WorldWideScience

Sample records for cheese

  1. Cheese / Eero Epner

    Index Scriptorium Estoniae

    Epner, Eero, 1978-

    2004-01-01

    Fotoajakirjast "Cheese". Fotograafia uurimisest, fotoajaloo läbikirjutatusest Eestis. Samas "Cheese'i" toimetaja Tiit Lepp ajakirja erainitsiatiivil väljaandmisest, Eesti Kultuurkapitali ebapiisavast ja määramatust toetusest

  2. The science of cheese

    Science.gov (United States)

    The book describes the science of cheese in everyday language. The first chapters cover milk, mammals, and principles of cheesemaking and aging, along with lactose intolerance and raw milk cheese. Succeeding chapters deal with a category of cheese along with a class of compounds associated with it...

  3. Latin American cheeses

    Science.gov (United States)

    Latin American (or Hispanic-style) cheeses are a category of cheeses that were developed in Mexico, Latin America, and the Caribbean and have become increasingly popular in the U.S. Although research has been conducted on some of the cheeses, quantitative information on the quality traits of most L...

  4. 7 CFR 58.714 - Cream cheese, Neufchatel cheese.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Cream cheese, Neufchatel cheese. 58.714 Section 58.714 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.714 Cream cheese, Neufchatel cheese. These cheeses when mixed with other foods, or used...

  5. Microbial interactions in cheese: implications for cheese quality and safety

    OpenAIRE

    Irlinger, Françoise; Mounier, Jérôme

    2009-01-01

    International audience; The cheese microbiota, whose community structure evolves through a succession of different microbial groups, plays a central role in cheese-making. The subtleties of cheese character, as well as cheese shelf-life and safety, are largely determined by the composition and evolution of this microbiota. Adjunct and surface-ripening cultures marketed today for smear cheeses are inadequate for adequately mimicking the real diversity encountered in cheese microbiota. The inte...

  6. Hot cheese: a processed Swiss cheese model.

    Science.gov (United States)

    Li, Y; Thimbleby, H

    2014-01-01

    James Reason's classic Swiss cheese model is a vivid and memorable way to visualise how patient harm happens only when all system defences fail. Although Reason's model has been criticised for its simplicity and static portrait of complex systems, its use has been growing, largely because of the direct clarity of its simple and memorable metaphor. A more general, more flexible and equally memorable model of accident causation in complex systems is needed. We present the hot cheese model, which is more realistic, particularly in portraying defence layers as dynamic and active - more defences may cause more hazards. The hot cheese model, being more flexible, encourages deeper discussion of incidents than the simpler Swiss cheese model permits.

  7. Mexican chihuahua cheese: sensory profiles of young cheese.

    Science.gov (United States)

    Van Hekken, D L; Drake, M A; Corral, F J Molina; Prieto, V M Guerrero; Gardea, A A

    2006-10-01

    Sensory profiles of fresh semihard Chihuahua cheese produced in the northern Mexican state of Chihuahua were developed to characterize the flavors and textures of this traditionally made Hispanic-style cheese. Multiple allotments of Chihuahua cheese, 9 brands made with raw milk (RM) and 5 brands made with pasteurized milk (PM), were obtained within 3 d of manufacture from 12 different cheese plants throughout Chihuahua, México. Cheeses were shipped overnight to Wyndmoor, Pennsylvania, and flavor analyses were conducted within 14 to 18 d after manufacture. Four brands (2 RM and 2 PM cheeses) were then selected and multiple allotments were shipped at 3 distinct seasons over a 1-yr period for evaluation of flavor and texture. Microbial analysis was conducted prior to testing to ensure product safety. Descriptive analyses of cheese flavors and textures were conducted with panelists trained to use a universal or product-specific Spectrum intensity scale, respectively. Sensory profiles of cheeses varied among the different manufacturers. The most prominent flavor attributes were salty, sour, diacetyl, cooked, whey, bitter, and milk-fat. The RM cheeses had more intense sour, bitter, and prickle scores than the PM cheeses. Many cheese texture attributes were similar, but RM cheeses were perceived as softer than PM cheeses. As the demand for Hispanic-style cheeses increases, defining and understanding the sensory attributes of traditionally made Mexican cheeses provides guidance to cheese manufacturers as new ways are explored to improve the production and shelf life of the cheeses.

  8. COTTAGE CHEESE PRODUCTS FUNCTIONALITY

    Directory of Open Access Journals (Sweden)

    L. V. Golubeva

    2015-01-01

    Full Text Available Cottage cheese products holds a significant place among the dairy and milk-containing products. The range of products includes cheese: cheese, pastes, creams, cakes, etc. Such diversity can be attributed to their popularity among the population and benefit brought by the body from regular use. Curd protein is much better and easier to digest by the body than protein fish, meat or milk. Rich curd products lysine and methionine. Minerals contained in cheese products have a positive effect on bone formation and structure of tissues. The composition of curd products, in addition to cheese and dairy ingredients may include non-dairy ingredients origin. Today, for the production of cheese products use the most advanced technologies to further enrich its structure and significantly improve the nutritional value. Pine nut is widely used in the manufacture of many dairy products. But, in most cases, the production of dairy products as a filler used pine nut cake, which deprives the finished product valuable cedar oil. The authors proposed a technology for producing curd product with the addition of pine nuts and honey (pine nuts and fructose. Compatible with cream cheese filling insertion determined sensory organoleptic point scale. he optimum dosage of components: pine nuts – 5 %, honey – 10 % fructose – 7 %. Technological process of cottage cheese product is different from the traditional operations training components and their introduction into the finished cheese. Identify indicators of quality of the new product. Production of curd products thus expanding the range of dairy products functional orientation.

  9. METHOD FOR MAKING CHEESE

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention relates to a method for making Cheddar type and Continental type cheese with an adjunct culture comprising a Lactobacillus helveticus strain.......The present invention relates to a method for making Cheddar type and Continental type cheese with an adjunct culture comprising a Lactobacillus helveticus strain....

  10. 21 CFR 133.162 - Neufchatel cheese.

    Science.gov (United States)

    2010-04-01

    ... ingredients may be used: (1) Dairy ingredients. Milk, nonfat milk, or cream, as defined in § 133.3. (2... optional ingredients. (i) Salt. (ii) Cheese whey, concentrated cheese whey, dried cheese whey, or reconstituted cheese whey prepared by addition of water to concentrated cheese whey or dried cheese whey....

  11. Autochthonous "Bjelovars dried cheese"

    Directory of Open Access Journals (Sweden)

    Slavko Kirin

    2006-12-01

    Full Text Available «Dried cheese» is in autochthonous group of Bjelovar region cheeses which is still produced in rural domestic scale. The name of cheese originates from production procedure - drying for longer or shorter period in airy place after which the cheese is smoked, or is smoked only without drying. This type of cheese is produced in whole central region of Croatia which includes Međimurje, Podravina, Bilogora; Moslavina, Posavina and region around the capital. The aim of this paper is to describe and determine sensory, chemical and microbiological composition to determine its characteristics and production standards. As standards for sensory properties following characteristics can be used: a Outer shape: dimensions: diameter: 140-145 mm, height: 58-61 mm, mass: 700-750 g, equal, rounded shape, smooth skin, equal colour; b Consistency: easily cut, elastic, soft; c Cut: nicely combined white body, few improper holes of equal size; d Odour: pleasant milky acid odour, fairly smoky; e Taste: Fairly milky acidic taste, medium salty, fairly smoky taste. Depending on fat in dry matter content and water content in non fat dry matter, analyzed samples can be characterized as quarter fat, soft and semidry cheese. Higher acidity and saltiness was determined in some samples, microbiological analyses has shown that the most common contaminants are yeasts and moulds.

  12. Microbial interactions in cheese: implications for cheese quality and safety.

    Science.gov (United States)

    Irlinger, Françoise; Mounier, Jérôme

    2009-04-01

    The cheese microbiota, whose community structure evolves through a succession of different microbial groups, plays a central role in cheese-making. The subtleties of cheese character, as well as cheese shelf-life and safety, are largely determined by the composition and evolution of this microbiota. Adjunct and surface-ripening cultures marketed today for smear cheeses are inadequate for adequately mimicking the real diversity encountered in cheese microbiota. The interactions between bacteria and fungi within these communities determine their structure and function. Yeasts play a key role in the establishment of ripening bacteria. The understanding of these interactions offers to enhance cheese flavour formation and to control and/or prevent the growth of pathogens and spoilage microorganisms in cheese.

  13. 40 CFR 405.50 - Applicability; description of the cottage cheese and cultured cream cheese subcategory.

    Science.gov (United States)

    2010-07-01

    ... cottage cheese and cultured cream cheese subcategory. 405.50 Section 405.50 Protection of Environment... SOURCE CATEGORY Cottage Cheese and Cultured Cream Cheese Subcategory § 405.50 Applicability; description of the cottage cheese and cultured cream cheese subcategory. The provisions of this subpart...

  14. 21 CFR 133.171 - Pasteurized process pimento cheese.

    Science.gov (United States)

    2010-04-01

    ... solids is not less than 49 percent. (b) The cheese ingredient is cheddar cheese, washed curd cheese... purposes of this section, cheddar cheese for manufacturing, washed curd cheese for manufacturing, colby..., washed curd cheese, colby cheese, and granular cheese, respectively. (d) The only fruit, vegetable,...

  15. Autochthonous cheeses of Bosnia and Herzegovina

    Directory of Open Access Journals (Sweden)

    Zlatan Sarić

    2003-04-01

    Full Text Available Despite the migration of people towards cities, autochthonous cheeses in Bosnia and Herzegovina survived. Technologies of these cheeses are simple and adapted to humble mountain limitations. Geographical occasions and rich mountain pastures created a certain participation of ewe's milk cheeses. Communicative isolation of hilly-mountain regions resulted in "closed" cheese production in small households. Autochthonous cheeses in Bosnia and Herzegovina have various origins. Different cheeses are produced in different parts of Bosnia and Herzegovina. There are : Travnički cheese, Masni (fat cheese, Presukača, Sirac, Livanjski cheese, Posni (lean cheese, "Suvi" (dry cheese or "Mješinski" full fat cheese matured in sheepskin bag, fresh sour milk cheese "Kiseli" and dried sour milk cheese "Kiseli", Zajednica, Basa, Kalenderovački cheese and goat's milk cheeses (Hard and White soft goat's milk cheese, "Zarica" and Urda. Besides above-mentioned types of cheese in Bosnia and Herzegovina some other autochthonous dairy products are produced: Kajmak (Cream, Maslo (Rendered butter and Zimsko kiselo mlijeko (Winter sour milk. The specificity in Bosnia and Herzegovina is that autochthonous dairy products are still mainly both produced and consumed in small rural households. Exceptions are Travnički cheese and Kajmak that are significantly sold at market. Only Livanjski cheese is manufactured as industry dairy product.

  16. Cheese and cardiovascular health

    DEFF Research Database (Denmark)

    Hjerpsted, Julie Bousgaard

    Cardiovascular diseases (CVDs) are the number one cause of mortality worldwide. Low-density lipoprotein (LDL) cholesterol is a well-known risk factor of CVD which increases after the intake of saturated fatty acids (SFA). Cheese is a dietary product commonly consumed in Western countries and known...

  17. Lipids in cheese

    Science.gov (United States)

    Lipids are present in cheese at levels above 20 percent and are analyzed by several techniques. Scanning electron microscopy and confocal laser scanning microscopy are used to examine the microstructure, gas chromatography is employed to look at fatty acid composition, and differential scanning cal...

  18. Autochthonous cheeses of Bosnia and Herzegovina

    OpenAIRE

    Zlatan Sarić; Sonja Bijeljac

    2003-01-01

    Despite the migration of people towards cities, autochthonous cheeses in Bosnia and Herzegovina survived. Technologies of these cheeses are simple and adapted to humble mountain limitations. Geographical occasions and rich mountain pastures created a certain participation of ewe's milk cheeses. Communicative isolation of hilly-mountain regions resulted in "closed" cheese production in small households. Autochthonous cheeses in Bosnia and Herzegovina have various origins. Different cheeses are...

  19. Cardiometabolic Effects of Cheese Intake

    DEFF Research Database (Denmark)

    Thorning, Tanja Kongerslev

    In several countries, the dietary guidelines for preventing CVD focus on reducing the intake of saturated fat. A high cheese intake in particular may however not be associated with CVD risk, despite a high content of saturated fat. This could be due to a reduced digestibility of fat in cheese...... of cheese-matrix may influence the HDL-cholesterol response, while the ripening duration may affect the level of free fatty acids and insulin in the blood. Furthermore the results showed that a diet with saturated fat in cheese or meat caused a higher HDL-cholesterol, but not LDL-cholesterol, compared....... The aim of this PhD thesis was to investigate how the fat content of the cheese-matrix and the cheese ripening duration affect cardiometabolic risk markers and fecal fat excretion. The thesis is based on three intervention studies, two in pigs and one in humans. The results suggested that fat content...

  20. Bitter taste – cheese failure

    Directory of Open Access Journals (Sweden)

    Slavko Kirin

    2001-10-01

    Full Text Available Bitter taste is serous and very often cheese failure in modern cheesemaking process. In this paper the sources and bitter taste development in cheese will be presented. Bitterness in cheese is linked to bitter compounds development during cheese ripening. Most of the bitter compounds come from bitter peptides, the mechanism of theirs development being due to proteasepeptidase system of the cured enzymes and the milk cultures as well as other proteases present in cheese. By the action of curd enzymes, the milk protein - casein - is firstly degraded into high molecular weight compounds possessing no bitter taste. Those compounds are then degraded, by milk protease cultures, to hydrophobic bitter peptides of low molecular weight further degraded, by bacterial endopeptidase during cheese ripening, to bitter peptides and amino acids. In the case when no balance exists, between bitter compounds development and breakdown by lactic acid bacteria peptidase, an accumulation of bitter peptides occurs thus having an influence on cheese bitterness. During cheese ripening naturally occurring milk protease – plasmin, and thermostable proteases of raw milk microflora are also involved in proteolytic process. Fat cheese lipases, initiated by lipase originating from psychrotrophic bacteria in raw milk as well as other cheese lipases, are also associated with bitter taste generation. The other sources of bitterness come from the forages, the medicament residues as well as washing and disinfecting agents. In order to eliminate these failures a special care should be taken in milk quality as well as curd and milk culture selection. At this point technological norms and procedures, aimed to maintain the proteolysis balance during cheese ripening, should be adjusted, thus eliminating the bitter taste of the cheese.

  1. Invited review: Artisanal Mexican cheeses.

    Science.gov (United States)

    González-Córdova, Aarón F; Yescas, Carlos; Ortiz-Estrada, Ángel Martín; De la Rosa-Alcaraz, María de Los Ángeles; Hernández-Mendoza, Adrián; Vallejo-Cordoba, Belinda

    2016-05-01

    The objective of this review is to present an overview of some of the most commonly consumed artisanal Mexican cheeses, as well as those cheeses that show potential for a protected designation of origin. A description is given for each of these cheeses, including information on their distinguishing characteristics that makes some of them potential candidates for achieving a protected designation of origin status. This distinction could help to expand their frontiers and allow them to become better known and appreciated in other parts of the world. Due to the scarcity of scientific studies concerning artisanal Mexican cheeses, which would ultimately aid in the standardization of manufacturing processes and in the establishment of regulations related to their production, more than 40 varieties of artisanal cheese are in danger of disappearing. To preserve these cheeses, it is necessary to address this challenge by working jointly with government, artisanal cheesemaking organizations, industry, academics, and commercial partners on the implementation of strategies to protect and preserve their artisanal means of production. With sufficient information, official Mexican regulations could be established that would encompass and regulate the manufacture of Mexican artisanal cheeses. Finally, as many Mexican artisanal cheeses are produced from raw milk, more scientific studies are required to show the role of the lactic acid bacteria and their antagonistic effect on pathogenic microorganisms during aging following cheese making.

  2. 21 CFR 133.124 - Cold-pack cheese food.

    Science.gov (United States)

    2010-04-01

    ... milkfat, dehydrated cream, skim milk cheese for manufacturing, and albumin from cheese whey. All optional... made from pasteurized milk, or are held for not less than 60 days at a temperature of not less than 35..., neufchatel cheese, cottage cheese, creamed cottage cheese, cook cheese, and skim-milk cheese...

  3. Potential of anticlostridial Lactobacillus isolated from cheese to prevent blowing defects in semihard cheese

    DEFF Research Database (Denmark)

    Christiansen, Pia; Vogensen,, F. K.; Nielsen, E. W;

    2010-01-01

    Five anticlostridial Lactobacillus strains isolated from cheese were selected for a mixed adjunct culture. Cheese with the mixed adjunct culture (experimental) and without (control) was made in triplicate and ripened as vacuum-packed and surface-ripened cheese. Cheese gross composition was similar...... in the experimental cheeses. Anticlostridial nonstarter Lactobacillus strains have potential as protective adjunct cultures against blowing defects in cheese........ Excessive gas formation occurred only in control cheeses. In contrast to control cheeses, the experimental cheeses were dominated by the added adjunct Lactobacillus strains (repetitive-PCR). Casein breakdown was not influenced, however, the total amount of amino acids and pH was slightly lower...

  4. 21 CFR 133.133 - Cream cheese.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Cream cheese. 133.133 Section 133.133 Food and... Products § 133.133 Cream cheese. (a) Description. (1) Cream cheese is the soft, uncured cheese prepared by..., nonfat milk, or cream, as defined in § 133.3, used alone or in combination. (2) Clotting enzymes....

  5. Cream cheese products: A review

    Directory of Open Access Journals (Sweden)

    Chanokphat Phadungath

    2005-01-01

    Full Text Available Cream cheese is a soft fresh acid-coagulated cheese product, which is acidified by mesophilic lactic acid starter culture, i.e. Lactococcus and Leuconostoc. Cream cheese products are categorized into two main types based on the different fat content in the initial mix and the final composition. These are double-cream cheese with at least 9-11% fat content in the initial mix, and single-cream cheese with 4.5-5% fat content in initial mix. Cream cheese was first made by using the cooked-curd method, which was developed in the early twenties, and the cold-pack and hot-pack methods were developed, and are still used at present. The products with high quality should have a uniform white to light cream color with a lightly lactic acid and cultured diacetyl flavor and aroma. The texture of the products should be smooth without lumps, grittiness, or any indication of cracking and wheying off, and with the ability to spread at room temperature.

  6. Chemical and instrumental approaches to cheese analysis.

    Science.gov (United States)

    Subramanian, Anand; Rodriguez-Saona, Luis

    2010-01-01

    Overcoming the complexity of cheese matrix to reliably analyze cheese composition, flavor, and ripening changes has been a challenge. Several sample isolation or fractionation methods, chemical and enzymatic assays, and instrumental methods have been developed over the decades. While some of the methods are well established standard methods, some still need to be researched and improved. This chapter reviews the chemical and instrumental methods available to determine cheese composition and monitor biochemical events (e.g., glycolysis, lipolysis, and proteolysis) during cheese ripening that lead to the formation of cheese flavor. Chemical and enzymatic methods available for analysis of cheese composition (fat, protein, lactose, salt, nitrogen content, moisture, etc.) are presented. Electrophoretic, chromatographic, and spectroscopic techniques are also reviewed in the light of their application to monitor cheese ripening and flavor compounds. Novel instrumental methods based on Fourier-transform infrared spectroscopy that are currently being researched and applied to cheese analysis are introduced.

  7. Quality aspects of raw milk cheeses

    Science.gov (United States)

    Cheese has been a part of the human diet for thousands of years and over the centuries cheesemakers have relied on the indigenous microflora and enzymes in raw milk to create the signature quality traits for the many different varieties of cheese found around the world. Although most of the cheese i...

  8. 7 CFR 58.433 - Cheese cultures.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Cheese cultures. 58.433 Section 58.433 Agriculture... Material § 58.433 Cheese cultures. Harmless microbial cultures used in the development of acid and flavor components in cheese shall have a pleasing and desirable taste and odor and shall have the ability...

  9. Formation of acrylamide in cheese bread

    DEFF Research Database (Denmark)

    Hedegaard, Rikke Susanne Vingborg; Sobrinho, Luis Gualberto De Andrade; Granby, Kit

    2008-01-01

    Low addition of grated Mozzarella cheese (13.4 g/100 g dough) resulted after baking for 20 min at 200 degrees C in a moderate increase of acrylamide from 4 ppb in buns without cheese to 7 ppb in the cheese buns as analyzed by a LCMS/MS technique. The effect was strongly dependent on the amount...... of cheese added, and addition of 23.7 g cheese resulted in 958 ppb acrylamide. For an o/w rapeseed oil emulsion as a food model heated under conditions similar to those persisting inside bread during baking, it was further shown that acrylamide formation also occurred in absence of reducing sugars....... In contrast, acrylamide was not observed in Pao de queijo a traditional Brazilian bread product made from fermented cassava flour, fresh eggs and a mixture of Brazilian Gouda type cheese and Mozzarella cheese pointing towards a role of eggs in protection against acrylamide formation....

  10. 21 CFR 133.134 - Cream cheese with other foods.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Cream cheese with other foods. 133.134 Section 133... Cheese and Related Products § 133.134 Cream cheese with other foods. (a) Description. Cream cheese with other foods is the class of foods prepared by mixing, with or without the aid of heat, cream cheese...

  11. 21 CFR 133.109 - Brick cheese for manufacturing.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Brick cheese for manufacturing. 133.109 Section... Standardized Cheese and Related Products § 133.109 Brick cheese for manufacturing. Brick cheese for manufacturing conforms to the definition and standard of identity for brick cheese prescribed by §...

  12. 21 CFR 133.145 - Granular cheese for manufacturing.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Granular cheese for manufacturing. 133.145 Section... Standardized Cheese and Related Products § 133.145 Granular cheese for manufacturing. Granular cheese for manufacturing conforms to the definition and standard of identity prescribed for granular cheese by §...

  13. 21 CFR 133.137 - Washed curd cheese for manufacturing.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Washed curd cheese for manufacturing. 133.137... Standardized Cheese and Related Products § 133.137 Washed curd cheese for manufacturing. Washed curd cheese for manufacturing conforms to the definition and standard of identity prescribed for washed curd cheese by §...

  14. 21 CFR 133.119 - Colby cheese for manufacturing.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Colby cheese for manufacturing. 133.119 Section... Standardized Cheese and Related Products § 133.119 Colby cheese for manufacturing. Colby cheese for manufacturing conforms to the definition and standard of identity prescribed for colby cheese by §...

  15. 21 CFR 133.114 - Cheddar cheese for manufacturing.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Cheddar cheese for manufacturing. 133.114 Section... Standardized Cheese and Related Products § 133.114 Cheddar cheese for manufacturing. Cheddar cheese for manufacturing conforms to the definition and standard of identity prescribed for cheddar cheese by §...

  16. 21 CFR 133.196 - Swiss cheese for manufacturing.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Swiss cheese for manufacturing. 133.196 Section... Standardized Cheese and Related Products § 133.196 Swiss cheese for manufacturing. Swiss cheese for manufacturing conforms to the definition and standard of identity prescribed for swiss cheese by §...

  17. 21 CFR 133.173 - Pasteurized process cheese food.

    Science.gov (United States)

    2010-04-01

    ... milkfat, dehydrated cream, albumin from cheese whey, and skim milk cheese for manufacturing. (e) The other...-milk cheese for manufacturing, and except that hard grating cheese, semisoft part skim cheese, and part...) The optional dairy ingredients referred to in paragraph (a) of this section are cream, milk, skim...

  18. 21 CFR 133.116 - Low sodium cheddar cheese.

    Science.gov (United States)

    2010-04-01

    ... ingredients used as a salt substitute. (d) Low sodium cheddar cheese is subject to § 105.69 of this chapter. ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Low sodium cheddar cheese. 133.116 Section 133.116... Cheese and Related Products § 133.116 Low sodium cheddar cheese. Low sodium cheddar cheese is the...

  19. 21 CFR 133.147 - Grated American cheese food.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Grated American cheese food. 133.147 Section 133... Cheese and Related Products § 133.147 Grated American cheese food. (a)(1) Grated American cheese food is... granular mixture. (2) Grated American cheese food contains not less than 23 percent of milkfat,...

  20. Characterization of a processed cheese spread produced from fresh cheese (quesito antioqueño)

    OpenAIRE

    Edinson Eliecer Bejarano Toro; José Uriel Sepúlveda Valencia; Diego Alonso Restrepo Molina

    2016-01-01

    Processed products are made from mixes of fresh and ripened cheeses; the use of cheeses with a short shelf-life in the development of processed cheeses is an alternative for the dairy industry. A processed cheese spread was made using only a soft and fatty fresh cheese that had been stored for 25 days. The primary materials were the fresh cheese, water, and emulsifying salts (sodium citrate (E-331) and sodium phosphate (E-450)), using a STEPHAN® Universal Machine (UMSK 24E) with indirect vapo...

  1. Quantification of pizza baking properties of different cheeses, and their correlation with cheese functionality.

    Science.gov (United States)

    Ma, Xixiu; Balaban, Murat O; Zhang, Lu; Emanuelsson-Patterson, Emma A C; James, Bryony

    2014-08-01

    The aim of this study is to quantify the pizza baking properties and performance of different cheeses, including the browning and blistering, and to investigate the correlation to cheese properties (rheology, free oil, transition temperature, and water activity). The color, and color uniformity, of different cheeses (Mozzarella, Cheddar, Colby, Edam, Emmental, Gruyere, and Provolone) were quantified, using a machine vision system and image analysis techniques. The correlations between cheese appearance and attributes were also evaluated, to find that cheese properties including elasticity, free oil, and transition temperature influence the color uniformity of cheeses.

  2. Application of salt whey in process cheese food made from Cheddar cheese containing exopolysaccharides.

    Science.gov (United States)

    Janevski, O; Hassan, A N; Metzger, L

    2012-07-01

    The objective of this work was to use salt whey in making process cheese food (PCF) from young (3-wk-old) Cheddar cheese. To maximize the level of salt whey in process cheese, low salt (0.6%) Cheddar cheese was used. Because salt reduction causes undesirable physiochemical changes during extended cheese ripening, young Cheddar cheese was used in making process cheese. An exopolysaccharide (EPS)-producing strain (JFR) and a non-EPS-producing culture (DVS) were applied in making Cheddar cheese. To obtain similar composition and pH in the EPS-positive and EPS-negative Cheddar cheeses, the cheese making protocol was modified in the latter cheese to increase its moisture content. No differences were seen in the proteolysis between EPS-positive and EPS-negative Cheddar cheeses. Cheddar cheese made with the EPS-producing strain was softer, and less gummy and chewy than that made with the EPS-negative culture. Three-week-old Cheddar cheese was shredded and stored frozen until used for PCF manufacture. Composition of Cheddar cheese was determined and used to formulate the corresponding PCF (EPS-positive PCF and EPS-negative PCF). The utilization of low salt Cheddar cheese allowed up to 13% of salt whey containing 9.1% salt to be used in process cheese making. The preblend was mixed in the rapid visco analyzer at 1,000 rpm and heated at 95°C for 3 min; then, the process cheese was transferred into copper cylinders, sealed, and kept at 4°C. Process cheese foods contained 43.28% moisture, 23.7% fat, 18.9% protein, and 2% salt. No difference in composition was seen between the EPS-positive and EPS-negative PCF. The texture profile analysis showed that EPS-positive PCF was softer, and less gummy and chewy than EPS-negative PCF. The end apparent viscosity and meltability were higher in EPS-positive PCF than in EPS-negative PCF, whereas emulsification time was shorter in the former cheese. Sensory evaluation indicated that salt whey at the level used in this study did not affect

  3. Cheese and cardiovascular disease risk

    DEFF Research Database (Denmark)

    Hjerpsted, Julie Bousgaard; Tholstrup, Tine

    2016-01-01

    Abstract Currently, the effect of dairy products on cardiovascular risk is a topic with much debate and conflicting results. The purpose of this review is to give an overview of the existing literature regarding the effect of cheese intake and risk of cardiovascular disease (CVD). Studies included...

  4. Thermal properties of selected cheeses samples

    Directory of Open Access Journals (Sweden)

    Monika BOŽIKOVÁ

    2016-02-01

    Full Text Available The thermophysical parameters of selected cheeses (processed cheese and half hard cheese are presented in the article. Cheese is a generic term for a diverse group of milk-based food products. Cheese is produced throughout the world in wide-ranging flavors, textures, and forms. Cheese goes during processing through the thermal and mechanical manipulation, so thermal properties are one of the most important. Knowledge about thermal parameters of cheeses could be used in the process of quality evaluation. Based on the presented facts thermal properties of selected cheeses which are produced by Slovak producers were measured. Theoretical part of article contains description of cheese and description of plane source method which was used for thermal parameters detection. Thermophysical parameters as thermal conductivity, thermal diffusivity and volume specific heat were measured during the temperature stabilisation. The results are presented as relations of thermophysical parameters to the temperature in temperature range from 13.5°C to 24°C. Every point of graphic relation was obtained as arithmetic average from measured values for the same temperature. Obtained results were statistically processed. Presented graphical relations were chosen according to the results of statistical evaluation and also according to the coefficients of determination for every relation. The results of thermal parameters are in good agreement with values measured by other authors for similar types of cheeses.

  5. Microbiota characterization of a Belgian protected designation of origin cheese, Herve cheese, using metagenomic analysis.

    Science.gov (United States)

    Delcenserie, V; Taminiau, B; Delhalle, L; Nezer, C; Doyen, P; Crevecoeur, S; Roussey, D; Korsak, N; Daube, G

    2014-10-01

    Herve cheese is a Belgian soft cheese with a washed rind, and is made from raw or pasteurized milk. The specific microbiota of this cheese has never previously been fully explored and the use of raw or pasteurized milk in addition to starters is assumed to affect the microbiota of the rind and the heart. The aim of the study was to analyze the bacterial microbiota of Herve cheese using classical microbiology and a metagenomic approach based on 16S ribosomal DNA pyrosequencing. Using classical microbiology, the total counts of bacteria were comparable for the 11 samples of tested raw and pasteurized milk cheeses, reaching almost 8 log cfu/g. Using the metagenomic approach, 207 different phylotypes were identified. The rind of both the raw and pasteurized milk cheeses was found to be highly diversified. However, 96.3 and 97.9% of the total microbiota of the raw milk and pasteurized cheese rind, respectively, were composed of species present in both types of cheese, such as Corynebacterium casei, Psychrobacter spp., Lactococcus lactis ssp. cremoris, Staphylococcus equorum, Vagococcus salmoninarum, and other species present at levels below 5%. Brevibacterium linens were present at low levels (0.5 and 1.6%, respectively) on the rind of both the raw and the pasteurized milk cheeses, even though this bacterium had been inoculated during the manufacturing process. Interestingly, Psychroflexus casei, also described as giving a red smear to Raclette-type cheese, was identified in small proportions in the composition of the rind of both the raw and pasteurized milk cheeses (0.17 and 0.5%, respectively). In the heart of the cheeses, the common species of bacteria reached more than 99%. The main species identified were Lactococcus lactis ssp. cremoris, Psychrobacter spp., and Staphylococcus equorum ssp. equorum. Interestingly, 93 phylotypes were present only in the raw milk cheeses and 29 only in the pasteurized milk cheeses, showing the high diversity of the microbiota

  6. Qualitative evaluation of buffalo cheese using FTIR spectroscopy

    Directory of Open Access Journals (Sweden)

    Aurelia Coroian

    2012-12-01

    Full Text Available FTIR is a rapid technique based on infrared which has been used to analyze the followingsamples of cheese: traditional buffalo milk cheese, mouldy cheese traditionally produced (in Mesendorf,buffalo milk cheese (Napolact and buffalo mozzarella (Italy. Here were highlighted main wavelengths atwhich the main components were observed in cheese, namely: fat, protein, lactose and water. Thesecompounds have been outlined in terms of quality. The presence of water was observed in the region of3600-3010 cm-1, showing a high content in water for mozzarella, followed by buffalo milk cheese,traditional cheese and the lowest content being observed to mouldy cheese.

  7. Characterization of a processed cheese spread produced from fresh cheese (quesito antioqueño

    Directory of Open Access Journals (Sweden)

    Edinson Eliecer Bejarano Toro

    2016-07-01

    Full Text Available Processed products are made from mixes of fresh and ripened cheeses; the use of cheeses with a short shelf-life in the development of processed cheeses is an alternative for the dairy industry. A processed cheese spread was made using only a soft and fatty fresh cheese that had been stored for 25 days. The primary materials were the fresh cheese, water, and emulsifying salts (sodium citrate (E-331 and sodium phosphate (E-450, using a STEPHAN® Universal Machine (UMSK 24E with indirect vapor injection and equipped with rasping and cutting blades. The resulting cheese (A was compared with a commercial cheese (B for compositional, physicochemical, and sensorial characteristics. The cheeses were similar except for the fat in dry matter (FDM, with values of 54.50% and 47.21%, respectively. Sensorially, there were significant differences (P0.05. Cheese A provided, in mg per 100 g of product, 935.823 for phenylalanine, 1003.070 for isoleucine, 2041.420 for leucine, 475.337 for methionine, 119.300 for tryptophan, and 758.347 for valine. Producing processed cheeses with only fresh cheese is possible, resulting in a product that is similar to others that are currently on the market with typical characteristics that are accepted by consumers.

  8. A high-throughput cheese manufacturing model for effective cheese starter culture screening.

    Science.gov (United States)

    Bachmann, H; Kruijswijk, Z; Molenaar, D; Kleerebezem, M; van Hylckama Vlieg, J E T

    2009-12-01

    Cheese making is a process in which enzymatic coagulation of milk is followed by protein separation, carbohydrate removal, and an extended bacterial fermentation. The number of variables in this complex process that influence cheese quality is so large that the developments of new manufacturing protocols are cumbersome. To reduce screening costs, several models have been developed to miniaturize the cheese manufacturing process. However, these models are not able to accommodate the throughputs required for systematic screening programs. Here, we describe a protocol that allows the parallel manufacturing of approximately 600 cheeses in individual cheese vats each with individual process specifications. Protocols for the production of miniaturized Gouda- and Cheddar-type cheeses have been developed. Starting with as little as 1.7 mL of milk, miniature cheeses of about 170 mg can be produced and they closely resemble conventionally produced cheese in terms of acidification profiles, moisture and salt contents, proteolysis, flavor profiles, and microstructure. Flavor profiling of miniature cheeses manufactured with and without mixed-strain adjunct starter cultures allowed the distinguishing of the different cheeses. Moreover, single-strain adjunct starter cultures engineered to overexpress important flavor-related enzymes revealed effects similar to those described in industrial cheese. Benchmarking against industrial cheese produced from the same raw materials established a good correlation between their proteolytic degradation products and their flavor profiles. These miniature cheeses, referred to as microcheeses, open new possibilities to study many aspects of cheese production, which will not only accelerate product development but also allow a more systematic approach to investigate the complex biochemistry and microbiology of cheese making.

  9. Sailing the Seas of Cheese*

    Directory of Open Access Journals (Sweden)

    Erik Anderson

    2010-01-01

    Full Text Available Memphis Elvis is cool; Vegas Elvis is cheesy. How come? To call something cheesy is, ostensibly, to disparage it, and yet cheesy acts are some of the most popular in popular culture today. How is this possible? The concepts of cheese, cheesy, and cheesiness play an important and increasingly ubiquitous role in popular culture today. I offer an analysis of these concepts, distinguishing them from nearby concepts like kitchy and campy. Along the way I draw attention to the important roles of cultural/historical context, background knowledge, and especially artist’s intentions as they are relevant to aesthetic assessments involving cheese and related concepts. I go on to contend that these concepts, properly understood, serve as helpful test cases concerning some important issues in contemporary aesthetics, such as the paradox of negative art and the contentious debate between intentionalists and anti-intentionalists.

  10. Quality Improvement of Cheese Spread

    Science.gov (United States)

    2008-02-25

    Annatto (2% bixin) 3.5 mL Use as needed to conform color Vitamin A 0.14 0.003 Not less than 800 retinol units Added to comply with product...for samples with citrates (CIT) and altered levels of phosphates (LP) (Table 7). Although the citrates and phosphates have similar ionic components...Effect of vitamins The guidelines for cheese spread fortification include the addition of retinol (vitamin A), thiamine (vitamin B1), pyridoxine

  11. Bioconversion of Cheese Waste (Whey)

    Energy Technology Data Exchange (ETDEWEB)

    Bohnert, G.W.

    1998-03-11

    The US dairy industry produces 67 billion pounds of cheese whey annually. A waste by-product of cheese production, whey consists of water, milk sugar (lactose), casein (protein), and salts amounting to about 7% total solids. Ultrafiltration is used to concentrate cheese whey into a protein-rich foodstuff; however, it too produces a waste stream, known as ''whey permeate,'' (rejected water, lactose, and salts from the membrane). Whey permeate contains about 4.5% lactose and requires treatment to reduce the high BOD (biological oxygen demand) before disposal. Ab Initio, a small business with strong chemistry and dairy processing background, desired help in developing methods for bioconversion of whey permeate lactose into lactic acid. Lactic acid is an organic acid primarily used as an acidulant in the food industry. More recently it has been used to produce polylactic acid, a biodegradable polymer and as a new method to treat meat carcasses to combat E. coli bacteria. Conversion of whey permeate to lactic acid is environmentally sound because it produces a valued product from an otherwise waste stream. FM&T has expertise in bioconversion processes and analytical techniques necessary to characterize biomass functions. The necessary engineering and analytical services for pilot biomass monitoring, process development, and purification of crude lactic acid were available at this facility.

  12. Cheese whey management: a review.

    Science.gov (United States)

    Prazeres, Ana R; Carvalho, Fátima; Rivas, Javier

    2012-11-15

    Cheese whey is simultaneously an effluent with nutritional value and a strong organic and saline content. Cheese whey management has been focused in the development of biological treatments without valorization; biological treatments with valorization; physicochemical treatments and direct land application. In the first case, aerobic digestion is reported. In the second case, six main processes are described in the literature: anaerobic digestion, lactose hydrolysis, fermentation to ethanol, hydrogen or lactic acid and direct production of electricity through microbial fuel cells. Thermal and isoelectric precipitation, thermocalcic precipitation, coagulation/flocculation, acid precipitation, electrochemical and membrane technologies have been considered as possible and attractive physicochemical processes to valorize or treat cheese whey. The direct land application is a common and longstanding practice, although some precautions are required. In this review, these different solutions are analyzed. The paper describes the main reactors used, the influence of the main operating variables, the microorganisms or reagents employed and the characterizations of the final effluent principally in terms of chemical oxygen demand. In addition, the experimental conditions and the main results reported in the literature are compiled. Finally, the comparison between the different treatment alternatives and the presentation of potential treatment lines are postulated.

  13. Effect of zinc fortification on Cheddar cheese quality.

    Science.gov (United States)

    Kahraman, O; Ustunol, Z

    2012-06-01

    Zinc-fortified Cheddar cheese containing 228 mg of zinc/kg of cheese was manufactured from milk that had 16 mg/kg food-grade zinc sulfate added. Cheeses were aged for 2 mo. Culture activity during cheese making and ripening, and compositional, chemical, texture, and sensory characteristics were compared with control cheese with no zinc sulfate added to the cheese milk. Compositional analysis included fat, protein, ash, moisture, zinc, and calcium determinations. The thiobarbituric acid (TBA) assay was conducted to determine lipid oxidation during aging. Texture was analyzed by a texture analyzer. An untrained consumer panel of 60 subjects evaluated the cheeses for hardness, off-flavors, appearance, and overall preference using a 9-point hedonic scale. Almost 100% of the zinc added to cheese milk was recovered in the zinc-fortified cheese. Zinc-fortified Cheddar cheese had 5 times more zinc compared with control cheese. Zinc-fortified cheese had higher protein and slightly higher fat and ash contents, whereas moisture was similar for both cheeses. Zinc fortification did not affect culture activity during cheese making or during the 2-mo aging period. The TBA value of control cheese was higher than that of zinc-fortified cheese at the end of ripening. Although zinc-fortified cheese was harder as determined by the texture analyzer, the untrained consumer panel did not detect differences in the sensory attributes and overall quality of the cheeses. Fortification of 16 mg/kg zinc sulfate in cheese milk is a suitable approach to fortifying Cheddar cheese without changing the quality of Cheddar cheese.

  14. 21 CFR 133.189 - Skim milk cheese for manufacturing.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Skim milk cheese for manufacturing. 133.189... Standardized Cheese and Related Products § 133.189 Skim milk cheese for manufacturing. (a) Skim milk cheese for manufacturing is the food prepared from skim milk and other ingredients specified in this section, by...

  15. 21 CFR 133.121 - Low sodium colby cheese.

    Science.gov (United States)

    2010-04-01

    ... common name or names of the ingredient or ingredients used as a salt substitute. (f) Low sodium colby... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Low sodium colby cheese. 133.121 Section 133.121... Cheese and Related Products § 133.121 Low sodium colby cheese. Low sodium colby cheese is the...

  16. Addition of whey protein to fresh cheese.

    Directory of Open Access Journals (Sweden)

    José Rafael Arce-Méndez

    2015-12-01

    Full Text Available This work has been conducted in order to assess the effect of adding whey protein (WP to fresh cheese. The yield, proximal chemical composition, tryptophan content,and texture and consumer sensorial acceptance were obtained. The study was conducted at a cheese factory located in San Carlos, Costa Rica, in 2011. The protein obtained from whey was added during the cheese manufacturing process, before adding the microbial rennet; and four enrichment levels were evaluated, including one control. The supplemented cheese showed an acceptance rating between 6.8 and 7.1. Products with 75 and 120 g of added whey protein per kilogram of milk showed no significant differences versus non-supplemented cheese, while the preference towards the cheese with 150 g WP/kg was less than that of the control (p<0.05. A cluster analysis revealed the existence of two consumer groups: one, accounting for 65% of the members of the panel, whose preference was unaffected by the protein supplemented; and, the other group where the added protein affected their liking negatively. Adding whey protein to the cheese resulted in a significant increase in yield and in the protein-to-water ratio, as well as a reduction in fat content (p<0.05. Nevertheless, there were structural changes in the cheese that caused the reduction of certain texture properties, generating changes in their sensory properties that reduced the preference of a representative group of consumers towards the product.

  17. 21 CFR 133.183 - Romano cheese.

    Science.gov (United States)

    2010-04-01

    ... anhydrous calcium chloride, of the weight of the milk) is added to set the milk to be a semisolid mass. The... Products § 133.183 Romano cheese. (a) Romano cheese is the food prepared from cow's milk or sheep's milk or goat's milk or mixtures of two or all of these and other ingredients specified in this section, by...

  18. Major technological advances and trends in cheese.

    Science.gov (United States)

    Johnson, M E; Lucey, J A

    2006-04-01

    Over the last 25 yr, cheese production in the United States has more than doubled with most of the increase due to production in the western states. Processing large volumes of milk into cheese has necessitated changes in vat size and design, reliance on computer software, and milk standardization, including use of membrane concentration of milk either at the cheese plant or on the farm. There has been increased interest in specialty cheeses including cheese made from sheep, goat, and organic milks. In addition, membrane processing of whey into various value-added components has become routine. Changes in cheese manufacturing protocols have resulted in a reduction of the manufacturing time and the necessity for consistent and reliable starter activity. Major advances in the genetics of microorganisms have not only resulted in widespread use of fermentation-produced chymosin but also in starter bacteria with improved resistance to bacteriophage infection. Genomics and proteomics have increased the likelihood of the development of nonstarter adjuncts with specific enzymatic activity. Indeed, the use of adjunct microorganisms to produce cheese with a unique flavor profile or to produce cheese with more consistent or better quality flavor has gained almost universal acceptance.

  19. The language of cheese-ripening cultures

    DEFF Research Database (Denmark)

    Gori, Klaus; Jespersen, Lene

    2010-01-01

    Microbial interactions are of importance for the establishment and growth of cheese ripening cultures. An interesting aspect of microbial interactions is cell-cell communication, often referred to as quorum sensing; the process in which micro-organisms communicate with signalling molecules and co......-based and ammonia signalling in the dairy-relevant yeast Debaryomyces hansenii. Furthermore, the influence of cheese matrices on quorum sensing systems is briefly mentioned. Finally, we discuss how knowledge on quorum sensing systems in cheese ripening cultures may be used for optimisation of the ripening processes....... be of importance is surface ripened cheeses. The present review focuses on our findings on quorum sensing systems in cheese ripening cultures. The main focus is on the group of bacterial non-species-specific signalling molecules referred to as autoinducer-2 (AI-2) in smear bacteria as well as alcohol...

  20. Physical properties of pizza Mozzarella cheese manufactured under different cheese-making conditions.

    Science.gov (United States)

    Banville, V; Morin, P; Pouliot, Y; Britten, M

    2013-08-01

    The effect of manufacturing factors on the shreddability and meltability of pizza Mozzarella cheese was studied. Four experimental cheeses were produced with 2 concentrations of denatured whey protein added to milk (0 or 0.25%) and 2 renneting pH values (6.4 or 6.5). The cheeses were aged 8, 22, or 36d before testing. Shreddability was assessed by the presence of fines, size of the shreds, and adhesion to the blade after shredding at 4, 13, or 22°C. A semi-empirical method was developed to measure the matting behavior of shreds by simulating industrial bulk packaging. Rheological measurements were performed on cheeses with and without a premelting treatment to assess melt and postmelt cheese physical properties. Lowering the pH of milk at renneting and aging the cheeses generally decreased the fines production during shredding. Adding whey protein to the cheeses also altered the fines production, but the effect varied depending on the renneting and aging conditions. The shred size distribution, adhesion to the blade, and matting behavior of the cheeses were adversely affected by increased temperature at shredding. The melting profiles obtained by rheological measurements showed that better meltability can be achieved by lowering the pH of milk at renneting or aging the cheese. The premelted cheeses were found to be softer at low temperatures (50°C) compared with the cheeses that had not undergone the premelting treatment. Understanding and controlling milk standardization, curd acidification, and cheese aging are essential for the production of Mozzarella cheese with desirable shreddability and meltability.

  1. Evaluation of Natural Food Preservatives in Domestic and Imported Cheese

    Science.gov (United States)

    Paik, Hyun-Dong

    2016-01-01

    In milk and milk products, a number of organic acids naturally occur. We investigated the contents of some naturally occurred food preservatives (sorbic acid, benzoic acid, propionic acid, nitrite, and nitrate) contained in domestic and imported cheeses to establish the standard for the allowable range of food preservatives content in cheese. 8 kinds of domestic precheeses (n=104), 16 kinds of domestic cured cheeses (n=204) and 40 kinds of imported cheeses (n=74) were collected. Each domestic cheese was aged for a suitable number of months and stored for 2 mon at 5℃ and 10℃. No preservatives were detected in domestic soft and fresh cheeses, except cream cheese. In case of semi-hard cheeses, 2-5 mg/kg of benzoic acid was detected after 1-2 mon of aging. In imported cheeses, only benzoic acid and propionic acid were detected. The average benzoic acid and propionic acid contents in semi-hard cheese were 8.73 mg/kg and 18.78 mg/kg, respectively. Specifically, 1.16 mg/kg and 6.80 mg/kg of benzoic acid and propionic acid, respectively, were contained in soft cheese, 3.27 mg/kg and 2.84 mg/kg, respectively, in fresh cheese, 1.87 mg/kg and not detected, respectively, in hard cheese, and 2.07 mg/kg and 182.26 mg/kg, respectively, in blended processed cheese. PMID:27621695

  2. Evaluation of Natural Food Preservatives in Domestic and Imported Cheese.

    Science.gov (United States)

    Park, Sun-Young; Han, Noori; Kim, Sun-Young; Yoo, Mi-Young; Paik, Hyun-Dong; Lim, Sang-Dong

    2016-01-01

    In milk and milk products, a number of organic acids naturally occur. We investigated the contents of some naturally occurred food preservatives (sorbic acid, benzoic acid, propionic acid, nitrite, and nitrate) contained in domestic and imported cheeses to establish the standard for the allowable range of food preservatives content in cheese. 8 kinds of domestic precheeses (n=104), 16 kinds of domestic cured cheeses (n=204) and 40 kinds of imported cheeses (n=74) were collected. Each domestic cheese was aged for a suitable number of months and stored for 2 mon at 5℃ and 10℃. No preservatives were detected in domestic soft and fresh cheeses, except cream cheese. In case of semi-hard cheeses, 2-5 mg/kg of benzoic acid was detected after 1-2 mon of aging. In imported cheeses, only benzoic acid and propionic acid were detected. The average benzoic acid and propionic acid contents in semi-hard cheese were 8.73 mg/kg and 18.78 mg/kg, respectively. Specifically, 1.16 mg/kg and 6.80 mg/kg of benzoic acid and propionic acid, respectively, were contained in soft cheese, 3.27 mg/kg and 2.84 mg/kg, respectively, in fresh cheese, 1.87 mg/kg and not detected, respectively, in hard cheese, and 2.07 mg/kg and 182.26 mg/kg, respectively, in blended processed cheese.

  3. 21 CFR 133.123 - Cold-pack and club cheese.

    Science.gov (United States)

    2010-04-01

    ... granular cheese in mixtures which are designated as “American cheese” as prescribed in paragraph (d)(2) of... “Cold-pack American cheese”; or when cheddar cheese, washed curd cheese, colby cheese, granular cheese... ingredient any of such cheeses or such mixture may be designated as “American cheese”. (3) The......

  4. The Physicochemical Quality of Traditional Burduf Cheese

    Directory of Open Access Journals (Sweden)

    Carmen Pop

    2013-11-01

    Full Text Available The aim of this study is the assessmentof the quality control of raw milk and traditional burduf cheese obtained fromcow milk mixed with 10% sheep milk. Appreciation of the integrity and freshness assessmentof milk (cow and sheep was tested by physico-chemical analysis.On theshelf-live were determined the physico-chemical parameters in cheese samples. Theantibiotics residues were tested of the milk samples with portable analyser,model Rosa Charm Reader. Theresults of physico-chemical determinations for the milk and cheese samples werewithin the maximum permissible by data legislation. Regardingthe content of antibiotics, the results were negative both for cow milk and forsheep milk. The sensorycharacteristics of burduf cheese are influenced by the different types of milk.

  5. Proteolysis of Livanjski cheese during ripening

    Directory of Open Access Journals (Sweden)

    Samir KALIT

    2016-12-01

    Full Text Available Livanjski cheese belongs to the group of hard cheeses which is traditionally produced in Livno (Bosnia and Herzegovina. Proteolytic changes during the ripening of Livanjski cheese have not been investigated extensively. The aim of this paper was to determine its proteolytic changes during the different stages of ripening. Five Livanjski cheeses (from raw cow’s or a mixture of sheep’s and cow’s milk were observed during the ripening to evaluate its typical proteolytic profile. An electophoretic profile of Livanjski cheese was determined by Urea-polyacrylamide gel electrophoresis (urea-PAGE and a densitometric evaluation of the urea-PAGE gels was performed using a densitometer. The water-soluble nitrogen fraction in the total nitrogen (WSN %TN and the 12%-TCA-soluble nitrogen fraction in the total nitrogen (TCA-SN %TN of the cheese were determined using the Kjeldahl method. Degradation of αs1-casein by chymosin caused a significant decrease (P < 0.05 of relative content of this protein in Livanjski cheese at the sixth week point of ripening. Due to the activity of chymosin on αs1-casein, αs1-I-casein and αs1-II-casein developed, which caused a significant increase (P < 0.05 of Index alpha. The relative ratio of β-casein significantly decreased (P < 0.05 during ripening leading to a significant accumulation (P < 0.05 of degraded product (sum γ1-casein, γ2-casein and γ3-casein. These proteolytic changes caused a significant increase (P < 0.05 of Index betta. Accumulation of medium, small peptides and amino acids caused a significant (P < 0.05 increase of the relative content of WSN %TN and TCA-SN %TN. In general, proteolysis of Livanjski cheese during ripening was moderate probably due to the low moisture content and low water activity, although it was produced from raw milk. Taking into account that the ratio β-casein : αs1-casein at the end of ripening was 1.46, it could be concluded that degradation of αs1-casein could be the

  6. Biogenic amines in Italian Pecorino cheese

    Directory of Open Access Journals (Sweden)

    Maria eSchirone

    2012-05-01

    Full Text Available The quality of distinctive artisanal cheeses is closely associated with the territory of production and its traditions. Pedoclimatic characteristics, genetic autochthonous variations and anthropic components create an environment so specific that it would be extremely difficult to reproduce elsewhere. Pecorino cheese is included in this sector of the market and is widely diffused in Italy (approximately 53.727t of production. Pecorino is a common name given to indicate Italian cheeses made exclusively from pure ewes' milk characterized by a high content of fat matter and it is mainly produced in the middle and south of Italy by traditional procedures from raw or thermized milk. The microbiota plays a major role in the development of the organoleptic characteristics of the cheese but it can also be responsible for the accumulation of undesirable substances, such as biogenic amines (BA. Several factors can contribute to the qualitative and quantitative profiles of BA’s in Pecorino cheese such as environmental hygienic conditions, pH, salt concentration, aw, fat content, pasteurization of milk, decarboxylase microorganisms, starter cultures, temperature and time of ripening, storage, part of the cheese (core, edge and the presence of cofactor. Generally, the total content of BA’s can range from about 100-2400 mg/kg, with a prevalence of toxicologically important BA’s, tyramine and histamine. The presence of BA in Pecorino cheeses is becoming increasingly important to consumers and cheese-maker alike, due to the potential threats of toxicity to humans and consequent trade implications.

  7. The Physicochemical Quality of Traditional Burduf Cheese

    OpenAIRE

    Carmen Pop; Cristina Anamaria Semeniuc; Sorin Apostu; Ancuţa Mihaela Rotar

    2013-01-01

    The aim of this study is the assessmentof the quality control of raw milk and traditional burduf cheese obtained fromcow milk mixed with 10% sheep milk. Appreciation of the integrity and freshness assessmentof milk (cow and sheep) was tested by physico-chemical analysis.On theshelf-live were determined the physico-chemical parameters in cheese samples. Theantibiotics residues were tested of the milk samples with portable analyser,model Rosa Charm Reader. Theresults of physico-chemical determi...

  8. Whey cheese: membrane technology to increase yields.

    Science.gov (United States)

    Riera, Francisco; González, Pablo; Muro, Claudia

    2016-02-01

    Sweet cheese whey has been used to obtain whey cheese without the addition of milk. Pre-treated whey was concentrated by nanofiltration (NF) at different concentration ratios (2, 2.5 and 2.8) or by reverse osmosis (RO) (2-3 times). After the concentration, whey was acidified with lactic acid until a final pH of 4.6-4.8, and heated to temperatures between 85 and 90 °C. The coagulated fraction (supernatant) was collected and freely drained over 4 h. The cheese-whey yield and protein, fat, lactose and ash recoveries in the final product were calculated. The membrane pre-concentration step caused an increase in the whey-cheese yield. The final composition of products was compared with traditional cheese-whey manufacture products (without membrane concentration). Final cheese yields found were to be between 5 and 19.6%, which are higher than those achieved using the traditional 'Requesón' process.

  9. Interests in Geotrichum candidum for cheese technology.

    Science.gov (United States)

    Boutrou, R; Guéguen, M

    2005-06-25

    The wide genotypic and phenotypic diversity of Geotrichum candidum strains does not facilitate its classification as yeast or a yeast-like fungus that is still a matter of debate. Whatever its classification, G. candidum possesses many different metabolic pathways that are of particular interest to the dairy industry. G. candidum is of importance in the maturation of cheese, and much is known about its direct contribution to cheese ripening and flavour formation. Its diverse metabolic potential means that G. candidum can play an important role in the ripening of many soft and semi-hard cheeses and make a positive contribution to the development of taste and aroma. It may also influence the growth of other microorganisms, both valuable and detrimental. The significance of the presence of G. candidum in cheese depends on the particular type of production and on the presence of biotypes featuring specific types of metabolism. However, in situ metabolic pathways involved in cheese ripening and their regulations are mainly unknown. The information available provides a good understanding of the potential of G. candidum strains that are used in cheese manufacture, and permits a better choice of strain depending on the characteristics required. The biochemical activities of G. candidum and its application in the dairy industry are presented in this review.

  10. Cheese Classification, Characterization, and Categorization: A Global Perspective.

    Science.gov (United States)

    Almena-Aliste, Montserrat; Mietton, Bernard

    2014-02-01

    Cheese is one of the most fascinating, complex, and diverse foods enjoyed today. Three elements constitute the cheese ecosystem: ripening agents, consisting of enzymes and microorganisms; the composition of the fresh cheese; and the environmental conditions during aging. These factors determine and define not only the sensory quality of the final cheese product but also the vast diversity of cheeses produced worldwide. How we define and categorize cheese is a complicated matter. There are various approaches to cheese classification, and a global approach for classification and characterization is needed. We review current cheese classification schemes and the limitations inherent in each of the schemes described. While some classification schemes are based on microbiological criteria, others rely on descriptions of the technologies used for cheese production. The goal of this review is to present an overview of comprehensive and practical integrative classification models in order to better describe cheese diversity and the fundamental differences within cheeses, as well as to connect fundamental technological, microbiological, chemical, and sensory characteristics to contribute to an overall characterization of the main families of cheese, including the expanding world of American artisanal cheeses.

  11. A high-throughput cheese manufacturing model for effective cheese starter culture screening

    NARCIS (Netherlands)

    Bachmann, H.; Kruijswijk, Z.; Molenaar, D.; Kleerebezem, M.; Hylckama Vlieg, van J.E.T.

    2009-01-01

    Cheese making is a process in which enzymatic coagulation of milk is followed by protein separation, carbohydrate removal, and an extended bacterial fermentation. The number of variables in this complex process that influence cheese quality is so large that the developments of new manufacturing prot

  12. Complete Genome Sequence for Lactobacillus helveticus CNRZ 32, an Industrial Cheese Starter and Cheese Flavor Adjunct

    OpenAIRE

    Broadbent, Jeff R.; Hughes, Joanne E.; Welker, Dennis L.; Tompkins, Thomas A.; James L Steele

    2013-01-01

    Lactobacillus helveticus is a lactic acid bacterium widely used in the manufacture of cheese and for production of bioactive peptides from milk proteins. We present the complete genome sequence for L. helveticus CNRZ 32, a strain particularly recognized for its ability to reduce bitterness and accelerate flavor development in cheese.

  13. Effect of lupine as cheese base substitution on technological and nutritional properties of processed cheese analogue

    Directory of Open Access Journals (Sweden)

    Rezik Azab Awad

    2014-03-01

    Full Text Available Background. Healthy foods have been met with marked success in the last two decades. Lupine flours, protein concentrates, and isolates can be applied as a substance for enriching different kinds of food systems such as bakery products, lupine pasta, ice cream, milk substitutes. Imitation processed cheese is made from mixtures of dairy and/or non dairy proteins and fat/oils and is variously labeled analogue, artifi cial, extruded, synthetic and/or fi lled. Processed cheese can be formulated using different types of cheese with different degree of maturation, fl avorings, emulsifying, salts, and/or several ingredients of non-dairy components. Non-dairy ingredients have been used in processed cheese for many dietary and economic reasons. In this study, lupine paste was used to substitute 25, 50, 75 and 100% of cheese in base formula of processed cheese analogue (PCA. Material and methods. Matured Ras cheese (3 months old was manufactured using fresh cow milk. Soft cheese curd was manufactured using fresh buffalo skim milk. Emulsifying salts S9s and Unsalted butter were used. Lupine termis paste was prepared by soaking the seeds in tap water for week with changing the water daily, and then boiled in water for 2 hrs, cooled and peeled. The peeled seeds were minced, blended to get very fi ne paste and kept frozen until used. Results. Lupine paste was used to substitute 25, 50, 75 and 100% of cheese in base formula of processed cheese analogue (PCA. The obtained PCA were analysed when fresh and during storage up to 3 months at 5±2°C for chemical composition, physical and sensory properties. The histopathological effect of lupines on alloxan diabetic albino rats and nutritional parameters were also investigated. Incorporation of lupine paste in PCA increased the ash and protein contents while meltability and penetration values of resultant products were decreased. Adding lupine in PSA formula had relatively increased the oil index and fi rmness of

  14. LACTIC ACID BACTERIA FLORA OF KONYA KUFLU CHEESE: A TRADITIONAL CHEESE FROM KONYA PROVINCE IN TURKEY

    Directory of Open Access Journals (Sweden)

    Ziba Guley

    2014-12-01

    Full Text Available The aim of this study was to characterize the lactic acid bacteria flora of mature Konya Kuflu cheese. Konya Kuflu cheese is a traditional blue cheese which is produced from raw milk without starter culture addition and mould growth occurs in uncontrolled conditions during its ripening. Lactic acid bacteria (LAB isolated from 9 mature Konya Kuflu cheese samples were investigated using a combination of conventional biochemical tests, API test kits, and molecular approaches. For some isolates, different results were obtained according to the identification technique. The overall LAB profile of Konya Kuflu cheese samples revealed that Lactobacillus brevis, Lactobacillus paracasei/Lactobacillus casei, Lactobacillus plantarum, Enterococcus faecium, and Enterococcus faecalis are the predominant species. In addition, 1 Pediococcus parvulus and 1 Enterococcus durans were also identified.

  15. Suitability of the infrared spectroscopy and the rheological method for distinguishing traditional cheese from industrial Turoš cheese

    Directory of Open Access Journals (Sweden)

    Kristijan Valkaj

    2014-05-01

    Full Text Available The aim of this paper was to determine suitability of the infrared spectroscopy and the rheological method for distinguishing traditional cheese from industrial Turoš cheese. Turoš cheese belongs to the group of sour, dried, cone shaped cheeses with added salt and red dry pepper. Cheeses were sampled from 15 family farms and from market (industrial cheeses from five different batches. The rheological parameters of analysed cheeses were in accordance with the chemical composition of the same samples. Infrared spectroscopy of cheeses show good relation with the chemical composition and it has been proved to be a fast and effective method when compared to textural and standard chemical analysis for monitoring the standard procedure of production of sour, dried cheeses such as Turoš cheese. The extensive variability of all the parameters was a result of unbalanced production of Turoš cheese among family farms. Industrial production of Turoš cheese demonstrates more uniformity in relation to traditional on-farm cheese production.

  16. Biogenic amines in italian pecorino cheese.

    Science.gov (United States)

    Schirone, Maria; Tofalo, Rosanna; Visciano, Pierina; Corsetti, Aldo; Suzzi, Giovanna

    2012-01-01

    The quality of distinctive artisanal cheeses is closely associated with the territory of production and its traditions. Pedoclimatic characteristics, genetic autochthonous variations, and anthropic components create an environment so specific that it would be extremely difficult to reproduce elsewhere. Pecorino cheese is included in this sector of the market and is widely diffused in Italy (∼62.000t of production in 2010). Pecorino is a common name given to indicate Italian cheeses made exclusively from pure ewes' milk characterized by a high content of fat matter and it is mainly produced in the middle and south of Italy by traditional procedures from raw or pasteurized milk. The microbiota plays a major role in the development of the organoleptic characteristics of the cheese but it can also be responsible for the accumulation of undesirable substances, such as biogenic amines (BA). Bacterial amino acid decarboxylase activity and BA content have to be investigated within the complex microbial community of raw milk cheese for different cheese technologies. The results emphasize the necessity of controlling the indigenous bacterial population responsible for high production of BA and the use of competitive adjunct cultures could be suggested. Several factors can contribute to the qualitative and quantitative profiles of BA's in Pecorino cheese such as environmental hygienic conditions, pH, salt concentration, water activity, fat content, pasteurization of milk, decarboxylase microorganisms, starter cultures, temperature and time of ripening, storage, part of the cheese (core, edge), and the presence of cofactor (pyridoxal phosphate, availability of aminases and deaminases). In fact physico-chemical parameters seem to favor biogenic amine-positive microbiota; both of these environmental factors can easily be modulated, in order to control growth of undesirable microorganisms. Generally, the total content of BA's in Pecorino cheeses can range from about 100-2400

  17. Characteristics of Gouda cheese supplemented with fruit liquors.

    Science.gov (United States)

    Choi, Hee Young; Yang, Chul Ju; Choi, Kap Seong; Bae, Inhyu

    2015-01-01

    This study was conducted in order to evaluate the quality characteristics of Gouda cheeses supplemented with fruit liquor (Prunusmume or Cornus officinalis). Fruit liquor was supplemented to Gouda cheeses during preparation. Changes in chemical composition, lactic acid bacterial population, pH, water-soluble nitrogen, sensory characteristics, and proteolysis were monitored in the prepared ripened cheese. The electrophoresis patterns of cheese proteins, fruit liquor functional component concentrations, and the flavonoid content of the cheeses were also determined. The addition of fruit liquor did not affect (p> 0.05) the appearance or sensory characteristics of the cheeses. Higher amounts of crude ash, mineral, and flavonoids (psupplemented cheese than in the control cheese. Findings from this study suggest that wine supplemented Gouda could provide additional nutrients while maintaining flavor and quality.

  18. Trace elements content in cheese, cream and butter

    OpenAIRE

    Nina Bilandžić; Marija Sedak; Maja Đokić; Đurđica Božić; Božica Solomun Kolanović; Ivana Varenina

    2014-01-01

    Trace elements were determined in five types of cheese, cream and butter using inductively coupled plasma-optical emission spectrometry. In cheese samples trace elements were measured as follows (mg/kg): Al 0.01-3.93, Co

  19. Cheese

    DEFF Research Database (Denmark)

    Gregersen, Vivi Raundahl; Lucey, J.A.

    2016-01-01

    negative charge and steric repulsion, such that rennet-altered micelles become susceptible to aggregation and, after a lag phase, a three-dimensional gel network is formed. Historically, rennet was extracted from the fourth stomach of young calves, but today various other forms are available including...

  20. 21 CFR 133.186 - Sap sago cheese.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Sap sago cheese. 133.186 Section 133.186 Food and... Products § 133.186 Sap sago cheese. (a) Description. (1) Sap sago cheese is the food prepared by the... method described in § 133.5. Sap sago cheese is not less than 5 months old. (2) One or more of the...

  1. Proteolysis of prato type cheese produced using ultrafiltration

    OpenAIRE

    Spadoti Leila Maria; Dornellas José Raimundo Ferreira; Roig Salvador Massaguer

    2005-01-01

    The application of milk ultrafiltration technology for cheese manufacture presents several advantages. However, it also influences proteolysis and, consequently, cheese ripening. The effects of five different processing methods for Prato cheese were evaluated with respect to the time evolution of the extent and depth of proteolysis indexes (EPI and DPI). The following treatments (T) for cheese production were studied: T1 - without ultrafiltration (standard); T2, T3, T4 and T5 - using milk con...

