WorldWideScience

Sample records for chebyshev polynomial approximation

  1. Chebyshev polynomials

    CERN Document Server

    Mason, JC

    2002-01-01

    Chebyshev polynomials crop up in virtually every area of numerical analysis, and they hold particular importance in recent advances in subjects such as orthogonal polynomials, polynomial approximation, numerical integration, and spectral methods. Yet no book dedicated to Chebyshev polynomials has been published since 1990, and even that work focused primarily on the theoretical aspects. A broad, up-to-date treatment is long overdue.Providing highly readable exposition on the subject''s state of the art, Chebyshev Polynomials is just such a treatment. It includes rigorous yet down-to-earth coverage of the theory along with an in-depth look at the properties of all four kinds of Chebyshev polynomials-properties that lead to a range of results in areas such as approximation, series expansions, interpolation, quadrature, and integral equations. Problems in each chapter, ranging in difficulty from elementary to quite advanced, reinforce the concepts and methods presented.Far from being an esoteric subject, Chebysh...

  2. Chebyshev polynomial approximation to approximate partial differential equations

    OpenAIRE

    Caporale, Guglielmo Maria; Cerrato, Mario

    2008-01-01

    This pa per suggests a simple method based on Chebyshev approximation at Chebyshev nodes to approximate partial differential equations. The methodology simply consists in determining the value function by using a set of nodes and basis functions. We provide two examples. Pricing an European option and determining the best policy for chatting down a machinery. The suggested method is flexible, easy to program and efficient. It is also applicable in other fields, providing efficient solutions t...

  3. Using Chebyshev Polynomials to Approximate Partial Differential Equations

    OpenAIRE

    Caporale, Guglielmo Maria; Cerrato, Mario

    2008-01-01

    This paper suggests a simple method based on a Chebyshev approximation at Chebyshev nodes to approximate partial differential equations. It consists in determining the value function by using a set of nodes and basis functions. We provide two examples: pricing a European option and determining the best policy for shutting down a machine. The suggested method is flexible, easy to programme and efficient. It is also applicable in other fields, providing efficient solutions to complex systems of...

  4. Application of Chebyshev Polynomial to simulated modeling

    Institute of Scientific and Technical Information of China (English)

    CHI Hai-hong; LI Dian-pu

    2006-01-01

    Chebyshev polynomial is widely used in many fields, and used usually as function approximation in numerical calculation. In this paper, Chebyshev polynomial expression of the propeller properties across four quadrants is given at first, then the expression of Chebyshev polynomial is transformed to ordinary polynomial for the need of simulation of propeller dynamics. On the basis of it,the dynamical models of propeller across four quadrants are given. The simulation results show the efficiency of mathematical model.

  5. Blind Signature Scheme Based on Chebyshev Polynomials

    Directory of Open Access Journals (Sweden)

    Maheswara Rao Valluri

    2011-12-01

    Full Text Available A blind signature scheme is a cryptographic protocol to obtain a valid signature for a message from a signer such that signer’s view of the protocol can’t be linked to the resulting message signature pair. This paper presents blind signature scheme using Chebyshev polynomials. The security of the given scheme depends upon the intractability of the integer factorization problem and discrete logarithms ofChebyshev polynomials.

  6. Chebyshev approximation for multivariate functions

    OpenAIRE

    Sukhorukova, Nadezda; Ugon, Julien; Yost, David

    2015-01-01

    In this paper, we derive optimality conditions (Chebyshev approximation) for multivariate functions. The theory of Chebyshev (uniform) approximation for univariate functions is very elegant. The optimality conditions are based on the notion of alternance (maximal deviation points with alternating deviation signs). It is not very straightforward, however, how to extend the notion of alternance to the case of multivariate functions. There have been several attempts to extend the theory of Cheby...

  7. Digital terrain modeling with the Chebyshev polynomials

    CERN Document Server

    Florinsky, I V

    2015-01-01

    Mathematical problems of digital terrain analysis include interpolation of digital elevation models (DEMs), DEM generalization and denoising, and computation of morphometric variables by calculation of partial derivatives of elevation. Traditionally, these procedures are based on numerical treatments of two-variable discrete functions of elevation. We developed a spectral analytical method and algorithm based on high-order orthogonal expansions using the Chebyshev polynomials of the first kind with the subsequent Fejer summation. The method and algorithm are intended for DEM analytical treatment, such as, DEM global approximation, denoising, and generalization as well as computation of morphometric variables by analytical calculation of partial derivatives. To test the method and algorithm, we used a DEM of the Northern Andes including 230,880 points (the elevation matrix 480 $\\times$ 481). DEMs were reconstructed with 480, 240, 120, 60, and 30 expansion coefficients. The first and second partial derivatives ...

  8. On the Connection Coefficients of the Chebyshev-Boubaker Polynomials

    Directory of Open Access Journals (Sweden)

    Paul Barry

    2013-01-01

    Full Text Available The Chebyshev-Boubaker polynomials are the orthogonal polynomials whose coefficient arrays are defined by ordinary Riordan arrays. Examples include the Chebyshev polynomials of the second kind and the Boubaker polynomials. We study the connection coefficients of this class of orthogonal polynomials, indicating how Riordan array techniques can lead to closed-form expressions for these connection coefficients as well as recurrence relations that define them.

  9. Discriminants of Polynomials Related to Chebyshev Polynomials: The 'Mutt and Jeff' Syndrome

    OpenAIRE

    Tran, Khang

    2016-01-01

    The discriminants of certain polynomials related to Chebyshev polynomials factor into the product of two polynomials, one of which has coefficients that are much larger than the other's. Remarkably, these polynomials of dissimilar size have "almost" the same roots, and their discriminants involve exactly the same prime factors.

  10. A solution of the linear transport equation using Chebyshev polynomials and Laplace transform

    International Nuclear Information System (INIS)

    A new approximate solution of the one-group linear transport equation with anisotropic scattering is established utilizing the Chebyshev polynomials. The resulting system of linear differential equations is solved analytically using the Laplace transform technique. Numerical results are presented. (orig.)

  11. Cryptanalysis of Multiplicative Coupled Cryptosystems Based on the Chebyshev Polynomials

    Science.gov (United States)

    Shakiba, Ali; Hooshmandasl, Mohammad Reza; Meybodi, Mohsen Alambardar

    2016-06-01

    In this work, we propose a class of public-key cryptosystems called multiplicative coupled cryptosystem, or MCC for short, as well as discuss its security within three different models. Moreover, we discuss a chaotic instance of MCC based on the first and the second types of Chebyshev polynomials over real numbers for these three security models. To avoid round-off errors in floating point arithmetic as well as to enhance the security of the chaotic instance discussed, the Chebyshev polynomials of the first and the second types over a finite field are employed. We also consider the efficiency of the proposed MCCs. The discussions throughout the paper are supported by practical examples.

  12. A new Identity Based Encryption (IBE) scheme using extended Chebyshev polynomial over finite fields Zp

    International Nuclear Information System (INIS)

    We present a method to extract key pairs needed for the Identity Based Encryption (IBE) scheme from extended Chebyshev polynomial over finite fields Zp. Our proposed scheme relies on the hard problem and the bilinear property of the extended Chebyshev polynomial over Zp. The proposed system is applicable, secure, and reliable.

  13. Solution of linear transport equation using Chebyshev polynomials and Laplace transform

    International Nuclear Information System (INIS)

    The Chebyshev polynomials and the Laplace transform are combined to solve, analytically, the linear transport equation in planar geometry, considering isotropic scattering and the one-group model. Numerical simulation is presented. (author)

  14. Higher-order Chebyshev rational approximation method (CRAM)

    International Nuclear Information System (INIS)

    The burnup equations can in principle be solved by computing the exponential of the burnup matrix. However, due to the difficult numerical characteristics of burnup matrices, the problem is extremely stiff, and the matrix exponential solution was long considered infeasible for an entire burnup system containing over a thousand nuclides. After discovering that the eigenvalues of burnup matrices are generally confined to a region near the negative real axis, the Chebyshev rational approximation method (CRAM) was introduced as a novel method to solve the burnup equations. It can be characterized as the best rational function on the negative real axis and it has been shown to be capable of simultaneously solving an entire burnup system both accurately and efficiently. The main difficulty in using CRAM for computing the matrix exponential is determining the coefficients of the rational function for a given approximation order. Some polynomial CRAM coefficients have been published in 1984, and based on these literature values, CRAM approximations up to the order 16 have been thus far applied in burnup calculations. The topic of this paper is the computation of CRAM approximations and their application to burnup equations. A Remez-type method utilizing the equioscillation property of best approximations is used to construct the CRAM approximants for approximation orders 1,. . . , 50. Numerical results are presented for a large burnup system and for a decay system. It is demonstrated that higher-order CRAM can be used to accurately solve the burnup equations even with time steps of the order of millions of years. (author)

  15. Generalized Chebyshev-like Approximation for Low-pass Filter

    Directory of Open Access Journals (Sweden)

    Hisham L. Swady

    2011-06-01

    Full Text Available Analog filters constitute indispensible component of analog circuits and still playing an important part in interface with analog real world. realizing filters with odd order is preferred because of its time response . Therefore, this paper is conducted to introduce a new generalized Chebyshev – like approximation for analog filters. The analyses presented to realize the filters with odd order. This proposed novel approach offer good results in terms of flat delay and time domain response. Also, the achieved results are validated by comparison to normal Chebyshev filter via investigation several examples.

  16. Applying Semigroup Property of Enhanced Chebyshev Polynomials to Anonymous Authentication Protocol

    OpenAIRE

    Hong Lai; Jinghua Xiao; Lixiang Li; Yixian Yang

    2012-01-01

    We apply semigroup property of enhanced Chebyshev polynomials to present an anonymous authentication protocol. This paper aims at improving security and reducing computational and storage overhead. The proposed scheme not only has much lower computational complexity and cost in the initialization phase but also allows the users to choose their passwords freely. Moreover, it can provide revocation of lost or stolen smart card, which can resist man-in-the-middle attack and off-line dictionary a...

  17. Novel Image Encryption Scheme Based on Chebyshev Polynomial and Duffing Map

    Science.gov (United States)

    2014-01-01

    We present a novel image encryption algorithm using Chebyshev polynomial based on permutation and substitution and Duffing map based on substitution. Comprehensive security analysis has been performed on the designed scheme using key space analysis, visual testing, histogram analysis, information entropy calculation, correlation coefficient analysis, differential analysis, key sensitivity test, and speed test. The study demonstrates that the proposed image encryption algorithm shows advantages of more than 10113 key space and desirable level of security based on the good statistical results and theoretical arguments. PMID:25143970

  18. Weighted discrete least-squares polynomial approximation using randomized quadratures

    Science.gov (United States)

    Zhou, Tao; Narayan, Akil; Xiu, Dongbin

    2015-10-01

    We discuss the problem of polynomial approximation of multivariate functions using discrete least squares collocation. The problem stems from uncertainty quantification (UQ), where the independent variables of the functions are random variables with specified probability measure. We propose to construct the least squares approximation on points randomly and uniformly sampled from tensor product Gaussian quadrature points. We analyze the stability properties of this method and prove that the method is asymptotically stable, provided that the number of points scales linearly (up to a logarithmic factor) with the cardinality of the polynomial space. Specific results in both bounded and unbounded domains are obtained, along with a convergence result for Chebyshev measure. Numerical examples are provided to verify the theoretical results.

  19. Contourlet Filter Design Based on Chebyshev Best Uniform Approximation

    Directory of Open Access Journals (Sweden)

    Ming Hou

    2010-01-01

    Full Text Available The contourlet transform can deal effectively with images which have directional information such as contour and texture. In contrast to wavelets for which there exists many good filters, the contourlet filter design for image processing applications is still an ongoing work. Therefore, this paper presents an approach for designing the contourlet filter based on the Chebyshev best uniform approximation for achieving an efficient image denoising applications using hidden Markov tree models in the contourlet domain. Here, we design both the optimal 9/7 wavelet filter banks with rational coefficients and new pkva 12 filter. In this paper, the Laplacian pyramid followed by the direction filter banks decomposition in the contourlet transform using the two filter banks above and the image denoising applications in the contourlet hidden Markov tree model are implemented, respectively. The experimental results show that the denoising performance of the test image Zelda in terms of peak signal-to-noise ratio is improved by 0.33 dB than using CDF 9/7 filter banks with irrational coefficients on the JPEG2000 standard and standard pkva 12 filter, and visual effects are as good as compared with the research results of Duncan D.-Y. Po and Minh N. Do.

  20. Contourlet Filter Design Based on Chebyshev Best Uniform Approximation

    Directory of Open Access Journals (Sweden)

    Fang Xiaofeng

    2010-01-01

    Full Text Available Abstract The contourlet transform can deal effectively with images which have directional information such as contour and texture. In contrast to wavelets for which there exists many good filters, the contourlet filter design for image processing applications is still an ongoing work. Therefore, this paper presents an approach for designing the contourlet filter based on the Chebyshev best uniform approximation for achieving an efficient image denoising applications using hidden Markov tree models in the contourlet domain. Here, we design both the optimal 9/7 wavelet filter banks with rational coefficients and new pkva 12 filter. In this paper, the Laplacian pyramid followed by the direction filter banks decomposition in the contourlet transform using the two filter banks above and the image denoising applications in the contourlet hidden Markov tree model are implemented, respectively. The experimental results show that the denoising performance of the test image Zelda in terms of peak signal-to-noise ratio is improved by 0.33 dB than using CDF 9/7 filter banks with irrational coefficients on the JPEG2000 standard and standard pkva 12 filter, and visual effects are as good as compared with the research results of Duncan D.-Y. Po and Minh N. Do.

  1. Accelerated solution of non-linear flow problems using Chebyshev iteration polynomial based RK recursions

    Energy Technology Data Exchange (ETDEWEB)

    Lorber, A.A.; Carey, G.F.; Bova, S.W.; Harle, C.H. [Univ. of Texas, Austin, TX (United States)

    1996-12-31

    The connection between the solution of linear systems of equations by iterative methods and explicit time stepping techniques is used to accelerate to steady state the solution of ODE systems arising from discretized PDEs which may involve either physical or artificial transient terms. Specifically, a class of Runge-Kutta (RK) time integration schemes with extended stability domains has been used to develop recursion formulas which lead to accelerated iterative performance. The coefficients for the RK schemes are chosen based on the theory of Chebyshev iteration polynomials in conjunction with a local linear stability analysis. We refer to these schemes as Chebyshev Parameterized Runge Kutta (CPRK) methods. CPRK methods of one to four stages are derived as functions of the parameters which describe an ellipse {Epsilon} which the stability domain of the methods is known to contain. Of particular interest are two-stage, first-order CPRK and four-stage, first-order methods. It is found that the former method can be identified with any two-stage RK method through the correct choice of parameters. The latter method is found to have a wide range of stability domains, with a maximum extension of 32 along the real axis. Recursion performance results are presented below for a model linear convection-diffusion problem as well as non-linear fluid flow problems discretized by both finite-difference and finite-element methods.

  2. Discrete least squares approximation with polynomial vectors

    OpenAIRE

    Van Barel, Marc; Bultheel, Adhemar

    1993-01-01

    We give a solution of a discrete least squares approximation problem in terms of orthogonal polynomial vectors. The degrees of the polynomial elements of these vectors can be different. An algorithm is constructed computing the coefficients of recurrence relations for the orthogonal polynomial vectors. In case the function values are prescribed in points on the real line or on the unit circle variants of the original algorithm can be designed which are an order of magnitude more efficient. Al...

  3. A New Six-Parameter Model Based on Chebyshev Polynomials for Solar Cells

    Directory of Open Access Journals (Sweden)

    Shu-xian Lun

    2015-01-01

    Full Text Available This paper presents a new current-voltage (I-V model for solar cells. It has been proved that series resistance of a solar cell is related to temperature. However, the existing five-parameter model ignores the temperature dependence of series resistance and then only accurately predicts the performance of monocrystalline silicon solar cells. Therefore, this paper uses Chebyshev polynomials to describe the relationship between series resistance and temperature. This makes a new parameter called temperature coefficient for series resistance introduced into the single-diode model. Then, a new six-parameter model for solar cells is established in this paper. This new model can improve the accuracy of the traditional single-diode model and reflect the temperature dependence of series resistance. To validate the accuracy of the six-parameter model in this paper, five kinds of silicon solar cells with different technology types, that is, monocrystalline silicon, polycrystalline silicon, thin film silicon, and tripe-junction amorphous silicon, are tested at different irradiance and temperature conditions. Experiment results show that the six-parameter model proposed in this paper is an I-V model with moderate computational complexity and high precision.

  4. On the fundamental polynomials for Hermite–Fejér interpolation of Lagrange type on the Chebyshev nodes

    OpenAIRE

    Smith Simon J

    1999-01-01

    For a fixed integer and , let denote the th fundamental polynomial for Hermite–Fejér interpolation on the Chebyshev nodes . (So is the unique polynomial of degree at most which satisfies , and whose first derivatives vanish at each .) In this paper it is established that It is also shown that is an increasing function of , and the best possible bound so that for all , and is obtained. The results generalise those for Lagrange interpolation, obtained by P. Erdős an...

  5. Function generation synthesis of spherical 5R mechanism with regional spacing and Chebyshev approximation

    OpenAIRE

    Kiper, G??khan; Bilgincan, Tun??

    2015-01-01

    The Chebyshev approximation is well known to be applicable for the approximation of single input???single output functions by means of a function generator mechanism. The approximation method may be also applied to multi-input functions, although until recently, it was not used for function generation with multi-degrees-of-freedom mechanisms. In a recent study, the authors applied the approximation method to a two-degrees-of-freedom mechanism for the first time, however the selection and iter...

  6. Function approximation with polynomial regression slines

    International Nuclear Information System (INIS)

    Principles of the polynomial regression splines as well as algorithms and programs for their computation are presented. The programs prepared using software package MATLAB are generally intended for approximation of the X-ray spectra and can be applied in the multivariate calibration of radiometric gauges. (author)

  7. Error Minimization of Polynomial Approximation of Delta

    Indian Academy of Sciences (India)

    Islam Sana; Sadiq Muhammad; Qureshi Muhammad Shahid

    2008-09-01

    The difference between Universal time (UT) and Dynamical time (TD), known as Delta ( ) is tabulated for the first day of each year in the Astronomical Almanac. During the last four centuries it is found that there are large differences between its values for two consecutive years. Polynomial approximations have been developed to obtain the values of for any time of a year for the period AD 1620 to AD 2000 (Meeu 2000) as no dynamical theories describe the variations in . In this work, a new set of polynomials for is obtained for the period AD 1620 to AD 2007 that is found to produce better results compared to previous attempts.

  8. Polynomial approximation of functions in Sobolev spaces

    Science.gov (United States)

    Dupont, T.; Scott, R.

    1980-01-01

    Constructive proofs and several generalizations of approximation results of J. H. Bramble and S. R. Hilbert are presented. Using an averaged Taylor series, we represent a function as a polynomial plus a remainder. The remainder can be manipulated in many ways to give different types of bounds. Approximation of functions in fractional order Sobolev spaces is treated as well as the usual integer order spaces and several nonstandard Sobolev-like spaces.

  9. Polynomial approximation, local polynomial convexity, and degenerate CR singularities -- II

    OpenAIRE

    Bharali, Gautam

    2010-01-01

    We provide some conditions for the graph of a Hoelder-continuous function on \\bar{D}, where \\bar{D} is a closed disc in the complex plane, to be polynomially convex. Almost all sufficient conditions known to date --- provided the function (say F) is smooth --- arise from versions of the Weierstrass Approximation Theorem on \\bar{D}. These conditions often fail to yield any conclusion if rank_R(DF) is not maximal on a sufficiently large subset of \\bar{D}. We bypass this difficulty by introducin...

  10. A new domain decomposition algorithm for generalized Burger's-Huxley equation based on Chebyshev polynomials and preconditioning

    International Nuclear Information System (INIS)

    In this study, we use the spectral collocation method using Chebyshev polynomials for spatial derivatives and fourth order Runge-Kutta method for time integration to solve the generalized Burger's-Huxley equation (GBHE). To reduce round-off error in spectral collocation (pseudospectral) method we use preconditioning. Firstly, theory of application of Chebyshev spectral collocation method with preconditioning (CSCMP) and domain decomposition on the generalized Burger's-Huxley equation presented. This method yields a system of ordinary differential algebric equations (DAEs). Secondly, we use fourth order Runge-Kutta formula for the numerical integration of the system of DAEs. The numerical results obtained by this way have been compared with the exact solution to show the efficiency of the method.

  11. Conditional Density Approximations with Mixtures of Polynomials

    DEFF Research Database (Denmark)

    Varando, Gherardo; López-Cruz, Pedro L.; Nielsen, Thomas Dyhre;

    2015-01-01

    Mixtures of polynomials (MoPs) are a non-parametric density estimation technique especially designed for hybrid Bayesian networks with continuous and discrete variables. Algorithms to learn one- and multi-dimensional (marginal) MoPs from data have recently been proposed. In this paper we introduce...... two methods for learning MoP approximations of conditional densities from data. Both approaches are based on learning MoP approximations of the joint density and the marginal density of the conditioning variables, but they differ as to how the MoP approximation of the quotient of the two densities is...

  12. Polynomial Approximations of Electronic Wave Functions

    CERN Document Server

    Panin, Andrej I

    2010-01-01

    This work completes the construction of purely algebraic version of the theory of non-linear quantum chemistry methods. It is shown that at the heart of these methods there lie certain algebras close in their definition to the well-known Clifford algebra but quite different in their properties. The most important for quantum chemistry property of these algebras is the following : for a fixed number of electrons the corresponding sector of the Fock space becomes a commutative algebra and its ideals are determined by the order of excitations from the Hartree-Fock reference state. Quotients of this algebra can also be endowed with commutative algebra structures and quotient Schr{\\"o}dinger equations are exactly the couple cluster type equations. Possible computer implementation of multiplication in the aforementioned algebras is described. Quality of different polynomial approximations of configuration interaction wave functions is illustrated with concrete examples. Embedding of algebras of infinitely separated...

  13. Chebyshev polynomial filtered subspace iteration in the Discontinuous Galerkin method for large-scale electronic structure calculations

    CERN Document Server

    Banerjee, Amartya S; Hu, Wei; Yang, Chao; Pask, John E

    2016-01-01

    The Discontinuous Galerkin (DG) electronic structure method employs an adaptive local basis set to solve the equations of density functional theory in a discontinuous Galerkin framework. The methodology is implemented in the Discontinuous Galerkin Density Functional Theory (DGDFT) code for large-scale parallel electronic structure calculations. In DGDFT, the basis is generated on-the-fly to capture the local material physics, and can systematically attain chemical accuracy with only a few tens of degrees of freedom per atom. Hence, DGDFT combines the key advantage of planewave basis sets in terms of systematic improvability with that of localized basis sets in reducing basis size. A central issue for large-scale calculations, however, is the computation of the electron density from the discretized Hamiltonian in an efficient and scalable manner. We show in this work how Chebyshev polynomial filtered subspace iteration (CheFSI) can be used to address this issue and push the envelope in large-scale materials si...

  14. Polynomial force approximations and multifrequency atomic force microscopy

    OpenAIRE

    Daniel Platz; Daniel Forchheimer; Tholén, Erik A; David B. Haviland

    2013-01-01

    We present polynomial force reconstruction from experimental intermodulation atomic force microscopy (ImAFM) data. We study the tip–surface force during a slow surface approach and compare the results with amplitude-dependence force spectroscopy (ADFS). Based on polynomial force reconstruction we generate high-resolution surface-property maps of polymer blend samples. The polynomial method is described as a special example of a more general approximative force reconstruction, where the aim is...

  15. Approximating smooth functions using algebraic-trigonometric polynomials

    Science.gov (United States)

    Sharapudinov, Idris I.

    2011-01-01

    The problem under consideration is that of approximating classes of smooth functions by algebraic-trigonometric polynomials of the form p_n(t)+\\tau_m(t), where p_n(t) is an algebraic polynomial of degree n and \\tau_m(t)=a_0+\\sum_{k=1}^ma_k\\cos k\\pi t+b_k\\sin k\\pi t is a trigonometric polynomial of order m. The precise order of approximation by such polynomials in the classes W^r_\\infty(M) and an upper bound for similar approximations in the class W^r_p(M) with \\frac43 are found. The proof of these estimates uses mixed series in Legendre polynomials which the author has introduced and investigated previously. Bibliography: 13 titles.

  16. Approximating smooth functions using algebraic-trigonometric polynomials

    International Nuclear Information System (INIS)

    The problem under consideration is that of approximating classes of smooth functions by algebraic-trigonometric polynomials of the form pn(t)+τm(t), where pn(t) is an algebraic polynomial of degree n and τm(t)=a0+Σk=1mak cos kπt + bk sin kπt is a trigonometric polynomial of order m. The precise order of approximation by such polynomials in the classes Wr∞(M) and an upper bound for similar approximations in the class Wrp(M) with 4/3< p<4 are found. The proof of these estimates uses mixed series in Legendre polynomials which the author has introduced and investigated previously. Bibliography: 13 titles.

  17. Animating Nested Taylor Polynomials to Approximate a Function

    Science.gov (United States)

    Mazzone, Eric F.; Piper, Bruce R.

    2010-01-01

    The way that Taylor polynomials approximate functions can be demonstrated by moving the center point while keeping the degree fixed. These animations are particularly nice when the Taylor polynomials do not intersect and form a nested family. We prove a result that shows when this nesting occurs. The animations can be shown in class or…

  18. CHEBYSHEV APPROXIMATION OF THE SECOND KIND OF MODIFIED BESSEL FUNCTION OF ORDER ZERO

    Institute of Scientific and Technical Information of China (English)

    张璟; 周哲玮

    2004-01-01

    The second kind of modified Bessel function of order zero is the solutions of many problems in engineering. Modified Bessel equation is transformed by exponential transformation and expanded by J. P. Boyd' s rational Chebyshev basis.

  19. APPROXIMATION BY GENERALIZED MKZ-OPERATORS IN POLYNOMIAL WEIGHTED SPACES

    Institute of Scientific and Technical Information of China (English)

    Lucyna Rempulska; Mariola Skorupka

    2007-01-01

    We prove some approximation properties of generalized Meyer-K(o)nig and Zeller operators for differentiable functions in polynomial weighted spaces. The results extend some results proved in [ 1-3,7-16].

  20. Inner approximations for polynomial matrix inequalities and robust stability regions

    CERN Document Server

    Henrion, Didier

    2011-01-01

    Following a polynomial approach, many robust fixed-order controller design problems can be formulated as optimization problems whose set of feasible solutions is modelled by parametrized polynomial matrix inequalities (PMI). These feasibility sets are typically nonconvex. Given a parametrized PMI set, we provide a hierarchy of linear matrix inequality (LMI) problems whose optimal solutions generate inner approximations modelled by a single polynomial sublevel set. Those inner approximations converge in a strong analytic sense to the nonconvex original feasible set, with asymptotically vanishing conservatism. One may also impose the hierarchy of inner approximations to be nested or convex. In the latter case they do not converge any more to the feasible set, but they can be used in a convex optimization framework at the price of some conservatism. Finally, we show that the specific geometry of nonconvex polynomial stability regions can be exploited to improve convergence of the hierarchy of inner approximation...

  1. An overview on polynomial approximation of NP-hard problems

    Directory of Open Access Journals (Sweden)

    Paschos Vangelis Th.

    2009-01-01

    Full Text Available The fact that polynomial time algorithm is very unlikely to be devised for an optimal solving of the NP-hard problems strongly motivates both the researchers and the practitioners to try to solve such problems heuristically, by making a trade-off between computational time and solution's quality. In other words, heuristic computation consists of trying to find not the best solution but one solution which is 'close to' the optimal one in reasonable time. Among the classes of heuristic methods for NP-hard problems, the polynomial approximation algorithms aim at solving a given NP-hard problem in poly-nomial time by computing feasible solutions that are, under some predefined criterion, as near to the optimal ones as possible. The polynomial approximation theory deals with the study of such algorithms. This survey first presents and analyzes time approximation algorithms for some classical examples of NP-hard problems. Secondly, it shows how classical notions and tools of complexity theory, such as polynomial reductions, can be matched with polynomial approximation in order to devise structural results for NP-hard optimization problems. Finally, it presents a quick description of what is commonly called inapproximability results. Such results provide limits on the approximability of the problems tackled.

  2. Polynomial approximation of functions in Sobolev spaces

    International Nuclear Information System (INIS)

    Constructive proofs and several generalizations of approximation results of J. H. Bramble and S. R. Hilbert are presented. Using an averaged Taylor series, we represent a function as a polynomical plus a remainder. The remainder can be manipulated in many ways to give different types of bounds. Approximation of functions in fractional order Sobolev spaces is treated as well as the usual integer order spaces and several nonstandard Sobolev-like spaces

  3. Approximation and polynomial convexity in several complex variables

    OpenAIRE

    Ölçücüoğlu, Büke; Olcucuoglu, Buke

    2009-01-01

    This thesis is a survey on selected topics in approximation theory. The topics use either the techniques from the theory of several complex variables or those that arise in the study of the subject. We also go through elementary theory of polynomially convex sets in complex analysis.

  4. The Laplace transform and polynomial approximation in L2

    DEFF Research Database (Denmark)

    Labouriau, Rodrigo

    2016-01-01

    This short note gives a sufficient condition for having the class of polynomials dense in the space of square integrable functions with respect to a finite measure dominated by the Lebesgue measure in the real line, here denoted by L2. It is shown that if the Laplace transform of the measure...... concerning the polynomial approximation is original, even thought the proof is relatively simple. Additionally, an alternative stronger condition (easier to be verified) not involving the calculation of the Laplace transform is given. The condition essentially says that the density of the measure should have...

  5. Numerical approximations for population growth model by Rational Chebyshev and Hermite Functions collocation approach: A comparison

    CERN Document Server

    Parand, K; Taghavi, A; 10.1002/mma.1318

    2010-01-01

    This paper aims to compare rational Chebyshev (RC) and Hermite functions (HF) collocation approach to solve the Volterra's model for population growth of a species within a closed system. This model is a nonlinear integro-differential equation where the integral term represents the effect of toxin. This approach is based on orthogonal functions which will be defined. The collocation method reduces the solution of this problem to the solution of a system of algebraic equations. We also compare these methods with some other numerical results and show that the present approach is applicable for solving nonlinear integro-differential equations.

  6. Application of a Local Polynomial Approximation Chaotic Time Series Prediction

    OpenAIRE

    Orzeszko, Witold

    2004-01-01

    Chaos theory has become a new approach to financial processes analysis. Due to complicated dynamics, chaotic time series seem to be random and, in consequence, unpredictable. In fact, unlike truly random processes, chaotic dynamics can be forecasted very precisely in a short run. In this paper, a local polynomial approximation is presented. Its efficiency, as a method of building short-term predictors of chaotic time series, has been examined. The presented method has been applied to forecast...

  7. Polynomial approximation and cubature at approximate Fekete and Leja points of the cylinder

    CERN Document Server

    De Marchi, Stefano

    2011-01-01

    The paper deals with polynomial interpolation, least-square approximation and cubature of functions defined on the rectangular cylinder, $K=D\\times [-1,1]$, with $D$ the unit disk. The nodes used for these processes are the {\\it Approximate Fekete Points} (AFP) and the {\\it Discrete Leja Points} (DLP) extracted from suitable {\\it Weakly Admissible Meshes} (WAMs) of the cylinder. From the analysis of the growth of the Lebesgue constants, approximation and cubature errors, we show that the AFP and the DLP extracted from WAM are good points for polynomial approximation and numerical integration of functions defined on the cylinder.

  8. SAMBA: Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos

    Science.gov (United States)

    Ahlfeld, R.; Belkouchi, B.; Montomoli, F.

    2016-09-01

    A new arbitrary Polynomial Chaos (aPC) method is presented for moderately high-dimensional problems characterised by limited input data availability. The proposed methodology improves the algorithm of aPC and extends the method, that was previously only introduced as tensor product expansion, to moderately high-dimensional stochastic problems. The fundamental idea of aPC is to use the statistical moments of the input random variables to develop the polynomial chaos expansion. This approach provides the possibility to propagate continuous or discrete probability density functions and also histograms (data sets) as long as their moments exist, are finite and the determinant of the moment matrix is strictly positive. For cases with limited data availability, this approach avoids bias and fitting errors caused by wrong assumptions. In this work, an alternative way to calculate the aPC is suggested, which provides the optimal polynomials, Gaussian quadrature collocation points and weights from the moments using only a handful of matrix operations on the Hankel matrix of moments. It can therefore be implemented without requiring prior knowledge about statistical data analysis or a detailed understanding of the mathematics of polynomial chaos expansions. The extension to more input variables suggested in this work, is an anisotropic and adaptive version of Smolyak's algorithm that is solely based on the moments of the input probability distributions. It is referred to as SAMBA (PC), which is short for Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos. It is illustrated that for moderately high-dimensional problems (up to 20 different input variables or histograms) SAMBA can significantly simplify the calculation of sparse Gaussian quadrature rules. SAMBA's efficiency for multivariate functions with regard to data availability is further demonstrated by analysing higher order convergence and accuracy for a set of nonlinear test functions with 2, 5 and 10

  9. A further development of the flux polynomial approximations method

    International Nuclear Information System (INIS)

    In this paper two of the transport problems were treated: the energy independent particle transport in spherical geometry and the energy dependent neutron transport in plane hydrogen media. Using the asymptotic behaviours in space and lethargy of the known analytical solutions of these problems (given by the singular eigenfunction method and by the 'Marshak approximation') some significant improvements in the synthesis of an elementary function method and the bi-orthogonal polynomial flux approximations method were done. The computed values were compared to the referent data and agreement was achieved. (author)

  10. Optimal approximation of harmonic growth clusters by orthogonal polynomials

    CERN Document Server

    Balogh, Ferenc

    2008-01-01

    Interface dynamics in two-dimensional systems with a maximal number of conservation laws gives an accurate theoretical model for many physical processes, from the hydrodynamics of immiscible, viscous flows (zero surface-tension limit of Hele-Shaw flows, [1]), to the granular dynamics of hard spheres [2], and even diffusion-limited aggregation [3]. Although a complete solution for the continuum case exists [4, 5], efficient approximations of the boundary evolution are very useful due to their practical applications [6]. In this article, the approximation scheme based on orthogonal polynomials with a deformed Gaussian kernel [7] is discussed, as well as relations to potential theory.

  11. Optimal approximation of harmonic growth clusters by orthogonal polynomials

    Energy Technology Data Exchange (ETDEWEB)

    Teodorescu, Razvan [Los Alamos National Laboratory

    2008-01-01

    Interface dynamics in two-dimensional systems with a maximal number of conservation laws gives an accurate theoreticaI model for many physical processes, from the hydrodynamics of immiscible, viscous flows (zero surface-tension limit of Hele-Shaw flows), to the granular dynamics of hard spheres, and even diffusion-limited aggregation. Although a complete solution for the continuum case exists, efficient approximations of the boundary evolution are very useful due to their practical applications. In this article, the approximation scheme based on orthogonal polynomials with a deformed Gaussian kernel is discussed, as well as relations to potential theory.

  12. Approximation of nonnegative functions by means of exponentiated trigonometric polynomials

    Science.gov (United States)

    Fasino, Dario

    2002-03-01

    We consider the problem of approximating a nonnegative function from the knowledge of its first Fourier coefficients. Here, we analyze a method introduced heuristically in a paper by Borwein and Huang (SIAM J. Opt. 5 (1995) 68-99), where it is shown how to construct cheaply a trigonometric or algebraic polynomial whose exponential is close in some sense to the considered function. In this note, we prove that approximations given by Borwein and Huang's method, in the trigonometric case, can be related to a nonlinear constrained optimization problem, and their convergence can be easily proved under mild hypotheses as a consequence of known results in approximation theory and spectral properties of Toeplitz matrices. Moreover, they allow to obtain an improved convergence theorem for best entropy approximations.

  13. The BQP-hardness of approximating the Jones polynomial

    Science.gov (United States)

    Aharonov, Dorit; Arad, Itai

    2011-03-01

    A celebrated important result due to Freedman et al (2002 Commun. Math. Phys. 227 605-22) states that providing additive approximations of the Jones polynomial at the kth root of unity, for constant k=5 and k>=7, is BQP-hard. Together with the algorithmic results of Aharonov et al (2005) and Freedman et al (2002 Commun. Math. Phys. 227 587-603), this gives perhaps the most natural BQP-complete problem known today and motivates further study of the topic. In this paper, we focus on the universality proof; we extend the result of Freedman et al (2002) to ks that grow polynomially with the number of strands and crossings in the link, thus extending the BQP-hardness of Jones polynomial approximations to all values to which the AJL algorithm applies (Aharonov et al 2005), proving that for all those values, the problems are BQP-complete. As a side benefit, we derive a fairly elementary proof of the Freedman et al density result, without referring to advanced results from Lie algebra representation theory, making this important result accessible to a wider audience in the computer science research community. We make use of two general lemmas we prove, the bridge lemma and the decoupling lemma, which provide tools for establishing the density of subgroups in SU(n). Those tools seem to be of independent interest in more general contexts of proving the quantum universality. Our result also implies a completely classical statement, that the multiplicative approximations of the Jones polynomial, at exactly the same values, are #P-hard, via a recent result due to Kuperberg (2009 arXiv:0908.0512). Since the first publication of those results in their preliminary form (Aharonov and Arad 2006 arXiv:quant-ph/0605181), the methods we present here have been used in several other contexts (Aharonov and Arad 2007 arXiv:quant-ph/0702008; Peter and Stephen 2008 Quantum Inf. Comput. 8 681). The present paper is an improved and extended version of the results presented by Aharonov and Arad

  14. High Resolution of the ECG Signal by Polynomial Approximation

    Directory of Open Access Journals (Sweden)

    G. Rozinaj

    2006-04-01

    Full Text Available Averaging techniques as temporal averaging and space averaging have been successfully used in many applications for attenuating interference [6], [7], [8], [9], [10]. In this paper we introduce interference removing of the ECG signal by polynomial approximation, with smoothing discrete dependencies, to make up for averaging methods. The method is suitable for low-level signals of the electrical activity of the heart often less than 10 m V. Most low-level signals arising from PR, ST and TP segments which can be detected eventually and their physiologic meaning can be appreciated. Of special importance for the diagnostic of the electrical activity of the heart is the activity bundle of His between P and R waveforms. We have established an artificial sine wave to ECG signal between P and R wave. The aim focus is to verify the smoothing method by polynomial approximation if the SNR (signal-to-noise ratio is negative (i.e. a signal is lower than noise.

  15. and chebyshev functions

    Directory of Open Access Journals (Sweden)

    Mohsen Razzaghi

    2000-01-01

    Full Text Available A direct method for finding the solution of variational problems using a hybrid function is discussed. The hybrid functions which consist of block-pulse functions plus Chebyshev polynomials are introduced. An operational matrix of integration and the integration of the cross product of two hybrid function vectors are presented and are utilized to reduce a variational problem to the solution of an algebraic equation. Illustrative examples are included to demonstrate the validity and applicability of the technique.

  16. Approximation to Continuous Functions by a Kind of Interpolation Polynomials

    Institute of Scientific and Technical Information of China (English)

    Yuan Xue-gang; Wang De-hui

    2001-01-01

    In this paper, an interpolation polynomial operator Fn (f; l, x ) is constructed based on the zeros of a kind of Jacobi polynomials as the interpolation nodes. For any continuous function f(x)∈ Cb[1,1] (0≤b≤l) Fn(f; l,x) converges to f(x) uniformly, where l is an odd number.

  17. Polynomial approximations of a class of stochastic multiscale elasticity problems

    Science.gov (United States)

    Hoang, Viet Ha; Nguyen, Thanh Chung; Xia, Bingxing

    2016-06-01

    We consider a class of elasticity equations in {mathbb{R}^d} whose elastic moduli depend on n separated microscopic scales. The moduli are random and expressed as a linear expansion of a countable sequence of random variables which are independently and identically uniformly distributed in a compact interval. The multiscale Hellinger-Reissner mixed problem that allows for computing the stress directly and the multiscale mixed problem with a penalty term for nearly incompressible isotropic materials are considered. The stochastic problems are studied via deterministic problems that depend on a countable number of real parameters which represent the probabilistic law of the stochastic equations. We study the multiscale homogenized problems that contain all the macroscopic and microscopic information. The solutions of these multiscale homogenized problems are written as generalized polynomial chaos (gpc) expansions. We approximate these solutions by semidiscrete Galerkin approximating problems that project into the spaces of functions with only a finite number of N gpc modes. Assuming summability properties for the coefficients of the elastic moduli's expansion, we deduce bounds and summability properties for the solutions' gpc expansion coefficients. These bounds imply explicit rates of convergence in terms of N when the gpc modes used for the Galerkin approximation are chosen to correspond to the best N terms in the gpc expansion. For the mixed problem with a penalty term for nearly incompressible materials, we show that the rate of convergence for the best N term approximation is independent of the Lamé constants' ratio when it goes to {infty}. Correctors for the homogenization problem are deduced. From these we establish correctors for the solutions of the parametric multiscale problems in terms of the semidiscrete Galerkin approximations. For two-scale problems, an explicit homogenization error which is uniform with respect to the parameters is deduced. Together

  18. Exact Bivariate Polynomial Factorization in Q by Approximation of Roots

    OpenAIRE

    Feng, Yong; Wu, Wenyuan; Zhang, Jingzhong

    2010-01-01

    Factorization of polynomials is one of the foundations of symbolic computation. Its applications arise in numerous branches of mathematics and other sciences. However, the present advanced programming languages such as C++ and J++, do not support symbolic computation directly. Hence, it leads to difficulties in applying factorization in engineering fields. In this paper, we present an algorithm which use numerical method to obtain exact factors of a bivariate polynomial with rational coeffici...

  19. Polynomial time approximation schemes for the traveling repairman and other minimum latency problems

    NARCIS (Netherlands)

    Sitters, R.A.

    2013-01-01

    We give a polynomial time, (1 + \\epsilon)-approximation algorithm for the traveling repairman problem (TRP) in the Euclidean plane, on weighted planar graphs, and on weighted trees. This improves on the known quasi-polynomial time approximation schemes for these problems. The algorithm is based on a

  20. Polynomial time approximation schemes for the traveling repairman and other minimum latency problems

    NARCIS (Netherlands)

    Sitters, R.A.; Chekuri, C.

    2014-01-01

    We give a polynomial time, (1 + ∊)-approximation algorithm for the traveling repairman problem (TRP) in the Euclidean plane, on weighted planar graphs, and on weighted trees. This improves on the known quasi-polynomial time approximation schemes for these problems. The algorithm is based on a simple

  1. Polynomial birth-death distribution approximation in Wasserstein distance

    OpenAIRE

    Xia, Aihua; Zhang, Fuxi

    2008-01-01

    The polynomial birth-death distribution (abbr. as PBD) on $\\ci=\\{0,1,2, >...\\}$ or $\\ci=\\{0,1,2, ..., m\\}$ for some finite $m$ introduced in Brown & Xia (2001) is the equilibrium distribution of the birth-death process with birth rates $\\{\\alpha_i\\}$ and death rates $\\{\\beta_i\\}$, where $\\a_i\\ge0$ and $\\b_i\\ge0$ are polynomial functions of $i\\in\\ci$. The family includes Poisson, negative binomial, binomial and hypergeometric distributions. In this paper, we give probabilistic proofs of variou...

  2. Exact Bivariate Polynomial Factorization in Q by Approximation of Roots

    CERN Document Server

    Feng, Yong; Zhang, Jingzhong

    2010-01-01

    Factorization of polynomials is one of the foundations of symbolic computation. Its applications arise in numerous branches of mathematics and other sciences. However, the present advanced programming languages such as C++ and J++, do not support symbolic computation directly. Hence, it leads to difficulties in applying factorization in engineering fields. In this paper, we present an algorithm which use numerical method to obtain exact factors of a bivariate polynomial with rational coefficients. Our method can be directly implemented in efficient programming language such C++ together with the GNU Multiple-Precision Library. In addition, the numerical computation part often only requires double precision and is easily parallelizable.

  3. A comparative study on classical polynomial approximations to the transport equation in spherical media albedo problems

    International Nuclear Information System (INIS)

    The ultraspherical polynomial approximation which unifies all classical polynomial sequences in a unique form is used to calculate the albedo for isotropic scattering in a homogeneous spherical medium. This is the most general polynomial approach in the sense that it includes all classical polynomial methods to solve the transport equation such as PN, TN and UN methods. For the first time an antisymmetric polynomial (ultraspherical polynomial PN(λ)) solution to the corresponding pseudo-slab problem is proposed. Very accurate and consistent albedo values are obtained for a variety of PN(λ) methods when compared to the literature. It is also shown that various PN(λ) approximations differ only in convergency characteristics; some converge monotonically, some in the mean. (orig.)

