. Measuring skin doses in real treatment situations would reduce the uncertainty of skin dose prediction. In this work a pediatric human phantom was covered by a layer of 1 mm bolus at three treatment sites and thermoluminescent dosimeter (TLD) chips were inserted into the bolus at each treatment site before CT scan. Two different treatment plans [three-dimensional conformal radiation therapy (3DCRT) and IMRT] for each treatment sites were performed on XIO 4.04 treatment planning system using superposition algorism. Results: The results showed that the surface doses for 3DCRT were higher than the surface doses in IMRT by 1.6%, 2.5% and 3.2% for brain, abdomen and pelvis sites respectively. There was good agreement between measured and calculated surface doses, where the calculated surface dose was 15.5% for brain tumor calculated with 3DCRT whereas the measured surface dose was 12.1%. For abdomen site the calculated surface dose for IMRT treatment plan was 16.5% whereas the measured surface dose was 12.6%. Conclusion: The skin dose in IMRT for deep seated tumors is lower than that in 3DCRT which is another advantage for the IMRT. The TLD readings showed that the difference between the calculated and measured point dose is negligible. The superposition calculation algorism of the XIO 4.04 treatment planning system modeled the superficial dose well.

  19. Macroreticular chelating ion-exchangers.

    Science.gov (United States)

    Hirsch, R F; E Gancher, R; Russo, F R

    1970-06-01

    Two macroreticular chelating ion-exchangers have been prepared and characterized. One contains the iminodiacetate group and the second contains the arsonate group as the ion-exchanging site. The macroreticular resins show selectivities among metal ions similar to those of the commercially available naicroreticular chelating resins. Chromatographie separations on the new resins are rapid and sharp.

  20. Tumor

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008479 Preliminary study of MR elastography in brain tumors. XU Lei(徐磊), et al.Neurosci Imaging Center, Beijing Tiantan Hosp, Capital Med Univ, Beijing 100050.Chin J Radiol 2008;42(6):605-608. Objective To investigate the potential values of magnetic resonance elastography (MRE) for evaluating the brain tumor consistency in vivo. Methods Fourteen patients with known solid brain tumor (5 male, 9 female; age range: 16-63 years)

  1. C6-ceramide nanoliposome suppresses tumor metastasis by eliciting PI3K and PKCζ tumor-suppressive activities and regulating integrin affinity modulation.

    Science.gov (United States)

    Zhang, Pu; Fu, Changliang; Hu, Yijuan; Dong, Cheng; Song, Yang; Song, Erqun

    2015-03-20

    Nanoliposomal formulation of C6-ceramide, a proapoptotic sphingolipid metabolite, presents an effective way to treat malignant tumor. Here, we provide evidence that acute treatment (30 min) of melanoma and breast cancer cells with nanoliposomal C6-ceramide (NaL-C6) may suppress cell migration without inducing cell death. By employing a novel flow migration assay, we demonstrated that NaL-C6 decreased tumor extravasation under shear conditions. Compared with ghost nanoliposome, NaL-C6 triggered phosphorylation of PI3K and PKCζ and dephosphorylation of PKCα. Concomitantly, activated PKCζ translocated into cell membrane. siRNA knockdown or pharmacological inhibition of PKCζ or PI3K rescued NaL-C6-mediated suppression of tumor migration. By inducing dephosphorylation of paxillin, PKCζ was responsible for NaL-C6-mediated stress fiber depolymerization and focal adhesion disassembly in the metastatic tumor cells. PKCζ and PI3K regulated cell shear-resistant adhesion in a way that required integrin αvβ3 affinity modulation. In conclusion, we identified a novel role of acute nanoliposomal ceramide treatment in reducing integrin affinity and inhibiting melanoma metastasis by conferring PI3K and PKCζ tumor-suppressive activities.

  2. Modulation of Cytokines Production by Indomethacin Acute Dose during the Evolution of Ehrlich Ascites Tumor in Mice

    Directory of Open Access Journals (Sweden)

    Luciana Boffoni Gentile

    2015-01-01

    Full Text Available The aim of the present study was to investigate the influence of a nonselective COX1/COX2 inhibitor (indomethacin on tumor growth of Ehrlich Ascites Tumor (EAT in mice, using as parameters the tumor growth and cytokine profile. Mice were inoculated with EAT cells and treated with indomethacin. After 1, 3, 6, 10, and 13 days the animals were evaluated for the secretion of TNFα, IL-1α, IL-2, IL-4, IL-6, IL-10, and IL-13 and PGE2 level in peritoneal cavity. The results have shown that EAT induces PGE2 production and increases tumor cells number from the 10th day. The cytokine profile showed EAT induces production of IL-6 from 10th day and of IL-2 on 13th day; the other studied cytokines were not affected in a significant way. The indomethacin treatment of EAT-bearing mice inhibited the tumor growth and PGE2 synthesis from the 10th day. In addition, the treatment of EAT-bearing mice with indomethacin has stimulated the IL-13 production and has significantly inhibited IL-6 in the 13th day of tumor growth. Taken together, the results have demonstrated that EAT growth is modulated by PGE2 and the inhibition of the tumor growth could be partly related to suppression of IL-6 and induction of IL-13.

  3. Modulation of Cytokines Production by Indomethacin Acute Dose during the Evolution of Ehrlich Ascites Tumor in Mice

    Science.gov (United States)

    Gentile, Luciana Boffoni; Queiroz-Hazarbassanov, Nicolle; Massoco, Cristina de Oliveira; Fecchio, Denise

    2015-01-01

    The aim of the present study was to investigate the influence of a nonselective COX1/COX2 inhibitor (indomethacin) on tumor growth of Ehrlich Ascites Tumor (EAT) in mice, using as parameters the tumor growth and cytokine profile. Mice were inoculated with EAT cells and treated with indomethacin. After 1, 3, 6, 10, and 13 days the animals were evaluated for the secretion of TNFα, IL-1α, IL-2, IL-4, IL-6, IL-10, and IL-13 and PGE2 level in peritoneal cavity. The results have shown that EAT induces PGE2 production and increases tumor cells number from the 10th day. The cytokine profile showed EAT induces production of IL-6 from 10th day and of IL-2 on 13th day; the other studied cytokines were not affected in a significant way. The indomethacin treatment of EAT-bearing mice inhibited the tumor growth and PGE2 synthesis from the 10th day. In addition, the treatment of EAT-bearing mice with indomethacin has stimulated the IL-13 production and has significantly inhibited IL-6 in the 13th day of tumor growth. Taken together, the results have demonstrated that EAT growth is modulated by PGE2 and the inhibition of the tumor growth could be partly related to suppression of IL-6 and induction of IL-13. PMID:26347589

  4. Quantitative phase-filtered wavelength-modulated differential photoacoustic radar tumor hypoxia imaging toward early cancer detection.

    Science.gov (United States)

    Dovlo, Edem; Lashkari, Bahman; Soo Sean Choi, Sung; Mandelis, Andreas; Shi, Wei; Liu, Fei-Fei

    2016-10-19

    Overcoming the limitations of conventional linear spectroscopy used in multispectral photoacoustic imaging, wherein a linear relationship is assumed between the absorbed optical energy and the absorption spectra of the chromophore at a specific location, is crucial for obtaining accurate spatially-resolved quantitative functional information by exploiting known chromophore-specific spectral characteristics. This study introduces a non-invasive phase-filtered differential photoacoustic technique, wavelength-modulated differential photoacoustic radar (WM-DPAR) imaging that addresses this issue by eliminating the effect of the unknown wavelength-dependent fluence. It employs two laser wavelengths modulated out-of-phase to significantly suppress background absorption while amplifying the difference between the two photoacoustic signals. This facilitates pre-malignant tumor identification and hypoxia monitoring, as minute changes in total hemoglobin concentration and hemoglobin oxygenation are detectable. The system can be tuned for specific applications such as cancer screening and SO2 quantification by regulating the amplitude ratio and phase shift of the signal. The WM-DPAR imaging of a head and neck carcinoma tumor grown in the thigh of a nude rat demonstrates the functional PA imaging of small animals in vivo. The PA appearance of the tumor in relation to tumor vascularity is investigated by immunohistochemistry. Phase-filtered WM-DPAR imaging is also illustrated, maximizing quantitative SO2 imaging fidelity of tissues. Oxygenation levels within a tumor grown in the thigh of a nude rat using the two-wavelength phase-filtered differential PAR method.

  5. miR-21 modulates tumor outgrowth induced by human adipose tissue-derived mesenchymal stem cells in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Keun Koo; Lee, Ae Lim; Kim, Jee Young [Department of Physiology, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Medical Research Center for Ischemic Tissue Engineering, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); BK21 Medical Science Education Center, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Lee, Sun Young [Department of Physiology, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Medical Research Center for Ischemic Tissue Engineering, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Bae, Yong Chan [Department of Plastic Surgery, School of Medicine, Pusan National University, Pusan 602-739 (Korea, Republic of); Jung, Jin Sup, E-mail: jsjung@pusan.ac.kr [Department of Physiology, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Medical Research Center for Ischemic Tissue Engineering, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); BK21 Medical Science Education Center, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Medical Research Institute, Pusan National University, Pusan 602-739 (Korea, Republic of)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer miR-21 modulates hADSC-induced increase of tumor growth. Black-Right-Pointing-Pointer The action is mostly mediated by the modulation of TGF-{beta} signaling. Black-Right-Pointing-Pointer Inhibition of miR-21 enhances the blood flow recovery in hindlimb ischemia. -- Abstract: Mesenchymal stem cells (MSCs) have generated a great deal of interest in clinical situations, due principally to their potential use in regenerative medicine and tissue engineering applications. However, the therapeutic application of MSCs remains limited, unless the favorable effects of MSCs on tumor growth in vivo, and the long-term safety of the clinical applications of MSCs, can be more thoroughly understood. In this study, we determined whether microRNAs can modulate MSC-induced tumor outgrowth in BALB/c nude mice. Overexpression of miR-21 in human adipose-derived stem cells (hADSCs) inhibited hADSC-induced tumor growth, and inhibition of miR-21 increased it. Downregulation of transforming growth factor beta receptor II (TGFBR2), but not of signal transducer and activator of transcription 3, in hADSCs showed effects similar to those of miR-21 overexpression. Downregulation of TGFBR2 and overexpression of miR21 decreased tumor vascularity. Inhibition of miR-21 and the addition of TGF-{beta} increased the levels of vascular endothelial growth factor and interleukin-6 in hADSCs. Transplantation of miR-21 inhibitor-transfected hADSCs increased blood flow recovery in a hind limb ischemia model of nude mice, compared with transplantation of control oligo-transfected cells. These findings indicate that MSCs might favor tumor growth in vivo. Thus, it is necessary to study the long-term safety of this technique before MSCs can be used as therapeutic tools in regenerative medicine and tissue engineering.

  6. Pulse-modulated second harmonic imaging microscope quantitatively demonstrates marked increase of collagen in tumor after chemotherapy

    Science.gov (United States)

    Raja, Anju M.; Xu, Shuoyu; Sun, Wanxin; Zhou, Jianbiao; Tai, Dean C. S.; Chen, Chien-Shing; Rajapakse, Jagath C.; So, Peter T. C.; Yu, Hanry

    2010-09-01

    Pulse-modulated second harmonic imaging microscopes (PM-SHIMs) exhibit improved signal-to-noise ratio (SNR) over conventional SHIMs on sensitive imaging and quantification of weak collagen signals inside tissues. We quantify the spatial distribution of sparse collagen inside a xenograft model of human acute myeloid leukemia (AML) tumor specimens treated with a new drug against receptor tyrosine kinase (ABT-869), and observe a significant increase in collagen area percentage, collagen fiber length, fiber width, and fiber number after chemotherapy. This finding reveals new insights into tumor responses to chemotherapy and suggests caution in developing new drugs and therapeutic regimens against cancers.

  7. Quantitative secretome analysis reveals the interactions between epithelia and tumor cells by in vitro modulating colon cancer microenvironment.

    Science.gov (United States)

    Zeng, Xiao; Yang, Pengbo; Chen, Bing; Jin, Xuewen; Liu, Yuling; Zhao, Xia; Liang, Shufang

    2013-08-26

    popularity because of its ease of implementation, the high quality of quantitative data obtained, robustness and compatibility with existing experimental workflows. Therefore, SILAC-based quantitative secretome analysis was employed for investigating interactions between epithelia and tumor by in vitro modulating colon cancer microenvironment with established co-culture system, which simplified the complexity of cancer microenvironment, also tracked secreted protein changes and their associated biological roles between epithelia and cancer cells. A series of tumor associated secreted proteins was quantitated and investigated in our study. So, the results give a new insight on communications between tumor and epithelia as well as cancer biotherapy by inhibiting interactions of them. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  8. The Iron Chelator, Dp44mT, Effectively Inhibits Human Oral Squamous Cell Carcinoma Cell Growth in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Jehn-Chuan Lee

    2016-08-01

    Full Text Available Oral squamous cell carcinoma (OSCC is a common malignancy with a growing worldwide incidence and prevalence. The N-myc downstream regulated gene (NDRG family of NDRG1, 2, 3, and mammary serine protease inhibitor (Maspin gene are well-known modulators in the neoplasia process. Current research has considered iron chelators as new anti-cancer agents; however, the anticancer activities of iron chelators and their target genes in OSCC have not been well investigated. We showed that iron chelators (Dp44mT, desferrioxamine (DFO, and deferasirox all significantly inhibit SAS cell growth. Flow cytometry further indicated that Dp44mT inhibition of SAS cells growth was partly due to induction of G1 cell cycle arrest. Iron chelators enhanced expressions of NDRG1 and NDRG3 while repressing cyclin D1 expression in OSCC cells. The in vivo antitumor effect on OSCC and safety of Dp44mT were further confirmed through a xenograft animal model. The Dp44mT treatment also increased Maspin protein levels in SAS and OECM-1 cells. NDRG3 knockdown enhanced the growth of OECM-1 cells in vitro and in vivo. Our results indicated that NDRG3 is a tumor suppressor gene in OSCC cells, and Dp44mT could be a promising therapeutic agent for OSCC treatment.

  9. Volumetric modulated arc therapy for treatment of solid tumors: current insights

    Directory of Open Access Journals (Sweden)

    Macchia G

    2017-07-01

    Full Text Available Gabriella Macchia,1 Francesco Deodato,1 Savino Cilla,2 Silvia Cammelli,3 Alessandra Guido,3 Martina Ferioli,3 Giambattista Siepe,3 Vincenzo Valentini,4 Alessio Giuseppe Morganti,3,* Gabriella Ferrandina5,6,* 1Radiation Oncology Unit, 2Medical Physics Unit, “Giovanni Paolo II” Foundation, Catholic University of the Sacred Heart, Campobasso, 3Radiation Oncology Unit, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, S. Orsola-Malpighi Hospital, Bologna, 4Department of Radiation Oncology, Catholic University of the Sacred Heart, Rome, 5Department of Obstetrics and Gynecology, Catholic University of the Sacred Heart, Rome, 6Department of Health Sciences and Medicine, University of Molise, Campobasso, Italy *These authors contributed equally to this work Aim: This article discusses the current use of volumetric modulated arc therapy (VMAT techniques in clinical practice and reviews the available data from clinical outcome studies in different clinical settings. An overview of available literature about clinical outcomes with VMAT stereotactic/radiosurgical treatment is also reported.Materials and methods: All published manuscripts reporting the use of VMAT in a clinical setting from 2009 to November 2016 were identified. The search was carried out in December 2016 using the National Library of Medicine (PubMed/Medline. The following words were searched: “volumetric arc therapy”[All Fields] OR “vmat”[All Fields] OR “rapidarc”[All Fields], AND “radiotherapy”[All Fields] AND “Clinical Trial”[All Fields].Results: Overall, 37 studies (21 prospective and 16 retrospective fulfilling inclusion criteria and thus included in the review evaluated 2,029 patients treated with VMAT; of these patients, ~30.8% had genitourinary (GU tumors (81% prostate, 19% endometrial, 26.2% head-and-neck cancer (H&NC, 13.9% oligometastases, 11.2% had anorectal cancer, 10.6% thoracic neoplasms (81% breast, 19% lung, and 7

  10. Comparison of intensity-modulated tomotherapy with stereotactically guided conformal radiotherapy for brain tumors.

    Science.gov (United States)

    Khoo, V S; Oldham, M; Adams, E J; Bedford, J L; Webb, S; Brada, M

    1999-09-01

    Intensity-modulated radiotherapy (IMRT) offers the potential to more closely conform dose distributions to the target, and spare organs at risk (OAR). Its clinical value is still being defined. The present study aims to compare IMRT with stereotactically guided conformal radiotherapy (SCRT) for patients with medium size convex-shaped brain tumors. Five patients planned with SCRT were replanned with the IMRT-tomotherapy method using the Peacock system (Nomos Corporation). The planning target volume (PTV) and relevant OAR were assessed, and compared relative to SCRT plans using dose statistics, dose-volume histograms (DVH), and the Radiation Therapy Oncology Group (RTOG) stereotactic radiosurgery criteria. The median and mean PTV were 78 cm3 and 85 cm3 respectively (range 62-119 cm3). The differences in PTV doses for the whole group (Peacock-SCRT +/-1 SD) were 2%+/-1.8 (minimum PTV), and 0.1%+/-1.9 (maximum PTV). The PTV homogeneity achieved by Peacock was 12.1%+/-1.7 compared to 13.9%+/-1.3 with SCRT. Using RTOG guidelines, Peacock plans provided acceptable PTV coverage for all 5/5 plans compared to minor coverage deviations in 4/5 SCRT plans; acceptable homogeneity index for both plans (Peacock = 1.1 vs. SCRT = 1.2); and comparable conformity index (1.4 each). As a consequence of the transaxial method of arc delivery, the optic nerves received mean and maximum doses that were 11.1 to 11.6%, and 10.3 to 15.2% higher respectively with Peacock plan. The maximum optic lens, and brainstem dose were 3.1 to 4.8% higher, and 0.6% lower respectively with Peacock plan. However, all doses remained below the tolerance threshold (5 Gy for lens, and 50 Gy for optic nerves) and were clinically acceptable. The Peacock method provided improved PTV coverage, albeit small, in this group of convex tumors. Although the OAR doses were higher using the Peacock plans, all doses remained within the clinically defined threshold and were clinically acceptable. Further improvements may be

  11. Multifield Optimization Intensity Modulated Proton Therapy for Head and Neck Tumors: A Translation to Practice

    Energy Technology Data Exchange (ETDEWEB)

    Frank, Steven J., E-mail: sjfrank@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Cox, James D. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Gillin, Michael; Mohan, Radhe [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Garden, Adam S.; Rosenthal, David I.; Gunn, G. Brandon [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Weber, Randal S. [Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Kies, Merrill S. [Department of Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Lewin, Jan S. [Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Munsell, Mark F. [Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Palmer, Matthew B. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Sahoo, Narayan; Zhang, Xiaodong; Liu, Wei; Zhu, X. Ronald [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2014-07-15

    Background: We report the first clinical experience and toxicity of multifield optimization (MFO) intensity modulated proton therapy (IMPT) for patients with head and neck tumors. Methods and Materials: Fifteen consecutive patients with head and neck cancer underwent MFO-IMPT with active scanning beam proton therapy. Patients with squamous cell carcinoma (SCC) had comprehensive treatment extending from the base of the skull to the clavicle. The doses for chemoradiation therapy and radiation therapy alone were 70 Gy and 66 Gy, respectively. The robustness of each treatment plan was also analyzed to evaluate sensitivity to uncertainties associated with variations in patient setup and the effect of uncertainties with proton beam range in patients. Proton beam energies during treatment ranged from 72.5 to 221.8 MeV. Spot sizes varied depending on the beam energy and depth of the target, and the scanning nozzle delivered the spot scanning treatment “spot by spot” and “layer by layer.” Results: Ten patients presented with SCC and 5 with adenoid cystic carcinoma. All 15 patients were able to complete treatment with MFO-IMPT, with no need for treatment breaks and no hospitalizations. There were no treatment-related deaths, and with a median follow-up time of 28 months (range, 20-35 months), the overall clinical complete response rate was 93.3% (95% confidence interval, 68.1%-99.8%). Xerostomia occurred in all 15 patients as follows: grade 1 in 10 patients, grade 2 in 4 patients, and grade 3 in 1 patient. Mucositis within the planning target volumes was seen during the treatment of all patients: grade 1 in 1 patient, grade 2 in 8 patients, and grade 3 in 6 patients. No patient experienced grade 2 or higher anterior oral mucositis. Conclusions: To our knowledge, this is the first clinical report of MFO-IMPT for head and neck tumors. Early clinical outcomes are encouraging and warrant further investigation of proton therapy in prospective clinical trials.

  12. Modulation of circulating angiogenic factors and tumor biology by aerobic training in breast cancer patients receiving neoadjuvant chemotherapy.

    Science.gov (United States)

    Jones, Lee W; Fels, Diane R; West, Miranda; Allen, Jason D; Broadwater, Gloria; Barry, William T; Wilke, Lee G; Masko, Elisabeth; Douglas, Pamela S; Dash, Rajesh C; Povsic, Thomas J; Peppercorn, Jeffrey; Marcom, P Kelly; Blackwell, Kimberly L; Kimmick, Gretchen; Turkington, Timothy G; Dewhirst, Mark W

    2013-09-01

    Aerobic exercise training (AET) is an effective adjunct therapy to attenuate the adverse side-effects of adjuvant chemotherapy in women with early breast cancer. Whether AET interacts with the antitumor efficacy of chemotherapy has received scant attention. We carried out a pilot study to explore the effects of AET in combination with neoadjuvant doxorubicin-cyclophosphamide (AC+AET), relative to AC alone, on: (i) host physiology [exercise capacity (VO2 peak), brachial artery flow-mediated dilation (BA-FMD)], (ii) host-related circulating factors [circulating endothelial progenitor cells (CEP) cytokines and angiogenic factors (CAF)], and (iii) tumor phenotype [tumor blood flow ((15)O-water PET), tissue markers (hypoxia and proliferation), and gene expression] in 20 women with operable breast cancer. AET consisted of three supervised cycle ergometry sessions/week at 60% to 100% of VO2 peak, 30 to 45 min/session, for 12 weeks. There was significant time × group interactions for VO2 peak and BA-FMD, favoring the AC+AET group (P 0.05). Whole-genome microarray tumor analysis revealed significant differential modulation of 57 pathways (P < 0.01), including many that converge on NF-κB. Data from this exploratory study provide initial evidence that AET can modulate several host- and tumor-related pathways during standard chemotherapy. The biologic and clinical implications remain to be determined.

  13. Hypoxic tumor cell modulates its microenvironment to enhance angiogenic and metastatic potential by secretion of proteins and exosomes.

    Science.gov (United States)

    Park, Jung Eun; Tan, Hon Sen; Datta, Arnab; Lai, Ruenn Chai; Zhang, Huoming; Meng, Wei; Lim, Sai Kiang; Sze, Siu Kwan

    2010-06-01

    Under hypoxia, tumor cells produce a secretion that modulates their microenvironment to facilitate tumor angiogenesis and metastasis. Here, we observed that hypoxic or reoxygenated A431 carcinoma cells exhibited enhanced angiogenic and metastatic potential such as reduced cell-cell and cell-extracellular matrix adhesion, increased invasiveness, and production of a secretion with increased chorioallantoic membrane angiogenic activity. Consistent with these observations, quantitative proteomics revealed that under hypoxia the tumor cells secreted proteins involved in angiogenesis, focal adhesion, extracellular matrix-receptor interaction, and immune cell recruitment. Unexpectedly, the secreted proteins were predominantly cytoplasmic and membrane proteins. Ultracentrifugation at 100,000 x g precipitated 54% of the secreted proteins and enriched for many exosome-associated proteins such as the tetraspanins and Alix and also proteins with the potential to facilitate angiogenesis and metastasis. Two tetraspanins, CD9 and CD81, co-immunoprecipitated. Together, these data suggested that tumor cells secrete proteins and exosomes with the potential to modulate their microenvironment and facilitate angiogenesis and metastasis.

  14. Stromal modulation of bladder cancer-initiating cells in a subcutaneous tumor model.

    Science.gov (United States)

    Peek, Elizabeth M; Li, David R; Zhang, Hanwei; Kim, Hyun Pyo; Zhang, Baohui; Garraway, Isla P; Chin, Arnold I

    2012-01-01

    The development of new cancer therapeutics would benefit from incorporating efficient tumor models that mimic human disease. We have developed a subcutaneous bladder tumor regeneration system that recapitulates primary human bladder tumor architecture by recombining benign human fetal bladder stromal cells with SW780 bladder carcinoma cells. As a first step, SW780 cells were seeded in ultra low attachment cultures in order to select for sphere-forming cells, the putative cancer stem cell (CSC) phenotype. Spheroids were combined with primary human fetal stromal cells or vehicle control and injected subcutaneously with Matrigel into NSG mice. SW780 bladder tumors that formed in the presence of stroma showed accelerated growth, muscle invasion, epithelial to mesenchymal transition (EMT), decreased differentiation, and greater activation of growth pathways compared to tumors formed in the absence of fetal stroma. Tumors grown with stroma also demonstrated a greater similarity to typical malignant bladder architecture, including the formation of papillary structures. In an effort to determine if cancer cells from primary tumors could form similar structures in vivo using this recombinatorial approach, putative CSCs, sorted based on the CD44(+)CD49f(+) antigenic profile, were collected and recombined with fetal bladder stromal cells and Matrigel prior to subcutaneous implantation. Retrieved grafts contained tumors that exhibited the same structure as the original primary human tumor. Primary bladder tumor regeneration using human fetal bladder stroma may help elucidate the influences of stroma on tumor growth and development, as well as provide an efficient and accessible system for therapeutic testing.

  15. Modulation of the tumor microenvironment and inhibition of EGF/EGFR pathway: novel anti-tumor mechanisms of Cannabidiol in breast cancer.

    Science.gov (United States)

    Elbaz, Mohamad; Nasser, Mohd W; Ravi, Janani; Wani, Nissar A; Ahirwar, Dinesh K; Zhao, Helong; Oghumu, Steve; Satoskar, Abhay R; Shilo, Konstantin; Carson, William E; Ganju, Ramesh K

    2015-04-01

    The anti-tumor role and mechanisms of Cannabidiol (CBD), a non-psychotropic cannabinoid compound, are not well studied especially in triple-negative breast cancer (TNBC). In the present study, we analyzed CBD's anti-tumorigenic activity against highly aggressive breast cancer cell lines including TNBC subtype. We show here -for the first time-that CBD significantly inhibits epidermal growth factor (EGF)-induced proliferation and chemotaxis of breast cancer cells. Further studies revealed that CBD inhibits EGF-induced activation of EGFR, ERK, AKT and NF-kB signaling pathways as well as MMP2 and MMP9 secretion. In addition, we demonstrated that CBD inhibits tumor growth and metastasis in different mouse model systems. Analysis of molecular mechanisms revealed that CBD significantly inhibits the recruitment of tumor-associated macrophages in primary tumor stroma and secondary lung metastases. Similarly, our in vitro studies showed a significant reduction in the number of migrated RAW 264.7 cells towards the conditioned medium of CBD-treated cancer cells. The conditioned medium of CBD-treated cancer cells also showed lower levels of GM-CSF and CCL3 cytokines which are important for macrophage recruitment and activation. In summary, our study shows -for the first time-that CBD inhibits breast cancer growth and metastasis through novel mechanisms by inhibiting EGF/EGFR signaling and modulating the tumor microenvironment. These results also indicate that CBD can be used as a novel therapeutic option to inhibit growth and metastasis of highly aggressive breast cancer subtypes including TNBC, which currently have limited therapeutic options and are associated with poor prognosis and low survival rates.

  16. The novel multi-target iron chelator, M30 modulates HIF-1α-related glycolytic genes and insulin signaling pathway in the frontal cortex of APP/PS1 Alzheimer's disease mice.

    Science.gov (United States)

    Mechlovich, Danit; Amit, Tamar; Bar-Am, Orit; Mandel, Silvia; Youdim, Moussa B H; Weinreb, Orly

    2014-02-01

    Increasing evidence suggests that dysregulation of brain insulin/insulin receptor (InsR) and insulin signaling cascade are associated with the pathogenesis of Alzheimer's disease (AD). Our group has designed and synthesized a series of multi-target iron chelating, brain permeable compounds for AD. One leading multi-target compound, M30 possesses the neuroprotective N-propargyl moiety of the anti-Parkinsonian, monoamine oxidase (MAO)-B inhibitor, rasagiline (Azilect®) and the antioxidant-iron chelating moiety of an 8-hydroxyquinoline derivative of the iron chelator, VK28. Positive outcomes for the behavioral/cognitive and neuroprotective effects of M30 were recently obtained in preclinical experimental studies, regarding pathological aspects relevant to ageing and AD. We report that chronic treatment with M30 (1 and 5 mg/kg p.o; three times a week for 9 months) significantly elevated cortical insulin and InsR transcript and protein expression, respectively and increased the phosphorylated form of glycogen synthase kinase-3β in the frontal cortex of amyloid precursor protein (APP) and presenilin 1 (PS1) double transgenic mice. In addition, M30 treatment upregulated the levels of hypoxia-inducible factor (HIF)-1α and expression of its target genes involved in glycolysis including, aldolase A, enolase-1 and glucose transporter-1 (Glut-1), in the frontal cortex of APP/PS1 mice. Treatment with M30 also lead to an increase in the hepatic protein expression levels of InsR and Glut-1 and lowered the increase in blood glucose levels following glucose tolerance test. The present findings indicate that the multifunctional iron chelating drug, M30 regulates major brain glucose metabolism parameters and thus, might be beneficial for AD, in which impaired neuronal insulin signaling and Glut expression have been implicated.

  17. Salivary Gland Tumors Treated With Adjuvant Intensity-Modulated Radiotherapy With or Without Concurrent Chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Schoenfeld, Jonathan D., E-mail: jdschoenfeld@partners.org [Department of Radiation Oncology, Harvard Radiation Oncology Program, Boston, MA (United States); Sher, David J. [Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women' s Hospital, Boston, MA (United States); Norris, Charles M. [Department of Surgery, Division of Otolaryngology, Brigham and Women' s Hospital, Boston, MA (United States); Haddad, Robert I.; Posner, Marshall R. [Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA (United States); Department of Medicine, Brigham and Women' s Hospital, Boston, MA (United States); Balboni, Tracy A.; Tishler, Roy B. [Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women' s Hospital, Boston, MA (United States)

    2012-01-01

    Purpose: To analyze the recent single-institution experience of patients with salivary gland tumors who had undergone adjuvant intensity-modulated radiotherapy (IMRT), with or without concurrent chemotherapy. Patients and Methods: We performed a retrospective analysis of 35 salivary gland carcinoma patients treated primarily at the Dana-Farber Cancer Institute between 2005 and 2010 with surgery and adjuvant IMRT. The primary endpoints were local control, progression-free survival, and overall survival. The secondary endpoints were acute and chronic toxicity. The median follow-up was 2.3 years (interquartile range, 1.2-2.8) among the surviving patients. Results: The histologic types included adenoid cystic carcinoma in 15 (43%), mucoepidermoid carcinoma in 6 (17%), adenocarcinoma in 3 (9%), acinic cell carcinoma in 3 (9%), and other in 8 (23%). The primary sites were the parotid gland in 17 (49%), submandibular glands in 6 (17%), tongue in 4 (11%), palate in 4 (11%), and other in 4 (11%). The median radiation dose was 66 Gy, and 22 patients (63%) received CRT. The most common chemotherapy regimen was carboplatin and paclitaxel (n = 14, 64%). A trend was seen for patients undergoing CRT to have more adverse prognostic factors, including Stage T3-T4 disease (CRT, n = 12, 55% vs. n = 4, 31%, p = .29), nodal positivity (CRT, n = 8, 36% vs. n = 1, 8%, p = .10), and positive margins (n = 13, 59% vs. n = 5, 38%, p = .30). One patient who had undergone CRT developed an in-field recurrence, resulting in an overall actuarial 3-year local control rate of 92%. Five patients (14%) developed distant metastases (1 who had undergone IMRT only and 4 who had undergone CRT). Acute Grade 3 mucositis, esophagitis, and dermatitis occurred in 8%, 8%, and 8% (1 each) of IMRT patients and in 18%, 5%, and 14% (4, 1, and 3 patients) of the CRT group, respectively. No acute Grade 4 toxicity occurred. The most common late toxicity was Grade 1 xerostomia (n = 8, 23%). Conclusions: Treatment of

  18. Inhibition of COX-2 in Colon Cancer Modulates Tumor Growth and MDR-1 Expression to Enhance Tumor Regression in Therapy-Refractory Cancers In Vivo

    Directory of Open Access Journals (Sweden)

    Mahbuba Rahman

    2012-07-01

    Full Text Available Higher cyclooxygenase 2 (COX-2 expression is often observed in aggressive colorectal cancers (CRCs. Here, we attempt to examine the association between COX-2 expression in therapy-refractory CRC, how it affects chemosensitivity, and whether, in primary tumors, it is predictive of clinical outcomes. Our results revealed higher COX-2 expression in chemoresistant CRC cells and tumor xenografts. In vitro, the combination of either aspirin or celecoxib with 5-fluorouracil (5-FU was capable of improving chemosensitivity in chemorefractory CRC cells, but a synergistic effect with 5-FU could only be demonstrated with celecoxib. To examine the potential clinical significance of these observations, in vivo studies were undertaken, which also showed that the greatest tumor regression was achieved in chemoresistant xenografts after chemotherapy in combination with celecoxib, but not aspirin. We also noted that these chemoresistant tumors with higher COX-2 expression had a more aggressive growth rate. Given the dramatic response to a combination of celecoxib + 5-FU, the possibility that celecoxib may modulate chemosensitivity as a result of its ability to inhibit MDR-1 was examined. In addition, assessment of a tissue microarray consisting of 130 cases of CRCs revealed that, in humans, higher COX-2 expression was associated with poorer survival with a 68% increased risk of mortality, indicating that COX-2 expression is a marker of poor clinical outcome. The findings of this study point to a potential benefit of combining COX-2 inhibitors with current regimens to achieve better response in the treatment of therapy-refractory CRC and in using COX-2 expression as a prognostic marker to help identify individuals who would benefit the greatest from closer follow-up and more aggressive therapy.

  19. Inhibition of COX-2 in Colon Cancer Modulates Tumor Growth and MDR-1 Expression to Enhance Tumor Regression in Therapy-Refractory Cancers In Vivo12

    Science.gov (United States)

    Rahman, Mahbuba; Selvarajan, Krithika; Hasan, Mohammad R; Chan, Annie P; Jin, Chaoyang; Kim, Jieun; Chan, Simon K; Le, Nhu D; Kim, Young-Bae; Tai, Isabella T

    2012-01-01

    Higher cyclooxygenase 2 (COX-2) expression is often observed in aggressive colorectal cancers (CRCs). Here, we attempt to examine the association between COX-2 expression in therapy-refractory CRC, how it affects chemosensitivity, and whether, in primary tumors, it is predictive of clinical outcomes. Our results revealed higher COX-2 expression in chemoresistant CRC cells and tumor xenografts. In vitro, the combination of either aspirin or celecoxib with 5-fluorouracil (5-FU) was capable of improving chemosensitivity in chemorefractory CRC cells, but a synergistic effect with 5-FU could only be demonstrated with celecoxib. To examine the potential clinical significance of these observations, in vivo studies were undertaken, which also showed that the greatest tumor regression was achieved in chemoresistant xenografts after chemotherapy in combination with celecoxib, but not aspirin. We also noted that these chemoresistant tumors with higher COX-2 expression had a more aggressive growth rate. Given the dramatic response to a combination of celecoxib + 5-FU, the possibility that celecoxib may modulate chemosensitivity as a result of its ability to inhibit MDR-1 was examined. In addition, assessment of a tissue microarray consisting of 130 cases of CRCs revealed that, in humans, higher COX-2 expression was associated with poorer survival with a 68% increased risk of mortality, indicating that COX-2 expression is a marker of poor clinical outcome. The findings of this study point to a potential benefit of combining COX-2 inhibitors with current regimens to achieve better response in the treatment of therapy-refractory CRC and in using COX-2 expression as a prognostic marker to help identify individuals who would benefit the greatest from closer follow-up and more aggressive therapy. PMID:22904679

  20. A novel proapoptotic gene PANO encodes a post-translational modulator of the tumor suppressor p14ARF.

    Science.gov (United States)

    Watari, Akihiro; Li, Yang; Higashiyama, Shinji; Yutsudo, Masuo

    2012-02-01

    The protein p14ARF is a known tumor suppressor protein controlling cell proliferation and survival, which mainly localizes in nucleoli. However, the regulatory mechanisms that govern its activity or expression remain unclear. Here, we report that a novel proapoptotic nucleolar protein, PANO, modulates the expression and activity of p14ARF in HeLa cells. Overexpression of PANO enhances the stability of p14ARF protein by protecting it from degradation, resulting in an increase in p14ARF expression levels. Overexpression of PANO also induces apoptosis under low serum conditions. This effect is dependent on the nucleolar localization of PANO and inhibited by knocking-down p14ARF. Alternatively, PANO siRNA treated cells exhibit a reduction in p14ARF protein levels. In addition, ectopic expression of PANO suppresses the tumorigenicity of HeLa cells in nude mice. These results indicate that PANO is a new apoptosis-inducing gene by modulating the tumor suppressor protein, p14ARF, and may itself be a new candidate tumor suppressor gene. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. A novel proapoptotic gene PANO encodes a post-translational modulator of the tumor suppressor p14ARF

    Energy Technology Data Exchange (ETDEWEB)

    Watari, Akihiro; Li, Yang; Higashiyama, Shinji; Yutsudo, Masuo, E-mail: yutsudo@biken.osaka-u.ac.jp

    2012-02-01

    The protein p14ARF is a known tumor suppressor protein controlling cell proliferation and survival, which mainly localizes in nucleoli. However, the regulatory mechanisms that govern its activity or expression remain unclear. Here, we report that a novel proapoptotic nucleolar protein, PANO, modulates the expression and activity of p14ARF in HeLa cells. Overexpression of PANO enhances the stability of p14ARF protein by protecting it from degradation, resulting in an increase in p14ARF expression levels. Overexpression of PANO also induces apoptosis under low serum conditions. This effect is dependent on the nucleolar localization of PANO and inhibited by knocking-down p14ARF. Alternatively, PANO siRNA treated cells exhibit a reduction in p14ARF protein levels. In addition, ectopic expression of PANO suppresses the tumorigenicity of HeLa cells in nude mice. These results indicate that PANO is a new apoptosis-inducing gene by modulating the tumor suppressor protein, p14ARF, and may itself be a new candidate tumor suppressor gene.

  2. The scientific basis for chelation: animal studies and lead chelation.

    Science.gov (United States)

    Smith, Donald; Strupp, Barbara J

    2013-12-01

    This presentation summarizes several of the rodent and non-human studies that we have conducted to help inform the efficacy and clinical utility of succimer (meso-2,3-dimercaptosuccincinic acid) chelation treatment. We address the following questions: (1) What is the extent of body lead, and in particular brain lead reduction with chelation, and do reductions in blood lead accurately reflect reductions in brain lead? (2) Can succimer treatment alleviate the neurobehavioral impacts of lead poisoning? And (3) does succimer treatment, in the absence of lead poisoning, produce neurobehavioral deficits? Results from our studies in juvenile primates show that succimer treatment is effective at accelerating the elimination of lead from the body, but chelation was only marginally better than the complete cessation of lead exposure alone. Studies in lead-exposed adult primates treated with a single 19-day course of succimer showed that chelation did not measurably reduce brain lead levels compared to vehicle-treated controls. A follow-up study in rodents that underwent one or two 21-day courses of succimer treatment showed that chelation significantly reduced brain lead levels, and that two courses of succimer were significantly more efficacious at reducing brain lead levels than one. In both the primate and rodent studies, reductions in blood lead levels were a relatively poor predictor of reductions in brain lead levels. Our studies in rodents demonstrated that it is possible for succimer chelation therapy to alleviate certain types of lead-induced behavioral/cognitive dysfunction, suggesting that if a succimer treatment protocol that produced a substantial reduction of brain lead levels could be identified for humans, a functional benefit might be derived. Finally, we also found that succimer treatment produced lasting adverse neurobehavioral effects when administered to non-lead-exposed rodents, highlighting the potential risks of administering succimer or other metal-chelating

  3. Overview of current chelation practices

    Directory of Open Access Journals (Sweden)

    Y. Aydinok

    2011-12-01

    Full Text Available Deferoxamine (DFO is reference standard therapy for transfusional iron overload since the 1980s. Although it is a highly effective iron chelator, the compliance problem to subcutaneous administration of DFO remains as the major problem. The oral chelator Deferiprone (DFP has no marketing licence in North America, however, it has been licensed in India since 1994 and the European Union (EU granted marketing approval for DFP in 1999, specifically for patients with thalassemia major when DFO is inadequate, intolerable or unacceptable. There are still limited data available on the use of DFP in children between 6 and 10 years of age, and no data on DFP use in children under 6 years of age. Subsequently the oral chelator Deferasirox (DFX was approved by FDA and EMA for the treatment of patients with transfusional iron overload -older than 2 years of age- as first line therapy, in 2005 and 2006 respectively. The primary objective of iron chelation is to maintain body iron at safe levels at all times but once iron is accumulated, the objective of iron chelation is to reduce tissue iron to safe levels which is a slow process. The chelation regimen, dose and frequency of administration, of the chelator(s are mainly determined based on body iron burden, presence of myocardial iron and the transfusional iron loading rate. A proper monitoring of chelation is of importance for measuring the response rate to a particular regimen and providing dose adjustments to enhance chelation efficacy and to avoid toxicity. Efficacy of a chelation regimen may exhibit individual variability resulting from factors such as absorbtion and metabolism of the chelator. Tolerability and compliance are also individual variables effecting the response to chelation. Understanding of advantages and limitations of chelators, accurately determining chelation needs of patients with iron overload and designing individualized chelation regimens with less toxicity but optimum efficacy

  4. Chelation for Coronary Heart Disease

    Science.gov (United States)

    ... V W X Y Z Chelation for Coronary Heart Disease Share: © AHA Coronary heart disease is a leading cause of death among both ... health approach . The use of disodium EDTA for heart disease has not been approved by the U.S. Food ...

  5. Design and synthesis of zinc-selective chelators for extracellular applications.

    Science.gov (United States)

    Kawabata, Eri; Kikuchi, Kazuya; Urano, Yasuteru; Kojima, Hirotatsu; Odani, Akira; Nagano, Tetsuo

    2005-01-26

    Zinc (Zn2+) is found in every cell in human bodies. A few millimolar of free Zn2+ exists in the vesicles of presynaptic neurons in the mammalian brain and is released by synaptic activity or depolarization, modulating the function of certain ion channels and receptors. Although various chemical tools for measuring Zn2+ in biological samples, such as fluorescent probes for Zn2+, have been developed, Zn2+-selective chelators have room to be improved. Research on Zn2+ signals in the brain has traditionally employed several chelators, which have several shortcomings for biological applications. Here we report the design, synthesis, and properties of new membrane-impermeable chelators selective for Zn2+ and describe biological applications in hippocampal slices. As a result, our newly designed chelator revealed the first biological implication that presynaptic Zn2+ can be released in the CA1 region. This confirms the utility of these new chelatotrs as extracellular Zn2+ chelators for biological applications.

  6. Intensity- and energy-modulated electron radiotherapy by means of an xMLC for head and neck shallow tumors

    Energy Technology Data Exchange (ETDEWEB)

    Salguero, Francisco Javier; Palma, Bianey Atriana; Leal, Antonio [Departamento de FisiologIa Medica y Biofisica, Universidad de Sevilla (Spain); Arrans, Rafael [Hospital Universitario Virgen Macarena, Sevilla (Spain)], E-mail: alplaza@us.es

    2010-03-07

    The purpose of this paper is to assess the feasibility of delivering intensity- and energy-modulated electron radiation treatment (MERT) by a photon multileaf collimator (xMLC) and to evaluate the improvements obtained in shallow head and neck (HN) tumors. Four HN patient cases covering different clinical situations were planned by MERT, which used an in-house treatment planning system that utilized Monte Carlo dose calculation. The cases included one oronasal, two parotid and one middle ear tumors. The resulting dose-volume histograms were compared with those obtained from conventional photon and electron treatment techniques in our clinic, which included IMRT, electron beam and mixed beams, most of them using fixed-thickness bolus. Experimental verification was performed with plane-parallel ionization chambers for absolute dose verification, and a PTW ionization chamber array and radiochromic film for relative dosimetry. A MC-based treatment planning system for target with compromised volumes in depth and laterally has been validated. A quality assurance protocol for individual MERT plans was launched. Relative MC dose distributions showed a high agreement with film measurements and absolute ion chamber dose measurements performed at a reference point agreed with MC calculations within 2% in all cases. Clinically acceptable PTV coverage and organ-at-risk sparing were achieved by using the proposed MERT approach. MERT treatment plans, based on delivery of intensity-modulated electron beam using the xMLC, for superficial head and neck tumors, demonstrated comparable or improved PTV dose homogeneity with significantly lower dose to normal tissues. The clinical implementation of this technique will be able to offer a viable alternative for the treatment of shallow head and neck tumors.

  7. Novel EphB4 Monoclonal Antibodies Modulate Angiogenesis and Inhibit Tumor Growth

    OpenAIRE

    Krasnoperov, Valery; Kumar, S. Ram; Ley, Eric; Li, Xiuqing; Scehnet, Jeffrey; Liu, Ren; Zozulya, Sergey; Gill, Parkash S.

    2010-01-01

    EphB4 receptor tyrosine kinase and its cognate ligand EphrinB2 regulate induction and maturation of newly forming vessels. Inhibition of their interaction arrests angiogenesis, vessel maturation, and pericyte recruitment. In addition, EphB4 is expressed in the vast majority of epithelial cancers and provides a survival advantage to most. Here, we describe two anti-EphB4 monoclonal antibodies that inhibit tumor angiogenesis and tumor growth by two distinct pathways. MAb131 binds to fibronectin...

  8. Iron Chelation and Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Kelsey J. Weigel

    2014-01-01

    Full Text Available Histochemical and MRI studies have demonstrated that MS (multiple sclerosis patients have abnormal deposition of iron in both gray and white matter structures. Data is emerging indicating that this iron could partake in pathogenesis by various mechanisms, e.g., promoting the production of reactive oxygen species and enhancing the production of proinflammatory cytokines. Iron chelation therapy could be a viable strategy to block iron-related pathological events or it can confer cellular protection by stabilizing hypoxia inducible factor 1α, a transcription factor that normally responds to hypoxic conditions. Iron chelation has been shown to protect against disease progression and/or limit iron accumulation in some neurological disorders or their experimental models. Data from studies that administered a chelator to animals with experimental autoimmune encephalomyelitis, a model of MS, support the rationale for examining this treatment approach in MS. Preliminary clinical studies have been performed in MS patients using deferoxamine. Although some side effects were observed, the large majority of patients were able to tolerate the arduous administration regimen, i.e., 6–8 h of subcutaneous infusion, and all side effects resolved upon discontinuation of treatment. Importantly, these preliminary studies did not identify a disqualifying event for this experimental approach. More recently developed chelators, deferasirox and deferiprone, are more desirable for possible use in MS given their oral administration, and importantly, deferiprone can cross the blood–brain barrier. However, experiences from other conditions indicate that the potential for adverse events during chelation therapy necessitates close patient monitoring and a carefully considered administration regimen.

  9. Modulation of macrophage cytokine profiles during solid tumor progression: susceptibility to Candida albicans infection

    Directory of Open Access Journals (Sweden)

    Venturini James

    2009-06-01

    Full Text Available Abstract Background In order to attain a better understanding of the interactions between opportunist fungi and their hosts, we investigated the cytokine profile associated with the inflammatory response to Candida albicans infection in mice with solid Ehrlich tumors of different degrees. Methods Groups of eight animals were inoculated intraperitoneally with 5 × 106 C. albicans 7, 14 or 21 days after tumor implantation. After 24 or 72 hours, the animals were euthanized and intraperitoneal lavage fluid was collected. Peritoneal macrophages were cultivated and the levels of IFN-γ, TNF-α, IL-12, IL-10 and IL-4 released into the supernatants were measured by ELISA. Kidney, liver and spleen samples were evaluated for fungal dissemination. Tumor-free animals and animals that had only been subjected to C. albicans infection were used as control groups. Results Our results demonstrated that the mice produced more IFN-γ and TNF-α and less IL-10, and also exhibited fungal clearance, at the beginning of tumor evolution. With the tumor progression, this picture changed: IL-10 production increased and IFN-γ and TNF-α release decreased; furthermore, there was extensive fungal dissemination. Conclusion Our results indicate that solid tumors can affect the production of macrophage cytokines and, in consequence, affect host resistance to opportunistic infections.

  10. Estrogen-related receptor alpha modulates lactate dehydrogenase activity in thyroid tumors.

    Directory of Open Access Journals (Sweden)

    Delphine Mirebeau-Prunier

    Full Text Available Metabolic modifications of tumor cells are hallmarks of cancer. They exhibit an altered metabolism that allows them to sustain higher proliferation rates in hostile environment outside the cell. In thyroid tumors, the expression of the estrogen-related receptor α (ERRα, a major factor of metabolic adaptation, is closely related to the oxidative metabolism and the proliferative status of the cells. To elucidate the role played by ERRα in the glycolytic adaptation of tumor cells, we focused on the regulation of lactate dehydrogenases A and B (LDHA, LDHB and the LDHA/LDHB ratio. Our study included tissue samples from 10 classical and 10 oncocytic variants of follicular thyroid tumors and 10 normal thyroid tissues, as well as samples from three human thyroid tumor cell lines: FTC-133, XTC.UC1 and RO82W-1. We identified multiple cis-acting promoter elements for ERRα, in both the LDHA and LDHB genes. The interaction between ERRα and LDH promoters was confirmed by chromatin immunoprecipitation assays and in vitro analysis for LDHB. Using knock-in and knock-out cellular models, we found an inverse correlation between ERRα expression and LDH activity. This suggests that thyroid tumor cells may reprogram their metabolic pathways through the up-regulation of ERRα by a process distinct from that proposed by the recently revisited Warburg hypothesis.

  11. AAZTA: an ideal chelating agent for the development of {sup 44}Sc PET imaging agents

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Gabor; Szikra, Dezso; Trencsenyi, Gyoergy [Scanomed Ltd., Debrecen (Hungary); University of Debrecen, Medical Imaging Clinic (Hungary); Fekete, Aniko [University of Debrecen, Medical Imaging Clinic (Hungary); Garai, Ildiko [Scanomed Ltd., Debrecen (Hungary); Giani, Arianna M.; Negri, Roberto [Dipartimento di Scienze del Farmaco, Universita del Piemonte Orientale, Novara (Italy); Masciocchi, Norberto [Dipartimento di Scienza e Alta Tecnologia e To.Sca.Lab, Universita degli Studi dell' Insubria, Como (Italy); Maiocchi, Alessandro; Uggeri, Fulvio [Bracco Imaging spa, Bracco Research Centre, Colleretto Giacosa (Italy); Toth, Imre [Department of Inorganic and Analytical Chemistry, University of Debrecen (Hungary); Aime, Silvio [Dipartimento di Biotecnologie Molecolari e Scienze della Salute, Centro di Imaging Molecolare e Preclinico, Universita degli Studi di Torino (Italy); Giovenzana, Giovanni B. [Dipartimento di Scienze del Farmaco, Universita del Piemonte Orientale, Novara (Italy); CAGE Chemicals srl, Novara (Italy); Baranyai, Zsolt [Bracco Imaging spa, Bracco Research Centre, Colleretto Giacosa (Italy); Department of Inorganic and Analytical Chemistry, University of Debrecen (Hungary)

    2017-02-13

    Unprecedented fast and efficient complexation of Sc{sup III} was demonstrated with the chelating agent AAZTA (AAZTA=1,4-bis(carboxymethyl)-6-[bis(carboxymethyl)] amino-6-methylperhydro-1,4-d iazepine) under mild experimental conditions. The robustness of the {sup 44}Sc(AAZTA){sup -} chelate and conjugated biomolecules thereof is further shown by in vivo PET imaging in healthy and tumor mice models. The new results pave the way towards development of efficient Sc-based radiopharmaceuticals using the AAZTA chelator. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Volumetric-Modulated Arc Therapy for Stereotactic Body Radiotherapy of Lung Tumors: A Comparison With Intensity-Modulated Radiotherapy Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Holt, Andrea; Vliet-Vroegindeweij, Corine van; Mans, Anton; Belderbos, Jose S. [Department of Radiation Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Damen, Eugene M.F., E-mail: e.damen@nki.nl [Department of Radiation Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands)

    2011-12-01

    Purpose: To demonstrate the potential of volumetric-modulated arc therapy (VMAT) compared with intensity-modulated radiotherapy (IMRT) techniques with a limited number of segments for stereotactic body radiotherapy (SBRT) for early-stage lung cancer. Methods and Materials: For a random selection of 27 patients eligible for SBRT, coplanar and noncoplanar IMRT and coplanar VMAT (using SmartArc) treatment plans were generated in Pinnacle{sup 3} and compared. In addition, film measurements were performed using an anthropomorphic phantom to evaluate the skin dose for the different treatment techniques. Results: Using VMAT, the delivery times could be reduced to an average of 6.6 min compared with 23.7 min with noncoplanar IMRT. The mean dose to the healthy lung was 4.1 Gy for VMAT and noncoplanar IMRT and 4.2 Gy for coplanar IMRT. The volume of healthy lung receiving >5 Gy and >20 Gy was 18.0% and 5.4% for VMAT, 18.5% and 5.0% for noncoplanar IMRT, and 19.4% and 5.7% for coplanar IMRT, respectively. The dose conformity at 100% and 50% of the prescribed dose of 54 Gy was 1.13 and 5.17 for VMAT, 1.11 and 4.80 for noncoplanar IMRT and 1.12 and 5.31 for coplanar IMRT, respectively. The measured skin doses were comparable for VMAT and noncoplanar IMRT and slightly greater for coplanar IMRT. Conclusions: Coplanar VMAT for SBRT for early-stage lung cancer achieved plan quality and skin dose levels comparable to those using noncoplanar IMRT and slightly better than those with coplanar IMRT. In addition, the delivery time could be reduced by {<=}70% with VMAT.

  13. Modulation of glucose transporter 1 (GLUT1 expression levels alters mouse mammary tumor cell growth in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Christian D Young

    Full Text Available Tumor cells exhibit an altered metabolism characterized by elevated aerobic glycolysis and lactate secretion which is supported by an increase in glucose transport and consumption. We hypothesized that reducing or eliminating the expression of the most prominently expressed glucose transporter(s would decrease the amount of glucose available to breast cancer cells thereby decreasing their metabolic capacity and proliferative potential.Of the 12 GLUT family glucose transporters expressed in mice, GLUT1 was the most abundantly expressed at the RNA level in the mouse mammary tumors from MMTV-c-ErbB2 mice and cell lines examined. Reducing GLUT1 expression in mouse mammary tumor cell lines using shRNA or Cre/Lox technology reduced glucose transport, glucose consumption, lactate secretion and lipid synthesis in vitro without altering the concentration of ATP, as well as reduced growth on plastic and in soft agar. The growth of tumor cells with reduced GLUT1 expression was impaired when transplanted into the mammary fat pad of athymic nude mice in vivo. Overexpression of GLUT1 in a cell line with low levels of endogenous GLUT1 increased glucose transport in vitro and enhanced growth in nude mice in vivo as compared to the control cells with very low levels of GLUT1.These studies demonstrate that GLUT1 is the major glucose transporter in mouse mammary carcinoma models overexpressing ErbB2 or PyVMT and that modulation of the level of GLUT1 has an effect upon the growth of mouse mammary tumor cell lines in vivo.

  14. Nanomedicine targeting the tumor microenvironment: Therapeutic strategies to inhibit angiogenesis, remodel matrix, and modulate immune responses

    Directory of Open Access Journals (Sweden)

    Elizabeth L. Siegler

    2016-11-01

    Full Text Available Increasing attention has been given to the tumor microenvironment (TME, which includes cellular and structural components such as fibroblasts, immune cells, vasculature, and extracellular matrix (ECM that surround tumor sites. These components contribute to tumor growth and metastasis and are one reason why traditional chemotherapy often is insufficient to eradicate the tumor completely. Newer treatments that target aspects of the TME, such as antiangiogenic and immunostimulatory therapies, have seen limited clinical success despite promising preclinical results. This can be attributed to a number of reasons, including a lack of drug penetration deeper into the necrotic tumor core, nonspecific delivery, rapid clearance from serum, or toxic side effects at high doses. Nanoparticles offer a potential solution to all of these obstacles, and many recent studies have shown encouraging results using nanomedicine to target TME vasculature, ECM, and immune response. While few of these platforms have made it to clinical trials to date, these strategies are relatively new and may offer a way to improve the effects of anticancer therapies.

  15. Modulation of the leptin receptor mediates tumor growth and migration of pancreatic cancer cells.

    Science.gov (United States)

    Mendonsa, Alisha M; Chalfant, Madeleine C; Gorden, Lee D; VanSaun, Michael N

    2015-01-01

    Obesity has been implicated as a significant risk factor for development of pancreatic cancer. In the setting of obesity, a systemic chronic inflammatory response is characterized by alterations in the production and secretion of a wide variety of growth factors. Leptin is a hormone whose level increases drastically in the serum of obese patients. High fat diet induced obesity in mice leads to an overall increased body weight, pancreatic weight, serum leptin, and pancreatic tissue leptin levels. Here we report the contribution of obesity and leptin to pancreatic cancer growth utilizing an in vivo orthotopic murine pancreatic cancer model, which resulted in increased tumor proliferation with concomitant increased tumor burden in the diet induced obese mice compared to lean mice. Human and murine pancreatic cancer cell lines were found to express the short as well as the long form of the leptin receptor and functionally responded to leptin induced activation through an increased phosphorylation of AKT473. In vitro, leptin stimulation increased cellular migration which was blocked by addition of a PI3K inhibitor. In vivo, depletion of the leptin receptor through shRNA knockdown partially abrogated increased orthotopic tumor growth in obese mice. These findings suggest that leptin contributes to pancreatic tumor growth through activation of the PI3K/AKT pathway, which promotes pancreatic tumor cell migration.

  16. Modulation of the leptin receptor mediates tumor growth and migration of pancreatic cancer cells.

    Directory of Open Access Journals (Sweden)

    Alisha M Mendonsa

    Full Text Available Obesity has been implicated as a significant risk factor for development of pancreatic cancer. In the setting of obesity, a systemic chronic inflammatory response is characterized by alterations in the production and secretion of a wide variety of growth factors. Leptin is a hormone whose level increases drastically in the serum of obese patients. High fat diet induced obesity in mice leads to an overall increased body weight, pancreatic weight, serum leptin, and pancreatic tissue leptin levels. Here we report the contribution of obesity and leptin to pancreatic cancer growth utilizing an in vivo orthotopic murine pancreatic cancer model, which resulted in increased tumor proliferation with concomitant increased tumor burden in the diet induced obese mice compared to lean mice. Human and murine pancreatic cancer cell lines were found to express the short as well as the long form of the leptin receptor and functionally responded to leptin induced activation through an increased phosphorylation of AKT473. In vitro, leptin stimulation increased cellular migration which was blocked by addition of a PI3K inhibitor. In vivo, depletion of the leptin receptor through shRNA knockdown partially abrogated increased orthotopic tumor growth in obese mice. These findings suggest that leptin contributes to pancreatic tumor growth through activation of the PI3K/AKT pathway, which promotes pancreatic tumor cell migration.

  17. Patient Specification Quality Assurance for Glioblastoma Multiforme Brain Tumors Treated with Intensity Modulated Radiation Therapy

    OpenAIRE

    Al-Mohammed, H. I.

    2011-01-01

    The aim of this study was to evaluate the significance of performing patient specification quality assurance for patients diagnosed with glioblastoma multiforme treated with intensity modulated radiation therapy. The study evaluated ten intensity modulated radiation therapy treatment plans using 10 MV beams, a total dose of 60 Gy (2 Gy/fraction, five fractions a week for a total of six weeks treatment). For the quality assurance protocol we used a two-dimensional ionization-chamber array (2D-...

  18. DDX3 Represses Stemness by Epigenetically Modulating Tumor-suppressive miRNAs in Hepatocellular Carcinoma.

    Science.gov (United States)

    Li, Hao-Kang; Mai, Ru-Tsun; Huang, Hsien-Da; Chou, Chih-Hung; Chang, Yi-An; Chang, Yao-Wen; You, Li-Ru; Chen, Chun-Ming; Lee, Yan-Hwa Wu

    2016-06-27

    Studies indicate that the presence of cancer stem cells (CSCs) is responsible for poor prognosis of hepatocellular carcinoma (HCC) patients. In this study, the functional role of DDX3 in regulation of hepatic CSCs was investigated. Our results demonstrated that reduced DDX3 expression was not only inversely associated with tumor grade, but also predicted poor prognosis of HCC patients. Knockdown of DDX3 in HCC cell line HepG2 induced stemness gene signature followed by occurrence of self-renewal, chemoreisistance, EMT, migration as well as CSC expansion, and most importantly, DDX3 knockdown promotes tumorigenesis. Moreover, we found positive correlations between DDX3 level and expressions of tumor-suppressive miR-200b, miR-200c, miR-122 and miR-145, but not miR-10b and miR-519a, implying their involvement in DDX3 knockdown-induced CSC phenotypes. In addition, DDX3 reduction promoted up-regulation of DNA methyltransferase 3A (DNMT3A), while neither DNMT3B nor DNMT1 expression was affected. Enriched DNMT3A binding along with hypermethylation on promoters of these tumor-suppressive miRNAs reflected their transcriptional repressions in DDX3-knockdown cells. Furthermore, individual restoration of these tumor-suppressive miRNAs represses DDX3 knockdown-induced CSC phenotypes. In conclusion, our study suggested that DDX3 prevents generation of CSCs through epigenetically regulating a subset of tumor-suppressive miRNAs expressions, which strengthens tumor suppressor role of DDX3 in HCC.

  19. Inhibitory effect of agmatine on proliferation of tumor cells by modulation of polyamine metabolism

    Institute of Scientific and Technical Information of China (English)

    Ji-fang WANG; Rui-bin SU; Ning WU; Bo XU; Xin-qiang LU; Yin LIU; Jin LI

    2005-01-01

    Aim: To assess the inhibitory effect of agmatine on tumor growth in vivo and tumor cell proliferation in vitro. Methods: The transplanted animal model,[3H]thymidine incorporation assay, 3- [4,5-dimethythiazol-2-yl]-2,5-diphenyltetrazo lium assay, and lactate dehydrogenase (LDH) release assay were performed.Results: Agmatine, at doses of 5-40 mg/kg, suppressed the S180 sarcoma tumor growth dose-dependently in mice in vivo and the highest inhibitory ratio reached 31.3% in Kunming mice and 50.0% in Balb/c mice, respectively. Similar results were obtained in the transplanted B16 melanoma tumor model. Agmatine (1-1000 μmol/L) was able to attenuate the proliferation of cultured MCF-7 human breast cancer cells in vitro in a concentration-dependent manner and the highest inhibitory ratio reached 50.3% in the [3H]thymidine incorporation assay.Additionally, in the LDH release assay, spermine (20 μmol/L) and spermidine (20 μmol/L) increased the LDH release significantly, but agmatine (1-1000 μmol/L) did not, indicating that the inhibitory effect of agmatine on the proliferation of MCF was not related to cellular toxicity. In the [3H]thymidine incorporation assay,putrescine (12.5-100.0 μmol/L) could reverse the inhibitory effect of agmatine on the proliferation of MCF concentration-dependently, suggesting that the inhibitory effect of agmatine on the proliferation of MCF might be associated with a decreased level of the intracellular polyamines pool. Conclusion: Agmatine had significant inhibitory effect on transplanted tumor growth in vivo and proliferation of tumor cells in vitro, and the mechanism might be a result of inducing decrease of intracellular polyamine contents.

  20. Tumor suppressor protein SMAR1 modulates the roughness of cell surface: combined AFM and SEM study

    Directory of Open Access Journals (Sweden)

    Mamgain Hitesh

    2009-10-01

    Full Text Available Abstract Background Imaging tools such as scanning electron microscope (SEM and atomic force microscope (AFM can be used to produce high-resolution topographic images of biomedical specimens and hence are well suited for imaging alterations in cell morphology. We have studied the correlation of SMAR1 expression with cell surface smoothness in cell lines as well as in different grades of human breast cancer and mouse tumor sections. Methods We validated knockdown and overexpression of SMAR1 using RT-PCR as well as Western blotting in human embryonic kidney (HEK 293, human breast cancer (MCF-7 and mouse melanoma (B16F1 cell lines. The samples were then processed for cell surface roughness studies using atomic force microscopy (AFM and scanning electron microscopy (SEM. The same samples were used for microarray analysis as well. Tumors sections from control and SMAR1 treated mice as well as tissues sections from different grades of human breast cancer on poly L-lysine coated slides were used for AFM and SEM studies. Results Tumor sections from mice injected with melanoma cells showed pronounced surface roughness. In contrast, tumor sections obtained from nude mice that were first injected with melanoma cells followed by repeated injections of SMAR1-P44 peptide, exhibited relatively smoother surface profile. Interestingly, human breast cancer tissue sections that showed reduced SMAR1 expression exhibited increased surface roughness compared to the adjacent normal breast tissue. Our AFM data establishes that treatment of cells with SMAR1-P44 results into increase in cytoskeletal volume that is supported by comparative gene expression data showing an increase in the expression of specific cytoskeletal proteins compared to the control cells. Altogether, these findings indicate that tumor suppressor function of SMAR1 might be exhibited through smoothening of cell surface by regulating expression of cell surface proteins. Conclusion Tumor suppressor

  1. Prostate-Specific Antigen Modulates the Expression of Genes Involved in Prostate Tumor Growth

    Directory of Open Access Journals (Sweden)

    B. Bindukumar

    2005-03-01

    Full Text Available Prostate-specific antigen (PSA is a serine protease that is widely used as a surrogate marker in the early diagnosis and management of prostate cancer. The physiological relevance of tissue PSA levels and their role in prostate tumor growth and metastasis are not known. Free-PSA (f-PSA was purified to homogeneity from human seminal plasma by column chromatography, eliminating hk2 and all known PSA complexes and retaining its protease activity. Confluent monolayers of prostate cancer cell lines, PC-3M and LNCaP, were treated with f-PSA in a series of in vitro experiments to determine the changes in expression of various genes that are known to regulate tumor growth and metastasis. Gene array, quantitative polymerase chain reaction (QPCR, enzyme-linked immunosorbent assay (ELISA results show significant changes in the expression of various cancer-related genes in PC-3M and LNCaP cells treated with f-PSA. In a gene array analysis of PC-3M cells treated with 10 4tM f-PSA, 136 genes were upregulated and 137 genes were downregulated. In LNCaP cells treated with an identical concentration of f-PSA, a total of 793 genes was regulated. QPCR analysis reveals that the genes for urokinase-type plasminogen activator (uPA, VEGF, Pim-1 oncogene, known to promote tumor growth, were significantly downregulated, whereas IFN-γ, known to be a tumor-suppressor gene, was significantly upregulated in f-PSA-treated PC-3M cells. The effect of f-PSA on VEGF and IFN-γ gene expression and on protein release in PC-3M cells was distinctly dose-dependent. In vivo studies showed a significant reduction (P = .03 in tumor load when fPSA was administered in the tumor vicinity of PC-3M tumor-bearing BALB/c nude mice. Our data support the hypothesis that f-PSA plays a significant role in prostate tumor growth by regulating various proangiogenic and antiangiogenic growth factors.

  2. Luminescent lanthanide chelates and methods of use

    Science.gov (United States)

    Selvin, Paul R.; Hearst, John

    1997-01-01

    The invention provides lanthanide chelates capable of intense luminescence. The celates comprise a lanthanide chelator covalently joined to a coumarin-like or quinolone-like sensitizer. Exemplary sensitzers include 2- or 4-quinolones, 2- or 4-coumarins, or derivatives thereof e.g. carbostyril 124 (7-amino-4-methyl-2-quinolone), coumarin 120 (7-amino-4-methyl-2-coumarin), coumarin 124 (7-amino-4-(trifluoromethyl)-2-coumarin), aminomethyltrimethylpsoralen, etc. The chelates form high affinity complexes with lanthanides, such as terbium or europium, through chelator groups, such as DTPA. The chelates may be coupled to a wide variety of compounds to create specific labels, probes, diagnostic and/or therapeutic reagents, etc. The chelates find particular use in resonance energy transfer between chelate-lanthanide complexes and another luminescent agent, often a fluorescent non-metal based resonance energy acceptor. The methods provide useful information about the structure, conformation, relative location and/or interactions of macromolecules.

  3. Protective Effect of Prosopis cineraria Against N-Nitrosodiethylamine Induced Liver Tumor by Modulating Membrane Bound Enzymes and Glycoproteins

    Directory of Open Access Journals (Sweden)

    Naina Mohamed Pakkir Maideen

    2012-06-01

    Full Text Available Purpose: The objective of the present study was to evaluate the protective effect of methanol extract of Prosopis cineraria (MPC against N-nitrosodiethylamine (DEN, 200mg/kg induced Phenobarbital promoted experimental liver tumors in male Wistar rats. Methods: The rats were divided into four groups, each group consisting of six animals. Group 1 served as control animals. Liver tumor was induced in group 2, 3, and 4 and Group 3 animals received MPC 200mg/kg and Group 4 animals received MPC 400mg/kg. Results: Administration of DEN has brought down the levels of membrane bound enzymes like Na+/ K+ ATPase, Mg2+ ATPase and Ca2+ATPase which were later found to be increased by the administration of Prosopis cineraria (200 and 400mg/kg in dose dependent manner. The MPC extract also suppressed the levels of glycoproteins like Hexose, Hexosamine and Sialic acid when compared to liver tumor bearing animals. Conclusions: Our study suggests that MPC may extend its protective role by modulating the levels of membrane bound enzymes and suppressing glycoprotein levels.