  2. Roquefortine C occurrence in blue cheese.

    Science.gov (United States)

    Finoli, C; Vecchio, A; Galli, A; Dragoni, I

    2001-02-01

    Several strains of Penicillium are used for the production of mold-ripened cheeses, and some of them are able to produce mycotoxins. The aims of the research were the determination of roquefortine C and PR toxin in domestic and imported blue cheeses, the identification of the penicillia used as starter, and the investigation of their capacity for producing toxins in culture media. Roquefortine C was always found in the cheeses at levels ranging from 0.05 to 1.47 mg/kg, whereas the PR toxin was never found. The identification of the fungal strains present in the domestic cheeses included Penicillium glabrum, Penicillium roqueforti, and Penicillium cyclopium in the Gorgonzola "dolce" and Penicillium roqueforti in the Gorgonzola "naturale"; in one case, the presence of Penicillium crustosum was observed. The strains isolated from the foreign cheeses belonged to P. roqueforti. The strains were able to produce between 0.18 and 8.44 mg/liter of roquefortine in yeast extract sucrose medium and between 0.06 and 3.08 mg/liter and less than 0.05 mg/liter when inoculated in milk at 20 degrees C for 14 days and 4 degrees C for 24 days, respectively. Linear relations between production of roquefortine in culture media and cheeses did not emerge. PR toxin ranged from less than 0.05 to 60.30 mg/liter in yeast extract sucrose medium and was produced in milk at 20 degrees C from only one strain. The low levels and the relatively low toxicity of roquefortine make the consumption of blue cheese safe for the consumer.

  3. Towards an Ecosystem Approach to Cheese Microbiology.

    Science.gov (United States)

    Wolfe, Benjamin E; Dutton, Rachel J

    2013-10-01

    Cheese is an ideal environment to serve as a model for the behavior of microbes in complex communities and at the same time allow detailed genetic analysis. Linking organisms, and their genes, to their role in the environment becomes possible in the case of cheese since cheese microbial communities have been "in culture" for thousands of years, with the knowledge of how to grow these organisms passed down by generations of cheesemakers. Recent reviews have described several emerging approaches to link molecular systems biology to ecosystem-scale processes, known as ecosystems biology. These approaches integrate massive datasets now available through high-throughput sequencing technologies with measurements of ecosystem properties. High-throughput datasets uncover the "parts list" (e.g., the species and all the genes within each species) of an ecosystem as well as the molecular basis of interactions within this parts list. Novel computational frameworks make it possible to link species and their interactions to ecosystem properties. Applying these approaches across multiple temporal and spatial scales makes it possible to understand how changes in the parts lists over space and time lead to changes in ecosystems processes. By manipulating the species present within model systems, we can test hypotheses related to the role of microbes in ecosystem function. Due to the tractability of cheese microbial communities, we have the opportunity to use an ecosystems biology approach from the scale of individual microbial cells within a cheese to replicated cheese microbial communities across continents. Using cheese as a model microbial ecosystem can provide a way to answer important questions concerning the form, function, and evolution of microbial communities.

  4. 21 CFR 133.179 - Pasteurized process cheese spread.

    Science.gov (United States)

    2010-04-01

    ... ingredients referred to in paragraph (a) of this section are cream, milk, skim milk, buttermilk, cheese whey... cream, albumin from cheese whey, and skim milk cheese for manufacturing. (e) The emulsifying agents... more than 44 percent but not more than 60 percent, and the milk fat content is not less than 20...

  5. Cheese from Ultrafiltered Milk : whey proteins and chymosin activity

    NARCIS (Netherlands)

    Buijsse, C.

    1999-01-01

    The manufacture of (semi-)hard cheese from ultrafiltered milk (UF-cheese) enables the partial incorporation of whey proteins in the cheese, thereby increasing its yield. The transfer of whey proteins in curd from (UF-)milk was studied in relation to the degree of ultrafiltration of the milk and the

  6. 7 CFR 58.439 - Cheese from unpasteurized milk.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Cheese from unpasteurized milk. 58.439 Section 58.439... Procedures § 58.439 Cheese from unpasteurized milk. If the cheese is labeled as “heat treated”, “unpasteurized,” “raw milk”, or “for manufacturing” the milk may be raw or heated at temperatures...

  7. 7 CFR 58.438 - Cheese from pasteurized milk.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Cheese from pasteurized milk. 58.438 Section 58.438... Procedures § 58.438 Cheese from pasteurized milk. If the cheese is labeled as pasteurized, the milk shall be pasteurized by subjecting every particle of milk to a minimum temperature of 161 °F. for not less than...

  8. 7 CFR 58.737 - Pasteurized process cheese food.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Pasteurized process cheese food. 58.737 Section 58.737... Finished Products § 58.737 Pasteurized process cheese food. Shall conform to the provisions of the Definitions and Standards of Identity for Pasteurized Process Cheese Food and Related Products, Food and...

  9. Quality of Trappist cheese from Croatian dairy plant

    Directory of Open Access Journals (Sweden)

    Anđela Merćep

    2010-12-01

    Full Text Available The paper presents technological parameters, basic chemical composition and sensory evaluation, as well as the yield of 146 samples of Trappist cheese. In terms of water content in non-fat matter (56.36-58.31 %, Trappist cheese belongs to the group of semi-hard cheeses, and in terms of content of fat in dry matter (46.06-48.63 %, it belongs to the group of full-fat cheeses. In four cheese samples E. coli was determined within microbiological parameters, whereas other researched bacteria were not determined. Cheese has a shape of a symmetrical ring and it has a homogenous yellow color of protective coating. Mean mass value of one cheese ring is from 2.50 to 2.55 kg. The body of cheese has a homogenous light yellow color, which is brighter along the edges. The cheese holes have the size of a pea; they are bright and patterned over the whole surface of cross section. Consistency of cheese body is elastic, soft and interconnected. The cheese has mild, pure lactic and acidic taste and odor, and it is moderately salty. The results of sensory score show that even 91.78 % of cheese samples from experimental production can be assigned to the first quality class, whereas 8.22 % of samples belong to the second quality class.

  10. Flavor comparison of natural cheeses manufactured in different countries.

    Science.gov (United States)

    Koppel, Kadri; Chambers, Delores H

    2012-05-01

    The objective of this study was to determine the main flavor components of different natural aged cheese types from various countries and determine whether a unique sensory characteristic exists within specific countries for European cheeses. The flavor of 152 cheeses from Estonia, France, Italy, Germany, Holland, Austria, England, Greece, Ireland, Spain, Switzerland, Sweden, Belgium, and Denmark were described during 4 independent studies. The sensory data from these studies were combined. The cheeses were sorted according to milk type and texture, and flavor characteristics of these groups were described. The main flavor characteristics of the cheeses tested were salty, sweet, sour, astringent, biting, pungent, sharp, nutty, musty/earthy, dairy fat, buttery, and dairy sweet. The cluster analysis divided the cheeses into 4 clusters: clusters 1 and 2 were sour, dairy sour, salty, astringent, biting, and varied in buttery (cluster 1) and sharp notes (cluster 2). Cluster 1 and 2 were mainly composed of French cheeses, while clusters 3 and 4 represented cheeses from various countries. Cluster 3 and 4 were sweet, with cooked milk and nutty characteristics and varied from buttery (cluster 3) to sharp notes (cluster 4). Cheeses from some countries, for example, France and Estonia, generally exhibited common sensory characteristics within the specific country, but cheeses from some other countries, such as Italy, varied widely, and seemed to have no common sensory theme. Most regional cheese standards are not specific about flavor profiles and these results suggest it may be possible to start a further characterization of cheeses in some countries.

  11. Using milk and cheese to demonstrate food chemistry

    Science.gov (United States)

    Students usually do not realize how much chemistry is involved in making a food like cheese, and teachers may use milk and cheese to reveal interesting principles. Cheese is made by lowering the pH of milk, coagulating the protein with enzymes, and removing the whey with heat and pressure. Studies b...

  12. Habit Formation in Natural Cheese Consumption An Approach Based on Dynamic Demand Analysis

    OpenAIRE

    WAKABAYASHI, Katsufumi

    2010-01-01

    In expectation of growing cheese consumption, natural cheese production is being increased to reduce surplus milk and create high added value in raw milk. Other studies found positive trends in cheese consumption. However, those studies neither clarified recent trends, nor distinguished natural cheese from processed cheese. The purpose of this paper is to discuss the structure of natural cheese consumption, focusing on habit formation. We test structural changes in cheese demand using dynamic...

  13. Determining the minimum ripening time of artisanal Minas cheese, a traditional Brazilian cheese

    Science.gov (United States)

    Martins, José M.; Galinari, Éder; Pimentel-Filho, Natan J.; Ribeiro, José I.; Furtado, Mauro M.; Ferreira, Célia L.L.F.

    2015-01-01

    Physical, physicochemical, and microbiological changes were monitored in 256 samples of artisanal Minas cheese from eight producers from Serro region (Minas Gerais, Brazil) for 64 days of ripening to determine the minimum ripening time for the cheese to reach the safe microbiological limits established by Brazilian legislation. The cheeses were produced between dry season (April–September) and rainy season (October–March); 128 cheeses were ripened at room temperature (25 ± 4 °C), and 128 were ripened under refrigeration (8 ± 1 °C), as a control. No Listeria monocytogenes was found, but one cheese under refrigeration had Salmonella at first 15 days of ripening. However, after 22 days, the pathogen was not detected. Seventeen days was the minimum ripening time at room temperature to reduce at safe limits of total coliforms > 1000 cfu.g −1 ), Escherichia coli and Staphylococcus aureus (> 100 cfu.g −1 ) in both periods of manufacture. Otherwise under refrigeration, as expected, the minimum ripening time was longer, 33 days in the dry season and 63 days in the rainy season. To sum up, we suggest that the ripening of artisanal Minas cheese be done at room temperature, since this condition shortens the time needed to reach the microbiological quality that falls within the safety parameters required by Brazilian law, and at the same time maintain the appearance and flavor characteristics of this traditional cheese. PMID:26221111

  14. Determining the minimum ripening time of artisanal Minas cheese, a traditional Brazilian cheese

    Directory of Open Access Journals (Sweden)

    José M. Martins

    2015-03-01

    Full Text Available Physical, physicochemical, and microbiological changes were monitored in 256 samples of artisanal Minas cheese from eight producers from Serro region (Minas Gerais, Brazil for 64 days of ripening to determine the minimum ripening time for the cheese to reach the safe microbiological limits established by Brazilian legislation. The cheeses were produced between dry season (April–September and rainy season (October–March; 128 cheeses were ripened at room temperature (25 ± 4 °C, and 128 were ripened under refrigeration (8 ± 1 °C, as a control. No Listeria monocytogenes was found, but one cheese under refrigeration had Salmonella at first 15 days of ripening. However, after 22 days, the pathogen was not detected. Seventeen days was the minimum ripening time at room temperature to reduce at safe limits of total coliforms > 1000 cfu.g−1, Escherichia coli and Staphylococcus aureus (> 100 cfu.g−1 in both periods of manufacture. Otherwise under refrigeration, as expected, the minimum ripening time was longer, 33 days in the dry season and 63 days in the rainy season. To sum up, we suggest that the ripening of artisanal Minas cheese be done at room temperature, since this condition shortens the time needed to reach the microbiological quality that falls within the safety parameters required by Brazilian law, and at the same time maintain the appearance and flavor characteristics of this traditional cheese.

  15. Growth of Pseudomonas spp. in cottage cheese

    DEFF Research Database (Denmark)

    Østergaard, Nina Bjerre; Dalgaard, Paw

    Cottage cheese is a mixture of cheese curd with pH 4.5-4.8 and an uncultured or cultured cream dressing with a pH as high as 7.0. This results in a final product with microenvironments and a bulk pH of about 4.8 to 5.5. As for other lightly preserved foods microbial contamination and growth...... of spoilage microorganisms in cottage cheese can cause undesirable alterations in flavour, odour, appearance and texture. Contamination and growth of psychrotolerant pseudomonads including Pseudomonas fragi and Pseudomonas putida has been reported for cottage cheese but the influence of these bacteria......H (4.9-7.0) on growth was quantified using automated absorbance measurements (Bioscreen C). A pronounced reduction of the maximum specific growth rate was observed at pH 4.9 but at pH 5.2 strains grew at 5˚C, 10˚C and 15˚C. Challenge tests at 5-15˚C with cottage cheese (pH 5.2-5.5), and cream dressing...

  16. Cheese whey wastewater: characterization and treatment.

    Science.gov (United States)

    Carvalho, Fátima; Prazeres, Ana R; Rivas, Javier

    2013-02-15

    Cheese whey wastewater (CWW) is a strong organic and saline effluent whose characterization and treatment have not been sufficiently addressed. CWW composition is highly variable due to raw milk used, the fraction of non valorized cheese whey and the amount of cleaning water used. Cheese whey wastewater generation is roughly four times the volume of processed milk. This research tries to conduct an exhaustive compilation of CWW characterization and a comparative study between the different features of CWW, cheese whey (CW), second cheese whey (SCW) and dairy industry effluents. Different CWW existing treatments have also been critically analyzed. The advantages and drawbacks in aerobic/anaerobic processes have been evaluated. The benefits of physicochemical pre-stages (i.e. precipitation, coagulation-flocculation) in biological aerobic systems are assessed. Pre-treatments based on coagulation or basic precipitation might allow the application of aerobic biodegradation treatments with no dilution requirements. Chemical precipitation with lime or NaOH produces a clean wastewater and a sludge rich in organic matter, N and P. Their use in agriculture may lead to the implementation of Zero discharge systems.

  17. 21 CFR 133.184 - Roquefort cheese, sheep's milk blue-mold, and blue-mold cheese from sheep's milk.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Roquefort cheese, sheep's milk blue-mold, and blue-mold cheese from sheep's milk. 133.184 Section 133.184 Food and Drugs FOOD AND DRUG ADMINISTRATION..., sheep's milk blue-mold, and blue-mold cheese from sheep's milk. (a) Description. (1) Roquefort...

  18. Findings of Escherichia coli and Enterococcus spp. in homemade cheese

    Directory of Open Access Journals (Sweden)

    Tambur Zoran

    2007-01-01

    Full Text Available During the period from February until March 2004, 108 samples of soft cheese originating from markets of Pancevo, Subotica and Belgrade were examined. Microbiological analyses of the cheese samples to the presence of Escherichia coli was performed using methods described in the Regulations on methods for performing microbiological analyses and super analyses of consumer articles, while the presence of bacteria Enteroccocus spp. was performed on the dexter agar. From 108 samples of soft cheese from the territories of Pancevo, Belgrade and Subotica were isolated: Enterococcus spp. from 96% and Escherichia coli from 69%, cheese samples. Verocytotoxic E.coli was not isolated from any of the taken cheese samples.

  19. Chemometric analysis of Ragusano cheese flavor.

    Science.gov (United States)

    Carpino, S; Acree, T E; Barbano, D M; Licitra, G; Siebert, K J

    2002-02-27

    Ragusano cheeses were produced in duplicate from milk collected from pasture-fed and total mixed ration (TMR)-fed cattle at four time intervals. The cheeses were subjected to chemical analysis, conventional sensory testing, and gas chromatography-olfactometry (GCO). Data from each type of analysis were examined by principal component and factor analysis and by pattern recognition (SIMCA) to see if sufficient information for classification into pasture-fed and TMR-fed groups was contained therein. The results clearly indicate that there are significant differences in sensory panel and chemical analysis results between the two cheeses. The data were also examined to see if models of sensory responses as a function of analytical or GCO results or both could be constructed with the modeling technique partial least-squares regression (PLS). Strong PLS models of some sensory responses (green and toasted odor; salt, pungent, bitter, and butyric sensations; and smooth consistency) were obtained.

  20. The language of cheese-ripening cultures

    DEFF Research Database (Denmark)

    Gori, Klaus; Jespersen, Lene

    2010-01-01

    Microbial interactions are of importance for the establishment and growth of cheese ripening cultures. An interesting aspect of microbial interactions is cell-cell communication, often referred to as quorum sensing; the process in which micro-organisms communicate with signalling molecules and co......-ordinate gene expression in a cell density dependent manner. Little is known about quorum sensing in foods. However, as quorum sensing is expected to be a general phenomenon in micro-organisms, it is likely to be of importance for micro-organisms in foods. An example of a food product where quorum sensing could...... be of importance is surface ripened cheeses. The present review focuses on our findings on quorum sensing systems in cheese ripening cultures. The main focus is on the group of bacterial non-species-specific signalling molecules referred to as autoinducer-2 (AI-2) in smear bacteria as well as alcohol...

  1. Selective enumeration of probiotic microorganisms in cheese.

    Science.gov (United States)

    Karimi, Reza; Mortazavian, Amir M; Amiri-Rigi, Atefeh

    2012-02-01

    Cheese is a dairy product which has a good potential for delivery of probiotic microorganisms into the human intestine. To be considered to offer probiotic health benefits, probiotics must remain viable in food products above a threshold level (e.g., 10(6) cfu g(-1)) until the time of consumption. In order to ensure that a minimal number of probiotic bacteria is present in the cheese, reliable methods for enumeration are required. The choice of culture medium for selective enumeration of probiotic strains in combination with starters depends on the product matrix, the target group and the taxonomic diversity of the bacterial background flora in the product. Enumeration protocol should be designed as a function of the target microorganism(s) to be quantified in the cheese. An overview of some series of culture media for selective enumeration of commercial probiotic cultures is presented in this review.

  2. Emulsifying salt increase stability of cheese emulsions during holding

    DEFF Research Database (Denmark)

    Hougaard, Anni Bygvrå; Sijbrandij, Anna G.; Varming, Camilla

    2015-01-01

    In cheese powder production, cheese is mixed and melted with water and emulsifying salt to form an emulsion (cheese feed) which is required to remain stable at 60°C for 1h and during further processing until spray drying. Addition of emulsifying salts ensures this, but recent demands for reduction...... of sodium and phosphate in foods makes production of cheese powder without or with minimal amounts of emulsifying salts desirable. The present work uses a centrifugation method to characterize stability of model cheese feeds. Stability of cheese feed with emulsifying salt increased with holding time at 60°C......, especially when no stirring was applied. No change in stability during holding was observed in cheese feeds without emulsifying salt. This effect is suggested to be due to continued exerted functionality of the emulsifying salt, possibly through reorganizations of the mineral balance....

  3. Mold Flora of Traditional Cheeses Produced in Turkey

    Directory of Open Access Journals (Sweden)

    Musa Yalman

    2016-11-01

    Full Text Available In our country, there are many cheese types that are produced traditionally. Cheeses which produced from cows, sheep and goat milk that matured with spontaneous growth of molds present in livestock skins, pots and similar environments are among them. They are produced traditionally in Mediterrian, Central and Eastern Anatolia regions. Molds that grow spontaneously in cheeses could create public health risk because of their secondary metabolites. Penicillium spp. are the most isolated mold from these cheeses and Penicillium roqueforti is determined as the dominant species. Furthermore, Aspergillus, Alternaria, Mucor, Geotrichum, Cladosporium species have been isolated. It is very important to control the ripening conditions and starter strain selection since some strains were reported as mycotoxin producers. In this review, it has been tried to give general information about traditional production of mold-ripened cheese in Turkey and the mold flora found in traditional cheeses. In addition, public health risk of these cheeses is reported.

  4. ESTABLISHMENT OF A HYGIENE PROCEDURE IN A CHEESE FARMER ARTISANAL MINAS CHEESE

    OpenAIRE

    Santos, Adbeel de Lima; Costa Júnior, Luiz Carlos Gonçalves

    2013-01-01

    The food safety and the economical viability of milk processing depend on appropriated higyenization techniques. The main goal of this work was to evaluate higienics conditions of food processing environment and surfaces of a producer farm of Canastra cheese by using ATP - Bioluminescence. In addition it was also proposed a higyenization procedure to improve safety and quality of manufacture proceeding. It was also evaluated the water quality used in milking and during cheese production. Duri...

  5. Flavor profiles of full-fat and reduced-fat cheese and cheese fat made from aged Cheddar with the fat removed using a novel process.

    Science.gov (United States)

    Carunchia Whetstine, M E; Drake, M A; Nelson, B K; Barbano, D M

    2006-02-01

    Many consumers are concerned with fat intake. However, many reduced-fat foods, including reduced-fat cheese, lack robust flavors. The objectives of this study were to characterize the flavors found in full-fat cheese, cheese fat, and reduced-fat cheese made from aged Cheddar using a novel process to remove the fat (Nelson and Barbano, 2004). Two full-fat, aged cheeses (9 and 39 mo) were selected, and the fat was removed using the novel fat removal process. Full-fat cheeses, shredded and reformed full-fat cheeses, corresponding reduced-fat cheeses, and cheese fats were then analyzed using descriptive sensory and instrumental analysis followed by consumer acceptance testing. Cheeses were extracted with diethyl ether followed by isolation of volatile material by high vacuum distillation. Volatile extracts were analyzed using gas chromatography/ olfactometry with aroma extract dilution analysis. Selected compounds were quantified. The 39-mo cheese was characterized by fruity and sulfur notes, and the 9-mo-old cheese was characterized by a spicy/brothy flavor. Reduced-fat cheeses had similar flavor profiles with no difference in most sensory attributes to corresponding full-fat cheeses. Sensory profiles of the cheese fats were characterized by low intensities of the prominent flavors found in the full-fat cheeses. Instrumental analysis revealed similar trends. Consistent with sensory analysis, there were lower concentrations and log(3) flavor dilution factors for most compounds in the cheese fats compared with both the reduced- and full-fat cheeses, regardless of compound polarity. Consumers found the intensity of flavor in the reduced-fat cheese to be equal to the full-fat cheeses. This study demonstrated that when fat was removed from aged full-fat Cheddar cheese, most of the flavor and flavor compounds remained in the cheese and were not removed with the fat.

  6. The 'Swiss cheese' instability of bacterial biofilms

    CERN Document Server

    Jang, Hongchul; Stocker, Roman

    2012-01-01

    We demonstrate a novel pattern that results in bacterial biofilms as a result of the competition between hydrodynamic forces and adhesion forces. After the passage of an air plug, the break up of the residual thin liquid film scrapes and rearranges bacteria on the surface, such that a Swiss cheese pattern of holes is left in the residual biofilm.

  7. Lipase in milk, curd and cheese

    NARCIS (Netherlands)

    Geurts, T.J.; Lettink, F.J.; Wouters, J.T.M.

    2003-01-01

    Presence of lipase in milk, curd, whey and cheese was studied. A small amount of the product was added to a large volume of lipase-free whole milk that had been made sensitive to lipolysis by homogenization. Increase of the acidity of the fat in the mixture, determined after incubation, was interpre

  8. Packaging conditions hindering fungal growth on cheese

    DEFF Research Database (Denmark)

    Nielsen, Per Væggemose; Haasum, Iben

    1997-01-01

    Fungal contamination is one of the most important quality deteriorating factors on cheese. During the last 5 years we have studied in detail the underlying factors controlling these unwanted processes in a collaborative project financed by the Danish Dairy Board and the Ministry of Agriculture...

  9. A NEW DISCOLORATION OF RICOTTA CHEESE

    Directory of Open Access Journals (Sweden)

    V. Giaccone

    2010-06-01

    Full Text Available A new alteration of ricotta cheese is here described. The discoloration which has been noted was red. The responsible bacteria has been identified as Serratia marcescens. This is probably the first report of this rare type of spoilage identified in Italy.

  10. 21 CFR 133.187 - Semisoft cheeses.

    Science.gov (United States)

    2010-04-01

    ... percent, calculated as anhydrous calcium chloride, of the weight of the milk) is added to set the milk to... of identity are not prescribed by other sections of this part. They are made from milk and other... the milk used is not pasteurized, the cheese so made is cured at a temperature of not less than 35...

  11. CMB seen through random Swiss Cheese

    CERN Document Server

    Lavinto, Mikko

    2015-01-01

    We consider a Swiss Cheese model with a random arrangement of Lema\\^itre-Tolman-Bondi holes in $\\Lambda$CDM cheese. We study two kinds of holes with radius $r_b=50$ $h^{-1}$Mpc, with either an underdense or an overdense centre, called the open and closed case, respectively. We calculate the effect of the holes on the temperature, angular diameter distance and, for the first time in Swiss Cheese models, shear of the CMB. We quantify the systematic shift of the mean and the statistical scatter, and calculate the power spectra. In the open case, the temperature power spectrum is three orders of magnitude below the linear ISW spectrum. It is sensitive to the details of the hole, in the closed case the amplitude is two orders of magnitude smaller. In contrast, the power spectra of the distance and shear are more robust, and agree with perturbation theory and previous Swiss Cheese results. We do not find a statistically significant mean shift in the sky average of the angular diameter distance, and obtain the 95% l...

  12. Marketing of the autochthonous dried cheese in Zagreb region

    Directory of Open Access Journals (Sweden)

    Marija Radman

    2004-04-01

    Full Text Available The demand for specific, value added food products is constantlyincreasing. In order to prepare such products for the market it is necessary to understand consumers’ attitudes and preferences towards food products. Dried cheese, one of the traditional products of wider Zagreb region is produced nowadays exclusively on the family farms without proper control of the used inputs and final product, and without any marketing activities. It is possible to add value and to increase the control of dried cheese production bydeveloping county brand of the cheese. The introduction of county brand of dried cheese in the market requires very good preparation in terms of fulfilling consumers’ needs and wishes. In this paper the results of the consumer survey are presented and could be used for the determination of the technological parameters of production and especially for marketing of the cheese and its distribution. The results showed that majority of the consumers prefer harder, compact, bright yellow cheese, with less intensive odour, packed in transparent plastic foil. Certain number of the respondents confused dried cheese with other cheeses sold in the market and therefore it is necessary to educate consumers about dried cheese and its characteristics compared to other cheeses.

  13. Physicochemical and Sensory Properties of Whey Cheese with Pine Nuts

    Directory of Open Access Journals (Sweden)

    Cristina Anamaria Semeniuc

    2015-11-01

    Full Text Available This study aimed to develop a value-added whey cheese through addition of pine nuts. Therefore, different concentrations of pine nuts [2, 4, 6 and 8% (w/w] were added to whey cheese. The study was designed to evaluate the influence of pine nuts on physicochemical and sensory properties of whey cheese. The addition of pine nuts resulted in an increase in fat content and total solids and a decrease in moisture content. However, no statistically significant difference was found in pH values. Sensory analysis was performed using the 9-point hedonic scale, with selected assessors. The whey cheese sample with 4% pine nuts was the most appreciated (7.6 points, followed by the classic whey cheese, whey cheese with 6 and 8% pine nuts (7.4 points, and whey cheese with 2% pine nuts (7.3 points. Nevertheless, the sensory characteristics of whey cheese were not significantly influenced by the addition of pine nuts. Whey cheese sensory profiling was successful in differential characterization of whey cheese samples.

  14. Shreddability of pizza Mozzarella cheese predicted using physicochemical properties.

    Science.gov (United States)

    Banville, V; Morin, P; Pouliot, Y; Britten, M

    2014-07-01

    This study used rheological techniques such as uniaxial compression, wire cutting, and dynamic oscillatory shear to probe the physical properties of pizza Mozzarella cheeses. Predictive models were built using compositional and textural descriptors to predict cheese shreddability. Experimental cheeses were made using milk with (0.25% wt/wt) or without denatured whey protein and renneted at pH 6.5 or 6.4. The cheeses were aged for 8, 22, or 36 d and then tested at 4, 13, or 22°C for textural attributes using 11 descriptors. Adding denatured whey protein and reducing the milk renneting pH strongly affected cheese mechanical properties, but these effects were usually dependent on testing temperature. Cheeses were generally weaker as they aged. None of the compositional or rheological descriptors taken alone could predict the shredding behavior of the cheeses. Using the stepwise method, an objective selection of a few (<4) relevant descriptors made it possible to predict the production of fines (R(2)=0.82), the percentage of long shreds (R(2)=0.67), and to a lesser degree, the adhesion of cheese to the shredding blade (R(2)=0.45). The principal component analysis markedly contrasted the adhesion of cheese to the shredding blade with other shredding properties such as the production of fines or long shreds. The predictive models and principal component analysis can help manufacturers select relevant descriptors for the development of cheese with optimal mechanical behavior under shredding conditions.

  15. Effect of Proteolytic Activity of the Lactic Cultures on Mozzarella Cheese Quality

    OpenAIRE

    Wang, Wen-Hsu Amos

    1989-01-01

    The Mozzarella cheese market is growing rapidly. Major concerns with cheese meltability and color have arisen in the fast food industry. Pre starter culture was used in this study to improve the physical properties of Mozzarella cheese. Three tests (stretch test, melt test, and browning test) were modified to evaluate the quality of cheese. A stretch test using the Brookfield helipath viscometer to stretch the cheese sample at 60°C was successful in distinguishing cheeses from different ma...

  16. The effect of natural cheddar cheese ripening on the functional and textural properties of the processed cheese manufactured therefrom.

    Science.gov (United States)

    Brickley, C A; Auty, M A E; Piraino, P; McSweeney, P L H

    2007-11-01

    Cheddar cheese ripened at 8 degrees C was sampled at 7, 14, 28, 56, 112, and 168 d and subsequently used for the manufacture of processed cheese. The cheddar cheese samples were analyzed throughout ripening for proteolysis while the textural and rheological properties of the processed cheeses (PCs) were studied. The rate of proteolysis was the greatest in the first 28 d of cheddar cheese ripening but began to slow down as ripening progressed from 28 to 168 d. A similar trend was observed in changes to the texture of the PC samples, with the greatest decrease in hardness and increase in flowability being in the first 28 d of ripening. Confocal scanning laser microscopy showed that the degree of emulsification in the PC samples increased as the maturity of the cheddar cheese ingredient increased from 7 to 168 d. This increased emulsification resulted in a reduction in the rate of softening in the PC in samples manufactured from cheddar cheese bases at later ripening times. Multivariate data analysis was performed to summarize the relationships between proteolysis in the cheddar cheese bases and textural properties of the PC made therefrom. The proportion of alpha(s)(1)-casein (CN) in the cheddar cheese base was strongly correlated with hardness, adhesiveness, fracturability, springiness, and storage modulus values for the corresponding PC. Degradation of alpha(s) (1)-CN was the proteolytic event with the strongest correlation to the softening of PC samples, particularly those manufactured from cheddar cheese in the first 28 d of ripening.

  17. Biogenic amines in smear and mould-ripened cheeses

    Directory of Open Access Journals (Sweden)

    Pavel Pleva

    2014-02-01

    Full Text Available The aim of the study was the monitoring of six biogenic amines (histamine, tyramine, phenylethylamine, tryptamine, putrescine, and cadaverine and two polyamines (spermidine and spermine in 30 samples of dairy products purchased in the Czech Republic, namely in 15 samples of mould-ripened cheeses and in 15 samples of smear-ripened cheeses. A further goal was the microbiological analysis of the individual samples of cheeses (total count of microorganisms, number of enterobacteria, enterococci, lactic acid bacteria, yeasts and moulds. The monitored biogenic amines were analyzed by a high performance liquid chromatography equipped with a UV/VIS DAD detector. The amount of enterobacteria in fresh cheese exceeded 105 CFU.g‑1. In smear-ripened cheese flavourless (Romadur type, the amount was >103 CFU.g-1 and 104-105 CFU.g-1 in smear-ripened cheese with flavour. Biogenic amines were observed in two groups of blue cheeses (white veined cheese and blue veined cheese and smear-ripened cheeses. In both groups, there is a possibility of the presence of biogenic amines because the number of microorganisms and concentration of free amino acids increase during ripening. In ten samples of soft smear-ripening acid cheese and in smear-ripened cheese, the total content of biogenic amines were 22-1000 mg.kg-1 and in 5 samples of these cheeses, it was in range 1000-6000 mg.kg-1. The total amount of biogenic amines in the blue cheeses were in range 40-600 mg.kg-1. The presense of the tyramine was observed in the all analysed cheeses. The tyramine producing strains generated more than 900 mg.kg-1 of this biogenic amine. The production of tryptamine in the analysed cheeses was not proved by this study. The results of this study show that biogenic amines and polyamines are common in cheese. However, in some cases, they can pose a significant health danger for consumers. Any legislative control authority does not monitor them, as they are secondary metabolites even

  18. Chemometrics approach to substrate development, case: semisyntetic cheese

    DEFF Research Database (Denmark)

    Nielsen, Per Væggemose; Hansen, Birgitte Vedel

    1998-01-01

    In several cases a well defined, robust and easy reproducible substrate that meets specific requirements is needed. This is the case in studies of fungal growth and metabolism on specific products as affected by environmental conditions or processing factors, or isolation of product specific fungi...... from food production facilities.The Chemometrics approach to substrate development is illustrated by the development of a semisyntetic cheese substrate. Growth, colour formation and mycotoxin production of 6 cheese related fungi were studied on 9 types of natural cheeses and 24 synthetic cheese...... substrates and compared using principal component analysis (PCA). The synthetic cheese substrates contained various amounts of Ca, K, Mg, Na, P, Fe, Cu, Zn, lactate, lactose and casein. In this manner a robust, well-defined and easy prepared laboratory cheese substrate was developed for Penicillium commune...

  19. Microbiological quality of sliced and block mozzarella cheese

    Directory of Open Access Journals (Sweden)

    Mariana Fontanetti Marinheiro

    2015-06-01

    Full Text Available The aim of this study was to verify the microbiological quality of mozzarella cheese sold in retail markets of Pelotas, Rio Grande do Sul, Brazil. Forty samples of mozzarella cheese were analyzed, comprising 20 samples of block cheese and 20 of sliced cheese. The cheese samples were analyzed for thermotolerant coliform counts and coagulase positive staphylococci counts, and presence of Salmonella spp and Listeria monocytogenes. The percentage of 12,5% and 5% of the sliced and block cheese samples analyzed, respectively, exceeded the microbiological standards accepted by Brazilian legislation. These results indicate the need for a better product monitoring and more concern with hygiene and sanitary practices during industrial process.

  20. Amino acid catabolism by Lactobacillus helveticus in cheese

    DEFF Research Database (Denmark)

    Kananen, Soila Kaarina

    Amino acid catabolism is the final step in the conversion of caseins to flavour compounds and a part of a complex combination of biochemical pathways in cheese flavour formation. Lactobacillus helveticus is a thermophilic lactic acid bacterium that is used in cheese manufacture as a primary starter...... culture or as an adjunct culture. It has shown high proteolytic activities in conversion of caseins to peptides and further to amino acids and flavour compounds. Better understanding of the enzyme activity properties and the influence of different properties on final cheese flavour is favourable...... for developing new cheese products with enhanced flavour. The aim of this Ph.D. study was to investigate the importance of strain variation of Lb. helveticus in relation flavour formation in cheese related to amino acid catabolism. Aspects of using Lb. helveticus as starter as well as adjunct culture in cheese...

  1. Growth and adaptation of microorganisms on the cheese surface.

    Science.gov (United States)

    Monnet, Christophe; Landaud, Sophie; Bonnarme, Pascal; Swennen, Dominique

    2015-01-01

    Microbial communities living on cheese surfaces are composed of various bacteria, yeasts and molds that interact together, thus generating the typical sensory properties of a cheese. Physiological and genomic investigations have revealed important functions involved in the ability of microorganisms to establish themselves at the cheese surface. These functions include the ability to use the cheese's main energy sources, to acquire iron, to tolerate low pH at the beginning of ripening and to adapt to high salt concentrations and moisture levels. Horizontal gene transfer events involved in the adaptation to the cheese habitat have been described, both for bacteria and fungi. In the future, in situ microbial gene expression profiling and identification of genes that contribute to strain fitness by massive sequencing of transposon libraries will help us to better understand how cheese surface communities function.

  2. Use of Jiben Seeds Extract to Manufacture Soft White Cheese

    Directory of Open Access Journals (Sweden)

    Mohamed A. Talib

    2009-01-01

    Full Text Available Rennet substitute was applied for preparation of white cheese with Jiben (Solanum dubium seeds extract. Time effect 0, 15, 30, 45, 60, 75, 90, 120 and 150 days was studied at 30°C on the prepared cheese, kept at room temperature as well as in the refrigerator at 5±1°C. Cheese analysis includes pH and the percentage content of moisture, salt, fat and protein. Use of Rennet to manufacture white cheese was served as a control. Results and statistical analysis indicated that, cheese prepared using Jiben Extract has high quality with a very small variations as well as it has a long storage time. Thus, Solanum dubium is a suitable extract for preparation of white cheeses with a long storage time in the refrigerator 5°C as well as at room temperature 30°C.

  3. Short communication: characterization of microflora in Mexican Chihuahua cheese.

    Science.gov (United States)

    Renye, J A; Somkuti, G A; Van Hekken, D L; Guerrero Prieto, V M

    2011-07-01

    This work was performed to identify the bacterial species present in 10 Chihuahua cheeses obtained from commercial producers in Mexico using 16S rRNA gene analysis. As expected, some of the agar media initially used for isolation were not very selective, supporting the growth of several unrelated bacterial species. Sequence analysis identified potential pathogens, including Escherichia coli and Staphylococcus aureus, in all raw milk samples and 2 pasteurized milk samples. Streptococcus thermophilus and Lactococcus lactis ssp. lactis were identified in 9 and 6 samples, respectively, and would serve as acidifying agents during cheese production. Lactobacilli were identified in all cheeses, with the most prevalent being Lactobacillus plantarum identified in 7 raw milk and 1 pasteurized milk cheeses. Leuconostoc mesenteroides and Streptococcus macedonicus were identified in 4 raw milk cheeses and both were present in all pasteurized milk samples, suggesting that they may play a role in the development of traditional Chihuahua cheese attributes.

  4. Effect of cheese as a fat replacer in fermented sausage

    OpenAIRE

    ERCOŞKUN, Hüdayi

    2012-01-01

    The effects of beef fat substitution with kashar cheese were studied in traditional Turkish fermented sausage; sucuk. Six sucuk formulations were prepared by replacing 0, 10, 20, 30, 40 and 50% of beef fat was substituted with kashar cheese. The fat substitution of fat with kashar cheese decreased fat content and increased protein content of the product that affected the chemical, physical and sensorial characteristics of products. Saturated fatty acid content increased and unsaturated, mono-...

  5. Thermus and the Pink Discoloration Defect in Cheese.

    Science.gov (United States)

    Quigley, Lisa; O'Sullivan, Daniel J; Daly, David; O'Sullivan, Orla; Burdikova, Zuzana; Vana, Rostislav; Beresford, Tom P; Ross, R Paul; Fitzgerald, Gerald F; McSweeney, Paul L H; Giblin, Linda; Sheehan, Jeremiah J; Cotter, Paul D

    2016-01-01

    A DNA sequencing-based strategy was applied to study the microbiology of Continental-type cheeses with a pink discoloration defect. The basis for this phenomenon has remained elusive, despite decades of research. The bacterial composition of cheese containing the defect was compared to that of control cheese using 16S rRNA gene and shotgun metagenomic sequencing as well as quantitative PCR (qPCR). Throughout, it was apparent that Thermus, a carotenoid-producing genus, was present at higher levels in defect-associated cheeses than in control cheeses. Prompted by this finding and data confirming the pink discoloration to be associated with the presence of a carotenoid, a culture-based approach was employed, and Thermus thermophilus was successfully cultured from defect-containing cheeses. The link between Thermus and the pinking phenomenon was then established through the cheese defect equivalent of Koch's postulates when the defect was recreated by the reintroduction of a T. thermophilus isolate to a test cheese during the manufacturing process. IMPORTANCE Pink discoloration in cheese is a defect affecting many cheeses throughout the world, leading to significant financial loss for the dairy industry. Despite decades of research, the cause of this defect has remained elusive. The advent of high-throughput, next-generation sequencing has revolutionized the field of food microbiology and, with respect to this study, provided a means of testing a possible microbial basis for this defect. In this study, a combined 16S rRNA, whole-genome sequencing, and quantitative PCR approach was taken. This resulted in the identification of Thermus, a carotenoid-producing thermophile, in defect-associated cheeses and the recreation of the problem in cheeses to which Thermus was added. This finding has the potential to lead to new strategies to eliminate this defect, and our method represents an approach that can be employed to investigate the role of microbes in other food defects

  6. Culture-independent methods for identifying microbial communities in cheese

    OpenAIRE

    Jany, Jean-Luc; Barbier, Georges

    2008-01-01

    International audience; This review focuses on the culture-independent methods available for the description of both bacterial and fungal communities in cheese. Important steps of the culture-independent strategy, which relies on bulk DNA extraction from cheese and polymerase chain reaction (PCR) amplification of selected sequences, are discussed. We critically evaluate the identification techniques already used for monitoring microbial communities in cheese, including PCR-denaturing gradient...

  7. Coupon Redemption and Its Effect on Household Cheese Purchases

    OpenAIRE

    Dong, Diansheng; Kaiser, Harry M.

    2003-01-01

    By endogenizing unit value and coupon redemption, we estimate U.S. household cheese purchase, quality choice, and coupon redemption equations simultaneously. Zero purchases and missing values are taken into account in the model to correct for the selectivity bias. The correlations among the three equations are found to be significant. Empirical findings show that high quality choice significantly decreases cheese purchases, while cheese coupon usage significantly increases purchases. We find ...

  8. Effective Antibiotic Resistance Mitigation during Cheese Fermentation ▿

    OpenAIRE

    Li, Xinhui; Li, Yingli; Alvarez, Valente; Harper, Willis James; Wang, Hua H.

    2011-01-01

    Controlling antibiotic-resistant (ART) bacteria in cheese fermentation is important for food safety and public health. A plant-maintained culture was found to be a potential source for ART bacterial contamination in cheese fermentation. Antibiotics had a detectable effect on the ART population from contamination in the finished product. The decrease in the prevalence of antibiotic resistance (AR) in retail cheese samples from 2010 compared to data from 2006 suggested the effectiveness of targ...

  9. Inhibition of Clostridium activities in silage and cheese using anticlostridial Lactobacillus Isolated from Danish semi-hard cheese

    DEFF Research Database (Denmark)

    Christiansen, Pia

    for at least 60 days and thereby have the potential to aid silage fermentation and improve silage quality. Cheese making experiments (Danbo 45+) with anticlostridial Lactobacillus strains in industrial scale were made using a mixed adjunct culture of five anticlostridial Lactobacillus strains. Gross......-hard cheeses of high quality, as protective adjunct cultures against clostridia activities in silage and cheese. Screening for anticlostridial activity among non-starter Lactobacillus isolates against selected Clostridium strains showed that almost half (44%) of the naturally occurring non...... composition was not influenced by addition of the anticlostridial culture. Excessive gas formation, measured as changes in the cheese specific gravity, occurred only in control cheeses without the anticlostridial culture added. Repetitive-PCR analysis was applied for identification of cheese isolates after...

  10. Functional petit-suisse cheese: measure of the prebiotic effect.

    Science.gov (United States)

    Cardarelli, Haíssa R; Saad, Susana M I; Gibson, Glenn R; Vulevic, Jelena

    2007-01-01

    Prebiotics and probiotics are increasingly being used to produce potentially synbiotic foods, particularly through dairy products as vehicles. It is well known that both ingredients may offer benefits to improve the host health. This research aimed to evaluate the prebiotic potential of novel petit-suisse cheeses using an in vitro fermentation model. Five petit-suisse cheese formulations combining candidate prebiotics (inulin, oligofructose, honey) and probiotics (Lactobacillus acidophilus, Bifidobacterium lactis) were tested in vitro using sterile, stirred, batch culture fermentations with human faecal slurry. Measurement of prebiotic effect (MPE) values were generated comparing bacterial changes through determination of maximum growth rates of groups, rate of substrate assimilation and production of lactate and short chain fatty acids. Fastest fermentation and high lactic acid production, promoting increased growth rates of bifidobacteria and lactobacilli, were achieved with addition of prebiotics to a probiotic cheese (made using starter+probiotics). Addition of probiotic strains to control cheese (made using just a starter culture) also resulted in high lactic acid production. Highest MPE values were obtained with addition of prebiotics to a probiotic cheese, followed by addition of prebiotics and/or probiotics to a control cheese. Under the in vitro conditions used, cheese made with the combination of different prebiotics and probiotics resulted in the most promising functional petit-suisse cheese. The study allowed comparison of potentially functional petit-suisse cheeses and screening of preferred synbiotic potential for future market use.

  11. Sensory and protein profiles of Mexican Chihuahua cheese.

    Science.gov (United States)

    Paul, Moushumi; Nuñez, Alberto; Van Hekken, Diane L; Renye, John A

    2014-11-01

    Native microflora in raw milk cheeses, including the Mexican variety Queso Chihuahua, contribute to flavor development through degradation of milk proteins. The effects of proteolysis were studied in four different brands of Mexican Queso Chihuahua made from raw milk. All of the cheeses were analyzed for chemical and sensory characteristics. Sensory testing revealed that the fresh cheeses elicited flavors of young, basic cheeses, with slight bitter notes. Analysis by gel electrophoresis and reverse phase-high performance liquid chromatography (RP-HPLC) revealed that the Queseria Blumen (X) and Queseria Super Fino (Z) cheeses show little protein degradation over time while the Queseria America (W) and Queseria Lago Grande (Y) samples are degraded extensively when aged at 4 °C for 8 weeks. Analysis of the mixture of water-soluble cheese proteins by mass spectrometry revealed the presence of short, hydrophobic peptides in quantities correlating with bitterness. All cheese samples contained enterococcal strains known to produce enterocins. The W and Y cheese samples had the highest number of bacteria and exhibited greater protein degradation than that observed for the X and Z cheeses.

  12. Effect of proteolysis and calcium equilibrium on functional properties of natural cheddar cheese during ripening and the resultant processed cheese.

    Science.gov (United States)

    Wang, Fang; Zhang, Xiaoying; Luo, Jie; Guo, Huiyuan; Zeng, Steve S; Ren, Fazheng

    2011-04-01

    The changes in proteolysis, calcium (Ca) equilibrium, and functional properties of natural Cheddar cheeses during ripening and the resultant processed cheeses were investigated. For natural Cheddar cheeses, the majority of the changes in pH 4.6 soluble nitrogen as a percentage of total nitrogen (pH 4.6 SN/TN) and the soluble Ca content occurred in the first 90 d of ripening, and subsequently, the changes were slight. During ripening, functional properties of natural Cheddar cheeses changed, that is, hardness decreased, meltability was improved, storage modulus at 70 °C (G'T=70) decreased, and the maximum tan delta (TDmax) increased. Both pH 4.6 SN/TN and the soluble Ca were correlated with changes in functional properties of natural Cheddar cheeses during ripening. Kendall's partial correlation analysis indicated that pH 4.6 SN/TN was more significantly correlated with changes in hardness and TDmax. For processed cheeses manufactured from natural Cheddar cheeses with different ripening times, the soluble Ca content did not show significant difference, and the trends of changes in hardness, meltability, G'T=70, and TDmax were similar to those of natural Cheddar cheeses. Kendall's partial correlation analysis suggested that only pH 4.6 SN/TN was significantly correlated with the changes in functional properties of processed cheeses.

  13. Effect of high pressure homogenisation of milk on cheese yield and microbiology, lipolysis and proteolysis during ripening of Caciotta cheese.

    Science.gov (United States)

    Lanciotti, Rosalba; Vannini, Lucia; Patrignani, Francesca; Iucci, Luciana; Vallicelli, Melania; Ndagijimana, Maurice; Guerzoni, Maria Elisabetta

    2006-05-01

    The principal aim of this work was to compare Caciotta cheeses obtained from cow milk previously subjected to high pressure homogenisation (HPH) at 100 MPa with those produced from raw (R) or heat-treated (P) cow milk. HPH had both direct and indirect effects on cheese characteristics and their evolution during ripening. In particular, HPH treatment of milk induced a significant increase of the cheese yield; moreover, it affected the microbial ecology of both curd and cheese. Compared with the thermal treatment, the HPH treatment resulted in a decrease of about one log cfu/g of yeast and lactobacilli cell loads of the curd. The initial milk treatment also affected the evolution over time and the levels attained at the end of ripening of all the microbial groups studied. In fact, lactobacilli, microstaphylococci and yeast cell loads remained at lower levels in the cheeses obtained from HPH milk with respect to the other cheese types over the whole ripening period. Moreover, HPH of milk induced marked and extensive lipolysis. Cheeses from HPH milk showed the presence of high amounts of free fatty acids immediately after brining. The electrophoretic patterns of the different cheese types showed that Caciotta made from HPH-treated milk was characterized by a more extensive and faster proteolysis as well as a significant modification of its volatile molecule profile. The results obtained and the sensory analysis indicated that HPH treatment of milk was able to differentiate Caciotta cheese or to modify its ripening patterns.

  14. Asymmetric Swiss-cheese brane-worlds

    CERN Document Server

    Gergely, L A; K\\'{e}p\\'{\\i}r\\'{o}, Ibolya

    2006-01-01

    We consider Swiss-cheese brane universes embedded asymmetrically into the bulk. Neither the junction conditions between the Schwarzschild spheres and the sorrounding Friedmann brane regions with cosmological constant $\\Lambda $, nor the evolution of the scale factor are changed with respect to the symmetric case. The universe expands and decelerates forever. The asymmetry however has a drastic influence on the evolution of the cosmological fluid. Instead of the two branches of the symmetric case, in the asymmetric case four branches emerge. Moreover, the future pressure singularity arising in the symmetric case only for huge values of $\\Lambda $ becomes quite generic in the asymmetric case. Such pressure singularities emerge also when $\\Lambda=0$ is set. Then they are due entirely to the asymmetric embedding. For generic values of $\\Lambda $ we introduce a critical value of a suitably defined asymmetry parameter, which separates Swiss-cheese cosmologies with and without pressure singularities.

  15. No Swiss-cheese on the brane

    CERN Document Server

    Gergely, L A

    2004-01-01

    We study the possibility of brane-world generalization of the Einstein-Straus Swiss-cheese cosmological model. We find that the modifications induced by the brane-world scenario are excessively restrictive. At a first glance only the motion of the boundary is modified and the fluid in the exterior region is allowed to have pressure. The general relativistic Einstein-Straus model emerges in the low density limit. However by imposing that the central mass in the Schwarzschild voids is constant, a combination of the junction conditions and modified cosmological evolution leads to the conclusion that the brane is flat. Thus no generic Swiss-cheese universe can exist on the brane. The conclusion is not altered by the introduction of a cosmological constant in the FLRW regions. This shows that although allowed in the low density limit, the Einstein-Straus universe cannot emerge from cosmological evolution in the brane-world scenario.

  16. Direct amino acid analyses of mozzarella cheese.

    Science.gov (United States)

    Hoskins, M N

    1985-12-01

    The amino acid content of mozzarella (low moisture, part skim milk) and asadero cheeses was determined by the column chromatographic method. Data from the direct analyses of the mozzarella cheeses were compared with the calculated amino acid composition reported in tables in Agriculture Handbook No. 8-1. Phenylalanine and tyrosine contents were found to be higher in the direct analyses than in the calculated data in Handbook No. 8-1 (1.390 gm and 1.127 gm for phenylalanine, and 1.493 gm and 1.249 gm for tyrosine per 100 gm edible portion, respectively). That is of particular concern in the dietary management of phenylketonuria, in which accuracy in computing levels of phenylalanine and tyrosine is essential.

  17. Characterization of whey cheese packaged under vacuum.

    Science.gov (United States)

    Pintado, M E; Malcata, F X

    2000-02-01

    Vacuum packaging was assayed at 4 degrees C and was tested in comparison to unpackaged counterparts, in both microbiological and physicochemical terms, in studies pertaining to the preservation of Requeijão, a traditional Portuguese whey cheese. Bacteria were absent (i.e., Broccio (France), and Anthotyro (Greece). In addition, our conclusions are particularly helpful in terms of improving the safety of Requeijão, a widely acclaimed dairy specialty.

  18. Generalized Swiss-cheese cosmologies: Mass scales

    Science.gov (United States)

    Grenon, Cédric; Lake, Kayll

    2010-01-01

    We generalize the Swiss-cheese cosmologies so as to include nonzero linear momenta of the associated boundary surfaces. The evolution of mass scales in these generalized cosmologies is studied for a variety of models for the background without having to specify any details within the local inhomogeneities. We find that the final effective gravitational mass and size of the evolving inhomogeneities depends on their linear momenta but these properties are essentially unaffected by the details of the background model.

  19. Bacteriocinogenic LAB from cheeses - Application in biopreservation?

    OpenAIRE

    Favaro, Lorenzo; Barretto Penna, Ana Lucia [UNESP; Todorov, Svetoslav Dimitrov

    2015-01-01

    Over the last decade, there has been an explosion of basic and applied research on lactic acid bacteria bacteriocins, because of their potential as biopreservatives and inhibition of the growth of spoilage bacteria. Although bacteriocins can be produced during cheese production, their titers are much lower than those achieved in vitro fermentations under optimal physical and chemical conditions. Safety and technological traits of the bacteriocinogenic lactic acid bacteria (LAB) have to be con...

  20. Shifted excitation Raman difference spectroscopy for authentication of cheese and cheese analogues

    Science.gov (United States)

    Sowoidnich, Kay; Kronfeldt, Heinz-Detlef

    2016-04-01

    Food authentication and the detection of adulterated products are recent major issues in the food industry as these topics are of global importance for quality control and food safety. To effectively address this challenge requires fast, reliable and non-destructive analytical techniques. Shifted Excitation Raman Difference Spectroscopy (SERDS) is well suited for identification purposes as it combines the chemically specific information obtained by Raman spectroscopy with the ability for efficient fluorescence rejection. The two slightly shifted excitation wavelengths necessary for SERDS are realized by specially designed microsystem diode lasers. At 671 nm the laser (optical power: 50 mW, spectral shift: 0.7 nm) is based on an external cavity configuration whereas an emission at 783 nm (optical power: 110 mW, spectral shift: 0.5 nm) is achieved by a distributed feedback laser. To investigate the feasibility of SERDS for rapid and nondestructive authentication purposes four types of cheese and three different cheese analogues were selected. Each sample was probed at 8 different positions using integration times of 3-10 seconds and 10 spectra were recorded at each spot. Principal components analysis was applied to the SERDS spectra revealing variations in fat and protein signals as primary distinction criterion between cheese and cheese analogues for both excitation wavelengths. Furthermore, to some extent, minor compositional differences could be identified to discriminate between individual species of cheese and cheese analogues. These findings highlight the potential of SERDS for rapid food authentication potentially paving the way for future applications of portable SERDS systems for non-invasive in situ analysis.

  1. Biopreservation of Fior di Latte cheese.

    Science.gov (United States)

    Angiolillo, L; Conte, A; Zambrini, A V; Del Nobile, M A

    2014-09-01

    In this study a new biopreservation system consisting of an active sodium alginate coating containing Lactobacillus reuteri applied to Fior di Latte cheese was studied. The final aim was to extend cheese shelf life by the in situ production of reuterin. Experimental trials were carried out with and without glycerol. How the fermentation time could improve the production of reuterin, enabling Fior di Latte shelf life, was also assessed. To this aim, the experimental analyses were conducted in 2 different trials, using 2 different production batches of samples. In the first one, Fior di Latte samples were dipped into the active sodium alginate solution prepared on the same day of their production, whereas in the second trial, samples were dipped into the active solution prepared 48h before their production to allow a proper fermentation of the inoculated microorganism. Microbiological and sensory quality indices were monitored to prove the effectiveness of biopreservation on product quality during storage. In the first trial, the combination of the probiotic microorganism with glycerol improved the microbial quality by 1 d compared with the same active solution without glycerol, whereas the 48-h-fermented active alginate solution (second trial) showed a further improved microbial quality. The application of an active coating enriched with L. reuteri and glycerol to Fior di Latte cheese is an optimal and innovative way to preserve the product and at the same time, with a combination of an optimal fermentation time, to prolong its microbial quality and thus its shelf life.

  2. Cheese cultures: transforming American tastes and traditions.

    Science.gov (United States)

    Paxson, Heather

    2010-01-01

    Although the history of cheesemaking in the United States tells largely a tale of industrialization, there is a submerged yet continuous history of small-batch, hands-on, artisan cheese manufacture. This tradition, carried on in artisan cheese factories across the country, although concentrated in Wisconsin, is often overlooked by a new generation of artisan cheesemakers. Continuities in fabrication methods shared by preindustrial and post-industrial artisan creameries have been obscured by changes in the organization and significance of artisan production over the last one hundred years. Making cheese by hand has morphed from chore to occupation to vocation; from economic trade to expressive endeavor; from a craft to an art. American artisan cheesemaking tradition was invented and reinvented as a tradition of innovation. Indeed, ideological commitment to innovation as modern, progressive, American—and thus a marketable value—further obscures continuities between past and present, artisan factories, and new farmstead production. The social disconnect between the current artisan movement and American's enduring cheesemaking tradition reproduces class hierarchies even as it reflects growing equity in gendered occupational opportunities.

  3. Evaluation of salt whey as an ingredient in processed cheese.

    Science.gov (United States)

    Kapoor, R; Metzger, L E

    2004-05-01

    The objective of this research was to determine whether salt whey, obtained from a traditional Cheddar cheese manufacturing process, could be used as an ingredient in processed cheese. Due to its high salinity level, salt whey is underutilized and leads to disposal costs. Consequently, alternative uses need to be pursued. The major components of salt whey (salt and water) are used as ingredients in processed cheese. Three replicates of pasteurized processed cheese (PC), pasteurized processed cheese food (PCF), and pasteurized processed cheese spread (PCS) were manufactured. Additionally, within each type of processed cheese, a control formula (CF) and a salt whey formula (SW) were produced. For SW, the salt and water in the CF were replaced with salt whey. The composition, functionality, and sensory properties of the CF and SW treatments were compared within each type of processed cheese. Mean melt diameter obtained for the CF and SW processed cheeses were 48.5 and 49.4 mm, respectively, for PC, and they were 61.6 and 63 mm, respectively, for PCF. Tube-melt results for PCS was 75.1 and 79.8 mm for CF and SW treatments, respectively. The mean texture profile analysis (TPA) hardness values obtained, respectively, for the CF and SW treatments were 126 N and 115 N for PC, 62 N and 60 N for PCF, and 12 N and 12 N for PCS. There were no significant differences in composition or functionality between the CF and SW within each variety of processed cheese. Consequently, salt whey can be used as an ingredient in PC without adversely affecting processed cheese quality.

  4. Ripening for improving the quality of inoculated cheese Rhizopus oryzae

    Directory of Open Access Journals (Sweden)

    ARTINI PANGASTUTI

    2010-01-01

    Full Text Available Estikomah SA, Sutarno, Pangastuti A 2010. Ripening for improving the quality of inoculated cheese Rhizopus oryzae. Nusantara Bioscience 2: 1-6. Cheese is dairy product resulted from fermented milk in which the fermentation process can be done by lactic acid bacteria or fungus. Rhizopus oryzae is able to produce lactic acid, protease and lipase. The ripening process changes the taste and texture. The purpose of this study is ripening to improve the quality of inoculated cheese R. oryzae. In this research the ripening was conducted the concentration variation of temperature (5oC, 10oC, 15oC, and time (7 days, 14 days. The procedure of research consisted of two steps, namely un-ripened cheese preparation followed by ripening cheese preparation. Cheese produced in this study analyzed the value of pH, fat content, protein content, amino acid levels and identification of microbe with ANOVA then followed by DMRT at 5% level of significance. Data results were analyzed with the like’s nonparametric statistical test, followed by Fridman Wilcoxon Signed Rank Test (WSRT at 5% level significance. The results showed that the preferred ripened cheese panelist was at a temperature of 15oC for 14 days. Ripening conditions affect pH, fat content, protein content and do not affect the levels of amino acids that formed ripened cheese. The best quality ripened cheese i.e. at a temperature of 15°C for 14 days, had a pH value of 4.40, the highest protein content of 9.78%, and fat content of 35.02%. The results of identified microbe in un-ripened cheese and ripened cheese include Enterococcus hirae (Enterococcus faecalis, Bacillus subtilis, and Aspergillus sp.

  5. Chemical, Nutritional and Microbiological Evaluation of Some Egyptian Soft Cheeses

    Directory of Open Access Journals (Sweden)

    *Ghada, Z. A. A., 2*Alia, M. H., 3**Soha, Al-S., 4*Magdy, N. A., and 5*Mohammed, F. S

    2004-12-01

    Full Text Available Milk and dairy products is considered the most complete foodstuff that provide human either infants or adults with most of their vital needs. Milk and cheese have high nutritive value due to its high content of protein, fat, minerals especially calcium (Ca2+ & phosphorous, and vitamins. Two hundred samples produced and sold in Egypt during 2001-2003 were collected from allover the country. The cheese samples were subjected to microbiological and chemical analysis. Samples were microbiologically tested for total aerobic bacterial count (TABC, Colifrm, Escherichia coli (E. coli, Staphylococcus aureus, mould and yeast, salmonella and shigella, and listeria species. Protein, fat, carbohydrates, moisture, ash, lactose, Calcium (Ca, phosphorous (P and Ca/P were evaluated. The analysis showed that total aerobic bacterial count did not exceed 1.4X105±1.7X105 cells/gm, which is close to what allowed by the Standard Egyptian Guidelines (2001 and 47.5 % of the tested cheese are free from coliform bacteria and Escherichia coli. Ninety-eight and half percent, 97 %, 97 % and 91.5 % of the tested cheese (kareish, feta, thalaga, double cream respectively, either made in plant or home or farmers' cheese sample have zero Staphylococcus aureus count or mould and yeast; or salmonella and shigella, or listeria species respectively, i. e. free from them. Double cream cheese has the lowest protein content (7.79±0.78 gm% while kareish cheese has the highest protein content (19.99±1.32 gm%, but for fat content the opposite is true, double cream cheese have the highest fat content (24.56±1.78 gm% while kareish cheese have the lowest fat content (3.87±0.97 gm %. Feta cheese has high ash content while kareish cheese has the highest moisture content with the lowest ash content (68.97±1.86 & 1.81±0.47 gm% respectively. Lactose content varies widely from 1.50±0.26 (double cream cheese to 3.25±0.50 (feta cheese. Kareish cheese has higher content of calcium and

  6. Real-time evaluation of individual cow milk for higher cheese-milk quality with increased cheese yield.

    Science.gov (United States)

    Katz, G; Merin, U; Bezman, D; Lavie, S; Lemberskiy-Kuzin, L; Leitner, G

    2016-06-01

    Cheese was produced in a series of experiments from milk separated in real time during milking by using the Afilab MCS milk classification service (Afikim, Israel), which is installed on the milk line in every stall and sorts milk in real time into 2 target tanks: the A tank for cheese production (CM) and the B tank for fluid milk products (FM). The cheese milk was prepared in varying ratios ranging from ~10:90 to ~90:10 CM:FM by using this system. Cheese was made with corrected protein-to-fat ratio and without it, as well as from milk stored at 4°C for 1, 2, 3, 4, and 8d before production. Cheese weight at 24h increased along the separation cutoff level with no difference in moisture, and dry matter increased. The data compiled allowed a theoretical calculation of cheese yield and comparing it to the original van Slyke equation. Whenever the value of Afi-Cf, which is the optical measure of curd firmness obtained by the Afilab instrument, was used, a better predicted level of cheese yield was obtained. In addition, 27 bulk milk tanks with milk separated at a 50:50 CM:FM ratio resulted in cheese with a significantly higher fat and protein, dry matter, and weight at 24h. Moreover, solids incorporated from the milk into the cheese were significantly higher in cheeses made of milk from A tanks. The influence of storage of milk up to 8d before cheese making was tested. Gross milk composition did not change and no differences were found in cheese moisture, but dry matter and protein incorporated in the cheese dropped significantly along the storage time. These findings confirm that milk stored for several days before processing is prone to physico-chemical deterioration processes, which result in loss of milk constituents to the whey and therefore reduced product yield. The study demonstrates that introducing the unknown parameters for calculating the predicted cheese yield, such as the empiric measured Afi-Cf properties, are more accurate and the increase in cheese

  7. 21 CFR 133.161 - Muenster and munster cheese for manufacturing.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Muenster and munster cheese for manufacturing. 133... Specific Standardized Cheese and Related Products § 133.161 Muenster and munster cheese for manufacturing. Muenster cheese for manufacturing conforms to the definition and standard of identity for muenster...

  8. 21 CFR 133.174 - Pasteurized process cheese food with fruits, vegetables, or meats.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Pasteurized process cheese food with fruits... Requirements for Specific Standardized Cheese and Related Products § 133.174 Pasteurized process cheese food with fruits, vegetables, or meats. (a) Pasteurized process cheese food with fruits, vegetables,...

  9. 21 CFR 133.136 - Washed curd and soaked curd cheese.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Washed curd and soaked curd cheese. 133.136... Standardized Cheese and Related Products § 133.136 Washed curd and soaked curd cheese. (a) Description. (1) Washed curd, soaked curd cheese is the food prepared by the procedure set forth in paragraph (a)(3)...

  10. 7 CFR 58.711 - Cheddar, colby, washed or soaked curd, granular or stirred curd cheese.

    Science.gov (United States)

    2010-01-01

    ... requirements equivalent to U.S. Standard Grade for Bulk American Cheese for Manufacturing provided the quantity... stirred curd cheese. 58.711 Section 58.711 Agriculture Regulations of the Department of Agriculture... soaked curd, granular or stirred curd cheese. Cheese, used in the manufacture of pasteurized...

  11. Chemical species in cheese and their origin in milk components.

    Science.gov (United States)

    Hill, A R

    1995-01-01

    Cheese making is the process of concentrating milk fat and protein by separation from water and soluble components. The objective of the cheese maker is to maximize yield efficiency by optimum utilization of each milk component while not compromising cheese quality. Cheese yielding potential of milk may be increased by selective breeding for specific protein genotypes, especially the BB variant of both kappa-casein and beta-lactoglobulin. Milk fat is included in cheese by occlusion into the protein coagulum. Participation of casein in both lactic and rennet coagulation is nearly complete so that casein losses to the whey occur mainly during cutting and the early stages of cooking. In lactic cheese, excepting cottage cheese, it is possible to eliminate losses of fines by centrifugal or membrane separation of curd. In heat-acid precipitated varieties protein recovery is increased by inclusion of whey proteins but fat recovery is very dependent on coagulation conditions. In ripened cheese obtaining the correct basic structure and composition is critical to texture and flavour development during curing.

  12. Conditions allowing the formation of biogenic amines in cheese.

    NARCIS (Netherlands)

    Joosten, H.M.L.J.

    1988-01-01

    A study was undertaken to reveal the conditions that allow the formation of biogenic amines in cheese.The starters most commonly used in the Dutch cheese industry do not have decarboxylative properties. Only if the milk or curd is contaminated with non-starter bacteria, amine formation may be observ

  13. Microflora of Processed Cheese and the Factors Affecting It.

    Science.gov (United States)

    Buňková, Leona; Buňka, František

    2015-09-11

    The basic raw materials for the production of processed cheese are natural cheese which is treated by heat with the addition of emulsifying salts. From a point of view of the melting temperatures used (and the pH-value of the product), the course of processed cheese production can be considered "pasteurisation of cheese". During the melting process, the majority of vegetative forms of microorganisms, including bacteria of the family Enterobacteriaceae, are inactivated. The melting temperatures are not sufficient to kill the endospores, which survive the process but they are often weakened. From a microbiological point of view, the biggest contamination problem of processed cheese is caused by gram-positive spore-forming rod-shaped bacteria of the genera Bacillus, Geobacillus and Clostridium. Other factors affecting the shelf-life and quality of processed cheese are mainly the microbiological quality of the raw materials used, strict hygienic conditions during the manufacturing process as well as the type of packaging materials and storage conditions. The quality of processed cheese is not only dependent on the ingredients used but also on other parameters such as the value of water activity of the processed cheese, its pH-value, the presence of salts and emulsifying salts and the amount of fat in the product.

