Explicitly solvable complex Chebyshev approximation problems related to sine polynomials
Freund, Roland
1989-01-01
Explicitly solvable real Chebyshev approximation problems on the unit interval are typically characterized by simple error curves. A similar principle is presented for complex approximation problems with error curves induced by sine polynomials. As an application, some new explicit formulae for complex best approximations are derived.
Cosmographic analysis with Chebyshev polynomials
Capozziello, Salvatore; D'Agostino, Rocco; Luongo, Orlando
2018-05-01
The limits of standard cosmography are here revised addressing the problem of error propagation during statistical analyses. To do so, we propose the use of Chebyshev polynomials to parametrize cosmic distances. In particular, we demonstrate that building up rational Chebyshev polynomials significantly reduces error propagations with respect to standard Taylor series. This technique provides unbiased estimations of the cosmographic parameters and performs significatively better than previous numerical approximations. To figure this out, we compare rational Chebyshev polynomials with Padé series. In addition, we theoretically evaluate the convergence radius of (1,1) Chebyshev rational polynomial and we compare it with the convergence radii of Taylor and Padé approximations. We thus focus on regions in which convergence of Chebyshev rational functions is better than standard approaches. With this recipe, as high-redshift data are employed, rational Chebyshev polynomials remain highly stable and enable one to derive highly accurate analytical approximations of Hubble's rate in terms of the cosmographic series. Finally, we check our theoretical predictions by setting bounds on cosmographic parameters through Monte Carlo integration techniques, based on the Metropolis-Hastings algorithm. We apply our technique to high-redshift cosmic data, using the Joint Light-curve Analysis supernovae sample and the most recent versions of Hubble parameter and baryon acoustic oscillation measurements. We find that cosmography with Taylor series fails to be predictive with the aforementioned data sets, while turns out to be much more stable using the Chebyshev approach.
Kaporin, I. E.
2012-02-01
In order to precondition a sparse symmetric positive definite matrix, its approximate inverse is examined, which is represented as the product of two sparse mutually adjoint triangular matrices. In this way, the solution of the corresponding system of linear algebraic equations (SLAE) by applying the preconditioned conjugate gradient method (CGM) is reduced to performing only elementary vector operations and calculating sparse matrix-vector products. A method for constructing the above preconditioner is described and analyzed. The triangular factor has a fixed sparsity pattern and is optimal in the sense that the preconditioned matrix has a minimum K-condition number. The use of polynomial preconditioning based on Chebyshev polynomials makes it possible to considerably reduce the amount of scalar product operations (at the cost of an insignificant increase in the total number of arithmetic operations). The possibility of an efficient massively parallel implementation of the resulting method for solving SLAEs is discussed. For a sequential version of this method, the results obtained by solving 56 test problems from the Florida sparse matrix collection (which are large-scale and ill-conditioned) are presented. These results show that the method is highly reliable and has low computational costs.
International Nuclear Information System (INIS)
Yasa, F.; Anli, F.; Guengoer, S.
2007-01-01
We present analytical calculations of spherically symmetric radioactive transfer and neutron transport using a hypothesis of P1 and T1 low order polynomial approximation for diffusion coefficient D. Transport equation in spherical geometry is considered as the pseudo slab equation. The validity of polynomial expansionion in transport theory is investigated through a comparison with classic diffusion theory. It is found that for causes when the fluctuation of the scattering cross section dominates, the quantitative difference between the polynomial approximation and diffusion results was physically acceptable in general
Superiority of legendre polynomials to Chebyshev polynomial in ...
African Journals Online (AJOL)
In this paper, we proved the superiority of Legendre polynomial to Chebyshev polynomial in solving first order ordinary differential equation with rational coefficient. We generated shifted polynomial of Chebyshev, Legendre and Canonical polynomials which deal with solving differential equation by first choosing Chebyshev ...
On the Connection Coefficients of the Chebyshev-Boubaker Polynomials
Directory of Open Access Journals (Sweden)
Paul Barry
2013-01-01
Full Text Available The Chebyshev-Boubaker polynomials are the orthogonal polynomials whose coefficient arrays are defined by ordinary Riordan arrays. Examples include the Chebyshev polynomials of the second kind and the Boubaker polynomials. We study the connection coefficients of this class of orthogonal polynomials, indicating how Riordan array techniques can lead to closed-form expressions for these connection coefficients as well as recurrence relations that define them.
Deprit, A.
1975-01-01
A theory for generating segmented ephemerides is discussed as a means for fast generation and simple retrieval of nominal orbit data. Over a succession of finite intervals of time, the orbit is represented by a best approximation expressed by Chebyshev polynomials. Storage of coefficients tables for Chebyshev polynomials is seen as a method to reduce data and decrease transmission costs. A general algorithm was constructed and computer programs were designed. The possibility of storing an ephemeris for a few days in the on-board computer, or in microprocessors attached to the data collectors is suggested.
Inelastic scattering with Chebyshev polynomials and preconditioned conjugate gradient minimization.
Temel, Burcin; Mills, Greg; Metiu, Horia
2008-03-27
We describe and test an implementation, using a basis set of Chebyshev polynomials, of a variational method for solving scattering problems in quantum mechanics. This minimum error method (MEM) determines the wave function Psi by minimizing the least-squares error in the function (H Psi - E Psi), where E is the desired scattering energy. We compare the MEM to an alternative, the Kohn variational principle (KVP), by solving the Secrest-Johnson model of two-dimensional inelastic scattering, which has been studied previously using the KVP and for which other numerical solutions are available. We use a conjugate gradient (CG) method to minimize the error, and by preconditioning the CG search, we are able to greatly reduce the number of iterations necessary; the method is thus faster and more stable than a matrix inversion, as is required in the KVP. Also, we avoid errors due to scattering off of the boundaries, which presents substantial problems for other methods, by matching the wave function in the interaction region to the correct asymptotic states at the specified energy; the use of Chebyshev polynomials allows this boundary condition to be implemented accurately. The use of Chebyshev polynomials allows for a rapid and accurate evaluation of the kinetic energy. This basis set is as efficient as plane waves but does not impose an artificial periodicity on the system. There are problems in surface science and molecular electronics which cannot be solved if periodicity is imposed, and the Chebyshev basis set is a good alternative in such situations.
International Nuclear Information System (INIS)
Benasser Algehawi, Mohammed; Samsudin, Azman
2010-01-01
We present a method to extract key pairs needed for the Identity Based Encryption (IBE) scheme from extended Chebyshev polynomial over finite fields Z p . Our proposed scheme relies on the hard problem and the bilinear property of the extended Chebyshev polynomial over Z p . The proposed system is applicable, secure, and reliable.
Mapping Landslides in Lunar Impact Craters Using Chebyshev Polynomials and Dem's
Yordanov, V.; Scaioni, M.; Brunetti, M. T.; Melis, M. T.; Zinzi, A.; Giommi, P.
2016-06-01
Geological slope failure processes have been observed on the Moon surface for decades, nevertheless a detailed and exhaustive lunar landslide inventory has not been produced yet. For a preliminary survey, WAC images and DEM maps from LROC at 100 m/pixels have been exploited in combination with the criteria applied by Brunetti et al. (2015) to detect the landslides. These criteria are based on the visual analysis of optical images to recognize mass wasting features. In the literature, Chebyshev polynomials have been applied to interpolate crater cross-sections in order to obtain a parametric characterization useful for classification into different morphological shapes. Here a new implementation of Chebyshev polynomial approximation is proposed, taking into account some statistical testing of the results obtained during Least-squares estimation. The presence of landslides in lunar craters is then investigated by analyzing the absolute values off odd coefficients of estimated Chebyshev polynomials. A case study on the Cassini A crater has demonstrated the key-points of the proposed methodology and outlined the required future development to carry out.
Shifted-modified Chebyshev filters
ŞENGÜL, Metin
2013-01-01
This paper introduces a new type of filter approximation method that utilizes shifted-modified Chebyshev filters. Construction of the new filters involves the use of shifted-modified Chebyshev polynomials that are formed using the roots of conventional Chebyshev polynomials. The study also includes 2 tables containing the shifted-modified Chebyshev polynomials and the normalized element values for the low-pass prototype filters up to degree 6. The transducer power gain, group dela...
Polynomial approximation on polytopes
Totik, Vilmos
2014-01-01
Polynomial approximation on convex polytopes in \\mathbf{R}^d is considered in uniform and L^p-norms. For an appropriate modulus of smoothness matching direct and converse estimates are proven. In the L^p-case so called strong direct and converse results are also verified. The equivalence of the moduli of smoothness with an appropriate K-functional follows as a consequence. The results solve a problem that was left open since the mid 1980s when some of the present findings were established for special, so-called simple polytopes.
NUMERICAL SOLUTION OF SINGULAR INVERSE NODAL PROBLEM BY USING CHEBYSHEV POLYNOMIALS
NEAMATY, ABDOLALI; YILMAZ, EMRAH; AKBARPOOR, SHAHRBANOO; DABBAGHIAN, ABDOLHADI
2017-01-01
In this study, we consider Sturm-Liouville problem in two cases: the first case having no singularity and the second case having a singularity at zero. Then, we calculate the eigenvalues and the nodal points and present the uniqueness theorem for the solution of the inverse problem by using a dense subset of the nodal points in two given cases. Also, we use Chebyshev polynomials of the first kind for calculating the approximate solution of the inverse nodal problem in these cases. Finally, we...
Solution of linear transport equation using Chebyshev polynomials and Laplace transform
International Nuclear Information System (INIS)
Cardona, A.V.; Vilhena, M.T.M.B. de
1994-01-01
The Chebyshev polynomials and the Laplace transform are combined to solve, analytically, the linear transport equation in planar geometry, considering isotropic scattering and the one-group model. Numerical simulation is presented. (author)
Some Identities Involving the Derivative of the First Kind Chebyshev Polynomials
Directory of Open Access Journals (Sweden)
Tingting Wang
2015-01-01
Full Text Available We use the combinatorial method and algebraic manipulations to obtain several interesting identities involving the power sums of the derivative of the first kind Chebyshev polynomials. This solved an open problem proposed by Li (2015.
Quality Parameters Defined by Chebyshev Polynomials in Cold Rolling Process Chain
International Nuclear Information System (INIS)
Judin, Mika; Nylander, Jari; Larkiola, Jari; Verho, Martti
2011-01-01
The thickness profile of hot strip is of importance to profile, flatness and shape of the final cold rolled product. In this work, strip thickness and flatness profiles are decomposed into independent components by solving Chebyshev polynomials coefficients using matrix calculation. Four terms are used to characterize most common shapes of thickness and flatness profile. The calculated Chebyshev coefficients from different line measurements are combined together and analysed using neural network tools. The most common types of shapes are classified.
Directory of Open Access Journals (Sweden)
Yu-Bo Jiao
2015-01-01
Full Text Available The paper presents an effective approach for damage identification of bridge based on Chebyshev polynomial fitting and fuzzy logic systems without considering baseline model data. The modal curvature of damaged bridge can be obtained through central difference approximation based on displacement modal shape. Depending on the modal curvature of damaged structure, Chebyshev polynomial fitting is applied to acquire the curvature of undamaged one without considering baseline parameters. Therefore, modal curvature difference can be derived and used for damage localizing. Subsequently, the normalized modal curvature difference is treated as input variable of fuzzy logic systems for damage condition assessment. Numerical simulation on a simply supported bridge was carried out to demonstrate the feasibility of the proposed method.
Applying Semigroup Property of Enhanced Chebyshev Polynomials to Anonymous Authentication Protocol
Directory of Open Access Journals (Sweden)
Hong Lai
2012-01-01
Full Text Available We apply semigroup property of enhanced Chebyshev polynomials to present an anonymous authentication protocol. This paper aims at improving security and reducing computational and storage overhead. The proposed scheme not only has much lower computational complexity and cost in the initialization phase but also allows the users to choose their passwords freely. Moreover, it can provide revocation of lost or stolen smart card, which can resist man-in-the-middle attack and off-line dictionary attack together with various known attacks.
International Nuclear Information System (INIS)
Haggag, M.H.; Al-Gorashi, A.K.; Machali, H.M.
2013-01-01
In this study, the integral form of the radiative transfer equation in planar slab with isotropic scattering has been studied by using the Chebyshev polynomial approximation which is called TN method. The scalar flux is expanded in terms of Chebyshev polynomials in the space variable. The expansion coefficients are solutions to a system of linear algebraic equations. Analytical expressions are given for the scalar and angular flux everywhere in the slab. Numerical calculations are done for the transmissivity and reflectivity of slabs with various values of the single scattering albedo. Calculations are also carried out for the transmitted and reflected angular intensity at the slab boundaries. Our numerical results are in a very good agreement with other results, as shown in the tables
International Nuclear Information System (INIS)
Ramazanov, A.-R K
2005-01-01
Necessary and sufficient conditions for the best polynomial approximation with an arbitrary and, generally speaking, unbounded sign-sensitive weight to a continuous function are obtained; the components of the weight can also take infinite values, therefore the conditions obtained cover, in particular, approximation with interpolation at fixed points and one-sided approximation; in the case of the weight with components equal to 1 one arrives at Chebyshev's classical alternation theorem.
Energy Technology Data Exchange (ETDEWEB)
Lorber, A.A.; Carey, G.F.; Bova, S.W.; Harle, C.H. [Univ. of Texas, Austin, TX (United States)
1996-12-31
The connection between the solution of linear systems of equations by iterative methods and explicit time stepping techniques is used to accelerate to steady state the solution of ODE systems arising from discretized PDEs which may involve either physical or artificial transient terms. Specifically, a class of Runge-Kutta (RK) time integration schemes with extended stability domains has been used to develop recursion formulas which lead to accelerated iterative performance. The coefficients for the RK schemes are chosen based on the theory of Chebyshev iteration polynomials in conjunction with a local linear stability analysis. We refer to these schemes as Chebyshev Parameterized Runge Kutta (CPRK) methods. CPRK methods of one to four stages are derived as functions of the parameters which describe an ellipse {Epsilon} which the stability domain of the methods is known to contain. Of particular interest are two-stage, first-order CPRK and four-stage, first-order methods. It is found that the former method can be identified with any two-stage RK method through the correct choice of parameters. The latter method is found to have a wide range of stability domains, with a maximum extension of 32 along the real axis. Recursion performance results are presented below for a model linear convection-diffusion problem as well as non-linear fluid flow problems discretized by both finite-difference and finite-element methods.
Multilevel weighted least squares polynomial approximation
Haji-Ali, Abdul-Lateef; Nobile, Fabio; Tempone, Raul; Wolfers, Sö ren
2017-01-01
, obtaining polynomial approximations with a single level method can become prohibitively expensive, as it requires a sufficiently large number of samples, each computed with a sufficiently small discretization error. As a solution to this problem, we propose
Multilevel weighted least squares polynomial approximation
Haji-Ali, Abdul-Lateef
2017-06-30
Weighted least squares polynomial approximation uses random samples to determine projections of functions onto spaces of polynomials. It has been shown that, using an optimal distribution of sample locations, the number of samples required to achieve quasi-optimal approximation in a given polynomial subspace scales, up to a logarithmic factor, linearly in the dimension of this space. However, in many applications, the computation of samples includes a numerical discretization error. Thus, obtaining polynomial approximations with a single level method can become prohibitively expensive, as it requires a sufficiently large number of samples, each computed with a sufficiently small discretization error. As a solution to this problem, we propose a multilevel method that utilizes samples computed with different accuracies and is able to match the accuracy of single-level approximations with reduced computational cost. We derive complexity bounds under certain assumptions about polynomial approximability and sample work. Furthermore, we propose an adaptive algorithm for situations where such assumptions cannot be verified a priori. Finally, we provide an efficient algorithm for the sampling from optimal distributions and an analysis of computationally favorable alternative distributions. Numerical experiments underscore the practical applicability of our method.
A New Six-Parameter Model Based on Chebyshev Polynomials for Solar Cells
Directory of Open Access Journals (Sweden)
Shu-xian Lun
2015-01-01
Full Text Available This paper presents a new current-voltage (I-V model for solar cells. It has been proved that series resistance of a solar cell is related to temperature. However, the existing five-parameter model ignores the temperature dependence of series resistance and then only accurately predicts the performance of monocrystalline silicon solar cells. Therefore, this paper uses Chebyshev polynomials to describe the relationship between series resistance and temperature. This makes a new parameter called temperature coefficient for series resistance introduced into the single-diode model. Then, a new six-parameter model for solar cells is established in this paper. This new model can improve the accuracy of the traditional single-diode model and reflect the temperature dependence of series resistance. To validate the accuracy of the six-parameter model in this paper, five kinds of silicon solar cells with different technology types, that is, monocrystalline silicon, polycrystalline silicon, thin film silicon, and tripe-junction amorphous silicon, are tested at different irradiance and temperature conditions. Experiment results show that the six-parameter model proposed in this paper is an I-V model with moderate computational complexity and high precision.
Intrinsic Diophantine approximation on general polynomial surfaces
DEFF Research Database (Denmark)
Tiljeset, Morten Hein
2017-01-01
We study the Hausdorff measure and dimension of the set of intrinsically simultaneously -approximable points on a curve, surface, etc, given as a graph of integer polynomials. We obtain complete answers to these questions for algebraically “nice” manifolds. This generalizes earlier work done...
Function approximation with polynomial regression slines
International Nuclear Information System (INIS)
Urbanski, P.
1996-01-01
Principles of the polynomial regression splines as well as algorithms and programs for their computation are presented. The programs prepared using software package MATLAB are generally intended for approximation of the X-ray spectra and can be applied in the multivariate calibration of radiometric gauges. (author)
Conditional Density Approximations with Mixtures of Polynomials
DEFF Research Database (Denmark)
Varando, Gherardo; López-Cruz, Pedro L.; Nielsen, Thomas Dyhre
2015-01-01
Mixtures of polynomials (MoPs) are a non-parametric density estimation technique especially designed for hybrid Bayesian networks with continuous and discrete variables. Algorithms to learn one- and multi-dimensional (marginal) MoPs from data have recently been proposed. In this paper we introduce...... two methods for learning MoP approximations of conditional densities from data. Both approaches are based on learning MoP approximations of the joint density and the marginal density of the conditioning variables, but they differ as to how the MoP approximation of the quotient of the two densities...
Directory of Open Access Journals (Sweden)
A.K. Parida
2016-09-01
Full Text Available In this paper Chebyshev polynomial functions based locally recurrent neuro-fuzzy information system is presented for the prediction and analysis of financial and electrical energy market data. The normally used TSK-type feedforward fuzzy neural network is unable to take the full advantage of the use of the linear fuzzy rule base in accurate input–output mapping and hence the consequent part of the rule base is made nonlinear using polynomial or arithmetic basis functions. Further the Chebyshev polynomial functions provide an expanded nonlinear transformation to the input space thereby increasing its dimension for capturing the nonlinearities and chaotic variations in financial or energy market data streams. Also the locally recurrent neuro-fuzzy information system (LRNFIS includes feedback loops both at the firing strength layer and the output layer to allow signal flow both in forward and backward directions, thereby making the LRNFIS mimic a dynamic system that provides fast convergence and accuracy in predicting time series fluctuations. Instead of using forward and backward least mean square (FBLMS learning algorithm, an improved Firefly-Harmony search (IFFHS learning algorithm is used to estimate the parameters of the consequent part and feedback loop parameters for better stability and convergence. Several real world financial and energy market time series databases are used for performance validation of the proposed LRNFIS model.
Directory of Open Access Journals (Sweden)
Jianping Liu
2016-01-01
Full Text Available An operational matrix technique is proposed to solve variable order fractional differential-integral equation based on the second kind of Chebyshev polynomials in this paper. The differential operational matrix and integral operational matrix are derived based on the second kind of Chebyshev polynomials. Using two types of operational matrixes, the original equation is transformed into the arithmetic product of several dependent matrixes, which can be viewed as an algebraic system after adopting the collocation points. Further, numerical solution of original equation is obtained by solving the algebraic system. Finally, several examples show that the numerical algorithm is computationally efficient.
International Nuclear Information System (INIS)
Flores-Lamas, H.
1994-01-01
An analytic expansion, to arbitrary accuracy, of the transmission integral (TI) for a single Moessbauer line is presented. This serves for calculating the effective thickness (T a ) of an absorber in Moessbauer spectroscopy even for T a >10. The new analytic expansion arises from substituting in the TI expression the exponential function by a Chebyshev polynomials series. A very fast converging series for TI is obtained and used as a test function in a least squares fit to a simulated spectrum. The test yields satisfactory results. The area and height parameters calculated were found to be in good agreement with earlier results. The present analytic method assumes that the source and absorber widths are different. ((orig.))
Approximating Exponential and Logarithmic Functions Using Polynomial Interpolation
Gordon, Sheldon P.; Yang, Yajun
2017-01-01
This article takes a closer look at the problem of approximating the exponential and logarithmic functions using polynomials. Either as an alternative to or a precursor to Taylor polynomial approximations at the precalculus level, interpolating polynomials are considered. A measure of error is given and the behaviour of the error function is…
International Nuclear Information System (INIS)
Lee, Yoon Hee; Cho, Nam Zin
2016-01-01
The code gives inaccurate results of nuclides for evaluation of source term analysis, e.g., Sr- 90, Ba-137m, Cs-137, etc. A Krylov Subspace method was suggested by Yamamoto et al. The method is based on the projection of solution space of Bateman equation to a lower dimension of Krylov subspace. It showed good accuracy in the detailed burnup chain calculation if dimension of the Krylov subspace is high enough. In this paper, we will compare the two methods in terms of accuracy and computing time. In this paper, two-block decomposition (TBD) method and Chebyshev rational approximation method (CRAM) are compared in the depletion calculations. In the two-block decomposition method, according to the magnitude of effective decay constant, the system of Bateman equation is decomposed into short- and longlived blocks. The short-lived block is calculated by the general Bateman solution and the importance concept. Matrix exponential with smaller norm is used in the long-lived block. In the Chebyshev rational approximation, there is no decomposition of the Bateman equation system, and the accuracy of the calculation is determined by the order of expansion in the partial fraction decomposition of the rational form. The coefficients in the partial fraction decomposition are determined by a Remez-type algorithm.
Energy Technology Data Exchange (ETDEWEB)
Lee, Yoon Hee; Cho, Nam Zin [KAERI, Daejeon (Korea, Republic of)
2016-05-15
The code gives inaccurate results of nuclides for evaluation of source term analysis, e.g., Sr- 90, Ba-137m, Cs-137, etc. A Krylov Subspace method was suggested by Yamamoto et al. The method is based on the projection of solution space of Bateman equation to a lower dimension of Krylov subspace. It showed good accuracy in the detailed burnup chain calculation if dimension of the Krylov subspace is high enough. In this paper, we will compare the two methods in terms of accuracy and computing time. In this paper, two-block decomposition (TBD) method and Chebyshev rational approximation method (CRAM) are compared in the depletion calculations. In the two-block decomposition method, according to the magnitude of effective decay constant, the system of Bateman equation is decomposed into short- and longlived blocks. The short-lived block is calculated by the general Bateman solution and the importance concept. Matrix exponential with smaller norm is used in the long-lived block. In the Chebyshev rational approximation, there is no decomposition of the Bateman equation system, and the accuracy of the calculation is determined by the order of expansion in the partial fraction decomposition of the rational form. The coefficients in the partial fraction decomposition are determined by a Remez-type algorithm.
Chen, Weitian; Sica, Christopher T; Meyer, Craig H
2008-11-01
Off-resonance effects can cause image blurring in spiral scanning and various forms of image degradation in other MRI methods. Off-resonance effects can be caused by both B0 inhomogeneity and concomitant gradient fields. Previously developed off-resonance correction methods focus on the correction of a single source of off-resonance. This work introduces a computationally efficient method of correcting for B0 inhomogeneity and concomitant gradients simultaneously. The method is a fast alternative to conjugate phase reconstruction, with the off-resonance phase term approximated by Chebyshev polynomials. The proposed algorithm is well suited for semiautomatic off-resonance correction, which works well even with an inaccurate or low-resolution field map. The proposed algorithm is demonstrated using phantom and in vivo data sets acquired by spiral scanning. Semiautomatic off-resonance correction alone is shown to provide a moderate amount of correction for concomitant gradient field effects, in addition to B0 imhomogeneity effects. However, better correction is provided by the proposed combined method. The best results were produced using the semiautomatic version of the proposed combined method.
Animating Nested Taylor Polynomials to Approximate a Function
Mazzone, Eric F.; Piper, Bruce R.
2010-01-01
The way that Taylor polynomials approximate functions can be demonstrated by moving the center point while keeping the degree fixed. These animations are particularly nice when the Taylor polynomials do not intersect and form a nested family. We prove a result that shows when this nesting occurs. The animations can be shown in class or…
Least squares orthogonal polynomial approximation in several independent variables
International Nuclear Information System (INIS)
Caprari, R.S.
1992-06-01
This paper begins with an exposition of a systematic technique for generating orthonormal polynomials in two independent variables by application of the Gram-Schmidt orthogonalization procedure of linear algebra. It is then demonstrated how a linear least squares approximation for experimental data or an arbitrary function can be generated from these polynomials. The least squares coefficients are computed without recourse to matrix arithmetic, which ensures both numerical stability and simplicity of implementation as a self contained numerical algorithm. The Gram-Schmidt procedure is then utilised to generate a complete set of orthogonal polynomials of fourth degree. A theory for the transformation of the polynomial representation from an arbitrary basis into the familiar sum of products form is presented, together with a specific implementation for fourth degree polynomials. Finally, the computational integrity of this algorithm is verified by reconstructing arbitrary fourth degree polynomials from their values at randomly chosen points in their domain. 13 refs., 1 tab
An overview on polynomial approximation of NP-hard problems
Directory of Open Access Journals (Sweden)
Paschos Vangelis Th.
2009-01-01
Full Text Available The fact that polynomial time algorithm is very unlikely to be devised for an optimal solving of the NP-hard problems strongly motivates both the researchers and the practitioners to try to solve such problems heuristically, by making a trade-off between computational time and solution's quality. In other words, heuristic computation consists of trying to find not the best solution but one solution which is 'close to' the optimal one in reasonable time. Among the classes of heuristic methods for NP-hard problems, the polynomial approximation algorithms aim at solving a given NP-hard problem in poly-nomial time by computing feasible solutions that are, under some predefined criterion, as near to the optimal ones as possible. The polynomial approximation theory deals with the study of such algorithms. This survey first presents and analyzes time approximation algorithms for some classical examples of NP-hard problems. Secondly, it shows how classical notions and tools of complexity theory, such as polynomial reductions, can be matched with polynomial approximation in order to devise structural results for NP-hard optimization problems. Finally, it presents a quick description of what is commonly called inapproximability results. Such results provide limits on the approximability of the problems tackled.
Polynomial approximation of functions in Sobolev spaces
International Nuclear Information System (INIS)
Dupont, T.; Scott, R.
1980-01-01
Constructive proofs and several generalizations of approximation results of J. H. Bramble and S. R. Hilbert are presented. Using an averaged Taylor series, we represent a function as a polynomical plus a remainder. The remainder can be manipulated in many ways to give different types of bounds. Approximation of functions in fractional order Sobolev spaces is treated as well as the usual integer order spaces and several nonstandard Sobolev-like spaces
Weighted Polynomial Approximation for Automated Detection of Inspiratory Flow Limitation
Directory of Open Access Journals (Sweden)
Sheng-Cheng Huang
2017-01-01
Full Text Available Inspiratory flow limitation (IFL is a critical symptom of sleep breathing disorders. A characteristic flattened flow-time curve indicates the presence of highest resistance flow limitation. This study involved investigating a real-time algorithm for detecting IFL during sleep. Three categories of inspiratory flow shape were collected from previous studies for use as a development set. Of these, 16 cases were labeled as non-IFL and 78 as IFL which were further categorized into minor level (20 cases and severe level (58 cases of obstruction. In this study, algorithms using polynomial functions were proposed for extracting the features of IFL. Methods using first- to third-order polynomial approximations were applied to calculate the fitting curve to obtain the mean absolute error. The proposed algorithm is described by the weighted third-order (w.3rd-order polynomial function. For validation, a total of 1,093 inspiratory breaths were acquired as a test set. The accuracy levels of the classifications produced by the presented feature detection methods were analyzed, and the performance levels were compared using a misclassification cobweb. According to the results, the algorithm using the w.3rd-order polynomial approximation achieved an accuracy of 94.14% for IFL classification. We concluded that this algorithm achieved effective automatic IFL detection during sleep.
Numerical solution of matrix exponential in burn-up equation using mini-max polynomial approximation
International Nuclear Information System (INIS)
Kawamoto, Yosuke; Chiba, Go; Tsuji, Masashi; Narabayashi, Tadashi
2015-01-01
Highlights: • We propose a new numerical solution of matrix exponential in burn-up depletion calculations. • The depletion calculation with extremely short half-lived nuclides can be done numerically stable with this method. • The computational time is shorter than the other conventional methods. - Abstract: Nuclear fuel burn-up depletion calculations are essential to compute the nuclear fuel composition transition. In the burn-up calculations, the matrix exponential method has been widely used. In the present paper, we propose a new numerical solution of the matrix exponential, a Mini-Max Polynomial Approximation (MMPA) method. This method is numerically stable for burn-up matrices with extremely short half-lived nuclides as the Chebyshev Rational Approximation Method (CRAM), and it has several advantages over CRAM. We also propose a multi-step calculation, a computational time reduction scheme of the MMPA method, which can perform simultaneously burn-up calculations with several time periods. The applicability of these methods has been theoretically and numerically proved for general burn-up matrices. The numerical verification has been performed, and it has been shown that these methods have high precision equivalent to CRAM
SAMBA: Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos
Energy Technology Data Exchange (ETDEWEB)
Ahlfeld, R., E-mail: r.ahlfeld14@imperial.ac.uk; Belkouchi, B.; Montomoli, F.
2016-09-01
A new arbitrary Polynomial Chaos (aPC) method is presented for moderately high-dimensional problems characterised by limited input data availability. The proposed methodology improves the algorithm of aPC and extends the method, that was previously only introduced as tensor product expansion, to moderately high-dimensional stochastic problems. The fundamental idea of aPC is to use the statistical moments of the input random variables to develop the polynomial chaos expansion. This approach provides the possibility to propagate continuous or discrete probability density functions and also histograms (data sets) as long as their moments exist, are finite and the determinant of the moment matrix is strictly positive. For cases with limited data availability, this approach avoids bias and fitting errors caused by wrong assumptions. In this work, an alternative way to calculate the aPC is suggested, which provides the optimal polynomials, Gaussian quadrature collocation points and weights from the moments using only a handful of matrix operations on the Hankel matrix of moments. It can therefore be implemented without requiring prior knowledge about statistical data analysis or a detailed understanding of the mathematics of polynomial chaos expansions. The extension to more input variables suggested in this work, is an anisotropic and adaptive version of Smolyak's algorithm that is solely based on the moments of the input probability distributions. It is referred to as SAMBA (PC), which is short for Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos. It is illustrated that for moderately high-dimensional problems (up to 20 different input variables or histograms) SAMBA can significantly simplify the calculation of sparse Gaussian quadrature rules. SAMBA's efficiency for multivariate functions with regard to data availability is further demonstrated by analysing higher order convergence and accuracy for a set of nonlinear test functions with 2, 5
SAMBA: Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos
International Nuclear Information System (INIS)
Ahlfeld, R.; Belkouchi, B.; Montomoli, F.
2016-01-01
A new arbitrary Polynomial Chaos (aPC) method is presented for moderately high-dimensional problems characterised by limited input data availability. The proposed methodology improves the algorithm of aPC and extends the method, that was previously only introduced as tensor product expansion, to moderately high-dimensional stochastic problems. The fundamental idea of aPC is to use the statistical moments of the input random variables to develop the polynomial chaos expansion. This approach provides the possibility to propagate continuous or discrete probability density functions and also histograms (data sets) as long as their moments exist, are finite and the determinant of the moment matrix is strictly positive. For cases with limited data availability, this approach avoids bias and fitting errors caused by wrong assumptions. In this work, an alternative way to calculate the aPC is suggested, which provides the optimal polynomials, Gaussian quadrature collocation points and weights from the moments using only a handful of matrix operations on the Hankel matrix of moments. It can therefore be implemented without requiring prior knowledge about statistical data analysis or a detailed understanding of the mathematics of polynomial chaos expansions. The extension to more input variables suggested in this work, is an anisotropic and adaptive version of Smolyak's algorithm that is solely based on the moments of the input probability distributions. It is referred to as SAMBA (PC), which is short for Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos. It is illustrated that for moderately high-dimensional problems (up to 20 different input variables or histograms) SAMBA can significantly simplify the calculation of sparse Gaussian quadrature rules. SAMBA's efficiency for multivariate functions with regard to data availability is further demonstrated by analysing higher order convergence and accuracy for a set of nonlinear test functions with 2, 5 and 10
New realisation of Preisach model using adaptive polynomial approximation
Liu, Van-Tsai; Lin, Chun-Liang; Wing, Home-Young
2012-09-01
Modelling system with hysteresis has received considerable attention recently due to the increasing accurate requirement in engineering applications. The classical Preisach model (CPM) is the most popular model to demonstrate hysteresis which can be represented by infinite but countable first-order reversal curves (FORCs). The usage of look-up tables is one way to approach the CPM in actual practice. The data in those tables correspond with the samples of a finite number of FORCs. This approach, however, faces two major problems: firstly, it requires a large amount of memory space to obtain an accurate prediction of hysteresis; secondly, it is difficult to derive efficient ways to modify the data table to reflect the timing effect of elements with hysteresis. To overcome, this article proposes the idea of using a set of polynomials to emulate the CPM instead of table look-up. The polynomial approximation requires less memory space for data storage. Furthermore, the polynomial coefficients can be obtained accurately by using the least-square approximation or adaptive identification algorithm, such as the possibility of accurate tracking of hysteresis model parameters.