  4. Chelators for investigating zinc metalloneurochemistry.

    Science.gov (United States)

    Radford, Robert J; Lippard, Stephen J

    2013-04-01

    The physiology and pathology of mobile zinc signaling has become an important topic in metalloneurochemistry. To study the action of mobile zinc effectively, specialized tools are required that probe the temporal and positional changes of zinc ions within live tissue and cells. In the present article we describe the design and implementation of selective zinc chelators as antagonists to interrogate the function of mobile zinc, with an emphasis on the pools of vesicular zinc in the terminals of hippocampal mossy fiber buttons.

  5. Patient Specification Quality Assurance for Glioblastoma Multiforme Brain Tumors Treated with Intensity Modulated Radiation Therapy

    Directory of Open Access Journals (Sweden)

    H. I. Al-Mohammed

    2011-01-01

    Full Text Available The aim of this study was to evaluate the significance of performing patient specification quality assurance for patients diagnosed with glioblastoma multiforme treated with intensity modulated radiation therapy. The study evaluated ten intensity modulated radiation therapy treatment plans using 10 MV beams, a total dose of 60 Gy (2 Gy/fraction, five fractions a week for a total of six weeks treatment. For the quality assurance protocol we used a two-dimensional ionization-chamber array (2D-ARRAY. The results showed a very good agreement between the measured dose and the pretreatment planned dose. All the plans passed >95% gamma criterion with pixels within 5% dose difference and 3 mm distance to agreement. We concluded that using the 2D-ARRAY ion chamber for intensity modulated radiation therapy is an important step for intensity modulated radiation therapy treatment plans, and this study has shown that our treatment planning for intensity modulated radiation therapy is accurately done.

  6. Cancer prevention and therapy through the modulation of the tumor microenvironment.

    Science.gov (United States)

    Casey, Stephanie C; Amedei, Amedeo; Aquilano, Katia; Azmi, Asfar S; Benencia, Fabian; Bhakta, Dipita; Bilsland, Alan E; Boosani, Chandra S; Chen, Sophie; Ciriolo, Maria Rosa; Crawford, Sarah; Fujii, Hiromasa; Georgakilas, Alexandros G; Guha, Gunjan; Halicka, Dorota; Helferich, William G; Heneberg, Petr; Honoki, Kanya; Keith, W Nicol; Kerkar, Sid P; Mohammed, Sulma I; Niccolai, Elena; Nowsheen, Somaira; Vasantha Rupasinghe, H P; Samadi, Abbas; Singh, Neetu; Talib, Wamidh H; Venkateswaran, Vasundara; Whelan, Richard L; Yang, Xujuan; Felsher, Dean W

    2015-12-01

    Cancer arises in the context of an in vivo tumor microenvironment. This microenvironment is both a cause and consequence of tumorigenesis. Tumor and host cells co-evolve dynamically through indirect and direct cellular interactions, eliciting multiscale effects on many biological programs, including cellular proliferation, growth, and metabolism, as well as angiogenesis and hypoxia and innate and adaptive immunity. Here we highlight specific biological processes that could be exploited as targets for the prevention and therapy of cancer. Specifically, we describe how inhibition of targets such as cholesterol synthesis and metabolites, reactive oxygen species and hypoxia, macrophage activation and conversion, indoleamine 2,3-dioxygenase regulation of dendritic cells, vascular endothelial growth factor regulation of angiogenesis, fibrosis inhibition, endoglin, and Janus kinase signaling emerge as examples of important potential nexuses in the regulation of tumorigenesis and the tumor microenvironment that can be targeted. We have also identified therapeutic agents as approaches, in particular natural products such as berberine, resveratrol, onionin A, epigallocatechin gallate, genistein, curcumin, naringenin, desoxyrhapontigenin, piperine, and zerumbone, that may warrant further investigation to target the tumor microenvironment for the treatment and/or prevention of cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Dietary phytochemical PEITC restricts tumor development via modulation of epigenetic writers and erasers

    Science.gov (United States)

    Park, Jung Eun; Sun, Yang; Lim, Sai Kiang; Tam, James P.; Dekker, Matthijs; Chen, Hong; Sze, Siu Kwan

    2017-01-01

    Dietary intake of bioactive phytochemicals including the cruciferous vegetable derivative phenethyl isothiocyanate (PEITC) can reduce risk of human cancers, but possible epigenetic mechanisms of these effects are yet unknown. We therefore sought to identify the molecular basis of PEITC-mediated epigenetic tumor restriction. Colon cancer cells treated with low-dose PEITC for >1 month exhibited stable alterations in expression profile of epigenetic writers/erasers and chromatin-binding of histone deacetylases (HDACs) and Polycomb-group (PcG) proteins. Sustained PEITC exposure not only blocked HDAC binding to euchromatin but was also associated with hypomethylation of PcG target genes that are typically hypermethylated in cancer. Furthermore, PEITC treatment induced expression of pro-apoptotic genes in tumor cells, which was partially reversed by overexpression of PcG member BMI-1, suggesting opposing roles for PEITC and PcG proteins in control of tumor progression. These data demonstrate that PEITC regulates chromatin binding of key epigenetic writers/erasers and PcG complexes to restrict tumor development. PMID:28079155

  8. Modulation of murine breast tumor vascularity, hypoxia and chemotherapeutic response by exercise.

    Science.gov (United States)

    Betof, Allison S; Lascola, Christopher D; Weitzel, Douglas; Landon, Chelsea; Scarbrough, Peter M; Devi, Gayathri R; Palmer, Gregory; Jones, Lee W; Dewhirst, Mark W

    2015-05-01

    Exercise has been shown to improve postischemia perfusion of normal tissues; we investigated whether these effects extend to solid tumors. Estrogen receptor-negative (ER-, 4T1) and ER+ (E0771) tumor cells were implanted orthotopically into syngeneic mice (BALB/c, N = 11-12 per group) randomly assigned to exercise or sedentary control. Tumor growth, perfusion, hypoxia, and components of the angiogenic and apoptotic cascades were assessed by MRI, immunohistochemistry, western blotting, and quantitative polymerase chain reaction and analyzed with one-way and repeated measures analysis of variance and linear regression. All statistical tests were two-sided. Exercise statistically significantly reduced tumor growth and was associated with a 1.4-fold increase in apoptosis (sedentary vs exercise: 1544 cells/mm(2), 95% CI = 1223 to 1865 vs 2168 cells/mm(2), 95% CI = 1620 to 2717; P = .048), increased microvessel density (P = .004), vessel maturity (P = .006) and perfusion, and reduced intratumoral hypoxia (P = .012), compared with sedentary controls. We also tested whether exercise could improve chemotherapy (cyclophosphamide) efficacy. Exercise plus chemotherapy prolonged growth delay compared with chemotherapy alone (P < .001) in the orthotopic 4T1 model (n = 17 per group). Exercise is a potential novel adjuvant treatment of breast cancer. © The Author 2015. Published by Oxford University Press.

  9. Tumor-Suppressive Activity of Lunatic Fringe in Prostate through Differential Modulation of Notch Receptor Activation

    Directory of Open Access Journals (Sweden)

    Shubing Zhang

    2014-02-01

    Full Text Available Elevated Notch ligand and receptor expression has been associated with aggressive forms of prostate cancer, suggesting a role for Notch signaling in regulation of prostate tumor initiation and progression. Here, we report a critical role for Lunatic Fringe (Lfng, which encodes an O-fucosylpeptide 3-ß-N-acetylglucosaminyltransferase known to modify epidermal growth factor repeats of Notch receptor proteins, in regulation of prostate epithelial differentiation and proliferation, as well as in prostate tumor suppression. Deletion of Lfng in mice caused altered Notch activation in the prostate, associated with elevated accumulation of Notch1, Notch2, and Notch4 intracellular domains, decreased levels of the putative Notch3 intracellular fragment, as well as increased expression of Hes1, Hes5, and Hey2. Loss of Lfng resulted in expansion of the basal layer, increased proliferation of both luminal and basal cells, and ultimately, prostatic intraepithelial neoplasia. The Lfng-null prostate showed down-regulation of prostatic tumor suppressor gene NKX3.1 and increased androgen receptor expression. Interestingly, expression of LFNG and NKX3.1 were positively correlated in publically available human prostate cancer data sets. Knockdown of LFNG in DU-145 prostate cancer cells led to expansion of CD44+CD24− and CD49f+CD24− stem/progenitor-like cell population associated with enhanced prostatosphere-forming capacity. Taken together, these data revealed a tumor-suppressive role for Lfng in the prostate through differential regulation of Notch signaling.

  10. Combination therapies in iron chelation

    Directory of Open Access Journals (Sweden)

    Raffaella Origa

    2014-12-01

    Full Text Available The availability of oral iron chelators and new non-invasive methods for early detection and treatment of iron overload, have significantly improved the life expectancy and quality of life of patients with b thalassemia major. However, monotherapy is not effective in all patients for a variety of reasons. We analyzed the most relevant reports recently published on alternating or combined chelation therapies in thalassemia major with special attention to safety aspects and to their effects in terms of reduction of iron overload in different organs, improvement of complications, and survival. When adverse effects, such as gastrointestinal upset with deferasirox or infusional site reactions with deferoxamine are not tolerable and organ iron is in an acceptable range, alternating use of two chelators (drugs taken sequentially on different days, but not taken on the same day together may be a winning choice. The association deferiprone and deferoxamine should be the first choice in case of heart failure and when dangerously high levels of cardiac iron exist. Further research regarding the safety and efficacy of the most appealing combination treatment, deferiprone and deferasirox, is needed before recommendations for routine clinical practice can be made.

  11. Tetrathiomolybdate inhibits head and neck cancer metastasis by decreasing tumor cell motility, invasiveness and by promoting tumor cell anoikis

    Directory of Open Access Journals (Sweden)

    Merajver Sofia D

    2010-08-01

    Full Text Available Abstract Background The metastatic spread of solid tumors is directly or indirectly responsible for most cancer-related deaths. Tumor metastasis is very complex and this process requires a tumor cell to acquire enhanced motility, invasiveness and anoikis resistance to successfully establish a tumor at a distal site. Metastatic potential of tumor cells is directly correlated with the expression levels of several angiogenic cytokines. Copper is a mandatory cofactor for the function of many of these angiogenic mediators as well as other proteins that play an important role in tumor cell motility and invasiveness. We have previously shown that tetrathiomolybdate (TM is a potent chelator of copper and it mediates its anti-tumor effects by suppressing tumor angiogenesis. However, very little is known about the effect of TM on tumor cell function and tumor metastasis. In this study, we explored the mechanisms underlying TM-mediated inhibition of tumor metastasis. Results We used two in vivo models to examine the effects of TM on tumor metastasis. Animals treated with TM showed a significant decrease in lung metastasis in both in vivo models as compared to the control group. In addition, tumor cells from the lungs of TM treated animals developed significantly smaller colonies and these colonies had significantly fewer tumor cells. TM treatment significantly decreased tumor cell motility and invasiveness by inhibiting lysyl oxidase (LOX activity, FAK activation and MMP2 levels. Furthermore, TM treatment significantly enhanced tumor cell anoikis by activating p38 MAPK cell death pathway and by downregulating XIAP survival protein expression. Conclusions Taken together, these results suggest that TM is a potent suppressor of head and neck tumor metastasis by modulating key regulators of tumor cell motility, invasiveness and anoikis resistance.

  12. Dosimetric comparison of intensity modulated radiation, Proton beam therapy and proton arc therapy for para-aortic lymph node tumor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Hoon [Dept. of Radiation Oncology, Konyang University Hospital. Daejeon (Korea, Republic of)

    2014-12-15

    To test feasibility of proton arc therapy (PAT) in the treatment of para-aortic lymph node tumor and compare its dosimetric properties with advanced radiotherapy techniques such as intensity modulated radiation therapy (IMRT) and conventional 3D conformal proton beam therapy (PBT). The treatment plans for para-aortic lymph node tumor were planned for 9 patients treated at our institution using IMRT, PBT, and PAT. Feasibility test and dosimetric evaluation were based on comparisons of dose volume histograms (DVHs) which reveal mean dose, D{sub 30%}, D{sub 60%}, D{sub 90%}, V{sub 30%}, V{sub 60%}, V{sub 90}%, organ equivalent doses (OEDs), normal tissue complication probability (NTCP), homogeneity index (HI) and conformity index (CI). The average doses delivered by PAT to the liver, kidney, small bowel, duodenum, stomach were 7.6%, 3%, 17.3%, 26.7%, and 14.4%, of the prescription dose (PD), respectively, which is higher than the doses delivered by IMRT (0.4%, 7.2%, 14.2%, 15.9%, and 12.8%, respectively) and PBT (4.9%, 0.5%, 14.12%, 16.1% 9.9%, respectively). The average homogeneity index and conformity index of tumor using PAT were 12.1 and 1.21, respectively which were much better than IMRT (21.5 and 1.47, respectively) and comparable to PBT (13.1 and 1.23, respectively). The result shows that both NTCP and OED of PAT are generally lower than IMRT and PBT. This study demonstrates that PAT is better in target conformity and homogeneity than IMRT and PBT but worse than IMRT and PBT for most of dosimetric factor which indicate that PAT is not recommended for the treatment of para-aortic lymph node tumor.

  13. Tumor progression, metastasis, and modulators of epithelial-mesenchymal transition in endometrioid endometrial carcinoma: an update.

    Science.gov (United States)

    Makker, Annu; Goel, Madhu Mati

    2016-02-01

    Endometrioid endometrial carcinoma (EEC), also known as type 1 endometrial cancer (EC), accounts for over 70-80% of all cases that are usually associated with estrogen stimulation and often develops in a background of atypical endometrial hyperplasia. The increased incidence of EC is mainly confined to this type of cancer. Most EEC patients present at an early stage and generally have a favorable prognosis; however, up to 30% of EEC present as high risk tumors, which have invaded deep into the myometrium at diagnosis and progressively lead to local or extra pelvic metastasis. The poor survival of advanced EC is related to the lack of effective therapies, which can be attributed to poor understanding of the molecular mechanisms underlying the progression of disease toward invasion and metastasis. Multiple lines of evidence illustrate that epithelial-mesenchymal transition (EMT)-like events are central to tumor progression and malignant transformation, endowing the incipient cancer cell with invasive and metastatic properties. The aim of this review is to summarize the current knowledge on molecular events associated with EMT in progression, invasion, and metastasis of EEC. Further, the role of epigenetic modifications and microRNA regulation, tumor microenvironment, and microcystic elongated and fragmented glands like invasion pattern have been discussed. We believe this article may perhaps stimulate further research in this field that may aid in identifying high risk patients within this clinically challenging patient group and also lead to the recognition of novel targets for the prevention of metastasis - the most fatal consequence of endometrial carcinogenesis.

  14. Contribution of membrane mucins to tumor progression through modulation of cellular growth signaling pathways.

    Science.gov (United States)

    Carraway, Kermit L; Funes, Melanie; Workman, Heather C; Sweeney, Colleen

    2007-01-01

    Mucins are large, heavily O-glycosylated proteins expressed by epithelial tissues. The canonical function of membrane mucins is to provide protection to vulnerable epithelia by forming a steric barrier against assault, and by contributing to the formation of protective extracellular mucin gels. The aberrant overexpression of mucins is thought to contribute to tumor progression by allowing tumor cells to evade immune recognition, and by aiding in the breakdown of cell-cell and cell-matrix contacts to facilitate migration and metastasis. Recent evidence suggests that we should now modify our thinking about mucin function by considering their roles in signaling pathways leading to cellular growth control. Here we review the markedly divergent mechanisms by which membrane mucins, specifically MUC1 and MUC4, influence pathways contributing to cellular proliferation and survival. The cytoplasmic domain of MUC1 serves as a scaffold for the assembly of a variety of signaling proteins, while MUC4 influences the trafficking and localization of growth factor receptors, and hence their responses to external stimuli. We also discuss how tumor cells exploit these mechanisms to promote their own growth and metastasis.

  15. Tumor Microenvironment Modulation via Gold Nanoparticles Targeting Malicious Exosomes: Implications for Cancer Diagnostics and Therapy

    Science.gov (United States)

    Roma-Rodrigues, Catarina; Raposo, Luís R.; Cabral, Rita; Paradinha, Fabiana; Baptista, Pedro V.; Fernandes, Alexandra R.

    2017-01-01

    Exosomes are nanovesicles formed in the endosomal pathway with an important role in paracrine and autocrine cell communication. Exosomes secreted by cancer cells, malicious exosomes, have important roles in tumor microenvironment maturation and cancer progression. The knowledge of the role of exosomes in tumorigenesis prompted a new era in cancer diagnostics and therapy, taking advantage of the use of circulating exosomes as tumor biomarkers due to their stability in body fluids and targeting malignant exosomes’ release and/or uptake to inhibit or delay tumor development. In recent years, nanotechnology has paved the way for the development of a plethora of new diagnostic and therapeutic platforms, fostering theranostics. The unique physical and chemical properties of gold nanoparticles (AuNPs) make them suitable vehicles to pursuit this goal. AuNPs’ properties such as ease of synthesis with the desired shape and size, high surface:volume ratio, and the possibility of engineering their surface as desired, potentiate AuNPs’ role in nanotheranostics, allowing the use of the same formulation for exosome detection and restraining the effect of malicious exosomes in cancer progression. PMID:28098821

  16. Tumor Microenvironment Modulation via Gold Nanoparticles Targeting Malicious Exosomes: Implications for Cancer Diagnostics and Therapy

    Directory of Open Access Journals (Sweden)

    Catarina Roma-Rodrigues

    2017-01-01

    Full Text Available Exosomes are nanovesicles formed in the endosomal pathway with an important role in paracrine and autocrine cell communication. Exosomes secreted by cancer cells, malicious exosomes, have important roles in tumor microenvironment maturation and cancer progression. The knowledge of the role of exosomes in tumorigenesis prompted a new era in cancer diagnostics and therapy, taking advantage of the use of circulating exosomes as tumor biomarkers due to their stability in body fluids and targeting malignant exosomes’ release and/or uptake to inhibit or delay tumor development. In recent years, nanotechnology has paved the way for the development of a plethora of new diagnostic and therapeutic platforms, fostering theranostics. The unique physical and chemical properties of gold nanoparticles (AuNPs make them suitable vehicles to pursuit this goal. AuNPs’ properties such as ease of synthesis with the desired shape and size, high surface:volume ratio, and the possibility of engineering their surface as desired, potentiate AuNPs’ role in nanotheranostics, allowing the use of the same formulation for exosome detection and restraining the effect of malicious exosomes in cancer progression.

  17. A treatment-planning comparison of three beam arrangement strategies for stereotactic body radiation therapy for centrally located lung tumors using volumetric-modulated arc therapy

    OpenAIRE

    Ishii, Kentaro; Okada, Wataru; Ogino, Ryo; Kubo, Kazuki; Kishimoto, Shun; Nakahara, Ryuta; Kawamorita, Ryu; Ishii, Yoshie; Tada, Takuhito; Nakajima, Toshifumi

    2016-01-01

    The purpose of this study was to determine appropriate beam arrangement for volumetric-modulated arc therapy (VMAT)-based stereotactic body radiation therapy (SBRT) in the treatment of patients with centrally located lung tumors. Fifteen consecutive patients with centrally located lung tumors treated at our institution were enrolled. For each patient, three VMAT plans were generated using two coplanar partial arcs (CP VMAT), two non-coplanar partial arcs (NCP VMAT), and one coplanar full arc ...

  18. Antitumor and chemosensitizing action of dichloroacetate implicates modulation of tumor microenvironment: A role of reorganized glucose metabolism, cell survival regulation and macrophage differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ajay; Kant, Shiva; Singh, Sukh Mahendra, E-mail: sukhmahendrasingh@yahoo.com

    2013-11-15

    Targeting of tumor metabolism is emerging as a novel therapeutic strategy against cancer. Dichloroacetate (DCA), an inhibitor of pyruvate dehydrogenase kinase (PDK), has been shown to exert a potent tumoricidal action against a variety of tumor cells. The main mode of its antineoplastic action implicates a shift of glycolysis to oxidative metabolism of glucose, leading to generation of cytotoxic reactive oxygen intermediates. However, the effect of DCA on tumor microenvironment, which in turn regulates tumor cell survival; remains speculative to a large extent. It is also unclear if DCA can exert any modulatory effect on the process of hematopoiesis, which is in a compromised state in tumor-bearing hosts undergoing chemotherapy. In view of these lacunas, the present study was undertaken to investigate the so far unexplored aspects with respect to the molecular mechanisms of DCA-dependent tumor growth retardation and chemosensitization. BALB/c mice were transplanted with Dalton's lymphoma (DL) cells, a T cell lymphoma of spontaneous origin, followed by administration of DCA with or without cisplatin. DCA-dependent tumor regression and chemosensitization to cisplatin was found to be associated with altered repertoire of key cell survival regulatory molecules, modulated glucose metabolism, accompanying reconstituted tumor microenvironment with respect to pH homeostasis, cytokine balance and alternatively activated TAM. Moreover, DCA administration also led to an alteration in the MDR phenotype of tumor cells and myelopoietic differentiation of macrophages. The findings of this study shed a new light with respect to some of the novel mechanisms underlying the antitumor action of DCA and thus may have immense clinical applications. - Highlights: • DCA modulates tumor progression and chemoresistance. • DCA alters molecules regulating cell survival, glucose metabolism and MDR. • DCA reconstitutes biophysical and cellular composition of tumor microenvironment.

  19. Transcutaneous cervical vagal nerve stimulation modulates cardiac vagal tone and tumor necrosis factor-alpha.

    Science.gov (United States)

    Brock, C; Brock, B; Aziz, Q; Møller, H J; Pfeiffer Jensen, M; Drewes, A M; Farmer, A D

    2016-12-12

    The vagus nerve is a central component of cholinergic anti-inflammatory pathways. We sought to evaluate the effect of bilateral transcutaneous cervical vagal nerve stimulation (t-VNS) on validated parameters of autonomic tone and cytokines in 20 healthy subjects. 24 hours after t-VNS, there was an increase in cardiac vagal tone and a reduction in tumor necrosis factor-α in comparison to baseline. No change was seen in blood pressure, cardiac sympathetic index or other cytokines. These preliminary data suggest that t-VNS exerts an autonomic and a subtle antitumor necrosis factor-α effect, which warrants further evaluation in larger controlled studies.

  20. Val-boroPro accelerates T cell priming via modulation of dendritic cell trafficking resulting in complete regression of established murine tumors.

    Directory of Open Access Journals (Sweden)

    Meghaan P Walsh

    Full Text Available Although tumors naturally prime adaptive immune responses, tolerance may limit the capacity to control progression and can compromise effectiveness of immune-based therapies for cancer. Post-proline cleaving enzymes (PPCE modulate protein function through N-terminal dipeptide cleavage and inhibition of these enzymes has been shown to have anti-tumor activity. We investigated the mechanism by which Val-boroPro, a boronic dipeptide that inhibits post-proline cleaving enzymes, mediates tumor regression and tested whether this agent could serve as a novel immune adjuvant to dendritic cell vaccines in two different murine syngeneic murine tumors. In mice challenged with MB49, which expresses the HY antigen complex, T cell responses primed by the tumor with and without Val-boroPro were measured using interferon gamma ELISPOT. Antibody depletion and gene-deficient mice were used to establish the immune cell subsets required for tumor regression. We demonstrate that Val-boroPro mediates tumor eradication by accelerating the expansion of tumor-specific T cells. Interestingly, T cells primed by tumor during Val-boroPro treatment demonstrate increased capacity to reject tumors following adoptive transfer without further treatment of the recipient. Val-boroPro -mediated tumor regression requires dendritic cells and is associated with enhanced trafficking of dendritic cells to tumor draining lymph nodes. Finally, dendritic cell vaccination combined with Val-boroPro treatment results in complete regression of established tumors. Our findings demonstrate that Val-boroPro has antitumor activity and a novel mechanism of action that involves more robust DC trafficking with earlier priming of T cells. Finally, we show that Val-boroPro has potent adjuvant properties resulting in an effective therapeutic vaccine.

  1. Role of chelates in treatment of cancer

    Directory of Open Access Journals (Sweden)

    Tripathi Laxmi

    2007-01-01

    Full Text Available Chelates are used in cancer as cytotoxic agent, as radioactive agent in imaging studies and in radioimmunotherapy. Various chelates based on ruthenium, copper, zinc, organocobalt, gold, platinum, palladium, cobalt, nickel and iron are reported as cytotoxic agent. Monoclonal antibodies labeled with radioactive metals such as yttrium-90, indium-111 and iodine-131 are used in radioimmunotherapy. This review is an attempt to compile the use of chelates as cytotoxic drugs and in radioimmunotherapy.

  2. G Protein-Coupled Estrogen Receptor-Selective Ligands Modulate Endometrial Tumor Growth

    Directory of Open Access Journals (Sweden)

    Whitney K. Petrie

    2013-01-01

    Full Text Available Endometrial carcinoma is the most common cancer of the female reproductive tract. GPER/GPR30 is a 7-transmembrane spanning G protein-coupled receptor that has been identified as the third estrogen receptor, in addition to ERα and ERβ. High GPER expression is predictive of poor survival in endometrial and ovarian cancer, but despite this, the estrogen-mediated signaling pathways and specific estrogen receptors involved in endometrial cancer remain unclear. Here, employing ERα-negative Hec50 endometrial cancer cells, we demonstrate that GPER mediates estrogen-stimulated activation of ERK and PI3K via matrix metalloproteinase activation and subsequent transactivation of the EGFR and that ER-targeted therapeutic agents (4-hydroxytamoxifen, ICI182,780/fulvestrant, and Raloxifene, the phytoestrogen genistein, and the “ERα-selective” agonist propylpyrazole triol also function as GPER agonists. Furthermore, xenograft tumors of Hec50 cells yield enhanced growth with G-1 and estrogen, the latter being inhibited by GPER-selective pharmacologic antagonism with G36. These results have important implications with respect to the use of putatively ER-selective ligands and particularly for the widespread long-term use of “ER-targeted” therapeutics. Moreover, our findings shed light on the potential mechanisms of SERM/SERD side effects reported in many clinical studies. Finally, our results provide the first demonstration that pharmacological inhibition of GPER activity in vivo prevents estrogen-mediated tumor growth.

  3. Special issue of clinical pharmacology: advances and applications in new protein therapeutics modulating tumor immunity

    Directory of Open Access Journals (Sweden)

    Frankel AE

    2013-11-01

    Full Text Available Arthur E Frankel Department of Internal Medicine, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA Until recent decades, the role of the immune system in harnessing tumor growth was based on anecdotal observations of increased cancers in immune-compromised patients, the benefits of graft-versus-leukemia in allogeneic stem cell transplants, and the limited but reproducible anticancer activity of several lymphokines, including interferon and interleukin (IL-2. Vaccine studies and infusions of "activated" lymphocytes yielded variable clinical responses and disease control. An improved understanding of the molecular and cell mechanisms of the innate and adaptive immune system in cancer-bearing animals and the discovery of an immune-suppressive tumor microenvironment then led to development and testing of a battery of new drug and cell-based approaches to trigger antitumor immunity. This issue of Clinical Pharmacology: Advances and Applications highlights some of the new protein-based compounds that are radically changing the cancer therapeutic landscape. The purpose of this collection of reviews is to inform the readership regarding the importance of the seismic change in cancer therapeutics and stimulate efforts to find novel niches and combinations of agents similar to recent advances in the application of cancer pathway inhibitors.

  4. L-Arginine Modulates T Cell Metabolism and Enhances Survival and Anti-tumor Activity.

    Science.gov (United States)

    Geiger, Roger; Rieckmann, Jan C; Wolf, Tobias; Basso, Camilla; Feng, Yuehan; Fuhrer, Tobias; Kogadeeva, Maria; Picotti, Paola; Meissner, Felix; Mann, Matthias; Zamboni, Nicola; Sallusto, Federica; Lanzavecchia, Antonio

    2016-10-20

    Metabolic activity is intimately linked to T cell fate and function. Using high-resolution mass spectrometry, we generated dynamic metabolome and proteome profiles of human primary naive T cells following activation. We discovered critical changes in the arginine metabolism that led to a drop in intracellular L-arginine concentration. Elevating L-arginine levels induced global metabolic changes including a shift from glycolysis to oxidative phosphorylation in activated T cells and promoted the generation of central memory-like cells endowed with higher survival capacity and, in a mouse model, anti-tumor activity. Proteome-wide probing of structural alterations, validated by the analysis of knockout T cell clones, identified three transcriptional regulators (BAZ1B, PSIP1, and TSN) that sensed L-arginine levels and promoted T cell survival. Thus, intracellular L-arginine concentrations directly impact the metabolic fitness and survival capacity of T cells that are crucial for anti-tumor responses.

  5. Time dependent modulation of tumor radiosensitivity by a pan HDAC inhibitor: abexinostat

    Science.gov (United States)

    Rivera, Sofia; Leteur, Céline; Mégnin, Frédérique; Law, Frédéric; Martins, Isabelle; Kloos, Ioana; Depil, Stéphane; Modjtahedi, Nazanine; Perfettini, Jean Luc; Hennequin, Christophe; Deutsch, Eric

    2017-01-01

    Despite prominent role of radiotherapy in lung cancer management, there is an urgent need for strategies increasing therapeutic efficacy. Reversible epigenetic changes are promising targets for combination strategies using HDAC inhibitors (HDACi). Here we evaluated on two NSCLC cell lines, the antitumor effect of abexinostat, a novel pan HDACi combined with irradiation in vitro in normoxia and hypoxia, by clonogenic assays, demonstrating that abexinostat enhances radiosensitivity in a time dependent way with mean SER10 between 1.6 and 2.5 for A549 and H460. We found, by immunofluorescence staining, flow cytometry assays and western blotting, in abexinostat treated cells, increasing radio-induced caspase dependent apoptosis and persistent DNA double-strand breaks associated with decreased DNA damage signalling and repair. Interestingly, we demonstrated on nude mice xenografts that abexinostat potentiates tumor growth delay in combined modality treatments associating not only abexinostat and irradiation but also when adding cisplatin. Altogether, our data demonstrate in vitro and in vivo anti-tumor effect potentiation by abexinostat combined with irradiation in NSCLC. Moreover, our work suggests for the first time to our knowledge promising triple combination opportunities with HDACi, irradiation and cisplatin which deserves further investigations and could be of major interest in the treatment of NSCLC. PMID:28915585

  6. Time dependent modulation of tumor radiosensitivity by a pan HDAC inhibitor: abexinostat.

    Science.gov (United States)

    Rivera, Sofia; Leteur, Céline; Mégnin, Frédérique; Law, Frédéric; Martins, Isabelle; Kloos, Ioana; Depil, Stéphane; Modjtahedi, Nazanine; Perfettini, Jean Luc; Hennequin, Christophe; Deutsch, Eric

    2017-01-25

    Despite prominent role of radiotherapy in lung cancer management, there is an urgent need for strategies increasing therapeutic efficacy. Reversible epigenetic changes are promising targets for combination strategies using HDAC inhibitors (HDACi).Here we evaluated on two NSCLC cell lines, the antitumor effect of abexinostat, a novel pan HDACi combined with irradiation in vitro in normoxia and hypoxia, by clonogenic assays, demonstrating that abexinostat enhances radiosensitivity in a time dependent way with mean SER10 between 1.6 and 2.5 for A549 and H460. We found, by immunofluorescence staining, flow cytometry assays and western blotting, in abexinostat treated cells, increasing radio-induced caspase dependent apoptosis and persistent DNA double-strand breaks associated with decreased DNA damage signalling and repair. Interestingly, we demonstrated on nude mice xenografts that abexinostat potentiates tumor growth delay in combined modality treatments associating not only abexinostat and irradiation but also when adding cisplatin.Altogether, our data demonstrate in vitro and in vivo anti-tumor effect potentiation by abexinostat combined with irradiation in NSCLC. Moreover, our work suggests for the first time to our knowledge promising triple combination opportunities with HDACi, irradiation and cisplatin which deserves further investigations and could be of major interest in the treatment of NSCLC.

  7. Tumor Vesicle—Associated CD147 Modulates the Angiogenic Capability of Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Danilo Millimaggi

    2007-04-01

    Full Text Available Matrix metalloproteinase (MMP degradation of extracellular matrix is thought to play an important role in invasion, angiogenesis, tumor growth, and metastasis. Several studies have demonstrated that CD147/ extracellular MMP inducer, a membrane-spanning molecule highly expressed in tumor cells, may be involved in the progression of malignancies by regulating expression of MMP in peritumoral stromal cells. In the present study we show that CD147 is expressed in microvesicles derived from epithelial ovarian cancer cells and that CD147-positive vesicles may promote an angiogenic phenotype in endothelial cells in vitro. Vesicles shed by human ovarian carcinoma cell lines OVCAR3, SKOV3, and A2780 expressed different levels of CD147 and stimulated proangiogenic activities of human umbilical vein endothelial cells (HUVECs in a CD147-dependent fashion (OVCAR3 > SKOV3 > A2780. Moreover, vesicles shed by ovarian carcinoma cell line CABA I with low CD147 expression had no significant effect on the development of angiogenic phenotype in HUVECs. The treatment of OVCAR3 cells with small interfering RNA against CD147 suppressed the angiogenic potential of OVCAR3-derived microvesicles. However, transfection of CD147 cDNA into the CABA I cell line enabled CABA I-derived vesicles to induce angiogenesis and to promote MMP genes expression in HUVECs. We therefore conclude that vesicles shed by ovarian cancer cells may induce proangiogenic activities of HUVECs by a CD147-mediated mechanism.

  8. The matricellular receptor LRP1 forms an interface for signaling and endocytosis in modulation of the extracellular tumor environment

    Directory of Open Access Journals (Sweden)

    Bart eVan Gool

    2015-11-01

    Full Text Available The membrane protein low-density lipoprotein receptor related-protein 1 (LRP1 has been attributed a role in cancer. However, its presumably often indirect involvement is far from understood. LRP1 has both endocytic and signaling activities. As a matricellular receptor it is involved in regulation, mostly by clearing, of various extracellular matrix degrading enzymes including matrix metalloproteinases, serine proteases, protease-inhibitor complexes and the endoglycosidase heparanase. Furthermore, by binding extracellular ligands including growth factors and subsequent intracellular interaction with scaffolding and adaptor proteins it is involved in regulation of various signaling cascades. LRP1 expression levels are often downregulated in cancer and some studies consider low LRP1 levels a poor prognostic factor. On the contrary, upregulation in brain cancers has been noted and clinical trials explore the use of LRP1 as cargo receptor to deliver cytotoxic agents.This mini-review focuses on LRP1’s role in tumor growth and metastasis especially by modulation of the extracellular tumor environment. In relation to this role its diagnostic, prognostic and therapeutic potential will be discussed.

  9. Intensity-Modulated Radiotherapy for Tumors of the Nasal Cavity and Paranasal Sinuses: Clinical Outcomes and Patterns of Failure

    Energy Technology Data Exchange (ETDEWEB)

    Wiegner, Ellen A.; Daly, Megan E.; Murphy, James D.; Abelson, Jonathan; Chapman, Chris H.; Chung, Melody; Yu, Yao; Colevas, A. Dimitrios; Kaplan, Michael J.; Fischbein, Nancy; Le, Quynh-Thu [Department of Radiation Oncology, Stanford University, Stanford, CA (United States); Chang, Daniel T., E-mail: dtchang@stanford.edu [Department of Radiation Oncology, Stanford University, Stanford, CA (United States)

    2012-05-01

    Purpose: To report outcomes in patients treated with intensity-modulated radiotherapy (IMRT) for tumors of the paranasal sinuses and nasal cavity (PNS/NC). Methods/Materials: Between June 2000 and December 2009, 52 patients with tumors of the PNS/NC underwent postoperative or definitive radiation with IMRT. Twenty-eight (54%) patients had squamous cell carcinoma (SCC). Twenty-nine patients (56%) received chemotherapy. The median follow-up was 26.6 months (range, 2.9-118.4) for all patients and 30.9 months for living patients. Results: Eighteen patients (35%) developed local-regional failure (LRF) at median time of 7.2 months. Thirteen local failures (25%) were observed, 12 in-field and 1 marginal. Six regional failures were observed, two in-field and four out-of-field. No patients treated with elective nodal radiation had nodal regional failure. Two-year local-regional control (LRC), in-field LRC, freedom from distant metastasis (FFDM), and overall survival (OS) were 64%, 74%, 71%, and 66% among all patients, respectively, and 43%, 61%, 61%, and 53% among patients with SCC, respectively. On multivariate analysis, SCC and >1 subsite involved had worse LRC (p = 0.0004 and p = 0.046, respectively) and OS (p = 0.003 and p = 0.046, respectively). Cribriform plate invasion (p = 0.005) and residual disease (p = 0.047) also had worse LRC. Acute toxicities included Grade {>=}3 mucositis in 19 patients (37%), and Grade 3 dermatitis in 8 patients (15%). Six patients had Grade {>=}3 late toxicity including one optic toxicity. Conclusions: IMRT for patients with PNS/NC tumors has good outcomes compared with historical series and is well tolerated. Patients with SCC have worse LRC and OS. LRF is the predominant pattern of failure.

  10. PLC-β2 is modulated by low oxygen availability in breast tumor cells and plays a phenotype dependent role in their hypoxia-related malignant potential.

    Science.gov (United States)

    Brugnoli, Federica; Grassilli, Silvia; Al-Qassab, Yasamin; Capitani, Silvano; Bertagnolo, Valeria

    2016-12-01

    Limited oxygen availability plays a critical role in the malignant progression of breast cancer by orchestrating a complex modulation of the gene transcription largely dependent on the tumor phenotype. Invasive breast tumors belonging to different molecular subtypes are characterized by over-expression of PLC-β2, whose amount positively correlates with the malignant evolution of breast neoplasia and supports the invasive potential of breast tumor cells. Here we report that hypoxia modulates the expression of PLC-β2 in breast tumor cells in a phenotype-related manner, since a decrease of the protein was observed in the BT-474 and MCF7 cell lines while an increase was revealed in MDA-MB-231 cells as a consequence of low oxygen availability. Under hypoxia, the down-modulation of PLC-β2 was mainly correlated with the decrease of the EMT marker E-cadherin in the BT-474 cells and with the up-regulation of the stem cell marker CD133 in MCF7 cells. The increase of PLC-β2 induced by low oxygen in MDA-MB-231 cells supports the hypoxia-related reorganization of actin cytoskeleton and sustains invasion capability. In all examined cell lines, but with an opposite role in the ER-positive and ER-negative cells, PLC-β2 was involved in the hypoxia-induced increase of HIF-1α, known to affect both EMT and CD133 expression. Our data include PLC-β2 in the complex and interconnected signaling pathways induced by low oxygen availability in breast tumor cells and suggest that the forced modulation of PLC-β2 programmed on the basis of tumor phenotype may prevent the malignant progression of breast neoplasia as a consequence of intra-tumoral hypoxia. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Dose reduction to normal tissues as compared to the gross tumor by using intensity modulated radiotherapy in thoracic malignancies

    Directory of Open Access Journals (Sweden)

    Bhalla NK

    2006-08-01

    Full Text Available Abstract Background and purpose Intensity modulated radiotherapy (IMRT is a powerful tool, which might go a long way in reducing radiation doses to critical structures and thereby reduce long term morbidities. The purpose of this paper is to evaluate the impact of IMRT in reducing the dose to the critical normal tissues while maintaining the desired dose to the volume of interest for thoracic malignancies. Materials and methods During the period January 2002 to March 2004, 12 patients of various sites of malignancies in the thoracic region were treated using physical intensity modulator based IMRT. Plans of these patients treated with IMRT were analyzed using dose volume histograms. Results An average dose reduction of the mean values by 73% to the heart, 69% to the right lung and 74% to the left lung, with respect to the GTV could be achieved with IMRT. The 2 year disease free survival was 59% and 2 year overall survival was 59%. The average number of IMRT fields used was 6. Conclusion IMRT with inverse planning enabled us to achieve desired dose distribution, due to its ability to provide sharp dose gradients at the junction of tumor and the adjacent critical organs.

  12. Modulation of spinal cord synaptic activity by tumor necrosis factor α in a model of peripheral neuropathy

    Directory of Open Access Journals (Sweden)

    Spicarova Diana

    2011-12-01

    Full Text Available Abstract Background The cytokine tumor necrosis factor α (TNFα is an established pain modulator in both the peripheral and central nervous systems. Modulation of nociceptive synaptic transmission in the spinal cord dorsal horn (DH is thought to be involved in the development and maintenance of several pathological pain states. Increased levels of TNFα and its receptors (TNFR in dorsal root ganglion (DRG cells and in the spinal cord DH have been shown to play an essential role in neuropathic pain processing. In the present experiments the effect of TNFα incubation on modulation of primary afferent synaptic activity was investigated in a model of peripheral neuropathy. Methods Spontaneous and miniature excitatory postsynaptic currents (sEPSC and mEPSCs were recorded in superficial DH neurons in acute spinal cord slices prepared from animals 5 days after sciatic nerve transection and in controls. Results In slices after axotomy the sEPSC frequency was 2.8 ± 0.8 Hz, while neurons recorded from slices after TNFα incubation had significantly higher sEPSC frequency (7.9 ± 2.2 Hz. The effect of TNFα treatment was smaller in the slices from the control animals, where sEPSC frequency was 1.2 ± 0.2 Hz in slices without and 2.0 ± 0.5 Hz with TNFα incubation. Tetrodotoxin (TTX application in slices from axotomized animals and after TNFα incubation decreased the mEPSC frequency to only 37.4 ± 6.9% of the sEPSC frequency. This decrease was significantly higher than in the slices without the TNFα treatment (64.4 ± 6.4%. TTX application in the control slices reduced the sEPSC frequency to about 80% in both TNFα untreated and treated slices. Application of low concentration TRPV1 receptors endogenous agonist N-oleoyldopamine (OLDA, 0.2 μM in slices after axotomy induced a significant increase in mEPSC frequency (175.9 ± 17.3%, similar to the group with TNFα pretreatment (158.1 ± 19.5%. Conclusions Our results indicate that TNFα may enhance

  13. MUC1 modulates the tumor immune microenvironment through the engagement of Siglec-9

    Science.gov (United States)

    Beatson, Richard; Tajadura-Ortega, Virginia; Achkova, Daniela; Picco, Gianfranco; Tsourouktsoglou, Theodora-Dorita; Klausing, Sandra; Hillier, Matthew; Maher, John; Noll, Thomas; Crocker, Paul R.; Taylor-Papadimitriou, Joyce; Burchell, Joy M.

    2016-01-01

    Siglec-9 is a sialic acid binding lectin predominantly expressed on myeloid cells. Aberrant glycosylation occurs in essentially all types of cancers resulting in increased sialylation. Thus when MUC1 is expressed on cancer cells it is decorated by multiple short, sialylated O-linked glycans (MUC1-ST). Here we show that this cancer-specific MUC1 glycoform could, through the engagement of Siglec-9, educate myeloid cells to release factors associated with tumor microenvironment determination and disease progression. Moreover MUC1-ST induced macrophages to display a TAM-like phenotype with increased expression of PD-L1. MUC1-ST binding to Siglec-9 did not activate SHP-1/2 but surprisingly induced calcium flux leading to MEK-ERK activation. This work defines a critical role for aberrantly glycosylated MUC1 and identifies an activating pathway following Siglec-9 engagement. PMID:27595232

  14. Purif ied Protein Fraction of Garlic Extract Modulates Cellular Immune Response against Breast Transplanted Tumors in BALB/c Mice Model

    Directory of Open Access Journals (Sweden)

    Narges Zare Mehrjardi

    2013-01-01

    Full Text Available Objective: Garlic (Allium sativum has anti-inflammatory, anti-mutagenesis, and immunomodulatory properties that modulate anti-tumor immunity and inhibit tumor growth. In this study we have examined the effect of a protein fraction isolated from fresh garlic on anti-tumor response and intra-tumor lymphocyte infiltration.Materials and Methods: In this experimental study a protein fraction was purified from fresh garlic bulbs using ultra-filtration, followed by chromatofocusing, and SDS-PAGE analysis. Anti-tumor activity was assessed by intra-tumor injection of the protein fraction and garlic extract, itself, into groups of 5 mice each. The percentage of peripheral blood and intra-tumor CD4+ and CD8+ cells were assessed by flow cytometry. Unpaired student’s t test using the SPSS program was applied for all statistical analyses.Results: Garlic extract included different type of proteins with different molecular weight. One of protein’s fraction was immunomodeulator and was composed of three single polypeptides, with molecular masses of ~10-13 kDa and different isoelectric points (pI. These molecules augmented the delayed type hypersensitivity (DTH response compared to the control group. Intra-tumor injection of the fraction provoked a significant increase in the CD8+ subpopulation of T-lymphocytes, as well as a decrease in tumor size. The fraction increased peripheral blood CD8+ T-lymphocytes in treated animals.Conclusion: The data confirms that protein fractions purified from fresh garlic bulbs augment CD8+ T-cell infiltration into the tumor site, inhibiting tumor growth more efficiently than garlic extract. These fi ndings provide a basis for further investigations on the purified polypeptide as a useful candidate for immunomodulation and tumor treatment.

  15. Purif ied Protein Fraction of Garlic Extract Modulates Cellular Immune Response against Breast Transplanted Tumors in BALB/c Mice Model

    Science.gov (United States)

    Ebrahimi, Marzieh; Mohammad Hassan, Zuhair; Mostafaie, Ali; Zare Mehrjardi, Narges; Ghazanfari, Tooba

    2013-01-01

    Objective: Garlic (Allium sativum) has anti-inflammatory, anti-mutagenesis, and immunomodulatory properties that modulate anti-tumor immunity and inhibit tumor growth. In this study we have examined the effect of a protein fraction isolated from fresh garlic on anti-tumor response and intra-tumor lymphocyte infiltration. Materials and Methods: In this experimental study a protein fraction was purified from fresh garlic bulbs using ultra-filtration, followed by chromatofocusing, and SDS-PAGE analysis. Anti-tumor activity was assessed by intra-tumor injection of the protein fraction and garlic extract, itself, into groups of 5 mice each. The percentage of peripheral blood and intra-tumor CD4+ and CD8+ cells were assessed by flow cytometry. Unpaired student’s t test using the SPSS program was applied for all statistical analyses. Results: Garlic extract included different type of proteins with different molecular weight. One of protein’s fraction was immunomodeulator and was composed of three single polypeptides, with molecular masses of ~10-13 kDa and different isoelectric points (pI). These molecules augmented the delayed type hypersensitivity (DTH) response compared to the control group. Intra-tumor injection of the fraction provoked a significant increase in the CD8+ subpopulation of T-lymphocytes, as well as a decrease in tumor size. The fraction increased peripheral blood CD8+ T-lymphocytes in treated animals. Conclusion: The data confirms that protein fractions purified from fresh garlic bulbs augment CD8+ T-cell infiltration into the tumor site, inhibiting tumor growth more efficiently than garlic extract. These findings provide a basis for further investigations on the purified polypeptide as a useful candidate for immunomodulation and tumor treatment. PMID:23700562

  16. GALNT3, a gene associated with hyperphosphatemic familial tumoral calcinosis, is transcriptionally regulated by extracellular phosphate and modulates matrix metalloproteinase activity

    OpenAIRE

    2008-01-01

    GALNT3, a gene associated with Hyperphosphatemic Familial Tumoral Calcinosis, is transcriptionally regulated by extracellular phosphate and modulates matrix metalloproteinase activity correspondence: Corresponding author. Laboratory of Molecular Dermatology Department of Dermatology Rambam Medical Center POB 9602, Haifa 31096, Israel. Tel.: +972 4 8541919; fax: +972 4 8542951. (Sprecher, Eli) (Sprecher, Eli) Labo...

  17. Planning 4D intensity-modulated arc therapy for tumor tracking with a multileaf collimator

    Science.gov (United States)

    Niu, Ying; Betzel, Gregory T.; Yang, Xiaocheng; Gui, Minzhi; Parke, William C.; Yi, Byongyong; Yu, Cedric X.

    2017-02-01

    This study introduces a practical four-dimensional (4D) planning scheme of IMAT using 4D computed tomography (4D CT) for planning tumor tracking with dynamic multileaf beam collimation. We assume that patients can breathe regularly, i.e. the same way as during 4D CT with an unchanged period and amplitude, and that the start of 4D-IMAT delivery can be synchronized with a designated respiratory phase. Each control point of the IMAT-delivery process can be associated with an image set of 4D CT at a specified respiratory phase. Target is contoured at each respiratory phase without a motion-induced margin. A 3D-IMAT plan is first optimized on a reference-phase image set of 4D CT. Then, based on the projections of the planning target volume in the beam’s eye view at different respiratory phases, a 4D-IMAT plan is generated by transforming the segments of the optimized 3D plan by using a direct aperture deformation method. Compensation for both translational and deformable tumor motion is accomplished, and the smooth delivery of the transformed plan is ensured by forcing connectivity between adjacent angles (control points). It is envisioned that the resultant plans can be delivered accurately using the dose rate regulated tracking method which handles breathing irregularities (Yi et al 2008 Med. Phys. 35 3955–62).This planning process is straightforward and only adds a small step to current clinical 3D planning practice. Our 4D planning scheme was tested on three cases to evaluate dosimetric benefits. The created 4D-IMAT plans showed similar dose distributions as compared with the 3D-IMAT plans on a single static phase, indicating that our method is capable of eliminating the dosimetric effects of breathing induced target motion. Compared to the 3D-IMAT plans with large treatment margins encompassing respiratory motion, our 4D-IMAT plans reduced radiation doses to surrounding normal organs and tissues.

  18. THE TMEFF2 TUMOR SUPPRESSOR MODULATES INTEGRIN EXPRESSION, RHOA ACTIVATION AND MIGRATION OF PROSTATE CANCER CELLS

    Science.gov (United States)

    Chen, Xiaofei; Corbin, Joshua M.; Tipton, Greg J.; Yang, Li V.; Asch, Adam S.; Ruiz-Echevarría, Maria J.

    2014-01-01

    Cell adhesion and migration play important roles in physiological and pathological states, including embryonic development and cancer invasion and metastasis. The type I transmembrane protein with epidermal growth factor and two follistatin motifs 2 (TMEFF2) is expressed mainly in brain and prostate and its expression is deregulated in prostate cancer. We have previously shown that TMEFF2 can function as a tumor suppressor by inhibiting cell migration and invasion of prostate cells. However, the molecular mechanisms involved in this inhibition are not clear. In this study we demonstrate that TMEFF2 affects cell adhesion and migration of prostate cancer cells and that this effect correlates with changes in integrin expression and RhoA activation. Deletion of a 13 basic-rich amino acid region in the cytoplasmic domain of TMEFF2 prevented these effects. Overexpression of TMEFF2 reduced cell attachment and migration on vitronectin and caused a concomitant decrease in RhoA activation, stress fiber formation and expression of αv, β1 and β3 integrin subunits. Conversely, TMEFF2 interference in 22Rv1 prostate cancer cells resulted in increased integrin expression. Results obtained with a double TRAMP/TMEFF2 transgenic mouse also indicated that TMEFF2 expression reduced integrin expression in the mouse prostate. In summary, the data presented here indicate an important role of TMEFF2 in regulating cell adhesion and migration that involves integrin signaling and is mediated by its cytoplasmic domain. PMID:24632071

  19. Beliefs about chelation among thalassemia patients

    Directory of Open Access Journals (Sweden)

    Trachtenberg Felicia L

    2012-12-01

    Full Text Available Abstract Background Understanding patients’ views about medication is crucial to maximize adherence. Thalassemia is a congenital blood disorder requiring chronic blood transfusions and daily iron chelation therapy. Methods The Beliefs in Medicine Questionnaire (BMQ was used to assess beliefs in chelation in thalassemia patients from North America and London in the Thalassemia Longitudinal Cohort (TLC of the Thalassemia Clinical Research Network (TCRN. Chelation adherence was based on patient report of doses administered out of those prescribed in the last four weeks. Results Of 371 patients (ages 5-58y, mean 24y, 93% were transfused and 92% receiving chelation (26% deferoxamine (DFO; a slow subcutaneous infusion via portable pump, 63% oral, 11% combination. Patients expressed high “necessity” for transfusion (96%, DFO chelation (92% and oral chelation (89%, with lower “concern” about treatment (48%, 39%, 19% respectively. Concern about oral chelation was significantly lower than that of DFO (p Conclusions Despite their requirement for multimodal therapy, thalassemia patients have positive views about medicine, more so than in other disease populations. Patients may benefit from education about the tolerability of chelation and strategies to effectively cope with side effects, both of which might be beneficial in lowering body iron burden. Clinicaltrials.gov identifier NCT00661804

  20. Angiocrine factors modulate tumor proliferation and motility through EphA2 repression of Slit2 tumor suppressor function in endothelium.

    Science.gov (United States)

    Brantley-Sieders, Dana M; Dunaway, Charlene M; Rao, Meghana; Short, Sarah; Hwang, Yoonha; Gao, Yandong; Li, Deyu; Jiang, Aixiang; Shyr, Yu; Wu, Jane Y; Chen, Jin

    2011-02-01

    It is well known that tumor-derived proangiogenic factors induce neovascularization to facilitate tumor growth and malignant progression. However, the concept of "angiocrine" signaling, in which signals produced by endothelial cells elicit tumor cell responses distinct from vessel function, has been proposed, yet remains underinvestigated. Here, we report that angiocrine factors secreted from endothelium regulate tumor growth and motility. We found that Slit2, which is negatively regulated by endothelial EphA2 receptor, is one such tumor suppressive angiocrine factor. Slit2 activity is elevated in EphA2-deficient endothelium. Blocking Slit activity restored angiocrine-induced tumor growth/motility, whereas elevated Slit2 impaired growth/motility. To translate our findings to human cancer, we analyzed EphA2 and Slit2 expression in human cancer. EphA2 expression inversely correlated with Slit2 in the vasculature of invasive human ductal carcinoma samples. Moreover, analysis of large breast tumor data sets revealed that Slit2 correlated positively with overall and recurrence-free survival, providing clinical validation for the tumor suppressor function for Slit2 in human breast cancer. Together, these data support a novel, clinically relevant mechanism through which EphA2 represses Slit2 expression in endothelium to facilitate angiocrine-mediated tumor growth and motility by blocking a tumor suppressive signal.

  1. Importance of iron chelation therapy

    Directory of Open Access Journals (Sweden)

    A. Varoğlu

    2011-12-01

    Full Text Available It is necessary to remember that today patients have different options of chelation treatment, as desferrioxamine, deferiprone and deferasirox are available. However, a patient has to be compliant with treatments. They have always to remember that too much iron causes different complications and could be a barrier for a definitive cure from thalassemia. 由于出现了去铁胺、去铁酮和去铁斯若等药物,病人现在可以选择不同的螯合治疗方式。 然而,病人必须适应这几种治疗方式。 他们必须时刻记住太多的铁元素会引发多种并发症,并对地中海贫血的彻底治疗造成阻碍。

  2. Interleukin-7 Modulates Anti-Tumor CD8+ T Cell Responses via Its Action on Host Cells

    Science.gov (United States)

    Deiser, Katrin; Stoycheva, Diana; Bank, Ute; Blankenstein, Thomas; Schüler, Thomas

    2016-01-01

    The adoptive transfer of antigen-specific CD8+ T cells is a promising approach for the treatment of chronic viral and malignant diseases. In order to improve adoptive T cell therapy (ATT) of cancer, recent strategies aim at the antibody-based blockade of immunosuppressive signaling pathways in CD8+ T cells. Alternatively, adjuvant effects of immunostimulatory cytokines might be exploited to improve therapeutic CD8+ T cell responses. For example, Interleukin-7 (IL-7) is a potent growth, activation and survival factor for CD8+ T cells that can be used to improve virus- and tumor-specific CD8+ T cell responses. Although direct IL-7 effects on CD8+ T cells were studied extensively in numerous models, the contribution of IL-7 receptor-competent (IL-7R+) host cells remained unclear. In the current study we provide evidence that CD8+ T cell-mediated tumor rejection in response to recombinant IL-7 (rIL-7) therapy is strictly dependent on IL-7R+ host cells. On the contrary, CD8+ T cell expansion is independent of host IL-7R expression. If, however, rIL-7 therapy and peptide vaccination are combined, host IL-7R signaling is crucial for CD8+ T cell expansion. Unexpectedly, maximum CD8+ T cell expansion relies mainly on IL-7R signaling in non-hematopoietic host cells, similar to the massive accumulation of dendritic cells and granulocytes. In summary, we provide evidence that IL-7R+ host cells are major targets of rIL-7 that modulate therapeutic CD8+ T cell responses and the outcome of rIL-7-assisted ATT. This knowledge may have important implications for the design and optimization of clinical ATT protocols. PMID:27447484

  3. Rosemary (Rosmarinus officinalis extract modulates CHOP/GADD153 to promote androgen receptor degradation and decreases xenograft tumor growth.

    Directory of Open Access Journals (Sweden)

    Sakina M Petiwala

    Full Text Available The Mediterranean diet has long been attributed to preventing or delaying the onset of cardiovascular disease, diabetes and various solid organ cancers. In this particular study, a rosemary extract standardized to carnosic acid was evaluated for its potential in disrupting the endoplasmic reticulum machinery to decrease the viability of prostate cancer cells and promote degradation of the androgen receptor. Two human prostate cancer cell lines, 22Rv1 and LNCaP, and prostate epithelial cells procured from two different patients undergoing radical prostatectomy were treated with standardized rosemary extract and evaluated by flow cytometry, MTT, BrdU, Western blot and fluorescent microscopy. A significant modulation of endoplasmic reticulum stress proteins was observed in cancer cells while normal prostate epithelial cells did not undergo endoplasmic reticulum stress. This biphasic response suggests that standardized rosemary extract may preferentially target cancer cells as opposed to "normal" cells. Furthermore, we observed standardized rosemary extract to decrease androgen receptor expression that appears to be regulated by the expression of CHOP/GADD153. Using a xenograft tumor model we observed standardized rosemary extract when given orally to significantly suppress tumor growth by 46% compared to mice not receiving standardized rosemary extract. In the last several years regulatory governing bodies (e.g. European Union have approved standardized rosemary extracts as food preservatives. These results are especially significant as it is becoming more likely that individuals will be receiving standardized rosemary extracts that are a part of a natural preservative system in various food preparations. Taken a step further, it is possible that the potential benefits that are often associated with a "Mediterranean Diet" in the future may begin to extend beyond the Mediterranean diet as more of the population is consuming standardized rosemary

  4. Interleukin-7 Modulates Anti-Tumor CD8+ T Cell Responses via Its Action on Host Cells.

    Directory of Open Access Journals (Sweden)

    Katrin Deiser

    Full Text Available The adoptive transfer of antigen-specific CD8+ T cells is a promising approach for the treatment of chronic viral and malignant diseases. In order to improve adoptive T cell therapy (ATT of cancer, recent strategies aim at the antibody-based blockade of immunosuppressive signaling pathways in CD8+ T cells. Alternatively, adjuvant effects of immunostimulatory cytokines might be exploited to improve therapeutic CD8+ T cell responses. For example, Interleukin-7 (IL-7 is a potent growth, activation and survival factor for CD8+ T cells that can be used to improve virus- and tumor-specific CD8+ T cell responses. Although direct IL-7 effects on CD8+ T cells were studied extensively in numerous models, the contribution of IL-7 receptor-competent (IL-7R+ host cells remained unclear. In the current study we provide evidence that CD8+ T cell-mediated tumor rejection in response to recombinant IL-7 (rIL-7 therapy is strictly dependent on IL-7R+ host cells. On the contrary, CD8+ T cell expansion is independent of host IL-7R expression. If, however, rIL-7 therapy and peptide vaccination are combined, host IL-7R signaling is crucial for CD8+ T cell expansion. Unexpectedly, maximum CD8+ T cell expansion relies mainly on IL-7R signaling in non-hematopoietic host cells, similar to the massive accumulation of dendritic cells and granulocytes. In summary, we provide evidence that IL-7R+ host cells are major targets of rIL-7 that modulate therapeutic CD8+ T cell responses and the outcome of rIL-7-assisted ATT. This knowledge may have important implications for the design and optimization of clinical ATT protocols.

  5. Interleukin-7 Modulates Anti-Tumor CD8+ T Cell Responses via Its Action on Host Cells.

    Science.gov (United States)

    Deiser, Katrin; Stoycheva, Diana; Bank, Ute; Blankenstein, Thomas; Schüler, Thomas

    2016-01-01

    The adoptive transfer of antigen-specific CD8+ T cells is a promising approach for the treatment of chronic viral and malignant diseases. In order to improve adoptive T cell therapy (ATT) of cancer, recent strategies aim at the antibody-based blockade of immunosuppressive signaling pathways in CD8+ T cells. Alternatively, adjuvant effects of immunostimulatory cytokines might be exploited to improve therapeutic CD8+ T cell responses. For example, Interleukin-7 (IL-7) is a potent growth, activation and survival factor for CD8+ T cells that can be used to improve virus- and tumor-specific CD8+ T cell responses. Although direct IL-7 effects on CD8+ T cells were studied extensively in numerous models, the contribution of IL-7 receptor-competent (IL-7R+) host cells remained unclear. In the current study we provide evidence that CD8+ T cell-mediated tumor rejection in response to recombinant IL-7 (rIL-7) therapy is strictly dependent on IL-7R+ host cells. On the contrary, CD8+ T cell expansion is independent of host IL-7R expression. If, however, rIL-7 therapy and peptide vaccination are combined, host IL-7R signaling is crucial for CD8+ T cell expansion. Unexpectedly, maximum CD8+ T cell expansion relies mainly on IL-7R signaling in non-hematopoietic host cells, similar to the massive accumulation of dendritic cells and granulocytes. In summary, we provide evidence that IL-7R+ host cells are major targets of rIL-7 that modulate therapeutic CD8+ T cell responses and the outcome of rIL-7-assisted ATT. This knowledge may have important implications for the design and optimization of clinical ATT protocols.

  6. Rosemary (Rosmarinus officinalis) extract modulates CHOP/GADD153 to promote androgen receptor degradation and decreases xenograft tumor growth.

    Science.gov (United States)

    Petiwala, Sakina M; Berhe, Saba; Li, Gongbo; Puthenveetil, Angela G; Rahman, Ozair; Nonn, Larisa; Johnson, Jeremy J

    2014-01-01

    The Mediterranean diet has long been attributed to preventing or delaying the onset of cardiovascular disease, diabetes and various solid organ cancers. In this particular study, a rosemary extract standardized to carnosic acid was evaluated for its potential in disrupting the endoplasmic reticulum machinery to decrease the viability of prostate cancer cells and promote degradation of the androgen receptor. Two human prostate cancer cell lines, 22Rv1 and LNCaP, and prostate epithelial cells procured from two different patients undergoing radical prostatectomy were treated with standardized rosemary extract and evaluated by flow cytometry, MTT, BrdU, Western blot and fluorescent microscopy. A significant modulation of endoplasmic reticulum stress proteins was observed in cancer cells while normal prostate epithelial cells did not undergo endoplasmic reticulum stress. This biphasic response suggests that standardized rosemary extract may preferentially target cancer cells as opposed to "normal" cells. Furthermore, we observed standardized rosemary extract to decrease androgen receptor expression that appears to be regulated by the expression of CHOP/GADD153. Using a xenograft tumor model we observed standardized rosemary extract when given orally to significantly suppress tumor growth by 46% compared to mice not receiving standardized rosemary extract. In the last several years regulatory governing bodies (e.g. European Union) have approved standardized rosemary extracts as food preservatives. These results are especially significant as it is becoming more likely that individuals will be receiving standardized rosemary extracts that are a part of a natural preservative system in various food preparations. Taken a step further, it is possible that the potential benefits that are often associated with a "Mediterranean Diet" in the future may begin to extend beyond the Mediterranean diet as more of the population is consuming standardized rosemary extracts.

  7. Eugenol reduces acute pain in mice by modulating the glutamatergic and tumor necrosis factor alpha (TNF-α) pathways.

    Science.gov (United States)

    Dal Bó, Wladmir; Luiz, Ana Paula; Martins, Daniel F; Mazzardo-Martins, Leidiane; Santos, Adair R S

    2013-10-01

    Eugenol is utilized together with zinc oxide in odontological clinical for the cementation of temporary prostheses and the temporary restoration of teeth and cavities. This work explored the antinociceptive effects of the eugenol in different models of acute pain in mice and investigated its possible modulation of the inhibitory (opioid) and excitatory (glutamatergic and pro-inflammatory cytokines) pathways of nociceptive signaling. The administration of eugenol (3-300 mg/kg, p.o., 60 min or i.p., 30 min) inhibited 82 ± 10% and 90 ± 6% of the acetic acid-induced nociception, with ID₅₀ values of 51.3 and 50.2 mg/kg, respectively. In the glutamate test, eugenol (0.3-100 mg/kg, i.p.) reduced the response behavior by 62 ± 5% with an ID₅₀ of 5.6 mg/kg. In addition, the antinociceptive effect of eugenol (10 mg/kg, i.p.) in the glutamate test was prevented by the i.p. treatment for mice with naloxone. The pretreatment of mice with eugenol (10 mg/kg, i.p.) was able to inhibit the nociception induced by the intrathecal (i.t.) injection of glutamate (37 ± 9%), kainic (acid kainite) (41 ± 12%), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) (55 ± 5%), and substance P (SP) (39 ± 8%). Furthermore, eugenol (10 mg/kg, i.p.) also inhibited biting induced by tumor necrosis factor alpha (TNF-α, 65 ± 8%). These results extend our current knowledge of eugenol and confirm that it promotes significant antinociception against different mouse models of acute pain. The mechanism of action appears to involve the modulation of the opioid system and glutamatergic receptors (i.e., kainate and AMPA), and the inhibition of TNF-α. Thus, eugenol could represent an important compound in the treatment for acute pain.

  8. Interferon-γ differentially modulates the impact of tumor necrosis factor-α on human endometrial stromal cells.

    Science.gov (United States)

    Spratte, Julia; Oemus, Anne; Zygmunt, Marek; Fluhr, Herbert

    2015-09-01

    The pro-inflammatory T helper (Th)-1 cytokines, tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ), are immunological factors relevant at the feto-maternal interface and involved in the pathophysiology of implantation disorders. The synergistic action of the two cytokines has been described with regard to apoptotic cell death and inflammatory responses in different cell types, but little is known regarding the human endometrium. Therefore, we examined the interaction of TNF-α and IFN-γ in human endometrial stromal cells (ESCs). ESCs were isolated from specimens obtained during hysterectomy and decidualized in vitro. Cells were incubated with TNF-α, IFN-γ or signaling-inhibitor. Insulin-like growth factor binding protein (IGFBP)-1, prolactin (PRL), leukemia inhibitory factor (LIF), interleukin (IL)-6, IL-8, regulated on activation normal T-cell expressed and secreted protein (RANTES) and monocyte chemotactic protein (MCP)-1 were measured using ELISA and real-time RT-PCR. Nuclear factor of transcription (NF)-κB and its inhibitor (IκBα) were analyzed by in-cell western assay and transcription factor assay. TNF-α inhibited and IFN-γ did not affect the decidualization of ESCs. In contrast, IFN-gamma differentially modulated the stimulating effect of TNF-alpha on cytokines by enhancing IL-6, RANTES and MCP-1 and attenuating LIF mRNA expression. These effects were time- and dose-dependent. IFN-γ had no impact on the initial activation of NF-κB signaling. Histone-deacetylase activity was involved in the modulating effect of IFN-γ on RANTES secretion. These observations showed a distinct pattern of interaction of the Th-1 cytokines, TNF-α and IFN-γ in the human endometrium, which could play an important role in the pathophysiology of implantation disorders.

  9. Ribozyme modulation of lipopolysaccharide-induced tumor necrosis factor-alpha production by peritoneal cells in vitro and in vivo.

    Science.gov (United States)

    Sioud, M

    1996-05-01

    We have utilized synthetic ribozymes to modulate the lipopolysaccharide (LPS)-induced production of tumor necrosis factor-alpha (TNF-alpha) by peritoneal cells. Two hammerhead ribozymes (mRz1 and mRz2) were prepared by transcription in vitro and their activities in vitro and in vivo were investigated. Both ribozymes cleaved their RNA target with an apparent turnover number (kcat) of 2 min(-1), and inhibited TNF-alpha gene expression in vitro by 50% and 70%, respectively. When mRz1 and mRz2, entrapped in liposomes, were delivered into mice by intraperitoneal injection, they inhibited LPS-induced TNF-alpha gene expression in vivo with mRz2 being the most effective. This enhanced activity could result from the facilitation of catalysis by cellular endogenous proteins, since they specifically bind to mRz2 as compared to mRz1. Furthermore, a significant mRz2 activity can be recovered from peritoneal cells 2 days post-administration in vivo. The anti-TNF-alpha ribozyme treatment in vivo resulted in a more significant reduction of LPS-induced IFN-gamma protein secretion compared to IL-10. In contrast to this pleiotropic effect, the anti-TNF-alpha ribozyme treatment did not affect the heterogenous expression of Fas ligand by peritoneal cells, indicating the specificity of the treatment. Taken together, the present data indicate that the biological effects of TNF-alpha can be modulated by ribozymes. In addition, the data suggest that ribozymes can be administered in a drug-like manner, and therefore indicate their potential in clinical applications.