  14. Development of volatile compounds in processed cheese during storage

    DEFF Research Database (Denmark)

    Sunesen, Lars Oddershede; Lund, Pia; Sørensen, J.

    2002-01-01

    The purpose of this work teas to study tire impact of storage conditions, such as light and temperature, on the development of volatile compounds to processed cheese. Cheese in glass containers was stored at 5, 20 or 37 degreesC in light or darkness for up to 1 yr. Dynamic headspace and gas...

  15. 21 CFR 133.182 - Soft ripened cheeses.

    Science.gov (United States)

    2010-04-01

    ... this section. Their solids contain not less than 50 percent of milkfat, as determined by the methods... under conditions suitable for development of biological curing agents on the surface of the cheese, and the curing is conducted so that the cheese cures from the surface toward the center. Salt may be...

  16. Effect of Proteases on Meltability and Stretchability of Nabulsi Cheese

    Directory of Open Access Journals (Sweden)

    Khaled Abu-Alruz

    2009-01-01

    Full Text Available Problem statement: Boiled white brined cheese (Nabulsi cheese is the mostly consumed cheese in Jordan; this cheese should show meltability and high stretchability in order to fit in the production of high quality Kunafa and other popular local sweets and pastries. However, these characteristics are rarely available when usual processing and preservation method were used. Approach: This study was based on the hypothesis that it would be possible to imply meltability and stretchability to the cheese by proteolytic enzymes to the original brine that may specifically act on cross linking bonds of casein. In this study, six commercial proteases were used. It was found that Nabulsi cheese treated with papain developed an outstanding fibrous structure, this gave superiority in the application in kunafa, pizza and pastries. Results: The meltability and stretchability of Nabulsi cheese treated with papain were still excellent after 4 weeks of storage; this indicated the restricted enzyme action, probably due to high salt concentrations (18% in storage brine. Conclusion: The meltability and stretchability of Nabulsi cheese treated with papain were still excellent after 4 weeks of storage.

  17. We tasted a genetically modified cheese - and we like it!

    DEFF Research Database (Denmark)

    Bech-Larsen, Tino; Grunert, Klaus G.; Scholderer, Joachim

    This paper presents the preliminary results of a conjoint study of 750 Danish, Swedish, Norwegian and Finnish consumers´ preferences for genetically modified and conventional cheese with different types of benefits. The results showed homogeneity in preferences within as well as across countries....... In general, the genetically modified cheese was rejected, but this was modified somewhat by health and taste benefits....

  18. 21 CFR 133.169 - Pasteurized process cheese.

    Science.gov (United States)

    2010-04-01

    ... “American cheese” as prescribed in paragraph (e)(2)(ii) of this section. Such mixtures are considered as one... granular cheese or any mixture of two or more of these, it may be designated “Pasteurized process American... cheeses or such mixture may be designated as “American cheese”. The full name of the food shall appear...

  19. Effect of cheese as a fat replacer in fermented sausage.

    Science.gov (United States)

    Ercoşkun, Hüdayi

    2014-08-01

    The effects of beef fat substitution with kashar cheese were studied in traditional Turkish fermented sausage; sucuk. Six sucuk formulations were prepared by replacing 0, 10, 20, 30, 40 and 50% of beef fat was substituted with kashar cheese. The fat substitution of fat with kashar cheese decreased fat content and increased protein content of the product that affected the chemical, physical and sensorial characteristics of products. Saturated fatty acid content increased and unsaturated, mono-unsaturated and poly-unsaturated fatty acids amount were decreased as the cheese amount increased. The formulation with 10% substitution of beef fat with cheese took the best sensory overall acceptability scores followed by 20% and control groups.

  20. Modified atmospheric conditions controlling fungal growth on cheese

    DEFF Research Database (Denmark)

    Nielsen, Per Væggemose

    1997-01-01

    2 level, relative humidity and temperature) and the composition of the cheese. All fungal species commonly found on cheese, starter cultures as well as contaminants, were examined.The most important factors influencing fungal growth are temperature, water activity of the medium and the carbon......Effective control of fungal growth on cheese under storage conditions is of great concern for the dairy industry. Therefore we designed a research project together with the Danish dairy industry on modelling fungal growth on cheese as affected by the combined effect of storage conditions (O2 and CO...... a competitive advantage over other fungi in moist conditions with high carbon dioxide levels, such as inside a roquefort cheese or in gas tight grain storage. The key to success in food packaging is to recognise the food ecosystem, as it enables us to identify which micro...

  1. Proteolysis of prato type cheese produced using ultrafiltration

    Directory of Open Access Journals (Sweden)

    Spadoti Leila Maria

    2005-01-01

    Full Text Available The application of milk ultrafiltration technology for cheese manufacture presents several advantages. However, it also influences proteolysis and, consequently, cheese ripening. The effects of five different processing methods for Prato cheese were evaluated with respect to the time evolution of the extent and depth of proteolysis indexes (EPI and DPI. The following treatments (T for cheese production were studied: T1 - without ultrafiltration (standard; T2, T3, T4 and T5 - using milk concentrated by ultrafiltration (UFCM and respectively: T2 - without pre-fermentation of the UFCM; T3 - pre-fermentation of 10% of the UFCM; T4 - pre-fermentation of 20% of the UFCM, and T5 - pre-fermentation of 20% of the UFCM plus indirect heating. Treatments affected the EPI and DPI of the cheeses (T1 lower values for EPI and DPI and T4 higher values for EPI and DPI. The time influenced the extent and depth of proteolysis indexes.

  2. Cheese yield as affected by some parameters Review

    Directory of Open Access Journals (Sweden)

    Mona A.M. Abd El-Gawad

    2011-06-01

    Full Text Available Cheese yield is defined as the amount of cheese, expressed in kilograms, obtained from 100 kg of milk. It is a very important parameter: the higher the recovered percentage of solids, the greater is the amount of cheese obtained and therefore gains in economic terms.The definition of cheese yield, or how to express yield, is important in two main applications: 1. Economic control of cheesemaking; 2. Expressing the results of cheesemaking experiments. Cheese yield is affected by many factors including milk composition, amount and genetic variants of casein, milk quality, somatic cell count (SCC in milk, milk pasteurization, coagulant type, vat design, curd firmness at cutting, and manufacturing parameters.

  3. Detection of regulated disinfection by-products in cheeses.

    Science.gov (United States)

    Cardador, Maria Jose; Gallego, Mercedes; Cabezas, Lourdes; Fernández-Salguero, Jose

    2016-08-01

    Cheese can contain regulated disinfection by-products (DBPs), mainly through contact with brine solutions prepared in disinfected water or sanitisers used to clean all contact surfaces, such as processing equipment and tanks. This study has focused on the possible presence of up to 10 trihalomethanes (THMs) and 13 haloacetic acids (HAAs) in a wide range of European cheeses. The study shows that 2 THMs, (in particular trichloromethane) and 3 HAAs (in particular dichloroacetic acid) can be found at μg/kg levels in the 56 cheeses analysed. Of the two types of DBPs, HAAs were generally present at higher concentrations, due to their hydrophilic and non-volatile nature. Despite their different nature (THMs are lipophilic), both of them have an affinity for fatty cheeses, increasing their concentrations as the percentage of water decreased because the DBPs were concentrated in the aqueous phase of the cheeses.

  4. Occurrence of Aflatoxin M1 in Some Cheese Types Sold in Erzurum, Turkey

    OpenAIRE

    GÜRSES, Mustafa

    2004-01-01

    Sixty-three samples of cheese consisting of 23 White cheeses, 14 Kaşar cheeses, 11 Tulum cheeses, 9 Civil cheeses and 6 Lor cheeses (whey-curd), were analyzed for the occurrence of aflatoxin M1 (AFM1) using enzymatic immunoassay. In 28 of 63 samples (44.44%), the presence of AFM1 was detected in concentrations between 7 ng/kg and 202 ng/kg. The mean levels of AFM1 were 28.08 ng/kg in White cheeses, 22.80 ng/kg in Kaşar cheeses, 74.05 ng/kg in Tulum cheeses, 12.32 ng/kg in Civil cheeses and 15...

  5. Isolation of [i]Listeria monocytogenes[/i] from milks used for Iranian traditional cheese in Lighvan cheese factories

    Directory of Open Access Journals (Sweden)

    Mir-Hassan Moosavy

    2014-11-01

    Full Text Available Traditional Lighvan cheese is a semi-hard cheese which has a popular market in Iran and neighboring countries. The aim of this study was evaluating the contamination of milks used for Lighvan cheese making with[i] Listeria monocytogenes[/i]. Raw milk samples were randomly collected from different cheese producing factories (sampling carried out from large milk tanks used cheese making in factories. Isolation of [i]L. monocytogenes[/i] was performed according to ISO 11290 and biochemical tests were done to identify and confirm L. monocytogenes. 9 samples (50% of the 18 collected samples from milk tanks in Lighvan cheese producing factories were contaminated with [i]L. monocytogenes[/i]. The concentration of [i]L. monocytogenes[/i] in all 9 positive samples was 40 CFU/ml. This study is the first report of [i]L. monocytogenes[/i] contamination in raw milks used for Lighvan cheese production in Iran. Regarding the fact that these cheeses are produced from raw milk and no heating process is performed on them its milk contamination can be a potential risk for consumers.

  6. USE OF PROBIOTIC BACTERIA IN THE PRODUCTION OF CHEESE : PROBIOTIC CHEESE

    Directory of Open Access Journals (Sweden)

    Oğuz GÜRSOY

    2006-01-01

    Full Text Available The interactions of the gastrointestinal microflora with human health have been the subject of considerable debate in recent years. Disruption of the ecologic equilibrium of the normal intestinal flora may result in gastrointestinal diseases. Functional foods, which are used in prevention and treatment of some intestinal diseases, are defined as "foods that may provide health benefits beyond basic nutrition". Probiotics are constituted an important part of functional foods. Probiotics are live microbial food supplements that beneficially affect the host by improving its intestinal microbial balance. To date, the most popular food delivery systems for probiotic cultures have been fermented milks and yogurts, as well as unfermented milk with cultures added. In an effort to expand the probiotic product range, a small number of researchers and dairy companies have endeavoured to production cheeses, which sustain a high viable count of probiotic cultures. This paper will first outline some of the main aspects about probiotics, cheese microbilogy and probiotic cheese development, and give examples of studies where probiotic microorganisms have been incoorporated into cheese.

  7. Detection and viability of Lactococcus lactis throughout cheese ripening.

    Science.gov (United States)

    Ruggirello, Marianna; Dolci, Paola; Cocolin, Luca

    2014-01-01

    Recent evidences highlighted the presence of Lactococcus lactis during late cheese ripening. For this reason, the role of this microorganism, well known as dairy starter, should be reconsidered throughout cheese manufacturing and ripening. Thus, the main objective of this study was to develop a RT-qPCR protocol for the detection, quantification and determination of the viability of L. lactis in ripened cheese samples by direct analysis of microbial nucleic acids. Standard curves were constructed for the specific quantification of L. lactis in cheese matrices and good results in terms of selectivity, correlation coefficient and efficiency were obtained. Thirty-three ripened cheeses were analyzed and, on the basis of RNA analysis, twelve samples showed 106 to 108 CFU of L. lactis per gram of product, thirteen from 103 to 105 CFU/g, and in eight cheeses, L. lactis was not detected. Traditional plating on M17 medium led to loads ranging from 105 to 109 CFU/g, including the cheese samples where no L. lactis was found by RT-qPCR. From these cheeses, none of the colonies isolated on M17 medium was identified as L. lactis species. These data could be interpreted as a lack of selectivity of M17 medium where colony growth is not always related to lactococcal species. At the same time, the absence or low abundance of L. lactis isolates on M17 medium from cheese where L. lactis was detected by RT-qPCR support the hypothesis that L. lactis starter populations are mainly present in viable but not culturable state during ripening and, for this reason, culture-dependent methods have to be supplemented with direct analysis of cheese.

  8. Detection and viability of Lactococcus lactis throughout cheese ripening.

    Directory of Open Access Journals (Sweden)

    Marianna Ruggirello

    Full Text Available Recent evidences highlighted the presence of Lactococcus lactis during late cheese ripening. For this reason, the role of this microorganism, well known as dairy starter, should be reconsidered throughout cheese manufacturing and ripening. Thus, the main objective of this study was to develop a RT-qPCR protocol for the detection, quantification and determination of the viability of L. lactis in ripened cheese samples by direct analysis of microbial nucleic acids. Standard curves were constructed for the specific quantification of L. lactis in cheese matrices and good results in terms of selectivity, correlation coefficient and efficiency were obtained. Thirty-three ripened cheeses were analyzed and, on the basis of RNA analysis, twelve samples showed 106 to 108 CFU of L. lactis per gram of product, thirteen from 103 to 105 CFU/g, and in eight cheeses, L. lactis was not detected. Traditional plating on M17 medium led to loads ranging from 105 to 109 CFU/g, including the cheese samples where no L. lactis was found by RT-qPCR. From these cheeses, none of the colonies isolated on M17 medium was identified as L. lactis species. These data could be interpreted as a lack of selectivity of M17 medium where colony growth is not always related to lactococcal species. At the same time, the absence or low abundance of L. lactis isolates on M17 medium from cheese where L. lactis was detected by RT-qPCR support the hypothesis that L. lactis starter populations are mainly present in viable but not culturable state during ripening and, for this reason, culture-dependent methods have to be supplemented with direct analysis of cheese.

  9. Microbial biodiversity in cheese consortia and comparative Listeria growth on surfaces of uncooked pressed cheeses.

    Science.gov (United States)

    Callon, Cécile; Retureau, Emilie; Didienne, Robert; Montel, Marie-Christine

    2014-03-17

    The study set out to determine how changes in the microbial diversity of a complex antilisterial consortium from the surface of St-Nectaire cheese modify its antilisterial activities. On the basis of the microbial composition of a natural complex consortium named TR15 (Truefood consortium 15), three new consortia of different species and strain compositions were defined: TR15-SC (58 isolates from TR15 collection), TR15-M (pools of isolates from selective counting media) and TR15-BHI (pools of isolates from BHI medium). Their antilisterial activities on the surfaces of uncooked pressed cheese made with pasteurised milk were compared with the activity of complex consortium TR15 and a control cheese inoculated only with starter culture (Streptococcus thermophilus, Lactobacillus delbrueckii). The natural consortium TR15 was the most inhibitory, followed by reconstituted consortium TR15-BHI. The dynamics of the cheese rind microbial flora were monitored by counting on media and by isolate identification using 16S rDNA sequencing and direct 16S rDNA Single Strand Conformation Polymorphism analysis. The combination of these methods showed that rind with natural consortium TR15 had greater microbial diversity and different microbial dynamics than cheese rinds with reconstituted consortia. Cheese rind with the natural consortium showed higher citrate consumption and the highest concentrations of lactic and acetic acids, connected with high levels of lactic acid bacteria such as Carnobacterium maltaromaticum, Vagococcus fluvialis, Enterococcus gilvus, Leuconostoc mesenteroides, Brochothrix thermosphacta and Lactococcus lactis, ripening bacteria such as Arthrobacter nicotianae/arilaitensis, and Gram negative bacteria (Pseudomonas psychrophila and Enterobacter spp.). The highest L. monocytogenes count was on rind with TR15-M and was positively associated with the highest pH value, high succinic and citric acid contents, and the highest levels of Marinilactibacillus

  10. Effect of acidulants on the recovery of milk constituents and quality of Mozzarella processed cheese.

    Science.gov (United States)

    Seth, Karuna; Bajwa, Usha

    2015-03-01

    The investigation was undertaken to study the effect of acidulants on the recovery of milk constituents and composition of Mozzarella pre-cheese and physical, chemical and sensory characteristics and texture profile analysis (TPA) of processed cheese prepared there from. The pre-cheese was made by direct acidification technique using citric, acetic and lactic acid and processed with 1 % tri-sodium citrate. The acidulants significantly (p cheese. These also had a significant (p processed cheese.

  11. Microbiology of Cheddar cheese made with different fat contents using a Lactococcus lactissingle-strain starter

    OpenAIRE

    Broadbent, Jeffery R.; Brighton, C.; McMahon, D. J.; Farkye, N.; Johnson, M.E.; Steele, J L

    2013-01-01

    Flavor development in low-fat Cheddar cheese is typified by delayed or muted evolution of desirable flavor and aroma, and a propensity to acquire undesirable meaty-brothy or burnt-brothy off-flavor notes early in ripening. The biochemical basis for these flavor deficiencies is unclear, but flavor production in bacterial-ripened cheese is known to rely on microorganisms and enzymes present in the cheese matrix. Lipid removal fundamentally alters cheese composition, which can modify the cheese ...

  12. Mexican Queso Chihuahua: functional properties of aging cheese.

    Science.gov (United States)

    Olson, D W; Van Hekken, D L; Tunick, M H; Tomasula, P M; Molina-Corral, F J; Gardea, A A

    2011-09-01

    Queso Chihuahua, a semi-hard cheese manufactured from raw milk (RM) in northern Mexico, is being replaced by pasteurized milk (PM) versions because of food safety concerns and the desire for longer shelf life. In this study, the functional traits of authentic Mexican Queso Chihuahua made from RM or PM were characterized to identify sources of variation and to determine if pasteurization of the cheese milk resulted in changes to the functional properties. Two brands of RM cheese and 2 brands of PM cheese obtained in 3 seasons of the year from 4 manufacturers in Chihuahua, Mexico, were analyzed after 0, 4, 8, 12, and 16 wk of storage at 4°C. A color measurement spectrophotometer was used to collect color data before and after heating at 232°C for 5 min or 130°C for 75 min. Meltability was measured using the Schreiber Melt Test on samples heated to 232°C for 5 min. Sliceability (the force required to cut through a sample) was measured using a texture analyzer fitted with a wire cutter attachment. Proteolysis was tracked using sodium dodecyl sulfate-PAGE. Compared with PM cheeses, RM cheeses showed less browning upon heating, melted more at 232°C, and initially required a greater cutting force. With aging, cheeses increased in meltability, decreased in whiteness when measured before heating, and required less cutting force to slice. Seasonal variations in the cheesemilk had minimal or no effect on the functional properties. The differences in the functional properties can be attributed, in part, to the mixed microflora present in the RM cheeses compared with the more homogeneous microflora added during the manufacture of PM cheeses. The degree of proteolysis and subsequent integrity of the cheese matrix contribute to melt, slice, and color properties of the RM and PM cheeses. Understanding the functional properties of the authentic RM cheeses will help researchers and cheesemakers develop pasteurized versions that maintain the traditional traits desired in the

  13. Prevention of late blowing defect by reuterin produced in cheese by a Lactobacillus reuteri adjunct.

    Science.gov (United States)

    Gómez-Torres, Natalia; Ávila, Marta; Gaya, Pilar; Garde, Sonia

    2014-09-01

    In this study, reuterin-producing Lactobacillus reuteri INIA P572 was added to cheese as an adjunct culture together with 50 or 100 mM glycerol (required for reuterin production), with the aim of controlling Clostridium tyrobutyricum CECT 4011 growth and preventing the late blowing defect (LBD) of cheese caused by this strain. L. reuteri survived cheese manufacture and produced reuterin in situ, detected at 6 and 24 h. However, the produced reuterin was enough to inhibit the growth of Clostridium, showing undetectable spore counts from day 30 onward and, therefore, to prevent cheese LBD during ripening (60 d, 14 °C). The acidification of these cheeses was not affected, although from day 14 they showed significantly lower lactococci counts than cheese made only with the starter (control cheese). Cheeses with LBD showed lower levels of lactic acid than control cheese and the formation of propionic and butyric acids, but cheeses with reuterin showed the same organic acids profile than control cheese. The cheese made with L. reuteri and 100 mM glycerol showed a light pink colour, not observed in the cheese made with L. reuteri and 50 mM glycerol. These results demonstrated a potent anti-clostridial activity of reuterin produced in an actual food product like cheese, and proved to be a novel approach to prevent LBD of cheese.

  14. Listeria fleischmannii sp. nov., isolated from cheese.

    Science.gov (United States)

    Bertsch, David; Rau, Jörg; Eugster, Marcel R; Haug, Martina C; Lawson, Paul A; Lacroix, Christophe; Meile, Leo

    2013-02-01

    A study was performed on three isolates (LU2006-1(T), LU2006-2 and LU2006-3), which were sampled independently from cheese in western Switzerland in 2006, as well as a fourth isolate (A11-3426), which was detected in 2011, using a polyphasic approach. The isolates could all be assigned to the genus Listeria but not to any known species. Phenotypic and chemotaxonomic data were compatible with the genus Listeria and phylogenetic analysis based on 16S rRNA gene sequences confirmed that the closest relationships were with members of this genus. However, DNA-DNA hybridization demonstrated that the isolates did not belong to any currently described species. Cell-wall-binding domains of Listeria monocytogenes bacteriophage endolysins were able to attach to the isolates, confirming their tight relatedness to the genus Listeria. Although PCR targeting the central portion of the flagellin gene flaA was positive, motility was not observed. The four isolates could not be discriminated by Fourier transform infrared spectroscopy or pulsed-field gel electrophoresis. This suggests that they represent a single species, which seems to be adapted to the environment in a cheese-ripening cellar as it was re-isolated from the same type of Swiss cheese after more than 5 years. Conjugation experiments demonstrated that the isolates harbour a transferable resistance to clindamycin. The isolates did not exhibit haemolysis or show any indication of human pathogenicity or virulence. The four isolates are affiliated with the genus Listeria but can be differentiated from all described members of the genus Listeria and therefore they merit being classified as representatives of a novel species, for which we propose the name Listeria fleischmannii sp. nov.; the type strain is LU2006-1(T) ( = DSM 24998(T)  = LMG 26584(T)).

  15. Survivability of Lactobacillus rhamnosus during the Preparation of Soy Cheese

    Directory of Open Access Journals (Sweden)

    Dong-Mei Liu

    2006-01-01

    Full Text Available The aim of this study was to develop a new probiotic soy cheese on the basis of chinese sufu. The soy cheese was made from soymilk fermented with soy cheese bacterial starter cultures (DH1 and GH4 and L. rhamnosus 6013. After ripening, probiotic soy cheese sensory scores (standard SB/T 10170-93 were compared to the control. The changes in pH, bacterial growth and the survivability of the potential probiotic L. rhamnosus 6013 during fermentation and storage at 10 °C were examined. After 6 h of fermentation, L. rhamnosus 6013 was capable of growing in soymilk as high as 108–109 CFU/mL. After being stored for 30 days at 10 °C, slight decrease in pH and the viable counts of the strain was noticed. The viable counts of L. rhamnosus 6013, DH1 and GH4 were 107, 106 and 106 CFU/g, respectively, after storage for 30 days. The levels of stachyose, raffinose and sucrose in soy cheese were determined by high performance liquid chromatography. The results indicated that L. rhamnosus 6013 could utilize the soybean oligosaccharides as carbon sources. In addition, 2–4 % of NaCl had little effect on the survivability of L. rhamnosus 6013. It indicated that L. rhamnosus 6013 could withstand the technological processing of soy cheese and had no negative effect on the fermentation and the sensory properties of the soy cheese.

  16. Tool for quantification of staphylococcal enterotoxin gene expression in cheese.

    Science.gov (United States)

    Duquenne, Manon; Fleurot, Isabelle; Aigle, Marina; Darrigo, Claire; Borezée-Durant, Elise; Derzelle, Sylviane; Bouix, Marielle; Deperrois-Lafarge, Véronique; Delacroix-Buchet, Agnès

    2010-03-01

    Cheese is a complex and dynamic microbial ecosystem characterized by the presence of a large variety of bacteria, yeasts, and molds. Some microorganisms, including species of lactobacilli or lactococci, are known to contribute to the organoleptic quality of cheeses, whereas the presence of other microorganisms may lead to spoilage or constitute a health risk. Staphylococcus aureus is recognized worldwide as an important food-borne pathogen, owing to the production of enterotoxins in food matrices. In order to study enterotoxin gene expression during cheese manufacture, we developed an efficient procedure to recover total RNA from cheese and applied a robust strategy to study gene expression by reverse transcription-quantitative PCR (RT-qPCR). This method yielded pure preparations of undegraded RNA suitable for RT-qPCR. To normalize RT-qPCR data, expression of 10 potential reference genes was investigated during S. aureus growth in milk and in cheese. The three most stably expressed reference genes during cheese manufacture were ftsZ, pta, and gyrB, and these were used as internal controls for RT-qPCR of the genes sea and sed, encoding staphylococcal enterotoxins A and D, respectively. Expression of these staphylococcal enterotoxin genes was monitored during the first 72 h of the cheese-making process, and mRNA data were correlated with enterotoxin production.

  17. Staphylococcus aureus in locally produced white cheese in Tirana market

    Directory of Open Access Journals (Sweden)

    ELVIRA BELI

    2014-06-01

    Full Text Available Cheese has nutritional value, its consumption is very common in Albania, but is also excellent medium for bacterial growth, source of bacterial infection, particularly when it is produced from raw poor quality or unpasteurized milk. Microbial safety of cheeses may be enhanced by usage good quality raw milk, pasteurized milk, following GMP in aim to prevent cross-contamination. The aim of this study was to evaluate the presence and amount of Staphylococcus aureus in white cheeses, as an Albanian traditional product. Totally 120 samples of white cheese, produced in small big plant at different Albanian district, by raw milk or pasteurized milk, were collected from Tirana market. All samples were tested by phosphatase test to determine whether raw milk or pasteurized milk it was used for cheese production. 53/120 samples (44% resulted produced by pasteurized milk, 67/120 samples (56 % resulted produced by raw milk. The S. aureus was isolated in Baird Parker agar, and submitted to coagulase and API-staph test. Out of 120 cheese samples, 47 showed contamination by S. aureus coagulase-positive corresponding to 39.16%, otherwise 58 out of 120, 48.33 % of cheeses samples being contaminated with coagulase-negative strain of S. aureus. The occurrence S. aureus coagulase-positive in cheeses produced by pasteurized milk and raw milk it was respectively 7/53 (13.2 % and 40/67 (59.7%. 10% of the samples had high levels 105- 106cfu/g of S. aureus coagulase-positive, suggested that white cheese, may represent a health risk for the consumers

  18. Trace elements content in cheese, cream and butter

    Directory of Open Access Journals (Sweden)

    Nina Bilandžić

    2014-09-01

    Full Text Available Trace elements were determined in five types of cheese, cream and butter using inductively coupled plasma-optical emission spectrometry. In cheese samples trace elements were measured as follows (mg/kg: Al 0.01-3.93, Co<0.005, Cr 0.005-1.66, Li 0.008-0.056, Mn 0.068-5.37, Mo 0.003-0.225, Ni 0.01-0.163 and Sr 0.085-3.49. There were significant differences considering the concentrations of Mn, Cr and Al (p<0.01, all among the analysed dairy products. There were no significant differences in Sr, Mo, Ni and Li levels among products. The highest levels were found in following products (mg/kg: 4.23 Mn in semi-hard fat cheese, 2.43 Sr in cream cheese, 0.18 Mo in cream, 0.14 Ni and 0.028 Li in melted cheese, 1.13 Cr and 3.87 Al in butter. The trace element con¬centrations measured in cheeses and butter varied compared to the literature data. Concentrations of Al, Cr, Mn and Mo found in cheeses and Mn and Ni in butter were in line with contents reported in other countries. These results may demonstrate differences in production processes between countries. The estimated daily intakes (EDIs calculated for Cr, Mn, Mo and Ni in cheeses showed a low contribution (0.59-3.38 % to the reference values for the permitted daily exposure (PDE for these elements. However, the high contribution of Al concentrations (56 and 124 % to PTWI (provisional maximum tolerable daily intake calculated in fresh and melted cheese may pose a health risk to consumers.

  19. Study on Processing Conditions of Cheese Sauce Made with Cream Cheese%用Cream Cheese 生产芝士酱的工艺条件研究

    Institute of Scientific and Technical Information of China (English)

    徐吉祥; 楚炎沛

    2015-01-01

    Take cream cheese as raw material,the cream cheese fermented broth is obtained by lactic bacteria fermentation using fermentation accelerator.The fermented broth is mixed with some additive materials including milk powder,modified starch to produce a new type of cheese sauce.The sensory and texture of the cheese sauce are investigated by single factor experiment for material ratio, fermentation time,sugar amount and cooking time.The optimum formula is determined as follows:when the ratio of cream cheese to fermented broth with sugar additive amount of 5% is 20∶5 ,the fermentation time is 1 hour,the flavor of cheese can be improved obviously,and the ideal cream cheese fermented broth can be obtained.When the ratio of fermented broth to other materials is 20∶80,the sugar additive amount is 5%,the cooking time is 40 min,the ideal cheese sauce can be made.%以 cream cheese 为原料,利用原料自身特性,借助于发酵促进剂先进行乳酸发酵,形成 cream cheese发酵液。然后与奶粉、变性淀粉等添加物溶液混合后,升温熬制,开发出一种新型芝士酱。通过对cream cheese等物料配比、发酵时间、加糖量及熬制时间进行对比实验,并主要从感官和质构上进行评价,最终确定出理想的工艺配方为:cream cheese与浓度5%含糖量的发酵促进液的质量比为20∶5,进行发酵1 h可明显改善芝士风味,获得理想的cream cheese 发酵液。该发酵液与其他物料的配比为20∶80,白砂糖添加量为总物料重量比的5%,熬煮时间为40 min,可制得理想的芝士酱。

  20. Modified starches or stabilizers in preparation of cheese bread

    Directory of Open Access Journals (Sweden)

    Letícia Dias dos Anjos

    2014-09-01

    Full Text Available Cheese bread is a Brazilian product which originated in Minas Gerais and which is highly consumed. In industrial production, there is increasing use of additives which enrich and enhance the physical of this product, adding value in the eyes of the consumer. Thus, the purpose of this paper was to study the effect of addition of modified starch and stabilizers on the physical-chemical of cheese bread. For this reason, measures taken so moisture, pH and acidity, volume, density, coefficient of expansion, and compression resistance (texturometer Results show that the stabilizers used improve these characteristics in the cheese bread, showing better physicochemical characteristics.

  1. The effect of age on Cheddar cheese melting, rheology and structure, and on the stability of feed for cheese powder manufacture

    DEFF Research Database (Denmark)

    Ray, Colin Andrew; Gholamhosseinpour, Aliakbar; Ipsen, Richard

    2016-01-01

    Age-related changes to the rheology and structure of Cheddar for cheese powder manufacture, and how this influences the stability of cheese feed during pre-spray-drying storage, were investigated. Cheddar cheese (3, 5, 7, 9, 12 and 15 months old) was analysed for meltability by the Schreiber Test...

  2. Cytotoxicity of Cheese and Cheddar Cheese food flavorings on Allim cepa L root meristems

    Directory of Open Access Journals (Sweden)

    A. G. Moura

    Full Text Available Abstract Despite their great importance for the food industry, flavorings, in general, raise a number of questions regarding their cytotoxicity, mutagenicity and carcinogenicity, since, in the literature, there are few studies found evaluating the toxicity on the systemic and cellular level, of these chemical compounds. The root meristems of Allium cepa (onion are widely used for the assessment of toxicity of chemical compounds of interest. Thus, this study aimed to evaluate, in A. cepa meristematic cells, individually and in combination at the cellular level, the toxicity of synthetic Cheese and Cheddar Cheese food flavorings, identical to the natural, at doses of 1.0 and 2.0 mL, at exposure times of 24 and 48 hours. In combination we used 0.5 mL of Cheese flavor associated with 0.5 mL of Cheddar flavor; and 1.0 mL of Cheese flavor associated with 1.0 mL of Cheddar flavor, at exposure times of 24 and 48 hours. For these evaluations, we used groups of five onion bulbs, which were first embedded in distilled water and then transferred to their respective doses. The root tips were collected and fixed in acetic acid (3:1 for 24 hours. The slides were prepared by crushing and were stained with 2% acetic orcein. Cells were analyzed throughout the cell cycle, totaling 5,000 for each control and exposure time. The mitotic indices calculated and cellular aberrations observed were subjected to statistical analysis using the chi-square test (p <0.05. No chromosomal abnormalities nor those of mitotic spindle were observed for the treatments performed. The results, both individually and in combination, showed that the flavorings under study significantly reduced the cell division rate of the test system cells used. Therefore, under the conditions studied, the two flavorings were cytotoxic.

  3. Effect of artisanal rennet paste on the chemical, sensory and microbiological characteristics of traditional goat's cheese

    Directory of Open Access Journals (Sweden)

    C. Tripaldi

    2015-12-01

    Full Text Available In a study using three replicates, Marzolina goat cheese made with artisanal rennet paste from goat kid was compared with cheese made with commercial liquid rennet from calf. Samples of fresh cheese were subjected to chemical and microbiological analyses. Samples of ripened cheese collected after 50 days of ripening were submitted to chemical and sensory analysis. Results of this study show that cheese made with artisanal rennet pastes did not contain pathogenic microorganisms and that this kind of rennet provided the enzymatic content necessary to achieve the typical characteristics of traditional cheeses.

  4. Composition and Microstructure of Commercial Full-Fat and Low-Fat Cheeses

    OpenAIRE

    Mistry, V. V.; Anderson, D. L.

    1993-01-01

    The objective of this study was to analyze the composition of commercial full-fat and low-fat cheeses and to evaluate their microstructure. Commercial cheeses evaluated included full-fat and low-fat Cheddar, Mozzarella , processed, and Swiss cheeses. Cheddar cheeses ranged from 8.2% fat and 5 1.1% moisture in the 75% low-fat product to 33.2% fat and 35.9% moisture in the full-fat cheese . Mozzarella cheeses ranged in fat from a low of 2. I% to a high of 24% with corresponding moisture content...

  5. Sensory properties and chemical composition of Sharri cheese from Kosovo

    Directory of Open Access Journals (Sweden)

    Agim Rysha

    2014-11-01

    Full Text Available Food sensory properties, analyses and chemical composition are very important because they provide information about product quality and end-user acceptance or preferences. An assessment of sensory characteristics and chemical composition of mountain sheep and cow’s-milk cheese from shepherd’s huts and industrial manufacturers in Kosovo was carried out. Consumer-oriented tests using a 9 point hedonic scale were conducted in order to determine Sharri cheese acceptability. Chemical parameters (fat content, fat content of dry matter, acidity, protein, dry matter, mineral and water content and sodium chloride content of 45-day brine cheese samples were also analyzed. Chemical and sensory assessment demonstrated large property differences. A recommendation stems from the results showing that the standardization of both artisanal and industrial production of Sharri cheese is required.

  6. Cheese rind microbial communities: diversity, composition and origin.

    Science.gov (United States)

    Irlinger, Françoise; Layec, Séverine; Hélinck, Sandra; Dugat-Bony, Eric

    2015-01-01

    Cheese rinds host a specific microbiota composed of both prokaryotes (such as Actinobacteria, Firmicutes and Proteobacteria) and eukaryotes (primarily yeasts and moulds). By combining modern molecular biology tools with conventional, culture-based techniques, it has now become possible to create a catalogue of the biodiversity that inhabits this special environment. Here, we review the microbial genera detected on the cheese surface and highlight the previously unsuspected importance of non-inoculated microflora--raising the question of the latter's environmental sources and their role in shaping microbial communities. There is now a clear need to revise the current view of the cheese rind ecosystem (i.e. that of a well-defined, perfectly controlled ecosystem). Inclusion of these new findings should enable us to better understand the cheese-making process.

  7. Use of chitosan to prolong mozzarella cheese shelf life.

    Science.gov (United States)

    Altieri, C; Scrocco, C; Sinigaglia, M; Del Nobile, M A

    2005-08-01

    This study was undertaken to evaluate the feasibility of using chitosan, a natural antimicrobial substance, to improve the preservation of a very perishable cheese. The effectiveness of chitosan to inhibit the growth of spoilage microorganisms in Mozzarella cheese was studied during refrigerated storage. A lactic acid/chitosan solution was added directly to the starter used for Mozzarella cheese manufacturing. Mozzarella cheese samples were stored at 4 degrees C for about 10 d and microbial populations as well as the pH were monitored. Results demonstrated that chitosan inhibited the growth of some spoilage microorganisms such as coliforms, whereas it did not influence the growth of other microorganisms, such as Micrococcaceae, and lightly stimulated lactic acid bacteria.

  8. Alternative to decrease cholesterol in sheep milk cheeses.

    Science.gov (United States)

    Gómez-Cortés, P; Viturro, E; Juárez, M; de la Fuente, M A

    2015-12-01

    The presence of cholesterol in foods is of nutritional interest because high levels of this molecule in human plasma are associated with an increasing risk of cardiovascular disease and nowadays consumers are demanding healthier products. The goal of this experiment was to diminish the cholesterol content of Manchego, the most popular Spanish cheese manufactured from ewes milk. For this purpose three bulk milks coming from dairy ewe fed with 0 (Control), 3 and 6% of linseed supplement on their diet were used. Nine cheeses (3 per bulk milk) were manufactured and ripened for 3 months. Cholesterol of ewes milk cheese from 6% to 12% linseed supplemented diets decreased by 9.6% and 16.1% respectively, therefore supplying a healthier profile. In a second experiment, different sources of unsaturated fatty acids (rich in oleic, linoleic and α-linolenic acids) were supplemented to dairy ewes and no significant differences were found on cheese cholesterol levels.

  9. Ewe welfare and ovine milk and cheese quality

    OpenAIRE

    A. Sevi

    2010-01-01

    Causes of welfare reduction in dairy sheep flocks are presented and their impact on ovine milk and cheese quality is discussed. Attention is focused on climatic extremes, poor housing and milking hygiene, and nutritional imbalance: mechanisms are outlined through which stress-induced reduction of immune function can result in poor milk composition, deteriorated renneting ability of milk and altered proteolysis in cheese during ripening. In particular, the impact is brought out of exposure to ...

  10. Isolation of antifungally active lactobacilli from edam cheese

    DEFF Research Database (Denmark)

    Tuma, S.; Vogensen, Finn Kvist; Plocková, M.

    2007-01-01

    The antifungal activity of 322 lactobacilli strains isolated from Edam cheese at different stages of the ripening process was tested against Fusarium proliferatum M 5689 using a dual overlay spot assay. Approximately 21% of the isolates showed a certain level of inhibitory activity. Seven strains...... as Lb. paracasei and three as Lb. fermentum. Lb. paracasei ST 68 was chosen for further testing as antifungal protective adjunct for Edam cheese production.  ...

  11. Mid-infrared predictions of cheese yield from bovine milk

    OpenAIRE

    Vanlierde, Amélie; Soyeurt, Hélène; Anceau, Christine; Vanden Bossche, sandrine; Dehareng, Frédéric; Pierre DARDENNE; Gengler, Nicolas; Sindic, Marianne; Colinet, Frédéric

    2011-01-01

    Economically, cheese yield (CY) is very important. Todate, empirical or theoretical formulae allow estimating the theoretical CY from milk fat and casein or protein content of milk. It would be interesting to predict CY during milk recording directly without the need to estimate milk components. Through the BlueSel project, 157 milk samples were collected in Wallonia from individual cows and analyzed using a mid-infrared (MIR) MilkoScanFT6000 spectrometer. Individual laboratory cheese yields ...

  12. Effect of multiple substrates in ethanol fermentations from cheese whey

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.J.; Jayanata, Y.; Bajpai, R.K.

    1987-01-01

    Ethanol fermentations from cheese whey by Kluyveromyces marxianus CBS 397 were investigated. Cheese whey, which contains lactose as the major sugar, has been found to have small amounts of glucose and galactose, depending on the source and operating conditions. Fermentation performance was strongly influenced by the presence of glucose and galactose. However, lactose did not significantly affect the cell growth and product formation even at a high concentration. A logistical model was proposed to take into account the effect of lactose. (Refs. 6).

  13. THERMOPHYSICAL PROPERTIES AND WATER ACTIVITY OF TRANSFERRED CHEESE (UF

    Directory of Open Access Journals (Sweden)

    Mohsen Dalvi Esfahan

    2015-06-01

    Full Text Available Few data are available on the thermophysical properties of cheese in the ripening process.The main objective of this work was to investigate the effects of brining and temperature on the thermophysical properties, i.e., thermal conductivity, specific heat, density and water activity of UF cheese and finally we measure surface heat transfer coefficient .Then we develop models for thermophysical properties based on physical and multiple regression concept .

  14. Quality Assessment of Cheese in Markets of Tirana City

    OpenAIRE

    2014-01-01

    Mycological control of cheese is considered an important process related to food safety. Food borne disease in our days remains an important issue for public health because they causes infection to the consumers and an important economic damage. A mycological survey of different kind of cheeses sold at five big markets in Tirana is conducted during March - Septembre 2013, in order to identify if potentially toxicological and pathogenic fungi were or were not present. A total 140 samples of c...

  15. Microbial quality and presence of moulds in Kuflu cheese.

    Science.gov (United States)

    Hayaloglu, A A; Kirbag, S

    2007-04-20

    The chemical and microbial qualities, including fungal flora, of 30 samples of Kuflu cheese randomly purchased from different markets in Turkey were investigated. The gross composition of the cheese samples ranged between 37.65-53.65% moisture, 6.21-40.09% fat-in-dry matter, 4.70-10.07% salt-in-moisture and 26.18-44.85% protein. The mean pH value of the cheeses was 6.29+/-0.28 and pH values ranged from 5.52 to 7.22. Variations between the samples in terms of their gross composition suggested a lack of quality standards in cheesemilk, cheesemaking procedure and ripening conditions. The levels of main microbial groups including total mesophilic and coliform bacteria, yeasts and moulds and the presence of some potentially pathogenic microorganisms (E. coli, Salmonella spp. and Staphylococcus aureus) were determined. The high numbers of all microbial groups and presence of potentially pathogenic organisms in the cheese samples suggested that the production and maturation of Kuflu cheese should be improved by better hygiene. Moulds at the cheese surface were isolated and identified. A total of 24 different mould species were detected and the genus most frequently isolated was Penicillium spp. which represented 70.25% of total isolates. Penicillium commune, P. roqueforti and P. verrucosum were the most abundant species in the cheeses sampled. The other dominant fungal groups were Geotrichum candidum, Penicillium expansum and P. chrysogenum. Other genera isolated from the cheese were Acremonium, Alternaria, Aspergillus, Cladosporium, Geotrichum, Mucor, Rhizopus and Trichoderma. The potentially toxigenic species, including some Penicillum spp. and Aspergillus flavus, were also detected.

  16. Researches Regarding Microbiological Parameters Values of Telemea Cheese

    Directory of Open Access Journals (Sweden)

    Andra Suler

    2010-10-01

    Full Text Available The main objectives of this paper were microbiological parameters which characterized the Telemea cheese for each season, assessment of technologies and thus assortment defects as well as projection of hygienic solution for obtaining qualitative products according to actual standards. We studied 5 units of Telemea cheese processing replaced in different area. For obtaining concrete results we used STAS methodologies and analyze procedure was based on observation, mathematical estimation and experiments (in lab and processing units.

  17. The use of sanitation products in milk and cheese production

    Directory of Open Access Journals (Sweden)

    Samir Kalit

    2001-06-01

    Full Text Available Considering hygienic conditions in cheese production the aim of thispaper was to investigate the influence of using some sanitation* products in milk and cheese production on family farms. This investigation was a part of the project “Improving the quality of Tounj cheese produced on family farms”. By use of the sanitation products, during milk production, significant (P<0.01 decrease of geometrical mean of total bacterial count from 3.54 x 105 to 8 x 103 in mL of milk, as well as significant (P<0.01 decrease of geometric mean of somatic cell count from 3.1 x 105 to 2.4 x 105 in mL of milk was observed. The ratio of hygienically unacceptable cheeses, according to the Regulations of microbial standards for foods (NN 46/94., significantly (P<0.01 decreased as well. Because of the new requests and standards, the sanitation products are more in use in both milk and cheese production on family farms. Investigated sanitation products were suitable for use in milk and Tounj cheese production.

  18. Physicochemical and microbiological evaluation of corrientes artisanal cheese during ripening

    Directory of Open Access Journals (Sweden)

    Olga Myriam Vasek

    2013-03-01

    Full Text Available The aim of this study was to evaluate some physical and chemical parameters (total solids, pH, acidity, fat, acid degree value of fat, salt, protein and nitrogen fractions and their effects on the beneficial (lactic acid bacteria: LAB and undesirable microbial populations (coliforms, Escherichia coli, Staphylococcus aureus, moulds, and yeast during ripening of Artisanal Corrientes Cheese, an Argentinian cow's milk variety, to determine whether a longer ripening period than usual improve its hygienic-sanitary quality. The protein content was much higher than that of other cow's milk cheeses with similar values of fat. The larger peptides showed values three times higher in the 30 day-old cheese than those obtained in the beginning of the process. Staphylococcus aureus and Escherichia coli were detected (3.04 ± 1.48 log10 cfu/g of cheese, 2.21 ± 0.84 log10 MPN/g of cheese even at 15 and 30 days of ripening, respectively. The distribution of three hundred LAB strains classified to the genus level (lactococci:lactobacilli:leuconostocs was maintained during the ripening period. The high number of LAB in rennet may have contributed to the fermentation as a natural whey starter, unknown source of LAB for this specific cheese so far. The physicochemical changes that occur during ripening were not big enough to inhibit the growth of undesirable microorganisms.

  19. Biogas yield from Sicilian kitchen waste and cheese whey

    Directory of Open Access Journals (Sweden)

    Antonio Comparetti

    2013-09-01

    Full Text Available The aim of this study is to determine the chemical composition of kitchen waste and cheese whey, as well as the biogas yield obtained from the Anaerobic Digestion (AD tests of these two raw materials. Since the separated waste collection is performed in the town of Marineo (Palermo, a sample of kitchen waste, different from food industry one and included in the Organic Fraction of Municipal Solid Waste (OFMSW, was collected from the mass stored at the households of this town. Moreover, a sample of cheese whey was collected in a Sicilian mini dairy plant, where sheep milk is processed. This investigation was carried out inside laboratory digesters of Aleksandras Stulginskis University (Lithuania. Total Solids (TS resulted 15.6% in kitchen waste and 6% in cheese whey, while both the raw materials showed a high content of organic matter, 91.1% and 79.1%, respectively. The biogas yield resulted 104.6 l kg–1 from kitchen waste and 30.6 l kg–1 from cheese whey. The biogas yield from TS resulted 672.6 l kg–1 using kitchen waste and 384.7 l kg–1 using cheese whey. The biogas yield from Volatile Solids (VS resulted 738.9 l kg–1 using kitchen waste and 410.3 l kg–1 using cheese whey.

  20. The effect of extrinsic attributes on liking of cottage cheese.

    Science.gov (United States)

    Hubbard, E M; Jervis, S M; Drake, M A

    2016-01-01

    Preference mapping studies with cottage cheese have demonstrated that cottage cheese liking is influenced by flavor, texture, curd size, and dressing content. However, extrinsic factors such as package, label claims, and brand name may also influence liking and have not been studied. The objective of this study was to evaluate the role of package attributes and brand on the liking of cottage cheese. A conjoint survey with Kano analysis (n=460) was conducted to explore the effect of extrinsic attributes (brand, label claim, milkfat content, and price) on liking. Following the survey, 150 consumers evaluated intrinsic attributes of 7 cottage cheeses with and without brand information in a 2-d crossover design. Results were evaluated by 2-way ANOVA and multivariate analyses. Milkfat content and price had the highest influence on liking by conjoint analysis. Cottage cheese with 2% milkfat and a low price was preferred. Specific label claims such as "excellent source of calcium (>10%)" were more attractive to consumers than "low sodium" or "extra creamy." Branding influenced overall liking and purchase intent for cottage cheeses to differing degrees. For national brands, acceptance scores were enhanced in the presence of the brand. An all-natural claim was more appealing than organic by conjoint analysis and this result was also confirmed with consumer acceptance testing. Findings from this study can help manufacturers, as well as food marketers, better target their products and brands with attributes that drive consumer choice.

  1. Microbiology, biochemistry, and volatile composition of Tulum cheese ripened in goat's skin or plastic bags.

    Science.gov (United States)

    Hayaloglu, A A; Cakmakci, S; Brechany, E Y; Deegan, K C; McSweeney, P L H

    2007-03-01

    Tulum cheeses were manufactured from raw ewe's milk and ripened in goat's skin bags (tulums) or plastic containers to understand the effect of ripening container on the chemical composition, biochemistry, microbiology, and volatile composition of Tulum cheeses during 150 d of ripening. Chemical compositions of the cheeses ripened in tulums were significantly different and the moisture contents decreased rapidly in those cheeses because of the porous structure of the tulum. Higher microbial counts were detected in the cheeses ripened in plastic than in cheeses ripened in tulums. Differences in nitrogenous compounds and total free AA of the cheeses were not significant. Total concentrations of free AA in cheeses increased with age and Glu, Ala, Val, Leu, and Phe were the most abundant AA in the cheeses. Urea-PAGE of pH 4.6-insoluble fractions of the cheeses during ripening showed similar degradation patterns in all cheeses. Peptide profiles by reversed-phase HPLC of pH 4.6- and ethanol-soluble or ethanol-insoluble fractions of the cheeses revealed only minor differences in the concentrations of some peptides among the cheeses; however, age-related changes in peptide concentrations were significantly different among the cheeses. Cheeses were analyzed at 90 d of ripening for volatile compounds by solid-phase microextraction gas chromatography-mass spectrometry. One hundred volatile components were identified, including 11 acids, 16 esters, 12 methyl ketones, 7 aldehydes, 22 alcohols, 7 sulfur compounds, 6 terpenes, and 19 miscellaneous compounds. The main components were short-chain fatty acids, 2-butanone, diacetyl, and primary alcohols. Quantitative differences in several volatile compounds were evident among the cheeses. Cheeses ripened in tulums or plastic had similar aroma patterns, but the concentrations of some components were different.

  2. Influence of microfiltration and adjunct culture on quality of Domiati cheese.

    Science.gov (United States)

    Awad, S; Ahmed, N; El Soda, M

    2010-05-01

    The effects of microfiltration and pasteurization processes on proteolysis, lipolysis, and flavor development in Domiati cheese during 2 mo of pickling were studied. Cultures of starter lactic acid bacteria isolated from Egyptian dairy products were evaluated in experimental Domiati cheese for flavor development capabilities. In the first trial, raw skim milk was microfiltered and then the protein:fat ratio was standardized using pasteurized cream. Pasteurized milk with same protein:fat ratio was also used in the second trial. The chemical composition of cheeses seemed to be affected by milk treatment-microfiltration or pasteurization-rather than by the culture types. The moisture content was higher and the pH was lower in pasteurized milk cheeses than in microfiltered milk cheeses at d 1 of manufacture. Chemical composition of experimental cheeses was within the legal limits for Domiati cheese in Egypt. Proteolysis and lipolysis during cheese pickling were lower in microfiltered milk cheeses compared with pasteurized milk cheeses. Highly significant variations in free amino acids, free fatty acids, and sensory evaluation were found among the cultures used in Domiati cheesemaking. The cheese made using adjunct culture containing Lactobacillus delbrueckii ssp. lactis, Lactobacillus paracasei ssp. paracasei, Lactobacillus casei, Lactobacillus plantarum, and Enterococcus faecium received high scores in flavor acceptability. Cheeses made from microfiltered milk received a higher score in body and texture compared with cheeses made from pasteurized milk.

  3. The ``Swiss cheese'' instability of bacterial biofilms

    Science.gov (United States)

    Jang, Hongchul; Rusconi, Roberto; Stocker, Roman

    2012-11-01

    Bacteria often adhere to surfaces, where they develop polymer-encased communities (biofilms) that display dramatic resistance to antibiotic treatment. A better understanding of cell detachment from biofilms may lead to novel strategies for biofilm disruption. Here we describe a new detachment mode, whereby a biofilm develops a nearly regular array of ~50-100 μm holes. Using surface-treated microfluidic devices, we create biofilms of controlled shape and size. After the passage of an air plug, the break-up of the residual thin liquid film scrapes and rearranges bacteria on the surface, such that a ``Swiss cheese'' pattern is left in the residual biofilm. Fluorescent staining of the polymeric matrix (EPS) reveals that resistance to cell dislodgement correlates with local biofilm age, early settlers having had more time to hunker down. Because few survivors suffice to regrow a biofilm, these results point at the importance of considering microscale heterogeneity in assessing the effectiveness of biofilm removal strategies.

  4. Aerobic biodegradation of precoagulated cheese whey wastewater.

    Science.gov (United States)

    Rivas, Javier; Prazeres, Ana R; Carvalho, Fatima

    2011-03-23

    Prior to the application of an aerobic biological process, cheese whey wastewater has been pretreated by means of a precipitation stage by adding either NaOH or CaOH2. Both precipitating agents reduce roughly 50% of the raw wastewater chemical oxygen demand (COD). The sludge generated in the prestage shows acceptable settling properties, although solids from the CaOH2-treated effluent are better separated from the liquid bulk than those formed in NaOH-processed wastewater. In both situations, the presedimentation stage renders a supernatant more prone to biodegradation than the untreated effluent. The previous statement is corroborated by the determination of some biological kinetic parameters. Under the operating conditions used in this work, sludge generation after the biological process is reduced to a minimum. The sludge generated shows good settling properties, especially for those experiments in which CaOH2 has previously been added.

  5. Dynamics of bacterial communities during the ripening process of different Croatian cheese types derived from raw ewe's milk cheeses.

    Science.gov (United States)

    Fuka, Mirna Mrkonjić; Wallisch, Stefanie; Engel, Marion; Welzl, Gerhard; Havranek, Jasmina; Schloter, Michael

    2013-01-01

    Microbial communities play an important role in cheese ripening and determine the flavor and taste of different cheese types to a large extent. However, under adverse conditions human pathogens may colonize cheese samples during ripening and may thus cause severe outbreaks of diarrhoea and other diseases. Therefore in the present study we investigated the bacterial community structure of three raw ewe's milk cheese types, which are produced without the application of starter cultures during ripening from two production sites based on fingerprinting in combination with next generation sequencing of 16S rRNA gene amplicons. Overall a surprisingly high diversity was found in the analyzed samples and overall up to 213 OTU97 could be assigned. 20 of the major OTUs were present in all samples and include mostly lactic acid bacteria (LAB), mainly Lactococcus, and Enterococcus species. Abundance and diversity of these genera differed to a large extent between the 3 investigated cheese types and in response to the ripening process. Also a large number of non LAB genera could be identified based on phylogenetic alignments including mainly Enterobacteriaceae and Staphylococcacae. Some species belonging to these two families could be clearly assigned to species which are known as potential human pathogens like Staphylococcus saprophyticus or Salmonella spp. However, during cheese ripening their abundance was reduced. The bacterial genera, namely Lactobacillus, Streptococcus, Leuconostoc, Bifidobacterium, Brevibacterium, Corynebacterium, Clostridium, Staphylococcus, Thermoanerobacterium, E. coli, Hafnia, Pseudomonas, Janthinobacterium, Petrotoga, Kosmotoga, Megasphaera, Macrococcus, Mannheimia, Aerococcus, Vagococcus, Weissella and Pediococcus were identified at a relative low level and only in selected samples. Overall the microbial composition of the used milk and the management of the production units determined the bacterial community composition for all cheese types to a

  6. Dynamics of bacterial communities during the ripening process of different Croatian cheese types derived from raw ewe's milk cheeses.

    Directory of Open Access Journals (Sweden)

    Mirna Mrkonjić Fuka

    Full Text Available Microbial communities play an important role in cheese ripening and determine the flavor and taste of different cheese types to a large extent. However, under adverse conditions human pathogens may colonize cheese samples during ripening and may thus cause severe outbreaks of diarrhoea and other diseases. Therefore in the present study we investigated the bacterial community structure of three raw ewe's milk cheese types, which are produced without the application of starter cultures during ripening from two production sites based on fingerprinting in combination with next generation sequencing of 16S rRNA gene amplicons. Overall a surprisingly high diversity was found in the analyzed samples and overall up to 213 OTU97 could be assigned. 20 of the major OTUs were present in all samples and include mostly lactic acid bacteria (LAB, mainly Lactococcus, and Enterococcus species. Abundance and diversity of these genera differed to a large extent between the 3 investigated cheese types and in response to the ripening process. Also a large number of non LAB genera could be identified based on phylogenetic alignments including mainly Enterobacteriaceae and Staphylococcacae. Some species belonging to these two families could be clearly assigned to species which are known as potential human pathogens like Staphylococcus saprophyticus or Salmonella spp. However, during cheese ripening their abundance was reduced. The bacterial genera, namely Lactobacillus, Streptococcus, Leuconostoc, Bifidobacterium, Brevibacterium, Corynebacterium, Clostridium, Staphylococcus, Thermoanerobacterium, E. coli, Hafnia, Pseudomonas, Janthinobacterium, Petrotoga, Kosmotoga, Megasphaera, Macrococcus, Mannheimia, Aerococcus, Vagococcus, Weissella and Pediococcus were identified at a relative low level and only in selected samples. Overall the microbial composition of the used milk and the management of the production units determined the bacterial community composition for all

  7. Cheese bread enriched with biofortified cowpea flour

    Directory of Open Access Journals (Sweden)

    Rodrigo Barbosa Monteiro Cavalcante

    2016-02-01

    Full Text Available ABSTRACT The development and enrichment of food are of great importance not only for the industry but also to improve the population's nutrition, where you can create new products or optimize existing ones. The consumption of fortified products in the diet is an option for the control of deficiency diseases. This study aimed to develop enriched cheese bread with whole biofortified cowpea flour and evaluate their acceptance and chemical composition. Two formulations, F1 and F2, were prepared containing 5.6 and 8% of cowpea flour as a substitute for starch, respectively. To check acceptance, three sensory tests were used (Hedonic Scale, Purchase Intent, and Paired Comparison, F1 being sensory viable according to assessors, being chemically analyzed. Minerals were determined by atomic emission spectrometry with inductively coupled plasma source. The moisture was determined by drying at 105 °C, ash by calcination in muffle at 550 °C, proteins by the macro-Kjeldahl method, and lipids by hot extraction in a Soxhlet extractor. Carbohydrates were obtained by difference and the calories were calculated. The addition of cowpea increased the amounts of copper, iron, phosphorus, magnesium, manganese, and zinc, as well as protein and carbohydrate values. On the other hand, there was a reduction of the moisture concerning lipids and the total caloric value compared to the standard formulation. It was concluded , therefore, that the cowpea, a regional raw material in market expansion is presented as an option for the enrichment of baked foods that do not contain gluten, such as cheese bread.

  8. Influence of a vegetable fat blend on the texture, microstructure and sensory properties of kashar cheese

    Energy Technology Data Exchange (ETDEWEB)

    Dinkci, N.; Kesenkas, H.; Seckin, A. K.; Kinik, O.; Gonc, S.

    2011-07-01

    The possibility of using a commercial vegetable fat blend in Kashar cheese was investigated. Kashar cheeses were manufactured by replacing the milk fat (MF) with a vegetable fat (VF) blend. Kashar cheeses from whole milk were also manufactured to compare textural, microstructural, meltability, color and sensory characteristics during a ripening period of 90 days. The use of vegetable fat decreased the meltability, hardness, cohesiveness, gumminess and chewiness of the cheese; while increasing adhesiveness where springiness was not affected. Differences became less notable toward the end of ripening. Scanning electron micrographs displayed VF cheese with a compact network with small and uniform fat globules embedded in the protein matrix. The MF cheese exhibited an open protein matrix containing milk fat globules of various sizes and forms. The color analysis demonstrated significant differences between cheeses. Finally, all sensory characteristics of the cheese were affected by the vegetable fat blend. (Author) 36 refs.

  9. Starter bacteria are the prime agents of lipolysis in cheddar cheese.

    Science.gov (United States)

    Hickey, Dara K; Kilcawley, Kieran N; Beresford, Tom P; Wilkinson, Martin G

    2006-10-18

    To assess the contribution of starter lactic acid bacteria (LAB) to lipolysis in Cheddar cheese, the evolution of free fatty acids (FFAs) was monitored in Cheddar cheeses manufactured from pasteurized milks with or without starter. Starter-free cheeses were acidified by a combination of lactic acid and glucono-delta-lactone. Starter cultures were found to actively produce FFAs in the cheese vat, and mean levels of FFAs were significantly higher in starter cheeses over ripening. The contribution of nonstarter LAB toward lipolysis appears minimal, especially in starter-acidified cheeses. It is postulated that the moderate increases in FFAs in Cheddar cheese are primarily due to lack of access of esterase of LAB to suitable lipid substrate. The results of this study indicate that starter esterases are the primary contributors to lipolysis in Cheddar cheese made from good quality pasteurized milk.

  10. Detection of cheese whey and caseinomacropeptide in fermented milk beverages using high performance liquid chromatography

    Directory of Open Access Journals (Sweden)

    E.H.P. Andrade

    2014-06-01

    Full Text Available Cheese whey level and caseinomacropeptide (CMP index of fermented milk beverages added with four levels of cheese whey (0, 10, 20, and 40% and stored at 8-10oC for 0, 7, 14 and 21 days were determined by high performance liquid chromatography-gel filtration (HPLC-GF. Additionally, the interference of the starter culture and the storage time on the detection of cheese whey and CMP were investigated. Refrigerated storage up to 21 days did not affect (P>0.05 cheese whey and CMP amounts in milk (0% of cheese whey and in fermented milk beverages added with 10 and 20% of cheese whey (P>0.05. However, cheese whey and CMP amounts were higher than expected (P<0.05 in fermented milk beverages added with 40% of cheese whey and stored for 21 days.

  11. Impact of low concentration factor microfiltration on milk component recovery and Cheddar cheese yield.

    Science.gov (United States)

    Neocleous, M; Barbano, D M; Rudan, M A

    2002-10-01

    The effect of microfiltration (MF) on the composition of Cheddar cheese, fat, crude protein (CP), calcium, total solids recovery, and Cheddar cheese yield efficiency (i.e., composition adjusted yield divided by theoretical yield) was determined. Raw skim milk was microfiltered twofold using a 0.1-microm ceramic membrane at 50 degrees C. Four vats of cheese were made in one day using milk at lx, 1.26x, 1.51x, and 1.82x concentration factor (CF). An appropriate amount of cream was added to achieve a constant casein (CN)-to-fat ratio across treatments. Cheese manufacture was repeated on four different days using a randomized complete block design. The composition of the cheese was affected by MF. Moisture content of the cheese decreased with increasing MF CF. Standardization of milk to a constant CN-to-fat ratio did not eliminate the effect of MF on cheese moisture content. Fat recovery in cheese was not changed by MF. Separation of cream prior to MF, followed by the recombination of skim or MF retentate with cream resulted in lower fat recovery in cheese for control and all treatments and higher fat loss in whey when compared to previous yield experiments, when control Cheddar cheese was made from unseparated milk. Crude protein, calcium, and total solids recovery in cheese increased with increasing MF CF, due to partial removal of these components prior to cheese making. Calcium and calcium as a percentage of protein increased in the cheese, suggesting an increase in calcium retention in the cheese with increasing CF. While the actual and composition adjusted cheese yields increased with increasing MF CF, as expected, there was no effect of MF CF on cheese yield efficiency.

  12. Serra da Estrela Cheese: evaluation of the thistle ecotype on the physical, chemical and sensorial properties

    OpenAIRE

    Tenreiro, Marlene; Guiné, Raquel; Barracosa, Paulo; Correia, Paula; Correia, Ana Cristina

    2014-01-01

    Serra da Estrela cheese is the most famous variety of farm cheese manufactured in Portugal. Its manufacture is artisanal, from raw ewe's milk of a native breed (Bordaleira da Serra da Estrela), which is coagulated using an aqueous extract of the wild thistle (Cynara cardunculus), without deliberate addition of any starter culture [1-2]. The study of microstructure in specialty cheeses is relevant to sensory features and to fundamental explanation of the changes observed throughout cheese r...

  13. Production of fresh probiotic cheese with addition of transglutaminase

    Directory of Open Access Journals (Sweden)

    Vinka Radošević

    2007-04-01

    Full Text Available The aim of this research was to examine the influence of probiotic culture Lactobacillus acidophilus and enzyme transglutaminase (TG on quality and sensory properties of autochthonous fresh cheese from Zagreb region. Fresh, unpasteurized, skimmed milk was inoculated with TG at different temperatures and activation time (8 h at 11 ºC and 4 h at 25 ºC. Inactivation of the enzyme was carried out during the process of pasteurization (65ºC/30 min. The milk for fresh cheese production was further inoculated with mesophilic culture of lactic acid bacteria MM101 and probiotic strain Lactobacillus acidophilus LAC-1. Besides the trial samples with addition of TG and probiotic bacteria, control samples without addition of TG and probiotic were produced, as well as the samples without addition of TG but with probiotic bacteria addition. Samples of fresh cheese produced with addition of TG, especially in which TG was active at 11 ºC, had greater weight then samples produced without the enzyme addition. Therefore, their yield was also greater then yield of cheese produced without the addition of the enzyme. Furthermore, the samples of fresh cheese produced with addition of TG have shown lesser syneresis than other samples during 10 days of storage at 10 ºC. The same samples also had the best sensory properties. Metabolic activity of mesophilic culture MM101 and probiotic culture L. acidophilus LAC-1 has resulted in better taste and odour of fresh cheese. The viable cell number of probiotic strain L. acidophilus LAC-1 in prepared samples was around 5 x 106 cells/g after 10 days of storage at 10 ºC, which is higher than the minimal dose required for 27 probiotic products. Addition of transgultaminase contributed to better consistency and general appearance of produced fresh cheese.

  14. Valuation of milk composition and genotype in cheddar cheese production using an optimization model of cheese and whey production.

    Science.gov (United States)

    Johnson, H A; Parvin, L; Garnett, I; DePeters, E J; Medrano, J F; Fadel, J G

    2007-02-01

    A mass balance optimization model was developed to determine the value of the kappa-casein genotype and milk composition in Cheddar cheese and whey production. Inputs were milk, nonfat dry milk, cream, condensed skim milk, and starter and salt. The products produced were Cheddar cheese, fat-reduced whey, cream, whey cream, casein fines, demineralized whey, 34% dried whey protein, 80% dried whey protein, lactose powder, and cow feed. The costs and prices used were based on market data from March 2004 and affected the results. Inputs were separated into components consisting of whey protein, ash, casein, fat, water, and lactose and were then distributed to products through specific constraints and retention equations. A unique 2-step optimization procedure was developed to ensure that the final composition of fat-reduced whey was correct. The model was evaluated for milk compositions ranging from 1.62 to 3.59% casein, 0.41 to 1.14% whey protein, 1.89 to 5.97% fat, and 4.06 to 5.64% lactose. The kappa casein genotype was represented by different retentions of milk components in Cheddar cheese and ranged from 0.715 to 0.7411 kg of casein in cheese/kg of casein in milk and from 0.7795 to 0.9210 kg of fat in cheese/kg of fat in milk. Milk composition had a greater effect on Cheddar cheese production and profit than did genotype. Cheese production was significantly different and ranged from 9,846 kg with a high-casein milk composition to 6,834 kg with a high-fat milk composition per 100,000 kg of milk. Profit (per 100,000 kg of milk) was significantly different, ranging from $70,586 for a high-fat milk composition to $16,490 for a low-fat milk composition. However, cheese production was not significantly different, and profit was significant only for the lowest profit ($40,602) with the kappa-casein genotype. Results from this model analysis showed that the optimization model is useful for determining costs and prices for cheese plant inputs and products, and that it can

  15. Volatile and non-volatile compounds in ripened cheese: their formation and their contribution to flavour.

    NARCIS (Netherlands)

    Engels, W.J.M.