The BQP-hardness of approximating the Jones polynomial
Energy Technology Data Exchange (ETDEWEB)
Aharonov, Dorit; Arad, Itai, E-mail: itaia@cs.huji.ac.il [Department of Computer Science and Engineering, Hebrew University, Jerusalem (Israel)
2011-03-15
A celebrated important result due to Freedman et al (2002 Commun. Math. Phys. 227 605-22) states that providing additive approximations of the Jones polynomial at the kth root of unity, for constant k=5 and k{>=}7, is BQP-hard. Together with the algorithmic results of Aharonov et al (2005) and Freedman et al (2002 Commun. Math. Phys. 227 587-603), this gives perhaps the most natural BQP-complete problem known today and motivates further study of the topic. In this paper, we focus on the universality proof; we extend the result of Freedman et al (2002) to ks that grow polynomially with the number of strands and crossings in the link, thus extending the BQP-hardness of Jones polynomial approximations to all values to which the AJL algorithm applies (Aharonov et al 2005), proving that for all those values, the problems are BQP-complete. As a side benefit, we derive a fairly elementary proof of the Freedman et al density result, without referring to advanced results from Lie algebra representation theory, making this important result accessible to a wider audience in the computer science research community. We make use of two general lemmas we prove, the bridge lemma and the decoupling lemma, which provide tools for establishing the density of subgroups in SU(n). Those tools seem to be of independent interest in more general contexts of proving the quantum universality. Our result also implies a completely classical statement, that the multiplicative approximations of the Jones polynomial, at exactly the same values, are P-hard, via a recent result due to Kuperberg (2009 arXiv:0908.0512). Since the first publication of those results in their preliminary form (Aharonov and Arad 2006 arXiv:quant-ph/0605181), the methods we present here have been used in several other contexts (Aharonov and Arad 2007 arXiv:quant-ph/0702008; Peter and Stephen 2008 Quantum Inf. Comput. 8 681). The present paper is an improved and extended version of the results presented by Aharonov and
The BQP-hardness of approximating the Jones polynomial
International Nuclear Information System (INIS)
Aharonov, Dorit; Arad, Itai
2011-01-01
A celebrated important result due to Freedman et al (2002 Commun. Math. Phys. 227 605-22) states that providing additive approximations of the Jones polynomial at the kth root of unity, for constant k=5 and k≥7, is BQP-hard. Together with the algorithmic results of Aharonov et al (2005) and Freedman et al (2002 Commun. Math. Phys. 227 587-603), this gives perhaps the most natural BQP-complete problem known today and motivates further study of the topic. In this paper, we focus on the universality proof; we extend the result of Freedman et al (2002) to ks that grow polynomially with the number of strands and crossings in the link, thus extending the BQP-hardness of Jones polynomial approximations to all values to which the AJL algorithm applies (Aharonov et al 2005), proving that for all those values, the problems are BQP-complete. As a side benefit, we derive a fairly elementary proof of the Freedman et al density result, without referring to advanced results from Lie algebra representation theory, making this important result accessible to a wider audience in the computer science research community. We make use of two general lemmas we prove, the bridge lemma and the decoupling lemma, which provide tools for establishing the density of subgroups in SU(n). Those tools seem to be of independent interest in more general contexts of proving the quantum universality. Our result also implies a completely classical statement, that the multiplicative approximations of the Jones polynomial, at exactly the same values, are P-hard, via a recent result due to Kuperberg (2009 arXiv:0908.0512). Since the first publication of those results in their preliminary form (Aharonov and Arad 2006 arXiv:quant-ph/0605181), the methods we present here have been used in several other contexts (Aharonov and Arad 2007 arXiv:quant-ph/0702008; Peter and Stephen 2008 Quantum Inf. Comput. 8 681). The present paper is an improved and extended version of the results presented by Aharonov and Arad
High Resolution of the ECG Signal by Polynomial Approximation
Directory of Open Access Journals (Sweden)
G. Rozinaj
2006-04-01
Full Text Available Averaging techniques as temporal averaging and space averaging have been successfully used in many applications for attenuating interference [6], [7], [8], [9], [10]. In this paper we introduce interference removing of the ECG signal by polynomial approximation, with smoothing discrete dependencies, to make up for averaging methods. The method is suitable for low-level signals of the electrical activity of the heart often less than 10 m V. Most low-level signals arising from PR, ST and TP segments which can be detected eventually and their physiologic meaning can be appreciated. Of special importance for the diagnostic of the electrical activity of the heart is the activity bundle of His between P and R waveforms. We have established an artificial sine wave to ECG signal between P and R wave. The aim focus is to verify the smoothing method by polynomial approximation if the SNR (signal-to-noise ratio is negative (i.e. a signal is lower than noise.
Directory of Open Access Journals (Sweden)
Mohsen Razzaghi
2000-01-01
Full Text Available A direct method for finding the solution of variational problems using a hybrid function is discussed. The hybrid functions which consist of block-pulse functions plus Chebyshev polynomials are introduced. An operational matrix of integration and the integration of the cross product of two hybrid function vectors are presented and are utilized to reduce a variational problem to the solution of an algebraic equation. Illustrative examples are included to demonstrate the validity and applicability of the technique.
Energy Technology Data Exchange (ETDEWEB)
Konakli, Katerina, E-mail: konakli@ibk.baug.ethz.ch; Sudret, Bruno
2016-09-15
The growing need for uncertainty analysis of complex computational models has led to an expanding use of meta-models across engineering and sciences. The efficiency of meta-modeling techniques relies on their ability to provide statistically-equivalent analytical representations based on relatively few evaluations of the original model. Polynomial chaos expansions (PCE) have proven a powerful tool for developing meta-models in a wide range of applications; the key idea thereof is to expand the model response onto a basis made of multivariate polynomials obtained as tensor products of appropriate univariate polynomials. The classical PCE approach nevertheless faces the “curse of dimensionality”, namely the exponential increase of the basis size with increasing input dimension. To address this limitation, the sparse PCE technique has been proposed, in which the expansion is carried out on only a few relevant basis terms that are automatically selected by a suitable algorithm. An alternative for developing meta-models with polynomial functions in high-dimensional problems is offered by the newly emerged low-rank approximations (LRA) approach. By exploiting the tensor–product structure of the multivariate basis, LRA can provide polynomial representations in highly compressed formats. Through extensive numerical investigations, we herein first shed light on issues relating to the construction of canonical LRA with a particular greedy algorithm involving a sequential updating of the polynomial coefficients along separate dimensions. Specifically, we examine the selection of optimal rank, stopping criteria in the updating of the polynomial coefficients and error estimation. In the sequel, we confront canonical LRA to sparse PCE in structural-mechanics and heat-conduction applications based on finite-element solutions. Canonical LRA exhibit smaller errors than sparse PCE in cases when the number of available model evaluations is small with respect to the input
International Nuclear Information System (INIS)
Konakli, Katerina; Sudret, Bruno
2016-01-01
The growing need for uncertainty analysis of complex computational models has led to an expanding use of meta-models across engineering and sciences. The efficiency of meta-modeling techniques relies on their ability to provide statistically-equivalent analytical representations based on relatively few evaluations of the original model. Polynomial chaos expansions (PCE) have proven a powerful tool for developing meta-models in a wide range of applications; the key idea thereof is to expand the model response onto a basis made of multivariate polynomials obtained as tensor products of appropriate univariate polynomials. The classical PCE approach nevertheless faces the “curse of dimensionality”, namely the exponential increase of the basis size with increasing input dimension. To address this limitation, the sparse PCE technique has been proposed, in which the expansion is carried out on only a few relevant basis terms that are automatically selected by a suitable algorithm. An alternative for developing meta-models with polynomial functions in high-dimensional problems is offered by the newly emerged low-rank approximations (LRA) approach. By exploiting the tensor–product structure of the multivariate basis, LRA can provide polynomial representations in highly compressed formats. Through extensive numerical investigations, we herein first shed light on issues relating to the construction of canonical LRA with a particular greedy algorithm involving a sequential updating of the polynomial coefficients along separate dimensions. Specifically, we examine the selection of optimal rank, stopping criteria in the updating of the polynomial coefficients and error estimation. In the sequel, we confront canonical LRA to sparse PCE in structural-mechanics and heat-conduction applications based on finite-element solutions. Canonical LRA exhibit smaller errors than sparse PCE in cases when the number of available model evaluations is small with respect to the input
Derivation of reduced model for control system design using Chebyshev techniques
International Nuclear Information System (INIS)
Bistritz, Y.
1978-07-01
New methods are developed for reduced-order modelling of high-order, linear, time-invariant systems characterized by a transfer function. The first method is based on manipulating two Chebyshev polynomial series, one representing the frequency characteristics of the high-order system and the other representing the approximating low-order model. The proposed method can be viewed as generalizing the classical Pade approximation problem, with Chebyshev polynomial series being over a desired frequency interval instead of a power series about a single frequency point. The second method is based on approximating the high-order transfer function in terms of best Chebyshev approximation on a desired domain in the complex plane. An algorithm to find for a complex function best Chebyshev rational approximations in the complex plane is suggested and its theoretical basis confirmed. The algorithm is based on a complex version of Lawson algorithm that is applied to a complex version of a rational least square approximation program. (author)
Energy Technology Data Exchange (ETDEWEB)
Pieper, Andreas [Ernst-Moritz-Arndt-Universität Greifswald (Germany); Kreutzer, Moritz [Friedrich-Alexander-Universität Erlangen-Nürnberg (Germany); Alvermann, Andreas, E-mail: alvermann@physik.uni-greifswald.de [Ernst-Moritz-Arndt-Universität Greifswald (Germany); Galgon, Martin [Bergische Universität Wuppertal (Germany); Fehske, Holger [Ernst-Moritz-Arndt-Universität Greifswald (Germany); Hager, Georg [Friedrich-Alexander-Universität Erlangen-Nürnberg (Germany); Lang, Bruno [Bergische Universität Wuppertal (Germany); Wellein, Gerhard [Friedrich-Alexander-Universität Erlangen-Nürnberg (Germany)
2016-11-15
We study Chebyshev filter diagonalization as a tool for the computation of many interior eigenvalues of very large sparse symmetric matrices. In this technique the subspace projection onto the target space of wanted eigenvectors is approximated with filter polynomials obtained from Chebyshev expansions of window functions. After the discussion of the conceptual foundations of Chebyshev filter diagonalization we analyze the impact of the choice of the damping kernel, search space size, and filter polynomial degree on the computational accuracy and effort, before we describe the necessary steps towards a parallel high-performance implementation. Because Chebyshev filter diagonalization avoids the need for matrix inversion it can deal with matrices and problem sizes that are presently not accessible with rational function methods based on direct or iterative linear solvers. To demonstrate the potential of Chebyshev filter diagonalization for large-scale problems of this kind we include as an example the computation of the 10{sup 2} innermost eigenpairs of a topological insulator matrix with dimension 10{sup 9} derived from quantum physics applications.
Chebyshev Finite Difference Method for Fractional Boundary Value Problems
Directory of Open Access Journals (Sweden)
Boundary
2015-09-01
Full Text Available This paper presents a numerical method for fractional differential equations using Chebyshev finite difference method. The fractional derivatives are described in the Caputo sense. Numerical results show that this method is of high accuracy and is more convenient and efficient for solving boundary value problems involving fractional ordinary differential equations. AMS Subject Classification: 34A08 Keywords and Phrases: Chebyshev polynomials, Gauss-Lobatto points, fractional differential equation, finite difference 1. Introduction The idea of a derivative which interpolates between the familiar integer order derivatives was introduced many years ago and has gained increasing importance only in recent years due to the development of mathematical models of a certain situations in engineering, materials science, control theory, polymer modelling etc. For example see [20, 22, 25, 26]. Most fractional order differential equations describing real life situations, in general do not have exact analytical solutions. Several numerical and approximate analytical methods for ordinary differential equation Received: December 2014; Accepted: March 2015 57 Journal of Mathematical Extension Vol. 9, No. 3, (2015, 57-71 ISSN: 1735-8299 URL: http://www.ijmex.com Chebyshev Finite Difference Method for Fractional Boundary Value Problems H. Azizi Taft Branch, Islamic Azad University Abstract. This paper presents a numerical method for fractional differential equations using Chebyshev finite difference method. The fractional derivative
Chkifa, Abdellah
2015-04-08
Motivated by the numerical treatment of parametric and stochastic PDEs, we analyze the least-squares method for polynomial approximation of multivariate functions based on random sampling according to a given probability measure. Recent work has shown that in the univariate case, the least-squares method is quasi-optimal in expectation in [A. Cohen, M A. Davenport and D. Leviatan. Found. Comput. Math. 13 (2013) 819–834] and in probability in [G. Migliorati, F. Nobile, E. von Schwerin, R. Tempone, Found. Comput. Math. 14 (2014) 419–456], under suitable conditions that relate the number of samples with respect to the dimension of the polynomial space. Here “quasi-optimal” means that the accuracy of the least-squares approximation is comparable with that of the best approximation in the given polynomial space. In this paper, we discuss the quasi-optimality of the polynomial least-squares method in arbitrary dimension. Our analysis applies to any arbitrary multivariate polynomial space (including tensor product, total degree or hyperbolic crosses), under the minimal requirement that its associated index set is downward closed. The optimality criterion only involves the relation between the number of samples and the dimension of the polynomial space, independently of the anisotropic shape and of the number of variables. We extend our results to the approximation of Hilbert space-valued functions in order to apply them to the approximation of parametric and stochastic elliptic PDEs. As a particular case, we discuss “inclusion type” elliptic PDE models, and derive an exponential convergence estimate for the least-squares method. Numerical results confirm our estimate, yet pointing out a gap between the condition necessary to achieve optimality in the theory, and the condition that in practice yields the optimal convergence rate.
Generating the patterns of variation with GeoGebra: the case of polynomial approximations
Attorps, Iiris; Björk, Kjell; Radic, Mirko
2016-01-01
In this paper, we report a teaching experiment regarding the theory of polynomial approximations at the university mathematics teaching in Sweden. The experiment was designed by applying Variation theory and by using the free dynamic mathematics software GeoGebra. The aim of this study was to investigate if the technology-assisted teaching of Taylor polynomials compared with traditional way of work at the university level can support the teaching and learning of mathematical concepts and ideas. An engineering student group (n = 19) was taught Taylor polynomials with the assistance of GeoGebra while a control group (n = 18) was taught in a traditional way. The data were gathered by video recording of the lectures, by doing a post-test concerning Taylor polynomials in both groups and by giving one question regarding Taylor polynomials at the final exam for the course in Real Analysis in one variable. In the analysis of the lectures, we found Variation theory combined with GeoGebra to be a potentially powerful tool for revealing some critical aspects of Taylor Polynomials. Furthermore, the research results indicated that applying Variation theory, when planning the technology-assisted teaching, supported and enriched students' learning opportunities in the study group compared with the control group.
On Best Approximations of Polynomials in Matrices in the Matrix 2-Norm
Czech Academy of Sciences Publication Activity Database
Liesen, J.; Tichý, Petr
2009-01-01
Roč. 31, č. 2 (2009), s. 853-863 ISSN 0895-4798 R&D Projects: GA AV ČR IAA100300802 Institutional research plan: CEZ:AV0Z10300504 Keywords : matrix approximation problems * polynomials in matrices * matrix functions * matrix 2-norm * GMRES * Arnoldi's method Subject RIV: BA - General Mathematics Impact factor: 2.411, year: 2009
International Nuclear Information System (INIS)
Jakab, J.
1979-05-01
Local approximations of neutron flux density by 2nd degree polynomials are used in calculating light water reactors. The calculations include spatial kinetics tasks for the models of two- and three-dimensional reactors in the Cartesian geometry. The resulting linear algebraic equations are considered to be formally identical to the results of the differential method of diffusion equation solution. (H.S.)
On the optimal polynomial approximation of stochastic PDEs by galerkin and collocation methods
Beck, Joakim; Tempone, Raul; Nobile, Fabio; Tamellini, Lorenzo
2012-01-01
In this work we focus on the numerical approximation of the solution u of a linear elliptic PDE with stochastic coefficients. The problem is rewritten as a parametric PDE and the functional dependence of the solution on the parameters is approximated by multivariate polynomials. We first consider the stochastic Galerkin method, and rely on sharp estimates for the decay of the Fourier coefficients of the spectral expansion of u on an orthogonal polynomial basis to build a sequence of polynomial subspaces that features better convergence properties, in terms of error versus number of degrees of freedom, than standard choices such as Total Degree or Tensor Product subspaces. We consider then the Stochastic Collocation method, and use the previous estimates to introduce a new class of Sparse Grids, based on the idea of selecting a priori the most profitable hierarchical surpluses, that, again, features better convergence properties compared to standard Smolyak or tensor product grids. Numerical results show the effectiveness of the newly introduced polynomial spaces and sparse grids. © 2012 World Scientific Publishing Company.
Phase unwrapping algorithm using polynomial phase approximation and linear Kalman filter.
Kulkarni, Rishikesh; Rastogi, Pramod
2018-02-01
A noise-robust phase unwrapping algorithm is proposed based on state space analysis and polynomial phase approximation using wrapped phase measurement. The true phase is approximated as a two-dimensional first order polynomial function within a small sized window around each pixel. The estimates of polynomial coefficients provide the measurement of phase and local fringe frequencies. A state space representation of spatial phase evolution and the wrapped phase measurement is considered with the state vector consisting of polynomial coefficients as its elements. Instead of using the traditional nonlinear Kalman filter for the purpose of state estimation, we propose to use the linear Kalman filter operating directly with the wrapped phase measurement. The adaptive window width is selected at each pixel based on the local fringe density to strike a balance between the computation time and the noise robustness. In order to retrieve the unwrapped phase, either a line-scanning approach or a quality guided strategy of pixel selection is used depending on the underlying continuous or discontinuous phase distribution, respectively. Simulation and experimental results are provided to demonstrate the applicability of the proposed method.
On the optimal polynomial approximation of stochastic PDEs by galerkin and collocation methods
Beck, Joakim
2012-09-01
In this work we focus on the numerical approximation of the solution u of a linear elliptic PDE with stochastic coefficients. The problem is rewritten as a parametric PDE and the functional dependence of the solution on the parameters is approximated by multivariate polynomials. We first consider the stochastic Galerkin method, and rely on sharp estimates for the decay of the Fourier coefficients of the spectral expansion of u on an orthogonal polynomial basis to build a sequence of polynomial subspaces that features better convergence properties, in terms of error versus number of degrees of freedom, than standard choices such as Total Degree or Tensor Product subspaces. We consider then the Stochastic Collocation method, and use the previous estimates to introduce a new class of Sparse Grids, based on the idea of selecting a priori the most profitable hierarchical surpluses, that, again, features better convergence properties compared to standard Smolyak or tensor product grids. Numerical results show the effectiveness of the newly introduced polynomial spaces and sparse grids. © 2012 World Scientific Publishing Company.
Pseudo-random bit generator based on Chebyshev map
Stoyanov, B. P.
2013-10-01
In this paper, we study a pseudo-random bit generator based on two Chebyshev polynomial maps. The novel derivative algorithm shows perfect statistical properties established by number of statistical tests.
Approximating the Value of a Concurrent Reachability Game in the Polynomial Time Hierarchy
DEFF Research Database (Denmark)
Frederiksen, Søren Kristoffer Stiil; Miltersen, Peter Bro
2013-01-01
We show that the value of a finite-state concurrent reachability game can be approximated to arbitrary precision in TFNP[NP], that is, in the polynomial time hierarchy. Previously, no better bound than PSPACE was known for this problem. The proof is based on formulating a variant of the state red...... reduction algorithm for Markov chains using arbitrary precision floating point arithmetic and giving a rigorous error analysis of the algorithm.......We show that the value of a finite-state concurrent reachability game can be approximated to arbitrary precision in TFNP[NP], that is, in the polynomial time hierarchy. Previously, no better bound than PSPACE was known for this problem. The proof is based on formulating a variant of the state...
Modified Chebyshev Collocation Method for Solving Differential Equations
Directory of Open Access Journals (Sweden)
M Ziaul Arif
2015-05-01
Full Text Available This paper presents derivation of alternative numerical scheme for solving differential equations, which is modified Chebyshev (Vieta-Lucas Polynomial collocation differentiation matrices. The Scheme of modified Chebyshev (Vieta-Lucas Polynomial collocation method is applied to both Ordinary Differential Equations (ODEs and Partial Differential Equations (PDEs cases. Finally, the performance of the proposed method is compared with finite difference method and the exact solution of the example. It is shown that modified Chebyshev collocation method more effective and accurate than FDM for some example given.
A Fast, Simple, and Stable Chebyshev--Legendre Transform Using an Asymptotic Formula
Hale, Nicholas; Townsend, Alex
2014-01-01
-known asymptotic formula for Legendre polynomials of large degree as a weighted linear combination of Chebyshev polynomials, which can then be evaluated by using the discrete cosine transform. Numerical results are provided to demonstrate the efficiency
Polynomial approximation of non-Gaussian unitaries by counting one photon at a time
Arzani, Francesco; Treps, Nicolas; Ferrini, Giulia
2017-05-01
In quantum computation with continuous-variable systems, quantum advantage can only be achieved if some non-Gaussian resource is available. Yet, non-Gaussian unitary evolutions and measurements suited for computation are challenging to realize in the laboratory. We propose and analyze two methods to apply a polynomial approximation of any unitary operator diagonal in the amplitude quadrature representation, including non-Gaussian operators, to an unknown input state. Our protocols use as a primary non-Gaussian resource a single-photon counter. We use the fidelity of the transformation with the target one on Fock and coherent states to assess the quality of the approximate gate.
Nobile, Fabio
2015-01-07
We consider a general problem F(u, y) = 0 where u is the unknown solution, possibly Hilbert space valued, and y a set of uncertain parameters. We specifically address the situation in which the parameterto-solution map u(y) is smooth, however y could be very high (or even infinite) dimensional. In particular, we are interested in cases in which F is a differential operator, u a Hilbert space valued function and y a distributed, space and/or time varying, random field. We aim at reconstructing the parameter-to-solution map u(y) from random noise-free or noisy observations in random points by discrete least squares on polynomial spaces. The noise-free case is relevant whenever the technique is used to construct metamodels, based on polynomial expansions, for the output of computer experiments. In the case of PDEs with random parameters, the metamodel is then used to approximate statistics of the output quantity. We discuss the stability of discrete least squares on random points show convergence estimates both in expectation and probability. We also present possible strategies to select, either a-priori or by adaptive algorithms, sequences of approximating polynomial spaces that allow to reduce, and in some cases break, the curse of dimensionality
International Nuclear Information System (INIS)
Lee, M.W.; Bigeleisen, J.
1978-01-01
The MINIMAX finite polynomial approximation to an arbitrary function has been generalized to include a weighting function (WINIMAX). It is suggested that an exponential is a reasonable weighting function for the logarithm of the reduced partition function of a harmonic oscillator. Comparison of the error function for finite orthogonal polynomial (FOP), MINIMAX, and WINIMAX expansions of the logarithm of the reduced vibrational partition function show WINIMAX to be the best of the three approximations. A condensed table of WINIMAX coefficients is presented. The FOP, MINIMAX, and WINIMAX approximations are compared with exact calculations of the logarithm of the reduced partition function ratios for isotopic substitution in H 2 O, CH 4 , CH 2 O, C 2 H 4 , and C 2 H 6 at 300 0 K. Both deuterium and heavy atom isotope substitution are studied. Except for a third order expansion involving deuterium substitution, the WINIMAX method is superior to FOP and MINIMAX. At the level of a second order expansion WINIMAX approximations to ln(s/s')f are good to 2.5% and 6.5% for deuterium and heavy atom substitution, respectively
International Nuclear Information System (INIS)
Lobanov, Yu.Yu.; Shidkov, E.P.
1987-01-01
The method for numerical evaluation of path integrals in Eucledean quantum mechanics without lattice discretization is elaborated. The method is based on the representation of these integrals in the form of functional integrals with respect to the conditional Wiener measure and on the use of the derived approximate exact on a class of polynomial functionals of a given degree. By the computations of non-perturbative characteristics, concerned the topological structure of vacuum, the advantages of this method versus lattice Monte-Carlo calculations are demonstrated
APPROX, 1-D and 2-D Function Approximation by Polynomials, Splines, Finite Elements Method
International Nuclear Information System (INIS)
Tollander, Bengt
1975-01-01
1 - Nature of physical problem solved: Approximates one- and two- dimensional functions using different forms of the approximating function, as polynomials, rational functions, Splines and (or) the finite element method. Different kinds of transformations of the dependent and (or) the independent variables can easily be made by data cards using a FORTRAN-like language. 2 - Method of solution: Approximations by polynomials, Splines and (or) the finite element method are made in L2 norm using the least square method by which the answer is directly given. For rational functions in one dimension the result given in L(infinite) norm is achieved by iterations moving the zero points of the error curve. For rational functions in two dimensions, the norm is L2 and the result is achieved by iteratively changing the coefficients of the denominator and then solving the coefficients of the numerator by the least square method. The transformation of the dependent and (or) independent variables is made by compiling the given transform data card(s) to an array of integers from which the transformation can be made
Migliorati, Giovanni
2016-01-01
We review the main results achieved in the analysis of the stability and accuracy of the discrete leastsquares approximation on multivariate polynomial spaces, with noiseless evaluations at random points, noiseless evaluations at low
Migliorati, G.; Nobile, F.; von Schwerin, E.; Tempone, Raul
2013-01-01
In this work we consider the random discrete L^2 projection on polynomial spaces (hereafter RDP) for the approximation of scalar quantities of interest (QOIs) related to the solution of a partial differential equation model with random input
The finite Fourier transform of classical polynomials
Dixit, Atul; Jiu, Lin; Moll, Victor H.; Vignat, Christophe
2014-01-01
The finite Fourier transform of a family of orthogonal polynomials $A_{n}(x)$, is the usual transform of the polynomial extended by $0$ outside their natural domain. Explicit expressions are given for the Legendre, Jacobi, Gegenbauer and Chebyshev families.
Directory of Open Access Journals (Sweden)
Wei Wei
2013-01-01
Full Text Available Since Wireless sensor networks (WSNs are dramatically being arranged in mission-critical applications,it changes into necessary that we consider application requirements in Internet of Things. We try to use WSNs to assist information query and navigation within a practical parking spaces environment. Integrated with high-performance OFDM by piece-wise polynomial approximation, we present a new method that is based on a diffusion equation and a position equation to accomplish the navigation process conveniently and efficiently. From the point of view of theoretical analysis, our jobs hold the lower constraint condition and several inappropriate navigation can be amended. Information diffusion and potential field are introduced to reach the goal of accurate navigation and gradient descent method is applied in the algorithm. Formula derivations and simulations manifest that the method facilitates the solution of typical sensor network configuration information navigation. Concurrently, we also treat channel estimation and ICI mitigation for very high mobility OFDM systems, and the communication is between a BS and mobile target at a terrible scenario. The scheme proposed here combines the piece-wise polynomial expansion to approximate timevariations of multipath channels. Two near symbols are applied to estimate the first-and second-order parameters. So as to improve the estimation accuracy and mitigate the ICI caused by pilot-aided estimation, the multipath channel parameters were reestimated in timedomain employing the decided OFDM symbol. Simulation results show that this method would improve system performance in a complex environment.
Rational approximations of f(R) cosmography through Pad'e polynomials
Capozziello, Salvatore; D'Agostino, Rocco; Luongo, Orlando
2018-05-01
We consider high-redshift f(R) cosmography adopting the technique of polynomial reconstruction. In lieu of considering Taylor treatments, which turn out to be non-predictive as soon as z>1, we take into account the Pad&apose rational approximations which consist in performing expansions converging at high redshift domains. Particularly, our strategy is to reconstruct f(z) functions first, assuming the Ricci scalar to be invertible with respect to the redshift z. Having the so-obtained f(z) functions, we invert them and we easily obtain the corresponding f(R) terms. We minimize error propagation, assuming no errors upon redshift data. The treatment we follow naturally leads to evaluating curvature pressure, density and equation of state, characterizing the universe evolution at redshift much higher than standard cosmographic approaches. We therefore match these outcomes with small redshift constraints got by framing the f(R) cosmology through Taylor series around 0zsimeq . This gives rise to a calibration procedure with small redshift that enables the definitions of polynomial approximations up to zsimeq 10. Last but not least, we show discrepancies with the standard cosmological model which go towards an extension of the ΛCDM paradigm, indicating an effective dark energy term evolving in time. We finally describe the evolution of our effective dark energy term by means of basic techniques of data mining.
Approximate solutions of dual fuzzy polynomials by feed-back neural networks
Directory of Open Access Journals (Sweden)
Ahmad Jafarian
2012-11-01
Full Text Available Recently, artificial neural networks (ANNs have been extensively studied and used in different areas such as pattern recognition, associative memory, combinatorial optimization, etc. In this paper, we investigate the ability of fuzzy neural networks to approximate solution of a dual fuzzy polynomial of the form $a_{1}x+ ...+a_{n}x^n =b_{1}x+ ...+b_{n}x^n+d,$ where $a_{j},b_{j},d epsilon E^1 (for j=1,...,n.$ Since the operation of fuzzy neural networks is based on Zadeh's extension principle. For this scope we train a fuzzified neural network by back-propagation-type learning algorithm which has five layer where connection weights are crisp numbers. This neural network can get a crisp input signal and then calculates its corresponding fuzzy output. Presented method can give a real approximate solution for given polynomial by using a cost function which is defined for the level sets of fuzzy output and target output. The simulation results are presented to demonstrate the efficiency and effectiveness of the proposed approach.
Ait-Haddou, Rachid
2015-06-04
We show that the best degree reduction of a given polynomial P from degree n to m with respect to the discrete (Formula presented.)-norm is equivalent to the best Euclidean distance of the vector of h-Bézier coefficients of P from the vector of degree raised h-Bézier coefficients of polynomials of degree m. Moreover, we demonstrate the adequacy of h-Bézier curves for approaching the problem of weighted discrete least squares approximation. Applications to discrete orthogonal polynomials are also presented. © 2015 Springer Science+Business Media Dordrecht
Discrete-Time Filter Synthesis using Product of Gegenbauer Polynomials
Directory of Open Access Journals (Sweden)
N. Stojanovic
2016-09-01
Full Text Available A new approximation to design continuoustime and discrete-time low-pass filters, presented in this paper, based on the product of Gegenbauer polynomials, provides the ability of more flexible adjustment of passband and stopband responses. The design is achieved taking into account a prescribed specification, leading to a better trade-off among the magnitude and group delay responses. Many well-known continuous-time and discrete-time transitional filter based on the classical polynomial approximations(Chebyshev, Legendre, Butterworth are shown to be a special cases of proposed approximation method.
Parallel multigrid smoothing: polynomial versus Gauss-Seidel
International Nuclear Information System (INIS)
Adams, Mark; Brezina, Marian; Hu, Jonathan; Tuminaro, Ray
2003-01-01
Gauss-Seidel is often the smoother of choice within multigrid applications. In the context of unstructured meshes, however, maintaining good parallel efficiency is difficult with multiplicative iterative methods such as Gauss-Seidel. This leads us to consider alternative smoothers. We discuss the computational advantages of polynomial smoothers within parallel multigrid algorithms for positive definite symmetric systems. Two particular polynomials are considered: Chebyshev and a multilevel specific polynomial. The advantages of polynomial smoothing over traditional smoothers such as Gauss-Seidel are illustrated on several applications: Poisson's equation, thin-body elasticity, and eddy current approximations to Maxwell's equations. While parallelizing the Gauss-Seidel method typically involves a compromise between a scalable convergence rate and maintaining high flop rates, polynomial smoothers achieve parallel scalable multigrid convergence rates without sacrificing flop rates. We show that, although parallel computers are the main motivation, polynomial smoothers are often surprisingly competitive with Gauss-Seidel smoothers on serial machines
Parallel multigrid smoothing: polynomial versus Gauss-Seidel
Adams, Mark; Brezina, Marian; Hu, Jonathan; Tuminaro, Ray
2003-07-01
Gauss-Seidel is often the smoother of choice within multigrid applications. In the context of unstructured meshes, however, maintaining good parallel efficiency is difficult with multiplicative iterative methods such as Gauss-Seidel. This leads us to consider alternative smoothers. We discuss the computational advantages of polynomial smoothers within parallel multigrid algorithms for positive definite symmetric systems. Two particular polynomials are considered: Chebyshev and a multilevel specific polynomial. The advantages of polynomial smoothing over traditional smoothers such as Gauss-Seidel are illustrated on several applications: Poisson's equation, thin-body elasticity, and eddy current approximations to Maxwell's equations. While parallelizing the Gauss-Seidel method typically involves a compromise between a scalable convergence rate and maintaining high flop rates, polynomial smoothers achieve parallel scalable multigrid convergence rates without sacrificing flop rates. We show that, although parallel computers are the main motivation, polynomial smoothers are often surprisingly competitive with Gauss-Seidel smoothers on serial machines.
The algebra of two dimensional generalized Chebyshev-Koornwinder oscillator
International Nuclear Information System (INIS)
Borzov, V. V.; Damaskinsky, E. V.
2014-01-01
In the previous works of Borzov and Damaskinsky [“Chebyshev-Koornwinder oscillator,” Theor. Math. Phys. 175(3), 765–772 (2013)] and [“Ladder operators for Chebyshev-Koornwinder oscillator,” in Proceedings of the Days on Diffraction, 2013], the authors have defined the oscillator-like system that is associated with the two variable Chebyshev-Koornwinder polynomials. We call this system the generalized Chebyshev-Koornwinder oscillator. In this paper, we study the properties of infinite-dimensional Lie algebra that is analogous to the Heisenberg algebra for the Chebyshev-Koornwinder oscillator. We construct the exact irreducible representation of this algebra in a Hilbert space H of functions that are defined on a region which is bounded by the Steiner hypocycloid. The functions are square-integrable with respect to the orthogonality measure for the Chebyshev-Koornwinder polynomials and these polynomials form an orthonormalized basis in the space H. The generalized oscillator which is studied in the work can be considered as the simplest nontrivial example of multiboson quantum system that is composed of three interacting oscillators
Directory of Open Access Journals (Sweden)
V. P. Gribkova
2014-01-01
Full Text Available The paper offers a new method for approximate solution of one type of singular integral equations for elasticity theory which have been studied by other authors. The approximate solution is found in the form of asymptotic polynomial function of a low degree (first approximation based on the Chebyshev second order polynomial. Other authors have obtained a solution (only in separate points using a method of mechanical quadrature and though they used also the Chebyshev polynomial of the second order they applied another system of junctures which were used for the creation of the required formulas.The suggested method allows not only to find an approximate solution for the whole interval in the form of polynomial, but it also makes it possible to obtain a remainder term in the form of infinite expansion where coefficients are linear functional of the given integral equation and basis functions are the Chebyshev polynomial of the second order. Such presentation of the remainder term of the first approximation permits to find a summand of the infinite series, which will serve as a start for fulfilling the given solution accuracy. This number is a degree of the asymptotic polynomial (second approximation, which will give the approximation to the exact solution with the given accuracy. The examined polynomial functions tend asymptotically to the polynomial of the best uniform approximation in the space C, created for the given operator.The paper demonstrates a convergence of the approximate solution to the exact one and provides an error estimation. The proposed algorithm for obtaining of the approximate solution and error estimation is easily realized with the help of computing technique and does not require considerable preliminary preparation during programming.