  10. Effect of inducing chemotherapy + chrono-chemotherapy + intensity-modulated radiation therapy on the survival and tumor malignancy in patients with nasopharyngeal carcinoma

    Institute of Scientific and Technical Information of China (English)

    Hui Liu

    2016-01-01

    Objective:To analyze the effect of inducing chemotherapy + chrono-chemotherapy + intensity-modulated radiation therapy on the survival and tumor malignancy in patients with nasopharyngeal carcinoma.Methods: A total of 60 patients with locally advanced nasopharyngeal carcinoma were divided into observation group and control group according to different treatment, observation group received inducing chemotherapy + chrono-chemotherapy + intensity-modulated radiation therapy and control group received conventional treatment. Differences in the survival and tumor malignancy were compared between two groups.Results:miR-143 and miR-218 expression levels in nasopharyngeal carcinoma tissue of observation group after treatment were higher than those of control group, and miR-7 expression level was lower than that of control group; caspase-3, GRP-78 and Bax protein expression levels in tumor tissue of observation group after treatment were higher than those of control group, and Bcl-2 protein expression level was lower than that of control group;serum VEGF, -HBDH, CYFRA21-1 and PCⅢ levels of observation group after treatment were lower than those of control group.Conclusion:Inducing chemotherapy + chrono-chemotherapy + intensity-modulated radiation therapy can reduce the tumor malignancy and optimize the quality of life in patients with nasopharyngeal carcinoma.

  11. High nuclear level of Vav1 is a positive prognostic factor in early invasive breast tumors: a role in modulating genes related to the efficiency of metastatic process.

    Science.gov (United States)

    Grassilli, Silvia; Brugnoli, Federica; Lattanzio, Rossano; Rossi, Cosmo; Perracchio, Letizia; Mottolese, Marcella; Marchisio, Marco; Palomba, Maria; Nika, Ervin; Natali, Pier Giorgio; Piantelli, Mauro; Capitani, Silvano; Bertagnolo, Valeria

    2014-06-30

    Vav1 is one of the signalling proteins normally restricted to hematopoietic cells that results ectopically expressed in solid tumors, including breast cancer. By immunohistochemical analysis on TMAs containing invasive breast tumor from patients without lymph node involvement, we have found that Vav1 is expressed in almost all investigated cancers and shows a peculiar localization inside the nucleus of tumor cells. High amounts of nuclear Vav1 are positively correlated with low incidence of relapse, regardless phenotype and molecular subtype of breast neoplasia. In particular, Kaplan-Meier plots showed an elevated risk of distant metastasis in patients with low Vav1 expression compared with patients with high Vav1 expression in their tumors. Experiments performed with breast tumor-derived cells indicated that Vav1 negatively modulates their invasiveness in vitro and their metastatic efficiency in vivo, possibly by affecting the expression of genes involved in invasion and/or metastasis of breast tumors. Since the high heterogeneity of breast tumors makes difficult to predict the evolution of early breast neoplasias, the evaluation of nuclear Vav1 levels may help in the characterization and management of early breast cancer patients. In particular, Vav1 may serve as a prognostic biomarker and a target for new therapies aimed to prevent breast cancer progression.

  12. Deleted in Malignant Brain Tumors 1 (DMBT1 is present in hyaline membranes and modulates surface tension of surfactant

    Directory of Open Access Journals (Sweden)

    Griese Matthias

    2007-10-01

    Full Text Available Abstract Background Deleted in Malignant Brain Tumors 1 (DMBT1 is a secreted scavenger receptor cysteine-rich protein that binds various bacteria and is thought to participate in innate pulmonary host defense. We hypothesized that pulmonary DMBT1 could contribute to respiratory distress syndrome in neonates by modulating surfactant function. Methods DMBT1 expression was studied by immunohistochemistry and mRNA in situ hybridization in post-mortem lungs of preterm and full-term neonates with pulmonary hyaline membranes. The effect of human recombinant DMBT1 on the function of bovine and porcine surfactant was measured by a capillary surfactometer. DMBT1-levels in tracheal aspirates of ventilated preterm and term infants were determined by ELISA. Results Pulmonary DMBT1 was localized in hyaline membranes during respiratory distress syndrome. In vitro addition of human recombinant DMBT1 to the surfactants increased surface tension in a dose-dependent manner. The DMBT1-mediated effect was reverted by the addition of calcium depending on the surfactant preparation. Conclusion Our data showed pulmonary DMBT1 expression in hyaline membranes during respiratory distress syndrome and demonstrated that DMBT1 increases lung surface tension in vitro. This raises the possibility that DMBT1 could antagonize surfactant supplementation in respiratory distress syndrome and could represent a candidate target molecule for therapeutic intervention in neonatal lung disease.

  13. The functional tumor necrosis factor-α (308A/G) polymorphism modulates attentional selection in elderly individuals.

    Science.gov (United States)

    Gajewski, Patrick D; Hengstler, Jan G; Golka, Klaus; Falkenstein, Michael; Beste, Christian

    2013-11-01

    There has been increasing interest in understanding the role of inflammatory processes for cognitive functions in aging using molecular genetic approaches. Though this has mostly been evaluated in pathological aging, little is known about the relevance for cognitive functions in healthy aging in humans. On the basis of behavioral data and neurophysiological data (event-related potentials and time-frequency decomposition) we show that the A-allele of the functional tumor necrosis factor (TNF)-α -308 A/G polymorphism confers dysfunction in a number of cognitive processes: prolonged attentional selection indexed by a delayed P1/N1 complex, an increased P3a, which is interpreted as an enhanced distractibility by nonrelevant stimuli and compromised response selection mechanisms, as indexed by a reduced frontocentral N2. Time-frequency analyses show that allelic variations further exert their effects by modulating alpha and beta frequency oscillations. On a neurobiological level, these effects might be because of the interaction of TNF-α with glutamatergic neural transmission by which TNF-α is known to boost apoptotic mechanisms in elderly individuals.

  14. High expression of G-protein signaling modulator 2 in hepatocellular carcinoma facilitates tumor growth and metastasis by activating the PI3K/AKT signaling pathway.

    Science.gov (United States)

    He, Xiao-Qin; Zhang, Yue-Feng; Yu, Jia-Jun; Gan, Yuan-Yuan; Han, Na-Na; Zhang, Mei-Xia; Ge, Wei; Deng, Jun-Jian; Zheng, Yong-Fa; Xu, Xi-Ming

    2017-03-01

    The aim of this study was to investigate the role of G-protein signaling modulator 2 in the carcinogenesis and progression of hepatocellular carcinoma. We previously showed that G-protein signaling modulator 2 was upregulated in hepatitis B virus-related hepatocellular carcinoma tissues through a hierarchical clustering analysis. With this study, we first assessed the expression pattern of G-protein signaling modulator 2 in hepatocellular carcinoma specimens and adjacent noncancerous tissues; clinical data were analyzed, along survival times, utilizing the Kaplan-Meier method. Moreover, the functions of G-protein signaling modulator 2 were examined using small-interfering RNAs in vitro. The results showed that G-protein signaling modulator 2 was clearly overexpressed in hepatocellular carcinoma tissues and cell lines and that the G-protein signaling modulator 2 expression level was related to tumor size and hepatitis B virus infection. Furthermore, G-protein signaling modulator 2 knockdown studies suggested that G-protein signaling modulator 2 accelerates cell growth, cell cycle, migration, and invasion and inhibits apoptosis, acting as an oncogene in hepatocellular carcinoma. Western blotting indicated that silencing of G-protein signaling modulator 2 in HepG2 and SMMC-7721 cells increased the expression levels of Bax, caspase-3, and E-cadherin, while notably suppressing the cyclin-dependent kinase 4, cyclin-dependent kinase 6, CyclinD1, Snail1, Vimentin, and matrix metallopeptidase 9 expression levels, compared with that in the control groups. In addition, we found that G-protein signaling modulator 2 can affect the expression of key proteins involved in protein kinase B activation. In conclusion, high expression of G-protein signaling modulator 2 was involved in the pathological processes of hepatocellular carcinoma through activation of the phosphatidylinositol 3-kinase/protein kinase B signaling pathway, which may provide an attractive potential diagnostic

  15. In Vivo Loss of Function Screening Reveals Carbonic Anhydrase IX as a Key Modulator of Tumor Initiating Potential in Primary Pancreatic Tumors

    Directory of Open Access Journals (Sweden)

    Nabendu Pore

    2015-06-01

    Full Text Available Reprogramming of energy metabolism is one of the emerging hallmarks of cancer. Up-regulation of energy metabolism pathways fuels cell growth and division, a key characteristic of neoplastic disease, and can lead to dependency on specific metabolic pathways. Thus, targeting energy metabolism pathways might offer the opportunity for novel therapeutics. Here, we describe the application of a novel in vivo screening approach for the identification of genes involved in cancer metabolism using a patient-derived pancreatic xenograft model. Lentiviruses expressing short hairpin RNAs (shRNAs targeting 12 different cell surface protein transporters were separately transduced into the primary pancreatic tumor cells. Transduced cells were pooled and implanted into mice. Tumors were harvested at different times, and the frequency of each shRNA was determined as a measure of which ones prevented tumor growth. Several targets including carbonic anhydrase IX (CAIX, monocarboxylate transporter 4, and anionic amino acid transporter light chain, xc- system (xCT were identified in these studies and shown to be required for tumor initiation and growth. Interestingly, CAIX was overexpressed in the tumor initiating cell population. CAIX expression alone correlated with a highly tumorigenic subpopulation of cells. Furthermore, CAIX expression was essential for tumor initiation because shRNA knockdown eliminated the ability of cells to grow in vivo. To the best of our knowledge, this is the first parallel in vivo assessment of multiple novel oncology target genes using a patient-derived pancreatic tumor model.

  16. Questions and Answers on Unapproved Chelation Products

    Science.gov (United States)

    ... of the marketing scheme to convince consumers to purchase unapproved OTC chelation products. These test kits are ... feeds Follow FDA on Twitter Follow FDA on Facebook View FDA videos on YouTube View FDA photos ...

  17. Zinc chelation reduces hippocampal neurogenesis after pilocarpine-induced seizure.

    Directory of Open Access Journals (Sweden)

    Jin Hee Kim

    Full Text Available Several studies have shown that epileptic seizures increase hippocampal neurogenesis in the adult. However, the mechanism underlying increased neurogenesis after seizures remains largely unknown. Neurogenesis occurs in the subgranular zone (SGZ of the hippocampus in the adult brain, although an understanding of why it actively occurs in this region has remained elusive. A high level of vesicular zinc is localized in the presynaptic terminals of the SGZ. Previously, we demonstrated that a possible correlation may exist between synaptic zinc localization and high rates of neurogenesis in this area after hypoglycemia. Using a lithium-pilocarpine model, we tested our hypothesis that zinc plays a key role in modulating hippocampal neurogenesis after seizure. Then, we injected the zinc chelator, clioquinol (CQ, 30 mg/kg, into the intraperitoneal space to reduce brain zinc availability. Neuronal death was detected with Fluoro Jade-B and NeuN staining to determine whether CQ has neuroprotective effects after seizure. The total number of degenerating and live neurons was similar in vehicle and in CQ treated rats at 1 week after seizure. Neurogenesis was evaluated using BrdU, Ki67 and doublecortin (DCX immunostaining 1 week after seizure. The number of BrdU, Ki67 and DCX positive cell was increased after seizure. However, the number of BrdU, Ki67 and DCX positive cells was significantly decreased by CQ treatment. Intracellular zinc chelator, N,N,N0,N-Tetrakis (2-pyridylmethyl ethylenediamine (TPEN, also reduced seizure-induced neurogenesis in the hippocampus. The present study shows that zinc chelation does not prevent neurodegeneration but does reduce seizure-induced progenitor cell proliferation and neurogenesis. Therefore, this study suggests that zinc has an essential role for modulating hippocampal neurogenesis after seizure.

  18. SYNTHESIS AND APPLICATION OF IMINOCARBOXYLIC CHELATING FIBERS

    Institute of Scientific and Technical Information of China (English)

    LiHangqiu; ZhouShaoji

    1997-01-01

    In this paper,fibrous chelating exchangers with-N(CH2COOH)2 group have been prepared for the first time by a weakly basic anion exchange fiber (aminated fiber)as the starting materials.The fibers were quite effective for the adsorption of heavy metal ion such as Cu2+.In addition,IR spectrum of the structure of fibers confirms that it is feasible to prepare iminocarboxylic chelating fiber through direct carboxylation reaction.

  19. Tumor Control Outcomes After Hypofractionated and Single-Dose Stereotactic Image-Guided Intensity-Modulated Radiotherapy for Extracranial Metastases From Renal Cell Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zelefsky, Michael J., E-mail: zelefskm@mskcc.org [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Greco, Carlo [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Motzer, Robert [Solid Tumor Service, Medical Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Magsanoc, Juan Martin; Pei Xin [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Lovelock, Michael; Mechalakos, Jim [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Zatcky, Joan; Fuks, Zvi; Yamada, Yoshiya [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States)

    2012-04-01

    Purpose: To report tumor local progression-free outcomes after treatment with single-dose, image-guided, intensity-modulated radiotherapy and hypofractionated regimens for extracranial metastases from renal cell primary tumors. Patients and Methods: Between 2004 and 2010, 105 lesions from renal cell carcinoma were treated with either single-dose, image-guided, intensity-modulated radiotherapy to a prescription dose of 18-24 Gy (median, 24) or hypofractionation (three or five fractions) with a prescription dose of 20-30 Gy. The median follow-up was 12 months (range, 1-48). Results: The overall 3-year actuarial local progression-free survival for all lesions was 44%. The 3-year local progression-free survival for those who received a high single-dose (24 Gy; n = 45), a low single-dose (<24 Gy; n = 14), or hypofractionation regimens (n = 46) was 88%, 21%, and 17%, respectively (high single dose vs. low single dose, p = .001; high single dose vs. hypofractionation, p < .001). Multivariate analysis revealed the following variables were significant predictors of improved local progression-free survival: 24 Gy dose compared with a lower dose (p = .009) and a single dose vs. hypofractionation (p = .008). Conclusion: High single-dose, image-guided, intensity-modulated radiotherapy is a noninvasive procedure resulting in high probability of local tumor control for metastatic renal cell cancer generally considered radioresistant according to the classic radiobiologic ranking.

  20. Modulation of transglutaminase activity in mononuclear phagocytes and macrophage-like tumor cell lines by differentiation agents

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, R.

    1987-01-01

    The effect of glucocorticosteroids, retinoids, 1,25-dihydroxyvitamin D/sub 3/ (1,25(OH)/sub 2/D/sub 3/) and the tumor promoter phorbol myristate acetate (TPA) on the expression of transglutaminase activity in in vitro differentiating bone marrow-derived mouse and rat mononuclear phagocytes (BMDMP) and mouse and human myeloid leukemia cell lines was assessed. Dexamethasone was found to induce an increase of about 100% in transglutaminase activity in mouse and rat BMDMP. The effect was time- and dose-dependent, and specific for steroids with glucocorticoid activity. Retinoic acid (RA) suppressed transglutaminase activity in mouse BMDMP and enhanced it in rat BMDMP. In murine and human myeloid leukemia cell lines, dexamethasone enhanced transglutaminase activity to a varying degree, RA suppressed it in P388D1 cells and enhanced it in the other cell lines. 1,25(OH)/sub 2/D/sub 3/ induced a rather small augmentation of enzyme expression, whereas TPA suppressed enzyme expression (70-100%). The species-specific differences previously observed by the authors for the effect of RA, dexamethasone and 1,25(OH)/sub 2/D/sub 3/ on the formation of BMDMP from mouse and rat bone marrow progenitor cells are now shown to extend also to effects on expression of transglutaminase activity. From a mechanistic point of view it is of interest that dexamethasone uniformly enhanced transglutaminase activity, whereas TPA suppressed it. The data suggest that modulation of transglutaminase activity by the four agents occurs via disparate mechanisms.

  1. D-pinitol mitigates tumor growth by modulating interleukins and hormones and induces apoptosis in rat breast carcinogenesis through inhibition of NF-κB.

    Science.gov (United States)

    Rengarajan, Thamaraiselvan; Nandakumar, Natarajan; Rajendran, Peramaiyan; Ganesh, Mohanraj Karthik; Balasubramanian, Maruthaiveeran Periyasamy; Nishigaki, Ikuo

    2015-06-01

    Breast cancer is the most prevalent malignant neoplasm in the world, and chemoprevention through dietary intervention strategy is an emerging option to reduce the incidence. D-pinitol (DP), a major component of soya bean, possesses attractive biological actions. We have investigated whether D-pinitol have an effect on tumor growth in vivo against 7,12-dimethylbenz(a)anthracene (DMBA)-initiated rat mammary carcinogenesis and investigated its mechanism of action. Tumors were induced in Sprague-Dawley (SD) rats by a gastric dose of 20 mg/kg DMBA, and after 13 weeks of induction period, the rats were orally administered with D-pinitol for 45 days. At the end of the assay, animals in carcinogen control group prompted a tumor incidence of 100 % and developed a tumor volume of 8.35 ± 0.56, which was significantly reduced to 5.74 ± 0.32 for the animals treated with D-pinitol. The D-pinitol treatment not only decreased the tumor volume but also further examination revealed that tumors from animals that received D-pinitol reduced nuclear factor kappa B (NF-κB) activation which in turn results in modulation of its downstreaming p53 and proteins of caspase-3 family. Bcl-2 expression and caspase-3 activation were also decreased after D-pinitol supplementation leading to induction of apoptosis and finally cell death. Furthermore, the status of the inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin (IL)-2, IL-6, and tumor markers, lipid profile, and hormones was also significantly declined up on D-pinitol administration. Thus, it reveals the collective involvement of the above-mentioned parameters along with NF-κB signaling through which D-pinitol induces apoptosis and subsequently suppresses breast cancer during DMBA-induced rat breast carcinogenesis.

  2. Modulation of tumor response to photodynamic therapy in severe combined immunodeficient (SCID) mice by adoptively transferred lymphoid cells

    Science.gov (United States)

    Korbelik, Mladen; Krosl, Gorazd; Krosl, Jana; Dougherty, Graeme J.

    1996-04-01

    Photodynamic treatment, consisting of intravenous injection of PhotofrinR (10 mg/kg) followed by exposure to 110 J/cm2 of 630 plus or minus 10 nm light 24 hours later, cured 100% of EMT6 tumors (murine mammary sarcoma) growing in syngeneic immunocompetent BALB/C mice. In contrast, the same treatment produced no cures of EMT6 tumors growing in either nude or SCID mice (immunodeficient strains). EMT6 tumors growing in BALB/C and SCID mice showed no difference in either the level of PhotofrinR accumulated per gram of tumor tissue, or the extent of tumor cell killing during the first 24 hours post photodynamic therapy (PDT). In an attempt to improve the sensitivity to PDT of EMT6 tumors growing in SCID mice, these hosts were given either splenic T lymphocytes or whole bone marrow from BALB/C mice. The adoptive transfer of lymphocytes 9 days before PDT was successful in delaying tumor recurrence but produced no cures. A better improvement in PDT response was obtained with tumors growing in SCID mice reconstituted with BALB/C bone marrow (tumor cure rate of 63%). The results of this study demonstrate that, at least with the EMT6 tumor model, antitumor immune activity mediated by lymphoid cell populations makes an important contribution to the curative effect of PDT.

  3. C6-ceramide nanoliposome suppresses tumor metastasis by eliciting PI3K and PKCζ tumor-suppressive activities and regulating integrin affinity modulation

    OpenAIRE

    Zhang, Pu; Fu, Changliang; Hu, Yijuan; Dong, Cheng; Song, Yang; Song, Erqun

    2015-01-01

    Nanoliposomal formulation of C6-ceramide, a proapoptotic sphingolipid metabolite, presents an effective way to treat malignant tumor. Here, we provide evidence that acute treatment (30 min) of melanoma and breast cancer cells with nanoliposomal C6-ceramide (NaL-C6) may suppress cell migration without inducing cell death. By employing a novel flow migration assay, we demonstrated that NaL-C6 decreased tumor extravasation under shear conditions. Compared with ghost nanoliposome, NaL-C6 triggere...

  4. WE-G-BRF-01: Adaptation to Intrafraction Tumor Deformation During Intensity-Modulated Radiotherapy: First Proof-Of-Principle Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Y; OBrien, R; Shieh, C; Booth, J; Keall, P [Radiation Physics Laboratory, University of Sydney (Australia)

    2014-06-15

    Purpose: Intrafraction tumor deformation limits targeting accuracy in radiotherapy and cannot be adapted to by current motion management techniques. This study simulated intrafractional treatment adaptation to tumor deformations using a dynamic Multi-Leaf Collimator (DMLC) tracking system during Intensity-modulated radiation therapy (IMRT) treatment for the first time. Methods: The DMLC tracking system was developed to adapt to the intrafraction tumor deformation by warping the planned beam aperture guided by the calculated deformation vector field (DVF) obtained from deformable image registration (DIR) at the time of treatment delivery. Seven single phantom deformation images up to 10.4 mm deformation and eight tumor system phantom deformation images up to 21.5 mm deformation were acquired and used in tracking simulation. The intrafraction adaptation was simulated at the DMLC tracking software platform, which was able to communicate with the image registration software, reshape the instantaneous IMRT field aperture and log the delivered MLC fields.The deformation adaptation accuracy was evaluated by a geometric target coverage metric defined as the sum of the area incorrectly outside and inside the reference aperture. The incremental deformations were arbitrarily determined to take place equally over the delivery interval. The geometric target coverage of delivery with deformation adaptation was compared against the delivery without adaptation. Results: Intrafraction deformation adaptation during dynamic IMRT plan delivery was simulated for single and system deformable phantoms. For the two particular delivery situations, over the treatment course, deformation adaptation improved the target coverage by 89% for single target deformation and 79% for tumor system deformation compared with no-tracking delivery. Conclusion: This work demonstrated the principle of real-time tumor deformation tracking using a DMLC. This is the first step towards the development of an

  5. The modulation of tumor vessel permeability by thalidomide and its impacts on different types of targeted drug delivery systems in a sarcoma mouse model.

    Science.gov (United States)

    Wang, Dan; Fu, Jijun; Shi, Yujie; Peng, Dong; Yuan, Lan; He, Bing; Dai, Wenbing; Zhang, Hua; Wang, Xueqing; Tian, Jie; Zhang, Qiang

    2016-09-28

    The transport of nanocarriers is supposed to be based on EPR effect which is affected by diverse factors, so the modulation of EPR effect seems very significant for nanocarriers including targeted drug delivery systems (TDDSs). Besides, it is extremely unclear how the EPR effect impacts the fate of different types of TDDSs. To make the most advantage of EPR effect for TDDSs, it is definitely necessary to clarify these key issues. Here, we construct and characterize various TDDSs, including sterically-stabilized liposomes (SSL), RGD functionalized SSL (RGD-SSL) and novel 7PEP functionalized SSL (7PEP-SSL), loaded with doxorubicin (DOX), DIR or DID. Here, we modulate the permeability of tumor vessels by thalidomide (THD) in a sarcoma-bearing EPR mouse model via monitoring endogenous deoxygenated hemoglobin in circulation, and then we confirm the effect of THD on tumor vessel permeability by vessel density, vessel maturity, VEGF expression and so on. Importantly, we investigate and find the impacts of EPR effect on the antitumor efficacy, in vivo distribution and intratumoral microdistribution of the three TDDSs. Interestingly, the EPR effects affect different TDDSs differently. The elevated EPR effect enhances the tumor accumulation of SSL and RGD-SSL but fails to increase their efficacy. The RGD-SSL exhibits the best efficacy with the least fluctuation, demonstrating the advantage of angiogenesis targeted systems. 7PEP-SSL seems the biggest beneficiary of EPR effect, suggesting the significance of EPR modulation for cells targeted systems. Generally, this study demonstrates the feasibility of modulating EPR effect bidirectionally by THD as well as the impacts of EPR effect on different type of testing TDDSs based on this animal model. It certainly provides novel insight into the design and potential use of TDDSs.

  6. Cryotherapy with concurrent CpG oligonucleotide treatment controls local tumor recurrence and modulates Her2/neu immunity

    Science.gov (United States)

    Veenstra, Jesse J.; Gibson, Heather M.; Littrup, Peter J.; Reyes, Joyce D.; Cher, Michael L.; Takashima, Akira; Wei, Wei-Zen

    2014-01-01

    Percutaneous cryoablation is a minimally invasive procedure for tumor destruction, which can potentially initiate or amplify antitumor immunity through the release of tumor-associated antigens. However, clinically efficacious immunity is lacking and regional recurrences are a limiting factor relative to surgical excision. To understand the mechanism of immune activation by cryoablation, comprehensive analyses of innate immunity and Her2/neu humoral and cellular immunity following cryoablation with or without peritumoral CpG injection was conducted using two Her2/neu+ tumor systems in wild type, neu-tolerant, and SCID mice. Cryoablation of neu+ TUBO tumor in BALB/c mice resulted in systemic immune priming, but not in neu-tolerant BALB NeuT mice. Cryoablation of human Her2+ D2F2/E2 tumor enabled the functionality of tumor-induced immunity but secondary tumors were refractory to anti-tumor immunity if rechallenge occurred during the resolution phase of the cryoablated tumor. A step-wise increase in local recurrence was observed in wild type, neu-tolerant, and SCID mice indicating a role of adaptive immunity in controlling residual tumor foci. Importantly, local recurrences were eliminated or greatly reduced in wild type, neu tolerant and SCID mice when CpG was incorporated in the cryoablation regimen, showing significant local control by innate immunity. For long-term protection, however, adaptive immunity was required because most SCID mice eventually succumbed to local tumor recurrence even with combined cryoablation and CpG treatment. This improved understanding of the mechanisms by which cryoablation affects innate and adaptive immunity will help guide appropriate combination of therapeutic interventions to improve treatment outcomes. PMID:25092895

  7. Using iron chelating agents to enhance dermatological PDT

    Science.gov (United States)

    Curnow, Alison; Dogra, Yuktee; Winyard, Paul; Campbell, Sandra

    2009-06-01

    Topical protoporphyrin IX (PPIX) induced photodynamic therapy (PDT) of basal cell carcinoma (BCC) produces good clinical outcomes with excellent cosmesis as long as the disease remains superficial. Efficacy for nodular BCC however appears inferior to standard treatment unless repeat treatments are performed. Enhancement is therefore required and is possible by employing iron chelating agents to temporarily increase PPIX accumulation above the levels normally obtained using aminolevulinic acid (ALA) or the methyl ester of ALA (MAL) alone. In vitro studies investigated the effect of the novel iron chelator, CP94 on necrotic or apoptotic cell death in cultured human skin fibroblasts and epidermal carcinoma cells incubated with MAL. Furthermore, following a dose escalating safety study conducted with ALA in patients, an additional twelve nodular BCCs were recruited for topical treatment with standard MAL-PDT +/- increasing doses of CP94. Six weeks later following clinical assessment, the whole treatment site was excised for histological analysis. CP94 produced greater cell death in vitro when administered in conjunction with MAL than this porphyrin precursor could produce when administered alone. Clinically, PDT treatment using Metvix + CP94 was a simple and safe modification associated with a trend of reduced tumor thickness with increasing CP94 dose.

  8. Long non-coding RNA NEAT1 is a transcriptional target of p53 and modulates p53-induced transactivation and tumor-suppressor function.

    Science.gov (United States)

    Idogawa, Masashi; Ohashi, Tomoko; Sasaki, Yasushi; Nakase, Hiroshi; Tokino, Takashi

    2017-03-14

    p53 is one of the most important tumor suppressor genes and the direct transcriptional targets of p53 must be explored to elucidate its functional mechanisms. Thus far, the p53 targets that have been primarily studied are protein-coding genes. Our previous study revealed that several long non-coding RNAs (lncRNAs) are direct transcriptional targets of p53, and knockdown of specific lncRNAs modulates p53-induced apoptosis. In this study, analysis of next-generation chromatin immunoprecipitation-sequencing (ChIP-seq) data for p53 revealed that the lncRNA NEAT1 is a direct transcriptional target of p53. The suppression of NEAT1 induction by p53 attenuates the inhibitory effect of p53 on cancer cell growth and also modulates gene transactivation, including that of many lncRNAs. Furthermore, low expression of NEAT1 is related to poor prognosis in several cancers. These results indicate that the induction of NEAT1 expression contributes to the tumor-suppressor function of p53 and suggest that p53 and NEAT1 constitute a transcriptional network contributing to various biological functions and tumor suppression. This article is protected by copyright. All rights reserved.

  9. Iron chelating agents for iron overload diseases

    Directory of Open Access Journals (Sweden)

    Guido Crisponi

    2014-09-01

    Full Text Available Although iron is an essential element for life, an excessive amount may become extremely toxic both for its ability to generate reactive oxygen species, and for the lack in humans of regulatory mechanisms for iron excretion. Chelation therapy has been introduced in clinical practice in the seventies of last century to defend thalassemic patients from the effects of iron overload and, in spite of all its limitations, it has dramatically changed both life expectancy and quality of life of patients. It has to be considered that the drugs in clinical use present some disadvantages too, this makes urgent new more suitable chelating agents. The requirements of an iron chelator have been better and better defined over the years and in this paper they will be discussed in detail. As a final point the most interesting ligands studied in the last years will be presented.

  10. Prostate Tumor Growth Can Be Modulated by Dietarily Targeting the 15-Lipoxygenase-1 and Cyclooxygenase-2 Enzymes

    Directory of Open Access Journals (Sweden)

    Uddhav P. Kelavkar

    2009-07-01

    Full Text Available The main objectives of our study were to determine the bioavailability of omega-3 (ω-3 to the tumor, to understand its mechanisms, and to determine the feasibility of targeting the ω-6 polyunsaturated fatty acids (PUFAs metabolizing 15-lipoxygenase-1 (15-LO-1 and cyclooxygenase-2 (COX-2 pathways. Nude mice injected subcutaneously with LAPC-4 prostate cancer cells were randomly divided into three different isocaloric (and same percent [%] of total fat diet groups: high ω-6 linoleic acid (LA, high ω-3 stearidonic acid (SDA PUFAs, and normal (control diets. Tumor growth and apoptosis were examined as end points after administration of short-term (5 weeks ω-3 and ω-6 fatty acid diets. Tumor tissue membranes were examined for growth, lipids, enzyme activities, apoptosis, and proliferation. Tumors from the LA diet-fed mice exhibited the most rapid growth compared with tumors from the control and SDA diet-fed mice. Moreover, a diet switch from LA to SDA caused a dramatic decrease in the growth of tumors in 5 weeks, whereas tumors grew more aggressively when mice were switched from an SDA to an LA diet. Evaluating tumor proliferation (Ki-67 and apoptosis (caspase-3 in mice fed the LA and SDA diets suggested increased percentage proliferation index from the ω-6 diet-fed mice compared with the tumors from the ω-3 SDA-fed mice. Further, increased apoptosis was observed in tumors from ω-3 SDA diet-fed mice versus tumors from ω-6 diet-fed mice. Levels of membrane phospholipids of red blood cells reflected dietary changes and correlated with the levels observed in tumors. Linoleic or arachidonic acid and metabolites (eicosanoid/prostaglandins were analyzed for 15-LO-1 and COX-2 activities by high-performance liquid chromatography. We also examined the percent unsaturated or saturated fatty acids in the total phospholipids, PUFA ω-6/ω-3 ratios, and other major enzymes (elongase, Delta [Δ]-5-desaturase, and Δ-6-desaturase of ω-6 catabolic

  11. Myeloid-derived suppressor cells modulate immune responses independently of NADPH oxidase in the ovarian tumor microenvironment in mice.

    Directory of Open Access Journals (Sweden)

    Heidi E Godoy

    Full Text Available The phagocyte NADPH oxidase generates superoxide anion and downstream reactive oxidant intermediates in response to infectious threat, and is a critical mediator of antimicrobial host defense and inflammatory responses. Myeloid-derived suppressor cells (MDSCs are a heterogeneous population of immature myeloid cells that are recruited by cancer cells, accumulate locally and systemically in advanced cancer, and can abrogate anti-tumor immunity. Prior studies have implicated the phagocyte NADPH oxidase as being an important component promoting MDSC accumulation and immunosuppression in cancer. We therefore used engineered NADPH oxidase-deficient (p47 (phox-/- mice to delineate the role of this enzyme complex in MDSC accumulation and function in a syngeneic mouse model of epithelial ovarian cancer. We found that the presence of NADPH oxidase did not affect tumor progression. The accumulation of MDSCs locally and systemically was similar in tumor-bearing wild-type (WT and p47 (phox-/- mice. Although MDSCs from tumor-bearing WT mice had functional NADPH oxidase, the suppressive effect of MDSCs on ex vivo stimulated T cell proliferation was NADPH oxidase-independent. In contrast to other tumor-bearing mouse models, our results show that MDSC accumulation and immunosuppression in syngeneic epithelial ovarian cancer is NADPH oxidase-independent. We speculate that factors inherent to the tumor, tumor microenvironment, or both determine the specific requirement for NADPH oxidase in MDSC accumulation and function.

  12. Therapeutic effect and prognostic analysis of intensity-modulated radiotherapy for primary hepatocellular carcinoma with portal vein and/or inferior vena cava tumor thrombus

    Directory of Open Access Journals (Sweden)

    HUANG Long

    2015-06-01

    Full Text Available ObjectiveTo determine the efficacy and prognostic factors of intensity-modulated radiotherapy (IMRT for primary hepatocellular carcinoma (HCC with portal vein and/or inferior vena cava tumor thrombus. MethodsTwenty-three HCC patients with portal vein and/or inferior vena cava tumor thrombus received IMRT with an 8 MV linear accelerator at the Cancer Center of General Hospital of Armed Police Forces, Anhui Medical University, from April 2008 to August 2011. A single dose of 3 to 6 Gy was delivered at five fractions per week, with a total dose of 56 to 96 Gy and a median dose of 60 Gy. Survival time was recorded, and adverse reactions were evaluated. Survival rate calculation and survival analysis were performed using the Kaplan-Meier method. Comparison of categorical between two groups was made by chi-square test. ResultsOne patient did not complete radiotherapy due to upper gastrointestinal bleeding. Of 22 patients who completed IMRT, 4 achieved complete remission and 10 achieved partial remission, with an overall response rate of 63.7%. Our analysis showed that the type of tumor thrombus and tumor size were associated with tumor response rate and were significant prognostic factors (P<0.05. The median survival time was 13.4 months. The 1-, 2-, and 3-year survival rates were 59%, 27%, and 18%, respectively. The 22 patients who completed radiotherapy did not experience acute radiation injury or late adverse outcomes such as radiation-induced liver disease. ConclusionThis study suggests IMRT is a safe and effective treatment option for HCC patients with portal vein and/or inferior vena cava tumor thrombus.

  13. CaNa2EDTA chelation attenuates cell damage in workers exposed to lead--a pilot study.

    Science.gov (United States)

    Čabarkapa, A; Borozan, S; Živković, L; Stojanović, S; Milanović-Čabarkapa, M; Bajić, V; Spremo-Potparević, B

    2015-12-05

    Lead induced oxidative cellular damage and long-term persistence of associated adverse effects increases risk of late-onset diseases. CaNa2EDTA chelation is known to remove contaminating metals and to reduce free radical production. The objective was to investigate the impact of chelation therapy on modulation of lead induced cellular damage, restoration of altered enzyme activities and lipid homeostasis in peripheral blood of workers exposed to lead, by comparing the selected biomarkers obtained prior and after five-day CaNa2EDTA chelation intervention. The group of smelting factory workers diagnosed with lead intoxication and current lead exposure 5.8 ± 1.2 years were administered five-day CaNa2EDTA chelation. Elevated baseline activity of antioxidant enzymes Cu, Zn-SOD and CAT as well as depleted thiols and increased protein degradation products-carbonyl groups and nitrites, pointing to Pb induced oxidative damage, were restored toward normal values following the treatment. Lead showed inhibitor potency on both RBC AChE and BChE in exposed workers, and chelation re-established the activity of BChE, while RBC AChE remained unaffected. Also, genotoxic effect of lead detected in peripheral blood lymphocytes was significantly decreased after therapy, exhibiting 18.9% DNA damage reduction. Administration of chelation reversed the depressed activity of serum PON 1 and significantly decreased lipid peroxidation detected by the post-chelation reduction of MDA levels. Lactate dehydrogenase LDH1-5 isoenzymes levels showed evident but no significant trend of restoring toward normal control values following chelation. CaNa2EDTA chelation ameliorates the alterations linked with Pb mediated oxidative stress, indicating possible benefits in reducing health risks associated with increased oxidative damage in lead exposed populations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Tumor suppressor ARF

    Science.gov (United States)

    Través, Paqui G.; Luque, Alfonso; Hortelano, Sonsoles

    2012-01-01

    ARF (alternative reading frame) is one of the most important tumor regulator playing critical roles in controlling tumor initiation and progression. Recently, we have demonstrated a novel and unexpected role for ARF as modulator of inflammatory responses. PMID:23162766

  15. Tumor necrosis factor alpha modulates the dynamics of the plasminogen-mediated early interaction between Bifidobacterium animalis subsp. lactis and human enterocytes.

    Science.gov (United States)

    Centanni, Manuela; Bergmann, Simone; Turroni, Silvia; Hammerschmidt, Sven; Chhatwal, Gursharan Singh; Brigidi, Patrizia; Candela, Marco

    2012-04-01

    The capacity to intervene with the host plasminogen system has recently been considered an important component in the interaction process between Bifidobacterium animalis subsp. lactis and the human host. However, its significance in the bifidobacterial microecology within the human gastrointestinal tract is still an open question. Here we demonstrate that human plasminogen favors the B. animalis subsp. lactis BI07 adhesion to HT29 cells. Prompting the HT29 cell capacity to activate plasminogen, tumor necrosis factor alpha (TNF-α) modulated the plasminogen-mediated bacterium-enterocyte interaction, reducing the bacterial adhesion to the enterocytes and enhancing migration to the luminal compartment.

  16. Glycemic modulation in neuro-oncology: experience and future directions using a modified Atkins diet for high-grade brain tumors.

    Science.gov (United States)

    Strowd, Roy E; Cervenka, Mackenzie C; Henry, Bobbie J; Kossoff, Eric H; Hartman, Adam L; Blakeley, Jaishri O

    2015-09-01

    Dietary glycemic modulation through high-fat, low-carbohydrate diets, which induce a state of systemic ketosis and alter systemic metabolic signaling, have been incorporated into the clinical management of patients with neurological disease for more than a century. Mounting preclinical evidence supports the antitumor, proapoptotic, and antiangiogenic effects of disrupting glycolytic metabolism through dietary intervention. In recent years, interest in incorporating such novel therapeutic strategies in neuro-oncology has increased. To date, 3 published studies incorporating novel dietary therapies in oncology have been reported, including one phase I study in neuro-oncology, and have set the stage for further study in this field. In this article, we review the biochemical pathways, preclinical data, and early clinical translation of dietary interventions that modulate systemic glycolytic metabolism in the management of primary malignant brain tumors. We introduce the modified Atkins diet (MAD), a novel dietary alternative to the classic ketogenic diet, and discuss the critical issues facing future study.

  17. Glycemic modulation in neuro-oncology: experience and future directions using a modified Atkins diet for high-grade brain tumors

    Science.gov (United States)

    Strowd, Roy E.; Cervenka, Mackenzie C.; Henry, Bobbie J.; Kossoff, Eric H.; Hartman, Adam L.; Blakeley, Jaishri O.

    2015-01-01

    Dietary glycemic modulation through high-fat, low-carbohydrate diets, which induce a state of systemic ketosis and alter systemic metabolic signaling, have been incorporated into the clinical management of patients with neurological disease for more than a century. Mounting preclinical evidence supports the antitumor, proapoptotic, and antiangiogenic effects of disrupting glycolytic metabolism through dietary intervention. In recent years, interest in incorporating such novel therapeutic strategies in neuro-oncology has increased. To date, 3 published studies incorporating novel dietary therapies in oncology have been reported, including one phase I study in neuro-oncology, and have set the stage for further study in this field. In this article, we review the biochemical pathways, preclinical data, and early clinical translation of dietary interventions that modulate systemic glycolytic metabolism in the management of primary malignant brain tumors. We introduce the modified Atkins diet (MAD), a novel dietary alternative to the classic ketogenic diet, and discuss the critical issues facing future study. PMID:26649186

  18. Mesenchymal Tumors Can Derive from Ng2/Cspg4-Expressing Pericytes with β-Catenin Modulating the Neoplastic Phenotype

    Directory of Open Access Journals (Sweden)

    Shingo Sato

    2016-07-01

    Full Text Available The cell of origin for most mesenchymal tumors is unclear. One cell type that contributes to this lineages is the pericyte, a cell expressing Ng2/Cspg4. Using lineage tracing, we demonstrated that bone and soft tissue sarcomas driven by the deletion of the Trp53 tumor suppressor, or desmoid tumors driven by a mutation in Apc, can derive from cells expressing Ng2/Cspg4. Deletion of the Trp53 tumor suppressor gene in these cells resulted in the bone and soft tissue sarcomas that closely resemble human sarcomas, while stabilizing β-catenin in this same cell type caused desmoid tumors. Comparing expression between Ng2/Cspg4-expressing pericytes lacking Trp53 and sarcomas that arose from deletion of Trp53 showed inhibition of β-catenin signaling in the sarcomas. Activation of β-catenin inhibited the formation and growth of sarcomas. Thus, pericytes can be a cell of origin for mesenchymal tumors, and β-catenin dysregulation plays an important role in the neoplastic phenotype.

  19. Mesenchymal Tumors Can Derive from Ng2/Cspg4-Expressing Pericytes with β-Catenin Modulating the Neoplastic Phenotype.

    Science.gov (United States)

    Sato, Shingo; Tang, Yuning J; Wei, Qingxia; Hirata, Makoto; Weng, Angela; Han, Ilkyu; Okawa, Atsushi; Takeda, Shu; Whetstone, Heather; Nadesan, Puvindran; Kirsch, David G; Wunder, Jay S; Alman, Benjamin A

    2016-07-26

    The cell of origin for most mesenchymal tumors is unclear. One cell type that contributes to this lineages is the pericyte, a cell expressing Ng2/Cspg4. Using lineage tracing, we demonstrated that bone and soft tissue sarcomas driven by the deletion of the Trp53 tumor suppressor, or desmoid tumors driven by a mutation in Apc, can derive from cells expressing Ng2/Cspg4. Deletion of the Trp53 tumor suppressor gene in these cells resulted in the bone and soft tissue sarcomas that closely resemble human sarcomas, while stabilizing β-catenin in this same cell type caused desmoid tumors. Comparing expression between Ng2/Cspg4-expressing pericytes lacking Trp53 and sarcomas that arose from deletion of Trp53 showed inhibition of β-catenin signaling in the sarcomas. Activation of β-catenin inhibited the formation and growth of sarcomas. Thus, pericytes can be a cell of origin for mesenchymal tumors, and β-catenin dysregulation plays an important role in the neoplastic phenotype.

  20. Application of iron chelates in hydrodesulphurisation

    NARCIS (Netherlands)

    Wubs, Harm Jan

    1994-01-01

    Several iron chelate based methods for removing hydrogen sulphide from gas streams have been developed over the years. Notwithstanding the number of hydrodesulphurisation plants already in operation, the development of these processes has been more a kind of an art rather than a result of rational p

  1. Intensity-modulated radiotherapy for laryngeal and hypopharyngeal cancer. Minimization of late dysphagia without jeopardizing tumor control

    Energy Technology Data Exchange (ETDEWEB)

    Modesto, Anouchka; Laprie, Anne; Graff, Pierre; Rives, Michel [Institut Universitaire du Cancer, Department of Radiation Oncology, Institut Claudius Regaud, Toulouse (France); Vieillevigne, Laure [Institut Universitaire du Cancer, Department of Medical Physics, Toulouse (France); Sarini, Jerome; Vergez, Sebastien; Farenc, Jean-Claude [Institut Universitaire du Cancer, Department of Head and Neck Surgery, Toulouse (France); Delord, Jean-Pierre [Institut Universitaire du Cancer, Department of Medical Oncology, Toulouse (France); Vigarios, Emmanuelle [Centre Hospitalo Universitaire de Rangueil, Dental Surgery Department, Toulouse (France); Filleron, Thomas [Institut Universitaire du Cancer, Department of Biostatistics, Toulouse (France)

    2014-11-01

    The purpose of this work was to retrospectively determine the value of intensity-modulated radiotherapy (IMRT) in patients with laryngeal and hypopharyngeal squamous cell carcinoma (LHSCC), on outcome and treatment-related toxicity compared to 3-dimensional conformal radiotherapy (3D-CRT). A total of 175 consecutive patients were treated between 2007 and 2012 at our institution with curative intent RT and were included in this study: 90 were treated with 3D-CRT and 85 with IMRT. Oncologic outcomes were estimated using Kaplan-Meier statistics; acute and late toxicities were scored according to the Common Toxicity Criteria for Adverse Events scale v 3.0. Median follow-up was 35 months (range 32-42 months; 95% confidence interval 95 %). Two-year disease-free survival did not vary, regardless of the technique used (69 % for 3D-CRT vs. 72 %; for IMRT, p = 0.16). Variables evaluated as severe late toxicities were all statistically lower with IMRT compared with 3D-CRT: xerostomia (0 vs. 12 %; p < 0.0001), dysphagia (4 vs. 26 %; p < 0.0001), and feeding-tube dependency (1 vs 13 %; p = 0.0044). The rates of overall grade ≥ 3 late toxicities for the IMRT and 3D-CRT groups were 4.1 vs. 41.4 %, respectively (p < 0.0001). IMRT for laryngeal and hypopharyngeal cancer minimizes late dysphagia without jeopardizing tumor control and outcome. (orig.) [German] Das Ziel dieser Studie war es, retrospektiv den Nutzen der intensitaetsmodulierten Strahlentherapie (IMRT) in der Behandlung von Patienten mit Plattenepithelkarzinom von Kehlkopf und Hypopharynx (LHSCC) zu bewerten und mit dem Outcome und den Spaetfolgen der 3-D-konformalen Strahlentherapie (3D-CRT) zu vergleichen. Insgesamt wurden zwischen Januar 2007 und Dezember 2012175 LHSCC-Patienten mit einer RT behandelt und in die Studie aufgenommen: 85 Patienten wurden mit 3D-CRT und 90 Patienten mit IMRT behandelt.Das onkologische Outcome wurde mittels Kaplan-Meier-Statistik ermittelt und Akut- und Spaettoxizitaeten anhand der CTCAE

  2. Recent developments centered on orally active iron chelators

    Directory of Open Access Journals (Sweden)

    Robert Hider

    2014-09-01

    Full Text Available Over the past twenty years there has been a growing interest in the orally active iron chelators, deferiprone and deferasirox, both have been extensively studied. The ability of these compounds to mobilize iron from the heart and endocrine tissue has presented the clinician with some advantages over desferrioxamine, the first therapeutic iron chelator. Other orally active iron chelators are currently under development. The critical features necessary for the design of therapeutically useful orally active iron chelators are presented in this review, together with recent studies devoted to the design of such chelators. This newly emerging range of iron chelators will enable clinicians to apply iron chelation methodology to other disease states and to begin to design personalized chelation regimes.

  3. Transient mTOR inhibition facilitates continuous growth of liver tumors by modulating the maintenance of CD133+ cell populations.

    Directory of Open Access Journals (Sweden)

    Zhaojuan Yang

    Full Text Available The mammalian target of the rapamycin (mTOR pathway, which drives cell proliferation, is frequently hyperactivated in a variety of malignancies. Therefore, the inhibition of the mTOR pathway has been considered as an appropriate approach for cancer therapy. In this study, we examined the roles of mTOR in the maintenance and differentiation of cancer stem-like cells (CSCs, the conversion of conventional cancer cells to CSCs and continuous tumor growth in vivo. In H-Ras-transformed mouse liver tumor cells, we found that pharmacological inhibition of mTOR with rapamycin greatly increased not only the CD133+ populations both in vitro and in vivo but also the expression of stem cell-like genes. Enhancing mTOR activity by over-expressing Rheb significantly decreased CD133 expression, whereas knockdown of the mTOR yielded an opposite effect. In addition, mTOR inhibition severely blocked the differentiation of CD133+ to CD133- liver tumor cells. Strikingly, single-cell culture experiments revealed that CD133- liver tumor cells were capable of converting to CD133+ cells and the inhibition of mTOR signaling substantially promoted this conversion. In serial implantation of tumor xenografts in nude BALB/c mice, the residual tumor cells that were exposed to rapamycin in vivo displayed higher CD133 expression and had increased secondary tumorigenicity compared with the control group. Moreover, rapamycin treatment also enhanced the level of stem cell-associated genes and CD133 expression in certain human liver tumor cell lines, such as Huh7, PLC/PRC/7 and Hep3B. The mTOR pathway is significantly involved in the generation and the differentiation of tumorigenic liver CSCs. These results may be valuable for the design of more rational strategies to control clinical malignant HCC using mTOR inhibitors.

  4. Adiponectin haploinsufficiency promotes mammary tumor development in MMTV-PyVT mice by modulation of phosphatase and tensin homolog activities.

    Directory of Open Access Journals (Sweden)

    Janice B B Lam

    Full Text Available BACKGROUND: Adiponectin is an adipokine possessing beneficial effects on obesity-related medical complications. A negative association of adiponectin levels with breast cancer development has been demonstrated. However, the precise role of adiponectin deficiency in mammary carcinogenesis remains elusive. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, MMTV-polyomavirus middle T antigen (MMTV-PyVT transgenic mice with reduced adiponectin expressions were established and the stromal effects of adiponectin haploinsufficiency on mammary tumor development evaluated. In mice from both FVB/N and C57BL/6J backgrounds, insufficient adiponectin production promoted mammary tumor onset and development. A distinctive basal-like subtype of tumors, with a more aggressive phenotype, was derived from adiponectin haplodeficient MMTV-PyVT mice. Comparing with those from control MMTV-PyVT mice, the isolated mammary tumor cells showed enhanced tumor progression in re-implanted nude mice, accelerated proliferation in primary cultures, and hyperactivated phosphatidylinositol-3-kinase (PI3K/Akt/beta-catenin signaling, which at least partly attributed to the decreased phosphatase and tensin homolog (PTEN activities. Further analysis revealed that PTEN was inactivated by a redox-regulated mechanism. Increased association of PTEN-thioredoxin complexes was detected in tumors derived from mice with reduced adiponectin levels. The activities of thioredoxin (Trx1 and thioredoxin reductase (TrxR1 were significantly elevated, whereas treatment with either curcumin, an irreversible inhibitor of TrxR1, or adiponectin largely attenuated their activities and resulted in the re-activation of PTEN in these tumor cells. Moreover, adiponectin could inhibit TrxR1 promoter-mediated transcription and restore the mRNA expressions of TrxR1. CONCLUSION: Adiponectin haploinsufficiency facilitated mammary tumorigenesis by down-regulation of PTEN activity and activation of PI3K

  5. Overview of chelation recommendations for thalassaemia and sickle cell disease

    Directory of Open Access Journals (Sweden)

    Banu Kaya

    2014-12-01

    Full Text Available The long term consequences of iron toxicity are mostly reversible with effective iron chelation therapy. Recommendations for use of chelation therapy in transfusion dependent thalassaemia (TDT, sickle cell disease (SCD and non transfusion dependent thalassaemia (NTDT continue to evolve as our knowledge and clinical experience increases. Improved chelation options including drug combinations and a better understanding of condition specific factors may help to improve efficiency of chelation regimens and meet the needs of patients more effectively.

  6. RAGE mediates S100A7-induced breast cancer growth and metastasis by modulating the tumor microenvironment

    Science.gov (United States)

    Nasser, Mohd W.; Wani, Nissar Ahmad; Ahirwar, Dinesh K.; Powell, Catherine A.; Ravi, Janani; Elbaz, Mohamad; Zhao, Helong; Padilla, Laura; Zhang, Xiaoli; Shilo, Konstantin; Ostrowski, Michael; Shapiro, Charles; Carson, William E.; Ganju, Ramesh K.

    2015-01-01

    RAGE is a multi-functional receptor implicated in diverse processes including inflammation and cancer. In this study, we report that RAGE expression is upregulated widely in aggressive triple-negative breast cancer cells, both in primary tumors and lymph node metastases. In evaluating the functional contributions of RAGE in breast cancer, we found RAGE-deficient mice displayed a reduced propensity for breast tumor growth. In an established model of lung metastasis, systemic blockade by injection of a RAGE neutralizing antibody inhibited metastasis development. Mechanistic investigations revealed that RAGE bound to the pro-inflammatory ligand S100A7 and mediated its ability to activate ERK, NF-κB and cell migration. In an S100A7 transgenic mouse model of breast cancer (mS100a7a15 mice), administration of either RAGE neutralizing antibody or soluble RAGE was sufficient to inhibit tumor progression and metastasis. In this model, we found that RAGE/S100A7 conditioned the tumor microenvironment by driving the recruitment of MMP9-positive tumor-associated macrophages. Overall, our results highlight RAGE as a candidate biomarker for triple-negative breast cancers and they reveal a functional role for RAGE/S100A7 signaling in linking inflammation to aggressive breast cancer development. PMID:25572331

  7. MicroRNA-185 is a novel tumor suppressor by negatively modulating the Wnt/β-catenin pathway in human colorectal cancer

    Directory of Open Access Journals (Sweden)

    W Dong-xu

    2015-01-01

    Full Text Available OBJECTIVE: The deregulation of microRNA-185 (miR-185 has been showed to be associated with many cancers and act as a tumor suppressor in many types of human malignancies. We hence tried to find out its role in human colorectal cancer (CRC. MATERIALS AND METHODS: miR-185 expression was investigated by real-time quantitative polymerase chain reaction. We carried out transfections to overexpress or knockdown of miR-185 by mimics or inhibitor, respectively. Functional study like cell counting kit-8 assay was performed to evaluate the proliferation. For addressing the impact of miR-185 on Wnt/β-catenin signaling, we further applied luciferase reporter assay and Western blotting for specific proteins in this pathway. RESULTS: miR-185 was decreased in CRC cell lines when compared with corresponding control cell line. We also proved that its overexpression in LoVo cells could remarkably suppress cell proliferation whereas knocked it down in SW480 cells has the opposite effect in vitro. Mechanically, we demonstrated that miR-185 could suppress the Wnt/β-catenin signaling and modulate the transcription and translation level of downstream molecules of this pathway, including MYC and CCND1. CONCLUSION: Taken together, these results suggested that miR-185 exerts its tumor suppressor activities probably through a negative modulation of the Wnt/β-catenin pathway.

  8. Prostate Tumor Growth and Recurrence Can Be Modulated by the ω-6:ω-3 Ratio in Diet: Athymic Mouse Xenograft Model Simulating Radical Prostatectomy

    Directory of Open Access Journals (Sweden)

    Uddhav P. Kelavkar

    2006-02-01

    Full Text Available Evidence indicates that a diet rich in omega (ω-6 polyunsaturated fatty acids (PUFAs [e.g., linoleic acid (LA] increases prostate cancer (PCa risk, whereas a diet rich in ω-3 decreases risk. Precisely how these PUFAs affect disease development remains unclear. So we examined the roles that PUFAs play in PCa, and we determined if increased ω-3 consumption can impede tumor growth. We previously demonstrated an increased expression of an ω-6 LA-metabolizing enzyme, 15-lipoxygenase-1 (15-LO-1, ALOX15, in prostate tumor tissue compared with normal adjacent prostate tissue, and that elevated 15-LO-1 activity in PCa cells has a protumorigenic effect. A PCa cell line, Los Angeles Prostate Cancer-4 (LAPC-4, expresses prostate-specific antigen (PSA as well an active 15-LO-1 enzyme. Therefore, to study whether or not the protumorigenic role of 15-LO-1 and dietary ω-6 LA can be modulated by altering ω-3 levels through diet, we surgically removed tumors caused by LAPC-4 cells (mouse model to simulate radical prostatectomy. Mice were then randomly divided into three different diet groups—namely, high ω-6 LA, high ω-3 stearidonic acid (SDA, and no fat—and examined the effects of ω-6 and ω-3 fatty acids in diet on LAPC-4 tumor recurrence by monitoring for PSA. Mice in these diet groups were monitored for food consumption, body weight, and serum PSA indicative of the presence of LAPC-4 cells. Fatty acid methyl esters from erythrocyte membranes were examined for ω-6 and ω-3 levels to reflect long-term dietary intake. Our results provide evidence that prostate tumors can be modulated by the manipulation of ω-6:ω-3 ratios through diet and that the ω-3 fatty acid SDA [precursor of eicosapentaenoic acid (EPA] promotes apoptosis and decreases proliferation in cancer cells, causing decreased PSA doubling time, compared to ω-6 LA fatty acid, likely by competing with the enzymes of LA and AA pathways, namely, 15-LO-1 and cyclooxygenases (COXs. Thus

  9. Deleted in Malignant Brain Tumors 1 (DMBT1) is present in hyaline membranes and modulates surface tension of surfactant

    DEFF Research Database (Denmark)

    Müller, Hanna; End, Caroline; Renner, Marcus

    2007-01-01

    BACKGROUND: Deleted in Malignant Brain Tumors 1 (DMBT1) is a secreted scavenger receptor cysteine-rich protein that binds various bacteria and is thought to participate in innate pulmonary host defense. We hypothesized that pulmonary DMBT1 could contribute to respiratory distress syndrome in neon...

  10. Survivin Modulates Squamous Cell Carcinoma-Derived Stem-Like Cell Proliferation, Viability and Tumor Formation in Vivo

    Directory of Open Access Journals (Sweden)

    Roberta Lotti

    2016-01-01

    Full Text Available Squamous Cell Carcinoma-derived Stem-like Cells (SCC-SC originate from alterations in keratinocyte stem cells (KSC gene expression and sustain tumor development, invasion and recurrence. Since survivin, a KSC marker, is highly expressed in SCC-SC, we evaluate its role in SCC-SC cell growth and SCC models. Survivin silencing by siRNA decreases clonal growth of SCC keratinocytes and viability of total, rapidly adhering (RAD and non-RAD (NRAD cells from primary SCC. Similarly, survivin silencing reduces the expression of stem cell markers (OCT4, NOTCH1, CD133, β1-integrin, while it increases the level of differentiation markers (K10, involucrin. Moreover, survivin silencing improves the malignant phenotype of SCC 3D-reconstruct, as demonstrated by reduced epidermal thickness, lower Ki-67 positive cell number, and decreased expression of MMP9 and psoriasin. Furthermore, survivin depletion by siRNA in RasG12V-IκBα-derived tumors leads to smaller tumor formation characterized by lower mitotic index and reduced expression of the tumor-associated marker HIF1α, VEGF and CD51. Therefore, our results indicate survivin as a key gene in regulating SCC cancer stem cell formation and cSCC development.

  11. Influence of Chelating Agents on Chromium Fate in Sediment

    Institute of Scientific and Technical Information of China (English)

    WANGXIAOCHANG; SUNJINHE; 等

    1996-01-01

    A laboratory investigation on reaction between chelating agents and chromium was conducted to evaluate the effect of chelating agents on the adsorption and desorption of chromium in sediment.The amount of adsorbed chromium(VI) in sediment decreased slightly by 5%-10% because of addition of chelating agents.Chelating agents inhibited the removal of Cr(Ⅲ)by sediment from solutions and the inhibiting effect was in the order:citric acid>tartaric acid>EDTA,Salicylic acid.No effect of chelating agents on desorption of chromium in sediment was observed.

  12. Parathyroid hormone-related protein (PTHrP) modulates adhesion, migration and invasion in bone tumor cells.

    Science.gov (United States)

    Mak, Isabella W Y; Turcotte, Robert E; Ghert, Michelle

    2013-07-01

    Parathyroid-hormone-related protein (PTHrP) has been shown to be an important factor in osteolysis in the setting of metastatic carcinoma to the bone. However, PTHrP may also be central in the setting of primary bone tumors. Giant cell tumor of bone (GCT) is an aggressive osteolytic bone tumor characterized by osteoclast-like giant cells that are recruited by osteoblast-like stromal cells. The stromal cells of GCT are well established as the only neoplastic element of the tumor, and we have previously shown that PTHrP is highly expressed by these cells both in vitro and in vivo. We have also found that the stromal cells exposed to a monoclonal antibody to PTHrP exhibited rapid plate detachment and quickly died in vitro. Therefore, PTHrP may serve in an autocrine manner to increase cell proliferation and promote invasive properties in GCT. The purpose of this study was to use transcriptomic microarrays and functional assays to examine the effects of PTHrP neutralization on cell adhesion, migration and invasion. Microarray and proteomics data identified genes that were differentially expressed in GCT stromal cells under various PTHrP treatment conditions. Treatment of GCT stromal cells with anti-PTHrP antibodies showed a change in the expression of 13 genes from the integrin family relative to the IgG control. Neutralization of PTHrP reduced cell migration and invasion as evidenced by functional assays. Adhesion and anoikis assays demonstrated that although PTHrP neutralization inhibits cell adhesion properties, cell detachment related to PTHrP neutralization did not result in associated cell death, as expected in mesenchymal stromal cells. Based on the data presented herein, we conclude that PTHrP excreted by GCT stromal cells increases bone tumor cell local invasiveness and migration.

  13. Ganglioside GM2 mediates migration of tumor cells by interacting with integrin and modulating the downstream signaling pathway.

    Science.gov (United States)

    Kundu, Manjari; Mahata, Barun; Banerjee, Avisek; Chakraborty, Sohini; Debnath, Shibjyoti; Ray, Sougata Sinha; Ghosh, Zhumur; Biswas, Kaushik

    2016-07-01

    The definitive role of ganglioside GM2 in mediating tumor-induced growth and progression is still unknown. Here we report a novel role of ganglioside GM2 in mediating tumor cell migration and uncovered its mechanism. Data shows differential expression levels of GM2-synthase as well as GM2 in different human cancer cells. siRNA mediated knockdown of GM2-synthase in CCF52, A549 and SK-RC-26B cells resulted in significant inhibition of tumor cell migration as well as invasion in vitro without affecting cellular proliferation. Over-expression of GM2-synthase in low-GM2 expressing SK-RC-45 cells resulted in a consequent increase in migration thus confirming the potential role GM2 and its downstream partners play in tumor cell migration and motility. Further, treatment of SK-RC-45 cells with exogenous GM2 resulted in a dramatic increase in migratory and invasive capacity with no change in proliferative capacity, thereby confirming the role of GM2 in tumorigenesis specifically by mediating tumor migration and invasion. Gene expression profiling of GM2-synthase silenced cells revealed altered expression of several genes involved in cell migration primarily those controlling the integrin mediated signaling. GM2-synthase knockdown resulted in decreased phosphorylation of FAK, Src as well as Erk, while over-expression and/or exogenous GM2 treatment caused increased FAK and Erk phosphorylation respectively. Again, GM2 mediated invasion and Erk phosphorylation is blocked in integrin knockdown SK-RC-45 cells, thus confirming that GM2 mediated migration and phosphorylation of Erk is integrin dependent. Finally, confocal microscopy suggested co-localization while co-immunoprecipitation and surface plasmon resonance (SPR) confirmed direct interaction of membrane bound ganglioside, GM2 with the integrin receptor.

  14. A role for cyclin-dependent kinase(s) in the modulation of fast anterograde axonal transport: effects defined by olomoucine and the APC tumor suppressor protein

    Science.gov (United States)

    Ratner, N.; Bloom, G. S.; Brady, S. T.

    1998-01-01

    Proteins that interact with both cytoskeletal and membrane components are candidates to modulate membrane trafficking. The tumor suppressor proteins neurofibromin (NF1) and adenomatous polyposis coli (APC) both bind to microtubules and interact with membrane-associated proteins. The effects of recombinant NF1 and APC fragments on vesicle motility were evaluated by measuring fast axonal transport along microtubules in axoplasm from squid giant axons. APC4 (amino acids 1034-2844) reduced only anterograde movements, whereas APC2 (aa 1034-2130) or APC3 (aa 2130-2844) reduced both anterograde and retrograde transport. NF1 had no effect on organelle movement in either direction. Because APC contains multiple cyclin-dependent kinase (CDK) consensus phosphorylation motifs, the kinase inhibitor olomoucine was examined. At concentrations in which olomoucine is specific for cyclin-dependent kinases (5 microM), it reduced only anterograde transport, whereas anterograde and retrograde movement were both affected at concentrations at which other kinases are inhibited as well (50 microM). Both anterograde and retrograde transport also were inhibited by histone H1 and KSPXK peptides, substrates for proline-directed kinases, including CDKs. Our data suggest that CDK-like axonal kinases modulate fast anterograde transport and that other axonal kinases may be involved in modulating retrograde transport. The specific effect of APC4 on anterograde transport suggests a model in which the binding of APC to microtubules may limit the activity of axonal CDK kinase or kinases in restricted domains, thereby affecting organelle transport.

  15. Current recommendations for chelation for transfusion-dependent thalassemia.

    Science.gov (United States)

    Kwiatkowski, Janet L

    2016-03-01

    Regular red cell transfusions used to treat thalassemia cause iron loading that must be treated with chelation therapy. Morbidity and mortality in thalassemia major are closely linked to the adequacy of chelation. Chelation therapy removes accumulated iron and detoxifies iron, which can prevent and reverse much of the iron-mediated organ injury. Currently, three chelators are commercially available--deferoxamine, deferasirox, and deferiprone--and each can be used as monotherapy or in combination. Close monitoring of hepatic and cardiac iron burden is central to tailoring chelation. Other factors, including properties of the individual chelators, ongoing transfusional iron burden, and patient preference, must be considered. Monotherapy generally is utilized if the iron burden is in an acceptable or near-acceptable range and the dose is adjusted accordingly. Combination chelation often is employed for patients with high iron burden, iron-related organ injury, or where adverse effects of chelators preclude administration of an appropriate chelator dose. The combination of deferoxamine and deferiprone is the best studied, but increasing data are available on the safety and efficacy of newer chelator combinations, including deferasirox with deferoxamine and the oral-only combination of deferasirox with deferiprone. The expanding chelation repertoire should enable better control of iron burden and improved outcomes.

  16. Correlating planned radiation dose to the cochlea with primary site and tumor stage in patients with head and neck cancer treated with intensity-modulated radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jeanette; Qureshi, Muhammad M.; Kovalchuk, Nataliya; Truong, Minh Tam, E-mail: mitruong@bu.edu

    2014-04-01

    The aim of the study was to determine tumor characteristics that predict higher planned radiation (RT) dose to the cochlea in patients with head and neck cancer (HNC) treated with intensity-modulated radiotherapy (IMRT). From 2004 to 2012, 99 patients with HNC underwent definitive IMRT to a median dose of 69.96 Gy in 33 fractions, with the right and left cochlea-vestibular apparatus contoured for IMRT optimization as avoidance structures. If disease involvement was adjacent to the cochlea, preference was given to tumor coverage by prescription dose. Descriptive statistics were calculated for dose-volume histogram planning data, and mean planning dose to the cochlea (from left or right cochlea, receiving the greater amount of RT dose) was correlated to primary site and tumor stage. Mean (standard deviation) cochlear volume was 1.0 (0.60) cm{sup 3} with maximum and mean planned doses of 31.9 (17.5) Gy and 22.1 (13.7) Gy, respectively. Mean planned dose (Gy) to cochlea by tumor site was as follows: oral cavity (18.6, 14.4), oropharynx (21.7, 9.1), nasopharynx (36.3, 10.4), hypopharynx (14.9, 7.1), larynx (2.1, 0.62), others including the parotid gland, temporal bone, and paranasal sinus (33.6, 24.0), and unknown primary (25.6, 6.7). Average mean planned dose (Gy) to the cochlea in T0-T2 and T3-T4 disease was 22.0 and 29.2 Gy, respectively (p = 0.019). By site, a significant difference was noted for nasopharynx and others (31.6 and 50.7, p = 0.012) but not for oropharynx, oral cavity, and hypopharynx. Advanced T category predicted for higher mean cochlear dose, particularly for nasopharyngeal, parotid gland, temporal bone, and paranasal sinus HNC sites.