  4. Approximating Multilinear Monomial Coefficients and Maximum Multilinear Monomials in Multivariate Polynomials

    Science.gov (United States)

    Chen, Zhixiang; Fu, Bin

    This paper is our third step towards developing a theory of testing monomials in multivariate polynomials and concentrates on two problems: (1) How to compute the coefficients of multilinear monomials; and (2) how to find a maximum multilinear monomial when the input is a ΠΣΠ polynomial. We first prove that the first problem is #P-hard and then devise a O *(3 n s(n)) upper bound for this problem for any polynomial represented by an arithmetic circuit of size s(n). Later, this upper bound is improved to O *(2 n ) for ΠΣΠ polynomials. We then design fully polynomial-time randomized approximation schemes for this problem for ΠΣ polynomials. On the negative side, we prove that, even for ΠΣΠ polynomials with terms of degree ≤ 2, the first problem cannot be approximated at all for any approximation factor ≥ 1, nor "weakly approximated" in a much relaxed setting, unless P=NP. For the second problem, we first give a polynomial time λ-approximation algorithm for ΠΣΠ polynomials with terms of degrees no more a constant λ ≥ 2. On the inapproximability side, we give a n (1 - ɛ)/2 lower bound, for any ɛ> 0, on the approximation factor for ΠΣΠ polynomials. When the degrees of the terms in these polynomials are constrained as ≤ 2, we prove a 1.0476 lower bound, assuming Pnot=NP; and a higher 1.0604 lower bound, assuming the Unique Games Conjecture.

  5. Approximating Multilinear Monomial Coefficients and Maximum Multilinear Monomials in Multivariate Polynomials

    CERN Document Server

    Chen, Zhixiang

    2010-01-01

    This paper is our third step towards developing a theory of testing monomials in multivariate polynomials and concentrates on two problems: (1) How to compute the coefficients of multilinear monomials; and (2) how to find a maximum multilinear monomial when the input is a $\\Pi\\Sigma\\Pi$ polynomial. We first prove that the first problem is \\#P-hard and then devise a $O^*(3^ns(n))$ upper bound for this problem for any polynomial represented by an arithmetic circuit of size $s(n)$. Later, this upper bound is improved to $O^*(2^n)$ for $\\Pi\\Sigma\\Pi$ polynomials. We then design fully polynomial-time randomized approximation schemes for this problem for $\\Pi\\Sigma$ polynomials. On the negative side, we prove that, even for $\\Pi\\Sigma\\Pi$ polynomials with terms of degree $\\le 2$, the first problem cannot be approximated at all for any approximation factor $\\ge 1$, nor {\\em "weakly approximated"} in a much relaxed setting, unless P=NP. For the second problem, we first give a polynomial time $\\lambda$-approximation a...

  6. OPTIMIZATION AND APPROXIMATION OF NC POLYNOMIALS WITH SUMS OF SQUARES

    Directory of Open Access Journals (Sweden)

    Kristijan Cafuta

    2010-12-01

    Full Text Available In this paper we study eigenvalue optimization of non-commutative polynomials. That is, we compute the smallest or biggest eigenvalue a non-commutative polynomial can attain. Our algorithm is based on sums of hermittian squares. To test for exactness, the solutions of the dual SDP are investigated. When we consider the eigenvalue lower bounds we can show that attainability of the optimal value on the dual side implies that the eigenvalue bound is attained. We also show how to extract global eigenvalue optimizers with a procedure based on two ingredients: - the first is the solution to the truncated (tracial moment problem; - the second is the Gelfand-Naimark-Segal (GNS construction. The implementation of these procedures in our computer algebra system NC-SOStools is presented and several examples pertaining to matrix inequalities are given to illustrate the results.

  7. Pointwise approximation of periodic functions by trigonometric polynomials with Hermitian interpolation

    International Nuclear Information System (INIS)

    We prove a general direct theorem on the simultaneous pointwise approximation of smooth periodic functions and their derivatives by trigonometric polynomials and their derivatives with Hermitian interpolation. We study the order of approximation by polynomials whose graphs lie above or below the graph of the function on certain intervals. We prove several inequalities for Hermitian interpolation with absolute constants (for any system of nodes). For the first time we get a theorem on the best-order approximation of functions by polynomials with interpolation at a given system of nodes. We also provide a construction of Hermitian interpolating trigonometric polynomials for periodic functions (in the case of one node, these are trigonometric Taylor polynomials).

  8. Pointwise approximation of periodic functions by trigonometric polynomials with Hermitian interpolation

    Energy Technology Data Exchange (ETDEWEB)

    Trigub, R M [Donetsk National University, Donetsk (Ukraine)

    2009-08-31

    We prove a general direct theorem on the simultaneous pointwise approximation of smooth periodic functions and their derivatives by trigonometric polynomials and their derivatives with Hermitian interpolation. We study the order of approximation by polynomials whose graphs lie above or below the graph of the function on certain intervals. We prove several inequalities for Hermitian interpolation with absolute constants (for any system of nodes). For the first time we get a theorem on the best-order approximation of functions by polynomials with interpolation at a given system of nodes. We also provide a construction of Hermitian interpolating trigonometric polynomials for periodic functions (in the case of one node, these are trigonometric Taylor polynomials)

  9. Pointwise approximation of periodic functions by trigonometric polynomials with Hermitian interpolation

    Science.gov (United States)

    Trigub, R. M.

    2009-08-01

    We prove a general direct theorem on the simultaneous pointwise approximation of smooth periodic functions and their derivatives by trigonometric polynomials and their derivatives with Hermitian interpolation. We study the order of approximation by polynomials whose graphs lie above or below the graph of the function on certain intervals. We prove several inequalities for Hermitian interpolation with absolute constants (for any system of nodes). For the first time we get a theorem on the best-order approximation of functions by polynomials with interpolation at a given system of nodes. We also provide a construction of Hermitian interpolating trigonometric polynomials for periodic functions (in the case of one node, these are trigonometric Taylor polynomials).

  10. Multi-degree reduction of NURBS curves based on their explicit matrix representation and polynomial approximation theory

    Institute of Scientific and Technical Information of China (English)

    CHENG Min; WANG Guojin

    2004-01-01

    NURBS curve is one of the most commonly used tools in CAD systems and geometric modeling for its various specialties, which means that its shape is locally adjustable as well as its continuity order, and it can represent a conic curve precisely. But how to do degree reduction of NURBS curves in a fast and efficient way still remains a puzzling problem. By applying the theory of the best uniform approximation of Chebyshev polynomials and the explicit matrix representation of NURBS curves, this paper gives the necessary and sufficient condition for degree reducible NURBS curves in an explicit form.And a new way of doing degree reduction of NURBS curves is also presented, including the multi-degree reduction of a NURBS curve on each knot span and the multi-degree reduction of a whole NURBS curve. This method is easy to carry out, and only involves simple calculations. It provides a new way of doing degree reduction of NURBS curves,which can be widely used in computer graphics and industrial design.

  11. Approximation properties of Szász type operators based on Charlier polynomials

    OpenAIRE

    KAJLA, ARUN; AGRAWAL, Purshottam Narain

    2015-01-01

    In the present paper, we study some approximation properties of the Sz\\'{a}sz type operators involving Charlier polynomials introduced by Varma and Ta\\c{s}delen in 2012. First, we establish approximation in a Lipschitz type space and weighted approximation theorems for these operators. Then we obtain the error in the approximation of functions having derivatives of bounded variation.

  12. GPGCD, an Iterative Method for Calculating Approximate GCD, for Multiple Univariate Polynomials

    CERN Document Server

    Terui, Akira

    2010-01-01

    We present an extension of our GPGCD method, an iterative method for calculating approximate greatest common divisor (GCD) of univariate polynomials, to multiple polynomial inputs. For a given pair of polynomials and a degree, our algorithm finds a pair of polynomials which has a GCD of the given degree and whose coefficients are perturbed from those in the original inputs, making the perturbations as small as possible, along with the GCD. In our GPGCD method, the problem of approximate GCD is transferred to a constrained minimization problem, then solved with the so-called modified Newton method, which is a generalization of the gradient-projection method, by searching the solution iteratively. In this paper, we extend our method to accept more than two polynomials with the real coefficients as an input.

  13. Derivation of reduced model for control system design using Chebyshev techniques

    International Nuclear Information System (INIS)

    New methods are developed for reduced-order modelling of high-order, linear, time-invariant systems characterized by a transfer function. The first method is based on manipulating two Chebyshev polynomial series, one representing the frequency characteristics of the high-order system and the other representing the approximating low-order model. The proposed method can be viewed as generalizing the classical Pade approximation problem, with Chebyshev polynomial series being over a desired frequency interval instead of a power series about a single frequency point. The second method is based on approximating the high-order transfer function in terms of best Chebyshev approximation on a desired domain in the complex plane. An algorithm to find for a complex function best Chebyshev rational approximations in the complex plane is suggested and its theoretical basis confirmed. The algorithm is based on a complex version of Lawson algorithm that is applied to a complex version of a rational least square approximation program. (author)

  14. Optimal approximation of harmonic growth clusters by orthogonal polynomials

    OpenAIRE

    Balogh, Ferenc; Razvan TEODORESCU

    2008-01-01

    Interface dynamics in two-dimensional systems with a maximal number of conservation laws gives an accurate theoretical model for many physical processes, from the hydrodynamics of immiscible, viscous flows (zero surface-tension limit of Hele-Shaw flows, [1]), to the granular dynamics of hard spheres [2], and even diffusion-limited aggregation [3]. Although a complete solution for the continuum case exists [4, 5], efficient approximations of the boundary evolution are very useful due to their ...

  15. Online segmentation of time series based on polynomial least-squares approximations.

    Science.gov (United States)

    Fuchs, Erich; Gruber, Thiemo; Nitschke, Jiri; Sick, Bernhard

    2010-12-01

    The paper presents SwiftSeg, a novel technique for online time series segmentation and piecewise polynomial representation. The segmentation approach is based on a least-squares approximation of time series in sliding and/or growing time windows utilizing a basis of orthogonal polynomials. This allows the definition of fast update steps for the approximating polynomial, where the computational effort depends only on the degree of the approximating polynomial and not on the length of the time window. The coefficients of the orthogonal expansion of the approximating polynomial-obtained by means of the update steps-can be interpreted as optimal (in the least-squares sense) estimators for average, slope, curvature, change of curvature, etc., of the signal in the time window considered. These coefficients, as well as the approximation error, may be used in a very intuitive way to define segmentation criteria. The properties of SwiftSeg are evaluated by means of some artificial and real benchmark time series. It is compared to three different offline and online techniques to assess its accuracy and runtime. It is shown that SwiftSeg-which is suitable for many data streaming applications-offers high accuracy at very low computational costs. PMID:20975120

  16. Method for constructing approximate analytic solutions of differential equations with a polynomial right-hand side

    Science.gov (United States)

    Afanas'ev, A. P.; Dzyuba, S. M.

    2015-10-01

    A method for constructing approximate analytic solutions of systems of ordinary differential equations with a polynomial right-hand side is proposed. The implementation of the method is based on the Picard method of successive approximations and a procedure of continuation of local solutions. As an application, the problem of constructing the minimal sets of the Lorenz system is considered.

  17. Real Scalar Field Scattering with Polynomial Approximation around Schwarzschild-de Sitter Black-hole

    CERN Document Server

    Liu, Molin; Zhang, Jingfei; Yu, Fei

    2008-01-01

    As one of the fitting methods, the polynomial approximation is effective to process sophisticated problem. In this paper, we employ this approach to handle the scattering of scalar field around the Schwarzschild-de Sitter black-hole. The complex relationship between tortoise coordinate and radial coordinate is replaced by the approximate polynomial. The Schr$\\ddot{o}$dinger-like equation, the real boundary conditions and the polynomial approximation construct a full Sturm-Liouville type problem. Then this boundary value problem can be solved numerically according to two limiting cases: the first one is the Nariai black-hole whose horizons are close to each other, the second one is when the horizons are widely separated. Compared with previous results (Brevik and Tian), the field near the event horizon and cosmological horizon can have a better description.

  18. Pricing American Options under Stochastic Volatility: A New Method Using Chebyshev Polynomials to Approximate the Early Exercise Boundary

    OpenAIRE

    Tzavalis, Elias; Wang, Shijun

    2003-01-01

    This paper presents a new numerical method for pricing American call options when the volatility of the price of the underlying stock is stochastic. By exploiting a log-linear relationship of the optimal exercise boundary with respect to volatility changes, we derive an integral representation of an American call price and the early exercise premium which holds under stochastic volatility. This representation is used to develop a numerical method for pricing the American options based on an a...

  19. λ-PDF AND GEGENBAUER POLYNOMIAL APPROXIMATION FOR DYNAMIC RESPONSE PROBLEMS OF RANDOM STRUCTURES

    Institute of Scientific and Technical Information of China (English)

    FANG Tong; LENG Xiaolei; MA Xiaoping; MENG Guang

    2004-01-01

    A bounded, mono-peak, and symmetrically distributed probability density function,called λ-PDF, together with the Gegenbauer polynomial approximation, is used in dynamic response problems of random structures. The λ-PDF can reasonably model a variety of random parameters in engineering random structures. The Gegenbauer polynomial approximation can be viewed as a new extension of the weighted residual method into the random space. Both of them can be easily used by scientists and engineers, and applied to a variety of response problems of random structures. The numerical example shows the effectiveness of the proposed method to study dynamic phenomena in random structures.

  20. On the existence of polynomial time approximation schemes for OBDD minimization

    Science.gov (United States)

    Sieling, Detlef

    The size of Ordered Binary Decision Diagrams (OBDDs) is determined by the chosen variable ordering. A poor choice may cause an OBDD to be too large to fit into the available memory. The decision variant of the variable ordering problem is known to be NP-complete. We strengthen this result by showing that there is no polynomial time approximation scheme for the variable ordering problem unless P = NP. We also prove a small lower bound on the performance ratio of a polynomial time approximation algorithm under the assumption P ≠ NP.

  1. Discrete least squares polynomial approximation with random evaluations − application to parametric and stochastic elliptic PDEs

    KAUST Repository

    Chkifa, Abdellah

    2015-04-08

    Motivated by the numerical treatment of parametric and stochastic PDEs, we analyze the least-squares method for polynomial approximation of multivariate functions based on random sampling according to a given probability measure. Recent work has shown that in the univariate case, the least-squares method is quasi-optimal in expectation in [A. Cohen, M A. Davenport and D. Leviatan. Found. Comput. Math. 13 (2013) 819–834] and in probability in [G. Migliorati, F. Nobile, E. von Schwerin, R. Tempone, Found. Comput. Math. 14 (2014) 419–456], under suitable conditions that relate the number of samples with respect to the dimension of the polynomial space. Here “quasi-optimal” means that the accuracy of the least-squares approximation is comparable with that of the best approximation in the given polynomial space. In this paper, we discuss the quasi-optimality of the polynomial least-squares method in arbitrary dimension. Our analysis applies to any arbitrary multivariate polynomial space (including tensor product, total degree or hyperbolic crosses), under the minimal requirement that its associated index set is downward closed. The optimality criterion only involves the relation between the number of samples and the dimension of the polynomial space, independently of the anisotropic shape and of the number of variables. We extend our results to the approximation of Hilbert space-valued functions in order to apply them to the approximation of parametric and stochastic elliptic PDEs. As a particular case, we discuss “inclusion type” elliptic PDE models, and derive an exponential convergence estimate for the least-squares method. Numerical results confirm our estimate, yet pointing out a gap between the condition necessary to achieve optimality in the theory, and the condition that in practice yields the optimal convergence rate.

  2. Generating the patterns of variation with GeoGebra: the case of polynomial approximations

    Science.gov (United States)

    Attorps, Iiris; Björk, Kjell; Radic, Mirko

    2016-01-01

    In this paper, we report a teaching experiment regarding the theory of polynomial approximations at the university mathematics teaching in Sweden. The experiment was designed by applying Variation theory and by using the free dynamic mathematics software GeoGebra. The aim of this study was to investigate if the technology-assisted teaching of Taylor polynomials compared with traditional way of work at the university level can support the teaching and learning of mathematical concepts and ideas. An engineering student group (n = 19) was taught Taylor polynomials with the assistance of GeoGebra while a control group (n = 18) was taught in a traditional way. The data were gathered by video recording of the lectures, by doing a post-test concerning Taylor polynomials in both groups and by giving one question regarding Taylor polynomials at the final exam for the course in Real Analysis in one variable. In the analysis of the lectures, we found Variation theory combined with GeoGebra to be a potentially powerful tool for revealing some critical aspects of Taylor Polynomials. Furthermore, the research results indicated that applying Variation theory, when planning the technology-assisted teaching, supported and enriched students' learning opportunities in the study group compared with the control group.

  3. Approximation by polynomials and Blaschke products having all zeros on a circle

    CERN Document Server

    Farmer, David W

    2010-01-01

    We show that a nonvanishing analytic function on a domain in the unit disc can be approximated by (a scalar multiple of) a Blaschke product whose zeros lie on a prescribed circle enclosing the domain. We also give a new proof of the analogous classical result for polynomials. A connection is made to universality results for the Riemann zeta function.

  4. Generating the Patterns of Variation with GeoGebra: The Case of Polynomial Approximations

    Science.gov (United States)

    Attorps, Iiris; Björk, Kjell; Radic, Mirko

    2016-01-01

    In this paper, we report a teaching experiment regarding the theory of polynomial approximations at the university mathematics teaching in Sweden. The experiment was designed by applying Variation theory and by using the free dynamic mathematics software GeoGebra. The aim of this study was to investigate if the technology-assisted teaching of…

  5. On the optimal polynomial approximation of stochastic PDEs by galerkin and collocation methods

    KAUST Repository

    Beck, Joakim

    2012-09-01

    In this work we focus on the numerical approximation of the solution u of a linear elliptic PDE with stochastic coefficients. The problem is rewritten as a parametric PDE and the functional dependence of the solution on the parameters is approximated by multivariate polynomials. We first consider the stochastic Galerkin method, and rely on sharp estimates for the decay of the Fourier coefficients of the spectral expansion of u on an orthogonal polynomial basis to build a sequence of polynomial subspaces that features better convergence properties, in terms of error versus number of degrees of freedom, than standard choices such as Total Degree or Tensor Product subspaces. We consider then the Stochastic Collocation method, and use the previous estimates to introduce a new class of Sparse Grids, based on the idea of selecting a priori the most profitable hierarchical surpluses, that, again, features better convergence properties compared to standard Smolyak or tensor product grids. Numerical results show the effectiveness of the newly introduced polynomial spaces and sparse grids. © 2012 World Scientific Publishing Company.

  6. Comparison of polynomial approximations to speed up planewave-based quantum Monte Carlo calculations

    CERN Document Server

    Parker, William D; Alfè, Dario; Hennig, Richard G; Wilkins, John W

    2013-01-01

    The computational cost of quantum Monte Carlo (QMC) calculations of realistic periodic systems depends strongly on the method of storing and evaluating the many-particle wave function. Previous work [A. J. Williamson et al., Phys. Rev. Lett. 87, 246406 (2001); D. Alf\\`e and M. J. Gillan, Phys. Rev. B 70, 161101 (2004)] has demonstrated the reduction of the O(N^3) cost of evaluating the Slater determinant with planewaves to O(N^2) using localized basis functions. We compare four polynomial approximations as basis functions -- interpolating Lagrange polynomials, interpolating piecewise-polynomial-form (pp-) splines, and basis-form (B-) splines (interpolating and smoothing). All these basis functions provide a similar speedup relative to the planewave basis. The pp-splines have eight times the memory requirement of the other methods. To test the accuracy of the basis functions, we apply them to the ground state structures of Si, Al, and MgO. The polynomial approximations differ in accuracy most strongly for MgO ...

  7. OPTIMAL ERROR ESTIMATES OF THE PARTITION OF UNITY METHOD WITH LOCAL POLYNOMIAL APPROXIMATION SPACES

    Institute of Scientific and Technical Information of China (English)

    Yun-qing Huang; Wei Li; Fang Su

    2006-01-01

    In this paper, we provide a theoretical analysis of the partition of unity finite element method(PUFEM), which belongs to the family of meshfree methods. The usual error analysis only shows the order of error estimate to the same as the local approximations[12].Using standard linear finite element base functions as partition of unity and polynomials as local approximation space, in 1-d case, we derive optimal order error estimates for PUFEM interpolants. Our analysis show that the error estimate is of one order higher than the local approximations. The interpolation error estimates yield optimal error estimates for PUFEM solutions of elliptic boundary value problems.

  8. Approximation by Trigonometric Polynomials of Functions of Several Variables on the Torus

    Science.gov (United States)

    Zung, Din'

    1988-02-01

    The paper is devoted to the approximation of classes of periodic functions of several variables whose derivative is given with the aid of the absolute value of mixed moduli of continuity. The author studies best approximations by Fourier sums and by spaces of trigonometric polynomials, the Kolmogorov widths of these classes and other related questions. In the study of these questions, the problem arises in a natural way of estimating integrals and sums over convex sets depending on a parameter or over their complements. Asymptotic orders are computed for such integrals and sums connected with the corresponding questions of approximation.Bibliography: 46 titles.

  9. GENERALIZATION OF THE INTERACTION BETWEEN HAAR APPROXIMATION AND POLYNOMIAL OPERATORS TO HIGHER ORDER METHODS

    Institute of Scientific and Technical Information of China (English)

    Fran(c)ois Chaplais

    2006-01-01

    In applications it is useful to compute the local average of a function f(u) of an input u from empirical statistics on u. A very simple relation exists when the local averages are given by a Haar approximation. The question is to know if it holds for higher order approximation methods. To do so,it is necessary to use approximate product operators defined over linear approximation spaces. These products are characterized by a Strang and Fix like condition. An explicit construction of these product operators is exhibited for piecewise polynomial functions, using Hermite interpolation. The averaging relation which holds for the Haar approximation is then recovered when the product is defined by a two point Hermite interpolation.

  10. Using infinite matrices to approximate functions of class Lip([alpha],p) using trigonometric polynomials

    Science.gov (United States)

    Mittal, M. L.; Rhoades, B. E.; Mishra, V. N.; Singh, Uaday

    2007-02-01

    Given a function f in the class Lip([alpha],p) , Chandra [P. Chandra, Trigonometric approximation of functions in Lp-norm, J. Math. Anal. Appl. 275 (2002) 13-26] approximated such an f by using trigonometric polynomials, which are the nth terms of either certain weighted mean or Norlund mean transforms of the Fourier series representation for f. He showed that the degree of its approximation is O(n-[alpha]). In this paper we obtain the same degree of approximation for a more general class of lower triangular matrices, and deduce some of the results of [P. Chandra, Trigonometric approximation of functions in Lp-norm, J. Math. Anal. Appl. 275 (2002) 13-26] as corollaries.

  11. Efficiency fitting for TDCR measurement data using polynomial approximation and the Newton–Raphson method

    International Nuclear Information System (INIS)

    A tritium radioactivity source was measured by triple-to-double coincidence ratio (TDCR) equipment of the National Metrology Institute of Japan (NMIJ), and measured data were fitted using polynomial approximation and the Newton–Raphson method, a technique whereby equations are solved numerically by successive approximations. The method used to obtain the activity minimizes the difference between statistically calculated data and experimental data. In the fitting, since calculated statistical efficiency and TDCR values are discrete, the calculated efficiencies are approximated by quadratic functions around experimental values and the Newton–Raphson method is used for convergence at the minimal difference between experimental data and calculated data. In this way, the activity of tritium was successfully obtained. - Highlights: ► The TDCR data were fitted using polynomial approximation and the Newton–Raphson method. ► Activity was then successfully obtained by this fitting. ► The fitting procedure developed in this paper enables kB to be extracted for the scintilltor being used.

  12. The Complexity of Computing the Sign of the Tutte Polynomial (and consequent #P-hardness of Approximation)

    CERN Document Server

    Goldberg, Leslie Ann

    2012-01-01

    We study the complexity of computing the sign of the Tutte polynomial of a graph. As there are only three possible outcomes (positive, negative, and zero), this seems at first sight more like a decision problem than a counting problem. Surprisingly, however, there are large regions of the parameter space for which computing the sign of the Tutte polynomial is actually #P-hard. As a trivial consequence, approximating the polynomial is also #P-hard in this case. Thus, approximately evaluating the Tutte polynomial in these regions is as hard as exactly counting the satisfying assignments to a CNF Boolean formula. For most other points in the parameter space, we show that computing the sign of the polynomial is in FP, whereas approximating the polynomial can be done in polynomial time with an NP oracle. As a special case, we completely resolve the complexity of computing the sign of the chromatic polynomial - this is easily computable at q=2 and when q is less than or equal to 32/27, and is NP-hard to compute for...

  13. Evaluation of quantum mechanics path integrals by the approximations exact on a class of polynomial functionals

    International Nuclear Information System (INIS)

    The method for numerical evaluation of path integrals in Eucledean quantum mechanics without lattice discretization is elaborated. The method is based on the representation of these integrals in the form of functional integrals with respect to the conditional Wiener measure and on the use of the derived approximate exact on a class of polynomial functionals of a given degree. By the computations of non-perturbative characteristics, concerned the topological structure of vacuum, the advantages of this method versus lattice Monte-Carlo calculations are demonstrated

  14. VARIATIONAL APPROACH IN WAVELET FRAMEWORK TO POLYNOMIAL APPROXIMATIONS OF NONLINEAR ACCELERATOR PROBLEMS

    International Nuclear Information System (INIS)

    In this paper the authors present applications of methods from wavelet analysis to polynomial approximations for a number of accelerator physics problems. According to a variational approach in the general case they have the solution as a multiresolution (multiscales) expansion on the base of compactly supported wavelet basis. They give an extension of their results to the cases of periodic orbital particle motion and arbitrary variable coefficients. Then they consider more flexible variational method which is based on a biorthogonal wavelet approach. Also they consider a different variational approach, which is applied to each scale

  15. On some properties on bivariate Fibonacci and Lucas polynomials

    OpenAIRE

    Belbachir, Hacéne; Bencherif, Farid

    2007-01-01

    In this paper we generalize to bivariate polynomials of Fibonacci and Lucas, properties obtained for Chebyshev polynomials. We prove that the coordinates of the bivariate polynomials over appropriate basis are families of integers satisfying remarkable recurrence relations.

  16. White matter structure assessment from reduced HARDI data using low-rank polynomial approximations.

    Science.gov (United States)

    Gur, Yaniv; Jiao, Fangxiang; Zhu, Stella Xinghua; Johnson, Chris R

    2012-10-01

    Assessing white matter fiber orientations directly from DWI measurements in single-shell HARDI has many advantages. One of these advantages is the ability to model multiple fibers using fewer parameters than are required to describe an ODF and, thus, reduce the number of DW samples needed for the reconstruction. However, fitting a model directly to the data using Gaussian mixture, for instance, is known as an initialization-dependent unstable process. This paper presents a novel direct fitting technique for single-shell HARDI that enjoys the advantages of direct fitting without sacrificing the accuracy and stability even when the number of gradient directions is relatively low. This technique is based on a spherical deconvolution technique and decomposition of a homogeneous polynomial into a sum of powers of linear forms, known as a symmetric tensor decomposition. The fiber-ODF (fODF), which is described by a homogeneous polynomial, is approximated here by a discrete sum of even-order linear-forms that are directly related to rank-1 tensors and represent single-fibers. This polynomial approximation is convolved to a single-fiber response function, and the result is optimized against the DWI measurements to assess the fiber orientations and the volume fractions directly. This formulation is accompanied by a robust iterative alternating numerical scheme which is based on the Levenberg-Marquardt technique. Using simulated data and in vivo, human brain data we show that the proposed algorithm is stable, accurate and can model complex fiber structures using only 12 gradient directions. PMID:24818174

  17. Polynomial degree reduction in the discrete L2-norm equals best Euclidean approximation of h-Bézier coefficients

    KAUST Repository

    Ait-Haddou, Rachid

    2015-06-04

    We show that the best degree reduction of a given polynomial P from degree n to m with respect to the discrete (Formula presented.)-norm is equivalent to the best Euclidean distance of the vector of h-Bézier coefficients of P from the vector of degree raised h-Bézier coefficients of polynomials of degree m. Moreover, we demonstrate the adequacy of h-Bézier curves for approaching the problem of weighted discrete least squares approximation. Applications to discrete orthogonal polynomials are also presented. © 2015 Springer Science+Business Media Dordrecht

  18. Chebyshev Expansions for Solutions of Linear Differential Equations

    OpenAIRE

    Benoit, Alexandre; Salvy, Bruno

    2009-01-01

    A Chebyshev expansion is a series in the basis of Chebyshev polynomials of the first kind. When such a series solves a linear differential equation, its coefficients satisfy a linear recurrence equation. We interpret this equation as the numerator of a fraction of linear recurrence operators. This interpretation lets us give a simple view of previous algorithms, analyze their complexity, and design a faster one for large orders.

  19. The algebra of two dimensional generalized Chebyshev-Koornwinder oscillator

    International Nuclear Information System (INIS)

    In the previous works of Borzov and Damaskinsky [“Chebyshev-Koornwinder oscillator,” Theor. Math. Phys. 175(3), 765–772 (2013)] and [“Ladder operators for Chebyshev-Koornwinder oscillator,” in Proceedings of the Days on Diffraction, 2013], the authors have defined the oscillator-like system that is associated with the two variable Chebyshev-Koornwinder polynomials. We call this system the generalized Chebyshev-Koornwinder oscillator. In this paper, we study the properties of infinite-dimensional Lie algebra that is analogous to the Heisenberg algebra for the Chebyshev-Koornwinder oscillator. We construct the exact irreducible representation of this algebra in a Hilbert space H of functions that are defined on a region which is bounded by the Steiner hypocycloid. The functions are square-integrable with respect to the orthogonality measure for the Chebyshev-Koornwinder polynomials and these polynomials form an orthonormalized basis in the space H. The generalized oscillator which is studied in the work can be considered as the simplest nontrivial example of multiboson quantum system that is composed of three interacting oscillators

  20. Approximation of Periodic Functions of Several Variables by Trigonometric Polynomials, and Widths of Some Classes of Functions

    Science.gov (United States)

    Temlyakov, V. N.

    1986-04-01

    The author investigates questions of the approximation of functions of several variables with a bounded mixed derivative or difference. He finds the orders of the Kolmogorov widths and of other widths of these classes. He obtains embedding theorems and estimates for the best approximations by trigonometric polynomials to functions in these classes. Bibliography: 33 titles.

  1. Approximation of Functions with a Bounded Mixed Difference by Trigonometric Polynomials, and the Widths of Some Classes of Functions

    Science.gov (United States)

    Temlyakov, V. N.

    1983-02-01

    This paper investigates the approximation of periodic functions of several variables by trigonometric polynomials whose harmonics lie in hyperbolic crosses. It is shown that in many cases the order of the widths, in the sense of Kolmogorov, can be found for classes of functions with a bounded mixed derivative or difference. The possibilities of linear methods of approximation are investigated. Bibliography: 16 titles.

  2. Approximation of functions in L^{p(x)}_{2\\pi} by trigonometric polynomials

    Science.gov (United States)

    Sharapudinov, Idris I.

    2013-04-01

    We consider the Lebesgue space L^{p(x)}_{2\\pi} with variable exponent p(x). It consists of measurable functions f(x) for which the integral \\int_0^{2\\pi}\\vert f(x)\\vert^{p(x)}\\,dx exists. We establish an analogue of Jackson's first theorem in the case when the 2\\pi-periodic variable exponent p(x)\\ge1 satisfies the condition \\displaystyle \\vert p(x')-p(x'')\\vert\\ln\\frac{2\\pi}{\\vert x'-x''\\vert}=O(1),\\qquad x',x''\\in \\lbrack -\\pi,\\pi \\rbrack . Under the additional assumption p_- =\\min_x p(x)\\gt1 we also get an analogue of Jackson's second theorem. We establish an L^{p(x)}_{2\\pi}-analogue of Bernstein's estimate for the derivative of a trigonometric polynomial and use it to prove an inverse theorem for the analogues of the Lipschitz classes {Lip}(\\alpha,M)_{p(\\,\\cdot\\,)}\\subset L^{p(x)}_{2\\pi} for 0\\lt \\alpha\\lt 1. Thus we establish direct and inverse theorems of the theory of approximation by trigonometric polynomials in the classes {Lip}(\\alpha,M)_{p(\\,\\cdot\\,)}. In the definition of the modulus of continuity of a function f(x)\\in L^{p(x)}_{2\\pi}, we replace the ordinary shift f^h(x)=f(x+h) by an averaged shift determined by Steklov's function s_h(f)(x)=\\frac{1}{h}\\int_0^hf(x+t)\\,dt.

  3. A polynomial time biclustering algorithm for finding approximate expression patterns in gene expression time series

    Directory of Open Access Journals (Sweden)

    Madeira Sara C

    2009-06-01

    Full Text Available Abstract Background The ability to monitor the change in expression patterns over time, and to observe the emergence of coherent temporal responses using gene expression time series, obtained from microarray experiments, is critical to advance our understanding of complex biological processes. In this context, biclustering algorithms have been recognized as an important tool for the discovery of local expression patterns, which are crucial to unravel potential regulatory mechanisms. Although most formulations of the biclustering problem are NP-hard, when working with time series expression data the interesting biclusters can be restricted to those with contiguous columns. This restriction leads to a tractable problem and enables the design of efficient biclustering algorithms able to identify all maximal contiguous column coherent biclusters. Methods In this work, we propose e-CCC-Biclustering, a biclustering algorithm that finds and reports all maximal contiguous column coherent biclusters with approximate expression patterns in time polynomial in the size of the time series gene expression matrix. This polynomial time complexity is achieved by manipulating a discretized version of the original matrix using efficient string processing techniques. We also propose extensions to deal with missing values, discover anticorrelated and scaled expression patterns, and different ways to compute the errors allowed in the expression patterns. We propose a scoring criterion combining the statistical significance of expression patterns with a similarity measure between overlapping biclusters. Results We present results in real data showing the effectiveness of e-CCC-Biclustering and its relevance in the discovery of regulatory modules describing the transcriptomic expression patterns occurring in Saccharomyces cerevisiae in response to heat stress. In particular, the results show the advantage of considering approximate patterns when compared to state of

  4. 多元Chebyshev正交多项式混合模型及其在医学图像分割中的应用%Medical Image Segmentation Based on Finite Mixture Models of Non-parametric Multivariate Chebyshev Orthogonal Polynomials

    Institute of Scientific and Technical Information of China (English)

    刘哲; 宋余庆; 宋旼珊

    2013-01-01

    针对原有一元正交多项式混合模型只能根据灰度特征分割图像的问题,提出一种基于多元Chebyshev正交多项式混合模型的多维特征的医学图像分割方法.首先,根据Fourier分析方法与张量积理论推导出图像的多元Chebyshev正交多项式,并构建多元正交多项式的非参数混合模型,用最小均方差(MISE)估计每一个模型的平滑参数;然后,用EM算法求解正交多项式系数和模型的混合比.此方法不需要对模型作任何假设,可以有效克服“模型失配”问题.通过实验,表明了该分割方法的有效性.%To solve the problem of over-reliance on priori assumptions of the parameter methods for finite mixture models and the problem that monic Chebyshev orthogonal polynomials can only process the gray images, a segmentation method of mixture models of multivariate Chebyshev orthogonal polynomials for color image was proposed in this paper. First,the multivariate Chebyshev orthogonal polynomials was derived by the Fourier analysis and the tensor product theory, and the nonparametric mixture model of multivariate orthogonal polynomials was proposed. And the mean integrated squared error(MISE) was used to estimate the smoothing parameter for each model. Second, the expectation maximum(EM) algorithm was used to estimate the orthogonal polynomial coefficients and the model of the weight. This method does not require any prior assumptions on the model, and it can effectively overcome the "model mismatch" problem. The experimental results with the images show that this method can achieve better segmentation results than the mean-shift method.

  5. A Fully Polynomial-Time Approximation Scheme for Single-Item Stochastic Inventory Control with Discrete Demand

    OpenAIRE

    Halman, Nir; Klabjan, Diego; Mostagir, Mohamed; Orlin, Jim; Simchi-Levi, David

    2009-01-01

    The single-item stochastic inventory control problem is to find an inventory replenishment policy in the presence of independent discrete stochastic demands under periodic review and finite time horizon. In this paper, we prove that this problem is intractable and design for it a fully polynomial-time approximation scheme.

  6. Simple polynomial approximation to modified Bethe formula low-energy electron stopping powers data

    International Nuclear Information System (INIS)

    A recently published detailed and exhaustive paper on cross-sections for ionisation induced by keV electrons clearly shows that electron phenomena occurring in parallel with X-ray processes may have been dramatically overlooked for many years, mainly when low atomic number species are involved since, in these cases, the fluorescence coefficient is smaller than the Auger yield. An immediate problem is encountered while attempting to tackle the issue. Accounting for electron phenomena requires the knowledge of the stopping power of electrons within, at least, a reasonably small error. Still, the Bethe formula for stopping powers is known to not be valid for electron energies below 30 keV, and its use leads to values far off experimental ones. Recently, a few authors have addressed this problem and both detailed tables of electron stopping powers for various atomic species and attempts to simplify the calculations, have emerged. Nevertheless, its implementation in software routines to efficiently calculate keV electron effects in materials quickly becomes a bit cumbersome. Following a procedure already used to establish efficient methods to calculate ionisation cross-sections by protons and alpha particles, it became clear that a simple polynomial approximation could be set, which allows retrieving the electronic stopping powers with errors of less than 20% for energies above 500 eV and less than 50% for energies between 50 eV and 500 eV. In this work, we present this approximation which, based on just six parameters, allows to recover electron stopping power values that are less than 20% different from recently published experimentally validated tabulated data

  7. Symbolic computation of recurrence equations for the Chebyshev series solution of linear ODE's. [ordinary differential equations

    Science.gov (United States)

    Geddes, K. O.

    1977-01-01

    If a linear ordinary differential equation with polynomial coefficients is converted into integrated form then the formal substitution of a Chebyshev series leads to recurrence equations defining the Chebyshev coefficients of the solution function. An explicit formula is presented for the polynomial coefficients of the integrated form in terms of the polynomial coefficients of the differential form. The symmetries arising from multiplication and integration of Chebyshev polynomials are exploited in deriving a general recurrence equation from which can be derived all of the linear equations defining the Chebyshev coefficients. Procedures for deriving the general recurrence equation are specified in a precise algorithmic notation suitable for translation into any of the languages for symbolic computation. The method is algebraic and it can therefore be applied to differential equations containing indeterminates.

  8. Polynomial Lie algebra methods in solving the second-harmonic generation model: some exact and approximate calculations

    OpenAIRE

    Karassiov, V. P.; A. A. Gusev; Vinitsky, S. I.

    2001-01-01

    We compare exact and SU(2)-cluster approximate calculation schemes to determine dynamics of the second-harmonic generation model using its reformulation in terms of a polynomial Lie algebra $su_{pd}(2)$ and related spectral representations of the model evolution operator realized in algorithmic forms. It enabled us to implement computer experiments exhibiting a satisfactory accuracy of the cluster approximations in a large range of characteristic model parameters.

  9. Polynomial approximation of functions of matrices and its application to the solution of a general system of linear equations

    Science.gov (United States)

    Tal-Ezer, Hillel

    1987-01-01

    During the process of solving a mathematical model numerically, there is often a need to operate on a vector v by an operator which can be expressed as f(A) while A is NxN matrix (ex: exp(A), sin(A), A sup -1). Except for very simple matrices, it is impractical to construct the matrix f(A) explicitly. Usually an approximation to it is used. In the present research, an algorithm is developed which uses a polynomial approximation to f(A). It is reduced to a problem of approximating f(z) by a polynomial in z while z belongs to the domain D in the complex plane which includes all the eigenvalues of A. This problem of approximation is approached by interpolating the function f(z) in a certain set of points which is known to have some maximal properties. The approximation thus achieved is almost best. Implementing the algorithm to some practical problem is described. Since a solution to a linear system Ax = b is x= A sup -1 b, an iterative solution to it can be regarded as a polynomial approximation to f(A) = A sup -1. Implementing the algorithm in this case is also described.

  10. Polynomial Approximation Algorithms for the TSP and the QAP with a Factorial Domination Number

    DEFF Research Database (Denmark)

    Gutin, Gregory; Yeo, Anders

    Glover and Punnen (J. Oper. Res. Soc. 48 (1997) 502) asked whether there exists a polynomial time algorithm that always produces a tour which is not worse than at least n!/p(n) tours for some polynomial p(n) for every TSP instance on n cities. They conjectured that, unless P = NP, the answer to...... this question is negative. We prove that the answer to this question is, in fact, positive. A generalization of the TSP, the quadratic assignment problem, is also considered with respect to the analogous question. Probabilistic, graph-theoretical, group-theoretical and number-theoretical methods and...

  11. An analysis of polynomial chaos approximations for modeling single-fluid-phase flow in porous medium systems

    International Nuclear Information System (INIS)

    We examine a variety of polynomial-chaos-motivated approximations to a stochastic form of a steady state groundwater flow model. We consider approaches for truncating the infinite dimensional problem and producing decoupled systems. We discuss conditions under which such decoupling is possible and show that to generalize the known decoupling by numerical cubature, it would be necessary to find new multivariate cubature rules. Finally, we use the acceleration of Monte Carlo to compare the quality of polynomial models obtained for all approaches and find that in general the methods considered are more efficient than Monte Carlo for the relatively small domains considered in this work. A curse of dimensionality in the series expansion of the log-normal stochastic random field used to represent hydraulic conductivity provides a significant impediment to efficient approximations for large domains for all methods considered in this work, other than the Monte Carlo method

  12. Approximation of Quantities of Interest in Stochastic PDEs by the Random Discrete L^2 Projection on Polynomial Spaces

    KAUST Repository

    Migliorati, G.

    2013-05-30

    In this work we consider the random discrete L^2 projection on polynomial spaces (hereafter RDP) for the approximation of scalar quantities of interest (QOIs) related to the solution of a partial differential equation model with random input parameters. In the RDP technique the QOI is first computed for independent samples of the random input parameters, as in a standard Monte Carlo approach, and then the QOI is approximated by a multivariate polynomial function of the input parameters using a discrete least squares approach. We consider several examples including the Darcy equations with random permeability, the linear elasticity equations with random elastic coefficient, and the Navier--Stokes equations in random geometries and with random fluid viscosity. We show that the RDP technique is well suited to QOIs that depend smoothly on a moderate number of random parameters. Our numerical tests confirm the theoretical findings in [G. Migliorati, F. Nobile, E. von Schwerin, and R. Tempone, Analysis of the Discrete $L^2$ Projection on Polynomial Spaces with Random Evaluations, MOX report 46-2011, Politecnico di Milano, Milano, Italy, submitted], which have shown that, in the case of a single uniformly distributed random parameter, the RDP technique is stable and optimally convergent if the number of sampling points is proportional to the square of the dimension of the polynomial space. Here optimality means that the weighted $L^2$ norm of the RDP error is bounded from above by the best $L^\\\\infty$ error achievable in the given polynomial space, up to logarithmic factors. In the case of several random input parameters, the numerical evidence indicates that the condition on quadratic growth of the number of sampling points could be relaxed to a linear growth and still achieve stable and optimal convergence. This makes the RDP technique very promising for moderately high dimensional uncertainty quantification.

  13. A Fast, Simple, and Stable Chebyshev--Legendre Transform Using an Asymptotic Formula

    KAUST Repository

    Hale, Nicholas

    2014-02-06

    A fast, simple, and numerically stable transform for converting between Legendre and Chebyshev coefficients of a degree N polynomial in O(N(log N)2/ log log N) operations is derived. The fundamental idea of the algorithm is to rewrite a well-known asymptotic formula for Legendre polynomials of large degree as a weighted linear combination of Chebyshev polynomials, which can then be evaluated by using the discrete cosine transform. Numerical results are provided to demonstrate the efficiency and numerical stability. Since the algorithm evaluates a Legendre expansion at an N +1 Chebyshev grid as an intermediate step, it also provides a fast transform between Legendre coefficients and values on a Chebyshev grid. © 2014 Society for Industrial and Applied Mathematics.

  14. Laguerre-like methods for the simultaneous approximation of polynomial multiple zeros

    Directory of Open Access Journals (Sweden)

    Petković Miodrag

    2006-01-01

    Full Text Available Two new methods of the fourth order for the simultaneous determination of multiple zeros of a polynomial are proposed. The presented methods are based on the fixed point relation of Laguerre's type and realized in ordinary complex arithmetic as well as circular complex interval arithmetic. The derived iterative formulas are suitable for the construction of modified methods with improved convergence rate with negligible additional operations. Very fast convergence of the considered methods is illustrated by two numerical examples.