Narimani, Mohammand; Lam, H K; Dilmaghani, R; Wolfe, Charles
2011-06-01
Relaxed linear-matrix-inequality-based stability conditions for fuzzy-model-based control systems with imperfect premise matching are proposed. First, the derivative of the Lyapunov function, containing the product terms of the fuzzy model and fuzzy controller membership functions, is derived. Then, in the partitioned operating domain of the membership functions, the relations between the state variables and the mentioned product terms are represented by approximated polynomials in each subregion. Next, the stability conditions containing the information of all subsystems and the approximated polynomials are derived. In addition, the concept of the S-procedure is utilized to release the conservativeness caused by considering the whole operating region for approximated polynomials. It is shown that the well-known stability conditions can be special cases of the proposed stability conditions. Simulation examples are given to illustrate the validity of the proposed approach.
Directory of Open Access Journals (Sweden)
Madeira Sara C
2009-06-01
Full Text Available Abstract Background The ability to monitor the change in expression patterns over time, and to observe the emergence of coherent temporal responses using gene expression time series, obtained from microarray experiments, is critical to advance our understanding of complex biological processes. In this context, biclustering algorithms have been recognized as an important tool for the discovery of local expression patterns, which are crucial to unravel potential regulatory mechanisms. Although most formulations of the biclustering problem are NP-hard, when working with time series expression data the interesting biclusters can be restricted to those with contiguous columns. This restriction leads to a tractable problem and enables the design of efficient biclustering algorithms able to identify all maximal contiguous column coherent biclusters. Methods In this work, we propose e-CCC-Biclustering, a biclustering algorithm that finds and reports all maximal contiguous column coherent biclusters with approximate expression patterns in time polynomial in the size of the time series gene expression matrix. This polynomial time complexity is achieved by manipulating a discretized version of the original matrix using efficient string processing techniques. We also propose extensions to deal with missing values, discover anticorrelated and scaled expression patterns, and different ways to compute the errors allowed in the expression patterns. We propose a scoring criterion combining the statistical significance of expression patterns with a similarity measure between overlapping biclusters. Results We present results in real data showing the effectiveness of e-CCC-Biclustering and its relevance in the discovery of regulatory modules describing the transcriptomic expression patterns occurring in Saccharomyces cerevisiae in response to heat stress. In particular, the results show the advantage of considering approximate patterns when compared to state of
Nobile, Fabio
2015-01-01
the parameter-to-solution map u(y) from random noise-free or noisy observations in random points by discrete least squares on polynomial spaces. The noise-free case is relevant whenever the technique is used to construct metamodels, based on polynomial
Polynomial Approximation Algorithms for the TSP and the QAP with a Factorial Domination Number
DEFF Research Database (Denmark)
Gutin, Gregory; Yeo, Anders
2002-01-01
Glover and Punnen (J. Oper. Res. Soc. 48 (1997) 502) asked whether there exists a polynomial time algorithm that always produces a tour which is not worse than at least n!/p(n) tours for some polynomial p(n) for every TSP instance on n cities. They conjectured that, unless P = NP, the answer to t...
Migliorati, Giovanni
2016-01-05
We review the main results achieved in the analysis of the stability and accuracy of the discrete leastsquares approximation on multivariate polynomial spaces, with noiseless evaluations at random points, noiseless evaluations at low-discrepancy point sets, and noisy evaluations at random points.
Simple polynomial approximation to modified Bethe formula low-energy electron stopping powers data
Energy Technology Data Exchange (ETDEWEB)
Taborda, A., E-mail: ana.taborda@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM/SDI/LEDI, BP-17, 92262 Fontenay-aux-Roses (France); Desbrée, A. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM/SDI/LEDI, BP-17, 92262 Fontenay-aux-Roses (France); Reis, M.A. [C" 2TN, Campus Tecnológico e Nuclear, Instituto Superior Técnico, Universidade de Lisboa, EN10 km139.7, 2685-066 Bobadela LRS (Portugal)
2015-08-01
A recently published detailed and exhaustive paper on cross-sections for ionisation induced by keV electrons clearly shows that electron phenomena occurring in parallel with X-ray processes may have been dramatically overlooked for many years, mainly when low atomic number species are involved since, in these cases, the fluorescence coefficient is smaller than the Auger yield. An immediate problem is encountered while attempting to tackle the issue. Accounting for electron phenomena requires the knowledge of the stopping power of electrons within, at least, a reasonably small error. Still, the Bethe formula for stopping powers is known to not be valid for electron energies below 30 keV, and its use leads to values far off experimental ones. Recently, a few authors have addressed this problem and both detailed tables of electron stopping powers for various atomic species and attempts to simplify the calculations, have emerged. Nevertheless, its implementation in software routines to efficiently calculate keV electron effects in materials quickly becomes a bit cumbersome. Following a procedure already used to establish efficient methods to calculate ionisation cross-sections by protons and alpha particles, it became clear that a simple polynomial approximation could be set, which allows retrieving the electronic stopping powers with errors of less than 20% for energies above 500 eV and less than 50% for energies between 50 eV and 500 eV. In this work, we present this approximation which, based on just six parameters, allows to recover electron stopping power values that are less than 20% different from recently published experimentally validated tabulated data.
CONTRIBUTIONS TO RATIONAL APPROXIMATION,
Some of the key results of linear Chebyshev approximation theory are extended to generalized rational functions. Prominent among these is Haar’s...linear theorem which yields necessary and sufficient conditions for uniqueness. Some new results in the classic field of rational function Chebyshev...Furthermore a Weierstrass type theorem is proven for rational Chebyshev approximation. A characterization theorem for rational trigonometric Chebyshev approximation in terms of sign alternation is developed. (Author)
Migliorati, G.
2013-05-30
In this work we consider the random discrete L^2 projection on polynomial spaces (hereafter RDP) for the approximation of scalar quantities of interest (QOIs) related to the solution of a partial differential equation model with random input parameters. In the RDP technique the QOI is first computed for independent samples of the random input parameters, as in a standard Monte Carlo approach, and then the QOI is approximated by a multivariate polynomial function of the input parameters using a discrete least squares approach. We consider several examples including the Darcy equations with random permeability, the linear elasticity equations with random elastic coefficient, and the Navier--Stokes equations in random geometries and with random fluid viscosity. We show that the RDP technique is well suited to QOIs that depend smoothly on a moderate number of random parameters. Our numerical tests confirm the theoretical findings in [G. Migliorati, F. Nobile, E. von Schwerin, and R. Tempone, Analysis of the Discrete $L^2$ Projection on Polynomial Spaces with Random Evaluations, MOX report 46-2011, Politecnico di Milano, Milano, Italy, submitted], which have shown that, in the case of a single uniformly distributed random parameter, the RDP technique is stable and optimally convergent if the number of sampling points is proportional to the square of the dimension of the polynomial space. Here optimality means that the weighted $L^2$ norm of the RDP error is bounded from above by the best $L^\\\\infty$ error achievable in the given polynomial space, up to logarithmic factors. In the case of several random input parameters, the numerical evidence indicates that the condition on quadratic growth of the number of sampling points could be relaxed to a linear growth and still achieve stable and optimal convergence. This makes the RDP technique very promising for moderately high dimensional uncertainty quantification.
Uniform approximations of Bernoulli and Euler polynomials in terms of hyperbolic functions
J.L. López; N.M. Temme (Nico)
1998-01-01
textabstractBernoulli and Euler polynomials are considered for large values of the order. Convergent expansions are obtained for $B_n(nz+1/2)$ and $E_n(nz+1/2)$ in powers of $n^{-1$, with coefficients being rational functions of $z$ and hyperbolic functions of argument $1/2z$. These expansions are
A Gradient Weighted Moving Finite-Element Method with Polynomial Approximation of Any Degree
Directory of Open Access Journals (Sweden)
Ali R. Soheili
2009-01-01
Full Text Available A gradient weighted moving finite element method (GWMFE based on piecewise polynomial of any degree is developed to solve time-dependent problems in two space dimensions. Numerical experiments are employed to test the accuracy and effciency of the proposed method with nonlinear Burger equation.
A Fast, Simple, and Stable Chebyshev--Legendre Transform Using an Asymptotic Formula
Hale, Nicholas
2014-02-06
A fast, simple, and numerically stable transform for converting between Legendre and Chebyshev coefficients of a degree N polynomial in O(N(log N)2/ log log N) operations is derived. The fundamental idea of the algorithm is to rewrite a well-known asymptotic formula for Legendre polynomials of large degree as a weighted linear combination of Chebyshev polynomials, which can then be evaluated by using the discrete cosine transform. Numerical results are provided to demonstrate the efficiency and numerical stability. Since the algorithm evaluates a Legendre expansion at an N +1 Chebyshev grid as an intermediate step, it also provides a fast transform between Legendre coefficients and values on a Chebyshev grid. © 2014 Society for Industrial and Applied Mathematics.
Tau method approximation of the Hubbell rectangular source integral
International Nuclear Information System (INIS)
Kalla, S.L.; Khajah, H.G.
2000-01-01
The Tau method is applied to obtain expansions, in terms of Chebyshev polynomials, which approximate the Hubbell rectangular source integral:I(a,b)=∫ b 0 (1/(√(1+x 2 )) arctan(a/(√(1+x 2 )))) This integral corresponds to the response of an omni-directional radiation detector situated over a corner of a plane isotropic rectangular source. A discussion of the error in the Tau method approximation follows
All-Pole Recursive Digital Filters Design Based on Ultraspherical Polynomials
N. Stojanovic; N. Stamenkovic; V. Stojanovic
2014-01-01
A simple method for approximation of all-pole recursive digital filters, directly in digital domain, is described. Transfer function of these filters, referred to as Ultraspherical filters, is controlled by order of the Ultraspherical polynomial, nu. Parameter nu, restricted to be a nonnegative real number (nu ≥ 0), controls ripple peaks in the passband of the magnitude response and enables a trade-off between the passband loss and the group delay response of the resulting filter. Chebyshev f...
International Nuclear Information System (INIS)
Yoshioka, Yasuo; Sasaki, Toshihiko; Kuramoto, Makoto.
1984-01-01
A new polynomial approximation method was proposed for the X-ray multiaxial stress analysis, in which the effect of stress gradient along the penetration depth of X-rays was taken into account. Three basic assumptions were made; (1) the stress gradient is linear in respect to the depth from the specimen surface, (2) the ponetration depth of X-rays is a function of Sin 2 phi and (3) the strain measured by X-rays corresponds to the weighted average strain on the intensity of the diffracted X-rays. Consequently, the stress state within the thin layer near the surface was expressed by making use of three surface stresses and six stress gradients in the present method. The average strains by X-rays were approximated by the third order polynomial equations of sin 2 phi using a least square method at several phi angles on the coordinate system of specimen. Since the coefficients of these polynomials include these nine stress components mentioned above, it is possible to solve them as simultaneous equations. The calculating process of this method is simpler than that of the integral method. An X-ray plane stress problem was analyzed as an application of the present method, and the residual stress distribution on a shot-peened steel plate was actually measured by use of Cr-Kα X-rays to verify the analysis. The result showed that the compressive residual stress near the surface determined by the present method was smaller than the weighted average stress by the Sin 2 phi method because of the steep stress gradient. The present method is useful to obtain a reasonable value of stress for such a specimen with steep stress gradients near the surface. (author)
Reduction of Linear Programming to Linear Approximation
Vaserstein, Leonid N.
2006-01-01
It is well known that every Chebyshev linear approximation problem can be reduced to a linear program. In this paper we show that conversely every linear program can be reduced to a Chebyshev linear approximation problem.
Approximation theorems for modified Szasz-Mirakjan operators in polynomial weight spaces
Directory of Open Access Journals (Sweden)
Monika Herzog
1999-05-01
Full Text Available In this paper we will study properties of Szasz-Mirakjan type operators A_n^ν , B_n^ ν defined by modified Bessel function I_ν . We shall present theorems giving a degree of approximation for these operators.
Czech Academy of Sciences Publication Activity Database
Náprstek, Jiří; Fischer, Cyril
2017-01-01
Roč. 180, February (2017), s. 3-12 ISSN 0045-7949 R&D Projects: GA ČR(CZ) GA15-01035S Institutional support: RVO:68378297 Keywords : Dynamic Stiffness Matrix * lambda matrices * self-adjoint operators * approximation in frequency domain * Wittrick-Williams algorithm Subject RIV: JM - Building Engineering OBOR OECD: Construction engineering, Municipal and structural engineering Impact factor: 2.847, year: 2016 http://www.sciencedirect.com/science/article/pii/S0045794916310495
Application of polynomial preconditioners to conservation laws
Geurts, Bernardus J.; van Buuren, R.; Lu, H.
2000-01-01
Polynomial preconditioners which are suitable in implicit time-stepping methods for conservation laws are reviewed and analyzed. The preconditioners considered are either based on a truncation of a Neumann series or on Chebyshev polynomials for the inverse of the system-matrix. The latter class of
Nguyen, Thuong T.; Székely, Eszter; Imbalzano, Giulio; Behler, Jörg; Csányi, Gábor; Ceriotti, Michele; Götz, Andreas W.; Paesani, Francesco
2018-06-01
The accurate representation of multidimensional potential energy surfaces is a necessary requirement for realistic computer simulations of molecular systems. The continued increase in computer power accompanied by advances in correlated electronic structure methods nowadays enables routine calculations of accurate interaction energies for small systems, which can then be used as references for the development of analytical potential energy functions (PEFs) rigorously derived from many-body (MB) expansions. Building on the accuracy of the MB-pol many-body PEF, we investigate here the performance of permutationally invariant polynomials (PIPs), neural networks, and Gaussian approximation potentials (GAPs) in representing water two-body and three-body interaction energies, denoting the resulting potentials PIP-MB-pol, Behler-Parrinello neural network-MB-pol, and GAP-MB-pol, respectively. Our analysis shows that all three analytical representations exhibit similar levels of accuracy in reproducing both two-body and three-body reference data as well as interaction energies of small water clusters obtained from calculations carried out at the coupled cluster level of theory, the current gold standard for chemical accuracy. These results demonstrate the synergy between interatomic potentials formulated in terms of a many-body expansion, such as MB-pol, that are physically sound and transferable, and machine-learning techniques that provide a flexible framework to approximate the short-range interaction energy terms.
Antireflection coatings with Chebyshev or Butterworth response - Design
Baumeister, Philip
1986-12-01
The approximation of Kard (1971) is used to find values for the refractive indices of nonabsorbing layers with equal optical thickness to produce an antireflection (AR) coating for a dielectric substrate that has a Chebyshev spectral response, with application to the design of bandpass filters. The method is numerically demonstrated with the example of four-layer Chebyshev AR coatings with narrow, medium and wide bandwidths, and substrates of indices 2, 5, and 10. Approximate indices are also given for the case when the radiant reflectance/transmittance of the coating vs frequency is maximally flat (Butterworth response).
Elgohary, T.; Kim, D.; Turner, J.; Junkins, J.
2014-09-01
Several methods exist for integrating the motion in high order gravity fields. Some recent methods use an approximate starting orbit, and an efficient method is needed for generating warm starts that account for specific low order gravity approximations. By introducing two scalar Lagrange-like invariants and employing Leibniz product rule, the perturbed motion is integrated by a novel recursive formulation. The Lagrange-like invariants allow exact arbitrary order time derivatives. Restricting attention to the perturbations due to the zonal harmonics J2 through J6, we illustrate an idea. The recursively generated vector-valued time derivatives for the trajectory are used to develop a continuation series-based solution for propagating position and velocity. Numerical comparisons indicate performance improvements of ~ 70X over existing explicit Runge-Kutta methods while maintaining mm accuracy for the orbit predictions. The Modified Chebyshev Picard Iteration (MCPI) is an iterative path approximation method to solve nonlinear ordinary differential equations. The MCPI utilizes Picard iteration with orthogonal Chebyshev polynomial basis functions to recursively update the states. The key advantages of the MCPI are as follows: 1) Large segments of a trajectory can be approximated by evaluating the forcing function at multiple nodes along the current approximation during each iteration. 2) It can readily handle general gravity perturbations as well as non-conservative forces. 3) Parallel applications are possible. The Picard sequence converges to the solution over large time intervals when the forces are continuous and differentiable. According to the accuracy of the starting solutions, however, the MCPI may require significant number of iterations and function evaluations compared to other integrators. In this work, we provide an efficient methodology to establish good starting solutions from the continuation series method; this warm start improves the performance of the
International Nuclear Information System (INIS)
Yuste, Santos Bravo; Abad, Enrique
2011-01-01
We present an iterative method to obtain approximations to Bessel functions of the first kind J p (x) (p > -1) via the repeated application of an integral operator to an initial seed function f 0 (x). The class of seed functions f 0 (x) leading to sets of increasingly accurate approximations f n (x) is considerably large and includes any polynomial. When the operator is applied once to a polynomial of degree s, it yields a polynomial of degree s + 2, and so the iteration of this operator generates sets of increasingly better polynomial approximations of increasing degree. We focus on the set of polynomial approximations generated from the seed function f 0 (x) = 1. This set of polynomials is useful not only for the computation of J p (x) but also from a physical point of view, as it describes the long-time decay modes of certain fractional diffusion and diffusion-wave problems.
Wang, Zhiheng; Huang, Zhu; Zhang, Wei; Xi, Guang
2015-01-01
of the computational domain. The velocities and pressure are discretized with the same order of Chebyshev polynomials, i.e., the PN-PN method. The Projection method is applied in coupling the pressure with the velocity. The present method is first validated
International Nuclear Information System (INIS)
Ceolin, C.; Schramm, M.; Bodmann, B.E.J.; Vilhena, M.T.
2015-01-01
Recently the stationary neutron diffusion equation in heterogeneous rectangular geometry was solved by the expansion of the scalar fluxes in polynomials in terms of the spatial variables (x; y), considering the two-group energy model. The focus of the present discussion consists in the study of an error analysis of the aforementioned solution. More specifically we show how the spatial subdomain segmentation is related to the degree of the polynomial and the Lipschitz constant. This relation allows to solve the 2-D neutron diffusion problem for second degree polynomials in each subdomain. This solution is exact at the knots where the Lipschitz cone is centered. Moreover, the solution has an analytical representation in each subdomain with supremum and infimum functions that shows the convergence of the solution. We illustrate the analysis with a selection of numerical case studies. (author)
Energy Technology Data Exchange (ETDEWEB)
Ceolin, C., E-mail: celina.ceolin@gmail.com [Universidade Federal de Santa Maria (UFSM), Frederico Westphalen, RS (Brazil). Centro de Educacao Superior Norte; Schramm, M.; Bodmann, B.E.J.; Vilhena, M.T., E-mail: celina.ceolin@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica
2015-07-01
Recently the stationary neutron diffusion equation in heterogeneous rectangular geometry was solved by the expansion of the scalar fluxes in polynomials in terms of the spatial variables (x; y), considering the two-group energy model. The focus of the present discussion consists in the study of an error analysis of the aforementioned solution. More specifically we show how the spatial subdomain segmentation is related to the degree of the polynomial and the Lipschitz constant. This relation allows to solve the 2-D neutron diffusion problem for second degree polynomials in each subdomain. This solution is exact at the knots where the Lipschitz cone is centered. Moreover, the solution has an analytical representation in each subdomain with supremum and infimum functions that shows the convergence of the solution. We illustrate the analysis with a selection of numerical case studies. (author)
Ait-Haddou, Rachid
2015-01-01
We show that the best degree reduction of a given polynomial P from degree n to m with respect to the discrete (Formula presented.)-norm is equivalent to the best Euclidean distance of the vector of h-Bézier coefficients of P from the vector
International Nuclear Information System (INIS)
Martin, P.; Zamudio-Cristi, J.
1982-01-01
A method is described to obtain fractional approximations for linear first order differential equations with polynomial coefficients. This approximation can give good accuracy in a large region of the complex variable plane that may include all the real axis. The parameters of the approximation are solutions of algebraic equations obtained through the coefficients of the highest and lowest power of the variable after the sustitution of the fractional approximation in the differential equation. The method is more general than the asymptotical Pade method, and it is not required to determine the power series or asymptotical expansion. A simple approximation for the exponential integral is found, which give three exact digits for most of the real values of the variable. Approximations of higher accuracy and of the same degree than other authors are also obtained. (Author) [pt
Chebyshev and Fourier spectral methods
Boyd, John P
2001-01-01
Completely revised text focuses on use of spectral methods to solve boundary value, eigenvalue, and time-dependent problems, but also covers Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions, as well as cardinal functions, linear eigenvalue problems, matrix-solving methods, coordinate transformations, methods for unbounded intervals, spherical and cylindrical geometry, and much more. 7 Appendices. Glossary. Bibliography. Index. Over 160 text figures.
Banerjee, Amartya S; Lin, Lin; Suryanarayana, Phanish; Yang, Chao; Pask, John E
2018-06-12
We describe a novel iterative strategy for Kohn-Sham density functional theory calculations aimed at large systems (>1,000 electrons), applicable to metals and insulators alike. In lieu of explicit diagonalization of the Kohn-Sham Hamiltonian on every self-consistent field (SCF) iteration, we employ a two-level Chebyshev polynomial filter based complementary subspace strategy to (1) compute a set of vectors that span the occupied subspace of the Hamiltonian; (2) reduce subspace diagonalization to just partially occupied states; and (3) obtain those states in an efficient, scalable manner via an inner Chebyshev filter iteration. By reducing the necessary computation to just partially occupied states and obtaining these through an inner Chebyshev iteration, our approach reduces the cost of large metallic calculations significantly, while eliminating subspace diagonalization for insulating systems altogether. We describe the implementation of the method within the framework of the discontinuous Galerkin (DG) electronic structure method and show that this results in a computational scheme that can effectively tackle bulk and nano systems containing tens of thousands of electrons, with chemical accuracy, within a few minutes or less of wall clock time per SCF iteration on large-scale computing platforms. We anticipate that our method will be instrumental in pushing the envelope of large-scale ab initio molecular dynamics. As a demonstration of this, we simulate a bulk silicon system containing 8,000 atoms at finite temperature, and obtain an average SCF step wall time of 51 s on 34,560 processors; thus allowing us to carry out 1.0 ps of ab initio molecular dynamics in approximately 28 h (of wall time).
UNCOUPLING LAMINAR CONJUGATE HEAT TRANSFER THROUGH CHEBYSHEV POLYNOMIAL
Directory of Open Access Journals (Sweden)
ANTONIO J. BULA
2010-01-01
verificados con la solución obtenida por medio de software CFD comercial, FIDAP ®. La solución ncluyo el cálculo del coeficiente de transferencia de calor, el número de Nusselt, el número de Biot, todos tanto local como promedio. La distribución de temperatura en la interface también fue obtenida.
Directory of Open Access Journals (Sweden)
M. Tavassoli Kajani
2012-01-01
Full Text Available Rational Chebyshev bases and Galerkin method are used to obtain the approximate solution of a system of high-order integro-differential equations on the interval [0,∞. This method is based on replacement of the unknown functions by their truncated series of rational Chebyshev expansion. Test examples are considered to show the high accuracy, simplicity, and efficiency of this method.
Wang, Zhiheng
2015-01-01
A simple multidomain Chebyshev pseudo-spectral method is developed for two-dimensional fluid flow and heat transfer over square cylinders. The incompressible Navier-Stokes equations with primitive variables are discretized in several subdomains of the computational domain. The velocities and pressure are discretized with the same order of Chebyshev polynomials, i.e., the PN-PN method. The Projection method is applied in coupling the pressure with the velocity. The present method is first validated by benchmark problems of natural convection in a square cavity. Then the method based on multidomains is applied to simulate fluid flow and heat transfer from square cylinders. The numerical results agree well with the existing results. © Taylor & Francis Group, LLC.
An embedded formula of the Chebyshev collocation method for stiff problems
Piao, Xiangfan; Bu, Sunyoung; Kim, Dojin; Kim, Philsu
2017-12-01
In this study, we have developed an embedded formula of the Chebyshev collocation method for stiff problems, based on the zeros of the generalized Chebyshev polynomials. A new strategy for the embedded formula, using a pair of methods to estimate the local truncation error, as performed in traditional embedded Runge-Kutta schemes, is proposed. The method is performed in such a way that not only the stability region of the embedded formula can be widened, but by allowing the usage of larger time step sizes, the total computational costs can also be reduced. In terms of concrete convergence and stability analysis, the constructed algorithm turns out to have an 8th order convergence and it exhibits A-stability. Through several numerical experimental results, we have demonstrated that the proposed method is numerically more efficient, compared to several existing implicit methods.
Freud, Géza
1971-01-01
Orthogonal Polynomials contains an up-to-date survey of the general theory of orthogonal polynomials. It deals with the problem of polynomials and reveals that the sequence of these polynomials forms an orthogonal system with respect to a non-negative m-distribution defined on the real numerical axis. Comprised of five chapters, the book begins with the fundamental properties of orthogonal polynomials. After discussing the momentum problem, it then explains the quadrature procedure, the convergence theory, and G. Szegő's theory. This book is useful for those who intend to use it as referenc
Generalizations of orthogonal polynomials
Bultheel, A.; Cuyt, A.; van Assche, W.; van Barel, M.; Verdonk, B.
2005-07-01
We give a survey of recent generalizations of orthogonal polynomials. That includes multidimensional (matrix and vector orthogonal polynomials) and multivariate versions, multipole (orthogonal rational functions) variants, and extensions of the orthogonality conditions (multiple orthogonality). Most of these generalizations are inspired by the applications in which they are applied. We also give a glimpse of these applications, which are usually generalizations of applications where classical orthogonal polynomials also play a fundamental role: moment problems, numerical quadrature, rational approximation, linear algebra, recurrence relations, and random matrices.
Polynomial hybrid Monte Carlo algorithm for lattice QCD with an odd number of flavors
International Nuclear Information System (INIS)
Aoki, S.; Burkhalter, R.; Ishikawa, K-I.; Tominaga, S.; Fukugita, M.; Hashimoto, S.; Kaneko, T.; Kuramashi, Y.; Okawa, M.; Tsutsui, N.; Yamada, N.; Ishizuka, N.; Iwasaki, Y.; Kanaya, K.; Ukawa, A.; Yoshie, T.; Onogi, T.
2002-01-01
We present a polynomial hybrid Monte Carlo (PHMC) algorithm for lattice QCD with odd numbers of flavors of O(a)-improved Wilson quark action. The algorithm makes use of the non-Hermitian Chebyshev polynomial to approximate the inverse square root of the fermion matrix required for an odd number of flavors. The systematic error from the polynomial approximation is removed by a noisy Metropolis test for which a new method is developed. Investigating the property of our PHMC algorithm in the N f =2 QCD case, we find that it is as efficient as the conventional HMC algorithm for a moderately large lattice size (16 3 x48) with intermediate quark masses (m PS /m V ∼0.7-0.8). We test our odd-flavor algorithm through extensive simulations of two-flavor QCD treated as an N f =1+1 system, and comparing the results with those of the established algorithms for N f =2 QCD. These tests establish that our PHMC algorithm works on a moderately large lattice size with intermediate quark masses (16 3 x48,m PS /m V ∼0.7-0.8). Finally we experiment with the (2+1)-flavor QCD simulation on small lattices (4 3 x8 and 8 3 x16), and confirm the agreement of our results with those obtained with the R algorithm and extrapolated to a zero molecular dynamics step size
Modeling Belt-Servomechanism by Chebyshev Functional Recurrent Neuro-Fuzzy Network
Huang, Yuan-Ruey; Kang, Yuan; Chu, Ming-Hui; Chang, Yeon-Pun
A novel Chebyshev functional recurrent neuro-fuzzy (CFRNF) network is developed from a combination of the Takagi-Sugeno-Kang (TSK) fuzzy model and the Chebyshev recurrent neural network (CRNN). The CFRNF network can emulate the nonlinear dynamics of a servomechanism system. The system nonlinearity is addressed by enhancing the input dimensions of the consequent parts in the fuzzy rules due to functional expansion of a Chebyshev polynomial. The back propagation algorithm is used to adjust the parameters of the antecedent membership functions as well as those of consequent functions. To verify the performance of the proposed CFRNF, the experiment of the belt servomechanism is presented in this paper. Both of identification methods of adaptive neural fuzzy inference system (ANFIS) and recurrent neural network (RNN) are also studied for modeling of the belt servomechanism. The analysis and comparison results indicate that CFRNF makes identification of complex nonlinear dynamic systems easier. It is verified that the accuracy and convergence of the CFRNF are superior to those of ANFIS and RNN by the identification results of a belt servomechanism.
Mapped Chebyshev Pseudo-Spectral Method for Dynamic Aero-Elastic Problem of Limit Cycle Oscillation
Im, Dong Kyun; Kim, Hyun Soon; Choi, Seongim
2018-05-01
A mapped Chebyshev pseudo-spectral method is developed as one of the Fourier-spectral approaches and solves nonlinear PDE systems for unsteady flows and dynamic aero-elastic problem in a given time interval, where the flows or elastic motions can be periodic, nonperiodic, or periodic with an unknown frequency. The method uses the Chebyshev polynomials of the first kind for the basis function and redistributes the standard Chebyshev-Gauss-Lobatto collocation points more evenly by a conformal mapping function for improved numerical stability. Contributions of the method are several. It can be an order of magnitude more efficient than the conventional finite difference-based, time-accurate computation, depending on the complexity of solutions and the number of collocation points. The method reformulates the dynamic aero-elastic problem in spectral form for coupled analysis of aerodynamics and structures, which can be effective for design optimization of unsteady and dynamic problems. A limit cycle oscillation (LCO) is chosen for the validation and a new method to determine the LCO frequency is introduced based on the minimization of a second derivative of the aero-elastic formulation. Two examples of the limit cycle oscillation are tested: nonlinear, one degree-of-freedom mass-spring-damper system and two degrees-of-freedom oscillating airfoil under pitch and plunge motions. Results show good agreements with those of the conventional time-accurate simulations and wind tunnel experiments.
All-Pole Recursive Digital Filters Design Based on Ultraspherical Polynomials
Directory of Open Access Journals (Sweden)
N. Stojanovic
2014-09-01
Full Text Available A simple method for approximation of all-pole recursive digital filters, directly in digital domain, is described. Transfer function of these filters, referred to as Ultraspherical filters, is controlled by order of the Ultraspherical polynomial, nu. Parameter nu, restricted to be a nonnegative real number (nu ≥ 0, controls ripple peaks in the passband of the magnitude response and enables a trade-off between the passband loss and the group delay response of the resulting filter. Chebyshev filters of the first and of the second kind, and also Legendre and Butterworth filters are shown to be special cases of these allpole recursive digital filters. Closed form equations for the computation of the filter coefficients are provided. The design technique is illustrated with examples.
A NEW TOOL FOR IMAGE ANALYSIS BASED ON CHEBYSHEV RATIONAL FUNCTIONS: CHEF FUNCTIONS
International Nuclear Information System (INIS)
Jiménez-Teja, Y.; Benítez, N.
2012-01-01
We introduce a new approach to the modeling of the light distribution of galaxies, an orthonormal polar basis formed by a combination of Chebyshev rational functions and Fourier polynomials that we call CHEF functions, or CHEFs. We have developed an orthonormalization process to apply this basis to pixelized images, and implemented the method as a Python pipeline. The new basis displays remarkable flexibility, being able to accurately fit all kinds of galaxy shapes, including irregulars, spirals, ellipticals, highly compact, and highly elongated galaxies. It does this while using fewer components than similar methods, as shapelets, and without producing artifacts, due to the efficiency of the rational Chebyshev polynomials to fit quickly decaying functions like galaxy profiles. The method is linear and very stable, and therefore is capable of processing large numbers of galaxies in a fast and automated way. Due to the high quality of the fits in the central parts of the galaxies, and the efficiency of the CHEF basis modeling galaxy profiles up to very large distances, the method provides highly accurate estimates of total galaxy fluxes and ellipticities. Future papers will explore in more detail the application of the method to perform multiband photometry, morphological classification, and weak shear measurements.
On Sequences of Numbers and Polynomials Defined by Linear Recurrence Relations of Order 2
Directory of Open Access Journals (Sweden)
Tian-Xiao He
2009-01-01
Full Text Available Here we present a new method to construct the explicit formula of a sequence of numbers and polynomials generated by a linear recurrence relation of order 2. The applications of the method to the Fibonacci and Lucas numbers, Chebyshev polynomials, the generalized Gegenbauer-Humbert polynomials are also discussed. The derived idea provides a general method to construct identities of number or polynomial sequences defined by linear recurrence relations. The applications using the method to solve some algebraic and ordinary differential equations are presented.
Directory of Open Access Journals (Sweden)
Fakhrodin Mohammadi
2017-10-01
Full Text Available Stochastic fractional differential equations (SFDEs have been used for modeling many physical problems in the fields of turbulance, heterogeneous, flows and matrials, viscoelasticity and electromagnetic theory. In this paper, an efficient wavelet Galerkin method based on the second kind Chebyshev wavelets are proposed for approximate solution of SFDEs. In this approach, operational matrices of the second kind Chebyshev wavelets are used for reducing SFDEs to a linear system of algebraic equations that can be solved easily. Convergence and error analysis of the proposed method is considered. Some numerical examples are performed to confirm the applicability and efficiency of the proposed method.