  17. The putative tumor suppressor microRNA-497 modulates gastric cancer cell proliferation and invasion by repressing eIF4E

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weidong; Jin, Xuejun; Deng, Xubin [Department of Medical Oncology, Affiliated Cancer Hospital of Guangzhou Medical University, Cancer Center of Guangzhou Medical University (CCGMU), Guangzhou (China); Zhang, Gong [Department of Radiotherapy, People’s Hospital of Shanxi Province, Taiyuan (China); Zhang, Bingqian [Cancer Research Institution, Southern Medical University, Guangzhou (China); Ma, Lei, E-mail: malei01@yeah.net [Department of Medical Oncology, Affiliated Cancer Hospital of Guangzhou Medical University, Cancer Center of Guangzhou Medical University (CCGMU), Guangzhou (China)

    2014-06-27

    Highlights: • MiR-497 expression was down-regulated in GC patients and GC cell lines. • MiR-497 inhibited cell proliferation and invasion of GC cells in vitro. • MiR-497 modulated eIF4E expression in GC cells. • Restoration of miR-497 decreased tumor growth and metastasis in vivo. - Abstract: Accumulating evidence has shown that microRNAs are involved in multiple processes in gastric cancer (GC) development and progression. Aberrant expression of miR-497 has been frequently reported in cancer studies; however, the role and mechanism of its function in GC remains unknown. Here, we reported that miR-497 was frequently downregulated in GC tissues and associated with aggressive clinicopathological features of GC patients. Further in vitro observations showed that the enforced expression of miR-497 inhibited cell proliferation by blocking the G1/S transition and decreased the invasion of GC cells, implying that miR-497 functions as a tumor suppressor in the progression of GC. In vivo study indicated that restoration of miR-497 inhibited tumor growth and metastasis. Luciferase assays revealed that miR-497 inhibited eIF4E expression by targeting the binding sites in the 3′-untranslated region of eIF4E mRNA. qRT-PCR and Western blot assays verified that miR-497 reduced eIF4E expression at both the mRNA and protein levels. A reverse correlation between miR-497 and eIF4E expression was noted in GC tissues. Taken together, our results identify a crucial tumor suppressive role of miR-497 in the progression of GC and suggest that miR-497 might be an anticancer therapeutic target for GC patients.

  18. Modulation of miR-203 and its regulators as a function of time during the development of 7, 12 dimethylbenz [a] anthracene induced mouse skin tumors in presence or absence of the antitumor agents

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Prakash; Gupta, Krishna P., E-mail: krishnag522@yahoo.co.in

    2014-07-15

    We investigated the chemopreventive effects of naturally occurring compounds like butyric acid (BA), nicotinamide (NA) and calcium glucarate (CAG) individually or in combination in 7, 12-dimethylbenz [a] anthracene (DMBA) treated mouse skin at 4 and 16 weeks, the time before and after the tumor development. DMBA application did not show any skin tumors at 4 weeks but well defined tumors appeared at 16 weeks. BA, NA or CAG prevented the tumor development significantly but the protection was highly enhanced when all these compounds were given together. In order to see the molecular changes progressing with tumors, we showed the downregulation of tumor suppressor miR-203 at 16 weeks and upregulation of histone deacetylases (HDAC), DNA methyltransferase, promoter methylation of miR-203 at 4 or 16 weeks. Regulators of micro RNA biogenesis such as DICER1 and Ago2 were also deregulated by DMBA. Proto-oncogene c-myc and BMI1 were upregulated and tumor suppressor gene p16 was downregulated by DMBA as a function of time. Effects of BA, NA or CAG were more pronounced after 16 weeks as compared to 4 weeks in preventing the tumor development and altered gene expression. Concomitant administration of BA, NA and CAG tried to prevent these alterations more effectively than that of individual compound possibly by regulating miR-203 status through epigenetic or biogenetic modulations before and after the tumor development. Study provides a rationale for chemoprevention by combination of different compounds targeting miR-203. - Highlights: • DMBA modulates miR-203 and its regulator before and after the onset of tumors. • Suppression of miR-203 and p16 could be the result of gene promoter methylation. • BA, NA or CAG prevents the effects of DMBA. • Combination of BA, NA or CAG is more effective in preventing the DMBA modulations.

  19. Federal regulation of unapproved chelation products.

    Science.gov (United States)

    Lee, Charles E

    2013-12-01

    Chelation products can be helpful in the treatment of metal poisoning. However, many unapproved products with unproven effectiveness and safety are marketed to consumers, frequently via the internet. This paper describes the primary responsibility of the Health Fraud and Consumer Outreach Branch of the United States Food and Drug Administration to identify and address health fraud products. Efforts to prevent direct and indirect hazards to the population's health through regulatory actions are described.

  20. Structure-Activity Relationships and Identification of Optmized CC-Chemokine Receptor CCR1, 5, and 8 Metal-Ion Chelators

    DEFF Research Database (Denmark)

    Chalikiopoulos, Alexander; Thiele, Stefanie; Malmgaard-Clausen, Mikkel;

    2013-01-01

    Chemokine receptors are involved in trafficking of leukocytes and represent targets for autoimmune conditions, inflammatory diseases, viral infections, and cancer. We recently published CCR1, CCR8, and CCR5 agonists and positive modulators based on a three metal-ion chelator series: 2,2'-bipyridine...... bipyridine (23). The structure-activity relationships contribute to small-molecule drug development, and the novel chelators constitute valuable tools for studies of structural mechanisms for chemokine receptor activation....

  1. RISK FACTORS FOR HEARING LOSS IN PATIENTS TREATED WITH INTENSITY-MODULATED RADIOTHERAPY FOR HEAD-AND-NECK TUMORS

    NARCIS (Netherlands)

    C.L. Zuur; Y.J. Simis; E.A. Lamers; A.A. Hart; W.A. Dreschler; A.J. Balm; C.R. Rasch

    2009-01-01

    Purpose: Radiotherapy (RT) is a common treatment of head-and-neck carcinoma. The objective of this study was to perform a prospective multivariate assessment of the dose-effect relationship between intensity-modulated RT and hearing loss. Methods and Materials: Pure tone audiometry at 0.250-16 kHz w

  2. IRON CHELATION THERAPY IN THALASSEMIA SYNDROMES

    Directory of Open Access Journals (Sweden)

    Paolo Cianciulli

    2009-06-01

    Full Text Available Transfusional hemosiderosis is a frequent complication in patients with transfusion dependent chronic diseases such as  thalassemias and severe type of sickle cell diseases. As there are no physiological mechanisms to excrete the iron contained in transfused red cells (1 unit of blood contains approximately 200 mg of iron the excess of iron is stored in various organs. Cardiomyopathy is the most severe complication covering more than 70% of the causes of death of thalassemic patients. Although the current reference standard iron chelator deferoxamine (DFO has been used clinically for over four decades, its effectiveness is limited by a demanding therapeutic regimen that leads to poor compliance. Despite poor compliance, because of the inconvenience of subcutaneous infusion, DFO improved considerably the survival and quality of life of patients with thalassemia. Deferiprone since 1998 and Deferasirox since 2005 were licensed for clinical use. The oral chelators have a better compliance because of oral use, a comparable efficacy to DFO in iron excretion and probably a better penetration to myocardial cells. Considerable increase in iron excretion was documented with combination therapy of DFO and Deferiprone. The proper use of the three chelators will improve the prevention and treatment of iron overload, it will reduce  complications, and improve survival and quality of life of transfused patients

  3. Mechanistic basis for overcoming platinum resistance using copper chelating agents.

    Science.gov (United States)

    Liang, Zheng D; Long, Yan; Tsai, Wen-Bin; Fu, Siqing; Kurzrock, Razelle; Gagea-Iurascu, Mihai; Zhang, Fan; Chen, Helen H W; Hennessy, Bryan T; Mills, Gordon B; Savaraj, Niramol; Kuo, Macus Tien

    2012-11-01

    Platinum-based antitumor agents are widely used in cancer chemotherapy. Drug resistance is a major obstacle to the successful use of these agents because once drug resistance develops, other effective treatment options are limited. Recently, we conducted a clinical trial using a copper-lowering agent to overcome platinum drug resistance in ovarian cancer patients and the preliminary results are encouraging. In supporting this clinical study, using three pairs of cisplatin (cDDP)-resistant cell lines and two ovarian cancer cell lines derived from patients who had failed in platinum-based chemotherapy, we showed that cDDP resistance associated with reduced expression of the high-affinity copper transporter (hCtr1), which is also a cDDP transporter, can be preferentially resensitized by copper-lowering agents because of enhanced hCtr1 expression, as compared with their drug-sensitive counterparts. Such a preferential induction of hCtr1 expression in cDDP-resistant variants by copper chelation can be explained by the mammalian copper homeostasis regulatory mechanism. Enhanced cell-killing efficacy by a copper-lowering agent was also observed in animal xenografts bearing cDDP-resistant cells. Finally, by analyzing a public gene expression dataset, we found that ovarian cancer patients with elevated levels of hCtr1 in their tumors, but not ATP7A and ATP7B, had more favorable outcomes after platinum drug treatment than those expressing low hCtr1 levels. This study reveals the mechanistic basis for using copper chelation to overcome cDDP resistance in clinical investigations.

  4. EGCG inhibits growth of human pancreatic tumors orthotopically implanted in Balb C nude mice through modulation of FKHRL1/FOXO3a and neuropilin.

    Science.gov (United States)

    Shankar, Sharmila; Marsh, Luke; Srivastava, Rakesh K

    2013-01-01

    Human pancreatic cancer is currently one of the fourth leading causes of cancer-related mortality with a 5-year survival rate of less than 5 %. Since pancreatic carcinoma is largely refractory to conventional therapies, there is a strong medical need for the development of novel and innovative cancer preventive strategies. The forkhead transcription factors of the O class (FOXO) play a major role in cell proliferation, angiogenesis, metastasis, and tumorigenesis. The objectives of this study were to examine whether FKHRL1/FOXO3a modulates antitumor activity of (-)-epigallocatechin-3-gallate (EGCG), an active ingredient in green tea, in pancreatic cancer model in vivo. PANC-1 cells were orthotopically implanted into Balb c nude mice and gavaged with EGCG after tumor formation. Cell proliferation and apoptosis were measured by Ki67 and TUNEL staining, respectively. The expression of PI3K, AKT, ERK, and FOXO3a/FKHRL1 and its target genes were measured by the western blot analysis and/or q-RT-PCR. FOXO-DNA binding was measured by gel shift assay. EGCG-treated mice showed significant inhibition in tumor growth which was associated with reduced phosphorylation of ERK, PI3K, AKT, and FKHRL1/FOXO3a, and modulation of FOXO target genes. EGCG induced apoptosis by upregulating Bim and activating caspase-3. EGCG modulated markers of cell cycle (p27/KIP1), angiogenesis (CD31, VEGF, IL-6, IL-8, SEMA3F, and HIF1α), and metastasis (MMP2 and MMP7). The inhibition of VEGF by EGCG was associated with suppression of neuropilin. EGCG inhibited epithelial-mesenchymal transition by upregulating the expression of E-cadherin and inhibiting the expression of N-cadherin and Zeb1. These data suggest that EGCG inhibits pancreatic cancer orthotopic tumor growth, angiogenesis, and metastasis which are associated with inhibition of PI3K/AKT and ERK pathways and activation of FKHRL1/FOXO3a. As a conclusion, EGCG can be used for the prevention and/or treatment of pancreatic cancer.

  5. Radioterapia de intensidad modulada en el tratamiento de tumores en pediatría, primeros casos en Cuba: first cases in Cuba Intensity Modulated Radiotherapy in treatment of tumors in children

    Directory of Open Access Journals (Sweden)

    José Alert Silva

    2011-06-01

    Full Text Available INTRODUCCIÓN. La radioterapia de intensidad modulada (IMRT constituye una técnica de alta precisión basada en la definición volumétrica tridimensional de la anatomía del tumor y de los órganos críticos o en riesgo. Con el objetivo de asegurar la posibilidad de aplicar la IMRT en Cuba, en casos seleccionados de tumores en niños y adolescentes, se instrumentó un proyecto de investigación cuyos resultados se documentan en este informe. MÉTODOS. Se realizaron las primeras irradiaciones con IMRT en niños y adolescentes cubanos, con edades entre 6 y 18 años. La técnica empleada es la basada en aperturas geométricas y optimización inversa. Las irradiaciones fueron realizadas con un acelerador lineal con fotones de 6 MV, con colimador multiláminas. Las dosis de radiaciones administradas variaron según el tipo de tumor, y de acuerdo con las normas de radioterapia y la presencia de órganos críticos. Todos los pacientes fueron evaluados semanalmente, con controles radiológicos mediante placas portales electrónicas. RESULTADOS. Los pacientes irradiados (5 tenían los tumores siguientes: linfoma no-Hodgking del seno maxilar (1, glioma del tallo cerebral (1, linfoma no-Hodgking abdominal (1, condrosarcoma mesenquimatoso parameníngeo (1 y hemangiopericitoma parameníngeo (1. Las dosis de irradiación recibidas variaron entre 24 y 62 Gy. Fueron empleados entre 5 y 8 campos, con variaciones entre 10 y 20 segmentos. CONCLUSIONES. Se realizaron en Cuba las primeras irradiaciones con IMRT en niños y adolescentes, y se debe continuar extendiendo su empleo en aquellos casos donde su utilidad sea mayor.INTRODUCTION. The intensity modulated radiotherapy (IMRT is a high performance technique based on the three-dimensional volumetric definition of tumor anatomy and of critical organs or at risk. To assure the possibility to apply the IMRT in Cuba in selected cases of tumors in children and adolescents, authors designed a research project whose

  6. Intensity-Modulated Proton Therapy Further Reduces Normal Tissue Exposure During Definitive Therapy for Locally Advanced Distal Esophageal Tumors: A Dosimetric Study

    Energy Technology Data Exchange (ETDEWEB)

    Welsh, James, E-mail: jwelsh@mdanderson.org [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Gomez, Daniel; Palmer, Matthew B.; Riley, Beverly A.; Mayankkumar, Amin V.; Komaki, Ritsuko [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Dong, Lei; Zhu, X. Ronald [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Likhacheva, Anna; Liao, Zhongxing [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Hofstetter, Wayne L. [Department of Thoracic and Cardiovascular Surgery, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Ajani, Jaffer A. [Department of Gastrointestinal Medical Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Cox, James D. [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States)

    2011-12-01

    Purpose: We have previously found that {<=} 75% of treatment failures after chemoradiotherapy for unresectable esophageal cancer appear within the gross tumor volume and that intensity-modulated (photon) radiotherapy (IMRT) might allow dose escalation to the tumor without increasing normal tissue toxicity. Proton therapy might allow additional dose escalation, with even lower normal tissue toxicity. In the present study, we compared the dosimetric parameters for photon IMRT with that for intensity-modulated proton therapy (IMPT) for unresectable, locally advanced, distal esophageal cancer. Patients and Methods: Four plans were created for each of 10 patients. IMPT was delivered using anteroposterior (AP)/posteroanterior beams, left posterior oblique/right posterior oblique (LPO/RPO) beams, or AP/LPO/RPO beams. IMRT was delivered with a concomitant boost to the gross tumor volume. The dose was 65.8 Gy to the gross tumor volume and 50.4 Gy to the planning target volume in 28 fractions. Results: Relative to IMRT, the IMPT (AP/posteroanterior) plan led to considerable reductions in the mean lung dose (3.18 vs. 8.27 Gy, p < .0001) and the percentage of lung volume receiving 5, 10, and 20 Gy (p {<=} .0006) but did not reduce the cardiac dose. The IMPT LPO/RPO plan also reduced the mean lung dose (4.9 Gy vs. 8.2 Gy, p < .001), the heart dose (mean cardiac dose and percentage of the cardiac volume receiving 10, 20, and 30 Gy, p {<=} .02), and the liver dose (mean hepatic dose 5 Gy vs. 14.9 Gy, p < .0001). The IMPT AP/LPO/RPO plan led to considerable reductions in the dose to the lung (p {<=} .005), heart (p {<=} .003), and liver (p {<=} .04). Conclusions: Compared with IMRT, IMPT for distal esophageal cancer lowered the dose to the heart, lung, and liver. The AP/LPO/RPO beam arrangement was optimal for sparing all three organs. The dosimetric benefits of protons will need to be tailored to each patient according to their specific cardiac and pulmonary risks. IMPT for

  7. Comparison of bifunctional chelates for {sup 64}Cu antibody imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Cara L.; Crisp, Sarah; Bensimon, Corinne [MDS Nordion, Vancouver, BC (Canada); Yapp, Donald T.T.; Ng, Sylvia S.W. [British Columbia Cancer Agency Research Centre, Vancouver, BC (Canada); University of British Columba, The Faculty of Pharmaceutical Sciences, Vancouver, BC (Canada); Sutherland, Brent W. [British Columbia Cancer Agency Research Centre, Vancouver, BC (Canada); Gleave, Martin [Prostate Centre at Vancouver General Hospital, Vancouver, BC (Canada); Jurek, Paul; Kiefer, Garry E. [Macrocyclics Inc., Dallas, TX (United States)

    2010-11-15

    Improved bifunctional chelates (BFCs) are needed to facilitate efficient {sup 64}Cu radiolabeling of monoclonal antibodies (mAbs) under mild conditions and to yield stable, target-specific agents. The utility of two novel BFCs, 1-Oxa-4,7,10-triazacyclododecane-5-S-(4-isothiocyanatobenzyl)-4,7,10-triacetic acid (p-SCN-Bn-Oxo-DO3A) and 3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene-4-S-(4-isothiocyanatobenzyl)-3,6,9-triacetic acid (p-SCN-Bn-PCTA), for mAb imaging with {sup 64}Cu were compared to the commonly used S-2-(4-isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane-tetraacetic acid (p-SCN-Bn-DOTA). The BFCs were conjugated to trastuzumab, which targets the HER2/neu receptor. {sup 64}Cu radiolabeling of the conjugates was optimized. Receptor binding was analyzed using flow cytometry and radioassays. Finally, PET imaging and biodistribution studies were done in mice bearing either HER2/neu-positive or HER2/neu-negative tumors. {sup 64}Cu-Oxo-DO3A- and PCTA-trastuzumab were prepared at room temperature in >95% radiochemical yield (RCY) in <30 min, compared to only 88% RCY after 2 h for the preparation of {sup 64}Cu-DOTA-trastuzumab under the same conditions. Cell studies confirmed that the immunoreactivity of the mAb was retained for each of the bioconjugates. In vivo studies showed that {sup 64}Cu-Oxo-DO3A- and PCTA-trastuzumab had higher uptake than the {sup 64}Cu-DOTA-trastuzumab at 24 h in HER2/neu-positive tumors, resulting in higher tumor to background ratios and better tumor images. By 40 h all three of the {sup 64}Cu-BFC-trastuzumab conjugates allowed for clear visualization of the HER2/neu-positive tumors but not the negative control tumor. The antibody conjugates of PCTA and Oxo-DO3A were shown to have superior {sup 64}Cu radiolabeling efficiency and stability compared to the analogous DOTA conjugate. In addition, {sup 64}Cu-PCTA and Oxo-DO3A antibody conjugates may facilitate earlier imaging with greater target to background ratios than

  8. 5-Azacytidine treatment sensitizes tumor cells to T-cell mediated cytotoxicity and modulates NK cells in patients with myeloid malignancies

    DEFF Research Database (Denmark)

    Gang, A O; Frøsig, T M; Brimnes, M K

    2014-01-01

    therefore examined potential treatment effects on both immune stimulatory (CD8 and CD4 T cells and Natural Killer (NK) cells) and immune inhibitory cell subsets (myeloid-derived suppressor cells and regulatory T cells). We observed a minor decrease and modulation of NK cells, but for all other populations...... may have a role in this treatment regimen. We show here that 5-Azacytidine treatment leads to increased T-cell recognition of tumor cells. T-cell responses against a large panel of cancer-testis antigens were detected before treatment, and these responses were further induced upon initiation...... of treatment. These characteristics point to an ideal combination of 5-Azacytidine and immune therapy to preferentially boost T-cell responses against cancer-testis antigens. To initiate such combination therapy, essential knowledge is required about the general immune modulatory effect of 5-Azacytidine. We...

  9. A BMP7 Variant Inhibits Tumor Angiogenesis In Vitro and In Vivo through Direct Modulation of Endothelial Cell Biology.

    Directory of Open Access Journals (Sweden)

    Courtney M Tate

    Full Text Available Bone morphogenetic proteins (BMPs, members of the TGF-β superfamily, have numerous biological activities including control of growth, differentiation, and vascular development. Using an in vitro co-culture endothelial cord formation assay, we investigated the role of a BMP7 variant (BMP7v in VEGF, bFGF, and tumor-driven angiogenesis. BMP7v treatment led to disruption of neo-endothelial cord formation and regression of existing VEGF and bFGF cords in vitro. Using a series of tumor cell models capable of driving angiogenesis in vitro, BMP7v treatment completely blocked cord formation. Pre-treatment of endothelial cells with BMP7v significantly reduced their cord forming ability, indicating a direct effect on endothelial cell function. BMP7v activated the canonical SMAD signaling pathway in endothelial cells but targeted gene knockdown using shRNA directed against SMAD4 suggests this pathway is not required to mediate the anti-angiogenic effect. In contrast to SMAD activation, BMP7v selectively decreased ERK and AKT activation, significantly decreased endothelial cell migration and down-regulated expression of critical RTKs involved in VEGF and FGF angiogenic signaling, VEGFR2 and FGFR1 respectively. Importantly, in an in vivo angiogenic plug assay that serves as a measurement of angiogenesis, BMP7v significantly decreased hemoglobin content indicating inhibition of neoangiogenesis. In addition, BMP7v significantly decreased angiogenesis in glioblastoma stem-like cell (GSLC Matrigel plugs and significantly impaired in vivo growth of a GSLC xenograft with a concomitant reduction in microvessel density. These data support BMP7v as a potent anti-angiogenic molecule that is effective in the context of tumor angiogenesis.

  10. A BMP7 Variant Inhibits Tumor Angiogenesis In Vitro and In Vivo through Direct Modulation of Endothelial Cell Biology

    Science.gov (United States)

    Pallini, Roberto; Vakana, Eliza; Wyss, Lisa; Blosser, Wayne; Ricci-Vitiani, Lucia; D’Alessandris, Quintino Giorgio; Morgante, Liliana; Giannetti, Stefano; Maria Larocca, Luigi; Todaro, Matilde; Benfante, Antonina; Colorito, Maria Luisa; Stassi, Giorgio; De Maria, Ruggero; Rowlinson, Scott; Stancato, Louis

    2015-01-01

    Bone morphogenetic proteins (BMPs), members of the TGF-β superfamily, have numerous biological activities including control of growth, differentiation, and vascular development. Using an in vitro co-culture endothelial cord formation assay, we investigated the role of a BMP7 variant (BMP7v) in VEGF, bFGF, and tumor-driven angiogenesis. BMP7v treatment led to disruption of neo-endothelial cord formation and regression of existing VEGF and bFGF cords in vitro. Using a series of tumor cell models capable of driving angiogenesis in vitro, BMP7v treatment completely blocked cord formation. Pre-treatment of endothelial cells with BMP7v significantly reduced their cord forming ability, indicating a direct effect on endothelial cell function. BMP7v activated the canonical SMAD signaling pathway in endothelial cells but targeted gene knockdown using shRNA directed against SMAD4 suggests this pathway is not required to mediate the anti-angiogenic effect. In contrast to SMAD activation, BMP7v selectively decreased ERK and AKT activation, significantly decreased endothelial cell migration and down-regulated expression of critical RTKs involved in VEGF and FGF angiogenic signaling, VEGFR2 and FGFR1 respectively. Importantly, in an in vivo angiogenic plug assay that serves as a measurement of angiogenesis, BMP7v significantly decreased hemoglobin content indicating inhibition of neoangiogenesis. In addition, BMP7v significantly decreased angiogenesis in glioblastoma stem-like cell (GSLC) Matrigel plugs and significantly impaired in vivo growth of a GSLC xenograft with a concomitant reduction in microvessel density. These data support BMP7v as a potent anti-angiogenic molecule that is effective in the context of tumor angiogenesis. PMID:25919028

  11. Manganese (II) Chelate Functionalized Copper Sulfide Nanoparticles for Efficient Magnetic Resonance/Photoacoustic Dual-Modal Imaging Guided Photothermal Therapy.

    Science.gov (United States)

    Liu, Renfa; Jing, Lijia; Peng, Dong; Li, Yong; Tian, Jie; Dai, Zhifei

    2015-01-01

    The integration of diagnostic and therapeutic functionalities into one nanoplatform shows great promise in cancer therapy. In this research, manganese (II) chelate functionalized copper sulfide nanoparticles were successfully prepared using a facile hydrothermal method. The obtained ultrasmall nanoparticles exhibit excellent photothermal effect and photoaoustic activity. Besides, the high loading content of Mn(II) chelates makes the nanoparticles attractive T1 contrast agent in magnetic resonance imaging (MRI). In vivo photoacoustic imaging (PAI) results showed that the nanoparticles could be efficiently accumulated in tumor site in 24 h after systematic administration, which was further validated by MRI tests. The subsequent photothermal therapy of cancer in vivo was achieved without inducing any observed side effects. Therefore, the copper sulfide nanoparticles functionalized with Mn(II) chelate hold great promise as a theranostic nanomedicine for MR/PA dual-modal imaging guided photothermal therapy of cancer.

  12. Chlorinated Water Modulates the Development of Colorectal Tumors with Chromosomal Instability and Gut Microbiota in Apc-Deficient Mice.

    Science.gov (United States)

    Sasada, Tatsunari; Hinoi, Takao; Saito, Yasufumi; Adachi, Tomohiro; Takakura, Yuji; Kawaguchi, Yasuo; Sotomaru, Yusuke; Sentani, Kazuhiro; Oue, Naohide; Yasui, Wataru; Ohdan, Hideki

    2015-01-01

    The gastrointestinal tract is continuously exposed to a variety of chemicals and commensal bacteria. Recent studies have shown that changes in gut microbial populations caused by chlorine or other chemicals in the drinking water influence the development of human colorectal cancer, although the mechanism of tumorigenesis in the gut epithelium is obfuscated by the diversity of microflora and complexity of the tumor microenvironment. In this regard, mouse models that recapitulate human colorectal cancer are an invaluable tool. In this study, we used two conditional adenomatous polyposis coli (Apc) knockout mouse models to investigate the effect of chlorinated water on tumorigenesis in the digestive tract. Mice with colon-specific carcinoma--caused by either chromosomal (CDX2P 9.5-NLS Cre;Apc(+/flox), abbreviated to CPC;Apc) or microsatellite (CDX2P9.5-G19Cre;Apc(flox/flox) and CDX2P9.5-G22Cre;Apc(flox/flox)) instability, respectively--were administered chlorinated (10.0 mg/L chlorine) or tap (0.7 mg/L chlorine) water and evaluated for colon polyp formation. In CPC;Apc mice given chlorinated drinking water, tumors tended to develop in the colon, whereas in those that drank tap water, tumors were mostly observed in the small intestine. There was no difference in the rate of tumor formation of CDX2P9.5-G19Cre;Apc(flox/flox) and CDX2P9.5-G22Cre;Apc(flox/flox) mice consuming chlorinated as compared to tap water, suggesting that microsatellite instability in the Apc gene does not significantly affect tumorigenesis. Chlorinated water altered the enteric environment by reducing the fecal populations of the obligatory anaerobes Clostridium perfringens and C. difficile, as well as species belonging to the Atopobium cluster, including Enterobacteriaceae and Staphylococcus sp., which was associated with colon tumorigenesis in CPC;Apc mice. These results suggest that differences in tumorigenesis among CPC;Apc mice consuming chlorinated versus tap water may be due to differences

  13. Chlorinated Water Modulates the Development of Colorectal Tumors with Chromosomal Instability and Gut Microbiota in Apc-Deficient Mice.

    Directory of Open Access Journals (Sweden)

    Tatsunari Sasada

    Full Text Available The gastrointestinal tract is continuously exposed to a variety of chemicals and commensal bacteria. Recent studies have shown that changes in gut microbial populations caused by chlorine or other chemicals in the drinking water influence the development of human colorectal cancer, although the mechanism of tumorigenesis in the gut epithelium is obfuscated by the diversity of microflora and complexity of the tumor microenvironment. In this regard, mouse models that recapitulate human colorectal cancer are an invaluable tool. In this study, we used two conditional adenomatous polyposis coli (Apc knockout mouse models to investigate the effect of chlorinated water on tumorigenesis in the digestive tract. Mice with colon-specific carcinoma--caused by either chromosomal (CDX2P 9.5-NLS Cre;Apc(+/flox, abbreviated to CPC;Apc or microsatellite (CDX2P9.5-G19Cre;Apc(flox/flox and CDX2P9.5-G22Cre;Apc(flox/flox instability, respectively--were administered chlorinated (10.0 mg/L chlorine or tap (0.7 mg/L chlorine water and evaluated for colon polyp formation. In CPC;Apc mice given chlorinated drinking water, tumors tended to develop in the colon, whereas in those that drank tap water, tumors were mostly observed in the small intestine. There was no difference in the rate of tumor formation of CDX2P9.5-G19Cre;Apc(flox/flox and CDX2P9.5-G22Cre;Apc(flox/flox mice consuming chlorinated as compared to tap water, suggesting that microsatellite instability in the Apc gene does not significantly affect tumorigenesis. Chlorinated water altered the enteric environment by reducing the fecal populations of the obligatory anaerobes Clostridium perfringens and C. difficile, as well as species belonging to the Atopobium cluster, including Enterobacteriaceae and Staphylococcus sp., which was associated with colon tumorigenesis in CPC;Apc mice. These results suggest that differences in tumorigenesis among CPC;Apc mice consuming chlorinated versus tap water may be due to

  14. Three-dimensional lung tumor microenvironment modulates therapeutic compound responsiveness in vitro--implication for drug development.

    Directory of Open Access Journals (Sweden)

    Jason E Ekert

    Full Text Available Three-dimensional (3D cell culture is gaining acceptance in response to the need for cellular models that better mimic physiologic tissues. Spheroids are one such 3D model where clusters of cells will undergo self-assembly to form viable, 3D tumor-like structures. However, to date little is known about how spheroid biology compares to that of the more traditional and widely utilized 2D monolayer cultures. Therefore, the goal of this study was to characterize the phenotypic and functional differences between lung tumor cells grown as 2D monolayer cultures, versus cells grown as 3D spheroids. Eight lung tumor cell lines, displaying varying levels of epidermal growth factor receptor (EGFR and cMET protein expression, were used to develop a 3D spheroid cell culture model using low attachment U-bottom plates. The 3D spheroids were compared with cells grown in monolayer for 1 EGFR and cMET receptor expression, as determined by flow cytometry, 2 EGFR and cMET phosphorylation by MSD assay, and 3 cell proliferation in response to epidermal growth factor (EGF and hepatocyte growth factor (HGF. In addition, drug responsiveness to EGFR and cMET inhibitors (Erlotinib, Crizotinib, Cetuximab [Erbitux] and Onartuzumab [MetMab] was evaluated by measuring the extent of cell proliferation and migration. Data showed that EGFR and cMET expression is reduced at day four of untreated spheroid culture compared to monolayer. Basal phosphorylation of EGFR and cMET was higher in spheroids compared to monolayer cultures. Spheroids showed reduced EGFR and cMET phosphorylation when stimulated with ligand compared to 2D cultures. Spheroids showed an altered cell proliferation response to HGF, as well as to EGFR and cMET inhibitors, compared to monolayer cultures. Finally, spheroid cultures showed exceptional utility in a cell migration assay. Overall, the 3D spheroid culture changed the cellular response to drugs and growth factors and may more accurately mimic the natural

  15. Three-dimensional lung tumor microenvironment modulates therapeutic compound responsiveness in vitro--implication for drug development.

    Science.gov (United States)

    Ekert, Jason E; Johnson, Kjell; Strake, Brandy; Pardinas, Jose; Jarantow, Stephen; Perkinson, Robert; Colter, David C

    2014-01-01

    Three-dimensional (3D) cell culture is gaining acceptance in response to the need for cellular models that better mimic physiologic tissues. Spheroids are one such 3D model where clusters of cells will undergo self-assembly to form viable, 3D tumor-like structures. However, to date little is known about how spheroid biology compares to that of the more traditional and widely utilized 2D monolayer cultures. Therefore, the goal of this study was to characterize the phenotypic and functional differences between lung tumor cells grown as 2D monolayer cultures, versus cells grown as 3D spheroids. Eight lung tumor cell lines, displaying varying levels of epidermal growth factor receptor (EGFR) and cMET protein expression, were used to develop a 3D spheroid cell culture model using low attachment U-bottom plates. The 3D spheroids were compared with cells grown in monolayer for 1) EGFR and cMET receptor expression, as determined by flow cytometry, 2) EGFR and cMET phosphorylation by MSD assay, and 3) cell proliferation in response to epidermal growth factor (EGF) and hepatocyte growth factor (HGF). In addition, drug responsiveness to EGFR and cMET inhibitors (Erlotinib, Crizotinib, Cetuximab [Erbitux] and Onartuzumab [MetMab]) was evaluated by measuring the extent of cell proliferation and migration. Data showed that EGFR and cMET expression is reduced at day four of untreated spheroid culture compared to monolayer. Basal phosphorylation of EGFR and cMET was higher in spheroids compared to monolayer cultures. Spheroids showed reduced EGFR and cMET phosphorylation when stimulated with ligand compared to 2D cultures. Spheroids showed an altered cell proliferation response to HGF, as well as to EGFR and cMET inhibitors, compared to monolayer cultures. Finally, spheroid cultures showed exceptional utility in a cell migration assay. Overall, the 3D spheroid culture changed the cellular response to drugs and growth factors and may more accurately mimic the natural tumor

  16. Three-Dimensional Lung Tumor Microenvironment Modulates Therapeutic Compound Responsiveness In Vitro – Implication for Drug Development

    Science.gov (United States)

    Ekert, Jason E.; Johnson, Kjell; Strake, Brandy; Pardinas, Jose; Jarantow, Stephen; Perkinson, Robert; Colter, David C.

    2014-01-01

    Three-dimensional (3D) cell culture is gaining acceptance in response to the need for cellular models that better mimic physiologic tissues. Spheroids are one such 3D model where clusters of cells will undergo self-assembly to form viable, 3D tumor-like structures. However, to date little is known about how spheroid biology compares to that of the more traditional and widely utilized 2D monolayer cultures. Therefore, the goal of this study was to characterize the phenotypic and functional differences between lung tumor cells grown as 2D monolayer cultures, versus cells grown as 3D spheroids. Eight lung tumor cell lines, displaying varying levels of epidermal growth factor receptor (EGFR) and cMET protein expression, were used to develop a 3D spheroid cell culture model using low attachment U-bottom plates. The 3D spheroids were compared with cells grown in monolayer for 1) EGFR and cMET receptor expression, as determined by flow cytometry, 2) EGFR and cMET phosphorylation by MSD assay, and 3) cell proliferation in response to epidermal growth factor (EGF) and hepatocyte growth factor (HGF). In addition, drug responsiveness to EGFR and cMET inhibitors (Erlotinib, Crizotinib, Cetuximab [Erbitux] and Onartuzumab [MetMab]) was evaluated by measuring the extent of cell proliferation and migration. Data showed that EGFR and cMET expression is reduced at day four of untreated spheroid culture compared to monolayer. Basal phosphorylation of EGFR and cMET was higher in spheroids compared to monolayer cultures. Spheroids showed reduced EGFR and cMET phosphorylation when stimulated with ligand compared to 2D cultures. Spheroids showed an altered cell proliferation response to HGF, as well as to EGFR and cMET inhibitors, compared to monolayer cultures. Finally, spheroid cultures showed exceptional utility in a cell migration assay. Overall, the 3D spheroid culture changed the cellular response to drugs and growth factors and may more accurately mimic the natural tumor

  17. Correlation of PD-L1 Expression of Tumor Cells with Survival Outcomes after Radical Intensity-Modulated Radiation Therapy for Non-Metastatic Nasopharyngeal Carcinoma.

    Directory of Open Access Journals (Sweden)

    Victor H F Lee

    Full Text Available We investigated if programmed death-ligand 1 (PD-L1 expression levels were prognostic of survival outcomes after intensity-modulated radiation therapy (IMRT for non-metastatic nasopharyngeal carcinoma (NPC.104 patients with non-metastatic NPC treated with radical IMRT were investigated for their PD-L1 expression by immunohistochemistry (IHC which were correlated with survival endpoints including locoregional failure-free survival (LRFFS, progression-free survival (PFS, distant metastasis-free survival (DMFS and overall survival (OS.After a median follow-up of 7.6 years, 21 (20.2%, 19 (18.3% and 31 (29.8% patients suffered from locoregional failure, distant metastases and overall disease progression, respectively, and 31 (29.8% patients died. Patients whose tumors had PD-L1 IHC 2+ (moderate to strong membrane staining in ≥ 25% of tumor cells enjoyed longer LRFFS (5-year 100% vs. 74.4%, Hazard ratio [HR], 0.159, 95% confidence interval [CI], 0.021-0.988; P = 0.042 and marginally longer PFS (5-year 95.0% vs. 65.2%, HR, 0.351, 95% CI, 0.08-0.999, P = 0.067 compared to those whose tumors had PD-L1 IHC 0 (minimal membrane staining with PD-L1 in < 5% tumor cells or no staining with PD-L1 or 1+ (minimal to moderate membrane staining with PD-L1 in between 5-24% tumor cells. PD-L1 IHC 2+ was independently prognostic of both LRFFS (P = 0.014 and PFS (P = 0.045 in multivariable analyses. Only induction chemotherapy followed by concurrent chemoradiation was prognostic of DMFS (P = 0.003 and no prognostic factor for OS was identified.PD-L1 expression levels correlated with LRRFS and PFS in non-metastatic NPC treated with radical IMRT. It may play a role in radiosensitivity for NPC, which should be further confirmed in prospective studies using immunotherapy together with IMRT.

  18. 1α,25-dihydroxyvitamin D3 modulates CYP2R1 gene expression in human oral squamous cell carcinoma tumor cells.

    Science.gov (United States)

    Sundaram, Kumaran; Sambandam, Yuvaraj; Tsuruga, Eichi; Wagner, Carol L; Reddy, Sakamuri V

    2014-04-01

    Oral squamous cell carcinomas (OSCC) are the most common malignant neoplasms associated with mucosal surfaces of the oral cavity and oropharynx. 1α,25-Dihydroxyvitamin D3 (1,25(OH)2D3) is implicated as an anticancer agent. Cytochrome P450 2R1 (CYP2R1) is a microsomal vitamin D 25-hydroxylase which plays an important role in converting dietary vitamin D to active metabolite, 25-(OH)D3. We identified high levels of CYP2R1 expression using tissue microarray of human OSCC tumor specimens compared to normal adjacent tissue. Therefore, we hypothesize that 1,25(OH)2D3 regulates CYP2R1 gene expression in OSCC tumor cells. Interestingly, real-time RT-PCR analysis of total RNA isolated from OSCC cells (SCC1, SCC11B, and SCC14a) treated with 1,25(OH)2D3 showed a significant increase in CYP2R1 and vitamin D receptor (VDR) mRNA expression. Also, Western blot analysis demonstrated that 1,25(OH)2D3 treatment time-dependently increased CYP2R1 expression in these cells. 1,25(OH)2D3 stimulation of OSCC cells transiently transfected with the hCYP2R1 promoter (-2 kb)-luciferase reporter plasmid demonstrated a 4.3-fold increase in promoter activity. In addition, 1,25(OH)2D3 significantly increased c-Fos, p-c-Jun expression, and c-Jun N-terminal kinase (JNK) activity in these cells. The JNK inhibitor suppresses 1,25(OH)2D3, inducing CYP2R1 mRNA expression and gene promoter activity in OSCC cells. Furthermore, JNK inhibitor significantly decreased 1,25(OH)2D3 inhibition of OSCC tumor cell proliferation. Taken together, our results suggest that AP-1 is a downstream effector of 1,25(OH)2D3 signaling to modulate CYP2R1 gene expression in OSCC tumor cells, and vitamin D analogs could be potential therapeutic agents to control OSCC tumor progression.

  19. Glucose-Modulated Mitochondria Adaptation in Tumor Cells: A Focus on ATP Synthase and Inhibitor Factor 1

    Directory of Open Access Journals (Sweden)

    Irene Mavelli

    2012-02-01

    Full Text Available Warburg’s hypothesis has been challenged by a number of studies showing that oxidative phosphorylation is repressed in some tumors, rather than being inactive per se. Thus, treatments able to shift energy metabolism by activating mitochondrial pathways have been suggested as an intriguing basis for the optimization of antitumor strategies. In this study, HepG2 hepatocarcinoma cells were cultivated with different metabolic substrates under conditions mimicking “positive” (activation/biogenesis or “negative” (silencing mitochondrial adaptation. In addition to the expected up-regulation of mitochondrial biogenesis, glucose deprivation caused an increase in phosphorylating respiration and a rise in the expression levels of the ATP synthase β subunit and Inhibitor Factor 1 (IF1. Hyperglycemia, on the other hand, led to a markedly decreased level of the transcriptional coactivator PGC-α suggesting down-regulation of mitochondrial biogenesis, although no change in mitochondrial mass and no impairment of phosphorylating respiration were observed. Moreover, a reduction in mitochondrial networking and in ATP synthase dimer stability was produced. No effect on β-ATP synthase expression was elicited. Notably, hyperglycemia caused an increase in IF1 expression levels, but it did not alter the amount of IF1 associated with ATP synthase. These results point to a new role of IF1 in relation to high glucose utilization by tumor cells, in addition to its well known effect upon mitochondrial ATP synthase regulation.

  20. Modulation of tumor cell stiffness and migration by type IV collagen through direct activation of integrin signaling pathway.

    Science.gov (United States)

    Chen, Sheng-Yi; Lin, Jo-Shi; Yang, Bei-Chang

    2014-08-01

    Excessive collagen deposition plays a critical role in tumor progression and metastasis. To understand how type IV collagen affects mechanical stiffness and migration, low-collagen-IV-expressing transfectants of B16F10, U118MG, and Huh7 (denoted shCol cells) were established by the lentiviral-mediated delivery of small interfering RNA against type IV-α1 collagen (Col4A1). Although having similar growth rates, shCol cells showed a flatter morphology compared to that of the corresponding controls. Notably, knocking down the Col4A1 gene conferred the cells with higher levels of elasticity and lower motility. Exposure to blocking antibodies against human β1 integrin or α2β1 integrin or the pharmacological inhibition of Src and ERK activity by PP1 and U0126, respectively, effectively reduced cell motility and raised cell stiffness. Reduced Src and ERK activities in shCol cells indicate the involvement of a collagen IV/integrin signaling pathway. The forced expression of β1 integrin significantly stimulated Src and ERK phosphorylation, reduced cell stiffness, and accelerated cell motility. In an experimental metastasis assay using C57BL/6 mice, B16F10 shCol cells formed significantly fewer and smaller lung nodules, confirming the contribution of collagen to metastasis. In summary, the integrin signaling pathway activated in a tumor environment with collagen deposition is responsible for low cell elasticity and high metastatic ability.

  1. The long non-coding RNA H19-derived miR-675 modulates human gastric cancer cell proliferation by targeting tumor suppressor RUNX1

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Ming [Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu (China); Department of Oncology, The First People’s Hospital of Lianyungang, Lianyungang, Jiangsu (China); Gao, Wen; Xu, Jing; Wang, Ping [Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu (China); Shu, Yongqian, E-mail: shuyongqian39000@163.com [Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu (China)

    2014-06-06

    Graphical abstract: - Highlights: • H19 regulates gastric cancer cell proliferation phenotype via miR-675. • MiR-675 modulates cell proliferation of gastric cancer cells by targeting tumor suppressor RUNX1. • The H19/miR-675/RUNX1 axis plays an important role in the tumorigenesis of gastric cancer. - Abstract: The lncRNA H19 has been recently shown to be upregulated and play important roles in gastric cancer tumorigenesis. However, the precise molecular mechanism of H19 and its mature product miR-675 in the carcinogenesis of gastric cancer remains unclear. In this study, we found that miR-675 was positively expressed with H19 and was a pivotal mediator in H19-induced gastric cancer cell growth promotion. Subsequently, the tumor suppressor Runt Domain Transcription Factor1 (RUNX1) was confirmed to be a direct target of miR-675 using a luciferase reporter assay and Western blotting analyses. A series of rescue assays indicated that RUNX1 mediated H19/miR-67-induced gastric cancer cell phenotypic changes. Moreover, the inverse relationship between the expression of RUNX1 and H19/miR-675 was also revealed in gastric cancer tissues and gastric cancer cell lines. Taken together, our study demonstrated that the novel pathway H19/miR-675/RUNX1 regulates gastric cancer development and may serve as a potential target for gastric cancer therapy.

  2. Modulation by aspirin and naproxen of nucleotide alterations and tumors in the lung of mice exposed to environmental cigarette smoke since birth.

    Science.gov (United States)

    La Maestra, Sebastiano; D'Agostini, Francesco; Izzotti, Alberto; Micale, Rosanna T; Mastracci, Luca; Camoirano, Anna; Balansky, Roumen; Trosko, James E; Steele, Vernon E; De Flora, Silvio

    2015-12-01

    Chemoprevention provides an important strategy for cancer control in passive smokers. Due to the crucial role played by smoke-related chronic inflammation in lung carcinogenesis, of special interest are extensively used pharmacological agents, such as nonsteroidal anti-inflammatory drugs (NSAIDs). We evaluated the ability of aspirin and naproxen, inhibitors of both cyclooxygenase-1 and cyclooxygenase -2, to modulate environmental cigarette smoke (ECS)-induced lung carcinogenesis in A/J mice of both genders. Based on a subchronic toxicity study in 180 postweaning mice, we used 1600 mg/kg diet aspirin and 320 mg/kg diet naproxen. In the tumor chemoprevention study, using 320 mice, exposure to ECS started soon after birth and administration of NSAIDs started after weaning. At 10 weeks of life, the NSAIDs did not affect the presence of occult blood in feces. As assessed in a subset of 40 mice, bulky DNA adducts and 8-hydroxy-2'-deoxyguanosine levels were considerably increased in ECS-exposed mice and, irrespective of gender, both NSAIDs remarkably inhibited these nucleotide alterations. After exposure for 4 months followed by 5 months in filtered air, ECS induced a significant increase in the yield of surface lung tumors, the 43.7% of which were adenomas and the 56.3% were adenocarcinomas. Oct-4 (octamer-binding transcription factor 4), a marker of cell stemness, was detected in some adenocarcinoma cells. The NAIDs attenuated the yield of lung tumors, but prevention of ECS-induced lung adenomas was statistically significant only in female mice treated with aspirin, which supports a role for estrogens in ECS-related lung carcinogenesis and highlights the antiestrogenic properties of NSAIDs.

  3. Icariin and its derivative, ICT, exert anti-inflammatory, anti-tumor effects, and modulate myeloid derived suppressive cells (MDSCs) functions.

    Science.gov (United States)

    Zhou, Junmin; Wu, Jinfeng; Chen, Xianghong; Fortenbery, Nicole; Eksioglu, Erika; Kodumudi, Krithika N; Pk, Epling-Burnette; Dong, Jingcheng; Djeu, Julie Y; Wei, Sheng

    2011-07-01

    3, 5,7-trihydroxy-4'-methoxy-8-(3-hydroxy-3-methylbutyl)-flavone (ICT) is a novel derivative of Icariin (ICA), the major active ingredient of Herba Epimedii, a herb used in traditional Chinese and alternative medicine. We previously demonstrated its anti-inflammatory effect in murine innate immune cells and activated human PBMCs. We report herein that ICA or ICT treatment reduces the expression of MRP8/MRP14 and toll-like receptor 4 (TLR4) on human PBMCs. Administration of ICA or ICT inhibited tumor growth in 4T1-Neu tumor-bearing mice and considerably decreased MDSC numbers in the spleen of these mice. Further, we saw a restoration of IFN-γ production by CD8+ T cells in tumor bearing mice when treated with ICA or ICT. ICA and ICT significantly decreased the amounts of nitric oxide and reactive oxygen species in MDSC in vivo. When MDSC were treated in vitro with ICT, we saw a significant reduction in the percent of these cells with concomitant differentiation into dendritic cells and macrophages. Concomitant with this cell type conversion was a down-regulation of IL-10, IL-6 and TNF-α production. Decreased expression of S100A8/9 and inhibition of activation of STAT3 and AKT may in part be responsible for the observed results. In conclusion, our results showed that ICA, and more robustly, ICT, directly modulate MDSC signaling and therefore altered the phenotype and function of these cells, in vitro and in vivo.

  4. Switch from antagonist to agonist after addition of a DOTA chelator to a somatostatin analog

    Energy Technology Data Exchange (ETDEWEB)

    Reubi, Jean Claude; Cescato, Renzo; Waser, Beatrice [University of Berne, Division of Cell Biology and Experimental Cancer Research, Institute of Pathology, PO Box 62, Berne (Switzerland); Erchegyi, Judit; Rivier, Jean E. [The Salk Institute for Biological Studies, The Clayton Foundation Laboratories for Peptide Biology, La Jolla, CA (United States)

    2010-08-15

    Peptide receptor targeting has become an increasingly attractive method to target tumors diagnostically and radiotherapeutically. Peptides linked to a variety of chelators have been developed for this purpose. They have, however, rarely been tested for their agonistic or antagonistic properties. We report here on a somatostatin antagonist that switched to an agonist upon coupling to a DOTA chelator. Two novel somatostatin analogs, 406-040-15 and its DOTA-coupled counterpart 406-051-20, with and without cold Indium labeling, were tested for their somatostatin receptor subtypes 1-5 (sst{sub 1}-sst{sub 5}) binding affinity using receptor autoradiography. Moreover, they were tested functionally for their ability to affect sst{sub 2} and sst{sub 3} internalization in vitro in HEK293 cells stably expressing the human sst{sub 2} or sst{sub 3} receptor, using an immunofluorescence microscopy-based internalization assay. All three compounds were characterized as pan-somatostatin analogs having a high affinity for all five sst. In the sst{sub 2} internalization assay, all three compounds showed an identical behavior, namely, a weak agonistic effect complemented by a weak antagonistic effect, compatible with the behavior of a partial agonist. Conversely, in the sst{sub 3} internalization assay, 406-040-15 was a full antagonist whereas its DOTA-coupled counterpart, 406-051-20, with and without Indium labeling, switched to a full agonist. Adding the DOTA chelator to the somatostatin analog 406-040-15 triggers a switch at sst{sub 3} receptor from an antagonist to an agonist. This indicates that potential radioligands for tumor targeting should always be tested functionally before further development, in particular if a chelator is added. (orig.)

  5. Mutations in NOTCH1 PEST-domain orchestrate CCL19-driven homing of Chronic Lymphocytic Leukemia cells by modulating the tumor suppressor gene DUSP22.

    Science.gov (United States)

    Arruga, F; Gizdic, B; Bologna, C; Cignetto, S; Buonincontri, R; Serra, S; Vaisitti, T; Gizzi, K; Vitale, N; Garaffo, G; Mereu, E; Diop, F; Neri, F; Incarnato, D; Coscia, M; Allan, J; Piva, R; Oliviero, S; Furman, R R; Rossi, D; Gaidano, G; Deaglio, S

    2016-12-26

    Even if NOTCH1 is commonly mutated in Chronic Lymphocytic Leukemia (CLL), its functional impact in the disease remains unclear. Using CRISPR/Cas9-generated Mec-1 cell line models, we show that NOTCH1 regulates growth and homing of CLL cells by dictating expression levels of the tumor suppressor gene DUSP22. Specifically, NOTCH1 affects the methylation of DUSP22 promoter by modulating a nuclear complex, which tunes the activity of DNA methyltransferase 3A (DNMT3A). These effects are enhanced by PEST-domain mutations, which stabilize the molecule and prolong signaling. CLL patients with a NOTCH1-mutated clone showed low levels of DUSP22 and active chemotaxis to CCL19. Lastly, in xenograft models, NOTCH1-mutated cells displayed a unique homing behavior, localizing preferentially to the spleen and brain. These findings connect NOTCH1, DUSP22, and CCL19-driven chemotaxis within a single functional network, suggesting that modulation of the homing process may provide a relevant contribution to the unfavorable prognosis associated with NOTCH1 mutations in CLL.Leukemia accepted article preview online, 26 December 2016. doi:10.1038/leu.2016.383.

  6. Novel Terbium Chelate Doped Fluorescent Silica Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Ning Qiaoyu; Meng Jianxin; Wang Haiming; Liu Yingliang; Man Shiqing

    2006-01-01

    Novel terbium chelate doped silica fluorescent nanoparticles were prepared and characterized.The preparation was carried out in water-in-oil (W/O) microemulsion containing monomer precursor (pAB-DTPAA-APTEOS), Triton X-100, n-hexanol, and cyclohexane by controlling copolymerization of tetraethyl orthosilicate and 3-aminopropyl-triethyloxysilane.The nanoparticles are spherical and uniform in size, about 30 nm in diameter, strongly fluorescent, and highly stable.The amino groups directly introduced to the surface of the nanoparticles using APTEOS during preparation made the surface modification and bioconjugation of the nanoparticles easier.The nanoparticles are expected as an efficient time-resolved luminescence biological label.

  7. In vitro modulation of tumor necrosis factor α production in THP-1 cells by lactic acid bacteria isolated from healthy human infants.

    Science.gov (United States)

    Ladda, Boonyarut; Theparee, Talent; Chimchang, Juntana; Tanasupawat, Somboon; Taweechotipatr, Malai

    2015-06-01

    The human microbiota is a source of probiotics capable of modulating the host immune system. In this study, we collected fecal samples from 100 healthy infants and isolated lactic acid bacteria which were screened for immune modulating effects on tumor necrosis factor α (TNF-α) production. Cell-free culture supernatants from 26 isolates were able to decrease TNF-α production in vitro and three of the isolates were selected as candidate probiotics (MSMC39-1, MSMC39-3, MSMC57-1). These isolates were identified using 16S ribosomal DNA sequencing as Lactobacillus paracasei, Lactobacillus casei, and Weissella confusa respectively. All three isolates were acid tolerant and bile tolerant to pH 3.0 and 4% bile respectively. Preparations of cell-free culture supernatants were processed and tested, and revealed that cell-free culture supernatants of isolates L. paracasei MSMC39-1, L. casei MSMC39-3, and W. confusa MSMC57-1 decreased the production of TNF-α significantly and were heat resistant. Only L. paracasei MSMC39-1 supernatant was proteinase-K sensitive. The effects of viable bacteria, heat-killed bacteria, and sonicated bacteria were compared. The heat-killed preparations of isolate W. confusa MSMC57-1 decreased the production of TNF-α. Sonicated cell preparations did not significantly alter TNF-α production. For isolates L. paracasei MSMC39-1 and L. casei MSMC39-3, this suggests that a substance in the cell-free culture supernatant may be responsible for in vitro cytokine modulation.

  8. Chemotherapy modulates intestinal immune gene expression including surfactant Protein-D and deleted in malignant brain tumors 1 in piglets

    DEFF Research Database (Denmark)

    Rathe, Mathias; Thomassen, Mads; Shen, René L.

    2016-01-01

    Background: Information about chemotherapy-induced intestinal gene expression may provide insight into the mechanisms underlying gut toxicity and help identify biomarkers and targets for intervention. Methods: We analyzed jejunal tissue from piglets subjected to two different, clinically relevant...... the upregulated genes for both treatments. Conclusion: In the developing intestine, chemotherapy increases the expression of genes related to innate immune functions involved in surveillance, protection, and homeostasis of mucosal surfaces....... the BUCY and DOX piglets. Selected genes of potential biological significance with a similar change in expression across the treatments were controlled by real-time polymerase chain reaction. Key innate defense molecules, including surfactant protein-D and deleted in malignant brain tumors 1, were among...

  9. Regulatory T Cells, a Potent Immunoregulatory Target for CAM Researchers: Modulating Tumor Immunity, Autoimmunity and Alloreactive Immunity (III

    Directory of Open Access Journals (Sweden)

    Aristo Vojdani

    2006-01-01

    Full Text Available Regulatory T (Treg cells are the major arbiter of immune responses, mediating actions through the suppression of inflammatory and destructive immune reactions. Inappropriate Treg cell frequency or functionality potentiates the pathogenesis of myriad diseases with ranging magnitudes of severity. Lack of suppressive capability hinders restraint on immune responses involved in autoimmunity and alloreactivity, while excessive suppressive capacity effectively blocks processes necessary for tumor destruction. Although the etiology of dysfunctional Treg cell populations is under debate, the ramifications, and their mechanisms, are increasingly brought to light in the medical community. Methods that compensate for aberrant immune regulation may not address the underlying complications; however, they hold promise for the alleviation of debilitating immune system-related disorders. The dominant immunoregulatory nature of Treg cells, coupled with recent mechanistic knowledge of natural immunomodulatory compounds, highlights the importance of Treg cells to practitioners and researchers of complementary and alternative medicine (CAM.

  10. Intestinal epithelial HuR modulates distinct pathways of proliferation and apoptosis and attenuates small intestinal and colonic tumor development.

    Science.gov (United States)

    Giammanco, Antonina; Blanc, Valerie; Montenegro, Grace; Klos, Coen; Xie, Yan; Kennedy, Susan; Luo, Jianyang; Chang, Sung-Hee; Hla, Timothy; Nalbantoglu, Ilke; Dharmarajan, Sekhar; Davidson, Nicholas O

    2014-09-15

    HuR is a ubiquitous nucleocytoplasmic RNA-binding protein that exerts pleiotropic effects on cell growth and tumorigenesis. In this study, we explored the impact of conditional, tissue-specific genetic deletion of HuR on intestinal growth and tumorigenesis in mice. Mice lacking intestinal expression of HuR (Hur (IKO) mice) displayed reduced levels of cell proliferation in the small intestine and increased sensitivity to doxorubicin-induced acute intestinal injury, as evidenced by decreased villus height and a compensatory shift in proliferating cells. In the context of Apc(min/+) mice, a transgenic model of intestinal tumorigenesis, intestinal deletion of the HuR gene caused a three-fold decrease in tumor burden characterized by reduced proliferation, increased apoptosis, and decreased expression of transcripts encoding antiapoptotic HuR target RNAs. Similarly, Hur(IKO) mice subjected to an inflammatory colon carcinogenesis protocol [azoxymethane and dextran sodium sulfate (AOM-DSS) administration] exhibited a two-fold decrease in tumor burden. Hur(IKO) mice showed no change in ileal Asbt expression, fecal bile acid excretion, or enterohepatic pool size that might explain the phenotype. Moreover, none of the HuR targets identified in Apc(min/+)Hur(IKO) were altered in AOM-DSS-treated Hur(IKO) mice, the latter of which exhibited increased apoptosis of colonic epithelial cells, where elevation of a unique set of HuR-targeted proapoptotic factors was documented. Taken together, our results promote the concept of epithelial HuR as a contextual modifier of proapoptotic gene expression in intestinal cancers, acting independently of bile acid metabolism to promote cancer. In the small intestine, epithelial HuR promotes expression of prosurvival transcripts that support Wnt-dependent tumorigenesis, whereas in the large intestine epithelial HuR indirectly downregulates certain proapoptotic RNAs to attenuate colitis-associated cancer. Cancer Res; 74(18); 5322-35. ©2014 AACR.

  11. Progress on Study of Luminescence of Rare Earth Organic Chelates

    Institute of Scientific and Technical Information of China (English)

    杨燕生; 安保礼; 龚孟濂; 史华红; 雷衡毅; 孟建新

    2002-01-01

    Based on the investigation of the luminescence of a series of rare earth organic chelates, some relationships between luminescence and the structure of the chelates were proposed: the intensity of sensitized luminescence of central lanthanide ions(Ln3+) in a rare earth organic chelate depends on (1)the suitability of the energy gap between the excited triplet energy level of the ligands and the lowest excited energy level of Ln3+ ions; (2)the rigidity and planarity of the structure of the chelate molecule; (3)the existence of a suitable secondary ligand which may increase rigidity and the stability of the chelate molecule; and (4) the existence of a suitable π-conjugated system in the chelate molecule. According to the above relationships, 25 novel organic ligands were designed and synthesized, and their lanthanide chelates were prepared. Investigation of the photoluminescence for the new chelates shows that some of the chelates are strongly luminescent, and are applied to fluoroimmunoassay for determination of human immunoglobulin(IgG), to preparation of fluorescent plastics, and to determination of growth hormone for plants. Two novel spectroscopy-probe techniques for structure of coordination compounds and biological molecules were proposed and developed based on vibronic spectroscopy of Tb3+ complexes and fluorescence of Ce3+.

  12. Metal regeneration of iron chelates in nitric oxide scrubbing

    Science.gov (United States)

    Chang, S.G.; Littlejohn, D.; Shi, Y.

    1997-08-19

    The present invention relates to a process of using metal particles to reduce NO to NH{sub 3}. More specifically, the invention concerns an improved process to regenerate iron (II) (CHELATE) by reduction of iron (II) (CHELATE) (NO) complex, which process comprises: (a) contacting an aqueous solution containing iron (II) (CHELATE) (NO) with metal particles at between about 20 and 90 C to reduce NO present, produce ammonia or an ammonium ion, and produce free iron (II) (CHELATE) at a pH of between about 3 and 8. The process is useful to remove NO from flue gas and reduce pollution. 34 figs.

  13. Engineering an antibody with picomolar affinity to DOTA chelates of multiple radionuclides for pretargeted radioimmunotherapy and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Orcutt, Kelly Davis; Slusarczyk, Adrian L. [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Cieslewicz, Maryelise [Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Ruiz-Yi, Benjamin [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Bhushan, Kumar R. [Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215 (United States); Frangioni, John V. [Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215 (United States); Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA 02215 (United States); Wittrup, K. Dane, E-mail: wittrup@mit.ed [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2011-02-15

    Introduction: In pretargeted radioimmunotherapy (PRIT), a bifunctional antibody is administered and allowed to pre-localize to tumor cells. Subsequently, a chelated radionuclide is administered and captured by cell-bound antibody while unbound hapten clears rapidly from the body. We aim to engineer high-affinity binders to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelates for use in PRIT applications. Methods: We mathematically modeled antibody and hapten pharmacokinetics to analyze hapten tumor retention as a function of hapten binding affinity. Motivated by model predictions, we used directed evolution and yeast surface display to affinity mature the 2D12.5 antibody to DOTA, reformatted as a single chain variable fragment (scFv). Results: Modeling predicts that for high antigen density and saturating bsAb dose, a hapten-binding affinity of 100 pM is needed for near-maximal hapten retention. We affinity matured 2D12.5 with an initial binding constant of about 10 nM to DOTA-yttrium chelates. Affinity maturation resulted in a 1000-fold affinity improvement to biotinylated DOTA-yttrium, yielding an 8.2{+-}1.9 picomolar binder. The high-affinity scFv binds DOTA complexes of lutetium and gadolinium with similar picomolar affinity and indium chelates with low nanomolar affinity. When engineered into a bispecific antibody construct targeting carcinoembryonic antigen, pretargeted high-affinity scFv results in significantly higher tumor retention of a {sup 111}In-DOTA hapten compared to pretargeted wild-type scFv in a xenograft mouse model. Conclusions: We have engineered a versatile, high-affinity, DOTA-chelate-binding scFv. We anticipate it will prove useful in developing pretargeted imaging and therapy protocols to exploit the potential of a variety of radiometals.

  14. Chelates of molybdenyl with o-hydroxyazomethines

    Energy Technology Data Exchange (ETDEWEB)

    Abramenko, V.L.; Garnovskii, A.D.; Surpina, L.V.; Kuzharov, A.S.

    1986-05-01

    Chelates of dioxomolybdenum(VI) with Schiff bases derived from salicylaldehyde and aliphatic, aromatic, and heterocyclic amines and diamines have been synthesized by ligand exchange and template synthesis methods. Complexes with the general formula MoO/sub 2/L/sub 2/ form of N-alkyl- and N-arylsalicylidenimines (HL). Chelates with molybdenum-ligand ratios equal to 1:1 and 1:2 are realized with heterocyclic azomethines. Bis(salicylidene) diimines form only complexes with a 1:1 composition. The compounds isolated are finely crystalline substances, which predominantly have a yellow color and limited solubility in methanol and dimethyl sulfoxide. On the basis of data from conductometry, UV, IR, and /sup 1/H NMR spectroscopy it has been postulated that the complexes have an octahedral structure with maintenance of the cis configuration of the MoO/sub 2/ group. A dimeric or polymeric structure has been proposed for the 1:1 complexes. The thermal decomposition of the azomethine complexes of molybdenum(VI) under dynamic conditions takes place in two stages and ultimately results in the formation of MoO/sub 3/.

  15. Myelodysplastic Syndromes and Iron Chelation Therapy

    Science.gov (United States)

    Angelucci, Emanuele; Urru, Silvana Anna Maria; Pilo, Federica; Piperno, Alberto

    2017-01-01

    Over recent decades we have been fortunate to witness the advent of new technologies and of an expanded knowledge and application of chelation therapies to the benefit of patients with iron overload. However, extrapolation of learnings from thalassemia to the myelodysplastic syndromes (MDS) has resulted in a fragmented and uncoordinated clinical evidence base. We’re therefore forced to change our understanding of MDS, looking with other eyes to observational studies that inform us about the relationship between iron and tissue damage in these subjects. The available evidence suggests that iron accumulation is prognostically significant in MDS, but levels of accumulation historically associated with organ damage (based on data generated in the thalassemias) are infrequent. Emerging experimental data have provided some insight into this paradox, as our understanding of iron-induced tissue damage has evolved from a process of progressive bulking of organs through high-volumes iron deposition, to one of ‘toxic’ damage inflicted through multiple cellular pathways. Damage from iron may, therefore, occur prior to reaching reference thresholds, and similarly, chelation may be of benefit before overt iron overload is seen. In this review, we revisit the scientific and clinical evidence for iron overload in MDS to better characterize the iron overload phenotype in these patients, which differs from the classical transfusional and non-transfusional iron overload syndrome. We hope this will provide a conceptual framework to better understand the complex associations between anemia, iron and clinical outcomes, to accelerate progress in this area. PMID:28293409

  16. Oral Administration of Aloe vera (L.) Burm. f. (Xanthorrhoeaceae) and Honey Improves the Host Body Composition and Modulates Proteolysis Through Reduction of Tumor Progression and Oxidative Stress in Rats.

    Science.gov (United States)

    Tomasin, Rebeka; de Andrade, Rafael Siqueira; Gomes-Marcondes, Maria Cristina Cintra

    2015-10-01

    Oxidative stress has a dual role in cancer; it is linked with tumorigenic events and host wasting, as well as senescence and apoptosis. Researchers have demonstrated the importance of coadjuvant therapies in cancer treatment, and Aloe vera and honey have immunomodulatory, anticancer, and antioxidant properties. The preventive and therapeutic effects of Aloe vera (L.) Burm. f. (Xanthorrhoeaceae) and honey in tumor progression and host wasting were analyzed in Walker 256 carcinoma-bearing rats. The animals were distributed into the following groups: C=control-untreated, W=tumor-untreated, WA=treated after tumor induction, A=control-treated, AW=treated before tumor induction, and AWA=treated before and after tumor induction. Proteolysis and oxidative stress were analyzed in the tumor, liver, muscle, and myocardial tissues. The results suggest that the Aloe vera and honey treatment affect the tumor and host by different mechanisms; the treatment-modulated host wasting and cachexia, whereas it promoted oxidative stress and damage in tumor tissues, particularly in a therapeutic context (WA).

  17. Modulation of tumor necrosis factor {alpha} expression in mouse brain after exposure to aluminum in drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Tsunoda, M.; Sharma, R.P. [Georgia Univ., Athens (Greece). College of Veterinary Medicine

    1999-11-01

    Aluminum, a known neurotoxic substance and a ground-water pollutant, is a possible contributing factor in various nervous disorders including Alzheimer's disease. It has been hypothesized that cytokines are involved in aluminum neurotoxicity. We investigated the alterations in mRNA expression of tumor necrosis factor {alpha} (TNF{alpha}), interleukin-1{beta} (IL-1{beta}), and interferon {gamma} (IFN{gamma}), cytokines related to neuronal damage, in cerebrum and peripheral immune cells of mice after exposure to aluminum through drinking water. Groups of male BALB/c mice were administered aluminum ammonium sulfate in drinking water ad libitum at 0, 5, 25, and 125 ppm aluminum for 1 month. An additional group received 250 ppm ammonium as ammonium sulfate. After treatment, the cerebrum, splenic macrophages and lymphocytes were collected. The expression of TNF{alpha} mRNA in cerebrum was significantly increased among aluminum-treated groups compared with the control, in a dose-dependent manner. Other cytokines did not show any aluminum-related effects. In peripheral cells, there were no significant differences of cytokine mRNA expressions among treatment groups. Increased expression of TNF{alpha} mRNA by aluminum in cerebrum may reflect activation of microglia, a major source of TNF{alpha} in this brain region. Because the aluminum-induced alteration in cytokine message occurred at aluminum concentrations similar to those noted in contaminated water, these results may be relevant in considering the risk of aluminum neurotoxicity in drinking water. (orig.)

  18. FGFR4 polymorphic alleles modulate mitochondrial respiration: A novel target for somatostatin analog action in pituitary tumors.

    Science.gov (United States)

    Ezzat, Shereen; Wang, Ri; Pintilie, Melania; Asa, Sylvia L

    2017-01-10

    We reported that a single nucleotide polymorphism (SNP) at codon 388 of the fibroblast growth factor receptor 4 (FGFR4-Gly388Arg) can result in distinct proteins that alter pituitary cell growth and function. Here, we examined the differential properties of the available therapeutic somatostatin analogs, octreotide and pasireotide, in pituitary tumor cells expressing the different FGFR4 isoforms. Consistent with their enhanced growth properties, FGFR4-R388-expressing cells show higher mitochondrial STAT3 serine phosphorylation driving basal and maximal oxygen consumption rate (OCR) than pituitary cells expressing the more common FGFR4-G388 isoform. While both somatostatin analogs reduce the OCR in FGFR4-G388 cells, pasireotide was more effective in decreasing OCR in cells expressing the variant FGFR4-R388 isoform. Down-regulation of somatostatin receptor 5 (SSTR5) abrogated the effect of pasireotide, demonstrating its involvement in mediating this action. The effects on OCR were recapitulated by introducing a constitutively active serine STAT3 but not by a tyrosine-active mutant. Moreover, pharmacologic inhibition demonstrated the role for the phosphatase PP2A in mediating the dephosphorylation of STAT3-S727 by pasireotide. Our data indicate that FGFR4 polymorphic isoforms mediate signaling that yields mitochondrial therapeutic targets of relevance to the actions of different somatostatin analogs.