    1997-01-01

    Flavour is one of the most important attributes of cheese. Cheese flavour is the result of the breakdown of milk protein, fat, lactose and citrate due to enzymes from milk, rennet and microorganisms during production and ripening of cheese. For a large part the development of flavour during the ripe

  16. 40 CFR 405.60 - Applicability; description of the natural and processed cheese subcategory.

    Science.gov (United States)

    2010-07-01

    ... natural and processed cheese subcategory. 405.60 Section 405.60 Protection of Environment ENVIRONMENTAL... CATEGORY Natural and Processed Cheese Subcategory § 405.60 Applicability; description of the natural and processed cheese subcategory. The provisions of this subpart are applicable to discharges resulting from...

  17. High-pressure processing of Gorgonzola cheese: influence on Listeria monocytogenes inactivation and on sensory characteristics.

    Science.gov (United States)

    Carminati, D; Gatti, M; Bonvini, B; Neviani, E; Mucchetti, G

    2004-08-01

    The presence of Listeria monocytogenes on the rind of Gorgonzola cheese is difficult to avoid. This contamination can easily occur as a consequence of handling during ripening. The aims of this study were to determine the efficiency of high-pressure processing (HPP) for inactivation of L. monocytogenes on cheese rind and to evaluate the influence of HPP treatments on sensory characteristics. Gorgonzola cheese rinds, after removal, were inoculated (about 7.0 log CFU/g) with L. monocytogenes strains previously isolated from other Gorgonzola cheeses. The inoculated cheese rinds were processed with an HPP apparatus under conditions of pressure and time ranging from 400 to 700 MPa for 1 to 15 min. Pressures higher than 600 MPa for 10 min or 700 MPa for 5 min reduced L. monocytogenes more than 99%. A reduction higher than 99.999% was achieved pressurizing cheese rinds at 700 MPa for 15 min. Lower pressure or time treatments were less effective and varied in effectiveness with the cheese sample. Changes in sensory properties possibly induced by the HPP were evaluated on four different Gorgonzola cheeses. A panel of 18 members judged the treated and untreated cheeses in a triangle test. Only one of the four pressurized cheeses was evaluated as different from the untreated sample. HPP was effective in the reduction of L. monocytogenes on Gorgonzola cheese rinds without significantly changing its sensory properties. High-pressure technology is a useful tool to improve the safety of this type of cheese.

  18. Cheese. What is its contribution to the sodium intake of Brazilians?

    Science.gov (United States)

    Felicio, T L; Esmerino, E A; Cruz, A G; Nogueira, L C; Raices, R S L; Deliza, R; Bolini, H M A; Pollonio, M A R

    2013-07-01

    The heightened intake of sodium from processed foods is of great public health concern throughout the world. This study evaluated the sodium contents of cheeses available in Brazil and the contribution of cheese to the daily intake of this micronutrient. The labels of 156 commercial samples of various types of Brazilian cheese (Minas, Prato, mozarella, and requeijão cheese, as well as padrão cheese) were evaluated with respect to the reported sodium content. A high variability in the sodium contents of cheeses within each category was observed, although no significant difference was observed in the sodium content present in one serving (30 g) of cheese versus that present in 100 g of product (p > 0.05). With the exception of Minas cheese, more than 70% of the other cheeses examined in this study could be classified as high-sodium cheeses, with sodium contents exceeding 400 mg Na/100 g of product. These results suggest that cheese manufacturers need to reformulate their products and that public health authorities need to take additional measures to curb sodium intake from cheese consumption, including demand-specific labeling and implementing educational campaigns to inform the public about the dangers associated with high sodium intake.

  19. Starter culture development for improving safety and quality of Domiati cheese.

    Science.gov (United States)

    Ayad, Eman H E

    2009-08-01

    Eleven lactococci strains (sp. lactis and cremoris) were collected according to specific or selected characteristics for development of defined strain starter (DSS) to improve safety and nutritional quality of traditional and low salt Domiati cheese. Thirteen DSS; nisin-producing system or/and folate-producing strains were prepared. The behaviour of the strains in DSS was studied in milk and in two series of Domiati cheese; the first one made with 5% NaCl and salt tolerant strains, the second made with 3% NaCl and the control cheeses were made without starters. The population dynamics of strains and sensory evaluation of cheese corroborated the results in milk. All strains can grow well together and appeared to produce pleasant flavours, normal (typical) body and texture Domiati cheese. There was no apparent difference in cheese composition between cheeses in each series; the levels were within margins for composition of Domiati cheese. The levels of nisin (IU g(-1)) ranged from 204 to 324 IU g(-1) in 3-months' cheeses. Folate concentration increased in cheeses made with DSS cultures than control and the level ranged from 5.5 to 11.1 microg 100 g(-1) in cheeses after 3 months. All results revealed that selected DSS can be used for improving Domiati cheese.

  20. Expression and release of proteolytic enzymes of Lactococcus lactis - Ripening of UF-cheese.

    NARCIS (Netherlands)

    Meijer, W.C.

    1997-01-01

    Semi-hard cheese types, such as Gouda, cannot be satisfactorily produced when using ultrafiltration technology. Although the cheese yield increases using this method, the higher financial return is completely lost by the (poor) quality of the cheese. The work described in this thesis is directed at

  1. Production of fresh Cheddar cheese curds with controlled postacidification and enhanced flavor.

    Science.gov (United States)

    St-Gelais, D; Lessard, J; Champagne, C P; Vuillemard, J-C

    2009-05-01

    Cheddar cheese in curd form is very popular in eastern Canada. It is retailed immediately after cheese manufacturing and can be maintained at room temperature for 24 h to provide better texture and mouthfeel. Subsequently, the cheese curds must be stored at 4 degrees C. The shelf life is generally 3 d. In this study, Cheddar cheese curds were produced by adding a high diacetyl flavor-producing strain (Lactococcus diacetylactis) to a thermophilic-based starter. The objective was to achieve both postacidification stability to increase the shelf life and enhanced flavor. The addition of L. diacetylactis increased processing time but did not affect cheese composition or the evolution of proteolysis and texture. During cheese manufacturing, streptococci became the dominant microflora in all cheeses, whereas populations of Lactococcus cremoris and L. diacetylactis decreased. During cheese storage, viable counts of L. diacetylactis and Streptococcus thermophilus increased but the counts of L. cremoris decreased. During cheese manufacturing and storage, the concentrations of lactic acid and diacetyl increased rapidly in cheeses produced with L. diacetylactis. Citric acid and galactose contents remained high in cheese made without L. diacetylactis. Sensory evaluation indicated that cheeses containing the L. diacetylactis strain were more flavorful and also had less sourness and could be stored at 4 degrees C for up to 7 d.

  2. Rheology and texture of Queso Fresco cheeses made from raw and pasteurized milk

    Science.gov (United States)

    Queso Frescos made in Mexico from raw milk (RM) were compared with cheeses made in Mexico and the US from pasteurized milk (PM) to determine textural and rheological differences. RM cheese, considered the ideal Queso Fresco, contained more moisture than PM cheeses, displayed higher cohesiveness and...

  3. Recovery of Mycobacterium bovis from Soft Fresh Cheese Originating in Mexico▿

    OpenAIRE

    Harris, N. Beth; Payeur, Janet; Bravo, Doris; Osorio, Ruben; Stuber, Tod; Farrell, David; Paulson, Debra; Treviso, Scarlett; Mikolon, Andrea; Rodriguez-Lainz, Alfonso; Cernek-Hoskins, Shannon; Rast, Robert; Ginsberg, Michele; Kinde, Hailu

    2006-01-01

    Recent outbreaks of human tuberculosis in the United States caused by Mycobacterium bovis have implicated cheese originating in Mexico as a source of these infections. A total of 203 samples of cheese originating in Mexico were cultured, and M. bovis was recovered from one specimen. Therefore, M. bovis can be recovered from cheese and may be a source of human infections.

  4. Whole-Genome Sequence of the Cheese Isolate Lactobacillus rennini ACA-DC 565

    Science.gov (United States)

    Kazou, Maria; Alexandraki, Voula; Pot, Bruno; Tsakalidou, Effie

    2017-01-01

    ABSTRACT In this study, we present the first complete genome sequence of Lactobacillus rennini ACA-DC 565, a strain isolated from a traditional Greek overripened Kopanisti cheese called Mana. Although the species has been associated with cheese spoilage, the strain ACA-DC 565 may contribute to the intense organoleptic characteristics of Mana cheese. PMID:28153908

  5. Improvement in melting and baking properties of low-fat Mozzarella cheese.

    Science.gov (United States)

    Wadhwani, R; McManus, W R; McMahon, D J

    2011-04-01

    Low-fat cheeses dehydrate too quickly when baked in a forced air convection oven, preventing proper melting on a pizza. To overcome this problem, low-fat Mozzarella cheese was developed in which fat is released onto the cheese surface during baking to prevent excessive dehydration. Low-fat Mozzarella cheese curd was made with target fat contents of 15, 30, 45, and 60 g/kg using direct acidification of the milk to pH 5.9 before renneting. The 4 portions of cheese curd were comminuted and then mixed with sufficient glucono-δ-lactone and melted butter (45, 30, 15, or 0 g/kg, respectively), then pressed into blocks to produce low-fat Mozzarella cheese with about 6% fat and pH 5.2. The cheeses were analyzed after 15, 30, 60, and 120 d of storage at 5°C for melting characteristics, texture, free oil content, dehydration performance, and stretch when baked on a pizza at 250°C for 6 min in a convection oven. Cheeses made with added butter had higher stretchability compared with the control cheese. Melting characteristics also improved in contrast to the control cheese, which remained in the form of shreds during baking and lacked proper melting. The cheeses made with added butter had higher free oil content, which correlated (R2≥0.92) to the amount of butterfat added, and less hardness and gumminess compared with the control low fat cheese.

  6. Segmentation of Parmigiano Reggiano dairies according to cheese-making technology and relationships with the aspect of the cheese curd surface at the moment of its extraction from the cheese vat.

    Science.gov (United States)

    Mucchetti, G; Gatti, M; Nocetti, M; Reverberi, P; Bianchi, A; Galati, F; Petroni, A

    2014-03-01

    Parmigiano Reggiano cheese dairies develop specific cheese-making strategies to adapt the variable characteristics of raw, not standardized milk to the final goal of obtaining cheese consistent with the standard. Analyzing 1,175 cheese-making reports from 30 out of 383 dairies associated with the Parmigiano Reggiano Consortium in 2010 and 2011, 4 groups of Parmigiano Reggiano dairies using specific cheese-making technologies were discriminated by means of multiple linear discriminant analysis. Cheese makers manage cheese-making practices to obtain curd with different roughness properties, classified according to jargon words such as "rigata" and "giusta" or synonyms, because they believe that the roughness of the cheese curd surface immediately after the extraction from the vat is associated with different whey-draining properties and to the final outcome of the cheese. The aspect of the surfaces of the curds produced by the 4 groups of dairies was different according to the technology applied by each group. Cutting of the coagulum when it is still soft for a longer time and faster cooking of the cheese curd grains were associated with a less rough appearance of the surface of the curd, whereas under the opposite conditions, cutting the coagulum when it is firm for a shorter time, led to a curd with a rougher surface. These findings partially support the traditional feeling of Parmigiano Reggiano cheese makers, who consider the curd surface aspect one of the main drivers for their technological choices; to date, however, no data are provided about correlation between the aspect of the curd and the quality of the ripened cheese. If a sufficiently strong correlation could be demonstrated by the future development of the research, the operational effectiveness of Parmigiano Reggiano dairies will be able to largely benefit from the availability of sound and early process markers.

  7. Production, yield and characteristics of Feta and Domiati type cheeses produced from goat´s milk

    Directory of Open Access Journals (Sweden)

    Ida Drgalić

    2002-04-01

    Full Text Available Brined Feta and Domiati type cheeses were produced from whole goat´s milk. Different types of production were used; with and without goat´s milk acidification with citric acid. The effect of calcium chloride addition was also examined. Renneting of goat´s milk with 0.03% renilase was conducted at 40°C for Domiati type cheese and at 30°C for Feta type cheese. Additives (citric acid and calcium chloride presence had no effect on reneting time for Feta type cheeses while citric acid addition significantly reduced reneting time for Domiati type cheeses. Domiati type cheeses possessed softer consistency, lower acidity, lower protein and fat content than Feta type cheeses. The yield of Domiati type cheeses was approximately 18.37% higher than of Feta type cheeses. Ripening of both types of cheeses was conducted in the brine with 10% sodium chloride at 12°C for 14 days. All cheese samples had lower protein, fat and calcium content in comparison with quality of cheeses before ripening in a brine. This especially occurred in Feta type cheeses. Sensory evaluation of analysed type of cheese was determined at 7th and 14th day of ripening. Better sensory scores are obtained for both types of cheeses after 14 days of ripening, when flavour and taste improvements were significantly higher. The best scores were obtained for Domiati cheese samples from unacidified goat´s milk, regardles of calcium chloride addition.

  8. Milk protein and cheese yield in buffalo species

    Directory of Open Access Journals (Sweden)

    Rossella Di Palo

    2010-01-01

    Full Text Available Buffalo milk samples differing significantly for cheese yield values were analysed by 2D electrophoresis in order to outline a protein profile, with specific regards to k-casein fractions. Four buffaloes, two of which showing high cheese yield and two with low cheese yield selected from a group of 135 subjects were chosen for the proteomic analyses. Six main spots in 2D gels were recognized as αs1-, αs2-, β- and k-casein, α-lactoalbumin, β-lactoglobulin. The main visible differences in the 2D gels between buffaloes with high vs. low cheese yield were found in the appearance of the four k-casein spots (spots numbers:20, 19, 16, 18 which differ in the number of phosphorilation and glycosilation. The area and the intensity of the four spots were calculated by using Melanie II (Bio-Rad software. Samples with high cheese yield showed higher value of the by-products: area x intensity of spot 16, correspondent to k-casein with one phosphorilation site, and lower values of spots 19 and 20, of k-casein with more than one phosphorilation site and glycosilated.

  9. Quality Assessment of Cheese in Markets of Tirana City

    Directory of Open Access Journals (Sweden)

    YLLKA ALLARAJ

    2014-12-01

    Full Text Available Mycological control of cheese is considered an important process related to food safety. Food borne disease in our days remains an important issue for public health because they causes infection to the consumers and an important economic damage. A mycological survey of different kind of cheeses sold at five big markets in Tirana is conducted during March - Septembre 2013, in order to identify if potentially toxicological and pathogenic fungi were or were not present. A total 140 samples of cheeses (soft, hard, semi hard, edam cheese etch, were tested for mold and yeast counts. For level (106 cfu/gr results in 24 cases or 17.1%.From the total number of 140 cases, 24 samples have resulted to be in a load thrush (> 106 cfu /gr which are considered as samples with high potential risk. In 9 samples or (37.5% Aspergillus spp gender was present in 9 samples or 37.5% , Penicillium spp was present in 7 samples or 29.1%, Fusarium was present 2 samples or 8.4% and Mucor was present 6 samples or 25% of samples. Pathogenic genders of moulds were found mostly in white cheese and in edam chesse that have been produced in craft way.

  10. Eff ect of homogenization on the properties and microstructure of Mozzarella cheese from buff alo milk

    Directory of Open Access Journals (Sweden)

    S. Abd El-Rafee

    2012-06-01

    Full Text Available Background. The name pasta fi lata refers to a unique plasticizing and texturing treatments of the fresh curd in hot water that imparts to the fi nished cheese its characteristic fi brous structure and melting properties. Mozzarella cheese made from standardized homogenized and non-homogenized buffalo milk with 3 and 1.5%fat. The effect of homogenization on rheological, microstructure and sensory evaluation was carried out. Material and methods. Fresh raw buffalo milk and starter cultures of Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus were used. The coagulants were calf rennet powder (HA-LA. Standardized buffalo milk was homogenized at 25 kg/cm2 pressure after heating to 60°C using homogenizer. Milk and cheese were analysed. Microstructure of the cheese samples was investigated either with an application of transmission or scanning electron microscope. Statistical analyses were applied on the obtained data. Results. Soluble nitrogen total volatile free fatty acids, soluble tyrosine and tryptophan increased with using homogenized milk and also, increased with relatively decrease in case of homogenized Mozzarella cheese. Meltability of Mozzarella cheese increased with increasing the fat content and storage period and decrease with homogenization. Mozzarella cheese fi rmness increased with homogenization and also, increased with progressing of storage period. Flavour score, appearance and total score of Mozzarella cheese increased with homogenization and storage period progress, while body and texture score decreased with homogenization and increased with storage period progress. Microstructure of Mozzarella cheese showed the low fat cheese tends to be harder, more crumbly and less smooth than normal. Curd granule junctions were prominent in non-homogenized milk cheese. Conclusion. Homogenization of milk cheese caused changes in the microstructure of the Mozzarella cheese. Microstructure studies of cheese revealed that

  11. Short communication: norbixin and bixin partitioning in Cheddar cheese and whey.

    Science.gov (United States)

    Smith, T J; Li, X E; Drake, M A

    2014-01-01

    The Cheddar cheese colorant annatto is present in whey and must be removed by bleaching. Chemical bleaching negatively affects the flavor of dried whey ingredients, which has established a need for a better understanding of the primary colorant in annatto, norbixin, along with cheese color alternatives. The objective of this study was to determine norbixin partitioning in cheese and whey from full-fat and fat-free Cheddar cheese and to determine the viability of bixin, the nonpolar form of norbixin, as an alternative Cheddar cheese colorant. Full-fat and fat-free Cheddar cheeses and wheys were manufactured from colored pasteurized milk. Three norbixin (4% wt/vol) levels (7.5, 15, and 30 mL of annatto/454 kg of milk) were used for full-fat Cheddar cheese manufacture, and 1 norbixin level was evaluated in fat-free Cheddar cheese (15 mL of annatto/454 kg of milk). For bixin incorporation, pasteurized whole milk was cooled to 55 °C, and then 60 mL of bixin/454 kg of milk (3.8% wt/vol bixin) was added and the milk homogenized (single stage, 8 MPa). Milk with no colorant and milk with norbixin at 15 mL/454 kg of milk were processed analogously as controls. No difference was found between the norbixin partition levels of full-fat and fat-free cheese and whey (cheese mean: 79%, whey: 11.2%). In contrast to norbixin recovery (9.3% in whey, 80% in cheese), 1.3% of added bixin to cheese milk was recovered in the homogenized, unseparated cheese whey, concurrent with higher recoveries of bixin in cheese (94.5%). These results indicate that fat content has no effect on norbixin binding or entrapment in Cheddar cheese and that bixin may be a viable alternative colorant to norbixin in the dairy industry.

  12. Behaviour of Listeria monocytogenes during the manufacture and ripening of Manchego and Chihuahua Mexican cheeses.

    Science.gov (United States)

    Solano-López, C; Hernández-Sánchez, H

    2000-12-05

    The ability of Listeria monocytogenes to survive the Mexican Manchego and Chihuahua cheese-making processes and its persistence during the ripening stages of both cheeses was examined. Commercial pasteurized and homogenized whole milk was inoculated with Listeria monocytogenes (strain ATCC 19114) to a level between 2 x 10(6) and 9 x 10(6) CFU/ml. The milk was used to make Mexican Manchego and Chihuahua cheeses in a 25-l vat. Mexican Manchego cheese was ripened for 5 days and Chihuahua cheese for 6 weeks at 12 degrees C and 85% RH. Listeria present in the cheese was enumerated by diluting samples in sterile 0.1% peptone water and plating on Oxford agar. Duplicate samples were taken at each step of the manufacturing process. During the first week of ripening samples were taken daily from both cheeses. For Chihuahua cheese, samples were taken weekly after the first week of the ripening stage. During the manufacture of Mexican Manchego cheese, Listeria counts remained relatively constant at 10(6) CFU/ml, while with Chihuahua cheese there was a one log decrease in numbers (10(6) to 10(5) CFU/ml). After pressing both curds overnight, numbers of bacteria decreased in Mexican Manchego cheese to 8.2 x 10(5) but increased in Chihuahua cheese from 1.7 x 10(5) to 1.2 x 10(6) CFU/ml. During the ripening stage, counts of Listeria remained constant in both cheeses. However, since the Chihuahua cheese ripening stage is about 6 weeks, the number of bacteria decreased from 2 x 10(6) to 4 x 10(4) CFU/g. The results show that Listeria monocytogenes is able to survive the manufacture and ripening processes of both Mexican cheeses.

  13. The influence of ripening process on moisture in fat-free matter and fat content of the Trappist cheese

    Directory of Open Access Journals (Sweden)

    Slavko Kirin

    2001-06-01

    Full Text Available In this paper the influence of ripening proces on moisture in fat-freematter and fat content of Trappist cheese has been investigated. In dairy company (Lura, Bjelovar the natural ripening process of rind Trappist cheese occurs. Afterwards, the cheese is packaged into shrinkable plastic pouch and the rindless cheese is produced. The obtained results are statistically processed. The above mentioned ripening process has a significant influence on moisture content of the fat-free matter and is 5.34 % higher for the Trappist cheese in plastic pouch in comparison to rind Trappist cheese, while the fat content is 6.13 higher for the rind Trappist cheese.

  14. Survival of Bifidobacterium longum and its effect on physicochemical properties and sensorial attributes of white brined cheese.

    Science.gov (United States)

    Gursoy, Oguz; Gokce, Ramazan; Con, Ahmet Hilmi; Kinik, Ozer

    2014-11-01

    Survival of the probiotic adjunct culture Bifidobacterium longum and cheese starters during ripening of white brined cheese, effect of the probiotic culture on physicochemical properties and sensorial attributes of cheeses were investigated throughout 90 d of ripening. Bifidobacterium longum were able to survive at higher levels (>10(7 )cfu/g cheese) than the therapeutic minimum (10(6)-10(7 )cfu/g cheese) after 90 d and did not have any negative effect on the survival of Streptococcus spp. (including common cheese starters). Incorporation of the probiotic adjunct into white brined cheese and high levels of their survival rates during ripening had an insignificant effect on the composition of cheeses. Results indicated that white brined cheese is a suitable food matrix for the delivery of B. longum used in this study, and white brined cheeses with B. longum may be considered as a probiotic dairy product.

  15. Temporal and Spatial Differences in Microbial Composition during the Manufacture of a Continental-Type Cheese

    OpenAIRE

    O'Sullivan, Daniel J.; Paul D. Cotter; O'Sullivan, Orla; Giblin, Linda; McSweeney, Paul L. H.; Sheehan, Jeremiah J.

    2015-01-01

    We sought to determine if the time, within a production day, that a cheese is manufactured has an influence on the microbial community present within that cheese. To facilitate this, 16S rRNA amplicon sequencing was used to elucidate the microbial community dynamics of brine-salted continental-type cheese in cheeses produced early and late in the production day. Differences in the microbial composition of the core and rind of the cheese were also investigated. Throughout ripening, it was appa...

  16. Early PCR detection of tyramine-producing bacteria during cheese production.

    Science.gov (United States)

    Fernández, María; Belén Flórez, Ana; Linares, Daniel M; Mayo, Baltasar; Alvarez, Miguel A

    2006-08-01

    Biogenic amines (BA) are toxic substances that appear in foods and beverages. Tyramine is the most abundant BA in cheeses. A PCR method was developed to detect the presence of tyramine-producing bacteria during cheese manufacture and ripening. Six different batches of a farmhouse blue cheese were analysed by PCR. Tyramine concentrations were also determined by HPLC. The PCR method was able to anticipate tyramine accumulation in the cheeses; the presence of tyramine-producing microorganisms in the early stages of manufacture correlated well with a high concentration of BA in mature cheese samples.

  17. Lactobacillus and Leuconostoc volatilomes in cheese conditions.

    Science.gov (United States)

    Pogačić, Tomislav; Maillard, Marie-Bernadette; Leclerc, Aurélie; Hervé, Christophe; Chuat, Victoria; Valence, Florence; Thierry, Anne

    2016-03-01

    New strains are desirable to diversify flavour of fermented dairy products. The objective of this study was to evaluate the potential of Leuconostoc spp. and Lactobacillus spp. in the production of aroma compounds by metabolic fingerprints of volatiles. Eighteen strains, including five Lactobacillus species (Lactobacillus fermentum, Lactobacillus helveticus, Lactobacillus paracasei, Lactobacillus rhamnosus, Lactobacillus sakei) and three Leuconostoc species (Leuconostoc citreum, Leuconostoc lactis, and Leuconostoc mesenteroides) were incubated for 5 weeks in a curd-based slurry medium under conditions mimicking cheese ripening. Populations were enumerated and volatile compounds were analysed by headspace trap gas chromatography-mass spectrometry (GC-MS). A metabolomics approach followed by multivariate statistical analysis was applied for data processing and analysis. In total, 12 alcohols, 10 aldehydes, 7 esters, 11 ketones, 5 acids and 2 sulphur compounds were identified. Very large differences in concentration of volatile compounds between the highest producing strains and the control medium were observed in particular for diacetyl, 2-butanol, ethyl acetate, 3-methylbutanol, 3-methylbutanoic acid and 2-methylbutanoic acid. Some of the characterized strains demonstrated an interesting aromatizing potential to be used as adjunct culture.

  18. Asymmetric Swiss-cheese brane-worlds

    Science.gov (United States)

    Gergely, László Á.; Képíró, Ibolya

    2007-07-01

    We study a brane-world cosmological scenario with local inhomogeneities represented by black holes. The brane is asymmetrically embedded into the bulk. The black strings/cigars penetrating the Friedmann brane generate a Swiss-cheese-type structure. This universe forever expands and decelerates, as its general relativistic analogue. The evolution of the cosmological fluid, however, can proceed along four branches, two allowed to have positive energy density, and one of them having the symmetric embedding limit. On this branch a future pressure singularity can arise for either (a) a difference in the cosmological constants of the cosmological and black hole brane regions or (b) a difference in the left and right bulk cosmological constants. While behaviour (a) can be avoided by a redefinition of the fluid variables, (b) establishes a critical value of the asymmetry over which the pressure singularity occurs. We introduce the pressure singularity censorship which bounds the degree of asymmetry in the bulk cosmological constant. We also show as a model-independent generic feature that the asymmetry source term due to the bulk cosmological constant increases in the early universe. In order to obey the nucleosynthesis constraints, the brane tension should be constrained therefore both from below and from above. With the maximal degree of asymmetry obeying the pressure singularity censorship, the higher limit is ten times the lower limit. The degree of asymmetry allowed by present cosmological observations is, however, much less, pushing the upper limit to infinity.

  19. Irradiated beetroot extract as a colorant for cream cheese

    Science.gov (United States)

    Junqueira-Goncalves, Maria Paula; Cardoso, Lediana Pereira; Pinto, Michele Silva; Pereira, Rodrigo Magela; Soares, Nilda Ferreira; Miltz, Joseph

    2011-01-01

    A Brazilian ham-flavored cream cheese was developed using gamma-irradiated beetroot extract as the colorant. An irradiation dose of 5.0 kGy was used based on previous studies that indicated no growth of moulds, yeasts and aerobic psychotropic microorganisms during 12 days at 5 °C, and with no changes in the structure of the pigment. One part of the cheese was colored with the irradiated beetroot extract and the other part with carmine cochineal, which is a natural stable colorant but expensive and difficult to extract. Both portions were submitted to sensory evaluation with 67 panelists. No significant differences were found in flavor and overall appearance. The cream cheese containing carmine cochineal was slightly preferred in regards to color. However, being a new product, these results were encouraging and point towards the potential use of irradiated beetroot extract as a natural food colorant.

  20. Fast characterization of cheeses by dynamic headspace-mass spectrometry.

    Science.gov (United States)

    Pérès, Christophe; Denoyer, Christian; Tournayre, Pascal; Berdagué, Jean-Louis

    2002-03-15

    This study describes a rapid method to characterize cheeses by analysis of their volatile fraction using dynamic headspace-mass spectrometry. Major factors governing the extraction and concentration of the volatile components were first studied. These components were extracted from the headspace of the cheeses in a stream of helium and concentrated on a Tenax TA trap. They were then desorbed by heating and injected directly into the source of a mass spectrometer via a short deactivated silica transfer line. The mass spectra of the mixture of volatile components were considered as fingerprints of the analyzed substances. Forward stepwise factorial discriminant analysis afforded a limited number of characteristic mass fragments that allowed a good classification of the batches of cheeses studied.

  1. Cheese production using kefir culture entrapped in milk proteins.

    Science.gov (United States)

    Dimitrellou, Dimitra; Kandylis, Panagiotis; Kourkoutas, Yiannis; Koutinas, Athanasios A; Kanellaki, Maria

    2015-05-01

    The aim of the present study was to evaluate the use of kefir culture entrapped in casein and in whey protein as starter cultures for the production of Feta-type cheese. Microbiological analysis showed that counts of enterobacteria, coliforms, and staphylococci were significantly reduced due to kefir culture. In addition, the effect of kefir culture on the formation of volatile compounds, such as esters, organic acids, alcohols, carbonyl compounds, and lactones, was also investigated using the SPME GC/MS technique. Cheese samples produced with kefir culture entrapped in milk proteins presented improved profile of aroma-related compounds. Principal component analysis of the results indicated that the volatile composition of the different cheese types was dependent on the nature of the starter culture. Finally, the sensory evaluation showed that the products produced with kefir culture had a soft, fine taste, and were of improved quality.

  2. Hygienic quality of goat's milk cheese produced in rural household

    Directory of Open Access Journals (Sweden)

    Željka Cvrtila

    2001-10-01

    Full Text Available An increasing number of small-scale goat breeders produce goat's milk cheese that is sold on markets. In this study we determined the chemical composition and microbiological quality of goat's milk cheese samples. It has been found that the chemical composition of the samples were not standardised. Water content varied from 42,20 to 51,20 %, milk fat content in dry matter from 32,85 to 50,28%, while acidity varied from 15,08 to 39,36 ºSH. Only two samples (20% met the microbiological standards. In 2 samples Escherichia coli in the quantities larger than 102/g was found, whereas in all 8 samples yeasts and moulds were found in quantities larger than 102/g. The results of our study have shown that the hygienic conditions of goat's milk cheese production are often inadequate. Also, the hygienic conditions of goat keeping and milking hygiene are questionable.

  3. Analysis of spreadable cheese by Raman spectroscopy and chemometric tools.

    Science.gov (United States)

    Oliveira, Kamila de Sá; Callegaro, Layce de Souza; Stephani, Rodrigo; Almeida, Mariana Ramos; de Oliveira, Luiz Fernando Cappa

    2016-03-01

    In this work, FT-Raman spectroscopy was explored to evaluate spreadable cheese samples. A partial least squares discriminant analysis was employed to identify the spreadable cheese samples containing starch. To build the models, two types of samples were used: commercial samples and samples manufactured in local industries. The method of supervised classification PLS-DA was employed to classify the samples as adulterated or without starch. Multivariate regression was performed using the partial least squares method to quantify the starch in the spreadable cheese. The limit of detection obtained for the model was 0.34% (w/w) and the limit of quantification was 1.14% (w/w). The reliability of the models was evaluated by determining the confidence interval, which was calculated using the bootstrap re-sampling technique. The results show that the classification models can be used to complement classical analysis and as screening methods.

  4. Case of Contamination by Listeria Monocytogenes in Mozzarella Cheese

    Science.gov (United States)

    Tolli, Rita; Bossù, Teresa; Rodas, Eda Maria Flores; Di Giamberardino, Fabiola; Di Sirio, Alessandro; Vita, Silvia; De Angelis, Veronica; Bilei, Stefano; Sonnessa, Michele; Gattuso, Antonietta; Lanni, Luigi

    2014-01-01

    Following a Listeria monocytogenes detection in a mozzarella cheese sampled at a dairy plant in Lazio Region, further investigations have been conducted both by the competent Authority and the food business operatordairy factory (as a part of dairy factory HACCP control). In total, 90 dairy products, 7 brine and 64 environmental samples have been tested. The prevalence of Listeria monocytogenes was 24.4% in mozzarella cheese, and 9.4% in environmental samples, while brines were all negatives. Forty-seven strains of L. monocytogenes have been isolated, all belonging to 4b/4e serotype. In 12 of these, the macrorestriction profile has been determined by means of pulsed field gel electrophoresis. The profiles obtained with AscI enzyme showed a 100% similarity while those obtained with ApaI a 96.78% similarity. These characteristics of the isolated strains jointly with the production process of mozzarella cheese has allowed to hypothesise an environmental contamination. PMID:27800317

  5. Irradiated beetroot extract as a colorant for cream cheese

    Energy Technology Data Exchange (ETDEWEB)

    Junqueira-Goncalves, Maria Paula, E-mail: mpaula.junqueira@usach.c [Universidad de Santiago de Chile, Department of Food Science and Technology, Ecuador 3769, Santiago (Chile); Cardoso, Lediana Pereira; Pinto, Michele Silva; Pereira, Rodrigo Magela; Soares, Nilda Ferreira [Universidade Federal de Vicosa, Department of Food Science and Technology, CEP 36570-000, Vicosa, MG (Brazil); Miltz, Joseph [Technion Israel Institute of Technology, Department of Biotechnology and Food Engineering, Haifa 32000 (Israel)

    2011-01-15

    A Brazilian ham-flavored cream cheese was developed using gamma-irradiated beetroot extract as the colorant. An irradiation dose of 5.0 kGy was used based on previous studies that indicated no growth of moulds, yeasts and aerobic psychotropic microorganisms during 12 days at 5 {sup o}C, and with no changes in the structure of the pigment. One part of the cheese was colored with the irradiated beetroot extract and the other part with carmine cochineal, which is a natural stable colorant but expensive and difficult to extract. Both portions were submitted to sensory evaluation with 67 panelists. No significant differences were found in flavor and overall appearance. The cream cheese containing carmine cochineal was slightly preferred in regards to color. However, being a new product, these results were encouraging and point towards the potential use of irradiated beetroot extract as a natural food colorant.

  6. Effect of pre-treatment of cheese milk on the composition and characteristics of whey and whey products

    OpenAIRE

    Outinen, Marko

    2010-01-01

    Cheese producers want to increase cheese yield. The yield is improved by enhanced transfer of milk proteins and fat to cheese. This requires modifications to the traditional cheese process. During high-temperature heat treatment (HH), whey proteins are partially denaturated and co-precipitated with the cheese matrix. Elevation of the protein concentration of milk enhances the formation of the protein network in which whey proteins and fat are enclosed. The protein concentration is usually inc...

  7. Physicochemical and hygienic effects of Lactobacillus acidophilus in Iranian white cheese

    Directory of Open Access Journals (Sweden)

    Razzaqh Mahmoudi

    2012-09-01

    Full Text Available Increasing incidence of food-borne disease along with its social and economic consequences have led to conducting extensive research in order to produce safer food and develop new antimicrobial agents; among them, extensive use of probiotics and bacteriocins as biological additives is of significant importance. The aim of the present study was to evaluate the interactions (growth behavior and survival of Listeria monocytogenes and Lactobacillus acidophilus in various stages of production, ripening and storage of Iranian white cheese. Changes in pH values at different stages of cheese ripening, along with changes in organoleptic properties of cheese were also assessed. Compared to other treatments, in the treatment of cheese with probiotic agent without starter, the most significant decrease in Listeria monocytogenes count at the end of ripening stage was observed (3.16 Log per gram cheese compared with the control group (p < 0.05. Survival of probiotic bacteria in control samples of cheese were significantly higher when compared to cheese sample contaminated with Listeria (p < 0.05. White probiotic cheese with starter had the highest of sensory acceptability (p < 0.05. Listeria Monocytogenes count decreased during ripening period of probiotic white cheese but the bacteria survived in probiotic white cheese. Lactobacillus acidophilus count decreased during ripening period of white cheese but it did not lower to less than 106 CFU per g at the end of ripening and storage periods.

  8. Microstructure and Composition of Full Fat Cheddar Cheese Made with Ultrafiltered Milk Retentate

    Directory of Open Access Journals (Sweden)

    Lydia Ong

    2013-07-01

    Full Text Available Milk protein is often standardised prior to cheese-making using low concentration factor ultrafiltration retentate (LCUFR but the effect of LCUFR addition on the microstructure of full fat gel, curd and Cheddar cheese is not known. In this work, Cheddar cheeses were made from cheese-milk with or without LCUFR addition using a protein concentration of 3.7%–5.8% w/w. The fat lost to sweet whey was higher in cheese made from cheese-milk without LCUFR or from cheese-milk with 5.8% w/w protein. At 5.8% w/w protein concentration, the porosity of the gel increased significantly and the fat globules within the gel and curd tended to pool together, which possibly contributed to the higher fat loss in the sweet whey. The microstructure of cheese from cheese-milk with a higher protein concentration was more compact, consistent with the increased hardness, although the cohesiveness was lower. These results highlight the potential use of LCUFR for the standardization of protein concentration in cheese-milk to 4%–5% w/w (equivalent to a casein to total protein ratio of 77%–79% w/w to increase yield. Beyond this concentration, significant changes in the gel microstructure, cheese texture and fat loss were observed.

  9. The effect of using a vegetable fat blend on some attributes of kashar cheese

    Energy Technology Data Exchange (ETDEWEB)

    Kesemkas, H.; Dinkci, N.; Seckin, K.; Kinik, O.; Gonc, S.

    2009-07-01

    Kashar cheese was produced from whole milk (MF) or skim milk homogenized with a commercial vegetable fat blend (VF) by the traditional procedure. The resulting cheese was stored for 3 months at 5 degree centigrade, and analyzed initially for its gross composition and cholesterol content. In addition, the proteolysis and lipolysis, organic acid content and fatty acid composition were studied during the ripening of the cheese. The replacement of milk fat with a vegetable fat blend mainly affected pH, total solids and cholesterol content in the initial composition of the cheese (P < 0.05). The acid degree value and tyrosine contents in both types of cheese increased throughout ripening and significant differences were found between the cheeses after only 30 days of ripening (P < 0.05). The organic acid concentrations of both cheeses changed during ripening (P < 0.05) except for citric and oxalic acids. MF cheese showed higher levels of citric, succinic and oxalic acids especially towards to the end of ripening. Palmitic acid was the dominant fatty acid in MF cheese while the most abundant fatty acids in VF cheese were palmitic and oleic acid. The higher unsaturated fatty acid composition of the VF cheese has attracted attention from the healthy food image point of view. (Author) 44 refs.

  10. Temporal and Spatial Differences in Microbial Composition during the Manufacture of a Continental-Type Cheese

    Science.gov (United States)

    O'Sullivan, Daniel J.; O'Sullivan, Orla; McSweeney, Paul L. H.; Sheehan, Jeremiah J.

    2015-01-01

    We sought to determine if the time, within a production day, that a cheese is manufactured has an influence on the microbial community present within that cheese. To facilitate this, 16S rRNA amplicon sequencing was used to elucidate the microbial community dynamics of brine-salted continental-type cheese in cheeses produced early and late in the production day. Differences in the microbial composition of the core and rind of the cheese were also investigated. Throughout ripening, it was apparent that cheeses produced late in the day had a more diverse microbial population than their early equivalents. Spatial variation between the cheese core and rind was also noted in that cheese rinds were initially found to have a more diverse microbial population but thereafter the opposite was the case. Interestingly, the genera Thermus, Pseudoalteromonas, and Bifidobacterium, not routinely associated with a continental-type cheese produced from pasteurized milk, were detected. The significance, if any, of the presence of these genera will require further attention. Ultimately, the use of high-throughput sequencing has facilitated a novel and detailed analysis of the temporal and spatial distribution of microbes in this complex cheese system and established that the period during a production cycle at which a cheese is manufactured can influence its microbial composition. PMID:25636841

  11. Biogenic amines determination in some traditional cheeses in West Azerbaijan province of Iran

    Directory of Open Access Journals (Sweden)

    Seyed Mehdi Razavi Rohani

    2013-06-01

    Full Text Available Biogenic amines (BA are nitrogenous compounds that possess biological activity. The source of production is the microbial decarboxylation of amino acids. This compounds are found in various types of cheese. The aim of this work was to evaluate the BA content of some traditional cheeses in West Azerbaijan province Iran. For this purpose, 70 samples of Koopeh, 10 samples of Lighvan and 5 samples of Red Salmas cheeses were obtained from local supermarkets of different cities of West Azerbaijan province. After preparation of samples, biogenic amines content was evaluated by modified HPLC method. The presence of histamine, cadaverine, putrescine and tyramine in tested cheeses were observed. Total amount of biogenic amines was highest in Red Salmas cheese with 1426.91 ppm. It followed by Lighvan cheese and Koopeh cheese with 1008.98 and 517.71 ppm, respectively. Putrescine, cadaverine, histamine and tyramine were detected in Koopeh cheese at levels up to 156.09, 282.34, 70.80, 8.48 ppm respectively. These amines were detected also in Lighvan cheese at levels up to 277.53, 342.74, 37.58, 351.12 ppm and in Red Salmas cheese samples at levels up to 438.03, 701.05, 105.21, 182.62 ppm, respectively. Large amounts of biogenic amines can indicate non hygienic conditions and contamination of used milk for cheese production.

  12. Impact of Health Labels on Flavor Perception and Emotional Profiling: A Consumer Study on Cheese.

    Science.gov (United States)

    Schouteten, Joachim J; De Steur, Hans; De Pelsmaeker, Sara; Lagast, Sofie; De Bourdeaudhuij, Ilse; Gellynck, Xavier

    2015-12-09

    The global increase of cardiovascular diseases is linked to the shift towards unbalanced diets with increasing salt and fat intake. This has led to a growing consumers' interest in more balanced food products, which explains the growing number of health-related claims on food products (e.g., "low in salt" or "light"). Based on a within-subjects design, consumers (n = 129) evaluated the same cheese product with different labels. Participants rated liking, saltiness and fat flavor intensity before and after consuming four labeled cheeses. Even though the cheese products were identical, inclusion of health labels influenced consumer perceptions. Cheese with a "light" label had a lower overall expected and perceived liking compared to regular cheese. Although cheese with a "salt reduced" label had a lower expected liking compared to regular cheese, no lower liking was found when consumers actually consumed the labeled cheese. All labels also influenced the perceived intensities of the attributes related to these labels, e.g., for example salt intensity for reduced salt label. While emotional profiles of the labeled cheeses differed before tasting, little differences were found when actual tasting these cheeses. In conclusion, this study shows that health-related labels might influence the perceived flavor and emotional profiles of cheese products.

  13. Preliminary Discrimination of Cheese Adulteration by FT-IR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Lucian Cuibus

    2014-11-01

    Full Text Available The present work describes a preliminary study to compare some traditional Romanian cheeses and adulterated cheeses using Attenuated Total Reflectance-Fourier transform infrared spectroscopy (ATR-FTIR. For PLS model calibration (6 concentration levels and validation (5 concentration levels sets were prepared from commercial Dalia Cheese from different manufacturers by spiking it with palm oil at concentrations ranging 2-50 % and 5-40 %, respectively. Fifteen Dalia Cheese were evaluated as external set. The spectra of each sample, after homogenization, were acquired in triplicate using a FTIR Shimatsu Prestige 21 Spectrophotometer, with a horizontal diamond ATR accessory in the MIR region 4000-600 cm-1. Statistical methods as PLS were applied using MVC1 routines written for Matlab R2010a. As first step the optimal condition for PLS model were obtained using cross-validation on the Calibration set. Spectral region in 3873-652 cm-1, and 3 PLS-factors were stated as the best conditions and showed an R2 value of 0.9338 and a relative error in the calibration of 17.2%. Then validation set was evaluated, obtaining good recovery rates (108% and acceptable dispersion of the data (20%. The curve of actual vs. predicted values shows slope near to 1 and origin close to 0, with an R2 of 0.9695. When the external sample set was evaluated, samples F19, F21, F22 and F24, showed detectable levels of palm fats. The results proved that FTIR-PLS is a reliable non-destructive technique for a rapid quantification the level of adulteration in cheese.  The spectroscopic methods could assist the quality control authority, traders and the producers to discriminate the adulterated cheeses with palm oil.

  14. The influence of fat and monoacylglycerols on growth of spore-forming bacteria in processed cheese.

    Science.gov (United States)

    Hauerlandová, Iva; Lorencová, Eva; Buňka, František; Navrátil, Jan; Janečková, Kristýna; Buňková, Leona

    2014-07-16

    Highly undesirable microbial contaminants of processed cheese are endospore-forming bacteria of the genera Bacillus and Clostridium. Survival of Bacillus subtilis, B. cereus, Clostridium butyricum and C. sporogenes was examined in model processed cheese samples supplemented with monoacylglycerols. In processed cheese samples, monoacylglycerols of undecanoic, undecenoic, lauric and adamantane-1-carboxylic acid at concentration of 0.15% w/w prevented the growth and multiplication of both Bacillus species throughout the storage period. The two species of Clostridium were less affected by monoacylglycerols in processed cheese samples and only partial inhibition was observed. The effect of milk fat content on microbial survival in processed cheese was also evaluated. The growth of Bacillus sp. was affected by the fat level of processed cheese while population levels of Clostridium sp. did not differ in processed cheese samples with 30, 40 and 50% fat in dry matter.

  15. [Examination of Staphylococcus aureus survival and growth during cheese-making process].

    Science.gov (United States)

    Aoyama, Kenji; Takahashi, Chitose; Yamauchi, Yoshihiko; Sakai, Fumihiko; Igarashi, Hideo; Yanahira, Syuichi; Konishi, Hiroaki

    2008-04-01

    Inoculation tests of Staphylococcus aureus were performed to evaluate the risk of toxic hazard in cheese manufacturing processes. S. aureus was inoculated into pasteurized milk or cheese curd, and the survival and growth were examined. S. aureus grew only slightly or decreased in cell number under the manufacturing condition of semi-hard type cheese or soft-type cheese. Under the conditions of the fresh cheese making process, S. aureus slightly increased in cell number, though no enterotoxin was detected. In processed cheese, S. aureus did not grow at all. Growth inhibition of S. aureus by lactic acid produced from starter culture was suggested to be the cause of growth inhibition in the natural cheese.

  16. Evolution of the taste of a bitter Camembert cheese during ripening: characterization of a matrix effect.

    Science.gov (United States)

    Engel, E; Nicklaus, S; Septier, C; Salles, C; Le Quéré, J L

    2001-06-01

    The objective of this study was to characterize the effect of ripening on the taste of a typically bitter Camembert cheese. The first step was to select a typically bitter cheese among several products obtained by different processes supposed to enhance this taste defect. Second, the evolution of cheese taste during ripening was characterized from a sensory point of view. Finally, the relative impact of fat, proteins, and water-soluble molecules on cheese taste was determined by using omission tests performed on a reconstituted cheese. These omission tests showed that cheese taste resulted mainly from the gustatory properties of water-soluble molecules but was modulated by a matrix effect due to fat, proteins, and cheese structure. The evolution of this matrix effect during ripening was discussed for each taste characteristic.

  17. Short communication: Effect of genetic type on antioxidant activity of Caciocavallo cheese during ripening.

    Science.gov (United States)

    Perna, Annamaria; Intaglietta, Immacolata; Simonetti, Amalia; Gambacorta, Emilio

    2015-06-01

    The aim of this work was to investigate the antioxidant activity of Caciocavallo cheese made from the milk of 2 breeds, Italian Brown and Italian Holstein, and ripened for 1, 30, 60, 90, and 150 d. The antioxidant activity of cheese was measured using the 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), ferric-reducing antioxidant power (FRAP), and thiol assays. Statistical analysis showed a significant effect of the studied factors. Italian Brown cheese had higher antioxidant activity than Italian Holstein cheese, and antioxidant activity increased during ripening of both cheeses types. Moreover, antioxidant activity varied during ripening depending on the rate of formation of soluble peptides. To date, few studies have evaluated the effect of genetic type on antioxidant capacity of the pasta filata cheeses; thus, this study forms the basis of new knowledge that could lead to the production of a pasta filata cheese with specific nutraceutical characteristics.

  18. Acceptability of genetically modified cheese presented as real product alternative

    DEFF Research Database (Denmark)

    Lähteenmäki, Liisa; Grunert, Klaus G.; Ueland, Øydis

    2002-01-01

    alternatives. Consumers in Denmark, Finland, Norway and Sweden (n=738) assessed two cheeses: one was labelled as genetically modified (preferred in an earlier product test) and the other as conventional (neutral in an ealier product test). A smaller control group received two cheeses with blind codes......European consumers, in general, have negative attitudes towards the use of gene technology in food production. The objective of this study was to examine whether taste and health benefits influence the acceptability of genetically modified (gm) products when they are presented as real product...

  19. Tapioca maltodextrin in the production of soft unripened cheese

    OpenAIRE

    Natalia V. Iakovchenko; Tamara P. Arseneva

    2016-01-01

    Background. An excessive consumption of fat has been associated with an increased risk of health problems such as obesity, diabetes and cardiovascular diseases. Cheese is a highly concentrated product which is rich in protein and minerals such as calcium and phosphorus and essential amino acids, therefore it is an important food in the diet. But low fat cheeses are usually characterized as having poor body and flavour. Therefore,  it is crucial to find ways of improving the a...

  20. Analyzing shelf life of processed cheese by soft computing

    Directory of Open Access Journals (Sweden)

    S. Goyal

    2012-09-01

    Full Text Available Feedforward soft computing multilayer models were developed for analyzing shelf life of processed cheese. The models were trained with 80% of total observations and validated with 20% of the remaining data. Mean Square Error, Root Mean Square Error, Coefficient of Determination and Nash - Sutcliffo Coefficient were used in order to compare the prediction ability of the developed models. From the study, it is concluded that feedforward multilayer models are good in predicting the shelf life of processed cheese stored at 7-8o C.

  1. Physiological characterization of common fungi associated with cheese

    DEFF Research Database (Denmark)

    Haasum, Iben; Nielsen, Per Væggemose

    1998-01-01

    A multivariate statistical method (PLS) was used for a physiological characterization of fungi associated with the cheese environment. The combined effects of pH, salt content, oxygen and carbon dioxide levels on growth and sporulation were studied. Significant factors affecting growth were salt...... content, level of carbon dioxide and temperature. Interactions between those factors were illustrated and showed that some fungi were especially sensitive to carbon dioxide levels and salt content, at low temperature. Sensitivity to the factors often was more pronounced in the early growth phase. Results...... may aid in eliminating unwanted fungal growth during cheese production....

  2. Microbiota of Minas cheese as influenced by the nisin producer Lactococcus lactis subsp. lactis GLc05.

    Science.gov (United States)

    Perin, Luana Martins; Dal Bello, Barbara; Belviso, Simona; Zeppa, Giuseppe; de Carvalho, Antônio Fernandes; Cocolin, Luca; Nero, Luís Augusto

    2015-12-01

    Minas cheese is a popular dairy product in Brazil that is traditionally produced using raw or pasteurized cow milk. This study proposed an alternative production of Minas cheese using raw goat milk added of a nisin producer Lactococcus lactis subsp. lactis GLc05. An in situ investigation was carried on to evaluate the interactions between the L. lactis subsp. lactis GLc05 and the autochthonous microbiota of a Minas cheese during the ripening; production of biogenic amines (BAs) was assessed as a safety aspect. Minas cheese was produced in two treatments (A, by adding L. lactis subsp. lactis GLc05, and B, without adding this strain), in three independent repetitions (R1, R2, and R3). Culture dependent (direct plating) and independent (rep-PCR and PCR-DGGE) methods were employed to characterize the microbiota and to assess the possible interferences caused by L. lactis subsp. lactis GLc05. BA amounts were measured using HPLC. A significant decrease in coagulase-positive cocci was observed in the cheeses produced by adding L. lactis subsp. lactis GLc05 (cheese A). The rep-PCR and PCR-DGGE highlighted the differences in the microbiota of both cheeses, separating them into two different clusters. Lactococcus sp. was found as the main microorganism in both cheeses, and the microbiota of cheese A presented a higher number of species. High concentrations of tyramine were found in both cheeses and, at specific ripening times, the BA amounts in cheese B were significantly higher than in cheese A (pnisin producer L. lactis subsp. lactis GLc05 was demonstrated in situ, by demonstration of its influence in the complex microbiota naturally present in a raw goat milk cheese and by controlling the growth of coagulase-positive cocci. L. lactis subsp. lactis GLc05 influenced also the production of BA determining that their amounts in the cheeses were maintained at acceptable levels for human consumption.

  3. Manufacture and sensory analysis of reduced- and low-sodium Cheddar and Mozzarella cheeses.

    Science.gov (United States)

    Ganesan, Balasubramanian; Brown, Kelly; Irish, David A; Brothersen, Carl; McMahon, Donald J

    2014-01-01

    High sodium intake negatively affects consumer health, thus there is active interest in lowering sodium levels in dairy foods. Cheddar and low-moisture, part-skim Mozzarella cheeses were made with total salt levels of 0.7, 1.0, 1.25, 1.35, and 1.8% (wt/wt) in triplicate, thus reducing sodium by 25 to 60%. Multiple manufacturing protocols for salt reduction were used to produce cheeses with similar postpress moisture and pH, independent of the final salt levels in cheese, in order to study the role of salt in cheese acceptability. Cheese flavor was evaluated by a descriptive taste panel on a 15-point intensity scale. Consumer acceptance was evaluated by a consumer panel on a 9-point hedonic scale. Taste panels conducted with cubed Cheddar cheese (at 3 and 6mo) and cold shredded Mozzarella cheese (at 3wk) showed that consumer liking for cheese was low at 0.7 and 0.9% salt, but all cheeses containing higher salt levels (1.25, 1.35, and 1.8% salt) were comparably preferred. The cheeses had acceptable liking scores (≥6) when served as quesadilla or pizza toppings, and consumers were able to differentiate cheeses at alternate salt levels; for example, 1.8 and 1.5% salt cheeses scored similarly, as did cheeses with 1.5% and 1.35% salt, but 1.35% salt cheese scored lower than and was discernible from 1.8% salt cheese. Descriptive panelists perceived salty, sour, umami, bitter, brothy, lactone/fatty acid, and sulfur attributes as different across Mozzarella cheeses, with the perception of each significantly increasing along with salt level. Salty and buttery attributes were perceived more with increasing salt levels of Cheddar cheese by the descriptive panel at 3mo, whereas bitter, brothy, and umami attributes were perceived less at the higher salt levels. However, this trend reversed at 6mo, when perception of salty, sour, bitter, buttery, lactone/fatty acid, and umami attributes increased with salt level. We conclude that consumers can distinguish even a 30% salt

  4. Ripening process of Cascaval cheese: compositional and textural aspects.

    Science.gov (United States)

    Andronoiu, Doina Georgeta; Botez, Elisabeta; Nistor, Oana Viorela; Mocanu, Gabriel Dănuţ

    2015-08-01

    Two textural characteristics, elasticity modulus and firmness, were determined during the ripening process of Cascaval cheese, using both instrumental and sensorial techniques. Uniaxial compression was used to determine the textural characteristics and the results were compared with the ones obtained by sensorial analysis, revealing a good correlation. The chemical composition of cheese was also determined, including the nitrogen fractions (total nitrogen, water soluble nitrogen, non-protein nitrogen and phosphotungstic acid soluble nitrogen). The data thus obtained were statistically processed in order to find the differences between the samples, as well as to find the correlation between the techniques of analysis. The study showed that the ripening process of the Cascaval cheese is similar to the ripening of other pasta filata cheese. The moisture content decreases during maturation as a result of water evaporation. The concentration of nitrogen fractions increases during the ripening stage, and so do the firmness and elasticity modulus. The biochemical processes that occur during maturation largely influence the textural parameters and this is proved by both instrumental and sensorial analyses.

  5. Genomic Regions Affecting Cheese Making Properties Identified in Danish Holsteins

    DEFF Research Database (Denmark)

    Gregersen, Vivi Raundahl; Bertelsen, Henriette Pasgaard; Poulsen, Nina Aagaard

    The cheese renneting process is affected by a number of factors associated to milk composition and a number of Danish Holsteins has previously been identified to have poor milk coagulation ability. Therefore, the aim of this study was to identify genomic regions affecting the technological...

  6. Discrimination of cheese products for authenticity control by infrared spectroscopy.

    Science.gov (United States)

    Hruzikova, Jana; Milde, David; Krajancova, Pavla; Ranc, Vaclav

    2012-02-22

    Quality and authenticity control serve as the customers' and manufacturers' insurance, and thus the development of analytical tools providing these tasks represents an important step of each product development. The control of authenticity in food manufacturing is even more important due to the direct influence of its products on the health of the population. This study sought to develop an easy to use and robust method for the authenticity control of cheese products. The method is based on the measurement of infrared spectra of the gas phase obtained by heating of selected cheese under controlled conditions. Two different procedures, that is, treatment of samples in a desiccator and their freeze-drying, were compared, and also various temperatures and heating times were studied. It was found that suitable fingerprint infrared spectra can be obtained by both techniques; however, freeze-drying offered faster analysis times. The sample heating temperature and time were evaluated using advanced statistical approaches, and it was found that suitable results could be obtained using 120 °C heating for 90 min. This method was tested for the authenticity control of two cheese families, Tvaruzky and Romadur, for which four cheese products were evaluated and successfully discriminated for each family. This method can be potentially used as a cheap and easy to use alternative to other commercially available options.

  7. Swiss cheese model with the superstring dark energy

    Science.gov (United States)

    Stuchlík, Zdeněk; Kološ, Martin

    2005-12-01

    The Swiss cheese model of the Universe with the superstring dark energy is constructed. The junction conditions are shown to be fulfilled and time evolution of the matching hypersurface of the internal Schwarzschild spacetime and homogeneous external Friedman Universe is studied.

  8. 21 CFR 133.188 - Semisoft part-skim cheeses.

    Science.gov (United States)

    2010-04-01

    ... lactic-acid-producing bacteria or other harmless flavor-producing bacteria, present in such milk or added... mold-inhibiting ingredient consisting of sorbic acid, potassium sorbate, sodium sorbate, or any... acid. (e) The name of each semisoft part-skim cheese for which a definition and standard of identity...

  9. Key Odorants of Lazur, a Polish Mold-Ripened Cheese.

    Science.gov (United States)

    Majcher, Małgorzata A; Myszka, Kamila; Gracka, Anna; Grygier, Anna; Jeleń, Henryk H

    2017-02-15

    Application of gas chromatography-olfactometry (GC-O) carried out on the volatile fraction isolated by solvent-assisted flavor evaporation (SAFE) and solid phase microextraction (SPME) from Lazur mold-ripened cheese revealed 17 odor-active compounds. The highest flavor dilution factor (FD) has been obtained for methanethiol (2048) with a burnt odor note and for 2(3)-methylbutanoic acid (2048) with a cheesy, pungent odor. Further quantitation of the 15 most aroma-active compounds allowed for calculation of their odor activity values (OAV). The highest OAVs were obtained for methanethiol (500), 3(2)-methylbutanoic acid (321), 3-(methylthio)propanal (210), 2,3-butanedione (65), dimethyl trisulfide (22), butanoic acid (20), 1-octen-3-ol (18), (Z)-4-heptenal (14), dimethyl disulfide (14), dimethyl sulfide (13), phenylacetaldehyde (6), 2-ethyl-3,5-dimethylpyrazine (5), and acetic acid (4). An aroma recombination experiment showed slight differences in the perception of cheesy/sweaty and moldy/musty notes. To verify the influence of methyl ketones on the aroma profile of mold-ripened cheese, recombinant has been additionally supplemented with 2-pentanone, 2-heptanone, and 2-nonanone in concentrations determined in Lazur cheese. The aroma profile remained unchanged, which would suggest that methyl ketones, in this particular cheese, do not play a significant role in the formation of aroma.

  10. The power law and dynamic rheology in cheese analysis

    Science.gov (United States)

    The protein networks of food such as cheese are investigated nondestructively by small amplitude oscillatory shear analysis, which provides information on elastic modulus and viscous modulus. Relationships between frequency and viscoelastic data may be obtained from frequency sweeps by applying the...

  11. Fluorescent method for monitoring cheese starter permeabilization and lysis

    NARCIS (Netherlands)

    Bunthof, C.J.; Schalkwijk, van S.; Meijer, W.; Abee, T.; Hugenholtz, J.

    2001-01-01

    A fluorescence method to monitor lysis of cheese starter bacteria using dual staining with the LIVE/DEAD BacLight bacterial viability kit is described. This kit combines membrane-permeant green fluorescent nucleic acid dye SYTO 9 and membrane-impermeant red fluorescent nucleic acid dye propidium iod

  12. 21 CFR 133.165 - Parmesan and reggiano cheese.

    Science.gov (United States)

    2010-04-01

    ... the same physical and chemical properties as the cheese produced when the procedure set forth in... milk or added thereto. Sufficient rennet, or other safe and suitable milk-clotting enzyme that produces... larger than wheat kernels, heated, and stirred until the temperature reaches between 115 °F and 125...

  13. Consumers’ attitude and opinion towards different types of fresh cheese: an exploratory study

    Directory of Open Access Journals (Sweden)

    Cássia Pereira de BARROS

    2016-01-01

    Full Text Available Abstract Fresh cheese stands out for its tradition and widespread consumption in Brazil. However, there is a lack of information on motivation towards the consumption of available fresh cheeses in the Brazilian market. Focus group sessions were used to explore consumers’ attitude and opinion about fresh cheese. Products with different characteristics were used to stimulate discussion among participants including cheese with “no added salt”, the claim “contains probiotic microorganisms” and products processed with goat milk. The salt content played an important role on the consumer intention to purchase of fresh cheese. Participants stated that they would consume cheese without salt only by following a medical prescription. However, the subjects declared that they would buy reduced salt cheese if such reduction would not compromise the flavor. The meaning of the claim “contains probiotic microorganisms” was often declared as unknown during the discussion. However, they would buy a probiotic product. In addition, it was mentioned that a premium price would be paid for such functional cheese. Participants declared that would buy goat cheese. Nevertheless, to pay a higher price over the conventional one was a controversial and debatable issue among consumers. Results revealed important implications for the development of marketing strategies for fresh cheese.

  14. Characterization of Fiore Sardo cheese manufactured with the addition of autochthonous cultures.

    Science.gov (United States)

    Pisano, M Barbara; Elisabetta Fadda, M; Deplano, Maura; Corda, Arianna; Casula, Maddalena; Cosentino, Sofia

    2007-08-01

    This work evaluated the effect of adjunct autochthonous cultures on the chemical, microbiological and sensory characteristics of Fiore Sardo cheese during ripening. A total of twelve batches of cheeses were manufactured according to the technical Disciplinary of Fiore Sardo cheese, with and without different combinations of autochthonous strains isolated from the native microflora of artisanal Fiore Sardo. There were no significant differences in the cheese compositional parameters between experimental and control cheeses, but the addition of cultures led to a statistically significant decrease in pH values in experimental cheeses. The evolution of total mesophilic bacteria, total coliforms and lactic acid bacteria were significantly influenced by the addition of autochthonous cultures in most of the experimental cheeses. As for sensory characteristics, all the experimental cheeses reported significantly higher scores especially for shape, texture, interior openings, taste and aftertaste. This study demonstrated the beneficial effect of the addition of selected autochthonous cultures in accelerating the disappearance of undesirable flora and improving the typical sensory characteristics of the cheese, and confirmed the importance of ewes' milk as a source of technologically interesting strains that could be used to ensure a higher quality of artisanal cheese productions.

  15. The influence of starter and adjunct lactobacilli culture on the ripening of washed curd cheeses

    Directory of Open Access Journals (Sweden)

    E. Hynes

    2002-12-01

    Full Text Available Ten strains of lactobacillus from the CNRZ collection were tested as adjunct culture in miniature washed curd cheeses manufactured under controlled bacteriological conditions with two different starters, Lactococcus lactis subsp. lactis IL 416 and Lactococcus lactis subsp. cremoris AM2. Lactobacilli growth seemed to be dependent on the Lactobacillus strain but was not influenced by the starter strain or counts. Lactococci counts were higher in the miniature cheeses with AM2 starter and added lactobacilli than in the control cheeses without lactobacilli. Gross composition and hydrolysis of s1 casein were similar for miniature cheeses with and without lactobacilli. In the miniature cheeses manufactured with IL416 starter, the lactobacilli adjunct slightly increased the soluble nitrogen content, but that was not verified in the AM2 miniature cheeses. Phosphotungstic acid nitrogen content increased in miniature cheeses manufactured with IL416 when Lactobacillus plantarum 1572 and 1310 adjunct cultures were added. That was also verified for several Lactobacillus strains, specially Lactobacillus casei 1227, for miniature cheeses manufactured with AM2 starter. Free fatty acid content increased in miniature cheeses made with lactobacilli adjuncts 1310, 1308 and 1219 with IL416 starter, and with strains 1218, 1244 and 1308 for miniature cheeses with AM2 starter. These results indicate that production of soluble nitrogen compounds as well as free fatty acid content could be influenced by the lactobacilli adjunct, depending on the starter strain.

  16. Monitoring the Chemical and Microbiological Changes During Ripening of Iranian Probiotic Low-Fat White Cheese

    Directory of Open Access Journals (Sweden)

    N. Sabbagh

    2010-01-01

    Full Text Available Problem statement: The objective of this experiment was to manufacture an Iranianlow fat probiotic cheese. Approach: Iranian white brine cheeses (4 trials were made by varyingprocesses, i.e., lowering the fat content and use of probiotic adjunct culture on separate days. All types of cheeses were ripened at 13°C for 2 weeks and at 6°C to the end of ripering period. Cheeses were analyzed for the compositional, microbiological, color and sensory characteristics and also lipolysis and organic acid profile. The Cheese of each trial was sampled at 1, 15, 30, 45 and 60 days during ripening. Results: Decreasing the fat level resulted in significant increases (p0.05 between the concentration of L. acidophilus of cheese groups when the fat content of samples was reduced. The rate and extent of lipolysis in the full-fat cheese was higher than in the low-fat control cheese (pConclusion: Therefore the results of this study showed that the Iranian probotic low fat cheese is a functional food. It has better flavor and odor than normal cheese and can be used in many cases like as heart disease and obesity.