Ghosh, Shubhrangshu
2017-09-01
The correlated and coupled dynamics of accretion and outflow around black holes (BHs) are essentially governed by the fundamental laws of conservation as outflow extracts matter, momentum and energy from the accretion region. Here we analyze a robust form of 2.5-dimensional viscous, resistive, advective magnetized accretion-outflow coupling in BH systems. We solve the complete set of coupled MHD conservation equations self-consistently, through invoking a generalized polynomial expansion in two dimensions. We perform a critical analysis of the accretion-outflow region and provide a complete quasi-analytical family of solutions for advective flows. We obtain the physically plausible outflow solutions at high turbulent viscosity parameter α (≳ 0.3), and at a reduced scale-height, as magnetic stresses compress or squeeze the flow region. We found that the value of the large-scale poloidal magnetic field B P is enhanced with the increase of the geometrical thickness of the accretion flow. On the other hand, differential magnetic torque (-{r}2{\\bar{B}}\\varphi {\\bar{B}}z) increases with the increase in \\dot{M}. {\\bar{B}}{{P}}, -{r}2{\\bar{B}}\\varphi {\\bar{B}}z as well as the plasma beta β P get strongly augmented with the increase in the value of α, enhancing the transport of vertical flux outwards. Our solutions indicate that magnetocentrifugal acceleration plausibly plays a dominant role in effusing out plasma from the radial accretion flow in a moderately advective paradigm which is more centrifugally dominated. However in a strongly advective paradigm it is likely that the thermal pressure gradient would play a more contributory role in the vertical transport of plasma.
Chebyshev super spectral viscosity method for water hammer analysis
Directory of Open Access Journals (Sweden)
Hongyu Chen
2013-09-01
Full Text Available In this paper, a new fast and efficient algorithm, Chebyshev super spectral viscosity (SSV method, is introduced to solve the water hammer equations. Compared with standard spectral method, the method's advantage essentially consists in adding a super spectral viscosity to the equations for the high wave numbers of the numerical solution. It can stabilize the numerical oscillation (Gibbs phenomenon and improve the computational efficiency while discontinuities appear in the solution. Results obtained from the Chebyshev super spectral viscosity method exhibit greater consistency with conventional water hammer calculations. It shows that this new numerical method offers an alternative way to investigate the behavior of the water hammer in propellant pipelines.
Irreducible multivariate polynomials obtained from polynomials in ...
Indian Academy of Sciences (India)
Hall, 1409 W. Green Street, Urbana, IL 61801, USA. E-mail: Nicolae. ... Theorem A. If we write an irreducible polynomial f ∈ K[X] as a sum of polynomials a0,..., an ..... This shows us that deg ai = (n − i) deg f2 for each i = 0,..., n, so min k>0.
Explicit analytical expression for the condition number of polynomials in power form
Rack, Heinz-Joachim
2017-07-01
In his influential papers [1-3] W. Gautschi has defined and reshaped the condition number κ∞ of polynomials Pn of degree ≤ n which are represented in power form on a zero-symmetric interval [-ω, ω]. Basically, κ∞ is expressed as the product of two operator norms: an explicit factor times an implicit one (the l∞-norm of the coefficient vector of the n-th Chebyshev polynomial of the first kind relative to [-ω, ω]). We provide a new proof, economize the second factor and express it by an explicit analytical formula.
Branched polynomial covering maps
DEFF Research Database (Denmark)
Hansen, Vagn Lundsgaard
1999-01-01
A Weierstrass polynomial with multiple roots in certain points leads to a branched covering map. With this as the guiding example, we formally define and study the notion of a branched polynomial covering map. We shall prove that many finite covering maps are polynomial outside a discrete branch...... set. Particular studies are made of branched polynomial covering maps arising from Riemann surfaces and from knots in the 3-sphere....
Bai , Shi; Bouvier , Cyril; Kruppa , Alexander; Zimmermann , Paul
2016-01-01
International audience; The general number field sieve (GNFS) is the most efficient algo-rithm known for factoring large integers. It consists of several stages, the first one being polynomial selection. The quality of the selected polynomials can be modelled in terms of size and root properties. We propose a new kind of polynomials for GNFS: with a new degree of freedom, we further improve the size property. We demonstrate the efficiency of our algorithm by exhibiting a better polynomial tha...
Polynomial methods in combinatorics
Guth, Larry
2016-01-01
This book explains some recent applications of the theory of polynomials and algebraic geometry to combinatorics and other areas of mathematics. One of the first results in this story is a short elegant solution of the Kakeya problem for finite fields, which was considered a deep and difficult problem in combinatorial geometry. The author also discusses in detail various problems in incidence geometry associated to Paul Erdős's famous distinct distances problem in the plane from the 1940s. The proof techniques are also connected to error-correcting codes, Fourier analysis, number theory, and differential geometry. Although the mathematics discussed in the book is deep and far-reaching, it should be accessible to first- and second-year graduate students and advanced undergraduates. The book contains approximately 100 exercises that further the reader's understanding of the main themes of the book. Some of the greatest advances in geometric combinatorics and harmonic analysis in recent years have been accompl...
Ilić, Aleksandar D.; Pavlović, Vlastimir D.
2011-01-01
A new original formulation of all pole low-pass filter functions is proposed in this article. The starting point in solving the approximation problem is a direct application of the Christoffel-Darboux formula for the set of orthogonal polynomials, including Gegenbauer orthogonal polynomials in the finite interval [-1, +1] with the application of a weighting function with a single free parameter. A general solution for the filter functions is obtained in a compact explicit form, which is shown to enable generation of the Gegenbauer filter functions in a simple way by choosing the value of the free parameter. Moreover, the proposed solution with the same criterion of approximation could be used to generate Legendre and Chebyshev filter functions of the first and second kind as well. The examples of proposed filter functions of even (10th) and odd (11th) order are illustrated. The approximation is shown to yield a good compromise solution with respect to the filter frequency characteristics (magnitude as well as phase characteristics). The influence of tolerance of the filter critical component (inductor) on the proposed magnitude and group delay characteristics of a resistively terminated LC lossless ladder filter is analysed as well. The proposed filter functions are superior in terms of the excellent magnitude characteristic, which approximates an ideal filter almost perfectly over the entire pass-band range and exhibits the summed sensitivity function better than that of a Butterworth filter. In the article, we present the filter function solution that exhibits optimum amplitude as well as optimum group delay characteristics that are of crucial importance for implementation of digital processing as well as RF analogue parts of communication networks. Derivation of the other band range filter functions, which could be realised either by continuous or digital filters, is also generally possible with the procedure proposed in this article.
Best polynomial degree reduction on q-lattices with applications to q-orthogonal polynomials
Ait-Haddou, Rachid; Goldman, Ron
2015-01-01
We show that a weighted least squares approximation of q-Bézier coefficients provides the best polynomial degree reduction in the q-L2-norm. We also provide a finite analogue of this result with respect to finite q-lattices and we present applications of these results to q-orthogonal polynomials. © 2015 Elsevier Inc. All rights reserved.
Best polynomial degree reduction on q-lattices with applications to q-orthogonal polynomials
Ait-Haddou, Rachid
2015-06-07
We show that a weighted least squares approximation of q-Bézier coefficients provides the best polynomial degree reduction in the q-L2-norm. We also provide a finite analogue of this result with respect to finite q-lattices and we present applications of these results to q-orthogonal polynomials. © 2015 Elsevier Inc. All rights reserved.
Branched polynomial covering maps
DEFF Research Database (Denmark)
Hansen, Vagn Lundsgaard
2002-01-01
A Weierstrass polynomial with multiple roots in certain points leads to a branched covering map. With this as the guiding example, we formally define and study the notion of a branched polynomial covering map. We shall prove that many finite covering maps are polynomial outside a discrete branch ...... set. Particular studies are made of branched polynomial covering maps arising from Riemann surfaces and from knots in the 3-sphere. (C) 2001 Elsevier Science B.V. All rights reserved.......A Weierstrass polynomial with multiple roots in certain points leads to a branched covering map. With this as the guiding example, we formally define and study the notion of a branched polynomial covering map. We shall prove that many finite covering maps are polynomial outside a discrete branch...
Chebyshev super spectral viscosity method for a fluidized bed model
International Nuclear Information System (INIS)
Sarra, Scott A.
2003-01-01
A Chebyshev super spectral viscosity method and operator splitting are used to solve a hyperbolic system of conservation laws with a source term modeling a fluidized bed. The fluidized bed displays a slugging behavior which corresponds to shocks in the solution. A modified Gegenbauer postprocessing procedure is used to obtain a solution which is free of oscillations caused by the Gibbs-Wilbraham phenomenon in the spectral viscosity solution. Conservation is maintained by working with unphysical negative particle concentrations
CHEBYSHEV ACCELERATION TECHNIQUE FOR SOLVING FUZZY LINEAR SYSTEM
Directory of Open Access Journals (Sweden)
S.H. Nasseri
2011-07-01
Full Text Available In this paper, Chebyshev acceleration technique is used to solve the fuzzy linear system (FLS. This method is discussed in details and followed by summary of some other acceleration techniques. Moreover, we show that in some situations that the methods such as Jacobi, Gauss-Sidel, SOR and conjugate gradient is divergent, our proposed method is applicable and the acquired results are illustrated by some numerical examples.
CHEBYSHEV ACCELERATION TECHNIQUE FOR SOLVING FUZZY LINEAR SYSTEM
Directory of Open Access Journals (Sweden)
S.H. Nasseri
2009-10-01
Full Text Available In this paper, Chebyshev acceleration technique is used to solve the fuzzy linear system (FLS. This method is discussed in details and followed by summary of some other acceleration techniques. Moreover, we show that in some situations that the methods such as Jacobi, Gauss-Sidel, SOR and conjugate gradient is divergent, our proposed method is applicable and the acquired results are illustrated by some numerical examples.
Energy Technology Data Exchange (ETDEWEB)
Spata, Michael [Old Dominion Univ., Norfolk, VA (United States)
2012-08-01
An experiment was conducted at Jefferson Lab's Continuous Electron Beam Accelerator Facility to develop a beam-based technique for characterizing the extent of the nonlinearity of the magnetic fields of a beam transport system. Horizontally and vertically oriented pairs of air-core kicker magnets were simultaneously driven at two different frequencies to provide a time-dependent transverse modulation of the beam orbit relative to the unperturbed reference orbit. Fourier decomposition of the position data at eight different points along the beamline was then used to measure the amplitude of these frequencies. For a purely linear transport system one expects to find solely the frequencies that were applied to the kickers with amplitudes that depend on the phase advance of the lattice. In the presence of nonlinear fields one expects to also find harmonics of the driving frequencies that depend on the order of the nonlinearity. Chebyshev polynomials and their unique properties allow one to directly quantify the magnitude of the nonlinearity with the minimum error. A calibration standard was developed using one of the sextupole magnets in a CEBAF beamline. The technique was then applied to a pair of Arc 1 dipoles and then to the magnets in the Transport Recombiner beamline to measure their multipole content as a function of transverse position within the magnets.
Neck curve polynomials in neck rupture model
International Nuclear Information System (INIS)
Kurniadi, Rizal; Perkasa, Yudha S.; Waris, Abdul
2012-01-01
The Neck Rupture Model is a model that explains the scission process which has smallest radius in liquid drop at certain position. Old fashion of rupture position is determined randomly so that has been called as Random Neck Rupture Model (RNRM). The neck curve polynomials have been employed in the Neck Rupture Model for calculation the fission yield of neutron induced fission reaction of 280 X 90 with changing of order of polynomials as well as temperature. The neck curve polynomials approximation shows the important effects in shaping of fission yield curve.
Dabiri, Arman; Butcher, Eric A.; Nazari, Morad
2017-02-01
Compliant impacts can be modeled using linear viscoelastic constitutive models. While such impact models for realistic viscoelastic materials using integer order derivatives of force and displacement usually require a large number of parameters, compliant impact models obtained using fractional calculus, however, can be advantageous since such models use fewer parameters and successfully capture the hereditary property. In this paper, we introduce the fractional Chebyshev collocation (FCC) method as an approximation tool for numerical simulation of several linear fractional viscoelastic compliant impact models in which the overall coefficient of restitution for the impact is studied as a function of the fractional model parameters for the first time. Other relevant impact characteristics such as hysteresis curves, impact force gradient, penetration and separation depths are also studied.
International Nuclear Information System (INIS)
Guppy, C.B.
1962-03-01
In the methods adopted in this report transfer functions in the form of the ratio of two polynomials of the complex variable s are derived from sets of laplace transformed simultaneous differential equations. The set of algebraic simultaneous equations are solved using Cramer's Rule and this gives rise to determinants having polynomial elements. It is shown how the determinants are formed when transfer functions are specified. The procedure for finding the polynomial coefficients from a given determinant is fully described. The first method adopted is a direct one and reduces a determinant with first degree polynomial elements to secular form and follows this by an application of the similarity transformation to reduce the determinant to a form from which the polynomial coefficients can be read out directly. The programme is able to solve a single determinant with polynomial elements and this can be used to reduce an eigenvalue problem in the form of a secular determinant to polynomial form if the need arises. A description is given of the way in which the data is to be set out for solution by the programme. A description is also given of a method used in an earlier programme for solving polynomial determinants by curve fitting techniques using Chebyshev Polynomials. In this method determinants with polynomial elements of any degree can be solved. (author)
Simulation of electrically driven jet using Chebyshev collocation method
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
The model of electrically driven jet is governed by a series of quasi 1D dimensionless partial differential equations(PDEs).Following the method of lines,the Chebyshev collocation method is employed to discretize the PDEs and obtain a system of differential-algebraic equations(DAEs).By differentiating constrains in DAEs twice,the system is transformed into a set of ordinary differential equations(ODEs) with invariants.Then the implicit differential equations solver "ddaskr" is used to solve the ODEs and ...
Weierstrass polynomials for links
DEFF Research Database (Denmark)
Hansen, Vagn Lundsgaard
1997-01-01
There is a natural way of identifying links in3-space with polynomial covering spaces over thecircle. Thereby any link in 3-space can be definedby a Weierstrass polynomial over the circle. Theequivalence relation for covering spaces over thecircle is, however, completely different from...
Nonnegativity of uncertain polynomials
Directory of Open Access Journals (Sweden)
iljak Dragoslav D.
1998-01-01
Full Text Available The purpose of this paper is to derive tests for robust nonnegativity of scalar and matrix polynomials, which are algebraic, recursive, and can be completed in finite number of steps. Polytopic families of polynomials are considered with various characterizations of parameter uncertainty including affine, multilinear, and polynomic structures. The zero exclusion condition for polynomial positivity is also proposed for general parameter dependencies. By reformulating the robust stability problem of complex polynomials as positivity of real polynomials, we obtain new sufficient conditions for robust stability involving multilinear structures, which can be tested using only real arithmetic. The obtained results are applied to robust matrix factorization, strict positive realness, and absolute stability of multivariable systems involving parameter dependent transfer function matrices.
Many-body orthogonal polynomial systems
International Nuclear Information System (INIS)
Witte, N.S.
1997-03-01
The fundamental methods employed in the moment problem, involving orthogonal polynomial systems, the Lanczos algorithm, continued fraction analysis and Pade approximants has been combined with a cumulant approach and applied to the extensive many-body problem in physics. This has yielded many new exact results for many-body systems in the thermodynamic limit - for the ground state energy, for excited state gaps, for arbitrary ground state avenges - and are of a nonperturbative nature. These results flow from a confluence property of the three-term recurrence coefficients arising and define a general class of many-body orthogonal polynomials. These theorems constitute an analytical solution to the Lanczos algorithm in that they are expressed in terms of the three-term recurrence coefficients α and β. These results can also be applied approximately for non-solvable models in the form of an expansion, in a descending series of the system size. The zeroth order order this expansion is just the manifestation of the central limit theorem in which a Gaussian measure and hermite polynomials arise. The first order represents the first non-trivial order, in which classical distribution functions like the binomial distributions arise and the associated class of orthogonal polynomials are Meixner polynomials. Amongst examples of systems which have infinite order in the expansion are q-orthogonal polynomials where q depends on the system size in a particular way. (author)
An explicit approximate solution to the Duffing-harmonic oscillator by a cubication method
International Nuclear Information System (INIS)
Belendez, A.; Mendez, D.I.; Fernandez, E.; Marini, S.; Pascual, I.
2009-01-01
The nonlinear oscillations of a Duffing-harmonic oscillator are investigated by an approximated method based on the 'cubication' of the initial nonlinear differential equation. In this cubication method the restoring force is expanded in Chebyshev polynomials and the original nonlinear differential equation is approximated by a Duffing equation in which the coefficients for the linear and cubic terms depend on the initial amplitude, A. The replacement of the original nonlinear equation by an approximate Duffing equation allows us to obtain explicit approximate formulas for the frequency and the solution as a function of the complete elliptic integral of the first kind and the Jacobi elliptic function, respectively. These explicit formulas are valid for all values of the initial amplitude and we conclude this cubication method works very well for the whole range of initial amplitudes. Excellent agreement of the approximate frequencies and periodic solutions with the exact ones is demonstrated and discussed and the relative error for the approximate frequency is as low as 0.071%. Unlike other approximate methods applied to this oscillator, which are not capable to reproduce exactly the behaviour of the approximate frequency when A tends to zero, the cubication method used in this Letter predicts exactly the behaviour of the approximate frequency not only when A tends to infinity, but also when A tends to zero. Finally, a closed-form expression for the approximate frequency is obtained in terms of elementary functions. To do this, the relationship between the complete elliptic integral of the first kind and the arithmetic-geometric mean as well as Legendre's formula to approximately obtain this mean are used.
Polynomial Heisenberg algebras
International Nuclear Information System (INIS)
Carballo, Juan M; C, David J Fernandez; Negro, Javier; Nieto, Luis M
2004-01-01
Polynomial deformations of the Heisenberg algebra are studied in detail. Some of their natural realizations are given by the higher order susy partners (and not only by those of first order, as is already known) of the harmonic oscillator for even-order polynomials. Here, it is shown that the susy partners of the radial oscillator play a similar role when the order of the polynomial is odd. Moreover, it will be proved that the general systems ruled by such kinds of algebras, in the quadratic and cubic cases, involve Painleve transcendents of types IV and V, respectively
Extended biorthogonal matrix polynomials
Directory of Open Access Journals (Sweden)
Ayman Shehata
2017-01-01
Full Text Available The pair of biorthogonal matrix polynomials for commutative matrices were first introduced by Varma and Tasdelen in [22]. The main aim of this paper is to extend the properties of the pair of biorthogonal matrix polynomials of Varma and Tasdelen and certain generating matrix functions, finite series, some matrix recurrence relations, several important properties of matrix differential recurrence relations, biorthogonality relations and matrix differential equation for the pair of biorthogonal matrix polynomials J(A,B n (x, k and K(A,B n (x, k are discussed. For the matrix polynomials J(A,B n (x, k, various families of bilinear and bilateral generating matrix functions are constructed in the sequel.
Golden, Ryan; Cho, Ilwoo
2015-01-01
In this paper, we study structure theorems of algebras of symmetric functions. Based on a certain relation on elementary symmetric polynomials generating such algebras, we consider perturbation in the algebras. In particular, we understand generators of the algebras as perturbations. From such perturbations, define injective maps on generators, which induce algebra-monomorphisms (or embeddings) on the algebras. They provide inductive structure theorems on algebras of symmetric polynomials. As...
Zou, An-Min; Dev Kumar, Krishna; Hou, Zeng-Guang
2010-09-01
This paper investigates the problem of output feedback attitude control of an uncertain spacecraft. Two robust adaptive output feedback controllers based on Chebyshev neural networks (CNN) termed adaptive neural networks (NN) controller-I and adaptive NN controller-II are proposed for the attitude tracking control of spacecraft. The four-parameter representations (quaternion) are employed to describe the spacecraft attitude for global representation without singularities. The nonlinear reduced-order observer is used to estimate the derivative of the spacecraft output, and the CNN is introduced to further improve the control performance through approximating the spacecraft attitude motion. The implementation of the basis functions of the CNN used in the proposed controllers depends only on the desired signals, and the smooth robust compensator using the hyperbolic tangent function is employed to counteract the CNN approximation errors and external disturbances. The adaptive NN controller-II can efficiently avoid the over-estimation problem (i.e., the bound of the CNNs output is much larger than that of the approximated unknown function, and hence, the control input may be very large) existing in the adaptive NN controller-I. Both adaptive output feedback controllers using CNN can guarantee that all signals in the resulting closed-loop system are uniformly ultimately bounded. For performance comparisons, the standard adaptive controller using the linear parameterization of spacecraft attitude motion is also developed. Simulation studies are presented to show the advantages of the proposed CNN-based output feedback approach over the standard adaptive output feedback approach.
Polynomial chaos functions and stochastic differential equations
International Nuclear Information System (INIS)
Williams, M.M.R.
2006-01-01
The Karhunen-Loeve procedure and the associated polynomial chaos expansion have been employed to solve a simple first order stochastic differential equation which is typical of transport problems. Because the equation has an analytical solution, it provides a useful test of the efficacy of polynomial chaos. We find that the convergence is very rapid in some cases but that the increased complexity associated with many random variables can lead to very long computational times. The work is illustrated by exact and approximate solutions for the mean, variance and the probability distribution itself. The usefulness of a white noise approximation is also assessed. Extensive numerical results are given which highlight the weaknesses and strengths of polynomial chaos. The general conclusion is that the method is promising but requires further detailed study by application to a practical problem in transport theory
Chromatic polynomials for simplicial complexes
DEFF Research Database (Denmark)
Møller, Jesper Michael; Nord, Gesche
2016-01-01
In this note we consider s s -chromatic polynomials for finite simplicial complexes. When s=1 s=1 , the 1 1 -chromatic polynomial is just the usual graph chromatic polynomial of the 1 1 -skeleton. In general, the s s -chromatic polynomial depends on the s s -skeleton and its value at r...
Coefficients Calculation in Pascal Approximation for Passive Filter Design
Directory of Open Access Journals (Sweden)
George B. Kasapoglu
2018-02-01
Full Text Available The recently modified Pascal function is further exploited in this paper in the design of passive analog filters. The Pascal approximation has non-equiripple magnitude, in contrast of the most well-known approximations, such as the Chebyshev approximation. A novelty of this work is the introduction of a precise method that calculates the coefficients of the Pascal function. Two examples are presented for the passive design to illustrate the advantages and the disadvantages of the Pascal approximation. Moreover, the values of the passive elements can be taken from tables, which are created to define the normalized values of these elements for the Pascal approximation, as Zverev had done for the Chebyshev, Elliptic, and other approximations. Although Pascal approximation can be implemented to both passive and active filter designs, a passive filter design is addressed in this paper, and the benefits and shortcomings of Pascal approximation are presented and discussed.
Weighted approximation with varying weight
Totik, Vilmos
1994-01-01
A new construction is given for approximating a logarithmic potential by a discrete one. This yields a new approach to approximation with weighted polynomials of the form w"n"(" "= uppercase)P"n"(" "= uppercase). The new technique settles several open problems, and it leads to a simple proof for the strong asymptotics on some L p(uppercase) extremal problems on the real line with exponential weights, which, for the case p=2, are equivalent to power- type asymptotics for the leading coefficients of the corresponding orthogonal polynomials. The method is also modified toyield (in a sense) uniformly good approximation on the whole support. This allows one to deduce strong asymptotics in some L p(uppercase) extremal problems with varying weights. Applications are given, relating to fast decreasing polynomials, asymptotic behavior of orthogonal polynomials and multipoint Pade approximation. The approach is potential-theoretic, but the text is self-contained.
Polynomial solutions of the Monge-Ampère equation
Energy Technology Data Exchange (ETDEWEB)
Aminov, Yu A [B.Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, Khar' kov (Ukraine)
2014-11-30
The question of the existence of polynomial solutions to the Monge-Ampère equation z{sub xx}z{sub yy}−z{sub xy}{sup 2}=f(x,y) is considered in the case when f(x,y) is a polynomial. It is proved that if f is a polynomial of the second degree, which is positive for all values of its arguments and has a positive squared part, then no polynomial solution exists. On the other hand, a solution which is not polynomial but is analytic in the whole of the x, y-plane is produced. Necessary and sufficient conditions for the existence of polynomial solutions of degree up to 4 are found and methods for the construction of such solutions are indicated. An approximation theorem is proved. Bibliography: 10 titles.
Colouring and knot polynomials
International Nuclear Information System (INIS)
Welsh, D.J.A.
1991-01-01
These lectures will attempt to explain a connection between the recent advances in knot theory using the Jones and related knot polynomials with classical problems in combinatorics and statistical mechanics. The difficulty of some of these problems will be analysed in the context of their computational complexity. In particular we shall discuss colourings and groups valued flows in graphs, knots and the Jones and Kauffman polynomials, the Ising, Potts and percolation problems of statistical physics, computational complexity of the above problems. (author). 20 refs, 9 figs
Additive and polynomial representations
Krantz, David H; Suppes, Patrick
1971-01-01
Additive and Polynomial Representations deals with major representation theorems in which the qualitative structure is reflected as some polynomial function of one or more numerical functions defined on the basic entities. Examples are additive expressions of a single measure (such as the probability of disjoint events being the sum of their probabilities), and additive expressions of two measures (such as the logarithm of momentum being the sum of log mass and log velocity terms). The book describes the three basic procedures of fundamental measurement as the mathematical pivot, as the utiliz
A summation procedure for expansions in orthogonal polynomials
International Nuclear Information System (INIS)
Garibotti, C.R.; Grinstein, F.F.
1977-01-01
Approximants to functions defined by formal series expansions in orthogonal polynomials are introduced. They are shown to be convergent even out of the elliptical domain where the original expansion converges
Optimal stability polynomials for numerical integration of initial value problems
Ketcheson, David I.; Ahmadia, Aron
2013-01-01
We consider the problem of finding optimally stable polynomial approximations to the exponential for application to one-step integration of initial value ordinary and partial differential equations. The objective is to find the largest stable step
Global sensitivity analysis by polynomial dimensional decomposition
Energy Technology Data Exchange (ETDEWEB)
Rahman, Sharif, E-mail: rahman@engineering.uiowa.ed [College of Engineering, The University of Iowa, Iowa City, IA 52242 (United States)
2011-07-15
This paper presents a polynomial dimensional decomposition (PDD) method for global sensitivity analysis of stochastic systems subject to independent random input following arbitrary probability distributions. The method involves Fourier-polynomial expansions of lower-variate component functions of a stochastic response by measure-consistent orthonormal polynomial bases, analytical formulae for calculating the global sensitivity indices in terms of the expansion coefficients, and dimension-reduction integration for estimating the expansion coefficients. Due to identical dimensional structures of PDD and analysis-of-variance decomposition, the proposed method facilitates simple and direct calculation of the global sensitivity indices. Numerical results of the global sensitivity indices computed for smooth systems reveal significantly higher convergence rates of the PDD approximation than those from existing methods, including polynomial chaos expansion, random balance design, state-dependent parameter, improved Sobol's method, and sampling-based methods. However, for non-smooth functions, the convergence properties of the PDD solution deteriorate to a great extent, warranting further improvements. The computational complexity of the PDD method is polynomial, as opposed to exponential, thereby alleviating the curse of dimensionality to some extent.
Design and Use of a Learning Object for Finding Complex Polynomial Roots
Benitez, Julio; Gimenez, Marcos H.; Hueso, Jose L.; Martinez, Eulalia; Riera, Jaime
2013-01-01
Complex numbers are essential in many fields of engineering, but students often fail to have a natural insight of them. We present a learning object for the study of complex polynomials that graphically shows that any complex polynomials has a root and, furthermore, is useful to find the approximate roots of a complex polynomial. Moreover, we…
On the Laurent polynomial rings
International Nuclear Information System (INIS)
Stefanescu, D.
1985-02-01
We describe some properties of the Laurent polynomial rings in a finite number of indeterminates over a commutative unitary ring. We study some subrings of the Laurent polynomial rings. We finally obtain two cancellation properties. (author)
Computing the Alexander Polynomial Numerically
DEFF Research Database (Denmark)
Hansen, Mikael Sonne
2006-01-01
Explains how to construct the Alexander Matrix and how this can be used to compute the Alexander polynomial numerically.......Explains how to construct the Alexander Matrix and how this can be used to compute the Alexander polynomial numerically....
Discrete Chebyshev nets and a universal permutability theorem
International Nuclear Information System (INIS)
Schief, W K
2007-01-01
The Pohlmeyer-Lund-Regge system which was set down independently in the contexts of Lagrangian field theories and the relativistic motion of a string and which played a key role in the development of a geometric interpretation of soliton theory is known to appear in a variety of important guises such as the vectorial Lund-Regge equation, the O(4) nonlinear σ-model and the SU(2) chiral model. Here, it is demonstrated that these avatars may be discretized in such a manner that both integrability and equivalence are preserved. The corresponding discretization procedure is geometric and algebraic in nature and based on discrete Chebyshev nets and generalized discrete Lelieuvre formulae. In connection with the derivation of associated Baecklund transformations, it is shown that a generalized discrete Lund-Regge equation may be interpreted as a universal permutability theorem for integrable equations which admit commuting matrix Darboux transformations acting on su(2) linear representations. Three-dimensional coordinate systems and lattices of 'Lund-Regge' type related to particular continuous and discrete Zakharov-Manakov systems are obtained as a by-product of this analysis
Stochastic Estimation via Polynomial Chaos
2015-10-01
AFRL-RW-EG-TR-2015-108 Stochastic Estimation via Polynomial Chaos Douglas V. Nance Air Force Research...COVERED (From - To) 20-04-2015 – 07-08-2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Stochastic Estimation via Polynomial Chaos ...This expository report discusses fundamental aspects of the polynomial chaos method for representing the properties of second order stochastic
A comparison of companion matrix methods to find roots of a trigonometric polynomial
Boyd, John P.
2013-08-01
A trigonometric polynomial is a truncated Fourier series of the form fN(t)≡∑j=0Naj cos(jt)+∑j=1N bj sin(jt). It has been previously shown by the author that zeros of such a polynomial can be computed as the eigenvalues of a companion matrix with elements which are complex valued combinations of the Fourier coefficients, the "CCM" method. However, previous work provided no examples, so one goal of this new work is to experimentally test the CCM method. A second goal is introduce a new alternative, the elimination/Chebyshev algorithm, and experimentally compare it with the CCM scheme. The elimination/Chebyshev matrix (ECM) algorithm yields a companion matrix with real-valued elements, albeit at the price of usefulness only for real roots. The new elimination scheme first converts the trigonometric rootfinding problem to a pair of polynomial equations in the variables (c,s) where c≡cos(t) and s≡sin(t). The elimination method next reduces the system to a single univariate polynomial P(c). We show that this same polynomial is the resultant of the system and is also a generator of the Groebner basis with lexicographic ordering for the system. Both methods give very high numerical accuracy for real-valued roots, typically at least 11 decimal places in Matlab/IEEE 754 16 digit floating point arithmetic. The CCM algorithm is typically one or two decimal places more accurate, though these differences disappear if the roots are "Newton-polished" by a single Newton's iteration. The complex-valued matrix is accurate for complex-valued roots, too, though accuracy decreases with the magnitude of the imaginary part of the root. The cost of both methods scales as O(N3) floating point operations. In spite of intimate connections of the elimination/Chebyshev scheme to two well-established technologies for solving systems of equations, resultants and Groebner bases, and the advantages of using only real-valued arithmetic to obtain a companion matrix with real-valued elements
Polynomial optimization : Error analysis and applications
Sun, Zhao
2015-01-01
Polynomial optimization is the problem of minimizing a polynomial function subject to polynomial inequality constraints. In this thesis we investigate several hierarchies of relaxations for polynomial optimization problems. Our main interest lies in understanding their performance, in particular how
Complex Polynomial Vector Fields
DEFF Research Database (Denmark)
Dias, Kealey
vector fields. Since the class of complex polynomial vector fields in the plane is natural to consider, it is remarkable that its study has only begun very recently. There are numerous fundamental questions that are still open, both in the general classification of these vector fields, the decomposition...... of parameter spaces into structurally stable domains, and a description of the bifurcations. For this reason, the talk will focus on these questions for complex polynomial vector fields.......The two branches of dynamical systems, continuous and discrete, correspond to the study of differential equations (vector fields) and iteration of mappings respectively. In holomorphic dynamics, the systems studied are restricted to those described by holomorphic (complex analytic) functions...
Roots of the Chromatic Polynomial
DEFF Research Database (Denmark)
Perrett, Thomas
The chromatic polynomial of a graph G is a univariate polynomial whose evaluation at any positive integer q enumerates the proper q-colourings of G. It was introduced in connection with the famous four colour theorem but has recently found other applications in the field of statistical physics...... extend Thomassen’s technique to the Tutte polynomial and as a consequence, deduce a density result for roots of the Tutte polynomial. This partially answers a conjecture of Jackson and Sokal. Finally, we refocus our attention on the chromatic polynomial and investigate the density of chromatic roots...
Polynomials in algebraic analysis
Multarzyński, Piotr
2012-01-01
The concept of polynomials in the sense of algebraic analysis, for a single right invertible linear operator, was introduced and studied originally by D. Przeworska-Rolewicz \\cite{DPR}. One of the elegant results corresponding with that notion is a purely algebraic version of the Taylor formula, being a generalization of its usual counterpart, well known for functions of one variable. In quantum calculus there are some specific discrete derivations analyzed, which are right invertible linear ...
General Reducibility and Solvability of Polynomial Equations ...
African Journals Online (AJOL)
General Reducibility and Solvability of Polynomial Equations. ... Unlike quadratic, cubic, and quartic polynomials, the general quintic and higher degree polynomials cannot be solved algebraically in terms of finite number of additions, ... Galois Theory, Solving Polynomial Systems, Polynomial factorization, Polynomial Ring ...
Parand, Kourosh; Mahdi Moayeri, Mohammad; Latifi, Sobhan; Delkhosh, Mehdi
2017-07-01
In this paper, a spectral method based on the four kinds of rational Chebyshev functions is proposed to approximate the solution of the boundary layer flow of an Eyring-Powell fluid over a stretching sheet. First, by using the quasilinearization method (QLM), the model which is a nonlinear ordinary differential equation is converted to a sequence of linear ordinary differential equations (ODEs). By applying the proposed method on the ODEs in each iteration, the equations are converted to a system of linear algebraic equations. The results indicate the high accuracy and convergence of our method. Moreover, the effects of the Eyring-Powell fluid material parameters are discussed.
Approximate Implicitization Using Linear Algebra
Directory of Open Access Journals (Sweden)
Oliver J. D. Barrowclough
2012-01-01
Full Text Available We consider a family of algorithms for approximate implicitization of rational parametric curves and surfaces. The main approximation tool in all of the approaches is the singular value decomposition, and they are therefore well suited to floating-point implementation in computer-aided geometric design (CAGD systems. We unify the approaches under the names of commonly known polynomial basis functions and consider various theoretical and practical aspects of the algorithms. We offer new methods for a least squares approach to approximate implicitization using orthogonal polynomials, which tend to be faster and more numerically stable than some existing algorithms. We propose several simple propositions relating the properties of the polynomial bases to their implicit approximation properties.