  15. 基于切比雪夫最佳逼近的LVDT位移传感器信号处理%Signal Processing for LVDT Displacement Sensor Based on Chebyshev Best Approximation Principle

    Institute of Scientific and Technical Information of China (English)

    汪首坤; 彭建敏; 刘洋

    2013-01-01

    On the basis of working principle and its characteristics of linear variable differential transformer (LVDT) displacement sensor, this paper put forward a method to deal with the nonlinear issue of output signals at both ends of the sensor using Chebyshev best approximation principle. The sensor's effective range is adaptively divided into linear and nonlinear regions, linear processing would be made for signals of two regions, respectively. The linear working range and the corresponding linear approximable straight-line function of the sensor are determined according to Chebyshev best approximation principle, while signals in nonlinear regions are linearized using rational B-spline function. A signal processor was designed based on MSP430 microcontroller and a test platform composed of a stepper motor straight-line units and a standard laser sensor was established. Experiments have been implemented to verify the feasibility of proposed method with 85 mm range of LVDT displacement sensor. The results show that this method can effectively improve the linearity and precision of the sensor and extend the working range of displacement sensor.%针对LVDT位移传感器两端输出信号的非线性问题,提出了一种基于切比雪夫最佳逼近原理的信号处理方法.该方法将传感器有效量程自适应地分为线性和非线性区域.线性工作范围和对应直线逼近函数利用切比雪夫一次最佳逼近自适应确定,非线性区域信号采用有理B样条函数进行线性化处理.设计了基于MSP430单片机的信号处理器,搭建了基于步进电机直线台和标准激光传感器的试验平台,对该算法进行实验验证.实验选用量程为85 mm的LVDT位移传感器,实验结果表明,该方法将传感器的非线性误差从2.47%降至0.30%,测量平均误差绝对值从0.64 mm降至0.12 mm,有效改善了传感器的线性度和精度,延展了其工作范围.

  16. Chebyshev Finite Difference Method for Solving Constrained Quadratic Optimal Control Problems

    OpenAIRE

    M Maleki; M. Dadkhah Tirani

    2011-01-01

    . In this paper the Chebyshev finite difference method is employed for finding the approximate solution of time varying constrained optimal control problems. This approach consists of reducing the optimal control problem to a nonlinear mathematical programming problem. To this end, the collocation points (Chebyshev Gauss-Lobatto nodes) are introduced then the state and control variables are approximated using special Chebyshev series with unknown parameters. The performan...

  17. 基于二类切比雪夫正交多项式非参数混合模型的图像分割%Image Segmentation Based on Non-Parametric Mixture Models of Chebyshev Orthogonal Polynomials of the Second Kind

    Institute of Scientific and Technical Information of China (English)

    刘哲; 宋余庆; 陈健美; 谢从华; 宋旼珊

    2011-01-01

    To solve the problem of over-reliance on priori assumptions of the parameter methods for finite mixture models, a nonparametric mixture model of Chebyshev orthogonal polynomials of the second kind for image segmentation method is proposed in this paper. Firstly, an image nonparametric misture model based on Chebyshev orthogonal polynomials of the second kind is designed. The mixture identification step based on the maximisation of the likelihood can be realised without hypothesis on the distribution of the conditional probability density function(PDF). In this paper, we intend to give some simulation results for the determination of the smoothing parameter, and use mean integrated squared error (MISE) estimation of the smoothing parameter for each model. Secondly, the stochastic expectation maximum (SEM) algorithm is used to estimate the Chebyshev orthogonal polynomial coefficients and the model of the weight. This method does not require any priori assumptions on the model, and it can effectively overcome the "model mismatch" problem. The algorithm finds the most likely number of classes and their associated model parameters and generates a segmentation of the image by classifying the pixels into these classes. Compared with the segmentation methods of other orthogonal polynomials, this new method is much more fast in speed and better segmentation quality. The experimental results about the image segmentation show that this method is better than the Gaussian mixture model segmentation results.%有参混合模型需要假设模型为某种已知的参数模型,而实际数据往往很难假设出这种参数模型的分布.为此,提出一种二类切比雪夫正交多项式的非参数图像混合模型分割方法.首先,设计出一种基于二类切比雪夫正交多项式的图像非参数混合模型,每一个模型的平滑参数根据误差方法和最小的准则进行计算.然后,利用随机期望最大(SEM)算法求解正交多项式系数和每

  18. Approximation of functions in Lp(x)2π by trigonometric polynomials

    International Nuclear Information System (INIS)

    We consider the Lebesgue space Lp(x)2π with variable exponent p(x). It consists of measurable functions f(x) for which the integral ∫02π|f(x)|p(x) dx exists. We establish an analogue of Jackson's first theorem in the case when the 2π-periodic variable exponent p(x)≥1 satisfies the condition displayed here. Under the additional assumption p- = minx p(x) > 1 we also get an analogue of Jackson's second theorem. We establish an Lp(x)2π-analogue of Bernstein's estimate for the derivative of a trigonometric polynomial and use it to prove an inverse theorem for the analogues of the Lipschitz classes Lip(α,M)p(·) subset of Lp(x)2π for 0p(·). In the definition of the modulus of continuity of a function f(x) element of Lp(x)2π, we replace the ordinary shift fh(x)=f(x+h) by an averaged shift determined by Steklov's function sh(f)(x)= 1/h ∫0hf(x+t) dt.

  19. On adaptive weighted polynomial preconditioning for Hermitian positive definite matrices

    Science.gov (United States)

    Fischer, Bernd; Freund, Roland W.

    1992-01-01

    The conjugate gradient algorithm for solving Hermitian positive definite linear systems is usually combined with preconditioning in order to speed up convergence. In recent years, there has been a revival of polynomial preconditioning, motivated by the attractive features of the method on modern architectures. Standard techniques for choosing the preconditioning polynomial are based only on bounds for the extreme eigenvalues. Here a different approach is proposed, which aims at adapting the preconditioner to the eigenvalue distribution of the coefficient matrix. The technique is based on the observation that good estimates for the eigenvalue distribution can be derived after only a few steps of the Lanczos process. This information is then used to construct a weight function for a suitable Chebyshev approximation problem. The solution of this problem yields the polynomial preconditioner. In particular, we investigate the use of Bernstein-Szego weights.

  20. Determinantal and permanental representation of generalized bivariate Fibonacci p-polynomials

    OpenAIRE

    Kaygisiz, Kenan; Sahin, Adem

    2011-01-01

    In this paper, we give some determinantal and permanental representations of generalized bivariate Fibonacci p-polynomials by using various Hessenberg matrices. The results that we obtained are important since generalized bivariate Fibonacci p-polynomials are general form of, for example, bivariate Fibonacci and Pell p-polynomials, second kind Chebyshev polynomials, bivariate Jacobsthal polynomials etc.

  1. Effective solution of a linear system with Chebyshev coefficients

    Czech Academy of Sciences Publication Activity Database

    Kujan, Petr; Hromčík, M.; Šebek, Michael

    2009-01-01

    Roč. 20, č. 8 (2009), s. 619-628. ISSN 1065-2469 R&D Projects: GA MŠk(CZ) 1M0567 Institutional research plan: CEZ:AV0Z10750506 Keywords : orthogonal Chebyshev polynomials * hypergeometric functions * optimal PWM problem Subject RIV: BC - Control Systems Theory Impact factor: 0.756, year: 2009 http://dx.doi.org/10.1080/10652460902727938

  2. Application of polynomial preconditioners to conservation laws

    NARCIS (Netherlands)

    Geurts, Bernard J.; Buuren, van René; Lu, Hao

    2000-01-01

    Polynomial preconditioners which are suitable in implicit time-stepping methods for conservation laws are reviewed and analyzed. The preconditioners considered are either based on a truncation of a Neumann series or on Chebyshev polynomials for the inverse of the system-matrix. The latter class of p

  3. An inequality for polynomials with elliptic majorant

    OpenAIRE

    Nikolov Geno

    1999-01-01

    Let be the transformed Chebyshev polynomial of the first kind, where . We show here that has the greatest uniform norm in of its -th derivative among all algebraic polynomials of degree not exceeding , which vanish at and satisfy the inequality at the points .

  4. On the best approximation of certain classes of periodic functions by trigonometric polynomials

    CERN Document Server

    Ovsii, Ievgen

    2010-01-01

    In this work we obtain an asymptotic formula for the best approximation of the classes of 2\\pi -periodic functions whose (\\psi ,\\beta)-derivatives (in the sense of Stepanets) have a given majorant \\omega(t) of the modulus of continuity

  5. Reduction of Linear Programming to Linear Approximation

    OpenAIRE

    Vaserstein, Leonid N.

    2006-01-01

    It is well known that every Chebyshev linear approximation problem can be reduced to a linear program. In this paper we show that conversely every linear program can be reduced to a Chebyshev linear approximation problem.

  6. Fully polynomial-time approximation scheme for a special case of a quadratic Euclidean 2-clustering problem

    Science.gov (United States)

    Kel'manov, A. V.; Khandeev, V. I.

    2016-02-01

    The strongly NP-hard problem of partitioning a finite set of points of Euclidean space into two clusters of given sizes (cardinalities) minimizing the sum (over both clusters) of the intracluster sums of squared distances from the elements of the clusters to their centers is considered. It is assumed that the center of one of the sought clusters is specified at the desired (arbitrary) point of space (without loss of generality, at the origin), while the center of the other one is unknown and determined as the mean value over all elements of this cluster. It is shown that unless P = NP, there is no fully polynomial-time approximation scheme for this problem, and such a scheme is substantiated in the case of a fixed space dimension.

  7. Pade approximants for functions with branch points - strong asymptotics of Nuttall-Stahl polynomials

    CERN Document Server

    Aptekarev, Alexander I

    2011-01-01

    Let f be a germ of an analytic function at infinity that can be analytically continued along any path in the complex plane deprived of a finite set of points, f \\in\\mathcal{A}(\\bar{\\C} \\setminus A), \\sharp A <\\infty. J. Nuttall has put forward the important relation between the maximal domain of f where the function has a single-valued branch and the domain of convergence of the diagonal Pade approximants for f. The Pade approximants, which are rational functions and thus single-valued, approximate a holomorphic branch of f in the domain of their convergence. At the same time most of their poles tend to the boundary of the domain of convergence and the support of their limiting distribution models the system of cuts that makes the function f single-valued. Nuttall has conjectured (and proved for many important special cases) that this system of cuts has minimal logarithmic capacity among all other systems converting the function f to a single-valued branch. Thus the domain of convergence corresponds to the...

  8. Estimates of the best approximations of periodic functions by trigonometric polynomials in terms of averaged differences and the multidimensional Jackson's theorem

    Science.gov (United States)

    Pustovoitov, N. N.

    1997-10-01

    In the first section the best approximations of periodic functions of one real variable by trigonometric polynomials are studied. Estimates of these approximations in terms of averaged differences are obtained. A multidimensional generalization of these estimates is presented in the second section. As a consequence. The multidimensional Jackson's theorem is proved.

  9. The Gibbs Phenomenon for Series of Orthogonal Polynomials

    Science.gov (United States)

    Fay, T. H.; Kloppers, P. Hendrik

    2006-01-01

    This note considers the four classes of orthogonal polynomials--Chebyshev, Hermite, Laguerre, Legendre--and investigates the Gibbs phenomenon at a jump discontinuity for the corresponding orthogonal polynomial series expansions. The perhaps unexpected thing is that the Gibbs constant that arises for each class of polynomials appears to be the same…

  10. NAPX: A Polynomial Time Approximation Scheme for the Noah's Ark Problem

    CERN Document Server

    Hickey, G; Maheshwari, A; Zeh, N

    2008-01-01

    The Noah's Ark Problem (NAP) is an NP-Hard optimization problem with relevance to ecological conservation management. It asks to maximize the phylogenetic diversity (PD) of a set of taxa given a fixed budget, where each taxon is associated with a cost of conservation and a probability of extinction. NAP has received renewed interest with the rise in availability of genetic sequence data, allowing PD to be used as a practical measure of biodiversity. However, only simplified instances of the problem, where one or more parameters are fixed as constants, have as of yet been addressed in the literature. We present NAPX, the first algorithm for the general version of NAP that returns a $1 - \\epsilon$ approximation of the optimal solution. It runs in $O(\\frac{n B^2 h^2 \\log^2n}{\\log^2(1 - \\epsilon)})$ time where $n$ is the number of species, and $B$ is the total budget and $h$ is the height of the input tree. We also provide improved bounds for its expected running time.

  11. Polynomial-time Approximability Results for combinatorial problems arising in Optimal Experimental Design

    CERN Document Server

    Sagnol, Guillaume

    2010-01-01

    The theory of "optimal experimental design" explains how to best select experiments in order to estimate a set of parameters. The quality of the estimation can be measured by the confidence ellipsoids of a certain estimator. This leads to concave maximization problems in which the objective function is nondecreasing with respect to the L\\"owner ordering of symmetric matrices, and is applied to the "information matrix" describing the structure of these confidence ellipsoids. In a number of real-world applications, the variables controlling the experimental design are discrete, or binary. This paper provides approximability bounds for this NP-hard problem. In particular, we establish a matrix inequality which shows that the objective function is submodular, from which it follows that the greedy approach, which has often been used for this problem, always gives a design within $1-1/e$ of the optimum. We next study the design found by rounding the solution of the continuous relaxed problem, an approach which has ...

  12. A Note on The Convexity of Chebyshev Sets

    Directory of Open Access Journals (Sweden)

    Sangeeta

    2009-07-01

    Full Text Available Perhaps one of the major unsolved problem in Approximation Theoryis: Whether or not every Chebyshev subset of a Hilbert space must be convex. Many partial answers to this problem are available in the literature. R.R. Phelps[Proc. Amer. Math. Soc. 8 (1957, 790-797] showed that a Chebyshev set in an inner product space (or in a strictly convex normed linear space is convex if the associated metric projection is non-expansive. We extend this result to metricspaces.

  13. Chebyshev Finite Difference Method for Solving Constrained Quadratic Optimal Control Problems

    Directory of Open Access Journals (Sweden)

    M. Maleki*

    2011-06-01

    Full Text Available . In this paper the Chebyshev finite difference method is employed for finding the approximate solution of time varying constrained optimal control problems. This approach consists of reducing the optimal control problem to a nonlinear mathematical programming problem. To this end, the collocation points (Chebyshev Gauss-Lobatto nodes are introduced then the state and control variables are approximated using special Chebyshev series with unknown parameters. The performance index is parameterized and the system dynamics and constraints are then replaced with a set of algebraic equations. Numerical examples are included to demonstrate the validity and applicability of the technique.

  14. On progress of the solution of the stationary 2-dimensional neutron diffusion equation: a polynomial approximation method with error analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ceolin, C., E-mail: celina.ceolin@gmail.com [Universidade Federal de Santa Maria (UFSM), Frederico Westphalen, RS (Brazil). Centro de Educacao Superior Norte; Schramm, M.; Bodmann, B.E.J.; Vilhena, M.T., E-mail: celina.ceolin@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica

    2015-07-01

    Recently the stationary neutron diffusion equation in heterogeneous rectangular geometry was solved by the expansion of the scalar fluxes in polynomials in terms of the spatial variables (x; y), considering the two-group energy model. The focus of the present discussion consists in the study of an error analysis of the aforementioned solution. More specifically we show how the spatial subdomain segmentation is related to the degree of the polynomial and the Lipschitz constant. This relation allows to solve the 2-D neutron diffusion problem for second degree polynomials in each subdomain. This solution is exact at the knots where the Lipschitz cone is centered. Moreover, the solution has an analytical representation in each subdomain with supremum and infimum functions that shows the convergence of the solution. We illustrate the analysis with a selection of numerical case studies. (author)

  15. Short-time Chebyshev wave packet method for molecular photoionization

    Science.gov (United States)

    Sun, Zhaopeng; Zheng, Yujun

    2016-08-01

    In this letter we present the extended usage of short-time Chebyshev wave packet method in the laser induced molecular photoionization dynamics. In our extension, the polynomial expansion of the exponential in the time evolution operator, the Hamiltonian operator can act on the wave packet directly which neatly avoids the matrix diagonalization. This propagation scheme is of obvious advantages when the dynamical system has large Hamiltonian matrix. Computational simulations are performed for the calculation of photoelectronic distributions from intense short pulse ionization of K2 and NaI which represent the Born-Oppenheimer (BO) model and Non-BO one, respectively.

  16. Preconditioning matrices for Chebyshev derivative operators

    Science.gov (United States)

    Rothman, Ernest E.

    1986-01-01

    The problem of preconditioning the matrices arising from pseudo-spectral Chebyshev approximations of first order operators is considered in both one and two dimensions. In one dimension a preconditioner represented by a full matrix which leads to preconditioned eigenvalues that are real, positive, and lie between 1 and pi/2, is already available. Since there are cases in which it is not computationally convenient to work with such a preconditioner, a large number of preconditioners were studied which were more sparse (in particular three and four diagonal matrices). The eigenvalues of such preconditioned matrices are compared. The results were applied to the problem of finding the steady state solution to an equation of the type u sub t = u sub x + f, where the Chebyshev collocation is used for the spatial variable and time discretization is performed by the Richardson method. In two dimensions different preconditioners are proposed for the matrix which arises from the pseudo-spectral discretization of the steady state problem. Results are given for the CPU time and the number of iterations using a Richardson iteration method for the unpreconditioned and preconditioned cases.

  17. Bernstein polynomials on Simplex

    OpenAIRE

    Bayad, A.; Kim, T.; Rim, S. -H.

    2011-01-01

    We prove two identities for multivariate Bernstein polynomials on simplex, which are considered on a pointwise. In this paper, we study good approximations of Bernstein polynomials for every continuous functions on simplex and the higher dimensional q-analogues of Bernstein polynomials on simplex

  18. Chebyshev and Fourier spectral methods

    CERN Document Server

    Boyd, John P

    2001-01-01

    Completely revised text focuses on use of spectral methods to solve boundary value, eigenvalue, and time-dependent problems, but also covers Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions, as well as cardinal functions, linear eigenvalue problems, matrix-solving methods, coordinate transformations, methods for unbounded intervals, spherical and cylindrical geometry, and much more. 7 Appendices. Glossary. Bibliography. Index. Over 160 text figures.

  19. The Numerical Solution of Scalar Field for Nariai Case in 5D Ricci-flat SdS Black String Space with Polynomial Approximation

    CERN Document Server

    Wang, Chunxiao; Liu, Hongya

    2008-01-01

    As one exact candidate of the higher dimensional black hole, the 5D Ricci-flat Schwarzschild-de Sitter black string space presents something interesting. In this paper, we give a numerical solution to the real scalar field around the Nariai black hole by the polynomial approximation. Unlike the previous tangent approximation, this fitting function makes a perfect match in the leading intermediate region and gives a good description near both the event and the cosmological horizons. We can read from our results that the wave is close to a harmonic one with the tortoise coordinate. Furthermore, with the actual radial coordinate the waves pile up almost equally near the both horizons.

  20. Application of Rational Second Kind Chebyshev Functions for System of Integrodifferential Equations on Semi-Infinite Intervals

    OpenAIRE

    M. Tavassoli Kajani; Vahdati, S.; Zulkifly Abbas; Mohammad Maleki

    2012-01-01

    Rational Chebyshev bases and Galerkin method are used to obtain the approximate solution of a system of high-order integro-differential equations on the interval [0,∞). This method is based on replacement of the unknown functions by their truncated series of rational Chebyshev expansion. Test examples are considered to show the high accuracy, simplicity, and efficiency of this method.

  1. A new tool for image analysis based on Chebyshev rational functions: CHEF functions

    CERN Document Server

    Jiménez-Teja, Y

    2011-01-01

    We introduce a new approach to the modelling of the light distribution of galaxies, an orthonormal polar base formed by a combination of Chebyshev rational functions and Fourier polynomials that we call CHEF functions, or CHEFs. We have developed an orthonormalization process to apply this basis to pixelized images, and implemented the method as a Python pipeline. The new basis displays remarkable flexibility, being able to accurately fit all kinds of galaxy shapes, including irregulars, spirals, ellipticals, highly compact and highly elongated galaxies. It does this while using fewer components that similar methods, as shapelets, and without producing artifacts, due to the efficiency of the rational Chebyshev polynomials to fit quickly decaying functions like galaxy profiles. The method is lineal and very stable, and therefore capable of processing large numbers of galaxies in a fast and automated way. Due to the high quality of the fits in the central parts of the galaxies, and the efficiency of the CHEF ba...

  2. Direct method for variational problems via hybrid of block-pulse and chebyshev functions

    Directory of Open Access Journals (Sweden)

    Razzaghi Mohsen

    2000-01-01

    Full Text Available A direct method for finding the solution of variational problems using a hybrid function is discussed. The hybrid functions which consist of block-pulse functions plus Chebyshev polynomials are introduced. An operational matrix of integration and the integration of the cross product of two hybrid function vectors are presented and are utilized to reduce a variational problem to the solution of an algebraic equation. Illustrative examples are included to demonstrate the validity and applicability of the technique.

  3. Chebyshev collocation spectral lattice Boltzmann method for simulation of low-speed flows.

    Science.gov (United States)

    Hejranfar, Kazem; Hajihassanpour, Mahya

    2015-01-01

    In this study, the Chebyshev collocation spectral lattice Boltzmann method (CCSLBM) is developed and assessed for the computation of low-speed flows. Both steady and unsteady flows are considered here. The discrete Boltzmann equation with the Bhatnagar-Gross-Krook approximation based on the pressure distribution function is considered and the space discretization is performed by the Chebyshev collocation spectral method to achieve a highly accurate flow solver. To provide accurate unsteady solutions, the time integration of the temporal term in the lattice Boltzmann equation is made by the fourth-order Runge-Kutta scheme. To achieve numerical stability and accuracy, physical boundary conditions based on the spectral solution of the governing equations implemented on the boundaries are used. An iterative procedure is applied to provide consistent initial conditions for the distribution function and the pressure field for the simulation of unsteady flows. The main advantage of using the CCSLBM over other high-order accurate lattice Boltzmann method (LBM)-based flow solvers is the decay of the error at exponential rather than at polynomial rates. Note also that the CCSLBM applied does not need any numerical dissipation or filtering for the solution to be stable, leading to highly accurate solutions. Three two-dimensional (2D) test cases are simulated herein that are a regularized cavity, the Taylor vortex problem, and doubly periodic shear layers. The results obtained for these test cases are thoroughly compared with the analytical and available numerical results and show excellent agreement. The computational efficiency of the proposed solution methodology based on the CCSLBM is also examined by comparison with those of the standard streaming-collision (classical) LBM and two finite-difference LBM solvers. The study indicates that the CCSLBM provides more accurate and efficient solutions than these LBM solvers in terms of CPU and memory usage and an exponential

  4. On a novel iterative method to compute polynomial approximations to Bessel functions of the first kind and its connection to the solution of fractional diffusion/diffusion-wave problems

    Energy Technology Data Exchange (ETDEWEB)

    Yuste, Santos Bravo; Abad, Enrique, E-mail: santos@unex.es [Departamento de Fisica, Universidad de Extremadura, E-06071 Badajoz (Spain)

    2011-02-18

    We present an iterative method to obtain approximations to Bessel functions of the first kind J{sub p}(x) (p > -1) via the repeated application of an integral operator to an initial seed function f{sub 0}(x). The class of seed functions f{sub 0}(x) leading to sets of increasingly accurate approximations f{sub n}(x) is considerably large and includes any polynomial. When the operator is applied once to a polynomial of degree s, it yields a polynomial of degree s + 2, and so the iteration of this operator generates sets of increasingly better polynomial approximations of increasing degree. We focus on the set of polynomial approximations generated from the seed function f{sub 0}(x) = 1. This set of polynomials is useful not only for the computation of J{sub p}(x) but also from a physical point of view, as it describes the long-time decay modes of certain fractional diffusion and diffusion-wave problems.

  5. Numerical modeling of wave propagation in functionally graded materials using time-domain spectral Chebyshev elements

    Science.gov (United States)

    Hedayatrasa, Saeid; Bui, Tinh Quoc; Zhang, Chuanzeng; Lim, Chee Wah

    2014-02-01

    Numerical modeling of the Lamb wave propagation in functionally graded materials (FGMs) by a two-dimensional time-domain spectral finite element method (SpFEM) is presented. The high-order Chebyshev polynomials as approximation functions are used in the present formulation, which provides the capability to take into account the through thickness variation of the material properties. The efficiency and accuracy of the present model with one and two layers of 5th order spectral elements in modeling wave propagation in FGM plates are analyzed. Different excitation frequencies in a wide range of 28-350 kHz are investigated, and the dispersion properties obtained by the present model are verified by reference results. The through thickness wave structure of two principal Lamb modes are extracted and analyzed by the symmetry and relative amplitude of the vertical and horizontal oscillations. The differences with respect to Lamb modes generated in homogeneous plates are explained. Zero-crossing and wavelet signal processing-spectrum decomposition procedures are implemented to obtain phase and group velocities and their dispersion properties. So it is attested how this approach can be practically employed for simulation, calibration and optimization of Lamb wave based nondestructive evaluation techniques for the FGMs. The capability of modeling stress wave propagation through the thickness of an FGM specimen subjected to impact load is also investigated, which shows that the present method is highly accurate as compared with other existing reference data.

  6. Chebyshev spectral hexahedral wavelets on the sphere for angular discretisations of the Boltzmann transport equation

    International Nuclear Information System (INIS)

    This paper describes a new second generation spherical wavelet method for discretising the angular dimension of the Boltzmann transport equation. The approximation scheme provides a spectrally accurate expansion of the angular domain using Chebyshev collocation polynomials mapped into a wavelet space. Our method extends the work in Buchan et al. [Buchan, A., Pain, C.C., Eaton, M.D., Smedley-Stevenson, R., Goddard, A., Oliveira, C.D., submitted for publication. Linear and quadratic hexahedral wavelets on the sphere for angular discretisations of the Boltzmann transport equation. Nucl. Sci. Eng.; Buchan, A., Pain, C.C., Eaton, M.D., Smedley-Stevenson, R., Goddard, A., Oliveira, C.D., 2005. Linear and quadratic octahedral wavelets on the sphere for angular discretisations of the Boltzmann transport equation. Ann. Nucl. Energy 32, 1224-1273] of using low order finite element based wavelets. Here we show the spectral wavelets can improve on these techniques by providing more accurate representation of the angular fluxes. This also implies the method can provide improved solutions to those of the established methods SN and PN by reducing ray-effects and possibly Gibbs oscillations. We demonstrate this using a set of demanding mono-energetic particle transport problems

  7. The multi-group integro-differential equations of the neutron diffusion kinetics. Solutions with the progressive polynomial approximation in multi-slab geometry

    International Nuclear Information System (INIS)

    The multi-group integro-differential equations of the neutron diffusion kinetics (IDE-NDK) was presented and solved numerically in multi-slab geometry with the use of the progressive polynomial approximation. Four applications were computed: a positive ramp, a negative ramp, a sinusoidal and an instantaneous change of thermal macroscopic cross-sections in an 120 slab-nuclear reactor for a 2 prompt-group model. The results showed good accuracy for the developed non-iterative algorithms. It was shown the advantage of using the IDE-NDK over the traditional partial differential equations of the neutron diffusion kinetics from an accuracy point of view. Finite difference algorithms were also developed to obtain initial conditions and to make desired comparisons.

  8. On a connection between a generalised modulus of smoothness of order~$r$ and the best approximation by algebraic polynomials

    OpenAIRE

    Potapov, Mikhail K.; Berisha, Faton M.

    2012-01-01

    In this paper an asymmetrical operator of generalised translation is introduced, the generalised modulus of smoothness is defined by its means and the direct and inverse theorems in approximation theory are proved for that modulus. ----- V danno\\v{i} rabote vvoditsya nesimmetrichny\\v{i} operator obobshchennogo sdviga, s ego pomoshchyu opredelyaetsya obobshchenny\\v{i} modul' gladkosti i dlya nego dokazyvaetsya pryamaya i obratnaya teoremy teorii priblizheni\\v{i}.

  9. Polynomial functors and polynomial monads

    CERN Document Server

    Gambino, Nicola

    2009-01-01

    We study polynomial functors over locally cartesian closed categories. After setting up the basic theory, we show how polynomial functors assemble into a double category, in fact a framed bicategory. We show that the free monad on a polynomial endofunctor is polynomial. The relationship with operads and other related notions is explored.

  10. 3-D vibration analysis of annular sector plates using the Chebyshev-Ritz method

    Science.gov (United States)

    Zhou, D.; Lo, S. H.; Cheung, Y. K.

    2009-02-01

    The three-dimensional free vibration of annular sector plates with various boundary conditions is studied by means of the Chebyshev-Ritz method. The analysis is based on the three-dimensional small strain linear elasticity theory. The product of Chebyshev polynomials satisfying the necessary boundary conditions is selected as admissible functions in such a way that the governing eigenvalue equation can be conveniently derived through an optimization process by the Ritz method. The boundary functions guarantee the satisfaction of the geometric boundary conditions of the plates and the Chebyshev polynomials provide the robustness for numerical calculation. The present study provides a full vibration spectrum for the thick annular sector plates, which cannot be given by the two-dimensional (2-D) theories such as the Mindlin theory. Comprehensive numerical results with high accuracy are systematically produced, which can be used as benchmark to evaluate other numerical methods. The effect of radius ratio, thickness ratio and sector angle on natural frequencies of the plates with a sector angle from 120° to 360° is discussed in detail. The three-dimensional vibration solutions for plates with a re-entrant sector angle (larger than 180°) and shallow helicoidal shells (sector angle larger than 360°) with a small helix angle are presented for the first time.

  11. Application of Rational Second Kind Chebyshev Functions for System of Integrodifferential Equations on Semi-Infinite Intervals

    Directory of Open Access Journals (Sweden)

    M. Tavassoli Kajani

    2012-01-01

    Full Text Available Rational Chebyshev bases and Galerkin method are used to obtain the approximate solution of a system of high-order integro-differential equations on the interval [0,∞. This method is based on replacement of the unknown functions by their truncated series of rational Chebyshev expansion. Test examples are considered to show the high accuracy, simplicity, and efficiency of this method.

  12. Orthogonal polynomials

    CERN Document Server

    Freud, Géza

    1971-01-01

    Orthogonal Polynomials contains an up-to-date survey of the general theory of orthogonal polynomials. It deals with the problem of polynomials and reveals that the sequence of these polynomials forms an orthogonal system with respect to a non-negative m-distribution defined on the real numerical axis. Comprised of five chapters, the book begins with the fundamental properties of orthogonal polynomials. After discussing the momentum problem, it then explains the quadrature procedure, the convergence theory, and G. Szegő's theory. This book is useful for those who intend to use it as referenc

  13. Numerical solution of the one-dimensional fractional convection diffusion equations based on Chebyshev operational matrix.

    Science.gov (United States)

    Xie, Jiaquan; Huang, Qingxue; Yang, Xia

    2016-01-01

    In this paper, we are concerned with nonlinear one-dimensional fractional convection diffusion equations. An effective approach based on Chebyshev operational matrix is constructed to obtain the numerical solution of fractional convection diffusion equations with variable coefficients. The principal characteristic of the approach is the new orthogonal functions based on Chebyshev polynomials to the fractional calculus. The corresponding fractional differential operational matrix is derived. Then the matrix with the Tau method is utilized to transform the solution of this problem into the solution of a system of linear algebraic equations. By solving the linear algebraic equations, the numerical solution is obtained. The approach is tested via examples. It is shown that the proposed algorithm yields better results. Finally, error analysis shows that the algorithm is convergent. PMID:27504247

  14. A multidomain chebyshev pseudo-spectral method for fluid flow and heat transfer from square cylinders

    KAUST Repository

    Wang, Zhiheng

    2015-01-01

    A simple multidomain Chebyshev pseudo-spectral method is developed for two-dimensional fluid flow and heat transfer over square cylinders. The incompressible Navier-Stokes equations with primitive variables are discretized in several subdomains of the computational domain. The velocities and pressure are discretized with the same order of Chebyshev polynomials, i.e., the PN-PN method. The Projection method is applied in coupling the pressure with the velocity. The present method is first validated by benchmark problems of natural convection in a square cavity. Then the method based on multidomains is applied to simulate fluid flow and heat transfer from square cylinders. The numerical results agree well with the existing results. © Taylor & Francis Group, LLC.

  15. Generalized hermite polynomials in the description of Chebyshev-like polynomials

    OpenAIRE

    Cesarano, Clemente

    2015-01-01

    En esta memoria se obtienen y analizan algunos modelos matemáticos de remodelación y reparación ósea. Para ello, y tras un primer capítulo introductorio en el que se presentan resultados preliminares para los estudios posteriores, se aborda en el Capítulo 2 la modelización del mecanismo de mantenimiento que tiene lugar a lo largo de la vida de cada persona, y en virtud del cual en pequeñas regiones del esqueleto el hueso viejo es reemplazado por el nuevo de manera que la cantidad total de...

  16. Image contrast enhancement using Chebyshev wavelet moments

    Science.gov (United States)

    Uchaev, Dm. V.; Uchaev, D. V.; Malinnikov, V. A.

    2015-12-01

    A new algorithm for image contrast enhancement in the Chebyshev moment transform (CMT) domain is introduced. This algorithm is based on a contrast measure that is defined as the ratio of high-frequency to zero-frequency content in the bands of CMT matrix. Our algorithm enables to enhance a large number of high-spatial-frequency coefficients, that are responsible for image details, without severely degrading low-frequency contributions. To enhance high-frequency Chebyshev coefficients we use a multifractal spectrum of scaling exponents (SEs) for Chebyshev wavelet moment (CWM) magnitudes, where CWMs are multiscale realization of Chebyshev moments (CMs). This multifractal spectrum is very well suited to extract meaningful structures on images of natural scenes, because these images have a multifractal character. Experiments with test images show some advantages of the proposed algorithm as compared to other widely used image enhancement algorithms. The main advantage of our algorithm is the following: the algorithm very well highlights image details during image contrast enhancement.

  17. Efficient Prime Counting and the Chebyshev Primes

    Directory of Open Access Journals (Sweden)

    Michel Planat

    2013-01-01

    Full Text Available The function where is the logarithm integral and the number of primes up to is well known to be positive up to the (very large Skewes' number. Likewise, according to Robin's work, the functions and , where and are Chebyshev summatory functions, are positive if and only if Riemann hypothesis (RH holds. One introduces the jump function at primes and one investigates , , and . In particular, , and for . Besides, for any odd , an infinite set of the so-called Chebyshev primes. In the context of RH, we introduce the so-called Riemann primes as champions of the function (or of the function . Finally, we find a good prime counting function , that is found to be much better than the standard Riemann prime counting function.

  18. All-Pole Recursive Digital Filters Design Based on Ultraspherical Polynomials

    Directory of Open Access Journals (Sweden)

    N. Stojanovic

    2014-09-01

    Full Text Available A simple method for approximation of all-pole recursive digital filters, directly in digital domain, is described. Transfer function of these filters, referred to as Ultraspherical filters, is controlled by order of the Ultraspherical polynomial, nu. Parameter nu, restricted to be a nonnegative real number (nu ≥ 0, controls ripple peaks in the passband of the magnitude response and enables a trade-off between the passband loss and the group delay response of the resulting filter. Chebyshev filters of the first and of the second kind, and also Legendre and Butterworth filters are shown to be special cases of these allpole recursive digital filters. Closed form equations for the computation of the filter coefficients are provided. The design technique is illustrated with examples.

  19. THE THEOREMS OF CHEBYSHEV ABOUT THE DISTRIBUTION OF PRIME NUMBERS AND SOME PROBLEMS, CONNECTED WITH PRIME NUMBERS

    OpenAIRE

    Laptev V. N.; Sergeev A. E.; Sergeev E. A.

    2015-01-01

    The article presents the theorem of Chebyshev on the distribution of primes, considering functions that approximated prime numbers. We have also considered a new function, which is quite good for approximation of prime numbers. A review of the known results on distribution of prime numbers is given as well

  20. Polynomially Bounded Sequences and Polynomial Sequences

    Directory of Open Access Journals (Sweden)

    Okazaki Hiroyuki

    2015-09-01

    Full Text Available In this article, we formalize polynomially bounded sequences that plays an important role in computational complexity theory. Class P is a fundamental computational complexity class that contains all polynomial-time decision problems [11], [12]. It takes polynomially bounded amount of computation time to solve polynomial-time decision problems by the deterministic Turing machine. Moreover we formalize polynomial sequences [5].

  1. s-Numbers sequences for homogeneous polynomials

    OpenAIRE

    Caliskan, Erhan; Rueda, Pilar

    2015-01-01

    We extend the well known theory of $s$-numbers of linear operators to homogeneous polynomials defined between Banach spaces. Approximation, Kolmogorov and Gelfand numbers of polynomials are introduced and some well-known results of the linear and multilinear settings are obtained for homogeneous polynomials.

  2. Chebyshev Expansion Applied to Dissipative Quantum Systems.

    Science.gov (United States)

    Popescu, Bogdan; Rahman, Hasan; Kleinekathöfer, Ulrich

    2016-05-19

    To determine the dynamics of a molecular aggregate under the influence of a strongly time-dependent perturbation within a dissipative environment is still, in general, a challenge. The time-dependent perturbation might be, for example, due to external fields or explicitly treated fluctuations within the environment. Methods to calculate the dynamics in these cases do exist though some of these approaches assume that the corresponding correlation functions can be written as a weighted sum of exponentials. One such theory is the hierarchical equations of motion approach. If the environment, however, is described by a complex spectral density or if its temperature is low, these approaches become very inefficient. Therefore, we propose a scheme based on a Chebyshev decomposition of the bath correlation functions and detail the respective quantum master equations within second-order perturbation theory in the environmental coupling. Similar approaches have recently been proposed for systems coupled to Fermionic reservoirs. The proposed scheme is tested for a simple two-level system and compared to existing results. Furthermore, the advantages and disadvantages of the present Chebyshev approach are discussed. PMID:26845380

  3. Direct Method to Solve Differential-Algebraic Equations by Using the Operational Matrices of Chebyshev Cardinal Functions

    Directory of Open Access Journals (Sweden)

    M. Heydari

    2013-05-01

    Full Text Available A new and effective direct method to determine the numerical solution of linear and nonlinear differential-algebraic equations (DAEs is proposed. The method consists of expanding the required approximate solution as the elements of Chebyshev cardinal functions. The operational matrices for the integration and product of the Chebyshev cardinal functions are presented. A general procedure for forming these matrices is given. These matrices play an important role in modelling of problems. By using these operational matrices together, a differentialalgebraic equation can be transformed to a system of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique

  4. On the stability and accuracy of least squares approximations

    CERN Document Server

    Cohen, Albert; Leviatan, Dany

    2011-01-01

    We consider the problem of reconstructing an unknown function $f$ on a domain $X$ from samples of $f$ at $n$ randomly chosen points with respect to a given measure $\\rho_X$. Given a sequence of linear spaces $(V_m)_{m>0}$ with ${\\rm dim}(V_m)=m\\leq n$, we study the least squares approximations from the spaces $V_m$. It is well known that such approximations can be inaccurate when $m$ is too close to $n$, even when the samples are noiseless. Our main result provides a criterion on $m$ that describes the needed amount of regularization to ensure that the least squares method is stable and that its accuracy, measured in $L^2(X,\\rho_X)$, is comparable to the best approximation error of $f$ by elements from $V_m$. We illustrate this criterion for various approximation schemes, such as trigonometric polynomials, with $\\rho_X$ being the uniform measure, and algebraic polynomials, with $\\rho_X$ being either the uniform or Chebyshev measure. For such examples we also prove similar stability results using deterministic...

  5. A new class of three-variable orthogonal polynomials and their recurrences relations

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A new class of three-variable orthogonai polynomials,defined as eigenfunctions of a second order PDE operator,is studied.These polynomials are orthogonal over a curved tetrahedron region, which can be seen as a mapping from a traditional tetrahedron,and can be taken as an extension of the 2-D Steiner domain.The polynomials can be viewed as Jacobi polynomials on such a domain.Three- term relations are derived explicitly.The number of the individual terms,involved in the recurrences relations,are shown to be independent on the total degree of the polynomials.The numbers now are determined to be five and seven,with respect to two conjugate variables z,(?) and a real variable r, respectively.Three examples are discussed in details,which can be regarded as the analogues of the Chebyshev polynomials of the first and the second kinds,and Legendre polynomials.

  6. Performance comparison of polynomial representations for optimizing optical freeform systems

    Science.gov (United States)

    Brömel, A.; Gross, H.; Ochse, D.; Lippmann, U.; Ma, C.; Zhong, Y.; Oleszko, M.

    2015-09-01

    Optical systems can benefit strongly from freeform surfaces, however the choice of the right representation isn`t an easy one. Classical representations like X-Y-polynomials, as well as Zernike-polynomials are often used for such systems, but should have some disadvantage regarding their orthogonality, resulting in worse convergence and reduced quality in final results compared to newer representations like the Q-polynomials by Forbes. Additionally the supported aperture is a circle, which can be a huge drawback in case of optical systems with rectangular aperture. In this case other representations like Chebyshev-or Legendre-polynomials come into focus. There are a larger number of possibilities; however the experience with these newer representations is rather limited. Therefore in this work the focus is on investigating the performance of four widely used representations in optimizing two ambitious systems with very different properties: Three-Mirror-Anastigmat and an anamorphic System. The chosen surface descriptions offer support for circular or rectangular aperture, as well as different grades of departure from rotational symmetry. The basic shapes are for example a conic or best-fit-sphere and the polynomial set is non-, spatial or slope-orthogonal. These surface representations were chosen to evaluate the impact of these aspects on the performance optimization of the two example systems. Freeform descriptions investigated here were XY-polynomials, Zernike in Fringe representation, Q-polynomials by Forbes, as well as 2-dimensional Chebyshev-polynomials. As a result recommendations for the right choice of freeform surface representations for practical issues in the optimization of optical systems can be given.

  7. Complexity of Ising Polynomials

    CERN Document Server

    Kotek, Tomer

    2011-01-01

    This paper deals with the partition function of the Ising model from statistical mechanics, which is used to study phase transitions in physical systems. A special case of interest is that of the Ising model with constant energies and external field. One may consider such an Ising system as a simple graph together with vertex and edge weight values. When these weights are considered indeterminates, the partition function for the constant case is a trivariate polynomial Z(G;x,y,z). This polynomial was studied with respect to its approximability by L. A. Goldberg, M. Jerrum and M. Patersonin 2003. Z(G;x,y,z) generalizes a bivariate polynomial Z(G;t,y), which was studied in by D. Andr\\'{e}n and K. Markstr\\"{o}m in 2009. We consider the complexity of Z(G;t,y) and Z(G;x,y,z) in comparison to that of the Tutte polynomial, which is well-known to be closely related to the Potts model in the absence of an external field. We show that Z(G;\\x,\\y,\\z) is #P-hard to evaluate at all points in $mathbb{Q}^3$, except those in ...

  8. On peculiar properties of generating functions of some orthogonal polynomials

    International Nuclear Information System (INIS)

    We prove that for |x| ⩽ |t| ≥(ti)/(q)ihn+i( x|q) =hn(x|t,q) Σi≥0(ti)/(q)ihi(x|q), where hn(x|q) and hn(x|t, q) are respectively the so-called q-Hermite and the big q-Hermite polynomials, and (q)n denotes the so-called q-Pochhammer symbol. We prove similar equalities involving big q-Hermite and Al-Salam–Chihara polynomials, and Al-Salam–Chihara and the so-called continuous dual q-Hahn polynomials. Moreover, we are able to relate in this way some other ‘ordinary’ orthogonal polynomials such as, e.g., Hermite, Chebyshev or Laguerre. These equalities give a new interpretation of the polynomials involved and moreover can give rise to a simple method of generating more and more general (i.e. involving more and more parameters) families of orthogonal polynomials. We pose some conjectures concerning Askey–Wilson polynomials and their possible generalizations. We prove that these conjectures are true for the cases q = 1 (classical case) and q = 0 (free case), thus paving the way to generalization of Askey–Wilson polynomials at least in these two cases. (paper)

  9. Nonlinear dynamic system identification using Chebyshev functional link artificial neural networks.

    Science.gov (United States)

    Patra, J C; Kot, A C

    2002-01-01

    A computationally efficient artificial neural network (ANN) for the purpose of dynamic nonlinear system identification is proposed. The major drawback of feedforward neural networks, such as multilayer perceptrons (MLPs) trained with the backpropagation (BP) algorithm, is that they require a large amount of computation for learning. We propose a single-layer functional-link ANN (FLANN) in which the need for a hidden layer is eliminated by expanding the input pattern by Chebyshev polynomials. The novelty of this network is that it requires much less computation than that of a MLP. We have shown its effectiveness in the problem of nonlinear dynamic system identification. In the presence of additive Gaussian noise, the performance of the proposed network is found to be similar or superior to that of a MLP. A performance comparison in terms of computational complexity has also been carried out. PMID:18238146

  10. Criterion for polynomial solutions to a class of linear differential equations of second order

    International Nuclear Information System (INIS)

    We consider the differential equations y-prime = λ0(x)y' + s0(x)y, where λ0(x), s0(x) are C∞-functions. We prove (i) if the differential equation has a polynomial solution of degree n > 0, then δn = λnsn-1 - λn-1sn = 0, where λn λ'n-1 + sn-1 + λ0λn-1andsn = s'n-1 + s0λk-1, n = 1, 2, .... Conversely (ii) if λnλn-1 ≠ 0 and δn = 0, then the differential equation has a polynomial solution of degree at most n. We show that the classical differential equations of Laguerre, Hermite, Legendre, Jacobi, Chebyshev (first and second kinds), Gegenbauer and the Hypergeometric type, etc obey this criterion. Further, we find the polynomial solutions for the generalized Hermite, Laguerre, Legendre and Chebyshev differential equations

  11. Polynomial chaotic inflation in supergravity revisited

    Directory of Open Access Journals (Sweden)

    Kazunori Nakayama

    2014-10-01

    Full Text Available We revisit a polynomial chaotic inflation model in supergravity which we proposed soon after the Planck first data release. Recently some issues have been raised in Ref. [12], concerning the validity of our polynomial chaotic inflation model. We study the inflaton dynamics in detail, and confirm that the inflaton potential is very well approximated by a polynomial potential for the parameters of our interest in any practical sense, and in particular, the spectral index and the tensor-to-scalar ratio can be estimated by single-field approximation. This justifies our analysis of the polynomial chaotic inflation in supergravity.