  17. Impact of nisin producing culture and liposome-encapsulated nisin on ripening of Lactobacillus added-Cheddar cheese.

    Science.gov (United States)

    Benech, R O; Kheadr, E E; Lacroix, C; Fliss, I

    2003-06-01

    This study aimed to evaluate the effects of incorporating liposome-encapsulated nisin Z, nisin Z producing Lactococcus lactis ssp. lactis biovar. diacetylactis UL719, or Lactobacillus casei-casei L2A adjunct culture into cheese milk on textural, physicochemical and sensory attributes during ripening of Cheddar cheese. For this purpose, cheeses were made using a selected nisin tolerant cheese starter culture. Proteolysis, free fatty acid production, rheological parameters and hydrophilic/hydrophobic peptides evolution were monitored over 6 mo ripening. Sensory quality of cheeses was evaluated after 6 mo. Incorporating the nisin-producing strain into cheese starter culture increased proteolysis and lipolysis but did not significantly affect cheese rheology. Liposome-encapsulated nisin did not appear to affect cheese proteolysis, rheology and sensory characteristics. The nisinogenic strain increased the formation of both hydrophilic and hydrophobic peptides present in the cheese water extract. Sensory assessment indicated that acidic and bitter tastes were enhanced in the nisinogenic strain-containing cheese compared to control cheese. Incorporating Lb. casei and the nisinogenic culture into cheese produced a debittering effect and improved cheese flavor quality. Cheeses with added Lb. casei and liposome-encapsulated nisin Z exhibited the highest flavor intensity and were ranked first for sensory characteristics.

  18. Consumers’ preferences and composition of Livanjski cheese in relation to its sensory characteristics

    Directory of Open Access Journals (Sweden)

    Anto Matić

    2014-09-01

    Full Text Available The aim of this study was to investigate consumers’ preferences of Livanjski cheese depending on the type of milk (cow’s milk or a mixture of sheep’s and cow’s milk and the originality of production (farm or industrially produced. Also correlations between sensorial scores and the composition of Livanjski cheese were determined. Sixty day old Livanjski cheese samples produced on four family farms and under industrial conditions produced cheese were used for sensory evaluation. During the cheese sampling every producer was visited regularly (every two weeks to evaluate the ripening conditions of the cheeses (temperature, relative air humidity and ventilation. Sensory evaluation was performed by 160 consumers and 6 experts. Cheese from farm 1 received the highest scores (P<0.05 in general and for every single attribute as well. The production of Livanjski cheese on farm 1 was distinct due to mixing sheep’s and cow’s milk (70:30 % and due to good controlled ripening conditions (15-18 °C, relative air humidity 80-90 %, regular air ventilation. Sheep’s milk was an important factor for the higher scoring of Livanjski cheese. In opposite to the consumers’ preference, experts evaluated industrially produced Livanjski cheese with the highest score. Significantly high and negative correlations (P<0.05 between total solids of cheese and scores for taste and odour judged by experts were obtained. Moreover, significantly higher and negative correlations (P<0.05 between the total solids of cheese and all sensorial attributes were obtained by consumers. On the contrary, preserving factors i.e. higher salt content and acidity positively influenced the sensory attributes of Livanjski cheese.

  19. Characterization of Clostridium spp. isolated from spoiled processed cheese products.

    Science.gov (United States)

    Lycken, Lena; Borch, Elisabeth

    2006-08-01

    Of 42 spoiled cheese spread products, 35 were found to harbor Clostridium spp. Typical signs of spoilage were gas production and off-odor. The identity was determined for about half of the isolates (n = 124) by Analytab Products (API), Biolog, the RiboPrinter System, 16S rDNA sequencing, cellular fatty acid analysis, or some combination of these. The majority of isolates were identified as Clostridium sporogenes (in 33% of products), but Clostridium cochlearium (in 12% of products) and Clostridium tyrobutyricum (in 2% of products) were also retrieved. Similarity analysis of the riboprint patterns for 21 isolates resulted in the identification of 10 ribogroups. A high degree of relatedness was observed between isolates of C. sporogenes originating from products produced 3 years apart, indicating a common and, over time, persistent source of infection. The spoilage potential of 11 well-characterized isolates and two culture collection strains was analyzed by inoculating shrimp cheese spread with single cultures and then storing them at 37 degrees C. Tubes inoculated with C. tyrobutyricum did not show any visible signs of growth (e.g., coagulation, discoloration, gas formation) in the cheese spread. After 2 weeks of incubation, tubes inoculated with C. cochlearium or C. sporogenes showed gas-holes, syneresis with separation of coagulated casein and liquid, and a change in color of the cheese. The amount of CO2 produced by C. cochlearium strains was approximately one-third that produced by the majority of C. sporogenes strains. To our knowledge, this is the first study to isolate and identify C. cochlearium as a spoilage organism in cheese spread.

  20. High intake of regular-fat cheese compared with reduced-fat cheese does not affect LDL cholesterol or risk markers of the metabolic syndrome

    DEFF Research Database (Denmark)

    Raziani, Farinaz; Tholstrup, Tine; Kristensen, Marlene Dahlwad

    2016-01-01

    circumference did not differ significantly between the 3 diets. CONCLUSION: A high daily intake of regular-fat cheese for 12 wk did not alter LDL cholesterol or MetS risk factors differently than an equal intake of reduced-fat cheese or an isocaloric amount of carbohydrate-rich foods. This trial was registered...... was to compare the effects of regular-fat cheese with an equal amount of reduced-fat cheese and an isocaloric amount of carbohydrate-rich foods on LDL cholesterol and risk factors for the metabolic syndrome (MetS). DESIGN: The study was a 12-wk randomized parallel intervention preceded by a 2-wk run-in period....... A total of 164 subjects with ≥2 MetS risk factors were randomly allocated to 1 of 3 intervention groups: regular-fat cheese (REG), reduced-fat cheese (RED), or a no-cheese, carbohydrate control (CHO) group. Subjects in the REG and RED groups replaced part of their daily habitual diet with 80 g cheese/10...

  1. Bacterial dynamics in model cheese systems, aiming at safety and quality of Portuguese-style traditional ewe's cheeses.

    Science.gov (United States)

    Pereira, Cláudia I; Graça, João A; Ogando, Natacha S; Gomes, Ana M P; Malcata, F Xavier

    2009-11-01

    An experiment using model ewe's milk cheeses was designed to characterize microbial interactions that arise in actual raw milk cheese environments. These model cheeses were manufactured according to Portuguese artisanal practices, except that the microbial load and biodiversity were fully controlled: single potential pathogens and spoilage bacteria, or a combination thereof, were combined at various initial inoculum levels in sterilized raw ewe's milk with several lactic acid bacteria (LAB) normally found in traditional cheeses. Viable microbial counts were monitored throughout a 60-day ripening period. Two alternative mathematical approaches were used to fit the experimental data generated in terms of population dynamics: percent of inhibition and D-values. These were able to explain the complex competitive interactions between the contaminant microorganisms and the LAB adventitious populations. In general, the tested LAB were less able to inhibit contaminants present in combination and in higher concentrations. Lactococcus lactis, with its strong acidifying potential, was the most effective factor in controlling the unwanted bacterial population, especially single Staphylococcus aureus. The two lactobacilli studied, especially Lactobacillus brevis, were shown to be less effective; Escherichia coli and Listeria innocua were the contaminants least inhibited by the LAB.

  2. Impact of fat reduction on flavor and flavor chemistry of Cheddar cheeses.

    Science.gov (United States)

    Drake, M A; Miracle, R E; McMahon, D J

    2010-11-01

    A current industry goal is to produce a 75 to 80% fat-reduced Cheddar cheese that is tasty and appealing to consumers. Despite previous studies on reduced-fat cheese, information is critically lacking in understanding the flavor and flavor chemistry of reduced-fat and nonfat Cheddar cheeses and how it differs from its full-fat counterpart. The objective of this study was to document and compare flavor development in cheeses with different fat contents so as to quantitatively characterize how flavor and flavor development in Cheddar cheese are altered with fat reduction. Cheddar cheeses with 50% reduced-fat cheese (RFC) and low-fat cheese containing 6% fat (LFC) along with 2 full-fat cheeses (FFC) were manufactured in duplicate. Cheeses were ripened at 8°C and samples were taken following 2 wk and 3, 6, and 9 mo for sensory and instrumental volatile analyses. A trained sensory panel (n=10 panelists) documented flavor attributes of cheeses. Volatile compounds were extracted by solid-phase microextraction or solvent-assisted flavor evaporation followed by separation and identification using gas chromatography-mass spectrometry and gas chromatography-olfactometry. Selected compounds were quantified using external standard curves. Sensory properties of cheeses were distinct initially but more differences were documented as cheeses aged. By 9 mo, LFC and RFC displayed distinct burnt/rosy flavors that were not present in FFC. Sulfur flavor was also lower in LFC compared with other cheeses. Forty aroma-active compounds were characterized in the cheeses by headspace or solvent extraction followed by gas chromatography-olfactometry. Compounds were largely not distinct between the cheeses at each time point, but concentration differences were evident. Higher concentrations of furanones (furaneol, homofuraneol, sotolon), phenylethanal, 1-octen-3-one, and free fatty acids, and lower concentrations of lactones were present in LFC compared with FFC after 9 mo of ripening. These

  3. Ectoine as a natural component of food: detection in red smear cheeses.

    Science.gov (United States)

    Klein, Julia; Schwarz, Thomas; Lentzen, Georg

    2007-11-01

    Ectoine is a compatible solute accumulated in halophilic bacteria in response to high salt concentrations and offers protection from osmotic stress. The occurrence of compatible solutes is widespread among bacteria, yet ectoine has never been detected in foods. The use of an ectoine producing microorganism (Brevibacterium linens) in the surface ripening of red smear cheeses led to the question whether ectoine can be found in cheese. Therefore we examined samples from a variety of cheese manufacturers and different types of red smear cheeses for the presence of ectoine using HPLC and HPLC/MS analysis. Ectoine solely appears in the rind and was detected up to 178 mg/200 g red smear cheese, depending on several factors like ripening status and conditions throughout the cheese production process (e.g. salt concentrations of used brine baths).

  4. Changes in quality of nonaged pasta filata Mexican cheese during refrigerated vacuum storage.

    Science.gov (United States)

    Fuentes, Lucía; Mateo, Javier; Quinto, Emiliano J; Caro, Irma

    2015-05-01

    Six batches of Oaxaca cheese (a Mexican pasta filata cheese) from 3 dairy plants were sampled and vacuum-packaged at 8°C up to 24d. Counts of principal microbial groups, pH, levels of sugars, organic acids, lipolytic and proteolytic indices, and texture, color, and meltability values of cheeses were studied at d 1, 8, 16 and 24 of storage. A descriptive sensory analysis of selected taste, odor, and texture characteristics was also carried out. The main changes in the cheeses during the storage were decreases in pH, hardness, elasticity, and whiteness, and an increase in meltability. Neither lipolytic nor proteolytic activities were evident during the storage of cheeses. Storage time resulted in a gradual quality loss of unmelted cheeses. This loss of quality might be related to the decrease of hardness and the appearance off-flavors.

  5. Feeding strategies to design the fatty acid profile of sheep milk and cheese

    Directory of Open Access Journals (Sweden)

    Anna Nudda

    2014-08-01

    Full Text Available The majority of sheep milk produced in the world is transformed into cheese. Feeding is a major factor affecting the quality of sheep milk and, therefore, of sheep cheese. Because fat is the main compound of cheese, this review gives an update on the effects of feeding and nutrition on milk fat content and deeply discusses feeding strategies aimed at increasing the levels of healthy fatty acids (FA, such as conjugated linoleic acid and omega-3 FA, in milk and cheese in the human diet. In addition, the use of alternative feed resources such as by-products, aromatic plants, and phenolic compounds in the sheep diet and their effects on milk and cheese FA composition are also discussed. Among feeding strategies, grazing and the use of supplements rich in oils seem to be the best and the cheapest strategies to improve the nutritional value of the fatty acid profile in sheep cheese.

  6. Impact of selected composition and ripening conditions on CO2 solubility in semi-hard cheese.

    Science.gov (United States)

    Acerbi, F; Guillard, V; Guillaume, C; Gontard, N

    2016-02-01

    Despite CO2 being one of the most important gases affecting the quality of most semi-hard cheeses, the thermodynamic properties of this molecule in relation to cheese ripening have rarely been investigated. In this study the CO2 solubility coefficient was experimentally assessed in semi-hard cheese as a function of the most relevant compositional and ripening variables. As expected, CO2 solubility was found to linearly decrease with temperature in the range 2-25 °C. Unexpectedly, solubility was not significantly different at 39% and 48% moisture, while it was found lower at 42%. Unavoidable changes in protein content of the three cheese variants is suspected to produce an interaction with water content, leading to complex interpretation of the results. Increasing salt content in cheese from 0 to 2.7%w/w significantly decreased CO2 solubility by about 25%, probably due to the increased bonded water molecules in the cheese water phase.

  7. Utilization of microfiltration or lactoperoxidase system or both for manufacture of Cheddar cheese from raw milk.

    Science.gov (United States)

    Amornkul, Y; Henning, D R

    2007-11-01

    The objective of the present study was to determine if application of microfiltration (MF) or raw milk lactoperoxidase system (LP) could reduce the risk of foodborne illness from Escherichia coli in raw milk cheeses, without adversely affecting the overall sensory acceptability of the cheeses. Escherichia coli K12 was added to raw milk to study its survival as a non-pathogenic surrogate organism for pathogenic E. coli. Five replications of 6 treatments of Cheddar cheese were manufactured. The 6 treatments included cheeses made from pasteurized milk (PM), raw milk (RM), raw milk inoculated with E. coli K12 (RME), raw milk inoculated with E. coli K12 + LP activation (RMELP), raw milk inoculated with E. coli K12 + MF (MFE), and raw milk inoculated with E. coli K12 + MF + LP activation (MFELP). The population of E. coli K12 was enumerated in the cheese milks, in whey/curds during cheese manufacture, and in final Cheddar cheeses during ripening. Application of LP, MF, and a combination of MF and LP led to an average percentage reduction of E. coli K12 counts in cheese milk by 72, 88, and 96%, respectively. However, E. coli K12 populations significantly increased during the manufacture of Cheddar cheese for the reasons not related to contamination. The number of E. coli K12, however, decreased by 1.5 to 2 log cycles during 120 d of ripening, irrespective of the treatments. The results suggest that MF with or without LP significantly lowers E. coli count in raw milk. Hence, if reactivation of E. coli during cheese making could be prevented, MF with or without LP would be an effective technique for reducing the counts of E. coli in raw milk cheeses. The cheeses were also analyzed for proteolysis, starter and nonstarter lactic acid bacteria (NSLAB), and sensory characteristics during ripening. The concentration of pH 4.6 soluble nitrogen at 120 d was greater in PM cheese compared with the other treatments. The level of 12% trichloroacetic acid-soluble nitrogen at 120 d was

  8. Optimization of pH, temperature and CaCl2 concentrations for Ricotta cheese production from Buffalo cheese whey using Response Surface Methodology.

    Science.gov (United States)

    Rashid, Abdul Ahid; Huma, Nuzhat; Zahoor, Tahir; Asgher, Muhammad

    2017-02-01

    The recovery of milk constituents from cheese whey is affected by various processing conditions followed during production of Ricotta cheese. The objective of the present investigation was to optimize the temperature (60-90 °C), pH (3-7) and CaCl2 concentration (2·0-6·0 mm) for maximum yield/recovery of milk constituents. The research work was carried out in two phases. In 1st phase, the influence of these processing conditions was evaluated through 20 experiments formulated by central composite design (CCD) keeping the yield as response factor. The results obtained from these experiments were used to optimize processing conditions for maximum yield using response surface methodology (RSM). The three best combinations of processing conditions (90 °C, pH 7, CaCl2 6 mm), (100 °C, pH 5, CaCl2 4 mm) and (75 °C, pH 8·4, CaCl2 4 mm) were exploited in the next phase for Ricotta cheese production from a mixture of Buffalo cheese whey and skim milk (9 : 1) to determine the influence of optimized conditions on the cheese composition. Ricotta cheeses were analyzed for various physicochemical (moisture, fat, protein, lactose, total solids, pH and acidity indicated) parameters during storage of 60 d at 4 ± 2 °C after every 15 d interval. Ricotta cheese prepared at 90 °C, pH 7 and CaCl2 6 mm exhibited the highest cheese yield, proteins and total solids, while high fat content was recorded for cheese processed at 100 °C, pH 5 and 4 mm CaCl2 concentration. A significant storage-related increase in acidity and NPN was recorded for all cheese samples.

  9. Modeling the growth of Listeria monocytogenes in soft blue-white cheese

    DEFF Research Database (Denmark)

    Rosshaug, Per Sand; Detmer, Ann; Ingmer, Hanne;

    2012-01-01

    The aim of this study was to develop a predictive model simulating growth over time of the pathogenic bacterium Listeria monocytogenes in a soft blue-white cheese. The physicochemical properties in a matrix such as cheese are essential controlling factors influencing the growth of L. monocytogene...... production and retail conditions showed that the number of L. monocytogenes cells increases 3 to 3.5 log within the shelf life of the cheese....

  10. Microbiological quality of soft, semi-hard and hard cheeses during the shelf-life

    Directory of Open Access Journals (Sweden)

    Josip Vrdoljak

    2016-03-01

    Full Text Available Cheeses as ready-to-eat food should be considered as a potential source of foodborne pathogens, primarily Listeria monocytogenes. The aim of present study was to determine the microbiological quality of soft, semi-hard and hard cheeses during the shelf-life, with particular reference to L. monocytogenes. Five types of cheeses were sampled at different timepoints during the cold storage and analyzed for presence of Salmonella and L. monocytogenes, as well as lactic acid bacteria, Escherichia coli, coagulase-positive staphylococci, yeasts, molds, sulfite-reducing clostridia and L. monocytogenes counts. Water activity, pH and NaCl content were monitored in order to evaluate the possibility of L. monocytogenes growth. Challenge test for L. monocytogenes was performed in soft whey cheese, to determine the growth potential of pathogen during the shelf-life of product. All analyzed cheeses were compliant with microbiological criteria during the shelf-life. In soft cheeses, lactic acid bacteria increased in the course of the shelf-life period (1.2-2.6 log increase, while in semi-hard and hard cheeses it decreased (1.6 and 5.2 log decrease, respectively. Soft cheeses support the growth of L. monocytogenes according to determined pH values (5.8-6.5, water activity (0.99-0.94, and NaCl content (0.3-1.2%. Challenge test showed that L. monocytogenes growth potential in selected soft cheese was 0.43 log10 cfu/g during 8 days at 4°C. Water activity in semi-hard and hard cheeses was a limiting factor for Listeria growth during the shelf-life. Soft, semi-hard and hard cheeses were microbiologically stable during their defined shelf-life. Good manufacturing and hygienic practices must be strictly followed in the production of soft cheeses as Listeria-supporting food and be focused on preventing (recontamination.

  11. The properties and acceptability of fresh cheese produced using the mixture probiotic culture

    Directory of Open Access Journals (Sweden)

    Rajka Božanić

    2002-06-01

    Full Text Available Investigation and production of dairy food with probiotic cultures isincreasing due to its health and nutritive benefits. In this paper the probiotic fresh cheese was produced from skim milk samples with 0,1% fat (A and 1,0% fat (B. Fermentation of skim milk samples was conducted at 40°C by 2% addition of DVS-ABT4 mixture probiotic cultures inoculum with selected bacteria (Lactobacillus acidophilus, Bifidobacterium ssp. and Streptococcus thermophilus and without rennet addition. After milk coagulation (about 7-9 hours, the curd was gently cut and drained overnight. Produced of skim milk cheese samples (A had approximately 23.4% total solids, 1.8% fat in total solids and yield about 24.5% (w/v, while the low fat cheese samples (B had 26.2% total solids, 16.2% fat in total solids and yield about 27.3% (w/v. The skim milk cheeses (A had higher protein and mineral matter content compared to low fat cheeses (B. All samples of probiotic fresh cheese were a like to traditional fresh cheese according to general appearance and consistency. However, they had slightly lower aroma and acidity, expecially skim milk cheese samples (A. Better sensory properties had low fat cheesesamples (B during total time of storage (14 days. Acceptability of probiotic fresh cheese was evalueted by hedonic scale from 63 consumers. Statistic shows that all samples were 100% desirable, but average score for skim milk cheese (A was some lower (x = 7.33 than average score (x = 8.11 for low fat cheese (B. Variance analysis also shows that there is significantly important difference (p= 0,05 between analysed fresh cheese samples

  12. Biochemical pathways for the production of flavour compounds in cheeses during ripening: A review

    OpenAIRE

    McSweeney, Paul; de Sousa, Maria

    2000-01-01

    International audience; The principal pathways for the formation of flavour compounds in cheese (glycolysis, lipolysis and proteolysis) are reviewed. Depending on variety, microflora and ripening conditions, lactate may be metabolized by a number of pathways to various compounds which contribute to cheese flavour or off-flavours. Citrate metabolism by citrate-positive lactococci or Leuconostoc spp. is important in certain varieties (e.g., Dutch cheeses). Lipolysis results directly in the form...

  13. The Manufacturing Process and Quality Control of a Holland Type Cheese

    Directory of Open Access Journals (Sweden)

    Cristina Anamaria Semeniuc

    2013-11-01

    Full Text Available The aim of this study was to evaluate the influence of storage time on physicochemical shelf-life of Holland type cheese. Cheese samples were stored in ripening room for up to 30 days. Physicochemical parameters of cheese were assessed at 19 and 30 days of storage. Samples were analyzed for titratable acidity, fat in dry matter content, protein and salt content. No significant changes were observed in physicochemical properties during the ripening process.

  14. The correlation between hygienic parameters of milk and weight loss of semihard cheese

    OpenAIRE

    Bojanić-Rašović M.; Mirecki S.; Nikolić N.; Katić V.; Rašović R.

    2011-01-01

    The purpose of the paper was to examine weight loss and correlation between total bacteria count and the somatic cells count and weight loss of semihard naturally dried cheese, product of dairy plant ZZ“Cijevna“ in Podgorica. Weigt loss was calculated on the base of difference in mass of cheese at the beginning of ripening and after specified period of ripening, exposed in percents. Examination of weight loss was done on total six product series of cheese d...

  15. Probiotic Crescenza cheese containing Lactobacillus casei and Lactobacillus acidophilus manufactured with high-pressure homogenized milk.

    Science.gov (United States)

    Burns, P; Patrignani, F; Serrazanetti, D; Vinderola, G C; Reinheimer, J A; Lanciotti, R; Guerzoni, M E

    2008-02-01

    High-pressure homogenization (HPH) is one of the most promising alternatives to traditional thermal treatment of food preservation and diversification. Its effectiveness on the deactivation of pathogenic and spoilage microorganisms in model systems and real food is well documented. To evaluate the potential of milk treated by HPH for the production of Crescenza cheese with commercial probiotic lactobacilli added, 4 types of cheeses were made: HPH (from HPH-treated milk), P (from pasteurized milk), HPH-P (HPH-treated milk plus probiotics), and P-P (pasteurized milk plus probiotics) cheeses. A strain of Streptococcus thermophilus was used as starter culture for cheese production. Compositional, microbiological, physicochemical, and organoleptic analyses were carried out at 1, 5, 8, and 12 d of refrigerated storage (4 degrees C). According to results obtained, no significant differences among the 4 cheese types were observed for gross composition (protein, fat, moisture) and pH. Differently, the HPH treatment of milk increased the cheese yield about 1% and positively affected the viability during the refrigerated storage of the probiotic bacteria. In fact, after 12 d of storage, the Lactobacillus paracasei A13 cell loads were 8 log cfu/ g, whereas Lactobacillus acidophilus H5 exhibited, in P-P cheese, a cell load decrease of about 1 log cfu/g with respect to the HPH-P cheese. The hyperbaric treatment had a significant positive effect on free fatty acids release and cheese proteolysis. Also, probiotic cultures affected proteolytic and lipolytic cheese patterns. No significant differences were found for the sensory descriptors salty and creamy among HPH and P cheeses as well as for acid, piquant, sweet, milky, salty, creamy, and overall acceptance among HPH, HPH-P, and P-P Crescenza cheeses.

  16. Effect of jenny milk addition on the inhibition of late blowing in semihard cheese.

    Science.gov (United States)

    Cosentino, C; Paolino, R; Valentini, V; Musto, M; Ricciardi, A; Adduci, F; D'Adamo, C; Pecora, G; Freschi, P

    2015-08-01

    The occurrence of late blowing defects in cheese produces negative effects on the quality and commercial value of the product. In this work, we verified whether the addition of raw jenny milk to bulk cow milk reduced the late blowing defects in semihard cheeses. During cheesemaking, different aliquots of jenny milk were poured into 2 groups of 4 vats, each containing a fixed amount of cow milk. A group of cheeses was created by deliberately contaminating the 4 vats with approximately 3 log10 cfu/mL milk of Clostridium tyrobutyricum CLST01. The other 4 vats, which were not contaminated, were used for a second group of cheeses. After 120 d of ripening, some physical, chemical, and microbiological parameters were evaluated on the obtained semihard cheeses. Differences in sensory properties among cheeses belonging to the uncontaminated group were evaluated by 80 regular consumers of cheese. Our results showed that the increasing addition of jenny milk to cow milk led to a reduction of pH and total bacterial count in both cheese groups, as well as C. tyrobutyricum spores that either grew naturally or artificially inoculated. We observed a progressive reduction of the occurrence of late blowing defects in cheese as consequence of the increasing addition of jenny milk during cheese making. Moreover, the addition of jenny milk did not affect the acceptability of the product, as consumers found no difference among cheeses concerning sensorial aspects. In conclusion, the important antimicrobial activity of lysozyme contained in jenny milk has been confirmed in the current research. It is recommend for use as a possible and viable alternative to egg lysozyme for controlling late blowing defects in cheese.

  17. Probiotic Cheese Attenuates Exercise-induced Immune Suppression In Wistar Rats

    OpenAIRE

    Lollo P.C.B.; Cruz A.G.; Morato P.N.; Moura C.S.; Carvalho-Silva L.B.; Oliveira C.A.F.; Faria J.A.F.; Amaya-Farfan J.

    2012-01-01

    Intense physical activity results in a substantial volume of stress and hence a significant probability of immunosuppression in athletes, with milk proteins being, perhaps, the most recommended protein supplements. Consumption of a probiotic cheese can attenuate immune suppression induced by exhausting exercise in rats. A popular Brazilian fresh cheese (Minas Frescal cheese) containing Lactobacillus acidophilus LA14 and Bifidobacterium longum BL05 was fed for 2 wk to adult Wistar rats, which ...

  18. Production of probiotic fresh white cheese using co-culture with Streptococcus thermophilus

    OpenAIRE

    Oktay Yerlikaya; Elif Ozer

    2014-01-01

    In this research, the probiotic Streptococcus thermophilus was inoculated into milk as co-culture to produce probiotic cheese. The effects of using Streptococcus thermophilus with other probiotic bacteria on cheese composition, and microbiological viability during 28 days of storage were investigated. Sensorial properties were determined only at 1st and 28th days of storage. The results showed that the use of Streptococcus thermophilus as co-culture in probiotic cheese production did not affe...

  19. Nonstarter lactic acid bacteria biofilms and calcium lactate crystals in Cheddar cheese.

    Science.gov (United States)

    Agarwal, S; Sharma, K; Swanson, B G; Yüksel, G U; Clark, S

    2006-05-01

    A sanitized cheese plant was swabbed for the presence of nonstarter lactic acid bacteria (NSLAB) biofilms. Swabs were analyzed to determine the sources and microorganisms responsible for contamination. In pilot plant experiments, cheese vats filled with standard cheese milk (lactose:protein = 1.47) and ultrafiltered cheese milk (lactose:protein = 1.23) were inoculated with Lactococcus lactis ssp. cremoris starter culture (8 log cfu/mL) with or without Lactobacillus curvatus or Pediococci acidilactici as adjunct cultures (2 log cfu/mL). Cheddar cheeses were aged at 7.2 or 10 degrees C for 168 d. The raw milk silo, ultrafiltration unit, cheddaring belt, and cheese tower had NSLAB biofilms ranging from 2 to 4 log cfu/100 cm2. The population of Lb. curvatus reached 8 log cfu/g, whereas P. acidilactici reached 7 log cfu/g of experimental Cheddar cheese in 14 d. Higher NSLAB counts were observed in the first 14 d of aging in cheese stored at 10 degrees C compared with that stored at 7.2 degrees C. However, microbial counts decreased more quickly in Cheddar cheeses aged at 10 degrees C compared with 7.2 degrees C after 28 d. In cheeses without specific adjunct cultures (Lb. curvatus or P. acidilactici), calcium lactate crystals were not observed within 168 d. However, crystals were observed after only 56 d in cheeses containing Lb. curvatus, which also had increased concentration of D(-)-lactic acid compared with control cheeses. Our research shows that low levels of contamination with certain NSLAB can result in calcium lactate crystals, regardless of lactose:protein ratio.

  20. Microbial ecology of artisanal italian cheese: Molecular microbial characterization by culture-independent method

    Energy Technology Data Exchange (ETDEWEB)

    Colombo, E.; Scarpellini, M.; Franzatti, L.; Dioguardi, L.

    2009-07-01

    Present study will treat the next topics: ecology of the natural and man made environments and functional diversity of bacteria. The microbial communities in artisanal goat cheeses produced in mountain pastures (typical farms) in Piemonte mountain (North of Italy) change a lot during precessing and ripening time. Moreover cheese microbial ecosystems are different in each small dairy because adventitious microflora can come from the environment and contamination the milk before the cheese making process and the product during manufacture and ripening. (Author)

  1. From Pasteur to Probiotics: A Historical Overview of Cheese and Microbes.

    Science.gov (United States)

    Donnelly, Catherine W

    2013-10-01

    Cheese is a food which has been produced for centuries. While cheese was originally developed as a product which extended the shelf life of milk, over time distinct cheese varieties arose, being shaped by geographic, climate, cultural, and economic factors. Global demand for artisan cheeses is creating new economic opportunities. Consumers seeking distinctive products with regional flavor, or terroir, are becoming connoisseurs of hand-crafted cheeses with distinctive tastes and character. These demands have spurred new inquiry into microorganisms used as starter cultures and adjunct cultures, as well as the microbiological consortia of finished cheeses. Such demands have also created new concerns for food safety and international trade. New bacterial pathogens such as Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium DT104 have emerged in the food supply, causing a reevaluation of the efficacy of traditional cheesemaking procedures to control these pathogens. Similarly, pathogens such as Listeria monocytogenes pose problems to susceptible human populations, and cheese can be a vehicle of transmission for this deadly pathogen. With changes in sanitary requirements due to the globalization of the food industry, governments around the world are increasingly requiring assurances of cheese safety. While many governments recognize the safety of traditional artisan cheeses manufactured from raw milk, others are demanding pasteurization of all milk intended for cheesemaking to provide assurance of microbiological safety. In response, new technologies are being proposed to increase cheese safety, but these technologies fundamentally alter the traditional artisan practices and may not enhance microbiological safety. A reevaluation of the safety of traditional artisan practices, validation thereof, and communication of the scientific principles which promote safety will be necessary to enable the continued production of traditional artisan cheeses in global

  2. High-Level Production of Heterologous Protein by Engineered Yeasts Grown in Cottage Cheese Whey

    OpenAIRE

    Maullu, Carlo; Lampis, Giorgio; Desogus, Alessandra; Ingianni, Angela; Rossolini, Gian Maria; Pompei, Raffaello

    1999-01-01

    Cottage cheese whey is a cheese industry by-product still rich in proteins and lactose. Its recycling is seldom cost-effective. In this work we show that the lactose-utilizing yeast Kluyveromyces lactis, engineered for production of recombinant human lysozyme, can be grown in cottage cheese whey, resulting in high-level production of the heterologous protein (125 μg/ml).

  3. Detection of cheese whey and caseinomacropeptide in fermented milk beverages using high performance liquid chromatography

    OpenAIRE

    E.H.P. Andrade; M.R. Souza; Fonseca,L.M.; C.F.A.M. Penna; M.M.O.P. Cerqueira; T. Roza; Seridan,B.; M.F.S. Resende; Pinto, F. A.; C.N.B.C. Villanoeva; Leite,M.O.

    2014-01-01

    Cheese whey level and caseinomacropeptide (CMP) index of fermented milk beverages added with four levels of cheese whey (0, 10, 20, and 40%) and stored at 8-10oC for 0, 7, 14 and 21 days were determined by high performance liquid chromatography-gel filtration (HPLC-GF). Additionally, the interference of the starter culture and the storage time on the detection of cheese whey and CMP were investigated. Refrigerated storage up to 21 days did not affect (P>0.05) cheese whey and CMP amounts in mi...

  4. Production technology and some quality parameters of Njeguši cheese

    Directory of Open Access Journals (Sweden)

    Slavko Mirecki

    2015-11-01

    Full Text Available Industrialization of agricultural production and depopulation of areas that are recognized by traditional products, reached its peak during the last few decades. This represents a significant risk that the technology of traditional agricultural products, especially cheeses, can go into oblivion. Njeguši cheese is one of the famous Montenegrin traditional dairy products which originates from the mountain Lovćen and its peripheral areas. Produced by traditional technology, it belongs to a group of full fat, hard cheeses. Owing to its characteristic, spicy taste and pleasant odour, Njeguši cheese can be compared with some of the most famous hard cheeses. Originally it is made from ewe’s milk, but also, cow’s, goat’s and their mixture in different proportions, are increasingly used, which may be the treat to the originality of Njeguši cheese. The present study offers a description of original Njeguši cheese technology, followed by analysis of the chemical quality of ewe’s milk, cheese and whey. Thereat milk, cheese and whey samples were taken from 5 households located at the place of cheese origin - the Njeguši village. Chemical quality of ewe’s milk, cheese and whey was determined by method of FTIR spectrophotometry. Milk fat in the dry matter and moisture in cheese non-fat basis were mathematically calculated. The average content of milk fat in ewe’s milk was 4.92 %, proteins 4.59 %, lactose 4.14 % and total solids non-fat 9.46 %. Accordingly, the analysed cheeses belonged to full fat, semi-hard cheese due to 51.73 % fat in total solids and 60.07 % moisture in non-fat basis. The only deviation from original technology was shortening of the ripening period. Apart from the main objective - the preservation of the original technology, this study could significantly contribute to the process of protection of origin of Njeguši cheese, because the technology of cheese fulfilled the requirements listed in the National Law on the

  5. Feeding strategies to design the fatty acid profile of sheep milk and cheese

    OpenAIRE

    Anna Nudda; Gianni Battacone; Oscar Boaventura Neto; Antonello Cannas; Ana Helena Dias Francesconi; Alberto Stanislao Atzori; Giuseppe Pulina

    2014-01-01

    The majority of sheep milk produced in the world is transformed into cheese. Feeding is a major factor affecting the quality of sheep milk and, therefore, of sheep cheese. Because fat is the main compound of cheese, this review gives an update on the effects of feeding and nutrition on milk fat content and deeply discusses feeding strategies aimed at increasing the levels of healthy fatty acids (FA), such as conjugated linoleic acid and omega-3 FA, in milk and cheese in the human diet. In add...

  6. Dominant lactic acid bacteria in artisanal Pirot cheeses of different ripening period

    Directory of Open Access Journals (Sweden)

    Terzić-Vidojević Amarela

    2009-01-01

    Full Text Available In this study two raw cow's milk cheeses of a different ripening period were examined. The cheeses were taken from a country household in the region of mountain Stara Planina and manufactured without adding of starter culture. A total 106 lactic acid bacteria (LAB strains were isolated from both cheeses. They are tested by classical physiological tests as well as by API 50 CH tests. Proteolytic and antimicrobial activities were done too. Identification of LAB isolates was done by repetitive extragenic palindromic-polimerase chain reaction (rep-PCR with (GTG5 primer. The LAB isolates from cheese BGPT9 (four days old belonged to the eight species of LAB (Lactobacillus plantarum, Lactobacillus paracasei subsp. paracasei, Lactobacillus delbrueckii, Lactobacillus brevis, Enterococcus faecium, Enterococcus faecalis, Enterococcus durans and Leuconostoc garlicum, while in the BGPT10 cheese (eight months old only two species were present (Lactobacillus plantarum and Enterococcus faecium. Proteolytic activity showed 30 LAB from BGPT9 cheese, mainly enterococci. From BGPT10 cheese only one isolate (which belonged to the Lactobacillus plantarum species possessed partial ability to hydrolyze β-casein. Seven enterococci from BGPT9 cheese and four enterococci from BGPT10 cheese produced antimicrobial compounds.

  7. Influence of starter culture on total free aminoacids concentration during ripening of Krk cheese

    OpenAIRE

    Biljana Radeljević; Nataša Mikulec; Neven Antunac; Zvonimir Prpić; Mirjana Maletić; Jasmina Havranek

    2013-01-01

    The aim of this study was to determine the influence of microbial (commercial starter) culture on concentration of total free amino groups (amino acids) in cheeses in different ripening stages. Free amino groups were determined by reaction with ninhydrin with cadmium (Cd) in the water soluble cheese extract, and were expressed as the concentration of leucine in cheese dry matter. Changes in concentration of total free amino acids during cheese ripening (0th, 30th, 60th, 90th and 120th day) we...

  8. Manufacture of reduced-sodium Cheddar-style cheese with mineral salt replacers.

    Science.gov (United States)

    Grummer, J; Karalus, M; Zhang, K; Vickers, Z; Schoenfuss, T C

    2012-06-01

    The use of mineral salt replacers to reduce the sodium content in cheese has been investigated as a method to maintain both the salty flavor and the preservative effects of salt. The majority of studies of sodium reduction have used mineral salt replacers at levels too low to produce equal water activity (a(w)) in the finished cheese compared with the full-sodium control. Higher a(w) can result in differences in cheese quality due to differences in the effective salt-to-moisture ratio. This creates differences in biochemical and microbial reactions during aging. We hypothesized that by targeting replacer concentrations to produce the same a(w) as full sodium cheese, changes in cheese quality would be minimized. Stirred-curd Cheddar-style cheese was manufactured and curd was salted with NaCl or naturally reduced sodium sea salt. Reduced-sodium cheeses were created by blends of NaCl or sea salt with KCl, modified KCl, MgCl₂, or CaCl₂ before pressing. Sodium levels in reduced-sodium cheeses ranged from 298 to 388 mg of sodium/100g, whereas the control full-sodium cheese had 665 mg/100g. At 1 wk of age, a(w) of reduced-sodium cheeses were not significantly different from control, which had an a(w) of 0.96. The pH values of all reduced-sodium cheeses, excluding the treatment that combined sea salt and MgCl₂, were lower than those of full-sodium cheese, indicating that the starter culture was possibly less inhibited at the salting step by the replacers than by NaCl. Instrumental hardness values of the treatments with sea salt were higher than in cheeses containing NaCl, with the exception of the NaCl/CaCl₂ treatment, which was the hardest. Treatments with MgCl₂ and modified KCl were generally less hard than other treatments. In-hand and first-bite firmness values correlated with the instrumental texture profile analysis results. Both CaCl₂ and MgCl₂ produced considerable off-flavors in the cheese (bitter, metallic, unclean, and soapy), as measured by

  9. Prediction of process cheese instrumental texture and melting characteristics using dielectric spectroscopy and chemometrics.

    Science.gov (United States)

    Amamcharla, J K; Metzger, L E

    2015-09-01

    This study evaluated the potentiality of dielectric spectroscopy as a tool to predict the functional properties of process cheese. Dielectric properties of process cheese were collected over the frequency range 0.2 to 3.2GHz at 25°C. Dielectric spectra of process cheese were collected using a high-temperature, open-ended dielectric probe connected to a vector network analyzer. The present study was conducted using 2 sets of commercial process cheese formulations and a set of specially formulated process cheese. For the all the process cheese samples analyzed, a decrease in dielectric constant and dielectric loss factor was observed as the incident frequency increased. Partial least square regression (PLSR) and multilayer perceptron neural network models were developed using the dielectric spectra of process cheese to predict the hardness (gf), melting point (°C), and modified Schreiber melt diameter (mm) of process cheese. The prediction models were validated using the full cross-validation method. The ratio of prediction error to deviation was greater than 2 for melt diameter and hardness, indicating a good practical utility of the PLSR prediction models. The predictability of multilayer perceptron neural network was less than the PLSR models and could be due to the small number of training samples in the data sets. Dielectric spectroscopy coupled with PLSR could be a useful tool for the nondestructive measurement of functional properties of process cheese.

  10. Genetic parameters of different measures of cheese yield and milk nutrient recovery from an individual model cheese-manufacturing process.

    Science.gov (United States)

    Bittante, G; Cipolat-Gotet, C; Cecchinato, A

    2013-01-01

    Cheese yield (CY) is an important technological trait in the dairy industry, and the objective of this study was to estimate the genetic parameters of cheese yield in a dairy cattle population using an individual model-cheese production procedure. A total of 1,167 Brown Swiss cows belonging to 85 herds were sampled once (a maximum of 15 cows were sampled per herd on a single test day, 1 or 2 herds per week). From each cow, 1,500 mL of milk was processed according to the following steps: milk sampling and heating, culture addition, rennet addition, gelation-time recording, curd cutting, whey draining and sampling, wheel formation, pressing, salting in brine, weighing, and cheese sampling. The compositions of individual milk, whey, and curd samples were determined. Three measures of percentage cheese yield (%CY) were calculated: %CY(CURD), %CY(SOLIDS), and %CY(WATER), which represented the ratios between the weight of fresh curd, the total solids of the curd, and the water content of the curd, respectively, and the weight of the milk processed. In addition, 3 measures of daily cheese yield (dCY, kg/d) were defined, considering the daily milk yield. Three measures of nutrient recovery (REC) were computed: REC(FAT), REC(PROTEIN), and REC(SOLIDS), which represented the ratio between the weights of the fat, protein, and total solids in the curd, respectively, and the corresponding nutrient in the milk. Energy recovery, REC(ENERGY), represented the energy content of the cheese versus that in the milk. For statistical analysis, a Bayesian animal model was implemented via Gibbs sampling. The effects of parity (1 to ≥4), days in milk (6 classes), and laboratory vat (15 vats) were assigned flat priors; those of herd-test-date, animal, and residual were given Gaussian prior distributions. Intra-herd heritability estimates of %CY(CURD), %CY(SOLIDS), and %CY(WATER) ranged from 0.224 to 0.267; these were larger than the estimates obtained for milk yield (0.182) and milk fat

  11. Molecular interactions between green tea catechins and cheese fat studied by solid-state nuclear magnetic resonance spectroscopy.

    Science.gov (United States)

    Rashidinejad, Ali; Birch, Edward J; Hindmarsh, Jason; Everett, David W

    2017-01-15

    Molecular integrations between green tea catechins and milk fat globules in a cheese matrix were investigated using solid-state magic angle spinning nuclear magnetic resonance spectroscopy. Full-fat cheeses were manufactured containing free catechin or free green tea extract (GTE), and liposomal encapsulated catechin or liposomal encapsulated GTE. Molecular mobility of the carbon species in the cheeses was measured by a wide-line separation technique. The (1)H evolution frequency profile of the (13)C peak at 16ppm obtained for the control cheese and cheeses containing encapsulated polyphenols (catechin or GTE) were similar, however, the spectrum was narrower for cheeses containing free polyphenols. Differences in spectral width indicates changes in the molecular mobility of --CH3- or -C-C-PO4- species through hydrophobic and/or cation-π associations between green tea catechins and cheese fat components. However, the similar spectral profile suggests that encapsulation protects cheese fat from interaction with catechins.

  12. Scent of a mite: origin and chemical characterization of the lemon-like flavor of mite-ripened cheeses.

    Science.gov (United States)

    Brückner, Adrian; Heethoff, Michael

    2016-07-01

    Cheese infested with cheese mites is usually treated as unpalatable. Nevertheless, some traditional cheese manufactories in Germany and France intentionally use mites for fermentation of special varieties (i.e. Milbenkäse and Mimolette). While their production includes different mite species, both are characterized by a "lemon-like" flavor. However, the chemical nature and origin of this flavor-component is unknown. The cheese mites possess a pair of opisthosomal glands producing blends of hydrocarbons, terpenes and aromatics. Here, we describe the chemical profiles of the astigmatid mite species Tyrolichus casei (Milbenkäse) and Acarus siro (Mimolette). Although the chemical profiles differ in several aspects, both mite species produce neral (a volatile flavor component of lemon oil), which was absent from the headspace of both cheeses without mites. We conclude that the lemon-like flavor of mite cheese is not a consequence of fermentation of the cheese itself but a component from secretions of the cheese mites.

  13. The effect of a commercial starter culture addition on the ripening of an artisanal goat's cheese (Cameros cheese).

    Science.gov (United States)

    Olarte, C; Sanz, S; Gonzalez-Fandos, E; Torre, P

    2000-03-01

    The evolution of physicochemical parameters, and the most important microbial groups, were determined for the following three batches of 'Cameros' goat's milk cheese during ripening: Batch R elaborated with raw milk, Batch RS elaborated with raw milk and with the addition of a starter culture, and Batch PS elaborated with pasteurized milk and with the addition of the same culture. No differences in total solids (TS) or in the content of NaCl, fat and total nitrogen (expressed as percentages of TS) were found during the ripening. The pH, fat acidity and non-protein nitrogen (NPN, expressed as a percentage of TN) showed significant differences between the batches. The inoculated batches showed the fastest drop in pH at the beginning of the ripening period, but the cheeses of Batch R showed a higher degree of lipolysis and proteolysis. The addition of a starter influenced the microbiological quality of the cheeses. Differences in the counts of Enterobacteriaceae and faecal coliforms were found between Batches R and RS after 15 days. Staphylococcus aureus increased in number during the early period of ripening and attained a population above 6 log cfu g-1 in Batch R in the period from 5 to 10 days. However, enterotoxins were not detected in this Batch. Batch R showed lower values of lactic acid bacteria at the beginning of the ripening period, but no significant differences were found between batches in the period from 5 to 15 days of ripening. At the beginning of the ripening, Lactococcus was the main lactic acid bacteria, with L. lactis lactis being predominant. After 15 days, the lactic acid bacteria counts decreased in the three batches, especially in the cheeses of Batch PS (only 2.2 log cfu g-1 was found at 60 days), as lactococci (the only lactic acid bacteria present in Batch PS) are incapable of growing under the conditions found in cheeses at the end of their ripening period. At this time, Lactobacillus was the predominant genus in Batches R and RS, with L

  14. The effects spicing on quality of mozzarella cheese

    Directory of Open Access Journals (Sweden)

    G. Akarca

    2016-03-01

    Full Text Available In this study, 3 different spice mixes were added just after blanching to mozzarella cheese produced by high moisture production method. The dough was kneaded and filled into to fibrous cases. After filling process, cheeses were stored for 28 days at 4 °C and 85 % of relative humidity. The following characteristics were measured: color parameters, milk acidity, total dry matter, maturation index, total aerobic mesophilic bacteria, coliform bacteria, coagulase positive staphylococci, lactic acid bacteria, species of Lactococcus bacteria, proteolytic bacteria, lipolytic bacteria and mold /yeast count were examined on 0, 5, 15,21 and 28 days after storage. Although L* (lightness and a* (redness values decreased during storage period, while moreover b* (yellowness values increased. In addition acidity, dry matter and maturation index values increased during storage. Total aerobic mesophilic bacteria, lactic acid bacteria, Lactococcus spp., lipolytic bacteria and mold/ yeast counts decreased, but proteolytic bacteria count increased.

  15. Development of an autochthonous starter culture for spreadable goat cheese

    Directory of Open Access Journals (Sweden)

    Florencia FRAU

    Full Text Available Abstract The aim of this work was to select strains of LAB autochthonous from Santiago del Estero to formulate a starter culture for making spreadable goat cheese. Four strains were selected: CRL1799 (Lactobacillus fermentum with high acidifying activity, CRL1803 (Lactobacillus fermentum with high proteolytic activity, CRL1808 (Lactobacillus rhamnosus with production of exopolysaccharide and CRL1785 (Enterococcus faecium with diacetyl-acetoin production. The selected strains showed qualities that make them useful as starter culture in the elaboration of spreadable cheese. This starter culture is an alternative that allows obtaining differentiated products. The inclusion of CRL1808 strains seems to improve the rheology and texture, excluding the use of additives.

  16. No Swiss-cheese universe on the brane

    Science.gov (United States)

    Gergely, László Á.

    2005-04-01

    We study the possibility of brane-world generalization of the Einstein-Straus Swiss-cheese cosmological model. We find that the modifications induced by the brane-world scenario are excessively restrictive. At a first glance only the motion of the boundary is modified and the fluid in the exterior region is allowed to have pressure. The general relativistic Einstein-Straus model emerges in the low density limit. However by imposing that the central mass in the Schwarzschild voids is constant, a combination of the junction conditions and modified cosmological evolution leads to the conclusion that the brane is flat. Thus no generic Swiss-cheese universe can exist on the brane. The conclusion is not altered by the introduction of a cosmological constant in the FLRW regions. This shows that although allowed in the low density limit, the Einstein-Straus universe cannot emerge from cosmological evolution in the brane-world scenario.

  17. Determination of staphylococcal enterotoxins in cheese by immunoenzyme assays

    Directory of Open Access Journals (Sweden)

    Janković Vesna

    2012-01-01

    Full Text Available Staphylococcal food poisoning is one of the most common foodborne diseases resulting from the ingestion of staphylococcal enterotoxins (SEs preformed in foods by enterotoxigenic strains of coagulase-positive staphylococci (CPS, mainly Staphylococcus aureus. The presence of enterotoxigenic strains of coagulase-positive staphylococci in raw milk during the production process leads to the contamination of products and outbreaks of alimentary intoxication. The problem of Staphylococcus aureus in cheese remains significant on a global level. Domestic cheese contaminated with enterotoxigenic staphylococci can result in the formation of enterotoxin, which can produce foodborne illness when the product is ingested. Due to microbiological contamination, microbiological criteria are tools that can be used in assessing the safety and quality of foods. In order to avoid foodborne illness, the Serbian Regulation on General and Special Conditions for Food Hygiene (Official Gazette of RS, No. 72/10 provides microbiological criteria for staphylococcal enterotoxins in dairy products.

  18. Biodiversity of Lactobacillus helveticus bacteriophages isolated from cheese whey starters.

    Science.gov (United States)

    Zago, Miriam; Bonvini, Barbara; Rossetti, Lia; Meucci, Aurora; Giraffa, Giorgio; Carminati, Domenico

    2015-05-01

    Twenty-one Lactobacillus helveticus bacteriophages, 18 isolated from different cheese whey starters and three from CNRZ collection, were phenotypically and genetically characterised. A biodiversity between phages was evidenced both by host range and molecular (RAPD-PCR) typing. A more detailed characterisation of six phages showed similar structural protein profiles and a relevant genetic biodiversity, as shown by restriction enzyme analysis of total DNA. Latent period, burst time and burst size data evidenced that phages were active and virulent. Overall, data highlighted the biodiversity of Lb. helveticus phages isolated from cheese whey starters, which were confirmed to be one of the most common phage contamination source in dairy factories. More research is required to further unravel the ecological role of Lb. helveticus phages and to evaluate their impact on the dairy fermentation processes where whey starter cultures are used.

  19. [Proposal for microbiological criteria for the control of cheese spreads].

    Science.gov (United States)

    Mercado, E C; Rivas, M

    1986-01-01

    Eighteen lots of processed cheese and processed cheese spread were analyzed. Results obtained for the yeasts and molds count (RHL) and the total coliforms count (RCT) were 88.9% inferior to 100 per gram, in the 90 subsamples studied. The fecal coliforms count (RCF) and the S. aureus count were, respectively, 96.6% and 94.4% inferior to 10 per gram, for the same subsamples. Taking into account the format presented by the International Commission on Microbiological Specifications for Foods and the results of our survey, a three class plan is proposed for the following microbiological tests: RHL (n = 5, c = 2, m = 100, M = 1000); RCT (n = 5, c = 2, m = 100, M = 1000); RCF (n = 5, c = 2, m = 10, M = 100); and S. aureus count (n = 5, c = 1, m = 100, M = 1000). Therefore, applying these microbiological specifications, 4 lots (22.2%) would be rejected.

  20. Evaluation of X-ray fluorescence spectroscopy as a method for the rapid and direct determination of sodium in cheese.

    Science.gov (United States)

    Stankey, J A; Akbulut, C; Romero, J E; Govindasamy-Lucey, S

    2015-08-01

    Cheese manufacturers indirectly determine Na in cheese by analysis of Cl using the Volhard method, assuming that all Cl came from NaCl. This method overestimates the actual Na content in cheeses when Na replacers (e.g., KCl) are used. A direct and rapid method for Na detection is needed. X-ray fluorescence spectroscopy (XRF), a mineral analysis technique used in the mining industry, was investigated as an alternative method of Na detection in cheese. An XRF method for the detection of Na in cheese was developed and compared with inductively coupled plasma optical emission spectroscopy (ICP-OES; the reference method for Na in cheese) and Cl analyzer. Sodium quantification was performed by multi-point calibration with cheese standards spiked with NaCl ranging from 0 to 4% Na (wt/wt). The Na concentration of each of the cheese standards (discs: 30mm×7mm) was quantified by the 3 methods. A single laboratory method validation was performed; linearity, precision, limit of detection, and limit of quantification were determined. An additional calibration graph was created using cheese standards made from natural or process cheeses manufactured with different ratios of Na:K. Both Na and K calibration curves were linear for the cheese standards. Sodium was quantified in a variety of commercial cheese samples. The Na data obtained by XRF were in agreement with those from ICP-OES and Cl analyzer for most commercial natural cheeses. The XRF method did not accurately determine Na concentration for several process cheese samples, compared with ICP-OES, likely due to the use of unknown types of Na-based emulsifying salts (ES). When a calibration curve was created for process cheese with the specific types of ES used for this cheese, Na content was successfully predicted in the samples. For natural cheeses, the limit of detection and limit of quantification for Na that can be determined with an acceptable level of repeatability, precision, and trueness was 82 and 246mg/100g of

  1. Identification of the risk factors associated with cheese production to implement the hazard analysis and critical control points (HACCP) system on cheese farms.

    Science.gov (United States)

    Carrascosa, Conrado; Millán, Rafael; Saavedra, Pedro; Jaber, José Raduán; Raposo, António; Sanjuán, Esther

    2016-04-01

    The purpose of this paper was to evaluate, by statistical analyses, risk factors on cheese farms that can influence the microbial contamination of their products. Various assessment tools, such as cheese production questionnaires, food handlers' knowledge testing, and hygiene assessment system surveys, were used on 39 cheese farms on the island of Gran Canaria, Spain. The microbiological status of 773 raw milk and cheese samples from the cheese farms was assessed by enumerating total viable counts and 4 pathogens: Escherichia coli, Staphylococcus aureus, Listeria monocytogenes, and Salmonella spp. The results revealed that the highest contamination by Staph. aureus (4.39%, >10(5)cfu/mL) was found in milk, and the highest contamination by E. coli (5.18%, >10(3) cfu/mL) was found in cheese. Very few samples (0.52%) were contaminated by L. monocytogenes or Salmonella spp. The factors associated with any tested microorganism were "handling," "knowledge," and "type of milk." Subsequently, multidimensional logistic analysis for contamination by E. coli showed an independent association for factors "cleaning and disinfection test" and "type of milk." The probability of total aerobic contamination of milk increased with lower hygiene assessment system survey scores. These results emphasize the need to apply and maintain good hygiene practices, and to study risk factors to prevent contamination and bacterial growth. Further research is required in other areas with different cheese farm types to reinforce the validity of these results.

  2. Staphylococcus aureus reservoirs during traditional Austrian raw milk cheese production.

    Science.gov (United States)

    Walcher, Georg; Gonano, Monika; Kümmel, Judith; Barker, Gary C; Lebl, Karin; Bereuter, Othmar; Ehling-Schulz, Monika; Wagner, Martin; Stessl, Beatrix

    2014-11-01

    Sampling approaches following the dairy chain, including microbiological hygiene status of critical processing steps and physicochemical parameters, contribute to our understanding of how Staphylococcus aureus contamination risks can be minimised. Such a sampling approach was adopted in this study, together with rapid culture-independent quantification of Staph. aureus to supplement standard microbiological methods. A regional cheese production chain, involving 18 farms, was sampled on two separate occasions. Overall, 51·4% of bulk milk samples were found to be Staph. aureus positive, most of them (34·3%) at the limit of culture-based detection. Staph. aureus positive samples >100 cfu/ml were recorded in 17·1% of bulk milk samples collected mainly during the sampling in November. A higher number of Staph. aureus positive bulk milk samples (94·3%) were detected after applying the culture-independent approach. A concentration effect of Staph. aureus was observed during curd processing. Staph. aureus were not consistently detectable with cultural methods during the late ripening phase, but >100 Staph. aureus cell equivalents (CE)/ml or g were quantifiable by the culture-independent approach until the end of ripening. Enterotoxin gene PCR and pulsed-field gel electrophoresis (PFGE) typing provided evidence that livestock adapted strains of Staph. aureus mostly dominate the post processing level and substantiates the belief that animal hygiene plays a pivotal role in minimising the risk of Staph. aureus associated contamination in cheese making. Therefore, the actual data strongly support the need for additional sampling activities and recording of physicochemical parameters during semi-hard cheese-making and cheese ripening, to estimate the risk of Staph. aureus contamination before consumption.

  3. Generalized Swiss-Cheese Cosmologies I: Mass Scales

    CERN Document Server

    Grenon, Cédric

    2009-01-01

    We generalize the Swiss-cheese cosmologies so as to include non-zero linear momenta of the associated boundary surfaces. The evolution of mass scales in these generalized cosmologies is studied for a variety of models for the background without having to specify any details within the local inhomogeneities. We find that the final effective gravitational mass and size of the evolving inhomogeneities depends on their linear momenta but these properties are essentially unaffected by the details of the background model.

  4. Organochlorine Pesticide Residues in the Processing of Pressed Cheese

    Directory of Open Access Journals (Sweden)

    Dorin Ţibulcă

    2015-11-01

    Full Text Available The persistence of pesticide residues in food and environment determined UN institutions to track their presence and establish rules of tolerance in foodstuffs of animal origin. Pesticide use leads to their presence as residue in foods. The research objectives were to establish the level of organo-chlorine pesticides in raw milk and their evolution during the process of obtaining pressed cheese.

  5. Understanding the bacterial communities of hard cheese with blowing defect.

    Science.gov (United States)

    Bassi, Daniela; Puglisi, Edoardo; Cocconcelli, Pier Sandro

    2015-12-01

    The environment of hard cheese encourages bacterial synergies and competitions along the ripening process, which might lead in defects such as clostridial blowing. In this study, Denaturing Gradient Gel Electrophoresis (DGGE), a quantitative Clostridium tyrobutyricum PCR and next-generation Illumina-based sequencing of 16S rRNA gene were applied to study 83 Grana Padano spoiled samples. The aim was to investigate the community of clostridia involved in spoilage, the ecological relationships with the other members of the cheese microbiota, and the effect of lysozyme. Three main genera were dominant in the analysed cheeses, Lactobacillus, Streptococcus and Clostridium, and the assignment at the species level was of 94.3% of 4,477,326 high quality sequences. C. tyrobutyricum and C. butyricum were the most prevalent clostridia. Hierarchical clustering based on the abundance of bacterial genera, revealed three main clusters: one characterized by the highest proportion of Clostridium, a second where Lactobacillus was predominant and the last, dominated by Streptococcus thermophilus. Ecological relationships among species were found: cheeses characterized by an high abundance of S. thermophilus and L. rhamnosus were spoiled by C. tyrobutyricum while, when L. delbrueckii was the most abundant Lactobacillus, C. butyricum was the dominant spoiling species. Lysozyme also shaped the bacterial community, reducing C. tyrobutyricum in favour of C. butyricum. Moreover, this preservative increased the proportion of L. delbrueckii and obligate heterofermentative lactobacilli and lowered L. helveticus and non-starter species, such as L. rhamnosus and L. casei.

  6. Limiano, the cheese that is part of the family

    OpenAIRE

    Carvalho, Maria Mafalda Martins da Cunha Nobre de

    2012-01-01

    This case study is based on a Portuguese company, which has been leader in the Flamengo cheese market for more than 50 years. Besides having high rates of notoriety, Limiano and its family values are cherished by all Portuguese. The students will undoubtedly identify quickly with the problems of the company and hence take more pleasure solving this case. This teaching case is intended to undergraduate and graduate level attending marketing related courses at a beginners’ level. It tries to...

  7. Microbiological and Chemical Quality of Feta Cheeses Consumed in Van

    Directory of Open Access Journals (Sweden)

    Enise Akel

    2016-11-01

    Full Text Available This study is aimed to determine the microbiological and chemical quality of Feta cheeses which are consumed in Van city center. In this study, a total of 50 Feta cheese samples were used as material. At the result of microbiological analysis of Feta cheeses, the mean number of total aerobic mesophilic bacteria, lactic acid bacteria, coliform, Escherichia coli, micrococcus/staphylococcus, coagulase positive Staphylococcus aureus, Clostridium perfringens, Enterobacteriaceae, yeast and mold were found as 5.49 log cfu/g, 5.20 log cfu/g, 0.78 log cfu/g, 0.10 log cfu/g, 0.58 log cfu/g, 0.53 log cfu/g, 0.08 log cfu/g, 0.96 log cfu/g, 5.18 log cfu/g, respectively. At the result of chemical analysis, the mean value of pH, titratable acidity, dry matter, fat, fat in dry matter, salt and salt in dry matter were found as 4.38, 1.41% LA, 41.21%, 18.12%, 44.18%, 8.36% and 20.42%, respectively. All of the samples were found conforming to the standards in terms of titratable acidity. On the other hand, 8%, 52% and 100% of samples were found unsuitable in terms of coagulase positive S. aureus, pH and salt in dry matter, respectively. As a result, it was concluded that Feta cheeses examined are inadequate in terms of microbiological and chemical quality and they could pose a risk to producers and consumers. The implementation of the HACCP system based on GMP at all stages of the food chain will play an active role for food safety, public health and the protection of consumer rights.

  8. The influence of ripening process on moisture in fat-free matter and fat content of the Trappist cheese

    OpenAIRE

    Slavko Kirin

    2001-01-01

    In this paper the influence of ripening proces on moisture in fat-freematter and fat content of Trappist cheese has been investigated. In dairy company (Lura, Bjelovar) the natural ripening process of rind Trappist cheese occurs. Afterwards, the cheese is packaged into shrinkable plastic pouch and the rindless cheese is produced. The obtained results are statistically processed. The above mentioned ripening process has a significant influence on moisture content of the fat-free matter and is ...

  9. Behavior of Different Shiga Toxin-Producing Escherichia coli Serotypes in Various Experimentally Contaminated Raw-Milk Cheeses

    OpenAIRE

    Miszczycha, Stéphane D.; Perrin, Frédérique; Ganet, Sarah; Jamet, Emmanuel; TENENHAUS-AZIZA, Fanny; Montel, Marie-Christine; Thevenot-Sergentet, Delphine

    2013-01-01

    Shiga toxin-producing Escherichia coli (STEC) is an important cause of food-borne illness. The public health implication of the presence of STEC in dairy products remains unclear. Knowledge of STEC behavior in cheeses would help to evaluate the human health risk. The aim of our study was to observe the growth and survival of experimentally inoculated STEC strains in raw-milk cheeses manufactured and ripened according to five technological schemes: blue-type cheese, uncooked pressed cheese wit...

  10. Influence of addition of plasmin or mastitic milk to cheesemilk on quality of smear-ripened cheese

    OpenAIRE

    O'Farrell, Ian P.; Sheehan, Jeremiah J.; Martin G. Wilkinson; Harrington, Dermot; Kelly, Alan L.

    2002-01-01

    peer-reviewed Smear-ripened cheese varieties are characterised by the growth of a smear culture, containing predominantly Brevibacterium linens, on the cheese surface during ripening. In such cheese, considerable zonal differences in biochemistry of ripening exist, due to moisture loss from, and growth and metabolic activity of smear microflora at, the cheese surface. In this study, the effects of adding exogenous plasmin or small amounts of mastitic milk to good quality milk o...

  11. Liking of traditional cheese and consumer willingness to pay

    Directory of Open Access Journals (Sweden)

    Ada Braghieri

    2014-03-01

    Full Text Available We review herein the relevance of credence and sensory attributes for cheese liking as a basis for subsequent discussion on attributes related to traditional dairy products such as place of origin, process characteristics, etc. Several studies suggest that place of origin may have a positive impact on consumer evaluation. In addition, protected designation of origin labels generally affects consumers’ purchasing decisions, with a premium price paid for traditional products. Some of the main dimensions of traditional food products are: familiarity of the product, processing through traditional recipes, sensory properties and origins. However, different dimensions can be relevant for consumers of different countries. Southern European regions frequently tend to associate the concept of traditional with broad concepts such as heritage, culture or history; whereas central and northern European regions tend to focus mainly on practical issues such as convenience, health or appropriateness. Sensitivity to traditional cheese attributes may also vary according to different groups of consumers with older, more educated and wealthier subjects showing higher willingness to pay and acceptance levels. Given that sensory properties play a central role in product differentiation, we can conclude that information about credence attributes, if reliable, positively perceived and directed to sensitive groups of consumers, is able to affect consumer liking and willingness to pay for traditional cheese. Thus, it provides a further potential tool for product differentiation to small-scale traditional farms, where husbandry is often based on extensive rearing systems and production costs tend to be higher.

  12. Ewe welfare and ovine milk and cheese quality

    Directory of Open Access Journals (Sweden)

    A. Sevi

    2010-04-01

    Full Text Available Causes of welfare reduction in dairy sheep flocks are presented and their impact on ovine milk and cheese quality is discussed. Attention is focused on climatic extremes, poor housing and milking hygiene, and nutritional imbalance: mechanisms are outlined through which stress-induced reduction of immune function can result in poor milk composition, deteriorated renneting ability of milk and altered proteolysis in cheese during ripening. In particular, the impact is brought out of exposure to high ambient temperature on the nutritional properties of ewe milk, in terms of increased short-chain and saturated fatty acids, and decreased unsaturated to saturated fatty acid ratio. As well, the relationship is highlighted between ewe welfare and udder health. Especially under poor hygiene conditions the risk of mastitis markedly increases due to reduction of the natural defense mechanisms of the teat and mammary gland and increased number and pathogenicity of the micro-organisms in contact with the entrance of the teat canal. Evidence is provided that rise in milk somatic cell count, in response to bacteria penetration into the udder, can lead to decreased milk yield and altered composition of milk and cheese, due to extensive epithelium secretory cell damage.

  13. CULTURAL IMPORTANCE OF CHEESE TYPE FOR KINGDOM PERNAMBUCANO

    Directory of Open Access Journals (Sweden)

    Neide Kazue Sakugawa Shinohara

    2015-03-01

    Full Text Available Cheese is one of the great achievements in the preservation of milk, using simple techniques and preserving important protein source in different food crops. Originally from the Netherlands, Edam cheese was introduced in Brazil in 1880 by the Portuguese colonizers, hence the name "kingdom." Currently, in the industrial production, the legislation determines that it is classified as "kingdom type ". Due to the high lipid and sodium content, this product that is most suitable in the composition of sandwiches, in sauces added to pasta and composition along with the desserts, these associations are part of the tradition, flavors and knowledge of Pernambuco’s cooking. A ball of Kingdom cheese is something that you have to give to families, especially in Christmas time and St. John, because it symbolizes the wish for happiness and prosperity in the northeastern important religious festivals calendar, where relatives and friends gather to celebrate the dates in question, putting on their tables this precious culinary heritage of Pernambuco.