Chebyshev blossoming in Müntz spaces: Toward shaping with Young diagrams
Ait-Haddou, Rachid
2013-08-01
The notion of a blossom in extended Chebyshev spaces offers adequate generalizations and extra-utilities to the tools for free-form design schemes. Unfortunately, such advantages are often overshadowed by the complexity of the resulting algorithms. In this work, we show that for the case of Müntz spaces with integer exponents, the notion of a Chebyshev blossom leads to elegant algorithms whose complexities are embedded in the combinatorics of Schur functions. We express the blossom and the pseudo-affinity property in Müntz spaces in terms of Schur functions. We derive an explicit expression for the Chebyshev-Bernstein basis via an inductive argument on nested Müntz spaces. We also reveal a simple algorithm for dimension elevation. Free-form design schemes in Müntz spaces with Young diagrams as shape parameters are discussed. © 2013 Elsevier Ltd. All rights reserved.
Chebyshev blossoming in Müntz spaces: Toward shaping with Young diagrams
Ait-Haddou, Rachid; Sakane, Yusuke; Nomura, Taishin
2013-01-01
The notion of a blossom in extended Chebyshev spaces offers adequate generalizations and extra-utilities to the tools for free-form design schemes. Unfortunately, such advantages are often overshadowed by the complexity of the resulting algorithms. In this work, we show that for the case of Müntz spaces with integer exponents, the notion of a Chebyshev blossom leads to elegant algorithms whose complexities are embedded in the combinatorics of Schur functions. We express the blossom and the pseudo-affinity property in Müntz spaces in terms of Schur functions. We derive an explicit expression for the Chebyshev-Bernstein basis via an inductive argument on nested Müntz spaces. We also reveal a simple algorithm for dimension elevation. Free-form design schemes in Müntz spaces with Young diagrams as shape parameters are discussed. © 2013 Elsevier Ltd. All rights reserved.
Constructing general partial differential equations using polynomial and neural networks.
Zjavka, Ladislav; Pedrycz, Witold
2016-01-01
Sum fraction terms can approximate multi-variable functions on the basis of discrete observations, replacing a partial differential equation definition with polynomial elementary data relation descriptions. Artificial neural networks commonly transform the weighted sum of inputs to describe overall similarity relationships of trained and new testing input patterns. Differential polynomial neural networks form a new class of neural networks, which construct and solve an unknown general partial differential equation of a function of interest with selected substitution relative terms using non-linear multi-variable composite polynomials. The layers of the network generate simple and composite relative substitution terms whose convergent series combinations can describe partial dependent derivative changes of the input variables. This regression is based on trained generalized partial derivative data relations, decomposed into a multi-layer polynomial network structure. The sigmoidal function, commonly used as a nonlinear activation of artificial neurons, may transform some polynomial items together with the parameters with the aim to improve the polynomial derivative term series ability to approximate complicated periodic functions, as simple low order polynomials are not able to fully make up for the complete cycles. The similarity analysis facilitates substitutions for differential equations or can form dimensional units from data samples to describe real-world problems. Copyright © 2015 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Milks, Matthew M; Guise, Hubert de
2005-01-01
The construction of su(2) intelligent states is simplified using a polynomial representation of su(2). The cornerstone of the new construction is the diagonalization of a 2 x 2 matrix. The method is sufficiently simple to be easily extended to su(3), where one is required to diagonalize a single 3 x 3 matrix. For two perfectly general su(3) operators, this diagonalization is technically possible but the procedure loses much of its simplicity owing to the algebraic form of the roots of a cubic equation. Simplified expressions can be obtained by specializing the choice of su(3) operators. This simpler construction will be discussed in detail
Further development of Chebyshev type inequalities for Sugeno integrals and T-(S-)evaluators
Czech Academy of Sciences Publication Activity Database
Agahi, H.; Mesiar, Radko; Ouyang, Y.
2010-01-01
Roč. 46, č. 1 (2010), s. 83-95 ISSN 0023-5954 R&D Projects: GA ČR GA402/08/0618 Institutional research plan: CEZ:AV0Z10750506 Keywords : Sugeno integral * fuzzy measure * comonotone functions * Chebyshev's inequality Subject RIV: BA - General Mathematics Impact factor: 0.461, year: 2010 http://library.utia.cas.cz/separaty/2010/E/mesiar-further development of chebyshev type inequalities for sugeno integrals and t-(s-)evaluators.pdf
Agarwal, P.; El-Sayed, A. A.
2018-06-01
In this paper, a new numerical technique for solving the fractional order diffusion equation is introduced. This technique basically depends on the Non-Standard finite difference method (NSFD) and Chebyshev collocation method, where the fractional derivatives are described in terms of the Caputo sense. The Chebyshev collocation method with the (NSFD) method is used to convert the problem into a system of algebraic equations. These equations solved numerically using Newton's iteration method. The applicability, reliability, and efficiency of the presented technique are demonstrated through some given numerical examples.
Discrete-Time Filter Synthesis using Product of Gegenbauer Polynomials
N. Stojanovic; N. Stamenkovic; I. Krstic
2016-01-01
A new approximation to design continuoustime and discrete-time low-pass filters, presented in this paper, based on the product of Gegenbauer polynomials, provides the ability of more flexible adjustment of passband and stopband responses. The design is achieved taking into account a prescribed specification, leading to a better trade-off among the magnitude and group delay responses. Many well-known continuous-time and discrete-time transitional filter based on the classical polynomial approx...
Bounds and asymptotics for orthogonal polynomials for varying weights
Levin, Eli
2018-01-01
This book establishes bounds and asymptotics under almost minimal conditions on the varying weights, and applies them to universality limits and entropy integrals. Orthogonal polynomials associated with varying weights play a key role in analyzing random matrices and other topics. This book will be of use to a wide community of mathematicians, physicists, and statisticians dealing with techniques of potential theory, orthogonal polynomials, approximation theory, as well as random matrices. .
On Some Extensions of Szasz Operators Including Boas-Buck-Type Polynomials
Directory of Open Access Journals (Sweden)
Sezgin Sucu
2012-01-01
Full Text Available This paper is concerned with a new sequence of linear positive operators which generalize Szasz operators including Boas-Buck-type polynomials. We establish a convergence theorem for these operators and give the quantitative estimation of the approximation process by using a classical approach and the second modulus of continuity. Some explicit examples of our operators involving Laguerre polynomials, Charlier polynomials, and Gould-Hopper polynomials are given. Moreover, a Voronovskaya-type result is obtained for the operators containing Gould-Hopper polynomials.
Abd-Elhameed, W. M.
2017-07-01
In this paper, a new formula relating Jacobi polynomials of arbitrary parameters with the squares of certain fractional Jacobi functions is derived. The derived formula is expressed in terms of a certain terminating hypergeometric function of the type _4F3(1) . With the aid of some standard reduction formulae such as Pfaff-Saalschütz's and Watson's identities, the derived formula can be reduced in simple forms which are free of any hypergeometric functions for certain choices of the involved parameters of the Jacobi polynomials and the Jacobi functions. Some other simplified formulae are obtained via employing some computer algebra algorithms such as the algorithms of Zeilberger, Petkovsek and van Hoeij. Some connection formulae between some Jacobi polynomials are deduced. From these connection formulae, some other linearization formulae of Chebyshev polynomials are obtained. As an application to some of the introduced formulae, a numerical algorithm for solving nonlinear Riccati differential equation is presented and implemented by applying a suitable spectral method.
Cosine and sine operators related to orthogonal polynomial sets on the interval [-1, 1
International Nuclear Information System (INIS)
Appl, Thomas; Schiller, Diethard H
2005-01-01
The quantization of phase is still an open problem. In the approach of Susskind and Glogower, the so-called cosine and sine operators play a fundamental role. Their eigenstates in the Fock representation are related to the Chebyshev polynomials of the second kind. Here we introduce more general cosine and sine operators whose eigenfunctions in the Fock basis are related in a similar way to arbitrary orthogonal polynomial sets on the interval [-1, 1]. To each polynomial set defined in terms of a weight function there corresponds a pair of cosine and sine operators. Depending on the symmetry of the weight function, we distinguish generalized or extended operators. Their eigenstates are used to define cosine and sine representations and probability distributions. We also consider the arccosine and arcsine operators and use their eigenstates to define cosine-phase and sine-phase distributions, respectively. Specific, numerical and graphical results are given for the classical orthogonal polynomials and for particular Fock and coherent states
Eye aberration analysis with Zernike polynomials
Molebny, Vasyl V.; Chyzh, Igor H.; Sokurenko, Vyacheslav M.; Pallikaris, Ioannis G.; Naoumidis, Leonidas P.
1998-06-01
New horizons for accurate photorefractive sight correction, afforded by novel flying spot technologies, require adequate measurements of photorefractive properties of an eye. Proposed techniques of eye refraction mapping present results of measurements for finite number of points of eye aperture, requiring to approximate these data by 3D surface. A technique of wave front approximation with Zernike polynomials is described, using optimization of the number of polynomial coefficients. Criterion of optimization is the nearest proximity of the resulted continuous surface to the values calculated for given discrete points. Methodology includes statistical evaluation of minimal root mean square deviation (RMSD) of transverse aberrations, in particular, varying consecutively the values of maximal coefficient indices of Zernike polynomials, recalculating the coefficients, and computing the value of RMSD. Optimization is finished at minimal value of RMSD. Formulas are given for computing ametropia, size of the spot of light on retina, caused by spherical aberration, coma, and astigmatism. Results are illustrated by experimental data, that could be of interest for other applications, where detailed evaluation of eye parameters is needed.
Complex Polynomial Vector Fields
DEFF Research Database (Denmark)
The two branches of dynamical systems, continuous and discrete, correspond to the study of differential equations (vector fields) and iteration of mappings respectively. In holomorphic dynamics, the systems studied are restricted to those described by holomorphic (complex analytic) functions...... or meromorphic (allowing poles as singularities) functions. There already exists a well-developed theory for iterative holomorphic dynamical systems, and successful relations found between iteration theory and flows of vector fields have been one of the main motivations for the recent interest in holomorphic...... vector fields. Since the class of complex polynomial vector fields in the plane is natural to consider, it is remarkable that its study has only begun very recently. There are numerous fundamental questions that are still open, both in the general classification of these vector fields, the decomposition...
Polynomial representations of GLn
Green, James A; Erdmann, Karin
2007-01-01
The first half of this book contains the text of the first edition of LNM volume 830, Polynomial Representations of GLn. This classic account of matrix representations, the Schur algebra, the modular representations of GLn, and connections with symmetric groups, has been the basis of much research in representation theory. The second half is an Appendix, and can be read independently of the first. It is an account of the Littelmann path model for the case gln. In this case, Littelmann's 'paths' become 'words', and so the Appendix works with the combinatorics on words. This leads to the repesentation theory of the 'Littelmann algebra', which is a close analogue of the Schur algebra. The treatment is self- contained; in particular complete proofs are given of classical theorems of Schensted and Knuth.
Polynomial representations of GLN
Green, James A
1980-01-01
The first half of this book contains the text of the first edition of LNM volume 830, Polynomial Representations of GLn. This classic account of matrix representations, the Schur algebra, the modular representations of GLn, and connections with symmetric groups, has been the basis of much research in representation theory. The second half is an Appendix, and can be read independently of the first. It is an account of the Littelmann path model for the case gln. In this case, Littelmann's 'paths' become 'words', and so the Appendix works with the combinatorics on words. This leads to the repesentation theory of the 'Littelmann algebra', which is a close analogue of the Schur algebra. The treatment is self- contained; in particular complete proofs are given of classical theorems of Schensted and Knuth.
Efficient computation of Laguerre polynomials
A. Gil (Amparo); J. Segura (Javier); N.M. Temme (Nico)
2017-01-01
textabstractAn efficient algorithm and a Fortran 90 module (LaguerrePol) for computing Laguerre polynomials . Ln(α)(z) are presented. The standard three-term recurrence relation satisfied by the polynomials and different types of asymptotic expansions valid for . n large and . α small, are used
Optimization over polynomials : Selected topics
Laurent, M.; Jang, Sun Young; Kim, Young Rock; Lee, Dae-Woong; Yie, Ikkwon
2014-01-01
Minimizing a polynomial function over a region defined by polynomial inequalities models broad classes of hard problems from combinatorics, geometry and optimization. New algorithmic approaches have emerged recently for computing the global minimum, by combining tools from real algebra (sums of
SOLUTION OF A MULTIVARIATE STRATIFIED SAMPLING PROBLEM THROUGH CHEBYSHEV GOAL PROGRAMMING
Directory of Open Access Journals (Sweden)
Mohd. Vaseem Ismail
2010-12-01
Full Text Available In this paper, we consider the problem of minimizing the variances for the various characters with fixed (given budget. Each convex objective function is first linearised at its minimal point where it meets the linear cost constraint. The resulting multiobjective linear programming problem is then solved by Chebyshev goal programming. A numerical example is given to illustrate the procedure.
Standard filter approximations for low power Continuous Wavelet Transforms.
Casson, Alexander J; Rodriguez-Villegas, Esther
2010-01-01
Analogue domain implementations of the Continuous Wavelet Transform (CWT) have proved popular in recent years as they can be implemented at very low power consumption levels. This is essential for use in wearable, long term physiological monitoring systems. Present analogue CWT implementations rely on taking mathematical a approximation of the wanted mother wavelet function to give a filter transfer function that is suitable for circuit implementation. This paper investigates the use of standard filter approximations (Butterworth, Chebyshev, Bessel) as an alternative wavelet approximation technique. This extends the number of approximation techniques available for generating analogue CWT filters. An example ECG analysis shows that signal information can be successfully extracted using these CWT approximations.
Szász-Durrmeyer operators involving Boas-Buck polynomials of blending type.
Sidharth, Manjari; Agrawal, P N; Araci, Serkan
2017-01-01
The present paper introduces the Szász-Durrmeyer type operators based on Boas-Buck type polynomials which include Brenke type polynomials, Sheffer polynomials and Appell polynomials considered by Sucu et al. (Abstr. Appl. Anal. 2012:680340, 2012). We establish the moments of the operator and a Voronvskaja type asymptotic theorem and then proceed to studying the convergence of the operators with the help of Lipschitz type space and weighted modulus of continuity. Next, we obtain a direct approximation theorem with the aid of unified Ditzian-Totik modulus of smoothness. Furthermore, we study the approximation of functions whose derivatives are locally of bounded variation.
Szász-Durrmeyer operators involving Boas-Buck polynomials of blending type
Directory of Open Access Journals (Sweden)
Manjari Sidharth
2017-05-01
Full Text Available Abstract The present paper introduces the Szász-Durrmeyer type operators based on Boas-Buck type polynomials which include Brenke type polynomials, Sheffer polynomials and Appell polynomials considered by Sucu et al. (Abstr. Appl. Anal. 2012:680340, 2012. We establish the moments of the operator and a Voronvskaja type asymptotic theorem and then proceed to studying the convergence of the operators with the help of Lipschitz type space and weighted modulus of continuity. Next, we obtain a direct approximation theorem with the aid of unified Ditzian-Totik modulus of smoothness. Furthermore, we study the approximation of functions whose derivatives are locally of bounded variation.
On generalized Fibonacci and Lucas polynomials
Energy Technology Data Exchange (ETDEWEB)
Nalli, Ayse [Department of Mathematics, Faculty of Sciences, Selcuk University, 42075 Campus-Konya (Turkey)], E-mail: aysenalli@yahoo.com; Haukkanen, Pentti [Department of Mathematics, Statistics and Philosophy, 33014 University of Tampere (Finland)], E-mail: mapehau@uta.fi
2009-12-15
Let h(x) be a polynomial with real coefficients. We introduce h(x)-Fibonacci polynomials that generalize both Catalan's Fibonacci polynomials and Byrd's Fibonacci polynomials and also the k-Fibonacci numbers, and we provide properties for these h(x)-Fibonacci polynomials. We also introduce h(x)-Lucas polynomials that generalize the Lucas polynomials and present properties of these polynomials. In the last section we introduce the matrix Q{sub h}(x) that generalizes the Q-matrix whose powers generate the Fibonacci numbers.
Parallel Construction of Irreducible Polynomials
DEFF Research Database (Denmark)
Frandsen, Gudmund Skovbjerg
Let arithmetic pseudo-NC^k denote the problems that can be solved by log space uniform arithmetic circuits over the finite prime field GF(p) of depth O(log^k (n + p)) and size polynomial in (n + p). We show that the problem of constructing an irreducible polynomial of specified degree over GF(p) ...... of polynomials is in arithmetic NC^3. Our algorithm works over any field and compared to other known algorithms it does not assume the ability to take p'th roots when the field has characteristic p....
Orthogonal polynomials in transport theories
International Nuclear Information System (INIS)
Dehesa, J.S.
1981-01-01
The asymptotical (k→infinity) behaviour of zeros of the polynomials gsub(k)sup((m)(ν)) encountered in the treatment of direct and inverse problems of scattering in neutron transport as well as radiative transfer theories is investigated in terms of the amplitude antiwsub(k) of the kth Legendre polynomial needed in the expansion of the scattering function. The parameters antiwsub(k) describe the anisotropy of scattering of the medium considered. In particular, it is shown that the asymptotical density of zeros of the polynomials gsub(k)sup(m)(ν) is an inverted semicircle for the anisotropic non-multiplying scattering medium
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 5. Taylor's Polynomial and Infinitesimals. Ritavan. Classroom Volume 19 Issue 5 May 2014 pp 466-470. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/019/05/0466-0470. Keywords.
Julia Sets of Orthogonal Polynomials
DEFF Research Database (Denmark)
Christiansen, Jacob Stordal; Henriksen, Christian; Petersen, Henrik Laurberg
2018-01-01
For a probability measure with compact and non-polar support in the complex plane we relate dynamical properties of the associated sequence of orthogonal polynomials fPng to properties of the support. More precisely we relate the Julia set of Pn to the outer boundary of the support, the lled Julia...... set to the polynomial convex hull K of the support, and the Green's function associated with Pn to the Green's function for the complement of K....
An introduction to orthogonal polynomials
Chihara, Theodore S
1978-01-01
Assuming no further prerequisites than a first undergraduate course in real analysis, this concise introduction covers general elementary theory related to orthogonal polynomials. It includes necessary background material of the type not usually found in the standard mathematics curriculum. Suitable for advanced undergraduate and graduate courses, it is also appropriate for independent study. Topics include the representation theorem and distribution functions, continued fractions and chain sequences, the recurrence formula and properties of orthogonal polynomials, special functions, and some
Exact constants in approximation theory
Korneichuk, N
1991-01-01
This book is intended as a self-contained introduction for non-specialists, or as a reference work for experts, to the particular area of approximation theory that is concerned with exact constants. The results apply mainly to extremal problems in approximation theory, which in turn are closely related to numerical analysis and optimization. The book encompasses a wide range of questions and problems: best approximation by polynomials and splines; linear approximation methods, such as spline-approximation; optimal reconstruction of functions and linear functionals. Many of the results are base
International Conference Approximation Theory XIV
Schumaker, Larry
2014-01-01
This volume developed from papers presented at the international conference Approximation Theory XIV, held April 7–10, 2013 in San Antonio, Texas. The proceedings contains surveys by invited speakers, covering topics such as splines on non-tensor-product meshes, Wachspress and mean value coordinates, curvelets and shearlets, barycentric interpolation, and polynomial approximation on spheres and balls. Other contributed papers address a variety of current topics in approximation theory, including eigenvalue sequences of positive integral operators, image registration, and support vector machines. This book will be of interest to mathematicians, engineers, and computer scientists working in approximation theory, computer-aided geometric design, numerical analysis, and related approximation areas.
Scattering theory and orthogonal polynomials
International Nuclear Information System (INIS)
Geronimo, J.S.
1977-01-01
The application of the techniques of scattering theory to the study of polynomials orthogonal on the unit circle and a finite segment of the real line is considered. The starting point is the recurrence relations satisfied by the polynomials instead of the orthogonality condition. A set of two two terms recurrence relations for polynomials orthogonal on the real line is presented and used. These recurrence relations play roles analogous to those satisfied by polynomials orthogonal on unit circle. With these recurrence formulas a Wronskian theorem is proved and the Christoffel-Darboux formula is derived. In scattering theory a fundamental role is played by the Jost function. An analogy is deferred of this function and its analytic properties and the locations of its zeros investigated. The role of the analog Jost function in various properties of these orthogonal polynomials is investigated. The techniques of inverse scattering theory are also used. The discrete analogues of the Gelfand-Levitan and Marchenko equations are derived and solved. These techniques are used to calculate asymptotic formulas for the orthogonal polynomials. Finally Szego's theorem on toeplitz and Hankel determinants is proved using the recurrence formulas and some properties of the Jost function. The techniques of inverse scattering theory are used to calculate the correction terms
Behera, Laxmi; Chakraverty, S.
2014-03-01
Vibration analysis of nonlocal nanobeams based on Euler-Bernoulli and Timoshenko beam theories is considered. Nonlocal nanobeams are important in the bending, buckling and vibration analyses of beam-like elements in microelectromechanical or nanoelectromechanical devices. Expressions for free vibration of Euler-Bernoulli and Timoshenko nanobeams are established within the framework of Eringen's nonlocal elasticity theory. The problem has been solved previously using finite element method, Chebyshev polynomials in Rayleigh-Ritz method and using other numerical methods. In this study, numerical results for free vibration of nanobeams have been presented using simple polynomials and orthonormal polynomials in the Rayleigh-Ritz method. The advantage of the method is that one can easily handle the specified boundary conditions at the edges. To validate the present analysis, a comparison study is carried out with the results of the existing literature. The proposed method is also validated by convergence studies. Frequency parameters are found for different scaling effect parameters and boundary conditions. The study highlights that small scale effects considerably influence the free vibration of nanobeams. Nonlocal frequency parameters of nanobeams are smaller when compared to the corresponding local ones. Deflection shapes of nonlocal clamped Euler-Bernoulli nanobeams are also incorporated for different scaling effect parameters, which are affected by the small scale effect. Obtained numerical solutions provide a better representation of the vibration behavior of short and stubby micro/nanobeams where the effects of small scale, transverse shear deformation and rotary inertia are significant.
Nuclear-magnetic-resonance quantum calculations of the Jones polynomial
International Nuclear Information System (INIS)
Marx, Raimund; Spoerl, Andreas; Pomplun, Nikolas; Schulte-Herbrueggen, Thomas; Glaser, Steffen J.; Fahmy, Amr; Kauffman, Louis; Lomonaco, Samuel; Myers, John M.
2010-01-01
The repertoire of problems theoretically solvable by a quantum computer recently expanded to include the approximate evaluation of knot invariants, specifically the Jones polynomial. The experimental implementation of this evaluation, however, involves many known experimental challenges. Here we present experimental results for a small-scale approximate evaluation of the Jones polynomial by nuclear magnetic resonance (NMR); in addition, we show how to escape from the limitations of NMR approaches that employ pseudopure states. Specifically, we use two spin-1/2 nuclei of natural abundance chloroform and apply a sequence of unitary transforms representing the trefoil knot, the figure-eight knot, and the Borromean rings. After measuring the nuclear spin state of the molecule in each case, we are able to estimate the value of the Jones polynomial for each of the knots.
Bannai-Ito polynomials and dressing chains
Derevyagin, Maxim; Tsujimoto, Satoshi; Vinet, Luc; Zhedanov, Alexei
2012-01-01
Schur-Delsarte-Genin (SDG) maps and Bannai-Ito polynomials are studied. SDG maps are related to dressing chains determined by quadratic algebras. The Bannai-Ito polynomials and their kernel polynomials -- the complementary Bannai-Ito polynomials -- are shown to arise in the framework of the SDG maps.
Birth-death processes and associated polynomials
van Doorn, Erik A.
2003-01-01
We consider birth-death processes on the nonnegative integers and the corresponding sequences of orthogonal polynomials called birth-death polynomials. The sequence of associated polynomials linked with a sequence of birth-death polynomials and its orthogonalizing measure can be used in the analysis
Rational Chebyshev spectral transform for the dynamics of broad-area laser diodes
International Nuclear Information System (INIS)
Javaloyes, J.; Balle, S.
2015-01-01
This manuscript details the use of the rational Chebyshev transform for describing the transverse dynamics of broad-area laser diodes and amplifiers. This spectral method can be used in combination with the delay algebraic equations approach developed in [1], which substantially reduces the computation time. The theory is presented in such a way that it encompasses the case of the Fourier spectral transform presented in [2] as a particular case. It is also extended to the consideration of index guiding with an arbitrary transverse profile. Because their domain of definition is infinite, the convergence properties of the Chebyshev rational functions allow handling the boundary conditions with higher accuracy than with the previously studied Fourier transform method. As practical examples, we solve the beam propagation problem with and without index guiding: we obtain excellent results and an improvement of the integration time between one and two orders of magnitude as compared with a fully distributed two dimensional model
Operation analysis of a Chebyshev-Pantograph leg mechanism for a single DOF biped robot
Liang, Conghui; Ceccarelli, Marco; Takeda, Yukio
2012-12-01
In this paper, operation analysis of a Chebyshev-Pantograph leg mechanism is presented for a single degree of freedom (DOF) biped robot. The proposed leg mechanism is composed of a Chebyshev four-bar linkage and a pantograph mechanism. In contrast to general fully actuated anthropomorphic leg mechanisms, the proposed leg mechanism has peculiar features like compactness, low-cost, and easy-operation. Kinematic equations of the proposed leg mechanism are formulated for a computer oriented simulation. Simulation results show the operation performance of the proposed leg mechanism with suitable characteristics. A parametric study has been carried out to evaluate the operation performance as function of design parameters. A prototype of a single DOF biped robot equipped with two proposed leg mechanisms has been built at LARM (Laboratory of Robotics and Mechatronics). Experimental test shows practical feasible walking ability of the prototype, as well as drawbacks are discussed for the mechanical design.
On Multiple Polynomials of Capelli Type
Directory of Open Access Journals (Sweden)
S.Y. Antonov
2016-03-01
Full Text Available This paper deals with the class of Capelli polynomials in free associative algebra F{Z} (where F is an arbitrary field, Z is a countable set generalizing the construction of multiple Capelli polynomials. The fundamental properties of the introduced Capelli polynomials are provided. In particular, decomposition of the Capelli polynomials by means of the same type of polynomials is shown. Furthermore, some relations between their T -ideals are revealed. A connection between double Capelli polynomials and Capelli quasi-polynomials is established.
Improvements to the Chebyshev expansion of attenuation correction factors for cylindrical samples
International Nuclear Information System (INIS)
Mildner, D.F.R.; Carpenter, J.M.
1990-01-01
The accuracy of the Chebyshev expansion coefficients used for the calculation of attenuation correction factors for cylinderical samples has been improved. An increased order of expansion allows the method to be useful over a greater range of attenuation. It is shown that many of these coefficients are exactly zero, others are rational numbers, and others are rational frations of π -1 . The assumptions of Sears in his asymptotic expression of the attenuation correction factor are also examined. (orig.)
Rigorous Integration of Non-Linear Ordinary Differential Equations in Chebyshev Basis
Czech Academy of Sciences Publication Activity Database
Dzetkulič, Tomáš
2015-01-01
Roč. 69, č. 1 (2015), s. 183-205 ISSN 1017-1398 R&D Projects: GA MŠk OC10048; GA ČR GD201/09/H057 Institutional research plan: CEZ:AV0Z10300504 Keywords : Initial value problem * Rigorous integration * Taylor model * Chebyshev basis Subject RIV: IN - Informatics, Computer Science Impact factor: 1.366, year: 2015
The Fundamental Blossoming Inequality in Chebyshev Spaces—I: Applications to Schur Functions
Ait-Haddou, Rachid
2016-10-19
A classical theorem by Chebyshev says how to obtain the minimum and maximum values of a symmetric multiaffine function of n variables with a prescribed sum. We show that, given two functions in an Extended Chebyshev space good for design, a similar result can be stated for the minimum and maximum values of the blossom of the first function with a prescribed value for the blossom of the second one. We give a simple geometric condition on the control polygon of the planar parametric curve defined by the pair of functions ensuring the uniqueness of the solution to the corresponding optimization problem. This provides us with a fundamental blossoming inequality associated with each Extended Chebyshev space good for design. This inequality proves to be a very powerful tool to derive many classical or new interesting inequalities. For instance, applied to Müntz spaces and to rational Müntz spaces, it provides us with new inequalities involving Schur functions which generalize the classical MacLaurin’s and Newton’s inequalities. This work definitely demonstrates that, via blossoms, CAGD techniques can have important implications in other mathematical domains, e.g., combinatorics.
Continuous and discrete best polynomial degree reduction with Jacobi and Hahn weights
Ait-Haddou, Rachid
2016-03-02
We show that the weighted least squares approximation of Bézier coefficients with Hahn weights provides the best polynomial degree reduction in the Jacobi L2L2-norm. A discrete analogue of this result is also provided. Applications to Jacobi and Hahn orthogonal polynomials are presented.
de Klerk, E.; Laurent, M.
2011-01-01
The Lasserre hierarchy of semidefinite programming approximations to convex polynomial optimization problems is known to converge finitely under some assumptions. [J. B. Lasserre, Convexity in semialgebraic geometry and polynomial optimization, SIAM J. Optim., 19 (2009), pp. 1995–2014]. We give a
A Kantorovich-Stancu Type Generalization of Szasz Operators including Brenke Type Polynomials
Directory of Open Access Journals (Sweden)
Rabia Aktaş
2013-01-01
Full Text Available We introduce a Kantorovich-Stancu type modification of a generalization of Szasz operators defined by means of the Brenke type polynomials and obtain approximation properties of these operators. Also, we give a Voronovskaya type theorem for Kantorovich-Stancu type operators including Gould-Hopper polynomials.
International Conference Approximation Theory XV
Schumaker, Larry
2017-01-01
These proceedings are based on papers presented at the international conference Approximation Theory XV, which was held May 22–25, 2016 in San Antonio, Texas. The conference was the fifteenth in a series of meetings in Approximation Theory held at various locations in the United States, and was attended by 146 participants. The book contains longer survey papers by some of the invited speakers covering topics such as compressive sensing, isogeometric analysis, and scaling limits of polynomials and entire functions of exponential type. The book also includes papers on a variety of current topics in Approximation Theory drawn from areas such as advances in kernel approximation with applications, approximation theory and algebraic geometry, multivariate splines for applications, practical function approximation, approximation of PDEs, wavelets and framelets with applications, approximation theory in signal processing, compressive sensing, rational interpolation, spline approximation in isogeometric analysis, a...
Differentiation by integration using orthogonal polynomials, a survey
Diekema, E.; Koornwinder, T.H.
2012-01-01
This survey paper discusses the history of approximation formulas for n-th order derivatives by integrals involving orthogonal polynomials. There is a large but rather disconnected corpus of literature on such formulas. We give some results in greater generality than in the literature. Notably we
Chromatic polynomials of random graphs
International Nuclear Information System (INIS)
Van Bussel, Frank; Fliegner, Denny; Timme, Marc; Ehrlich, Christoph; Stolzenberg, Sebastian
2010-01-01
Chromatic polynomials and related graph invariants are central objects in both graph theory and statistical physics. Computational difficulties, however, have so far restricted studies of such polynomials to graphs that were either very small, very sparse or highly structured. Recent algorithmic advances (Timme et al 2009 New J. Phys. 11 023001) now make it possible to compute chromatic polynomials for moderately sized graphs of arbitrary structure and number of edges. Here we present chromatic polynomials of ensembles of random graphs with up to 30 vertices, over the entire range of edge density. We specifically focus on the locations of the zeros of the polynomial in the complex plane. The results indicate that the chromatic zeros of random graphs have a very consistent layout. In particular, the crossing point, the point at which the chromatic zeros with non-zero imaginary part approach the real axis, scales linearly with the average degree over most of the density range. While the scaling laws obtained are purely empirical, if they continue to hold in general there are significant implications: the crossing points of chromatic zeros in the thermodynamic limit separate systems with zero ground state entropy from systems with positive ground state entropy, the latter an exception to the third law of thermodynamics.
Polynomial weights and code constructions
DEFF Research Database (Denmark)
Massey, J; Costello, D; Justesen, Jørn
1973-01-01
polynomial included. This fundamental property is then used as the key to a variety of code constructions including 1) a simplified derivation of the binary Reed-Muller codes and, for any primepgreater than 2, a new extensive class ofp-ary "Reed-Muller codes," 2) a new class of "repeated-root" cyclic codes...... of long constraint length binary convolutional codes derived from2^r-ary Reed-Solomon codes, and 6) a new class ofq-ary "repeated-root" constacyclic codes with an algebraic decoding algorithm.......For any nonzero elementcof a general finite fieldGF(q), it is shown that the polynomials(x - c)^i, i = 0,1,2,cdots, have the "weight-retaining" property that any linear combination of these polynomials with coefficients inGF(q)has Hamming weight at least as great as that of the minimum degree...
Orthogonal Polynomials and Special Functions
Assche, Walter
2003-01-01
The set of lectures from the Summer School held in Leuven in 2002 provide an up-to-date account of recent developments in orthogonal polynomials and special functions, in particular for algorithms for computer algebra packages, 3nj-symbols in representation theory of Lie groups, enumeration, multivariable special functions and Dunkl operators, asymptotics via the Riemann-Hilbert method, exponential asymptotics and the Stokes phenomenon. The volume aims at graduate students and post-docs working in the field of orthogonal polynomials and special functions, and in related fields interacting with orthogonal polynomials, such as combinatorics, computer algebra, asymptotics, representation theory, harmonic analysis, differential equations, physics. The lectures are self-contained requiring only a basic knowledge of analysis and algebra, and each includes many exercises.
Symmetric functions and orthogonal polynomials
Macdonald, I G
1997-01-01
One of the most classical areas of algebra, the theory of symmetric functions and orthogonal polynomials has long been known to be connected to combinatorics, representation theory, and other branches of mathematics. Written by perhaps the most famous author on the topic, this volume explains some of the current developments regarding these connections. It is based on lectures presented by the author at Rutgers University. Specifically, he gives recent results on orthogonal polynomials associated with affine Hecke algebras, surveying the proofs of certain famous combinatorial conjectures.