  19. Fermented wheat aleurone enriched with probiotic strains LGG and Bb12 modulates markers of tumor progression in human colon cells.

    Science.gov (United States)

    Borowicki, Anke; Michelmann, Anke; Stein, Katrin; Scharlau, Daniel; Scheu, Kerstin; Obst, Ursula; Glei, Michael

    2011-01-01

    Fermentation of dietary fiber by the microflora enhances the levels of effective metabolites, which are potentially protective against colon cancer. The specific addition of probiotics may enhance the efficiency of fermentation of wheat aleurone, a source of dietary fiber. We investigated the effects of aleurone, fermented with fecal slurries with the addition of the probiotics LGG and Bb12 (aleurone(+)), on cell growth, apoptosis, and differentiation, as well as expression of genes related to growth and apoptosis using two different human colon cell lines (HT29: adenocarcinoma cells; LT97: adenoma cells). The efficiency of fermentation of aleurone was only slightly enhanced by the addition of LGG/Bb12, resulting in an increased concentration of butyrate. In LT97 cells, the growth inhibition of aleurone(+) was stronger than in HT29 cells. In HT29 cells, a cell cycle arrest in G(0)/G(1) and the alkaline phosphatase activity, a marker of differentiation, were enhanced by the fs aleurone(+). Treatment with all fermentation supernatants resulted in a significant increase in apoptosis and an upregulation of genes involved in cell growth and apoptosis (p21 and WNT2B). In conclusion, fs aleurone(+) modulated markers of cancer prevention, namely inhibition of cell growth and promotion of apoptosis as well as differentiation.

  20. Modulation expression of tumor necrosis factor α in the radiation-induced lung injury by glycyrrhizic acid

    Directory of Open Access Journals (Sweden)

    Soheila Refahi

    2015-01-01

    Full Text Available To evaluate the ability of glycyrrhizic acid (GLA to reduce the tumor necrosis factor α (TNF-α, release on messenger ribonucleic acid (mRNA and protein production in the lungs using GLA in response to irradiation were studied. The animals were divided into four groups: No treatment (NT group, GLA treatment only (GLA group, irradiation only (XRT group, and GLA treatment plus irradiation (GLA/XRT group. Rats were killed at different time points. Real-time reverse transcriptase polymerase chain reaction (RT-PCR was used to evaluate the mRNA expression of TNF-α in the lungs (compared with non-irradiated lungs. An enzyme-linked immunosorbant assay (ELISA assay was used to measure the TNF-α protein level. The TNF-α mRNA expression in the lungs of the XRT rats was clearly higher at all-time points compared to the NT rats. The TNF-α mRNA expression in the lungs of the GLA/XRT rats was lower at all-time points compared to the XRT rats. Release of the TNF-α on protein level in the lungs of the XRT rats increased at all-time points compared to the NT rats. In contrast to the XRT rats, the lungs of the GLA/XRT rats revealed a reduction on TNF-α protein level at 6 h after irradiation. This study has clearly showed the immediate down-regulation of the TNF-α mRNA and protein production in the lungs using GLA in response to irradiation.

  1. A treatment-planning comparison of three beam arrangement strategies for stereotactic body radiation therapy for centrally located lung tumors using volumetric-modulated arc therapy.

    Science.gov (United States)

    Ishii, Kentaro; Okada, Wataru; Ogino, Ryo; Kubo, Kazuki; Kishimoto, Shun; Nakahara, Ryuta; Kawamorita, Ryu; Ishii, Yoshie; Tada, Takuhito; Nakajima, Toshifumi

    2016-06-01

    The purpose of this study was to determine appropriate beam arrangement for volumetric-modulated arc therapy (VMAT)-based stereotactic body radiation therapy (SBRT) in the treatment of patients with centrally located lung tumors. Fifteen consecutive patients with centrally located lung tumors treated at our institution were enrolled. For each patient, three VMAT plans were generated using two coplanar partial arcs (CP VMAT), two non-coplanar partial arcs (NCP VMAT), and one coplanar full arc (Full VMAT). All plans were designed to deliver 70 Gy in 10 fractions. Target coverage and sparing of organs at risk (OARs) were compared across techniques. PTV coverage was almost identical for all approaches. The whole lung V10Gy was significantly lower with CP VMAT plans than with NCP VMAT plans, whereas no significant differences in the mean lung dose, V5Gy, V20Gy or V40Gy were observed. Full VMAT increased mean contralateral lung V5Gy by 12.57% and 9.15% when compared with NCP VMAT and CP VMAT, respectively. Although NCP VMAT plans best achieved the dose-volume constraints for mediastinal OARs, the absolute differences in dose were small when compared with CP VMAT. These results suggest that partial-arc VMAT may be preferable to minimize unnecessary exposure to the contralateral lung, and use of NCP VMAT should be considered when the dose-volume constraints are not achieved by CP VMAT. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  2. MO-H-19A-02: Investigation of Modulated Electron Arc (MeArc) Therapy for the Treatment of Scalp Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Eldib, A [Fox Chase Cancer Center, Philadelphia, PA (United States); Al-Azhar University, Cairo (Egypt); Jin, L; Martin, J; Li, J; Chibani, O; Galloway, T; Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States)

    2014-06-15

    Purpose: Electron arc therapy has long been proposed as the most suitable technique for the treatment of superficial tumors that follow circularly curved surfaces. However it was challenged by unsuitability of the conventional applicators and the lack of adequate 3-D dose calculation tools for arc electron beams in the treatment planning systems (TPS). Now with the availability of an electron specific multi-leaf collimator (eMLC) and an in-house Monte Carlo (MC) based TPS, we were motivated to investigate more advanced modulated electron arc (MeARC) therapy and its beneficial outcome. Methods: We initiated the study by a film measurement conducted in a head and neck phantom, where we delivered electron arcs in a step and shoot manner using the light field as a guide to avoid fields abutments. This step was done to insure enough clearance for the arcs with eMLC. MCBEAM and MCPLAN MC codes were used for the treatment head simulation and phantom dose calculation, respectively. Treatment plans were generated for targets drawn in real patient CTs and head and neck phantom. We utilized beams eye view available from a commercial planning system to create beamlets having same isocenter and adjoined at the scalp surface. Then dose-deposition coefficients from those beamlets were calculated for all electron energies using MCPLAN. An in-house optimization code was then used to find the optimum weights needed from individual beamlets. Results: MeARC showed a nicely tailored dose distribution around the circular curved target on the scalp. Some hot spots were noticed and could be attributed to fields abutment problem owing to the bulging nature of electron profiles. Brain dose was shown to be at lower levels compared to photon treatment. Conclusion: MeARC was shown to be a promising modality for treating scalp cases and could be beneficial to all superficial tumors with a circular curvature.

  3. Simulational study of a dosimetric comparison between a Gamma Knife treatment plan and an intensity-modulated radiotherapy plan for skull base tumors.

    Science.gov (United States)

    Nakazawa, Hisato; Mori, Yoshimasa; Komori, Masataka; Tsugawa, Takahiko; Shibamoto, Yuta; Kobayashi, Tatsuya; Hashizume, Chisa; Uchiyama, Yukio; Hagiwara, Masahiro

    2014-05-01

    Fractionated stereotactic radiotherapy (SRT) is performed with a linear accelerator-based system such as Novalis. Recently, Gamma Knife Perfexion (PFX) featured the Extend system with relocatable fixation devices available for SRT. In this study, the dosimetric results of these two modalities were compared from the viewpoint of conformity, heterogeneity and gradient in target covering. A total of 14 patients with skull base tumors were treated with Novalis intensity-modulated (IM)-SRT. Treatment was planned on an iPlan workstation. Five- to seven-beam IM-SRT was performed in 14-18 fractions with a fraction dose of 2.5 or 3 Gy. With these patients' data, additional treatment planning was simulated using a GammaPlan workstation for PFX-SRT. Reference CT images with planning structure contour sets on iPlan, including the planning target volume (PTV, 1.1-102.2 ml) and organs at risk, were exported to GammaPlan in DICOM-RT format. Dosimetric results for Novalis IM-SRT and PFX-SRT were evaluated in the same prescription doses. The isocenter number of PFX was between 12 and 50 at the isodose contour of 50-60%. The PTV coverage was 95-99% for Novalis and 94-98% for PFX. The conformity index (CI) was 1.11-1.61 and 1.04-1.15, the homogeneity index (HI) was 1.1-3.62 and 2.3-3.25, and the gradient index (GI) was 3.72-7.97 and 2.54-3.39 for Novalis and PFX, respectively. PTV coverage by Novalis and PFX was almost equivalent. PFX was superior in CI and GI, and Novalis was better in HI. Better conformality would be achieved by PFX, when the homogeneity inside tumors is less important.

  4. Anti-Oxidative, Metal Chelating and Radical Scavenging Effects of ...

    African Journals Online (AJOL)

    scavenging (6.93 mg/mL), iron chelating (116.4 µg/mL) and copper chelating activity (2136.9 µg/mL) ... optimum temperatures of each protease, namely ..... only due to their high abundance as well as their ... Oxidation and DNA Damage.

  5. Potentials and drawbacks of chelate-enhanced phytoremediation of soils

    NARCIS (Netherlands)

    Römkens, P.F.A.M.; Bouwman, L.A.; Japenga, J.; Draaisma, C.

    2002-01-01

    Chelate-enhanced phytoremediation has been proposed as an effective tool for the extraction of heavy metals from soils by plants. However, side-effects related to the addition of chelates, e.g. metal leaching and effects on soil micro-organisms, were usually neglected. Therefore, greenhouse and

  6. Chelation Treatment for Autism Spectrum Disorders: A Systematic Review

    Science.gov (United States)

    Davis, Tonya N.; O'Reilly, Mark; Kang, Soyeon; Lang, Russell; Rispoli, Mandy; Sigafoos, Jeff; Lancioni, Giulio; Copeland, Daelynn; Attai, Shanna; Mulloy, Austin

    2013-01-01

    Chelation treatment is used to eliminate specific metals from the body, such as mercury. It has been hypothesized that mercury poisoning may be a factor in autism and data suggest that perhaps 7% of individuals with autism spectrum disorder (ASD) have received chelation treatment. It would therefore seem timely to review studies investigating the…

  7. Potentials and drawbacks of chelate-enhanced phytoremediation of soils

    NARCIS (Netherlands)

    Römkens, P.F.A.M.; Bouwman, L.A.; Japenga, J.; Draaisma, C.

    2002-01-01

    Chelate-enhanced phytoremediation has been proposed as an effective tool for the extraction of heavy metals from soils by plants. However, side-effects related to the addition of chelates, e.g. metal leaching and effects on soil micro-organisms, were usually neglected. Therefore, greenhouse and lysi

  8. Lipophilic aroylhydrazone chelator HNTMB and its multiple effects on ovarian cancer cells

    Directory of Open Access Journals (Sweden)

    Singh Rakesh K

    2010-02-01

    Full Text Available Abstract Background Metal chelators have gained much attention as potential anti-cancer agents. However, the effects of chelators are often linked solely to their capacity to bind iron while the potential complexation of other trace metals has not been fully investigated. In present study, we evaluated the effects of various lipophilic aroylhydrazone chelators (AHC, including novel compound HNTMB, on various ovarian cancer cell lines (SKOV-3, OVCAR-3, NUTU-19. Methods Cell viability was analyzed via MTS cytotoxicity assays and NCI60 cancer cell growth screens. Apoptotic events were monitored via Western Blot analysis, fluorescence microscopy and TUNEL assay. FACS analysis was carried out to study Cell Cycle regulation and detection of intracellular Reactive Oxygen Species (ROS Results HNTMB displayed high cytotoxicity (IC50 200-400 nM compared to previously developed AHC (oVtBBH, HNtBBH, StBBH/206, HNTh2H/315, HNI/311; IC50 0.8-6 μM or cancer drug Deferoxamine, a hexadentate iron-chelator (IC50 12-25 μM. In a NCI60 cancer cell line screen HNTMB exhibited growth inhibitory effects with remarkable differences in specificity depending on the cell line studied (GI50 10 nM-2.4 μM. In SKOV-3 ovarian cancer cells HNTMB treatment led to chromatin fragmentation and activation of the extrinsic and intrinsic pathways of apoptosis with specific down-regulation of Bcl-2. HNTMB caused delayed cell cycle progression of SKOV-3 through G2/M phase arrest. HNTMB can chelate iron and copper of different oxidation states. Complexation with copper lead to high cytotoxicity via generation of reactive oxygen species (ROS while treatment with iron complexes of the drug caused neither cytotoxicity nor increased ROS levels. Conclusions The present report suggests that both, non-complexed HNTMB as a chelator of intracellular trace-metals as well as a cytotoxic HNTMB/copper complex may be developed as potential therapeutic drugs in the treatment of ovarian and other

  9. Acute p38-mediated modulation of tetrodotoxin-resistant sodium channels in mouse sensory neurons by tumor necrosis factor-alpha.

    Science.gov (United States)

    Jin, Xiaochun; Gereau, Robert W

    2006-01-04

    Tumor necrosis factor-alpha (TNFalpha) is a proinflammatory cytokine involved in the development and maintenance of inflammatory and neuropathic pain conditions. TNFalpha can have long-lasting effects by regulating the expression of a variety of inflammatory mediators, including other cytokines and TNFalpha itself. However, the speed with which TNFalpha induces tactile and thermal hypersensitivity suggests that transcriptional regulation cannot fully account for its sensitizing effects, and some recent findings suggest that TNFalpha may act directly on primary afferent neurons to induce pain hypersensitivity. In the present study, we show that peripheral administration of TNFalpha induces thermal hypersensitivity in wild-type mice but not in transient receptor potential vanilloid receptor TRPV1(-/-) mice. In contrast, TNFalpha produced equivalent mechanical hypersensitivity in TRPV1(-/-) mice and wild-type littermates, suggesting a role for TRPV1 in TNFalpha-induced thermal, but not mechanical, hypersensitivity. Because tetrodotoxin (TTX)-resistant Na+ channels are a critical site of modulation underlying mechanical hypersensitivity in inflammatory and neuropathic pain conditions, we tested the effects of TNFalpha on these channels in isolated mouse dorsal root ganglion (DRG) neurons. We report that acute application of TNFalpha rapidly enhances TTX-resistant Na+ currents in isolated DRG neurons. This potentiation of TTX-resistant currents by TNFalpha is dramatically reduced in DRG neurons from TNF receptor 1 (TNFR1) knock-out mice and is blocked by the p38 mitogen-activated protein kinase inhibitor SB202190 [4-(4-fluorophenyl)-2-(4-hydroxyphenyl)-5-(4-pyridyl)1H-imidazole]. Mechanical hypersensitivity induced by peripherally applied TNFalpha is also significantly reduced by SB202190. These results suggest that TNFalpha may induce acute peripheral mechanical sensitization by acting directly on TNFR1 in primary afferent neurons, resulting in p38-dependent modulation

  10. In vitro comparison of O4-benzylfolate modulated, BCNU-induced toxicity in human bone marrow using CFU-GM and tumor cell lines.

    Science.gov (United States)

    Behrsing, Holger Peter; Furniss, Michael J; Robillard, Kristine A; Tomaszewski, Joseph E; Parchment, Ralph E

    2010-05-01

    2-Amino-O4-benzylpteridine derivatives inactivate the human DNA repair protein O6-alkylguanine-DNA alkyltransferase and have been tested as modulators of alkylating agent chemotherapy. Recently, the therapeutic potential of O4-benzylfolate (O4BF) in modulating bis-chloroethylnitrosourea (BCNU) toxicity was demonstrated in vitro using human HT29 and KB tumor lines. The current studies replicated the previous findings in HT29 and KB cells using ATP as an endpoint. However, the effective treatment conditions were severely toxic to human neutrophil progenitors called CFU-granulocyte/macrophage (CFU-GM), which could not tolerate > or =40 microM BCNU at any O4BF concentration. A lower BCNU concentration (10 microM) in combination with O4BF (2-100 microM) was only moderately tumoricidal. To screen for conditions tolerated by CFU-GM, bone marrow (BM) cells were pre-incubated (5 h) with O4BF, co-treated with O4BF and BCNU (42 h), washed, and plated to quantify CFU-GM survival. O4BF at 2 or 5 microM progressively lowered the inhibitory concentrations (ICs) for BCNU, but further increases in O4BF concentrations did not. Increasing O4BF concentrations with constant BCNU (10 microM) under the same prolonged exposure as in the human marrow study achieved only modest tumoricidal effects. In summary, the unexpected finding that normal BM cells are impacted by an agent developed to target malignant tissue refutes speculation that normal beta-folate receptor expressing hematopoietic cells will be spared. Further, the validated IC90 endpoint from the huCFU-GM assay has provided a reference point for judging the potential therapeutic effectiveness of this investigational combination in man using in vitro assays.

  11. Moringa oleifera Gold Nanoparticles Modulate Oncogenes, Tumor Suppressor Genes, and Caspase-9 Splice Variants in A549 Cells.

    Science.gov (United States)

    Tiloke, Charlette; Phulukdaree, Alisa; Anand, Krishnan; Gengan, Robert M; Chuturgoon, Anil A

    2016-10-01

    Gold nanoparticles (AuNP's) facilitate cancer cell recognition and can be manufactured by green synthesis using nutrient rich medicinal plants such as Moringa oleifera (MO). Targeting dysregulated oncogenes and tumor suppressor genes is crucial for cancer therapeutics. We investigated the antiproliferative effects of AuNP synthesized from MO aqueous leaf extracts (MLAuNP ) in A549 lung and SNO oesophageal cancer cells. A one-pot green synthesis technique was used to synthesise MLAuNP . A549, SNO cancer cells and normal peripheral blood mononuclear cells (PBMCs) were exposed to MLAuNP and CAuNP to evaluate cytotoxicity (MTT assay); apoptosis was measured by phosphatidylserine (PS) externalization, mitochondrial depolarization (ΔΨm) (flow cytometry), caspase-3/7, -9 activity, and ATP levels (luminometry). The mRNA expression of c-myc, p53, Skp2, Fbw7α, and caspase-9 splice variants was determined using qPCR, while relative protein expression of c-myc, p53, SRp30a, Bax, Bcl-2, Smac/DIABLO, Hsp70, and PARP-1 were determined by Western blotting. MLAuNP and CAuNP were not cytotoxic to PBMCs, whilst its pro-apoptotic properties were confirmed in A549 and SNO cells. MLAuNP significantly increased caspase activity in SNO cells while MLAuNP significantly increased PS externalization, ΔΨm, caspase-9, caspase-3/7 activities, and decreased ATP levels in A549 cells. Also, p53 mRNA and protein levels, SRp30a (P = 0.428), Bax, Smac/DIABLO and PARP-1 24 kDa fragment levels were significantly increased. Conversely, MLAuNP significantly decreased Bcl-2, Hsp70, Skp2, Fbw7α, c-myc mRNA, and protein levels and activated alternate splicing with caspase-9a splice variant being significantly increased. MLAuNP possesses antiproliferative properties and induced apoptosis in A549 cells by activating alternate splicing of caspase-9. J. Cell. Biochem. 117: 2302-2314, 2016. © 2016 Wiley Periodicals, Inc.

  12. Radiation Dose to the Brachial Plexus in Head-and-Neck Intensity-Modulated Radiation Therapy and Its Relationship to Tumor and Nodal Stage

    Energy Technology Data Exchange (ETDEWEB)

    Truong, Minh Tam, E-mail: mitruong@bu.edu [Department of Radiation Oncology, Boston Medical Center and Boston University School of Medicine, Boston, MA (United States); Romesser, Paul B.; Qureshi, Muhammad M.; Kovalchuk, Nataliya; Orlina, Lawrence; Willins, John [Department of Radiation Oncology, Boston Medical Center and Boston University School of Medicine, Boston, MA (United States)

    2012-09-01

    Purpose: The purpose of this retrospective study was to determine tumor factors contributing to brachial plexus (BP) dose in head-and-neck cancer (HNC) patients treated with intensity-modulated radiotherapy (IMRT) when the BP is routinely contoured as an organ at risk (OAR) for IMRT optimization. Methods and Materials: From 2004 to 2011, a total of 114 HNC patients underwent IMRT to a total dose of 69.96 Gy in 33 fractions, with the right and left BP prospectively contoured as separate OARs in 111 patients and the ipsilateral BP contoured in 3 patients (total, 225 BP). Staging category T4 and N2/3 disease were present in 34 (29.8%) and 74 (64.9%) patients, respectively. During IMRT optimization, the intent was to keep the maximum BP dose to {<=}60 Gy, but prioritizing tumor coverage over achieving the BP constraints. BP dose parameters were compared with tumor and nodal stage. Results: With a median follow-up of 16.2 months, 43 (37.7%) patients had {>=}24 months of follow-up with no brachial plexopathy reported. Mean BP volume was 8.2 {+-} 4.5 cm{sup 3}. Mean BP maximum dose was 58.1 {+-} 12.2 Gy, and BP mean dose was 42.2 {+-} 11.3 Gy. The BP maximum dose was {<=}60, {<=}66, and {<=}70 Gy in 122 (54.2%), 185 (82.2%), and 203 (90.2%) BP, respectively. For oropharynx, hypopharynx, and larynx sites, the mean BP maximum dose was 58.4 Gy and 63.4 Gy in T0-3 and T4 disease, respectively (p = 0.002). Mean BP maximum dose with N0/1 and N2/3 disease was 52.8 Gy and 60.9 Gy, respectively (p < 0.0001). Conclusions: In head-and-neck IMRT, dose constraints for the BP are difficult to achieve to {<=}60 to 66 Gy with T4 disease of the larynx, hypopharynx, and oropharynx or N2/3 disease. The risk of brachial plexopathy is likely very small in HNC patients undergoing IMRT, although longer follow-up is required.

  13. ER stress negatively modulates the expression of the miR-199a/214 cluster to regulates tumor survival and progression in human hepatocellular cancer.

    Directory of Open Access Journals (Sweden)

    Quanlu Duan

    Full Text Available BACKGROUND: Recent studies have emphasized causative links between microRNAs (miRNAs deregulation and tumor development. In hepatocellular carcinoma (HCC, more and more miRNAs were identified as diagnostic and prognostic cancer biomarkers, as well as additional therapeutic tools. This study aimed to investigate the functional significance and regulatory mechanism of the miR-199a2/214 cluster in HCC progression. METHODS AND FINDINGS: In this study, we showed that miR-214, as well as miR-199a-3p and miR-199a-5p levels were significantly reduced in the majority of examined 23 HCC tissues and HepG2 and SMMC-7721 cell lines, compared with their nontumor counterparts. To further explore the role of miR-214 in hepatocarcinogenesis, we disclosed that the ER stress-induced pro-survival factor XBP-1 is a target of miR-214 by using western blot assay and luciferase reporter assay. Re-expression of miR-214 in HCC cell lines (HepG2 and SMMC-7721 inhibited proliferation and induced apoptosis. Furthermore, ectopic expression of miR-214 dramatically suppressed the ability of HCC cells to form colonies in vitro and to develop tumors in a subcutaneous xenotransplantation model of the BALB/c athymic nude mice. Moreover, reintroduction of XBP-1s attenuated miR-214-mediated suppression of HCC cells proliferation, colony and tumor formation. To further understand the mechanism of the miR-199a/214 cluster down-expression in HCC, we found that thapsigargin (TG and tunicamycin (TM or hypoxia-induced unfolded protein response (UPR suppresses the expression of the miR-199a/214 cluster in HCC cells. By promoter analysis of the miR-199a2/214 gene, we conjectured NFκB as a potential negative regulator. We further found that UPR and LPS-induced NFκB activation suppressed miR-199a2/214 transcription, and this suppression was reversed by NFκB inhibition in HCC cells. CONCLUSIONS: Our study suggest that modulation of miR-214 levels may provide a new therapeutic approach for

  14. Luminescence of a conjugated polymer containing europium (III) chelate

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Hao; Xie, Fang, E-mail: xiefang4498@126.com

    2013-12-15

    A europium (III) chelate has been incorporated in a conjugated polymer, poly-[2,2′-bipyridine-5,5′-diyl-(2,5-dihexyl-1,4-phenylene)]. From the absorbance and emission spectra measurement and using the Judd–Ofelt theory, an efficient energy transfer between the conjugated polymer and the europium (III) chelate has been confirmed. The luminescence lifetime of Eu{sup 3+} ion in the conjugated polymer is 0.352 ms and the emission cross section of this material is 3.11×10{sup −21} cm{sup 2}. -- Highlights: • A europium chelate has been incorporated in a conjugated polymer. • Energy transfer in the conjugated polymer containing europium chelate is efficient. • The conjugated polymer containing europium chelate is a promising optical material.

  15. Quantitative measurement of metal chelation by fourier transform infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Monika E. Miller

    2015-12-01

    Full Text Available Nutritionally important minerals are more readily absorbed by living systems when complexed with organic acids, resulting in higher consumer demand and premium prices for these products. These chelated metals are produced by reaction of metal oxides and acids in aqueous solution. However, unreacted dry blends are sometimes misrepresented as metal chelates, when in reality they are only simple mixtures of the reactants typically used to synthesize them. This practice has increased interest in developing analytical methods that are capable of measuring the extent of metal chelation for quality control and regulatory compliance. We describe a novel method to rapidly measure the percent chelation of citric and malic acids with calcium, magnesium, and zinc. Utilization of attenuated total reflectance (FTIR-ATR provides for the direct, rapid measurement of solid samples. The inclusion of an internal standard allows independent determination of either free or chelated acids from integrated areas in a single spectrum.

  16. Under conditions of large geometric miss, tumor control probability can be higher for static gantry intensity-modulated radiation therapy compared to volume-modulated arc therapy for prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Balderson, Michael, E-mail: michael.balderson@rmp.uhn.ca; Brown, Derek; Johnson, Patricia; Kirkby, Charles

    2016-07-01

    The purpose of this work was to compare static gantry intensity-modulated radiation therapy (IMRT) with volume-modulated arc therapy (VMAT) in terms of tumor control probability (TCP) under scenarios involving large geometric misses, i.e., those beyond what are accounted for when margin expansion is determined. Using a planning approach typical for these treatments, a linear-quadratic–based model for TCP was used to compare mean TCP values for a population of patients who experiences a geometric miss (i.e., systematic and random shifts of the clinical target volume within the planning target dose distribution). A Monte Carlo approach was used to account for the different biological sensitivities of a population of patients. Interestingly, for errors consisting of coplanar systematic target volume offsets and three-dimensional random offsets, static gantry IMRT appears to offer an advantage over VMAT in that larger shift errors are tolerated for the same mean TCP. For example, under the conditions simulated, erroneous systematic shifts of 15 mm directly between or directly into static gantry IMRT fields result in mean TCP values between 96% and 98%, whereas the same errors on VMAT plans result in mean TCP values between 45% and 74%. Random geometric shifts of the target volume were characterized using normal distributions in each Cartesian dimension. When the standard deviations were doubled from those values assumed in the derivation of the treatment margins, our model showed a 7% drop in mean TCP for the static gantry IMRT plans but a 20% drop in TCP for the VMAT plans. Although adding a margin for error to a clinical target volume is perhaps the best approach to account for expected geometric misses, this work suggests that static gantry IMRT may offer a treatment that is more tolerant to geometric miss errors than VMAT.

  17. Treating Lead Toxicity: Possibilities beyond Synthetic Chelation

    Directory of Open Access Journals (Sweden)

    Shambhavi Tannir

    2013-01-01

    Full Text Available Lead, a ubiquitous metal, is one of the most abundant elements present on earth. Its easy availability and cost effectiveness made it an extremely popular component in the industrial revolution. However, its hazardous health effects were not considered at the time. Over the last few decades, with the adverse effects of lead coming to the forefront, nations across the world have started to recognize and treat lead toxicity. The most reliable and used method until now has been chelation therapy. Recent research has suggested the use of natural products and sources to treat lead poisoning with minimal or no side effects. This review has tried to summarize a few of the natural products/sources being investigated by various groups.

  18. Chelating ionic liquids for reversible zinc electrochemistry.

    Science.gov (United States)

    Kar, Mega; Winther-Jensen, Bjorn; Forsyth, Maria; MacFarlane, Douglas R

    2013-05-21

    Advanced, high energy-density, metal-air rechargeable batteries, such as zinc-air, are of intense international interest due to their important role in energy storage applications such as electric and hybrid vehicles, and to their ability to deal with the intermittency of renewable energy sources such as solar and wind. Ionic liquids offer a number of ideal thermal and physical properties as potential electrolytes in such large-scale energy storage applications. We describe here the synthesis and characterisation of a family of novel "chelating" ILs designed to chelate and solubilize the zinc ions to create electrolytes for this type of battery. These are based on quaternary alkoxy alkyl ammonium cations of varying oligo-ether side chains and anions such as p-toluene sulfonate, bis(trifluoromethylsulfonyl)amide and dicyanoamides. This work shows that increasing the ether chain length in the cation from two to four oxygens can increase the ionic conductivity and reduce the melting point from 67 °C to 15 °C for the tosylate system. Changing the anion also plays a significant role in the nature of the zinc deposition electrochemistry. We show that zinc can be reversibly deposited from [N(222(20201))][NTf2] and [N(222(202020201))][NTf2] beginning at -1.4 V and -1.7 V vs. SHE, respectively, but not in the case of tosylate based ILs. This indicates that the [NTf2] is a weaker coordinating anion with the zinc cation, compared to the tosylate anion, allowing the coordination of the ether chain to dominate the behavior of the deposition and stripping of zinc ions.

  19. Relationship between conformational flexibility and chelate cooperativity.

    Science.gov (United States)

    Misuraca, M Cristina; Grecu, Tudor; Freixa, Zoraida; Garavini, Valentina; Hunter, Christopher A; van Leeuwen, Piet W N M; Segarra-Maset, M Dolores; Turega, Simon M

    2011-04-15

    A family of four biscarbamates (AA) and four bisphenols (DD) were synthesized, and H-bonding interactions between all AA•DD combinations were characterized using (1)H NMR titrations in carbon tetrachloride. A chemical double mutant cycle analysis shows that there are no secondary electrostatic interactions or allosteric cooperativity in these systems, and the system therefore provides an ideal platform for investigating the relationship between chemical structure and chelate cooperativity. Effective molarities (EMs) were measured for 12 different systems, where the number of rotors in the chains connecting the two H-bond sites was varied from 5 to 20. The association constants vary by less than an order of magnitude for all 12 complexes, and the variation in EM is remarkably small (0.1-0.9 M). The results provide a relationship between EM and the number of rotors in the connecting chains (r): EM ≈ 10r(-3/2). The value of 10 M is the upper limit for the value of EM for a noncovalent intramolecular interaction. Introduction of rotors reduces the value of EM from this maximum in accord with a random walk analysis of the encounter probability of the chain ends (r(-3/2)). Noncovalent EMs never reach the very high values observed for covalent processes, which places limitations on the magnitudes of the effects that one is likely to achieve through the use of chelate cooperativity in supramolecular assembly and catalysis. On the other hand, the decrease in EM due to the introduction of conformational flexibility is less dramatic than one might expect based on the behavior of covalent systems, which limits the losses in binding affinity caused by poor preorganization of the interaction sites.

  20. Oral Administration of Polymyxin B Modulates the Activity of Lipooligosaccharide E. coli B against Lung Metastases in Murine Tumor Models.

    Directory of Open Access Journals (Sweden)

    Jagoda Kicielińska

    Full Text Available Polymyxin B (PmB belongs to the group of cyclic peptide antibiotics, which neutralize the activity of LPS by binding to lipid A. The aim of this study was to analyze the effect of PmB on the biological activity of lipooligosaccharide (LOS E. coli B,rough form of LPS in vitro and in experimental metastasis models.Cultures of murine macrophage J774A.1 cells and murine bone marrow-derived dendritic cells (BM-DC stimulated in vitro with LOS and supplemented with PmB demonstrated a decrease in inflammatory cytokine production (IL-6, IL-10, TNF-α and down-regulation of CD40, CD80, CD86 and MHC class II molecule expression. Additionally, PmB suspended in drinking water was given to the C57BL/6 mice seven or five days prior to the intravenous injection of B16 or LLC cells and intraperitoneal application of LOS. This strategy of PmB administration was continued throughout the duration of the experiments (29 or 21 days. In B16 model, statistically significant decrease in the number of metastases in mice treated with PmB and LOS (p<0.01 was found on the 14th day of the experiments, whereas the most intensive changes in surface-antigen expression and ex vivo production of IL-6, IL-1β and TNF-α by peritoneal cells were observed 7 days earlier. By contrast, antigen expression and ex vivo production of IL-6, IL-10, IFN-γ by splenocytes remained relatively high and stable. Statistically significant decrease in LLC metastases number was observed after the application of LOS (p<0.01 and in the group of mice preconditioned by PmB and subsequently treated with LOS (LOS + PmB, p<0.01.In conclusion, prolonged in vivo application of PmB was not able to neutralize the LOS-induced immune cell activity but its presence in the organism of treated mice was important in modulation of the LOS-mediated response against the development of metastases.

  1. Tumor suppressors TSC1 and TSC2 differentially modulate actin cytoskeleton and motility of mouse embryonic fibroblasts.

    Directory of Open Access Journals (Sweden)

    Elena A Goncharova

    Full Text Available TSC1 and TSC2 mutations cause neoplasms in rare disease pulmonary LAM and neuronal pathfinding in hamartoma syndrome TSC. The specific roles of TSC1 and TSC2 in actin remodeling and the modulation of cell motility, however, are not well understood. Previously, we demonstrated that TSC1 and TSC2 regulate the activity of small GTPases RhoA and Rac1, stress fiber formation and cell adhesion in a reciprocal manner. Here, we show that Tsc1(-/- MEFs have decreased migration compared to littermate-derived Tsc1(+/+ MEFs. Migration of Tsc1(-/- MEFs with re-expressed TSC1 was comparable to Tsc1(+/+ MEF migration. In contrast, Tsc2(-/- MEFs showed an increased migration compared to Tsc2(+/+ MEFs that were abrogated by TSC2 re-expression. Depletion of TSC1 and TSC2 using specific siRNAs in wild type MEFs and NIH 3T3 fibroblasts also showed that TSC1 loss attenuates cell migration while TSC2 loss promotes cell migration. Morphological and immunochemical analysis demonstrated that Tsc1(-/- MEFs have a thin protracted shape with a few stress fibers; in contrast, Tsc2(-/- MEFs showed a rounded morphology and abundant stress fibers. Expression of TSC1 in either Tsc1(-/- or Tsc2(-/- MEFs promoted stress fiber formation, while TSC2 re-expression induced stress fiber disassembly and the formation of cortical actin. To assess the mechanism(s by which TSC2 loss promotes actin re-arrangement and cell migration, we explored the role of known downstream effectors of TSC2, mTORC1 and mTORC2. Increased migration of Tsc2(-/- MEFs is inhibited by siRNA mTOR and siRNA Rictor, but not siRNA Raptor. siRNA mTOR or siRNA Rictor promoted stress fiber disassembly in TSC2-null cells, while siRNA Raptor had little effect. Overexpression of kinase-dead mTOR induced actin stress fiber disassembly and suppressed TSC2-deficient cell migration. Our data demonstrate that TSC1 and TSC2 differentially regulate actin stress fiber formation and cell migration, and that only TSC2 loss promotes

  2. Is copper chelation an effective anti-angiogenic strategy for cancer treatment?

    Science.gov (United States)

    Antoniades, V; Sioga, A; Dietrich, E M; Meditskou, S; Ekonomou, L; Antoniades, K

    2013-12-01

    Angiogenesis and the acquisition of an angiogenic phenotype is important for cancer cell proliferation. Copper in an essential trace element that participates in many enzymatic complexes like the cytochrome c, superoxide dismutase and lysyl oxidase and it is involved in processes, like embryogenesis, growth, angiogenesis and carcinogenesis. In particular, its involvement in carcinogenesis was described for the first time in oral submucous fibrosis, where fibroblasts produce large amounts of collagen in the presence of copper. Copper's action in carcinogenesis is two-fold: (1) it participates in reactions with an increased redox potential that result in the production of oxidative products and oxidative stress. Through this mechanism, copper may cause DNA mutations in the nucleus and mitochondria or alterations to membrane phospholipids, (2) it participates in angiogenesis even in the absence of angiogenic molecules, as it was reported for the first time in rabbit cornea models with copolymer pellets charged with PGE1. Copper chelation regimens like penicillamine and tetrathiomolybdate are being described in the literature as having anti-angiogenic, anti-fibrotic and anti-inflammatory actions. Animal models of brain cancer that evaluated the anti-angiogenic properties of copper, have proven evidence of the reduction of tumor's microvascular supply, tumor volume and vascular permeability after plasma copper levels reduction. Interestingly, plasma copper levels reduction was shown to suppress micrometastases generation in mice models of breast cancer. We hypothesize that copper chelation therapy: increases oxidative stress in cancer cells to a level that does not allow survival because of the reduction of anti-oxidative enzymes production. It may also result in inhibition of angiogenesis and of the initiation of the angiogenic switch, because copper normally enhances endothelial cell migration and proliferation, improves binding of growth factors to endothelial cells

  3. Pretargeting of human mammary carcinoma xenografts with bispecific anti-MUC1/anti-Ga chelate antibodies and immunoscintigraphy with PET.

    Science.gov (United States)

    Schuhmacher, J; Klivényi, G; Kaul, S; Henze, M; Matys, R; Hauser, H; Clorius, J

    2001-10-01

    We recently demonstrated the feasibility of combining enhanced tumor-to-tissue contrast and PET imaging for immunoscintigraphic tumor localization in pancreas and colon carcinoma bearing nude mice. Contrast enhancement was obtained with a multistep targeting technique that consists of the sequential administration of an antitumor/antihapten bispecific antibody (BS-MAb), a blocker to saturate the antihapten binding sites of the BS-MAb that remains in circulation, and a low molecular weight Ga chelate, labeled with the positron emitter 68Ga, which serves as the hapten. To evaluate the efficacy of this pretargeting technique for breast cancer localization, we synthesized a BS-MAb from the F(ab')(2) fragments of the anti-MUC1 MAb 12H12 which reacts with the vast majority of human breast carcinomas, and the F(ab') fragment of an anti-Ga chelate MAb using a bifunctional chemical linker. The BS-MAb was tested for its affinity and its biokinetics in nude mice bearing a human mammary carcinoma. Equilibrium binding of the BS-MAb for mammary carcinoma cells was low (1.2 x 10(7) M(-1)) while the binding capacity of cells was high (8.4 x 10(6) BS-MAbs per cell). Tumor uptake of the 67Ga labeled chelate in pretargeted animals was to 5.8 +/- 0.8% iD/g resulting in a tumor-to-blood ratio of 2.6 at 1h postinjection. This compares with a ratio of 0.65 and 0.85 obtained with 125I-labeled native 12H12 at 24h and 48h postinjection. No difference in the tumor uptake of both the 68Ga and 67Ga labeled chelate was observed. PET imaging of mice, started 1h postinjection of the 68Ga chelate, clearly visualized all tumors.

  4. Pretargeting of human mammary carcinoma xenografts with bispecific anti-MUC1/anti-Ga chelate antibodies and immunoscintigraphy with PET

    Energy Technology Data Exchange (ETDEWEB)

    Schuhmacher, Jochen; Klivenyi, Gabor; Kaul, Sepp; Henze, Marcus; Matys, Ronald; Hauser, Harald; Clorius, John

    2001-10-01

    We recently demonstrated the feasibility of combining enhanced tumor-to-tissue contrast and PET imaging for immunoscintigraphic tumor localization in pancreas and colon carcinoma bearing nude mice. Contrast enhancement was obtained with a multistep targeting technique that consists of the sequential administration of an antitumor/antihapten bispecific antibody (BS-MAb), a blocker to saturate the antihapten binding sites of the BS-MAb that remains in circulation, and a low molecular weight Ga chelate, labeled with the positron emitter {sup 68}Ga, which serves as the hapten. To evaluate the efficacy of this pretargeting technique for breast cancer localization, we synthesized a BS-MAb from the F(ab'){sub 2} fragments of the anti-MUC1 MAb 12H12 which reacts with the vast majority of human breast carcinomas, and the F(ab') fragment of an anti-Ga chelate MAb using a bifunctional chemical linker. The BS-MAb was tested for its affinity and its biokinetics in nude mice bearing a human mammary carcinoma. Equilibrium binding of the BS-MAb for mammary carcinoma cells was low (1.2 x 10{sup 7} M{sup -1}) while the binding capacity of cells was high (8.4 x 10{sup 6} BS-MAbs per cell). Tumor uptake of the {sup 67}Ga labeled chelate in pretargeted animals was to 5.8 {+-} 0.8% iD/g resulting in a tumor-to-blood ratio of 2.6 at 1h postinjection. This compares with a ratio of 0.65 and 0.85 obtained with {sup 125}I-labeled native 12H12 at 24h and 48h postinjection. No difference in the tumor uptake of both the {sup 68}Ga and {sup 67}Ga labeled chelate was observed. PET imaging of mice, started 1h postinjection of the {sup 68}Ga chelate, clearly visualized all tumors.

  5. Moxibustion inhibits interleukin-12 and tumor necrosis factor alpha and modulates intestinal flora in rat with ulcerative colitis

    Institute of Scientific and Technical Information of China (English)

    Xiao-Mei Wang; Yuan Lu; Lu-Yi Wu; Shu-Guang Yu; Bai-Xiao Zhao; Hong-Yi Hu; Huan-Gan Wu

    2012-01-01

    AIM:To investigate the effect of moxibustion on intestinal flora and release of interleukin-12 (IL-12) and tumor necrosis factor-α (TNF-α) from the colon in rat with ulcerative colitis (UC).METHODS:A rat model of UC was established by local stimulation of the intestine with supernatant from colonic contents harvested from human UC patients.A total of 40 male Sprague-Dawley rats were randomly divided into the following groups:normal (sham),model (UC),herb-partition moxibustion (HPM-treated),and positive control sulfasalazine (SA-treated).Rats treated with HPM received HPM at acupuncture points ST25 and RN6,once a day for 15 min,for a total of 8 d.Rats in the SA group were perfused with SA twice a day for 8 d.The colonic histopathology was observed by hematoxylin-eosin.The levels of intestinal flora,including Bifidobacterium,Lactobacillus,Escherichia coli (E.coli),and Bacteroides fragilis (B.fragilis),were tested by real-time quantitative polymerase chain reaction to detect bacterial 16S rRNA/DNA in order to determine DNA copy numbers of each specific species.Immunohistochemical assays were used to observe the expression of TNF-α and IL-12 in the rat colons.RESULTS:HPM treatment inhibited immunopathology in colonic tissues of UC rats; the general morphological score and the immunopathological score were significantly decreased in the HPM and SA groups compared with the model group [3.5 (2.0-4.0),3.0 (1.5-3.5) vs 6.0 (5.5-7.0),P < 0.05 for the general morphological score,and 3.00 (2.00-3.50),3.00 (2.50-3.50) vs 5.00 (4.50-5.50),P < 0.01 for the immunopathological score].As measured by DNA copy number,we found that Bilidobacterium and Lactobacillus,which are associated with a healthy colon,were significantly higher in the HPM and SA groups than in the model group (1.395± 1.339,1.461 ± 1.152 vs 0.045 ± 0.036,P < 0.01 for Bifidobacterium,and 0.395 ± 0.325,0.851 ± 0.651 vs 0.0015 ± 0.0014,P < 0.01 for Lactobacillus).On the other hand,E.coli and B

  6. Fixation kinetics of chelated and non-chelated zinc in semi-arid alkaline soils: application to zinc management

    Science.gov (United States)

    Udeigwe, Theophilus K.; Eichmann, Madeleine; Menkiti, Matthew C.

    2016-07-01

    This study was designed to examine the fixation pattern and kinetics of zinc (Zn) in chelated (ethylenediaminetetraacetic acid, EDTA) and non-chelated mixed micronutrient systems of semi-arid alkaline soils from the Southern High Plains, USA. Soils were characterized for a suite of chemical and physical properties and data obtained from extraction experiments fitted to various kinetic models. About 30 % more plant-available Zn was fixed in the non-chelated system within the first 14 days with only about 18 % difference observed between the two systems by day 90, suggesting that the effectiveness of the chelated compounds tended to decrease over time. The strengths of the relationships of change in available Zn with respect to other micronutrients (copper, iron, and manganese) were higher and more significant in the non-chelated system (average R2 of 0.83), compared to the chelated (average R2 of 0.42). Fixation of plant-available Zn was best described by the power-function model (R2 = 0.94, SE = 0.076) in the non-chelated system, and was poorly described by all the models examined in the chelated system. Reaction rate constants and relationships generated from this study can serve as important tools for micronutrient management and for future micronutrient modeling studies on these soils and other semi-arid regions of the world.

  7. Phosphinic acid functionalized polyazacycloalkane chelators for radiodiagnostics and radiotherapeutics: unique characteristics and applications.

    Science.gov (United States)

    Notni, Johannes; Šimeček, Jakub; Wester, Hans-Jürgen

    2014-06-01

    Given the wide application of positron emission tomography (PET), positron-emitting metal radionuclides have received much attention recently. Of these, gallium-68 has become particularly popular, as it is the only PET nuclide commercially available from radionuclide generators, therefore allowing local production of PET radiotracers independent of an on-site cyclotron. Hence, interest in optimized bifunctional chelators for the elaboration of (68) Ga-labeled bioconjugates has been rekindled as well, resulting in the development of improved triazacyclononane-triphosphinate (TRAP) ligand structures. The most remarkable features of these ligands are unparalleled selectivity for Ga(III) , rapid Ga(III) complexation kinetics, extraordinarily high thermodynamic stability, and kinetic inertness of the respective Ga(III) chelates. As a result, TRAP chelators exhibit very favorable (68) Ga-labeling properties. Based on the scaffolds NOPO (1,4,7-triazacyclononane-1,4-bis[methylene(hydroxymethyl)phosphinic acid]-7-[methylene(2-carboxyethyl)phosphinic acid]) and TRAP-Pr, tailored for convenient preparation of (68) Ga-labeled monomeric and multimeric bioconjugates, a variety of novel (68) Ga radiopharmaceuticals have been synthesized. These include bisphosphonates, somatostatin receptor ligands, prostate-specific membrane antigen (PSMA)-targeting peptides, and cyclic RGD pentapeptides, for in vivo PET imaging of bone, neuroendocrine tumors, prostate cancer, and integrin expression, respectively. Furthermore, TRAP-based (68) Ga-labeled gadolinium(III) complexes have been proposed as bimodal probes for PET/MRI, and a cyclen-based analogue of TRAP-Pr has been suggested for the elaboration of targeted radiotherapeutics comprising radiolanthanide ions. Thus, polyazacycloalkane-based polyphosphinic acid chelators are a powerful toolbox for pharmaceutical research, particularly for the development of (68) Ga radiopharmaceuticals. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. INPP4B-mediated tumor resistance is associated with modulation of glucose metabolism via hexokinase 2 regulation in laryngeal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Min, Joong Won [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Kwang Il [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Hyun-Ah; Kim, Eun-Kyu; Noh, Woo Chul [Department of Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Jeon, Hong Bae [Biomedical Research Institute, MEDIPOST Co., Ltd., Seoul (Korea, Republic of); Cho, Dong-Hyung [Graduate School of East-West Medical Science, Kyung Hee University, Gyeonggi-do (Korea, Republic of); Oh, Jeong Su [Department of Genetic Engineering, Sungkyunkwan University, Suwon (Korea, Republic of); Park, In-Chul; Hwang, Sang-Gu [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Jae-Sung, E-mail: jaesung@kirams.re.kr [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2013-10-11

    Highlights: •HIF-1α-regulated INPP4B enhances glycolysis. •INPP4B regulates aerobic glycolysis by inducing HK2 via Akt-mTOR pathway. •Blockage of INPP4B and HK2 sensitizes radioresistant laryngeal cancer cells to radiation and anticancer drug. •INPP4B is associated with HK2 in human laryngeal cancer tissues. -- Abstract: Inositol polyphosphate 4-phosphatase type II (INPP4B) was recently identified as a tumor resistance factor in laryngeal cancer cells. Herein, we show that INPP4B-mediated resistance is associated with increased glycolytic phenotype. INPP4B expression was induced by hypoxia and irradiation. Intriguingly, overexpression of INPP4B enhanced aerobic glycolysis. Of the glycolysis-regulatory genes, hexokinase 2 (HK2) was mainly regulated by INPP4B and this regulation was mediated through the Akt-mTOR pathway. Notably, codepletion of INPP4B and HK2 markedly sensitized radioresistant laryngeal cancer cells to irradiation or anticancer drug. Moreover, INPP4B was significantly associated with HK2 in human laryngeal cancer tissues. Therefore, these results suggest that INPP4B modulates aerobic glycolysis via HK2 regulation in radioresistant laryngeal cancer cells.

  9. The Immune Adaptor Molecule SARM Modulates Tumor Necrosis Factor Alpha Production and Microglia Activation in the Brainstem and Restricts West Nile Virus Pathogenesis▿

    Science.gov (United States)

    Szretter, Kristy J.; Samuel, Melanie A.; Gilfillan, Susan; Fuchs, Anja; Colonna, Marco; Diamond, Michael S.

    2009-01-01

    Sterile alpha and HEAT/Armadillo motif (SARM) is a highly conserved Toll/interleukin-1 receptor (TIR)-containing adaptor protein that is believed to negatively regulate signaling of the pathogen recognition receptors Toll-like receptor 3 (TLR3) and TLR4. To test its physiological function in the context of a microbial infection, we generated SARM−/− mice and evaluated the impact of this deficiency on the pathogenesis of West Nile virus (WNV), a neurotropic flavivirus that requires TLR signaling to restrict infection. Although SARM was preferentially expressed in cells of the central nervous system (CNS), studies with primary macrophages, neurons, or astrocytes showed no difference in viral growth kinetics. In contrast, viral replication was increased specifically in the brainstem of SARM−/− mice, and this was associated with enhanced mortality after inoculation with a virulent WNV strain. A deficiency of SARM was also linked to reduced levels of tumor necrosis factor alpha (TNF-α), decreased microglia activation, and increased neuronal death in the brainstem after WNV infection. Thus, SARM appears to be unique among the TIR adaptor molecules, since it functions to restrict viral infection and neuronal injury in a brain region-specific manner, possibly by modulating the activation of resident CNS inflammatory cells. PMID:19587044

  10. The immune adaptor molecule SARM modulates tumor necrosis factor alpha production and microglia activation in the brainstem and restricts West Nile Virus pathogenesis.

    Science.gov (United States)

    Szretter, Kristy J; Samuel, Melanie A; Gilfillan, Susan; Fuchs, Anja; Colonna, Marco; Diamond, Michael S

    2009-09-01

    Sterile alpha and HEAT/Armadillo motif (SARM) is a highly conserved Toll/interleukin-1 receptor (TIR)-containing adaptor protein that is believed to negatively regulate signaling of the pathogen recognition receptors Toll-like receptor 3 (TLR3) and TLR4. To test its physiological function in the context of a microbial infection, we generated SARM(-/-) mice and evaluated the impact of this deficiency on the pathogenesis of West Nile virus (WNV), a neurotropic flavivirus that requires TLR signaling to restrict infection. Although SARM was preferentially expressed in cells of the central nervous system (CNS), studies with primary macrophages, neurons, or astrocytes showed no difference in viral growth kinetics. In contrast, viral replication was increased specifically in the brainstem of SARM(-/-) mice, and this was associated with enhanced mortality after inoculation with a virulent WNV strain. A deficiency of SARM was also linked to reduced levels of tumor necrosis factor alpha (TNF-alpha), decreased microglia activation, and increased neuronal death in the brainstem after WNV infection. Thus, SARM appears to be unique among the TIR adaptor molecules, since it functions to restrict viral infection and neuronal injury in a brain region-specific manner, possibly by modulating the activation of resident CNS inflammatory cells.

  11. DNA nuclease activity of Rev-coupled transition metal chelates.

    Science.gov (United States)

    Joyner, Jeff C; Keuper, Kevin D; Cowan, J A

    2012-06-07

    Artificial nucleases containing Rev-coupled metal chelates based on combinations of the transition metals Fe(2+), Co(2+), Ni(2+), and Cu(2+) and the chelators DOTA, DTPA, EDTA, NTA, tripeptide GGH, and tetrapeptide KGHK have been tested for DNA nuclease activity. Originally designed to target reactive transition metal chelates (M-chelates) to the HIV-1 Rev response element mRNA, attachment to the arginine-rich Rev peptide also increases DNA-binding affinity for the attached M-chelates. Apparent K(D) values ranging from 1.7 to 3.6 µM base pairs for binding of supercoiled pUC19 plasmid DNA by Ni-chelate-Rev complexes were observed, as a result of electrostatic attraction between the positively-charged Rev peptide and negatively-charged DNA. Attachment of M-chelates to the Rev peptide resulted in enhancements of DNA nuclease activity ranging from 1-fold (no enhancement) to at least 13-fold (for Cu-DTPA-Rev), for the rate of DNA nicking, with second order rate constants for conversion of DNA(supercoiled) to DNA(nicked) up to 6 × 10(6) M(-1) min(-1), and for conversion of DNA(nicked) to DNA(linear) up to 1 × 10(5) M(-1) min(-1). Freifelder-Trumbo analysis and the ratios of linearization and nicking rate constants (k(lin)/k(nick)) revealed concerted mechanisms for nicking and subsequent linearization of plasmid DNA for all of the Rev-coupled M-chelates, consistent with higher DNA residency times for the Rev-coupled M-chelates. Observed rates for Rev-coupled M-chelates were less skewed by differing DNA-binding affinities than for M-chelates lacking Rev, as a result of the narrow range of DNA-binding affinities observed, and therefore relationships between DNA nuclease activity and other catalyst properties, such as coordination unsaturation, the ability to consume ascorbic acid and generate diffusible radicals, and the identity of the metal center, are now clearly illustrated in light of the similar DNA-binding affinities of all M-chelate-Rev complexes. This work

  12. Nanoparticle and other metal chelation therapeutics in Alzheimer disease.

    Science.gov (United States)

    Liu, Gang; Garrett, Matthew R; Men, Ping; Zhu, Xiongwei; Perry, George; Smith, Mark A

    2005-09-25

    Current therapies for Alzheimer disease (AD) such as the anticholinesterase inhibitors and the latest NMDA receptor inhibitor, Namenda, provide moderate symptomatic delay at various stages of disease, but do not arrest disease progression or supply meaningful remission. As such, new approaches to disease management are urgently needed. Although the etiology of AD is largely unknown, oxidative damage mediated by metals is likely a significant contributor since metals such as iron, aluminum, zinc, and copper are dysregulated and/or increased in AD brain tissue and create a pro-oxidative environment. This role of metal ion-induced free radical formation in AD makes chelation therapy an attractive means of dampening the oxidative stress burden in neurons. The chelator desferioxamine, FDA approved for iron overload, has shown some benefit in AD, but like many chelators, it has a host of adverse effects and substantial obstacles for tissue-specific targeting. Other chelators are under development and have shown various strengths and weaknesses. In this review, we propose a novel system of chelation therapy through the use of nanoparticles. Nanoparticles conjugated to chelators show a unique ability to cross the blood-brain barrier (BBB), chelate metals, and exit through the BBB with their corresponding complexed metal ions. This method may prove to be a safe and effective means of reducing the metal load in neural tissue thus staving off the harmful effects of oxidative damage and its sequelae.

  13. Nanoparticle and iron chelators as a potential novel Alzheimer therapy.

    Science.gov (United States)

    Liu, Gang; Men, Ping; Perry, George; Smith, Mark A

    2010-01-01

    Current therapies for Alzheimer disease (AD) such as the acetylcholinesterase inhibitors and the latest NMDA receptor inhibitor, Namenda, provide moderate symptomatic delay at various stages of the disease, but do not arrest the disease progression or bring in meaningful remission. New approaches to the disease management are urgently needed. Although the etiology of AD is largely unknown, oxidative damage mediated by metals is likely a significant contributor since metals such as iron, aluminum, zinc, and copper are dysregulated and/or increased in AD brain tissue and create a pro-oxidative environment. This role of metal ion-induced free radical formation in AD makes chelation therapy an attractive means of dampening the oxidative stress burden in neurons. The chelator desferrioxamine, FDA approved for iron overload, has shown some benefit in AD, but like many chelators, it has a host of adverse effects and substantial obstacles for tissue-specific targeting. Other chelators are under development and have shown various strengths and weaknesses. Here, we propose a novel system of chelation therapy through the use of nanoparticles. Nanoparticles conjugated to chelators show unique ability to cross the blood-brain barrier (BBB), chelate metals, and exit through the BBB with their corresponding complexed metal ions. This method may provide a safer and more effective means of reducing the metal load in neural tissue, thus attenuating the harmful effects of oxidative damage and its sequelae. Experimental procedures are presented in this chapter.

  14. Chelation: Harnessing and Enhancing Heavy Metal Detoxification—A Review

    Directory of Open Access Journals (Sweden)

    Margaret E. Sears

    2013-01-01

    Full Text Available Toxic metals such as arsenic, cadmium, lead, and mercury are ubiquitous, have no beneficial role in human homeostasis, and contribute to noncommunicable chronic diseases. While novel drug targets for chronic disease are eagerly sought, potentially helpful agents that aid in detoxification of toxic elements, chelators, have largely been restricted to overt acute poisoning. Chelation, that is multiple coordination bonds between organic molecules and metals, is very common in the body and at the heart of enzymes with a metal cofactor such as copper or zinc. Peptides glutathione and metallothionein chelate both essential and toxic elements as they are sequestered, transported, and excreted. Enhancing natural chelation detoxification pathways, as well as use of pharmaceutical chelators against heavy metals are reviewed. Historical adverse outcomes with chelators, lessons learned in the art of using them, and successes using chelation to ameliorate renal, cardiovascular, and neurological conditions highlight the need for renewed attention to simple, safe, inexpensive interventions that offer potential to stem the tide of debilitating, expensive chronic disease.

  15. Affinity purification of copper chelating peptides from chickpea protein hydrolysates.

    Science.gov (United States)

    Megías, Cristina; Pedroche, Justo; Yust, Maria M; Girón-Calle, Julio; Alaiz, Manuel; Millan, Francisco; Vioque, Javier

    2007-05-16

    Chickpea protein hydrolysates obtained with alcalase and flavourzyme were used for purification of copper chelating peptides by affinity chromatography using copper immobilized on solid supports. The chelating activity of purified peptides was indirectly measured by the inhibition of beta-carotene oxidation in the presence of copper. Two protein hydrolysates, obtained after 10 and 100 min of hydrolysis, were the most inhibitory of beta-carotene oxidation. Purified copper chelating peptides from these protein hydrolysates contained 19.7 and 35.1% histidine, respectively, in comparison to 2.7 and 2.6% in the protein hydrolysates. Chelating peptides from hydrolysate obtained after 10 min of hydrolysis were the most antioxidative being 8.3 times more antioxidative than the hydrolysate, while chelating peptides purified from protein hydrolysate obtained after 100 min were 3.1 times more antioxidative than its hydrolysate. However, the histidine content was higher in peptides derived from the 100 min hydrolysate (19.7 against 35.1% in 10 min hydrolysate), indicating that this amino acid is not the only factor involved in the antioxidative activity, and other factors such as peptide size or amino acid sequence are also determinant. This manuscript shows that affinity chromatography is a useful procedure for purification of copper chelating peptides. This method can be extended to other metals of interest in nutrition, such as calcium, iron, or zinc. Purified chelating peptides, in addition to their antioxidative properties, may also be useful in food mineral fortification for increasing the bioavailability of these metals.

  16. Minimal role of metallothionein in decreased chelator efficacy for cadmium.

    Science.gov (United States)

    Waalkes, M P; Watkins, J B; Klaassen, C D

    1983-05-01

    Chelator efficacy in Cd poisoning drops precipitously if therapy is not commenced almost immediately after exposure. Metallothionein (MT), a low-molecular-weight metal-binding protein with high affinity for Cd, may be important for this phenomenon. To more fully assess this role of MT in the acute drop in chelator efficacy following Cd poisoning, rats were injected iv with radioisotopic Cd (1mg/kg as CdCl2; 50 muCi/kg) followed by diethylenetriaminepentaacetic acid (DTPA; 90 mg/kg ip) at various times (0, 15, 30, 60, and 120 min) after Cd. Ther percentage of the Cd dose remaining in major organs 24 hr following Cd was determined. Although DTPA reduced Cd content in the various organs when given immediately after Cd, the chelator was ineffective at all later times. Increases in hepatic and renal MT did not occur until 2 hr after Cd, and did not coincide with the earlier drop in chelator efficacy. Blockade of MT synthesis by actinomycin D treatment (1.25 mg/kg, 1 hr before Cd) failed to prolong the chelators effectiveness. Furthermore, newborn rats have high levels of hepatic MT which had no effect on the time course of chelator effectiveness since DTPA still decreased Cd organ contents if given immediately following Cd but had no effect if given 2 hr after Cd. Therefore, if appears that MT does not have an important role in the acute decrease in efficacy of chelation therapy for Cd poisoning. The quick onset of chelator ineffectiveness may be due to the rapid uptake of Cd into tissues which makes it relatively unavailable of chelation.

  17. STUDY ON THERMAL DECOMPOSITION KINETICS OF URUSHIOL METAL CHELATE POLYMERS

    Institute of Scientific and Technical Information of China (English)

    HU Binghuan; CHEN Riyao; LIN Jinhuo; CHEN Wending

    1994-01-01

    The thermal decomposition kinetics of urushiol-Cu, urushiol-Nd and urushiol-Ti chelate polymers has been studied by non-isothermal thermogravimetry. The results suggest that the thermal decomposition kinetics of three chelate polymers are all of first order. Their average activation energy values of the thermal decomposition calculated by Ozawa-(Ⅰ) method are 110.79,136.98 and 163.64 kJ mol-1respectively,which increase linearly with the metal valence of the metal chelate polymers

  18. Gadolinium-chelate nanoparticle entrapped human mesenchymal stem cell via photochemical internalization for cancer diagnosis.

    Science.gov (United States)

    Kim, Kyoung Sub; Park, Wooram; Na, Kun

    2015-01-01

    To improve the gadolinium (Gd) internalization efficiency in stem cells, gadolinium-chelate nanoparticles were prepared from a pullulan derivative (pullulan-deoxycholic acid (DOCA)-diethylene triamine pentaacetic (DTPA)-Gd conjugate; PDDG) and then the PDDG was entrapped into human mesenchymal stem cells (hMSCs) by the photochemical-internalization (PCI) method for cancer diagnosis via the cancer homing property of hMSCs. The internalization efficiency of Gd in hMSCs was significantly increased to 98 ± 4 pg Gd/cell from 32 ± 2 pg Gd/cell via the PCI method. Moreover, the Gd-entrapped hMSCs revealed a low exocytosis ratio of gadolinium-chelate nanoparticles during cell division in vitro and a high cellular labeling efficiency for at least 21 days in vivo. The cancer-targeting and diagnosis effect of the Gd-entrapped hMSCs were confirmed in a small CT26 tumor-bearing mice model. The stem cells detected an early tumor (∼3 mm(3)) within 2 h using 4.7-T MR and optical imaging. The results demonstrated that the PCI-mediated internalization of Gd-incorporated nanoparticles into hMSCs is a promising protocol for efficient cell labeling and tracking.

  19. Trichostatin A Modulates Thiazolidinedione-Mediated Suppression of Tumor Necrosis Factor α-Induced Lipolysis in 3T3-L1 Adipocytes

    Science.gov (United States)

    Lu, Juu-Chin; Chang, Yu-Tzu; Wang, Chih-Tien; Lin, Yu-Chun; Lin, Chun-Ken; Wu, Zhong-Sheng

    2013-01-01

    In obesity, high levels of tumor necrosis factor α (TNFα) stimulate lipolysis in adipocytes, leading to hyperlipidemia and insulin resistance. Thiazolidinediones (TZDs), the insulin-sensitizing drugs, antagonize TNFα-induced lipolysis in adipocytes, thereby increasing insulin sensitivity in diabetes patients. The cellular target of TZDs is peroxisome proliferator-activated receptor γ (PPARγ), a nuclear receptor that controls many adipocyte functions. As a transcription factor, PPARγ is closely modulated by coregulators, which include coactivators and corepressors. Previous studies have revealed that in macrophages, the insulin-sensitizing effect of PPARγ may involve suppression of proinflammatory gene expression by recruiting the corepressor complex that contains corepressors and histone deacetylases (HDACs). Therefore, we investigated whether the corepressor complex is involved in TZD-mediated suppression of TNFα-induced lipolysis in 3T3-L1 adipocytes. Trichostatin A (TSA), a pan HDAC inhibitor (HDACI) that inhibits class I and II HDACs, was used to examine the involvement of HDACs in the actions of TZDs. TSA alone increased basal lipolysis and attenuated TZD-mediated suppression of TNFα-induced lipolysis. Increased basal lipolysis may in part result from class I HDAC inhibition because selective class I HDACI treatment had similar results. However, attenuation of TZD-mediated TNFα antagonism may be specific to TSA and related hydroxamate-based HDACI rather than to HDAC inhibition. Consistently, corepressor depletion did not affect TZD-mediated suppression. Interestingly, TSA treatment greatly reduced PPARγ levels in differentiated adipocytes. Finally, extracellular signal-related kinase 1/2 (ERK1/2) mediated TNFα-induced lipolysis, and TZDs suppressed TNFα-induced ERK phosphorylation. We determined that TSA increased basal ERK phosphorylation, and attenuated TZD-mediated suppression of TNFα-induced ERK phosphorylation, consistent with TSA

  20. Increase in tumor control and normal tissue complication probabilities in advanced head-and-neck cancer for dose-escalated intensity-modulated photon and proton therapy

    Directory of Open Access Journals (Sweden)

    Annika eJakobi

    2015-11-01

    Full Text Available Introduction:Presently used radio-chemotherapy regimens result in moderate local control rates for patients with advanced head and neck squamous cell carcinoma (HNSCC. Dose escalation (DE may be an option to improve patient outcome, but may also increase the risk of toxicities in healthy tissue. The presented treatment planning study evaluated the feasibility of two DE levels for advanced HNSCC patients, planned with either intensity-modulated photon therapy (IMXT or proton therapy (IMPT.Materials and Methods:For 45 HNSCC patients, IMXT and IMPT treatment plans were created including DE via a simultaneous integrated boost (SIB in the high-risk volume, while maintaining standard fractionation with 2 Gy per fraction in the remaining target volume. Two DE levels for the SIB were compared: 2.3 Gy and 2.6 Gy. Treatment plan evaluation included assessment of tumor control probabilities (TCP and normal tissue complication probabilities (NTCP.Results:An increase of approximately 10% in TCP was estimated between the DE levels. A pronounced high-dose rim surrounding the SIB volume was identified in IMXT treatment. Compared to IMPT, this extra dose slightly increased the TCP values and to a larger extent the NTCP values. For both modalities, the higher DE level led only to a small increase in NTCP values (mean differences < 2% in all models, except for the risk of aspiration, which increased on average by 8% and 6% with IMXT and IMPT, respectively, but showed a considerable patient dependence. Conclusions:Both DE levels appear applicable to patients with IMXT and IMPT since all calculated NTCP values, except for one, increased only little for the higher DE level. The estimated TCP increase is of relevant magnitude. The higher DE schedule needs to be investigated carefully in the setting of a prospective clinical trial, especially regarding toxicities caused by high local doses that lack a sound dose response description, e.g., ulcers.

  1. A novel DNMT3B splice variant expressed in tumor and pluripotent cells modulates genomic DNA methylation patterns and displays altered DNA binding.

    Science.gov (United States)

    Gopalakrishnan, Suhasni; Van Emburgh, Beth O; Shan, Jixiu; Su, Zhen; Fields, C Robert; Vieweg, Johannes; Hamazaki, Takashi; Schwartz, Philip H; Terada, Naohiro; Robertson, Keith D

    2009-10-01

    DNA methylation is an epigenetic mark essential for mammalian development, genomic stability, and imprinting. DNA methylation patterns are established and maintained by three DNA methyltransferases: DNMT1, DNMT3A, and DNMT3B. Interestingly, all three DNMTs make use of alternative splicing. DNMT3B has nearly 40 known splice variants expressed in a tissue- and disease-specific manner, but very little is known about the role of these splice variants in modulating DNMT3B function. We describe here the identification and characterization of a novel alternatively spliced form of DNMT3B lacking exon 5 within the NH(2)-terminal regulatory domain. This variant, which we term DNMT3B3Delta5 because it is closely related in structure to the ubiquitously expressed DNMT3B3 isoform, is highly expressed in pluripotent cells and brain tissue, is downregulated during differentiation, and is conserved in the mouse. Creation of pluripotent iPS cells from fibroblasts results in marked induction of DNMT3B3Delta5. DNMT3B3Delta5 expression is also altered in human disease, with tumor cell lines displaying elevated or reduced expression depending on their tissue of origin. We then compared the DNA binding and subcellular localization of DNMT3B3Delta5 versus DNMT3B3, revealing that DNMT3B3Delta5 possessed significantly enhanced DNA binding affinity and displayed an altered nuclear distribution. Finally, ectopic overexpression of DNMT3B3Delta5 resulted in repetitive element hypomethylation and enhanced cell growth in a colony formation assay. Taken together, these results show that DNMT3B3Delta5 may play an important role in stem cell maintenance or differentiation and suggest that sequences encoded by exon 5 influence the functional properties of DNMT3B.