  12. On the norms and roots of orthogonal polynomials in the plane and $L^p$-optimal polynomials with respect to varying weights

    CERN Document Server

    Balogh, F

    2009-01-01

    For a measure on a subset of the complex plane we consider $L^p$-optimal weighted polynomials, namely, monic polynomials of degree $n$ with a varying weight of the form $w^n = {\\rm e}^{-n V}$ which minimize the $L^p$-norms, $1 \\leq p \\leq \\infty$. It is shown that eventually all but a uniformly bounded number of the roots of the $L^p$-optimal polynomials lie within a small neighborhood of the support of a certain equilibrium measure; asymptotics for the $n$th roots of the $L^p$ norms are also provided. The case $p=\\infty$ is well known and corresponds to weighted Chebyshev polynomials; the case $p=2$ corresponding to orthogonal polynomials as well as any other $1\\leq p <\\infty$ is our contribution.

  13. ON COPOSITIVE APPROXIMATION IN SOME CLASSICAL SPACES OF SEQUENCES

    Institute of Scientific and Technical Information of China (English)

    Aref Kamal

    2003-01-01

    In this paper the author writes a simple characterization for the best copositive approximation in c; the space of convergent sequences, by elements of finite dimensional Chebyshev subspaces, and shows that it is unique.

  14. Factoring multivariate integral polynomials.

    OpenAIRE

    Lenstra, A.K.

    1983-01-01

    An algorithm is presented to factorize polynomials in several variables with integral coefficients that is polynomial-time in the degrees of the polynomial to be factored, for any fixed number of variables. The algorithm generalizes the algorithm presented by A. K. Lenstra et al. to factorize integral polynomials in one variable.

  15. Piecewise Extended Chebyshev Spaces: a numerical test for design

    OpenAIRE

    Beccari, Carolina Vittoria; Casciola, Giulio; Mazure, Marie-Laurence

    2016-01-01

    Given a number of Extended Chebyshev (EC) spaces on adjacent intervals, all of the same dimension, we join them via convenient connection matrices without increasing the dimension. The global space is called a Piecewise Extended Chebyshev (PEC) Space. In such a space one can count the total number of zeroes of any non-zero element, exactly as in each EC-section-space. When this number is bounded above in the global space the same way as in its section-spaces, we say that it is an Extended Che...

  16. New classes of test polynomials of polynomial algebras

    Institute of Scientific and Technical Information of China (English)

    冯克勤; 余解台

    1999-01-01

    A polynomial p in a polynomial algebra over a field is called a test polynomial if any endomorphism of the polynomial algebra that fixes p is an automorphism. some classes of new test polynomials recognizing nonlinear automorphisms of polynomial algebras are given. In the odd prime characteristic case, test polynomials recognizing non-semisimple automorphisms are also constructed.

  17. Orthogonal Polynomials and their Applications

    CERN Document Server

    Dehesa, Jesús; Marcellan, Francisco; Francia, José; Vinuesa, Jaime

    1988-01-01

    The Segovia meeting set out to stimulate an intensive exchange of ideas between experts in the area of orthogonal polynomials and its applications, to present recent research results and to reinforce the scientific and human relations among the increasingly international community working in orthogonal polynomials. This volume contains original research papers as well as survey papers about fundamental questions in the field (Nevai, Rakhmanov & López) and its relationship with other fields such as group theory (Koornwinder), Padé approximation (Brezinski), differential equations (Krall, Littlejohn) and numerical methods (Rivlin).

  18. Polynomial Approximations of Electronic Wave Functions

    OpenAIRE

    Panin, Andrej I.

    2010-01-01

    This work completes the construction of purely algebraic version of the theory of non-linear quantum chemistry methods. It is shown that at the heart of these methods there lie certain algebras close in their definition to the well-known Clifford algebra but quite different in their properties. The most important for quantum chemistry property of these algebras is the following : for a fixed number of electrons the corresponding sector of the Fock space becomes a commutative algebra and its i...

  19. BEST APPROXIMATION BY DOWNWARD SETS WITH APPLICATIONS

    Institute of Scientific and Technical Information of China (English)

    H.Mohebi; A. M. Rubinov

    2006-01-01

    We develop a theory of downward sets for a class of normed ordered spaces. We study best approximation in a normed ordered space X by elements of downward sets, and give necessary and sufficient conditions for any element of best approximation by a closed downward subset of X. We also characterize strictly downward subsets of X, and prove that a downward subset of X is strictly downward if and only if each its boundary point is Chebyshev. The results obtained are used for examination of some Chebyshev pairs (W,x), where x ∈ X and W is a closed downward subset of X.

  20. Generalized bivariate Fibonacci polynomials

    OpenAIRE

    Catalani, Mario

    2002-01-01

    We define generalized bivariate polynomials, from which upon specification of initial conditions the bivariate Fibonacci and Lucas polynomials are obtained. Using essentially a matrix approach we derive identities and inequalities that in most cases generalize known results.

  1. Factoring Polynomials and Fibonacci.

    Science.gov (United States)

    Schwartzman, Steven

    1986-01-01

    Discusses the factoring of polynomials and Fibonacci numbers, offering several challenges teachers can give students. For example, they can give students a polynomial containing large numbers and challenge them to factor it. (JN)

  2. Abelian integrals and limit cycles for a class of cubic polynomial vector fields of Lotka-Volterra type with a rational first integral of degree 2

    OpenAIRE

    Cen, Xiuli; Zhao, Yulin; Liang, Haihua

    2014-01-01

    In this paper, we study the number of limit cycles which bifurcate from the periodic orbits of cubic polynomial vector fields of Lotka-Volterra type having a rational first integral of degree 2, under polynomial perturbations of degree $n$. The analysis is carried out by estimating the number of zeros of the corresponding Abelian integrals. Moreover, using \\emph{Chebyshev criterion}, we show that the sharp upper bound for the number of zeros of the Abelian integrals defined on each period ann...

  3. Branched polynomial covering maps

    DEFF Research Database (Denmark)

    Hansen, Vagn Lundsgaard

    1999-01-01

    A Weierstrass polynomial with multiple roots in certain points leads to a branched covering map. With this as the guiding example, we formally define and study the notion of a branched polynomial covering map. We shall prove that many finite covering maps are polynomial outside a discrete branch...... set. Particular studies are made of branched polynomial covering maps arising from Riemann surfaces and from knots in the 3-sphere....

  4. Branched polynomial covering maps

    DEFF Research Database (Denmark)

    Hansen, Vagn Lundsgaard

    2002-01-01

    A Weierstrass polynomial with multiple roots in certain points leads to a branched covering map. With this as the guiding example, we formally define and study the notion of a branched polynomial covering map. We shall prove that many finite covering maps are polynomial outside a discrete branch...... set. Particular studies are made of branched polynomial covering maps arising from Riemann surfaces and from knots in the 3-sphere. (C) 2001 Elsevier Science B.V. All rights reserved....

  5. Coherent orthogonal polynomials

    International Nuclear Information System (INIS)

    We discuss a fundamental characteristic of orthogonal polynomials, like the existence of a Lie algebra behind them, which can be added to their other relevant aspects. At the basis of the complete framework for orthogonal polynomials we include thus–in addition to differential equations, recurrence relations, Hilbert spaces and square integrable functions–Lie algebra theory. We start here from the square integrable functions on the open connected subset of the real line whose bases are related to orthogonal polynomials. All these one-dimensional continuous spaces allow, besides the standard uncountable basis (|x〉), for an alternative countable basis (|n〉). The matrix elements that relate these two bases are essentially the orthogonal polynomials: Hermite polynomials for the line and Laguerre and Legendre polynomials for the half-line and the line interval, respectively. Differential recurrence relations of orthogonal polynomials allow us to realize that they determine an infinite-dimensional irreducible representation of a non-compact Lie algebra, whose second order Casimir C gives rise to the second order differential equation that defines the corresponding family of orthogonal polynomials. Thus, the Weyl–Heisenberg algebra h(1) with C=0 for Hermite polynomials and su(1,1) with C=−1/4 for Laguerre and Legendre polynomials are obtained. Starting from the orthogonal polynomials the Lie algebra is extended both to the whole space of the L2 functions and to the corresponding Universal Enveloping Algebra and transformation group. Generalized coherent states from each vector in the space L2 and, in particular, generalized coherent polynomials are thus obtained. -- Highlights: •Fundamental characteristic of orthogonal polynomials (OP): existence of a Lie algebra. •Differential recurrence relations of OP determine a unitary representation of a non-compact Lie group. •2nd order Casimir originates a 2nd order differential equation that defines the

  6. Chebyshev's bias for composite numbers with restricted prime divisors

    NARCIS (Netherlands)

    Pieter Moree

    2001-01-01

    Let P(x,d,a) denote the number of primes p<=x with p=a(mod d). Chebyshev's bias is the phenomenon that `more often' P(x;d,n)>P(x;d,r), than the other way around, where n is a quadratic non-residue mod d and r is a quadratic residue mod d. If P(x;d,n)>=P(x;d,r) for every x up to some large number, th

  7. $BKW$-Operators for Chebyshev Systems

    OpenAIRE

    Ishii, Takashi; Izuchi, Keiji

    1999-01-01

    This paper is concerned with Korovkin type approximation theorems. We characterize $BKW$-operators on the Banach space of real valued continuous functions on the unit interval for the test functions $\\{1,t,t^2,t^3\\}$. It is also investigated when subtraction of composition operators are $BKW$-operators for $\\{1,t,t^2,t^3,t^4\\}$.

  8. Application of Chebyshev Formalism to Identify Nonlinear Magnetic Field Components in Beam Transport Systems

    Energy Technology Data Exchange (ETDEWEB)

    Spata, Michael [Old Dominion Univ., Norfolk, VA (United States)

    2012-08-01

    An experiment was conducted at Jefferson Lab's Continuous Electron Beam Accelerator Facility to develop a beam-based technique for characterizing the extent of the nonlinearity of the magnetic fields of a beam transport system. Horizontally and vertically oriented pairs of air-core kicker magnets were simultaneously driven at two different frequencies to provide a time-dependent transverse modulation of the beam orbit relative to the unperturbed reference orbit. Fourier decomposition of the position data at eight different points along the beamline was then used to measure the amplitude of these frequencies. For a purely linear transport system one expects to find solely the frequencies that were applied to the kickers with amplitudes that depend on the phase advance of the lattice. In the presence of nonlinear fields one expects to also find harmonics of the driving frequencies that depend on the order of the nonlinearity. Chebyshev polynomials and their unique properties allow one to directly quantify the magnitude of the nonlinearity with the minimum error. A calibration standard was developed using one of the sextupole magnets in a CEBAF beamline. The technique was then applied to a pair of Arc 1 dipoles and then to the magnets in the Transport Recombiner beamline to measure their multipole content as a function of transverse position within the magnets.

  9. Generalized Fibonacci-Lucas Polynomials

    Directory of Open Access Journals (Sweden)

    Mamta Singh

    2013-12-01

    Full Text Available Various sequences of polynomials by the names of Fibonacci and Lucas polynomials occur in the literature over a century. The Fibonacci polynomials and Lucas polynomials are famous for possessing wonderful and amazing properties and identities. In this paper, Generalized Fibonacci-Lucas Polynomials are introduced and defined by the recurrence relation with and . Some basic identities of Generalized Fibonacci-Lucas Polynomials are obtained by method of generating function.   Keywords: Fibonacci polynomials, Lucas polynomials, Generalized Fibonacci polynomials, Generalized Fibonacci-Lucas polynomials

  10. Thermodynamic characterization of networks using graph polynomials

    CERN Document Server

    Ye, Cheng; Peron, Thomas K DM; Silva, Filipi N; Rodrigues, Francisco A; Costa, Luciano da F; Torsello, Andrea; Hancock, Edwin R

    2015-01-01

    In this paper, we present a method for characterizing the evolution of time-varying complex networks by adopting a thermodynamic representation of network structure computed from a polynomial (or algebraic) characterization of graph structure. Commencing from a representation of graph structure based on a characteristic polynomial computed from the normalized Laplacian matrix, we show how the polynomial is linked to the Boltzmann partition function of a network. This allows us to compute a number of thermodynamic quantities for the network, including the average energy and entropy. Assuming that the system does not change volume, we can also compute the temperature, defined as the rate of change of entropy with energy. All three thermodynamic variables can be approximated using low-order Taylor series that can be computed using the traces of powers of the Laplacian matrix, avoiding explicit computation of the normalized Laplacian spectrum. These polynomial approximations allow a smoothed representation of the...

  11. Weierstrass polynomials for links

    DEFF Research Database (Denmark)

    Hansen, Vagn Lundsgaard

    1997-01-01

    There is a natural way of identifying links in3-space with polynomial covering spaces over thecircle. Thereby any link in 3-space can be definedby a Weierstrass polynomial over the circle. Theequivalence relation for covering spaces over thecircle is, however, completely different from that for...... links in 3-space. This paper initiates a study of the connections between polynomial covering spaces over the circle and links in 3-space....

  12. Polynomial Subtraction Method for Disconnected Quark Loops

    CERN Document Server

    Liu, Quan; Morgan, Ron

    2014-01-01

    The polynomial subtraction method, a new numerical approach for reducing the noise variance of Lattice QCD disconnected matrix elements calculation, is introduced in this paper. We use the MinRes polynomial expansion of the QCD matrix as the approximation to the matrix inverse and get a significant reduction in the variance calculation. We compare our results with that of the perturbative subtraction and find that the new strategy yields a faster decrease in variance which increases with quark mass.

  13. Quantum Grothendieck polynomials

    OpenAIRE

    Kirillov, Anatol N.

    1996-01-01

    We study the algebraic aspects of (small) quantum equivariant $K$-theory of flag manifold. Lascoux-Sch\\"utzenberger's type formula for quantum double and quantum double dual Grothendieck polynomials and the quantum Cauchy identity for quantum Grothendieck polynomials are obtained.

  14. Weighted lattice polynomials

    OpenAIRE

    Marichal, Jean-Luc

    2007-01-01

    We define the concept of weighted lattice polynomial functions as lattice polynomial functions constructed from both variables and parameters. We provide equivalent forms of these functions in an arbitrary bounded distributive lattice. We also show that these functions include the class of discrete Sugeno integrals and that they are characterized by a median based decomposition formula.

  15. Feynman Graph Polynomials

    Science.gov (United States)

    Bogner, Christian; Weinzierl, Stefan

    The integrand of any multiloop integral is characterized after Feynman parametrization by two polynomials. In this review we summarize the properties of these polynomials. Topics covered in this paper include among others: spanning trees and spanning forests, the all-minors matrix-tree theorem, recursion relations due to contraction and deletion of edges, Dodgson's identity and matroids.

  16. Nonnegativity of uncertain polynomials

    Directory of Open Access Journals (Sweden)

    Šiljak Dragoslav D.

    1998-01-01

    Full Text Available The purpose of this paper is to derive tests for robust nonnegativity of scalar and matrix polynomials, which are algebraic, recursive, and can be completed in finite number of steps. Polytopic families of polynomials are considered with various characterizations of parameter uncertainty including affine, multilinear, and polynomic structures. The zero exclusion condition for polynomial positivity is also proposed for general parameter dependencies. By reformulating the robust stability problem of complex polynomials as positivity of real polynomials, we obtain new sufficient conditions for robust stability involving multilinear structures, which can be tested using only real arithmetic. The obtained results are applied to robust matrix factorization, strict positive realness, and absolute stability of multivariable systems involving parameter dependent transfer function matrices.

  17. Jack polynomials in superspace

    CERN Document Server

    Desrosiers, P; Mathieu, P

    2003-01-01

    This work initiates the study of {\\it orthogonal} symmetric polynomials in superspace. Here we present two approaches leading to a family of orthogonal polynomials in superspace that generalize the Jack polynomials. The first approach relies on previous work by the authors in which eigenfunctions of the supersymmetric extension of the trigonometric Calogero-Moser-Sutherland Hamiltonian were constructed. Orthogonal eigenfunctions are now obtained by diagonalizing the first nontrivial element of a bosonic tower of commuting conserved charges not containing this Hamiltonian. Quite remarkably, the expansion coefficients of these orthogonal eigenfunctions in the supermonomial basis are stable with respect to the number of variables. The second and more direct approach amounts to symmetrize products of non-symmetric Jack polynomials with monomials in the fermionic variables. This time, the orthogonality is inherited from the orthogonality of the non-symmetric Jack polynomials, and the value of the norm is given exp...

  18. TN approximation on the critical size of time-dependent, one-speed and one-dimensional neutron transport problem with anisotropic scattering

    International Nuclear Information System (INIS)

    The criticality problem is studied based on one-speed time-dependent neutron transport theory, for a uniform and finite slab, using the Marshak boundary condition. The time-dependent neutron transport equation is reduced to a stationary equation. The variation of the critical thickness of the time-dependent system is investigated by using the linear anisotropic scattering kernel together with the combination of forward and backward scattering. Numerical calculations for various combinations of the scattering parameters and selected values of the time decay constant and the reflection coefficient are performed by using the Chebyshev polynomials approximation method. The results are compared with those previously obtained by other methods which are available in the literature.

  19. The parabolic trigonometric functions and the Chebyshev radicals

    CERN Document Server

    Dattoli, G; Ricci, P E

    2011-01-01

    The parabolic trigonometric functions have recently been introduced as an intermediate step between circular and hyperbolic functions. They have been shown to be expressible in terms of irrational functions, linked to the solution of third degree algebraic equations. We show the link of the parabolic trigonometric functions with the Chebyshev radicals and also prove that further generalized forms of trigonometric functions, providing the natural solutions of the quintic algebraic equation, can be defined. We also discuss the link of this family of functions with the modular elliptic functions. 1

  20. Simulation of electrically driven jet using Chebyshev collocation method

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The model of electrically driven jet is governed by a series of quasi 1D dimensionless partial differential equations(PDEs).Following the method of lines,the Chebyshev collocation method is employed to discretize the PDEs and obtain a system of differential-algebraic equations(DAEs).By differentiating constrains in DAEs twice,the system is transformed into a set of ordinary differential equations(ODEs) with invariants.Then the implicit differential equations solver "ddaskr" is used to solve the ODEs and ...

  1. Some Undecidable Problems on Approximability of NP Optimization Problems

    Institute of Scientific and Technical Information of China (English)

    黄雄

    1996-01-01

    In this paper some undecidable problems on approximability of NP optimization problems are investigated.In particular,the following problems are all undecidable:(1) Given an NP optimization problem,is it approximable in polynomial time?(2)For any polynomial-time computable function r(n),given a polynomial time approximable NP optimization problem,has it a polynomial-time approximation algorithm with approximation performance ratio r(n) (r(n)-approximable)?(3)For any polynomial-time computable functions r(n),r'(n),where r'(n)approximable NP optimization problem,is it r'(n)-approximable?

  2. On universal knot polynomials

    CERN Document Server

    Mironov, A; Morozov, A

    2015-01-01

    We present a universal knot polynomials for 2- and 3-strand torus knots in adjoint representation, by universalization of appropriate Rosso-Jones formula. According to universality, these polynomials coincide with adjoined colored HOMFLY and Kauffman polynomials at SL and SO/Sp lines on Vogel's plane, and give their exceptional group's counterparts on exceptional line. We demonstrate that [m,n]=[n,m] topological invariance, when applicable, take place on the entire Vogel's plane. We also suggest the universal form of invariant of figure eight knot in adjoint representation, and suggest existence of such universalization for any knot in adjoint and its descendant representation. Properties of universal polynomials and applications of these results are discussed.

  3. An explicit approximate solution to the Duffing-harmonic oscillator by a cubication method

    Energy Technology Data Exchange (ETDEWEB)

    Belendez, A., E-mail: a.belendez@ua.e [Departamento de Fisica, Ingenieria de Sistemas y Teoria de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Mendez, D.I. [Departamento de Fisica, Ingenieria de Sistemas y Teoria de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Fernandez, E. [Departamento de Optica, Farmacologia y Anatomia, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Marini, S. [Departamento de Fisica, Ingenieria de Sistemas y Teoria de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Pascual, I. [Departamento de Optica, Farmacologia y Anatomia, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)

    2009-08-03

    The nonlinear oscillations of a Duffing-harmonic oscillator are investigated by an approximated method based on the 'cubication' of the initial nonlinear differential equation. In this cubication method the restoring force is expanded in Chebyshev polynomials and the original nonlinear differential equation is approximated by a Duffing equation in which the coefficients for the linear and cubic terms depend on the initial amplitude, A. The replacement of the original nonlinear equation by an approximate Duffing equation allows us to obtain explicit approximate formulas for the frequency and the solution as a function of the complete elliptic integral of the first kind and the Jacobi elliptic function, respectively. These explicit formulas are valid for all values of the initial amplitude and we conclude this cubication method works very well for the whole range of initial amplitudes. Excellent agreement of the approximate frequencies and periodic solutions with the exact ones is demonstrated and discussed and the relative error for the approximate frequency is as low as 0.071%. Unlike other approximate methods applied to this oscillator, which are not capable to reproduce exactly the behaviour of the approximate frequency when A tends to zero, the cubication method used in this Letter predicts exactly the behaviour of the approximate frequency not only when A tends to infinity, but also when A tends to zero. Finally, a closed-form expression for the approximate frequency is obtained in terms of elementary functions. To do this, the relationship between the complete elliptic integral of the first kind and the arithmetic-geometric mean as well as Legendre's formula to approximately obtain this mean are used.

  4. An explicit approximate solution to the Duffing-harmonic oscillator by a cubication method

    International Nuclear Information System (INIS)

    The nonlinear oscillations of a Duffing-harmonic oscillator are investigated by an approximated method based on the 'cubication' of the initial nonlinear differential equation. In this cubication method the restoring force is expanded in Chebyshev polynomials and the original nonlinear differential equation is approximated by a Duffing equation in which the coefficients for the linear and cubic terms depend on the initial amplitude, A. The replacement of the original nonlinear equation by an approximate Duffing equation allows us to obtain explicit approximate formulas for the frequency and the solution as a function of the complete elliptic integral of the first kind and the Jacobi elliptic function, respectively. These explicit formulas are valid for all values of the initial amplitude and we conclude this cubication method works very well for the whole range of initial amplitudes. Excellent agreement of the approximate frequencies and periodic solutions with the exact ones is demonstrated and discussed and the relative error for the approximate frequency is as low as 0.071%. Unlike other approximate methods applied to this oscillator, which are not capable to reproduce exactly the behaviour of the approximate frequency when A tends to zero, the cubication method used in this Letter predicts exactly the behaviour of the approximate frequency not only when A tends to infinity, but also when A tends to zero. Finally, a closed-form expression for the approximate frequency is obtained in terms of elementary functions. To do this, the relationship between the complete elliptic integral of the first kind and the arithmetic-geometric mean as well as Legendre's formula to approximately obtain this mean are used.

  5. Best polynomial degree reduction on q-lattices with applications to q-orthogonal polynomials

    KAUST Repository

    Ait-Haddou, Rachid

    2015-06-07

    We show that a weighted least squares approximation of q-Bézier coefficients provides the best polynomial degree reduction in the q-L2-norm. We also provide a finite analogue of this result with respect to finite q-lattices and we present applications of these results to q-orthogonal polynomials. © 2015 Elsevier Inc. All rights reserved.

  6. Computing Modular Polynomials

    OpenAIRE

    Charles, Denis; Lauter, Kristin

    2004-01-01

    We present a new probabilistic algorithm to compute modular polynomials modulo a prime. Modular polynomials parameterize pairs of isogenous elliptic curves and are useful in many aspects of computational number theory and cryptography. Our algorithm has the distinguishing feature that it does not involve the computation of Fourier coefficients of modular forms. We avoid computing the exponentially large integral coefficients by working directly modulo a prime and computing isogenies between e...

  7. NMR Quantum Calculations of the Jones Polynomial

    CERN Document Server

    Marx, Raimund; Kauffman, Louis; Lomonaco, Samuel; Spörl, Andreas; Pomplun, Nikolas; Myers, John; Glaser, Steffen J

    2009-01-01

    The repertoire of problems theoretically solvable by a quantum computer recently expanded to include the approximate evaluation of knot invariants, specifically the Jones polynomial. The experimental implementation of this evaluation, however, involves many known experimental challenges. Here we present experimental results for a small-scale approximate evaluation of the Jones Polynomial by nuclear-magnetic resonance (NMR), in addition we show how to escape from the limitations of NMR approaches that employ pseudo pure states. Specifically, we use two spin 1/2 nuclei of natural abundance chloroform and apply a sequence of unitary transforms representing the Trefoil Knot, the Figure Eight Knot and the Borromean Rings. After measuring the state of the molecule in each case, we are able to estimate the value of the Jones Polynomial for each of the knots.

  8. Polynomial chaos functions and stochastic differential equations

    International Nuclear Information System (INIS)

    The Karhunen-Loeve procedure and the associated polynomial chaos expansion have been employed to solve a simple first order stochastic differential equation which is typical of transport problems. Because the equation has an analytical solution, it provides a useful test of the efficacy of polynomial chaos. We find that the convergence is very rapid in some cases but that the increased complexity associated with many random variables can lead to very long computational times. The work is illustrated by exact and approximate solutions for the mean, variance and the probability distribution itself. The usefulness of a white noise approximation is also assessed. Extensive numerical results are given which highlight the weaknesses and strengths of polynomial chaos. The general conclusion is that the method is promising but requires further detailed study by application to a practical problem in transport theory

  9. Mapped Chebyshev pseudospectral method to study multiple scale phenomena

    CERN Document Server

    alexandrescu, Adrian; Salgueiro, Jose R; Perez-Garcia, Victor M

    2007-01-01

    In the framework of mapped pseudospectral methods, we introduce a new polynomial-type mapping function in order to describe accurately the dynamics of systems developing almost singular structures. Using error criteria related to the spectral interpolation error, the new polynomial-type mapping is compared against previously proposed mappings for the study of collapse and shock wave phenomena. As a physical application, we study the dynamics of two coupled beams, described by coupled nonlinear Schr\\"odinger equations and modeling beam propagation in an atomic coherent media, whose spatial sizes differs up to several orders of magnitude. It is demonstrated, also by numerical simulations, that the accuracy properties of the new polynomial-type mapping outperforms in orders of magnitude the ones of the other studied mapping functions.

  10. Additive and polynomial representations

    CERN Document Server

    Krantz, David H; Suppes, Patrick

    1971-01-01

    Additive and Polynomial Representations deals with major representation theorems in which the qualitative structure is reflected as some polynomial function of one or more numerical functions defined on the basic entities. Examples are additive expressions of a single measure (such as the probability of disjoint events being the sum of their probabilities), and additive expressions of two measures (such as the logarithm of momentum being the sum of log mass and log velocity terms). The book describes the three basic procedures of fundamental measurement as the mathematical pivot, as the utiliz

  11. Hubbell rectangular source integral calculation using a fast Chebyshev wavelets method.

    Science.gov (United States)

    Manai, K; Belkadhi, K

    2016-07-01

    An integration method based on Chebyshev wavelets is presented and used to calculate the Hubbell rectangular source integral. A study of the convergence and the accuracy of the method was carried out by comparing it to previous studies. PMID:27152913

  12. MHD Falkner-Skan flow of Maxwell fluid by rational Chebyshev collocation method

    Institute of Scientific and Technical Information of China (English)

    S. ABBASBANDY; T. HAYAT; H. R. GHEHSAREH; A. ALSAEDI

    2013-01-01

    The magnetohydrodynamics (MHD) Falkner-Skan flow of the Maxwell fluid is studied. Suitable transform reduces the partial differential equation into a nonlinear three order boundary value problem over a semi-infinite interval. An efficient approach based on the rational Chebyshev collocation method is performed to find the solution to the proposed boundary value problem. The rational Chebyshev collocation method is equipped with the orthogonal rational Chebyshev function which solves the problem on the semi-infinite domain without truncating it to a finite domain. The obtained results are presented through the illustrative graphs and tables which demonstrate the affectivity, stability, and convergence of the rational Chebyshev collocation method. To check the accuracy of the obtained results, a numerical method is applied for solving the problem. The variations of various embedded parameters into the problem are examined.

  13. Weighted approximation with varying weight

    CERN Document Server

    Totik, Vilmos

    1994-01-01

    A new construction is given for approximating a logarithmic potential by a discrete one. This yields a new approach to approximation with weighted polynomials of the form w"n"(" "= uppercase)P"n"(" "= uppercase). The new technique settles several open problems, and it leads to a simple proof for the strong asymptotics on some L p(uppercase) extremal problems on the real line with exponential weights, which, for the case p=2, are equivalent to power- type asymptotics for the leading coefficients of the corresponding orthogonal polynomials. The method is also modified toyield (in a sense) uniformly good approximation on the whole support. This allows one to deduce strong asymptotics in some L p(uppercase) extremal problems with varying weights. Applications are given, relating to fast decreasing polynomials, asymptotic behavior of orthogonal polynomials and multipoint Pade approximation. The approach is potential-theoretic, but the text is self-contained.

  14. STABILITY OF SWITCHED POLYNOMIAL SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    Zhiqiang LI; Yupeng QIAO; Hongsheng QI; Daizhan CHENG

    2008-01-01

    This paper investigates the stability of (switched) polynomial systems. Using semi-tensor product of matrices, the paper develops two tools for testing the stability of a (switched) polynomial system. One is to convert a product of multi-variable polynomials into a canonical form, and the other is an easily verifiable sufficient condition to justify whether a multi-variable polynomial is positive definite. Using these two tools, the authors construct a polynomial function as a candidate Lyapunov function and via testing its derivative the authors provide some sufficient conditions for the global stability of polynomial systems.

  15. Fast and High-Quality Bilateral Filtering Using Gauss-Chebyshev Approximation

    OpenAIRE

    Ghosh, Sanjay; Chaudhury, Kunal N.

    2016-01-01

    The bilateral filter is an edge-preserving smoother that has diverse applications in image processing, computer vision, computer graphics, and computational photography. The filter uses a spatial kernel along with a range kernel to perform edge-preserving smoothing. In this paper, we consider the Gaussian bilateral filter where both the kernels are Gaussian. A direct implementation of the Gaussian bilateral filter requires $O(\\sigma_s^2)$ operations per pixel, where $\\sigma_s$ is the standard...

  16. Time-dependent generalized polynomial chaos

    International Nuclear Information System (INIS)

    Generalized polynomial chaos (gPC) has non-uniform convergence and tends to break down for long-time integration. The reason is that the probability density distribution (PDF) of the solution evolves as a function of time. The set of orthogonal polynomials associated with the initial distribution will therefore not be optimal at later times, thus causing the reduced efficiency of the method for long-time integration. Adaptation of the set of orthogonal polynomials with respect to the changing PDF removes the error with respect to long-time integration. In this method new stochastic variables and orthogonal polynomials are constructed as time progresses. In the new stochastic variable the solution can be represented exactly by linear functions. This allows the method to use only low order polynomial approximations with high accuracy. The method is illustrated with a simple decay model for which an analytic solution is available and subsequently applied to the three mode Kraichnan-Orszag problem with favorable results.

  17. On the Relation between Composite Right-/Left-Handed Transmission Lines and Chebyshev Filters

    Directory of Open Access Journals (Sweden)

    Changjun Liu

    2009-01-01

    Full Text Available Composite right-/left-handed (CRLH transmission lines have gained great interest in the microwave community. In practical applications, such CRLH sections realized by series and shunt resonators have a finite length. Starting from the observation that a high-order Chebyshev filter also exhibits a periodic central section of very similar structure, the relations between finite length CRHL transmission lines and Chebyshev filters are discussed in this paper. It is shown that a finite length CRLH transmission line in the balanced case is equivalent to the central part of a low-ripple high-order Chebyshev band-pass filter, and a dual-CRLH transmission line in the balanced case is equivalent to a low-ripple high-order Chebyshev band-stop filter. The nonperiodic end sections of a Chebyshev filter can be regarded as matching sections, thus leading to an even better amplitude and phase response. It is also shown that, equally to a CRHL transmission line, a Chebyshev filter exhibits negative phase velocity in part of its passband. As a consequence, an improved behavior of finite length CRLH transmission lines may be achieved adding matching sections based on filter theory; this is demonstrated by a simulation example.

  18. Densification via polynomial extensions

    Czech Academy of Sciences Publication Activity Database

    Galatos, N.; Horčík, Rostislav

    Vienna: Vienna University of Technology, 2014 - (Baaz, M.; Ciabattoni, A.; Hetzl, S.). s. 179-182 [LATD 2014. Logic, Algebra and Truth Degrees. 16.07.2014-19.07.2014, Vienna] Institutional support: RVO:67985807 Keywords : densification * commutative ordered monoid * commutative residuated chain * idempotent semiring * polynomial extension Subject RIV: BA - General Mathematics

  19. Nonconventional Polynomial CLT

    OpenAIRE

    Hafouta, Y.; Kifer, Y.

    2015-01-01

    We obtain a functional central limit theorem (CLT) for sums of the form $\\xi_N(t)=\\frac1{\\sqrt N}\\sum_{n=1}^{[Nt]}\\big(F(X(q_1(n)),...,X(q_\\ell(n)))-\\bar F\\big)$ where $q_1,...,q_\\ell$ are polynomials.

  20. Design and Use of a Learning Object for Finding Complex Polynomial Roots

    Science.gov (United States)

    Benitez, Julio; Gimenez, Marcos H.; Hueso, Jose L.; Martinez, Eulalia; Riera, Jaime

    2013-01-01

    Complex numbers are essential in many fields of engineering, but students often fail to have a natural insight of them. We present a learning object for the study of complex polynomials that graphically shows that any complex polynomials has a root and, furthermore, is useful to find the approximate roots of a complex polynomial. Moreover, we…

  1. Functional composition of polynomials: indecomposability, Diophantine equations and lacunary polynomials

    OpenAIRE

    Kreso, Dijana; Tichy, Robert F.

    2015-01-01

    Starting from Ritt's classical theorems, we give a survey of results in functional decomposition of polynomials and of applications in Diophantine equations. This includes sufficient conditions for the indecomposability of polynomials, the study of decompositions of lacunary polynomials and the finiteness criterion for the equations of type f(x) = g(y).

  2. Improving the efficiency of the detection of gravitational wave signals from inspiraling compact binaries: Chebyshev interpolation

    International Nuclear Information System (INIS)

    Inspiraling compact-object binary systems are promising gravitational wave sources for ground and space-based detectors. The time-dependent signature of these sources is a well-characterized function of a relatively small number of parameters; thus, the favored analysis technique makes use of matched filtering and maximum likelihood methods. As the parameters that characterize the source model vary, so do the templates against which the detector data are compared in the matched filter. For small variations in the parameters, the filter responses are closely correlated. Current analysis methodology samples a bank of filters whose parameter values are chosen so that the correlation between successive samples from successive filters in the bank is 97%. Correspondingly, the additional information available with each successive template evaluation is, in a real sense, only 3% of that already provided by the nearby templates. The reason for such a dense coverage of parameter space is to minimize the chance that a real signal, near the detection threshold, will be missed by the parameter space sampling. Here we investigate the use of Chebyshev interpolation for reducing the number of templates that must be evaluated to obtain the same analysis sensitivity. Additionally, rather than focus on the 'loss' of signal-to-noise associated with the finite number of filters in the template bank, we evaluate the receiver operating characteristic (ROC) as a measure of the effectiveness of an analysis technique. The ROC relates the false alarm probability to the false dismissal probability of an analysis, which are the quantities that bear most directly on the effectiveness of an analysis scheme. As a demonstration, we compare the present 'dense sampling' analysis methodology with the 'interpolation' methodology using Chebyshev polynomials, restricted to one dimension of the multidimensional analysis problem by plotting the ROC curves. We find that the interpolated search can be

  3. Approximate calculation of the conditional Wiener integral in quantum mechanics problem

    International Nuclear Information System (INIS)

    Application of the functional integration method to obtain some characteristics of quantum mechanics system in the Euclidean formulation of theory is considered. The conditional Wiener integrals are calculated using our approximate formulas, which are exact for the functional polynomials of certain degree. The use of the method is demonstrated taking the anharmonic oscillator with Hsub(g)=1/2(psup(2)+xsup(2))+gxsup(4) and Hsup(f)=1/2(psup(2)+xsup(2))+1/2(xsup(2)-fsup(2))sup(2) as an example. The E0, E1 energies of the ground and first excited states of this system, propagator G(r)= and wave function squared of the ground state |phi0(x)|2 are calculated. The evaluation of the integrals is performed using the Gauss and Chebyshev quadrature formulas. The comparison of our numerical results with the values obtained by other authors using both Monte Carlo method on the lattice and approximation of paths in the Feynman integral is presented. This comparison demonstrates a higher efficiency of the method used

  4. Computing the Alexander Polynomial Numerically

    DEFF Research Database (Denmark)

    Hansen, Mikael Sonne

    2006-01-01

    Explains how to construct the Alexander Matrix and how this can be used to compute the Alexander polynomial numerically.......Explains how to construct the Alexander Matrix and how this can be used to compute the Alexander polynomial numerically....

  5. Chromatic polynomials for simplicial complexes

    DEFF Research Database (Denmark)

    Møller, Jesper Michael; Nord, Gesche

    2016-01-01

    In this note we consider s s -chromatic polynomials for finite simplicial complexes. When s=1 s=1 , the 1 1 -chromatic polynomial is just the usual graph chromatic polynomial of the 1 1 -skeleton. In general, the s s -chromatic polynomial depends on the s s -skeleton and its value at r r is the n...

  6. On Q-derived polynomials

    NARCIS (Netherlands)

    R.J. Stroeker (Roel)

    2002-01-01

    textabstractA Q-derived polynomial is a univariate polynomial, defined over the rationals, with the property that its zeros, and those of all its derivatives are rational numbers. There is a conjecture that says that Q-derived polynomials of degree 4 with distinct roots for themselves and all their

  7. Weighted Chebyshev distance classification method for hyperspectral imaging

    Science.gov (United States)

    Demirci, S.; Erer, I.; Ersoy, O.

    2015-06-01

    The main objective of classification is to partition the surface materials into non-overlapping regions by using some decision rules. For supervised classification, the hyperspectral imagery (HSI) is compared with the reflectance spectra of the material containing similar spectral characteristic. As being a spectral similarity based classification method, prediction of different level of upper and lower spectral boundaries of all classes spectral signatures across spectral bands constitutes the basic principles of the Multi-Scale Vector Tunnel Algorithm (MS-VTA) classification algorithm. The vector tunnel (VT) scaling parameters obtained from means and standard deviations of the class references are used. In this study, MS-VT method is improved and a spectral similarity based technique referred to as Weighted Chebyshev Distance (WCD) method for the supervised classification of HSI is introduced. This is also shown to be equivalent to the use of the WCD in which the weights are chosen as an inverse power of the standard deviation per spectral band. The use of WCD measures in terms of the inverse power of standard deviations and optimization of power parameter constitute the most important side of the study. The algorithms are trained with the same kinds of training sets, and their performances are calculated for the power of the standard deviation. During these studies, various levels of the power parameters are evaluated based on the efficiency of the algorithms for choosing the best values of the weights.

  8. Thermodynamic characterization of networks using graph polynomials

    Science.gov (United States)

    Ye, Cheng; Comin, César H.; Peron, Thomas K. DM.; Silva, Filipi N.; Rodrigues, Francisco A.; Costa, Luciano da F.; Torsello, Andrea; Hancock, Edwin R.

    2015-09-01

    In this paper, we present a method for characterizing the evolution of time-varying complex networks by adopting a thermodynamic representation of network structure computed from a polynomial (or algebraic) characterization of graph structure. Commencing from a representation of graph structure based on a characteristic polynomial computed from the normalized Laplacian matrix, we show how the polynomial is linked to the Boltzmann partition function of a network. This allows us to compute a number of thermodynamic quantities for the network, including the average energy and entropy. Assuming that the system does not change volume, we can also compute the temperature, defined as the rate of change of entropy with energy. All three thermodynamic variables can be approximated using low-order Taylor series that can be computed using the traces of powers of the Laplacian matrix, avoiding explicit computation of the normalized Laplacian spectrum. These polynomial approximations allow a smoothed representation of the evolution of networks to be constructed in the thermodynamic space spanned by entropy, energy, and temperature. We show how these thermodynamic variables can be computed in terms of simple network characteristics, e.g., the total number of nodes and node degree statistics for nodes connected by edges. We apply the resulting thermodynamic characterization to real-world time-varying networks representing complex systems in the financial and biological domains. The study demonstrates that the method provides an efficient tool for detecting abrupt changes and characterizing different stages in network evolution.

  9. Quaternion-based adaptive output feedback attitude control of spacecraft using Chebyshev neural networks.

    Science.gov (United States)

    Zou, An-Min; Dev Kumar, Krishna; Hou, Zeng-Guang

    2010-09-01

    This paper investigates the problem of output feedback attitude control of an uncertain spacecraft. Two robust adaptive output feedback controllers based on Chebyshev neural networks (CNN) termed adaptive neural networks (NN) controller-I and adaptive NN controller-II are proposed for the attitude tracking control of spacecraft. The four-parameter representations (quaternion) are employed to describe the spacecraft attitude for global representation without singularities. The nonlinear reduced-order observer is used to estimate the derivative of the spacecraft output, and the CNN is introduced to further improve the control performance through approximating the spacecraft attitude motion. The implementation of the basis functions of the CNN used in the proposed controllers depends only on the desired signals, and the smooth robust compensator using the hyperbolic tangent function is employed to counteract the CNN approximation errors and external disturbances. The adaptive NN controller-II can efficiently avoid the over-estimation problem (i.e., the bound of the CNNs output is much larger than that of the approximated unknown function, and hence, the control input may be very large) existing in the adaptive NN controller-I. Both adaptive output feedback controllers using CNN can guarantee that all signals in the resulting closed-loop system are uniformly ultimately bounded. For performance comparisons, the standard adaptive controller using the linear parameterization of spacecraft attitude motion is also developed. Simulation studies are presented to show the advantages of the proposed CNN-based output feedback approach over the standard adaptive output feedback approach. PMID:20729168

  10. Complex Polynomial Vector Fields

    DEFF Research Database (Denmark)

    Dias, Kealey

    The two branches of dynamical systems, continuous and discrete, correspond to the study of differential equations (vector fields) and iteration of mappings respectively. In holomorphic dynamics, the systems studied are restricted to those described by holomorphic (complex analytic) functions or...... vector fields. Since the class of complex polynomial vector fields in the plane is natural to consider, it is remarkable that its study has only begun very recently. There are numerous fundamental questions that are still open, both in the general classification of these vector fields, the decomposition...... of parameter spaces into structurally stable domains, and a description of the bifurcations. For this reason, the talk will focus on these questions for complex polynomial vector fields....

  11. Oblivious Polynomial Evaluation

    Institute of Scientific and Technical Information of China (English)

    Hong-Da Li; Dong-Yao Ji; Deng-Guo Feng; Bao Li

    2004-01-01

    The problem of two-party oblivious polynomial evaluation(OPE)is studied,where one party(Alice)has a polynomial P(x)and the other party(Bob)with an input x wants to learn P(x)in such an oblivious way that Bob obtains P(x)without learning any additional information about P except what is implied by P(x)and Alice does not know Bob's input x.The former OPE protocols are based on an intractability assumption except for OT protocols.In fact,evaluating P(x)is equivalent to computing the product of the coefficient vectors(a0,...,an)and(1,...,xn).Using this idea,an efficient scale product protocol of two vectors is proposed first and then two OPE protocols are presented which do not need any other cryptographic assumption except for OT protocol.Compared with the existing OPE protocol,another characteristic of the proposed protocols is the degree of the polynomial is private.Another OPE protocol works in case of existence of untrusted third party.