Local polynomial Whittle estimation covering non-stationary fractional processes
DEFF Research Database (Denmark)
Nielsen, Frank
to the non-stationary region. By approximating the short-run component of the spectrum by a polynomial, instead of a constant, in a shrinking neighborhood of zero we alleviate some of the bias that the classical local Whittle estimators is prone to. This bias reduction comes at a cost as the variance is in...... study illustrates the performance of the proposed estimator compared to the classical local Whittle estimator and the local polynomial Whittle estimator. The empirical justi.cation of the proposed estimator is shown through an analysis of credit spreads....
Weierstrass method for quaternionic polynomial root-finding
Falcão, M. Irene; Miranda, Fernando; Severino, Ricardo; Soares, M. Joana
2018-01-01
Quaternions, introduced by Hamilton in 1843 as a generalization of complex numbers, have found, in more recent years, a wealth of applications in a number of different areas which motivated the design of efficient methods for numerically approximating the zeros of quaternionic polynomials. In fact, one can find in the literature recent contributions to this subject based on the use of complex techniques, but numerical methods relying on quaternion arithmetic remain scarce. In this paper we propose a Weierstrass-like method for finding simultaneously {\\sl all} the zeros of unilateral quaternionic polynomials. The convergence analysis and several numerical examples illustrating the performance of the method are also presented.
Approximation for limit cycles and their isochrons.
Demongeot, Jacques; Françoise, Jean-Pierre
2006-12-01
Local analysis of trajectories of dynamical systems near an attractive periodic orbit displays the notion of asymptotic phase and isochrons. These notions are quite useful in applications to biosciences. In this note, we give an expression for the first approximation of equations of isochrons in the setting of perturbations of polynomial Hamiltonian systems. This method can be generalized to perturbations of systems that have a polynomial integral factor (like the Lotka-Volterra equation).
Global sensitivity analysis using sparse grid interpolation and polynomial chaos
International Nuclear Information System (INIS)
Buzzard, Gregery T.
2012-01-01
Sparse grid interpolation is widely used to provide good approximations to smooth functions in high dimensions based on relatively few function evaluations. By using an efficient conversion from the interpolating polynomial provided by evaluations on a sparse grid to a representation in terms of orthogonal polynomials (gPC representation), we show how to use these relatively few function evaluations to estimate several types of sensitivity coefficients and to provide estimates on local minima and maxima. First, we provide a good estimate of the variance-based sensitivity coefficients of Sobol' (1990) [1] and then use the gradient of the gPC representation to give good approximations to the derivative-based sensitivity coefficients described by Kucherenko and Sobol' (2009) [2]. Finally, we use the package HOM4PS-2.0 given in Lee et al. (2008) [3] to determine the critical points of the interpolating polynomial and use these to determine the local minima and maxima of this polynomial. - Highlights: ► Efficient estimation of variance-based sensitivity coefficients. ► Efficient estimation of derivative-based sensitivity coefficients. ► Use of homotopy methods for approximation of local maxima and minima.
International Nuclear Information System (INIS)
Schlünz, E.B.; Bokov, P.M.; Prinsloo, R.H.; Vuuren, J.H. van
2016-01-01
Highlights: • Unified methodology for in-core fuel management optimisation (ICFMO). • Addresses single- and multiobjective constrained and unconstrained ICFMO problems. • Augmented Chebyshev scalarising objective function with additive penalty function. • Harmony search algorithm yields high-quality solution or approximate Pareto set. • Methodology provides cycle-to-cycle optimisation decision support capabilities. - Abstract: The in-core fuel management optimisation (ICFMO) problem is the problem of finding an optimal fuel reload configuration for a nuclear reactor core. ICFMO may involve the pursuit of a single or multiple objectives, while satisfying several constraints. Very little multiobjective ICFMO research involving the fundamental notion of Pareto optimality has, however, been performed. In this paper, a unified methodology is proposed for the modelling and solution of single- and multiobjective ICFMO problems, be they constrained or unconstrained. With this methodology, ICFMO problems incorporating a variety of objectives and/or constraints may be modelled and solved rapidly, thus providing a cycle-to-cycle optimisation decision support capability for nuclear reactors. An augmented Chebyshev scalarising objective function is incorporated in the methodology for modelling any number of objectives, while an additive penalty function handles potential constraints. Furthermore, an adapted harmony search algorithm is used to solve a given ICFMO problem. The algorithm is able to yield a single solution or a nondominated set of solutions as result (depending on the number of objectives in a problem). The applicability of the methodology is demonstrated by solving (approximately) a variety of ICFMO test problems for the SAFARI-1 nuclear research reactor. The results indicate that the methodology may be used as an effective decision support tool for reactor operators tasked with designing reload configurations from cycle to cycle.
Local polynomial Whittle estimation of perturbed fractional processes
DEFF Research Database (Denmark)
Frederiksen, Per; Nielsen, Frank; Nielsen, Morten Ørregaard
We propose a semiparametric local polynomial Whittle with noise (LPWN) estimator of the memory parameter in long memory time series perturbed by a noise term which may be serially correlated. The estimator approximates the spectrum of the perturbation as well as that of the short-memory component...... of the signal by two separate polynomials. Including these polynomials we obtain a reduction in the order of magnitude of the bias, but also in‡ate the asymptotic variance of the long memory estimate by a multiplicative constant. We show that the estimator is consistent for d 2 (0; 1), asymptotically normal...... for d ε (0, 3/4), and if the spectral density is infinitely smooth near frequency zero, the rate of convergence can become arbitrarily close to the parametric rate, pn. A Monte Carlo study reveals that the LPWN estimator performs well in the presence of a serially correlated perturbation term...
STABILITY SYSTEMS VIA HURWITZ POLYNOMIALS
Directory of Open Access Journals (Sweden)
BALTAZAR AGUIRRE HERNÁNDEZ
2017-01-01
Full Text Available To analyze the stability of a linear system of differential equations ẋ = Ax we can study the location of the roots of the characteristic polynomial pA(t associated with the matrix A. We present various criteria - algebraic and geometric - that help us to determine where the roots are located without calculating them directly.
On Modular Counting with Polynomials
DEFF Research Database (Denmark)
Hansen, Kristoffer Arnsfelt
2006-01-01
For any integers m and l, where m has r sufficiently large (depending on l) factors, that are powers of r distinct primes, we give a construction of a (symmetric) polynomial over Z_m of degree O(\\sqrt n) that is a generalized representation (commonly also called weak representation) of the MODl f...
Global Polynomial Kernel Hazard Estimation
DEFF Research Database (Denmark)
Hiabu, Munir; Miranda, Maria Dolores Martínez; Nielsen, Jens Perch
2015-01-01
This paper introduces a new bias reducing method for kernel hazard estimation. The method is called global polynomial adjustment (GPA). It is a global correction which is applicable to any kernel hazard estimator. The estimator works well from a theoretical point of view as it asymptotically redu...
Congruences concerning Legendre polynomials III
Sun, Zhi-Hong
2010-01-01
Let $p>3$ be a prime, and let $R_p$ be the set of rational numbers whose denominator is coprime to $p$. Let $\\{P_n(x)\\}$ be the Legendre polynomials. In this paper we mainly show that for $m,n,t\\in R_p$ with $m\
Two polynomial division inequalities in
Directory of Open Access Journals (Sweden)
Goetgheluck P
1998-01-01
Full Text Available This paper is a first attempt to give numerical values for constants and , in classical estimates and where is an algebraic polynomial of degree at most and denotes the -metric on . The basic tools are Markov and Bernstein inequalities.
Dirichlet polynomials, majorization, and trumping
International Nuclear Information System (INIS)
Pereira, Rajesh; Plosker, Sarah
2013-01-01
Majorization and trumping are two partial orders which have proved useful in quantum information theory. We show some relations between these two partial orders and generalized Dirichlet polynomials, Mellin transforms, and completely monotone functions. These relations are used to prove a succinct generalization of Turgut’s characterization of trumping. (paper)
Prestack traveltime approximations
Alkhalifah, Tariq Ali
2011-01-01
Most prestack traveltime relations we tend work with are based on homogeneous (or semi-homogenous, possibly effective) media approximations. This includes the multi-focusing or double square-root (DSR) and the common reflection stack (CRS) equations. Using the DSR equation, I analyze the associated eikonal form in the general source-receiver domain. Like its wave-equation counterpart, it suffers from a critical singularity for horizontally traveling waves. As a result, I derive expansion based solutions of this eikonal based on polynomial expansions in terms of the reflection and dip angles in a generally inhomogenous background medium. These approximate solutions are free of singularities and can be used to estimate travetimes for small to moderate offsets (or reflection angles) in a generally inhomogeneous medium. A Marmousi example demonstrates the usefulness of the approach. © 2011 Society of Exploration Geophysicists.
Topology, calculus and approximation
Komornik, Vilmos
2017-01-01
Presenting basic results of topology, calculus of several variables, and approximation theory which are rarely treated in a single volume, this textbook includes several beautiful, but almost forgotten, classical theorems of Descartes, Erdős, Fejér, Stieltjes, and Turán. The exposition style of Topology, Calculus and Approximation follows the Hungarian mathematical tradition of Paul Erdős and others. In the first part, the classical results of Alexandroff, Cantor, Hausdorff, Helly, Peano, Radon, Tietze and Urysohn illustrate the theories of metric, topological and normed spaces. Following this, the general framework of normed spaces and Carathéodory's definition of the derivative are shown to simplify the statement and proof of various theorems in calculus and ordinary differential equations. The third and final part is devoted to interpolation, orthogonal polynomials, numerical integration, asymptotic expansions and the numerical solution of algebraic and differential equations. Students of both pure an...
The modified Gauss diagonalization of polynomial matrices
International Nuclear Information System (INIS)
Saeed, K.
1982-10-01
The Gauss algorithm for diagonalization of constant matrices is modified for application to polynomial matrices. Due to this modification the diagonal elements become pure polynomials rather than rational functions. (author)
Sheffer and Non-Sheffer Polynomial Families
Directory of Open Access Journals (Sweden)
G. Dattoli
2012-01-01
Full Text Available By using the integral transform method, we introduce some non-Sheffer polynomial sets. Furthermore, we show how to compute the connection coefficients for particular expressions of Appell polynomials.
Solutions of interval type-2 fuzzy polynomials using a new ranking method
Rahman, Nurhakimah Ab.; Abdullah, Lazim; Ghani, Ahmad Termimi Ab.; Ahmad, Noor'Ani
2015-10-01
A few years ago, a ranking method have been introduced in the fuzzy polynomial equations. Concept of the ranking method is proposed to find actual roots of fuzzy polynomials (if exists). Fuzzy polynomials are transformed to system of crisp polynomials, performed by using ranking method based on three parameters namely, Value, Ambiguity and Fuzziness. However, it was found that solutions based on these three parameters are quite inefficient to produce answers. Therefore in this study a new ranking method have been developed with the aim to overcome the inherent weakness. The new ranking method which have four parameters are then applied in the interval type-2 fuzzy polynomials, covering the interval type-2 of fuzzy polynomial equation, dual fuzzy polynomial equations and system of fuzzy polynomials. The efficiency of the new ranking method then numerically considered in the triangular fuzzy numbers and the trapezoidal fuzzy numbers. Finally, the approximate solutions produced from the numerical examples indicate that the new ranking method successfully produced actual roots for the interval type-2 fuzzy polynomials.
Diagonal Pade approximations for initial value problems
International Nuclear Information System (INIS)
Reusch, M.F.; Ratzan, L.; Pomphrey, N.; Park, W.
1987-06-01
Diagonal Pade approximations to the time evolution operator for initial value problems are applied in a novel way to the numerical solution of these problems by explicitly factoring the polynomials of the approximation. A remarkable gain over conventional methods in efficiency and accuracy of solution is obtained. 20 refs., 3 figs., 1 tab
Non-Linear Approximation of Bayesian Update
Litvinenko, Alexander
2016-01-01
We develop a non-linear approximation of expensive Bayesian formula. This non-linear approximation is applied directly to Polynomial Chaos Coefficients. In this way, we avoid Monte Carlo sampling and sampling error. We can show that the famous Kalman Update formula is a particular case of this update.
Non-Linear Approximation of Bayesian Update
Litvinenko, Alexander
2016-06-23
We develop a non-linear approximation of expensive Bayesian formula. This non-linear approximation is applied directly to Polynomial Chaos Coefficients. In this way, we avoid Monte Carlo sampling and sampling error. We can show that the famous Kalman Update formula is a particular case of this update.
A Summation Formula for Macdonald Polynomials
de Gier, Jan; Wheeler, Michael
2016-03-01
We derive an explicit sum formula for symmetric Macdonald polynomials. Our expression contains multiple sums over the symmetric group and uses the action of Hecke generators on the ring of polynomials. In the special cases {t = 1} and {q = 0}, we recover known expressions for the monomial symmetric and Hall-Littlewood polynomials, respectively. Other specializations of our formula give new expressions for the Jack and q-Whittaker polynomials.
A New Generalisation of Macdonald Polynomials
Garbali, Alexandr; de Gier, Jan; Wheeler, Michael
2017-06-01
We introduce a new family of symmetric multivariate polynomials, whose coefficients are meromorphic functions of two parameters ( q, t) and polynomial in a further two parameters ( u, v). We evaluate these polynomials explicitly as a matrix product. At u = v = 0 they reduce to Macdonald polynomials, while at q = 0, u = v = s they recover a family of inhomogeneous symmetric functions originally introduced by Borodin.
Associated polynomials and birth-death processes
van Doorn, Erik A.
2001-01-01
We consider sequences of orthogonal polynomials with positive zeros, and pursue the question of how (partial) knowledge of the orthogonalizing measure for the {\\it associated polynomials} can lead to information about the orthogonalizing measure for the original polynomials, with a view to
BSDEs with polynomial growth generators
Directory of Open Access Journals (Sweden)
Philippe Briand
2000-01-01
Full Text Available In this paper, we give existence and uniqueness results for backward stochastic differential equations when the generator has a polynomial growth in the state variable. We deal with the case of a fixed terminal time, as well as the case of random terminal time. The need for this type of extension of the classical existence and uniqueness results comes from the desire to provide a probabilistic representation of the solutions of semilinear partial differential equations in the spirit of a nonlinear Feynman-Kac formula. Indeed, in many applications of interest, the nonlinearity is polynomial, e.g, the Allen-Cahn equation or the standard nonlinear heat and Schrödinger equations.
Quantum entanglement via nilpotent polynomials
International Nuclear Information System (INIS)
Mandilara, Aikaterini; Akulin, Vladimir M.; Smilga, Andrei V.; Viola, Lorenza
2006-01-01
We propose a general method for introducing extensive characteristics of quantum entanglement. The method relies on polynomials of nilpotent raising operators that create entangled states acting on a reference vacuum state. By introducing the notion of tanglemeter, the logarithm of the state vector represented in a special canonical form and expressed via polynomials of nilpotent variables, we show how this description provides a simple criterion for entanglement as well as a universal method for constructing the invariants characterizing entanglement. We compare the existing measures and classes of entanglement with those emerging from our approach. We derive the equation of motion for the tanglemeter and, in representative examples of up to four-qubit systems, show how the known classes appear in a natural way within our framework. We extend our approach to qutrits and higher-dimensional systems, and make contact with the recently introduced idea of generalized entanglement. Possible future developments and applications of the method are discussed
Special polynomials associated with some hierarchies
International Nuclear Information System (INIS)
Kudryashov, Nikolai A.
2008-01-01
Special polynomials associated with rational solutions of a hierarchy of equations of Painleve type are introduced. The hierarchy arises by similarity reduction from the Fordy-Gibbons hierarchy of partial differential equations. Some relations for these special polynomials are given. Differential-difference hierarchies for finding special polynomials are presented. These formulae allow us to obtain special polynomials associated with the hierarchy studied. It is shown that rational solutions of members of the Schwarz-Sawada-Kotera, the Schwarz-Kaup-Kupershmidt, the Fordy-Gibbons, the Sawada-Kotera and the Kaup-Kupershmidt hierarchies can be expressed through special polynomials of the hierarchy studied
Space complexity in polynomial calculus
Czech Academy of Sciences Publication Activity Database
Filmus, Y.; Lauria, M.; Nordström, J.; Ron-Zewi, N.; Thapen, Neil
2015-01-01
Roč. 44, č. 4 (2015), s. 1119-1153 ISSN 0097-5397 R&D Projects: GA AV ČR IAA100190902; GA ČR GBP202/12/G061 Institutional support: RVO:67985840 Keywords : proof complexity * polynomial calculus * lower bounds Subject RIV: BA - General Mathematics Impact factor: 0.841, year: 2015 http://epubs.siam.org/doi/10.1137/120895950
Codimensions of generalized polynomial identities
International Nuclear Information System (INIS)
Gordienko, Aleksei S
2010-01-01
It is proved that for every finite-dimensional associative algebra A over a field of characteristic zero there are numbers C element of Q + and t element of Z + such that gc n (A)∼Cn t d n as n→∞, where d=PI exp(A) element of Z + . Thus, Amitsur's and Regev's conjectures hold for the codimensions gc n (A) of the generalized polynomial identities. Bibliography: 6 titles.
Stable piecewise polynomial vector fields
Directory of Open Access Journals (Sweden)
Claudio Pessoa
2012-09-01
Full Text Available Let $N={y>0}$ and $S={y<0}$ be the semi-planes of $mathbb{R}^2$ having as common boundary the line $D={y=0}$. Let $X$ and $Y$ be polynomial vector fields defined in $N$ and $S$, respectively, leading to a discontinuous piecewise polynomial vector field $Z=(X,Y$. This work pursues the stability and the transition analysis of solutions of $Z$ between $N$ and $S$, started by Filippov (1988 and Kozlova (1984 and reformulated by Sotomayor-Teixeira (1995 in terms of the regularization method. This method consists in analyzing a one parameter family of continuous vector fields $Z_{epsilon}$, defined by averaging $X$ and $Y$. This family approaches $Z$ when the parameter goes to zero. The results of Sotomayor-Teixeira and Sotomayor-Machado (2002 providing conditions on $(X,Y$ for the regularized vector fields to be structurally stable on planar compact connected regions are extended to discontinuous piecewise polynomial vector fields on $mathbb{R}^2$. Pertinent genericity results for vector fields satisfying the above stability conditions are also extended to the present case. A procedure for the study of discontinuous piecewise vector fields at infinity through a compactification is proposed here.
AMDLIBAE, IBM 360 Subroutine Library, Special Function, Polynomials, Differential Equation
International Nuclear Information System (INIS)
Wang, Jesse Y.
1980-01-01
-Cotes; D158S P ANC4P: Adap. quad. using 4-th order Newton-Cotes; D161S F GAUSS: Arbitrary Gaussian weights and nodes; D162S F SQUANK: Simpson's quad. used adaptively; D252S F DDFSUB: DP Neville or Stoer sol. lin. dif. eqns.; D253S F DDFSYS: Driver for D252S; D255S F DFBND: Stoer sol. dif. eqs. with error bounds; D256S F DFBDRV: Driver for D255S; D257S F GEARDV: Gear's sol. of init. value problem; D452S F ENDACE: Numerical derivatives real analytic fn.; E206S F LSQPOL: Least squares weighted polynomial fit; E208S F1: Arbitrary function fit, least squares; E209S F CALLSQ: Driver for E206S; E212S F: General least squares fit + function eval.; E250S F VA02A: Least squares funct. min. w/o derivatives; E252S F MINMAX: Chebyshev line fit; E253S F: Arbitrary functional fit II; E256S F BGPOL: Least squares fit with polynomials; E257S F BGLSSQ: Least squares fit with arbitrary function; E350S F SMOOTH: Smoothing by cubic splines
Hardness of approximation for strip packing
DEFF Research Database (Denmark)
Adamaszek, Anna Maria; Kociumaka, Tomasz; Pilipczuk, Marcin
2017-01-01
Strip packing is a classical packing problem, where the goal is to pack a set of rectangular objects into a strip of a given width, while minimizing the total height of the packing. The problem has multiple applications, for example, in scheduling and stock-cutting, and has been studied extensively......)-approximation by two independent research groups [FSTTCS 2016,WALCOM 2017]. This raises a questionwhether strip packing with polynomially bounded input data admits a quasi-polynomial time approximation scheme, as is the case for related twodimensional packing problems like maximum independent set of rectangles or two...
Image Compression Based On Wavelet, Polynomial and Quadtree
Directory of Open Access Journals (Sweden)
Bushra A. SULTAN
2011-01-01
Full Text Available In this paper a simple and fast image compression scheme is proposed, it is based on using wavelet transform to decompose the image signal and then using polynomial approximation to prune the smoothing component of the image band. The architect of proposed coding scheme is high synthetic where the error produced due to polynomial approximation in addition to the detail sub-band data are coded using both quantization and Quadtree spatial coding. As a last stage of the encoding process shift encoding is used as a simple and efficient entropy encoder to compress the outcomes of the previous stage.The test results indicate that the proposed system can produce a promising compression performance while preserving the image quality level.
Firefly Algorithm for Polynomial Bézier Surface Parameterization
Directory of Open Access Journals (Sweden)
Akemi Gálvez
2013-01-01
reality, medical imaging, computer graphics, computer animation, and many others. Very often, the preferred approximating surface is polynomial, usually described in parametric form. This leads to the problem of determining suitable parametric values for the data points, the so-called surface parameterization. In real-world settings, data points are generally irregularly sampled and subjected to measurement noise, leading to a very difficult nonlinear continuous optimization problem, unsolvable with standard optimization techniques. This paper solves the parameterization problem for polynomial Bézier surfaces by applying the firefly algorithm, a powerful nature-inspired metaheuristic algorithm introduced recently to address difficult optimization problems. The method has been successfully applied to some illustrative examples of open and closed surfaces, including shapes with singularities. Our results show that the method performs very well, being able to yield the best approximating surface with a high degree of accuracy.
Coghetto Roland
2016-01-01
In [21], Marco Riccardi formalized that ℝN-basis n is a basis (in the algebraic sense defined in [26]) of ℰTn${\\cal E}_T^n $ and in [20] he has formalized that ℰTn${\\cal E}_T^n $ is second-countable, we build (in the topological sense defined in [23]) a denumerable base of ℰTn${\\cal E}_T^n $.
Directory of Open Access Journals (Sweden)
Coghetto Roland
2016-06-01
Full Text Available In [21], Marco Riccardi formalized that ℝN-basis n is a basis (in the algebraic sense defined in [26] of ℰTn${\\cal E}_T^n $ and in [20] he has formalized that ℰTn${\\cal E}_T^n $ is second-countable, we build (in the topological sense defined in [23] a denumerable base of ℰTn${\\cal E}_T^n $.
The computation of bond percolation critical polynomials by the deletion–contraction algorithm
International Nuclear Information System (INIS)
Scullard, Christian R
2012-01-01
Although every exactly known bond percolation critical threshold is the root in [0,1] of a lattice-dependent polynomial, it has recently been shown that the notion of a critical polynomial can be extended to any periodic lattice. The polynomial is computed on a finite subgraph, called the base, of an infinite lattice. For any problem with exactly known solution, the prediction of the bond threshold is always correct for any base containing an arbitrary number of unit cells. For unsolved problems, the polynomial is referred to as the generalized critical polynomial and provides an approximation that becomes more accurate with increasing number of bonds in the base, appearing to approach the exact answer. The polynomials are computed using the deletion–contraction algorithm, which quickly becomes intractable by hand for more than about 18 bonds. Here, I present generalized critical polynomials calculated with a computer program for bases of up to 36 bonds for all the unsolved Archimedean lattices, except the kagome lattice, which was considered in an earlier work. The polynomial estimates are generally within 10 −5 –10 −7 of the numerical values, but the prediction for the (4,8 2 ) lattice, though not exact, is not ruled out by simulations. (paper)
Expansion of Sobolev functions in series in Laguerre polynomials
International Nuclear Information System (INIS)
Selyakov, K.I.
1985-01-01
The solution of the integral equation for the Sobolev functions is represented in the form of series in Laguerre polynomials. The coefficients of these series are simultaneously the coefficients of the power series for the Ambartsumyan-Chandrasekhar H functions. Infinite systems of linear algebraic equations with Toeplitz matrices are given for the coefficients of the series. Numerical results and approximate expressions are given for the case of isotropic scattering
Algebraic polynomials with random coefficients
Directory of Open Access Journals (Sweden)
K. Farahmand
2002-01-01
Full Text Available This paper provides an asymptotic value for the mathematical expected number of points of inflections of a random polynomial of the form a0(ω+a1(ω(n11/2x+a2(ω(n21/2x2+…an(ω(nn1/2xn when n is large. The coefficients {aj(w}j=0n, w∈Ω are assumed to be a sequence of independent normally distributed random variables with means zero and variance one, each defined on a fixed probability space (A,Ω,Pr. A special case of dependent coefficients is also studied.
Improved multivariate polynomial factoring algorithm
International Nuclear Information System (INIS)
Wang, P.S.
1978-01-01
A new algorithm for factoring multivariate polynomials over the integers based on an algorithm by Wang and Rothschild is described. The new algorithm has improved strategies for dealing with the known problems of the original algorithm, namely, the leading coefficient problem, the bad-zero problem and the occurrence of extraneous factors. It has an algorithm for correctly predetermining leading coefficients of the factors. A new and efficient p-adic algorithm named EEZ is described. Bascially it is a linearly convergent variable-by-variable parallel construction. The improved algorithm is generally faster and requires less store then the original algorithm. Machine examples with comparative timing are included
Fourier series and orthogonal polynomials
Jackson, Dunham
2004-01-01
This text for undergraduate and graduate students illustrates the fundamental simplicity of the properties of orthogonal functions and their developments in related series. Starting with a definition and explanation of the elements of Fourier series, the text follows with examinations of Legendre polynomials and Bessel functions. Boundary value problems consider Fourier series in conjunction with Laplace's equation in an infinite strip and in a rectangle, with a vibrating string, in three dimensions, in a sphere, and in other circumstances. An overview of Pearson frequency functions is followe
Killings, duality and characteristic polynomials
Álvarez, Enrique; Borlaf, Javier; León, José H.
1998-03-01
In this paper the complete geometrical setting of (lowest order) abelian T-duality is explored with the help of some new geometrical tools (the reduced formalism). In particular, all invariant polynomials (the integrands of the characteristic classes) can be explicitly computed for the dual model in terms of quantities pertaining to the original one and with the help of the canonical connection whose intrinsic characterization is given. Using our formalism the physically, and T-duality invariant, relevant result that top forms are zero when there is an isometry without fixed points is easily proved. © 1998
Orthogonal polynomials and random matrices
Deift, Percy
2000-01-01
This volume expands on a set of lectures held at the Courant Institute on Riemann-Hilbert problems, orthogonal polynomials, and random matrix theory. The goal of the course was to prove universality for a variety of statistical quantities arising in the theory of random matrix models. The central question was the following: Why do very general ensembles of random n {\\times} n matrices exhibit universal behavior as n {\\rightarrow} {\\infty}? The main ingredient in the proof is the steepest descent method for oscillatory Riemann-Hilbert problems.
Introduction to Real Orthogonal Polynomials
1992-06-01
uses Green’s functions. As motivation , consider the Dirichlet problem for the unit circle in the plane, which involves finding a harmonic function u(r...xv ; a, b ; q) - TO [q-N ab+’q ; q, xq b. Orthogoy RMotion O0 (bq :q)x p.(q* ; a, b ; q) pg(q’ ; a, b ; q) (q "q), (aq)x (q ; q), (I -abq) (bq ; q... motivation and justi- fication for continued study of the intrinsic structure of orthogonal polynomials. 99 LIST OF REFERENCES 1. Deyer, W. M., ed., CRC
Development of a polynomial nodal model to the multigroup transport equation in one dimension
International Nuclear Information System (INIS)
Feiz, M.
1986-01-01
A polynomial nodal model that uses Legendre polynomial expansions was developed for the multigroup transport equation in one dimension. The development depends upon the least-squares minimization of the residuals using the approximate functions over the node. Analytical expressions were developed for the polynomial coefficients. The odd moments of the angular neutron flux over the half ranges were used at the internal interfaces, and the Marshak boundary condition was used at the external boundaries. Sample problems with fine-mesh finite-difference solutions of the diffusion and transport equations were used for comparison with the model
A companion matrix for 2-D polynomials
International Nuclear Information System (INIS)
Boudellioua, M.S.
1995-08-01
In this paper, a matrix form analogous to the companion matrix which is often encountered in the theory of one dimensional (1-D) linear systems is suggested for a class of polynomials in two indeterminates and real coefficients, here referred to as two dimensional (2-D) polynomials. These polynomials arise in the context of 2-D linear systems theory. Necessary and sufficient conditions are also presented under which a matrix is equivalent to this companion form. (author). 6 refs
On polynomial solutions of the Heun equation
International Nuclear Information System (INIS)
Gurappa, N; Panigrahi, Prasanta K
2004-01-01
By making use of a recently developed method to solve linear differential equations of arbitrary order, we find a wide class of polynomial solutions to the Heun equation. We construct the series solution to the Heun equation before identifying the polynomial solutions. The Heun equation extended by the addition of a term, -σ/x, is also amenable for polynomial solutions. (letter to the editor)
A new Arnoldi approach for polynomial eigenproblems
Energy Technology Data Exchange (ETDEWEB)
Raeven, F.A.
1996-12-31
In this paper we introduce a new generalization of the method of Arnoldi for matrix polynomials. The new approach is compared with the approach of rewriting the polynomial problem into a linear eigenproblem and applying the standard method of Arnoldi to the linearised problem. The algorithm that can be applied directly to the polynomial eigenproblem turns out to be more efficient, both in storage and in computation.
Bayer Demosaicking with Polynomial Interpolation.
Wu, Jiaji; Anisetti, Marco; Wu, Wei; Damiani, Ernesto; Jeon, Gwanggil
2016-08-30
Demosaicking is a digital image process to reconstruct full color digital images from incomplete color samples from an image sensor. It is an unavoidable process for many devices incorporating camera sensor (e.g. mobile phones, tablet, etc.). In this paper, we introduce a new demosaicking algorithm based on polynomial interpolation-based demosaicking (PID). Our method makes three contributions: calculation of error predictors, edge classification based on color differences, and a refinement stage using a weighted sum strategy. Our new predictors are generated on the basis of on the polynomial interpolation, and can be used as a sound alternative to other predictors obtained by bilinear or Laplacian interpolation. In this paper we show how our predictors can be combined according to the proposed edge classifier. After populating three color channels, a refinement stage is applied to enhance the image quality and reduce demosaicking artifacts. Our experimental results show that the proposed method substantially improves over existing demosaicking methods in terms of objective performance (CPSNR, S-CIELAB E, and FSIM), and visual performance.
Numerical solutions of multi-order fractional differential equations by Boubaker polynomials
Directory of Open Access Journals (Sweden)
Bolandtalat A.
2016-01-01
Full Text Available In this paper, we have applied a numerical method based on Boubaker polynomials to obtain approximate numerical solutions of multi-order fractional differential equations. We obtain an operational matrix of fractional integration based on Boubaker polynomials. Using this operational matrix, the given problem is converted into a set of algebraic equations. Illustrative examples are are given to demonstrate the efficiency and simplicity of this technique.
Fermionic formula for double Kostka polynomials
Liu, Shiyuan
2016-01-01
The $X=M$ conjecture asserts that the $1D$ sum and the fermionic formula coincide up to some constant power. In the case of type $A,$ both the $1D$ sum and the fermionic formula are closely related to Kostka polynomials. Double Kostka polynomials $K_{\\Bla,\\Bmu}(t),$ indexed by two double partitions $\\Bla,\\Bmu,$ are polynomials in $t$ introduced as a generalization of Kostka polynomials. In the present paper, we consider $K_{\\Bla,\\Bmu}(t)$ in the special case where $\\Bmu=(-,\\mu'').$ We formula...
Polynomial sequences generated by infinite Hessenberg matrices
Directory of Open Access Journals (Sweden)
Verde-Star Luis
2017-01-01
Full Text Available We show that an infinite lower Hessenberg matrix generates polynomial sequences that correspond to the rows of infinite lower triangular invertible matrices. Orthogonal polynomial sequences are obtained when the Hessenberg matrix is tridiagonal. We study properties of the polynomial sequences and their corresponding matrices which are related to recurrence relations, companion matrices, matrix similarity, construction algorithms, and generating functions. When the Hessenberg matrix is also Toeplitz the polynomial sequences turn out to be of interpolatory type and we obtain additional results. For example, we show that every nonderogative finite square matrix is similar to a unique Toeplitz-Hessenberg matrix.
Mireles James, J. D.; Murray, Maxime
2017-12-01
This paper develops a Chebyshev-Taylor spectral method for studying stable/unstable manifolds attached to periodic solutions of differential equations. The work exploits the parameterization method — a general functional analytic framework for studying invariant manifolds. Useful features of the parameterization method include the fact that it can follow folds in the embedding, recovers the dynamics on the manifold through a simple conjugacy, and admits a natural notion of a posteriori error analysis. Our approach begins by deriving a recursive system of linear differential equations describing the Taylor coefficients of the invariant manifold. We represent periodic solutions of these equations as solutions of coupled systems of boundary value problems. We discuss the implementation and performance of the method for the Lorenz system, and for the planar circular restricted three- and four-body problems. We also illustrate the use of the method as a tool for computing cycle-to-cycle connecting orbits.
Directory of Open Access Journals (Sweden)
S. S. Motsa
2014-01-01
Full Text Available This paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs. The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were generated to present the order of accuracy of the method; convergence graphs to verify convergence of the method and error graphs are presented to show the excellent agreement between the results from this study and the known results from literature.
Motsa, S S; Magagula, V M; Sibanda, P
2014-01-01
This paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs). The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were generated to present the order of accuracy of the method; convergence graphs to verify convergence of the method and error graphs are presented to show the excellent agreement between the results from this study and the known results from literature.
Methods of Approximation Theory in Complex Analysis and Mathematical Physics
Saff, Edward
1993-01-01
The book incorporates research papers and surveys written by participants ofan International Scientific Programme on Approximation Theory jointly supervised by Institute for Constructive Mathematics of University of South Florida at Tampa, USA and the Euler International Mathematical Instituteat St. Petersburg, Russia. The aim of the Programme was to present new developments in Constructive Approximation Theory. The topics of the papers are: asymptotic behaviour of orthogonal polynomials, rational approximation of classical functions, quadrature formulas, theory of n-widths, nonlinear approximation in Hardy algebras,numerical results on best polynomial approximations, wavelet analysis. FROM THE CONTENTS: E.A. Rakhmanov: Strong asymptotics for orthogonal polynomials associated with exponential weights on R.- A.L. Levin, E.B. Saff: Exact Convergence Rates for Best Lp Rational Approximation to the Signum Function and for Optimal Quadrature in Hp.- H. Stahl: Uniform Rational Approximation of x .- M. Rahman, S.K. ...