  14. Comparison of original and adulterated Oscypek cheese based on volatile and sensory profiles

    Directory of Open Access Journals (Sweden)

    Małgorzata Majcher

    2010-09-01

    Full Text Available Background. This paper describes a preliminary studies aiming to compare volatile fractions of Oscypek and oscypek-like cheeses with SPME-GC/TOFMS to determine the possibility of applying for future routine investigation of adulteration of Polish PDO cheeses. Material and methods. For sensory and volatiles analysis four different cheeses were compared: Oscypek cheese prepared according to PDO regulations and three oscypek-like cheeses: type “CM industry” – produced from pasteurised cow milk in dairy plant, type “EM-industry” – produced from pasteurised ewe milk in dairy plant and type “CM-shep­herds” – produced from unpasteurised cow milk in shepherds huts. Isolation of volatiles was performed with PDMS/CAR/DVB fiber. Compounds identification was performed using gas chromatography coupled to time of flight mass spectrometry. Results. Headspace SPME-GC/TOFMS method revealed a total of 51 compounds in Oscypek and oscypek-like cheeses representing nine chemical groups such as: free fatty acids, esters, ketones, alcohols, aldehydes, furans and furanones, phenols, sulfur compounds and terpenes. Results showed that original Oscypek, PDO labeled was represented by the largest number of volatiles identified compared to oscypek-like cheeses, which also showed a relationship with sensory analysis where Oscypek has been described as a cheese with mostly developed flavour bouquet. Additionally it could be observed that cheeses made from unpasteurised milk using traditional method of preparation in shepherds huts (Oscypek and CM-shepherds had superior volatile profiles and enhanced aroma compared to cheeses made industrially. Conclusions. The differences showed in volatile fraction of original Oscypek cheese and adulterated ones provide possibility of employing SPME-GC/TOFMS technique to find adulteration in PDO labelled Oscypek.

  15. Quantitative microbial risk assessment for Staphylococcus aureus in natural and processed cheese in Korea.

    Science.gov (United States)

    Lee, Heeyoung; Kim, Kyunga; Choi, Kyoung-Hee; Yoon, Yohan

    2015-09-01

    This study quantitatively assessed the microbial risk of Staphylococcus aureus in cheese in Korea. The quantitative microbial risk assessment was carried out for natural and processed cheese from factory to consumption. Hazards for S. aureus in cheese were identified through the literature. For exposure assessment, the levels of S. aureus contamination in cheeses were evaluated, and the growth of S. aureus was predicted by predictive models at the surveyed temperatures, and at the time of cheese processing and distribution. For hazard characterization, a dose-response model for S. aureus was found, and the model was used to estimate the risk of illness. With these data, simulation models were prepared with @RISK (Palisade Corp., Ithaca, NY) to estimate the risk of illness per person per day in risk characterization. Staphylococcus aureus cell counts on cheese samples from factories and markets were below detection limits (0.30-0.45 log cfu/g), and pert distribution showed that the mean temperature at markets was 6.63°C. Exponential model [P=1 - exp(7.64×10(-8) × N), where N=dose] for dose-response was deemed appropriate for hazard characterization. Mean temperature of home storage was 4.02°C (log-logistic distribution). The results of risk characterization for S. aureus in natural and processed cheese showed that the mean values for the probability of illness per person per day were higher in processed cheese (mean: 2.24×10(-9); maximum: 7.97×10(-6)) than in natural cheese (mean: 7.84×10(-10); maximum: 2.32×10(-6)). These results indicate that the risk of S. aureus-related foodborne illness due to cheese consumption can be considered low under the present conditions in Korea. In addition, the developed stochastic risk assessment model in this study can be useful in establishing microbial criteria for S. aureus in cheese.

  16. The Good, the Bad, and the Ugly: Tales of Mold-Ripened Cheese.

    Science.gov (United States)

    Marcellino O S B, Sister Noëlla; Benson, David R

    2013-10-01

    The history of cheese manufacture is a "natural history" in which animals, microorganisms, and the environment interact to yield human food. Part of the fascination with cheese, both scientifically and culturally, stems from its ability to assume amazingly diverse flavors as a result of seemingly small details in preparation. In this review, we trace the roots of cheesemaking and its development by a variety of human cultures over centuries. Traditional cheesemakers observed empirically that certain environments and processes produced the best cheeses, unwittingly selecting for microorganisms with the best biochemical properties for developing desirable aromas and textures. The focus of this review is on the role of fungi in cheese ripening, with a particular emphasis on the yeast-like fungus Geotrichum candidum. Conditions that encourage the growth of problematic fungi such as Mucor and Scopulariopsis as well as Arachnida (cheese mites), and how such contaminants might be avoided, are discussed. Bethlehem cheese, a pressed, uncooked, semihard, Saint-Nectaire-type cheese manufactured in the United Sates without commercial strains of bacteria or fungi, was used as a model for the study of stable microbial succession during ripening in a natural environment. The appearance of fungi during a 60-day ripening period was documented using light and scanning electron microscopy, and it was shown to be remarkably reproducible and parallel to the course of ripening of authentic Saint-Nectaire cheese in the Auvergne region of France. Geotrichum candidum, Mucor, and Trichothecium roseum predominate the microbiotas of both cheese types. Geotrichum in particular was shown to have high diversity in different traditional cheese ripening environments, suggesting that traditional manufacturing techniques selected for particular fungi. This and other studies suggest that strain diversity arises in relation to the lore and history of the regions from which these types of cheeses arose.

  17. Effects of natural compounds on microbial safety and sensory quality of Fior di Latte cheese, a typical Italian cheese.

    Science.gov (United States)

    Gammariello, D; Di Giulio, S; Conte, A; Del Nobile, M A

    2008-11-01

    This work presents a preliminary study to assess the efficiency of plant essential oils as natural food preservatives in Fior di Latte cheese. Selected compounds were directly dissolved into Fior di Latte brine. Packaged Fior di Latte samples were stored at 10 degrees C for about 6 d. The cell loads of spoilage and useful microorganisms were monitored to calculate the microbial acceptability limit. Results show that some tested compounds were not acceptable by the panel from a sensorial point of view. Most compounds did not affect the microbial acceptability limit value to a great extent, and only a few such as lemon, sage, and thyme markedly prolonged the microbial acceptability limit of the investigated fresh cheese. Moreover, the above active agents exerted an inhibitory effect on the microorganisms responsible for spoilage without affecting the dairy microflora.

  18. A fast and simple method for quantitative determination of fat-derived medium and low-volatile compounds in cheese

    NARCIS (Netherlands)

    Alewijn, M.; Sliwinski, E.L.; Wouters, J.T.M.

    2003-01-01

    Cheese flavour is a mixture of many (volatile) compounds, mostly formed during ripening. The current method was developed to qualify and quantify fat-derived compounds in cheese. Cheese samples were extracted with acetonitrile, which led to a concentrated solution of potential favour compounds, main

  19. Artisanal and experimental Pecorino Siciliano cheese: Microbial dynamics during manufacture assessed by culturing and PCR-DGGE analyses

    NARCIS (Netherlands)

    Randazzo, C.L.; Vaughan, E.E.; Caggia, C.

    2006-01-01

    Traditional artisanal Pecorino Siciliano (PS) cheeses, and two experimental PS cheeses were manufactured using either raw or pasteurised ewes' milk with the addition of starter cultures. The bacterial diversity and dynamics of the different cheese types were evaluated both by culturing and character

  20. Effect of aging on the rheology of full fat and low fat Cheddar-like caprine cheese

    Science.gov (United States)

    The rheological properties of aging full fat (FF) and low fat (LF) caprine milk cheeses were characterized to determine the changes in the cheese matrix during storage. Six batches of high moisture, Cheddar-like cheese were manufactured from whole or skim caprine milk and were aged at 4 deg C for u...

  1. Reduced-fat Cheddar and Swiss-type cheeses harboring exopolysaccharide-producing probiotic Lactobacillus mucosae DPC 6426.

    Science.gov (United States)

    Ryan, P M; Burdíková, Z; Beresford, T; Auty, M A E; Fitzgerald, G F; Ross, R P; Sheehan, J J; Stanton, C

    2015-12-01

    Exopolysaccharide-producing Lactobacillus mucosae DPC 6426 was previously shown to have promising hypocholesterolemic activity in the atherosclerosis-prone apolipoprotein-E-deficient (apoE(-/-)) murine model. The aim of this study was to investigate the suitability of reduced-fat Cheddar and Swiss-type cheeses as functional (carrier) foods for delivery of this probiotic strain. All cheeses were manufactured at pilot-scale (500-L vats) in triplicate, with standard commercially available starters: for Cheddar, Lactococcus lactis; and for Swiss-type cheese, Streptococcus thermophilus, Lactobacillus helveticus, and Propionibacterium freudenreichii. Lactobacillus mucosae DPC 6426 was used as an adjunct culture during cheese manufacture, at a level of ~10(6) cfu·mL(-1) cheese milk (subsequently present in the cheese curd at>10(7) cfu·g(-1)). The adjunct strain remained viable at >5×10(7) cfu·g(-1) in both Swiss-type and Cheddar cheeses following ripening for 6 mo. Sensory analysis revealed that the presence of the adjunct culture imparted a more appealing appearance in Swiss-type cheese, but had no significant effect on the sensory characteristics of Cheddar cheeses. Moreover, the adjunct culture had no significant effect on cheese composition, proteolysis, pH, or instrumentally quantified textural characteristics of Cheddar cheeses. These data indicate that low-fat Swiss-type and Cheddar cheeses represent suitable food matrices for the delivery of the hypocholesterolemic Lactobacillus mucosae DPC 6426 in an industrial setting.

  2. All the makings for handcrafted cheese and the materiality of “immaterial” culture: the Minas Gerais handcrafted cheese case

    OpenAIRE

    Meneses,José Newton Coelho

    2009-01-01

    : Starting from the experience of investigating the ways to make a handcrafted cheese in Minas Gerais and the Interpretative Dossier of this tradition – produced for IPHAN as a requisite for registering this dynamic as a Brazilian immaterial cultural good – this paper reflects upon the interpretation of cultural heritage and questions the term “immaterial” to name a concept. It highlights the risks of the material/immaterial dichotomy for the interpretation and recognition of the socially bui...

  3. Development of a Potential Probiotic Fresh Cheese Using Two Lactobacillus salivarius Strains Isolated from Human Milk

    Directory of Open Access Journals (Sweden)

    Nivia Cárdenas

    2014-01-01

    Full Text Available Cheeses have been proposed as a good alternative to other fermented milk products for the delivery of probiotic bacteria to the consumer. The objective of this study was to assess the survival of two Lactobacillus salivarius strains (CECT5713 and PS2 isolated from human milk during production and storage of fresh cheese for 28 days at 4°C. The effect of such strains on the volatile compounds profile, texture, and other sensorial properties, including an overall consumer acceptance, was also investigated. Both L. salivarius strains remained viable in the cheeses throughout the storage period and a significant reduction in their viable counts was only observed after 21 days. Globally, the addition of the L. salivarius strains did not change significantly neither the chemical composition of the cheese nor texture parameters after the storage period, although cheeses manufactured with L. salivarius CECT5713 presented significantly higher values of hardness. A total of 59 volatile compounds were identified in the headspace of experimental cheeses, and some L. salivarius-associated differences could be identified. All cheeses presented good results of acceptance after the sensory evaluation. Consequently, our results indicated that fresh cheese can be a good vehicle for the two L. salivarius strains analyzed in this study.

  4. Comparison of the level of residual coagulant activity in different cheese varieties.

    Science.gov (United States)

    Bansal, Nidhi; Fox, Patrick F; McSweeney, Paul L H

    2009-08-01

    The coagulant retained in cheese curd is a major contributor to proteolysis during ripening. The objective of this study was to quantify residual coagulant in 9 cheese varieties by measuring its activity on a synthetic heptapeptide (Pro-Thr-Glu-Phe-[NO2-Phe]-Arg-Leu) assayed using reversed-phase HPLC. The level of residual coagulant activity was highest in Camembert cheese, probably due to its low pH at whey drainage and the high moisture content of the cheese, followed in order by Feta=Port du Salut=Cheddar>Gouda>Emmental=Parmigiano Reggiano=low-moisture part-skim Mozzarella=Mozzarella di Bufala Campana. The high cooking temperature (50-54 degrees C) used during the manufacture of Emmental and Parmigiano Reggiano cheeses and the cooking and stretching step in hot water during the manufacture of Mozzarella cheese may be the reasons for the lowest residual coagulant activity in these cheeses. The level of residual coagulant activity was higher in Feta cheese made from milk concentrated by ultrafiltration than in conventional Feta.

  5. Complexity and Uniqueness of the Aromatic Profile of Smoked and Unsmoked Herreño Cheese

    Directory of Open Access Journals (Sweden)

    Gemma Palencia

    2014-06-01

    Full Text Available In this work, the volatile fraction of unsmoked and smoked Herreño cheese, a type of soft cheese from the Canary Islands, has been characterized for the first time. In order to evaluate if the position in the smokehouse could influence the volatile profile of the smoked variety, cheeses smoked at two different heights were studied. The volatile components were extracted by Solid Phase Microextraction using a divinylbenzene/carboxen/ polydimethylsiloxane fiber, followed by Gas Chromatography/Mass Spectrometry. In total, 228 components were detected. The most numerous groups of components in the unsmoked Herreño cheese were hydrocarbons, followed by terpenes and sesquiterpenes, whereas acids and ketones were the most abundant. It is worth noticing the high number of aldehydes and ketones, and the low number of alcohols and esters in this cheese in relation to others, as well as the presence of some specific unsaturated hydrocarbons, terpenes, sesquiterpenes and nitrogenated derivatives. The smoking process enriches the volatile profile of Herreño cheese with ketones and diketones, methyl esters, aliphatic and aromatic aldehydes, hydrocarbons, terpenes, nitrogenated compounds, and especially with ethers and phenolic derivatives. Among these, methylindanones or certain terpenes like α-terpinolene, have not been detected previously in other types of smoked cheese. Lastly, the results obtained suggest a slightly higher smoking degree in the cheeses smoked at a greater height.

  6. Activity of autoinducer two (AI-2) in bacteria isolated from surface ripened cheeses

    DEFF Research Database (Denmark)

    Gori, Klaus; Jespersen, Lene

    ). Corynebacterium casei, Microbacterium barkeri, Microbacterium gubbeenense and S. equorum subsp. linens (all isolated from the smear of surface ripened cheeses) using the AI-2 bioluminescence assay. This indicates that AI-2 signaling could take place between bacteria found in the smear of surface ripened cheeses....

  7. Activity of autoinducer two (AI-2) in bacteria isolated from surface ripened cheeses

    DEFF Research Database (Denmark)

    Gori, Klaus; Jespersen, Lene

    2007-01-01

    ). Corynebacterium casei, Microbacterium barkeri, Microbacterium gubbeenense and S. equorum subsp. linens (all isolated from the smear of surface ripened cheeses) using the AI-2 bioluminescence assay. This indicates that AI-2 signaling could take place between bacteria found in the smear of surface ripened cheeses....

  8. One approach in using multivariate statistical process control in analyzing cheese quality

    Directory of Open Access Journals (Sweden)

    Ilija Djekic

    2015-05-01

    Full Text Available The objective of this paper was to investigate possibility of using multivariate statistical process control in analysing cheese quality parameters. Two cheese types (white brined cheeses and soft cheese from ultra-filtered milk were selected and analysed for several quality parameters such as dry matter, milk fat, protein contents, pH, NaCl, fat in dry matter and moisture in non-fat solids. The obtained results showed significant variations for most of the quality characteristics which were examined among the two types of cheese. The only stable parameter in both types of cheese was moisture in non-fat solids. All of the other cheese quality characteristics were characterized above or below control limits for most of the samples. Such results indicated a high instability and variations within cheese production. Although the use of statistical process control is not mandatory in the dairy industry, it might provide benefits to organizations in improving quality control of dairy products.

  9. 21 CFR 133.178 - Pasteurized neufchatel cheese spread with other foods.

    Science.gov (United States)

    2010-04-01

    ..., hydrolyzed lactose. (5) Cream, milk, skim milk, buttermilk, cheese whey, any of the foregoing from which part of the water has been removed, anhydrous milkfat, dehydrated cream, and albumin from cheese whey. (c... is added to this food, but the moisture content in no case is more than 65 percent. (ii) The milk...

  10. Caciotta della Garfagnana cheese: selection and evaluation of autochthonous mesophilic lactic acid bacteria as starter cultures

    Directory of Open Access Journals (Sweden)

    Domenico Cerri

    2011-04-01

    Full Text Available The aim of this study was to isolate, identify and select, with respect to acidification and proteolytic activities, the autochthonous mesophilic lactic acid bacteria (LAB present in milk and Caciotta della Garfagnana, a cheese produced either with raw or thermised cow’s milk in small dairies and family plants of Garfagnana (Tuscany, to obtain LAB strains with attributes suitable to be employed as starter cultures in this type of cheese, particularly when thermised milk is used to control spoilage microflora. Samples of raw milk, curd and cheese were collected from three representative farmers of the production area and used to isolate autochthonous LAB. Phenotypic and genotypic (species-specific PCR assay identification of isolated LAB was done. Twenty-eight strains of LAB isolated from milk, curd and cheese were screened for acidifying and proteolytic activities. LAB strains with the better attributes were used as mesophilic starter cultures in technological trials: experimental cheeses manufactured with the addition of autochthonous LAB and control cheeses were compared for LAB and pH evolution. Experimental cheeses presented a significant increase in the mesophilic lactic acid microflora up to 14 days of ripening and significantly lower pH values up to seven days of ripening. The use of wild selected mesophilic lactic acid bacteria, together with thermisation of milk, for the Caciotta della Garfagnana looks very promising and could help to both standardise the production and improve quality and traditional characteristics of this type of cheese.

  11. Caciotta della Garfagnana cheese: selection and evaluation of autochthonous mesophilic lactic acid bacteria as starter cultures

    Directory of Open Access Journals (Sweden)

    Barbara Turchi

    2011-05-01

    Full Text Available he aim of this study was to isolate, identify and select, with respect to acidification and proteolytic activities, the autochthonous mesophilic lactic acid bacteria (LAB present in milk and Caciotta della Garfagnana, a cheese produced either with raw or thermised cow’s milk in small dairies and family plants of Garfagnana (Tuscany, to obtain LAB strains with attributes suitable to be employed as starter cultures in this type of cheese, particularly when thermised milk is used to control spoilage microflora. Samples of raw milk, curd and cheese were collected from three representative farmers of the production area and used to isolate autochthonous LAB. Phenotypic and genotypic (species-specific PCR assay identification of isolated LAB was done. Twenty-eight strains of LAB isolated from milk, curd and cheese were screened for acidifying and proteolytic activities. LAB strains with the better attributes were used as mesophilic starter cultures in technological trials: experimental cheeses manufactured with the addition of autochthonous LAB and control cheeses were compared for LAB and pH evolution. Experimental cheeses presented a significant increase in the mesophilic lactic acid microflora up to 14 days of ripening and significantly lower pH values up to seven days of ripening. The use of wild selected mesophilic lactic acid bacteria, together with thermisation of milk, for the Caciotta della Garfagnana looks very promising and could help to both standardise the production and improve quality and traditional characteristics of this type of cheese.

  12. Effect of emulsifying salts on the physicochemical properties of processed cheese made from Mozzarella.

    Science.gov (United States)

    Chen, L; Liu, H

    2012-09-01

    The aim of this study was to investigate the effect of different types and concentrations of emulsifying salts (trisodium citrate, tetrasodium pyrophosphate, sodium tripolyphosphate, sodium hexametaphosphate, and disodium orthophosphate) on the physicochemical properties of processed cheese. The physicochemical composition, texture profile, degree of casein dissociation, fat particle size, color, and nuclear magnetic resonance profile (NMR) of processed cheese were determined. Hardness, degree of casein dissociation, and pH increased as the concentration of emulsifying salts increased. The fat particle size of processed cheese was significantly influenced by the type of emulsifying salts, with processed cheese made with sodium hexametaphosphate having larger particles (4.68 µm) than cheeses made with the other salts (from 2.71 to 3.30 µm). The processed cheese prepared with trisodium citrate was whiter than those prepared with the other emulsifying salts. The NMR analysis showed that the relaxation time of processed cheese of 10 to 100 ms accounted for a major proportion, indicating that the moisture in processed cheese was mainly bound water combined with the fat globule and hydrated casein.

  13. Casein peptization, functional properties, and sensory acceptance of processed cheese spreads made with different emulsifying salts.

    Science.gov (United States)

    Cunha, Clarissa R; Viotto, Walkiria H

    2010-01-01

    "Requeijão cremoso" is a traditional Brazilian processed cheese spread, showing ample acceptance on the national market. Emulsifying salts (ES) are an important factor influencing the characteristics of processed cheeses, but the literature presents conflicting results about their action on cheese functionality. Requeijão cremoso obtained from anhydrous ingredients allows the study of the influence of each type of ES on the cheese properties, since it can be treated as a model system where the variables are limited and well known. The objective of this study was to evaluate the effect of different types of ES (TSC-sodium citrate, SHMP-sodium hexametaphosphate, STPP-sodium tripolyphosphate, and TSPP-tetrasodium pyrophosphate) on the sensory and functional characteristics of requeijão cremoso-processed cheeses obtained from anhydrous ingredients. The physicochemical composition, degree of casein dissociation, fat particle size, melting index, color, texture profile, and sensory acceptance of the cheeses were determined. The functional behavior of processed cheeses was strongly influenced by the type of ES and its physicochemical properties including its ability to bind Ca, the casein dispersion during cooking, and the possible creation of cross-links with casein during cooling. The cheese made with SHMP was the one most differentiated from the others, presenting lower melting index, whiter color, and higher values for hardness, gumminess, and adhesiveness. The differences in texture had an impact on sensory acceptance: with the exception of the sample manufactured with sodium hexametaphosphate, all the samples presented good sensory acceptance.

  14. Dynamics of complex microbiota and enzymes in Divle Cave cheese and their biochemical consequences

    NARCIS (Netherlands)

    Ozturkoglu Budak, S.

    2016-01-01

    Divle Cave cheese is a raw ewe’s milk cheese ripened with the aid of a rich microbiota and a wide range of protease and lipase enzymes secreted by individual strains belong to this microbial community. The study presented in this thesis mainly aims to define the diversity and evolution of the comple

  15. Effect of culture of accumulation white mold volatile aromatic compounds in cheese

    OpenAIRE

    Zhukova, Y.; MALOVA V.; KOROL TS.; KOZLOVA L.; PHEDIN PH.

    2012-01-01

    The influence of different cultures of white mold Penicillium caseicolum and Geotrichum candidum on the content of aromatic compounds in a soft cheese have been investigated, methodical approaches to the definition of aromatic compounds by capillary gas chromatography have been developed, a number of characteristic volatile compounds identified and defined that have a specific cheese flavor.

  16. Selection of dairy culture and changes of Podravec cheese acidity during production

    Directory of Open Access Journals (Sweden)

    Slavko Kirin

    2002-06-01

    Full Text Available The selection and characteristics of dairy culture play a basic role in all types of cheese production process. The most important characteristic is acidification ability i.e. lactic acid formation, which regulates manufacturing and maturing conditions of cheese, thus affecting its organoleptic characteristics as well. In this work the results on control of acidity increase in Podravec cheeseproduction are presented. In the production process, a technical culture as well as identical frozen and concentrated culture, with and without auxiliary Streptococcus thermophilus for direct milk inoculation, were used. It was established that the acidity, expressed as pH value, is more intensively developed in cheeses produced with culture for direct inoculation. This was especially evident in the first phases of production i.e. before cheese salting. During salting the acidity of cheeses, in both cases, was almoust identical. Cheeses produced with identical frozen culture and auxiliary Streptococcus thermophilus culture had more pronounced acidity before salting and lower after salting in comparison with cheeses with the mentioned two cultures. Organoleptic and other characteristics of mature cheeses were identical.

  17. Diversity and activities of yeasts from different parts of a Stilton cheese.

    Science.gov (United States)

    Gkatzionis, Konstantinos; Yunita, Dewi; Linforth, Robert S T; Dickinson, Matthew; Dodd, Christine E R

    2014-05-02

    Blue cheeses are very complex food matrices presenting significant spatial differentiation between sections and the Stilton variety also has a hard brown crust making its matrix even more complex. The mycobiota communities in the three sections (blue veins, white core and outer crust) of a Stilton blue cheese were studied by employing culture-independent (TRFLP, DGGE) and culture-dependent analyses. Yeasts isolated from the cheese were studied for aroma production in a dairy model system with and without the starter Lactococcus lactis and filamentous fungus Penicillium roqueforti using SPME GC-MS. Significant qualitative and quantitative differences were observed in the yeast communities between the cheese sections with all the techniques. Yarrowia lipolytica presented strong synergistic activity with P. roqueforti enhancing the production of ketone aroma compounds, characteristic of blue cheeses. Culture techniques allowed the observation of the presence and uneven distribution of two different morphological groups of Debaryomyces hansenii in the different sections and of Trichosporon ovoides but failed to isolate Candida catenulata which dominated some parts of the cheese in the culture-independent analysis. This suggests that this species may be an important early coloniser but fails to survive into the final cheese. The study indicated that the yeast flora in the cheese sections differ including isolates that could affect their aroma profiles.

  18. MICROBIOLOGICAL CHARACTERIZAION OF A TYPICAL ITALIAN CHEESE: PECORINO DI LATICAUDA (PART I

    Directory of Open Access Journals (Sweden)

    Y.T.R. Proroga

    2009-09-01

    Full Text Available Pecorino di Laticauda is a traditional Italian goat milk cheese carrying a Protected Designation of Origin (PDO. Previously there was no information available on the microbiological characterization of Pecorino di Laticauda. The present work deals with the studies carried out on the microflora evolution during all the stages of maturation of cheese.

  19. The diversity and evolution of microbiota in traditional Turkish Divle Cave cheese during ripening

    NARCIS (Netherlands)

    Budak, S. O.; Figge, M. J.; Houbraken, J.; de Vries, R. P.

    2016-01-01

    The microbial diversity of traditional Turkish Divle Cave cheese was evaluated in three independent batches. Using molecular techniques, twenty three bacterial species were identified in the interior and outer part of the cheese on days 60 and 120. Bacilli and Gammaproteobacteria classes were predom

  20. MICROBIOLOGICAL CHARACTERIZAION OF A TYPICAL ITALIAN CHEESE: PECORINO DI LATICAUDA (PART I)

    OpenAIRE

    Y.T.R. Proroga; Cerrone, A; O. Valvini; Castellano, S.; M.R. Carullo; Bove, D; Guarino, A; G. Iovane

    2009-01-01

    Pecorino di Laticauda is a traditional Italian goat milk cheese carrying a Protected Designation of Origin (PDO). Previously there was no information available on the microbiological characterization of Pecorino di Laticauda. The present work deals with the studies carried out on the microflora evolution during all the stages of maturation of cheese.

  1. Genome Sequence of Lactobacillus brevis Strain D6, Isolated from Smoked Fresh Cheese.

    Science.gov (United States)

    Kant, Ravi; Uroić, Ksenija; Hynönen, Ulla; Kos, Blaženka; Šušković, Jagoda; Palva, Airi

    2016-04-07

    The autochthonousLactobacillus brevisstrain D6, isolated from smoked fresh cheese, carries a 45-kDa S-layer protein. Strain D6 has shown adhesion to extracellular matrix proteins and to Caco-2 intestinal epithelial cells, as well as immunomodulatory potential and beneficial milk technological properties. Hence, it could be used as a potential probiotic starter culture for cheese production.

  2. Influence of starter culture on total free aminoacids concentration during ripening of Krk cheese

    Directory of Open Access Journals (Sweden)

    Biljana Radeljević

    2013-03-01

    Full Text Available The aim of this study was to determine the influence of microbial (commercial starter culture on concentration of total free amino groups (amino acids in cheeses in different ripening stages. Free amino groups were determined by reaction with ninhydrin with cadmium (Cd in the water soluble cheese extract, and were expressed as the concentration of leucine in cheese dry matter. Changes in concentration of total free amino acids during cheese ripening (0th, 30th, 60th, 90th and 120th day were monitored. In water soluble extracts of cheese, the presence of free NH2 groups in all ripening stages was detected, which means smaller peptides and amino acids, whose concentration significantly (P<0.01 increased during ripening. Cheeses produced with and without microbial culture resulted in statistically significant differences (P<0.01 in content amino acids free on the 90th and 120th day of ripening. Cd - ninhydrin method was found to be suitable for cheese ripening monitoring, as well as for determination of the differences in mature characteristics of cheeses, depending on the production process.

  3. Texture Profile Analysis of Sliced Cheese in relation to Chemical Composition and Storage Temperature

    Directory of Open Access Journals (Sweden)

    Yuanrong Zheng

    2016-01-01

    Full Text Available The quantitative relationships among chemical composition, storage temperature, and texture of cheese were not fully understood. In this study, the effects of composition and temperature on textural properties of eight common varieties of sliced cheese were examined. The textural properties of sliced cheeses, including firmness, cohesiveness, adhesiveness, springiness, chewiness, and resilience, were measured by texture profile analysis after storage at 4 and 25°C for 4 h. Multivariate logistic regression models were established to describe the quantitative relationships of textural properties (dependent variables to chemical composition and storage temperature (independent variables of sliced cheeses. Results showed that protein, fat, moisture, and sodium chloride contents as well as storage temperature significantly affected the texture of sliced cheeses (P<0.05. In particular, fat in the dry matter and moisture in the nonfat substances were negatively correlated with firmness of sliced cheeses (P<0.05. As storage temperature rose from 4 to 25°C, the average values of firmness, chewiness, and resilience substantially declined by 42%, 45%, and 17%, respectively (P<0.05. This study provided reference data for adjusting chemical composition and storage temperature of common cheese products to obtain favorable texture for Chinese consumers, which thereby facilitated the localization of cheese industry in Chinese market.

  4. Milk catalase activity as an indicator of thermization treatments used in the manufacture of cheddar cheese.

    Science.gov (United States)

    Hirvi, Y; Griffiths, M W

    1998-02-01

    Pilot-scale studies were carried out to determine the effect of different heat treatments on catalase activity during the manufacture and maturation of Cheddar cheese. Three trials were conducted to monitor catalase activity using disk flotation and polarographic methods. Cheese was manufactured from raw milk and from milk that had been treated at 60, 65 and 72 degrees C for 16 s using a high temperature, short time heat exchanger. Catalase activity was also determined in samples of commercial milk and in samples of mild, medium, sharp, and extra sharp Cheddar cheeses obtained from different manufacturers in order to verify that the enzyme could be used as an indicator of the type of heat treatment applied to cheese milk. Catalase activity was present in cheese made from raw milk but was only present at low concentrations in cheese manufactured from thermized milk. However, high catalase activity was observed in commercial samples of sharp and extra sharp Cheddar cheese that was apparently due to the growth of catalase-producing yeasts in the cheese during maturation.

  5. Reduction of wastewaters and valorisation of by-products from "Serpa" cheese manufacture using nanofiltration.

    Science.gov (United States)

    Magueijo, V; Minhalma, M; Queiroz, D; Geraldes, V; Macedo, A; de Pinho, M N

    2005-01-01

    Second cheese whey (SCW) is a by-product of cheese and curd cheese production that is usually not recovered and therefore contributes substantially to the negative environmental impact of the cheese manufacture plants. Membrane technology, namely nanofiltration (NF), is used in this work for the recovery of SCW organic nutrients, resulting from "Serpa" cheese and curd production. The SCW is processed by NF to recover a rich lactose fraction in the concentrate and a process water with a high salt content in the permeate. The permeation experiments were carried out in a plate and frame NF unit, where two NF membranes (NFT50 and HR-95-PP) were characterized and tested. The NF permeation experiments were performed accordingly with two different operation modes: total recirculation and concentration. In order to select the best membrane and operating pressure for the SCW fractionation, total recirculation experiments were carried out. After the membrane selection, the concentration experiments showed that the selected membrane (NFT50) at 30 bar allows a water recovery of approximately 80%, concentrating the second cheese whey nutrients approximately 5 times. Therefore, the NF operation can successfully reduce the wastewater organic load and simultaneously contribute to the valorisation of the cheese and curd cheese manufacture by-products.

  6. Nucleic acid-based approaches to investigate microbial-related cheese quality defects.

    Science.gov (United States)

    O'Sullivan, Daniel J; Giblin, Linda; McSweeney, Paul L H; Sheehan, Jeremiah J; Cotter, Paul D

    2013-01-01

    The microbial profile of cheese is a primary determinant of cheese quality. Microorganisms can contribute to aroma and taste defects, form biogenic amines, cause gas and secondary fermentation defects, and can contribute to cheese pinking and mineral deposition issues. These defects may be as a result of seasonality and the variability in the composition of the milk supplied, variations in cheese processing parameters, as well as the nature and number of the non-starter microorganisms which come from the milk or other environmental sources. Such defects can be responsible for production and product recall costs and thus represent a significant economic burden for the dairy industry worldwide. Traditional non-molecular approaches are often considered biased and have inherently slow turnaround times. Molecular techniques can provide early and rapid detection of defects that result from the presence of specific spoilage microbes and, ultimately, assist in enhancing cheese quality and reducing costs. Here we review the DNA-based methods that are available to detect/quantify spoilage bacteria, and relevant metabolic pathways in cheeses and, in the process, highlight how these strategies can be employed to improve cheese quality and reduce the associated economic burden on cheese processors.

  7. Survival of cheese-ripening microorganisms in a dynamic simulator of the gastrointestinal tract.

    Science.gov (United States)

    Adouard, Nadège; Magne, Laurent; Cattenoz, Thomas; Guillemin, Hervé; Foligné, Benoît; Picque, Daniel; Bonnarme, Pascal

    2016-02-01

    A mixture of nine microorganisms (six bacteria and three yeasts) from the microflora of surface-ripened cheeses were subjected to in vitro digestive stress in a three-compartment "dynamic gastrointestinal digester" (DIDGI). We studied the microorganisms (i) grown separately in culture medium only (ii) grown separately in culture medium and then mixed, (iii) grown separately in culture medium and then included in a rennet gel and (iv) grown together in smear-ripened cheese. The yeasts Geotrichum candidum, Kluyveromyces lactis and Debaryomyces hansenii, were strongly resistant to the whole DIDGI process (with a drop in viable cell counts of less than cheese-grown cultures. Ripening bacteria such as Hafnia alvei survived gastric stress less well when grown in cheese (with no viable cells after 90 min of exposure of the cheese matrix, compared with 6 CFU mL(-1) in lab cultures). The ability of Corynebacterium casei and Staphylococcus equorum to withstand digestive stress was similar for cheese and pure culture conditions. When grow in a cheese matrix, Brevibacterium aurantiacum and Arthrobacter arilaitensis were clearly more sensitive to the overall digestive process than when grown in pure cultures. Lactococcus lactis displayed poorer survival in gastric and duodenal compartments when it had been grown in cheese. In vivo experiments in BALB/c mice agreed with the DIDGI experiments and confirmed the latter's reliability.

  8. Nucleic acid-based approaches to investigate microbial-related cheese quality defects

    Directory of Open Access Journals (Sweden)

    Daniel eO Sullivan

    2013-01-01

    Full Text Available AbstractThe microbial profile of cheese is a primary determinant of cheese quality. Microorganisms can contribute to aroma and taste defects, form biogenic amines, cause gas and secondary fermentation defects, and can contribute to cheese pinking and mineral deposition issues. These defects may be as a result of seasonality and the variability in the composition of the milk supplied, variations in cheese processing parameters, as well as the nature and number of the non-starter microorganisms which come from the milk or other environmental sources. Such defects can be responsible for production and product recall costs and thus represent a significant economic burden for the dairy industry worldwide. Traditional non-molecular approaches are often considered biased and have inherently slow turnaround times. Molecular techniques can provide early and rapid detection of defects that result from the presence of specific spoilage microbes and, ultimately, assist in enhancing cheese quality and reducing costs. Here we review the DNA-based methods that are available to detect/quantify spoilage bacteria, and relevant metabolic pathways, in cheeses and, in the process, highlight how these strategies can be employed to improve cheese quality and reduce the associated economic burden on cheese processors.

  9. Characterization of a Panela cheese with added probiotics and fava bean starch

    Science.gov (United States)

    Twenty Lactobacillus spp. and eight Bifidobacterium spp. were screened for their ability to ferment fava bean starch. B. breve ATCC 15700 and L. rhamnosus GG ATCC 53103 were selected as probiotics for use in fresh style Panela cheese. Two types of fresh cheese (with and without 3% fava bean starch) ...

  10. Extra Cheese, Please! Mozzarella's Journey from Cow to Pizza [and] Teaching Guide.

    Science.gov (United States)

    Peterson, Chris

    This book traces Annabelle the dairy cow's milk from the farm to the top of a Friday night pizza. The book relates that when Annabelle gives birth to her calf she also begins to produce milk; the milk is then processed into cheese, and from the cheese, pizza is made (recipe included). The book features color photographs of the entire process which…

  11. Aflatoxin M1 in white cheese and butter consumed in Istanbul, Turkey.

    Science.gov (United States)

    Aycicek, Hasan; Yarsan, Ender; Sarimehmetoglu, Belgin; Cakmak, Omer

    2002-10-01

    We studied the occurrence of Aflatoxin M1 (AFM1) in 183 sample of white cheese and butter in Istanbul, Turkey in 2001. The incidence of AFM1 in white cheese and butter samples was as high as 65 and 81, respectively. The particularly high AFM,concentrations imply that more importance should be given to routine analysis of these dairy products.

  12. The Neural Bases of Disgust for Cheese: An fMRI Study

    Science.gov (United States)

    Royet, Jean-Pierre; Meunier, David; Torquet, Nicolas; Mouly, Anne-Marie; Jiang, Tao

    2016-01-01

    The study of food aversion in humans by the induction of illness is ethically unthinkable, and it is difficult to propose a type of food that is disgusting for everybody. However, although cheese is considered edible by most people, it can also be perceived as particularly disgusting to some individuals. As such, the perception of cheese constitutes a good model to study the cerebral processes of food disgust and aversion. In this study, we show that a higher percentage of people are disgusted by cheese than by other types of food. Functional magnetic resonance imaging then reveals that the internal and external globus pallidus and the substantia nigra belonging to the basal ganglia are more activated in participants who dislike or diswant to eat cheese (Anti) than in other participants who like to eat cheese, as revealed following stimulation with cheese odors and pictures. We suggest that the aforementioned basal ganglia structures commonly involved in reward are also involved in the aversive motivated behaviors. Our results further show that the ventral pallidum, a core structure of the reward circuit, is deactivated in Anti subjects stimulated by cheese in the wanting task, highlighting the suppression of motivation-related activation in subjects disgusted by cheese. PMID:27799903

  13. Effects of whey or maltodextrin addition during production on physical quality of white cheese powder during storage.

    Science.gov (United States)

    Erbay, Zafer; Koca, Nurcan

    2015-12-01

    There is an increasing demand for cheese as a food ingredient, especially as a flavoring agent. One of the most important cheese flavoring agents is cheese powder. To obtain an intense cheese flavor, ripened cheese is used as a raw material in cheese powder but this increases production costs. Moreover, use of natural cheese decreases the physical quality of powder because of its high fat content. In this study, we evaluated opportunities to use whey or maltodextrin for improving the physical quality of powders in production of white cheese powder. We produced cheese powders with 3 different formulations-control (CON), whey-added (WACP), and maltodextrin-added (MACP)-and determined the effects of formulation on cheese powder quality. Physical quality parameters such as color, densities, reconstitution properties, free fat content, particle morphology, and sensory characteristics were investigated. The different cheese powders were stored for 12 mo at 20°C and we evaluated the effect of storage on powder quality. Addition of maltodextrin to cheese powder formulations significantly improved their physical quality. The densities and reconstitution properties of cheese powder were increased and free fat content was decreased by use of maltodextrin. The MACP particles were spherical with a uniform distribution and larger particle sizes, whereas CON and WACP particles were wrinkled, irregular shaped with deep surface dents, and variable in size. Although caking was observed in scanning electron micrographs after 12 mo of storage, it was not detected by sensory panelists. The color of cheese powders changed very slowly during storage but browning was detected. The results of this study show that it is possible to use maltodextrin or whey in production of white cheese powder to reduce production costs and improve the physical quality of powders.

  14. Effect of feeding systems on aromatic characteristics of buffalo mozzarella cheese

    Directory of Open Access Journals (Sweden)

    M.A. Di Napoli

    2010-02-01

    Full Text Available Aim of this study was to evaluated the effect of feeding systems (hay vs ray-grass silage on volatile compounds profiles of mozzarella cheese. Three mozzarella cheese making trials for each experimental group were conducted at our dairy technology laboratory. Mozzarella cheese was manufactured from whole raw water buffalo milk with the addition of natural starter. Volatile compounds were extracted by “purge and trap” system coupled to a gas chromatograph and detected operating with a mass-selective detector (Ciccioli et al., 2004 A total of 84 compounds of the following chemical families were detected: hydrocarbons, fatty acids, esters, alcohols, aldehydes, ketones and terpenes. The data overall indicated difference between the aromatic profiles of mozzarella cheese as consequence of feeding systems. Thus, differences in mozzarella cheese flavour are primarily caused by concentration differences of a common set of flavour compounds, rather than by the occurrence of compounds uniquely associated with a particular feed.

  15. Prevalence and Characterization of Listeria Species in Domestic and Industrial Cheeses of Isfahan Region

    Directory of Open Access Journals (Sweden)

    M Zamani-Zadeh

    2011-09-01

    Full Text Available Background: Listeria monocytogenes is of major concern to the food industry in general and the dairy industry in particular. Little is known about incidence of this pathogenic bacterium in dairy products in Iran.Methods: A survey was made from 23 September 2006 to 22 June 2007 for Listeria species in ninety samples of tradi­tional and industrial cheeses, in milk and surface where the cheeses were manufactured from unpasteurized raw milk in the province of Isfahan (Iran.Results: Listeria murrayi, L. grayi and L. ivanovii, were detected in nine traditional cheeses and one raw milk sample. None of the different Listeria species were isolated from the industrial cheeses and their environment.Conclusion: There are almost good hygienic conditions in domestic cheese manufacturing farmhouses in Isfahan area, but we should try to improve hygienic levels until we have none of the Listeria spp. in our samples.

  16. First mass spectrometry metabolic fingerprinting of bacterial metabolism in a model cheese.

    Science.gov (United States)

    Le Boucher, C; Courant, F; Jeanson, S; Chereau, S; Maillard, M-B; Royer, A-L; Thierry, A; Dervilly-Pinel, G; Le Bizec, B; Lortal, S

    2013-11-15

    Metabolic fingerprinting is an untargeted approach which has not yet been undertaken to investigate cheese. This study is a proof of concept, concerning the ability of mass spectrometry (MS) metabolic fingerprinting to investigate modifications induced by bacterial metabolism in cheese over time. An ultrafiltrated milk concentrate was used to manufacture model cheeses inoculated with Lactococcus lactis LD61. Metabolic fingerprints were acquired after 0, 8 and 48h from two different fractions of the metabolome: the water-soluble fraction using liquid chromatography-high resolution-MS and a volatile fraction using gas chromatography-MS. Metabolic fingerprints differed significantly over time. Forty-five metabolites were identified, including well-known cheese metabolites, such as 12 amino acids and 25 volatile metabolites, and less studied ones, such as four vitamins, uric acid, creatine and l-carnitine. These results showed the relevance of cheese MS fingerprinting to generate new findings and to detect even slight differences between two conditions.

  17. Protein oxidation in processed cheese slices treated with pulsed light technology.

    Science.gov (United States)

    Fernández, M; Ganan, M; Guerra, C; Hierro, E

    2014-09-15

    The effect of pulsed light technology on protein oxidation was studied in sliced processed cheese by measuring the protein-bound carbonyls with a spectrophotometric DNPH assay. Bovine serum albumin was also tested as a protein standard. Fluences of 0.7, 2.1, 4.2, 8.4 and 11.9 J/cm(2) were applied to vacuum-packaged cheese slices and to an aqueous solution of the protein. Treatments up to 4.2 J/cm(2) did not promote protein oxidation immediately after flashing either in cheese or in the standard. Samples treated with 8.4 and 11.9 J/cm(2) showed significantly higher carbonyl amounts than non-treated ones. Protein oxidation increased along cheese storage at 4°C, and differences among treatments remained. Further studies on the sensory properties will be needed to clarify the impact of pulsed light on processed cheese quality.

  18. THE STUDY OF FISH SUPPLEMENT AND BUTTERFAT SUBSTITUTE EFFECT ON EXPIRY DATE OF PROCESSED CHEESE PRODUCT

    Directory of Open Access Journals (Sweden)

    NATALIYA LOTYSH

    2015-02-01

    Full Text Available The sector of functional products has top-priority meaning – it is the most convenient and natural form of introduction and enrichment of the human organism with vitamins, mineral substances, microelements and other components. Attraction into the branch of raw materials of non-milk origin – fish supplements and substitutes of butterfat – served the basis of technology development of processed cheese products of combined content, which in accordance with acting terminology are called processed cheese products. The technology of processed cheese products allows easily regulating their content by introduction of corresponding supplement that facilitates obtainment of product with set properties and content. Inclusion of meat and fish as the raw materials in the processed cheese content results in enrichment of the product with macro- and microelements, unsaturated fatty acids, except for regulation of fatty acid content of cheese products is executed by substitution of butterfat by butterfat substitute.

  19. Probiotic in rennet paste can affect lipase activity of rennet and lipolysis in ovine cheese

    Directory of Open Access Journals (Sweden)

    Marzia Albenzio

    2010-01-01

    Full Text Available Lambs were subjected to three different feeding regimes (mother suckling MS, artificial rearing AR, and artificial rearing with 7log10 cfu/ml Lactobacillus acidophilus supplementation to the milk substitute ARLb and slaughtered at 20d and 40d of age for each feeding treatment. Lambs abomasa were processed to rennet paste and lipases activity was evaluated. Rennet paste was used for Pecorino cheese production. Free fatty acids (FFAs and conjugated linoleic acids (CLAs were detected in cheese at 60d of ripening. Lipase activity was found higher in ARLb than in MS and AR rennet from lambs slaughtered at an older age. A reduction of all FFAs was observed in all cheeses when passing from 20 d to 40d of slaughtering. CLAs were more abundant in ARLb cheeses at both 20 and 40d. Milk substitute with Lb. acidophilus improves enzymatic features of rennet, and health and nutritional characteristics of ovine cheese.

  20. Influence of lamb rennet paste on the lipolytic and sensory profile of Murcia al Vino cheese.

    Science.gov (United States)

    Ferrandini, E; Castillo, M; de Renobales, M; Virto, M D; Garrido, M D; Rovira, S; López, M B

    2012-06-01

    The influence of lamb rennet paste (71.1% chymosin, 177 international milk-clotting units/mL, 4.57U/g of lipase activity) during the ripening of Murcia al Vino goat cheese was studied. The aim of this study was to improve the knowledge of the effect of lamb rennet paste on the lipolytic patterns in this type of cheese by reference to the evolution of total and free fatty acids. A sensory analysis was carried out to compare cheeses made with commercial and paste rennet. The rennet paste showed higher lipolytic activity, enhancing the production of short-chain free fatty acids. In addition, the cheese produced with lamb rennet paste had a slightly more bitter and piquant taste, making it an attractive commercial alternative that can be used to develop new varieties of goat cheese.

  1. Proteolytic Activity in Reduced-Fat Cheddar Cheese Made with Lactic Acid Bacteria and Camel Chymosin

    DEFF Research Database (Denmark)

    Børsting, Mette Winther

    be the need of an extended ripening period to reach a similar cheese structure as in cheeses produced with BC. The aim of this project was to compensate for the lower proteolytic activity in cheese produced with CC compared to BC. Selection of dairy lactic acid bacteria (LAB) for cheese production with high...... for their ability to influence proteolysis and structure during cheese ripening. In an attempt to improve the screening methods and contribute to the development of a new classification system of Latcococcus lactic strains, the peptide profile formed by selected strains after growth in milk was analyzed...... mediated an increase in the total amount of amino acids as well as a shorter structure. A model system, used to study the retention of chymosin in a curd, showed that the retention of CC was less dependent on pH compared to BC, and the retention of CC was higher than BC in the pH interval 6...

  2. Do consumers from Međimurje region recognize their autochthonous Turoš cheese?

    Directory of Open Access Journals (Sweden)

    Kristijan Valkaj

    2013-11-01

    Full Text Available The aim of this study was to determine whether consumers from the Međimurje region recognise and distinguish the autochthonous cheese called Turoš from similar cheeses like Prgica and Kvargl originating from regions neighbouring to Međimurje. Chemical, textural and microbiological properties of all three cheeses were given. Preference tests with 200 consumers using a face-to-face survey and a two-step procedure were performed. The blind taste test showed that 97 % of the respondents recognised differences between the tasted samples, and almost half of them preferred the Turoš cheese. Similarly, the informed test showed that a significantly higher number of the respondents preferred the Turoš cheese in comparison to Kvargl and Prgica. Statistical analyses showed no significant differences between respondents’ preferences in the blind and the informed tests.

  3. Effect of autochthonous starter cultures on the biogenic amine content of ewe's milk cheese throughout ripening.

    Science.gov (United States)

    Renes, E; Diezhandino, I; Fernández, D; Ferrazza, R E; Tornadijo, M E; Fresno, J M

    2014-12-01

    Cheese is among the most commonly implicated foods associated with biogenic amines poisoning. The aim of this study was to evaluate the effects of the type of autochthonous starter culture and ripening time on the concentration of biogenic amines (histamine, tyramine, putrescine, cadaverine, tryptamine, β-phenylethylamine, spermine and spermidine) in cheeses made from pasteurized ewe's milk. 4 cheese batches were made, in duplicate, and ripened for 7 months. The biogenic amines of 40 cheeses were analysed by high performance liquid chromatography. The predominant biogenic amines determined at the end of the ripening time were phenylethylamine, spermine and tryptamine. Together, these accounted for 81% of the total of biogenic amines studied. The type of starter culture used to make the ewe's cheese had a significant effect (p culture made up entirely of Lactococcus lactis subsp. lactis and L. lactis subsp. cremoris or of the same in combination with Lactobacillus plantarum.

  4. Debaryomyces hansenii strains differ in their production of flavor compounds in a cheese-surface model

    DEFF Research Database (Denmark)

    Gori, Klaus; Sørensen, Louise Marie; Petersen, Mikael Agerlin;

    2012-01-01

    higher than their sensory threshold values, and thus seemed more important than alcohols for cheese flavor. These results show that D. hansenii strainsmay have potential to be applied as cultures for increasing the nutty/malty flavor of cheese due to their production of aldehydes. However, due to large...... strain variations, production of flavor compounds has to be taken into consideration for selection of D. hansenii strains as starter cultures for cheese production.......Flavor production among12 strains of Debaryomyces hansenii when grown on a simple cheese model mimicking a cheese surface was investigated by dynamic headspace sampling followed by gas chromatography-mass spectrometry. The present study confirmed that D. hansenii possess the ability to produce...

  5. A comparative study of the fatty acid profiles in commercial sheep cheeses

    OpenAIRE

    2014-01-01

    The present study was carried out to characterize the FA profile of sheep cheese marketed in Chile. Fifty-eight cheeses were collected from supermarkets of 5 different Chilean cities including 34 sheep cheeses, 7 from goat’s milk, 11 from cow’s milk, 4 from a mixture of sheep, goat and cow’s milk and 2 from a mixture of sheep and cow’s milk. Compared to the cow and goat cheese (3.4 and 2.5 g·100g−1), the sheep cheese (3.8 g·100g−1) contained higher contents of C18:1t. The saturated and polyun...

  6. Analysis of dominant lactic acid bacteria from artisanal raw milk cheeses produced on the mountain Stara Planina, Serbia

    Directory of Open Access Journals (Sweden)

    Begovic Jelena

    2011-01-01

    Full Text Available Traditional Serbian cheese production has a long history and generates products with rich flavor profiles. To enable the industrial manufacture of these home-made Serbian cheeses, the lactic acid bacteria present in them needs to be characterized. Five fresh white cheeses made from raw cow’s milk without commercial starter cultures were collected from households on the mountain Stara Planina, Serbia. According to phenotypical and molecular analysis, 262 isolated Lwere found to belong to Lactococcus, Lactobacillus, Streptococcus, Leuconostoc or Enterococcus. The unique bacterial composition of each cheese indicates that the preservation of household industry is the way to maintain production of distinct cheeses.

  7. Thermally-dried free and immobilized kefir cells as starter culture in hard-type cheese production.

    Science.gov (United States)

    Katechaki, Eleftheria; Panas, Panayiotis; Kourkoutas, Yiannis; Koliopoulos, Dionisis; Koutinas, Athanasios A

    2009-07-01

    In an attempt to seek for suitable dried cultures, thermally-dried kefir was employed as starter in hard-type cheese production and tested in cheeses ripened at 5, 18 and 22 degrees C. Both free and immobilised on casein kefir cells were used and compared to cheese made without starter culture. Cheese products made with free cells of kefir culture were characterized by longer preservation time, improved aroma, taste, texture characteristics and increased degree of openness. Volatile profiles obtained by GC/MS analysis revealed a 216% increase in total concentration of esters, organic acids, alcohols and carbonyl compounds between cheeses prepared with and without kefir culture.

  8. Effect of curd washing on the properties of reduced-calcium and standard-calcium Cheddar cheese.

    Science.gov (United States)

    Hou, Jia; McSweeney, Paul L H; Beresford, Thomas P; Guinee, Timothy P

    2014-10-01

    Washed (W) and nonwashed (NW) variants of standard (SCa) and reduced-calcium (RCa) Cheddar cheeses were made in triplicate, ripened for a 270-d period, and analyzed for composition and changes during maturation. Curd washing was applied to cheeses to give a target level of lactose plus lactic acid in cheese moisture of 3.9 g/100 g in the W cheese, compared with a value of 5.3 g/100 g of lactose plus lactic acid in cheese moisture in the control NW cheeses. The 4 cheese types were denoted standard calcium nonwashed (SCaNW), standard calcium washed (SCaW), reduced-calcium nonwashed (RCaNW), and reduced-calcium washed (RCaW). The mean calcium level was 760 mg/100 g in the SCaNW and SCaW and 660 mg/100 g in the RCaNW and RCaW cheeses. Otherwise the gross composition of all cheeses was similar, each with protein, fat, and moisture levels of ~26, 32, and 36 g/100 g, respectively. Curd washing significantly reduced the mean level of lactic acid in the SCaW cheese and residual lactose in both SCaW and RCaW cheeses. The mean pH of the standard-calcium cheese over the 270-d ripening period increased significantly with curd washing and ripening time, in contrast to the reduced-calcium cheese, which was not affected by the latter parameters. Otherwise curd washing had little effect on changes in populations of starter bacteria or nonstarter lactic acid bacteria, proteolysis, rheology, or color of the cheese during ripening. Descriptive sensory analysis at 270 d indicated that the SCaW cheese had a nuttier, sweeter, less fruity, and less rancid taste than the corresponding SCaNW cheese. In contrast, curd washing was not as effective in discriminating between the RCaW and RCaNW cheeses. The RCaW cheese had a more buttery, caramel odor and flavor, and a more bitter, less sweet, and nutty taste than the SCaW cheese, whereas the RCaNW had a more pungent and less fruity flavor, a less fruity odor, a saltier, more-bitter, and less acidic taste, and a more astringent mouthfeel than

  9. Microbiological quality of retail cheeses made from raw, thermized or pasteurized milk in the UK.

    Science.gov (United States)

    Little, C L; Rhoades, J R; Sagoo, S K; Harris, J; Greenwood, M; Mithani, V; Grant, K; McLauchlin, J

    2008-04-01

    Two studies of retail fresh, ripened and semi-hard cheeses made from raw, thermized or pasteurized milk were undertaken in the UK during 2004 and 2005 to determine the microbiological quality of these products. Using microbiological criteria in European Commission Recommendations 2004/24/EC and 2005/175/EC, 2% of both raw, thermized (37/1819 samples) and pasteurized (51/2618 samples) milk cheeses were of unsatisfactory quality. Raw or thermized milk cheeses were of unsatisfactory quality due to levels of Staphylococcus aureus at 10(4)cfu g(-1), Escherichia coli at 10(5)cfu g(-1), and/or Listeria monocytogenes at 10(2)cfu g(-1), whereas pasteurized milk cheeses were of unsatisfactory quality due to S. aureus at 10(3)cfu g(-1) and/or E. coli at 10(3)cfu g(-1). Salmonella was not detected in any samples. Cheeses were of unsatisfactory quality more frequently when sampled from premises rated as having little or no confidence in management and control systems, and stored/displayed at above 8 degrees C. Raw or thermized milk cheeses were also more likely to be of unsatisfactory quality when they were unripened types, and pasteurized milk cheeses when they were: semi-hard types; from specialist cheese shops or delicatessens; cut to order. These results emphasize the need for applying and maintaining good hygiene practices throughout the food chain to prevent contamination and/or bacterial growth. Labelling of cheeses with clear information on whether the cheese was prepared from raw milk also requires improvement.

  10. Distribution of antimicrobial-resistant lactic acid bacteria in natural cheese in Japan.

    Science.gov (United States)

    Ishihara, Kanako; Nakajima, Kumiko; Kishimoto, Satoko; Atarashi, Fumiaki; Muramatsu, Yasukazu; Hotta, Akitoyo; Ishii, Satomi; Takeda, Yasuyuki; Kikuchi, Masanori; Tamura, Yutaka

    2013-10-01

    To determine and compare the extent of contamination caused by antimicrobial-resistant lactic acid bacteria (LAB) in imported and domestic natural cheeses on the Japanese market, LAB were isolated using deMan, Rogosa and Sharpe (MRS) agar and MRS agar supplemented with six antimicrobials. From 38 imported and 24 Japanese cheeses, 409 LAB isolates were obtained and their antimicrobial resistance was tested. The percentage of LAB resistant to dihydrostreptomycin, erythromycin, and/or oxytetracycline isolated from imported cheeses (42.1%) was significantly higher than that of LAB resistant to dihydrostreptomycin or oxytetracycline from cheeses produced in Japan (16.7%; P=0.04). Antimicrobial resistance genes were detected in Enterococcus faecalis (tetL, tetM, and ermB; tetL and ermB; tetM) E. faecium (tetM), Lactococcus lactis (tetS), Lactobacillus (Lb.), casei/paracasei (tetM or tetW), and Lb. rhamnosus (ermB) isolated from seven imported cheeses. Moreover, these E. faecalis isolates were able to transfer antimicrobial resistance gene(s). Although antimicrobial resistance genes were not detected in any LAB isolates from Japanese cheeses, Lb. casei/paracasei and Lb. coryniformis isolates from a Japanese farm-made cheese were resistant to oxytetracycline (minimal inhibitory concentration [MIC], 32 µg/mL). Leuconostoc isolates from three Japanese farm-made cheeses were also resistant to dihydrostreptomycin (MIC, 32 to >512 µg/mL). In conclusion, the present study demonstrated contamination with antimicrobial-resistant LAB in imported and Japanese farm-made cheeses on the Japanese market, but not in Japanese commercial cheeses.

  11. Proteolytic specificity of Lactobacillus delbrueckli subsp. bulgaricus influences functional properties of mozzarella cheese.

    Science.gov (United States)

    Oommen, B S; McMahon, D J; Oberg, C J; Broadbent, J R; Strickland, M

    2002-11-01

    Low-moisture part-skim Mozzarella cheeses were manufactured from 2% fat milk and aged for 21 d. Treatments included cheeses made with one of three different strains of Lactobacillus delbrueckii ssp. bulgaricus in combination with a single strain of Streptococcus thermophilus. A fourth, control treatment consisted of cheeses made with only S. thermophilus. Although total proteolytic ability of these strains, as indicated by the o-phthaldialdehyde analysis, was similar in each of the three strains of L. bulgaricus, these strains exhibited different proteolytic specificities toward the peptide, alpha(s1)-CN (f 1-23). On the basis of their alpha(s1)-CN (f 1-23) cleavage patterns and a previously described classification, these strains were assigned to the groups I, III, and V. The objective of this study was to investigate the influence of lactobacilli proteolytic systems, based on specificity toward alpha(s1)-CN (f 1-23), on functionality of part-skim Mozzarella cheese. Moisture, fat, protein, salt-in-moisture, and moisture in nonfat substances content of cheeses made with groups I, III, and V strain were similar. Control cheese had a lower moisture content than did other treatments. Significant differences were observed in functional properties between cheeses manufactured using groups III and V strains. Cheeses made with groups I and III strains were similar in their meltability, hardness, cohesiveness, melt strength, and stretch quality. Meltability and cohesiveness increased with age, while melt strength and stretch quality decreased with age for all cheeses. Additionally, HPLC showed that total peak areas of water-soluble peptides derived from cleavage of alpha(s1)-CN (f 1-23) by different strains of lactobacilli could be highly correlated to meltability and stretch characteristics of cheeses made with those strains.

  12. Short communication: Arcobacter butzleri and Arcobacter cryaerophilus survival and growth in artisanal and industrial ricotta cheese.

    Science.gov (United States)

    Giacometti, F; Losio, M N; Daminelli, P; Cosciani-Cunico, E; Dalzini, E; Serraino, A

    2015-10-01

    Ricotta cheese is a ready-to-eat product with properties (pH >6.0, aw >0.98-0.99) and moisture content (75-80%) that may pose a risk to public health due to postprocess contamination by several bacterial pathogens, including Arcobacters. The objective of the study was to evaluate the behavior of Arcobacter butzleri and Arcobacter cryaerophilus in ricotta cheese during its shelf life assuming postprocessing contamination. Two types of ricotta cheese, artisanal water buffalo (WB) and industrial cow milk ricotta cheese, were experimentally contaminated with A. butzleri and A. cryaerophilus and the count was monitored at 2 different temperatures (6°C and 12°C) during shelf life of 5 d for WB cheese and 22 d for industrial ricotta cheese. In WB ricotta cheese the A. butzleri count remained stable during the 5 d of storage at 6°C, whereas a moderate but significant decrease was observed in A. cryaerophilus count. The counts of both species increased when WB ricotta cheese was stored at 12°C. In industrial ricotta cheese stored at 6°C, a significant reduction was observed both in A. butzleri and A. cryaerophilus counts during the 22-d storage period; at 12°C storage, a count increase was observed for both Arcobacter species up to d 14 of storage after which the log cfu/g count resulted constant until d 22 of storage. The ability of A. butzleri and A. cryaerophilus to survive at 6°C and to grow at 12°C in ricotta cheese has significant food safety implications.

  13. Cheese peptidomics: a detailed study on the evolution of the oligopeptide fraction in Parmigiano-Reggiano cheese from curd to 24 months of aging.

    Science.gov (United States)

    Sforza, S; Cavatorta, V; Lambertini, F; Galaverna, G; Dossena, A; Marchelli, R

    2012-07-01

    In this work, we performed a detailed evaluation of the evolution of the oligopeptide fractions in samples of Parmigiano-Reggiano cheese from the curd up to 24 mo of aging. The samples were taken from wheels produced the same day, in the same factory, from the same milk, during the same caseification process, thus simplifying the natural variability of a whey-based starter fermentation. This unique and homogeneous sampling plan, never reported before in the literature, provided a detailed study of the peptides produced by enzymatic events during Parmigiano-Reggiano aging. Given the large dimensions of the 35-kg wheels of Parmigiano-Reggiano, samples were taken from both the internal and external parts of the cheese, to evidence eventual differences in the oligopeptide composition of the different parts. Fifty-seven peptides were considered, being among the most abundant during at least one of the periods of ripening considered, and their semiquantification indicated that the peptide fraction of Parmigiano-Reggiano cheese constantly evolves during the aging period. Five trends in its evolution were outlined, which could be clearly correlated to the enzymatic activities present in the cheese, making it possible to discriminate cheeses according to their aging time. Several known bioactive peptides were also found to be present in Parmigiano-Reggiano cheese samples, and for the first time, the age at which they are most abundant has been identified. Aged cheeses have been shown to be dominated by nonproteolytic aminoacyl derivatives, a new class of peptide-like molecules recently reported. Finally, the changing peptide pattern may be related to the changing enzymatic activities occurring inside the cheeses during the aging period, which, in turn, are also related to the microbiological composition.

  14. 天然奶酪对再制奶酪理化性质的影响%Influence of cheese on physicochemical properties of processed cheese

    Institute of Scientific and Technical Information of China (English)

    陈苓; 刘会平

    2012-01-01

    研究了天然干酪的添加量及其成熟度对再制奶酪理化性质及功能特性的影响.结果表明:再制奶酪的完整酪蛋白质量分数、储能模量、损耗模量和硬度均随着天然奶酪的添加量及其成熟度的增加而呈现下降趋势,而再制干酪的风味及组织状态则不然;成熟度为1月和4月的天然Mozzarella干酪配比为2:1时,产品的功能特性及口感最佳.%Effects of the natural cheese addition and maturity to physicochemical properties and functional properties of processed cheese were studied. The results showed that the storage (G') modulus, loss (G") modulus, and hardness of die processed cheese decreased as the content of intact casein content of the mature cheese raw material increased, but not the taste of die processed cheese. When the proportion between young and mature Mozzarella cheese were 2:1 ,the function properties and taste of the products were best.

  15. PRODUCTION UNDER CONTROLLED CONDITIONS OF “CASU MARZU” CHEESE: EFFECT OF THE Piophila Casei COLONIZATION ON MICROBIAL AND CHEMICAL COMPOSITION OF THE CHEESES

    Directory of Open Access Journals (Sweden)

    M Coinu

    2013-02-01

    Full Text Available The aim of the present study was to evaluate the effect of the Piophila casei colonization under controlled conditions on “casu marzu”, a typical Sardinian sheep milk cheese. Three batches of two different kind of cheese (PO, holed paste and PC, firm paste were produced in duplicate (test and control. Test cheeses were exposed to the Piophila casei colonization in a conditioned store room, while control cheeses were suitably protected. All the samples were analyzed at 0, 10, 30, 60 and 90 days from the production. The pH and aw, the chemical composition and the microbiological parameters (food safety and process hygiene criteria were determined. The colonization was unhomogeneous between the batches: PO cheeses were more easily colonized and showed more intense proteolysis and lipolysis respect to PC cheeses. The microbiological parameters were strongly affected by the experimental process conditions. The authors discuss about the opportunity of a controlled production of “casu marzu” and the implications to the health of consumers.