  2. Trichostatin A modulates thiazolidinedione-mediated suppression of tumor necrosis factor α-induced lipolysis in 3T3-L1 adipocytes.

    Science.gov (United States)

    Lu, Juu-Chin; Chang, Yu-Tzu; Wang, Chih-Tien; Lin, Yu-Chun; Lin, Chun-Ken; Wu, Zhong-Sheng

    2013-01-01

    In obesity, high levels of tumor necrosis factor α (TNFα) stimulate lipolysis in adipocytes, leading to hyperlipidemia and insulin resistance. Thiazolidinediones (TZDs), the insulin-sensitizing drugs, antagonize TNFα-induced lipolysis in adipocytes, thereby increasing insulin sensitivity in diabetes patients. The cellular target of TZDs is peroxisome proliferator-activated receptor γ (PPARγ), a nuclear receptor that controls many adipocyte functions. As a transcription factor, PPARγ is closely modulated by coregulators, which include coactivators and corepressors. Previous studies have revealed that in macrophages, the insulin-sensitizing effect of PPARγ may involve suppression of proinflammatory gene expression by recruiting the corepressor complex that contains corepressors and histone deacetylases (HDACs). Therefore, we investigated whether the corepressor complex is involved in TZD-mediated suppression of TNFα-induced lipolysis in 3T3-L1 adipocytes. Trichostatin A (TSA), a pan HDAC inhibitor (HDACI) that inhibits class I and II HDACs, was used to examine the involvement of HDACs in the actions of TZDs. TSA alone increased basal lipolysis and attenuated TZD-mediated suppression of TNFα-induced lipolysis. Increased basal lipolysis may in part result from class I HDAC inhibition because selective class I HDACI treatment had similar results. However, attenuation of TZD-mediated TNFα antagonism may be specific to TSA and related hydroxamate-based HDACI rather than to HDAC inhibition. Consistently, corepressor depletion did not affect TZD-mediated suppression. Interestingly, TSA treatment greatly reduced PPARγ levels in differentiated adipocytes. Finally, extracellular signal-related kinase 1/2 (ERK1/2) mediated TNFα-induced lipolysis, and TZDs suppressed TNFα-induced ERK phosphorylation. We determined that TSA increased basal ERK phosphorylation, and attenuated TZD-mediated suppression of TNFα-induced ERK phosphorylation, consistent with TSA's effects

  3. Trichostatin A modulates thiazolidinedione-mediated suppression of tumor necrosis factor α-induced lipolysis in 3T3-L1 adipocytes.

    Directory of Open Access Journals (Sweden)

    Juu-Chin Lu

    Full Text Available In obesity, high levels of tumor necrosis factor α (TNFα stimulate lipolysis in adipocytes, leading to hyperlipidemia and insulin resistance. Thiazolidinediones (TZDs, the insulin-sensitizing drugs, antagonize TNFα-induced lipolysis in adipocytes, thereby increasing insulin sensitivity in diabetes patients. The cellular target of TZDs is peroxisome proliferator-activated receptor γ (PPARγ, a nuclear receptor that controls many adipocyte functions. As a transcription factor, PPARγ is closely modulated by coregulators, which include coactivators and corepressors. Previous studies have revealed that in macrophages, the insulin-sensitizing effect of PPARγ may involve suppression of proinflammatory gene expression by recruiting the corepressor complex that contains corepressors and histone deacetylases (HDACs. Therefore, we investigated whether the corepressor complex is involved in TZD-mediated suppression of TNFα-induced lipolysis in 3T3-L1 adipocytes. Trichostatin A (TSA, a pan HDAC inhibitor (HDACI that inhibits class I and II HDACs, was used to examine the involvement of HDACs in the actions of TZDs. TSA alone increased basal lipolysis and attenuated TZD-mediated suppression of TNFα-induced lipolysis. Increased basal lipolysis may in part result from class I HDAC inhibition because selective class I HDACI treatment had similar results. However, attenuation of TZD-mediated TNFα antagonism may be specific to TSA and related hydroxamate-based HDACI rather than to HDAC inhibition. Consistently, corepressor depletion did not affect TZD-mediated suppression. Interestingly, TSA treatment greatly reduced PPARγ levels in differentiated adipocytes. Finally, extracellular signal-related kinase 1/2 (ERK1/2 mediated TNFα-induced lipolysis, and TZDs suppressed TNFα-induced ERK phosphorylation. We determined that TSA increased basal ERK phosphorylation, and attenuated TZD-mediated suppression of TNFα-induced ERK phosphorylation, consistent with

  4. Metal chelate process to remove pollutants from fluids

    Science.gov (United States)

    Chang, Shih-Ger T.

    1994-01-01

    The present invention relates to improved methods using an organic iron chelate to remove pollutants from fluids, such as flue gas. Specifically, the present invention relates to a process to remove NO.sub.x and optionally SO.sub.2 from a fluid using a metal ion (Fe.sup.2+) chelate wherein the ligand is a dimercapto compound wherein the --SH groups are attached to adjacent carbon atoms (HS--C--C--SH) or (SH--C--CCSH) and contain a polar functional group so that the ligand of DMC chelate is water soluble. Alternatively, the DMC' is covalently attached to a water insoluble substrate such as a polymer or resin, e.g., polystyrene. The chelate is regenerated using electroreduction or a chemical additive. The dimercapto compound bonded to a water insoluble substrate is also useful to lower the concentration or remove hazardous metal ions from an aqueous solution.

  5. A Brief Review of Chelators for Radiolabeling Oligomers

    Directory of Open Access Journals (Sweden)

    Yuxia Liu

    2010-05-01

    Full Text Available The chemical modification of oligomers such as DNA, PNA, MORF, LNA to attach radionuclides for nuclear imaging and radiotherapy applications has become a field rich in innovation as older methods are improved and new methods are introduced. This review intends to provide a brief overview of several chelators currently in use for the labeling of oligomers with metallic radionuclides such as 99mTc, 111In and 188Re. While DNA and its analogs have been radiolabeled with important radionuclides of nonmetals such as 32P, 35S, 14C, 18F and 125I, the labeling methods for these isotopes involve covalent chemistry that is quite distinct from the coordinate-covalent chelation chemistry described herein. In this review, we provide a summary of the several chelators that have been covalently conjugated to oligomers for the purpose of radiolabeling with metallic radionuclides by chelation and including details on the conjugation, the choice of radionuclides and labeling methods.

  6. Metal chelate process to remove pollutants from fluids

    Science.gov (United States)

    Chang, S.G.T.

    1994-12-06

    The present invention relates to improved methods using an organic iron chelate to remove pollutants from fluids, such as flue gas. Specifically, the present invention relates to a process to remove NO[sub x] and optionally SO[sub 2] from a fluid using a metal ion (Fe[sup 2+]) chelate wherein the ligand is a dimercapto compound wherein the --SH groups are attached to adjacent carbon atoms (HS--C--C--SH) or (SH--C--CCSH) and contain a polar functional group so that the ligand of DMC chelate is water soluble. Alternatively, the DMC is covalently attached to a water insoluble substrate such as a polymer or resin, e.g., polystyrene. The chelate is regenerated using electroreduction or a chemical additive. The dimercapto compound bonded to a water insoluble substrate is also useful to lower the concentration or remove hazardous metal ions from an aqueous solution. 26 figures.

  7. Synthetic Lubricating Oil Greases Containing Metal Chelates of Schiff Bases

    Science.gov (United States)

    1992-09-15

    greases comprising the addition to said greases of effective amounts of a chelated Schiff base derived from the condensation of approximately stoichiometic amounts of at least one aldehyde and a polyamine.

  8. NIR emitting ytterbium chelates for colourless luminescent solar concentrators.

    Science.gov (United States)

    Sanguineti, Alessandro; Monguzzi, Angelo; Vaccaro, Gianfranco; Meinardi, Franco; Ronchi, Elisabetta; Moret, Massimo; Cosentino, Ugo; Moro, Giorgio; Simonutti, Roberto; Mauri, Michele; Tubino, Riccardo; Beverina, Luca

    2012-05-14

    A new oxyiminopyrazole-based ytterbium chelate enables NIR emission upon UV excitation in colorless single layer luminescent solar concentrators for building integrated photovoltaics. This journal is © the Owner Societies 2012

  9. Development of Multi-Functional Chelators Based on Sarcophagine Cages

    Directory of Open Access Journals (Sweden)

    Shuanglong Liu

    2014-04-01

    Full Text Available A new class of multifunctionalized sarcophagine derivatives was synthesized for 64Cu chelation. The platform developed in this study could have broad applications in 64Cu-radiopharmaceuticals.

  10. Comparing potential copper chelation mechanisms in Parkinson's disease protein

    Science.gov (United States)

    Rose, Frisco; Hodak, Miroslav; Bernholc, Jerry

    2011-03-01

    We have implemented the nudged elastic band (NEB) as a guided dynamics framework for our real-space multigrid method of DFT-based quantum simulations. This highly parallel approach resolves a minimum energy pathway (MEP) on the energy hypersurface by relaxing intermediates in a chain-of-states. As an initial application we present an investigation of chelating agents acting on copper ion bound to α -synuclein, whose misfolding is implicated in Parkinson's disease (PD). Copper ions are known to act as highly effective misfolding agents in a-synuclein and are thus an important target in understanding PD. Furthermore, chelation therapy has shown promise in the treatment of Alzheimer's and other neuro-degenerative diseases with similar metal-correlated pathologies. At present, our candidate chelating agents include nicotine, curcumin and clioquinol. We examine their MEP activation barriers in the context of a PD onset mechanism to assess the viability of various chelators for PD remediation.

  11. Metal Chelation as a Powerful Strategy to Probe Cellular Circuitry Governing Fungal Drug Resistance and Morphogenesis.

    Directory of Open Access Journals (Sweden)

    Elizabeth J Polvi

    2016-10-01

    Full Text Available Fungal pathogens have evolved diverse strategies to sense host-relevant cues and coordinate cellular responses, which enable virulence and drug resistance. Defining circuitry controlling these traits opens new opportunities for chemical diversity in therapeutics, as the cognate inhibitors are rarely explored by conventional screening approaches. This has great potential to address the pressing need for new therapeutic strategies for invasive fungal infections, which have a staggering impact on human health. To explore this approach, we focused on a leading human fungal pathogen, Candida albicans, and screened 1,280 pharmacologically active compounds to identify those that potentiate the activity of echinocandins, which are front-line therapeutics that target fungal cell wall synthesis. We identified 19 compounds that enhance activity of the echinocandin caspofungin against an echinocandin-resistant clinical isolate, with the broad-spectrum chelator DTPA demonstrating the greatest synergistic activity. We found that DTPA increases susceptibility to echinocandins via chelation of magnesium. Whole genome sequencing of mutants resistant to the combination of DTPA and caspofungin identified mutations in the histidine kinase gene NIK1 that confer resistance to the combination. Functional analyses demonstrated that DTPA activates the mitogen-activated protein kinase Hog1, and that NIK1 mutations block Hog1 activation in response to both caspofungin and DTPA. The combination has therapeutic relevance as DTPA enhanced the efficacy of caspofungin in a mouse model of echinocandin-resistant candidiasis. We found that DTPA not only reduces drug resistance but also modulates morphogenesis, a key virulence trait that is normally regulated by environmental cues. DTPA induced filamentation via depletion of zinc, in a manner that is contingent upon Ras1-PKA signaling, as well as the transcription factors Brg1 and Rob1. Thus, we establish a new mechanism by which

  12. Metal Chelation as a Powerful Strategy to Probe Cellular Circuitry Governing Fungal Drug Resistance and Morphogenesis

    Science.gov (United States)

    Averette, Anna F.; Lee, Soo Chan; Kim, Taeyup; Bahn, Yong-Sun; Robbins, Nicole; Heitman, Joseph; Cowen, Leah E.

    2016-01-01

    Fungal pathogens have evolved diverse strategies to sense host-relevant cues and coordinate cellular responses, which enable virulence and drug resistance. Defining circuitry controlling these traits opens new opportunities for chemical diversity in therapeutics, as the cognate inhibitors are rarely explored by conventional screening approaches. This has great potential to address the pressing need for new therapeutic strategies for invasive fungal infections, which have a staggering impact on human health. To explore this approach, we focused on a leading human fungal pathogen, Candida albicans, and screened 1,280 pharmacologically active compounds to identify those that potentiate the activity of echinocandins, which are front-line therapeutics that target fungal cell wall synthesis. We identified 19 compounds that enhance activity of the echinocandin caspofungin against an echinocandin-resistant clinical isolate, with the broad-spectrum chelator DTPA demonstrating the greatest synergistic activity. We found that DTPA increases susceptibility to echinocandins via chelation of magnesium. Whole genome sequencing of mutants resistant to the combination of DTPA and caspofungin identified mutations in the histidine kinase gene NIK1 that confer resistance to the combination. Functional analyses demonstrated that DTPA activates the mitogen-activated protein kinase Hog1, and that NIK1 mutations block Hog1 activation in response to both caspofungin and DTPA. The combination has therapeutic relevance as DTPA enhanced the efficacy of caspofungin in a mouse model of echinocandin-resistant candidiasis. We found that DTPA not only reduces drug resistance but also modulates morphogenesis, a key virulence trait that is normally regulated by environmental cues. DTPA induced filamentation via depletion of zinc, in a manner that is contingent upon Ras1-PKA signaling, as well as the transcription factors Brg1 and Rob1. Thus, we establish a new mechanism by which metal chelation

  13. Activatable albumin-photosensitizer nanoassemblies for triple-modal imaging and thermal-modulated photodynamic therapy of cancer.

    Science.gov (United States)

    Hu, Dehong; Sheng, Zonghai; Gao, Guanhui; Siu, Fungming; Liu, Chengbo; Wan, Qian; Gong, Ping; Zheng, Hairong; Ma, Yifan; Cai, Lintao

    2016-07-01

    Photodynamic therapy (PDT) is a noninvasive and effective approach for cancer treatment. The main bottlenecks of clinical PDT are poor selectivity of photosensitizer and inadequate oxygen supply resulting in serious side effects and low therapeutic efficiency. Herein, a thermal-modulated reactive oxygen species (ROS) strategy using activatable human serum albumin-chlorin e6 nanoassemblies (HSA-Ce6 NAs) for promoting PDT against cancer is developed. Through intermolecular disulfide bond crosslinking and hydrophobic interaction, Ce6 photosensitizer is effectively loaded into the HSA NAs, and the obtained HSA-Ce6 NAs exhibit excellent reduction response, as well as enhanced tumor accumulation and retention. By the precision control of the overall body temperature instead of local tumor temperature increasing from 37 °C to 43 °C, the photosensitization reaction rate of HSA-Ce6 NAs increases 20%, and the oxygen saturation of tumor tissue raise 52%, significantly enhancing the generation of ROS for promoting PDT. Meanwhile, the intrinsic fluorescence and photoacoustic properties, and the chelating characteristic of porphyrin ring can endow the HSA-Ce6 NAs with fluorescence, photoacoustic and magnetic resonance triple-modal imaging functions. Upon irradiation of low-energy near-infrared laser, the tumors are completely suppressed without tumor recurrence and therapy-induced side effects. The robust thermal-modulated ROS strategy combined with albumin-based activatable nanophotosensitizer is highly potential for multi-modal imaging-guided PDT and clinical translation.

  14. Targeted Iron Chelation Will Improve Recovery after Spinal Cord Injury

    Science.gov (United States)

    2014-10-01

    Neuroprotection Ferritin Introduction recovery after traumatic spinal cord injury (SCI). An optimal treatment to reverse or prevent damage...Hider and Zhou, 2005). However, this intracellular chelation may still be beneficial by preventing free iron from participating in free radical...active iron-chelating agent in patients with transfusion-dependent iron overload due to beta- thalassemia . J. Clin. Pharmacol. 43 (6), 565-572. Hider

  15. Iron Chelation Adherence to Deferoxamine and Deferasirox in Thalassemia

    OpenAIRE

    Trachtenberg, Felicia; Vichinsky, Elliott; Haines, Dru; Pakbaz, Zahra; Mednick, Lauren; Sobota, Amy; Kwiatkowski, Janet; Thompson, Alexis A.; Porter, John; Coates, Thomas; Giardina, Patricia J.; Olivieri, Nancy; Yamashita, Robert; Neufeld, Ellis J.

    2011-01-01

    The Thalassemia Clinical Research Network collected adherence information from 79 patients on deferoxamine and 186 on deferasirox from 2007 to 2009. Chelation adherence was defined as percent of doses administered in the last 4 weeks (patient report) out of those prescribed (chart review). Chelation history since 2002 was available for 97 patients currently on deferoxamine and 217 on deferasirox, with crude estimates of adherence from chart review. Self-reported adherence to both deferoxamine...

  16. Deferasirox, an oral chelator in the treatment of iron overload

    OpenAIRE

    I. Portioli

    2013-01-01

    BACKGROUND Deferasirox is a once-daily oral iron chelator developed for treating iron overload complicating long-term transfusion therapy in patients with diseases such as beta-thalassemia and myelodysplastic syndromes. Iron overload can damage the liver, pancreas and the heart. Deferoxamine, the only other drug approved for iron chelation, can prevent these effects but requires parenteral administration. Deferasirox has been approved after a one-year, open-label trial in patients ≥ 2 years o...

  17. Chelated Ruthenium Catalysts for Z-Selective Olefin Metathesis

    Science.gov (United States)

    Endo, Koji; Grubbs, Robert H.

    2011-01-01

    We report the development of ruthenium-based metathesis catalysts with chelating N-heterocyclic carbene (NHC) ligands which catalyze highly Z-selective olefin metathesis. A very simple and convenient synthetic procedure of such a catalyst has been developed. An intramolecular C-H bond activation of the NHC ligand, which is promoted by anion ligand substitution, forms the appropriate chelate for stereo- controlled olefin metathesis. PMID:21563826

  18. Iron chelation adherence to deferoxamine and deferasirox in thalassemia.

    Science.gov (United States)

    Trachtenberg, Felicia; Vichinsky, Elliott; Haines, Dru; Pakbaz, Zahra; Mednick, Lauren; Sobota, Amy; Kwiatkowski, Janet; Thompson, Alexis A; Porter, John; Coates, Thomas; Giardina, Patricia J; Olivieri, Nancy; Yamashita, Robert; Neufeld, Ellis J

    2011-05-01

    The Thalassemia Clinical Research Network collected adherence information from 79 patients on deferoxamine and 186 on deferasirox from 2007 to 2009. Chelation adherence was defined as percent of doses administered in the last 4 weeks (patient report) out of those prescribed(chart review). Chelation history since 2002 was available for 97 patients currently on deferoxamine and 217 on deferasirox, with crude estimates of adherence from chart review. Self-reported adherence to both deferoxamine and deferasirox were quite high, with slightly higher adherence to the oral chelator (97 vs. 92%). Ninety percent of patients on deferasirox reported at least 90% adherence, compared with 75% of patients on deferoxamine. Adherence to both chelators was highest in children, followed by adolescents and older adults.Predictors of lower deferoxamine adherence were smoking in the past year, problems sticking themselves (adults only), problems wearing their pump, and fewer transfusions in the past year. Predictors of lower deferasirox adherence were bodily pain and depression. Switching chelators resulted in increased adherence, regardless of the direction of the switch, although switching from deferoxamine to deferasirox was far more common. As adherence to deferoxamine is higher than previously reported, it appears beneficial for patients to have a choice in chelators.

  19. Extraction of metals using supercritical fluid and chelate forming legand

    Science.gov (United States)

    Wai, Chien M.; Laintz, Kenneth E.

    1998-01-01

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated .beta.-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated .beta.-diketone and a trialkyl phosphate, or a fluorinated .beta.-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated .beta.-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  20. Extraction of metals using supercritical fluid and chelate forming ligand

    Science.gov (United States)

    Wai, C.M.; Laintz, K.E.

    1998-03-24

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated {beta}-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated {beta}-diketone and a trialkyl phosphate, or a fluorinated {beta}-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated {beta}-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process. 7 figs.

  1. Μethods of iron chelation therapy: a bibliographic review

    Directory of Open Access Journals (Sweden)

    Maria Agapiou

    2012-01-01

    Full Text Available "Iron Chelation Therapy" is a term used to describe the procedure of removing excess iron from the body, which is applied after a total of approximately 20 blood transfusions or when serum ferritin levels rise above 1000 ng/ml. Aim: The purpose of the present paper is a retrospective search in bibliography, concerning the methods of iron chelation treatment for patients with hemochromatosis owing to their undergoing multiple blood transfusions. Method: The methology followed, included the search for review and research studies, in electronic databases as well as scientific haematology journals, mostly regarding recent entries in greek and international bibliography. Results: According to the bibliography, chelation therapy compounds have significantly changed the patients' clinical features and have substantially improved their quality of life, along with their outcome over time. However, the level of patient compliance to treatment still remains the basic problem of iron chelation therapy. Conclusions: Even though the discovery of orally administered chelating agents can qualify as an auspicious accomplishment, research fields should cover a much wider spectrum, in order to improve the effectiveness of iron chelation treatment.

  2. Iron Chelation Adherence to Deferoxamine and Deferasirox in Thalassemia

    Science.gov (United States)

    Trachtenberg, Felicia; Vichinsky, Elliott; Haines, Dru; Pakbaz, Zahra; Mednick, Lauren; Sobota, Amy; Kwiatkowski, Janet; Thompson, Alexis A.; Porter, John; Coates, Thomas; Giardina, Patricia J.; Olivieri, Nancy; Yamashita, Robert; Neufeld, Ellis J.

    2015-01-01

    The Thalassemia Clinical Research Network collected adherence information from 79 patients on deferoxamine and 186 on deferasirox from 2007 to 2009. Chelation adherence was defined as percent of doses administered in the last 4 weeks (patient report) out of those prescribed (chart review). Chelation history since 2002 was available for 97 patients currently on deferoxamine and 217 on deferasirox, with crude estimates of adherence from chart review. Self-reported adherence to both deferoxamine and deferasirox were quite high, with slightly higher adherence to the oral chelator (97 vs. 92%). Ninety percent of patients on deferasirox reported at least 90% adherence, compared with 75% of patients on deferoxamine. Adherence to both chelators was highest in children, followed by adolescents and older adults. Predictors of lower deferoxamine adherence were smoking in the past year, problems sticking themselves (adults only), problems wearing their pump, and fewer transfusions in the past year. Predictors of lower deferasirox adherence were bodily pain and depression. Switching chelators resulted in increased adherence, regardless of the direction of the switch, although switching from deferoxamine to deferasirox was far more common. As adherence to deferoxamine is higher than previously reported, it appears beneficial for patients to have a choice in chelators. PMID:21523808

  3. Bone tumor

    Science.gov (United States)

    Tumor - bone; Bone cancer; Primary bone tumor; Secondary bone tumor; Bone tumor - benign ... The cause of bone tumors is unknown. They often occur in areas of the bone that grow rapidly. Possible causes include: Genetic defects ...

  4. THE STUDIES ON CHELATING FIBER V.ADSORPTION BEHAVIOR OF Au3+ ONTO CHELATING FIBER CONTAINING AMIDOXIME GROUPS

    Institute of Scientific and Technical Information of China (English)

    LINWeiping; LUYun; 等

    1992-01-01

    The adsorption behavior of ionic gold onto chelating fiber containing amidoxime groups was investigated. The chelating fiber presents high adsorption capacity for ionic gold Au3+(up to 626mg/g,when the content of amidoxime group reaches 7.59mmol/g),and possesses the ability to reduce the Au3+ into metallic gold,In the redox process,the amidoxime group is oxidized into carboxyl group.

  5. The Effect of Different Tea Varieties on Iron Chelation

    Science.gov (United States)

    Truong, S. K.; Karim, R.

    2016-12-01

    The chief objectives of this experiment are to distinguish which type of tea of four variants, pomegranate blackberry green, green, lemon chamomile (herbal), and earl grey (black), are capable of chelating the most iron (III) chloride (FeCl3) through titration. We hypothesized that if each tea variety chelates differing amounts of iron chloride, and if we conduct an experiment in which four different teas are mixed in the same amount of water, iron chloride, and iron chloride indicator EDTA, then the pomegranate blackberry green tea will bind to the most iron due to its large amount of fruit antioxidants. To summarize our methodology, we prepared three solutions of each tea, dissolved with 1 gram of FeCl3 to test three trials per tea variety. The chelation process took place overnight as teas cooled. Six drops of iron chloride indicator added to each solution began the titration. The necessary amount of 0.1M EDTA (ethylenediaminetetraacetic acid) drops required for each solution to turn to a universal amber color from its original dark tone indicates how many free iron molecules were left unbound by the tea solution. After careful analysis of the data, we discovered that blackberry pomegranate green tea possessed the best chelating abilities with 97.48% of FeCl3 adsorbed. Green tea followed with 96.67%. Herbal tea chelated 94.24% of the iron while earl grey absorbed the least amount at 93.43%. From our conclusion, we drew that since blackberry pomegranate green tea contained the highest amount of polyphenols and antioxidants as well as epigallocatechin gallate (EGCG) found in green teas, it was able to chelate the most amount of iron. The substances mentioned in blackberry pomegranate green tea possess the ability to form strong bonds with multiple heavy metals, such as iron (III) chloride atoms. Overall, each variety of tea contains different organic substances. Each of these substances possesses a unique chelating ability, determining how well the type of tea can

  6. REGIONAL SIDEROSIS: A NEW CHALLENGE FOR IRON CHELATION THERAPY

    Directory of Open Access Journals (Sweden)

    Zvi Ioav Cabantchik

    2013-12-01

    Full Text Available The traditional role of iron chelation therapy has been to reduce body iron burden via chelation of excess metal from organs and fluids and its excretion via biliary-fecal and/or urinary routes. In their present use for hemosiderosis, chelation regimens might not be suitable for treating disorders of iron maldistribution, as those are characterized by toxic islands of siderosis appearing in a background of normal or subnormal iron levels (e.g. sideroblastic anemias, neuro- and cardio-siderosis in Friedreich ataxia- and neurosiderosis in Parkinson’s disease. We aimed at clearing local siderosis from aberrant labile metal that promotes oxidative damage, without interfering with essential local functions or with hematological iron-associated properties. For this purpose we introduced a conservative mode of iron chelation based on dual activity based on scavenging labile metal but also redeploying it to cell acceptors or to physiological transferrin. The scavenging and redeployment mode of action was designed both for correcting aberrant iron distribution and also for minimizing/preventing systemic loss of chelated metal. We first examine cell models that recapitulate iron maldistribution and associated dysfunctions identified with Friedreich ataxia and Parkinson’s disease and use them to explore the ability of the double-acting agent deferiprone, an orally active chelator, to mediate iron scavenging and redeployment and thereby causing functional improvement. We subsequently evaluate the concept in translational models of disease and finally assess its therapeutic potential in prospective double-blind pilot clinical trials. We claim that any chelator applied to diseases of regional siderosis, cardiac, neuronal or endocrine ought to preserve both systemic and regional iron levels. The proposed deferiprone-based therapy has provided a paradigm for treating regional types of siderosis without affecting hematological parameters and systemic

  7. In vitro copper-chelating properties of flavonoids.

    Science.gov (United States)

    Ríha, Michal; Karlícková, Jana; Filipský, Tomáš; Jahodár, Ludek; Hrdina, Radomír; Mladenka, Premysl

    2014-10-01

    Copper is an indispensable trace element for human body and the association between a disruption of copper homeostasis and a series of pathological states has been well documented. Flavonoids influence the human health in a complex way and the chelation of transient metal ions indisputably contributes to their mechanism of the action, however, the information about their copper-chelating properties have been sparse. This in vitro study was thus aimed at the detailed examination of flavonoids-copper interactions by two spectrophotometric assays at four (patho)physiologically relevant pH conditions (4.5-7.5), with the emphasis on the structure-activity relationship. The tested flavonoids were compared with the clinically used copper chelator, trientine. Most of the 26 flavonoids chelated copper ions, however, in a variable extent. Only flavones and flavonols were able to form stable complexes with both cupric and cuprous ions. The 3-hydroxy-4-keto group and 5,6,7-trihydroxyl group represented the most efficient chelation sites in flavonols and flavones, respectively, and the 2,3-double bond was essential for the stable copper chelation. Interestingly, the 3´,4´-dihydroxyl (catechol) group was associated only with a weak activity. Although none of the tested flavonoids were more potent than trientine at physiological or slightly acidic conditions, 3-hydroxyflavone, kaempferol and partly baicalein surpassed trientine at acidic conditions. Conclusively, flavonoids containing appropriate structural features were efficient copper chelators and some of them were even more potent than trientine under acidic conditions. Copyright © 2014. Published by Elsevier Inc.

  8. Preclinical Comparative Study of (68)Ga-Labeled DOTA, NOTA, and HBED-CC Chelated Radiotracers for Targeting PSMA.

    Science.gov (United States)

    Ray Banerjee, Sangeeta; Chen, Zhengping; Pullambhatla, Mrudula; Lisok, Ala; Chen, Jian; Mease, Ronnie C; Pomper, Martin G

    2016-06-15

    (68)Ga-labeled, low-molecular-weight imaging agents that target the prostate-specific membrane antigen (PSMA) are increasingly used clinically to detect prostate and other cancers with positron emission tomography (PET). The goal of this study was to compare the pharmacokinetics of three PSMA-targeted radiotracers: (68)Ga-1, using DOTA-monoamide as the chelating agent; (68)Ga-2, containing the macrocyclic chelating agent p-SCN-Bn-NOTA; and (68)Ga-DKFZ-PSMA-11, currently in clinical trials, which uses the acyclic chelating agent, HBED-CC. The PSMA-targeting scaffold for all three agents utilized a similar Glu-urea-Lys-linker construct. Each radiotracer enabled visualization of PSMA+ PC3 PIP tumor, kidney, and urinary bladder as early as 15 min post-injection using small animal PET/computed tomography (PET/CT). (68)Ga-2 demonstrated the fastest rate of clearance from all tissues in this series and displayed higher uptake in PSMA+ PC3 PIP tumor compared to (68)Ga-1 at 1 h post-injection. There was no significant difference in PSMA+ PC3 PIP tumor uptake for the three agents at 2 and 3 h post-injection. (68)Ga-DKFZ-PSMA-11 demonstrated the highest uptake and retention in normal tissues, including kidney, blood, spleen, and salivary glands and PSMA-negative PC3 flu tumors up to 3 h post-injection. In this preclinical evaluation (68)Ga-2 had the most advantageous characteristics for PSMA-targeted PET imaging.

  9. Reduced Toxicity With Intensity Modulated Radiation Therapy (IMRT) for Desmoplastic Small Round Cell Tumor (DSRCT): An Update on the Whole Abdominopelvic Radiation Therapy (WAP-RT) Experience

    Energy Technology Data Exchange (ETDEWEB)

    Desai, Neil B. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Stein, Nicholas F. [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); LaQuaglia, Michael P. [Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Alektiar, Kaled M. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Kushner, Brian H.; Modak, Shakeel; Magnan, Heather M. [Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Goodman, Karyn [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Wolden, Suzanne L., E-mail: woldens@mskcc.org [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)

    2013-01-01

    Purpose: Desmoplastic small round cell tumor (DSRCT) is a rare malignancy typically involving the peritoneum in young men. Whole abdominopelvic radiation therapy (WAP-RT) using conventional 2-dimensional (2D) radiation therapy (RT) is used to address local recurrence but has been limited by toxicity. Our objectives were to assess the benefit of intensity modulated radiation therapy (IMRT) on toxicity and to update the largest series on radiation for DSRCT. Methods and Materials: The records of 31 patients with DSRCT treated with WAP-RT (22 with 2D-RT and 9 with IMRT) between 1992 and 2011 were retrospectively reviewed. All received multi-agent chemotherapy and maximal surgical debulking followed by 30 Gy of WAP-RT. A further focal boost of 12 to 24 Gy was used in 12 cases. Boost RT and autologous stem cell transplantation were nearly exclusive to patients treated with 2D-RT. Toxicities were assessed with the Common Terminology Criteria for Adverse Events. Dosimetric analysis compared IMRT and simulated 2D-RT dose distributions. Results: Of 31 patients, 30 completed WAP-RT, with a median follow-up after RT of 19 months. Acute toxicity was reduced with IMRT versus 2D-RT: P=.04 for gastrointestinal toxicity of grade 2 or higher (33% vs 77%); P=.02 for grade 4 hematologic toxicity (33% vs 86%); P=.01 for rates of granulocyte colony-stimulating factor; and P=.04 for rates of platelet transfusion. Post treatment red blood cell and platelet transfusion rates were also reduced (P=.01). IMRT improved target homogeneity ([D05-D95]/D05 of 21% vs 46%) and resulted in a 21% mean bone dose reduction. Small bowel obstruction was the most common late toxicity (23% overall). Updated 3-year overall survival and progression-free survival rates were 50% and 24%, respectively. Overall survival was associated with distant metastasis at diagnosis on multivariate analysis. Most failures remained intraperitoneal (88%). Conclusions: IMRT for consolidative WAP-RT in DSRCT improves

  10. Effects of zinc supplementation and zinc chelation on in vitro β-cell function in INS-1E cells

    DEFF Research Database (Denmark)

    Nygaard, Sanne Bjørn; Larsen, Agnete; Knuhtsen, Astrid;

    2014-01-01

    BACKGROUND: Zinc is essential for the activities of pancreatic β-cells, especially insulin storage and secretion. Insulin secretion leads to co-release of zinc which contributes to the paracrine communication in the pancreatic islets. Zinc-transporting proteins (zinc-regulated transporter, iron......-regulated transporter-like proteins [ZIPs] and zinc transporters [ZnTs]) and metal-buffering proteins (metallothioneins, MTs) tightly regulate intracellular zinc homeostasis. The present study investigated how modulation of cellular zinc availability affects β-cell function using INS-1E cells. RESULTS: Using INS-1E...... cells, we found that zinc supplementation and zinc chelation had significant effects on insulin content and insulin secretion. Supplemental zinc within the physiological concentration range induced insulin secretion. Insulin content was reduced by zinc chelation with N,N,N',N-tektrakis(2-pyridylmethyl...

  11. Three plutonium chelation cases at Los Alamos National Laboratory.

    Science.gov (United States)

    Bertelli, Luiz; Waters, Tom L; Miller, Guthrie; Gadd, Milan S; Eaton, Michelle C; Guilmette, Raymond A

    2010-10-01

    Chelation treatments with dosages of 1 g of either Ca-DTPA (Trisodium calcium diethylenetriaminepentaacetate) or Zn-DTPA (Trisodium zinc diethylenetriaminepentaacetate) were undertaken at Los Alamos Occupational Medicine in three recent cases of wounds contaminated with metallic forms of Pu. All cases were finger punctures, and each chelation injection contained the same dosage of DTPA. One subject was treated only once, while the other two received multiple injections. Additional measurements of wound, urine, and excised tissues were taken for one of the cases. These additional measurements served to improve the estimate of the efficacy of the chelation treatment. The efficacy of the chelation treatments was compared for the three cases. Results were interpreted using models, and useful heuristics for estimating the intake amount and final committed doses were presented. In spite of significant differences in the treatments and in the estimated intake amounts and doses amongst the three cases, a difference of four orders of magnitude was observed between the highest excretion data point and the values observed at about 100 d for all cases. Differences between efficacies of Zn-DTPA and Ca-DTPA could not be observed in this study. An efficacy factor of about 50 was observed for a chelation treatment, which was administered at about 1.5 y after the incident, though the corresponding averted dose was very small (LA-UR 09-02934).

  12. Supercritical Fluid Extraction of Metal Chelate: A Review.

    Science.gov (United States)

    Ding, Xin; Liu, Qinli; Hou, Xiongpo; Fang, Tao

    2017-03-04

    Supercritical fluid extraction (SFE), as a new green extraction technology, has been used in extracting various metal species. The solubilities of chelating agents and corresponding metal chelates are the key factors which influence the efficiency of SFE. Other main properties of them such as stability and selectivity are also reviewed. The extraction mechanisms of mainly used chelating agents are explained by typical examples in this paper. This is the important aspect of SFE of metal ions. Moreover, the extraction efficiencies of metal species also depend on other factors such as temperature, pressure, extraction time and matrix effect. The two main complexation methods namely in-situ and on-line chelating SFE are described in detail. As an efficient chelating agent, tributyl phosphate-nitric acid (TBP-HNO3) complex attracts much attention. The SFE of metal ions, lanthanides and actinides as well as organometallic compounds are also summarized. With the proper selection of ligands, high efficient extraction of metal species can be obtained. As an efficient sample analysis method, supercritical fluid chromatography (SFC) is introduced in this paper. Recently, the extraction method combining ionic liquids (ILs) with supercritical fluid has been becoming a novel technology for treating metal ions. The kinetics related to SFE of metal species is discussed with some specific examples.

  13. Ab initio coordination chemistry for nickel chelation motifs.

    Science.gov (United States)

    Sudan, R Jesu Jaya; Kumari, J Lesitha Jeeva; Sudandiradoss, C

    2015-01-01

    Chelation therapy is one of the most appreciated methods in the treatment of metal induced disease predisposition. Coordination chemistry provides a way to understand metal association in biological structures. In this work we have implemented coordination chemistry to study nickel coordination due to its high impact in industrial usage and thereby health consequences. This paper reports the analysis of nickel coordination from a large dataset of nickel bound structures and sequences. Coordination patterns predicted from the structures are reported in terms of donors, chelate length, coordination number, chelate geometry, structural fold and architecture. The analysis revealed histidine as the most favored residue in nickel coordination. The most common chelates identified were histidine based namely HHH, HDH, HEH and HH spaced at specific intervals. Though a maximum coordination number of 8 was observed, the presence of a single protein donor was noted to be mandatory in nickel coordination. The coordination pattern did not reveal any specific fold, nevertheless we report preferable residue spacing for specific structural architecture. In contrast, the analysis of nickel binding proteins from bacterial and archeal species revealed no common coordination patterns. Nickel binding sequence motifs were noted to be organism specific and protein class specific. As a result we identified about 13 signatures derived from 13 classes of nickel binding proteins. The specifications on nickel coordination presented in this paper will prove beneficial for developing better chelation strategies.

  14. Ab initio coordination chemistry for nickel chelation motifs.

    Directory of Open Access Journals (Sweden)

    R Jesu Jaya Sudan

    Full Text Available Chelation therapy is one of the most appreciated methods in the treatment of metal induced disease predisposition. Coordination chemistry provides a way to understand metal association in biological structures. In this work we have implemented coordination chemistry to study nickel coordination due to its high impact in industrial usage and thereby health consequences. This paper reports the analysis of nickel coordination from a large dataset of nickel bound structures and sequences. Coordination patterns predicted from the structures are reported in terms of donors, chelate length, coordination number, chelate geometry, structural fold and architecture. The analysis revealed histidine as the most favored residue in nickel coordination. The most common chelates identified were histidine based namely HHH, HDH, HEH and HH spaced at specific intervals. Though a maximum coordination number of 8 was observed, the presence of a single protein donor was noted to be mandatory in nickel coordination. The coordination pattern did not reveal any specific fold, nevertheless we report preferable residue spacing for specific structural architecture. In contrast, the analysis of nickel binding proteins from bacterial and archeal species revealed no common coordination patterns. Nickel binding sequence motifs were noted to be organism specific and protein class specific. As a result we identified about 13 signatures derived from 13 classes of nickel binding proteins. The specifications on nickel coordination presented in this paper will prove beneficial for developing better chelation strategies.

  15. Tasquinimod (ABR-215050, a quinoline-3-carboxamide anti-angiogenic agent, modulates the expression of thrombospondin-1 in human prostate tumors

    Directory of Open Access Journals (Sweden)

    Isaacs John T

    2010-05-01

    Full Text Available Abstract Background The orally active quinoline-3-carboxamide tasquinimod [ABR-215050; CAS number 254964-60-8, which currently is in a phase II-clinical trial in patients against metastatic prostate cancer, exhibits anti-tumor activity via inhibition of tumor angiogenesis in human and rodent tumors. To further explore the mode of action of tasquinimod, in vitro and in vivo experiments with gene microarray analysis were performed using LNCaP prostate tumor cells. The array data were validated by real-time semiquantitative reversed transcriptase polymerase chain reaction (sqRT-PCR and protein expression techniques. Results One of the most significant differentially expressed genes both in vitro and in vivo after exposure to tasquinimod, was thrombospondin-1 (TSP1. The up-regulation of TSP1 mRNA in LNCaP tumor cells both in vitro and in vivo correlated with an increased expression and extra cellular secretion of TSP1 protein. When nude mice bearing CWR-22RH human prostate tumors were treated with oral tasquinimod, there was a profound growth inhibition, associated with an up-regulation of TSP1 and a down- regulation of HIF-1 alpha protein, androgen receptor protein (AR and glucose transporter-1 protein within the tumor tissue. Changes in TSP1 expression were paralleled by an anti-angiogenic response, as documented by decreased or unchanged tumor tissue levels of VEGF (a HIF-1 alpha down stream target in the tumors from tasquinimod treated mice. Conclusions We conclude that tasquinimod-induced up-regulation of TSP1 is part of a mechanism involving down-regulation of HIF1α and VEGF, which in turn leads to reduced angiogenesis via inhibition of the "angiogenic switch", that could explain tasquinimods therapeutic potential.

  16. Preparation and study of new poly-8-hydroxyquinoline chelators for an anti-Alzheimer strategy.

    Science.gov (United States)

    Deraeve, Céline; Boldron, Christophe; Maraval, Alexandrine; Mazarguil, Honoré; Gornitzka, Heinz; Vendier, Laure; Pitié, Marguerite; Meunier, Bernard

    2008-01-01

    Fourteen different ligands have been synthesized with two covalently linked 8-hydroxyquinoline motifs that favor metal complexation. These bis-chelators include different bridges at the C2 positions and different substituents to modulate their physicochemical properties. They can form metal complexes in a ratio of one ligand per metal ion with Cu II and Zn II, two metal ions involved in the formation of amyloid aggregates of the toxic Abeta-peptides in the Alzheimer disease. The apparent affinity of all bis-8-hydroxyquinoline ligands for Cu II and Zn II are similar with logK Cu II approximately 16 and logK Zn II approximately 13 and are 10,000 times more efficient than for the corresponding 8-hydroxyquinoline monomers. Their strong chelating capacities allow them to inhibit more efficiently than the corresponding monomers the precipitation of Abeta-peptides induced by Cu II and Zn II and also to inhibit the toxic formation of H2O2 due to copper complexes of Abeta. The best results were obtained with a one-atom linker between the two quinoline units. X-ray analyses of single-crystals of Cu II, Zn II or Ni II complexes of 2,2'-(2,2-propanediyl)-bis(8-hydroxyquinoline), including a one-atom linker, showed that all heteroatoms of the bis-8-hydroxyquinoline ligand chelate the same metal ion in a distorted square-planar geometry. The Cu II and Zn II complexes include a fifth axial ligand and are pentacoordinated.

  17. ATOX1 gene silencing increases susceptibility to anticancer therapy based on copper ionophores or chelating drugs.

    Science.gov (United States)

    Barresi, Vincenza; Spampinato, Giorgia; Musso, Nicolò; Trovato Salinaro, Angela; Rizzarelli, Enrico; Condorelli, Daniele Filippo

    2016-03-01

    Copper is a catalytic cofactor required for the normal function of many enzymes involved in fundamental biological processes but highly cytotoxic when in excess. Therefore its homeostasis and distribution is strictly regulated by a network of transporters and intracellular chaperones. ATOX1 (antioxidant protein 1) is a copper chaperone that plays a role in copper homeostasis by binding and transporting cytosolic copper to ATPase proteins in the trans-Golgi network. In the present study the Caco-2 cell line, a colon carcinoma cell line, was used as an in vitro model to evaluate if ATOX1 deficiency could affect sensitivity to experimentally induced copper dyshomeostasis. Silencing of ATOX1 increased toxicity of a short treatment with a high concentration of Cu(2+). Copper ionophores, such as 5-chloro-8-hydroxyquinoline, induced a copper-dependent cell toxicity which was significantly potentiated after ATOX1 silencing. The copper chelator TPEN (N,N,N',N'-tetrakis (2-pyridylmethyl) ethylenediamine) produced a form of cell toxicity that was reversed by the addition of Cu(2+). ATOX1 silencing increased Caco-2 cell sensitivity to TPEN toxicity. Our results suggest the possibility of a therapy with copper-chelating or ionophore drugs in subtypes of tumors showing specific alterations in ATOX1 expression.

  18. Albumin microspheres labeled with Ga-67 by chelation: concise communication.

    Science.gov (United States)

    Hnatowich, D J; Schlegel, P

    1981-07-01

    Albumin microspheres have been synthesized eith EDTA and DTPA chelating groups covalently bound to their surface. The microspheres may be labeled with Ga-67 at high yield (97 +/- 2%) by transcomplexation from a 0.1 M Ga-67 acetate solution. With EDTA microspheres the resulting label dissociates only slightly after no detectable dissociation over this period. By contrast, microspheres without chelating groups lose their label virtually completely under these conditions. Following intravenous administration of sized Ga-67 DTPA microspheres in mice, about (84 +/- 16)% of the activity localizes in the lungs at 5 min, with (60 +/- 7)% remaining after 2 hr. Since labeling is by chelation, the microspheres may also be tagged with other metallic radionuclides

  19. Synthesis and Characteristics of A Novel Heavy Metal Ions Chelator

    Institute of Scientific and Technical Information of China (English)

    LIU Zhuannian; SONG Yejing; HAN Xiaogang

    2012-01-01

    Polyacrylamide-urea-sulfanilamide(PUS) was prepared as a novel heavy metal ions chelator and successfully used to simultaneously remove heavy metals from wastewater effluents.The effects of reaction parameters (sodium hydroxide,material ratio,temprature and contact time) were monitored to specify the best synthesis conditions.PUS was chemically characterized by means of infrared spectroscopy (FTIR) and ultraviolet-visible (UV-Vis).The simultaneous chelation performance of PUS towards selected heavy metals ions,Ni2+,Cu2+,Pb2+,Zn2+,Cd2+ was discussed,showing that Ni2+,Cu2+,Pb2+,Zn2+ could be better chelated.It is indicated that the synthesized PUS is a potential remediation material when used for the treatment of wastewater containing metal ions.

  20. Preparation and Properties of Iminodiacetic Acid Chelate Fiber

    Directory of Open Access Journals (Sweden)

    QIAN Jin-xin

    2016-07-01

    Full Text Available The iminodiacetic acid chelate fiber(IDACF which has a property of selective adsorption, was fabricated by amination and carboxylation using chloramethylated polypropylene grafted styrene fiber as raw material. Orthogonal experiment was adopted to study the effect of temperature, time, liquor ratio and the amount of chloroacetic acid on carboxylation reaction. The maximum adsorption capacity of iminodiacetic acid chelate fiber to Cu2+ is 65.54mg·g-1, which is 10.52 times of that of Fe3+. Elementary analysis(EA, Fourier transform infrared spectrum(FT-IR, scanning electron microscopy(SEM and thermogrametry(TG were used to characterize the structure and the properties of the iminodiacetic acid chelate fiber. The results show that iminodiacetic acid has been transformed to the raw fiber successfully after amination and carboxymethylation, and IDACF has good thermal stability.

  1. Inositol hexa-phosphate: a potential chelating agent for uranium

    Energy Technology Data Exchange (ETDEWEB)

    Cebrian, D.; Tapia, A.; Real, A.; Morcillo, M.A. [Radiobiology Laboratory, Radiation Dosimetry Unit, Department of Environment, CIEMAT, Avda Complutense 22, 28040 Madrid (Spain)

    2007-07-01

    Chelation therapy is an optimal method to reduce the radionuclide-related risks. In the case of uranium incorporation, the treatment of choice is so far i.v infusion of a 1.4% sodium bicarbonate solution, but the efficacy has been proved to be not very high. In this study, we examine the efficacy of some substances: bicarbonate, citrate, diethylenetriamine pentaacetic acid (DTPA), ethidronate (EHBP) and inositol hexa-phosphate (phytic acid) to chelate uranium using a test developed by Braun et al. Different concentrations of phytic acid, an abundant component of plant seeds that is widely distributed in animal cells and tissues in substantial levels, were tested and compared to the same concentrations of sodium citrate, bicarbonate, EHBP and DTPA. The results showed a strong affinity of inositol hexa-phosphate for uranium, suggesting that it could be an effective chelating agent for uranium in vivo. (authors)

  2. Chelation therapy in intoxications with mercury, lead and copper

    DEFF Research Database (Denmark)

    Cao, yang; Skaug, Marit Aralt; Andersen, Ole;

    2015-01-01

    mobilize deposits of mercury as well as of lead into the urine. These drugs can be administered orally and have relatively low toxicity compared to the classical antidote dimercaptopropanol (BAL). d-Penicillamine has been widely used in copper overload, although 2,3-dimercaptosuccinic acid......In the present review we provide an update of the appropriate use of chelating agents in the treatment of intoxications with compounds of mercury, lead and copper. The relatively new chelators meso-2,3-dimercaptosuccinic acid (DMSA) and 2,3-dimercapto-propanesulphonate (DMPS) can effectively...... or tetrathiomolybdate may be more suitable alternatives today. In copper-toxicity, a free radical scavenger might be recommended as adjuvant to the chelator therapy...

  3. Chelation of heavy metals by potassium butyl dithiophosphate

    Institute of Scientific and Technical Information of China (English)

    Ying Xu; Zhigang Xie; Lu Xue

    2011-01-01

    Potassium butyl dithiophosphate (PBD) was developed and introduced as a new chelating agent for heavy metal removal.The synthesized PBD were characterized by IR and NMR.The effects of pH, chelating agent dosage, and other heavy metal ions on the performance of PBD in Cd2+ removal from water are investigated.Experimental results showed that the chelating agent could be used to treat acidic heavy metal wastewater.The Cd2+ removal was not affected by solution pH value within the range of 2 to 6.The Cd2+ removal rate could reach over 99%.Therefore, the deficiency of the precipitation process using hydroxide under alkaline condition can be overcome.Without the need for pH adjustment, the method could save on costs.If Cd2+ co-exists with Pb2+ and Cu2+, the affinity of the chelating agent with these three heavy metal ions was in the order of: Cu2+ > Pb2+ > Cd2+.Through PBD chelating precipitation,all the contents of Pb2+, Cd2+, and Cu2+ in wastewater met the standard levels through a one-step treatment.The one-step treatment process was superior to the process (sectional treatment is required) of precipitation with hydroxide.When the pH was between 3 and 11, the amount of leached chelated Cd2+ was much lower than that obtained by precipitation with hydroxide.Therefore, the risk of environmental pollution could be further reduced.

  4. Efficacy of chelation therapy to remove aluminium intoxication.

    Science.gov (United States)

    Fulgenzi, Alessandro; De Giuseppe, Rachele; Bamonti, Fabrizia; Vietti, Daniele; Ferrero, Maria Elena

    2015-11-01

    There is a distinct correlation between aluminium (Al) intoxication and neurodegenerative diseases (ND). We demonstrated how patients affected by ND showing Al intoxication benefit from short-term treatment with calcium disodium ethylene diamine tetraacetic acid (EDTA) (chelation therapy). Such therapy further improved through daily treatment with the antioxidant Cellfood. In the present study we examined the efficacy of long-term treatment, using both EDTA and Cellfood. Slow intravenous treatment with the chelating agent EDTA (2 g/10 mL diluted in 500 mL physiological saline administered in 2 h) (chelation test) removed Al, which was detected (using inductively coupled plasma mass spectrometry) in urine samples collected from patients over 12 h. Patients that revealed Al intoxication (expressed in μg per g creatinine) underwent EDTA chelation therapy once a week for ten weeks, then once every two weeks for a further six or twelve months. At the end of treatment (a total of 22 or 34 chelation therapies, respectively), associated with daily assumption of Cellfood, Al levels in the urine samples were analysed. In addition, the following blood parameters were determined: homocysteine, vitamin B12, and folate, as well as the oxidative status e.g. reactive oxygen species (ROS), total antioxidant capacity (TAC), oxidized LDL (oxLDL), and glutathione. Our results showed that Al intoxication reduced significantly following EDTA and Cellfood treatment, and clinical symptoms improved. After treatment, ROS, oxLDL, and homocysteine decreased significantly, whereas vitamin B12, folate and TAC improved significantly. In conclusion, our data show the efficacy of chelation therapy associated with Cellfood in subjects affected by Al intoxication who have developed ND.

  5. Heavy metal displacement in chelate-irrigated soil during phytoremediation

    Science.gov (United States)

    Madrid, F.; Liphadzi, M. S.; Kirkham, M. B.

    2003-03-01

    Heavy metals in wastewater sewage sludge (biosolids), applied to land, contaminate soils. Phytoremediation, the use of plants to clean up toxic heavy metals, might remove them. Chelating agents are added to soil to solubilize the metals for enhanced phytoextraction. Yet no studies follow the displacement and leaching of heavy metals in soil with and without roots following solubilization with chelates. The objective of this work was to determine the mobility of heavy metals in biosolids applied to the surface of soil columns (76 cm long; 17 cm diam.) with or without plants (barley; Hordeum vulgare L.). Three weeks after barley was planted, all columns were irrigated with the disodium salt of the chelating agent, EDTA (ethylenediamine tetraacetic acid) (0.5 g/kg soil). Drainage water, soil, and plants were analyzed for heavy metals (Cd, Cu, Fe, Mn, Ni, Pb, Zn). Total concentrations of the heavy metals in all columns at the end of the experiment generally were lower in the top 30 cm of soil with EDTA than without EDTA. The chelate increased concentrations of heavy metals in shoots. With or without plants, the EDTA mobilized Cd, Fe, Mn, Ni, Pb, and Zn, which leached to drainage water. Drainage water from columns without EDTA had concentrations of these heavy metals below detection limits. Only Cu did not leach in the presence of EDTA. Even though roots retarded the movement of Cd, Fe, Mn, Ni, Pb, and Zn through the EDTA-treated soil from 1 d (Cd) to 5 d (Fe), the drainage water from columns with EDTA had concentrations of Cd, Fe, Mn, and Pb that exceeded drinking water standards by 1.3, 500, 620, and 8.6 times, respectively. Because the chelate rendered Cd, Fe, Mn, Ni, Pb, and Zn mobile, it is suggested that the theory for leaching of soluble salts, put forward by Nielsen and associates in 1965, could be applied to control movement of the heavy metals for maximum uptake during chelate-assisted phytoremediation.

  6. Modulation of tumor fatty acids, through overexpression or loss of thyroid hormone responsive protein spot 14 is associated with altered growth and metastasis

    OpenAIRE

    Wellberg, Elizabeth A.; Michael C Rudolph; Lewis, Andrew S.; Padilla-Just, Nuria; Jedlicka, Paul; Anderson, Steven M.

    2014-01-01

    Introduction Spot14 (S14), encoded by the THRSP gene, regulates de novo fatty acid synthesis in the liver, adipose, and lactating mammary gland. We recently showed that S14 stimulated fatty acid synthase (FASN) activity in vitro, and increased the synthesis of fatty acids in mammary epithelial cells in vivo. Elevated de novo fatty acid synthesis is a distinguishing feature of many solid tumors compared with adjacent normal tissue. This characteristic is thought to be acquired during tumor pro...

  7. A novel role for junctional adhesion molecule-A in tumor proliferation: modulation by an anti-JAM-A monoclonal antibody.

    Science.gov (United States)

    Goetsch, Liliane; Haeuw, Jean-François; Beau-Larvor, Charlotte; Gonzalez, Alexandra; Zanna, Laurence; Malissard, Martine; Lepecquet, Anne-Marie; Robert, Alain; Bailly, Christian; Broussas, Matthieu; Corvaia, Nathalie

    2013-03-15

    To identify new potential targets in oncology, functional approaches were developed using tumor cells as immunogens to select monoclonal antibodies targeting membrane receptors involved in cell proliferation. For that purpose cancer cells were injected into mice and resulting hybridomas were screened for their ability to inhibit cell proliferation in vitro. Based on this functional approach coupled to proteomic analysis, a monoclonal antibody specifically recognizing the human junctional adhesion molecule-A (JAM-A) was defined. Interestingly, compared to both normal and tumor tissues, we observed that JAM-A was mainly overexpressed on breast, lung and kidney tumor tissues. In vivo experiments demonstrated that injections of anti-JAM-A antibody resulted in a significant tumor growth inhibition of xenograft human tumors. Treatment with monoclonal antibody induced a decrease of the Ki67 expression and downregulated JAM-A levels. All together, our results show for the first time that JAM-A can interfere with tumor proliferation and suggest that JAM-A is a potential novel target in oncology. The results also demonstrate that a functional approach coupled to a robust proteomic analysis can be successful to identify new antibody target molecules that lead to promising new antibody-based therapies against cancers.

  8. Enhancement of 5-aminolevulinic acid-based fluorescence detection of side population-defined glioma stem cells by iron chelation

    Science.gov (United States)

    Wang, Wenqian; Tabu, Kouichi; Hagiya, Yuichiro; Sugiyama, Yuta; Kokubu, Yasuhiro; Murota, Yoshitaka; Ogura, Shun-ichiro; Taga, Tetsuya

    2017-01-01

    Cancer stem cells (CSCs) are dominantly responsible for tumor progression and chemo/radio-resistance, resulting in tumor recurrence. 5-aminolevulinic acid (ALA) is metabolized to fluorescent protoporphyrin IX (PpIX) specifically in tumor cells, and therefore clinically used as a reagent for photodynamic diagnosis (PDD) and therapy (PDT) of cancers including gliomas. However, it remains to be clarified whether this method could be effective for CSC detection. Here, using flow cytometry-based analysis, we show that side population (SP)-defined C6 glioma CSCs (GSCs) displayed much less 5-ALA-derived PpIX fluorescence than non-GSCs. Among the C6 GSCs, cells with ultralow PpIX fluorescence exhibited dramatically higher tumorigenicity when transplanted into the immune-deficient mouse brain. We further demonstrated that the low PpIX accumulation in the C6 GSCs was enhanced by deferoxamine (DFO)-mediated iron chelation, not by reserpine-mediated inhibition of PpIX-effluxing ABCG2. Finally, we found that the expression level of the gene for heme oxygenase-1 (HO-1), a heme degradation enzyme, was high in C6 GSCs, which was further up-regulated when treated with 5-ALA. Our results provide important new insights into 5-ALA-based PDD of gliomas, particularly photodetection of SP-defined GSCs by iron chelation based on their ALA-PpIX-Heme metabolism. PMID:28169355

  9. Dosimetric consequences of tumor volume changes after kilovoltage cone-beam computed tomography for non-operative lung cancer during adaptive intensity-modulated radiotherapy or fractionated stereotactic radiotherapy

    Institute of Scientific and Technical Information of China (English)

    Jian Hu; Ximing Xu; Guangjin Yuan; Wei Ge; Liming Xu; Aihua Zhang; Junjian Deng

    2015-01-01

    Objective The aim of this study was to investigate tumor volume changes with kilovoltage cone-beam computed tomography (kV-CBCT) and their dosimetric consequences for non-operative lung cancer during intensity-modulated radiotherapy (IMRT) or fractionated stereotactic radiotherapy. Methods Eighteen patients with non-operative lung cancer who received IMRT consisting of 1.8-2.2 Gy/fraction and five fractions per week or stereotactic radiotherapy with 5-8 Gy/fraction and three fractions a week were studied. kV-CBCT was performed once per week during IMRT and at every fraction during stereotactic radiotherapy. The gross tumor volume (GTV) was contoured on the kV-CBCT images, and adaptive treatment plans were created using merged kV-CBCT and primary planning computed tomogra-phy image sets. Tumor volume changes and dosimetric parameters, including the minimum dose to 95%(D95) or 1% (D1) of the planning target volume (PTV), mean lung dose (MLD), and volume of lung tissue that received more than 5 (V5), 10 (V10), 20 (V20), and 30 (V30) Gy were retrospectively analyzed. Results The average maximum change in GTV observed during IMRT or fractionated stereotactic radio-therapy was -25.85% (range, -13.09% --56.76%). The D95 and D1 of PTV for the adaptive treatment plans in all patients were not significantly different from those for the initial or former adaptive treatment plans. In patients with tumor volume changes of >20% in the third or fourth week of treatment during IMRT, adap-tive treatment plans offered clinically meaningful decreases in MLD and V5, V10, V20, and V30; however, in patients with tumor volume changes of 20% in the third or fourth week of treatment.

  10. Encouraging Early Clinical Outcomes With Helical Tomotherapy-Based Image-Guided Intensity-Modulated Radiation Therapy for Residual, Recurrent, and/or Progressive Benign/Low-Grade Intracranial Tumors: A Comprehensive Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Tejpal, E-mail: tejpalgupta@rediffmail.com [Department of Radiation Oncology, ACTREC/TMH, Tata Memorial Centre, Kharghar, Navi Mumbai (India); Wadasadawala, Tabassum; Master, Zubin; Phurailatpam, Reena; Pai-Shetty, Rajershi; Jalali, Rakesh [Department of Radiation Oncology, ACTREC/TMH, Tata Memorial Centre, Kharghar, Navi Mumbai (India)

    2012-02-01

    Purpose: To report early clinical outcomes of helical tomotherapy (HT)-based image-guided intensity-modulated radiation therapy (IMRT) in brain tumors of varying shape, size, and location. Materials and Methods: Patients with residual, recurrent, and/or progressive low-grade intracranial and skull-base tumors were treated on a prospective protocol of HT-based IMRT and followed clinicoradiologically. Standardized metrics were used for plan evaluation and outcome analysis. Results: Twenty-seven patients with 30 lesions were treated to a median radiotherapy dose of 54 Gy in 30 fractions. All HT plans resulted in excellent target volume coverage with steep dose-gradients. The mean (standard deviation) dose homogeneity index and conformity index was 0.07 (0.05) and 0.71 (0.08) respectively. At first response assessment, 20 of 30 lesions were stable, whereas 9 showed partial regression. One patient with a recurrent clival chordoma though neurologically stable showed imaging-defined progression, whereas another patient with stable disease on serial imaging had sustained neurologic worsening. With a median follow-up of 19 months (interquartile range, 11-26 months), the 2-year clinicoradiological progression-free survival and overall survival was 93.3% and 100% respectively. Conclusions: Careful selection of radiotherapy technique is warranted for benign/low-grade brain tumors to achieve durable local control with minimum long-term morbidity. Large or complex-shaped tumors benefit most from IMRT. Our early clinical experience of HT-based IMRT for brain tumors has been encouraging.

  11. HIGD1A Regulates Oxygen Consumption, ROS Production, and AMPK Activity during Glucose Deprivation to Modulate Cell Survival and Tumor Growth

    Directory of Open Access Journals (Sweden)

    Kurosh Ameri

    2015-02-01

    Full Text Available Hypoxia-inducible gene domain family member 1A (HIGD1A is a survival factor induced by hypoxia-inducible factor 1 (HIF-1. HIF-1 regulates many responses to oxygen deprivation, but viable cells within hypoxic perinecrotic solid tumor regions frequently lack HIF-1α. HIGD1A is induced in these HIF-deficient extreme environments and interacts with the mitochondrial electron transport chain to repress oxygen consumption, enhance AMPK activity, and lower cellular ROS levels. Importantly, HIGD1A decreases tumor growth but promotes tumor cell survival in vivo. The human Higd1a gene is located on chromosome 3p22.1, where many tumor suppressor genes reside. Consistent with this, the Higd1a gene promoter is differentially methylated in human cancers, preventing its hypoxic induction. However, when hypoxic tumor cells are confronted with glucose deprivation, DNA methyltransferase activity is inhibited, enabling HIGD1A expression, metabolic adaptation, and possible dormancy induction. Our findings therefore reveal important new roles for this family of mitochondrial proteins in cancer biology.

  12. Biodegradable gadolinium-chelated cationic poly(urethane amide) copolymers for gene transfection and magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Xiaolong [Department of Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065 (China); Wang, Gangmin [Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040 (China); Shi, Ting [The Institute for Translational Nanomedicine, Shanghai East Hospital, Institute for Biomedical Engineering and Nanoscience, Tongji University School of Medicine, Shanghai 200092 (China); Shao, Zhihong [Department of Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065 (China); Zhao, Peng; Shi, Donglu [The Institute for Translational Nanomedicine, Shanghai East Hospital, Institute for Biomedical Engineering and Nanoscience, Tongji University School of Medicine, Shanghai 200092 (China); Ren, Jie [Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804 (China); Lin, Chao, E-mail: chaolin@tongji.edu.cn [The Institute for Translational Nanomedicine, Shanghai East Hospital, Institute for Biomedical Engineering and Nanoscience, Tongji University School of Medicine, Shanghai 200092 (China); Wang, Peijun, E-mail: tjpjwang@sina.com [Department of Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065 (China)

    2016-08-01

    Theranostic nano-polyplexes containing gene and imaging agents hold a great promise for tumor diagnosis and therapy. In this work, we develop a group of new gadolinium (Gd)-chelated cationic poly(urethane amide)s for gene delivery and T{sub 1}-weighted magnetic resonance (MR) imaging. Cationic poly(urethane amide)s (denoted as CPUAs) having multiple disulfide bonds, urethane and amide linkages were synthesized by stepwise polycondensation reaction between 1,4-bis(3-aminopropyl)piperazine and a mixture of di(4-nitrophenyl)-2, 2′-dithiodiethanocarbonate (DTDE-PNC) and diethylenetriaminepentaacetic acid (DTPA) dianhydride at varied molar ratios. Then, Gd-chelated CPUAs (denoted as GdCPUAs) were produced by chelating Gd(III) ions with DTPA residues of CPUAs. These GdCPUAs could condense gene into nanosized and positively-charged polyplexes in a physiological condition and, however, liberated gene in an intracellular reductive environment. In vitro transfection experiments revealed that the GdCPUA at a DTDE-PNC/DTPA residue molar ratio of 85/15 induced the highest transfection efficiency in different cancer cells. This efficiency was higher than that yielded with 25 kDa branched polyethylenimine as a positive control. GdCPUAs and their polyplexes exhibited low cytotoxicity when an optimal transfection activity was detected. Moreover, GdCPUAs may serve as contrast agents for T{sub 1}-weighted magnetic resonance imaging. The results of this work indicate that biodegradable Gd-chelated cationic poly(urethane amide) copolymers have high potential for tumor theranostics. - Highlights: • Novel cationic gadolinium-chelated poly(urethane amide)s (GdCPUAs) are prepared. • GdCPUAs can induce a high transfection efficacy in different cancer cells. • GdCPUAs reveal good cyto-compatibility against cancer cells. • GdCPUAs may be applied as T{sub 1}-contrast agents for magnetic resonance imaging. • GdCPUAs hold high potential for cancer theranostics.

  13. Iron chelator daphnetin against Pneumocystis carinii in vitro

    Institute of Scientific and Technical Information of China (English)

    叶彬; 郑玉强; 武卫华; 张静

    2004-01-01

    Background Although there are several drugs and drug combinations for the treatment of Pneumocystis carinii (P. carinii) pneumonia, all drugs have the toxicity as well as low efficacy. Iron chelators have been proposed as a source of new drugs for combating these infections. We hypothesized that iron chelators would suppress the growth of P. carinii by deprivation of the nutritional iron required for growth. In this study, a short-term axenic culture system of P. carinii was established. Daphnetin (7,8-dihydroxycoumarin), a known iron chelator, was demonstrated to exhibit in vitro activity against P. carinii in this system. Methods P. carinii organisms were obtained from the lungs of immunosuppressed rats. The culture system consisted of Iscove Dulbecco Eagle's Minimum Essential Medium (IMDM), supplemented with S-adenosyl-L-methionine, N-acetylglucosamine, putrescine, L-cysteine, L-glutamine, 2-mercaptoethanol, and fetal bovine serum, and was maintained at 37℃, in 5% CO2, 95% O2, at the optimal pH of 8.0. The culture system was used to assess the effect of daphnetin on the proliferation of P. carinii organisms. The ultrastructures of the treated organisms were observed by transmission electron microscopy.Conclusions Daphnetin can suppress the growth of P. carinii in vitro. The efficacy of daphnetin in suppressing the the growth of P. carinii in vitro is related to its ability to chelate iron.

  14. Chelation of aluminum by combining deferasirox and deferiprone in rats.

    Science.gov (United States)

    Saljooghi, Amir Shokooh

    2012-09-01

    The hypothesis that two known chelators deferasirox and deferiprone (L1) might be more efficient as combined treatment than as single therapies in removing aluminum from the body was tested in a new acute rat model. Seven-week-old male Wistar rats received chelators: deferasirox (orally [p.o.]), L1 (p.o.) or deferasirox + L1 as 100 or 200 mg/kg dose half an hour after a single intraperitoneal administration of 6 mg Al/kg body weight in the form of chloride. Serum aluminum concentration, urinary aluminum and iron excretions were determined by graphite furnace atomic absorption spectrometry. Both chelators were effective only at the higher dose level. While deferasirox was more effective than L1 in enhancing urinary aluminum excretion, L1 was more effective than deferasirox in enhancing urinary iron excretion. In the combined treatment group, deferasirox did not increase the L1 effect on aluminum and L1 did not increase the effect of deferasirox on iron elimination. Our results support the usefulness of this animal model for preliminary in vivo testing of aluminum chelators. Urinary values were more useful due to the high variability of serum results.