Polynomials formalism of quantum numbers
International Nuclear Information System (INIS)
Kazakov, K.V.
2005-01-01
Theoretical aspects of the recently suggested perturbation formalism based on the method of quantum number polynomials are considered in the context of the general anharmonicity problem. Using a biatomic molecule by way of example, it is demonstrated how the theory can be extrapolated to the case of vibrational-rotational interactions. As a result, an exact expression for the first coefficient of the Herman-Wallis factor is derived. In addition, the basic notions of the formalism are phenomenologically generalized and expanded to the problem of spin interaction. The concept of magneto-optical anharmonicity is introduced. As a consequence, an exact analogy is drawn with the well-known electro-optical theory of molecules, and a nonlinear dependence of the magnetic dipole moment of the system on the spin and wave variables is established [ru
REGSTEP - stepwise multivariate polynomial regression with singular extensions
International Nuclear Information System (INIS)
Davierwalla, D.M.
1977-09-01
The program REGSTEP determines a polynomial approximation, in the least squares sense, to tabulated data. The polynomial may be univariate or multivariate. The computational method is that of stepwise regression. A variable is inserted into the regression basis if it is significant with respect to an appropriate F-test at a preselected risk level. In addition, should a variable already in the basis, become nonsignificant (again with respect to an appropriate F-test) after the entry of a new variable, it is expelled from the model. Thus only significant variables are retained in the model. Although written expressly to be incorporated into CORCOD, a code for predicting nuclear cross sections for given values of power, temperature, void fractions, Boron content etc. there is nothing to limit the use of REGSTEP to nuclear applications, as the examples demonstrate. A separate version has been incorporated into RSYST for the general user. (Auth.)
Polynomial solutions of nonlinear integral equations
International Nuclear Information System (INIS)
Dominici, Diego
2009-01-01
We analyze the polynomial solutions of a nonlinear integral equation, generalizing the work of Bender and Ben-Naim (2007 J. Phys. A: Math. Theor. 40 F9, 2008 J. Nonlinear Math. Phys. 15 (Suppl. 3) 73). We show that, in some cases, an orthogonal solution exists and we give its general form in terms of kernel polynomials
Sibling curves of quadratic polynomials | Wiggins | Quaestiones ...
African Journals Online (AJOL)
Sibling curves were demonstrated in [1, 2] as a novel way to visualize the zeroes of real valued functions. In [3] it was shown that a polynomial of degree n has n sibling curves. This paper focuses on the algebraic and geometric properites of the sibling curves of real and complex quadratic polynomials. Key words: Quadratic ...
Topological string partition functions as polynomials
International Nuclear Information System (INIS)
Yamaguchi, Satoshi; Yau Shingtung
2004-01-01
We investigate the structure of the higher genus topological string amplitudes on the quintic hypersurface. It is shown that the partition functions of the higher genus than one can be expressed as polynomials of five generators. We also compute the explicit polynomial forms of the partition functions for genus 2, 3, and 4. Moreover, some coefficients are written down for all genus. (author)
Polynomial solutions of nonlinear integral equations
Energy Technology Data Exchange (ETDEWEB)
Dominici, Diego [Department of Mathematics, State University of New York at New Paltz, 1 Hawk Dr. Suite 9, New Paltz, NY 12561-2443 (United States)], E-mail: dominicd@newpaltz.edu
2009-05-22
We analyze the polynomial solutions of a nonlinear integral equation, generalizing the work of Bender and Ben-Naim (2007 J. Phys. A: Math. Theor. 40 F9, 2008 J. Nonlinear Math. Phys. 15 (Suppl. 3) 73). We show that, in some cases, an orthogonal solution exists and we give its general form in terms of kernel polynomials.
A generalization of the Bernoulli polynomials
Directory of Open Access Journals (Sweden)
Pierpaolo Natalini
2003-01-01
Full Text Available A generalization of the Bernoulli polynomials and, consequently, of the Bernoulli numbers, is defined starting from suitable generating functions. Furthermore, the differential equations of these new classes of polynomials are derived by means of the factorization method introduced by Infeld and Hull (1951.
The Bessel polynomials and their differential operators
International Nuclear Information System (INIS)
Onyango Otieno, V.P.
1987-10-01
Differential operators associated with the ordinary and the generalized Bessel polynomials are defined. In each case the commutator bracket is constructed and shows that the differential operators associated with the Bessel polynomials and their generalized form are not commutative. Some applications of these operators to linear differential equations are also discussed. (author). 4 refs
Large degree asymptotics of generalized Bessel polynomials
J.L. López; N.M. Temme (Nico)
2011-01-01
textabstractAsymptotic expansions are given for large values of $n$ of the generalized Bessel polynomials $Y_n^\\mu(z)$. The analysis is based on integrals that follow from the generating functions of the polynomials. A new simple expansion is given that is valid outside a compact neighborhood of the
Exceptional polynomials and SUSY quantum mechanics
Indian Academy of Sciences (India)
Abstract. We show that for the quantum mechanical problem which admit classical Laguerre/. Jacobi polynomials as solutions for the Schrödinger equations (SE), will also admit exceptional. Laguerre/Jacobi polynomials as solutions having the same eigenvalues but with the ground state missing after a modification of the ...
Connections between the matching and chromatic polynomials
Directory of Open Access Journals (Sweden)
E. J. Farrell
1992-01-01
Full Text Available The main results established are (i a connection between the matching and chromatic polynomials and (ii a formula for the matching polynomial of a general complement of a subgraph of a graph. Some deductions on matching and chromatic equivalence and uniqueness are made.
Laguerre polynomials by a harmonic oscillator
Baykal, Melek; Baykal, Ahmet
2014-09-01
The study of an isotropic harmonic oscillator, using the factorization method given in Ohanian's textbook on quantum mechanics, is refined and some collateral extensions of the method related to the ladder operators and the associated Laguerre polynomials are presented. In particular, some analytical properties of the associated Laguerre polynomials are derived using the ladder operators.
Laguerre polynomials by a harmonic oscillator
International Nuclear Information System (INIS)
Baykal, Melek; Baykal, Ahmet
2014-01-01
The study of an isotropic harmonic oscillator, using the factorization method given in Ohanian's textbook on quantum mechanics, is refined and some collateral extensions of the method related to the ladder operators and the associated Laguerre polynomials are presented. In particular, some analytical properties of the associated Laguerre polynomials are derived using the ladder operators. (paper)
On Generalisation of Polynomials in Complex Plane
Directory of Open Access Journals (Sweden)
Maslina Darus
2010-01-01
Full Text Available The generalised Bell and Laguerre polynomials of fractional-order in complex z-plane are defined. Some properties are studied. Moreover, we proved that these polynomials are univalent solutions for second order differential equations. Also, the Laguerre-type of some special functions are introduced.
Dual exponential polynomials and linear differential equations
Wen, Zhi-Tao; Gundersen, Gary G.; Heittokangas, Janne
2018-01-01
We study linear differential equations with exponential polynomial coefficients, where exactly one coefficient is of order greater than all the others. The main result shows that a nontrivial exponential polynomial solution of such an equation has a certain dual relationship with the maximum order coefficient. Several examples illustrate our results and exhibit possibilities that can occur.
Technique for image interpolation using polynomial transforms
Escalante Ramírez, B.; Martens, J.B.; Haskell, G.G.; Hang, H.M.
1993-01-01
We present a new technique for image interpolation based on polynomial transforms. This is an image representation model that analyzes an image by locally expanding it into a weighted sum of orthogonal polynomials. In the discrete case, the image segment within every window of analysis is
Factoring polynomials over arbitrary finite fields
Lange, T.; Winterhof, A.
2000-01-01
We analyse an extension of Shoup's (Inform. Process. Lett. 33 (1990) 261–267) deterministic algorithm for factoring polynomials over finite prime fields to arbitrary finite fields. In particular, we prove the existence of a deterministic algorithm which completely factors all monic polynomials of
Optimal Conformal Polynomial Projections for Croatia According to the Airy/Jordan Criterion
Directory of Open Access Journals (Sweden)
Dražen Tutić
2009-05-01
Full Text Available The paper describes optimal conformal polynomial projections for Croatia according to the Airy/Jordan criterion. A brief introduction of history and theory of conformal mapping is followed by descriptions of conformal polynomial projections and their current application. The paper considers polynomials of degrees 1 to 10. Since there are conditions in which the 1st degree polynomial becomes the famous Mercator projection, it was not considered specifically for Croatian territory. The area of Croatia was defined as a union of national territory and the continental shelf. Area definition data were taken from the Euro Global Map 1:1 000 000 for Croatia, as well as from two maritime delimitation treaties. Such an irregular area was approximated with a regular grid consisting of 11 934 ellipsoidal trapezoids 2' large. The Airy/Jordan criterion for the optimal projection is defined as minimum of weighted mean of Airy/Jordan measure of distortion in points. The value of the Airy/Jordan criterion is calculated from all 11 934 centres of ellipsoidal trapezoids, while the weights are equal to areas of corresponding ellipsoidal trapezoids. The minimum is obtained by Nelder and Mead’s method, as implemented in the fminsearch function of the MATLAB package. Maps of Croatia representing the distribution of distortions are given for polynomial degrees 2 to 6 and 10. Increasing the polynomial degree results in better projections considering the criterion, and the 6th degree polynomial provides a good ratio of formula complexity and criterion value.
On the number of polynomial solutions of Bernoulli and Abel polynomial differential equations
Cima, A.; Gasull, A.; Mañosas, F.
2017-12-01
In this paper we determine the maximum number of polynomial solutions of Bernoulli differential equations and of some integrable polynomial Abel differential equations. As far as we know, the tools used to prove our results have not been utilized before for studying this type of questions. We show that the addressed problems can be reduced to know the number of polynomial solutions of a related polynomial equation of arbitrary degree. Then we approach to these equations either applying several tools developed to study extended Fermat problems for polynomial equations, or reducing the question to the computation of the genus of some associated planar algebraic curves.
National Research Council Canada - National Science Library
Mitchell, Jason
2002-01-01
A method is presented for the generation of exact numerical coefficients found in two families of implicit Chebyshev methods for the numerical integration of first- and second-order ordinary differential equations...
Matrix product formula for Macdonald polynomials
Cantini, Luigi; de Gier, Jan; Wheeler, Michael
2015-09-01
We derive a matrix product formula for symmetric Macdonald polynomials. Our results are obtained by constructing polynomial solutions of deformed Knizhnik-Zamolodchikov equations, which arise by considering representations of the Zamolodchikov-Faddeev and Yang-Baxter algebras in terms of t-deformed bosonic operators. These solutions are generalized probabilities for particle configurations of the multi-species asymmetric exclusion process, and form a basis of the ring of polynomials in n variables whose elements are indexed by compositions. For weakly increasing compositions (anti-dominant weights), these basis elements coincide with non-symmetric Macdonald polynomials. Our formulas imply a natural combinatorial interpretation in terms of solvable lattice models. They also imply that normalizations of stationary states of multi-species exclusion processes are obtained as Macdonald polynomials at q = 1.
Matrix product formula for Macdonald polynomials
International Nuclear Information System (INIS)
Cantini, Luigi; Gier, Jan de; Michael Wheeler
2015-01-01
We derive a matrix product formula for symmetric Macdonald polynomials. Our results are obtained by constructing polynomial solutions of deformed Knizhnik–Zamolodchikov equations, which arise by considering representations of the Zamolodchikov–Faddeev and Yang–Baxter algebras in terms of t-deformed bosonic operators. These solutions are generalized probabilities for particle configurations of the multi-species asymmetric exclusion process, and form a basis of the ring of polynomials in n variables whose elements are indexed by compositions. For weakly increasing compositions (anti-dominant weights), these basis elements coincide with non-symmetric Macdonald polynomials. Our formulas imply a natural combinatorial interpretation in terms of solvable lattice models. They also imply that normalizations of stationary states of multi-species exclusion processes are obtained as Macdonald polynomials at q = 1. (paper)
Arabic text classification using Polynomial Networks
Directory of Open Access Journals (Sweden)
Mayy M. Al-Tahrawi
2015-10-01
Full Text Available In this paper, an Arabic statistical learning-based text classification system has been developed using Polynomial Neural Networks. Polynomial Networks have been recently applied to English text classification, but they were never used for Arabic text classification. In this research, we investigate the performance of Polynomial Networks in classifying Arabic texts. Experiments are conducted on a widely used Arabic dataset in text classification: Al-Jazeera News dataset. We chose this dataset to enable direct comparisons of the performance of Polynomial Networks classifier versus other well-known classifiers on this dataset in the literature of Arabic text classification. Results of experiments show that Polynomial Networks classifier is a competitive algorithm to the state-of-the-art ones in the field of Arabic text classification.
Polynomial Chaos Surrogates for Bayesian Inference
Le Maitre, Olivier
2016-01-06
The Bayesian inference is a popular probabilistic method to solve inverse problems, such as the identification of field parameter in a PDE model. The inference rely on the Bayes rule to update the prior density of the sought field, from observations, and derive its posterior distribution. In most cases the posterior distribution has no explicit form and has to be sampled, for instance using a Markov-Chain Monte Carlo method. In practice the prior field parameter is decomposed and truncated (e.g. by means of Karhunen- Lo´eve decomposition) to recast the inference problem into the inference of a finite number of coordinates. Although proved effective in many situations, the Bayesian inference as sketched above faces several difficulties requiring improvements. First, sampling the posterior can be a extremely costly task as it requires multiple resolutions of the PDE model for different values of the field parameter. Second, when the observations are not very much informative, the inferred parameter field can highly depends on its prior which can be somehow arbitrary. These issues have motivated the introduction of reduced modeling or surrogates for the (approximate) determination of the parametrized PDE solution and hyperparameters in the description of the prior field. Our contribution focuses on recent developments in these two directions: the acceleration of the posterior sampling by means of Polynomial Chaos expansions and the efficient treatment of parametrized covariance functions for the prior field. We also discuss the possibility of making such approach adaptive to further improve its efficiency.
Välimäki, Vesa; Pekonen, Jussi; Nam, Juhan
2012-01-01
Digital subtractive synthesis is a popular music synthesis method, which requires oscillators that are aliasing-free in a perceptual sense. It is a research challenge to find computationally efficient waveform generation algorithms that produce similar-sounding signals to analog music synthesizers but which are free from audible aliasing. A technique for approximately bandlimited waveform generation is considered that is based on a polynomial correction function, which is defined as the difference of a non-bandlimited step function and a polynomial approximation of the ideal bandlimited step function. It is shown that the ideal bandlimited step function is equivalent to the sine integral, and that integrated polynomial interpolation methods can successfully approximate it. Integrated Lagrange interpolation and B-spline basis functions are considered for polynomial approximation. The polynomial correction function can be added onto samples around each discontinuity in a non-bandlimited waveform to suppress aliasing. Comparison against previously known methods shows that the proposed technique yields the best tradeoff between computational cost and sound quality. The superior method amongst those considered in this study is the integrated third-order B-spline correction function, which offers perceptually aliasing-free sawtooth emulation up to the fundamental frequency of 7.8 kHz at the sample rate of 44.1 kHz. © 2012 Acoustical Society of America.
Directory of Open Access Journals (Sweden)
Majid Tavassoli Kajani
2013-01-01
Full Text Available We propose a pseudospectral method for solving the Thomas-Fermi equation which is a nonlinear ordinary differential equation on semi-infinite interval. This approach is based on the rational third-kind Chebyshev pseudospectral method that is indeed a combination of Tau and collocation methods. This method reduces the solution of this problem to the solution of a system of algebraic equations. Comparison with some numerical solutions shows that the present solution is highly accurate.
on the performance of Autoregressive Moving Average Polynomial
African Journals Online (AJOL)
Timothy Ademakinwa
Distributed Lag (PDL) model, Autoregressive Polynomial Distributed Lag ... Moving Average Polynomial Distributed Lag (ARMAPDL) model. ..... Global Journal of Mathematics and Statistics. Vol. 1. ... Business and Economic Research Center.
Directory of Open Access Journals (Sweden)
Chih-Hong Lin
2016-06-01
Full Text Available A permanent magnet (PM synchronous generator system driven by wind turbine (WT, connected with smart grid via AC-DC converter and DC-AC converter, are controlled by the novel recurrent Chebyshev neural network (NN and amended particle swarm optimization (PSO to regulate output power and output voltage in two power converters in this study. Because a PM synchronous generator system driven by WT is an unknown non-linear and time-varying dynamic system, the on-line training novel recurrent Chebyshev NN control system is developed to regulate DC voltage of the AC-DC converter and AC voltage of the DC-AC converter connected with smart grid. Furthermore, the variable learning rate of the novel recurrent Chebyshev NN is regulated according to discrete-type Lyapunov function for improving the control performance and enhancing convergent speed. Finally, some experimental results are shown to verify the effectiveness of the proposed control method for a WT driving a PM synchronous generator system in smart grid.
CERN. Geneva
2015-01-01
Most physics results at the LHC end in a likelihood ratio test. This includes discovery and exclusion for searches as well as mass, cross-section, and coupling measurements. The use of Machine Learning (multivariate) algorithms in HEP is mainly restricted to searches, which can be reduced to classification between two fixed distributions: signal vs. background. I will show how we can extend the use of ML classifiers to distributions parameterized by physical quantities like masses and couplings as well as nuisance parameters associated to systematic uncertainties. This allows for one to approximate the likelihood ratio while still using a high dimensional feature vector for the data. Both the MEM and ABC approaches mentioned above aim to provide inference on model parameters (like cross-sections, masses, couplings, etc.). ABC is fundamentally tied Bayesian inference and focuses on the “likelihood free” setting where only a simulator is available and one cannot directly compute the likelihood for the dat...
Schmidt, Wolfgang M
1980-01-01
"In 1970, at the U. of Colorado, the author delivered a course of lectures on his famous generalization, then just established, relating to Roth's theorem on rational approxi- mations to algebraic numbers. The present volume is an ex- panded and up-dated version of the original mimeographed notes on the course. As an introduction to the author's own remarkable achievements relating to the Thue-Siegel-Roth theory, the text can hardly be bettered and the tract can already be regarded as a classic in its field."(Bull.LMS) "Schmidt's work on approximations by algebraic numbers belongs to the deepest and most satisfactory parts of number theory. These notes give the best accessible way to learn the subject. ... this book is highly recommended." (Mededelingen van het Wiskundig Genootschap)
Orthogonal polynomials in Stein's method
Schoutens, W.
2001-01-01
Stein's method provides a way of finding approximations to the distribution, ¿ say, of a random variable, which at the same time gives estimates of the approximation error involved. In essence the method is based on a defining equation, or equivalently an operator, of the distribution ¿ and a
Dynamics of a new family of iterative processes for quadratic polynomials
Gutiérrez, J. M.; Hernández, M. A.; Romero, N.
2010-03-01
In this work we show the presence of the well-known Catalan numbers in the study of the convergence and the dynamical behavior of a family of iterative methods for solving nonlinear equations. In fact, we introduce a family of methods, depending on a parameter . These methods reach the order of convergence m+2 when they are applied to quadratic polynomials with different roots. Newton's and Chebyshev's methods appear as particular choices of the family appear for m=0 and m=1, respectively. We make both analytical and graphical studies of these methods, which give rise to rational functions defined in the extended complex plane. Firstly, we prove that the coefficients of the aforementioned family of iterative processes can be written in terms of the Catalan numbers. Secondly, we make an incursion into its dynamical behavior. In fact, we show that the rational maps related to these methods can be written in terms of the entries of the Catalan triangle. Next we analyze its general convergence, by including some computer plots showing the intricate structure of the Universal Julia sets associated with the methods.
Polynomials in finite geometries and combinatorics
Blokhuis, A.; Walker, K.
1993-01-01
It is illustrated how elementary properties of polynomials can be used to attack extremal problems in finite and euclidean geometry, and in combinatorics. Also a new result, related to the problem of neighbourly cylinders is presented.
Polynomial analysis of ambulatory blood pressure measurements
Zwinderman, A. H.; Cleophas, T. A.; Cleophas, T. J.; van der Wall, E. E.
2001-01-01
In normotensive subjects blood pressures follow a circadian rhythm. A circadian rhythm in hypertensive patients is less well established, and may be clinically important, particularly with rigorous treatments of daytime blood pressures. Polynomial analysis of ambulatory blood pressure monitoring
Handbook on semidefinite, conic and polynomial optimization
Anjos, Miguel F
2012-01-01
This book offers the reader a snapshot of the state-of-the-art in the growing and mutually enriching areas of semidefinite optimization, conic optimization and polynomial optimization. It covers theory, algorithms, software and applications.
Transversals of Complex Polynomial Vector Fields
DEFF Research Database (Denmark)
Dias, Kealey
Vector fields in the complex plane are defined by assigning the vector determined by the value P(z) to each point z in the complex plane, where P is a polynomial of one complex variable. We consider special families of so-called rotated vector fields that are determined by a polynomial multiplied...... by rotational constants. Transversals are a certain class of curves for such a family of vector fields that represent the bifurcation states for this family of vector fields. More specifically, transversals are curves that coincide with a homoclinic separatrix for some rotation of the vector field. Given...... a concrete polynomial, it seems to take quite a bit of work to prove that it is generic, i.e. structurally stable. This has been done for a special class of degree d polynomial vector fields having simple equilibrium points at the d roots of unity, d odd. In proving that such vector fields are generic...
Generalized catalan numbers, sequences and polynomials
KOÇ, Cemal; GÜLOĞLU, İsmail; ESİN, Songül
2010-01-01
In this paper we present an algebraic interpretation for generalized Catalan numbers. We describe them as dimensions of certain subspaces of multilinear polynomials. This description is of utmost importance in the investigation of annihilators in exterior algebras.
Schur Stability Regions for Complex Quadratic Polynomials
Cheng, Sui Sun; Huang, Shao Yuan
2010-01-01
Given a quadratic polynomial with complex coefficients, necessary and sufficient conditions are found in terms of the coefficients such that all its roots have absolute values less than 1. (Contains 3 figures.)
Application of ANNs approach for solving fully fuzzy polynomials system
Directory of Open Access Journals (Sweden)
R. Novin
2017-11-01
Full Text Available In processing indecisive or unclear information, the advantages of fuzzy logic and neurocomputing disciplines should be taken into account and combined by fuzzy neural networks. The current research intends to present a fuzzy modeling method using multi-layer fuzzy neural networks for solving a fully fuzzy polynomials system. To clarify the point, it is necessary to inform that a supervised gradient descent-based learning law is employed. The feasibility of the method is examined using computer simulations on a numerical example. The experimental results obtained from the investigation of the proposed method are valid and delivers very good approximation results.
About the solvability of matrix polynomial equations
Netzer, Tim; Thom, Andreas
2016-01-01
We study self-adjoint matrix polynomial equations in a single variable and prove existence of self-adjoint solutions under some assumptions on the leading form. Our main result is that any self-adjoint matrix polynomial equation of odd degree with non-degenerate leading form can be solved in self-adjoint matrices. We also study equations of even degree and equations in many variables.
Two polynomial representations of experimental design
Notari, Roberto; Riccomagno, Eva; Rogantin, Maria-Piera
2007-01-01
In the context of algebraic statistics an experimental design is described by a set of polynomials called the design ideal. This, in turn, is generated by finite sets of polynomials. Two types of generating sets are mostly used in the literature: Groebner bases and indicator functions. We briefly describe them both, how they are used in the analysis and planning of a design and how to switch between them. Examples include fractions of full factorial designs and designs for mixture experiments.
Rotation of 2D orthogonal polynomials
Czech Academy of Sciences Publication Activity Database
Yang, B.; Flusser, Jan; Kautský, J.
2018-01-01
Roč. 102, č. 1 (2018), s. 44-49 ISSN 0167-8655 R&D Projects: GA ČR GA15-16928S Institutional support: RVO:67985556 Keywords : Rotation invariants * Orthogonal polynomials * Recurrent relation * Hermite-like polynomials * Hermite moments Subject RIV: JD - Computer Applications, Robotics Impact factor: 1.995, year: 2016 http://library.utia.cas.cz/separaty/2017/ZOI/flusser-0483250.pdf
Stability analysis of polynomial fuzzy models via polynomial fuzzy Lyapunov functions
Bernal Reza, Miguel Ángel; Sala, Antonio; JAADARI, ABDELHAFIDH; Guerra, Thierry-Marie
2011-01-01
In this paper, the stability of continuous-time polynomial fuzzy models by means of a polynomial generalization of fuzzy Lyapunov functions is studied. Fuzzy Lyapunov functions have been fruitfully used in the literature for local analysis of Takagi-Sugeno models, a particular class of the polynomial fuzzy ones. Based on a recent Taylor-series approach which allows a polynomial fuzzy model to exactly represent a nonlinear model in a compact set of the state space, it is shown that a refinemen...
Vertex models, TASEP and Grothendieck polynomials
International Nuclear Information System (INIS)
Motegi, Kohei; Sakai, Kazumitsu
2013-01-01
We examine the wavefunctions and their scalar products of a one-parameter family of integrable five-vertex models. At a special point of the parameter, the model investigated is related to an irreversible interacting stochastic particle system—the so-called totally asymmetric simple exclusion process (TASEP). By combining the quantum inverse scattering method with a matrix product representation of the wavefunctions, the on-/off-shell wavefunctions of the five-vertex models are represented as a certain determinant form. Up to some normalization factors, we find that the wavefunctions are given by Grothendieck polynomials, which are a one-parameter deformation of Schur polynomials. Introducing a dual version of the Grothendieck polynomials, and utilizing the determinant representation for the scalar products of the wavefunctions, we derive a generalized Cauchy identity satisfied by the Grothendieck polynomials and their duals. Several representation theoretical formulae for the Grothendieck polynomials are also presented. As a byproduct, the relaxation dynamics such as Green functions for the periodic TASEP are found to be described in terms of the Grothendieck polynomials. (paper)
Computing Galois Groups of Eisenstein Polynomials Over P-adic Fields
Milstead, Jonathan
The most efficient algorithms for computing Galois groups of polynomials over global fields are based on Stauduhar's relative resolvent method. These methods are not directly generalizable to the local field case, since they require a field that contains the global field in which all roots of the polynomial can be approximated. We present splitting field-independent methods for computing the Galois group of an Eisenstein polynomial over a p-adic field. Our approach is to combine information from different disciplines. We primarily, make use of the ramification polygon of the polynomial, which is the Newton polygon of a related polynomial. This allows us to quickly calculate several invariants that serve to reduce the number of possible Galois groups. Algorithms by Greve and Pauli very efficiently return the Galois group of polynomials where the ramification polygon consists of one segment as well as information about the subfields of the stem field. Second, we look at the factorization of linear absolute resolvents to further narrow the pool of possible groups.
Relations between Möbius and coboundary polynomials
Jurrius, R.P.M.J.
2012-01-01
It is known that, in general, the coboundary polynomial and the Möbius polynomial of a matroid do not determine each other. Less is known about more specific cases. In this paper, we will investigate if it is possible that the Möbius polynomial of a matroid, together with the Möbius polynomial of
Approximation by Chebyshevian Bernstein Operators versus Convergence of Dimension Elevation
Ait-Haddou, Rachid; Mazure, Marie-Laurence
2016-01-01
On a closed bounded interval, consider a nested sequence of Extended Chebyshev spaces possessing Bernstein bases. This situation automatically generates an infinite dimension elevation algorithm transforming control polygons of any given level into control polygons of the next level. The convergence of these infinite sequences of polygons towards the corresponding curves is a classical issue in computer-aided geometric design. Moreover, according to recent work proving the existence of Bernstein-type operators in such Extended Chebyshev spaces, this nested sequence is automatically associated with an infinite sequence of Bernstein operators which all reproduce the same two-dimensional space. Whether or not this sequence of operators converges towards the identity on the space of all continuous functions is a natural issue in approximation theory. In the present article, we prove that the two issues are actually equivalent. Not only is this result interesting on the theoretical side, but it also has practical implications. For instance, it provides us with a Korovkin-type theorem of convergence of any infinite dimension elevation algorithm. It also enables us to tackle the question of convergence of the dimension elevation algorithm for any nested sequence obtained by repeated integration of the kernel of a given linear differential operator with constant coefficients. © 2016 Springer Science+Business Media New York
Approximation by Chebyshevian Bernstein Operators versus Convergence of Dimension Elevation
Ait-Haddou, Rachid
2016-03-18
On a closed bounded interval, consider a nested sequence of Extended Chebyshev spaces possessing Bernstein bases. This situation automatically generates an infinite dimension elevation algorithm transforming control polygons of any given level into control polygons of the next level. The convergence of these infinite sequences of polygons towards the corresponding curves is a classical issue in computer-aided geometric design. Moreover, according to recent work proving the existence of Bernstein-type operators in such Extended Chebyshev spaces, this nested sequence is automatically associated with an infinite sequence of Bernstein operators which all reproduce the same two-dimensional space. Whether or not this sequence of operators converges towards the identity on the space of all continuous functions is a natural issue in approximation theory. In the present article, we prove that the two issues are actually equivalent. Not only is this result interesting on the theoretical side, but it also has practical implications. For instance, it provides us with a Korovkin-type theorem of convergence of any infinite dimension elevation algorithm. It also enables us to tackle the question of convergence of the dimension elevation algorithm for any nested sequence obtained by repeated integration of the kernel of a given linear differential operator with constant coefficients. © 2016 Springer Science+Business Media New York
Analytical approximation of neutron physics data
International Nuclear Information System (INIS)
Badikov, S.A.; Vinogradov, V.A.; Gaj, E.V.; Rabotnov, N.S.
1984-01-01
The method for experimental neutron-physical data analytical approximation by rational functions based on the Pade approximation is suggested. It is shown that the existence of the Pade approximation specific properties in polar zones is an extremely favourable analytical property essentially extending the convergence range and increasing its rate as compared with polynomial approximation. The Pade approximation is the particularly natural instrument for resonance curve processing as the resonances conform to the complex poles of the approximant. But even in a general case analytical representation of the data in this form is convenient and compact. Thus representation of the data on the neutron threshold reaction cross sections (BOSPOR constant library) in the form of rational functions lead to approximately twenty fold reduction of the storaged numerical information as compared with the by-point calculation at the same accWracy
Regression with Sparse Approximations of Data
DEFF Research Database (Denmark)
Noorzad, Pardis; Sturm, Bob L.
2012-01-01
We propose sparse approximation weighted regression (SPARROW), a method for local estimation of the regression function that uses sparse approximation with a dictionary of measurements. SPARROW estimates the regression function at a point with a linear combination of a few regressands selected...... by a sparse approximation of the point in terms of the regressors. We show SPARROW can be considered a variant of \\(k\\)-nearest neighbors regression (\\(k\\)-NNR), and more generally, local polynomial kernel regression. Unlike \\(k\\)-NNR, however, SPARROW can adapt the number of regressors to use based...
Approximation of the semi-infinite interval
Directory of Open Access Journals (Sweden)
A. McD. Mercer
1980-01-01
Full Text Available The approximation of a function f∈C[a,b] by Bernstein polynomials is well-known. It is based on the binomial distribution. O. Szasz has shown that there are analogous approximations on the interval [0,∞ based on the Poisson distribution. Recently R. Mohapatra has generalized Szasz' result to the case in which the approximating function is αe−ux∑k=N∞(uxkα+β−1Γ(kα+βf(kαuThe present note shows that these results are special cases of a Tauberian theorem for certain infinite series having positive coefficients.
Spline approximation, Part 1: Basic methodology
Ezhov, Nikolaj; Neitzel, Frank; Petrovic, Svetozar
2018-04-01
In engineering geodesy point clouds derived from terrestrial laser scanning or from photogrammetric approaches are almost never used as final results. For further processing and analysis a curve or surface approximation with a continuous mathematical function is required. In this paper the approximation of 2D curves by means of splines is treated. Splines offer quite flexible and elegant solutions for interpolation or approximation of "irregularly" distributed data. Depending on the problem they can be expressed as a function or as a set of equations that depend on some parameter. Many different types of splines can be used for spline approximation and all of them have certain advantages and disadvantages depending on the approximation problem. In a series of three articles spline approximation is presented from a geodetic point of view. In this paper (Part 1) the basic methodology of spline approximation is demonstrated using splines constructed from ordinary polynomials and splines constructed from truncated polynomials. In the forthcoming Part 2 the notion of B-spline will be explained in a unique way, namely by using the concept of convex combinations. The numerical stability of all spline approximation approaches as well as the utilization of splines for deformation detection will be investigated on numerical examples in Part 3.
Special polynomials associated with rational solutions of some hierarchies
International Nuclear Information System (INIS)
Kudryashov, Nikolai A.
2009-01-01
New special polynomials associated with rational solutions of the Painleve hierarchies are introduced. The Hirota relations for these special polynomials are found. Differential-difference hierarchies to find special polynomials are presented. These formulae allow us to search special polynomials associated with the hierarchies. It is shown that rational solutions of the Caudrey-Dodd-Gibbon, the Kaup-Kupershmidt and the modified hierarchy for these ones can be obtained using new special polynomials.
New polynomial-based molecular descriptors with low degeneracy.
Directory of Open Access Journals (Sweden)
Matthias Dehmer
Full Text Available In this paper, we introduce a novel graph polynomial called the 'information polynomial' of a graph. This graph polynomial can be derived by using a probability distribution of the vertex set. By using the zeros of the obtained polynomial, we additionally define some novel spectral descriptors. Compared with those based on computing the ordinary characteristic polynomial of a graph, we perform a numerical study using real chemical databases. We obtain that the novel descriptors do have a high discrimination power.