  16. Outgrowth inhibition of Clostridium beijerinckii spores by a bacteriocin-producing lactic culture in ovine milk cheese.

    Science.gov (United States)

    Garde, Sonia; Avila, Marta; Arias, Ramón; Gaya, Pilar; Nuñez, Manuel

    2011-10-17

    In the manufacture of model cheeses, ovine milk was deliberately contaminated with spores of Clostridium beijerinckii INIA 63, a wild isolate from Manchego cheese with late blowing defect, and inoculated with nisin- and lacticin 481-producing Lactococcus lactis subsp. lactis INIA 415 as starter, to test its potential to prevent the late blowing defect, or with L. lactis subsp. lactis INIA 415-2, a spontaneous mutant not producing bacteriocins. Cheeses made individually with the lactococcal strains, without clostridial spores, served as controls. Cheese made with clostridial spores and L. lactis subsp. lactis INIA 415-2 showed late blowing defect after 120days of ripening. Spoilt cheese also showed lower concentrations of lactic acid, and higher levels of acetic, propionic and butyric acids, and of other volatile compounds such as 2-propanol and 1-butanol, than control cheese. In addition, cheese made with the bacteriocin producer did not show any late blowing symptoms, despite its spore counts similar to those of blown cheese, pointing to outgrowth inhibition of C. beijerinckii spores by bacteriocins. Besides, cheese made with the bacteriocin producer showed similar concentrations of lactic acid and volatile compounds than control cheese. Inclusion of L. lactis subsp. lactis INIA 415 in starter cultures seems a feasible method to prevent late blowing defect in cheese without altering its sensory characteristics.

  17. Identification of Clostridium tyrobutyricum as the causative agent of late blowing in cheese by species-specific PCR amplification.

    Science.gov (United States)

    Klijn, N; Nieuwenhof, F F; Hoolwerf, J D; van der Waals, C B; Weerkamp, A H

    1995-08-01

    Butyric acid fermentation, the late-blowing defect in cheese, caused by the outgrowth of clostridial spores present in raw milk, can create considerable loss of product, especially in the production of semihard cheeses like Gouda cheese, but also in grana and Gruyère cheeses. To demonstrate the causative relationship between Clostridium tyrobutyricum and late blowing in cheese, many cheesemaking experiments were performed to provoke this defect by using spores from several strains of the major dairy-related clostridia. A method of PCR amplification of a part of the 16S rRNA gene in combination with hybridization with species-specific DNA probes was developed to allow the specific detection of clostridial sequences in DNAs extracted from cheeses. The sensitivity was increased by using nested PCR. Late blowing was provoked in experimental cheeses with 28 of the 32 C. tyrobutyricum strains tested, whereas experimental cheeses made with spores from C. beijerinckii, C. butyricum, and C. sporogenes showed no signs of butyric acid fermentation. In all experimental and commercial cheeses with obvious signs of late blowing, DNA from C. tyrobutyricum was detected; in some cheeses, signals for C. beijerinckii were also found. It was concluded that only C. tyrobutyricum strains are able to cause butyric acid fermentation in cheese.

  18. Prospect and development of Xinjiang curd-cheese%新疆奶酪现状及前景探讨

    Institute of Scientific and Technical Information of China (English)

    古丽奴儿·吐拉西; 普燕; 张富春

    2011-01-01

    分别对新疆传统奶酪的种类、生产方法、酶凝奶酪和酸凝奶酪的凝乳机理、凝乳酶特性及其在新疆奶酪中的应用现状等问题进行了详细介绍,进而探讨了新疆奶酪产业的发展前景.%Coagulation is the fundamental process in cheese making. Cheese prepared by different methods have different flavors. In this paper , the classification and production of Xinjiang traditional cheese are introduced in detail, the mechanism of curd-cheese and acid-cheese ,characteristic and application of chymosin in Xinjiang cheese are discussed as well in this paper, which intend to describe the prospect for the Xinjiang curd-cheese.

  19. Effect of rate of addition of starter culture on textural characteristics of buffalo milk Feta type cheese during ripening.

    Science.gov (United States)

    Kumar, Sanjeev; Kanawjia, S K; Kumar, Suryamani; Khatkar, Sunil

    2014-04-01

    The effect of rate of addition of starter culture on textural characteristics of buffalo milk Feta type cheese was investigated during ripening period up to two months. The textural characteristics of buffalo milk Feta type cheese in terms of hardness, cohesiveness, springiness, gumminess and chewiness were analyzed by using textural profile analyzer. The maximum hardness was found with cheese made using 1% culture, while the minimum was found with 2% culture. The cohesiveness and springiness decreased as the level of addition of starter culture increased. The chewiness of cheese also decreased, as the rate of addition of starter culture increased for cheese making. In addition to this, yield, moisture, fat, FDM, protein, salt and S/M of fresh buffalo milk Feta type cheese increased with the increase in rate of addition of starter culture; however, TS of experimental cheeses decreased.

  20. Small-scale manufacture of process cheese using a rapid visco analyzer.

    Science.gov (United States)

    Kapoor, R; Metzger, L E

    2005-10-01

    Numerous formulation and processing parameters influence the functional properties of process cheese. Recently, a small-scale (25 g) manufacturing and analysis method was developed using a rapid visco analyzer (RVA), which was designed to evaluate the functional properties of process cheese when subjected to various formulations and processing conditions. Although this method successfully manufactured process cheese, there was a significant difference in the functional properties of the process cheese compared with process cheese manufactured on a pilot scale. In the present study, adjustments in the RVA methodology involving the RVA processing conditions, preblend preparation, and texture profile analysis (TPA) techniques for the final process cheese were investigated. Fourteen samples of pasteurized processed cheese food (PCF) were manufactured from 14 different preblends. Each pre-blend was prepared using 1 of the 14 different natural cheeses and was balanced for moisture, fat, and salt. Each of these 14 preblends was split into 3 portions and each portion was subjected to 3 different manufacturing treatments. The first treatment was manufactured in a pilot-scale Blentech twin screw (BTS) cooker, and the remaining 2 treatments were manufactured in an RVA with different processing profiles. The RVA treatments were produced in triplicate. The resulting process cheeses were analyzed for moisture and functional properties. Texture profile analysis and RVA melt analyses were performed on all PCF treatments. Additionally, for the RVA treatments, the data for time of emulsification and end apparent viscosity during RVA manufacture were collected and recorded. The functional properties of the PCF manufactured using the RVA treatments showed good correlation with the functional properties of the PCF produced on the pilot scale. Additionally, the end apparent viscosity during RVA manufacture was correlated with the functional properties of the process cheese. Consequently

  1. Microbiology of Cheddar cheese made with different fat contents using a Lactococcus lactis single-strain starter.

    Science.gov (United States)

    Broadbent, J R; Brighton, C; McMahon, D J; Farkye, N Y; Johnson, M E; Steele, J L

    2013-07-01

    Flavor development in low-fat Cheddar cheese is typified by delayed or muted evolution of desirable flavor and aroma, and a propensity to acquire undesirable meaty-brothy or burnt-brothy off-flavor notes early in ripening. The biochemical basis for these flavor deficiencies is unclear, but flavor production in bacterial-ripened cheese is known to rely on microorganisms and enzymes present in the cheese matrix. Lipid removal fundamentally alters cheese composition, which can modify the cheese microenvironment in ways that may affect growth and enzymatic activity of starter or nonstarter lactic acid bacteria (NSLAB). Additionally, manufacture of low-fat cheeses often involves changes to processing protocols that may substantially alter cheese redox potential, salt-in-moisture content, acid content, water activity, or pH. However, the consequences of these changes on microbial ecology and metabolism remain obscure. The objective of this study was to investigate the influence of fat content on population dynamics of starter bacteria and NSLAB over 9 mo of aging. Duplicate vats of full fat, 50% reduced-fat, and low-fat (containing cheeses were manufactured at 3 different locations with a single-strain Lactococcus lactis starter culture using standardized procedures. Cheeses were ripened at 8°C and sampled periodically for microbiological attributes. Microbiological counts indicated that initial populations of nonstarter bacteria were much lower in full-fat compared with low-fat cheeses made at all 3 sites, and starter viability also declined at a more rapid rate during ripening in full-fat compared with 50% reduced-fat and low-fat cheeses. Denaturing gradient gel electrophoresis of cheese bacteria showed that the NSLAB fraction of all cheeses was dominated by Lactobacillus curvatus, but a few other species of bacteria were sporadically detected. Thus, changes in fat level were correlated with populations of different bacteria, but did not appear to alter the

  2. L-methionine degradation potentialities of cheese-ripening microorganisms.

    Science.gov (United States)

    Bonnarme, P; Lapadatescu, C; Yvon, M; Spinnler, H E

    2001-11-01

    Volatile sulphur compounds are major flavouring compounds in many traditional fermented foods including cheeses. These compounds are products of the catabolism of L-methionine by cheese-ripening microorganisms. The diversity of L-methionine degradation by such microorganisms, however, remains to be characterized. The objective of this work was to compare the capacities to produce volatile sulphur compounds by five yeasts, Geotrichum candidum, Yarrowia lipolytica, Kluyveromyces lactis, Debaryomyces hansenii, Saccharomyces cerevisiae and five bacteria, Brevibacterium linens, Corynebacterium glutamicum, Arthrobacter sp., Micrococcus lutens and Staphylococcus equorum of technological interest for cheese-ripening. The ability of whole cells of these microorganisms to generate volatile sulphur compounds from L-methionine was compared. The microorganisms produced a wide spectrum of sulphur compounds including methanethiol, dimethylsulfide, dimethyldisulfide, dimethyltrisulfide and also S-methylthioesters, which varied in amount and type according to strain. Most of the yeasts produced methanethiol, dimethylsulfide, dimethyldisulfide and dimethyltrisulfide but did not produce S-methylthioesters, apart from G. candidum that produced S-methyl thioacetate. Bacteria, especially Arth. sp. and Brevi. linens, produced the highest amounts and the greatest variety of volatile sulphur compounds includling methanethiol, sulfides and S-methylthioesters, e.g. S-methyl thioacetate, S-methyl thiobutyrate, S-methyl thiopropionate and S-methyl thioisovalerate. Cell-free extracts of all the yeasts and bacteria were examined for the activity of enzymes possibly involved in L-methionine catabolism, i.e. L-methionine demethiolase, L-methionine aminotransferase and L-methionine deaminase. They all possessed L-methionine demethiolase activity, while some (K. lactis, Deb. hansenii, Arth. sp., Staph. equorum) were deficient in L-methionine aminotransferase, and none produced L-methionine deaminase

  3. Effects of supercritical fluid extraction pressure on chemical composition, microbial population, polar lipid profile, and microstructure of goat cheese.

    Science.gov (United States)

    Sánchez-Macías, D; Laubscher, A; Castro, N; Argüello, A; Jiménez-Flores, R

    2013-03-01

    The consumer trend for healthier food choices and preferences for low-fat products has increased the interest in low-fat cheese and nutraceutical dairy products. However, consumer preference is still for delicious food. Low- and reduced-fat cheeses are not completely accepted because of their unappealing properties compared with full-fat cheeses. The method reported here provides another option to the conventional cheese-making process to obtain lower fat cheese. Using CO(2) as a supercritical fluid offers an alternative to reduce fat in cheese after ripening, while maintaining the initial characteristics and flavor. The aim of this experiment was to evaluate the effect of pressure (10, 20, 30, and 40 × 10(6) Pa) of supercritical CO(2) on the amount of fat extracted, microbial population, polar lipid profile, and microstructure of 2 varieties of goat cheese: Majorero, a protected denomination of origin cheese from Spain, and goat Gouda-type cheese. The amount of fat was reduced 50 to 57% and 48 to 55% for Majorero and goat Gouda-type cheeses, respectively. Higher contents (on a fat basis) of sphingomyelin and phosphatidylcholine were found in Majorero cheese compared with control and goat Gouda-type cheeses. The microbial population was reduced after supercritical fluid extraction in both cheeses, and the lethality was higher as pressure increased in Majorero cheese, most noticeably on lactococcus and lactobacillus bacteria. The Gouda-type cheese did not contain any lactobacilli. Micrographs obtained from confocal laser scanning microscopy showed a more open matrix and whey pockets in the Majorero control cheese. This could explain the ease of extracting fat and reducing the microbial counts in this cheese after treatment with supercritical CO(2). Supercritical fluid extraction with CO(2) has great potential in the dairy industry and in commercial applications. The Majorero cheese obtained after the supercritical fluid extraction treatment was an excellent

  4. Characterization of the rheological, textural, and sensory properties of samples of commercial US cream cheese with different fat contents.

    Science.gov (United States)

    Brighenti, M; Govindasamy-Lucey, S; Lim, K; Nelson, K; Lucey, J A

    2008-12-01

    In this study, 18 commercial samples of cream cheeses from the United States, including full-fat, Neufchatel or one-third less fat, and fat-free cheeses were analyzed for their rheological, textural, and sensory properties. Dynamic rheological properties were measured by small-amplitude oscillatory rheology during heating from 5 to 80 degrees C and cooling from 80 to 5 degrees C. The parameters measured were storage modulus (G') and loss tangent (LT). Hardness of cream cheeses was determined by penetration and spreadability tests with a texture analyzer. Quantitative descriptive sensory analysis was performed by a trained panel to determine textural properties including firmness, stickiness, cohesiveness of mass, gumminess, difficulty to dissolve, particle size, and difficulty to spread. Principal component analysis of sensory and instrumental parameters was performed to identify relationships between these different parameters and to group samples with similar characteristics. A standard recipe for preparation of cheesecakes was used to test the influence of type of cream cheese on cake properties. Hardness of cheesecakes was also determined by penetration. Most full-fat cream cheeses showed significantly greater G' values than the Neufchatel or fat-free cheeses at temperatures below 25 degrees C during the heating cycle. For the cheeses containing fat (full fat and Neufchatel), G' values steeply decreased during heating up to 40 degrees C; the decrease was greater for full-fat cream cheese compared with Neufchatel cheeses. In full-fat cream cheese, one maximum in the LT profile was observed during heating at temperatures below 40 degrees C. In Neufchatel cheeses, a smaller maximum in LT was observed at temperatures below 40 degrees C, whereas fat-free cream cheeses showed no noticeable maximum LT in this temperature region. Most full-fat cream cheeses had greater values of hardness as determined by penetration or spreadability compared with Neufchatel or fat

  5. Penicilllium discolor, a new species from cheese, nuts and vegetables

    DEFF Research Database (Denmark)

    Frisvad, Jens Christian; Samson, Robert A.; Rassing, Birgitte A.;

    1997-01-01

    The new species Penicillum discolor, frequently isolated from nuts, vegetables and cheese is described. It is characterised by rough, dark green conidia, synnemateous growth on malt agar and the production of the secondary metabolites chaetoglobosins A, B and C, palitantin, cyclopenin, cyclopenol......, cyclopeptin, dehydrocyclopeptin, viridicatin and viridicatol. It also produces the mouldy smelling compounds geosmin and 2-methyl-isoborneol, and a series of specific orange to red pigments on yeast extract sucrose agar, hence the epithet discolor. P. discolor resembles P. echinulatum morphologically...

  6. MICROBIOLOGICAL INVESTIGATION ON MOZZARELLA CHEESE SAMPLES NEAR THEIR EXPIRY DATE

    Directory of Open Access Journals (Sweden)

    G. Soncini

    2010-03-01

    Full Text Available A microbiological investigation was carried out on 30 mozzarella cheese samples to evaluate their quality near the expiry date. Total coliforms and Pseudomonas spp. were detected at high levels in 70% and in 30% of the samples, respectively. Pseudomonadaceae were considered as the microorganisms responsible of the texture changing spoilage symptoms that were observed in 13,3% of the samples. Isolated strains were identified by PCR-TGGE analysis as P. rhodesiae (37,5%, P. putida (33,3% and P. poae (29,2%.

  7. Molecular Identification and Quantification of Tetracycline and Erythromycin Resistance Genes in Spanish and Italian Retail Cheeses

    Directory of Open Access Journals (Sweden)

    Ana Belén Flórez

    2014-01-01

    Full Text Available Large antibiotic resistance gene pools in the microbiota of foods may ultimately pose a risk for human health. This study reports the identification and quantification of tetracycline- and erythromycin-resistant populations, resistance genes, and gene diversity in traditional Spanish and Italian cheeses, via culturing, conventional PCR, real-time quantitative PCR (qPCR, and denaturing gradient gel electrophoresis (DGGE. The numbers of resistant bacteria varied widely among the antibiotics and the different cheese varieties; in some cheeses, all the bacterial populations seemed to be resistant. Up to eight antibiotic resistance genes were sought by gene-specific PCR, six with respect to tetracycline, that is, tet(K, tet(L, tet(M, tet(O, tet(S, and tet(W, and two with respect to erythromycin, that is, erm(B and erm(F. The most common resistance genes in the analysed cheeses were tet(S, tet(W, tet(M, and erm(B. The copy numbers of these genes, as quantified by qPCR, ranged widely between cheeses (from 4.94 to 10.18log⁡10/g. DGGE analysis revealed distinct banding profiles and two polymorphic nucleotide positions for tet(W-carrying cheeses, though the similarity of the sequences suggests this tet(W to have a monophyletic origin. Traditional cheeses would therefore appear to act as reservoirs for large numbers of many types of antibiotic resistance determinants.

  8. Performance of two alternative methods for Listeria detection throughout Serro Minas cheese ripening

    Directory of Open Access Journals (Sweden)

    Gardênia Márcia Silva Campos Mata

    Full Text Available ABSTRACT The ability of pathogens to survive cheese ripening is a food-security concern. Therefore, this study aimed to evaluate the performance of two alternative methods of analysis of Listeria during the ripening of artisanal Minas cheese. These methods were tested and compared with the conventional method: Lateral Flow System™, in cheeses produced on laboratory scale using raw milk collected from different farms and inoculated with Listeria innocua; and VIDAS®-LMO, in cheese samples collected from different manufacturers in Serro, Minas Gerais, Brazil. These samples were also characterized in terms of lactic acid bacteria, coliforms and physical-chemical analysis. In the inoculated samples, L. innocua was detected by Lateral Flow System™ method with 33% false-negative and 68% accuracy results. L. innocua was only detected in the inoculated samples by the conventional method at 60-days of cheese ripening. L. monocytogenes was not detected by the conventional and the VIDAS®-LMO methods in cheese samples collected from different manufacturers, which impairs evaluating the performance of this alternative method. We concluded that the conventional method provided a better recovery of L. innocua throughout cheese ripening, being able to detect L. innocua at 60-day, aging period which is required by the current legislation.

  9. Homogenization and lipase treatment of milk and resulting methyl ketone generation in blue cheese.

    Science.gov (United States)

    Cao, Mingkai; Fonseca, Leorges M; Schoenfuss, Tonya C; Rankin, Scott A

    2014-06-25

    A specific range of methyl ketones contribute to the distinctive flavor of traditional blue cheeses. These ketones are metabolites of lipid metabolism by Penicillium mold added to cheese for this purpose. Two processes, namely, the homogenization of milk fat and the addition of exogenous lipase enzymes, are traditionally applied measures to control the formation of methyl ketones in blue cheese. There exists little scientific validation of the actual effects of these treatments on methyl ketone development. The present study evaluated the effects of milk fat homogenization and lipase treatments on methyl ketone and free fatty acid development using sensory methods and the comparison of selected volatile quantities using gas chromatography. Initial work was conducted using a blue cheese system model; subsequent work was conducted with manufactured blue cheese. In general, there were modest effects of homogenization and lipase treatments on free fatty acid (FFA) and methyl ketone concentrations in blue cheese. Blue cheese treatments involving Penicillium roqueforti lipase with homogenized milk yielded higher FFA and methyl ketone levels, for example, a ∼20-fold increase for hexanoic acid and a 3-fold increase in 2-pentanone.

  10. Effects of spray-drying conditions on the chemical, physical, and sensory properties of cheese powder.

    Science.gov (United States)

    Koca, Nurcan; Erbay, Zafer; Kaymak-Ertekin, Figen

    2015-05-01

    Dairy powders are produced to increase the shelf life of fresh dairy products and for use as flavoring agents. In this study, 24 cheese powders produced under 7 different conditions were used to investigate the effects of spray-drying parameters (e.g., inlet air temperature, atomization pressure, and outlet air temperature) on the quality of white cheese powder. Composition, color, physical properties, reconstitution, and sensory characteristics of white cheese powders were determined. The results revealed that the white cheese powders produced in this study had low moisture content ratios and water activity values. High outlet air temperatures caused browning and enhanced Maillard reactions. Additionally, high outlet air temperatures increased wettability and dispersibility and decreased the solubility of white cheese powders. Free fat content was positively correlated with inlet air temperature and negatively correlated with outlet air temperature and atomization pressure. Sensory analyses revealed that white cheese powder samples had acceptable sensory characteristics with the exception of the sample produced at an outlet air temperature of 100°C, which had high scores for scorched flavor and color and low scores for cheese flavor.

  11. Thermally-dried immobilized kefir on casein as starter culture in dried whey cheese production.

    Science.gov (United States)

    Dimitrellou, D; Kourkoutas, Y; Koutinas, A A; Kanellaki, M

    2009-12-01

    The aim of the present study was to evaluate the use of thermally-dried immobilized kefir on casein as a starter culture for protein-enriched dried whey cheese. For comparison reasons, dried whey cheese with thermally-dried free kefir culture and with no starter culture were also produced. The effect of the nature of the culture, the ripening temperature and the ripening process on quality characteristics of the whey cheese was studied. The association of microbial groups during cheese maturation suggested repression of spoilage and protection from pathogens due to the thermally-dried kefir, as counts of coliforms, enterobacteria and staphylococci were significantly reduced in cheeses produced using thermally-dried kefir starter cultures. The effect of the starter culture on production of volatile compounds responsible for cheese flavor was also studied using the SPME GC/MS technique. Thermally-dried immobilized kefir starter culture resulted in an improved profile of aroma-related compounds. The preliminary sensory evaluation ascertained the soft, fine taste and the overall improved quality of cheese produced with the thermally-dried immobilized kefir. The potential of protein-based thermally-dried starter cultures in dairy products is finally highlighted and assessed.

  12. Microbiological aspects of the biofilm on wooden utensils used to make a Brazilian artisanal cheese.

    Science.gov (United States)

    Galinari, Éder; da Nóbrega, Juliana Escarião; de Andrade, Nélio José; de Luces Fortes Ferreira, Célia Lúcia

    2014-01-01

    The artisanal Minas cheese is produced from raw cow's milk and wooden utensils were employed in its manufacture, which were replaced by other materials at the request of local laws. This substitution caused changes in the traditional characteristics of cheese. Due to the absence of scientific studies indicating the microbial composition of biofilms formed on wooden forms, tables and shelves used in these cheese production, the present work evaluated the counts of Staphylococcus aureus, Escherichia coli, coliforms at 32 °C, yeasts, presumptive mesophilic Lactobacillus spp. and Lactococcus spp. in these biofilms, milk, whey endogenous culture and ripened cheese in two traditional regions: Serro and Serra da Canastra. Also, we checked for the presence of Salmonella sp. and Listeria monocytogenes in the ripened cheeses. The ultra structure of the biofilms was also assessed. Counts above legislation (> 2 log cfu/mL) for the pathogens evaluated were found in milk samples from both regions. Only one shelf and one form from Serro were above limits proposed (5 cfu/cm(2) for S. aureus and E. coli and 25 cfu/cm(2) for coliforms) in this study for contaminants evaluated. In Canastra, few utensils presented safe counting of pathogens. There was no Salmonella sp. and Listeria monocytogenes in the cheeses after ripening. Thus, the quality of the cheese is related to improving the microbiological quality of milk, implementation and maintenance of good manufacturing practices, correct cleaning of wooden utensils, and not its replacement.

  13. Chemical composition in Parmesan cheese marketed in Paranavaí - Paraná

    Directory of Open Access Journals (Sweden)

    Fernanda Duarte Gomes

    2016-06-01

    Full Text Available The grated Parmesan cheese is among the most consumed cheese in the country and also among the most fraudulent, since the fragmentation facilitates the incorporation of various adulterants. Brazilian law establishes as the parameters to be evaluated in grated cheese only the moisture content and the fat content in dry matter (GES. However, it is important to analyze other parameters, in order to characterize the products commercialized in Brazil, as quality can be compromised. The objective of this study was to analyze the chemical composition and presence of starch in different samples of grated Parmesan cheese, commercialized in the city of Paranavaí, Paraná. Fifteen samples were analyzed, being three different batches of five brands. The chemical composition (moisture, ash, carbohydrates, proteins and lipids differed from one sample to another; however, all samples were in compliance with Brazilian legislation, considering the moisture content. For the GES content, 60% of the samples showed values higher than those established by Brazilian legislation for semi-fat cheese, such as grated Parmesan cheese. One sample showed a high carbohydrate content, however, starch was not detected by the lugol test. It is concluded that 60% of grated cheese commercialized in the city of Paranavaí present disagreement with Brazilian law, because they had higher fat content in the dry matter than the established.

  14. Microbial Activation of Wooden Vats Used for Traditional Cheese Production and Evolution of Neoformed Biofilms.

    Science.gov (United States)

    Gaglio, Raimondo; Cruciata, Margherita; Di Gerlando, Rosalia; Scatassa, Maria Luisa; Cardamone, Cinzia; Mancuso, Isabella; Sardina, Maria Teresa; Moschetti, Giancarlo; Portolano, Baldassare; Settanni, Luca

    2015-11-06

    Three Lactococcus lactis subsp. cremoris strains were used to develop ad hoc biofilms on the surfaces of virgin wooden vats used for cheese production. Two vats (TZ) were tested under controlled conditions (pilot plant), and two vats (TA) were tested under uncontrolled conditions (industrial plant). In each plant, one vat (TA1 and TZ1) was used for the control, traditional production of PDO Vastedda della Valle del Belìce (Vastedda) cheese, and one (TA2 and TZ2) was used for experimental production performed after lactococcal biofilm activation and the daily addition of a natural whey starter culture (NWSC). Microbiological and scanning electron microscopy analyses showed differences in terms of microbial levels and composition of the neoformed biofilms. The levels of the microbial groups investigated during cheese production showed significant differences between the control trials and between the control and experimental trials, but the differences were not particularly marked between the TA2 and TZ2 productions, which showed the largest numbers of mesophilic lactic acid bacterium (LAB) cocci. LAB populations were characterized phenotypically and genotypically, and 44 dominant strains belonging to 10 species were identified. Direct comparison of the polymorphic profiles of the LAB collected during cheese making showed that the addition of the NWSC reduced their biodiversity. Sensory evaluation showed that the microbial activation of the wooden vats with the multistrain Lactococcus culture generated cheeses with sensory attributes comparable to those of commercial cheese. Thus, neoformed biofilms enable a reduction of microbial variability and stabilize the sensorial attributes of Vastedda cheese.

  15. Movement as Spatial Practices and Economic Strategies in Cheese Production at Family Farms in Bohinj

    Directory of Open Access Journals (Sweden)

    Jaka Repič

    2014-07-01

    Full Text Available The article explores dairy and cheese production at family farms in Bohinj, their economical and organisational strategies (variations between family and cooperative organisation of farming and the connection of cheese production with different modes of spatial movement. In the past decade, several family farms have started producing cheese and milk products, which is an economic activity closely linked to traditional forms of cooperatives, and pasture rights of agricultural societies. These farms have revitalised traditional forms of cheese production and established new economic strategies, especially through the plurality of their activities – work outside of the farm, tourism, marketing of their products, etc. The article first presents a development of cheese production in Bohinj, changes in family and cooperative farming and explores movement and the meshwork of paths, tracks, roads and places that are fundamental to cheese economy. Further, the article connects different movements, e.g. daily pastures close to the villages, transhumance in mountain pasturelands, selling products in markets, etc. Modes of movement (walk, cattle herding, driving to markets are basic practices behind economic strategies of dairy and cheese farms, as well as organisations and use of space, in particular mountain paths and pasturelands.

  16. Amaltheys: A fluorescence-based analyzer to assess cheese milk denatured whey proteins.

    Science.gov (United States)

    Lacotte, Pierre; Gomez, Franck; Bardeau, Floriane; Muller, Sabine; Acharid, Abdelhaq; Quervel, Xavier; Trossat, Philippe; Birlouez-Aragon, Inès

    2015-10-01

    The cheese industry faces many challenges to optimize cheese yield and quality. A very precise standardization of the cheese milk is needed, which is achieved by a fine control of the process and milk composition. Thorough analysis of protein composition is important to determine the amount of protein that will be retained in the curd or lost in the whey. The fluorescence-based Amaltheys analyzer (Spectralys Innovation, Romainville, France) was developed to assess pH 4.6-soluble heat-sensitive whey proteins (sWP*) in 5 min. These proteins are those that can be denatured upon heat-treatment and further retained in the curd after coagulation. Monitoring of sWP* in milk and subsequent adaptation of the process is a reliable solution to achieve stable cheese yield and quality. Performance of the method was evaluated by an accredited laboratory on a 0 to 7 g/L range. Accuracy compared with the reference Kjeldahl method is also provided with a standard error of 0.25 g/L. Finally, a 4-mo industrial trial in a cheese plant is described, where Amaltheys was used as a process analytical technology to monitor sWP* content in ingredients and final cheese milk. Calibration models over quality parameters of final cheese were also built from near-infrared and fluorescence spectroscopic data. The Amaltheys analyzer was found to be a rapid, compact, and accurate device to help implementation of standardization procedures in the dairy industry.

  17. Optimization of "Serpa" cheese whey nanofiltration for effluent minimization and by-products recovery.

    Science.gov (United States)

    Minhalma, Miguel; Magueijo, Vítor; Queiroz, Denise P; de Pinho, Maria Norberta

    2007-01-01

    Second cheese whey (SCW) is a by-product of cheese and curd cheese production that is usually not recovered and therefore substantially contributes to the negative environmental impact of the cheese manufacture plants. Membrane technology, namely nanofiltration (NF), is used in this work for the recovery of SCW organic nutrients, resulting from "Serpa" cheese and curd production. The SCW is processed by NF to recover a rich lactose fraction in the concentrate and a process water with a high salt content in the permeate. The permeation experiments were carried out in a plate & frame NF unit, where two NF membranes (NFT50 and HR-95-PP) were characterized and tested. The NF permeation experiments were performed accordingly with two different operation modes: total recirculation and concentration. In order to select the best membrane and operating pressure for the SCW fractionation, total recirculation experiments were carried out. The NF modeling was also performed, in terms of permeate fluxes and rejection coefficients using the resistances-in-series model and the solution-diffusion model, respectively. After the membrane selection, the concentration experiments showed that the selected membrane (NFT50) at 3.0MPa allows a water recovery of approximately 80%, concentrating the SCW nutrients approximately 5 times. Therefore, the NF operation can successfully reduce the wastewater organic load and simultaneously contributes to the valorization of the cheese and curd cheese manufacture by-products.

  18. Inhibitory effect of the essential oil from Eugenia caryophyllata Thumb leaves on coalho cheese contaminating microorganisms

    Directory of Open Access Journals (Sweden)

    Vinicius Nogueira Trajano

    2010-12-01

    Full Text Available Coalho cheese (a firm but very lightweight cheese produced in Brazil is widely produced and consumed in the Brazilian Northeast and its production has been mainly related to small farmers. This food has been frequently characterized as having high microbial load posing a risk for the health of consumers. This study aimed to indentify the chemical compounds of the essential oil from Eugenia caryophyllata leaves; to evaluate the inhibitory effect of the oil against coalho cheese contaminating microorganisms; and to assess its efficacy in inhibiting the autochthonous microflora of the cheese during refrigerated storage. Eugenol (74% was found to be the most prevalent compound in the essential oil. Minimum Inhibitory Concentration (MIC and Minimum Cidal Concentration (MCC in laboratorial broth were in the range of 2.5-5 and 5-20 µg.mL-1, respectively. Vaccum packed coalho cheese added with 5, 10, and 20 µg.g-1 of oil showed a lower growth rate (like-static effect against mesophilic bacteria during the time intervals evaluated. On the other hand, 2.5-10 µg.g-1 of oil provided a prominent decrease toward fungi count in cheese samples during storage. These results reveal the interesting antimicrobial property of the essential oil from E. caryophyllata leaves against a range of coalho cheese-related microorganisms in laboratorial media and in food matrix.

  19. Microbiological aspects of the biofilm on wooden utensils used to make a Brazilian artisanal cheese

    Science.gov (United States)

    Galinari, Éder; da Nóbrega, Juliana Escarião; de Andrade, Nélio José; de Luces Fortes Ferreira, Célia Lúcia

    2014-01-01

    The artisanal Minas cheese is produced from raw cow’s milk and wooden utensils were employed in its manufacture, which were replaced by other materials at the request of local laws. This substitution caused changes in the traditional characteristics of cheese. Due to the absence of scientific studies indicating the microbial composition of biofilms formed on wooden forms, tables and shelves used in these cheese production, the present work evaluated the counts of Staphylococcus aureus, Escherichia coli, coliforms at 32 °C, yeasts, presumptive mesophilic Lactobacillus spp. and Lactococcus spp. in these biofilms, milk, whey endogenous culture and ripened cheese in two traditional regions: Serro and Serra da Canastra. Also, we checked for the presence of Salmonella sp. and Listeria monocytogenes in the ripened cheeses. The ultra structure of the biofilms was also assessed. Counts above legislation (> 2 log cfu/mL) for the pathogens evaluated were found in milk samples from both regions. Only one shelf and one form from Serro were above limits proposed (5 cfu/cm2 for S. aureus and E. coli and 25 cfu/cm2 for coliforms) in this study for contaminants evaluated. In Canastra, few utensils presented safe counting of pathogens. There was no Salmonella sp. and Listeria monocytogenes in the cheeses after ripening. Thus, the quality of the cheese is related to improving the microbiological quality of milk, implementation and maintenance of good manufacturing practices, correct cleaning of wooden utensils, and not its replacement. PMID:25242963

  20. Performance of two alternative methods for Listeria detection throughout Serro Minas cheese ripening.

    Science.gov (United States)

    Mata, Gardênia Márcia Silva Campos; Martins, Evandro; Machado, Solimar Gonçalves; Pinto, Maximiliano Soares; de Carvalho, Antônio Fernandes; Vanetti, Maria Cristina Dantas

    2016-01-01

    The ability of pathogens to survive cheese ripening is a food-security concern. Therefore, this study aimed to evaluate the performance of two alternative methods of analysis of Listeria during the ripening of artisanal Minas cheese. These methods were tested and compared with the conventional method: Lateral Flow System™, in cheeses produced on laboratory scale using raw milk collected from different farms and inoculated with Listeria innocua; and VIDAS(®)-LMO, in cheese samples collected from different manufacturers in Serro, Minas Gerais, Brazil. These samples were also characterized in terms of lactic acid bacteria, coliforms and physical-chemical analysis. In the inoculated samples, L. innocua was detected by Lateral Flow System™ method with 33% false-negative and 68% accuracy results. L. innocua was only detected in the inoculated samples by the conventional method at 60-days of cheese ripening. L. monocytogenes was not detected by the conventional and the VIDAS(®)-LMO methods in cheese samples collected from different manufacturers, which impairs evaluating the performance of this alternative method. We concluded that the conventional method provided a better recovery of L. innocua throughout cheese ripening, being able to detect L. innocua at 60-day, aging period which is required by the current legislation.

  1. Probiotic Properties of Lactic Acid Bacteria Isolated from Croatian Fresh Soft Cheese and Serbian White Pickled Cheese

    Directory of Open Access Journals (Sweden)

    Ksenija Uroić

    2014-01-01

    Full Text Available The aim of this study is to gain insight into the probiotic potential of autochthonous lactic acid bacteria (LAB isolated from artisanal fresh soft and white pickled cheeses. Eleven out of 86 LAB isolates from traditionally produced artisanal fresh soft and white pickled cheeses which survived the most rigorous simulated gastrointestinal tract conditions and did not show resistance to antibiotics were subjected to further evaluation for functional probiotic properties. The ability of the examined strains to assimilate cholesterol in the presence of bile salts was strain dependent, with the highest percentage of cholesterol assimilated by strain Lactobacillus brevis BGGO7-28 possessing S-layer proteins on its cell surface. The growth of strains with mannitol or lactulose as the only carbon source was better than with fructooligosaccharides (FOS and inulin as prebiotic substrates, which should be considered in the production of synbiotics. Moreover, the results demonstrated that the strains were highly adhesive to human enterocyte-like Caco-2 cells and to a lesser extent to HT29-MTX cells, with the exception of strain Lb. brevis BGGO7-28, which showed similar percentage of adhesion to both cell lines. This strain was the only one with the acidic cell surface, while other examined strains have the cell surfaces with electron donor and basic properties. In addition, all selected strains decreased the proliferation of gut-associated lymphoid tissue (GALT cells, suggesting possible immunomodulatory potential of the isolates. Finally, the number of viable cells in dry active preparations after lyophilisation depended on the lyoprotectant used (inulin, FOS or skimmed milk, as well as on the strain subjected to lyophilisation. In conclusion, the results obtained in this study demonstrate that particular dairy LAB isolates exhibit strain-specific probiotic properties. Thus, they could be further examined as part of mixed autochthonous starter cultures for

  2. ANOMALOUS BLUE COLOURING OF MOZZARELLA CHEESE INTENTIONALLY CONTAMINATED WITH PIGMENT PRODUCING STRAINS OF PSEUDOMONAS FLUORESCENS

    Directory of Open Access Journals (Sweden)

    P. Sechi

    2011-04-01

    Full Text Available In summer 2010 a large outbreak of anomalous blue coloration of mozzarella cheese was recorded in Italy and some northern European countries. Official laboratory analysis and health authorities linked the outbreak to the contamination of processing water with strains of Pseudomonas fluorescens, although several expert raised the question of how to unequivocally link the blue coloring to the presence of the micro-organism. In an attempt to set-up a method to determine whether a given Pseudomonas spp. strain is responsible of the defect, an in vitro system for the evaluation of blue colouring of mozzarella cheese intentionally contaminated with strains of Pseudomonas fluorescens. was developed The system is aimed to ascertain whether P. fluorescens strains, isolated from mozzarella cheese with anomalous blue coloration, are able to reproduce the blue coloration under controlled experimental condition. 96 trials of experimental inoculation of mozzarella cheese in different preservation liquids, were conducted using various suspension of Pseudomonas spp. (P. fluorescens ATCC 13525, P. fluorescens CFBP 3150, one P. fluorescens field strain isolated from blue-colored mozzarella cheese and P. aeruginosa ATCC 10145 as positive control at different concentrations and incubated at different temperatures. Growth curve of all Pseudomonas spp. strains tested demonstrated that after three days of incubation the concentration was generally higher than 106 CFU/g of mozzarella cheese incubated in Tryptic Soy Broth (TSB, and higher than 105 CFU/g of mozzarella cheese incubated in preservation liquid. All mozzarella cheeses inoculated with the field strain of Pseudomonas fluorescens showed the characteristic anomalous blue coloration, which is often associated with Pseudomonas fluorescens contamination of water used during mozzarella cheesemaking. With the proposed system, which enabled a considerable amount of samples to be analysed under controlled experimental

  3. Measurement of pH micro-heterogeneity in natural cheese matrices by fluorescence lifetime imaging

    Directory of Open Access Journals (Sweden)

    Zuzana eBurdikova

    2015-03-01

    Full Text Available Cheese, a product of microbial fermentation may be defined as a protein matrix entrapping fat, moisture, minerals and solutes as well as dispersed bacterial colonies. The growth and physiology of bacterial cells in these colonies may be influenced by the microenvironment around the colony, or alternatively the cells within the colony may modify the microenvironment (e.g. pH, redox potential due to their metabolic activity. While cheese pH may be measured at macro level there remains a significant knowledge gap relating to the degree of micro-heterogeneity of pH within the cheese matrix and its relationship with microbial, enzymatic and physiochemical parameters and ultimately with cheese quality, consistency and ripening patterns. The pH of cheese samples was monitored both at macroscopic scale and at microscopic scale, using a non-destructive microscopic technique employing C-SNARF-4 and Oregon Green 488 fluorescent probes. The objectives of this work were to evaluate the suitability of these dyes for microscale pH measurements in natural cheese matrices and to enhance the sensitivity and extend the useful pH range of these probes using fluorescence lifetime imaging (FLIM. In particular, fluorescence lifetime of Oregon Green 488 proved to be sensitive probe to map pH micro heterogeneity within cheese matrices. Good agreement was observed between macroscopic scale pH measurement by FLIM and by traditional pH methods, but in addition considerable localized microheterogeneity in pH was evident within the curd matrix with pH range between 4.0 and 5.5. This technique provides significant potential to further investigate the relationship between cheese matrix physico-chemistry and bacterial metabolism during cheese manufacture and ripening.

  4. Characterization of the bacterial biodiversity in Pico cheese (an artisanal Azorean food).

    Science.gov (United States)

    Riquelme, Cristina; Câmara, Sandra; Dapkevicius, Maria de Lurdes N Enes; Vinuesa, Pablo; da Silva, Célia Costa Gomes; Malcata, F Xavier; Rego, Oldemiro A

    2015-01-02

    This work presents the first study on the bacterial communities in Pico cheese, a traditional cheese of the Azores (Portugal), made from raw cow's milk. Pyrosequencing of tagged amplicons of the V3-V4 regions of the 16S rDNA and Operational Taxonomic Unit-based (OTU-based) analysis were applied to obtain an overall idea of the microbiota in Pico cheese and to elucidate possible differences between cheese-makers (A, B and C) and maturation times. Pyrosequencing revealed a high bacterial diversity in Pico cheese. Four phyla (Firmicutes, Proteobacteria, Actinobacteria and Bacteroidetes) and 54 genera were identified. The predominant genus was Lactococcus (77% of the sequences). Sequences belonging to major cheese-borne pathogens were not found. Staphylococcus accounted for 0.5% of the sequences. Significant differences in bacterial community composition were observed between cheese-maker B and the other two units that participated in the study. However, OTU analysis identified a set of taxa (Lactococcus, Streptococcus, Acinetobacter, Enterococcus, Lactobacillus, Staphylococcus, Rothia, Pantoea and unclassified genera belonging to the Enterobacteriaceae family) that would represent the core components of artisanal Pico cheese microbiota. A diverse bacterial community was present at early maturation, with an increase in the number of phylotypes up to 2 weeks, followed by a decrease at the end of ripening. The most remarkable trend in abundance patterns throughout ripening was an increase in the number of sequences belonging to the Lactobacillus genus, with a concomitant decrease in Acinetobacter, and Stenotrophomonas. Microbial rank abundance curves showed that Pico cheese's bacterial communities are characterized by a few dominant taxa and many low-abundance, highly diverse taxa that integrate the so-called "rare biosphere".

  5. The Effect of adjusting PH on Stretchability and Meltability to White Brined Nabulsi Cheese

    Directory of Open Access Journals (Sweden)

    Ayman S. Mazahreh

    2009-01-01

    Full Text Available Problem statement: Boiled white brined (Nabulsi cheese is the mostly consumed in Jordan; this cheese should show meltability and high stretchability in order to fit in the production of high quality Kunafa and other popular local sweets and pastries.The most outstanding characteristic of Nabulsi cheese is the long keeping ability (more than one year without cooling, since it is preserved in concentrated brine (up to 25%. Approach: This work was based on the hypothesis that it would be possible to imply meltability and stretchability to the cheese by adjusting pH to the original brine that may specifically act on cross linking bonds of casein. A new apparatus for measuring the actual stretchability was designed and constructed; measurements on different cheeses proved its validity and reliability to measurement stretchability up to 80cm. Detailed treatments revealed the success of the proposed assumption in inducing meltability and stretchability to cheese processed and preserved according to the traditional methods. Results: The following results were obtained: It is possible to imply a low but acceptable level of stretchability and meltability through adjustment of the pH in the range of 5.4-5.8 by adding calculated amount of citric acid considering the buffering capacity of the cheese and storing it for few weeks to reach equilibrium. Conclusion: Conformational experiments proved the applicability of the new method on commercial Nabulsi cheese samples. Sensory evaluation revealed the superiority of pH adjusting treatment specifically at pH 5.4 and 5.8 as well as commercial Mashmouleh cheese that has high meltability and stretchability when used in Kunafa making.

  6. Fate of Lactococcus lactis starter cultures during late ripening in cheese models.

    Science.gov (United States)

    Ruggirello, Marianna; Cocolin, Luca; Dolci, Paola

    2016-10-01

    The presence of Lactococcus lactis, commonly employed as starter culture, was, recently, highlighted and investigated during late cheese ripening. Thus, the main goal of the present study was to assess the persistence and viability of this microorganism throughout manufacturing and ripening of model cheeses. Eight commercial starters, constituted of L. lactis subsp. lactis and L. lactis subsp. cremoris, were inoculated in pasteurized milk in order to manufacture miniature cheeses, ripened for six months. Samples were analysed at different steps (milk after inoculum, curd after cutting, curd after pressing and draining, cheese immediately after salting and cheese at 7, 15, 30, 60, 90, 120, 150 and 180 days of ripening) and submitted to both culture-dependent (traditional plating on M17) and -independent analysis (reverse transcription-quantitative PCR). On the basis of direct RNA analysis, L. lactis populations were detected in all miniature cheeses up to the sixth month of ripening, confirming the presence of viable cells during the whole ripening process, including late stages. Noteworthy, L. lactis was detected by RT-qPCR in cheese samples also when traditional plating failed to indicate its presence. This discrepancy could be explain with the fact that lactococci, during ripening process, enter in a stressed physiological state (viable not culturable, VNC), which might cause their inability to grow on synthetic medium despite their viability in cheese matrix. Preliminary results obtained by "resuscitation" assays corroborated this hypothesis and 2.5% glucose enrichment was effective to recover L. lactis cells in VNC state. The capability of L. lactis to persist in late ripening, and the presence of VNC cells which are known to shift their catabolism to peptides and amino acids consumption, suggests a possible technological role of this microorganism in cheese ripening with a possible impact on flavour formation.

  7. Tracing and inhibiting growth of Staphylococcus aureus in barbecue cheese production after product recall.

    Science.gov (United States)

    Johler, S; Zurfluh, K; Stephan, R

    2016-05-01

    Staphylococcal food poisoning is one of the most prevalent causes of foodborne intoxication worldwide. It is caused by ingestion of enterotoxins formed by Staphylococcus aureus during growth in the food matrix. Following a recall of barbecue cheese due to the detection of staphylococcal enterotoxins in Switzerland in July 2015, we analyzed the production process of the respective dairy. Although most cheese-making processes involve acidification to inhibit the growth of pathogenic bacteria, barbecue cheese has to maintain a pH >6.0 to prevent undesired melting of the cheese. In addition, the dairy decided to retain the traditional manual production process of the barbecue cheese. In this study, therefore, we aimed to (1) trace Staph. aureus along the barbecue cheese production process, and (2) develop a sustainable strategy to inhibit growth of Staph. aureus and decrease the risk of staphylococcal food poisoning without changing the traditional production process. To this end, we traced Staph. aureus in a step-wise blinded process analysis on 4 different production days using spa (Staphylococcus protein A gene) typing, DNA microarray profiling, and pulsed-field gel electrophoresis analysis. We subsequently selected a new starter culture and used a model cheese production including a challenge test assay to assess its antagonistic effect on Staph. aureus growth, as well as its sensory and technological implications. We detected Staph. aureus in 30% (37/124) of the collected samples taken from the barbecue cheese production at the dairy. This included detection of Staph. aureus in the final product on all 4 production days, either after enrichment or using quantitative detection. We traced 2 enterotoxigenic Staph. aureus strains (t073/CC45 and t282/CC45) colonizing the nasal cavity and the forearms of the cheesemakers to the final product. In the challenge test assay, we were able to show that the new starter culture inhibited growth of Staph. aureus while meeting

  8. Antimicrobial chitosan-lysozyme (CL) films and coatings for enhancing microbial safety of mozzarella cheese.

    Science.gov (United States)

    Duan, J; Park, S-I; Daeschel, M A; Zhao, Y

    2007-11-01

    This study investigated the antimicrobial activities of chitosan-lysozyme (CL) composite films and coatings against tested microorganisms inoculated onto the surface of Mozzarella cheese. CL film-forming solutions (FFS) with a pH of 4.4 to 4.5 were prepared by incorporating 0% or 60% lysozyme (per dry weight of chitosan) into chitosan FFS with or without a pH adjustment to 5.2. Sliced cheese was subjected to 3 CL package applications: film, lamination on a multilayer coextruded film, and coating. Cheese was inoculated with Listeria monocytogenes, Escherichia coli, or Pseudomonas fluorescens at 10(4) CFU/g, or with mold and yeast at 10(2) CFU/g. Inoculated cheese was individually vacuum packaged and stored at 10 degrees C for sampling at 1, 7, and 14 d for bacteria, and at 10, 20, and 30 d for fungi. Inoculated bacteria survived but failed to multiply in untreated cheese during storage. Treated cheese received 0.43- to 1.25-, 0.40- to 1.40-, and 0.32- to 1.35-log reductions in E. coli, P. fluorescens, and L. monocytogenes, respectively. Incorporation of 60% lysozyme in chitosan FFS showed greater antimicrobial effect than chitosan alone on P. fluorescens and L. monocytogenes. The pH adjustment only affected the antimicrobial activity on L. monocytogenes, with lower pH (unadjusted) showing greater antimicrobial effect than pH 5.2. Mold and yeast increased to 10(5) CFU/g in untreated cheese after 30 d storage. Growth of mold was completely inhibited in cheese packaged with CL films, while 0.24- to 1.90- and 0.06- to 0.50-log reductions in mold populations were observed in cheese packaged with CL-laminated films and coatings, respectively. All CL packaging applications resulted in 0.01- to 0.64-log reduction in yeast populations.

  9. Measurement of pH micro-heterogeneity in natural cheese matrices by fluorescence lifetime imaging.

    Science.gov (United States)

    Burdikova, Zuzana; Svindrych, Zdenek; Pala, Jan; Hickey, Cian D; Wilkinson, Martin G; Panek, Jiri; Auty, Mark A E; Periasamy, Ammasi; Sheehan, Jeremiah J

    2015-01-01

    Cheese, a product of microbial fermentation may be defined as a protein matrix entrapping fat, moisture, minerals and solutes as well as dispersed bacterial colonies. The growth and physiology of bacterial cells in these colonies may be influenced by the microenvironment around the colony, or alternatively the cells within the colony may modify the microenvironment (e.g., pH, redox potential) due to their metabolic activity. While cheese pH may be measured at macro level there remains a significant knowledge gap relating to the degree of micro-heterogeneity of pH within the cheese matrix and its relationship with microbial, enzymatic and physiochemical parameters and ultimately with cheese quality, consistency and ripening patterns. The pH of cheese samples was monitored both at macroscopic scale and at microscopic scale, using a non-destructive microscopic technique employing C-SNARF-4 and Oregon Green 488 fluorescent probes. The objectives of this work were to evaluate the suitability of these dyes for microscale pH measurements in natural cheese matrices and to enhance the sensitivity and extend the useful pH range of these probes using fluorescence lifetime imaging (FLIM). In particular, fluorescence lifetime of Oregon Green 488 proved to be sensitive probe to map pH micro heterogeneity within cheese matrices. Good agreement was observed between macroscopic scale pH measurement by FLIM and by traditional pH methods, but in addition considerable localized microheterogeneity in pH was evident within the curd matrix with pH range between 4.0 and 5.5. This technique provides significant potential to further investigate the relationship between cheese matrix physico-chemistry and bacterial metabolism during cheese manufacture and ripening.

  10. Commercial ripening starter microorganisms inoculated into cheese milk do not successfully establish themselves in the resident microbial ripening consortia of a South german red smear cheese.

    Science.gov (United States)

    Goerges, Stefanie; Mounier, Jérôme; Rea, Mary C; Gelsomino, Roberto; Heise, Valeska; Beduhn, Rüdiger; Cogan, Timothy M; Vancanneyt, Marc; Scherer, Siegfried

    2008-04-01

    Production of smear-ripened cheese critically depends on the surface growth of multispecies microbial consortia comprising bacteria and yeasts. These microorganisms often originate from the cheese-making facility and, over many years, have developed into rather stable, dairy-specific associations. While commercial smear starters are frequently used, it is unclear to what degree these are able to establish successfully within the resident microbial consortia. Thus, the fate of the smear starters of a German Limburger cheese subjected to the "old-young" smearing technique was investigated during ripening. The cheese milk was supplemented with a commercial smear starter culture containing Debaryomyces hansenii, Galactomyces geotrichum, Arthrobacter arilaitensis, and Brevibacterium aurantiacum. Additionally, the cheese surface was inoculated with an extremely stable in-house microbial consortium. A total of 1,114 yeast and 1,201 bacterial isolates were identified and differentiated by Fourier transform infrared spectroscopy. Furthermore, mitochondrial DNA restriction fragment length polymorphism, random amplified polymorphic DNA, repetitive PCR, and pulsed field gel electrophoresis analyses were used to type selected isolates below the species level. The D. hansenii starter strain was primarily found early in the ripening process. The G. geotrichum starter strain in particular established itself after relocation to a new ripening room. Otherwise, it occurred at low frequencies. The bacterial smear starters could not be reisolated from the cheese surface at all. It is concluded that none of the smear starter strains were able to compete significantly and in a stable fashion against the resident microbial consortia, a result which might have been linked to the method of application. This finding raises the issue of whether addition of starter microorganisms during production of this type of cheese is actually necessary.

  11. Cheese intake lowers plasma cholesterol concentrations without increasing bile acid excretion

    DEFF Research Database (Denmark)

    Hjerpsted, Julie Bousgaard; Dragsted, Lars Ove; Tholstrup, Tine

    2016-01-01

    Purpose Cheese is a dairy product with high calcium content. It has been suggested that calcium intake may increase fecal excretion of bile acids that would cause a regeneration of bile acids from hepatic cholesterol and thereby result in a lowering of plasma cholesterol concentrations. We aimed...... with 13% energy from cheese or butter. Results After 6 weeks of intervention cheese resulted in higher amounts of calcium excreted in feces compared to butter. However, no difference was observed in fecal bile acid output despite lower serum total, LDL and HDL cholesterol concentrations observed...

  12. Non-starter lactic acid bacteria used to improve cheese quality and provide health benefits.

    Science.gov (United States)

    Settanni, Luca; Moschetti, Giancarlo

    2010-09-01

    Non-starter lactic acid bacteria (NSLAB) dominate cheese microbiota during ripening. They tolerate the hostile environment well and strongly influence the biochemistry of curd maturation, contributing to the development of the final characteristics of cheese. Several NSLAB are selected on the basis of their health benefits (enhancement of intestinal probiosis, production of bioactive peptides, generation of gamma-aminobutyric acid and inactivation of antigenotoxins) and are employed in cheese-making. This review describes the ecology of NSLAB, and focuses on their application as adjunct cultures, in order to drive the ripening process and promote health advantages. The scopes of future directions of research are summarised.

  13. Quantitative Microbial Risk Assessment for Clostridium perfringens in Natural and Processed Cheeses.

    Science.gov (United States)

    Lee, Heeyoung; Lee, Soomin; Kim, Sejeong; Lee, Jeeyeon; Ha, Jimyeong; Yoon, Yohan

    2016-08-01

    This study evaluated the risk of Clostridium perfringens (C. perfringens) foodborne illness from natural and processed cheeses. Microbial risk assessment in this study was conducted according to four steps: hazard identification, hazard characterization, exposure assessment, and risk characterization. The hazard identification of C. perfringens on cheese was identified through literature, and dose response models were utilized for hazard characterization of the pathogen. For exposure assessment, the prevalence of C. perfringens, storage temperatures, storage time, and annual amounts of cheese consumption were surveyed. Eventually, a simulation model was developed using the collected data and the simulation result was used to estimate the probability of C. perfringens foodborne illness by cheese consumption with @RISK. C. perfringens was determined to be low risk on cheese based on hazard identification, and the exponential model (r = 1.82×10(-11)) was deemed appropriate for hazard characterization. Annual amounts of natural and processed cheese consumption were 12.40±19.43 g and 19.46±14.39 g, respectively. Since the contamination levels of C. perfringens on natural (0.30 Log CFU/g) and processed cheeses (0.45 Log CFU/g) were below the detection limit, the initial contamination levels of natural and processed cheeses were estimated by beta distribution (α 1 = 1, α 2 = 91; α 1 = 1, α 2 = 309)×uniform distribution (a = 0, b = 2; a = 0, b = 2.8) to be -2.35 and -2.73 Log CFU/g, respectively. Moreover, no growth of C. perfringens was observed for exposure assessment to simulated conditions of distribution and storage. These data were used for risk characterization by a simulation model, and the mean values of the probability of C. perfringens foodborne illness by cheese consumption per person per day for natural and processed cheeses were 9.57×10(-14) and 3.58×10(-14), respectively. These results indicate that probability of C. perfringens foodborne illness

  14. Textural and cooking properties and viscoelastic changes on heating and cooling of Balkan cheeses.

    Science.gov (United States)

    Guinee, T P; Pudja, P; Miočinović, J; Wiley, J; Mullins, C M

    2015-11-01

    The growth in food service and prepared consumer foods has led to increasing demand for cheese with customized textural and cooking characteristics. The current study evaluated Kačkavalj, Kačkavalj Krstaš, and Trappist cheeses procured from manufacturing plants in Serbia for texture profile characteristics, flow and extensibility of the heated cheese, and changes in viscoelasticity characteristics during heating and cooling. Measured viscoelastic parameters included elastic modulus, G', loss modulus, G″, and loss tangent, LT (G″/G'). The melting temperature and congealing temperature were defined as the temperature at which LT=1 during heating from 25 to 90°C and on cooling from 90 to 25°C. The maximum LT during heating was as an index of the maximum fluidity of the molten cheese. Significant variation was noted for the extent of flow and extensibility of the heated cheeses, with no trend of cheese type. As a group, the Kačkavalj cheeses had relatively high levels of salt-in-moisture and pH 4.6-soluble N and low protein-to-fat ratio and levels of αs1-CN (f24-199). They fractured during compression to 75%; had relatively low values of cohesiveness, chewiness, and springiness; melted at ~70 to 90°C; reached maximum LT at 90°C; and congealed at 58 to 63°C. Conversely, the Kačkavalj Krstaš and Trappist cheeses had low levels of primary proteolysis and salt-in-moisture content and a high protein-to-fat ratio. They did not fracture during compression, had high values for cohesiveness and chewiness, melted at lower temperatures (56-62°C), attained maximum fluidity at a lower temperature (72-78°C), and congealed at 54 to 69°C. There was a hysteretic dependence of G' and LT on temperature for all cheeses, with the LT during cooling being higher than that during heating, and G' during cooling being lower or higher than the equivalent values during heating depending on the cheese type. Monitoring the dynamic changes in viscoelasticity during heating and

  15. Control of Listeria monocytogenes in fresh cheese using protective lactic acid bacteria.

    Science.gov (United States)

    Coelho, M C; Silva, C C G; Ribeiro, S C; Dapkevicius, M L N E; Rosa, H J D

    2014-11-17

    In the past years, there has been a particular focus on the application of bacteriocins produced by lactic acid bacteria (LAB) in controlling the growth of pathogenic bacteria in foods. The aim of this study was to select LAB strains with antimicrobial activity, previously isolated from a traditional Azorean artisanal cheese (Pico cheese), in order to identify those with the greatest potential in reducing Listeria monocytogenes in fresh cheese. Eight bacteriocin producer strains identified as Lactococcus lactis (1) and Enterococcus faecalis (7) were tested. In general, the bacteriocin-producing strains presented a moderate growth in fresh cheese at refrigeration temperatures (4 °C), increasing one log count in three days. They exhibited slow acidification capacity, despite the increased production of lactic acid displayed by some strains after 24h. Bacteriocin activity was only detected in the whey of fresh cheese inoculated with two Enterococcus strains, but all cheeses made with bacteriocin-producing strains inhibited L. monocytogenes growth in the agar diffusion bioassay. No significant differences were found in overall sensory evaluation made by a non-trained panel of 50-52 tasters using the isolates as adjunct culture in fresh cheese, with the exception of one Enterococcus strain. To test the effect of in situ bacteriocin production against L. monocytogenes, fresh cheese was made from pasteurized cows' milk inoculated with bacteriocin-producing LAB and artificially contaminated with approximately 10(6) CFU/mL of L. monocytogenes. The numbers of L. monocytogenes were monitored during storage of fresh cheese at refrigeration temperature (4 °C) for up to 15 days. All strains controlled the growth of L. monocytogenes, although some Enterococcus were more effective in reducing the pathogen counts. After 7 days, this reduction was of approximately 4 log units compared to the positive control. In comparison, an increase of 4 log CFU/mL in pathogen numbers was

  16. Researches regarding the variation of the monocalcic paracaseinate amount probiotic cheese telemea

    Directory of Open Access Journals (Sweden)

    Mădălina ULIESCU

    2010-12-01

    Full Text Available The coagulum obtained at the rennet curdling (the dicalcic paracaseinate is transformed gradually, under the lactic acid action, in monocalcic paracaseinate which is soluble in 5% NaCl solution at 50 – 55OC. This proteic fraction, in the presence of the salt in cheese, has an adhesive capacity, higher than other paracaseinates and therefore it has a notable influence over the rheological characteristics of the cheese. The proteolysis evolution in the probiotic cheese Telemea was analyzed comparing the classiccheese Telemea and the probiotic one by determining the nitrogen fractions and as well by determining the variation of the monocalcic paracaseinate.

  17. Dynamics of complex microbiota and enzymes in Divle Cave cheese and their biochemical consequences

    OpenAIRE

    Ozturkoglu Budak, S.

    2016-01-01

    Divle Cave cheese is a raw ewe’s milk cheese ripened with the aid of a rich microbiota and a wide range of protease and lipase enzymes secreted by individual strains belong to this microbial community. The study presented in this thesis mainly aims to define the diversity and evolution of the complex microbiota of this raw milk cheese during traditional ripening in a cave, to describe the protease and lipase activities of the determined strains and to select the dominant contributors to ripen...

  18. Unwrapping The Northern Sea cheese - Enacting place in the Danish dairy food sector

    OpenAIRE

    Ostrowski, Kasper

    2012-01-01

    The Nordic foodscape has changed radically over the last decade. In Scandinavia there is massive focus on a Nordic gourmet food evolution in general and in Denmark specifically also a cheese revolution. Notions of terroir and place specific foodstuffs are rapidly gaining interest in the Nordic countries. In the fall of 2008 Thise Mejeri won an annual Danish gourmet dairy prize with their speciality cheese ‘Vesterhavsost’. The judges noted that: “The cheese has character, and it has the “t...

  19. Mechanical properties of cottage cheese-fortified wheat dough and loaf bread

    OpenAIRE

    Guemes-Vera, Norma; Gonzalez-Victoriano, Lizbeth; Soto-Simental, Sergio; Hernandez-Chavez, Juan Francisco; Reyes-Santamaria, Ma. Isabel

    2012-01-01

    Milk whey and its derivatives are commonly used to fortify food products. A study was done on the effect of seven cottage cheese (sour/sweet whey mixture) inclusion concentrations (5, 7.5, 10, 12.5, 15, 17.5 and 20 %) on the mechanical properties of white wheat bread dough using a texture analyser. Cottage cheese protein content was 10.05 %. Loaf bread made using the 7.5, 12.5 and 17.5 % cottage cheese concentrations showed crumb quality similar to the control in the 12.5 and 17.5 % treatment...

  20. Who Moved My Cheese?%谁动了我的奶酪?

    Institute of Scientific and Technical Information of China (English)

    Spencer Johnson

    2005-01-01

    @@ What is This Cheese? We all have things we want in our lives-a job,a relationship,money, a house and home, freedom, health, recognition, spiritual peace, or even activities we enjoy, like golf or reading. In the story,"Cheese" is a metaphor for all these desirous items-the things that consume Sniff,Scurry,Hem and Haw-that makes them happy,that fulfills their existence. Each of us has our own idea of what our Cheese is,and we pursue it because we believe it can make us happy.

  1. Antimicrobial properties of lactic acid bacteria isolated from uruguayan artisan cheese

    Directory of Open Access Journals (Sweden)

    Martín Fraga Cotelo

    2013-12-01

    Full Text Available Uruguayan artisan cheese is elaborated with raw milk and non-commercial starters. The associated native microbiota may include lactic acid bacteria and also potentially pathogenic bacteria. Lactic acid bacteria were isolated from artisan cheese, raw milk, and non-commercial starter cultures, and their potential bacteriocin production was assessed. A culture collection of 509 isolates was obtained, and five isolates were bacteriocin-producers and were identified as Enterococcus durans,Lactobacillus casei, and Lactococcus lactis. No evidence of potential virulence factors were found in E. durans strains. These are promising results in terms of using these native strains for cheese manufacture and to obtain safe products.

  2. Proline iminopeptidase PepI overexpressing Lactobacillus casei as an adjunct starter in Edam cheese

    Science.gov (United States)

    Navidghasemizad, Sahar; Takala, Timo M; Alatossava, Tapani; Saris, Per EJ

    2013-01-01

    In this study the growth of genetically modified Lactobacillus casei LAB6, overexpressing proline iminopeptidase PepI and its capacity to increase free proline was investigated during ripening of Edam cheese. The strain successfully survived 12 weeks of ripening period in cheese. The food-grade plasmid pLEB604, carrying the pepI gene, was stable, and PepI enzyme was active in LAB6 cells isolated at different stages of the ripening process. However, HPLC analyses indicated that Lb. casei LAB6 could not increase the amount of free proline in ripened cheese. PMID:23851577

  3. Survival of Brucella abortus aqpX mutant in fresh and ripened cheeses.

    Science.gov (United States)

    Santiago-Rodríguez, María Del Rosario; Díaz-Aparicio, Efrén; Arellano-Reynoso, Beatriz; García-Lobo, Juan M; Gimeno, Miquel; Palomares-Reséndiz, Erika G; Hernández-Castro, Rigoberto

    2015-02-01

    The objective of this work was to evaluate the survival of a Brucella abortus aqpX mutant during the elaboration and conservation of fresh and ripened cheeses at 4 °C and 24 °C. The pH values and water activity were monitored for each type of cheese. The fresh cheese was elaborated with raw milk inoculated with 6×10⁸ colony-forming units (CFU)/mL each of parental and mutant strain. Ripening cheeses were elaborated with both raw and pasteurized milk and inoculated with 12×10⁸ CFU/mL each of parental and mutant strains. In fresh cheese, survival was observed during elaboration and conservation for 7 days at 4 °C in mutant and parental strains. The number of survivors of the mutant strain was 10 times lower compared with the parental strain at pH 5 and a(w) of 0.930. In the cheese elaborated with raw milk and ripened at 24 °C, both strains survived until day 17 at pH 4.0 and a(w) of 0.89. However, when the cheese was elaborated with pasteurized milk, the parental strain survived until day 31 of ripening, and the mutant strain survived 24 days at pH 4 and a(w) of 0.886. The survival of the mutant strain showed a diminution of one logarithm during elaboration and ripening of cheese as compared with the parental strain. When the cheese was elaborated with raw milk and ripened at 4 °C, survival of the parental strain was 24 days, whereas the mutant strain survived only 17 days (pH 5 and a(w) 0.90). Regarding the cheese elaborated with pasteurized milk and maturated at 4 °C, both strains survived 31 days (pH 5 and a(w) 0.90), with the same survival diminution during elaboration and ripening. Our results show that in both types of cheese, the mutated aqpX strain survived 10 times less than the parental strain, which shows that the aqpX gene can be related to the survival of Brucella abortus in this type of cheese.