  15. Laccase Immobilization by Chelated Metal Ion Coordination Chemistry

    Directory of Open Access Journals (Sweden)

    Qingqing Wang

    2014-09-01

    Full Text Available In this work, amidoxime polyacrylonitrile (AOPAN nanofibrous membrane was prepared by a reaction between PAN nanofibers and hydroxylamine hydrochloride. The AOPAN nanofibrous membranes were used for four metal ions (Fe3+, Cu2+, Ni2+, Cd2+ chelation under different conditions. Further, the competition of different metal ions coordinating with AOPAN nanofibrous membrane was also studied. The AOPAN chelated with individual metal ion (Fe3+, Cu2+, Ni2+, Cd2+ and also the four mixed metal ions were further used for laccase (Lac immobilization. Compared with free laccase, the immobilized laccase showed better resistance to pH and temperature changes as well as improved storage stability. Among the four individual metal ion chelated membranes, the stability of the immobilized enzymes generally followed the order as Fe–AOPAN–Lac > Cu–AOPAN–Lac > Ni–AOPAN–Lac > Cd–AOPAN–Lac. In addition, the immobilized enzyme on the carrier of AOPAN chelated with four mixed metal ions showed the best properties.

  16. Iron chelating active packaging: Influence of competing ions and pH value on effectiveness of soluble and immobilized hydroxamate chelators.

    Science.gov (United States)

    Ogiwara, Yoshiko; Roman, Maxine J; Decker, Eric A; Goddard, Julie M

    2016-04-01

    Many packaged foods utilize synthetic chelators (e.g. ethylenediaminetetraacetic acid, EDTA) to inhibit iron-promoted oxidation or microbial growth which would result in quality loss. To address consumer demands for all natural products, we have previously developed a non-migratory iron chelating active packaging material by covalent immobilization of polyhydroxamate and demonstrated its efficacy in delaying lipid oxidation. Herein, we demonstrate the ability of this hydroxamate-functionalized iron chelating active packaging to retain iron chelating capacity; even in the presence of competing ions common in food. Both immobilized and soluble hydroxamate chelators retained iron chelating capacity in the presence of calcium, magnesium, and sodium competing ions, although at pH 5.0 the presence of calcium reduced immobilized hydroxamate iron chelation. A strong correlation was found between colorimetric and mass spectral analysis of iron chelation by the chelating packaging material. Such chelating active packaging may support reducing additive use in product formulations, while retaining quality and shelf life.

  17. CXCL12 MODULATION OF CXCR4 AND CXCR7 ACTIVITY IN HUMAN GLIOBLASTOMA STEM-LIKE CELLS AND REGULATION OF THE TUMOR MICROENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Roberto eWurth

    2014-05-01

    Full Text Available Chemokines are crucial autocrine and paracrine players in tumor development. In particular, CXCL12, through its receptors CXCR4 and CXCR7, affects tumor progression by controlling cancer cell survival, proliferation and migration, and, indirectly, via angiogenesis or recruiting immune cells.Glioblastoma (GBM is the most prevalent primary malignant brain tumor in adults and despite current multimodal therapies it remains almost incurable. The aggressive and recurrent phenotype of GBM is ascribed to high growth rate, invasiveness to normal brain, marked angiogenesis, ability to escape the immune system and resistance to standard of care therapies. Tumor molecular and cellular heterogeneity severely hinders GBM therapeutic improvement. In particular, a subpopulation of chemo- and radio-therapy resistant tumorigenic cancer stem–like cells (CSCs is believed to be the main responsible for tumor cell dissemination to the brain.GBM cells display heterogeneous expression levels of CXCR4 and CXCR7 that are overexpressed in CSCs, representing a molecular correlate for the invasive potential of GBM. The microenvironment contribution in GBM development is increasingly emphasized. An interplay exists between CSCs, differentiated GBM cells, and the microenvironment, mainly through secreted chemokines (e.g. CXCL12 causing recruitment of fibroblasts, endothelial, mesenchymal and inflammatory cells to the tumor, via specific receptors such as CXCR4.This review covers recent developments on the role of CXCL12/CXCR4-CXCR7 networks in GBM progression and the potential translational impact of their targeting. The biological and molecular understanding of the heterogeneous GBM cell behavior, phenotype and signaling is still limited. Progress in the identification of chemokine-dependent mechanisms that affect GBM cell survival, trafficking and chemo-attractive functions, opens new perspectives for development of more specific therapeutic approaches that include

  18. Metal chelates anchored to poly-l-peptides and linear d,l-α-peptides with promising nanotechnological applications

    Science.gov (United States)

    Punzi, P.; Giordano, C.; Marino, F.; Morosetti, S.; De Santis, P.; Scipioni, A.

    2012-10-01

    Regular configurationally alternating amino acid sequences generate cyclic and linear helical peptides with a local β-conformation able to self-assemble in nanowires and nanoscaffolds directed and stabilized by hydrogen bonds. The possibility of modulating the chemical profile of the various amino acid residues containing reactive side chains means that peptides could be flexible templates for creating various building blocks. A method for the design of molecules with potential spintronic properties is described. Peptides containing lysine residues, the side chains of which are bridged through the formation of metal chelates via Schiff bases, could provide stable molecular channels. When metal chelates with high electron spin states are used, their coupling could generate materials that are interesting due to their magnetic properties as well as for the patterning of nanometric lattices driven by their orientation under a magnetic field. With this aim, three alternating d- and l-lysine-containing octapeptides are synthesized and the formation of their bis(pyridoxalaldimine) copper(II) chelate derivatives is shown by absorption and circular dichroism spectroscopies.

  19. Positron Emission Tomographic Imaging of Copper 64– and Gallium 68–Labeled Chelator Conjugates of the Somatostatin Agonist Tyr3-Octreotate

    Directory of Open Access Journals (Sweden)

    Jessie R. Nedrow

    2014-09-01

    Full Text Available The bifunctional chelator and radiometal have been shown to have a direct effect on the pharmacokinetics of somatostatin receptor (SSTR-targeted imaging agents. We evaluated three Y3-TATE analogues conjugated to NOTA-based chelators for radiolabeling with 64Cu and 68Ga for small-animal positron emission tomographic/computed tomograhic (PET/CT imaging. Two commercially available NOTA analogues, p-SCN-Bn-NOTA and NODAGA, were evaluated. The p-SCN-Bn-NOTA analogues were conjugated to Y3- TATE through β-Ala and PEG8 linkages. The NODAGA chelator was directly conjugated to Y3-TATE. The analogues labeled with 64Cu or 68Ga were analyzed in vitro for binding affinity and internalization and in vivo by PET/CT imaging, biodistribution, and Cerenkov imaging (68Ga analogues. We evaluated the effects of the radiometals, chelators, and linkers on the performance of the SSTR subtype 2–targeted imaging agents and also compared them to a previously reported agent, 64Cu-CB-TE2A-Y3-TATE. We found that the method of conjugation, particularly the length of the linkage between the chelator and the peptide, significantly impacted tumor and nontarget tissue uptake and clearance. Among the 64Cu- and 68Ga-labeled NOTA analogues, NODAGA-Y3-TATE had the most optimal in vivo behavior and was comparable to 64Cu-CB-TE2A-Y3-TATE. An advantage of NODAGA-Y3-TATE is that it allows labeling with 64Cu and 68Ga, providing a versatile PET probe for imaging SSTr subtype 2-positive tumors.

  20. Sensitivity of malignant peripheral nerve sheath tumor cells to TRAIL is augmented by loss of NF1 through modulation of MYC/MAD and is potentiated by curcumin through induction of ROS.

    Directory of Open Access Journals (Sweden)

    David E Reuss

    Full Text Available Malignant peripheral nerve sheath tumor (MPNST is a rare aggressive form of sarcoma often associated with the tumor syndrome neurofibromatosis type 1 (NF1. We investigated the effects of tumor necrosis factor-related apoptosis inducing ligand (TRAIL on NF1 associated MPNST and determinants of TRAIL sensitivity. MPNST cell lines with complete neurofibromin deficiency were sensitive to apoptotic cell death induced by TRAIL whereas MPNST cells with retained neurofibromin expression or normal human Schwann cells were resistant. Increased sensitivity to TRAIL was associated with overexpression of death receptors, especially DR5. Re-expression of the GAP related domain of neurofibromin (NF1-GRD suppressed DR5 expression and decreased sensitivity to TRAIL. We show that death receptor expression and TRAIL sensitivity critically depend on c-MYC and that c-MYC amounts are increased by MEK/ERK and PI3K/AKT signalling pathways which are suppressed by neurofibromin. Furthermore PI3K/AKT signalling strongly suppresses the MYC-antagonist MAD1 which significantly contributes to TRAIL sensitivity. Re-expression of the NF1-GRD decreased c-MYC and increased MAD1 amounts suggesting that neurofibromin influences TRAIL sensitivity at least in part by modulating the MYC/MAX/MAD network. The phytochemical curcumin further increased the sensitivity of neurofibromin deficient MPNST cells to TRAIL. This was presumably mediated by ROS, as it correlated with increased ROS production, was blocked by N-acetylcysteine and mimicked by exogenous ROS.

  1. Imaging cancer using PET - the effect of the bifunctional chelator on the biodistribution of a {sup 64}Cu-labeled antibody

    Energy Technology Data Exchange (ETDEWEB)

    Dearling, Jason L.J., E-mail: jason.dearling@childrens.harvard.ed [Division of Nuclear Medicine and Department of Radiology, Children' s Hospital Boston, 300 Longwood Avenue, Boston, MA 02115 (United States); Harvard Medical School, Boston, MA 02115 (United States); Voss, Stephan D. [Division of Nuclear Medicine and Department of Radiology, Children' s Hospital Boston, 300 Longwood Avenue, Boston, MA 02115 (United States); Harvard Medical School, Boston, MA 02115 (United States); Dunning, Patricia; Snay, Erin [Division of Nuclear Medicine and Department of Radiology, Children' s Hospital Boston, 300 Longwood Avenue, Boston, MA 02115 (United States); Fahey, Frederic [Division of Nuclear Medicine and Department of Radiology, Children' s Hospital Boston, 300 Longwood Avenue, Boston, MA 02115 (United States); Harvard Medical School, Boston, MA 02115 (United States); Smith, Suzanne V. [Australian National Science and Technology Organisation (ANSTO), New Illawarra Road, PMB1, Menai, New South Wales 2234 (Australia); Huston, James S. [EMD Serono Research Center, 45A Middlesex Turnpike, Billerica, MA 01821-3936 (United States); Boston Biomedical Research Institute, Watertown, MA 02472-2899 (United States); Meares, Claude F. [Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616-5295 (United States); Treves, S. Ted; Packard, Alan B. [Division of Nuclear Medicine and Department of Radiology, Children' s Hospital Boston, 300 Longwood Avenue, Boston, MA 02115 (United States); Harvard Medical School, Boston, MA 02115 (United States)

    2011-01-15

    Introduction: Use of copper radioisotopes in antibody radiolabeling is challenged by reported loss of the radionuclide from the bifunctional chelator used to label the protein. The objective of this study was to investigate the relationship between the thermodynamic stability of the {sup 64}Cu-complexes of five commonly used bifunctional chelators (BFCs) and the biodistribution of an antibody labeled with {sup 64}Cu using these chelators in tumor-bearing mice. Methods: The chelators [S-2-(aminobenzyl)1,4,7-triazacyclononane-1,4,7-triacetic acid (p-NH{sub 2}-Bn-NOTA): 6-[p-(bromoacetamido)benzyl]-1, 4, 8, 11-tetraazacyclotetradecane-N, N', N'', N'''-tetraacetic acid (BAT-6): S-2-(4-aminobenzyl)-1,4,7,10-tetraazacyclododocane tetraacetic acid (p-NH{sub 2}-Bn-DOTA): 1,4,7,10-tetraazacyclododocane-N, N', N', N''-tetraacetic acid (DOTA): and 1-N-(4-aminobenzyl)-3,6,10,13,16,19-hexaazabicyclo[6.6.6]eicosane-1, 8-diamine (SarAr)] were conjugated to the anti-GD2 antibody ch14.18, and the modified antibody was labeled with {sup 64}Cu and injected into mice bearing subcutaneous human melanoma tumors (M21) (n = 3-5 for each study). Biodistribution data were obtained from positron emission tomography images acquired at 1, 24 and 48 hours post-injection, and at 48 hours post-injection a full ex vivo biodistribution study was carried out. Results: The biodistribution, including tumor targeting, was similar for all the radioimmunoconjugates. At 48 h post-injection, the only statistically significant differences in radionuclide uptake (p < 0.05) were between blood, liver, spleen and kidney. For example, liver uptake of [{sup 64}Cu]ch14.18-p-NH{sub 2}-Bn-NOTA was 4.74 {+-} 0.77 per cent of the injected dose per gram of tissue (%ID/g), and for [{sup 64}Cu]ch14.18-SarAr was 8.06 {+-} 0.77 %ID/g. Differences in tumor targeting correlated with variations in tumor size rather than which BFC was used. Conclusions: The results of this

  2. Iron(III)-chelating resins. X. Iron detoxification of human plasma with iron(III)-chelating resins

    NARCIS (Netherlands)

    Feng, M.; Feng, M.H.; van der Does, L.; Bantjes, A.; Bantjes, A.

    1994-01-01

    Iron detoxification of human blood plasma was studied with resins containing desferrioxamine B (DFO) or 3-hydroxy-2-methyl-4(1H)-pyridinone (HMP) as iron(III)-chelating groups. The behaviour of four resins was investigated: DFO-Sepharose, HMP-Sepharose and crosslinked copolymers of

  3. Atrial natriuretic peptide (ANP) inhibits DMBA/croton oil induced skin tumor growth by modulating NF-κB, MMPs, and infiltrating mast cells in swiss albino mice.

    Science.gov (United States)

    Subramanian, Vimala; Vellaichamy, Elangovan

    2014-10-01

    Cardiac hormone atrial natriuretic peptide (ANP) and its receptor, natriuretic peptide receptor-A (NPR-A) are implicated as a vital regulator of cancer cell growth and tumor progression. However, the underlying mechanism by which ANP opposes the cancer growth in in-vivo remains unknown. Herein, we investigated the anti-cancer activity of ANP on 7, 12-dimethyl benzanthracence (DMBA)/Croton oil- induced two-step skin carcinogenic mouse model. Skin tumor incidence and tumor volume were recorded during the experimental period of 16 weeks. ANP (1 μg/kg body weight/alternate days for 4 weeks) was injected subcutaneously from the 13th week of DMBA/Croton oil induction. ANP treatment markedly inhibited the skin tumor growth (P<0.001). A significant reduction in the level of NF-κB activation (P<0.001), infiltrating mast cell count (P<0.01) and MMP-2/-9 (P<0.001, respectively) were noticed in the ANP treated mice skin tissue. Further, ANP treatment revert back the altered levels of serum LDH-4, C-reactive protein (CRP), and enzymatic antioxidants (SOD and CAT activities) to near normal level. Taken together, the results of this study suggest that ANP opposes the skin carcinogenesis by suppressing the inflammatory response and MMPs.

  4. Short-term arginine deprivation results in large-scale modulation of hepatic gene expression in both normal and tumor cells: microarray bioinformatic analysis

    Directory of Open Access Journals (Sweden)

    Sabo Edmond

    2006-09-01

    Full Text Available Abstract Background We have reported arginine-sensitive regulation of LAT1 amino acid transporter (SLC 7A5 in normal rodent hepatic cells with loss of arginine sensitivity and high level constitutive expression in tumor cells. We hypothesized that liver cell gene expression is highly sensitive to alterations in the amino acid microenvironment and that tumor cells may differ substantially in gene sets sensitive to amino acid availability. To assess the potential number and classes of hepatic genes sensitive to arginine availability at the RNA level and compare these between normal and tumor cells, we used an Affymetrix microarray approach, a paired in vitro model of normal rat hepatic cells and a tumorigenic derivative with triplicate independent replicates. Cells were exposed to arginine-deficient or control conditions for 18 hours in medium formulated to maintain differentiated function. Results Initial two-way analysis with a p-value of 0.05 identified 1419 genes in normal cells versus 2175 in tumor cells whose expression was altered in arginine-deficient conditions relative to controls, representing 9–14% of the rat genome. More stringent bioinformatic analysis with 9-way comparisons and a minimum of 2-fold variation narrowed this set to 56 arginine-responsive genes in normal liver cells and 162 in tumor cells. Approximately half the arginine-responsive genes in normal cells overlap with those in tumor cells. Of these, the majority was increased in expression and included multiple growth, survival, and stress-related genes. GADD45, TA1/LAT1, and caspases 11 and 12 were among this group. Previously known amino acid regulated genes were among the pool in both cell types. Available cDNA probes allowed independent validation of microarray data for multiple genes. Among genes downregulated under arginine-deficient conditions were multiple genes involved in cholesterol and fatty acid metabolism. Expression of low-density lipoprotein receptor was

  5. Role of vitamin D3 in modulation of ΔNp63α expression during UVB induced tumor formation in SKH-1 mice.

    Directory of Open Access Journals (Sweden)

    Natasha T Hill

    Full Text Available ΔNp63α, a proto-oncogene, is up-regulated in non-melanoma skin cancers and directly regulates the expression of both Vitamin D receptor (VDR and phosphatase and tensin homologue deleted on chromosome ten (PTEN. Since ΔNp63α has been shown to inhibit cell invasion via regulation of VDR, we wanted to determine whether dietary Vitamin D3 protected against UVB induced tumor formation in SKH-1 mice, a model for squamous cell carcinoma development. We examined whether there was a correlation between dietary Vitamin D3 and ΔNp63α, VDR or PTEN expression in vivo in SKH-1 mice chronically exposed to UVB radiation and fed chow containing increasing concentrations of dietary Vitamin D3. Although we observed differential effects of the Vitamin D3 diet on ΔNp63α and VDR expression in chronically irradiated normal mouse skin as well as UVB induced tumors, Vitamin D3 had little effect on PTEN expression in vivo. While low-grade papillomas in mice exposed to UV and fed normal chow displayed increased levels of ΔNp63α, expression of both ΔNp63α and VDR was reduced in invasive tumors. Interestingly, in mice fed high Vitamin D3 chow, elevated levels of ΔNp63α were observed in both local and invasive tumors but not in normal skin suggesting that oral supplementation with Vitamin D3 may increase the proliferative potential of skin tumors by increasing ΔNp63α levels.

  6. Early gene expression analysis in 9L orthotopic tumor-bearing rats identifies immune modulation in molecular response to synchrotron microbeam radiation therapy.

    Science.gov (United States)

    Bouchet, Audrey; Sakakini, Nathalie; El Atifi, Michèle; Le Clec'h, Céline; Brauer, Elke; Moisan, Anaïck; Deman, Pierre; Rihet, Pascal; Le Duc, Géraldine; Pelletier, Laurent

    2013-01-01

    Synchrotron Microbeam Radiation Therapy (MRT) relies on the spatial fractionation of the synchrotron photon beam into parallel micro-beams applying several hundred of grays in their paths. Several works have reported the therapeutic interest of the radiotherapy modality at preclinical level, but biological mechanisms responsible for the described efficacy are not fully understood to date. The aim of this study was to identify the early transcriptomic responses of normal brain and glioma tissue in rats after MRT irradiation (400Gy). The transcriptomic analysis of similarly irradiated normal brain and tumor tissues was performed 6 hours after irradiation of 9 L orthotopically tumor-bearing rats. Pangenomic analysis revealed 1012 overexpressed and 497 repressed genes in the irradiated contralateral normal tissue and 344 induced and 210 repressed genes in tumor tissue. These genes were grouped in a total of 135 canonical pathways. More than half were common to both tissues with a predominance for immunity or inflammation (64 and 67% of genes for normal and tumor tissues, respectively). Several pathways involving HMGB1, toll-like receptors, C-type lectins and CD36 may serve as a link between biochemical changes triggered by irradiation and inflammation and immunological challenge. Most immune cell populations were involved: macrophages, dendritic cells, natural killer, T and B lymphocytes. Among them, our results highlighted the involvement of Th17 cell population, recently described in tumor. The immune response was regulated by a large network of mediators comprising growth factors, cytokines, lymphokines. In conclusion, early response to MRT is mainly based on inflammation and immunity which appear therefore as major contributors to MRT efficacy.

  7. Simple PEG Modification of DNA Aptamer Based on Copper Ion Coordination for Tumor Targeting.

    OpenAIRE

    Takafuji, Yoshimasa; Jo, Jun-ichiro; Tabata, Yasuhiko

    2011-01-01

    A simple modification of a DNA aptamer with poly(ethylene glycol) (PEG) based on metal coordination was developed. N, N-bis(carboxymethyl)-L-lysine (NTA) of a metal chelate residue was chemically introduced to one terminus of PEG. The NTA-introduced PEG (PEG-NTA) chelated Cu(2+) ions form a Cu(2+)-chelated PEG (PEG-Cu). When PEG-Cu was mixed with a DNA aptamer of anti-tumor activity (AS1411) in aqueous solution, a complex of PEG-Cu and AS1411 based on metal coordination was formed. The comple...

  8. Examining the fixation kinetics of chelated and non-chelated copper and the applications to micronutrient management in semiarid alkaline soils

    Science.gov (United States)

    Udeigwe, T. K.; Eichmann, M. B.; Menkiti, M. C.; Kusi, N. Y. O.

    2016-02-01

    This study examined and compared the fixation and fixation kinetics of copper (Cu) in chelated (ethylene diamine tetraacetic acid, EDTA) and non-chelated mixed systems of micronutrients in the semiarid soils of the Southern High Plains, USA, using findings from Cu extraction studies and kinetic models. Approximately, 22 % more Cu was fixed in the non-chelated system compared to the chelated within the first 14 days with only 7 % difference between the two systems by day 90. Findings suggest a decrease in the effectiveness of chelated micronutrients over time, highlighting the significance of timing even when chelated micronutrients are used. The strengths of the relationship of change in available Cu with respect to other micronutrients (iron (Fe), manganese (Mn), and zinc (Zn)) were higher in the non-chelated system (R2: 0.68-0.94), compared to the chelated (R2: 0.42-0.81), with slopes of 0.40 (Cu-Fe), 0.31 (Cu-Mn), and 1.04 (Cu-Zn) in the non-chelated system and 0.26 (Cu-Fe), 0.22 (Cu-Mn), and 0.90 (Cu-Zn) in the chelated system. Reduction in the amount of available Cu was best described by the power function model (R2 = 0.91, SE = 0.081) in the non-chelated system and second-order model (R2 = 0.95, SE = 0.010) in the chelated system. The applications generated from this study could be used as tools for improved micronutrient management and also provide baseline data for future work in other semiarid/arid alkaline soils of the world. Findings are also more applicable to field settings, an improvement over related previous studies.

  9. Type 1 CD8+ T Cells are Superior to Type 2 CD8+ T Cells in Tumor Immunotherapy due to Their Efficient Cytotoxicity, Prolonged Survival and Type 1 Immune Modulation

    Institute of Scientific and Technical Information of China (English)

    Zhenmin Ye; Chaoke Tang; Shulin Xu; Bei Zhang; Xueshu Zhang; Terence Moyana; Jicheng Yang; Jim Xiang

    2007-01-01

    CD8+ cytotoxic T (Tc) cells play a crucial role in host immune responses to cancer, and in this context, adoptive CD8+ Tc cell therapy has been studied in numerous animal tumor models. Its antitumor efficacy is, to a large extent,determined by the ability of Tc cells to survive and infiltrate tumors. In clinical trials, such in vitro-activated T cells often die within hours to days, and this greatly limits their therapeutic efficacy. CD8+ Tc cells fall into two subpopulations based upon their differential cytokine secretion. In this study, we in vitro generated that ovalbumin(OVA)-pulsed dendritic cell (DCOVA)-activated CD8+ type 1 Tc (Tc1) cells secreting IFN-γ, and CD8+ type 2 Tc (Tc2)cells secreting IL-4, IL-5 and IL-10, which were derived from OVA-specific T cell receptor (TCR) transgenic OT I mice. We then systemically investigated the in vitro and in vivo effector function and survival of Tc1 and Tc2 cells,and then assessed their survival kinetics after adoptively transferred into C57BL/6 mice, respectively. We demonstrated that, when compared to CD8+ Tc2, Tc1 cells were significantly more effective in perforin-mediated cytotoxicity to tumor cells, had a significantly higher capacity for in vivo survival after the adoptive T cell transfer,and had a significantly stronger therapeutic effect on eradication of well-established tumors expressing OVA in animal models. In addition, CD8+Tc1 and Tc2 cells skewed the phenotype of CD4+ T cells toward Th1 and Th2 type, respectively. Therefore, the information regarding the differential effector function, survival and immune modulation of CD8+ Tc1 and Tc2 cells may provide useful information when preparing in vitro DC-activated CD8+ T cells for adoptive T cell therapy of cancer.

  10. Pretreatment Primary Tumor SUVmax on 18F-FDG PET/CT Images Predicts Outcomes in Patients With Salivary Gland Carcinoma Treated With Definitive Intensity-Modulated Radiation Therapy.

    Science.gov (United States)

    Hsieh, Cheng-En; Ho, Kung-Chu; Hsieh, Chia-Hsun; Yen, Tzu-Chen; Liao, Chun-Ta; Wang, Hung-Ming; Lin, Chien-Yu

    2017-09-01

    The aim of this study was to investigate the prognostic significance of F-FDG uptake in salivary gland carcinoma (SGC) patients treated with definitive intensity-modulated radiation therapy (IMRT). We retrospectively examined 46 SGC patients who received pretreatment F-FDG PET/CT and definitive IMRT between 2007 and 2014. Most tumors were located in the minor salivary glands (n = 35 [76%]). Forty-six percent (n = 21) of the participants had unresectable disease. The median radiation dose was 72 Gy. Treatment outcomes were examined in relation to clinicopathologic parameters and pretreatment primary tumor SUVmax on F-FDG PET/CT. After a median follow-up of 54 months, the 5-year locoregional progression-free survival (LRPFS), distant metastasis-free survival, progression-free survival (PFS), and overall survival (OS) rates were 77%, 75%, 63%, and 61%, respectively. The median primary tumor SUVmax was 7.4 (range, 2.3-23.6), and the optimal cutoff value that maximized the prognostic significance for 5-year PFS was 7.4 (P = 0.006). Patients with a high SUVmax (≥7.4) had significantly lower 5-year LRPFS (P = 0.007), distant metastasis-free survival (P = 0.046), and OS (P = 0.013) rates than those with a low SUVmax (<7.4). Multivariate analyses identified SUVmax as the only independent predictor of LRPFS (P = 0.023) and PFS (P = 0.003), whereas both the performance score (P < 0.001) and SUVmax (P = 0.022) were independently associated with OS. Pretreatment primary tumor SUVmax on F-FDG PET/CT predicts treatment outcomes in SGC patients. Definitive IMRT is an effective treatment strategy when organ function and cosmesis need to be preserved.

  11. Wilms Tumor

    Science.gov (United States)

    Wilms tumor is a rare type of kidney cancer. It causes a tumor on one or both kidneys. It usually affects ... are at risk should be screened for Wilms tumor every three months until they turn eight. Symptoms ...

  12. PBK/TOPK interacts with the DBD domain of tumor suppressor p53 and modulates expression of transcriptional targets including p21.

    Science.gov (United States)

    Hu, F; Gartenhaus, R B; Eichberg, D; Liu, Z; Fang, H-B; Rapoport, A P

    2010-10-07

    PBK/TOPK (PDZ-binding kinase, T-LAK-cell-originated protein kinase) is a serine-threonine kinase that is overexpressed in a variety of tumor cells but its role in oncogenesis remains unclear. Here we show, by co-immunoprecipitation experiments and yeast two-hybrid analysis, that PBK/TOPK physically interacts with the tumor suppressor p53 through its DNA-binding (DBD) domain in HCT116 colorectal carcinoma cells that express wild-type p53. PBK also binds to p53 mutants carrying five common point mutations in the DBD domain. The PBK-p53 interaction appears to downmodulate p53 transactivation function as indicated by PBK/TOPK knockdown experiments, which show upregulated expression of the key p53 target gene and cyclin-dependent kinase inhibitor p21 in HCT116 cells, particularly after genotoxic damage from doxorubicin. Furthermore, stable PBK/TOPK knockdown cell lines (derived from HCT116 and MCF-7 cells) showed increased apoptosis, G(2)/M arrest and slower growth as compared to stable empty vector-transfected control cell lines. Gene microarray studies identified additional p53 target genes involved in apoptosis or cell cycling, which were differentially regulated by PBK knockdown. Together, these data suggest that increased levels of PBK/TOPK may contribute to tumor cell development and progression through suppression of p53 function and consequent reductions in the cell-cycle regulatory proteins such as p21. PBK/TOPK may therefore be a valid target for antineoplastic kinase inhibitors to sensitize tumor cells to chemotherapy-induced apoptosis and growth suppression.

  13. Modulation of Anti-Tumor Necrosis Factor Alpha (TNF-α) Antibody Secretion in Mice Immunized with TNF-α Kinoid

    OpenAIRE

    Assier, Eric; Semerano, Luca; Duvallet, Emilie; Delavallée, Laure; Bernier, Emilie; Laborie, Marion; Grouard-Vogel, Géraldine; Larcier, Patrick; Bessis, Natacha; Boissier, Marie-Christophe

    2012-01-01

    Tumor necrosis factor alpha (TNF-α) blockade is an effective treatment for patients with TNF-α-dependent chronic inflammatory diseases, such as rheumatoid arthritis, Crohn's disease, and psoriasis. TNF-α kinoid, a heterocomplex of human TNF-α and keyhole limpet hemocyanin (KLH) (TNF-K), is an active immunotherapy targeting TNF-α. Since the TNF-K approach is an active immunization, and patients receiving this therapy also receive immunosuppressant treatment, we evaluated the effect of some imm...

  14. Comparison of the octadentate bifunctional chelator DFO*-pPhe-NCS and the clinically used hexadentate bifunctional chelator DFO-pPhe-NCS for {sup 89}Zr-immuno-PET

    Energy Technology Data Exchange (ETDEWEB)

    Vugts, Danielle J.; Klaver, Chris; Sewing, Claudia; Poot, Alex J.; Adamzek, Kevin; Visser, Gerard W.M.; Dongen, Guus A.M.S. van [VU University Medical Center, Department of Radiology and Nuclear Medicine, Amsterdam (Netherlands); Huegli, Seraina; Mari, Cristina; Gasser, Gilles [University of Zurich, Department of Chemistry, Zurich (Switzerland); Valverde, Ibai E. [University of Basel Hospital, Division of Radiopharmaceutical Chemistry, Basel (Switzerland); Mindt, Thomas L. [Institute of Pharmaceutical Sciences, ETH Zurich, Zurich (Switzerland); General Hospital of Vienna, Ludwig Boltzmann Institute for Applied Diagnostics, Vienna (Austria)

    2017-02-15

    All clinical {sup 89}Zr-immuno-PET studies are currently performed with the chelator desferrioxamine (DFO). This chelator provides hexadentate coordination to zirconium, leaving two coordination sites available for coordination with, e.g., water molecules, which are relatively labile ligands. The unsaturated coordination of DFO to zirconium has been suggested to result in impaired stability of the complex in vivo and consequently in unwanted bone uptake of {sup 89}Zr. Aiming at clinical improvements, we report here on a bifunctional isothiocyanate variant of the octadentate chelator DFO* and the in vitro and in vivo comparison of its {sup 89}Zr-DFO*-mAb complex with {sup 89}Zr-DFO-mAb. The bifunctional chelator DFO*-pPhe-NCS was prepared from previously reported DFO* and p-phenylenediisothiocyanate. Subsequently, trastuzumab was conjugated with either DFO*-pPhe-NCS or commercial DFO-pPhe-NCS and radiolabeled with Zr-89 according to published procedures. In vitro stability experiments were carried out in saline, a histidine/sucrose buffer, and blood serum. The in vivo performance of the chelators was compared in N87 tumor-bearing mice by biodistribution studies and PET imaging. In 0.9 % NaCl {sup 89}Zr-DFO*-trastuzumab was more stable than {sup 89}Zr-DFO-trastuzumab; after 72 h incubation at 2-8 C 95 % and 58 % intact tracer were left, respectively, while in a histidine-sucrose buffer no difference was observed, both products were ≥ 92 % intact. In vivo uptake at 144 h post injection (p.i.) in tumors, blood, and most normal organs was similar for both conjugates, except for skin, liver, spleen, ileum, and bone. Tumor uptake was 32.59 ± 11.95 and 29.06 ± 8.66 % ID/g for {sup 89}Zr-DFO*-trastuzumab and {sup 89}Zr-DFO-trastuzumab, respectively. The bone uptake was significantly lower for {sup 89}Zr-DFO*-trastuzumab compared to {sup 89}Zr-DFO-trastuzumab. At 144 h p.i. for {sup 89}Zr-DFO*-trastuzumab and {sup 89}Zr-DFO-trastuzumab, the uptake in sternum was 0.92

  15. COSMIC: A Regimen of Intensity Modulated Radiation Therapy Plus Dose-Escalated, Raster-Scanned Carbon Ion Boost for Malignant Salivary Gland Tumors: Results of the Prospective Phase 2 Trial

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Alexandra D., E-mail: alexdjensen@gmx.de [Department of Radiation Oncology, University of Heidelberg, Heidelberg (Germany); Nikoghosyan, Anna V.; Lossner, Karen [Department of Radiation Oncology, University of Heidelberg, Heidelberg (Germany); Haberer, Thomas; Jäkel, Oliver [Heidelberg Ion Beam Therapy Centre, Heidelberg (Germany); Münter, Marc W.; Debus, Jürgen [Department of Radiation Oncology, University of Heidelberg, Heidelberg (Germany)

    2015-09-01

    Purpose: To investigate the effect of intensity modulated radiation therapy (IMRT) and dose-escalated carbon ion (C12) therapy in adenoid cystic carcinoma (ACC) and other malignant salivary gland tumors (MSGTs) of the head and neck. Patients and Methods: COSMIC (combined treatment of malignant salivary gland tumors with intensity modulated radiation therapy and carbon ions) is a prospective phase 2 trial of 24 Gy(RBE) C12 followed by 50 Gy IMRT in patients with pathologically confirmed MSGT. The primary endpoint is mucositis Common Terminology Criteria grade 3; the secondary endpoints are locoregional control (LC), progression-free survival (PFS), overall survival (OS), and toxicity. Toxicity was scored according to the Common Terminology Criteria for Adverse Events version 3; treatment response was scored according to Response Evaluation Criteria in Solid Tumors 1.1. Results: Between July 2010 and August 2011, 54 patients were accrued, and 53 were available for evaluation. The median follow-up time was 42 months; patients with microscopically incomplete resections (R1, n=20), gross residual disease (R2, n=17), and inoperable disease (n=16) were included. Eighty-nine percent of patients had ACC, and 57% had T4 tumors. The most common primary sites were paranasal sinus (34%), submandibular gland, and palate. At the completion of radiation therapy, 26% of patients experienced grade 3 mucositis, and 20 patients reported adverse events of the ear (38%). The most common observed late effects were grade 1 xerostomia (49%), hearing impairment (25%, 2% ipsilateral hearing loss), and adverse events of the eye (20%), but no visual impairment or loss of vision. Grade 1 central nervous system necrosis occurred in 6%, and 1 grade 4 ICA hemorrhage without neurologic sequelae. The best response was 54% (complete response/partial remission). At 3 years, the LC, PFS, and OS were 81.9%, 57.9%, and 78.4%, respectively. No difference was found regarding resection status. The

  16. Removal of cadmium from fish sauce using chelate resin.

    Science.gov (United States)

    Sasaki, Tetsuya; Araki, Ryohei; Michihata, Toshihide; Kozawa, Miyuki; Tokuda, Koji; Koyanagi, Takashi; Enomoto, Toshiki

    2015-04-15

    Fish sauce that is prepared from squid organs contains cadmium (Cd), which may be present at hazardous concentrations. Cd molecules are predominantly protein bound in freshly manufactured fish sauce, but are present in a liberated form in air-exposed fish sauce. In the present study, we developed a new method for removing both Cd forms from fish sauce using chelate resin and a previously reported tannin treatment. Sixteen-fold decreases in Cd concentrations were observed (0.78-0.05 mg/100 mL) following the removal of liberated Cd using chelate resin treatment, and the removal of protein-bound Cd using tannin treatment. Major nutritional components of fish sauce were maintained, including free amino acids and peptides, and angiotensin I-converting enzyme inhibitory and antioxidant activities.

  17. MULTIDENTATE TEREPHTHALAMIDATE AND HYDROXYPYRIDONATE LIGANDS: TOWARDS NEW ORALLY ACTIVE CHELATORS

    Energy Technology Data Exchange (ETDEWEB)

    Abergel, Rebecca J.; Raymond, Kenneth N.

    2011-07-13

    The limitations of current therapies for the treatment of iron overload or radioisotope contamination have stimulated efforts to develop new orally bioavailable iron and actinide chelators. Siderophore-inspired tetradentate, hexadentate and octadentate terephthalamidate and hydroxypyridonate ligands were evaluated in vivo as selective and efficacious iron or actinide chelating agents, with several metal loading and ligand assessment procedures, using {sup 59}Fe, {sup 238}Pu, and {sup 241}Am as radioactive tracers. The compounds presented in this study were compared to commercially available therapeutic sequestering agents [deferoxamine (DFO) for iron and diethylenetriaminepentaacetic acid (DPTA) for actinides] and are unrivaled in terms of affinity, selectivity and decorporation efficacy, which attests to the fact that high metal affinity may overcome the low bioavailability properties commonly associated to multidenticity.

  18. Lanthanides caged by the organic chelates; structural properties.

    Science.gov (United States)

    Smentek, Lidia

    2011-04-13

    The structure, in particular symmetry, geometry and morphology of organic chelates coordinated with the lanthanide ions are analyzed in the present review. This is the first part of a complete presentation of a theoretical description of the properties of systems, which are widely used in technology, but most of all, in molecular biology and medicine. The discussion is focused on the symmetry and geometry of the cages, since these features play a dominant role in the spectroscopic activity of the lanthanides caged by organic chelates. At the same time, the spectroscopic properties require more formal presentation in the language of Racah algebra, and deserve a separate analysis. In addition to the parent systems of DOTA, DOTP, EDTMP and CDTMP presented here, their modifications by various antennas are analyzed. The conclusions that have a strong impact upon the theory of the energy transfer and the sensitized luminescence of these systems are based on the results of numerical density functional theory calculations.

  19. Synthetic methodologies and spatial organization of metal chelate dendrimers and star and hyperbranched polymers.

    Science.gov (United States)

    Dzhardimalieva, Gulzhian I; Uflyand, Igor E

    2017-08-08

    The synthetic methodologies, physico-chemical peculiarities, properties, and structure of metal chelate dendrimers and star and hyperbranched polymers are considered. These compounds are subdivided into molecular, intracomplex, and macrocyclic types which in turn are classified depending on the nature of the donor atoms (N,N-, N,O-, N,S-, O,O-, O,S-, S,S-, P,P-chelates, etc.). Special attention is paid to the features of the preparation of metal chelate star polymers by "arm-first", "core-first" and click-to-chelate approaches. The main data on the synthesis, spatial structure and properties of the metal chelate hyperbranched polymers are summarized. The basic concepts and synthetic strategies leading to the different types of supramolecular metal chelate dendrimers are analyzed. The problems and future prospects of metal chelate dendrimers and star and hyperbranched polymers are outlined. The bibliography includes papers published after 2010.

  20. Extraction of heavy metals from soils using biodegradable chelating agents.

    Science.gov (United States)

    Tandy, Susan; Bossart, Karin; Mueller, Roland; Ritschel, Jens; Hauser, Lukas; Schulin, Rainer; Nowack, Bernd

    2004-02-01

    Metal pollution of soils is widespread across the globe, and the clean up of these soils is a difficulttask. One possible remediation technique is ex-situ soil washing using chelating agents. Ethylenediaminetetraacetic acid (EDTA) is a very effective chelating agent for this purpose but has the disadvantage that it is quite persistent in the environment due to its low biodegradability. The aim of our work was to investigate the biodegradable chelating agents [S,S]-ethylenediaminedisuccinic acid (EDDS), iminodisuccinic acid (IDSA), methylglycine diacetic acid (MGDA), and nitrilotriacetic acid (NTA) as potential alternatives and compare them with EDTA for effectiveness. Kinetic experiments showed for all metals and soils that 24 h was the optimum extraction time. Longer times only gave minor additional benefits for heavy metal extraction but an unwanted increase in iron mobilization. For Cu at pH 7, the order of the extraction efficiency for equimolar ratios of chelating agent to metal was EDDS > NTA> IDSA > MGDA > EDTA and for Zn it was NTA > EDDS > EDTA >MGDA > IDSA. The comparatively low efficiency of EDTA resulted from competition between the heavy metals and co-extracted Ca. For Pb the order of extraction was EDTA > NTA >EDDS due to the much stronger complexation of Pb by EDTA compared to EDDS. At higher concentration of complexing agent, less difference between the agents was found and less pH dependence. There was an increase in heavy metal extraction with decreasing pH, but this was offset by an increase in Ca and Fe extraction. In sequential extractions EDDS extracted metals almost exclusively from the exchangeable, mobile, and Mn-oxide fractions. We conclude that the extraction with EDDS at pH 7 showed the best compromise between extraction efficiency for Cu, Zn, and Pb and loss of Ca and Fe from the soil.

  1. Decontamination of process equipment using recyclable chelating solvent

    Energy Technology Data Exchange (ETDEWEB)

    Jevec, J.; Lenore, C.; Ulbricht, S. [Babcock & Wilcox, Co., R& DD, Alliance, OH (United States)

    1995-10-01

    The Department of Energy (DOE) is now faced with the task of meeting decontamination and decommissioning obligations at numerous facilities by the year 2019. Due to the tremendous volume of material involved, innovative decontamination technologies are being sought that can reduce the volumes of contaminated waste materials and secondary wastes requiring disposal. This report describes the results of the performance testing of chelates and solvents for the dissolution of uranium.

  2. Flue gas desulfurization/denitrification using metal-chelate additives

    Science.gov (United States)

    Harkness, John B. L.; Doctor, Richard D.; Wingender, Ronald J.

    1986-01-01

    A method of simultaneously removing SO.sub.2 and NO from oxygen-containing flue gases resulting from the combustion of carbonaceous material by contacting the flue gas with an aqueous scrubber solution containing an aqueous sulfur dioxide sorbent and an active metal chelating agent which promotes a reaction between dissolved SO.sub.2 and dissolved NO to form hydroxylamine N-sulfonates. The hydroxylamine sulfonates are then separated from the scrubber solution which is recycled.

  3. Mineral Levels in Thalassaemia Major Patients Using Different Iron Chelators.

    Science.gov (United States)

    Genc, Gizem Esra; Ozturk, Zeynep; Gumuslu, Saadet; Kupesiz, Alphan

    2016-03-01

    The goal of the present study was to determine the levels of minerals in chronically transfused thalassaemic patients living in Antalya, Turkey and to determine mineral levels in groups using different iron chelators. Three iron chelators deferoxamine, deferiprone and deferasirox have been used to remove iron from patients' tissues. There were contradictory results in the literature about minerals including selenium, zinc, copper, and magnesium in thalassaemia major patients. Blood samples from the 60 thalassaemia major patients (the deferoxamine group, n = 19; the deferiprone group, n = 20 and the deferasirox group, n = 21) and the controls (n = 20) were collected. Levels of selenium, zinc, copper, magnesium, and iron were measured, and all of them except iron showed no significant difference between the controls and the patients regardless of chelator type. Serum copper levels in the deferasirox group were lower than those in the control and deferoxamine groups, and serum magnesium levels in the deferasirox group were higher than those in the control, deferoxamine and deferiprone groups. Iron levels in the patient groups were higher than those in the control group, and iron levels showed a significant correlation with selenium and magnesium levels. Different values of minerals in thalassaemia major patients may be the result of different dietary intake, chelator type, or regional differences in where patients live. That is why minerals may be measured in thalassaemia major patients at intervals, and deficient minerals should be replaced. Being careful about levels of copper and magnesium in thalassaemia major patients using deferasirox seems to be beneficial.

  4. Up-modulation of PLC-β2 reduces the number and malignancy of triple-negative breast tumor cells with a CD133(+)/EpCAM(+) phenotype: a promising target for preventing progression of TNBC.

    Science.gov (United States)

    Brugnoli, Federica; Grassilli, Silvia; Lanuti, Paola; Marchisio, Marco; Al-Qassab, Yasamin; Vezzali, Federica; Capitani, Silvano; Bertagnolo, Valeria

    2017-09-04

    The malignant potential of triple negative breast cancer (TNBC) is also dependent on a sub-population of cells with a stem-like phenotype. Among the cancer stem cell markers, CD133 and EpCAM strongly correlate with breast tumor aggressiveness, suggesting that simultaneous targeting of the two surface antigens may be beneficial in treatment of TNBC. Since in TNBC-derived cells we demonstrated that PLC-β2 induces the conversion of CD133(high) to CD133(low) cells, here we explored its possible role in down-modulating the expression of both CD133 and EpCAM and, ultimately, in reducing the number of TNBC cells with a stem-like phenotype. A magnetic step-by-step cell isolation with antibodies directed against CD133 and/or EpCAM was performed on the TNBC-derived MDA-MB-231 cell line. In the same cell model, PLC-β2 was over-expressed or down-modulated and cell proliferation and invasion capability were evaluated by Real-time cell assays. The surface expression of CD133, EpCAM and CD44 in the different experimental conditions were measured by multi-color flow cytometry immunophenotyping. A CD133(+)/EpCAM(+) sub-population with high proliferation rate and invasion capability is present in the MDA-MB-231 cell line. Over-expression of PLC-β2 in CD133(+)/EpCAM(+) cells reduced the surface expression of both CD133 and EpCAM, as well as proliferation and invasion capability of this cellular subset. On the other hand, the up-modulation of PLC-β2 in the whole MDA-MB-231 cell population reduced the number of cells with a CD44(+)/CD133(+)/EpCAM(+) stem-like phenotype. Since selective targeting of the cells with the highest aggressive potential may have a great clinical importance for TNBC, the up-modulation of PLC-β2, reducing the number of cells with a stem-like phenotype, may be a promising goal for novel therapies aimed to prevent the progression of aggressive breast tumors.

  5. Examining the fixation kinetics of chelated and non-chelated copper micronutrient and the applications to micronutrient management in semi-arid alkaline soils

    Science.gov (United States)

    Udeigwe, T. K.; Eichmann, M. B.; Menkiti, M. C.

    2015-10-01

    The relationship between the deficiency of a nutrient in plants and its total concentration in the soil is complex. This study examined and compared the fixation and fixation kinetics of copper (Cu) in chelated (Ethylene diamine tetraacetic acid, EDTA) and non-chelated mixed systems of micronutrients in the semi-arid soils of the Southern High Plains, US using findings from Cu extraction studies and kinetic models. Approximately, 22 % more Cu was fixed in the non-chelated system within the first 14 days with only 7 % difference between the two systems by day 90. Findings suggest a decrease in the effectiveness of chelated micronutrient over time, highlighting the significance of timing even when chelated micronutrients are applied. The strengths of the relationship of change in available Cu with respect to other micronutrients [iron (Fe), manganese (Mn), and zinc (Zn)] were higher in the non-chelated system (R2: 0.68-0.94), compared to the chelated (R2: 0.42-0.81) with slopes of 0.40 (Cu-Fe), 0.31 (Cu-Mn), and 1.04 (Cu-Zn) in the non-chelated system and 0.26 (Cu-Fe), 0.22 (Cu-Mn), and 0.90 (Cu-Zn) in the chelated. Reduction in the amount of available Cu was best described by the power function model (R2 = 0.91, SE = 0.081) in the non-chelated system and second order model (R2 = 0.95, SE = 0.010) in the chelated system. The applications generated from this study could be used as tools for improved micronutrient management and also provide baseline data for future work in other semi-arid/arid alkaline soils of the world. Findings are also more applicable to field settings, an improvement over related previous studies.

  6. Hydroxyurea could be a good clinically relevant iron chelator.

    Directory of Open Access Journals (Sweden)

    Khushnooma Italia

    Full Text Available Our previous study showed a reduction in serum ferritin of β-thalassemia patients on hydroxyurea therapy. Here we aimed to evaluate the efficacy of hydroxyurea alone and in combination with most widely used iron chelators like deferiprone and deferasirox for reducing iron from experimentally iron overloaded mice. 70 BALB/c mice received intraperitonial injections of iron-sucrose. The mice were then divided into 8 groups and were orally given hydroxyurea, deferiprone or deferasirox alone and their combinations for 4 months. CBC, serum-ferritin, TBARS, sTfr and hepcidin were evaluated before and after iron overload and subsequently after 4 months of drug therapy. All animals were then killed. Iron staining of the heart and liver tissue was done using Perl's Prussian Blue stain. Dry weight of iron in the heart and liver was determined by atomic absorption spectrometry. Increased serum-ferritin, TBARS, hepcidin and dry weight of iron in the liver and heart showed a significant reduction in groups treated with iron chelators with maximum reduction in the group treated with a combination of deferiprone, deferasirox and hydroxyurea. Thus hydroxyurea proves its role in reducing iron from iron overloaded mice. The iron chelating effect of these drugs can also be increased if given in combination.

  7. Elucidating Interactions between DMSO and Chelate-Based Ionic Liquids.

    Science.gov (United States)

    Chen, Hang; Wang, Xinyu; Yao, Jia; Chen, Kexian; Guo, Yan; Zhang, Pengfei; Li, Haoran

    2015-12-21

    The C-D bond stretching vibrations of deuterated dimethyl sulfoxide ([D6 ]DMSO) and the C2 -H bond stretching vibrations of 1,1,1,5,5,5-hexafluoropentane-2,4-dione (hfac) ligand in anion are chosen as probes to elucidate the solvent-solute interaction between chelate-based ionic liquids (ILs) and DMSO by vibrational spectroscopic studies. The indirect effect from the interaction of the adjacent S=O functional group of DMSO with the cation [C10 mim](+) and anion [Mn(hfac)3 ](-) of the ILs leads to the blue-shift of the C-D stretching vibrations of DMSO. The C2 -H bond stretching vibrations in hfac ligand is closely related to the ionic hydrogen bond strength between the cation and anion of chelate-based ILs. EPR studies reveal that the crystal field of the central metal is kept when the chelate-based ILs are in different microstructure environment in the solution.

  8. Chelate forms of biometalls. Theoretical aspects of obtaining and characteristics

    Directory of Open Access Journals (Sweden)

    A. Kapustyan

    2017-04-01

    Full Text Available The problem of microelements bioavailability is highlighted and the correct ways of its solution are substantiated as a result of generalization of theoretical aspects of obtaining of the biometals chelate forms. The characteristics of the main biogenic elements, their physiological significance, electrochemical properties are presented. The main examples of the participation of biometals in various biological processes are given. The properties and the structure peculiarities of biometals coordination complexes are considered in detail. It is shown that in obtaining of biometals chelate forms, there is the mutual selectivity and the affinity of biometals and ligands. The main factors of obtaining a hard metal complex are given. Potential bioligands for obtaining bioavailable forms of microelements are detailed. Among them there are amino acids, peptides, proteins, nucleic acids, carbohydrates. The possible character of complexation depending on the nature of the bioligand is indicated. Practical examples of preparation of biometals mixed ligand complexes are given. The expediency of using metabolic products and processing of lactic acid bacteria as promising components of mixed ligand chelate complexes is substantiated. These substances contain in their composition a mass of potential donor atoms that are capable to form covalent and coordination bonds with biomethalles, and also possess high biological and immunotropic activities. The use of this system in the biocoordination compounds of the "metals of life" can provide a synergistic effect of the components, significantly to expand the range of their physiological activity and to increase the degree of assimilation by the body.

  9. Copper and Zinc Chelation as a Treatment of Alzheimer's Disease

    Science.gov (United States)

    Hodak, Miroslav; Bernholc, Jerry

    2014-03-01

    Alzheimer's disease (AD) is a neurodegenerative disorder affecting millions of people in the U.S. The cause of the disease remains unknown, but amyloid- β (A β), a short peptide, is considered causal its pathogenesis. At cellular level, AD is characterized by deposits mainly composed of A β that also contain elevated levels of transition metals ions. Targeting metals is a promising new strategy for AD treatment, which uses moderately strong metal chelators to sequester them from A β or the environment. PBT2 is a chelating compound that has been the most promising in clinical trials. In our work, we use computer simulations to investigate complexes of a close analog of PBT2 with Cu2+ and Zn2+ ions. The calculations employ KS/FD DFT method, which combines Kohn-Sham DFT with the frozen-density DFT to achieve efficient description of explicit solvent beyond the first solvation shell. Our work is based on recent experiments and examines both 1:1 and 2:1 chelator-metal stochiometries detected experimentally. The results show that copper attaches more strongly than zinc, find that 1:1 complexes involve water in the first coordination shell and determine which one of several possible 2:1 geometries is the most preferable.

  10. A novel DNMT3B splice variant expressed in tumor and pluripotent cells modulates genomic DNA methylation patterns and displays altered DNA binding

    OpenAIRE

    Gopalakrishnan, Suhasni; Van Emburgh, Beth O.; Shan, Jixiu; Su, Zhen; Fields, C. Robert; Vieweg, Johannes; Hamazaki, Takashi; Schwartz, Philip H; Terada, Naohiro; Robertson, Keith D.

    2009-01-01

    DNA methylation is an epigenetic mark essential for mammalian development, genomic stability, and imprinting. DNA methylation patterns are established and maintained by three DNA methyltransferases: DNMT1, DNMT3A, and DNMT3B. Interestingly, all three DNMTs make use of alternative splicing. DNMT3B has nearly 40 known splice variants expressed in a tissue- and disease-specific manner, but very little is known about the role of these splice variants in modulating DNMT3B function. We describe her...

  11. Zinc chelation reduces traumatic brain injury-induced neurogenesis in the subgranular zone of the hippocampal dentate gyrus.

    Science.gov (United States)

    Choi, Bo Young; Kim, Jin Hee; Kim, Hyun Jung; Lee, Bo Eun; Kim, In Yeol; Sohn, Min; Suh, Sang Won

    2014-10-01

    Numerous studies have demonstrated that traumatic brain injury (TBI) increases hippocampal neurogenesis in the rodent brain. However, the mechanisms underlying increased neurogenesis after TBI remain unknown. Continuous neurogenesis occurs in the subgranular zone (SGZ) of the hippocampal dentate gyrus (DG) in the adult brain. The mechanism that maintains active neurogenesis in the hippocampal area is not known. A high level of vesicular zinc is localized in the presynaptic terminals of the SGZ (mossy fiber). The mossy fiber of dentate granular cells contains high levels of chelatable zinc in their terminal vesicles, which can be released into the extracellular space during neuronal activity. Previously, our lab presented findings indicating that a possible correlation may exist between synaptic zinc localization and high rates of neurogenesis in this area after hypoglycemia or epilepsy. Using a weight drop animal model to mimic human TBI, we tested our hypothesis that zinc plays a key role in modulating hippocampal neurogenesis after TBI. Thus, we injected a zinc chelator, clioquinol (CQ, 30mg/kg), into the intraperitoneal space to reduce brain zinc availability twice per day for 1 week. Neuronal death was evaluated with Fluoro Jade-B and NeuN staining to determine whether CQ has neuroprotective effects after TBI. The number of degenerating neurons (FJB (+)) and live neurons (NeuN (+)) was similar in vehicle and in CQ-treated rats at 1 week after TBI. Neurogenesis was evaluated using BrdU, Ki67 and doublecortin (DCX) immunostaining 1 week after TBI. The number of BrdU, Ki67 and DCX positive cell was increased after TBI. However, the number of BrdU, Ki67 and DCX positive cells was significantly decreased by CQ treatment. The present study shows that zinc chelation did not prevent neurodegeneration but did reduce TBI-induced progenitor cell proliferation and neurogenesis. Therefore, this study suggests that zinc has an essential role for modulating hippocampal

  12. Pituitary Tumors

    Science.gov (United States)

    ... institutes of the National Institutes of Health (NIH) conduct research related to brain tumors, including pituitary tumors, in their laboratories at ... institutes of the National Institutes of Health (NIH) conduct research related to brain tumors, including pituitary tumors, in their laboratories at ...

  13. SU-E-E-11: Novel Matching Module for Respiration-Gated Motion Tumor of Cone-Beam Computed Tomography (CBCT) to 4DCT

    Energy Technology Data Exchange (ETDEWEB)

    Yu, P; Tsai, Y; Nien, H; Chiu, Y; Chang, H; Lin, C; Fu, P; Chang, C; Wu, C [Cathay General Hospital, Taipei, Taiwan (China)

    2015-06-15

    Purpose: Four dimensional computed tomography (4DCT) scans reliably record whole respiratory phase and generate internal target volumes (ITV) for radiotherapy planning. However, image guiding with cone-beam computed tomography (CBCT) cannot acquire all or specific respiratory phases. This study was designed to investigate the correlation between average CT and Maximum Intensity Projection (MIP) from 4DCT and CBCT. Methods: Retrospective respiratory gating were performed by GE Discovery CT590 RT. 4DCT and CBCT data from CRIS Dynamic Thorax Phantom with simulated breathing mode were analyzed. The lung tissue equivalent material encompassed 3 cm sphere tissue equivalent material. Simulated breathing cycle period was set as 4 seconds, 5 seconds and 6 seconds for representing variation of patient breathing cycle time, and the sphere material moved toward inferior and superior direction with 1 cm amplitude simulating lung tumor motion during respiration. Results: Under lung window, the volume ratio of CBCT scans to ITVs derived from 10 phases average scans was 1.00 ± 0.02, and 1.03 ± 0.03 for ratio of CBCT scans to MIP scans. Under abdomen window, the ratio of CBCT scans to ITVs derived from 10 phases average scans was 0.39 ± 0.06, and 0.06 ± 0.00 for ratio of CBCT scans to MIP scans. There was a significant difference between lung window Result and abdomen window Result. For reducing image guiding uncertainty, CBCT window was set with width 500 and level-250. The ratio of CBCT scans to ITVs derived from 4 phases average scans with abdomen window was 1.19 ± 0.02, and 1.06 ± 0.01 for ratio of CBCT to MIP scans. Conclusion: CBCT images with suitable window width and level can efficiently reduce image guiding uncertainty for patient with mobile tumor. By our setting, we can match motion tumor to gating tumor location on planning CT more accurately neglecting other motion artifacts during CBCT scans.

  14. Modulation of cell cycle and gene expression in pancreatic tumor cell lines by methionine deprivation (methionine stress): implications to the therapy of pancreatic adenocarcinoma.

    Science.gov (United States)

    Kokkinakis, Demetrius M; Liu, Xiaoyan; Neuner, Russell D

    2005-09-01

    The effect of methionine deprivation (methionine stress) on the proliferation, survival, resistance to chemotherapy, and regulation of gene and protein expression in pancreatic tumor lines is examined. Methionine stress prevents successful mitosis and promotes cell cycle arrest and accumulation of cells with multiple micronuclei with decondensed chromatin. Inhibition of mitosis correlates with CDK1 down-regulation and/or inhibition of its function by Tyr(15) phosphorylation or Thr(161) dephosphorylation. Inhibition of cell cycle progression correlates with loss of hyperphosphorylated Rb and up-regulation of p21 via p53 and/or transforming growth factor-beta (TGF-beta) activation depending on p53 status. Although methionine stress-induced toxicity is not solely dependent on p53, the gain in p21 and loss in CDK1 transcription are more enhanced in wild-type p53 tumors. Up-regulation of SMAD7, a TGF-beta signaling inhibitor, suggests that SMAD7 does not restrict the TGF-beta-mediated induction of p21, although it may prevent up-regulation of p27. cDNA oligoarray analysis indicated a pleiotropic response to methionine stress. Cell cycle and mitotic arrest is in agreement with up-regulation of NF2, ETS2, CLU, GADD45alpha, GADD45beta, and GADD45gamma and down-regulation of AURKB, TOP2A, CCNA, CCNB, PRC1, BUB1, NuSAP, IFI16, and BRCA1. Down-regulation of AREG, AGTR1, M-CSF, and EGF, IGF, and VEGF receptors and up-regulation of GNA11 and IGFBP4 signify loss of growth factor support. PIN1, FEN1, and cABL up-regulation and LMNB1, AREG, RhoB, CCNG, TYMS, F3, and MGMT down-regulation suggest that methionine stress sensitizes the tumor cells to DNA-alkylating drugs, 5-fluorouracil, and radiation. Increased sensitivity of pancreatic tumor cell lines to temozolomide is shown under methionine stress conditions and is attributed in part to diminished O(6)-methylguanine-DNA methyltransferase and possibly to inhibition of the cell cycle progression.

  15. Chelation therapy in Wilson's disease: from D-penicillamine to the design of selective bioinspired intracellular Cu(I) chelators.

    Science.gov (United States)

    Delangle, Pascale; Mintz, Elisabeth

    2012-06-01

    Wilson's disease is an orphan disease due to copper homeostasis dysfunction. Mutations of the ATP7B gene induces an impaired functioning of a Cu-ATPase, impaired Cu detoxification in the liver and copper overload in the body. Indeed, even though copper is an essential element, which is used as cofactor by many enzymes playing vital roles, it becomes toxic when in excess as it promotes cytotoxic reactions leading to oxidative stress. In this perspective, human copper homeostasis is first described in order to explain the mechanisms promoting copper overload in Wilson's disease. We will see that the liver is the main organ for copper distribution and detoxification in the body. Nowadays this disease is treated life-long by systemic chelation therapy, which is not satisfactory in many cases. Therefore the design of more selective and efficient drugs is of great interest. A strategy to design more specific chelators to treat localized copper accumulation in the liver will then be presented. In particular we will show how bioinorganic chemistry may help in the design of such novel chelators by taking inspiration from the biological copper cell transporters.

  16. Comparison of two heterogeneity correction algorithms in pituitary gland treatments with intensity-modulated radiation therapy; Comparacao de dois algoritmos de correcao de heterogeneidade em tratamentos de tumores de hipofise com radioterapia de intensidade modulada

    Energy Technology Data Exchange (ETDEWEB)

    Albino, Lucas D.; Santos, Gabriela R.; Ribeiro, Victor A.B.; Rodrigues, Laura N., E-mail: lucasdelbem1@gmail.com [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Faculdade de Medicina. Instituto de Radiologia; Weltman, Eduardo; Braga, Henrique F. [Instituto do Cancer do Estado de Sao Paulo, Sao Paulo, SP (Brazil). Servico de Radioterapia

    2013-12-15

    The dose accuracy calculated by a treatment planning system is directly related to the chosen algorithm. Nowadays, several calculation doses algorithms are commercially available and they differ in calculation time and accuracy, especially when individual tissue densities are taken into account. The aim of this study was to compare two different calculation algorithms from iPlan®, BrainLAB, in the treatment of pituitary gland tumor with intensity-modulated radiation therapy (IMRT). These tumors are located in a region with variable electronic density tissues. The deviations from the plan with no heterogeneity correction were evaluated. To initial validation of the data inserted into the planning system, an IMRT plan was simulated in a anthropomorphic phantom and the dose distribution was measured with a radiochromic film. The gamma analysis was performed in the film, comparing it with dose distributions calculated with X-ray Voxel Monte Carlo (XVMC) algorithm and pencil beam convolution (PBC). Next, 33 patients plans, initially calculated by PBC algorithm, were recalculated with XVMC algorithm. The treatment volumes and organs-at-risk dose-volume histograms were compared. No relevant differences were found in dose-volume histograms between XVMC and PBC. However, differences were obtained when comparing each plan with the plan without heterogeneity correction. (author)

  17. Modulation of biochemical parameters by Hemidesmus indicus in cumene hydroperoxide-induced murine skin: possible role in protection against free radicals-induced cutaneous oxidative stress and tumor promotion.

    Science.gov (United States)

    Sultana, Sarwat; Khan, Naghma; Sharma, Sonia; Alam, Aftab

    2003-03-01

    Hemidesmus indicus has been shown to possess significant activity against immunotoxicity and other pharmacological and physiological disorders. In this communication, we have shown the modulating effect of H. indicus on cumene hydroperoxide-mediated cutaneous oxidative stress and tumor promotion response in murine skin. Cumene hydroperoxide treatment (30 mg per animal) increased cutaneous microsomal lipid peroxidation and induction of xanthine oxidase activity which are accompanied by decrease in the activities of cutaneous antioxidant enzymes and depletion in the level of glutathione. Parallel to these changes a sharp decrease in the activities of phase II metabolizing enzymes was observed. Cumene hydroperoxide treatment also induced the ornithine decarboxylase activity and enhanced the [3H]-thymidine uptake in DNA synthesis in murine skin. Application of ethanolic extract of H. indicus at a dose level of 1.5 and 3.0mg/kg body weight in acetone prior to that of cumene hydroperoxide treatment resulted in significant inhibition of cumene hydroperoxide-induced cutaneous oxidative stress, epidermal ornithine decarboxylase activity and enhanced DNA synthesis in a dose-dependent manner. Enhanced susceptibility of cutaneous microsomal membrane for lipid peroxidation and xanthine oxidase activity were significantly reduced (P<0.01). In addition the depleted level of glutathione, inhibited activities of antioxidants and phase II metabolizing enzymes were recovered to significant level (P<0.05). In summary, our data suggest that H. indicus is an effective chemopreventive agent in skin and capable of ameliorating hydroperoxide-induced cutaneous oxidative stress and tumor promotion.

  18. Improved survival for hepatocellular carcinoma with portal vein tumor thrombosis treated by intra-arterial chemotherapy combining etoposide, carboplatin, epirubicin and pharmacokinetic modulating chemotherapy by 5-FU and enteric-coated tegafur/uracil: A p

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To investigate the poor prognosis of HCC with PVTT, we evaluated the efficacy by a new combination chemotherapy for advanced hepatocellular carcinoma (HCC) with portal vein tumor thrombus (PVTT).METHODS: From 2002 to 2007, a total of 10 consecutive patients with Stage IVA HCC accompanied by PVTT were studied prospectively to examine the efficacy of treatment by intra-arterial infusion of a chemotherapeutic agents consisting of etoposide, carboplatin, epirubicin and pharmacokinetic modulating chemotherapy by 5-FU and enteric-coated tegafur/uracil.RESULTS: The mean course of chemotherapy was 14.4 (range, 9-21) mo. One patient showed complete response (CR) with disappearance of HCC and PVTT after treatment, and the two patients showed partialresponse (PR), response rate (CR + PR/All cases 30%).The median survival time after the therapy was 457.2 d. The one-year survival rate was 70%. Adverse reactions were tolerable.CONCLUSION: Although the prognosis of most patients with Stage IVA HCC by PVTT is poor, our combination chemotherapy may induces long-term survival and is an effective treatment and produced anti-tumor activity with tolerable adverse effects in patients for advanced Stage IVA HCC accompanied by PVTT.

  19. Melatonin modulates the cadmium-induced expression of MT-2 and MT-1 metallothioneins in three lines of human tumor cells (MCF-7, MDA-MB-231 and HeLa).

    Science.gov (United States)

    Alonso-Gonzalez, Carolina; Mediavilla, Dolores; Martinez-Campa, Carlos; Gonzalez, Alicia; Cos, Samuel; Sanchez-Barcelo, Emilio J

    2008-10-01

    Cadmium (Cd) is a human carcinogen present in tobacco smoke and contaminated industrial soils. Metallothioneins (MTs) are intracellular proteins involved in protecting against Cd. The toxic effects of Cd can be modified by compounds able to modulate MTs synthesis. Melatonin has oncostatic properties and has also been shown to counteract the toxic effects of Cd. In this study we examine the possible role of melatonin in Cd-induced expression of several MT isoforms (MT-2A, MT-1X, MT-1F and MT-1E) in three human tumor cell lines (MCF-7, MDA-MB-231 and HeLa). We found that, in all cell types, melatonin increases Cd-induced expression of MT-2A, which is considered to protect against Cd toxicity. As regards MT-1 subtypes, which have been related with cell invasiveness and high histological grade tumors, melatonin caused Cd-induced expression in both breast cancer cell lines to decrease. These effects point towards melatonin's possible role as a preventive agent for carcinogenesis dependent on Cd contamination.

  20. Long-term outcome of sporadic and FAP-associated desmoid tumors treated with high-dose selective estrogen receptor modulators and sulindac: a single-center long-term observational study in 134 patients.

    Science.gov (United States)

    Quast, Daniel Robert; Schneider, Ralph; Burdzik, Emanuel; Hoppe, Steffen; Möslein, Gabriela

    2016-01-01

    Aim of this study is to evaluate the outcome of long-term conservative treatment with sulindac and high-dose selective estrogen receptor modulators (SERMs) for sporadic and FAP-associated desmoid tumors. Desmoids are very rare tumors in the general population but occur frequently in FAP patients, being encountered in 23-38 %. Treatment of desmoids is still most controversial since response cannot be predicted and they are prone to develop recurrence. This study included all desmoid patients that were treated and followed at our institution and had completed at least 1 year of treatment. Response was defined as stable size or regression of desmoid size between two CT or MRI scans. A total of 134 patients were included. 64 (47.8 %) patients had a confirmed diagnosis of FAP, 69 (51.5 %) patients were sporadic. Overall 114 (85.1 %) patients showed regressive or stable desmoid size. Patients with previous history of multiple desmoid-related surgeries showed less-favorable response. The mean time to reach at least stable size was 14.9 (±9.1) months. After regression or stabilization, medication was tapered in 69 (60.5 %) of the treated patients with only one long-term recurrence after >10 years. The results of this study fortify the role of sulindac and high-dose SERMs as an effective and safe treatment for both, sporadic and FAP-associated desmoid tumors. While invasive treatment frequently results in high recurrence rates, high morbidity and high mortality, this conservative treatment is successful in most patients. The recurrence rate is negligible with no desmoid-related mortality in this large series. Therefore surgical resection, especially for mesenteric desmoids, should be deferred favoring this convincingly effective, well tolerated regimen.