  12. Polynomial Learning of Distribution Families

    CERN Document Server

    Belkin, Mikhail

    2010-01-01

    The question of polynomial learnability of probability distributions, particularly Gaussian mixture distributions, has recently received significant attention in theoretical computer science and machine learning. However, despite major progress, the general question of polynomial learnability of Gaussian mixture distributions still remained open. The current work resolves the question of polynomial learnability for Gaussian mixtures in high dimension with an arbitrary fixed number of components. The result on learning Gaussian mixtures relies on an analysis of distributions belonging to what we call "polynomial families" in low dimension. These families are characterized by their moments being polynomial in parameters and include almost all common probability distributions as well as their mixtures and products. Using tools from real algebraic geometry, we show that parameters of any distribution belonging to such a family can be learned in polynomial time and using a polynomial number of sample points. The r...

  13. A Deterministic and Polynomial Modified Perceptron Algorithm

    Directory of Open Access Journals (Sweden)

    Olof Barr

    2006-01-01

    Full Text Available We construct a modified perceptron algorithm that is deterministic, polynomial and also as fast as previous known algorithms. The algorithm runs in time O(mn3lognlog(1/ρ, where m is the number of examples, n the number of dimensions and ρ is approximately the size of the margin. We also construct a non-deterministic modified perceptron algorithm running in timeO(mn2lognlog(1/ρ.

  14. Transfer matrix computation of generalised critical polynomials in percolation

    OpenAIRE

    Scullard, Christian R.; Jacobsen, Jesper Lykke

    2012-01-01

    Percolation thresholds have recently been studied by means of a graph polynomial $P_B(p)$, henceforth referred to as the critical polynomial, that may be defined on any periodic lattice. The polynomial depends on a finite subgraph $B$, called the basis, and the way in which the basis is tiled to form the lattice. The unique root of $P_B(p)$ in $[0,1]$ either gives the exact percolation threshold for the lattice, or provides an approximation that becomes more accurate with appropriately increa...

  15. Chebyshev blossoming in Müntz spaces: Toward shaping with Young diagrams

    KAUST Repository

    Ait-Haddou, Rachid

    2013-08-01

    The notion of a blossom in extended Chebyshev spaces offers adequate generalizations and extra-utilities to the tools for free-form design schemes. Unfortunately, such advantages are often overshadowed by the complexity of the resulting algorithms. In this work, we show that for the case of Müntz spaces with integer exponents, the notion of a Chebyshev blossom leads to elegant algorithms whose complexities are embedded in the combinatorics of Schur functions. We express the blossom and the pseudo-affinity property in Müntz spaces in terms of Schur functions. We derive an explicit expression for the Chebyshev-Bernstein basis via an inductive argument on nested Müntz spaces. We also reveal a simple algorithm for dimension elevation. Free-form design schemes in Müntz spaces with Young diagrams as shape parameters are discussed. © 2013 Elsevier Ltd. All rights reserved.

  16. Symmetric functions and Hall polynomials

    CERN Document Server

    MacDonald, Ian Grant

    1998-01-01

    This reissued classic text is the acclaimed second edition of Professor Ian Macdonald's groundbreaking monograph on symmetric functions and Hall polynomials. The first edition was published in 1979, before being significantly expanded into the present edition in 1995. This text is widely regarded as the best source of information on Hall polynomials and what have come to be known as Macdonald polynomials, central to a number of key developments in mathematics and mathematical physics in the 21st century Macdonald polynomials gave rise to the subject of double affine Hecke algebras (or Cherednik algebras) important in representation theory. String theorists use Macdonald polynomials to attack the so-called AGT conjectures. Macdonald polynomials have been recently used to construct knot invariants. They are also a central tool for a theory of integrable stochastic models that have found a number of applications in probability, such as random matrices, directed polymers in random media, driven lattice gases, and...

  17. Polynomial Regression on Riemannian Manifolds

    CERN Document Server

    Hinkle, Jacob; Fletcher, P Thomas; Joshi, Sarang

    2012-01-01

    In this paper we develop the theory of parametric polynomial regression in Riemannian manifolds and Lie groups. We show application of Riemannian polynomial regression to shape analysis in Kendall shape space. Results are presented, showing the power of polynomial regression on the classic rat skull growth data of Bookstein as well as the analysis of the shape changes associated with aging of the corpus callosum from the OASIS Alzheimer's study.

  18. Deformed Mittag-Leffler Polynomials

    OpenAIRE

    Miomir S. Stankovic; Marinkovic, Sladjana D.; Rajkovic, Predrag M.

    2010-01-01

    The starting point of this paper are the Mittag-Leffler polynomials introduced by H. Bateman [1]. Based on generalized integer powers of real numbers and deformed exponential function, we introduce deformed Mittag-Leffler polynomials defined by appropriate generating function. We investigate their recurrence relations, differential properties and orthogonality. Since they have all zeros on imaginary axes, we also consider real polynomials with real zeros associated to them.

  19. Witt Rings and Permutation Polynomials

    Institute of Scientific and Technical Information of China (English)

    Qifan Zhang

    2005-01-01

    Let p be a prime number. In this paper, the author sets up a canonical correspondence between polynomial functions over Z/p2Z and 3-tuples of polynomial functions over Z/pZ. Based on this correspondence, he proves and reproves some fundamental results on permutation polynomials mod pl. The main new result is the characterization of strong orthogonal systems over Z/p1Z.

  20. Modeling Microwave Structures in Time Domain Using Laguerre Polynomials

    OpenAIRE

    Z. Raida; Lacik, J.

    2006-01-01

    The paper is focused on time domain modeling of microwave structures by the method of moments. Two alternative schemes with weighted Laguerre polynomials are presented. Thanks to their properties, these schemes are free of late time oscillations. Further, the paper is aimed to effective and accurate evaluation of Green's functions integrals within these schemes. For this evaluation, a first- and second-order polynomial approximation is developed. The last part of the paper deals with mode...

  1. Polynomial Bell Inequalities

    Science.gov (United States)

    Chaves, Rafael

    2016-01-01

    It is a recent realization that many of the concepts and tools of causal discovery in machine learning are highly relevant to problems in quantum information, in particular quantum nonlocality. The crucial ingredient in the connection between both fields is the mathematical theory of causality, allowing for the representation of arbitrary causal structures and providing a rigorous tool to reason about probabilistic causation. Indeed, Bell's theorem concerns a very particular kind of causal structure and Bell inequalities are a special case of linear constraints following from such models. It is thus natural to look for generalizations involving more complex Bell scenarios. The problem, however, relies on the fact that such generalized scenarios are characterized by polynomial Bell inequalities and no current method is available to derive them beyond very simple cases. In this work, we make a significant step in that direction, providing a new, general, and conceptually clear method for the derivation of polynomial Bell inequalities in a wide class of scenarios. We also show how our construction can be used to allow for relaxations of causal constraints and naturally gives rise to a notion of nonsignaling in generalized Bell networks.

  2. Complex Polynomial Vector Fields

    DEFF Research Database (Denmark)

    Dias, Kealey

    The two branches of dynamical systems, continuous and discrete, correspond to the study of differential equations (vector fields) and iteration of mappings respectively. In holomorphic dynamics, the systems studied are restricted to those described by holomorphic (complex analytic) functions or...... meromorphic (allowing poles as singularities) functions. There already exists a well-developed theory for iterative holomorphic dynamical systems, and successful relations found between iteration theory and flows of vector fields have been one of the main motivations for the recent interest in holomorphic...... vector fields. Since the class of complex polynomial vector fields in the plane is natural to consider, it is remarkable that its study has only begun very recently. There are numerous fundamental questions that are still open, both in the general classification of these vector fields, the decomposition...

  3. Polynomial weights and code constructions

    DEFF Research Database (Denmark)

    Massey, J; Costello, D; Justesen, Jørn

    1973-01-01

    For any nonzero elementcof a general finite fieldGF(q), it is shown that the polynomials(x - c)^i, i = 0,1,2,cdots, have the "weight-retaining" property that any linear combination of these polynomials with coefficients inGF(q)has Hamming weight at least as great as that of the minimum degree...

  4. Parallel Construction of Irreducible Polynomials

    DEFF Research Database (Denmark)

    Frandsen, Gudmund Skovbjerg

    Let arithmetic pseudo-NC^k denote the problems that can be solved by log space uniform arithmetic circuits over the finite prime field GF(p) of depth O(log^k (n + p)) and size polynomial in (n + p). We show that the problem of constructing an irreducible polynomial of specified degree over GF(p) ...

  5. SOLUTION OF A MULTIVARIATE STRATIFIED SAMPLING PROBLEM THROUGH CHEBYSHEV GOAL PROGRAMMING

    Directory of Open Access Journals (Sweden)

    Mohd. Vaseem Ismail

    2010-12-01

    Full Text Available In this paper, we consider the problem of minimizing the variances for the various characters with fixed (given budget. Each convex objective function is first linearised at its minimal point where it meets the linear cost constraint. The resulting multiobjective linear programming problem is then solved by Chebyshev goal programming. A numerical example is given to illustrate the procedure.

  6. MATLAB Solution of microstrip chebyshev Low pass filter system parameters by insertion loss method

    OpenAIRE

    Amiya Dey; Avijit Paul; Tanajit Manna

    2012-01-01

    We propose the practical solution for overcoming the tedious job of detail calculation and corresponding rigorous analysis of several system parameter values associated with the design, testing and troubleshooting of Microwave Microstrip Chebyshev Lowpass Filter (LPF) by Insertion Loss Method. The entire above spoken Microwave Lowpass filter system modeling and performance analysis are implemented using MATLAB.

  7. Applications of Chebyshev Minimax Deconvolution Filtering to the Estimation of Detrended Data

    International Nuclear Information System (INIS)

    Signal derivative at the output of Chebyshev deconvolution filter with respect to the odd pair of impulses is an estimator, very close to the detrended input signal. Computations using a significantly large database of market quotations show that average ''closeness'' in terms of normalized in L2 covariance coefficient is above 96 percent. (author)

  8. Cyclotomy and permutation polynomials of large indices

    OpenAIRE

    WANG Qiang

    2012-01-01

    We use cyclotomy to design new classes of permutation polynomials over finite fields. This allows us to generate many classes of permutation polynomials in an algorithmic way. Many of them are permutation polynomials of large indices.

  9. Difference equations of q-Appell polynomials

    OpenAIRE

    Mahmudov, Nazim I.

    2014-01-01

    In this paper, we study some properties of the q-Appell polynomials, including the recurrence relations and the q-difference equations which extend some known calssical (q=1) results. We also provide the recurrence relations and the q-difference equations for q-Bernoulli polynomials, q-Euler polynomials, q-Genocchi polynomials and for newly defined q-Hermite polynomials, as special cases of q-Appell polynomials

  10. Complex Roots of Quaternion Polynomials

    OpenAIRE

    Dospra, Petroula; Poulakis, Dimitrios

    2015-01-01

    The polynomials with quaternion coefficients have two kind of roots: isolated and spherical. A spherical root generates a class of roots which contains only one complex number $z$ and its conjugate $\\bar{z}$, and this class can be determined by $z$. In this paper, we deal with the complex roots of quaternion polynomials. More precisely, using B\\'{e}zout matrices, we give necessary and sufficient conditions, for a quaternion polynomial to have a complex root, a spherical root, and a complex is...

  11. Polynomial sequences for bond percolation critical thresholds

    International Nuclear Information System (INIS)

    In this paper, I compute the inhomogeneous (multi-probability) bond critical surfaces for the (4, 6, 12) and (34, 6) lattices using the linearity approximation described in Scullard and Ziff (2010 J. Stat. Mech. P03021), implemented as a branching process of lattices. I find the estimates for the bond percolation thresholds, pc(4, 6, 12) = 0.693 778 49... and pc(34, 6) = 0.434 370 77..., to be compared with Parviainen's numerical results of pc≈0.693 733 83 and 0.434 306 21 (Parviainen, 2007 J. Phys. A: Math. Theor. 40 9253). These deviations are of the order of 10−5, as is standard for this method, although they are larger than Parviainen's typical standard error of 10−7. Deriving thresholds in this way for a given lattice leads to a polynomial with integer coefficients, whose root in [0, 1] gives the estimate for the bond threshold. I show how the method can be refined, leading to a sequence of higher-order polynomials giving predictions that probably converge to the exact answer. Finally, I discuss how this fact hints that for certain graphs, such as the kagome lattice, the exact bond threshold may not be the root of any polynomial with integer coefficients

  12. Learning rates of least-square regularized regression with polynomial kernels

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This paper presents learning rates for the least-square regularized regression algorithms with polynomial kernels. The target is the error analysis for the regression problem in learning theory. A regularization scheme is given, which yields sharp learning rates. The rates depend on the dimension of polynomial space and polynomial reproducing kernel Hilbert space measured by covering numbers. Meanwhile, we also establish the direct approximation theorem by Bernstein-Durrmeyer operators in Lρ2X with Borel probability measure.

  13. Learning rates of least-square regularized regression with polynomial kernels

    Institute of Scientific and Technical Information of China (English)

    LI BingZheng; WANG GuoMao

    2009-01-01

    This paper presents learning rates for the least-square regularized regression algorithms with polynomial kernels. The target is the error analysis for the regression problem in learning theory. A regularization scheme is given, which yields sharp learning rates. The rates depend on the dimension of polynomial space and polynomial reproducing kernel Hilbert space measured by covering numbers. Meanwhile, we also establish the direct approximation theorem by Bernstein-Durrmeyer operators in Lpx2 with Borel probability measure.

  14. Orthogonal polynomials and deformed oscillators

    Science.gov (United States)

    Borzov, V. V.; Damaskinsky, E. V.

    2015-10-01

    In the example of the Fibonacci oscillator, we discuss the construction of oscillator-like systems associated with orthogonal polynomials. We also consider the question of the dimensions of the corresponding Lie algebras.

  15. Polynomials Associated with Dihedral Groups

    Directory of Open Access Journals (Sweden)

    Charles F. Dunkl

    2007-03-01

    Full Text Available There is a commutative algebra of differential-difference operators, with two parameters, associated to any dihedral group with an even number of reflections. The intertwining operator relates this algebra to the algebra of partial derivatives. This paper presents an explicit form of the action of the intertwining operator on polynomials by use of harmonic and Jacobi polynomials. The last section of the paper deals with parameter values for which the formulae have singularities.

  16. An introduction to orthogonal polynomials

    CERN Document Server

    Chihara, Theodore S

    2011-01-01

    Assuming no further prerequisites than a first undergraduate course in real analysis, this concise introduction covers general elementary theory related to orthogonal polynomials. It includes necessary background material of the type not usually found in the standard mathematics curriculum. Suitable for advanced undergraduate and graduate courses, it is also appropriate for independent study. Topics include the representation theorem and distribution functions, continued fractions and chain sequences, the recurrence formula and properties of orthogonal polynomials, special functions, and some

  17. Evaluations of topological Tutte polynomials

    CERN Document Server

    Ellis-Monaghan, Joanna A

    2011-01-01

    We find a number of new combinatorial identities for, and interpretations of evaluations of, the topological Tutte polynomials of Las Vergnas, $L(G)$, and of and Bollob\\'as and Riordan, $R(G)$, as well as for the classical Tutte polynomial $T(G)$. For example, we express $R(G)$ and $T(G)$ as a sum of chromatic polynomials, show that $R(G)$ counts non-crossing graph states and $k$-valuations, and reformulate the Four Colour Theorem in terms of $R(G)$. Our main approach is to apply identities for the topological transition polynomial, one involving twisted duals, and one involving doubling the edges of a graph. These identities for the transition polynomial allow us to show that the Penrose polynomial $P(G)$ can be recovered from $R(G)$, a fact that we use to obtain identities and interpretations for $R(G)$. We also consider enumeration of circuits in medial graphs and use this to relate $R(G)$ and $L(G)$ for graphs embedded in low genus surfaces.

  18. Characterizing Polynomial Time Computability of Rational and Real Functions

    Directory of Open Access Journals (Sweden)

    Walid Gomaa

    2009-11-01

    Full Text Available Recursive analysis was introduced by A. Turing [1936], A. Grzegorczyk [1955], and D. Lacombe [1955]. It is based on a discrete mechanical framework that can be used to model computation over the real numbers. In this context the computational complexity of real functions defined over compact domains has been extensively studied. However, much less have been done for other kinds of real functions. This article is divided into two main parts. The first part investigates polynomial time computability of rational functions and the role of continuity in such computation. On the one hand this is interesting for its own sake. On the other hand it provides insights into polynomial time computability of real functions for the latter, in the sense of recursive analysis, is modeled as approximations of rational computations. The main conclusion of this part is that continuity does not play any role in the efficiency of computing rational functions. The second part defines polynomial time computability of arbitrary real functions, characterizes it, and compares it with the corresponding notion over rational functions. Assuming continuity, the main conclusion is that there is a conceptual difference between polynomial time computation over the rationals and the reals manifested by the fact that there are polynomial time computable rational functions whose extensions to the reals are not polynomial time computable and vice versa.

  19. Rational offset approximation of rational Bézier curves

    Institute of Scientific and Technical Information of China (English)

    CHENG Min; WANG Guo-jin

    2006-01-01

    The problem of parametric speed approximation of a rational curve is raised in this paper. Offset curves are widely used in various applications. As for the reason that in most cases the offset curves do not preserve the same polynomial or rational polynomial representations, it arouses difficulty in applications. Thus approximation methods have been introduced to solve this problem. In this paper, it has been pointed out that the crux of offset curve approximation lies in the approximation of parametric speed. Based on the Jacobi polynomial approximation theory with endpoints interpolation, an algebraic rational approximation algorithm of offset curve, which preserves the direction of normal, is presented.

  20. Uniqueness and Zeros of -Shift Difference Polynomials

    Indian Academy of Sciences (India)

    Kai Liu; Xin-Ling Liu; Ting-Bin Cao

    2011-08-01

    In this paper, we consider the zero distributions of -shift difference polynomials of meromorphic functions with zero order, and obtain two theorems that extend the classical Hayman results on the zeros of differential polynomials to -shift difference polynomials. We also investigate the uniqueness problem of -shift difference polynomials that share a common value.

  1. On the Irreducibility of Some Composite Polynomials

    Directory of Open Access Journals (Sweden)

    M. Alizadeh

    2012-06-01

    Full Text Available . In this paper we study the irreducibility of some composite polynomials, constructed by a polynomial composition method over finite fields. Finally, a recurrent method for constructing families of irreducible polynomials of higher degree from given irreducible polynomials over finite fields is given

  2. Bannai-Ito polynomials and dressing chains

    OpenAIRE

    Derevyagin, Maxim; Tsujimoto, Satoshi; Vinet, Luc; Zhedanov, Alexei

    2012-01-01

    Schur-Delsarte-Genin (SDG) maps and Bannai-Ito polynomials are studied. SDG maps are related to dressing chains determined by quadratic algebras. The Bannai-Ito polynomials and their kernel polynomials -- the complementary Bannai-Ito polynomials -- are shown to arise in the framework of the SDG maps.

  3. Rational Chebyshev spectral transform for the dynamics of broad-area laser diodes

    International Nuclear Information System (INIS)

    This manuscript details the use of the rational Chebyshev transform for describing the transverse dynamics of broad-area laser diodes and amplifiers. This spectral method can be used in combination with the delay algebraic equations approach developed in [1], which substantially reduces the computation time. The theory is presented in such a way that it encompasses the case of the Fourier spectral transform presented in [2] as a particular case. It is also extended to the consideration of index guiding with an arbitrary transverse profile. Because their domain of definition is infinite, the convergence properties of the Chebyshev rational functions allow handling the boundary conditions with higher accuracy than with the previously studied Fourier transform method. As practical examples, we solve the beam propagation problem with and without index guiding: we obtain excellent results and an improvement of the integration time between one and two orders of magnitude as compared with a fully distributed two dimensional model

  4. Rational Chebyshev spectral transform for the dynamics of broad-area laser diodes

    Energy Technology Data Exchange (ETDEWEB)

    Javaloyes, J., E-mail: julien.javaloyes@uib.es [Universitat de les Illes Balears, C/Valldemossa, km 7.5, E-07122 Palma de Mallorca (Spain); Balle, S. [Institut Mediterrani d' Estudis Avançats, CSIC-UIB, E-07071 Palma de Mallorca (Spain)

    2015-10-01

    This manuscript details the use of the rational Chebyshev transform for describing the transverse dynamics of broad-area laser diodes and amplifiers. This spectral method can be used in combination with the delay algebraic equations approach developed in [1], which substantially reduces the computation time. The theory is presented in such a way that it encompasses the case of the Fourier spectral transform presented in [2] as a particular case. It is also extended to the consideration of index guiding with an arbitrary transverse profile. Because their domain of definition is infinite, the convergence properties of the Chebyshev rational functions allow handling the boundary conditions with higher accuracy than with the previously studied Fourier transform method. As practical examples, we solve the beam propagation problem with and without index guiding: we obtain excellent results and an improvement of the integration time between one and two orders of magnitude as compared with a fully distributed two dimensional model.

  5. Operation analysis of a Chebyshev-Pantograph leg mechanism for a single DOF biped robot

    Science.gov (United States)

    Liang, Conghui; Ceccarelli, Marco; Takeda, Yukio

    2012-12-01

    In this paper, operation analysis of a Chebyshev-Pantograph leg mechanism is presented for a single degree of freedom (DOF) biped robot. The proposed leg mechanism is composed of a Chebyshev four-bar linkage and a pantograph mechanism. In contrast to general fully actuated anthropomorphic leg mechanisms, the proposed leg mechanism has peculiar features like compactness, low-cost, and easy-operation. Kinematic equations of the proposed leg mechanism are formulated for a computer oriented simulation. Simulation results show the operation performance of the proposed leg mechanism with suitable characteristics. A parametric study has been carried out to evaluate the operation performance as function of design parameters. A prototype of a single DOF biped robot equipped with two proposed leg mechanisms has been built at LARM (Laboratory of Robotics and Mechatronics). Experimental test shows practical feasible walking ability of the prototype, as well as drawbacks are discussed for the mechanical design.

  6. Ehrhart polynomials of matroid polytopes and polymatroids

    OpenAIRE

    De Loera, Jesús A.; Haws, David C.; Köppe, Matthias

    2007-01-01

    We investigate properties of Ehrhart polynomials for matroid polytopes, independence matroid polytopes, and polymatroids. In the first half of the paper we prove that for fixed rank their Ehrhart polynomials are computable in polynomial time. The proof relies on the geometry of these polytopes as well as a new refined analysis of the evaluation of Todd polynomials. In the second half we discuss two conjectures about the h^*-vector and the coefficients of Ehrhart polynomials of matroid polytop...

  7. A Kantorovich-Stancu Type Generalization of Szasz Operators including Brenke Type Polynomials

    Directory of Open Access Journals (Sweden)

    Rabia Aktaş

    2013-01-01

    Full Text Available We introduce a Kantorovich-Stancu type modification of a generalization of Szasz operators defined by means of the Brenke type polynomials and obtain approximation properties of these operators. Also, we give a Voronovskaya type theorem for Kantorovich-Stancu type operators including Gould-Hopper polynomials.

  8. Continuous and discrete best polynomial degree reduction with Jacobi and Hahn weights

    KAUST Repository

    Ait-Haddou, Rachid

    2016-03-02

    We show that the weighted least squares approximation of Bézier coefficients with Hahn weights provides the best polynomial degree reduction in the Jacobi L2L2-norm. A discrete analogue of this result is also provided. Applications to Jacobi and Hahn orthogonal polynomials are presented.

  9. Exact constants in approximation theory

    CERN Document Server

    Korneichuk, N

    1991-01-01

    This book is intended as a self-contained introduction for non-specialists, or as a reference work for experts, to the particular area of approximation theory that is concerned with exact constants. The results apply mainly to extremal problems in approximation theory, which in turn are closely related to numerical analysis and optimization. The book encompasses a wide range of questions and problems: best approximation by polynomials and splines; linear approximation methods, such as spline-approximation; optimal reconstruction of functions and linear functionals. Many of the results are base

  10. International Conference Approximation Theory XIV

    CERN Document Server

    Schumaker, Larry

    2014-01-01

    This volume developed from papers presented at the international conference Approximation Theory XIV,  held April 7–10, 2013 in San Antonio, Texas. The proceedings contains surveys by invited speakers, covering topics such as splines on non-tensor-product meshes, Wachspress and mean value coordinates, curvelets and shearlets, barycentric interpolation, and polynomial approximation on spheres and balls. Other contributed papers address a variety of current topics in approximation theory, including eigenvalue sequences of positive integral operators, image registration, and support vector machines. This book will be of interest to mathematicians, engineers, and computer scientists working in approximation theory, computer-aided geometric design, numerical analysis, and related approximation areas.

  11. Efficient generation of correlated random numbers using Chebyshev-optimal magnitude-only IIR filters

    OpenAIRE

    Rodriguez, Alejandro; Johnson, Steven G.

    2007-01-01

    We compare several methods for the efficient generation of correlated random sequences (colored noise) by filtering white noise to achieve a desired correlation spectrum. We argue that a class of IIR filter-design techniques developed in the 1970s, which obtain the global Chebyshev-optimum minimum-phase filter with a desired magnitude and arbitrary phase, are uniquely suited for this problem but have seldom been used. The short filters that result from such techniques are crucial for applicat...

  12. Chebyshev Wavelets Method for Solution of Nonlinear Fractional Integrodifferential Equations in a Large Interval

    Directory of Open Access Journals (Sweden)

    M. H. Heydari

    2013-01-01

    Full Text Available An efficient Chebyshev wavelets method for solving a class of nonlinear fractional integrodifferential equations in a large interval is developed, and a new technique for computing nonlinear terms in such equations is proposed. Existence of a unique solution for such equations is proved. Convergence and error analysis of the proposed method are investigated. Moreover in order to show efficiency of the proposed method, the new approach is compared with some numerical methods.

  13. Rigorous Integration of Non-Linear Ordinary Differential Equations in Chebyshev Basis

    Czech Academy of Sciences Publication Activity Database

    Dzetkulič, Tomáš

    2015-01-01

    Roč. 69, č. 1 (2015), s. 183-205. ISSN 1017-1398 R&D Projects: GA MŠk OC10048; GA ČR GD201/09/H057 Institutional research plan: CEZ:AV0Z10300504 Keywords : Initial value problem * Rigorous integration * Taylor model * Chebyshev basis Subject RIV: IN - Informatics, Computer Science Impact factor: 1.417, year: 2014

  14. A dynamic inequality generation scheme for polynomial programming

    NARCIS (Netherlands)

    Ghaddar, B.; Vera Lizcano, J.C.; Anjos, M.F.

    2016-01-01

    Hierarchies of semidefinite programs have been used to approximate or even solve polynomial programs. This approach rapidly becomes computationally expensive and is often tractable only for problems of small size. In this paper, we propose a dynamic inequality generation scheme to generate valid pol

  15. Differentiation by integration using orthogonal polynomials, a survey

    NARCIS (Netherlands)

    E. Diekema; T.H. Koornwinder

    2012-01-01

    This survey paper discusses the history of approximation formulas for n-th order derivatives by integrals involving orthogonal polynomials. There is a large but rather disconnected corpus of literature on such formulas. We give some results in greater generality than in the literature. Notably we un

  16. Eigenvalues and eigenfunctions for the ground state of polynomial potentials

    International Nuclear Information System (INIS)

    Analytic approximations for the ground state eigenvalues and eigenfunctions of polynomial potentials are found using an extended two-point quasi-rational approximation technique. In this procedure, the approximants are obtained through the power series and asymptotic expansion of the logarithmic derivative of the ground state eigenfunction, leaving the energy eigenvalue as a free parameter. A first approximation to the energy is obtained by imposing the condition that the rational approximating function must not have defects. Later, an iteration procedure leads to very precise energy eigenvalues. The method is described in detail using several explicit potentials as examples

  17. q-Bernstein polynomials, q-Stirling numbers and q-Bernoulli polynomials

    OpenAIRE

    Kim, T.

    2010-01-01

    In this paper, we give new identities involving Phillips q-Bernstein polynomials and we derive some interesting properties of q-Berstein polynomials associated with q-Stirling numbers and q-Bernoulli polynomials.

  18. Modular forms and period polynomials

    CERN Document Server

    Pasol, Vicentiu

    2012-01-01

    We study the space of period polynomials associated with modular forms for finite index subgroups of the modular group. For the full modular group, this space is endowed with a pairing, corresponding to the Petersson inner product on modular forms via a formula of Haberland, and with an action of Hecke operators, defined algebraically by Zagier. We extend Haberland's formula to arbitrary modular forms for finite index subgroups of the modular group, and we show that it conceals two stronger formulas. We extend the action of Hecke operators to \\Gamma_0(N) and \\Gamma_1(N), and we prove algebraically that the pairing on period polynomials appearing in Haberland's formula is Hecke equivariant. Two indefinite theta series identities follow from this proof. We give two ways of determining the extra relations satisfied by the even and odd parts of period polynomials associated with cusp forms, which are independent of the period relations.

  19. Plain Polynomial Arithmetic on GPU

    International Nuclear Information System (INIS)

    As for serial code on CPUs, parallel code on GPUs for dense polynomial arithmetic relies on a combination of asymptotically fast and plain algorithms. Those are employed for data of large and small size, respectively. Parallelizing both types of algorithms is required in order to achieve peak performances. In this paper, we show that the plain dense polynomial multiplication can be efficiently parallelized on GPUs. Remarkably, it outperforms (highly optimized) FFT-based multiplication up to degree 212 while on CPU the same threshold is usually at 26. We also report on a GPU implementation of the Euclidean Algorithm which is both work-efficient and runs in linear time for input polynomials up to degree 218 thus showing the performance of the GCD algorithm based on systolic arrays.

  20. Modeling Microwave Structures in Time Domain Using Laguerre Polynomials

    Directory of Open Access Journals (Sweden)

    Z. Raida

    2006-09-01

    Full Text Available The paper is focused on time domain modeling of microwave structures by the method of moments. Two alternative schemes with weighted Laguerre polynomials are presented. Thanks to their properties, these schemes are free of late time oscillations. Further, the paper is aimed to effective and accurate evaluation of Green's functions integrals within these schemes. For this evaluation, a first- and second-order polynomial approximation is developed. The last part of the paper deals with modeling microstrip structures in the time domain. Conditions of impedance matching are derived, and the proposed approach is verified by modeling a microstrip filter.

  1. Symbolic computation of Appell polynomials using Maple

    Directory of Open Access Journals (Sweden)

    H. Alkahby

    2001-07-01

    Full Text Available This work focuses on the symbolic computation of Appell polynomials using the computer algebra system Maple. After describing the traditional approach of constructing Appell polynomials, the paper examines the operator method of constructing the same Appell polynomials. The operator approach enables us to express the Appell polynomial as Bessel function whose coefficients are Euler and Bernuolli numbers. We have also constructed algorithms using Maple to compute Appell polynomials based on the methods we have described. The achievement is the construction of Appell polynomials for any function of bounded variation.

  2. Solutions of differential equations in a Bernstein polynomial basis

    Science.gov (United States)

    Idrees Bhatti, M.; Bracken, P.

    2007-08-01

    An algorithm for approximating solutions to differential equations in a modified new Bernstein polynomial basis is introduced. The algorithm expands the desired solution in terms of a set of continuous polynomials over a closed interval and then makes use of the Galerkin method to determine the expansion coefficients to construct a solution. Matrix formulation is used throughout the entire procedure. However, accuracy and efficiency are dependent on the size of the set of Bernstein polynomials and the procedure is much simpler compared to the piecewise B spline method for solving differential equations. A recursive definition of the Bernstein polynomials and their derivatives are also presented. The current procedure is implemented to solve three linear equations and one nonlinear equation, and excellent agreement is found between the exact and approximate solutions. In addition, the algorithm improves the accuracy and efficiency of the traditional methods for solving differential equations that rely on much more complicated numerical techniques. This procedure has great potential to be implemented in more complex systems where there are no exact solutions available except approximations.

  3. Global sensitivity analysis using sparse grid interpolation and polynomial chaos

    International Nuclear Information System (INIS)

    Sparse grid interpolation is widely used to provide good approximations to smooth functions in high dimensions based on relatively few function evaluations. By using an efficient conversion from the interpolating polynomial provided by evaluations on a sparse grid to a representation in terms of orthogonal polynomials (gPC representation), we show how to use these relatively few function evaluations to estimate several types of sensitivity coefficients and to provide estimates on local minima and maxima. First, we provide a good estimate of the variance-based sensitivity coefficients of Sobol' (1990) [1] and then use the gradient of the gPC representation to give good approximations to the derivative-based sensitivity coefficients described by Kucherenko and Sobol' (2009) [2]. Finally, we use the package HOM4PS-2.0 given in Lee et al. (2008) [3] to determine the critical points of the interpolating polynomial and use these to determine the local minima and maxima of this polynomial. - Highlights: ► Efficient estimation of variance-based sensitivity coefficients. ► Efficient estimation of derivative-based sensitivity coefficients. ► Use of homotopy methods for approximation of local maxima and minima.

  4. Characterizing Polynomial Time Computability of Rational and Real Functions

    CERN Document Server

    Gomaa, Walid

    2009-01-01

    Recursive analysis was introduced by A. Turing [1936], A. Grzegorczyk [1955], and D. Lacombe [1955]. It is based on a discrete mechanical framework that can be used to model computation over the real numbers. In this context the computational complexity of real functions defined over compact domains has been extensively studied. However, much less have been done for other kinds of real functions. This article is divided into two main parts. The first part investigates polynomial time computability of rational functions and the role of continuity in such computation. On the one hand this is interesting for its own sake. On the other hand it provides insights into polynomial time computability of real functions for the latter, in the sense of recursive analysis, is modeled as approximations of rational computations. The main conclusion of this part is that continuity does not play any role in the efficiency of computing rational functions. The second part defines polynomial time computability of arbitrary real ...

  5. Applying polynomial filtering to mass preconditioned Hybrid Monte Carlo

    CERN Document Server

    Haar, Taylor; Zanotti, James; Nakamura, Yoshifumi

    2016-01-01

    The use of mass preconditioning or Hasenbusch filtering in modern Hybrid Monte Carlo simulations is common. At light quark masses, multiple filters (three or more) are typically used to reduce the cost of generating dynamical gauge fields; however, the task of tuning a large number of Hasenbusch mass terms is non-trivial. The use of short polynomial approximations to the inverse has been shown to provide an effective UV filter for HMC simulations. In this work we investigate the application of polynomial filtering to the mass preconditioned Hybrid Monte Carlo algorithm as a means of introducing many time scales into the molecular dynamics integration with a simplified parameter tuning process. A generalized multi-scale integration scheme that permits arbitrary step- sizes and can be applied to Omelyan-style integrators is also introduced. We find that polynomial-filtered mass-preconditioning (PF-MP) performs as well as or better than standard mass preconditioning, with significantly less fine tuning required.

  6. Two polynomial division inequalities in

    Directory of Open Access Journals (Sweden)

    Goetgheluck P

    1998-01-01

    Full Text Available This paper is a first attempt to give numerical values for constants and , in classical estimates and where is an algebraic polynomial of degree at most and denotes the -metric on . The basic tools are Markov and Bernstein inequalities.

  7. Entanglement conditions and polynomial identities

    International Nuclear Information System (INIS)

    We develop a rather general approach to entanglement characterization based on convexity properties and polynomial identities. This approach is applied to obtain simple and efficient entanglement conditions that work equally well in both discrete as well as continuous-variable environments. Examples of violations of our conditions are presented.

  8. On Modular Counting with Polynomials

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Arnsfelt

    For any integers m and l, where m has r sufficiently large (depending on l) factors, that are powers of r distinct primes, we give a construction of a (symmetric) polynomial over Z_m of degree O(\\sqrt n) that is a generalized representation (commonly also called weak representation) of the MODl f...

  9. Farrow structure based Digital Decimator for Fractional Rate Sample Conversion using Lagrange Polynomial

    OpenAIRE

    Preeti*; Dr. Amandeep Singh Sappal; Dr. Hardeep Singh Ryait,

    2012-01-01

    The concept of decimation plays very important role in the modern digital communication systems. Digital decimators or decimation filters are used to decrease the sampling rate of a sampled signal in digital domain. The Farrow Structure provides an efficient way to implement the decimation filter using polynomial approximation method for arbitrary sample rate change which offers the option of continuously adjustable resample ratio. In this paper, Lagrange polynomial approximation method has ...

  10. Sheffer and Non-Sheffer Polynomial Families

    Directory of Open Access Journals (Sweden)

    G. Dattoli

    2012-01-01

    Full Text Available By using the integral transform method, we introduce some non-Sheffer polynomial sets. Furthermore, we show how to compute the connection coefficients for particular expressions of Appell polynomials.

  11. Quantum F-polynomials in Classical Types

    CERN Document Server

    Tran, Thao

    2009-01-01

    In their "Cluster Algebras IV" paper, Fomin and Zelevinsky defined F-polynomials and g-vectors, and they showed that the cluster variables in any cluster algebra can be expressed in a formula involving the appropriate F-polynomial and g-vector. In "F-polynomials in Quantum Cluster Algebras," the predecessor to this paper, we defined and proved the existence of quantum F-polynomials, which are analogs of F-polynomials in quantum cluster algebras in the sense that cluster variables in any quantum cluster algebra can be expressed in a similar formula in terms of quantum F-polynomials and g-vectors. In this paper, we give formulas for both F-polynomials and quantum F-polynomials for cluster algebras of classical type when the initial exchange matrix is acyclic.

  12. Solutions of interval type-2 fuzzy polynomials using a new ranking method

    Science.gov (United States)

    Rahman, Nurhakimah Ab.; Abdullah, Lazim; Ghani, Ahmad Termimi Ab.; Ahmad, Noor'Ani

    2015-10-01

    A few years ago, a ranking method have been introduced in the fuzzy polynomial equations. Concept of the ranking method is proposed to find actual roots of fuzzy polynomials (if exists). Fuzzy polynomials are transformed to system of crisp polynomials, performed by using ranking method based on three parameters namely, Value, Ambiguity and Fuzziness. However, it was found that solutions based on these three parameters are quite inefficient to produce answers. Therefore in this study a new ranking method have been developed with the aim to overcome the inherent weakness. The new ranking method which have four parameters are then applied in the interval type-2 fuzzy polynomials, covering the interval type-2 of fuzzy polynomial equation, dual fuzzy polynomial equations and system of fuzzy polynomials. The efficiency of the new ranking method then numerically considered in the triangular fuzzy numbers and the trapezoidal fuzzy numbers. Finally, the approximate solutions produced from the numerical examples indicate that the new ranking method successfully produced actual roots for the interval type-2 fuzzy polynomials.

  13. Farrow structure based Digital Decimator for Fractional Rate Sample Conversion using Lagrange Polynomial

    Directory of Open Access Journals (Sweden)

    Preeti,

    2012-06-01

    Full Text Available The concept of decimation plays very important role in the modern digital communication systems. Digital decimators or decimation filters are used to decrease the sampling rate of a sampled signal in digital domain. The Farrow Structure provides an efficient way to implement the decimation filter using polynomial approximation method for arbitrary sample rate change which offers the option of continuously adjustable resample ratio. In this paper, Lagrange polynomial approximation method has been used to implement Farrow structure based decimator. The optimum filter coefficients have been calculated using Lagrange Polynomials. Simulation results have been presented.

  14. An Improved Volumetric Estimation Using Polynomial Regression

    OpenAIRE

    Noraini Abdullah; Amran Ahmed; Zainodin Hj. Jubok

    2011-01-01

    The polynomial regression (PR) technique is used to estimate the parameters of the dependent variable having a polynomial relationship with the independent variable. Normality and nonlinearity exhibit polynomial characterization of power terms greater than 2. Polynomial Regression models (PRM) with the auxiliary variables are considered up to their third order interactions. Preliminary, multicollinearity between the independent variables is minimized and statistical tests involving the Global...

  15. Computing the zeros of quaternion polynomials

    OpenAIRE

    Serôdio, R.; Pereira, E.; Vitória, J.

    2001-01-01

    A method is developed to compute the zeros of a quaternion polynomial with all terms of the form qkXk. This method is based essentially in Niven's algorithm [1], which consists of dividing the polynomial by a characteristic polynomial associated to a zero. The information about the trace and the norm of the zero is obtained by an original idea which requires the companion matrix associated to the polynomial. The companion matrix is represented by a matrix with complex entries. Three numerical...

  16. A Class of Binomial Permutation Polynomials

    OpenAIRE

    Tu, Ziran; Zeng, Xiangyong; Hu, Lei; Li, Chunlei

    2013-01-01

    In this note, a criterion for a class of binomials to be permutation polynomials is proposed. As a consequence, many classes of binomial permutation polynomials and monomial complete permutation polynomials are obtained. The exponents in these monomials are of Niho type.

  17. Positive trigonometric polynomials and signal processing applications

    CERN Document Server

    Dumitrescu, Bogdan

    2007-01-01

    Presents the results on positive trigonometric polynomials within a unitary framework; the theoretical results obtained partly from the general theory of real polynomials, partly from self-sustained developments. This book provides information on the theory of sum-of-squares trigonometric polynomials in two parts: theory and applications.

  18. Graph colorings, flows and arithmetic Tutte polynomial

    OpenAIRE

    D'Adderio, Michele; Moci, Luca

    2011-01-01

    We introduce the notions of arithmetic colorings and arithmetic flows over a graph with labelled edges, which generalize the notions of colorings and flows over a graph. We show that the corresponding arithmetic chromatic polynomial and arithmetic flow polynomial are given by suitable specializations of the associated arithmetic Tutte polynomial, generalizing classical results of Tutte.

  19. Lattice Platonic Solids and their Ehrhart polynomial

    Directory of Open Access Journals (Sweden)

    E. J. Ionascu

    2013-01-01

    Full Text Available First, we calculate the Ehrhart polynomial associated to an arbitrary cube with integer coordinates for its vertices. Then, we use this result to derive relationships between the Ehrhart polynomials for regular lattice tetrahedra and those for regular lattice octahedra. These relations allow one to reduce the calculation of these polynomials to only one coefficient.

  20. Lattice Platonic Solids and their Ehrhart polynomial

    CERN Document Server

    Ionascu, Eugen J

    2011-01-01

    First, we calculate the Ehrhart polynomial associated to an arbitrary cube with integer coordinates for its vertices. Then, we use this result to derive relationships between the Ehrhart polynomials for regular lattice tetrahedrons and those for regular lattice octahedrons. These relations allow one to reduce the calculation of these polynomials to only one coefficient.

  1. Complete Bell polynomials and new generalized identities for polynomials of higher order

    CERN Document Server

    Rubinstein, Boris Y

    2009-01-01

    The relations between the Bernoulli and Eulerian polynomials of higher order and the complete Bell polynomials are found that lead to new identities for the Bernoulli and Eulerian polynomials and numbers of higher order. General form of these identities is considered and generating function for polynomials satisfying this general identity is found.

  2. Efficient generation of correlated random numbers using Chebyshev-optimal magnitude-only IIR filters

    CERN Document Server

    Rodríguez, A; Johnson, Steven G.; Rodriguez, Alejandro

    2007-01-01

    We compare several methods for the efficient generation of correlated random sequences (colored noise) by filtering white noise to achieve a desired correlation spectrum. We argue that a class of IIR filter-design techniques developed in the 1970s, which obtain the global Chebyshev-optimum minimum-phase filter with a desired magnitude and arbitrary phase, are uniquely suited for this problem but have seldom been used. The short filters that result from such techniques are crucial for applications of colored noise in physical simulations involving random processes, for which many long random sequences must be generated and computational time and memory are at a premium.

  3. Numerical method for solving system of Fredhlom integral equations using Chebyshev cardinal functions

    Directory of Open Access Journals (Sweden)

    Zahra Masouri

    2014-04-01

    Full Text Available The focus of this paper is on the numerical solution of linear systems of Fredhlom integral equations of the second kind. For this purpose, the Chebyshev cardinal functions with Gauss-Lobatto points are used. By combination of properties of these functions and the effective Clenshaw-Curtis quadrature rule, an applicable numerical method for solving the mentioned systems is formulated. Some error bounds for the method are computed and its convergence rate is estimated. The method is numerically evaluated by solving some test problems caught from the literature by which the accuracy and computational efficiency of the method will be demonstrated.