  4. Children preferences of coloured fresh cheese prepared during an educational laboratory

    Directory of Open Access Journals (Sweden)

    Federica Tesini

    2015-12-01

    Full Text Available Choices among young consumers are mainly driven by food preferences; in particular, a connection between appearance and acceptance of food has been highlighted, together with a general lack of knowledge of food processing. For these reasons, educational activities are important to increase scientific knowledge and awareness. The cheese-making educational laboratory described herein involved children, adolescents, and their parents/teachers in the preparation of fresh and naturally-coloured cheeses. At the end of the activity, both the colour preference and possible relation between preference and colour of cheese prepared were investigated administering a short questionnaire.

  5. On cosmological observables in a swiss-cheese universe

    CERN Document Server

    Marra, Valerio; Matarrese, Sabino; Riotto, Antonio

    2007-01-01

    Photon geodesics are calculated in a swiss-cheese model, where the cheese is made of the usual Friedmann-Robertson-Walker solution and the holes are constructed from a Lemaitre-Tolman-Bondi solution of Einstein's equations. The observables on which we focus are the changes in the redshift, in the angular-diameter--distance relation, in the luminosity-distance--redshift relation, and in the corresponding distance modulus. We find that redshift effects are suppressed when the hole is small because of a compensation effect acting on the scale of half a hole resulting from the special case of spherical symmetry. However, we find interesting effects in the calculation of the angular distance: strong evolution of the inhomogeneities (as in the approach to caustic formation) causes the photon path to deviate from that of the FRW case. Therefore, the inhomogeneities are able to partly mimic the effects of a dark-energy component. Our results also suggest that the nonlinear effects of caustic formation in cold dark ma...

  6. Cosmological observables in a Swiss-cheese universe

    Science.gov (United States)

    Marra, Valerio; Kolb, Edward W.; Matarrese, Sabino; Riotto, Antonio

    2007-12-01

    Photon geodesics are calculated in a Swiss-cheese model, where the cheese is made of the usual Friedmann-Robertson-Walker (FRW) solution and the holes are constructed from a Lemaître-Tolman-Bondi solution of Einstein’s equations. The observables on which we focus are the changes in the redshift, in the angular-diameter-distance relation, in the luminosity-distance-redshift relation, and in the corresponding distance modulus. We find that redshift effects are suppressed when the hole is small because of a compensation effect acting on the scale of half a hole resulting from the special case of spherical symmetry. However, we find interesting effects in the calculation of the angular distance: strong evolution of the inhomogeneities (as in the approach to caustic formation) causes the photon path to deviate from that of the FRW case. Therefore, the inhomogeneities are able to partly mimic the effects of a dark-energy component. Our results also suggest that the nonlinear effects of caustic formation in cold dark matter models may lead to interesting effects on photon trajectories.

  7. Evolution of Lactococcus lactis phages within a cheese factory.

    Science.gov (United States)

    Rousseau, Geneviève M; Moineau, Sylvain

    2009-08-01

    We have sequenced the double-stranded DNA genomes of six lactococcal phages (SL4, CB13, CB14, CB19, CB20, and GR7) from the 936 group that were isolated over a 9-year period from whey samples obtained from a Canadian cheese factory. These six phages infected the same two industrial Lactococcus lactis strains out of 30 tested. The CB14 and GR7 genomes were found to be 100% identical even though they were isolated 14 months apart, indicating that a phage can survive in a cheese plant for more than a year. The other four genomes were related but notably different. The length of the genomes varied from 28,144 to 32,182 bp, and they coded for 51 to 55 open reading frames. All five genomes possessed a 3' overhang cos site that was 11 nucleotides long. Several structural proteins were also identified by nano-high-performance liquid chromatography-tandem mass spectrometry, confirming bioinformatic analyses. Comparative analyses suggested that the most recently isolated phages (CB19 and CB20) were derived, in part, from older phage isolates (CB13 and CB14/GR7). The organization of the five distinct genomes was similar to the previously sequenced lactococcal phage genomes of the 936 group, and from these sequences, a core genome was determined for lactococcal phages of the 936 group.

  8. Massive gene swamping among cheese-making Penicillium fungi

    Directory of Open Access Journals (Sweden)

    Jeanne Ropars

    2015-03-01

    Full Text Available Horizontal gene transfers (HGT, i.e., the transmission of genetic material between species not directly attributable to meiotic gene exchange, have long been acknowledged as a major driver of prokaryotic evolution and is increasingly recognized as an important source of adaptation in eukaryotes. In fungi in particular, many convincing examples of HGT have been reported to confer selective advantages on the recipient fungal host, either promoting fungal pathogenicity on plants or increasing their toxicity by the acquisition of secondary metabolic clusters, resulting in adaptation to new niches and in some cases eventually even in speciation. These horizontal gene transfers involve single genes, complete metabolic pathways or even entire chromosomes. A recent study has uncovered multiple recent horizontal transfers of a 575 kb genomic island in cheese Penicillium fungi, representing ca. 2% of the Penicillium roqueforti’s genome, that may confer selective advantage in the competing cheese environment where bacteria and fungi occur. Novel phylogenomic methods are being developed, revealing massive HGT among fungi. Altogether, these recent studies indicate that HGT is a crucial mechanism of rapid adaptation, even among eukaryotes.

  9. Decolorization of Cheddar cheese whey by activated carbon.

    Science.gov (United States)

    Zhang, Yue; Campbell, Rachel; Drake, MaryAnne; Zhong, Qixin

    2015-05-01

    Colored Cheddar whey is a source for whey protein recovery and is decolorized conventionally by bleaching, which affects whey protein quality. Two activated carbons were studied in the present work as physical means of removing annatto (norbixin) in Cheddar cheese whey. The color and residual norbixin content of Cheddar whey were reduced by a higher level of activated carbon at a higher temperature between 25 and 55°C and a longer time. Activated carbon applied at 40g/L for 2h at 30°C was more effective than bleaching by 500mg/L of hydrogen peroxide at 68°C. The lowered temperature in activated-carbon treatments had less effect on protein structure as investigated for fluorescence spectroscopy and volatile compounds, particularly oxidation products, based on gas chromatography-mass spectrometry. Activated carbon was also reusable, removing more than 50% norbixin even after 10 times of regeneration, which showed great potential for decolorizing cheese whey.

  10. Characterisation of lab in typical Salento Pecorino cheese.

    Science.gov (United States)

    Cappello, M S; Laddomada, B; Poltronieri, P; Zacheo, G

    2001-01-01

    Twenty-nine strains of Lactic Acid Bacteria isolated from the typical Pecorino cheese of the Salento area of Italy, were identified and grouped according to their genetic similarity. A preliminary characterisation of the strains was conducted by means of morphological and biochemical analysis, but molecular approaches were necessary for the clear identification of the species. For the species detection, the amplification and sequencing of the 16S rDNA gene was employed In addition, restriction analysis of amplified rDNA (ARDRA) and PCR and AFLP fingerprinting enabled inter- and intra-specific variation to be estimated UPGMA cluster analysis was used to divide the strains into distinct clusters which corresponded with the species delineation obtained by molecular identification. The data obtained show that the community of lactobacilli responsible for the fermentation and aging of Pecorino cheese is composed of a limited number of species. The main identified strains were Lactobacillus brevis, L. plantarum, L. casei, L. sakei, L. pentosus, L. farciminis and Leuconostoc mesenteroides.

  11. Characterization of volatiles in Beaten cheeses (bieno sirenje by SPME/GC-MC: Influence of geographical origin

    Directory of Open Access Journals (Sweden)

    Sulejmani Erhan

    2014-01-01

    Full Text Available In this study, the volatile profiles of a type of economically important cheeses for the FYR Macedonian dairy sector were characterized. A total of eighteen samples belonged to 6 different geographical regions of Beaten cheese, including cheeses from Kumanovo, Tetovo, Struga, Resen, Veles and Radovish were comparatively studied for their volatile profiles. Sixty two volatile compounds were identified in the cheeses by solid-phase microextraction combined with gas chromatography-mass spectrometry and the results are discussed based on their chemical classes (18 esters, 13 ketones, 10 acids, 8 alcohols, 5 terpenes, and 8 miscellaneous compounds. Acids, esters and alcohols were the most abundant classes identified and were highly dependent on the geographical origin of cheeses. Beaten cheese from Struga had the highest levels of carboxylic acids, ketones, alcohols, esters and terpenes. The Beaten cheese from other geographical origin had low levels of volatiles probably from the effect of variable characteristics of used milk and different cheese making process which affects the biochemical processes. The results suggest that each cheese from different geographical regions had different volatiles profile and the manufacturing technique as well as the ripening stage of the cheeses played a major role on the volatile compounds’ distribution.

  12. Inhibitory activity of Lactobacillus plantarum TF711 against Clostridium sporogenes when used as adjunct culture in cheese manufacture.

    Science.gov (United States)

    González, Lorena; Zárate, Victoria

    2015-05-01

    Bacteriocins produced by lactic acid bacteria are of great interest to the food-processing industry as natural preservatives. This work aimed to investigate the efficacy of bacteriocin-producing Lactobacillus plantarum TF711, isolated from artisanal Tenerife cheese, in controlling Clostridium sporogenes during cheese ripening. Cheeses were made from pasteurised milk artificially contaminated with 10(4) spores m/l C. sporogenes. Experimental cheeses were manufactured with Lb. plantarum TF711 added at 1% as adjunct to commercial starter culture. Cheeses made under the same conditions but without Lb. plantarum TF711 served as controls. Evolution of microbiological parameters, pH and NaCl content, as well as bacteriocin production was studied throughout 45 d of ripening. Addition of Lb. plantarum TF711 did not bring about any significant change in starter culture counts, NaCl content and pH, compared with control cheese. In contrast, clostridial spore count in experimental cheeses were significantly lower than in control cheeses from 7 d onwards, reaching a maximum reduction of 2·2 log units on day 21. Inhibition of clostridia found in experimental cheeses was mainly attributed to plantaricin activity, which in fact was recovered from these cheeses.

  13. A comparison of fresh, pasta filata, and aged Hispanic cheeses using sensory, chemical, functional, and microbiological assessments.

    Science.gov (United States)

    Jimenez-Maroto, L A; Lopez-Hernandez, A; Borneman, D L; Rankin, S A

    2016-04-01

    Anecdotal information suggests that some Hispanic consumers may consider US-made Hispanic cheeses as having a general lack of authenticity compared with those made in their countries of origin. To characterize the potential differences, samples of fresh, pasta filata, and aged Hispanic cheeses were acquired from both the United States (total n=39) and countries of origin (total n=30) purchased from Mexico, Central America (Costa Rica and El Salvador), and the Caribbean (Puerto Rico). The proximate composition, microbial counts, melt profile, and sensory characteristics were evaluated and compared in country-of-origin cheeses and the US-made counterparts. The presence of Listeria spp. was confirmed for 1 Mexican aged cheese sample and 6 cheese samples from Central America (3 fresh, 2 pasta filata, and 1 aged). The chemical composition, melt profile, and sensory characteristics of fresh and pasta filata US Hispanic cheeses were not significantly different from their Mexican counterparts. Likewise, the chemical composition and melt profile of US aged Hispanic cheeses was not significantly different from the aged Mexican cheeses, but sensory characteristics varied among all aged cheeses. These results demonstrate the similarities and differences among US fresh, pasta filata, and aged Hispanic cheeses relative to their counterparts made in the countries of origin.

  14. Effect of medium-chain fatty acids in mould ripened cheese on the growth of Listeria monocytogenes.

    Science.gov (United States)

    Kinderlerer, J L; Matthias, H E; Finner, P

    1996-11-01

    Listeria monocytogenes and List. innocua were isolated from commercial soft ripened and blue-veined cheeses manufactured in France, mainly from Brie cheese made from unpasteurized milk. Five isolates were List. monocytogenes serotype 1/2 and two were List. innocua. Examination of Bleu d'Auvergne cheese with the cryoscanning electron microscope showed that many conidia spores were present in the blue veins in close contact with the cheese surface. There were few conidia spores in the Brie, mostly on the outside of the cheese but not in contact with the surface. High concentrations of free dodecanoic (lauric) acid (1.77-2.50 g/kg cheese) and tetradecanoic (myristic) acid (2.54-6.38 g/kg cheese) were found in the veins of the blue cheese, but concentrations in the white regions were much lower. Free lauric and myristic acids were not detected in the Brie cheeses. There was no difference in the overall fatty acid composition of the fat in the surface ripened and blue-veined cheeses, although higher concentrations of free medium-chain fatty acids were found in a blue cheese compared with a surface ripened cheese. The pH and fat content were higher in regions with obvious fungal growth, the blue veins of Fourme d'Ambert and the rind of Brie. Free lauric acid dissolved in butteroil inhibited multiplication in broth at pH 7.0 of a test strain of List. monocytogenes isolated from Bleu d'Auvergne. Some inhibition was seen with hexanoic, octanoic, decanoic and tetradecanoic acids. We suggest that the presence of localized concentrations of free medium-chain fatty acids (dissolved in the fat) in the blue veins of blue mould ripened cheese could act as natural preservatives and inhibit the growth of listerias in conditions where (if present), one would otherwise expect them to grow.

  15. Phenotypic analysis of cheese yields and nutrient recoveries in the curd of buffalo milk, as measured with an individual model cheese-manufacturing process.

    Science.gov (United States)

    Cipolat-Gotet, C; Bittante, G; Cecchinato, A

    2015-01-01

    Traits associated with cheese yield and milk nutrient recovery in curd are used to describe the efficiency of the cheese-making process. This is fundamental for all dairy species, including the Italian Mediterranean buffalo, which is largely used for milk production aimed at the dairy industry. To assess cheese-making traits among buffalo, a model cheese-manufacturing process was tested; it was capable of processing 24 samples per run, using 0.5-L samples of milk from individual buffalo. In total, 180 buffalo reared in 7 herds located in Northeast Italy were sampled once. Briefly, each sample was weighed and heated (35°C for 30min), inoculated with starter culture (90min), and mixed with rennet (51.2 international milk-clotting units/L of milk). After 10min of gelation, the curd was cut; 5min after the cut, the curd was separated from the whey, and the curd was subjected to draining (for 30min) and pressing (18h). The curd and whey were weighed, analyzed for pH and the total solid, fat, lactose, and protein contents, and subjected to estimation of the energy content. Three measures of cheese yield (%CY), %CYCURD, %CYSOLIDS, and %CYWATER, were computed as the ratios between the weight of the curd, the curd dry matter, and the water retained in the curd, respectively, and the weight of the milk processed. These traits were multiplied by the daily milk yield to define the 3 corresponding measures of daily cheese yield (dCY, kg/d). The milk component recoveries (REC) in the curd, RECFAT, RECPROTEIN, and RECSOLIDS, represented the ratios between the weights of the fat, protein, and total solids in the curd, respectively, and the corresponding components in the milk. Finally, energy recovery (RECENERGY) was estimated. The values for %CYCURD, %CYSOLIDS, %CYWATER, RECPROTEIN, RECFAT, RECSOLIDS, and RECENERGY averaged 25.6, 12.7, 12.9, 80.4, 95.1, 66.7, and 79.3%, respectively, indicating that buffalo milk has a higher aptitude to cheese-making than bovine milk. The effect

  16. Assessing the yield, microstructure, and texture properties of miniature Chihuahua-type cheese manufactured with a phospholipase A1 and exopolysaccharide-producing bacteria.

    Science.gov (United States)

    Trancoso-Reyes, N; Gutiérrez-Méndez, N; Sepulveda, D R; Hernández-Ochoa, L R

    2014-02-01

    Chihuahua cheese or Mennonite cheese is one of the most popular and consumed cheeses in Mexico and by the Hispanic community in the United States. According to local producers the yield of Chihuahua cheese ranges from 9 to 9.5 kg of cheese from 100 kg of milk. Cheese yield is a crucial determinant of profitability in cheese-manufacturing plants; therefore, different methods have been developed to increase it. In this work, a miniature Chihuahua-type cheese model was used to assess the effect of a phospholipase A1 (PL-A1) and exopolysaccharide (EPS)-producing bacteria (separately and in combination) on the yield, microstructure, and texture of cheese. Four different cheeses were manufactured: cheese made with PL-A1, cheese made with EPS-producing bacteria, cheese with both PL-A1 and EPS-producing bacteria, and a cheese control without PL-A1 or EPS-producing bacteria. The compositional analysis of cheese was carried out using methods of AOAC International (Washington, DC). The actual yield and moisture-adjusted yield were calculated for all cheese treatments. Texture profile analyses of cheeses were performed using a texture analyzer. Micrographs were obtained by electron scanning microscopy. Fifty panelists carried out sensorial analysis using ranking tests. Incorporation of EPS-producing bacteria in the manufacture of cheese increased the moisture content and water activity. In contrast, the addition of PL-A1 did not increase fat retention or cheese yield. The use of EPS alone improved the cheese yield by increasing water and fat retention, but also caused a negative effect on the texture and flavor of Chihuahua cheese. The use of EPS-producing bacteria in combination with PL-A1 improved the cheese yield and increased the moisture and fat content. The cheeses with the best flavor and texture were those manufactured with PL-A1 and the cheeses manufactured with the combination of PL-A1 and EPS-producing culture.

  17. Metabolomics investigation to shed light on cheese as a possible piece in the French paradox puzzle

    DEFF Research Database (Denmark)

    Zheng, Hong; Yde, Christian C; Clausen, Morten R;

    2015-01-01

    and TMAO levels and increased fecal excretion of acetate, propionate and lipid. Compared with milk intake, cheese consumption significantly reduced urinary citrate, creatine and creatinine levels and significantly increased the microbial-related metabolites butyrate, hippurate and malonate. Correlation...

  18. FTIR Analysis of Protein Secondary Structure in Cheddar Cheese during Ripening

    Institute of Scientific and Technical Information of China (English)

    WANG Fang; LIU Ai-ping; REN Fa-zheng; ZHANG Xiao-ying; Stephanie Clark; ZHANG Lu-da; GUO Hui-yuan

    2011-01-01

    Proteolysis is one of the most important biochemical reactions during cheese ripening. Studies on the secondary structure of proteins during ripening would be helpful for characterizing protein changes for assessing cheese quality. Fourier transform infrared spectroscopy (FTIR), with self-deconvolution, second derivative analysis and band curve-fitting, was used to characterize the secondary structure of proteins in Cheddar cheese during ripening. The spectra of the amide I region showed great similarity, while the relative contents of the secondary structures underwent a series of changes. As ripening progressed, the α-helix content decreased and the β-sheet content increased. This structural shift was attributed to the strengthening of hydrogen bonds that resulted from hydrolysis of caseins. In summary, FTIR could provide the basis for rapid characterization of cheese that is undergoing ripening.

  19. Modelling and predicting growth of psychrotolerant pseudomonads in milk and cottage cheese

    DEFF Research Database (Denmark)

    Martinez Rios, Veronica; Østergaard, Nina Bjerre; Rosshaug, Per Sand;

    experiments. Growth of psychrotolerant pseudomonads in heat-treated milk resulted in a bias factor (Bf) of 1.08 and an accuracy factor (Af) of 1.32, whereas the calibrated model for growth rates in cottage cheese with cultured cream dressing and in raw milk resulted in Bf of 1.08 and Af of 1......Mathematical models were developed and evaluated for growth of psychrotolerant pseudomonads in chilled milk and cottage cheese with cultured cream dressing. The mathematical models include the effect of temperature, pH, NaCl, lactic acid and sorbic acid. A simplified cardinal parameter growth model...... was developed based on growth in broth. Subsequently, the reference growth rate parameter (μref at 25 °C) was fitted to a total of 35 growth rates from cottage cheese with cultured cream dressing. Growth rate models for milk and cottage cheese were evaluated by comparison with data from literature and new...

  20. A molecular genetic approach for traceability of the source milk in cheese

    Directory of Open Access Journals (Sweden)

    E. Pieragostini

    2011-03-01

    Full Text Available The valorisation of typical cheeses meets the needs of preserving the local country culture and tradition as well of guaranteeing consumer health by the control of all the steps of production (herd, milk quality, cheese making technology. Among the variability factors significantly affecting cheese peculiarity, biodiversity plays an important role (Gandini et al., 1996; Pieragostini et al., 2002. The possibility of identifying or tracing the primary product, mainly the origin breed, by the use of biologic markers, is an important goal for the safeguard and valorisation of national goat cheese. In this field great interest is paid to milk protein genetic polymorphism. A first study was carried out in order to investigate the possibility of tracing the source milk in dairy products. In particular, the use of molecular techniques for the detection of casein polymorphisms.........

  1. Effect of cheese and butter intake on metabolites in urine using an untargeted metabolomics approach

    DEFF Research Database (Denmark)

    Hjerpsted, Julie Bousgaard; Ritz, Christian; Schou, Simon Stubbe

    2014-01-01

    Cheese intake has been shown to decrease total cholesterol and LDL cholesterol concentrations when compared to butter of equal fat content. An untargeted metabolite profiling may reveal exposure markers of cheese but may also contribute with markers which can help explain how the intake of cheese...... affects cholesterol concentrations. Twenty-three subjects collected 2 × 24 h urine samples after 6 weeks of cheese and 6 weeks of butter intake with equal amounts of fat in a cross-over intervention study. The samples were analyzed by UPLC-QTOF/MS. A two-step univariate data analysis approach using linear...... sulfate, xanthurenic acid, tyramine sulfate, 4-hydroxyphenylacetic acid, isovalerylglutamic acid and several acylglycines including isovalerylglycine, tiglylglycine and isobutyrylglycine when compared to butter intake of equal fat content. The biological mechanisms of action linking the metabolites...

  2. Use of butter and cheese in 10 European countries - A case of contrasting educational differences

    DEFF Research Database (Denmark)

    Prattala, R. S.; Groth, Margit Velsing; Oltersdorf, U. S.

    2003-01-01

    Background: This paper alms to analyse socioeconomic variation in the use of cheese and butter in Europe by reviewing existing dietary surveys. It explores whether socioeconomic differences in the intake of these foods follow a similar pattern in all countries. Methods: An overview of available...... studies on socioeconomic differences in food habits in Europe over the period 1985-1997 was performed. Twenty studies from 10 countries included information on cheese and butter. A simple directional vote-counting method was used to register the association between educational level add consumption......,of cheese and butter (animal fat) for each study. FAO's food balance sheets were used to classify the countries according to consumption trends of these foodstuffs. Results: In all countries higher social classes used more cheese than lower classes. The results for butter were less consistent. In the Nordic...

  3. Antagonistic activity of probiotic lactobacilli against human enteropathogenic bacteria in homemade tvorog curd cheese from Azerbaijan

    Directory of Open Access Journals (Sweden)

    Reza Masoumikia

    2015-08-01

    Conclusion: Homemade tvorog curd cheese in Azerbaijan harbor a variety of probiotics with industrial applications as well as potentiality to be preserved in a biobank for the future medicinal applications especially against antibiotic resistant pathogenes.

  4. Modelling of sensory and instrumental texture parameters in processed cheese by near infrared reflectance spectroscopy.

    Science.gov (United States)

    Blazquez, Carmen; Downey, Gerard; O'Callaghan, Donal; Howard, Vincent; Delahunty, Conor; Sheehan, Elizabeth; Everard, Colm; O'Donnell, Colm P

    2006-02-01

    This study investigated the application of near infrared (NIR) reflectance spectroscopy to the measurement of texture (sensory and instrumental) in experimental processed cheese samples. Spectra (750 to 2498 nm) of cheeses were recorded after 2 and 4 weeks storage at 4 degrees C. Trained assessors evaluated 9 sensory properties, a texture profile analyser (TPA) was used to record 5 instrumental parameters and cheese 'meltability' was measured by computer vision. Predictive models for sensory and instrumental texture parameters were developed using partial least squares regression on raw or pre-treated spectral data. Sensory attributes and instrumental texture measurements were modelled with sufficient accuracy to recommend the use of NIR reflectance spectroscopy for routine quality assessment of processed cheese.

  5. Application of fluorescence spectroscopy and chemometrics in the evaluation of processed cheese during storage.

    Science.gov (United States)

    Christensen, J; Povlsen, V T; Sørensen, J

    2003-04-01

    Front face fluorescence spectroscopy is applied for an evaluation of the stability of processed cheese during storage. Fluorescence landscapes with excitation from 240 to 360 nm and emission in the range of 275 to 475 nm were obtained from cheese samples stored in darkness and light in up to 259 d, at 5, 20 and 37 degrees C, respectively. Parallel factor (PARAFAC) analysis of the fluorescence landscapes exhibits four fluorophores present in the cheese, all related to the storage conditions. The chemometric analysis resolves the fluorescence signal into excitation and emission profiles of the pure fluorescent compounds, which are suggested to be tryptophan, vitamin A and a compound derived from oxidation. Thus, it is concluded that fluorescence spectroscopy in combination with chemometrics has a potential as a fast method for monitoring the stability of processed cheese.

  6. Do consumption of Kargi Tulum cheese meet daily requirements for minerals and trace elements?

    Directory of Open Access Journals (Sweden)

    Seval Sevgi Kirdar

    2015-07-01

    Full Text Available The mineral and trace elements of Kargı Tulum cheese are investigated during the ripening period of 90 days. Calcium, potassium, phosphorus, sodium, magnesium, manganese, copper, zinc and iron quantities were determined by simultaneous inductively coupled plasma optical emission spectrometry (ICP-OES. The effect of maturation time on the sodium, phosphor and potassium content of cheese samples has been found to be statistically significant (p<0.05. Magnesium and calcium levels during ripening period showed significant statistical difference (p<0.01. Copper values of cheese samples demonstrated an increase throughout 90-day maturation time. The effect of maturation time on manganese and zinc value has been found to be statistically significant (p<0.05. According to obtained data, by consuming 100 g Kargı Tulum cheese in daily period, an adult can provide a remarkable portion of his/her minerals needs.

  7. Cottage cheeses functionalized with fennel and chamomile extracts: Comparative performance between free and microencapsulated forms.

    Science.gov (United States)

    Caleja, Cristina; Ribeiro, Andreia; Barros, Lillian; Barreira, João C M; Antonio, Amilcar L; Beatriz P P Oliveira, M; Barreiro, Maria Filomena; Ferreira, Isabel C F R

    2016-05-15

    Globally, there is a trend for healthy food products, preferably incorporating natural bioactive ingredients, replacing synthetic additives. From previous screening studies, extracts of Foeniculum vulgare Mill. (fennel) and Matricaria recutita L. (chamomile) maintained nutritional properties and improved the antioxidant activity of cottage cheese. Nevertheless, this effect was limited to 7 days. Accordingly, aqueous extracts of these plants were microencapsulated in alginate and incorporated into cottage cheese to achieve an extended bioactivity. Plain cottage cheese, and cheese functionalized by direct addition of free decoctions, were prepared and compared. Independently of plant species, "functionalization type" factor did not show a significant effect on the nutritional parameters, as also confirmed in the linear discriminant analysis, where these parameters were not selected as discriminating variables. Furthermore, samples functionalized with microencapsulated extracts showed higher antioxidant activity after the 7th day, thereby demonstrating that the main purpose of this experimental work was achieved.

  8. Modelling and predicting growth of psychrotolerant pseudomonads in milk and cottage cheese

    DEFF Research Database (Denmark)

    Martinez Rios, Veronica; Østergaard, Nina Bjerre; Rosshaug, Per Sand;

    Mathematical models were developed and evaluated for growth of psychrotolerant pseudomonads in chilled milk and cottage cheese with cultured cream dressing. The mathematical models include the effect of temperature, pH, NaCl, lactic acid and sorbic acid. A simplified cardinal parameter growth model...... was developed based on growth in broth. Subsequently, the reference growth rate parameter (μref at 25 °C) was fitted to a total of 35 growth rates from cottage cheese with cultured cream dressing. Growth rate models for milk and cottage cheese were evaluated by comparison with data from literature and new...... experiments. Growth of psychrotolerant pseudomonads in heat-treated milk resulted in a bias factor (Bf) of 1.08 and an accuracy factor (Af) of 1.32, whereas the calibrated model for growth rates in cottage cheese with cultured cream dressing and in raw milk resulted in Bf of 1.08 and Af of 1...

  9. Modelling and predicting growth of psycrotolerant pseudomonads in milk and cottage cheese

    DEFF Research Database (Denmark)

    Martinez Rios, Veronica; Østergaard, Nina Bjerre; Rosshaug, Per Sand;

    2015-01-01

    /Bioscreen C model included the effect of temperature, pH, NaCl/aw, lactic, sorbic acid and their interaction (Le Marc et al., 2002). Then, the reference growth rate parameter (μref) was fitted to a total of 35 μmax-values from cottage cheese with cultured cream dressing. Results: The new models were...... temperature storage conditions. Conclusions: The present study developed and validated mathematical models to predict growth of psychrotolerant pseudomonads in chilled milk and cottage cheese with cultured cream dressing. The cottage cheese model can be used to evaluate the effect of product reformulations...... successfully validated, based on bias and accuracy factor, for 59 growth curves of psychrotolerant pseudomonads in dairy products. The acceptable simulation zone method showed the new model for cottage cheese to successfully predict growth of psychrotolerant pseudomonads at both constant and dynamic...

  10. Evolution of chemico-physical characteristics during manufacture and ripening of Castelmagno PDO cheese in wintertime.

    Science.gov (United States)

    Bertolino, Marta; Dolci, Paola; Giordano, Manuela; Rolle, Luca; Zeppa, Giuseppe

    2011-12-01

    Biochemical, volatile and textural profiles during manufacture and ripening were determined in samples of Castelmagno PDO cheese obtained from three different batches in the main artisan cheese plant of Castelmagno PDO production area. At the end of manufacture, samples were characterised by a pH of 6.57% and 52.4% moisture content. The HPLC analysis of organic acids and sugars showed the exhaustion of lactose content, while Urea-PAGE indicated extensive primary proteolysis of both β-casein and αs1-casein. During ripening, cheeses were characterised by high degradation of β-casein and αs1-casein, due to bacterial action. RP-HPLC profiles showed a high production of peptides eluted between 20 and 30min. In total, 92 volatile compounds were identified in cheese headspace. Texture profiles showed an increase in hardness, gumminess, chewiness and adhesiveness values, as well as a decrease in cohesiveness during ripening.

  11. Listeria monocytogenes and other contaminants in fresh cheese and cream from Zagreb city area domestic production

    Directory of Open Access Journals (Sweden)

    Ksenija Markov

    2009-09-01

    Full Text Available The purpose of this research was to determine whether the cream cheese and cream that are produced in the traditional manner at home and are free to sale on Zagreb markets, meet microbiological requirements for foodstuffs (OG 46/94, 20/01, 40/01. Particular attention is given to research of bacteria Listeria monocytogenes presence in these foods, because of its exceptional hazards to human health. It was found that a majority of 64 (53 % from a total of 120 studied dairy products samples were contaminated with microbial pathogens, of which 16 % are waste in the cream cheese, and 37 % in cream samples. 39 samples of cheese and 50 samples of cream did not fulfil the conditions prescribed by the Croatian Guidelines, primarily due to the contamination with yeasts and moulds. In 10 cheese and cream samples where L. monocytogenes is proven by classical microbiological methods, PCR method confirmed L. monocytogenes in only one cream sample.

  12. Cell cytotoxicity and mycotoxin and secondary metabolite production by common penicillia on cheese agar

    DEFF Research Database (Denmark)

    Gareis, M.; Larsen, Thomas Ostenfeld; Frisvad, Jens Christian

    2002-01-01

    Known or potential new fungal starter culture species such as Penicillium camemberti, P. roqueforti, P. nalgiovense, P. caseifulvum, and P. solitum have been cultivated on a cheese agar medium together with the common cheese contaminants P. commune, P. crustosum, P. discolor, P. atramentosum, and P....... nordicum. Secondary metabolites were extracted and analyzed by HPLC-DAD and tested for cytotoxicity by using the MTT-cell culture assay. Metabolites such as cyclopiazonic acid, roquefortine C, and penitrem A, previously reported from cheese, were detected together with sclerotigenin, solistatin, meleagrin......, oxaline, compactins, diaportins, chaetoglobosins, rugulovasines, verrucolones, anacines, verrucines, cyclopeptines, viridicatins, and viridic acid, all metabolites not previously reported from cheese. The two P. nalgiovense extracts were the most toxic in the MTT-cell culture test. These extracts...

  13. Modification of the American Public Health Association procedure for counting yeast and mold in cottage cheese.

    Science.gov (United States)

    Powers, E M; Ay, C C; Eckfeldt, G A; Rowley, D B

    1971-01-01

    The American Public Health Association method for counting low numbers of yeast and mold in cottage cheese was unsatisfactory due to altered pH of the culture medium. A modification of this method is presented.

  14. Improving the Chemical and Sensory Characteristics of Goat Cheese by the Addition of Cranberry

    Directory of Open Access Journals (Sweden)

    Sorin Apostu

    2014-11-01

    Full Text Available In recent years, the goat milk cheeses have gained popularity due to the increased interest of consumers in both the tradition of cheesemaking and the sensorial and nutritional value attributed to goat milk. This study aimed to assess and compare the chemical and sensory characteristics of fresh cheese with a mixture of cranberry fruits in different concentrations. The following average values were obtained for the chemical parameters analyzed: pH 4.85 ± 0.155, titratable acidity (°T 150 ± 0,094, dry matter (% 58.33 ± 1.55, and fat (% 27.74 ± 53.24. Sensory evaluation highlighted the influence of the addition of cranberry on the eating quality of goat cheese and its consumer acceptability. Results showed that the goat cheese supplementation with 9% cranberry significantly improves the stability of acidic flavor during storage.

  15. Characterization of Oaxaca raw milk cheese microbiota with particular interest in Lactobacillus strains.

    Science.gov (United States)

    Caro, Irma; Mateo, Javier; Sandoval, María H; Soto, Sergio; García-Armesto, María R; Castro, José M

    2013-06-01

    The aim of this work was to identify and characterize lactobacilli strains from Mexican Oaxaca cheese. Twenty-seven lactobacilli isolated from Oaxaca cheese were identified at species level by 16S rRNA sequencing. Selected isolates were further characterized by ribotyping. Isolates were screened, among others, by acidifying capacity, antibiotic resistance, and activity against pathogens. Lactobacillus plantarum was predominant in Oaxaca cheese. The intraspecies variability of Lb. plantarum isolates was great. Multiple antibiotic resistances were observed. Eight isolates showed antimicrobial activity against the pathogenic species tested. Four Lb. plantarum strains showing low antibiotic resistance index, antimicrobial activity against enterotoxigenic Staphylococcus aureus and Listeria innocua stains, amine-negative decarboxylase activity, and resistance to NaCl and bile salt solutions, could be preselected to complete studies focused on designing a culture for use in pasteurized-milk Oaxaca cheese manufacturing.

  16. Use of potassium chloride and flavor enhancers in low sodium Cheddar cheese.

    Science.gov (United States)

    Grummer, J; Bobowski, N; Karalus, M; Vickers, Z; Schoenfuss, T

    2013-03-01

    We investigated use of potassium chloride (KCl) to maintain both the salty flavor and to replace the preservative effects of salt when reducing the sodium content in natural cheese. Because salt replacers can affect flavor because of inherent off-flavors, such as bitter and metallic, we examined the use of flavor enhancers for their ability to modulate some of these undesirable sensory effects. Stirred-curd Cheddar-style cheese was manufactured using 2 cheese-making procedures (different curd knife sizes and target salting titratable acidities), in duplicate. Curd was salted with sodium chloride (NaCl) or 60% reduced sodium blends of NaCl and KCl (2 different sources). Curd was also salted at a 60% reduced sodium rate with NaCl and KCl with added flavor enhancers. A hydrolyzed vegetable protein/yeast extract blend, a natural "potassium-blocking type" flavor, disodium inosinate, or disodium guanylate were each blended with the reduced sodium salt blend and added to curd at the salting step. The resulting blocks of cheese were aged for 5 mo and evaluated monthly for chemical, microbial, and sensory differences. At 5 mo of aging, we measured liking for the cheeses using a consumer panel. Overall, cheeses were well liked by the consumer panel, and the scores of reduced sodium cheese with 2 different KCl sources were not different from those of the full-sodium control. The addition of flavor enhancers to Cheddar curd had mixed results, with one improving the consumer flavor liking only slightly over KCl, and one (disodium inosinate) significantly reducing consumer flavor liking scores, presumably due to the amount of umami flavor it contributed. Potassium chloride replacement salts sourced from different manufacturers affected the chemical and flavor properties of cheese, and changes to pH and temperature targets may be necessary to yield cheese with the moisture and pH targets desired. The cheese-making procedure used also influenced flavors observed, which resulted in

  17. Pulsed light and antimicrobial combination treatments for surface decontamination of cheese: Favorable and antagonistic effects.

    Science.gov (United States)

    Proulx, J; Sullivan, G; Marostegan, L F; VanWees, S; Hsu, L C; Moraru, C I

    2017-03-01

    Postprocessing cross-contamination of cheese can lead to both food safety issues and significant losses due to spoilage. Pulsed light (PL) treatment, consisting of short, high-energy, broad-spectrum light pulses, has been proven effective in reducing the microbial load on cheese surface. As PL treatment effectiveness is limited by light-cheese interactions, the possibility to improve its effectiveness by combining it with the antimicrobial nisin was explored. The effect of natamycin, which is added to cheeses as an antifungal agent, on PL effectiveness was also investigated. Pseudomonas fluorescens, Escherichia coli ATCC 25922, and Listeria innocua were used as challenge microorganisms. Bacterial cultures in stationary growth phase were diluted to initial inoculum levels of 5 or 7 log cfu per cheese slice. Slices of sharp white Cheddar cheese and white American singles were cut in rectangles of 2.5 × 5 cm. For cheese slices receiving antimicrobial treatment before PL, slices were dipped in natamycin or nisin, spot inoculated with 100 μL of bacterial suspension, and then treated with PL. Cheese slices receiving PL treatment before antimicrobials were spot inoculated, treated with PL, and then treated with antimicrobials. The PL fluence levels from 1.02 to 12.29 J/cm(2) were used. Survivors were enumerated by standard plate counting or the most probable number technique, as appropriate. All treatments were performed in triplicate, and the data were analyzed using a general linear model. Treatment with nisin or natamycin before PL decreased the effectiveness of PL for all bacteria tested. For instance, PL reduced P. fluorescens on Cheddar cheese by 2.19 ± 0.27 log after 6.14 J/cm(2), whereas combination treatments at the same PL fluence yielded barely 1 log reduction. Inactivation of L. innocua on Cheddar was only 0.78 ± 0.01 log when using PL after nisin, compared with a 1.30 ± 0.76 log reduction by nisin alone. This was attributed to the absorption of UV light

  18. Eff ect of homogenization on the properties and microstructure of Mozzarella cheese from buff alo milk

    OpenAIRE

    S. Abd El-Rafee; M.M. El-Abd; Nawal S. Ahmed; Mona A.M. Abd El-Gawad

    2012-01-01

    Background. The name pasta fi lata refers to a unique plasticizing and texturing treatments of the fresh curd in hot water that imparts to the fi nished cheese its characteristic fi brous structure and melting properties. Mozzarella cheese made from standardized homogenized and non-homogenized buffalo milk with 3 and 1.5%fat. The effect of homogenization on rheological, microstructure and sensory evaluation was carried out. Material and methods. Fresh raw buffalo milk and starter cultures of ...

  19. The viscoelastic properties of processed cheeses depend on their thermal history and fat polymorphism.

    Science.gov (United States)

    Gliguem, Hela; Lopez, Christelle; Michon, Camille; Lesieur, Pierre; Ollivon, Michel

    2011-04-13

    Both the composition and the thermal kinetics that are applied to processed cheeses can affect their texture. This study investigated the effect of the storage conditions and thermal history on the viscoelastic properties of processed cheese and the physical properties of the fat phase. The microstructure of processed cheese has been characterized. Using a combination of physical techniques such as rheometry, differential scanning calorimetry, and X-ray diffraction, the partial crystallization of fat and the polymorphism of triacylglycerols (TG; main constituents of milk fat) were related to changes in the elastic modulus and tan δ as a function of temperature. In the small emulsion droplets (processed cheeses, the solid fat phase was studied at a molecular level and showed differences as a function of the thermal history. Storage of processed cheese at 4 °C and its equilibration at 25 °C lead to partial crystallization of the fat phase, with the formation of a β' 2 L (40.9 Å) structure; on cooling at 2 °C min(-1), the formation of an α 3 L (65.8 Å) structure was characterized. The cooling of processed cheese from 60 to -10 °C leads to the formation of a single type of crystal: α 3 L (72 Å). Structural reorganizations of the solid fat phase characterized on heating allowed the interpretation of the elastic modulus evolution of processed cheese. This study evidenced polymorphism of TG in a complex food product such as processed cheese and allowed a better understanding of the viscoelastic properties as a function of the thermal history.

  20. Environmental assessment of Ultra-High Pressure Homogenisation for milk and fresh cheese production

    DEFF Research Database (Denmark)

    Valsasina, Lucia; Pizzol, Massimo; Smetana, Sergiy

    2015-01-01

    Temperature (UHT) treatment and, at the same time, to lower energy consumptions through the combination of pasteurisation and homogenisation in a single process. Furthermore, the use of UHPH treated milk for the production of fresh cheese has been proven to increase shelf life days and increase yield...... This study provides an LCA of UHPH and UHT processing of milk and fresh cheese production from processing to end-of-life....

  1. Draft Genome Sequences of Four Enterococcus faecium Strains Isolated from Argentine Cheese

    Science.gov (United States)

    Martino, Gabriela P.; Quintana, Ingrid M.; Espariz, Martín; Blancato, Victor S.; Gallina Nizo, Gabriel; Esteban, Luis

    2016-01-01

    We report the draft genome sequences of four Enterococcus faecium strains isolated from Argentine regional cheeses. These strains were selected based on their technological properties, i.e., their ability to produce aroma compounds (diacetyl, acetoin, and 2,3-butanediol) from citrate. The goal of our study is to provide further genetic evidence for the rational selection of enterococci strains based on their pheno- and genotype in order to be used in cheese production. PMID:26847907

  2. Development of a semisynthetic cheese medium for fungi using chemometric methods.

    Science.gov (United States)

    Hansen, B V; Nielsen, P V

    1997-07-01

    The growth, color formation, and mycotoxin production of six cheese-related fungi were studied on nine types of natural cheeses and 24 semisynthetic cheese media and compared using principal component analysis. The semisynthetic cheese media contained various amounts of Ca, K, Mg, Na, P, Fe, Cu, Zn, lactate, lactose, and casein. A robust well-defined and easily prepared semisynthetic cheese medium was developed for Penicillium commune, the most frequently occurring contaminant on semihard cheese. Growth experiments on the medium were repeatable and reproducible. The medium was also suitable for Penicillium camemberti. The medium had the following composition: 100 g of casein, 8.3 g of 90% lactate, 7.9 g of lactose, 7.3 g of CaCl2.2H2O, 2.6 g of MgSO4.7H2O, 26.0 g of NaCl, 20 g of agar, 0.025 g of FeSO4.7H2O, 0.004 g of CuSO4.5H2O, and water to a total weight of 1 kg. The semisynthetic cheese medium was less suitable for Penicillium roqueforti, Penicillium discolor, Penicillium verrucosum, and Aspergillus versicolor. However, another semisynthetic cheese medium could be recommended for P. roqueforti and P. discolor. That medium had higher contents of P (5000 ppm, wt/wt), K (5000 ppm), and Zn (50 ppm) and lower contents of Na (2700 ppm), Fe (1 ppm), Cu (0.1 ppm), and casein (1%).

  3. Identification of Lactobacillus species isolated from traditional cheeses of west Azerbaijan

    Directory of Open Access Journals (Sweden)

    Ali Ehsani

    2014-06-01

    Results: In present study, from a total of 118 isolates of lactobacilli were determined. Lactobacillus plantarum (24%, Lactobacillus casei (20% and Lactobacillus agillis (18% from facultative heterofermentative Lactobacilli and Lactobacillus delbrueckii (21%, Lactobacillus helveticus (14% and Lactobacillus salvariu s (3% from obligative homofermentative Lactobacilli were found to be more dominant species.Conclusions: So for achievement to organoleptic characteristics of traditional cheeses in industrial productions, mixed starters including dominant Lactobacillus species identified in cheeses can be employed.

  4. Survey on the community and dynamics of lactic acid bacteria in Grana Padano cheese.

    Science.gov (United States)

    Santarelli, Marcela; Bottari, Benedetta; Lazzi, Camilla; Neviani, Erasmo; Gatti, Monica

    2013-12-01

    Grana Padano (GP) is a Protected Designation of Origin cheese made with raw milk and natural whey culture (NWC) that is characterised by a long ripening period. In this study, six GP productions were considered in order to evaluate the trend of microbial dynamics and compare lactic acid bacteria (LAB) population levels in cheeses during the entire cheese-making process. To reach this goal, for each GP production, samples of vat raw milk, NWC and cheeses at 48h, 2, 6, 9 and 13 months were subjected to plate counts and direct counts by fluorescence microscopy, as well as amplicon length heterogeneity-PCR (LH-PCR). Statistical analysis was applied to the results and ecological indices were estimated. It was demonstrated that the LAB able to grow in the cheese-environment conditions could arise from both raw milk and NWC. Starter lactobacilli (SLAB) from NWC were the main species present during acidification, and non-starter LAB (NSLAB), mainly from milk but also from NWC, were able to grow after brining and they dominated during ripening. The peak areas of LH-PCR profiles were used to determine ecological indices during manufacture and ripening. Among cheese ecosystems with different ageing times, diversity, Evenness and Richness were different, with highest bacterial growth and diversity occurring in cheese ripening at 2 months. At this time point, which seemed to be a crucial moment for GP microbial evolution, cell lysis of both SLAB and NSLAB was also observed. Sampling modality and statistical analysis gave greater significance to the results used to describe the microbiological characteristics of a cheese recognised worldwide.

  5. Sodium content in retail Cheddar, Mozzarella, and process cheeses varies considerably in the United States.

    Science.gov (United States)

    Agarwal, S; McCoy, D; Graves, W; Gerard, P D; Clark, S

    2011-03-01

    Reducing the sodium content in cheese is expected to contribute to reducing the overall intake of sodium by US consumers. The purpose of this study was to measure the sodium levels in cheeses that are most commonly purchased by US consumers in the retail market, including brand and private label. A secondary purpose of the study was to generate data that can enable the dairy industry to adopt best practices regarding sodium levels in cheeses. The sodium content of a total of 1,665 samples of Cheddar (650 samples), low moisture part skim (LMPS) Mozzarella (746 samples), and process cheese singles (269 samples) from 4 geographical regions were collected over a period of 3 wk, and were analyzed over a 1-mo period. Process cheese contained the highest mean level of sodium (1,242 mg/100g), followed by string cheese (724 mg/100g). Across Cheddar cheese forms and brands, the mean analytical sodium was 615 mg/100g, with 95% between 474 and 731 mg/100g; label sodium ranged from 600 to 800 mg/100g (mean 648 mg). Across all LMPS Mozzarella forms and brands, the mean analytical sodium was 666 mg/100g, with 95% between 452 and 876 mg/100g; label sodium ranged from 526 to 89 3mg/100g (mean 685 mg). Across all process cheese forms and brands, the mean analytical sodium was 1,242 mg/100g, with 95% between 936 and 1,590 mg/100g; label sodium ranged from 1,185 to 1,740 mg/100g (mean 1,313 mg/100g). These findings demonstrate that manufacturers tended to be conservative with their reporting of sodium on labels. Manufacturers need to reduce variability to better target desired sodium levels, which is an opportunity for better process control, and will enable them to label sodium more accurately.

  6. The microbiota of high-moisture mozzarella cheese produced with different acidification methods.

    Science.gov (United States)

    Guidone, Angela; Zotta, Teresa; Matera, Attilio; Ricciardi, Annamaria; De Filippis, Francesca; Ercolini, Danilo; Parente, Eugenio

    2016-01-01

    The microbiota of high-moisture Mozzarella cheese made from cow's milk and produced with different acidification methods was evaluated at the end of refrigerated storage by pyrosequencing of the 16S rRNA gene. The cheeses were clearly separated on the basis of the acidification methods. Cheeses produced with the addition of starters were dominated by Streptococcus thermophilus, but a variety of lactic acid bacteria and spoilage microorganisms appeared at low levels (0.01-1%). Cheeses produced by direct addition of citric acid were dominated by a diverse microbiota, including both lactic acid bacteria and psychrotrophic γ-proteobacteria. For five brands the acidification system was not declared on the label: the microbiota was dominated by thermophilic lactic acid bacteria (S. thermophilus, Lactobacillus delbrueckii, Lactobacillus helveticus) but a variety of other subdominant lactic acid bacteria, psychrotrophs and Enterobacteriaceae were present, with a diversity comparable or higher to cheeses produced by direct acid addition. This led to the conclusion that undefined starters were used for acidification. Both ordination methods and network analysis were used for the representation of beta-diversity: matrix cluster analysis, principal coordinate analysis and OTU networks uncovered different aspects of the microbial community structure. For three cheese brands both biological replicates (cheeses from different lots) and technical replicates (replicate cheeses from the same lot) were analyzed. Repeatability was acceptable for OTUs appearing at frequencies >1%, but was low otherwise. A linear mixed model showed that the starter system was responsible for most differences related to dairies, while difference due to psychrotrophic contaminants was more related to lot-to-lot variability.

  7. Evaluation of hygiene and safety criteria in the production of a traditional Piedmont cheese

    Directory of Open Access Journals (Sweden)

    Sara Astegiano

    2014-08-01

    Full Text Available Traditional products and related processes must be safe to protect consumers’ health. The aim of this study was to evaluate microbiological criteria of a traditional Piedmont cheese, made by two different cheese producers (A and B. Three batches of each cheese were considered. The following seven samples of each batch were collected: raw milk, milk at 38°C, curd, cheese at 7, 30, 60, 90 days of ripening. During cheese making process, training activities dealing with food safety were conducted. Analyses regarding food safety and process hygiene criteria were set up according to the EC Regulation 2073/2005. Other microbiological and chemical-physical analyses [lactic streptococci, lactobacilli, pH and water activity (Aw] were performed as well. Shiga-toxin Escherichia coli, aflatoxin M1 and antimicrobial substances were considered only for raw milk. All samples resulted negative for food safety criteria; Enterobacteriaceae, E.coli and coagulase-positive staphylococci (CPS were high in the first phase of cheese production, however they decreased at the end of ripening. A high level of CPS in milk was found in producer A, likewise in some cheese samples a count of >5 Log CFU/g was reached; staphylococcal enterotoxins resulted negative. The pH and Aw values decreased during the cheese ripening period. The competition between lactic flora and potential pathogen microorganisms and decreasing of pH and Aw are considered positive factors in order to ensure safety of dairy products. Moreover, training activities play a crucial role to manage critical points and perform corrective action. Responsible application of good manufacturing practices are considered key factors to obtain a high hygienic level in dairy products.

  8. Evaluation of Hygiene and Safety Criteria in the Production of a Traditional Piedmont Cheese

    Science.gov (United States)

    Bellio, Alberto; Adriano, Daniela; Bianchi, Daniela Manila; Gallina, Silvia; Gorlier, Alessandra; Gramaglia, Monica; Lombardi, Giampiero; Macori, Guerrino; Zuccon, Fabio; Decastelli, Lucia

    2014-01-01

    Traditional products and related processes must be safe to protect consumers’ health. The aim of this study was to evaluate microbiological criteria of a traditional Piedmont cheese, made by two different cheese producers (A and B). Three batches of each cheese were considered. The following seven samples of each batch were collected: raw milk, milk at 38°C, curd, cheese at 7, 30, 60, 90 days of ripening. During cheese making process, training activities dealing with food safety were conducted. Analyses regarding food safety and process hygiene criteria were set up according to the EC Regulation 2073/2005. Other microbiological and chemical-physical analyses [lactic streptococci, lactobacilli, pH and water activity (Aw)] were performed as well. Shiga-toxin Escherichia coli, aflatoxin M1 and antimicrobial substances were considered only for raw milk. All samples resulted negative for food safety criteria; Enterobacteriaceae, E.coli and coagulase-positive staphylococci (CPS) were high in the first phase of cheese production, however they decreased at the end of ripening. A high level of CPS in milk was found in producer A, likewise in some cheese samples a count of >5 Log CFU/g was reached; staphylococcal enterotoxins resulted negative. The pH and Aw values decreased during the cheese ripening period. The competition between lactic flora and potential pathogen microorganisms and decreasing of pH and Aw are considered positive factors in order to ensure safety of dairy products. Moreover, training activities play a crucial role to manage critical points and perform corrective action. Responsible application of good manufacturing practices are considered key factors to obtain a high hygienic level in dairy products.

  9. Galactose content of legumes, caseinates, and some hard cheeses: implications for diet treatment of classic galactosemia.

    Science.gov (United States)

    Van Calcar, Sandra C; Bernstein, Laurie E; Rohr, Frances J; Yannicelli, Steven; Berry, Gerard T; Scaman, Christine H

    2014-02-12

    There are inconsistent reports on the lactose and/or galactose content of some foods traditionally restricted from the diet for classic galactosemia. Therefore, samples of cheeses, caseinates, and canned black, pinto, kidney, and garbanzo beans were analyzed for free galactose content using HPLC with refractive index or pulsed amperometric detection. Galactose concentrations in several hard and aged cheeses and three mild/medium Cheddars, produced by smaller local dairies, was galactosemia.

  10. In vitro salt release from model cheeses varying in texture and aroma

    OpenAIRE

    Syarifuddin, Adiansyah, T. Thomas-Danguin, C.Septier, E. Semon and C. Salles

    2015-01-01

    ABSTRACT Health authorities recommend a reduction in salt (NaCl) and fat contents in food. Reducing such components without affecting food acceptability is a major challenge because of their multi functional properties. A strategy to compensate for salt reduction sensorially is to improve in-mouth salt release. We performed a study to evaluate salt release in cheese-like products in conditions that mimic food oral processing. Model cheeses were prepared according to a full-factorial desig...

  11. Fate of Mycobacterium avium subsp. paratuberculosis in Swiss Hard and Semihard Cheese Manufactured from Raw Milk

    OpenAIRE

    Spahr, U.; Schafroth, K.

    2001-01-01

    Raw milk was artificially contaminated with declumped cells of Mycobacterium avium subsp. paratuberculosis at a concentration of 104 to 105 CFU/ml and was used to manufacture model hard (Swiss Emmentaler) and semihard (Swiss Tisliter) cheese. Two different strains of M. avium subsp. paratuberculosis were tested, and for each strain, two model hard and semihard cheeses were produced. The survival of M. avium subsp. paratuberculosis cells was monitored over a ripening period of 120 days by plat...

  12. Inactivation of Mycobacterium paratuberculosis and Mycobacterium tuberculosis in fresh soft cheese by gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Badr, Hesham M., E-mail: heshambadr_aea@yahoo.co.uk [Atomic Energy Authority, Nuclear Research Center, Abou Zaabal, P.O. Box 13759 Cairo (Egypt)

    2011-11-15

    The effectiveness of gamma irradiation on the inactivation of Mycobacterium paratuberculosis, Mycobacterium bovis and Mycobacterium tuberculosis in fresh soft cheese that prepared from artificially inoculated milk samples was studied. Irradiation at dose of 2 kGy was sufficient for the complete inactivation of these mycobacteria as they were not detected in the treated samples during storage at 4{+-}1 {sup o}C for 15 days. Moreover, irradiation of cheese samples, that were prepared from un-inoculated milk, at this effective dose had no significant effects on their gross composition and contents from riboflavin, niacin and pantothenic acid, while significant decreases in vitamin A and thiamin were observed. In addition, irradiation of cheese samples had no significant effects on their pH and nitrogen fractions contents, except for the contents of ammonia, which showed a slight, but significant, increases due to irradiation. The analysis of cheese fats indicated that irradiation treatment induced significant increase in their oxidation parameters and contents from free fatty acids; however, the observed increases were relatively low. On the other hand, irradiation of cheese samples induced no significant alterations on their sensory properties. Thus, irradiation dose of 2 kGy can be effectively applied to ensure the safety of soft cheese with regards to these harmful mycobacteria. - Highlights: > We examined the effectiveness of gamma irradiation on inactivation of Mycobacterium paratuberculosis, Mycobacterium bovis and Mycobacterium tuberculosis in fresh soft cheese. > Irradiation at dose of 2 kGy was sufficient for complete inactivation of these mycobacteria. > Irradiation of cheese samples induced no significant alterations on their sensory properties.

  13. Cheese intake lowers plasma cholesterol concentrations without increasing bile acid excretion

    OpenAIRE

    Hjerpsted, Julie Bousgaard; Dragsted, Lars Ove; Tholstrup, Tine

    2016-01-01

    Purpose Cheese is a dairy product with high calcium content. It has been suggested that calcium intake may increase fecal excretion of bile acids that would cause a regeneration of bile acids from hepatic cholesterol and thereby result in a lowering of plasma cholesterol concentrations. We aimed to test this hypothesis by assessing bile acid and calcium concentrations in fecal samples from humans after intake of cheese and butter. Methods The study was a randomized, 2 × 6 weeks crossover, die...

  14. Inactivation of Mycobacterium paratuberculosis and Mycobacterium tuberculosis in fresh soft cheese by gamma radiation

    Science.gov (United States)

    Badr, Hesham M.

    2011-11-01

    The effectiveness of gamma irradiation on the inactivation of Mycobacterium paratuberculosis, Mycobacterium bovis and Mycobacterium tuberculosis in fresh soft cheese that prepared from artificially inoculated milk samples was studied. Irradiation at dose of 2 kGy was sufficient for the complete inactivation of these mycobacteria as they were not detected in the treated samples during storage at 4±1 °C for 15 days. Moreover, irradiation of cheese samples, that were prepared from un-inoculated milk, at this effective dose had no significant effects on their gross composition and contents from riboflavin, niacin and pantothenic acid, while significant decreases in vitamin A and thiamin were observed. In addition, irradiation of cheese samples had no significant effects on their pH and nitrogen fractions contents, except for the contents of ammonia, which showed a slight, but significant, increases due to irradiation. The analysis of cheese fats indicated that irradiation treatment induced significant increase in their oxidation parameters and contents from free fatty acids; however, the observed increases were relatively low. On the other hand, irradiation of cheese samples induced no significant alterations on their sensory properties. Thus, irradiation dose of 2 kGy can be effectively applied to ensure the safety of soft cheese with regards to these harmful mycobacteria.

  15. Listeriosis Outbreaks in British Columbia, Canada, Caused by Soft Ripened Cheese Contaminated from Environmental Sources

    Directory of Open Access Journals (Sweden)

    Lorraine McIntyre

    2015-01-01

    Full Text Available Soft ripened cheese (SRC caused over 130 foodborne illnesses in British Columbia (BC, Canada, during two separate listeriosis outbreaks. Multiple agencies investigated the events that lead to cheese contamination with Listeria monocytogenes (L.m., an environmentally ubiquitous foodborne pathogen. In both outbreaks pasteurized milk and the pasteurization process were ruled out as sources of contamination. In outbreak A, environmental transmission of L.m. likely occurred from farm animals to personnel to culture solutions used during cheese production. In outbreak B, birds were identified as likely contaminating the dairy plant’s water supply and cheese during the curd-washing step. Issues noted during outbreak A included the risks of operating a dairy plant in a farm environment, potential for transfer of L.m. from the farm environment to the plant via shared toilet facilities, failure to clean and sanitize culture spray bottles, and cross-contamination during cheese aging. L.m. contamination in outbreak B was traced to wild swallows defecating in the plant’s open cistern water reservoir and a multibarrier failure in the water disinfection system. These outbreaks led to enhanced inspection and surveillance of cheese plants, test and release programs for all SRC manufactured in BC, improvements in plant design and prevention programs, and reduced listeriosis incidence.

  16. Socioeconomic diagnosis of cheese producers of Marajó, state of Pará, Brazil

    Directory of Open Access Journals (Sweden)

    Vitória Nazaré Costa Seixas

    2014-10-01

    Full Text Available The aim of this research was to diagnose the socioeconomic conditions of cheese producers from three municipalities of Marajó Island, Pará state, Brazil. Manufacture process, hygienic-sanitary conditions in handmade cheese production and its commercialization were some features analysed for both cream-type and butter-type cheeses. During the survey, conducted from March to September 2012 questionnaires were applied to ten Marajó’s cheese producers. The cheese fabrication was characterized as a handmade process, employing family labor, most over ten years of experience. The production has a small scale, uses rudimentary technologies, lacks proper infrastructure for the processing of the product and has unsatisfactory hygienic-sanitary conditions. Commercialization is mainly by direct sale on the ship that travels to Belém city, capital of Pará state. Interviewed producers showed good reception to knowledge that can improve quality of the product, but they need a better guidance. In this context, the transfer of information is essential to sustain the production of these cheeses and preserve local culture, contributing to the economic and social development of producers regions.

  17. Proteolytic effect of Cynara cardunculus rennet for use in the elaboration of 'Torta del Casar' cheese.

    Science.gov (United States)

    Ordiales, Elena; Benito, Maria José; Martin, Alberto; Fernández, Margarita; Hernández, Alejandro; de Guia Córdoba, Maria

    2013-11-01

    The purpose of this work was to analyse the influence of rennet from different Cynara cardunculus plants, selected for its clotting and proteolytic activity on caseins, on the characteristics of manufactured 'Torta del Casar' cheeses. After classifying the cardoon according to proteolytic activity into five groups of greater or lesser activity, 16 batches of cheeses were made with rennet derived from different wild cardoon plants. We observed a major development of the proteolysis during ripening leading to the generation of non-protein nitrogen compounds. Especially noteworthy was the relationship of amino acid nitrogen (AN) generation with rennet clotting activity after 24 h of maceration, and the fact that the production of biogenic amines was not related to the proteolytic activity of the rennet. The activities of the rennet observed 'in vitro' were also developed 'in vivo' in the cheeses, with the different rennets used affecting the final sensory characteristics of cheeses. The rennet with high clotting activity after 24 h of maceration was positively correlated with the creaminess, viscosity, and acceptability of the cheese. However, the high proteolytic activity rennet negatively influenced the acidity, bitterness, and creaminess parameters. Therefore the most appropriate cardoons for making this cheese are those with higher clotting activities and moderate proteolytic activities especially on β-casein. The use of controlled and characterised cardoons in the manufacturing process of Torta del Casar is fundamental to obtaining the homogeneous product demanded by the Torta del Casar Registry of the Protected Designation of Origin.

  18. Effect of Carrageenan on Physicochemical and Functional Properties of Low-Fat Colby Cheese.

    Science.gov (United States)

    Wang, Fang; Tong, Qigen; Luo, Jie; Xu, Yiqing; Ren, Fazheng

    2016-08-01

    The effect of carrageenan (κ-carrageenan, ι-carrageenan, and λ-carrageenan) on the physiochemical and functional properties of low-fat Colby cheese during ripening was investigated. Protein, fat, and moisture contents; the soluble fractions of the total nitrogen at pH 4.6; protein and fat recovery; and the actual yield and dry matter yield (DM yield) were monitored. Hardness, springiness, and the storage modulus were also evaluated to assess the functional properties of the cheese. Moreover, the behavior of water in the samples was investigated to ascertain the underlying mechanisms. The results indicated that 0.15 g/kg κ-carrageenan had no significant effect on the actual yield and DM yield, and physiochemical and functional properties of low-fat Colby cheese. The protein content increased in the low-fat cheese and low-fat cheese containing κ-carrageenan, and the moisture in the nonfat substance (MNFS) decreased in both samples, which contributed to the harder texture. The addition of 0.3 g/kg ι-carrageenan and 0.3 g/kg λ-carrageenan improved the textural and rheological properties of low-fat cheese by 2 ways: one is increasing the content of bound and expressible moisture due to their high water absorption capacity and the other is interfering with casein crosslinking, thereby further increasing MNFS and the actual yield.

  19. Quantitation of Key Tastants and Re-engineering the Taste of Parmesan Cheese.

    Science.gov (United States)

    Hillmann, Hedda; Hofmann, Thomas

    2016-03-01

    Targeted quantitation of 65 candidate taste compounds and ranking on the basis of dose-over-threshold (DoT) factors, followed by taste re-engineering and omission experiments in aqueous solution as well as in a cheese-like model matrix, led to the identification of a total of 31 key tastants (amino acids, organic acids, fatty acids, biogenic amines, and minerals) with DoT factors ≥1.0 and a total of 15 subthreshold, but kokumi-enhancing, γ-glutamyl peptides in extraordinarily high concentrations of 20468 μmol/kg. Among the γ-glutamyl peptides, γ-Glu-Gly, γ-Glu-Ala, γ-Glu-Thr, γ-Glu-Asp, γ-Glu-Lys, γ-Glu-Glu, γ-Glu-Trp, γ-Glu-Gln, and γ-Glu-His have been identified for the first time in Parmesan cheese. The excellent match of the sensory profile of the taste recombinants and the authentic cheese demonstrated the identified taste compounds to be fully sufficient to create the characteristic taste profile of the Parmesan cheese. This molecular blueprint of a Parmesan's chemosensory signature might be a useful molecular target for visualizing analytically the changes in taste profiles throughout cheese manufacturing and opens new avenues for a more scientifically directed taste improvement of cheese by tailoring manufacturing parameters ("molecular food engineering").

  20. Characterization of a Panela cheese with added probiotics and fava bean starch.

    Science.gov (United States)

    Escobar, M C; Van Tassell, M L; Martínez-Bustos, F; Singh, M; Castaño-Tostado, E; Amaya-Llano, S L; Miller, M J

    2012-06-01

    Of 20 Lactobacillus and 8 Bifidobacterium species examined, only Bifidobacterium breve ATCC 15700 was able to ferment starch from fava beans. Bifidobacterium breve ATCC 15700 and Lactobacillus rhamnosus GG ATCC 53103 were selected as probiotics for use in fresh-style Panela cheese. Two types of fresh cheese (with and without 3% fava bean starch) were manufactured with 3 combinations of probiotics: L. rhamnosus GG only, B. breve only, or both L. rhamnosus GG and B. breve. During 4 wk of storage at 4°C, the addition of fava bean starch to the cheese was not found to cause significant differences in the viability of either probiotic strain. However, the microstructure and texture of Panela cheese were altered, resulting in a much softer product. A sensory panel showed that the presence of added fava bean starch in Panela cheese was less desirable to consumers, whereas probiotic supplementation had no effect on perceived taste or appearance. Panela cheese could be a suitable food for inclusion of probiotic bacteria.