  1. Differential Ratios of Omega Fatty Acids (AA/EPA+DHA Modulate Growth, Lipid Peroxidation and Expression of Tumor Regulatory MARBPs in Breast Cancer Cell Lines MCF7 and MDA-MB-231.

    Directory of Open Access Journals (Sweden)

    Prakash P Mansara

    Full Text Available Omega 3 (n3 and Omega 6 (n6 polyunsaturated fatty acids (PUFAs have been reported to exhibit opposing roles in cancer progression. Our objective was to determine whether different ratios of n6/n3 (AA/EPA+DHA FAs could modulate the cell viability, lipid peroxidation, total cellular fatty acid composition and expression of tumor regulatory Matrix Attachment Region binding proteins (MARBPs in breast cancer cell lines and in non-cancerous, MCF10A cells. Low ratios of n6/n3 (1:2.5, 1:4, 1:5, 1:10 FA decreased the viability and growth of MDA-MB-231 and MCF7 significantly compared to the non-cancerous cells (MCF10A. Contrarily, higher n6/n3 FA (2.5:1, 4:1, 5:1, 10:1 decreased the survival of both the cancerous and non-cancerous cell types. Lower ratios of n6/n3 selectively induced LPO in the breast cancer cells whereas the higher ratios induced in both cancerous and non-cancerous cell types. Interestingly, compared to higher n6/n3 FA ratios, lower ratios increased the expression of tumor suppressor MARBP, SMAR1 and decreased the expression of tumor activator Cux/CDP in both breast cancer and non-cancerous, MCF10A cells. Low n6/n3 FAs significantly increased SMAR1 expression which resulted into activation of p21WAF1/CIP1 in MDA-MB-231 and MCF7, the increase being ratio dependent in MDA-MB-231. These results suggest that increased intake of n3 fatty acids in our diet could help both in the prevention as well as management of breast cancer.

  2. Cervical gross tumor volume dose predicts local control using magnetic resonance imaging/diffusion-weighted imaging-guided high-dose-rate and positron emission tomography/computed tomography-guided intensity modulated radiation therapy.

    Science.gov (United States)

    Dyk, Pawel; Jiang, Naomi; Sun, Baozhou; DeWees, Todd A; Fowler, Kathryn J; Narra, Vamsi; Garcia-Ramirez, Jose L; Schwarz, Julie K; Grigsby, Perry W

    2014-11-15

    Magnetic resonance imaging/diffusion weighted-imaging (MRI/DWI)-guided high-dose-rate (HDR) brachytherapy and (18)F-fluorodeoxyglucose (FDG) - positron emission tomography/computed tomography (PET/CT)-guided intensity modulated radiation therapy (IMRT) for the definitive treatment of cervical cancer is a novel treatment technique. The purpose of this study was to report our analysis of dose-volume parameters predicting gross tumor volume (GTV) control. We analyzed the records of 134 patients with International Federation of Gynecology and Obstetrics stages IB1-IVB cervical cancer treated with combined MRI-guided HDR and IMRT from July 2009 to July 2011. IMRT was targeted to the metabolic tumor volume and lymph nodes by use of FDG-PET/CT simulation. The GTV for each HDR fraction was delineated by use of T2-weighted or apparent diffusion coefficient maps from diffusion-weighted sequences. The D100, D90, and Dmean delivered to the GTV from HDR and IMRT were summed to EQD2. One hundred twenty-five patients received all irradiation treatment as planned, and 9 did not complete treatment. All 134 patients are included in this analysis. Treatment failure in the cervix occurred in 24 patients (18.0%). Patients with cervix failures had a lower D100, D90, and Dmean than those who did not experience failure in the cervix. The respective doses to the GTV were 41, 58, and 136 Gy for failures compared with 67, 99, and 236 Gy for those who did not experience failure (PD100, D90, and Dmean doses required for ≥90% local control to be 69, 98, and 260 Gy (P<.001). Total dose delivered to the GTV from combined MRI-guided HDR and PET/CT-guided IMRT is highly correlated with local tumor control. The findings can be directly applied in the clinic for dose adaptation to maximize local control. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Bifidobacterium animalis ssp. lactis BI07 modulates the tumor necrosis factor alpha-dependent imbalances of the enterocyte-associated intestinal microbiota fraction.

    Science.gov (United States)

    Centanni, Manuela; Turroni, Silvia; Rampelli, Simone; Biagi, Elena; Quercia, Sara; Consolandi, Clarissa; Severgnini, Marco; Brigidi, Patrizia; Candela, Marco

    2014-08-01

    Using a previously developed in vitro model to characterize the enterocyte-adherent microbiota fraction, we explored the potential of the probiotic strain Bifidobacterium animalis ssp. lactis BI07 to modulate the inflammation-dependent dysbioses of the enterocyte-adherent microbiota from 12 healthy human donors. According to our findings, B. animalis ssp. lactis BI07 is effective in limiting the increase of pro-inflammatory pathobionts on the inflamed mucosal site, supporting the recovery of a mutualistic community. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  4. Modulation of PKC signaling and induction of apoptosis through suppression of reactive oxygen species and tumor necrosis factor receptor 1 (TNFR1): key role of quercetin in cancer prevention.

    Science.gov (United States)

    Maurya, Akhilendra Kumar; Vinayak, Manjula

    2015-11-01

    Cancer cells are characterized by increased production of reactive oxygen species (ROS) and an altered redox environment as compared to normal cells. Continuous accumulation of ROS triggers oxidative stress leading to hyper-activation of signaling pathways that promote cell proliferation, survival, and metabolic adaptation to the tumor microenvironment. Therefore, antioxidants are proposed to contribute to cancer prevention. Protein kinase C (PKC) is a crucial regulator of diverse cellular processes and contributes to cancer progression. The activation of PKC is partially dependent on ROS signaling. In the present study, cancer preventive activity of natural flavonoid quercetin is analyzed in ascite cells of Dalton's lymphoma-bearing mice. The total ROS level and activity of PKC were downregulated after quercetin treatment in lymphoma-bearing mice. Quercetin modulates the expression of almost all isozymes of classical, novel, and atypical PKC as well as downregulates the level and expression of PKCα. Further, quercetin improves apoptotic potential, as observed by the levels of caspase 3, caspase 9, PARP, PKCδ, and nuclear condensation. Additionally, quercetin reduces cell survival and promotes death receptor-mediated apoptosis via differential localization of the TNFR1 level in ascite cells. The overall result suggests the cancer preventive activity of quercetin via the induction of apoptosis and modulates PKC signaling with the reduction of oxidative stress in ascite cells of lymphoma-bearing mice.

  5. Localization of thymosin beta-4 in tumors

    DEFF Research Database (Denmark)

    Larsson, L. -I.; Holck, Susanne

    2007-01-01

    Overexpression of thymosin beta-4 has been linked to malignant progression but the localization of this polypeptide within tumors is incompletely known. We therefore examined breast cancers for thymosin beta-4 using immunofluorescence. Reactive cells were identified with monoclonal cell marker...... in the tumor microenvironment may modulate tumor behavior....

  6. Tin-117m-labeled stannic (Sn/sup 4 +/) chelate of diethylenetriamine pentaacetic acid (DTPA) for application in diagnosis and therapy

    Science.gov (United States)

    Srivastava, S.C.; Meinken, G.E.; Richards, P.

    1983-08-25

    The radiopharmaceutical reagents of this invention and the class of Tin-117m radiopharmaceuticals are therapeutic and diagnostic agents that incorporate gamma-emitting nuclides that localize in bone after intravenous injection in mammals (mice, rats, dogs, and rabbits). Images reflecting bone structure or function can then be obtained by a scintillation camera that detects the distribution of ionizing radiation emitted by the radioactive agent. Tin-117m-labeled chelates of stannic tin localize almost exclusively in cortical bone. Upon intravenous injection of the reagent, the preferred chelates are phosphonate compounds, preferable, PYP, MDP, EHDP, and DTPA. This class of reagents is therapeutically and diagnostically useful in skeletal scintigraphy and for the radiotherapy of bone tumors and other disorders.

  7. Modulator effects of interleukin-1beta and tumor necrosis factor-alpha on AMPA-induced excitotoxicity in mouse organotypic hippocampal slice cultures

    DEFF Research Database (Denmark)

    Bernardino, Liliana; Xapelli, Sara; Silva, Ana P

    2005-01-01

    The inflammatory cytokines interleukin-1beta and tumor necrosis factor-alpha (TNF-alpha) have been identified as mediators of several forms of neurodegeneration in the brain. However, they can produce either deleterious or beneficial effects on neuronal function. We investigated the effects...... of mouse recombinant TNF-alpha (10 ng/ml) enhanced excitotoxicity when the cultures were simultaneously exposed to AMPA and to this cytokine. Decreasing the concentration of TNF-alpha to 1 ng/ml resulted in neuroprotection against AMPA-induced neuronal death independently on the application protocol....... By using TNF-alpha receptor (TNFR) knock-out mice, we demonstrated that the potentiation of AMPA-induced toxicity by TNF-alpha involves TNF receptor-1, whereas the neuroprotective effect is mediated by TNF receptor-2. AMPA exposure was associated with activation and proliferation of microglia as assessed...

  8. Potentiation of mitochondrial dysfunction in tumor cells by conjugates of metabolic modulator dichloroacetate with a Pt(IV) derivative of oxaliplatin.

    Science.gov (United States)

    Zajac, Juraj; Kostrhunova, Hana; Novohradsky, Vojtech; Vrana, Oldrich; Raveendran, Raji; Gibson, Dan; Kasparkova, Jana; Brabec, Viktor

    2016-03-01

    The molecular and cellular mechanisms of enhanced toxic effects in tumor cells of the Pt(IV) derivatives of antitumor oxaliplatin containing axial dichloroacetate (DCA) ligands were investigated. DCA ligands were chosen because DCA has shown great potential as an apoptosis sensitizer and anticancer agent reverting the Wartburg effect. In addition, DCA reverses mitochondrial changes in a wide range of cancers, promoting tumor cell apoptosis in a mitochondrial-dependent pathway. We demonstrate that (i) the transformation of oxaliplatin to its Pt(IV) derivatives containing axial DCA ligands markedly enhances toxicity in cancer cells and helps overcome inherent and acquired resistance to cisplatin and oxaliplatin; (ii) a significant fraction of the intact molecules of DCA conjugates with Pt(IV) derivative of oxaliplatin accumulates in cancer cells where it releases free DCA; (iii) mechanism of biological action of the Pt(IV) derivatives of oxaliplatin containing DCA ligands is connected with the effects of DCA released in cancer cells from the Pt(IV) prodrugs on mitochondria and metabolism of glucose; (iv) treatments with the Pt(IV) derivatives of oxaliplatin containing DCA ligands activate an autophagic response in human colorectal cancer cells; (v) the toxic effects in cancer cells of the Pt(IV) derivatives of oxaliplatin containing DCA ligands can be potentiated if cells are treated with these prodrugs in combination with 5-fluorouracil. These properties of the Pt(IV) derivatives of oxaliplatin containing DCA ligands provide opportunities for further development of new platinum-based agents with the capability of killing cancer cells resistant to conventional antitumor platinum drugs used in the clinic.

  9. The FN13 peptide inhibits human tumor cells invasion through the modulation of alpha v beta 3 integrins organization and the inactivation of ILK pathway.

    Science.gov (United States)

    Zoppi, Nicoletta; Ritelli, Marco; Salvi, Alessandro; Colombi, Marina; Barlati, Sergio

    2007-06-01

    We report the effect of the stable expression of a 13 amino acid human fibronectin (FN) peptide (FN13) on the organization of the FN extracellular matrix (ECM) and of FN integrin receptors (FNRs), in relationship with the inhibition of cellular invasion, in three FN-ECM defective human tumor-derived cell lines: SK-Hep1C3, hepatoma, ACN, neuroblastoma, and SK-OV-3, ovary carcinoma. All these cell lines stably expressing the FN13 peptide, organized an FN-ECM, disorganized alpha v beta 1 integrins and inactivated the ILK pathway, with the loss of secretion of MMP-9. This was associated with the inhibition of cell invasion in Matrigel matrix only in SK-Hep1C3 and ACN, but not in SK-OV-3 cells. Analysis of the integrin receptors organization showed that the FN13 expressing cells SK-Hep1C3 and ACN organized alpha v beta 3 integrins, whereas SK-OV-3 organized alpha v beta 5 dimers. The functional block of alpha v beta 5 integrins, with an inactivating anti-alpha v beta 5 antibody, led to the induction of alpha v beta 3 integrins also in SK-OV-3 cells, and to the inhibition of cell invasion. These data show that in the human tumor cells studied FN13 inhibits the in vitro invasion through the dissociation of alpha v beta 1 dimers, leading to ILK pathway inactivation, only when the organization of alpha v beta 3 integrins is induced in the plasma membrane.

  10. Order of amino acids in C-terminal cysteine-containing peptide-based chelators influences cellular processing and biodistribution of 99mTc-labeled recombinant Affibody molecules.

    Science.gov (United States)

    Altai, Mohamed; Wållberg, Helena; Orlova, Anna; Rosestedt, Maria; Hosseinimehr, Seyed Jalal; Tolmachev, Vladimir; Ståhl, Stefan

    2012-05-01

    Affibody molecules constitute a novel class of molecular display selected affinity proteins based on non-immunoglobulin scaffold. Preclinical investigations and pilot clinical data have demonstrated that Affibody molecules provide high contrast imaging of tumor-associated molecular targets shortly after injection. The use of cysteine-containing peptide-based chelators at the C-terminus of recombinant Affibody molecules enabled site-specific labeling with the radionuclide 99mTc. Earlier studies have demonstrated that position, composition and the order of amino acids in peptide-based chelators influence labeling stability, cellular processing and biodistribution of Affibody molecules. To investigate the influence of the amino acid order, a series of anti-HER2 Affibody molecules, containing GSGC, GEGC and GKGC chelators have been prepared and characterized. The affinity to HER2, cellular processing of 99mTc-labeled Affibody molecules and their biodistribution were investigated. These properties were compared with that of the previously studied 99mTc-labeled Affibody molecules containing GGSC, GGEC and GGKC chelators. All variants displayed picomolar affinities to HER2. The substitution of a single amino acid in the chelator had an appreciable influence on the cellular processing of 99mTc. The biodistribution of all 99mTc-labeled Affibody molecules was in general comparable, with the main difference in uptake and retention of radioactivity in excretory organs. The hepatic accumulation of radioactivity was higher for the lysine-containing chelators and the renal retention of 99mTc was significantly affected by the amino acid composition of chelators. The order of amino acids influenced renal uptake of some conjugates at 1 h after injection, but the difference decreased at later time points. Such information can be helpful for the development of other scaffold protein-based imaging and therapeutic radiolabeled conjugates.

  11. Preparation of Polysulfone-supported Phosphoramidic Acid Type Chelate Membrane and Its Sorption Properties for Ag+

    Institute of Scientific and Technical Information of China (English)

    WANG Bing; CUI Yong-fang; DU Qi-yun; PEI Guang-ling

    2002-01-01

    A blending chelate filter membrane with high chelate capacity for Ag+ has been prepared by blending of phosphoramidic acid resin and polysulfone. The major parameters influencing structure of the chelate filter membranes such as the blending ratio, phosphoramidic acid resin grain size and temperature of casting solution have been studied. The relationship among the chelate amount of Ag+, pH value, Ag+ concentration and phosphoramidic acid resin grain diameter were examined. The chelate filter membrane had a capacity of1438μg/cm2 for Ag+ under appropriate conditions.Sorption isotherm of Ag + could be expressed with the Freundlich sorption model. The dynamic chelate experiments proved that the sorption and desorption of membranes could be realized simultaneously for Ag+.

  12. CCCCC pentadentate chelates with planar Möbius aromaticity and unique properties

    Science.gov (United States)

    Zhu, Congqing; Yang, Caixia; Wang, Yongheng; Lin, Gan; Yang, Yuhui; Wang, Xiaoyong; Zhu, Jun; Chen, Xiaoyuan; Lu, Xin; Liu, Gang; Xia, Haiping

    2016-01-01

    The coordinating atoms in polydentate chelates are primarily heteroatoms. We present the first examples of pentadentate chelates with all binding atoms of the chelating agent being carbon atoms, denoted as CCCCC chelates. Having up to five metal-carbon bonds in the equatorial plane has not been previously observed in transition metal chemistry. Density functional theory calculations showed that the planar metallacycle has extended Craig-Möbius aromaticity arising from 12-center–12-electron dπ-pπ π-conjugation. These planar chelates have broad absorption in the ultraviolet-visible–near-infrared region and, thus, notable photothermal performance upon irradiation by an 808-nm laser, indicating that these chelates have potential applications in photothermal therapy. The combination of facile synthesis, high stability, and broad absorption of these complexes could make the polydentate carbon chain a novel building block in coordination chemistry. PMID:27574707

  13. A Review on Iron Chelators in Treatment of Iron Overload Syndromes

    Science.gov (United States)

    Mobarra, Naser; Shanaki, Mehrnoosh; Ehteram, Hassan; Nasiri, Hajar; Sahmani, Mehdi; Saeidi, Mohsen; Goudarzi, Mehdi; Pourkarim, Hoda; Azad, Mehdi

    2016-01-01

    Iron chelation therapy is used to reduce iron overload development due to its deposition in various organs such as liver and heart after regular transfusion. In this review, different iron chelators implicated in treatment of iron overload in various clinical conditions have been evaluated using more up-to-date studies focusing on these therapeutic agents. Deferoxamine, Deferiprone and Deferasirox are the most important specific US FDA-approved iron chelators. Each of these chelators has their own advantages and disadvantages, various target diseases, levels of deposited iron and clinical symptoms of the afflicted patients which may affect their selection as the best modality. Taken together, in many clinical disorders, choosing a standard chelator does not have an accurate index which requires further clarifications. The aim of this review is to introduce and compare the different iron chelators regarding their advantages and disadvantages, usage dose and specific applications. PMID:27928480

  14. Alpha-Tocopherol Alters Transcription Activities that Modulates Tumor Necrosis Factor Alpha (TNF-α) Induced Inflammatory Response in Bovine Cells.

    Science.gov (United States)

    Li, Cong-Jun; Li, Robert W; Kahl, Stanislaw; Elsasser, Theodore H

    2012-01-01

    To further investigate the potential role of α-tocopherol in maintaining immuno-homeostasis in bovine cells (Madin-Darby bovine kidney epithelial cell line), we undertook in vitro experiments using recombinant TNF-α as an immuno-stimulant to simulate inflammation response in cells with or without α-tocopherol pre-treatment. Using microarray global-profiling and IPA (Ingenuity Pathways Analysis, Ingenuity(®) Systems, http://www.ingenuity.com) data analysis on TNF-α-induced gene perturbation in those cells, we focused on determining whether α-tocopherol treatment of normal bovine cells in a standard cell culture condition can modify cell's immune response induced by TNF-α challenge. When three datasets were filtered and compared using IPA, there were a total of 1750 genes in all three datasets for comparison, 97 genes were common in all three sets; 615 genes were common in at least two datasets; there were 261 genes unique in TNF-α challenge, 399 genes were unique in α-tocopherol treatment, and 378 genes were unique in the α-tocopherol plus TNF-α treatment. TNF-α challenge induced significant change in gene expression. Many of those genes induced by TNF-α are related to the cells immune and inflammatory responses. The results of IPA data analysis showed that α-tocopherol-pretreatment of cells modulated cell's response to TNF-α challenge. In most of the canonical pathways, α-tocopherol pretreatment showed the antagonistic effect against the TNF-α-induced pro-inflammatory responses. We concluded that α-tocopherol pre-treatment has a significant antagonistic effect that modulates the cell's response to the TNF-α challenge by altering the gene expression activities of some important signaling molecules.

  15. Investigation of a potential macromolecular MRI contrast agent prepared from PPI (G = 2, polypropyleneimine, generation 2) dendrimer bifunctional chelates

    Science.gov (United States)

    Wang, Jianxin Steven

    The long-term objective is to develop magnetic resonance (MR) contrast agents that actively and passively target tumors for diagnosis and therapy. Many diagnostic imaging techniques for cancer lack specificity. A dendrimer based magnetic resonance imaging contrast agent has been developed with large proton relaxation enhancements and high molecular relaxivities. A new type of linear dendrimer based MRI contrast agent that is built from the polypropyleneimine and polyamidoamine dendrimers in which free amines have been conjugated to the chelate DTPA, which further formed the complex with Gadolinium (Gd) was studied. The specific research goals were to test the hypothesis that a linear chelate with macromolecular agents can be used in vitro and in vivo. This work successfully examined the adequacy and viability of the application for this agent in vitro and in vivo. A small animal whole body counter was designed and constructed to allow us to monitor biodistribution and kinetic mechanisms using a radioisotope labeled complex. The procedures of metal labeling, separation and purification have been established from this work. A biodistribution study has been performed using radioisotope induced organ/tissue counting and gamma camera imaging. The ratio of percentage of injected dose per gram organ/tissue for kidney and liver is 3.71 from whole body counter and 3.77 from the gamma camera. The results suggested that retention of Gd (III) is too high and a more kinetically stable chelate should be developed. The pharmacokinetic was evaluated in the whole animal model with the whole body clearance, and a kinetics model was developed. The pharmacokinetic results showed a bi-exponential decay in the animal model with two component excretion constants 1.43e(-5) and 0.0038511, which give half-lives of 3 hours and 33.6 days, respectively. Magnetic resonance imaging of this complex resulted in a 52% contrast enhancement in the rat kidney following the agents' administration in

  16. Complexation and Antimicrobial Studies of Some Divalent Metal Chelates

    Directory of Open Access Journals (Sweden)

    Suparna Ghosh

    2010-01-01

    Full Text Available Metal chelates of Ni(II and Cu(II with the ligand 5-acetamido-1,3,4-thiadiazole-2-sulphonamide have been synthesized. The isolated compounds have been characterized by elemental analysis, molar conductivity, magnetic moment, electronic and IR spectral studies. The analytical data reflects the metal to ligand stoichiometry to be 1: 2. The conductivity data of the complexes also suggests their non-electrolytic nature. The stability constants and free energy change for the complexes have been calculated.. Ligand and their complexes have been screened for their biological activity and the data show good activity of these complexes and ligands.

  17. Encapsulation and retention of chelated-copper inside hydrophobic nanoparticles

    DEFF Research Database (Denmark)

    Hervella, Pablo; Ortiz, Elisa Parra; Needham, David

    2016-01-01

    MOTIVATION: In the field of imaging, (18)F-fluorodeoxyglucose (FDG) PET imaging allows evaluation of glucose metabolism and is the most widely used imaging agent clinically for metastatic cancer. While it can certainly detect the metastatic disease, in order to provide a more fully "individualized...... Trioleate (Triolein) with copper using the hydrophobic chelator Octaethyl porphyrin (OEP). RESEARCH PLAN AND METHODS: The research plan for this study was to (1) Formulate nanoparticles and control nanoparticle size using a modification of the solvent injection technique, named fast ethanol injection; (2...

  18. Combined Chelation Therapy with Deferasirox and Deferoxamine in Thalassemia

    OpenAIRE

    Lal, Ashutosh; Porter, John; Sweeters, Nancy; Ng, Vivian; Evans, Patricia; Neumayr, Lynne; Kurio, Gregory; Harmatz, Paul; Vichinsky, Elliott

    2012-01-01

    Iron overload is the primary cause of mortality and morbidity in thalassemia major despite advances in chelation therapy. We performed a pilot clinical trial to evaluate the safety and efficacy of combined therapy with deferasirox (DFX, 20-30 mg/kg daily) and deferoxamine (DFO, 35-50 mg/kg on 3-7 days/week) in 22 patients with persistent iron overload or organ damage. In the 18 subjects completing 12 months of therapy, median liver iron concentration decreased by 31% from 17.4 mg/g (range 3.9...

  19. Synthesis and Adsorption Properties of Polystyrene-supported Chelating Resins Containing Heterocyclic Functional Groups

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A series of new chelating resins with incorporating heterocyclic functional groups:pyridine, thiadizole, benzothizole into macroporous chloromethylated polystyrene were synthesized via hydrophilic spacer arm of polyethylene glycol co ntaining sulfur. These chelating resins were found to show high adsorption capacities for Ag+, Hg2+, Au3+ and Pd2+, and the presence of spacer arm can enhance adsorption ability due to increase the hydrophilicity of the chelating resins.

  20. Alkenes as Chelating Groups in Diastereoselective Additions of Organometallics to Ketones.

    Science.gov (United States)

    Raffier, Ludovic; Gutierrez, Osvaldo; Stanton, Gretchen R; Kozlowski, Marisa C; Walsh, Patrick J

    2014-10-13

    Alkenes have been discovered to be chelating groups to Zn(II), enforcing highly stereoselective additions of organozincs to β,γ-unsaturated ketones. (1)H NMR studies and DFT calculations provide support for this surprising chelation mode. The results expand the range of coordinating groups for chelation-controlled carbonyl additions from heteroatom Lewis bases to simple C-C double bonds, broadening the 60 year old paradigm.

  1. Performance of Nonmigratory Iron Chelating Active Packaging Materials in Viscous Model Food Systems.

    Science.gov (United States)

    Roman, Maxine J; Decker, Eric A; Goddard, Julie M

    2015-09-01

    Many packaged food products undergo quality deterioration due to iron promoted oxidative reactions. Recently, we have developed a nonmigratory iron chelating active packaging material that represents a novel approach to inhibit oxidation of foods while addressing consumer demands for "cleanˮ labels. A challenge to the field of nonmigratory active packaging is ensuring that surface-immobilized active agents retain activity in a true food system despite diffusional limitations. Yet, the relationship between food viscosity and nonmigratory active packaging activity retention has never been characterized. The objective of this study was to investigate the influence of food viscosity on iron chelation by a nonmigratory iron chelating active packaging material. Methyl cellulose was added to aqueous buffered iron solutions to yield model systems with viscosities ranging from ∼1 to ∼10(5)  mPa·s, representing viscosities ranging from beverage to mayonnaise. Iron chelation was quantified by material-bound iron content using colorimetry and inductively coupled plasma-optical emission spectrometry (ICP-OES).  Maximum iron chelation was reached in solutions up to viscosity ∼10(2)  mPa·s. In more viscous solutions (up to ∼10(4)  mPa·s), there was a significant decrease in iron chelating capacity (P influence of different food hydrocolloids on the performance of nonmigratory iron chelating active packaging was characterized. Methyl cellulose and carrageenan did not compete with the material for specific iron chelation (P > 0.05). Materials retained 32% to 45% chelating capacity when in contact with competitively chelating hydrocolloids guar gum, locust bean gum, and xanthan gum. This work demonstrates the potential application of nonmigratory iron chelating active packaging in liquid and semi-liquid foods to allow for the removal of synthetic chelators, while maintaining food quality.

  2. Wilms Tumor

    Science.gov (United States)

    ... Wilms tumor is 1 pound at diagnosis. Some children also may have nausea, stomach pain, high blood pressure (hypertension), blood in the urine, loss of appetite, or fever. Even though Wilms tumors often are ...

  3. Hypothalamic tumor

    Science.gov (United States)

    Complications of brain surgery may include: Bleeding Brain damage Death (rarely) Infection Seizures can result from the tumor or from any surgical procedure on the brain. Hydrocephalus can occur with some tumors and ...

  4. Goat Milk Yoghurt by Using Lacto-B Culture Modulates the Production of Tumor Necrosis Factor-Alpha and Interleukin-10 in Malnourished Rats

    Science.gov (United States)

    Kandarina, BJ. Istiti; Kusuma, Sari; Trisnasari, Yunita Dewi

    2014-01-01

    Total spleen lymphocytes, lymphocyte proliferation, tumor necrosis factor-α (TNF-α), and interleukin-10 (IL-10) in spleen lymphocyte culture were studied in malnourished Wistar rats fed with goat milk yoghurt. Malnourished rats were created by using standard feed restriction as much as 50% of normal rats for 21 d. Goat milk yoghurt containing three types of microorganism e.g., Lactobacillus acidophilus, Sterptococcus thermophilus and Bifidobacterium longum derived from Lacto-B culture in powder form. After 21 d, the rats continued to receive restricted feeding and supplemented with goat milk yoghurt for 7 d. Total splenocytes were counted by hemocytometer. Splenocytes proliferation was expressed as stimulation index, whereas the TNF-α and IL-10 of spleen lymphocyte culture were measured by ELISA technique. The total number of splenocytes and stimulation index of splenocytes in moderate malnourished and normal rats supplemented with goat milk yoghurt was not significantly different. The level of TNF-α in the rat supplemented with goat milk yoghurt was lower (pyoghurt was higher (pyoghurt supplementation in malnourished rats could decrease TNF-α as a representation of the proinflammatory cytokine, while it increases IL-10 as a representation of the anti-inflammatory cytokine. PMID:26760750

  5. Silibinin modulates caudal-type homeobox transcription factor (CDX2), an intestine specific tumor suppressor to abrogate colon cancer in experimental rats.

    Science.gov (United States)

    Sangeetha, N; Nalini, N

    2015-01-01

    To authenticate the colon cancer preventive potential of silibinin, the efficacy of silibinin needs to be tested by evaluating an organ-specific biomarker. The aim of this study was to evaluate the impact of silibinin on the colonic expression of the caudal-type homeobox transcription factor (CDX2) an intestine specific tumor suppressor gene and its downstream targets in the colon of rats challenged with 1,2 dimethyl hydrazine (DMH). Rats of groups 1 and 2 were treated as control and silibinin control. Rats under groups 3 and 4 were given DMH (20 mg/kg body weight (b.w.) subcutaneously) once a week for 15 consecutive weeks from the 4th week of the experimental period. In addition, group 4 rats alone were treated with silibinin (50 mg/kg b.w. per os) everyday throughout the study period of 32 weeks. Histological investigation and messenger RNA and protein expression studies were performed in the colonic tissues of experimental rats. Findings of the study revealed that DMH administration significantly decreased the expression of CDX2 and Guanylyl cyclase C (GCC) in the colon of experimental rats. Further the decreased levels of CDX2 protein, colonic mucin content, and increased number of mast cells in the colon of DMH alone-administered rats reflects the onset of carcinogenesis. The pathological changes caused due to CDX2 suppression were attenuated by silibinin supplementation. © The Author(s) 2014.

  6. Effect of metal chelators on the oxidative stability of model wine.

    Science.gov (United States)

    Kreitman, Gal Y; Cantu, Annegret; Waterhouse, Andrew L; Elias, Ryan J

    2013-10-02

    Oxidation is a major problem with respect to wine quality, and winemakers have few tools at their disposal to control it. In this study, the effect of exogenous Fe(II) (bipyridine; Ferrozine) and Fe(III) chelators (ethylenediaminetetraacetic acid, EDTA; phytic acid) on nonenzymatic wine oxidation was examined. The ability of these chelators to affect the formation of 1-hydroxyethyl radicals (1-HER) and acetaldehyde was measured using a spin trapping technique with electron paramagnetic resonance (EPR) and by HPLC-PDA, respectively. The chelators were then investigated for their ability to prevent the oxidative loss of an important aroma-active thiol, 3-mercaptohexan-1-ol (3MH). The Fe(II)-specific chelators were more effective than the Fe(III) chelators with respect to 1-HER inhibition during the early stages of oxidation and significantly reduced oxidation markers compared to a control during the study. However, although the addition of Fe(III) chelators was less effective or even showed an initial pro-oxidant activity, the Fe(III) chelators proved to be more effective antioxidants compared to Fe(II) chelators after 8 days of accelerated oxidation. In addition, it is shown for the first time that Fe(II) and Fe(III) chelators can significantly inhibit the oxidative loss of 3MH in model wine.

  7. Urogenital tumors

    Energy Technology Data Exchange (ETDEWEB)

    Weller, R.E.

    1994-03-01

    An overview is provided for veterinary care of urogenital tumors in companion animals, especially the dog. Neoplasms discussed include tumors of the kidney, urinary bladder, prostate, testis, ovary, vagina, vulva and the canine transmissible venereal tumor. Topics addressed include description, diagnosis and treatment.

  8. Brain Tumors

    Science.gov (United States)

    A brain tumor is a growth of abnormal cells in the tissues of the brain. Brain tumors can be benign, with no cancer cells, ... cancer cells that grow quickly. Some are primary brain tumors, which start in the brain. Others are ...

  9. Odontogenic Tumors

    OpenAIRE

    TAHSİNOĞLU, Melih

    2013-01-01

    DefinitionThe neoplasms that consist of the cells considered specialized for odontogenesis, and their product (dentin, enamel, cementum) are called odontogenic tumors.ClassificationTo initiate odontogenesis, epithelium is a must. Same rule holds for the odontogenic tumors: without odontogenic epithelium, odontogenic tumors cannot be, without the induction of odontogenic epithelium odontogenic mesenchyme cannot develop.

  10. Selective separation of indium by iminodiacetic acid chelating resin

    Energy Technology Data Exchange (ETDEWEB)

    Fortes, M.C.B.; Benedetto, J.S. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Martins, A.H. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Metalurgica e de Materiais]. E-mail: ahmartin@demet.ufmg.br

    2007-04-15

    - Indium can be recovered by treating residues, flue dusts, slags, and metallic intermediates in zinc smelting. This paper investigates the adsorption characteristics of indium and iron on an iminodiacetic acid chelating resin, Amberlite{sup R} IRC748 (Rohm and Haas Co.-USA). High concentrations of iron are always present in the aqueous feed solution of indium recovery. In addition, the chemical behaviour of iron in adsorptive systems is similar to that of indium. The metal concentrations in the aqueous solution were based on typical indium sulfate leach liquor obtained from zinc hydrometallurgical processing in a Brazilian plant. The ionic adsorption experiments were carried out by the continuous column method. Amberlite{sup R} IRC748 resin had a high affinity for indium under acidic conditions. Indium ions adsorbed onto the polymeric resin were eluted with a 0.5 mol/dm{sup 3} sulphuric acid solution passed through the resin bed in the column. 99.5% pure indium sulfate aqueous solution was obtained using the iminodiacetic acid chelating resin Amberlite{sup R} IRC748. (author)

  11. Chelating polymeric beads as potential therapeutics for Wilson's disease.

    Science.gov (United States)

    Mattová, Jana; Poučková, Pavla; Kučka, Jan; Skodová, Michaela; Vetrík, Miroslav; Stěpánek, Petr; Urbánek, Petr; Petřík, Miloš; Nový, Zbyněk; Hrubý, Martin

    2014-10-01

    Wilson's disease is a genetic disorder caused by a malfunction of ATPase 7B that leads to high accumulation of copper in the organism and consequent toxic effects. We propose a gentle therapy to eliminate the excessive copper content with oral administration of insoluble non-resorbable polymer sorbents containing selective chelating groups for copper(II). Polymeric beads with the chelating agents triethylenetetramine, N,N-di(2-pyridylmethyl)amine, and 8-hydroxyquinoline (8HQB) were investigated. In a preliminary copper uptake experiment, we found that 8HQB significantly reduced copper uptake (using copper-64 as a radiotracer) after oral administration in Wistar rats. Furthermore, we measured organ radioactivity in rats to demonstrate that 8HQB radiolabelled with iodine-125 is not absorbed from the gastrointestinal tract after oral administration. Non-resorbability and the blockade of copper uptake were also confirmed with small animal imaging (PET/CT) in mice. In a long-term experiment with Wistar rats fed a diet containing the polymers, we have found that there were no signs of polymer toxicity and the addition of polymers to the diet led to a significant reduction in the copper contents in the kidneys, brains, and livers of the rats. We have shown that polymers containing specific ligands could potentially be novel therapeutics for Wilson's disease.

  12. Functional characterization of the chloroplast ferric chelate oxidoreductase enzyme.

    Science.gov (United States)

    Solti, Adám; Müller, Brigitta; Czech, Viktória; Sárvári, Éva; Fodor, Ferenc

    2014-05-01

    Iron (Fe) has an essential role in the biosynthesis of chlorophylls and redox cofactors, and thus chloroplast iron uptake is a process of special importance. The chloroplast ferric chelate oxidoreductase (cFRO) has a crucial role in this process but it is poorly characterized. To study the localization and mechanism of action of cFRO, sugar beet (Beta vulgaris cv Orbis) chloroplast envelope fractions were isolated by gradient ultracentrifugation, and their purity was tested by western blotting against different marker proteins. The ferric chelate reductase (FCR) activity of envelope fractions was studied in the presence of NAD(P)H (reductants) and FAD coenzymes. Reduction of Fe(III)-ethylenediaminetetraacetic acid was monitored spectrophotometrically by the Fe(II)-bathophenanthroline disulfonate complex formation. FCR activity, that is production of free Fe(II) for Fe uptake, showed biphasic saturation kinetics, and was clearly associated only to chloroplast inner envelope (cIE) vesicles. The reaction rate was > 2.5 times higher with NADPH than with NADH, which indicates the natural coenzyme preference of cFRO activity and its dependence on photosynthesis. FCR activity of cIE vesicles isolated from Fe-deficient plants also showed clear biphasic kinetics, where the KM of the low affinity component was elevated, and thus this component was down-regulated.

  13. Magnetic memory effect in chelated zero valent iron nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, N., E-mail: nilotpal@vit.ac.in [School of Advanced Sciences, VIT University, Vellore 632014, Tamilnadu (India); Mandal, B.K.; Mohan Kumar, K. [School of Advanced Sciences, VIT University, Vellore 632014, Tamilnadu (India)

    2012-11-15

    We report the study of nonequilibrium magnetic behavior of air stable zero valent iron nanoparticles synthesized in presence of N-cetyl-N,N,N-trimethyl ammonium bromide chelating agent. X-ray photoelectron spectroscopy study has suggested the presence of iron oxides on nZVI surfaces. Zero-field-cooled and field-cooled magnetization measurements have been carried out at 20-300 K and 100 Oe. For field-cooled measurements with 1 h stops at 200, 100 and 50 K when compared with the warming cycle, we found the signature of magnetic memory effect. A study of magnetic relaxation at the same temperatures shows the existence of two relaxation times. - Highlights: Black-Right-Pointing-Pointer Zero valent iron nanoparticles are synthesized with CTAB chelating agent. Black-Right-Pointing-Pointer X-ray photoelectron spectroscopy study has shown the presence of iron oxide. Black-Right-Pointing-Pointer Magnetization measurement has displayed signature of magnetic memory. Black-Right-Pointing-Pointer Magnetization measurement with time suggested presence of 2 relaxation times.

  14. Deferasirox, an oral chelator in the treatment of iron overload

    Directory of Open Access Journals (Sweden)

    I. Portioli

    2013-05-01

    Full Text Available BACKGROUND Deferasirox is a once-daily oral iron chelator developed for treating iron overload complicating long-term transfusion therapy in patients with diseases such as beta-thalassemia and myelodysplastic syndromes. Iron overload can damage the liver, pancreas and the heart. Deferoxamine, the only other drug approved for iron chelation, can prevent these effects but requires parenteral administration. Deferasirox has been approved after a one-year, open-label trial in patients ≥ 2 years old with beta-thalassemia and transfusional emosiderosis randomized to once-daily oral 5, 10, 20, 30 mg/kg/day in comparison of subcutaneous deferoxamine 20-60 mg/mg/kg/day x 5/week. CONCLUSIONS Deferasirox 20-30 mg/kg/day produced reductions in liver iron concentration (LIC similar to those with deferoxamine. Adverse effect of deferasirox (increases of serum creatinine and aminotransferases, including the gastrointestinal ones, are similar but more frequent than those occurring with deferoxamine. Information is lacking on the effects of deferasirox on cardiac iron and cardiac dysfunction which is the most serious complication of transfusional iron overload.

  15. Selective separation of indium by iminodiacetic acid chelating resin

    Directory of Open Access Journals (Sweden)

    M. C. B. Fortes

    2007-06-01

    Full Text Available Indium can be recovered by treating residues, flue dusts, slags, and metallic intermediates in zinc smelting. This paper investigates the adsorption characteristics of indium and iron on an iminodiacetic acid chelating resin, Amberlite®IRC748 (Rohm and Haas Co.-USA. High concentrations of iron are always present in the aqueous feed solution of indium recovery. In addition, the chemical behaviour of iron in adsorptive systems is similar to that of indium. The metal concentrations in the aqueous solution were based on typical indium sulfate leach liquor obtained from zinc hydrometallurgical processing in a Brazilian plant. The ionic adsorption experiments were carried out by the continuous column method. Amberlite®IRC748 resin had a high affinity for indium under acidic conditions. Indium ions adsorbed onto the polymeric resin were eluted with a 0.5mol/dm³ sulphuric acid solution passed through the resin bed in the column. 99.5% pure indium sulfate aqueous solution was obtained using the iminodiacetic acid chelating resin Amberlite®IRC748.

  16. Phytic acid: an alternative root canal chelating agent.

    Science.gov (United States)

    Nassar, Mohannad; Hiraishi, Noriko; Tamura, Yukihiko; Otsuki, Masayuki; Aoki, Kazuhiro; Tagami, Junji

    2015-02-01

    The objectives of this study were to investigate the effect of phytic acid, inositol hexakisphosphate (IP6), as a final rinse on the surface of instrumented root canals and smear-layered flat dentin surfaces treated with sodium hypochlorite (NaOCl) and to evaluate its effect on the viability and alkaline phosphatase activity of osteoblast-like cells (MC3T3-E1). The universally accepted chelating agent EDTA was used as the control in all conducted experiments. Root canals of human canines were instrumented with rotary files and irrigated with 5% NaOCl, followed by a final rinse of 17% EDTA (1 minute), 1% IP6 (1 minute or 30 seconds), or distilled water. NaOCl-treated flat coronal dentin surfaces were also treated with 17% EDTA (1 minute), 1% IP6 (1 minute or 30 seconds), or distilled water. The presence or absence of smear layer was evaluated with scanning electron microscopy. Cell viability and alkaline phosphatase assays were performed to evaluate the effect of IP6 and EDTA on cultured MC3T3-E1 cells. The results demonstrated the ability of IP6 to remove the smear layer from instrumented root canals and flat coronal dentin surfaces. When compared with EDTA, IP6 was less cytotoxic and did not affect the differentiation of MC3T3-E1 cells. IP6 shows the potential to be an effective and biocompatible chelating agent. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  17. Multivalent chelators for spatially and temporally controlled protein functionalization.

    Science.gov (United States)

    You, Changjiang; Piehler, Jacob

    2014-05-01

    Site-specific protein modification-e.g. for immobilization or labelling-is a key prerequisite for numerous bioanalytical applications. Although modification by use of short peptide tags is particularly attractive, efficient and bio-orthogonal systems are still lacking. Here, we review the application of multivalent chelators (MCH) for high-affinity yet reversible recognition of oligohistidine (His)-tagged proteins. MCH are based on multiple nitrilotriacetic acid (NTA) moieties grafted on to molecular scaffolds suitable for conjugation to surfaces, probes or other biomolecules. Reversible interaction with the His-tag is mediated via transition metal ions chelated by the NTA moieties. The small size and biochemical compatibility of these recognition units and the possibility of rapid dissociation of the interaction with His-tagged proteins despite sub-nanomolar binding affinity, enable distinct and versatile handling and modification of recombinant proteins. In this review, we briefly introduce the key principles and features of MCH-His-tag interactions and recapitulate the broad spectrum of bioanalytical applications with a focus on quantitative protein interaction analysis on micro or nano-patterned solid surfaces and specific protein labelling in living cells.

  18. Neurodegenerative diseases and therapeutic strategies using iron chelators.

    Science.gov (United States)

    Ward, Roberta J; Dexter, David T; Crichton, Robert R

    2015-01-01

    This review will summarise the current state of our knowledge concerning the involvement of iron in various neurological diseases and the potential of therapy with iron chelators to retard the progression of the disease. We first discuss briefly the role of metal ions in brain function before outlining the way by which transition metal ions, such as iron and copper, can initiate neurodegeneration through the generation of reactive oxygen and nitrogen species. This results in protein misfolding, amyloid production and formation of insoluble protein aggregates which are contained within inclusion bodies. This will activate microglia leading to neuroinflammation. Neuroinflammation plays an important role in the progression of the neurodegenerative diseases, with activated microglia releasing pro-inflammatory cytokines leading to cellular cell loss. The evidence for metal involvement in Parkinson's and Alzheimer's disease as well as Friedreich's ataxia and multiple sclerosis will be presented. Preliminary results from trials of iron chelation therapy in these neurodegenerative diseases will be reviewed. Copyright © 2015 Elsevier GmbH. All rights reserved.

  19. Inflammatory microenvironment and tumor necrosis factor alpha as modulators of periostin and CCN2 expression in human non-healing skin wounds and dermal fibroblasts.

    Science.gov (United States)

    Elliott, Christopher G; Forbes, Thomas L; Leask, Andrew; Hamilton, Douglas W

    2015-04-01

    Non-healing skin wounds remain a significant clinical burden, and in recent years, the regulatory role of matricellular proteins in skin healing has received significant attention. Periostin and CCN2 are both upregulated at day 3 post-wounding in murine skin, where they regulate aspects of the proliferative phase of repair including mesenchymal cell infiltration and myofibroblast differentiation. In this study, we examined 1) the wound phenotype and expression patterns of periostin and CCN2 in non-healing skin wounds in humans and 2) the regulation of their expression in wound fibroblasts by tumor necrosis factor α (TNFα) and transforming growth factor-β1 (TGF-β1). Chronic skin wounds had a pro-inflammatory phenotype, characterized by macrophage infiltration, TNFα immunoreactivity, and neutrophil infiltration. Periostin, but not CCN2, was significantly suppressed in non-healing wound edge tissue at the mRNA and protein level compared with non-involved skin. In vitro, human wound edge fibroblasts populations were still able to proliferate and contract collagen gels. Compared to cells from non-involved skin, periostin and α-SMA mRNA levels increased significantly in the presence of TGF-β1 in wound cells and were significantly decreased by TNFα, but not those of Col1A2 or CCN2. In the presence of both TGF-β1 and TNFα, periostin and α-SMA mRNA levels were significantly reduced compared to TGF-β1 treated wound cells. Effects of TGF-β1 and TNFα on gene expression were also more pronounced in wound edge cells compared to non-involved fibroblasts. We conclude that variations in the expression of periostin and CCN2, are related to an inflammatory microenvironment and the presence of TNFα in human chronic wounds. Copyright © 2015. Published by Elsevier B.V.

  20. Sp100 as a potent tumor suppressor: accelerated senescence and rapid malignant transformation of human fibroblasts through modulation of an embryonic stem cell program.

    Science.gov (United States)

    Negorev, Dmitri G; Vladimirova, Olga V; Kossenkov, Andrew V; Nikonova, Elena V; Demarest, Renee M; Capobianco, Anthony J; Showe, Michael K; Rauscher, Frank J; Showe, Louise C; Maul, Gerd G

    2010-12-01

    Identifying the functions of proteins, which associate with specific subnuclear structures, is critical to understanding eukaryotic nuclear dynamics. Sp100 is a prototypical protein of ND10/PML nuclear bodies, which colocalizes with Daxx and the proto-oncogenic PML. Sp100 isoforms contain SAND, PHD, Bromo, and HMG domains and are highly sumoylated, all characteristics suggestive of a role in chromatin-mediated gene regulation. A role for Sp100 in oncogenesis has not been defined previously. Using selective Sp100 isoform-knockdown approaches, we show that normal human diploid fibroblasts with reduced Sp100 levels rapidly senesce. Subsequently, small rapidly dividing Sp100 minus cells emerge from the senescing fibroblasts and are found to be highly tumorigenic in nude mice. The derivation of these tumorigenic cells from the parental fibroblasts is confirmed by microsatellite analysis. The small rapidly dividing Sp100 minus cells now also lack ND10/PML bodies, and exhibit genomic instability and p53 cytoplasmic sequestration. They have also activated MYC, RAS, and TERT pathways and express mesenchymal to epithelial transdifferentiation (MET) markers. Reintroduction of expression of only the Sp100A isoform is sufficient to maintain senescence and to inhibit emergence of the highly tumorigenic cells. Global transcriptome studies, quantitative PCR, and protein studies, as well as immunolocalization studies during the course of the transformation, reveal that a transient expression of stem cell markers precedes the malignant transformation. These results identify a role for Sp100 as a tumor suppressor in addition to its role in maintaining ND10/PML bodies and in the epigenetic regulation of gene expression.

  1. Overexpression of Rap-1A indicates a poor prognosis for oral cavity squamous cell carcinoma and promotes tumor cell invasion via Aurora-A modulation.

    Science.gov (United States)

    Chen, Chang-Han; Chuang, Hui-Ching; Huang, Chao-Cheng; Fang, Fu-Min; Huang, Hsuan-Ying; Tsai, Hsin-Ting; Su, Li-Jen; Shiu, Li-Yen; Leu, Steve; Chien, Chih-Yen

    2013-02-01

    The functions of Rap-1A in oral carcinogenesis are largely unexplored. In this study, we examined the expression of Rap-1A at different malignant stages of oral cavity squamous cell carcinoma (OCSCC). Semiquantitative RT-PCR, quantitative RT-PCR, and Western blotting were used to evaluate Rap-1A mRNA and protein expressions, respectively, in paired OCSCC patient specimens. To determine the possible correlation between Rap-1A expression and various clinical characteristics, 256 samples from patients with OCSCC were evaluated by immunohistochemical staining. Strong Rap-1A expression was a significant prognostic marker and predictor of aggressive OCSCC. The overall and disease-specific 5-year survival rates were significantly correlated with strong expression of Rap-1A (P Rap-1A could promote oral cancer cell migration and invasion by Transwell chambers and wound healing assay. Conversely, the suppression of Rap-1A expression using Rap-1A-mediated siRNA was sufficient to decrease cell motility. Furthermore, our data also illustrated that Aurora-A could not only induce mRNA and protein expressions of Rap-1A for enhancing cancer cell motility but also co-localize and form a complex with Rap-1A in the oral cancer cell line. Finally, immunohistochemical staining, indirect immunofluorescence, and Western blotting analysis of human aggressive OCSCC specimens revealed a significantly positive correlation between Rap-1A and Aurora-A expression. Taken together, our results suggest that the Aurora-A/Rap-1A pathway is associated with survival, tumor progression, and metastasis of OCSCC patients. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  2. β3GnT8 plays an important role in CD147 signal transduction as an upstream modulator of MMP production in tumor cells.

    Science.gov (United States)

    Jiang, Zhi; Hu, Shuijun; Hua, Dong; Ni, Jianlong; Xu, Lan; Ge, Yan; Zhou, Yinghui; Cheng, Zhihong; Wu, Shiliang

    2014-09-01

    Aberrant carbohydration by related glycosyl-transferases plays an important role in the progression of cancer. This study focused on the ablity of β-1,3-N-acetyl-glucosaminyltransferase-8 (β3GnT8) to regulate MMP-2 expression through regulation of the CD147 signal transduction pathway in cancer cells. β3GnT8 catalyzes and then extends a polylactosamine chain specifically on β1-6-branched tetraantennary N-glycans. CD147 is a major carrier of β1-6-branched polylactosamine sugars on tumor cells, and the high glycoform of CD147 (HG-CD147) induces matrix metalloproteinase (MMP) production. In the present study, we analyzed β3GnT8 mRNA expression in 6 cancer cell lines (MCF-7, M231, LN229, U87, SGC-7901 and U251). We found that β3GnT8 expression in the LN229, SGC-7901 and U251 cell lines was higher than that in the other cell lines. Therefore, we established β3GnT8-knockdown cell lines derived from the LN229 and SGC-7901 cell lines to examine the level of polylactosamine and CD147 N-glycosylation. In addition, tunicamycin is widely used as an inhibitor of N-linked glycosylation. Hence, various concentrations of tunicamycin were used to treat the cells in order to study its influence on CD147 N-glycosylation and MMP-2 expression. In conclusion, we found that β3GnT8 regulated the level of N-glycans on CD147 and that N-glycosylation of CD147 has an important effect on MMP-2 expression. Our findings suggest that β3GnT8 affects the signal transduction pathway of MMP-2 by altering the N-glycan structure of CD147.

  3. Pomegranate extract demonstrate a selective estrogen receptor modulator profile in human tumor cell lines and in vivo models of estrogen deprivation.

    Science.gov (United States)

    Sreeja, Sreekumar; Santhosh Kumar, Thankayyan R; Lakshmi, Baddireddi S; Sreeja, Sreeharshan

    2012-07-01

    Selective estrogen receptor modulators (SERMs) are estrogen receptor (ER) ligands exhibiting tissue-specific agonistic or antagonistic biocharacter and are used in the hormonal therapy for estrogen-dependent breast cancers. Pomegranate fruit has been shown to exert antiproliferative effects on human breast cancer cells in vitro. In this study, we investigated the tissue-specific estrogenic/antiestrogenic activity of methanol extract of pericarp of pomegranate (PME). PME was evaluated for antiproliferative activity at 20-320 μg/ml on human breast (MCF-7, MDA MB-231) endometrial (HEC-1A), cervical (SiHa, HeLa), ovarian (SKOV3) carcinoma and normal breast fibroblast (MCF-10A) cells. Competitive radioactive binding studies were carried out to ascertain whether PME interacts with ER. The reporter gene assay measured the estrogenic/antiestrogenic activity of PME in MCF-7 and MDA MB-231 cells transiently transfected with plasmids coding estrogen response elements with a reporter gene (pG5-ERE-luc) and wild-type ERα (hEG0-ER). PME inhibited the binding of [³H] estradiol to ER and suppressed the growth and proliferation of ER-positive breast cancer cells. PME binds ER and down-regulated the transcription of estrogen-responsive reporter gene transfected into breast cancer cells. The expressions of selected estrogen-responsive genes were down-regulated by PME. Unlike 17β-estradiol [1 mg/kg body weight (BW)] and tamoxifen (10 mg/kg BW), PME (50 and 100 mg/kg BW) did not increase the uterine weight and proliferation in ovariectomized mice and its cardioprotective effects were comparable to that of 17β-estradiol. In conclusion, our findings suggest that PME displays a SERM profile and may have the potential for prevention of estrogen-dependent breast cancers with beneficial effects in other hormone-dependent tissues.

  4. Synthesis, Characterization, and in Vitro Evaluation of a New TSPO-Selective Bifunctional Chelate Ligand.

    Science.gov (United States)

    Denora, Nunzio; Margiotta, Nicola; Laquintana, Valentino; Lopedota, Angela; Cutrignelli, Annalisa; Losacco, Maurizio; Franco, Massimo; Natile, Giovanni

    2014-06-12

    The 18-kDa translocator protein (TSPO) is overexpressed in many types of cancers and is also abundant in activated microglial cells occurring in inflammatory neurodegenerative diseases. Thus, TSPO has become an extremely attractive subcellular target not only for imaging disease states overexpressing this protein, but also for a selective mitochondrial drug delivery. In this work we report the synthesis, the characterization, and the in vitro evaluation of a new TSPO-selective ligand, 2-(8-(2-(bis(pyridin-2-yl)methyl)amino)acetamido)-2-(4-chlorophenyl)H-imidazo[1,2-a]pyridin-3-yl)-N,N-dipropylacetamide (CB256), which fulfils the requirements for a bifunctional chelate approach. The goal was to provide a new TSPO ligand that could be used further to prepare coordination complexes of a metallo drug to be used in diagnosis and therapy. However, the ligand itself proved to be a potent tumor cell growth inhibitor and DNA double-strand breaker.

  5. Biomolecule conjugation strategy using novel water-soluble phosphine-based chelating agents

    Science.gov (United States)

    Katti, Kattesh V.; Gali, Hariprasad; Volkert, Wynn A.

    2004-08-24

    This invention describes a novel strategy to produce phosphine-functionalized biomolecules (e.g. peptides or proteins) for potential use in the design and development of site-specific radiopharmaceuticals for diagnosis or therapy of specific cancers. Hydrophilic alkyl phosphines, in general, tend to be oxidatively unstable. Therefore, incorporation of such phosphine functionalities on peptide (and other biomolecule) backbones, without oxidizing the P.sup.III centers, is difficult. In this context this discovery reports on a new technology by which phosphines, in the form of bifunctional chelating agents, can be directly incorporated on biomolecular backbones using manual synthetic or solid phase peptide synthesis methodologies. The superior ligating abilities of phosphine ligands, with various diagnostically (e.g. TC-99m) or therapeutically (e.g. Re186/188, Rh-105, Au-199) useful radiometals, coupled with the findings that the resulting complexes demonstrate high in vivo stability makes this approach useful in the development of radiolabeled biomolecules for applications in the design of tumor-specific radiopharmaceuticals.

  6. Chelator-Free Labeling of Layered Double Hydroxide Nanoparticles for in Vivo PET Imaging

    Science.gov (United States)

    Shi, Sixiang; Fliss, Brianne C.; Gu, Zi; Zhu, Yian; Hong, Hao; Valdovinos, Hector F.; Hernandez, Reinier; Goel, Shreya; Luo, Haiming; Chen, Feng; Barnhart, Todd E.; Nickles, Robert J.; Xu, Zhi Ping; Cai, Weibo

    2015-11-01

    Layered double hydroxide (LDH) nanomaterial has emerged as a novel delivery agent for biomedical applications due to its unique structure and properties. However, in vivo positron emission tomography (PET) imaging with LDH nanoparticles has not been achieved. The aim of this study is to explore chelator-free labeling of LDH nanoparticles with radioisotopes for in vivo PET imaging. Bivalent cation 64Cu2+ and trivalent cation 44Sc3+ were found to readily label LDH nanoparticles with excellent labeling efficiency and stability, whereas tetravalent cation 89Zr4+ could not label LDH since it does not fit into the LDH crystal structure. PET imaging shows that prominent tumor uptake was achieved in 4T1 breast cancer with 64Cu-LDH-BSA via passive targeting alone (7.7 ± 0.1%ID/g at 16 h post-injection; n = 3). These results support that LDH is a versatile platform that can be labeled with various bivalent and trivalent radiometals without comprising the native properties, highly desirable for PET image-guided drug delivery.

  7. Chelator-Free Labeling of Layered Double Hydroxide Nanoparticles for in Vivo PET Imaging.

    Science.gov (United States)

    Shi, Sixiang; Fliss, Brianne C; Gu, Zi; Zhu, Yian; Hong, Hao; Valdovinos, Hector F; Hernandez, Reinier; Goel, Shreya; Luo, Haiming; Chen, Feng; Barnhart, Todd E; Nickles, Robert J; Xu, Zhi Ping; Cai, Weibo

    2015-11-20

    Layered double hydroxide (LDH) nanomaterial has emerged as a novel delivery agent for biomedical applications due to its unique structure and properties. However, in vivo positron emission tomography (PET) imaging with LDH nanoparticles has not been achieved. The aim of this study is to explore chelator-free labeling of LDH nanoparticles with radioisotopes for in vivo PET imaging. Bivalent cation (64)Cu(2+) and trivalent cation (44)Sc(3+) were found to readily label LDH nanoparticles with excellent labeling efficiency and stability, whereas tetravalent cation (89)Zr(4+) could not label LDH since it does not fit into the LDH crystal structure. PET imaging shows that prominent tumor uptake was achieved in 4T1 breast cancer with (64)Cu-LDH-BSA via passive targeting alone (7.7 ± 0.1%ID/g at 16 h post-injection; n = 3). These results support that LDH is a versatile platform that can be labeled with various bivalent and trivalent radiometals without comprising the native properties, highly desirable for PET image-guided drug delivery.

  8. Gold nanoparticles functionalised with fast water exchanging Gd3+ chelates: linker effects on the relaxivity.

    Science.gov (United States)

    Ferreira, Miguel F; Gonçalves, Janaina; Mousavi, Bibimaryam; Prata, Maria I M; Rodrigues, Sérgio P J; Calle, Daniel; López-Larrubia, Pilar; Cerdan, Sebastian; Rodrigues, Tiago B; Ferreira, Paula M; Helm, Lothar; Martins, José A; Geraldes, Carlos F G C

    2015-03-07

    The relaxivity displayed by Gd(3+) chelates immobilized onto gold nanoparticles is the result of the complex interplay between the nanoparticle size, the water exchange rate and the chelate structure. In this work we study the effect of the length of ω-thioalkyl linkers, anchoring fast water exchanging Gd(3+) chelates onto gold nanoparticles, on the relaxivity of the immobilized chelates. Gold nanoparticles functionalized with Gd(3+) chelates of mercaptoundecanoyl and lipoyl amide conjugates of the DO3A-N-(α-amino)propionate chelator were prepared and studied as potential CA for MRI. High relaxivities per chelate, of the order of magnitude 28-38 mM(-1) s(-1) (30 MHz, 25 °C), were attained thanks to simultaneous optimization of the rotational correlation time and of the water exchange rate. Fast local rotational motions of the immobilized chelates around connecting linkers (internal flexibility) still limit the attainable relaxivity. The degree of internal flexibility of the immobilized chelates seems not to be correlated with the length of the connecting linkers. Biodistribution and MRI studies in mice suggest that the in vivo behavior of the gold nanoparticles was determined mainly by size. Small nanoparticles (HD = 3.9 nm) undergo fast renal clearance and avoidance of the RES organs while larger nanoparticles (HD = 4.8 nm) undergo predominantly hepatobiliary excretion. High relaxivities, allied to chelate and nanoparticle stability and fast renal clearance in vivo suggest that functionalized gold nanoparticles hold great potential for further investigation as MRI contrast agents. This study contributes to a better understanding of the effect of linker length on the relaxivity of gold nanoparticles functionalized with Gd(3+) complexes. It is a relevant contribution towards "design rules" for nanostructures functionalized with Gd(3+) chelates as Contrast Agents for MRI and multimodal imaging.

  9. Cervical Gross Tumor Volume Dose Predicts Local Control Using Magnetic Resonance Imaging/Diffusion-Weighted Imaging—Guided High-Dose-Rate and Positron Emission Tomography/Computed Tomography—Guided Intensity Modulated Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Dyk, Pawel; Jiang, Naomi; Sun, Baozhou; DeWees, Todd A. [Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri (United States); Fowler, Kathryn J.; Narra, Vamsi [Department of Diagnostic Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri (United States); Garcia-Ramirez, Jose L.; Schwarz, Julie K. [Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri (United States); Grigsby, Perry W., E-mail: pgrigsby@wustl.edu [Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri (United States); Division of Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri (United States); Division of Gynecologic Oncology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri (United States); Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri (United States)

    2014-11-15

    Purpose: Magnetic resonance imaging/diffusion weighted-imaging (MRI/DWI)-guided high-dose-rate (HDR) brachytherapy and {sup 18}F-fluorodeoxyglucose (FDG) — positron emission tomography/computed tomography (PET/CT)-guided intensity modulated radiation therapy (IMRT) for the definitive treatment of cervical cancer is a novel treatment technique. The purpose of this study was to report our analysis of dose-volume parameters predicting gross tumor volume (GTV) control. Methods and Materials: We analyzed the records of 134 patients with International Federation of Gynecology and Obstetrics stages IB1-IVB cervical cancer treated with combined MRI-guided HDR and IMRT from July 2009 to July 2011. IMRT was targeted to the metabolic tumor volume and lymph nodes by use of FDG-PET/CT simulation. The GTV for each HDR fraction was delineated by use of T2-weighted or apparent diffusion coefficient maps from diffusion-weighted sequences. The D100, D90, and Dmean delivered to the GTV from HDR and IMRT were summed to EQD2. Results: One hundred twenty-five patients received all irradiation treatment as planned, and 9 did not complete treatment. All 134 patients are included in this analysis. Treatment failure in the cervix occurred in 24 patients (18.0%). Patients with cervix failures had a lower D100, D90, and Dmean than those who did not experience failure in the cervix. The respective doses to the GTV were 41, 58, and 136 Gy for failures compared with 67, 99, and 236 Gy for those who did not experience failure (P<.001). Probit analysis estimated the minimum D100, D90, and Dmean doses required for ≥90% local control to be 69, 98, and 260 Gy (P<.001). Conclusions: Total dose delivered to the GTV from combined MRI-guided HDR and PET/CT-guided IMRT is highly correlated with local tumor control. The findings can be directly applied in the clinic for dose adaptation to maximize local control.

  10. Tumor immunotherapy : clinics of cytokines and monoclonal antibodies

    NARCIS (Netherlands)

    Nieken, Judith

    1999-01-01

    Tumor immunotherapy is defines as treatment that induces anti-tumor responses via the modulation of both cellular and homoral components of the host immune system. Its concept is based on hte assumption that tumor cells express unique protiens, so-calles tumor antigens, that can be identified as

  11. Effect of Systemic Iron Overload and a Chelation Therapy in a Mouse Model of the Neurodegenerative Disease Hereditary Ferritinopathy

    Science.gov (United States)

    Li, Wei; Goodwin, Charles B.; Richine, Briana; Acton, Anthony; Chan, Rebecca J.; Peacock, Munro; Muhoberac, Barry B.; Ghetti, Bernardino; Vidal, Ruben

    2016-01-01

    Mutations in the ferritin light chain (FTL) gene cause the neurodegenerative disease neuroferritinopathy or hereditary ferritinopathy (HF). HF is characterized by a severe movement disorder and by the presence of nuclear and cytoplasmic iron-containing ferritin inclusion bodies (IBs) in glia and neurons throughout the central nervous system (CNS) and in tissues of multiple organ systems. Herein, using primary mouse embryonic fibroblasts from a mouse model of HF, we show significant intracellular accumulation of ferritin and an increase in susceptibility to oxidative damage when cells are exposed to iron. Treatment of the cells with the iron chelator deferiprone (DFP) led to a significant improvement in cell viability and a decrease in iron content. In vivo, iron overload and DFP treatment of the mouse model had remarkable effects on systemic iron homeostasis and ferritin deposition, without significantly affecting CNS pathology. Our study highlights the role of iron in modulating ferritin aggregation in vivo in the disease HF. It also puts emphasis on the potential usefulness of a therapy based on chelators that can target the CNS to remove and redistribute iron and to resolubilize or prevent ferritin aggregation while maintaining normal systemic iron stores. PMID:27574973

  12. The novel multitarget iron chelating and propargylamine drug M30 affects APP regulation and processing activities in Alzheimer's disease models.

    Science.gov (United States)

    Amit, Tamar; Bar-Am, Orit; Mechlovich, Danit; Kupershmidt, Lana; Youdim, Moussa B H; Weinreb, Orly

    2017-09-01

    In many of the neurodegenerative diseases, such as Alzheimer's disease (AD) and AD-related disorders, as well as in the regular ageing process, excessive generation of oxidative stress (OS) and accumulation of iron levels and deposition have been observed in specific affected-brain regions and thus, regarded as contributing factors to the pathogenesis of the diseases. In AD, iron promotes amyloid β (Aβ) neurotoxicity by producing free radical damage and OS in brain areas affected by neurodegeneration, presumably by facilitating the aggregation of Aβ. In addition, it was shown that iron modulates intracellular levels of the holo amyloid precursor protein (APP) by iron-responsive elements (IRE) RNA stem loops in the 5' untranslated region (5'UTR) of the APP transcript. As a consequence of these observations, iron chelation is one of the major new therapeutic strategies for the treatment of AD. This review describes the benefits and importance of the multimodal brain permeable chimeric iron-chelating/propargylamine drug M30, concerning its neuroprotective/neurorestorative inter-related activities relevant of the pathological features ascribed to AD, with a special focus on the effect of the drug on APP regulation and processing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. THE USE OF CHELATING AGENTS FOR ACCELERATING EXCRETION OF RADIOELEMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Foreman, Harry; Hamilton, Joseph G.

    1951-06-14

    from internal radiation emitters had been directed to attempts to hasten the elimination of the noxious agent. These have included such methods as low calcium diets, parathormone, viosterol, ammonium chloride, calcium gluconate, and low phosphorus diets. Of these the decalcifying type of treatment was reported to have some measure of effectiveness. The results of the other types of therapy were equivocal. The most successful approach was reported in the work of Schubert. Using zirconium citrate complex, administered 3 hours after the injection of radioyttrium and plutonium into rats, he was able to increase the urinary excretion of the injected radio elements many times over that of the excretion in the untreated rats, in some instance up by a factor of 50 for the first day of excretion. However, when used at later time periods, i.e., in a dog at 150 days, the increase in urinary excretion was only a factor of 2 to 3 over the control period. The fecal excretion of the radio elements was not influenced by the treatment. The present study reports a different approach for accelerating the excretion of radioelements, namely the use of chelating agents. Many of the rare earth and actinide series of elements form water-soluble chelates with various organic compounds. This consideration suggested the possibility that this property of chelating agents might be used 'in vivo' to mobilize radio elements fixed within the body. Of the many compounds considered, ethylenediamine tetracetic acid (EDTA) was chosen for this study. The EDTA was selected because it forms a very stable chelate with many metal ions and hence has a strong tendency to remove such ions from insoluble combinations, i.e., it will dissolve such salts as calcium oxalate, barium sulfate, and lead phosphate in neutral and alkaline solutions. Moreover, it has suitable characteristics for 'in vivo' application. It forms serum soluble chelates which are not readily broken down in the body but are

  14. SU-E-T-534: Dosimetric Effect of Multileaf Collimator Leaf Width On Volumetric Modulated Arc Stereotactic Radiotherapy for Spine Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Amoush, A; Djemil, T [Cl