  4. CONSTRUCTION OF THE ENCRYPTION MATRIX BASED ON CHEBYSHEV CHAOTIC NEURAL NETWORKS

    Institute of Scientific and Technical Information of China (English)

    Zou Ajin; Wu Wei; Li Renfa; Li Yongjiang

    2012-01-01

    The paper proposes a novel algorithm to get the encryption matrix.Firstly,a chaotic sequence generated by Chebyshev chaotic neural networks is converted into a series of low-order integer matrices from which available encryption matrices are selected.Then,a higher order encryption matrix relating real world application is constructed by means of tensor production method based on selected encryption matrices.The results show that the proposed algorithm can produce a "one-time pad cipher" encryption matrix with high security; and the encryption results have good chaos and autocorrelation with the natural frequency of the plaintext being hidden and homogenized.

  5. Prestack traveltime approximations

    KAUST Repository

    Alkhalifah, Tariq Ali

    2011-01-01

    Most prestack traveltime relations we tend work with are based on homogeneous (or semi-homogenous, possibly effective) media approximations. This includes the multi-focusing or double square-root (DSR) and the common reflection stack (CRS) equations. Using the DSR equation, I analyze the associated eikonal form in the general source-receiver domain. Like its wave-equation counterpart, it suffers from a critical singularity for horizontally traveling waves. As a result, I derive expansion based solutions of this eikonal based on polynomial expansions in terms of the reflection and dip angles in a generally inhomogenous background medium. These approximate solutions are free of singularities and can be used to estimate travetimes for small to moderate offsets (or reflection angles) in a generally inhomogeneous medium. A Marmousi example demonstrates the usefulness of the approach. © 2011 Society of Exploration Geophysicists.

  6. Diagonal Pade approximations for initial value problems

    International Nuclear Information System (INIS)

    Diagonal Pade approximations to the time evolution operator for initial value problems are applied in a novel way to the numerical solution of these problems by explicitly factoring the polynomials of the approximation. A remarkable gain over conventional methods in efficiency and accuracy of solution is obtained. 20 refs., 3 figs., 1 tab

  7. Diagonal Pade approximations for initial value problems

    Energy Technology Data Exchange (ETDEWEB)

    Reusch, M.F.; Ratzan, L.; Pomphrey, N.; Park, W.

    1987-06-01

    Diagonal Pade approximations to the time evolution operator for initial value problems are applied in a novel way to the numerical solution of these problems by explicitly factoring the polynomials of the approximation. A remarkable gain over conventional methods in efficiency and accuracy of solution is obtained. 20 refs., 3 figs., 1 tab.

  8. Improved Approximation for the Directed Spanner Problem

    OpenAIRE

    Bhattacharyya, Arnab; Makarychev, Konstantin

    2010-01-01

    We prove that the size of the sparsest directed k-spanner of a graph can be approximated in polynomial time to within a factor of $\\tilde{O}(\\sqrt{n})$, for all k >= 3. This improves the $\\tilde{O}(n^{2/3})$-approximation recently shown by Dinitz and Krauthgamer.

  9. Normal BGG solutions and polynomials

    CERN Document Server

    Cap, A; Hammerl, M

    2012-01-01

    First BGG operators are a large class of overdetermined linear differential operators intrinsically associated to a parabolic geometry on a manifold. The corresponding equations include those controlling infinitesimal automorphisms, higher symmetries, and many other widely studied PDE of geometric origin. The machinery of BGG sequences also singles out a subclass of solutions called normal solutions. These correspond to parallel tractor fields and hence to (certain) holonomy reductions of the canonical normal Cartan connection. Using the normal Cartan connection, we define a special class of local frames for any natural vector bundle associated to a parabolic geometry. We then prove that the coefficient functions of any normal solution of a first BGG operator with respect to such a frame are polynomials in the normal coordinates of the parabolic geometry. A bound on the degree of these polynomials in terms of representation theory data is derived. For geometries locally isomorphic to the homogeneous model of ...

  10. BSDEs with polynomial growth generators

    Directory of Open Access Journals (Sweden)

    Philippe Briand

    2000-01-01

    Full Text Available In this paper, we give existence and uniqueness results for backward stochastic differential equations when the generator has a polynomial growth in the state variable. We deal with the case of a fixed terminal time, as well as the case of random terminal time. The need for this type of extension of the classical existence and uniqueness results comes from the desire to provide a probabilistic representation of the solutions of semilinear partial differential equations in the spirit of a nonlinear Feynman-Kac formula. Indeed, in many applications of interest, the nonlinearity is polynomial, e.g, the Allen-Cahn equation or the standard nonlinear heat and Schrödinger equations.

  11. Twisted Polynomials and Forgery Attacks on GCM

    DEFF Research Database (Denmark)

    Abdelraheem, Mohamed Ahmed A. M. A.; Beelen, Peter; Bogdanov, Andrey;

    2015-01-01

    twisted polynomials from Ore rings as forgery polynomials. We show how to construct sparse forgery polynomials with full control over the sets of roots. We also achieve complete and explicit disjoint coverage of the key space by these polynomials. We furthermore leverage this new construction in an...... improved key recovery algorithm. As cryptanalytic applications of our twisted polynomials, we develop the first universal forgery attacks on GCM in the weak-key model that do not require nonce reuse. Moreover, we present universal weak-key forgeries for the nonce-misuse resistant AE scheme POET, which is a...

  12. Space complexity in polynomial calculus

    Czech Academy of Sciences Publication Activity Database

    Filmus, Y.; Lauria, M.; Nordström, J.; Ron-Zewi, N.; Thapen, Neil

    2015-01-01

    Roč. 44, č. 4 (2015), s. 1119-1153. ISSN 0097-5397 R&D Projects: GA AV ČR IAA100190902; GA ČR GBP202/12/G061 Institutional support: RVO:67985840 Keywords : proof complexity * polynomial calculus * lower bounds Subject RIV: BA - General Mathematics Impact factor: 0.741, year: 2014 http://epubs.siam.org/doi/10.1137/120895950

  13. Simplifying Tensor Polynomials with Indices

    CERN Document Server

    Balfagón, A

    1998-01-01

    We are presenting an algorithm capable of simplifying tensor polynomials with indices when the building tensors have index symmetry properties. These properties include simple symmetry, cyclicity and those due to the presence of partial and covariant derivatives. We are also including some examples using the Riemann tensor as a paradigm. The algorithm is part of a Mathematica package called Tools of Tensor Calculus (TTC) [web address: http//baldufa.upc.es/ttc

  14. Roots of Quaternion Standard Polynomials

    CERN Document Server

    Chapman, Adam

    2011-01-01

    Here we present a reduction of any quaternion standard polynomial equation into an equation with two central variables and quaternion coefficients. If only pure imaginary roots are in demand, then the equation is with one central variable. As a result of this reduction we obtain formulas for the solutions of quadratic equations. Another result is a routine for analytically solving cubic quaternion equations assuming they have at least one pure imaginary root.

  15. Pattern Matching under Polynomial Transformation

    CERN Document Server

    Butman, Ayelet; Clifford, Raphael; Jalsenius, Markus; Lewenstein, Noa; Porat, Benny; Porat, Ely; Sach, Benjamin

    2011-01-01

    We consider a class of pattern matching problems where a polynomial transformation can be applied to the pattern at every alignment. Given a pattern of length m and a longer text of length n where both are assumed to contain integer values only, we show O(n log m) algorithms for pattern matching under linear transformations even when wildcard symbols can occur in the input. We then show how to extend the technique to polynomial transformations of arbitrary degree. Next we consider the problem of finding the minimum Hamming distance under polynomial transformation. We show that, for any epsilon > 0, there cannot exist an O(nm^(1-epsilon)) algorithm for additive and linear transformations conditional on the hardness of the classic 3SUM problem. Finally, we consider a version of the Hamming distance problem under additive transformations with a bound k on the maximum distance that need be reported. We give a deterministic O(nk log k) time solution which we then improve by careful use of randomisation to O(n sqrt...

  16. Hardness of Approximate Compaction for Nonplanar Orthogonal Graph Drawings

    CERN Document Server

    Bannister, Michael J

    2011-01-01

    We show that several problems of compacting orthogonal graph drawings to use the minimum number of rows or the minimum possible area cannot be approximated to within better than a polynomial factor in polynomial time unless P = NP. However, there is a fixed-parameter-tractable algorithm for testing whether a drawing can be compacted to a given number of rows.

  17. AMDLIBAE, IBM 360 Subroutine Library, Special Function, Polynomials, Differential Equation

    International Nuclear Information System (INIS)

    158S P ANC4P: Adap. quad. using 4-th order Newton-Cotes; D161S F GAUSS: Arbitrary Gaussian weights and nodes; D162S F SQUANK: Simpson's quad. used adaptively; D252S F DDFSUB: DP Neville or Stoer sol. lin. dif. eqns.; D253S F DDFSYS: Driver for D252S; D255S F DFBND: Stoer sol. dif. eqs. with error bounds; D256S F DFBDRV: Driver for D255S; D257S F GEARDV: Gear's sol. of init. value problem; D452S F ENDACE: Numerical derivatives real analytic fn.; E206S F LSQPOL: Least squares weighted polynomial fit; E208S F1: Arbitrary function fit, least squares; E209S F CALLSQ: Driver for E206S; E212S F: General least squares fit + function eval.; E250S F VA02A: Least squares funct. min. w/o derivatives; E252S F MINMAX: Chebyshev line fit; E253S F: Arbitrary functional fit II; E256S F BGPOL: Least squares fit with polynomials; E257S F BGLSSQ: Least squares fit with arbitrary function; E350S F SMOOTH: Smoothing by cubic splines

  18. Approximate option pricing

    Energy Technology Data Exchange (ETDEWEB)

    Chalasani, P.; Saias, I. [Los Alamos National Lab., NM (United States); Jha, S. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    1996-04-08

    As increasingly large volumes of sophisticated options (called derivative securities) are traded in world financial markets, determining a fair price for these options has become an important and difficult computational problem. Many valuation codes use the binomial pricing model, in which the stock price is driven by a random walk. In this model, the value of an n-period option on a stock is the expected time-discounted value of the future cash flow on an n-period stock price path. Path-dependent options are particularly difficult to value since the future cash flow depends on the entire stock price path rather than on just the final stock price. Currently such options are approximately priced by Monte carlo methods with error bounds that hold only with high probability and which are reduced by increasing the number of simulation runs. In this paper the authors show that pricing an arbitrary path-dependent option is {number_sign}-P hard. They show that certain types f path-dependent options can be valued exactly in polynomial time. Asian options are path-dependent options that are particularly hard to price, and for these they design deterministic polynomial-time approximate algorithms. They show that the value of a perpetual American put option (which can be computed in constant time) is in many cases a good approximation to the value of an otherwise identical n-period American put option. In contrast to Monte Carlo methods, the algorithms have guaranteed error bounds that are polynormally small (and in some cases exponentially small) in the maturity n. For the error analysis they derive large-deviation results for random walks that may be of independent interest.

  19. Local polynomial Whittle estimation of perturbed fractional processes

    DEFF Research Database (Denmark)

    Frederiksen, Per; Nielsen, Frank; Nielsen, Morten Ørregaard

    We propose a semiparametric local polynomial Whittle with noise (LPWN) estimator of the memory parameter in long memory time series perturbed by a noise term which may be serially correlated. The estimator approximates the spectrum of the perturbation as well as that of the short-memory component....... Furthermore, an empirical investigation of the 30 DJIA stocks shows that this estimator indicates stronger persistence in volatility than the standard local Whittle estimator....

  20. Differentiation by integration using orthogonal polynomials, a survey

    CERN Document Server

    Diekema, Enno

    2011-01-01

    This survey paper discusses the history of approximation formulas for n-th order derivatives by integrals involving orthogonal polynomials. There is a large but rather disconnected corpus of literature on such formulas. We give some results in greater generality than in the literature. Notably we unify the continuous and discrete case. We make many side remarks, for instance on wavelets, Mantica's Fourier-Bessel functions and Greville's minimum R_alpha formulas in connection with discrete smoothing.

  1. Polynomial Preserving Diffusion Models for Life Insurance Liabilities

    OpenAIRE

    Biagini, Francesca; Zhang, Yinglin

    2016-01-01

    In this paper we study the pricing and hedging problem of a portfolio of life insurance products under the benchmark approach, where the reference market is modelled as driven by a state variable following a polynomial preserving diffusion on a compact state space. Such a model guarantees not only the positivity of the OIS short rate and the mortality intensity, but also the possibility of approximating both pricing formula and hedging strategy of a large class of life insurance products by e...

  2. A polynomial time approximation scheme for a hybrid flow shop problem in graphics processing%应用于图形处理的一个混合流水作业排序问题的多项式时间近似策略

    Institute of Scientific and Technical Information of China (English)

    魏麒

    2014-01-01

    The floating point computing power of early graphic processing unit(GPU) is not strong. So it can’t do data processing. In other words, in early graphics processing, central processing unit(CPU) do data processing chain firstly, then GPU do image processing chain. But until now, much more GPU having stronger performance have been designed. In accordance with this trend, in near future, these powerful GPU can accomplish most work previously accomplished by CPU such as data processing. Prospectively studying how reasonable dispatch CPU and GPU to faster processing graphics issues in such a new case is interesting. Actually, this new problem is equal to a two-stage two-machine hybrid flow shop problem: There are two machines and n jobs. Each job has two tasks, the first task can be processed on either machine, called flexible task, while the second task can’t be processed unless the first task is completed and must be processed on the second machine. The objective of the problem is minimizing the makespan. A polynomial time approximation scheme (PTAS) for this problem is given in this paper.%由于早期的图形处理器浮点运算能力不强,所以在处理图形问题时一般由中央处理器处理数据运算环节,然后再由图形处理器进行图像处理。但是最近几年图形处理器的浮点运算能力得到很大提高,相信很快就能胜任原先只有中央处理器才能完成的图形问题中的数据运算任务,为此前瞻性的研究在这样一种新情况下如何合理调度中央处理器和图形处理器来更快的处理图形问题是很有必要的。事实上该问题其实相当于一个两阶段两台处理器的混合流水作业问题:有两台处理器和一批需要加工的工件,每个工件都包含两个任务,前一个任务是为第二个任务做准备的。第一个任务可以选择在任何一台处理器上处理,而第二个任务则必须当第一个任务完成后,在第二台处理

  3. Computing Nash Equilibria: Approximation and Smoothed Complexity

    OpenAIRE

    Chen, Xi; Deng, Xiaotie; Teng, Shang-Hua

    2006-01-01

    We show that the BIMATRIX game does not have a fully polynomial-time approximation scheme, unless PPAD is in P. In other words, no algorithm with time polynomial in n and 1/\\epsilon can compute an \\epsilon-approximate Nash equilibrium of an n by nbimatrix game, unless PPAD is in P. Instrumental to our proof, we introduce a new discrete fixed-point problem on a high-dimensional cube with a constant side-length, such as on an n-dimensional cube with side-length 7, and show that they are PPAD-co...

  4. Chromatic Polynomials of Mixed Hypercycles

    Directory of Open Access Journals (Sweden)

    Allagan Julian A.

    2014-08-01

    Full Text Available We color the vertices of each of the edges of a C-hypergraph (or cohypergraph in such a way that at least two vertices receive the same color and in every proper coloring of a B-hypergraph (or bihypergraph, we forbid the cases when the vertices of any of its edges are colored with the same color (monochromatic or when they are all colored with distinct colors (rainbow. In this paper, we determined explicit formulae for the chromatic polynomials of C-hypercycles and B-hypercycles

  5. Zeroes of random Reinhardt polynomials

    OpenAIRE

    Karami, Arash

    2012-01-01

    For a Reinhardt domain $\\Omega$ with the smooth boundary in $\\mathbb{C}^{m+1}$ and a positive smooth measure $\\mu$ on the boundary of $\\Omega$, we consider the ensemble $P_{N}$ of polynomials of degree $N$ with the Gaussian probability measure $\\gamma_{N}$ which is induced by $L^{2}(\\partial\\Omega,d\\mu)$. Our aim is to compute scaling limit distribution function and scaling limit pair correlation function between zeros when $z\\in\\partial\\Omega$. First of all we apply stationary phase method t...

  6. Global Polynomial Kernel Hazard Estimation

    DEFF Research Database (Denmark)

    Hiabu, Munir; Miranda, Maria Dolores Martínez; Nielsen, Jens Perch;

    2015-01-01

    This paper introduces a new bias reducing method for kernel hazard estimation. The method is called global polynomial adjustment (GPA). It is a global correction which is applicable to any kernel hazard estimator. The estimator works well from a theoretical point of view as it asymptotically...... reduces bias with unchanged variance. A simulation study investigates the finite-sample properties of GPA. The method is tested on local constant and local linear estimators. From the simulation experiment we conclude that the global estimator improves the goodness-of-fit. An especially encouraging result...

  7. Nonnegative Polynomials and Sums of Squares

    CERN Document Server

    Blekherman, Grigoriy

    2010-01-01

    In the smallest cases where there exist nonnegative polynomials that are not sums of squares we present a complete classification of the differences between these sets. We show that in these cases the fundamental reason that the set of sums of squares is smaller than the set of nonnegative polynomials is that polynomials of degree d satisfy certain linear relations known as the Cayley-Bacharach relations, which are not satisfied by polynomials of full degree 2d. For any nonnegative polynomial that is not a sum of squares we can write down a linear inequality coming from a Cayley-Bacharach relation that certifies that the polynomial is not a sum of squares. We also present structure results on the strictly positive sums of squares that lie on the boundary of the cone of sums of squares and results on extreme rays of the cone dual to the cone of sums of squares.

  8. An Improved Volumetric Estimation Using Polynomial Regression

    Directory of Open Access Journals (Sweden)

    Noraini Abdullah

    2011-12-01

    Full Text Available The polynomial regression (PR technique is used to estimate the parameters of the dependent variable having a polynomial relationship with the independent variable. Normality and nonlinearity exhibit polynomial characterization of power terms greater than 2. Polynomial Regression models (PRM with the auxiliary variables are considered up to their third order interactions. Preliminary, multicollinearity between the independent variables is minimized and statistical tests involving the Global, Correlation Coefficient, Wald, and Goodness-of-Fit tests, are carried out to select significant variables with their possible interactions. Comparisons between the polynomial regression models (PRM are made using the eight selection criteria (8SC. The best regression model is identified based on the minimum value of the eight selection criteria (8SC. The use of an appropriate transformation will increase in the degree of a statistically valid polynomial, hence, providing a better estimation for the model.

  9. Exceptional polynomials and SUSY quantum mechanics

    Indian Academy of Sciences (India)

    K V S Shiv Chaitanya; S Sree Ranjani; Prasanta K Panigrahi; R Radhakrishnan; V Srinivasan

    2015-07-01

    We show that for the quantum mechanical problem which admit classical Laguerre/Jacobi polynomials as solutions for the Schrödinger equations (SE), will also admit exceptional Laguerre/Jacobi polynomials as solutions having the same eigenvalues but with the ground state missing after a modification of the potential. Then, we claim that the existence of these exceptional polynomials leads to the presence of non-trivial supersymmetry.

  10. A new Arnoldi approach for polynomial eigenproblems

    Energy Technology Data Exchange (ETDEWEB)

    Raeven, F.A.

    1996-12-31

    In this paper we introduce a new generalization of the method of Arnoldi for matrix polynomials. The new approach is compared with the approach of rewriting the polynomial problem into a linear eigenproblem and applying the standard method of Arnoldi to the linearised problem. The algorithm that can be applied directly to the polynomial eigenproblem turns out to be more efficient, both in storage and in computation.

  11. Landau and Kolmogoroff type polynomial inequalities

    OpenAIRE

    Alves Claudia RR; Dimitrov Dimitar K

    1999-01-01

    Let be integers. Denote by the norm . For various positive values of and we establish Kolmogoroff type inequalities with certain constants , which hold for every ( denotes the space of real algebraic polynomials of degree not exceeding ). For the particular case and , we provide a complete characterisation of the positive constants and , for which the corresponding Landau type polynomial inequalities hold. In each case we determine the corresponding extremal polynomials for which e...

  12. Haglund's conjecture on 3-column Macdonald polynomials

    OpenAIRE

    Blasiak, Jonah

    2014-01-01

    We prove a positive combinatorial formula for the Schur expansion of LLT polynomials indexed by a 3-tuple of skew shapes. This verifies a conjecture of Haglund. The proof requires expressing a noncommutative Schur function as a positive sum of monomials in Lam's algebra of ribbon Schur operators. Combining this result with the expression of Haglund, Haiman, and Loehr for transformed Macdonald polynomials in terms of LLT polynomials then yields a positive combinatorial rule for transformed Mac...

  13. Accelerated graph-based spectral polynomial filters

    OpenAIRE

    Knyazev, Andrew; Malyshev, Alexander,

    2015-01-01

    Graph-based spectral denoising is a low-pass filtering using the eigendecomposition of the graph Laplacian matrix of a noisy signal. Polynomial filtering avoids costly computation of the eigendecomposition by projections onto suitable Krylov subspaces. Polynomial filters can be based, e.g., on the bilateral and guided filters. We propose constructing accelerated polynomial filters by running flexible Krylov subspace based linear and eigenvalue solvers such as the Block Locally Optimal Precond...

  14. Quantum Schubert polynomials and quantum Schur functions

    OpenAIRE

    Kirillov, Anatol N.

    1997-01-01

    We introduce the quantum multi-Schur functions, quantum factorial Schur functions and quantum Macdonald polynomials. We prove that for restricted vexillary permutations the quantum double Schubert polynomial coincides with some quantum multi-Schur function and prove a quantum analog of the Nagelsbach-Kostka and Jacobi-Trudi formulae for the quantum double Schubert polynomials in the case of Grassmannian permutations. We prove, also, an analog of the Billey-Jockusch-Stanley formula for quantum...

  15. Generalizations of Bernoulli numbers and polynomials

    OpenAIRE

    Qiu-Ming Luo; Bai-Ni Guo; Feng Qi; Lokenath Debnath

    2003-01-01

    The concepts of Bernoulli numbers Bn, Bernoulli polynomials Bn(x), and the generalized Bernoulli numbers Bn(a,b) are generalized to the one Bn(x;a,b,c) which is called the generalized Bernoulli polynomials depending on three positive real parameters. Numerous properties of these polynomials and some relationships between Bn, Bn(x), Bn(a,b), and Bn(x;a,b,c) are established.

  16. About polynomials related to a quadratic equation

    OpenAIRE

    Groux, Roland

    2011-01-01

    We consider here a particular quadratic equation linking two elements of a C-Algebra. By analysing powers of the unknowns, it appears a double sequence of polynomials related to classical Bernoulli polynomials. We get the generating functions, integral forms and explicit formulas for the coefficients involving cosecant and tangent numbers. We also study the use of these polynomials for the calculation of some integral transforms.

  17. Use of analytic functions and polynomials within the framework of nodal expansion method

    International Nuclear Information System (INIS)

    A method using one-dimensional flux approximation expressed in terms of polynomials and hyperbolic functions was derived and the accuracy of the method was explored. This method called SANEM(Semi-Analytic Nodal Expansion Method) employs the same transverse leakage approximation used in NEM(Nodal Expansion Method) and flux moment balance equations to find coupling coefficients in current continuity equation. An one-dimensional flux approximation is expressed in the second order/the third order/the fourth order polynomials combined with hyperbolic functions for which several weighting functions are applied and the accuracy of methods were compared. This method has advantages of minimizing memory increase and easy implementation to a nodal code based on the conventional NEM. Benchmark calculations for the code were performed using problems such as IAEA 3D problem, NEACRP-L336 problem and EPRI-9R problem. Results show that both reactivity and assembly power density prediction by the SANEM is better than NEM for NEACRP-L336 problem, which uses MOX fuel, EPRI-9R problem, which shows characteristics of assembly in core periphery. A step function weighting applied to the third order polynomial expansion of a one-dimensional flux approximation produced better results than the polynomial weighting applied to the third order polynomial expansion for IAEA 3D problem. Furthermore, Galerkin weighting applied to the fourth order polynomial expansion shows worse results than polynomial weighting applied to the third order polynomial expansion for IAEA 3D, NEACRP-L336 and EPRI-9R problems

  18. Matrix-valued polynomials in Lanczos type methods

    Energy Technology Data Exchange (ETDEWEB)

    Simoncini, V. [Universita di Padova (Italy); Gallopoulos, E. [Univ. of Illinois, Urbana, IL (United States)

    1994-12-31

    It is well known that convergence properties of iterative methods can be derived by studying the behavior of the residual polynomial over a suitable domain of the complex plane. Block Krylov subspace methods for the solution of linear systems A[x{sub 1},{hor_ellipsis}, x{sub s}] = [b{sub 1},{hor_ellipsis}, b{sub s}] lead to the generation of residual polynomials {phi}{sub m} {element_of} {bar P}{sub m,s} where {bar P}{sub m,s} is the subset of matrix-valued polynomials of maximum degree m and size s such that {phi}{sub m}(0) = I{sub s}, R{sub m} := B - AX{sub m} = {phi}{sub m}(A) {circ} R{sub 0}, where {phi}{sub m}(A) {circ} R{sub 0} := R{sub 0} - A{summation}{sub j=0}{sup m-1} A{sup j}R{sub 0}{xi}{sub j}, {xi}{sub j} {element_of} R{sup sxs}. An effective method has to balance adequate approximation with economical computation of iterates defined by the polynomial. Matrix valued polynomials can be used to improve the performance of block methods. Another approach is to solve for a single right-hand side at a time and use the generated information in order to update the approximations of the remaining systems. In light of this, a more general scheme is as follows: A subset of residuals (seeds) is selected and a block short term recurrence method is used to compute approximate solutions for the corresponding systems. At the same time the generated matrix valued polynomial is implicitly applied to the remaining residuals. Subsequently a new set of seeds is selected and the process is continued as above, till convergence of all right-hand sides. The use of a quasi-minimization technique ensures a smooth convergence behavior for all systems. In this talk the authors discuss the implementation of this class of algorithms and formulate strategies for the selection of parameters involved in the computation. Experiments and comparisons with other methods will be presented.

  19. Constructing Polynomial Spectral Models for Stars

    CERN Document Server

    Rix, Hans-Walter; Conroy, Charlie; Hogg, David W

    2016-01-01

    Stellar spectra depend on the stellar parameters and on dozens of photospheric elemental abundances. Simultaneous fitting of these $\\mathcal{N}\\sim \\,$10-40 model labels to observed spectra has been deemed unfeasible, because the number of ab initio spectral model grid calculations scales exponentially with $\\mathcal{N}$. We suggest instead the construction of a polynomial spectral model (PSM) of order $\\mathcal{O}$ for the model flux at each wavelength. Building this approximation requires a minimum of only ${\\mathcal{N}+\\mathcal{O}\\choose\\mathcal{O}}$ calculations: e.g. a quadratic spectral model ($\\mathcal{O}=\\,$2), which can then fit $\\mathcal{N}=\\,$20 labels simultaneously, can be constructed from as few as 231 ab initio spectral model calculations; in practice, a somewhat larger number ($\\sim\\,$300-1000) of randomly chosen models lead to a better performing PSM. Such a PSM can be a good approximation to ab initio spectral models only over a limited portion of label space, which will vary case by case. Y...

  20. On permutation polynomials over finite fields

    OpenAIRE

    C. Small; R. A. Mollin

    1987-01-01

    A polynomial f over a finite field F is called a permutation polynomial if the mapping F→F defined by f is one-to-one. In this paper we consider the problem of characterizing permutation polynomials; that is, we seek conditions on the coefficients of a polynomial which are necessary and sufficient for it to represent a permutation. We also give some results bearing on a conjecture of Carlitz which says essentially that for any even integer m, the cardinality of finite fields admitting pe...

  1. The q-Laguerre matrix polynomials.

    Science.gov (United States)

    Salem, Ahmed

    2016-01-01

    The Laguerre polynomials have been extended to Laguerre matrix polynomials by means of studying certain second-order matrix differential equation. In this paper, certain second-order matrix q-difference equation is investigated and solved. Its solution gives a generalized of the q-Laguerre polynomials in matrix variable. Four generating functions of this matrix polynomials are investigated. Two slightly different explicit forms are introduced. Three-term recurrence relation, Rodrigues-type formula and the q-orthogonality property are given. PMID:27190749

  2. Control to Facet for Polynomial Systems

    DEFF Research Database (Denmark)

    Sloth, Christoffer; Wisniewski, Rafael

    2014-01-01

    This paper presents a solution to the control to facet problem for arbitrary polynomial vector fields defined on simplices. The novelty of the work is to use Bernstein coefficients of polynomials for determining certificates of positivity. Specifically, the constraints that are set up for the...... controller design are solved by searching for polynomials in Bernstein form. This allows the controller design problem to be formulated as a linear programming problem. Examples are provided that demonstrate the efficiency of the method for designing controls for polynomial systems....

  3. Multi-indexed (q)-Racah Polynomials

    CERN Document Server

    Odake, Satoru

    2012-01-01

    As the second stage of the project $multi-indexed orthogonal polynomials$, we present, in the framework of `discrete quantum mechanics' with real shifts in one dimension, the multi-indexed (q)-Racah polynomials. They are obtained from the (q)-Racah polynomials by multiple application of the discrete analogue of the Darboux transformations or the Crum-Krein-Adler deletion of `virtual state' vectors of type I and II, in a similar way to the multi-indexed Laguerre and Jacobi polynomials reported earlier. The virtual state vectors are the `solutions' of the matrix Schr\\"odinger equation with negative `eigenvalues', except for one of the two boundary points.

  4. Macdonald Polynomials and Multivariable Basic Hypergeometric Series

    Directory of Open Access Journals (Sweden)

    Michael J. Schlosser

    2007-03-01

    Full Text Available We study Macdonald polynomials from a basic hypergeometric series point of view. In particular, we show that the Pieri formula for Macdonald polynomials and its recently discovered inverse, a recursion formula for Macdonald polynomials, both represent multivariable extensions of the terminating very-well-poised ${}_6phi_5$ summation formula. We derive several new related identities including multivariate extensions of Jackson's very-well-poised ${}_8phi_7$ summation. Motivated by our basic hypergeometric analysis, we propose an extension of Macdonald polynomials to Macdonald symmetric functions indexed by partitions with complex parts. These appear to possess nice properties.

  5. On the Fermionic -adic Integral Representation of Bernstein Polynomials Associated with Euler Numbers and Polynomials

    Directory of Open Access Journals (Sweden)

    Ryoo CS

    2010-01-01

    Full Text Available The purpose of this paper is to give some properties of several Bernstein type polynomials to represent the fermionic -adic integral on . From these properties, we derive some interesting identities on the Euler numbers and polynomials.

  6. Schubert polynomials, slide polynomials, Stanley symmetric functions and quasi-Yamanouchi pipe dreams

    OpenAIRE

    Assaf, Sami; Searles, Dominic

    2016-01-01

    We introduce two new bases for polynomials that lift monomial and fundamental quasisymmetric functions to the full polynomial ring. By defining a new condition on pipe dreams, called quasi-Yamanouchi, we give a positive combinatorial rule for expanding Schubert polynomials into these new bases that parallels the expansion of Schur functions into fundamental quasisymmetric functions. As a result, we obtain a refinement of the stable limits of Schubert polynomials to Stanley symmetric functions...

  7. A third-order multistep time discretization for a Chebyshev tau spectral method

    Science.gov (United States)

    Vreman, A. W.; Kuerten, J. G. M.

    2016-01-01

    A time discretization scheme based on the third-order backward difference formula has been embedded into a Chebyshev tau spectral method for the Navier-Stokes equations. The time discretization is a variant of the second-order backward scheme proposed by Krasnov et al. (2008) [3]. High-resolution direct numerical simulations of turbulent incompressible channel flow have been performed to compare the backward scheme to the Runge-Kutta scheme proposed by Spalart et al. (1991) [2]. It is shown that the Runge-Kutta scheme leads to a poor convergence of some third-order spatial derivatives in the direct vicinity of the wall, derivatives that represent the diffusion of wall-tangential vorticity. The convergence at the wall is shown to be significantly improved if the backward scheme is applied.

  8. A Design and Analysis of Dolph-Chebyshev Microstrip Planar Array Using Butler Matrix Beamforming Networks

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The design and analysis of special type beamformer, the Butler matrix, to achieve orthogonal beamforming networks is presented in this paper. A 4×4 microstrip planar array antenna is assumed to simulate a 4×4 Butler matrix to demonstrate orthogonal beamforming and beam steering. The dimensions of rectangular patches in the planar array are chosen according to the Dolph-Chebyshev current distribution in order to minimize the side-lobe level ratio for a given value of beamwidth. The simulations are carried out using an antenna design and analysis software PCAAD. It is shown that orthogonal beams can be formed to cover about 163° angle with a constant beam crossover level and high directivity.

  9. Transfer matrix computation of generalized critical polynomials in percolation

    International Nuclear Information System (INIS)

    Percolation thresholds have recently been studied by means of a graph polynomial PB(p), henceforth referred to as the critical polynomial, that may be defined on any periodic lattice. The polynomial depends on a finite subgraph B, called the basis, and the way in which the basis is tiled to form the lattice. The unique root of PB(p) in [0, 1] either gives the exact percolation threshold for the lattice, or provides an approximation that becomes more accurate with appropriately increasing size of B. Initially PB(p) was defined by a contraction-deletion identity, similar to that satisfied by the Tutte polynomial. Here, we give an alternative probabilistic definition of PB(p), which allows for much more efficient computations, by using the transfer matrix, than was previously possible with contraction-deletion. We present bond percolation polynomials for the (4, 82), kagome, and (3, 122) lattices for bases of up to respectively 96, 162 and 243 edges, much larger than the previous limit of 36 edges using contraction-deletion. We discuss in detail the role of the symmetries and the embedding of B. For the largest bases, we obtain the thresholds pc(4, 82) = 0.676 803 329…, pc(kagome) = 0.524 404 998…, pc(3, 122) = 0.740 420 798…, comparable to the best simulation results. We also show that the alternative definition of PB(p) can be applied to study site percolation problems. This article is part of ‘Lattice models and integrability’, a special issue of Journal of Physics A: Mathematical and Theoretical in honour of F Y Wu's 80th birthday. (paper)

  10. Methods of Approximation Theory in Complex Analysis and Mathematical Physics

    CERN Document Server

    Saff, Edward

    1993-01-01

    The book incorporates research papers and surveys written by participants ofan International Scientific Programme on Approximation Theory jointly supervised by Institute for Constructive Mathematics of University of South Florida at Tampa, USA and the Euler International Mathematical Instituteat St. Petersburg, Russia. The aim of the Programme was to present new developments in Constructive Approximation Theory. The topics of the papers are: asymptotic behaviour of orthogonal polynomials, rational approximation of classical functions, quadrature formulas, theory of n-widths, nonlinear approximation in Hardy algebras,numerical results on best polynomial approximations, wavelet analysis. FROM THE CONTENTS: E.A. Rakhmanov: Strong asymptotics for orthogonal polynomials associated with exponential weights on R.- A.L. Levin, E.B. Saff: Exact Convergence Rates for Best Lp Rational Approximation to the Signum Function and for Optimal Quadrature in Hp.- H. Stahl: Uniform Rational Approximation of x .- M. Rahman, S.K. ...

  11. Error bounds for some semidefinite programming approaches to polynomial minimization on the hypercube

    NARCIS (Netherlands)

    Klerk, E. de; Laurent, M.

    2010-01-01

    We consider the problem of minimizing a polynomial on the hypercube [0, 1]n and derive new error bounds for the hierarchy of semidefinite programming approximations to this problem corresponding to the Positivstellensatz of Schmu ̈dgen [26]. The main tool we employ is Bernstein approximations of pol

  12. Polynomial invariants of quantum codes

    CERN Document Server

    Rains, E M

    1997-01-01

    The weight enumerators (quant-ph/9610040) of a quantum code are quite powerful tools for exploring its structure. As the weight enumerators are quadratic invariants of the code, this suggests the consideration of higher-degree polynomial invariants. We show that the space of degree k invariants of a code of length n is spanned by a set of basic invariants in one-to-one correspondence with S_k^n. We then present a number of equations and inequalities in these invariants; in particular, we give a higher-order generalization of the shadow enumerator of a code, and prove that its coefficients are nonnegative. We also prove that the quartic invariants of a ((4,4,2)) are uniquely determined, an important step in a proof that any ((4,4,2)) is additive ([2]).

  13. Algebras, dialgebras, and polynomial identities

    CERN Document Server

    Bremner, Murray R

    2012-01-01

    This is a survey of some recent developments in the theory of associative and nonassociative dialgebras, with an emphasis on polynomial identities and multilinear operations. We discuss associative, Lie, Jordan, and alternative algebras, and the corresponding dialgebras; the KP algorithm for converting identities for algebras into identities for dialgebras; the BSO algorithm for converting operations in algebras into operations in dialgebras; Lie and Jordan triple systems, and the corresponding disystems; and a noncommutative version of Lie triple systems based on the trilinear operation abc-bca. The paper concludes with a conjecture relating the KP and BSO algorithms, and some suggestions for further research. Most of the original results are joint work with Raul Felipe, Luiz A. Peresi, and Juana Sanchez-Ortega.

  14. Fuzzy Morphological Polynomial Image Representation

    Directory of Open Access Journals (Sweden)

    Chin-Pan Huang

    2010-01-01

    Full Text Available A novel signal representation using fuzzy mathematical morphology is developed. We take advantage of the optimum fuzzy fitting and the efficient implementation of morphological operators to extract geometric information from signals. The new representation provides results analogous to those given by the polynomial transform. Geometrical decomposition of a signal is achieved by windowing and applying sequentially fuzzy morphological opening with structuring functions. The resulting representation is made to resemble an orthogonal expansion by constraining the results of opening to equate adapted structuring functions. Properties of the geometric decomposition are considered and used to calculate the adaptation parameters. Our procedure provides an efficient and flexible representation which can be efficiently implemented in parallel. The application of the representation is illustrated in data compression and fractal dimension estimation temporal signals and images.

  15. Iterative methods for simultaneous inclusion of polynomial zeros

    CERN Document Server

    Petković, Miodrag

    1989-01-01

    The simultaneous inclusion of polynomial complex zeros is a crucial problem in numerical analysis. Rapidly converging algorithms are presented in these notes, including convergence analysis in terms of circular regions, and in complex arithmetic. Parallel circular iterations, where the approximations to the zeros have the form of circular regions containing these zeros, are efficient because they also provide error estimates. There are at present no book publications on this topic and one of the aims of this book is to collect most of the algorithms produced in the last 15 years. To decrease the high computational cost of interval methods, several effective iterative processes for the simultaneous inclusion of polynomial zeros which combine the efficiency of ordinary floating-point arithmetic with the accuracy control that may be obtained by the interval methods, are set down, and their computational efficiency is described. The rate of these methods is of interest in designing a package for the simultaneous ...

  16. Elementary combinatorics of the HOMFLYPT polynomial

    OpenAIRE

    Chmutov, Sergei; Polyak, Michael

    2008-01-01

    We explore Jaeger's state model for the HOMFLYPT polynomial. We reformulate this model in the language of Gauss diagrams and use it to obtain Gauss diagram formulas for a two-parameter family of Vassiliev invariants coming from the HOMFLYPT polynomial. These formulas are new already for invariants of degree 3.

  17. The Bessel polynomials and their differential operators

    International Nuclear Information System (INIS)

    Differential operators associated with the ordinary and the generalized Bessel polynomials are defined. In each case the commutator bracket is constructed and shows that the differential operators associated with the Bessel polynomials and their generalized form are not commutative. Some applications of these operators to linear differential equations are also discussed. (author). 4 refs

  18. Sums of Powers of Fibonacci Polynomials

    Indian Academy of Sciences (India)

    Helmut Prodinger

    2009-11-01

    Using the explicit (Binet) formula for the Fibonacci polynomials, a summation formula for powers of Fibonacci polynomials is derived straightforwardly, which generalizes a recent result for squares that appeared in Proc. Ind. Acad. Sci. (Math. Sci.) 118 (2008) 27--41.

  19. The weighted lattice polynomials as aggregation functions

    OpenAIRE

    Marichal, Jean-Luc

    2006-01-01

    We define the concept of weighted lattice polynomials as lattice polynomials constructed from both variables and parameters. We provide equivalent forms of these functions in an arbitrary bounded distributive lattice. We also show that these functions include the class of discrete Sugeno integrals and that they are characterized by a remarkable median based decomposition formula.

  20. A Note on Solvable Polynomial Algebras

    Directory of Open Access Journals (Sweden)

    Huishi Li

    2014-03-01

    Full Text Available In terms of their defining relations, solvable polynomial algebras introduced by Kandri-Rody and Weispfenning [J. Symbolic Comput., 9(1990] are characterized by employing Gr\\"obner bases of ideals in free algebras, thereby solvable polynomial algebras are completely determinable and constructible in a computational way.

  1. On the Zeros of a Polynomial

    Indian Academy of Sciences (India)

    V K Jain

    2009-02-01

    For a polynomial of degree , we have obtained an upper bound involving coefficients of the polynomial, for moduli of its zeros of smallest moduli, and then a refinement of the well-known Eneström–Kakeya theorem (under certain conditions).

  2. A generalization of the Bernoulli polynomials

    OpenAIRE

    Pierpaolo Natalini; Angela Bernardini

    2003-01-01

    A generalization of the Bernoulli polynomials and, consequently, of the Bernoulli numbers, is defined starting from suitable generating functions. Furthermore, the differential equations of these new classes of polynomials are derived by means of the factorization method introduced by Infeld and Hull (1951).

  3. A generalization of the Bernoulli polynomials

    Directory of Open Access Journals (Sweden)

    Pierpaolo Natalini

    2003-01-01

    Full Text Available A generalization of the Bernoulli polynomials and, consequently, of the Bernoulli numbers, is defined starting from suitable generating functions. Furthermore, the differential equations of these new classes of polynomials are derived by means of the factorization method introduced by Infeld and Hull (1951.

  4. Quantum Search for Zeros of Polynomials

    CERN Document Server

    Weigert, S

    2003-01-01

    A quantum mechanical search procedure to determine the real zeros of a polynomial is introduced. It is based on the construction of a spin observable whose eigenvalues coincide with the zeros of the polynomial. Subsequent quantum mechanical measurements of the observable output directly the numerical values of the zeros. Performing the measurements is the only computational resource involved.

  5. A quantum search for zeros of polynomials

    Energy Technology Data Exchange (ETDEWEB)

    Weigert, Stefan [HuMP-Hull Mathematical Physics, Department of Mathematics, University of Hull, Hull HU6 7RX (United Kingdom)

    2003-12-01

    A quantum mechanical search procedure to determine the real zeros of a polynomial is introduced. It is based on the construction of a spin observable whose eigenvalues coincide with the zeros of the polynomial. Subsequent quantum mechanical measurements of the observable output directly the numerical values of the zeros. Performing the measurements is the only computational resource involved.

  6. Point vortex equilibria related to Bessel polynomials

    Science.gov (United States)

    O'Neil, Kevin A.

    2016-05-01

    The method of polynomials is used to construct two families of stationary point vortex configurations. The vortices are placed at the reciprocals of the zeroes of Bessel polynomials. Configurations that translate uniformly, and configurations that are completely stationary, are obtained in this way.

  7. Large degree asymptotics of generalized Bessel polynomials

    NARCIS (Netherlands)

    López, J.L.; Temme, N.M.

    2011-01-01

    Asymptotic expansions are given for large values of $n$ of the generalized Bessel polynomials $Y_n^\\mu(z)$. The analysis is based on integrals that follow from the generating functions of the polynomials. A new simple expansion is given that is valid outside a compact neighborhood of the origin in t

  8. A $(p,q)$-Analogue of Poly-Euler Polynomials and Some Related Polynomials

    OpenAIRE

    Komatsu, Takao; Ramírez, José L.; Sirvent, Víctor F.

    2016-01-01

    In the present article, we introduce a $(p,q)$-analogue of the poly-Euler polynomials and numbers by using the $(p,q)$-polylogarithm function. These new sequences are generalizations of the poly-Euler numbers and polynomials. We give several combinatorial identities and properties of these new polynomials. Moreover, we show some relations with the $(p,q)$-poly-Bernoulli polynomials and $(p,q)$-poly-Cauchy polynomials. The $(p,q)$-analogues generalize the well-known concept of the $q$-analogue.

  9. Sobolev orthogonal polynomials on a simplex

    CERN Document Server

    Aktas, Rabia

    2011-01-01

    The Jacobi polynomials on the simplex are orthogonal polynomials with respect to the weight function $W_\\bg(x) = x_1^{\\g_1} ... x_d^{\\g_d} (1- |x|)^{\\g_{d+1}}$ when all $\\g_i > -1$ and they are eigenfunctions of a second order partial differential operator $L_\\bg$. The singular cases that some, or all, $\\g_1,...,\\g_{d+1}$ are -1 are studied in this paper. Firstly a complete basis of polynomials that are eigenfunctions of $L_\\bg$ in each singular case is found. Secondly, these polynomials are shown to be orthogonal with respect to an inner product which is explicitly determined. This inner product involves derivatives of the functions, hence the name Sobolev orthogonal polynomials.

  10. Orthogonal Polynomials from Hermitian Matrices II

    CERN Document Server

    Odake, Satoru

    2016-01-01

    This is the second part of the project `unified theory of classical orthogonal polynomials of a discrete variable derived from the eigenvalue problems of hermitian matrices.' In a previous paper, orthogonal polynomials having Jackson integral measures were not included, since such measures cannot be obtained from single infinite dimensional hermitian matrices. Here we show that Jackson integral measures for the polynomials of the big $q$-Jacobi family are the consequence of the recovery of self-adjointness of the unbounded Jacobi matrices governing the difference equations of these polynomials. The recovery of self-adjointness is achieved in an extended $\\ell^2$ Hilbert space on which a direct sum of two unbounded Jacobi matrices acts as a Hamiltonian or a difference Schr\\"odinger operator for an infinite dimensional eigenvalue problem. The polynomial appearing in the upper/lower end of Jackson integral constitutes the eigenvector of each of the two unbounded Jacobi matrix of the direct sum. We also point out...

  11. Matrix product formula for Macdonald polynomials

    International Nuclear Information System (INIS)

    We derive a matrix product formula for symmetric Macdonald polynomials. Our results are obtained by constructing polynomial solutions of deformed Knizhnik–Zamolodchikov equations, which arise by considering representations of the Zamolodchikov–Faddeev and Yang–Baxter algebras in terms of t-deformed bosonic operators. These solutions are generalized probabilities for particle configurations of the multi-species asymmetric exclusion process, and form a basis of the ring of polynomials in n variables whose elements are indexed by compositions. For weakly increasing compositions (anti-dominant weights), these basis elements coincide with non-symmetric Macdonald polynomials. Our formulas imply a natural combinatorial interpretation in terms of solvable lattice models. They also imply that normalizations of stationary states of multi-species exclusion processes are obtained as Macdonald polynomials at q = 1. (paper)

  12. Tutte polynomial in functional magnetic resonance imaging

    Science.gov (United States)

    García-Castillón, Marlly V.

    2015-09-01

    Methods of graph theory are applied to the processing of functional magnetic resonance images. Specifically the Tutte polynomial is used to analyze such kind of images. Functional Magnetic Resonance Imaging provide us connectivity networks in the brain which are represented by graphs and the Tutte polynomial will be applied. The problem of computing the Tutte polynomial for a given graph is #P-hard even for planar graphs. For a practical application the maple packages "GraphTheory" and "SpecialGraphs" will be used. We will consider certain diagram which is depicting functional connectivity, specifically between frontal and posterior areas, in autism during an inferential text comprehension task. The Tutte polynomial for the resulting neural networks will be computed and some numerical invariants for such network will be obtained. Our results show that the Tutte polynomial is a powerful tool to analyze and characterize the networks obtained from functional magnetic resonance imaging.

  13. Approximability and Parameterized Complexity of Minmax Values

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Arnsfelt; Hansen, Thomas Dueholm; Miltersen, Peter Bro; Sørensen, Troels Bjerre

    2008-01-01

    , approximating the value with a precision of c log log n digits (for any constant c ≥ 1) can be done in quasi-polynomial time. We consider the parameterized complexity of the problem, with the parameter being the number of pure strategies k of the player for which the minmax value is computed. We show that if...

  14. 赋β-范空间中的最佳逼近问题%The Problems of Best Approximation in β-Normed Spaces(0<β<1)

    Institute of Scientific and Technical Information of China (English)

    王见勇

    2008-01-01

    This paper deals with the problems of best approximation in β-normed spaces.With the tool of conjugate cone introduced in [1] and via the Hahn-Banach extension theorem of β-subseminorm in [2],the characteristics that an element in a closed subspace is the best approximation are given in Section 2.It is obtained in Section 3 that all convex sets or subspaces of a β-normed space are semi-Chebyshev if and only if the space is itself strictly convex.The fact that every finite dimensional subspace of a strictly convex β-normed space must be Chebyshev is proved at last.

  15. Bernoulli-like polynomials associated with Stirling Numbers

    OpenAIRE

    Bender, Carl M; Brody, Dorje C.; BERNHARD K. MEISTER

    2005-01-01

    The Stirling numbers of the first kind can be represented in terms of a new class of polynomials that are closely related to the Bernoulli polynomials. Recursion relations for these polynomials are given.

  16. Diophantine approximations

    CERN Document Server

    Niven, Ivan

    2008-01-01

    This self-contained treatment originated as a series of lectures delivered to the Mathematical Association of America. It covers basic results on homogeneous approximation of real numbers; the analogue for complex numbers; basic results for nonhomogeneous approximation in the real case; the analogue for complex numbers; and fundamental properties of the multiples of an irrational number, for both the fractional and integral parts.The author refrains from the use of continuous fractions and includes basic results in the complex case, a feature often neglected in favor of the real number discuss

  17. Polynomial Interpolation in the Elliptic Curve Cryptosystem

    Directory of Open Access Journals (Sweden)

    Liew K. Jie

    2011-01-01

    Full Text Available Problem statement: In this research, we incorporate the polynomial interpolation method in the discrete logarithm problem based cryptosystem which is the elliptic curve cryptosystem. Approach: In this study, the polynomial interpolation method to be focused is the Lagrange polynomial interpolation which is the simplest polynomial interpolation method. This method will be incorporated in the encryption algorithm of the elliptic curve ElGamal cryptosystem. Results: The scheme modifies the elliptic curve ElGamal cryptosystem by adding few steps in the encryption algorithm. Two polynomials are constructed based on the encrypted points using Lagrange polynomial interpolation and encrypted for the second time using the proposed encryption method. We believe it is safe from the theoretical side as it still relies on the discrete logarithm problem of the elliptic curve. Conclusion/Recommendations: The modified scheme is expected to be more secure than the existing scheme as it offers double encryption techniques. On top of the existing encryption algorithm, we managed to encrypt one more time using the polynomial interpolation method. We also have provided detail examples based on the described algorithm.

  18. More on rotations as spin matrix polynomials

    Energy Technology Data Exchange (ETDEWEB)

    Curtright, Thomas L. [Department of Physics, University of Miami, Coral Gables, Florida 33124-8046 (United States)

    2015-09-15

    Any nonsingular function of spin j matrices always reduces to a matrix polynomial of order 2j. The challenge is to find a convenient form for the coefficients of the matrix polynomial. The theory of biorthogonal systems is a useful framework to meet this challenge. Central factorial numbers play a key role in the theoretical development. Explicit polynomial coefficients for rotations expressed either as exponentials or as rational Cayley transforms are considered here. Structural features of the results are discussed and compared, and large j limits of the coefficients are examined.

  19. Cycles are determined by their domination polynomials

    OpenAIRE

    Akbari, Saieed; Oboudi, Mohammad Reza

    2009-01-01

    Let $G$ be a simple graph of order $n$. A dominating set of $G$ is a set $S$ of vertices of $G$ so that every vertex of $G$ is either in $S$ or adjacent to a vertex in $S$. The domination polynomial of $G$ is the polynomial $D(G,x)=\\sum_{i=1}^{n} d(G,i) x^{i}$, where $d(G,i)$ is the number of dominating sets of $G$ of size $i$. In this paper we show that cycles are determined by their domination polynomials.

  20. On function compositions that are polynomials

    OpenAIRE

    Aichinger, Erhard

    2015-01-01

    For a polynomial map $\\tupBold{f} : k^n \\to k^m$ ($k$ a field), we investigate those polynomials $g \\in k[t_1,\\ldots, t_n]$ that can be written as a composition $g = h \\circ \\tupBold{f}$, where $h: k^m \\to k$ is an arbitrary function. In the case that $k$ is algebraically closed of characteristic~$0$ and $\\tupBold{f}$ is surjective, we will show that $g = h \\circ \\tupBold{f}$ implies that $h$ is a polynomial.

  1. On Combinatorial Formulas for Macdonald Polynomials

    OpenAIRE

    Lenart, Cristian

    2008-01-01

    A recent breakthrough in the theory of (type A) Macdonald polynomials is due to Haglund, Haiman and Loehr, who exhibited a combinatorial formula for these polynomials in terms of a pair of statistics on fillings of Young diagrams. Ram and Yip gave a formula for the Macdonald polynomials of arbitrary type in terms of so-called alcove walks; these originate in the work of Gaussent-Littelmann and of the author with Postnikov on discrete counterparts to the Littelmann path model. In this paper, w...

  2. On Calculation of Adomian Polynomials by MATLAB

    Directory of Open Access Journals (Sweden)

    Hossein ABOLGHASEMI

    2011-01-01

    Full Text Available Adomian Decomposition Method (ADM is an elegant technique to handle an extensive class of linear or nonlinear differential and integral equations. However, in case of nonlinear equations, ADM demands a special representation of each nonlinear term, namely, Adomian polynomials. The present paper introduces a novel MATLAB code which computes Adomian polynomials associated with several types of nonlinearities. The code exploits symbolic programming incorporated with a recently proposed alternative scheme to be straightforward and fast. For the sake of exemplification, Adomian polynomials of famous nonlinear operators, computed by the code, are given.

  3. Zernike olivary polynomials for applications with olivary pupils.

    Science.gov (United States)

    Zheng, Yi; Sun, Shanshan; Li, Ying

    2016-04-20

    Orthonormal polynomials have been extensively applied in optical image systems. One important optical pupil, which is widely processed in lateral shearing interferometers (LSI) and subaperture stitch tests (SST), is the overlap region of two circular wavefronts that are displaced from each other. We call it an olivary pupil. In this paper, the normalized process of an olivary pupil in a unit circle is first presented. Then, using a nonrecursive matrix method, Zernike olivary polynomials (ZOPs) are obtained. Previously, Zernike elliptical polynomials (ZEPs) have been considered as an approximation over an olivary pupil. We compare ZOPs with their ZEPs counterparts. Results show that they share the same components but are in different proportions. For some low-order aberrations such as defocus, coma, and spherical, the differences are considerable and may lead to deviations. Using a least-squares method to fit coefficient curves, we present a power-series expansion form for the first 15 ZOPs, which can be used conveniently with less than 0.1% error. The applications of ZOP are demonstrated in wavefront decomposition, LSI interferogram reconstruction, and SST overlap domain evaluation. PMID:27140076

  4. On the Approximation and Smoothed Complexity of Leontief Market Equilibria

    OpenAIRE

    Huang, Li-Sha; Teng, Shang-Hua

    2006-01-01

    We show that the problem of finding an \\epsilon-approximate Nash equilibrium of an n by n two-person games can be reduced to the computation of an (\\epsilon/n)^2-approximate market equilibrium of a Leontief economy. Together with a recent result of Chen, Deng and Teng, this polynomial reduction implies that the Leontief market exchange problem does not have a fully polynomial-time approximation scheme, that is, there is no algorithm that can compute an \\epsilon-approximate market equilibrium ...

  5. Wind Turbine Driving a PM Synchronous Generator Using Novel Recurrent Chebyshev Neural Network Control with the Ideal Learning Rate

    Directory of Open Access Journals (Sweden)

    Chih-Hong Lin

    2016-06-01

    Full Text Available A permanent magnet (PM synchronous generator system driven by wind turbine (WT, connected with smart grid via AC-DC converter and DC-AC converter, are controlled by the novel recurrent Chebyshev neural network (NN and amended particle swarm optimization (PSO to regulate output power and output voltage in two power converters in this study. Because a PM synchronous generator system driven by WT is an unknown non-linear and time-varying dynamic system, the on-line training novel recurrent Chebyshev NN control system is developed to regulate DC voltage of the AC-DC converter and AC voltage of the DC-AC converter connected with smart grid. Furthermore, the variable learning rate of the novel recurrent Chebyshev NN is regulated according to discrete-type Lyapunov function for improving the control performance and enhancing convergent speed. Finally, some experimental results are shown to verify the effectiveness of the proposed control method for a WT driving a PM synchronous generator system in smart grid.

  6. High-order Finite Elements on Pyramids: Approximation Spaces, Unisolvency and Exactness

    OpenAIRE

    Nigam, Nilima; Phillips, Joel

    2010-01-01

    We present a family of high-order finite element approximation spaces on a pyramid, and associated unisolvent degrees of freedom. These spaces consist of rational basis functions. We establish conforming, exactness and polynomial approximation properties.

  7. Approximate Representations and Approximate Homomorphisms

    OpenAIRE

    Moore, Cristopher; Russell, Alexander

    2010-01-01

    Approximate algebraic structures play a defining role in arithmetic combinatorics and have found remarkable applications to basic questions in number theory and pseudorandomness. Here we study approximate representations of finite groups: functions f:G -> U_d such that Pr[f(xy) = f(x) f(y)] is large, or more generally Exp_{x,y} ||f(xy) - f(x)f(y)||^2$ is small, where x and y are uniformly random elements of the group G and U_d denotes the unitary group of degree d. We bound these quantities i...

  8. Tutte Polynomial of Scale-Free Networks

    Science.gov (United States)

    Chen, Hanlin; Deng, Hanyuan

    2016-05-01

    The Tutte polynomial of a graph, or equivalently the q-state Potts model partition function, is a two-variable polynomial graph invariant of considerable importance in both statistical physics and combinatorics. The computation of this invariant for a graph is NP-hard in general. In this paper, we focus on two iteratively growing scale-free networks, which are ubiquitous in real-life systems. Based on their self-similar structures, we mainly obtain recursive formulas for the Tutte polynomials of two scale-free networks (lattices), one is fractal and "large world", while the other is non-fractal but possess the small-world property. Furthermore, we give some exact analytical expressions of the Tutte polynomial for several special points at ( x, y)-plane, such as, the number of spanning trees, the number of acyclic orientations, etc.

  9. Transversals of Complex Polynomial Vector Fields

    DEFF Research Database (Denmark)

    Dias, Kealey

    Vector fields in the complex plane are defined by assigning the vector determined by the value P(z) to each point z in the complex plane, where P is a polynomial of one complex variable. We consider special families of so-called rotated vector fields that are determined by a polynomial multiplied...... by rotational constants. Transversals are a certain class of curves for such a family of vector fields that represent the bifurcation states for this family of vector fields. More specifically, transversals are curves that coincide with a homoclinic separatrix for some rotation of the vector field....... Given a concrete polynomial, it seems to take quite a bit of work to prove that it is generic, i.e. structurally stable. This has been done for a special class of degree d polynomial vector fields having simple equilibrium points at the d roots of unity, d odd. In proving that such vector fields are...

  10. Characteristic Polynomials of Sample Covariance Matrices

    OpenAIRE

    Kösters, Holger

    2009-01-01

    We investigate the second-order correlation function of the characteristic polynomial of a sample covariance matrix. Starting from an explicit formula for the generating function, we re-obtain several well-known kernels from random matrix theory.

  11. Solving Bivariate Polynomial Systems on a GPU

    International Nuclear Information System (INIS)

    We present a CUDA implementation of dense multivariate polynomial arithmetic based on Fast Fourier Transforms over finite fields. Our core routine computes on the device (GPU) the subresultant chain of two polynomials with respect to a given variable. This subresultant chain is encoded by values on a FFT grid and is manipulated from the host (CPU) in higher-level procedures. We have realized a bivariate polynomial system solver supported by our GPU code. Our experimental results (including detailed profiling information and benchmarks against a serial polynomial system solver implementing the same algorithm) demonstrate that our strategy is well suited for GPU implementation and provides large speedup factors with respect to pure CPU code.

  12. Superconformal minimal models and admissible Jack polynomials

    CERN Document Server

    Blondeau-Fournier, Olivier; Ridout, David; Wood, Simon

    2016-01-01

    We give new proofs of the rationality of the N=1 superconformal minimal model vertex operator superalgebras and of the classification of their modules in both the Neveu-Schwarz and Ramond sectors. For this, we combine the standard free field realisation with the theory of Jack symmetric functions. A key role is played by Jack symmetric polynomials with a certain negative parameter that are labelled by admissible partitions. These polynomials are shown to describe free fermion correlators, suitably dressed by a symmetrising factor. The classification proofs concentrate on explicitly identifying Zhu's algebra and its twisted analogue. Interestingly, these identifications do not use an explicit expression for the non-trivial vacuum singular vector. While the latter is known to be expressible in terms of an Uglov symmetric polynomial or a linear combination of Jack superpolynomials, it turns out that standard Jack polynomials (and functions) suffice to prove the classification.

  13. Inequalities for a polynomial and its derivative

    Science.gov (United States)

    Chanam, Barchand; Dewan, K. K.

    2007-12-01

    Let , 1[less-than-or-equals, slant][mu][less-than-or-equals, slant]n, be a polynomial of degree n such that p(z)[not equal to]0 in z0, then for 0Yadav and Pukhta [K.K. Dewan, R.S. Yadav, M.S. Pukhta, Inequalities for a polynomial and its derivative, Math. Inequal. Appl. 2 (2) (1999) 203-205] proved Equality holds for the polynomial where n is a multiple of [mu]E In this paper, we obtain an improvement of the above inequality by involving some of the coefficients. As an application of our result, we further improve upon a result recently proved by Aziz and Shah [A. Aziz, W.M. Shah, Inequalities for a polynomial and its derivative, Math. Inequal. Appl. 7 (3) (2004) 379-391].

  14. Improved Fault Classification in Series Compensated Transmission Line: Comparative Evaluation of Chebyshev Neural Network Training Algorithms.

    Science.gov (United States)

    Vyas, Bhargav Y; Das, Biswarup; Maheshwari, Rudra Prakash

    2016-08-01

    This paper presents the Chebyshev neural network (ChNN) as an improved artificial intelligence technique for power system protection studies and examines the performances of two ChNN learning algorithms for fault classification of series compensated transmission line. The training algorithms are least-square Levenberg-Marquardt (LSLM) and recursive least-square algorithm with forgetting factor (RLSFF). The performances of these algorithms are assessed based on their generalization capability in relating the fault current parameters with an event of fault in the transmission line. The proposed algorithm is fast in response as it utilizes postfault samples of three phase currents measured at the relaying end corresponding to half-cycle duration only. After being trained with only a small part of the generated fault data, the algorithms have been tested over a large number of fault cases with wide variation of system and fault parameters. Based on the studies carried out in this paper, it has been found that although the RLSFF algorithm is faster for training the ChNN in the fault classification application for series compensated transmission lines, the LSLM algorithm has the best accuracy in testing. The results prove that the proposed ChNN-based method is accurate, fast, easy to design, and immune to the level of compensations. Thus, it is suitable for digital relaying applications. PMID:25314714

  15. Pseudo-conforming polynomial finite elements on quadrilaterals

    OpenAIRE

    Dubach, Eric; Luce, Robert; Thomas, Jean-Marie

    2008-01-01

    The aim of this paper is to present a new class of finite elements on quadrilaterals where the approximation is polynomial on each element K. In the case of Lagrange finite elements, the degrees of freedom are the values at the vertices and in the case of mixed finite elements the degrees of freedom are the mean values of the fluxes on each side. The degres of freedom are the same as those of classical finite elements. However, in general, with this kind of finite elements,the resolution of s...

  16. Bergman orthogonal polynomials and the Grunsky matrix

    OpenAIRE

    Beckermann, Bernhard; Stylianopoulos, Nikos

    2016-01-01

    By exploiting a link between Bergman orthogonal polynomials and the Grunsky matrix, probably first observed by Kühnau in 1985, we improve some recent results on strong asymptotics of Bergman polynomials outside the domain G of orthogonality, and on entries of the Bergman shift operator. In our proofs we suggest a new matrix approach involving the Grunsky matrix, and use well-established results in the literature relating properties of the Grunsky matrix to the regularity of the boundary of G,...

  17. Equivalence of polynomial conjectures in additive combinatorics

    CERN Document Server

    Lovett, Shachar

    2010-01-01

    We study two conjectures in additive combinatorics. The first is the polynomial Freiman-Ruzsa conjecture, which relates to the structure of sets with small doubling. The second is the inverse Gowers conjecture for $U^3$, which relates to functions which locally look like quadratics. In both cases a weak form, with exponential decay of parameters is known, and a strong form with only a polynomial loss of parameters is conjectured. Our main result is that the two conjectures are in fact equivalent.

  18. Stochastic processes with orthogonal polynomial eigenfunctions

    Science.gov (United States)

    Griffiths, Bob

    2009-12-01

    Markov processes which are reversible with either Gamma, Normal, Poisson or Negative Binomial stationary distributions in the Meixner class and have orthogonal polynomial eigenfunctions are characterized as being processes subordinated to well-known diffusion processes for the Gamma and Normal, and birth and death processes for the Poisson and Negative Binomial. A characterization of Markov processes with Beta stationary distributions and Jacobi polynomial eigenvalues is also discussed.

  19. Ferrers Matrices Characterized by the Rook Polynomials

    Institute of Scientific and Technical Information of China (English)

    MAHai-cheng; HUSheng-biao

    2003-01-01

    In this paper,we show that there exist precisely W(A) Ferrers matrices F(C1,C2,…,cm)such that the rook polynomials is equal to the rook polynomial of Ferrers matrix F(b1,b2,…,bm), where A={b1,b2-1,…,bm-m+1} is a repeated set,W(A) is weight of A.

  20. Quantum group invariants and link polynomials

    International Nuclear Information System (INIS)

    A general method is developed for constructing quantum group invariants and determining their eigenvalues. Applied to the universal R-matrix this method leads to the construction of a closed formula for link polynomials. To illustrate the application of this formula, the quantum groups Uq(E8), Uq(so(2m+1)) and Uq(gl(m)) are considered as examples, and corresponding link polynomials are obtained. (orig.)

  1. On Sharing, Memoization, and Polynomial Time

    OpenAIRE

    Avanzini, Martin; Dal Lago, Ugo

    2015-01-01

    We study how the adoption of an evaluation mechanism with sharing and memoization impacts the class of functions which can be computed in polynomial time. We first show how a natural cost model in which lookup for an already computed result has no cost is indeed invariant. As a corollary, we then prove that the most general notion of ramified recurrence is sound for polynomial time, this way settling an open problem in implicit computational complexity.

  2. Laguerre polynomials method in the valon model

    CERN Document Server

    Boroun, G R

    2014-01-01

    We used the Laguerre polynomials method for determination of the proton structure function in the valon model. We have examined the applicability of the valon model with respect to a very elegant method, where the structure of the proton is determined by expanding valon distributions and valon structure functions on Laguerre polynomials. We compared our results with the experimental data, GJR parameterization and DL model. Having checked, this method gives a good description for the proton structure function in valon model.

  3. Positive maps, positive polynomials and entanglement witnesses

    International Nuclear Information System (INIS)

    We link the study of positive quantum maps, block positive operators and entanglement witnesses with problems related to multivariate polynomials. For instance, we show how indecomposable block positive operators relate to biquadratic forms that are not sums of squares. Although the general problem of describing the set of positive maps remains open, in some particular cases we solve the corresponding polynomial inequalities and obtain explicit conditions for positivity.

  4. A Polynomial Preconditioner for the CMRH Algorithm

    OpenAIRE

    Shiji Xu; Jiangzhou Lai; Linzhang Lu

    2011-01-01

    Many large and sparse linear systems can be solved efficiently by restarted GMRES and CMRH methods Sadok 1999. The CMRH(m) method is less expensive and requires slightly less storage than GMRES(m). But like GMRES, the restarted CMRH method may not converge. In order to remedy this defect, this paper presents a polynomial preconditioner for CMRH-based algorithm. Numerical experiments are given to show that the polynomial preconditioner is quite simple and easily constructed and the preconditio...

  5. Nonsymmetric Askey-Wilson polynomials and $Q$-polynomial distance-regular graphs

    OpenAIRE

    Lee, Jae-Ho

    2015-01-01

    In his famous theorem (1982), Douglas Leonard characterized the $q$-Racah polynomials and their relatives in the Askey scheme from the duality property of $Q$-polynomial distance-regular graphs. In this paper we consider a nonsymmetric (or Laurent) version of the $q$-Racah polynomials in the above situation. Let $\\Gamma$ denote a $Q$-polynomial distance-regular graph that contains a Delsarte clique $C$. Assume that $\\Gamma$ has $q$-Racah type. Fix a vertex $x \\in C$. We partition the vertex s...

  6. Vector-Valued Jack Polynomials from Scratch

    Directory of Open Access Journals (Sweden)

    Jean-Gabriel Luque

    2011-03-01

    Full Text Available Vector-valued Jack polynomials associated to the symmetric group S_N are polynomials with multiplicities in an irreducible module of S_N and which are simultaneous eigenfunctions of the Cherednik-Dunkl operators with some additional properties concerning the leading monomial. These polynomials were introduced by Griffeth in the general setting of the complex reflections groups G(r,p,N and studied by one of the authors (C. Dunkl in the specialization r=p=1 (i.e. for the symmetric group. By adapting a construction due to Lascoux, we describe an algorithm allowing us to compute explicitly the Jack polynomials following a Yang-Baxter graph. We recover some properties already studied by C. Dunkl and restate them in terms of graphs together with additional new results. In particular, we investigate normalization, symmetrization and antisymmetrization, polynomials with minimal degree, restriction etc. We give also a shifted version of the construction and we discuss vanishing properties of the associated polynomials.

  7. Diffusion tensor image registration using polynomial expansion

    International Nuclear Information System (INIS)

    In this paper, we present a deformable registration framework for the diffusion tensor image (DTI) using polynomial expansion. The use of polynomial expansion in image registration has previously been shown to be beneficial due to fast convergence and high accuracy. However, earlier work was developed only for 3D scalar medical image registration. In this work, it is shown how polynomial expansion can be applied to DTI registration. A new measurement is proposed for DTI registration evaluation, which seems to be robust and sensitive in evaluating the result of DTI registration. We present the algorithms for DTI registration using polynomial expansion by the fractional anisotropy image, and an explicit tensor reorientation strategy is inherent to the registration process. Analytic transforms with high accuracy are derived from polynomial expansion and used for transforming the tensor's orientation. Three measurements for DTI registration evaluation are presented and compared in experimental results. The experiments for algorithm validation are designed from simple affine deformation to nonlinear deformation cases, and the algorithms using polynomial expansion give a good performance in both cases. Inter-subject DTI registration results are presented showing the utility of the proposed method. (paper)

  8. Reliable Computational Predictions by Modeling Uncertainties Using Arbitrary Polynomial Chaos

    OpenAIRE

    Witteveen, J.A.S.; Bijl, H

    2006-01-01

    Inherent physical uncertainties can have a significant influence on computational predictions. It is therefore important to take physical uncertainties into account to obtain more reliable computational predictions. The Galerkin polynomial chaos method is a commonly applied uncertainty quantification method. However, the polynomial chaos expansion has some limitations. Firstly, the polynomial chaos expansion based on classical polynomials can achieve exponential convergence for a limited set ...

  9. Efficient determination of the critical parameters and the statistical quantities for Klein-Gordon and sine-Gordon equations with a singular potential using generalized polynomial chaos methods

    CERN Document Server

    Chakraborty, Debananda

    2011-01-01

    We consider the Klein-Gordon and sine-Gordon type equations with a point-like potential, which describes the wave phenomenon in disordered media with a defect. The singular potential term yields a critical phenomenon--that is, the solution behavior around the critical parameter value bifurcates into two extreme cases. Pinpointing the critical value with arbitrary accuracy is even more challenging. In this work, we adopt the generalized polynomial chaos (gPC) method to determine the critical values and the mean solutions around such values. First, we consider the critical value associated with the strength of the singular potential for the Klein-Gordon equation. We expand the solution in the random variable associated with the parameter. The obtained partial differential equations are solved using the Chebyshev collocation method. Due to the existence of the singularity, the Gibbs phenomenon appears in the solution, yielding a slow convergence of the numerically computed critical value. To deal with the singul...

  10. Approximate Likelihood

    CERN Document Server

    CERN. Geneva

    2015-01-01

    Most physics results at the LHC end in a likelihood ratio test. This includes discovery and exclusion for searches as well as mass, cross-section, and coupling measurements. The use of Machine Learning (multivariate) algorithms in HEP is mainly restricted to searches, which can be reduced to classification between two fixed distributions: signal vs. background. I will show how we can extend the use of ML classifiers to distributions parameterized by physical quantities like masses and couplings as well as nuisance parameters associated to systematic uncertainties. This allows for one to approximate the likelihood ratio while still using a high dimensional feature vector for the data. Both the MEM and ABC approaches mentioned above aim to provide inference on model parameters (like cross-sections, masses, couplings, etc.). ABC is fundamentally tied Bayesian inference and focuses on the “likelihood free” setting where only a simulator is available and one cannot directly compute the likelihood for the dat...

  11. Diophantine approximation

    CERN Document Server

    Schmidt, Wolfgang M

    1980-01-01

    "In 1970, at the U. of Colorado, the author delivered a course of lectures on his famous generalization, then just established, relating to Roth's theorem on rational approxi- mations to algebraic numbers. The present volume is an ex- panded and up-dated version of the original mimeographed notes on the course. As an introduction to the author's own remarkable achievements relating to the Thue-Siegel-Roth theory, the text can hardly be bettered and the tract can already be regarded as a classic in its field."(Bull.LMS) "Schmidt's work on approximations by algebraic numbers belongs to the deepest and most satisfactory parts of number theory. These notes give the best accessible way to learn the subject. ... this book is highly recommended." (Mededelingen van het Wiskundig Genootschap)

  12. Generalized Narayana Polynomials, Riordan Arrays and Lattice Paths

    OpenAIRE

    Barry, Paul; Hennessy, Aoife

    2012-01-01

    We study a family of polynomials in two variables, identifying them as the moments of a two-parameter family of orthogonal polynomials. The coefficient array of these orthogonal polynomials is shown to be an ordinary Riordan array. We express the generating function of the sequence of polynomials under study as a continued fraction, and determine the corresponding Hankel transform. An alternative characterization of the polynomials in terms of a related Riordan array is also given. This Riord...

  13. Long-time uncertainty propagation using generalized polynomial chaos and flow map composition

    International Nuclear Information System (INIS)

    We present an efficient and accurate method for long-time uncertainty propagation in dynamical systems. Uncertain initial conditions and parameters are both addressed. The method approximates the intermediate short-time flow maps by spectral polynomial bases, as in the generalized polynomial chaos (gPC) method, and uses flow map composition to construct the long-time flow map. In contrast to the gPC method, this approach has spectral error convergence for both short and long integration times. The short-time flow map is characterized by small stretching and folding of the associated trajectories and hence can be well represented by a relatively low-degree basis. The composition of these low-degree polynomial bases then accurately describes the uncertainty behavior for long integration times. The key to the method is that the degree of the resulting polynomial approximation increases exponentially in the number of time intervals, while the number of polynomial coefficients either remains constant (for an autonomous system) or increases linearly in the number of time intervals (for a non-autonomous system). The findings are illustrated on several numerical examples including a nonlinear ordinary differential equation (ODE) with an uncertain initial condition, a linear ODE with an uncertain model parameter, and a two-dimensional, non-autonomous double gyre flow

  14. A new class of generalized polynomials associated with Hermite and Bernoulli polynomials

    Directory of Open Access Journals (Sweden)

    M. A. Pathan

    2015-05-01

    Full Text Available In this paper, we introduce a new class of generalized  polynomials associated with  the modified Milne-Thomson's polynomials Φ_{n}^{(α}(x,ν of degree n and order α introduced by  Derre and Simsek.The concepts of Bernoulli numbers B_n, Bernoulli polynomials  B_n(x, generalized Bernoulli numbers B_n(a,b, generalized Bernoulli polynomials  B_n(x;a,b,c of Luo et al, Hermite-Bernoulli polynomials  {_HB}_n(x,y of Dattoli et al and {_HB}_n^{(α} (x,y of Pathan  are generalized to the one   {_HB}_n^{(α}(x,y,a,b,c which is called  the generalized  polynomial depending on three positive real parameters. Numerous properties of these polynomials and some relationships between B_n, B_n(x, B_n(a,b, B_n(x;a,b,c and {}_HB_n^{(α}(x,y;a,b,c  are established. Some implicit summation formulae and general symmetry identities are derived by using different analytical means and applying generating functions. These results extend some known summations and identities of generalized Bernoulli numbers and polynomials

  15. On Approximability of Block Sorting

    CERN Document Server

    Narayanaswamy, N S

    2011-01-01

    Block Sorting is a well studied problem, motivated by its applications in Optical Character Recognition (OCR), and Computational Biology. Block Sorting has been shown to be NP-Hard, and two separate polynomial time 2-approximation algorithms have been designed for the problem. But questions like whether a better approximation algorithm can be designed, and whether the problem is APX-Hard have been open for quite a while now. In this work we answer the latter question by proving Block Sorting to be Max-SNP-Hard (APX-Hard). The APX-Hardness result is based on a linear reduction of Max-3SAT to Block Sorting. We also provide a new lower bound for the problem via a new parametrized problem k-Block Merging.

  16. An efficient wavelet based approximation method for a few second order differential equations arising in science and engineering

    OpenAIRE

    Padma, S; G. Hariharan; Kannan, K.

    2013-01-01

    A new wavelet based approximation method for solving the second order differential equations arising science and engineering is presented in this paper. Such differential equation is often applied to model phenomena in various fields of science and engineering. In this study, shifted second kind Chebyshev wavelet (CW) operational matrices of derivatives is introduced and applied for solvingthe second order differential equations with various initial conditions. The key idea for getting the nu...

  17. Bound state solution of Dirac equation for Hulthen plus trigonometric Rosen Morse non-central potential using Romanovski polynomial

    International Nuclear Information System (INIS)

    The bound state solutions of Dirac equation for Hulthen and trigonometric Rosen Morse non-central potential are obtained using finite Romanovski polynomials. The approximate relativistic energy spectrum and the radial wave functions which are given in terms of Romanovski polynomials are obtained from solution of radial Dirac equation. The angular wave functions and the orbital quantum number are found from angular Dirac equation solution. In non-relativistic limit, the relativistic energy spectrum reduces into non-relativistic energy

  18. Approximation of Hardy space on the unit sphere

    Institute of Scientific and Technical Information of China (English)

    余纯武; 陈莘萌; 王昆扬; 戴峰

    2003-01-01

    The authors discuss the boundedness and approximation properties of translation and mean operator on H1(∑) by the estimates of high degree difference on ultraspherical polynomials, atom de-composition and construct properties on sphere. Also the boundedness and approximation of linear means at all kinds of indexes on Hp(0 < p < 1) and the almost everywhere convergence of Cesaro means are established.

  19. Structural properties of Potts model partition functions and chromatic polynomials for lattice strips

    Science.gov (United States)

    Chang, Shu-Chiuan; Shrock, Robert

    2001-07-01

    The q-state Potts model partition function (equivalent to the Tutte polynomial) for a lattice strip of fixed width Ly and arbitrary length Lx has the form Z(G,q,v)=∑ j=1N Z,G,λ c Z,G,j(λ Z,G,j) L x, where v is a temperature-dependent variable. The special case of the zero-temperature antiferromagnet ( v=-1) is the chromatic polynomial P( G, q). Using coloring and transfer matrix methods, we give general formulas for C X,G=∑ j=1N X,G,λ c X,G,j for X= Z, P on cyclic and Möbius strip graphs of the square and triangular lattice. Combining these with a general expression for the (unique) coefficient cZ, G, j of degree d in q: c (d)=U 2d( q/2) , where Un( x) is the Chebyshev polynomial of the second kind, we determine the number of λZ, G, j's with coefficient c( d) in Z( G, q, v) for these cyclic strips of width Ly to be n Z(L y,d)=(2d+1)(L y+d+1) -1{2L y}/{L y-d } for 0⩽ d⩽ Ly and zero otherwise. For both cyclic and Möbius strips of these lattices, the total number of distinct eigenvalues λZ, G, j is calculated to be N Z,L y,λ = {2L y}/{L y}. Results are also presented for the analogous numbers nP( Ly, d) and NP, Ly, λ for P( G, q). We find that nP( Ly,0)= nP( Ly-1,1)= MLy-1 (Motzkin number), nZ( Ly,0)= CLy (the Catalan number), and give an exact expression for NP, Ly, λ. Our results for NZ, Ly, λ and NP, Ly, λ apply for both the cyclic and Möbius strips of both the square and triangular lattices; we also point out the interesting relations NZ, Ly, λ=2 NDA, tri, Ly and NP, Ly, λ=2 NDA, sq, Ly, where NDA, Λ, n denotes the number of directed lattice animals on the lattice Λ. We find the asymptotic growths NZ, Ly, λ∼ Ly-1/24 Ly and NP, Ly, λ∼ Ly-1/23 Ly as Ly→∞. Some general geometric identities for Potts model partition functions are also presented.

  20. Regression with Sparse Approximations of Data

    DEFF Research Database (Denmark)

    Noorzad, Pardis; Sturm, Bob L.

    2012-01-01

    We propose sparse approximation weighted regression (SPARROW), a method for local estimation of the regression function that uses sparse approximation with a dictionary of measurements. SPARROW estimates the regression function at a point with a linear combination of a few regressands selected by a...... sparse approximation of the point in terms of the regressors. We show SPARROW can be considered a variant of \\(k\\)-nearest neighbors regression (\\(k\\)-NNR), and more generally, local polynomial kernel regression. Unlike \\(k\\)-NNR, however, SPARROW can adapt the number of regressors to use based on the...

  1. SIMULATED ANNEALING BASED POLYNOMIAL TIME QOS ROUTING ALGORITHM FOR MANETS

    Institute of Scientific and Technical Information of China (English)

    Liu Lianggui; Feng Guangzeng

    2006-01-01

    Multi-constrained Quality-of-Service (QoS) routing is a big challenge for Mobile Ad hoc Networks (MANETs) where the topology may change constantly. In this paper a novel QoS Routing Algorithm based on Simulated Annealing (SA_RA) is proposed. This algorithm first uses an energy function to translate multiple QoS weights into a single mixed metric and then seeks to find a feasible path by simulated annealing. The paper outlines simulated annealing algorithm and analyzes the problems met when we apply it to Qos Routing (QoSR) in MANETs. Theoretical analysis and experiment results demonstrate that the proposed method is an effective approximation algorithms showing better performance than the other pertinent algorithm in seeking the (approximate) optimal configuration within a period of polynomial time.

  2. Convergent series for lattice models with polynomial interactions

    CERN Document Server

    Ivanov, Aleksandr S

    2016-01-01

    The standard perturbative weak-coupling expansions in lattice models are asymptotic. The reason for this is hidden in the incorrect interchange of the summation and integration. However, substituting the Gaussian initial approximation of the perturbative expansions by a certain interacting model or regularizing original lattice integrals, one can construct desired convergent series. In this paper we develop methods, which are based on the joint and separate utilization of the regularization and new initial approximation. We prove, that the convergent series exist and can be expressed as the re-summed standard perturbation theory for any model on the finite lattice with the polynomial interaction of even degree. We discuss properties of such series and make them applicable to practical computations. The workability of the methods is demonstrated on the example of the lattice $\\phi^4$-model. We calculate the operator $\\langle\\phi_n^2\\rangle$ using the convergent series, the comparison of the results with the Bo...

  3. Optimal stability polynomials for numerical integration of initial value problems

    KAUST Repository

    Ketcheson, David I.

    2013-01-08

    We consider the problem of finding optimally stable polynomial approximations to the exponential for application to one-step integration of initial value ordinary and partial differential equations. The objective is to find the largest stable step size and corresponding method for a given problem when the spectrum of the initial value problem is known. The problem is expressed in terms of a general least deviation feasibility problem. Its solution is obtained by a new fast, accurate, and robust algorithm based on convex optimization techniques. Global convergence of the algorithm is proven in the case that the order of approximation is one and in the case that the spectrum encloses a starlike region. Examples demonstrate the effectiveness of the proposed algorithm even when these conditions are not satisfied.

  4. Uncertainty Analysis via Failure Domain Characterization: Polynomial Requirement Functions

    Science.gov (United States)

    Crespo, Luis G.; Munoz, Cesar A.; Narkawicz, Anthony J.; Kenny, Sean P.; Giesy, Daniel P.

    2011-01-01

    This paper proposes an uncertainty analysis framework based on the characterization of the uncertain parameter space. This characterization enables the identification of worst-case uncertainty combinations and the approximation of the failure and safe domains with a high level of accuracy. Because these approximations are comprised of subsets of readily computable probability, they enable the calculation of arbitrarily tight upper and lower bounds to the failure probability. A Bernstein expansion approach is used to size hyper-rectangular subsets while a sum of squares programming approach is used to size quasi-ellipsoidal subsets. These methods are applicable to requirement functions whose functional dependency on the uncertainty is a known polynomial. Some of the most prominent features of the methodology are the substantial desensitization of the calculations from the uncertainty model assumed (i.e., the probability distribution describing the uncertainty) as well as the accommodation for changes in such a model with a practically insignificant amount of computational effort.

  5. Solving the Frustrated Spherical Model with q-Polynomials

    CERN Document Server

    Cappelli, A P; Cappelli, Andrea; Colomo, Filippo

    1998-01-01

    We analyse the Spherical Model with frustration induced by an external gauge field. In infinite dimensions, this has been recently mapped onto a problem of q-deformed oscillators, whose real parameter q measures the frustration. We find the analytic solution of this model by suitably representing the q-oscillator algebra with q-Hermite polynomials. We also present a related Matrix Model which possesses the same diagrammatic expansion in the planar approximation. Its interaction potential is oscillating at infinity with period log(q), and may lead to interesting metastability phenomena beyond the planar approximation. The Spherical Model is similarly q-periodic, but does not exhibit such phenomena: actually its low-temperature phase is not glassy and depends smoothly on q.

  6. Quantum chaotic dynamics and random polynomials

    International Nuclear Information System (INIS)

    The distribution of roots of polynomials of high degree with random coefficients is investigated which, among others, appear naturally in the context of 'quantum chaotic dynamics'. It is shown that under quite general conditions their roots tend to concentrate near the unit circle in the complex plane. In order to further increase this tendency, the particular case of self-inverse random polynomials is studied, and it is shown that for them a finite portion of all roots lies exactly on the unit circle. Correlation functions of these roots are also computed analytically, and compared to the correlations of eigenvalues of random matrices. The problem of ergodicity of chaotic wavefunctions is also considered. Special attention is devoted to the role of symmetries in the distribution of roots of random polynomials. (author)

  7. Minimal residual method stronger than polynomial preconditioning

    Energy Technology Data Exchange (ETDEWEB)

    Faber, V.; Joubert, W.; Knill, E. [Los Alamos National Lab., NM (United States)] [and others

    1994-12-31

    Two popular methods for solving symmetric and nonsymmetric systems of equations are the minimal residual method, implemented by algorithms such as GMRES, and polynomial preconditioning methods. In this study results are given on the convergence rates of these methods for various classes of matrices. It is shown that for some matrices, such as normal matrices, the convergence rates for GMRES and for the optimal polynomial preconditioning are the same, and for other matrices such as the upper triangular Toeplitz matrices, it is at least assured that if one method converges then the other must converge. On the other hand, it is shown that matrices exist for which restarted GMRES always converges but any polynomial preconditioning of corresponding degree makes no progress toward the solution for some initial error. The implications of these results for these and other iterative methods are discussed.

  8. Small Clique Detection and Approximate Nash Equilibria

    Science.gov (United States)

    Minder, Lorenz; Vilenchik, Dan

    Recently, Hazan and Krauthgamer showed [12] that if, for a fixed small ɛ, an ɛ-best ɛ-approximate Nash equilibrium can be found in polynomial time in two-player games, then it is also possible to find a planted clique in G n, 1/2 of size C logn, where C is a large fixed constant independent of ɛ. In this paper, we extend their result to show that if an ɛ-best ɛ-approximate equilibrium can be efficiently found for arbitrarily small ɛ> 0, then one can detect the presence of a planted clique of size (2 + δ) logn in G n, 1/2 in polynomial time for arbitrarily small δ> 0. Our result is optimal in the sense that graphs in G n, 1/2 have cliques of size (2 - o(1)) logn with high probability.

  9. A polynomial analytical method for one-group slab-geometry discrete ordinates heterogeneous problems

    International Nuclear Information System (INIS)

    In this work we evaluate polynomial approximations to obtain the transfer functions that appear in SGF auxiliary equations (Green's Functions) for monoenergetic linearly anisotropic scattering SN equations in one-dimensional Cartesian geometry. For this task we use Lagrange Polynomials in order to compare the numerical results with the ones generated by the standard SGF method applied to SN problems in heterogeneous domains. This work is a preliminary investigation of a new proposal for handling the transverse leakage terms that appear in the transverse-integrated one-dimensional SN equations when we use the SGF - exponential nodal method (SGF-ExpN) in multidimensional rectangular geometry. (author)

  10. Polynomial Vector Fields in One Complex Variable

    DEFF Research Database (Denmark)

    Branner, Bodil

    In recent years Adrien Douady was interested in polynomial vector fields, both in relation to iteration theory and as a topic on their own. This talk is based on his work with Pierrette Sentenac, work of Xavier Buff and Tan Lei, and my own joint work with Kealey Dias.......In recent years Adrien Douady was interested in polynomial vector fields, both in relation to iteration theory and as a topic on their own. This talk is based on his work with Pierrette Sentenac, work of Xavier Buff and Tan Lei, and my own joint work with Kealey Dias....

  11. Sparse DOA estimation with polynomial rooting

    DEFF Research Database (Denmark)

    Xenaki, Angeliki; Gerstoft, Peter; Fernandez Grande, Efren

    2015-01-01

    Direction-of-arrival (DOA) estimation involves the localization of a few sources from a limited number of observations on an array of sensors. Thus, DOA estimation can be formulated as a sparse signal reconstruction problem and solved efficiently with compressive sensing (CS) to achieve...... highresolution imaging. Utilizing the dual optimal variables of the CS optimization problem, it is shown with Monte Carlo simulations that the DOAs are accurately reconstructed through polynomial rooting (Root-CS). Polynomial rooting is known to improve the resolution in several other DOA estimation methods...

  12. Incomplete Bivariate Fibonacci and Lucas -Polynomials

    Directory of Open Access Journals (Sweden)

    Dursun Tasci

    2012-01-01

    Full Text Available We define the incomplete bivariate Fibonacci and Lucas -polynomials. In the case =1, =1, we obtain the incomplete Fibonacci and Lucas -numbers. If =2, =1, we have the incomplete Pell and Pell-Lucas -numbers. On choosing =1, =2, we get the incomplete generalized Jacobsthal number and besides for =1 the incomplete generalized Jacobsthal-Lucas numbers. In the case =1, =1, =1, we have the incomplete Fibonacci and Lucas numbers. If =1, =1, =1, =⌊(−1/(+1⌋, we obtain the Fibonacci and Lucas numbers. Also generating function and properties of the incomplete bivariate Fibonacci and Lucas -polynomials are given.

  13. On the Waring problem for polynomial rings

    CERN Document Server

    Fröberg, Ralf; Shapiro, Boris

    2011-01-01

    In this note we discuss an analog of the classical Waring problem for C[x_0, x_1,...,x_n]. Namely, we show that a general homogeneous polynomial p \\in C[x_0,x_1,...,x_n] of degree divisible by k\\ge 2 can be represented as a sum of at most k^n k-th powers of homogeneous polynomials in C[x_0, x_1,...,x_n]. Noticeably, k^n coincides with the number obtained by naive dimension count.

  14. Large Degree Asymptotics of Generalized Bessel Polynomials

    OpenAIRE

    López, J. L.; Temme, Nico

    2011-01-01

    Asymptotic expansions are given for large values of $n$ of the generalized Bessel polynomials $Y_n^\\mu(z)$. The analysis is based on integrals that follow from the generating functions of the polynomials. A new simple expansion is given that is valid outside a compact neighborhood of the origin in the $z-$plane. New forms of expansions in terms of elementary functions valid in sectors not containing the turning points $z=\\pm i/n$ are derived, and a new expansion in terms of modified Bessel fu...

  15. The chromatic polynomial and list colorings

    DEFF Research Database (Denmark)

    Thomassen, Carsten

    2009-01-01

    We prove that, if a graph has a list of k available colors at every vertex, then the number of list-colorings is at least the chromatic polynomial evaluated at k when k is sufficiently large compared to the number of vertices of the graph.......We prove that, if a graph has a list of k available colors at every vertex, then the number of list-colorings is at least the chromatic polynomial evaluated at k when k is sufficiently large compared to the number of vertices of the graph....

  16. Dynamic Approximate Vertex Cover and Maximum Matching

    OpenAIRE

    Onak, Krzysztof; Rubinfeld, Ronitt

    2010-01-01

    We consider the problem of maintaining a large matching or a small vertex cover in a dynamically changing graph. Each update to the graph is either an edge deletion or an edge insertion. We give the first randomized data structure that simultaneously achieves a constant approximation factor and handles a sequence of k updates in k. polylog(n) time. Previous data structures require a polynomial amount of computation per update. The starting point of our construction is a distributed algorit...

  17. Pseudo-Conforming Polynomial Lagrange Finite Elements on Quadrilaterals and Hexahedra

    OpenAIRE

    Dubach, Eric; Luce, Robert; Thomas, Jean-Marie

    2008-01-01

    The aim of this paper is to develop a new class of finite elements on quadrilaterals and hexahedra. The degrees of freedom are the values at the vertices and the approximation is polynomial on each element K. In general, with this kind of finite elements, the resolution of second order elliptic problems leads to non-conform approximations. Degrees of freedom are the same than those of isoparametric finite elements. And, in the particular case when the finite elements are parallelotopes, our m...

  18. Five Constructions of Permutation Polynomials over $\\gf(q^2)$

    OpenAIRE

    Ding, Cunsheng; Yuan, Pingzhi

    2015-01-01

    Four recursive constructions of permutation polynomials over $\\gf(q^2)$ with those over $\\gf(q)$ are developed and applied to a few famous classes of permutation polynomials. They produce infinitely many new permutation polynomials over $\\gf(q^{2^\\ell})$ for any positive integer $\\ell$ with any given permutation polynomial over $\\gf(q)$. A generic construction of permutation polynomials over $\\gf(2^{2m})$ with o-polynomials over $\\gf(2^m)$ is also presented, and a number of new classes of per...

  19. Perturbations around the zeros of classical orthogonal polynomials

    CERN Document Server

    Sasaki, Ryu

    2014-01-01

    Starting from degree N solutions of a time dependent Schroedinger-like equation for classical orthogonal polynomials, a linear matrix equation describing perturbations around the N zeros of the polynomial is derived. The matrix has remarkable Diophantine properties. Its eigenvalues are independent of the zeros. The corresponding eigenvectors provide the representations of the lower degree (0,1,...,N-1) polynomials in terms of the zeros of the degree N polynomial. The results are valid universally for all the classical orthogonal polynomials, including the Askey scheme of hypergeometric orthogonal polynomials and its q-analogues.

  20. Perturbations around the zeros of classical orthogonal polynomials

    Science.gov (United States)

    Sasaki, Ryu

    2015-04-01

    Starting from degree N solutions of a time dependent Schrödinger-like equation for classical orthogonal polynomials, a linear matrix equation describing perturbations around the N zeros of the polynomial is derived. The matrix has remarkable Diophantine properties. Its eigenvalues are independent of the zeros. The corresponding eigenvectors provide the representations of the lower degree ( 0 , 1 , … , N - 1 ) polynomials in terms of the zeros of the degree N polynomial. The results are valid universally for all the classical orthogonal polynomials, including the Askey scheme of hypergeometric orthogonal polynomials and its q-analogues.

  1. Construction of bootstrap confidence intervals on sensitivity indices computed by polynomial chaos expansion

    International Nuclear Information System (INIS)

    Sensitivity analysis aims at quantifying influence of input parameters dispersion on the output dispersion of a numerical model. When the model evaluation is time consuming, the computation of Sobol' indices based on Monte Carlo method is not applicable and a surrogate model has to be used. Among all approximation methods, polynomial chaos expansion is one of the most efficient to calculate variance-based sensitivity indices. Indeed, their computation is analytically derived from the expansion coefficients but without error estimators of the meta-model approximation. In order to evaluate the reliability of these indices, we propose to build confidence intervals by bootstrap re-sampling on the experimental design used to estimate the polynomial chaos approximation. Since the evaluation of the sensitivity indices is obtained with confidence intervals, it is possible to find a design of experiments allowing the computation of sensitivity indices with a given accuracy. - Highlights: • The proposed methodology combines advantages of sparse polynomial chaos expansion with bootstrap re-sampling to compute variance-based sensitivity indices. • A conservative way to choose the number of bootstrap re-sampling is presented. • A method to increase the degree of the polynomial basis, linked to the size of confidence intervals, is proposed. • Comparisons with classical meta-model error estimators reveals the interest of a sensitivity-indices-oriented methodology

  2. Computation of the Likelihood in Biallelic Diffusion Models Using Orthogonal Polynomials

    Directory of Open Access Journals (Sweden)

    Claus Vogl

    2014-11-01

    Full Text Available In population genetics, parameters describing forces such as mutation, migration and drift are generally inferred from molecular data. Lately, approximate methods based on simulations and summary statistics have been widely applied for such inference, even though these methods waste information. In contrast, probabilistic methods of inference can be shown to be optimal, if their assumptions are met. In genomic regions where recombination rates are high relative to mutation rates, polymorphic nucleotide sites can be assumed to evolve independently from each other. The distribution of allele frequencies at a large number of such sites has been called “allele-frequency spectrum” or “site-frequency spectrum” (SFS. Conditional on the allelic proportions, the likelihoods of such data can be modeled as binomial. A simple model representing the evolution of allelic proportions is the biallelic mutation-drift or mutation-directional selection-drift diffusion model. With series of orthogonal polynomials, specifically Jacobi and Gegenbauer polynomials, or the related spheroidal wave function, the diffusion equations can be solved efficiently. In the neutral case, the product of the binomial likelihoods with the sum of such polynomials leads to finite series of polynomials, i.e., relatively simple equations, from which the exact likelihoods can be calculated. In this article, the use of orthogonal polynomials for inferring population genetic parameters is investigated.

  3. Compressive sampling of polynomial chaos expansions: Convergence analysis and sampling strategies

    International Nuclear Information System (INIS)

    Sampling orthogonal polynomial bases via Monte Carlo is of interest for uncertainty quantification of models with random inputs, using Polynomial Chaos (PC) expansions. It is known that bounding a probabilistic parameter, referred to as coherence, yields a bound on the number of samples necessary to identify coefficients in a sparse PC expansion via solution to an ℓ1-minimization problem. Utilizing results for orthogonal polynomials, we bound the coherence parameter for polynomials of Hermite and Legendre type under their respective natural sampling distribution. In both polynomial bases we identify an importance sampling distribution which yields a bound with weaker dependence on the order of the approximation. For more general orthonormal bases, we propose the coherence-optimal sampling: a Markov Chain Monte Carlo sampling, which directly uses the basis functions under consideration to achieve a statistical optimality among all sampling schemes with identical support. We demonstrate these different sampling strategies numerically in both high-order and high-dimensional, manufactured PC expansions. In addition, the quality of each sampling method is compared in the identification of solutions to two differential equations, one with a high-dimensional random input and the other with a high-order PC expansion. In both cases, the coherence-optimal sampling scheme leads to similar or considerably improved accuracy

  4. Compressive sampling of polynomial chaos expansions: Convergence analysis and sampling strategies

    Energy Technology Data Exchange (ETDEWEB)

    Hampton, Jerrad; Doostan, Alireza, E-mail: alireza.doostan@colorado.edu

    2015-01-01

    Sampling orthogonal polynomial bases via Monte Carlo is of interest for uncertainty quantification of models with random inputs, using Polynomial Chaos (PC) expansions. It is known that bounding a probabilistic parameter, referred to as coherence, yields a bound on the number of samples necessary to identify coefficients in a sparse PC expansion via solution to an ℓ{sub 1}-minimization problem. Utilizing results for orthogonal polynomials, we bound the coherence parameter for polynomials of Hermite and Legendre type under their respective natural sampling distribution. In both polynomial bases we identify an importance sampling distribution which yields a bound with weaker dependence on the order of the approximation. For more general orthonormal bases, we propose the coherence-optimal sampling: a Markov Chain Monte Carlo sampling, which directly uses the basis functions under consideration to achieve a statistical optimality among all sampling schemes with identical support. We demonstrate these different sampling strategies numerically in both high-order and high-dimensional, manufactured PC expansions. In addition, the quality of each sampling method is compared in the identification of solutions to two differential equations, one with a high-dimensional random input and the other with a high-order PC expansion. In both cases, the coherence-optimal sampling scheme leads to similar or considerably improved accuracy.

  5. Inclusion-exclusion polynomials with large coefficients

    OpenAIRE

    Bzdega, Bartlomiej

    2012-01-01

    We prove that for every positive integer $k$ there exist an inclusion-exclusion polynomial $Q_{\\{q_1,q_2,...,q_k\\}}$ with the height at least $c^{2^k}\\prod_{j=1}^{k-2}q_j^{2^{k-j-1}-1}$, where $c$ is a positive constant and $q_1

  6. Scalar Field Theories with Polynomial Shift Symmetries

    CERN Document Server

    Griffin, Tom; Horava, Petr; Yan, Ziqi

    2014-01-01

    We continue our study of naturalness in nonrelativistic QFTs of the Lifshitz type, focusing on scalar fields that can play the role of Nambu-Goldstone (NG) modes associated with spontaneous symmetry breaking. Such systems allow for an extension of the constant shift symmetry to a shift by a polynomial of degree $P$ in spatial coordinates. These "polynomial shift symmetries" in turn protect the technical naturalness of modes with a higher-order dispersion relation, and lead to a refinement of the proposed classification of infrared Gaussian fixed points available to describe NG modes in nonrelativistic theories. Generic interactions in such theories break the polynomial shift symmetry explicitly to the constant shift. It is thus natural to ask: Given a Gaussian fixed point with polynomial shift symmetry of degree $P$, what are the lowest-dimension operators that preserve this symmetry, and deform the theory into a self-interacting scalar field theory with the shift symmetry of degree $P$? To answer this (essen...

  7. Algebraic differential equations associated to some polynomials

    OpenAIRE

    Barlet, Daniel

    2013-01-01

    We compute the Gauss-Manin differential equation for any period of a polynomial in \\ $\\C[x_{0},\\dots, x_{n}]$ \\ with \\ $(n+2)$ \\ monomials. We give two general factorizations theorem in the algebra \\ $\\C$ \\ for such a differential equations.

  8. Nondimensional Simplification of Tensor Polynomials with Indices

    CERN Document Server

    Jaén, X

    1999-01-01

    We are presenting an algorithm capable of simplifying tensor polynomials withindices when the building tensors have index symmetry properties. Theseproperties include simple symmetry, cyclicity and those due to the presence ofcovariant derivatives. The algorithm is part of a Mathematica package calledTools of Tensor Calculus (TTC) [web address: http://baldufa.upc.es/ttc

  9. Quantum Hilbert matrices and orthogonal polynomials

    DEFF Research Database (Denmark)

    Andersen, Jørgen Ellegaard; Berg, Christian

    2009-01-01

    Using the notion of quantum integers associated with a complex number q≠0 , we define the quantum Hilbert matrix and various extensions. They are Hankel matrices corresponding to certain little q -Jacobi polynomials when |q|... of reciprocal Fibonacci numbers called Filbert matrices. We find a formula for the entries of the inverse quantum Hilbert matrix....

  10. Z-polynomials and ring commutativity

    OpenAIRE

    Buckley, S.M.; McHale, D.

    2012-01-01

    We characterise polynomials f with integer coefficients such that a ring with unity R is necessarily commutative if f(x) is central for all x Ɛ R. We also solve the corresponding problem without the assumption that the ring has a unity.

  11. Interpolation of Shifted-Lacunary Polynomials

    CERN Document Server

    Giesbrecht, Mark

    2008-01-01

    Given a "black box" function to evaluate an unknown rational polynomial f in Q[x] at points modulo a prime p, we exhibit algorithms to compute the representation of the polynomial in the sparsest shifted power basis. That is, we determine the sparsity t, the shift alpha, the exponents 0<=e1polynomial in the (sparse) representation size, log(alpha)+ sum_i(log|c_i|+log(e_i)) and in particular is logarithmic in deg(f). Our method combines previous celebrated results on sparse interpolation and computing sparsest shifts, and provides a way to handle polynomials with extremely high degree which are, in some sense, sparse in information.

  12. Cumulants, lattice paths, and orthogonal polynomials

    OpenAIRE

    Lehner, Franz

    2001-01-01

    A formula expressing free cumulants in terms of the Jacobi parameters of the corresponding orthogonal polynomials is derived. It combines Flajolet's theory of continued fractions and Lagrange inversion. For the converse we discuss Gessel-Viennot theory to express Hankel determinants in terms of various cumulants.

  13. Algebraic polynomial system solving and applications

    NARCIS (Netherlands)

    Bleylevens, I.W.M.

    2010-01-01

    The problem of computing the solutions of a system of multivariate polynomial equations can be approached by the Stetter-Möller matrix method which casts the problem into a large eigenvalue problem. This Stetter-Möller matrix method forms the starting point for the development of computational proce

  14. Polynomial stabilization of some dissipative hyperbolic systems

    Czech Academy of Sciences Publication Activity Database

    Ammari, K.; Feireisl, Eduard; Nicaise, S.

    2014-01-01

    Roč. 34, č. 11 (2014), s. 4371-4388. ISSN 1078-0947 R&D Projects: GA ČR GA201/09/0917 Institutional support: RVO:67985840 Keywords : exponential stability * polynomial stability * observability inequality Subject RIV: BA - General Mathematics Impact factor: 0.826, year: 2014 http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=9924

  15. Indecomposability of polynomials via Jacobian matrix

    International Nuclear Information System (INIS)

    Uni-multivariate decomposition of polynomials is a special case of absolute factorization. Recently, thanks to the Ruppert's matrix some effective results about absolute factorization have been improved. Here we show that with a jacobian matrix we can get sharper bounds for the special case of uni-multivariate decomposition. (author)

  16. Ideals in Polynomial Near-rings

    Institute of Scientific and Technical Information of China (English)

    Mark Farag

    2002-01-01

    In this paper, we further explore the relationship between the ideals of N and those of N[x], where N is a zero-symmetric right near-ring with identity and N[x] is the polynomial near-ring introduced by Bagley in 1993.

  17. Some Results on the Simultaneous Approximation

    Institute of Scientific and Technical Information of China (English)

    M. R. Haddadi∗

    2014-01-01

    In this paper, we give some result on the simultaneous proximinal subset and simultaneous Chebyshev in the uniformly convex Banach space. Also we give relation between fixed point theory and simultaneous proximity.

  18. Polynomial Chaos Expansion Approach to Interest Rate Models

    Directory of Open Access Journals (Sweden)

    Luca Di Persio

    2015-01-01

    Full Text Available The Polynomial Chaos Expansion (PCE technique allows us to recover a finite second-order random variable exploiting suitable linear combinations of orthogonal polynomials which are functions of a given stochastic quantity ξ, hence acting as a kind of random basis. The PCE methodology has been developed as a mathematically rigorous Uncertainty Quantification (UQ method which aims at providing reliable numerical estimates for some uncertain physical quantities defining the dynamic of certain engineering models and their related simulations. In the present paper, we use the PCE approach in order to analyze some equity and interest rate models. In particular, we take into consideration those models which are based on, for example, the Geometric Brownian Motion, the Vasicek model, and the CIR model. We present theoretical as well as related concrete numerical approximation results considering, without loss of generality, the one-dimensional case. We also provide both an efficiency study and an accuracy study of our approach by comparing its outputs with the ones obtained adopting the Monte Carlo approach, both in its standard and its enhanced version.

  19. An efficient wavelet based approximation method for a few second order differential equations arising in science and engineering

    Directory of Open Access Journals (Sweden)

    S.Padma

    2013-06-01

    Full Text Available A new wavelet based approximation method for solving the second order differential equations arising science and engineering is presented in this paper. Such differential equation is often applied to model phenomena in various fields of science and engineering. In this study, shifted second kind Chebyshev wavelet (CW operational matrices of derivatives is introduced and applied for solvingthe second order differential equations with various initial conditions. The key idea for getting the numerical solutions for these equations is to convert the differential equations (linear or nonlinear to a system of linear or nonlinear algebraic equations in the unknown expansion coefficients. Some illustrative examples are given to demonstrate the validity and applicability of the proposed method. The power of the manageable method is confirmed. Moreover the use of the shifted second kind Chebyshev wavelet method (CWM is found to be simple, flexible, efficient, small computation costs and computationally attractive.

  20. On an Inequality Concerning the Polar Derivative of a Polynomial

    Indian Academy of Sciences (India)

    A Aziz; N A Rather

    2007-08-01

    In this paper, we present a correct proof of an -inequality concerning the polar derivative of a polynomial with restricted zeros. We also extend Zygmund’s inequality to the polar derivative of a polynomial.

  1. Representations of Knot Groups and Twisted Alexander Polynomials

    Institute of Scientific and Technical Information of China (English)

    Xiao Song LIN

    2001-01-01

    We present a twisted version of the Alexander polynomial associated with a matrix representation of the knot group. Examples of two knots with the same Alexander module but differenttwisted Alexander polynomials are given.

  2. Self-dual Koornwinder-MacDonald polynomials

    CERN Document Server

    Van Diejen, J F

    1995-01-01

    We prove certain duality properties and present recurrence relations for a four-parameter family of self-dual Koornwinder-Macdonald polynomials. The recurrence relations are used to verify Macdonald's normalization conjectures for these polynomials.

  3. Irreducibility Results for Compositions of Polynomials in Several Variables

    Indian Academy of Sciences (India)

    Anca Iuliana Bonciocat; Alexandru Zaharescu

    2005-05-01

    We obtain explicit upper bounds for the number of irreducible factors for a class of compositions of polynomials in several variables over a given field. In particular, some irreducibility criteria are given for this class of compositions of polynomials.

  4. Remarks on Homogeneous Al-Salam and Carlitz Polynomials

    OpenAIRE

    Jian-Ping Fang

    2014-01-01

    Several multilinear generating functions of the homogeneous Al-Salam and Carlitz polynomials are derived from q-operator. In addition, two interesting relationships of product of this kind of polynomials are obtained.

  5. Identities involving Bessel polynomials arising from linear differential equations

    OpenAIRE

    Kim, Taekyun; Kim, Dae San

    2016-01-01

    In this paper, we study linear di?erential equations arising from Bessel polynomials and their applications. From these linear differential equations, we give some new and explicit identities for Bessel polynomials.

  6. New results on permutation polynomials over finite fields

    OpenAIRE

    Ma, Jingxue; Zhang, Tao; Feng, Tao; Ge, Gennian

    2015-01-01

    Permutation polynomials over finite fields constitute an active research area and have applications in many areas of science and engineering. In this paper, four classes of monomial complete permutation polynomials and one class of trinomial complete permutation polynomials are presented, one of which confirms a conjecture proposed by Wu et al. (Sci. China Math., to appear. Doi: 10.1007/s11425-014-4964-2). Furthermore, we give two classes of trinomial permutation polynomials, and make some pr...

  7. Dodgson's Rule Approximations and Absurdity

    CERN Document Server

    McCabe-Dansted, John C

    2010-01-01

    With the Dodgson rule, cloning the electorate can change the winner, which Young (1977) considers an "absurdity". Removing this absurdity results in a new rule (Fishburn, 1977) for which we can compute the winner in polynomial time (Rothe et al., 2003), unlike the traditional Dodgson rule. We call this rule DC and introduce two new related rules (DR and D&). Dodgson did not explicitly propose the "Dodgson rule" (Tideman, 1987); we argue that DC and DR are better realizations of the principle behind the Dodgson rule than the traditional Dodgson rule. These rules, especially D&, are also effective approximations to the traditional Dodgson's rule. We show that, unlike the rules we have considered previously, the DC, DR and D& scores differ from the Dodgson score by no more than a fixed amount given a fixed number of alternatives, and thus these new rules converge to Dodgson under any reasonable assumption on voter behaviour, including the Impartial Anonymous Culture assumption.

  8. Some Systems of Multivariable Orthogonal q-Racah polynomials

    OpenAIRE

    Gasper, George; Rahman, Mizan

    2004-01-01

    In 1991 Tratnik derived two systems of multivariable orthogonal Racah polynomials and considered their limit cases. q-Extensions of these systems are derived, yielding systems of multivariable orthogonal q-Racah polynomials, from which systems of multivariable orthogonal q-Hahn, dual q-Hahn, q-Krawtchouk, q-Meixner, and q-Charlier polynomials follow as special or limit cases.

  9. On the Lorentz degree of a product of polynomials

    KAUST Repository

    Ait-Haddou, Rachid

    2015-01-01

    In this note, we negatively answer two questions of T. Erdélyi (1991, 2010) on possible lower bounds on the Lorentz degree of product of two polynomials. We show that the correctness of one question for degree two polynomials is a direct consequence of a result of Barnard et al. (1991) on polynomials with nonnegative coefficients.

  10. Further Results on Permutation Polynomials over Finite Fields

    OpenAIRE

    Yuan, Pingzhi; Ding, Cunsheng

    2013-01-01

    Permutation polynomials are an interesting subject of mathematics and have applications in other areas of mathematics and engineering. In this paper, we develop general theorems on permutation polynomials over finite fields. As a demonstration of the theorems, we present a number of classes of explicit permutation polynomials on $\\gf_q$.

  11. Universality for polynomial invariants on ribbon graphs with flags

    OpenAIRE

    Avohou, Remi C.; Geloun, Joseph Ben; Hounkonnou , Mahouton N.

    2013-01-01

    In this paper, we analyze the Bollobas and Riordan polynomial for ribbon graphs with flags introduced in arXiv:1301.1987 and prove its universality. We also show that this polynomial can be defined on some equivalence classes of ribbon graphs involving flag moves and that the new polynomial is still universal on these classes.

  12. On conformal measures for infinitely renormalizable quadratic polynomials

    Institute of Scientific and Technical Information of China (English)

    HUANG Zhiyong; JIANG Yunping; WANG Yuefei

    2005-01-01

    We study a conformal measure for an infinitely renormalizable quadratic polynomial. We prove that the conformal measure is ergodic if the polynomial is unbranched and has complex bounds. The main technique we use in the proof is the three-dimensional puzzle for an infinitely renormalizable quadratic polynomial.

  13. Probabilistic aspects of Al-Salam-Chihara polynomials

    OpenAIRE

    Bryc, Wlodzimierz; Matysiak, Wojciech; Szablowski, Pawel J.

    2003-01-01

    We solve the connection coefficient problem between the Al-Salam-Chihara polynomials and the q-Hermite polynomials, and we use the resulting identity to answer a question from probability theory. We also derive the distribution of some Al-Salam-Chihara polynomials, and compute determinants of related Hankel matrices.

  14. Moments for Generating Functions of Al-Salam-Carlitz Polynomials

    OpenAIRE

    Jian Cao

    2012-01-01

    We employ the moment representations for Al-Salam-Carlitz polynomials and show how to deduce bilinear, trilinear, and multilinear generating functions for Al-Salam-Carlitz polynomials. Moreover, we obtain two terminating generating functions for Al-Salam-Carlitz polynomials by the method of moments.

  15. Some advances in tensor analysis and polynomial optimization

    OpenAIRE

    Li, Zhening; Ling, Chen; Wang, Yiju; Yang, Qingzhi

    2014-01-01

    Tensor analysis (also called as numerical multilinear algebra) mainly includes tensor decomposition, tensor eigenvalue theory and relevant algorithms. Polynomial optimization mainly includes theory and algorithms for solving optimization problems with polynomial objects functions under polynomial constrains. This survey covers the most of recent advances in these two fields. For tensor analysis, we introduce some properties and algorithms concerning the spectral radius of nonnegative tensors'...

  16. A Determinant Expression for the Generalized Bessel Polynomials

    OpenAIRE

    Sheng-liang Yang; Sai-nan Zheng

    2013-01-01

    Using the exponential Riordan arrays, we show that a variation of the generalized Bessel polynomial sequence is of Sheffer type, and we obtain a determinant formula for the generalized Bessel polynomials. As a result, the Bessel polynomial is represented as determinant the entries of which involve Catalan numbers.

  17. ON APPROXIMATION BY REPRODUCING KERNEL SPACES IN WEIGHTED Lp SPACES

    Institute of Scientific and Technical Information of China (English)

    Baohuai SHENG

    2007-01-01

    In this paper, we investigate the order of approximation by reproducing kernel spaces on (-1, 1) in weighted Lp spaces. We first restate the translation network from the view of reproducing kernel spaces and then construct a sequence of approximating operators with the help of Jacobi orthogonal polynomials, with which we establish a kind of Jackson inequality to describe the error estimate.Finally, The results are used to discuss an approximation problem arising from learning theory.

  18. Approximations of continuous Newton's method: An extension of Cayley's problem

    Directory of Open Access Journals (Sweden)

    Jon Jacobsen

    2007-02-01

    Full Text Available Continuous Newton's Method refers to a certain dynamical system whose associated flow generically tends to the roots of a given polynomial. An Euler approximation of this system, with step size $h=1$, yields the discrete Newton's method algorithm for finding roots. In this note we contrast Euler approximations with several different approximations of the continuous ODE system and, using computer experiments, consider their impact on the associated fractal basin boundaries of the roots.

  19. Wavelet approach to accelerator problems. 1: Polynomial dynamics

    International Nuclear Information System (INIS)

    This is the first part of a series of talks in which the authors present applications of methods from wavelet analysis to polynomial approximations for a number of accelerator physics problems. In the general case they have the solution as a multiresolution expansion in the base of compactly supported wavelet basis. The solution is parameterized by solutions of two reduced algebraical problems, one is nonlinear and the second is some linear problem, which is obtained from one of the next wavelet constructions: Fast Wavelet Transform, Stationary Subdivision Schemes, the method of Connection Coefficients. In this paper the authors consider the problem of calculation of orbital motion in storage rings. The key point in the solution of this problem is the use of the methods of wavelet analysis, relatively novel set of mathematical methods, which gives one a possibility to work with well-localized bases in functional spaces and with the general type of operators (including pseudodifferential) in such bases

  20. Transmitting electric power system dynamics in SCADA using polynomial fitting

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The paper proposes an approach to transmit electric power system dynamics in the SCADA. With the prevalent application of digital substation automation system, it is feasible for the remote terminal units (RTUs) to collect phasors within a substation. However, limited communication capacity remains the bottleneck that prevents SCADA from transmitting system dynamics. This paper proposes to compress dynamics data with curve fitting in the RTUs and reconstruct the dynamics in the SCADA server for reducing communication demand. Dispatchers in the control center can thus get system dynamics with a delay of several seconds. Simulation result shows that for a power system under disturbance with short-circuit that once occurred and was cleared, the SCADA can approximate the original dynamics with satisfying precision using limited degree polynomial fitting. The approach is highly scalable and adaptable, and can be implemented on existing communication infrastructure with a few software modifications. The approach has extensive application potential.

  1. Polynomial threshold functions and Boolean threshold circuits

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Arnsfelt; Podolskii, Vladimir V.

    2013-01-01

    secondary interest. We show that PTFs on general Boolean domains are tightly connected to depth two threshold circuits. Our main results in regard to this connection are: PTFs of polynomial length and polynomial degree compute exactly the functions computed by THRMAJ circuits. An exponential length lower...... bound for PTFs that holds regardless of degree, thereby extending known lower bounds for THRMAJ circuits. We generalize two-party unbounded error communication complexity to the multi-party number-on-the-forehead setting, and show that communication lower bounds for 3-player protocols would yield size...... lower bounds for THRTHR circuits. We obtain several other results about PTFs. These include relationships between weight and degree of PTFs, and a degree lower bound for PTFs of constant length. We also consider a variant of PTFs over the max-plus algebra. We show that they are connected to PTFs over...

  2. Venereau polynomials and related fiber bundles

    OpenAIRE

    Kaliman, Shulim; ZAIDENBERG, MIKHAIL

    2003-01-01

    The Venereau polynomials v-n:=y+x^n(xz+y(yu+z^2)), n>= 1, on A4 have all fibers isomorphic to the affine space A3. Moreover, for all n>= 1 the map (v-n, x) : A4 -> A2 yields a flat family of affine planes over A2. In the present note we show that over the punctured plane A2\\0, this family is a fiber bundle. This bundle is trivial if and only if v-n is a variable of the ring C[x][y,z,u] over C[x]. It is an open question whether v1 and v2 are variables of the polynomial ring C[x,y,z,u]. S. Vene...

  3. Tabulating knot polynomials for arborescent knots

    CERN Document Server

    Mironov, A; Morozov, An; Sleptsov, A; Ramadevi, P; Singh, Vivek Kumar

    2016-01-01

    Arborescent knots are the ones which can be represented in terms of double fat graphs or equivalently as tree Feynman diagrams. This is the class of knots for which the present knowledge is enough for lifting topological description to the level of effective analytical formulas. The paper describes the origin and structure of the new tables of colored knot polynomials, which will be posted at the dedicated site. Even if formal expressions are known in terms of modular transformation matrices, the computation in finite time requires additional ideas. We use the "family" approach, and apply it to arborescent knots in Rolfsen table by developing a Feynman diagram technique, associated with an auxiliary matrix model field theory. Gauge invariance in this theory helps to provide meaning to Racah matrices in the case of non-trivial multiplicities and explains the need for peculiar sign prescriptions in the calculation of [21]-colored HOMFLY polynomials.

  4. On computing factors of cyclotomic polynomials

    Science.gov (United States)

    Brent, Richard P.

    1993-07-01

    For odd square-free n > 1 the cyclotomic polynomial {Φ_n}(x) satisfies the identity of Gauss, 4{Φ_n}(x) = A_n^2 - {( - 1)^{(n - 1)/2}}nB_n^2. A similar identity of Aurifeuille, Le Lasseur, and Lucas is {Φ_n}({( - 1)^{(n - 1)/2}}x) = C_n^2 - nxD_n^2 or, in the case that n is even and square-free, ± {Φ_{n/2}}( - {x^2}) = C_n^2 - nxD_n^2. Here, {A_n}(x), ldots ,{D_n}(x) are polynomials with integer coefficients. We show how these coefficients can be computed by simple algorithms which require O({n^2}) arithmetic operations and work over the integers. We also give explicit formulae and generating functions for {A_n}(x), ldots ,{D_n}(x) , and illustrate the application to integer factorization with some numerical examples.

  5. Zernike polynomials for photometric characterization of LEDs

    International Nuclear Information System (INIS)

    We propose a method based on Zernike polynomials to characterize photometric quantities and descriptors of light emitting diodes (LEDs) from measurements of the angular distribution of the luminous intensity, such as total luminous flux, BA, inhomogeneity, anisotropy, direction of the optical axis and Lambertianity of the source. The performance of this method was experimentally tested for 18 high-power LEDs from different manufacturers and with different photometric characteristics. A small set of Zernike coefficients can be used to calculate all the mentioned photometric quantities and descriptors. For applications not requiring a great accuracy such as those of lighting design, the angular distribution of the luminous intensity of most of the studied LEDs can be interpolated with only two Zernike polynomials. (paper)

  6. Polynomial Operators on Classes of Regular Languages

    Science.gov (United States)

    Klíma, Ondřej; Polák, Libor

    We assign to each positive variety mathcal V and each natural number k the class of all (positive) Boolean combinations of the restricted polynomials, i.e. the languages of the form L_0a_1 L_1a_2dots a_ell L_ell, text{ where } ell≤ k, a 1,...,a ℓ are letters and L 0,...,L ℓ are languages from the variety mathcal V. For this polynomial operator we give a certain algebraic counterpart which works with identities satisfied by syntactic (ordered) monoids of languages considered. We also characterize the property that a variety of languages is generated by a finite number of languages. We apply our constructions to particular examples of varieties of languages which are crucial for a certain famous open problem concerning concatenation hierarchies.

  7. On Polynomial Sized MDP Succinct Policies

    CERN Document Server

    Liberatore, P

    2011-01-01

    Policies of Markov Decision Processes (MDPs) determine the next action to execute from the current state and, possibly, the history (the past states). When the number of states is large, succinct representations are often used to compactly represent both the MDPs and the policies in a reduced amount of space. In this paper, some problems related to the size of succinctly represented policies are analyzed. Namely, it is shown that some MDPs have policies that can only be represented in space super-polynomial in the size of the MDP, unless the polynomial hierarchy collapses. This fact motivates the study of the problem of deciding whether a given MDP has a policy of a given size and reward. Since some algorithms for MDPs work by finding a succinct representation of the value function, the problem of deciding the existence of a succinct representation of a value function of a given size and reward is also considered.

  8. General Linearized Polynomial Interpolation and Its Applications

    CERN Document Server

    Xie, Hongmei; Suter, Bruce W

    2011-01-01

    In this paper, we first propose a general interpolation algorithm in a free module of a linearized polynomial ring, and then apply this algorithm to decode several important families of codes, Gabidulin codes, KK codes and MV codes. Our decoding algorithm for Gabidulin codes is different from the polynomial reconstruction algorithm by Loidreau. When applied to decode KK codes, our interpolation algorithm is equivalent to the Sudan-style list-1 decoding algorithm proposed by K/"otter and Kschischang for KK codes. The general interpolation approach is also capable of solving the interpolation problem for the list decoding of MV codes proposed by Mahdavifar and Vardy, and has a lower complexity than solving linear equations.

  9. Line Complexity Asymptotics of Polynomial Cellular Automata

    OpenAIRE

    Stone, Bertrand

    2016-01-01

    Cellular automata are discrete dynamical systems that consist of patterns of symbols on a grid, which change according to a locally determined transition rule. In this paper, we will consider cellular automata that arise from polynomial transition rules, where the symbols in the automaton are integers modulo some prime $p$. We are principally concerned with the asymptotic behavior of the line complexity sequence $a_T(k)$, which counts, for each $k$, the number of coefficient strings of length...

  10. Block Toeplitz methods in polynomial matrix computations

    Czech Academy of Sciences Publication Activity Database

    Zuniga, J. C.; Henrion, Didier

    Leuven: Kathlolieke Universiteit, 2004 - (de Moor, B.; Motmans, B.; Willems, J.), s. 1-7 ISBN 90-5682-517-8. [MTNS 2004 /16./. Leuven (BE), 05.07.2004-09.07.2004] R&D Projects: GA ČR GA102/02/0709 Institutional research plan: CEZ:AV0Z1075907 Keywords : polynomial matrices * numerical linear algebra * computer - aided control system design Subject RIV: BC - Control Systems Theory

  11. Pure Imaginary Roots of Quaternion Standard Polynomials

    OpenAIRE

    Chapman, Adam

    2011-01-01

    In this paper, we present a new method for solving standard quaternion equations. Using this method we reobtain the known formulas for the solution of a quadratic quaternion equation, and provide an explicit solution for the cubic quaternion equation, as long as the equation has at least one pure imaginary root. We also discuss the number of essential pure imaginary roots of a two-sided quaternion polynomial.

  12. Real meromorphic functions and linear differential polynomials

    Institute of Scientific and Technical Information of China (English)

    LANGLEY; J.; K.

    2010-01-01

    We determine all real meromorphic functions f in the plane such that f has finitely many zeros, the poles of f have bounded multiplicities, and f and F have finitely many non-real zeros, where F is a linear differential polynomial given by F = f (k) +Σk-1j=0ajf(j) , in which k≥2 and the coefficients aj are real numbers with a0≠0.

  13. Moments, positive polynomials and their applications

    CERN Document Server

    Lasserre, Jean Bernard

    2009-01-01

    Many important applications in global optimization, algebra, probability and statistics, applied mathematics, control theory, financial mathematics, inverse problems, etc. can be modeled as a particular instance of the Generalized Moment Problem (GMP) . This book introduces a new general methodology to solve the GMP when its data are polynomials and basic semi-algebraic sets. This methodology combines semidefinite programming with recent results from real algebraic geometry to provide a hierarchy of semidefinite relaxations converging to the desired optimal value. Applied on appropriate cones,

  14. Completeness of the ring of polynomials

    DEFF Research Database (Denmark)

    Thorup, Anders

    2015-01-01

    Consider the polynomial ring R:=k[X1,…,Xn]R:=k[X1,…,Xn] in n≥2n≥2 variables over an uncountable field k. We prove that R   is complete in its adic topology, that is, the translation invariant topology in which the non-zero ideals form a fundamental system of neighborhoods of 0. In addition we pro...

  15. Products of Random Matrices from Polynomial Ensembles

    OpenAIRE

    Kieburg, Mario; Kösters, Holger

    2016-01-01

    Very recently we have shown that the spherical transform is a convenient tool for studying the relation between the joint density of the singular values and that of the eigenvalues for bi-unitarily invariant random matrices. In the present work we discuss the implications of these results for products of random matrices. In particular, we derive a transformation formula for the joint densities of a product of two independent bi-unitarily invariant random matrices, the first from a polynomial ...

  16. Reverse-engineering of polynomial dynamical systems

    OpenAIRE

    Jarrah, Abdul Salam; Laubenbacher, Reinhard; Stigler, Brandilyn; Stillman, Michael

    2006-01-01

    Multivariate polynomial dynamical systems over finite fields have been studied in several contexts, including engineering and mathematical biology. An important problem is to construct models of such systems from a partial specification of dynamic properties, e.g., from a collection of state transition measurements. Here, we consider static models, which are directed graphs that represent the causal relationships between system variables, so-called wiring diagrams. This paper contains an algo...

  17. Detecting Prime Numbers via Roots of Polynomials

    Science.gov (United States)

    Dobbs, David E.

    2012-01-01

    It is proved that an integer n [greater than or equal] 2 is a prime (resp., composite) number if and only if there exists exactly one (resp., more than one) nth-degree monic polynomial f with coefficients in Z[subscript n], the ring of integers modulo n, such that each element of Z[subscript n] is a root of f. This classroom note could find use in…

  18. Polynomial chaos representation of a stochastic preconditioner

    OpenAIRE

    Desceliers, Christophe; Ghanem, R; Soize, Christian

    2005-01-01

    A method is developed in this paper to accelerate the convergence in computing the solution of stochastic algebraic systems of equations. The method is based on computing, via statistical sampling, a polynomial chaos decomposition of a stochastic preconditioner to the system of equations. This preconditioner can subsequently be used in conjunction with either chaos representations of the solution or with approaches based on Monte Carlo sampling. In addition to presenting the supporting theory...

  19. Polynomial Chaos Expansion of random coefficients and the solution of stochastic partial differential equations in the Tensor Train format

    KAUST Repository

    Dolgov, S.

    2015-03-11

    We apply the Tensor Train (TT) decomposition to construct the tensor product Polynomial Chaos Expansion (PCE) of a random field, to solve the stochastic elliptic diffusion PDE with the stochastic Galerkin discretization, and to compute some quantities of interest (mean, variance, exceedance probabilities). We assume that the random diffusion coefficient is given as a smooth transformation of a Gaussian random field. In this case, the PCE is delivered by a complicated formula, which lacks an analytic TT representation. To construct its TT approximation numerically, we develop the new block TT cross algorithm, a method that computes the whole TT decomposition from a few evaluations of the PCE formula. The new method is conceptually similar to the adaptive cross approximation in the TT format, but is more efficient when several tensors must be stored in the same TT representation, which is the case for the PCE. Besides, we demonstrate how to assemble the stochastic Galerkin matrix and to compute the solution of the elliptic equation and its post-processing, staying in the TT format. We compare our technique with the traditional sparse polynomial chaos and the Monte Carlo approaches. In the tensor product polynomial chaos, the polynomial degree is bounded for each random variable independently. This provides higher accuracy than the sparse polynomial set or the Monte Carlo method, but the cardinality of the tensor product set grows exponentially with the number of random variables. However, when the PCE coefficients are implicitly approximated in the TT format, the computations with the full tensor product polynomial set become possible. In the numerical experiments, we confirm that the new methodology is competitive in a wide range of parameters, especially where high accuracy and high polynomial degrees are required.

  20. Polynomial Chaos Expansion of Random Coefficients and the Solution of Stochastic Partial Differential Equations in the Tensor Train Format

    KAUST Repository

    Dolgov, Sergey

    2015-11-03

    We apply the tensor train (TT) decomposition to construct the tensor product polynomial chaos expansion (PCE) of a random field, to solve the stochastic elliptic diffusion PDE with the stochastic Galerkin discretization, and to compute some quantities of interest (mean, variance, and exceedance probabilities). We assume that the random diffusion coefficient is given as a smooth transformation of a Gaussian random field. In this case, the PCE is delivered by a complicated formula, which lacks an analytic TT representation. To construct its TT approximation numerically, we develop the new block TT cross algorithm, a method that computes the whole TT decomposition from a few evaluations of the PCE formula. The new method is conceptually similar to the adaptive cross approximation in the TT format but is more efficient when several tensors must be stored in the same TT representation, which is the case for the PCE. In addition, we demonstrate how to assemble the stochastic Galerkin matrix and to compute the solution of the elliptic equation and its postprocessing, staying in the TT format. We compare our technique with the traditional sparse polynomial chaos and the Monte Carlo approaches. In the tensor product polynomial chaos, the polynomial degree is bounded for each random variable independently. This provides higher accuracy than the sparse polynomial set or the Monte Carlo method, but the cardinality of the tensor product set grows exponentially with the number of random variables. However, when the PCE coefficients are implicitly approximated in the TT format, the computations with the full tensor product polynomial set become possible. In the numerical experiments, we confirm that the new methodology is competitive in a wide range of parameters, especially where high accuracy and high polynomial degrees are required.