Pade approximants for entire functions with regularly decreasing Taylor coefficients
International Nuclear Information System (INIS)
Rusak, V N; Starovoitov, A P
2002-01-01
For a class of entire functions the asymptotic behaviour of the Hadamard determinants D n,m as 0≤m≤m(n)→∞ and n→∞ is described. This enables one to study the behaviour of parabolic sequences from Pade and Chebyshev tables for many individual entire functions. The central result of the paper is as follows: for some sequences {(n,m(n))} in certain classes of entire functions (with regular Taylor coefficients) the Pade approximants {π n,m(n) }, which provide the locally best possible rational approximations, converge to the given function uniformly on the compact set D={z:|z|≤1} with asymptotically best rate
A new class of generalized polynomials associated with Hermite and Bernoulli polynomials
Directory of Open Access Journals (Sweden)
M. A. Pathan
2015-05-01
Full Text Available In this paper, we introduce a new class of generalized polynomials associated with the modified Milne-Thomson's polynomials Φ_{n}^{(α}(x,ν of degree n and order α introduced by Derre and Simsek.The concepts of Bernoulli numbers B_n, Bernoulli polynomials B_n(x, generalized Bernoulli numbers B_n(a,b, generalized Bernoulli polynomials B_n(x;a,b,c of Luo et al, Hermite-Bernoulli polynomials {_HB}_n(x,y of Dattoli et al and {_HB}_n^{(α} (x,y of Pathan are generalized to the one {_HB}_n^{(α}(x,y,a,b,c which is called the generalized polynomial depending on three positive real parameters. Numerous properties of these polynomials and some relationships between B_n, B_n(x, B_n(a,b, B_n(x;a,b,c and {}_HB_n^{(α}(x,y;a,b,c are established. Some implicit summation formulae and general symmetry identities are derived by using different analytical means and applying generating functions. These results extend some known summations and identities of generalized Bernoulli numbers and polynomials
Certain non-linear differential polynomials sharing a non zero polynomial
Directory of Open Access Journals (Sweden)
Majumder Sujoy
2015-10-01
functions sharing a nonzero polynomial and obtain two results which improves and generalizes the results due to L. Liu [Uniqueness of meromorphic functions and differential polynomials, Comput. Math. Appl., 56 (2008, 3236-3245.] and P. Sahoo [Uniqueness and weighted value sharing of meromorphic functions, Applied. Math. E-Notes., 11 (2011, 23-32.].
Discrete-time state estimation for stochastic polynomial systems over polynomial observations
Hernandez-Gonzalez, M.; Basin, M.; Stepanov, O.
2018-07-01
This paper presents a solution to the mean-square state estimation problem for stochastic nonlinear polynomial systems over polynomial observations confused with additive white Gaussian noises. The solution is given in two steps: (a) computing the time-update equations and (b) computing the measurement-update equations for the state estimate and error covariance matrix. A closed form of this filter is obtained by expressing conditional expectations of polynomial terms as functions of the state estimate and error covariance. As a particular case, the mean-square filtering equations are derived for a third-degree polynomial system with second-degree polynomial measurements. Numerical simulations show effectiveness of the proposed filter compared to the extended Kalman filter.
Stabilisation of discrete-time polynomial fuzzy systems via a polynomial lyapunov approach
Nasiri, Alireza; Nguang, Sing Kiong; Swain, Akshya; Almakhles, Dhafer
2018-02-01
This paper deals with the problem of designing a controller for a class of discrete-time nonlinear systems which is represented by discrete-time polynomial fuzzy model. Most of the existing control design methods for discrete-time fuzzy polynomial systems cannot guarantee their Lyapunov function to be a radially unbounded polynomial function, hence the global stability cannot be assured. The proposed control design in this paper guarantees a radially unbounded polynomial Lyapunov functions which ensures global stability. In the proposed design, state feedback structure is considered and non-convexity problem is solved by incorporating an integrator into the controller. Sufficient conditions of stability are derived in terms of polynomial matrix inequalities which are solved via SOSTOOLS in MATLAB. A numerical example is presented to illustrate the effectiveness of the proposed controller.
Vortices and polynomials: non-uniqueness of the Adler–Moser polynomials for the Tkachenko equation
International Nuclear Information System (INIS)
Demina, Maria V; Kudryashov, Nikolai A
2012-01-01
Stationary and translating relative equilibria of point vortices in the plane are studied. It is shown that stationary equilibria of any system containing point vortices with arbitrary choice of circulations can be described with the help of the Tkachenko equation. It is also obtained that translating relative equilibria of point vortices with arbitrary circulations can be constructed using a generalization of the Tkachenko equation. Roots of any pair of polynomials solving the Tkachenko equation and the generalized Tkachenko equation are proved to give positions of point vortices in stationary and translating relative equilibria accordingly. These results are valid even if the polynomials in a pair have multiple or common roots. It is obtained that the Adler–Moser polynomial provides non-unique polynomial solutions of the Tkachenko equation. It is shown that the generalized Tkachenko equation possesses polynomial solutions with degrees that are not triangular numbers. (paper)
Analytical approximate solutions for a general class of nonlinear delay differential equations.
Căruntu, Bogdan; Bota, Constantin
2014-01-01
We use the polynomial least squares method (PLSM), which allows us to compute analytical approximate polynomial solutions for a very general class of strongly nonlinear delay differential equations. The method is tested by computing approximate solutions for several applications including the pantograph equations and a nonlinear time-delay model from biology. The accuracy of the method is illustrated by a comparison with approximate solutions previously computed using other methods.
Continuous and discrete best polynomial degree reduction with Jacobi and Hahn weights
Ait-Haddou, Rachid
2016-01-01
We show that the weighted least squares approximation of Bézier coefficients with Hahn weights provides the best polynomial degree reduction in the Jacobi L2L2-norm. A discrete analogue of this result is also provided. Applications to Jacobi
Use of orthonormal polynomials to fit energy spectrum data for water transported through membrane
International Nuclear Information System (INIS)
Bogdanova, N.; Todorova, L.
2001-01-01
A new application of our approach with orthonormal polynomials to curve fitting is given when both variables have errors. We approximate and describe data of a new effect due to change of water energy spectrum as a result of water transport in a porous membrane
Directory of Open Access Journals (Sweden)
Kunio Ichinobe
2015-01-01
Full Text Available We study the \\(k\\-summability of divergent formal solutions for the Cauchy problem of certain linear partial differential operators with coefficients which are polynomial in \\(t\\. We employ the method of successive approximation in order to construct the formal solutions and to obtain the properties of analytic continuation of the solutions of convolution equations and their exponential growth estimates.
On permutation polynomials over ﬁnite ﬁelds: diﬀerences and iterations
DEFF Research Database (Denmark)
Anbar Meidl, Nurdagül; Odzak, Almasa; Patel, Vandita
2017-01-01
The Carlitz rank of a permutation polynomial f over a finite field Fq is a simple concept that was introduced in the last decade. Classifying permutations over Fq with respect to their Carlitz ranks has some advantages, for instance f with a given Carlitz rank can be approximated by a rational li...
Method of moments approach to pricing double barrier contracts in polynomial jump-diffusion models
Eriksson, B.; Pistorius, M.
2011-01-01
Abstract: We present a method of moments approach to pricing double barrier contracts when the underlying is modelled by a polynomial jump-diffusion. By general principles the price is linked to certain infinite dimensional linear programming problems. Subsequently approximating these by finite
Remarks on determinants and the classical polynomials
International Nuclear Information System (INIS)
Henning, J.J.; Kranold, H.U.; Louw, D.F.B.
1986-01-01
As motivation for this formal analysis the problem of Landau damping of Bernstein modes is discussed. It is shown that in the case of a weak but finite constant external magnetic field, the analytical structure of the dispersion relations is of such a nature that longitudinal waves propagating orthogonal to the external magnetic field are also damped, contrary to normal belief. In the treatment of the linearized Vlasov equation it is found convenient to generate certain polynomials by the problem at hand and to explicitly write down expressions for these polynomials. In the course of this study methods are used that relate to elementary but fairly unknown functional relationships between power sums and coefficients of polynomials. These relationships, also called Waring functions, are derived. They are then used in other applications to give explicit expressions for the generalized Laguerre polynomials in terms of determinant functions. The properties of polynomials generated by a wide class of generating functions are investigated. These relationships are also used to obtain explicit forms for the cumulants of a distribution in terms of its moments. It is pointed out that cumulants (or moments, for that matter) do not determine a distribution function
Energy Technology Data Exchange (ETDEWEB)
Suparmi, A., E-mail: suparmiuns@gmail.com; Cari, C., E-mail: suparmiuns@gmail.com [Physics Department, Post Graduate Study, Sebelas Maret University (Indonesia); Angraini, L. M. [Physics Department, Mataram University (Indonesia)
2014-09-30
The bound state solutions of Dirac equation for Hulthen and trigonometric Rosen Morse non-central potential are obtained using finite Romanovski polynomials. The approximate relativistic energy spectrum and the radial wave functions which are given in terms of Romanovski polynomials are obtained from solution of radial Dirac equation. The angular wave functions and the orbital quantum number are found from angular Dirac equation solution. In non-relativistic limit, the relativistic energy spectrum reduces into non-relativistic energy.
Approximating the Pareto set of multiobjective linear programs via robust optimization
Gorissen, B.L.; den Hertog, D.
2012-01-01
We consider problems with multiple linear objectives and linear constraints and use adjustable robust optimization and polynomial optimization as tools to approximate the Pareto set with polynomials of arbitrarily large degree. The main difference with existing techniques is that we optimize a
Directory of Open Access Journals (Sweden)
Fuqiang Zhao
2017-01-01
Full Text Available In the current study, a numerical technique for solving one-dimensional fractional nonsteady heat transfer model is presented. We construct the second kind Chebyshev wavelet and then derive the operational matrix of fractional-order integration. The operational matrix of fractional-order integration is utilized to reduce the original problem to a system of linear algebraic equations, and then the numerical solutions obtained by our method are compared with those obtained by CAS wavelet method. Lastly, illustrated examples are included to demonstrate the validity and applicability of the technique.
CSIR Research Space (South Africa)
Sokoya, O
2008-05-01
Full Text Available combines both simplicity and accuracy in finding the closed form expression of the PEP. The paper is organised as follows. In Section 2, we discuss the general transmission model of the HR-STTCM and the channel model. In Section 3, we describe... the derivation of the PEP using the Gauss–Chebyshev quadrature technique and also give a numerical example. In Section 4, we use the PEP obtained in Section 3 to estimate the average BEP for slow fading channels. Section 5 concludes the paper with discussion...
Uncertainty Analysis via Failure Domain Characterization: Polynomial Requirement Functions
Crespo, Luis G.; Munoz, Cesar A.; Narkawicz, Anthony J.; Kenny, Sean P.; Giesy, Daniel P.
2011-01-01
This paper proposes an uncertainty analysis framework based on the characterization of the uncertain parameter space. This characterization enables the identification of worst-case uncertainty combinations and the approximation of the failure and safe domains with a high level of accuracy. Because these approximations are comprised of subsets of readily computable probability, they enable the calculation of arbitrarily tight upper and lower bounds to the failure probability. A Bernstein expansion approach is used to size hyper-rectangular subsets while a sum of squares programming approach is used to size quasi-ellipsoidal subsets. These methods are applicable to requirement functions whose functional dependency on the uncertainty is a known polynomial. Some of the most prominent features of the methodology are the substantial desensitization of the calculations from the uncertainty model assumed (i.e., the probability distribution describing the uncertainty) as well as the accommodation for changes in such a model with a practically insignificant amount of computational effort.
Optimal stability polynomials for numerical integration of initial value problems
Ketcheson, David I.
2013-01-08
We consider the problem of finding optimally stable polynomial approximations to the exponential for application to one-step integration of initial value ordinary and partial differential equations. The objective is to find the largest stable step size and corresponding method for a given problem when the spectrum of the initial value problem is known. The problem is expressed in terms of a general least deviation feasibility problem. Its solution is obtained by a new fast, accurate, and robust algorithm based on convex optimization techniques. Global convergence of the algorithm is proven in the case that the order of approximation is one and in the case that the spectrum encloses a starlike region. Examples demonstrate the effectiveness of the proposed algorithm even when these conditions are not satisfied.
Minimal residual method stronger than polynomial preconditioning
Energy Technology Data Exchange (ETDEWEB)
Faber, V.; Joubert, W.; Knill, E. [Los Alamos National Lab., NM (United States)] [and others
1994-12-31
Two popular methods for solving symmetric and nonsymmetric systems of equations are the minimal residual method, implemented by algorithms such as GMRES, and polynomial preconditioning methods. In this study results are given on the convergence rates of these methods for various classes of matrices. It is shown that for some matrices, such as normal matrices, the convergence rates for GMRES and for the optimal polynomial preconditioning are the same, and for other matrices such as the upper triangular Toeplitz matrices, it is at least assured that if one method converges then the other must converge. On the other hand, it is shown that matrices exist for which restarted GMRES always converges but any polynomial preconditioning of corresponding degree makes no progress toward the solution for some initial error. The implications of these results for these and other iterative methods are discussed.
Fast beampattern evaluation by polynomial rooting
Häcker, P.; Uhlich, S.; Yang, B.
2011-07-01
Current automotive radar systems measure the distance, the relative velocity and the direction of objects in their environment. This information enables the car to support the driver. The direction estimation capabilities of a sensor array depend on its beampattern. To find the array configuration leading to the best angle estimation by a global optimization algorithm, a huge amount of beampatterns have to be calculated to detect their maxima. In this paper, a novel algorithm is proposed to find all maxima of an array's beampattern fast and reliably, leading to accelerated array optimizations. The algorithm works for arrays having the sensors on a uniformly spaced grid. We use a general version of the gcd (greatest common divisor) function in order to write the problem as a polynomial. We differentiate and root the polynomial to get the extrema of the beampattern. In addition, we show a method to reduce the computational burden even more by decreasing the order of the polynomial.
Twisted Polynomials and Forgery Attacks on GCM
DEFF Research Database (Denmark)
Abdelraheem, Mohamed Ahmed A. M. A.; Beelen, Peter; Bogdanov, Andrey
2015-01-01
Polynomial hashing as an instantiation of universal hashing is a widely employed method for the construction of MACs and authenticated encryption (AE) schemes, the ubiquitous GCM being a prominent example. It is also used in recent AE proposals within the CAESAR competition which aim at providing...... in an improved key recovery algorithm. As cryptanalytic applications of our twisted polynomials, we develop the first universal forgery attacks on GCM in the weak-key model that do not require nonce reuse. Moreover, we present universal weak-key forgeries for the nonce-misuse resistant AE scheme POET, which...
Polynomial Vector Fields in One Complex Variable
DEFF Research Database (Denmark)
Branner, Bodil
In recent years Adrien Douady was interested in polynomial vector fields, both in relation to iteration theory and as a topic on their own. This talk is based on his work with Pierrette Sentenac, work of Xavier Buff and Tan Lei, and my own joint work with Kealey Dias.......In recent years Adrien Douady was interested in polynomial vector fields, both in relation to iteration theory and as a topic on their own. This talk is based on his work with Pierrette Sentenac, work of Xavier Buff and Tan Lei, and my own joint work with Kealey Dias....
The chromatic polynomial and list colorings
DEFF Research Database (Denmark)
Thomassen, Carsten
2009-01-01
We prove that, if a graph has a list of k available colors at every vertex, then the number of list-colorings is at least the chromatic polynomial evaluated at k when k is sufficiently large compared to the number of vertices of the graph.......We prove that, if a graph has a list of k available colors at every vertex, then the number of list-colorings is at least the chromatic polynomial evaluated at k when k is sufficiently large compared to the number of vertices of the graph....
Complex centers of polynomial differential equations
Directory of Open Access Journals (Sweden)
Mohamad Ali M. Alwash
2007-07-01
Full Text Available We present some results on the existence and nonexistence of centers for polynomial first order ordinary differential equations with complex coefficients. In particular, we show that binomial differential equations without linear terms do not have complex centers. Classes of polynomial differential equations, with more than two terms, are presented that do not have complex centers. We also study the relation between complex centers and the Pugh problem. An algorithm is described to solve the Pugh problem for equations without complex centers. The method of proof involves phase plane analysis of the polar equations and a local study of periodic solutions.
Differential recurrence formulae for orthogonal polynomials
Directory of Open Access Journals (Sweden)
Anton L. W. von Bachhaus
1995-11-01
Full Text Available Part I - By combining a general 2nd-order linear homogeneous ordinary differential equation with the three-term recurrence relation possessed by all orthogonal polynomials, it is shown that sequences of orthogonal polynomials which satisfy a differential equation of the above mentioned type necessarily have a differentiation formula of the type: gn(xY'n(x=fn(xYn(x+Yn-1(x. Part II - A recurrence formula of the form: rn(xY'n(x+sn(xY'n+1(x+tn(xY'n-1(x=0, is derived using the result of Part I.
Khader, M M
2013-10-01
In this paper, an efficient numerical method for solving the fractional delay differential equations (FDDEs) is considered. The fractional derivative is described in the Caputo sense. The proposed method is based on the derived approximate formula of the Laguerre polynomials. The properties of Laguerre polynomials are utilized to reduce FDDEs to a linear or nonlinear system of algebraic equations. Special attention is given to study the error and the convergence analysis of the proposed method. Several numerical examples are provided to confirm that the proposed method is in excellent agreement with the exact solution.
Adaptive method for multi-dimensional integration and selection of a base of chaos polynomials
International Nuclear Information System (INIS)
Crestaux, T.
2011-01-01
This research thesis addresses the propagation of uncertainty in numerical simulations and its processing within a probabilistic framework by a functional approach based on random variable functions. The author reports the use of the spectral method to represent random variables by development in polynomial chaos. More precisely, the author uses the method of non-intrusive projection which uses the orthogonality of Chaos Polynomials to compute the development coefficients by approximation of scalar products. The approach is applied to a cavity and to waste storage [fr
Progress in approximation theory and applicable complex analysis in memory of Q.I. Rahman
Mohapatra, Ram; Qazi, Mohammed; Schmeisser, Gerhard
2017-01-01
Current and historical research methods in approximation theory are presented in this book beginning with the 1800s and following the evolution of approximation theory via the refinement and extension of classical methods and ending with recent techniques and methodologies. Graduate students, postdocs, and researchers in mathematics, specifically those working in the theory of functions, approximation theory, geometric function theory, and optimization will find new insights as well as a guide to advanced topics. The chapters in this book are grouped into four themes; the first, polynomials (Chapters 1 –8), includes inequalities for polynomials and rational functions, orthogonal polynomials, and location of zeros. The second, inequalities and extremal problems are discussed in Chapters 9 –13. The third, approximation of functions, involves the approximants being polynomials, rational functions, and other types of functions and are covered in Chapters 14 –19. The last theme, quadrature, cubature and appl...
Rational approximation of vertical segments
Salazar Celis, Oliver; Cuyt, Annie; Verdonk, Brigitte
2007-08-01
In many applications, observations are prone to imprecise measurements. When constructing a model based on such data, an approximation rather than an interpolation approach is needed. Very often a least squares approximation is used. Here we follow a different approach. A natural way for dealing with uncertainty in the data is by means of an uncertainty interval. We assume that the uncertainty in the independent variables is negligible and that for each observation an uncertainty interval can be given which contains the (unknown) exact value. To approximate such data we look for functions which intersect all uncertainty intervals. In the past this problem has been studied for polynomials, or more generally for functions which are linear in the unknown coefficients. Here we study the problem for a particular class of functions which are nonlinear in the unknown coefficients, namely rational functions. We show how to reduce the problem to a quadratic programming problem with a strictly convex objective function, yielding a unique rational function which intersects all uncertainty intervals and satisfies some additional properties. Compared to rational least squares approximation which reduces to a nonlinear optimization problem where the objective function may have many local minima, this makes the new approach attractive.
International Nuclear Information System (INIS)
Boyd, John P.; Rangan, C.; Bucksbaum, P.H.
2003-01-01
The Fourier-sine-with-mapping pseudospectral algorithm of Fattal et al. [Phys. Rev. E 53 (1996) 1217] has been applied in several quantum physics problems. Here, we compare it with pseudospectral methods using Laguerre functions and rational Chebyshev functions. We show that Laguerre and Chebyshev expansions are better suited for solving problems in the interval r in R set of [0,∞] (for example, the Coulomb-Schroedinger equation), than the Fourier-sine-mapping scheme. All three methods give similar accuracy for the hydrogen atom when the scaling parameter L is optimum, but the Laguerre and Chebyshev methods are less sensitive to variations in L. We introduce a new variant of rational Chebyshev functions which has a more uniform spacing of grid points for large r, and gives somewhat better results than the rational Chebyshev functions of Boyd [J. Comp. Phys. 70 (1987) 63
Polynomial regression analysis and significance test of the regression function
International Nuclear Information System (INIS)
Gao Zhengming; Zhao Juan; He Shengping
2012-01-01
In order to analyze the decay heating power of a certain radioactive isotope per kilogram with polynomial regression method, the paper firstly demonstrated the broad usage of polynomial function and deduced its parameters with ordinary least squares estimate. Then significance test method of polynomial regression function is derived considering the similarity between the polynomial regression model and the multivariable linear regression model. Finally, polynomial regression analysis and significance test of the polynomial function are done to the decay heating power of the iso tope per kilogram in accord with the authors' real work. (authors)
Roquet, F.; Madec, G.; McDougall, Trevor J.; Barker, Paul M.
2015-06-01
A new set of approximations to the standard TEOS-10 equation of state are presented. These follow a polynomial form, making it computationally efficient for use in numerical ocean models. Two versions are provided, the first being a fit of density for Boussinesq ocean models, and the second fitting specific volume which is more suitable for compressible models. Both versions are given as the sum of a vertical reference profile (6th-order polynomial) and an anomaly (52-term polynomial, cubic in pressure), with relative errors of ∼0.1% on the thermal expansion coefficients. A 75-term polynomial expression is also presented for computing specific volume, with a better accuracy than the existing TEOS-10 48-term rational approximation, especially regarding the sound speed, and it is suggested that this expression represents a valuable approximation of the TEOS-10 equation of state for hydrographic data analysis. In the last section, practical aspects about the implementation of TEOS-10 in ocean models are discussed.
Nonclassical Orthogonal Polynomials and Corresponding Quadratures
Fukuda, H; Alt, E O; Matveenko, A V
2004-01-01
We construct nonclassical orthogonal polynomials and calculate abscissas and weights of Gaussian quadrature for arbitrary weight and interval. The program is written by Mathematica and it works if moment integrals are given analytically. The result is a FORTRAN subroutine ready to utilize the quadrature.
Quantum Hilbert matrices and orthogonal polynomials
DEFF Research Database (Denmark)
Andersen, Jørgen Ellegaard; Berg, Christian
2009-01-01
Using the notion of quantum integers associated with a complex number q≠0 , we define the quantum Hilbert matrix and various extensions. They are Hankel matrices corresponding to certain little q -Jacobi polynomials when |q|<1 , and for the special value they are closely related to Hankel matrice...
Algebraic polynomial system solving and applications
Bleylevens, I.W.M.
2010-01-01
The problem of computing the solutions of a system of multivariate polynomial equations can be approached by the Stetter-Möller matrix method which casts the problem into a large eigenvalue problem. This Stetter-Möller matrix method forms the starting point for the development of computational
Information-theoretic lengths of Jacobi polynomials
Energy Technology Data Exchange (ETDEWEB)
Guerrero, A; Dehesa, J S [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Granada, Granada (Spain); Sanchez-Moreno, P, E-mail: agmartinez@ugr.e, E-mail: pablos@ugr.e, E-mail: dehesa@ugr.e [Instituto ' Carlos I' de Fisica Teorica y Computacional, Universidad de Granada, Granada (Spain)
2010-07-30
The information-theoretic lengths of the Jacobi polynomials P{sup ({alpha}, {beta})}{sub n}(x), which are information-theoretic measures (Renyi, Shannon and Fisher) of their associated Rakhmanov probability density, are investigated. They quantify the spreading of the polynomials along the orthogonality interval [- 1, 1] in a complementary but different way as the root-mean-square or standard deviation because, contrary to this measure, they do not refer to any specific point of the interval. The explicit expressions of the Fisher length are given. The Renyi lengths are found by the use of the combinatorial multivariable Bell polynomials in terms of the polynomial degree n and the parameters ({alpha}, {beta}). The Shannon length, which cannot be exactly calculated because of its logarithmic functional form, is bounded from below by using sharp upper bounds to general densities on [- 1, +1] given in terms of various expectation values; moreover, its asymptotics is also pointed out. Finally, several computational issues relative to these three quantities are carefully analyzed.
Indecomposability of polynomials via Jacobian matrix
International Nuclear Information System (INIS)
Cheze, G.; Najib, S.
2007-12-01
Uni-multivariate decomposition of polynomials is a special case of absolute factorization. Recently, thanks to the Ruppert's matrix some effective results about absolute factorization have been improved. Here we show that with a jacobian matrix we can get sharper bounds for the special case of uni-multivariate decomposition. (author)
On selfadjoint functors satisfying polynomial relations
DEFF Research Database (Denmark)
Agerholm, Troels; Mazorchuk, Volodomyr
2011-01-01
We study selfadjoint functors acting on categories of finite dimen- sional modules over finite dimensional algebras with an emphasis on functors satisfying some polynomial relations. Selfadjoint func- tors satisfying several easy relations, in particular, idempotents and square roots of a sum...
Polynomial Variables and the Jacobian Problem
Indian Academy of Sciences (India)
algebra and algebraic geometry, and ... algebraically, to making the change of variables (X, Y) r--t. (X +p, Y ... aX + bY + p and eX + dY + q are linear polynomials in X, Y. ..... [5] T T Moh, On the Jacobian conjecture and the confipration of roots,.
Polynomial stabilization of some dissipative hyperbolic systems
Czech Academy of Sciences Publication Activity Database
Ammari, K.; Feireisl, Eduard; Nicaise, S.
2014-01-01
Roč. 34, č. 11 (2014), s. 4371-4388 ISSN 1078-0947 R&D Projects: GA ČR GA201/09/0917 Institutional support: RVO:67985840 Keywords : exponential stability * polynomial stability * observability inequality Subject RIV: BA - General Mathematics Impact factor: 0.826, year: 2014 http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=9924
Polynomial Asymptotes of the Second Kind
Dobbs, David E.
2011-01-01
This note uses the analytic notion of asymptotic functions to study when a function is asymptotic to a polynomial function. Along with associated existence and uniqueness results, this kind of asymptotic behaviour is related to the type of asymptote that was recently defined in a more geometric way. Applications are given to rational functions and…
Characteristic polynomials of linear polyacenes and their ...
Indian Academy of Sciences (India)
Coefficients of characteristic polynomials (CP) of linear polyacenes (LP) have been shown to be obtainable from Pascal's triangle by using a graph factorisation and squaring technique. Strong subspectrality existing among the members of the linear polyacene series has been shown from the derivation of the CP's. Thus it ...
Coherent states for polynomial su(2) algebra
International Nuclear Information System (INIS)
Sadiq, Muhammad; Inomata, Akira
2007-01-01
A class of generalized coherent states is constructed for a polynomial su(2) algebra in a group-free manner. As a special case, the coherent states for the cubic su(2) algebra are discussed. The states so constructed reduce to the usual SU(2) coherent states in the linear limit
Bernoulli Polynomials, Fourier Series and Zeta Numbers
DEFF Research Database (Denmark)
Scheufens, Ernst E
2013-01-01
Fourier series for Bernoulli polynomials are used to obtain information about values of the Riemann zeta function for integer arguments greater than one. If the argument is even we recover the well-known exact values, if the argument is odd we find integral representations and rapidly convergent...
Euler Polynomials, Fourier Series and Zeta Numbers
DEFF Research Database (Denmark)
Scheufens, Ernst E
2012-01-01
Fourier series for Euler polynomials is used to obtain information about values of the Riemann zeta function for integer arguments greater than one. If the argument is even we recover the well-known exact values, if the argument is odd we find integral representations and rapidly convergent series....
Automatic Control Systems Modeling by Volterra Polynomials
Directory of Open Access Journals (Sweden)
S. V. Solodusha
2012-01-01
Full Text Available The problem of the existence of the solutions of polynomial Volterra integral equations of the first kind of the second degree is considered. An algorithm of the numerical solution of one class of Volterra nonlinear systems of the first kind is developed. Numerical results for test examples are presented.
Spectral properties of birth-death polynomials
van Doorn, Erik A.
2015-01-01
We consider sequences of polynomials that are defined by a three-terms recurrence relation and orthogonal with respect to a positive measure on the nonnegative axis. By a famous result of Karlin and McGregor such sequences are instrumental in the analysis of birth-death processes. Inspired by
Spectral properties of birth-death polynomials
van Doorn, Erik A.
We consider sequences of polynomials that are defined by a three-terms recurrence relation and orthogonal with respect to a positive measure on the nonnegative axis. By a famous result of Karlin and McGregor such sequences are instrumental in the analysis of birth-death processes. Inspired by
Optimization of Cubic Polynomial Functions without Calculus
Taylor, Ronald D., Jr.; Hansen, Ryan
2008-01-01
In algebra and precalculus courses, students are often asked to find extreme values of polynomial functions in the context of solving an applied problem; but without the notion of derivative, something is lost. Either the functions are reduced to quadratics, since students know the formula for the vertex of a parabola, or solutions are…
transformation of independent variables in polynomial regression ...
African Journals Online (AJOL)
Ada
preferable when possible to work with a simple functional form in transformed variables rather than with a more complicated form in the original variables. In this paper, it is shown that linear transformations applied to independent variables in polynomial regression models affect the t ratio and hence the statistical ...
Inequalities for a Polynomial and its Derivative
Indian Academy of Sciences (India)
Annual Meetings · Mid Year Meetings · Discussion Meetings · Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Proceedings – Mathematical Sciences; Volume 110; Issue 2. Inequalities for a Polynomial and its Derivative. V K Jain. Volume 110 Issue 2 May 2000 pp 137- ...
Integral Inequalities for Self-Reciprocal Polynomials
Indian Academy of Sciences (India)
Annual Meetings · Mid Year Meetings · Discussion Meetings · Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Proceedings – Mathematical Sciences; Volume 120; Issue 2. Integral Inequalities for Self-Reciprocal Polynomials. Horst Alzer. Volume 120 Issue 2 April 2010 ...
Compressive sampling of polynomial chaos expansions: Convergence analysis and sampling strategies
International Nuclear Information System (INIS)
Hampton, Jerrad; Doostan, Alireza
2015-01-01
Sampling orthogonal polynomial bases via Monte Carlo is of interest for uncertainty quantification of models with random inputs, using Polynomial Chaos (PC) expansions. It is known that bounding a probabilistic parameter, referred to as coherence, yields a bound on the number of samples necessary to identify coefficients in a sparse PC expansion via solution to an ℓ 1 -minimization problem. Utilizing results for orthogonal polynomials, we bound the coherence parameter for polynomials of Hermite and Legendre type under their respective natural sampling distribution. In both polynomial bases we identify an importance sampling distribution which yields a bound with weaker dependence on the order of the approximation. For more general orthonormal bases, we propose the coherence-optimal sampling: a Markov Chain Monte Carlo sampling, which directly uses the basis functions under consideration to achieve a statistical optimality among all sampling schemes with identical support. We demonstrate these different sampling strategies numerically in both high-order and high-dimensional, manufactured PC expansions. In addition, the quality of each sampling method is compared in the identification of solutions to two differential equations, one with a high-dimensional random input and the other with a high-order PC expansion. In both cases, the coherence-optimal sampling scheme leads to similar or considerably improved accuracy
Compressive sampling of polynomial chaos expansions: Convergence analysis and sampling strategies
Hampton, Jerrad; Doostan, Alireza
2015-01-01
Sampling orthogonal polynomial bases via Monte Carlo is of interest for uncertainty quantification of models with random inputs, using Polynomial Chaos (PC) expansions. It is known that bounding a probabilistic parameter, referred to as coherence, yields a bound on the number of samples necessary to identify coefficients in a sparse PC expansion via solution to an ℓ1-minimization problem. Utilizing results for orthogonal polynomials, we bound the coherence parameter for polynomials of Hermite and Legendre type under their respective natural sampling distribution. In both polynomial bases we identify an importance sampling distribution which yields a bound with weaker dependence on the order of the approximation. For more general orthonormal bases, we propose the coherence-optimal sampling: a Markov Chain Monte Carlo sampling, which directly uses the basis functions under consideration to achieve a statistical optimality among all sampling schemes with identical support. We demonstrate these different sampling strategies numerically in both high-order and high-dimensional, manufactured PC expansions. In addition, the quality of each sampling method is compared in the identification of solutions to two differential equations, one with a high-dimensional random input and the other with a high-order PC expansion. In both cases, the coherence-optimal sampling scheme leads to similar or considerably improved accuracy.
Computation of the Likelihood in Biallelic Diffusion Models Using Orthogonal Polynomials
Directory of Open Access Journals (Sweden)
Claus Vogl
2014-11-01
Full Text Available In population genetics, parameters describing forces such as mutation, migration and drift are generally inferred from molecular data. Lately, approximate methods based on simulations and summary statistics have been widely applied for such inference, even though these methods waste information. In contrast, probabilistic methods of inference can be shown to be optimal, if their assumptions are met. In genomic regions where recombination rates are high relative to mutation rates, polymorphic nucleotide sites can be assumed to evolve independently from each other. The distribution of allele frequencies at a large number of such sites has been called “allele-frequency spectrum” or “site-frequency spectrum” (SFS. Conditional on the allelic proportions, the likelihoods of such data can be modeled as binomial. A simple model representing the evolution of allelic proportions is the biallelic mutation-drift or mutation-directional selection-drift diffusion model. With series of orthogonal polynomials, specifically Jacobi and Gegenbauer polynomials, or the related spheroidal wave function, the diffusion equations can be solved efficiently. In the neutral case, the product of the binomial likelihoods with the sum of such polynomials leads to finite series of polynomials, i.e., relatively simple equations, from which the exact likelihoods can be calculated. In this article, the use of orthogonal polynomials for inferring population genetic parameters is investigated.
International Nuclear Information System (INIS)
Wang Huaiyu; Long Yao; Chen Nanxian
2006-01-01
In this paper, the solution of Chebyshev equation with its argument being greater than 1 is obtained. The initial value of the derivative of the solution is the expression of magnetization, which is valid for any spin quantum number S. The Chebyshev equation is transformed from an ordinary differential equation obtained when we dealt with Heisenberg model, in order to calculate all three components of magnetization, by many-body Green's function under random phase approximation. The Chebyshev functions with argument being greater than 1 are discussed. This paper shows that the Chebyshev polynomials with their argument being greater than 1 have their physical application.
Polynomial Digital Control of a Series Equal Liquid Tanks
Directory of Open Access Journals (Sweden)
Bobála Vladimír
2016-01-01
Full Text Available Time-delays are mainly caused by the time required to transport mass, energy or information, but they can also be caused by processing time or accumulation. Typical examples of such processes are e.g. pumps, liquid storing tanks, distillation columns or some types of chemical reactors. In many cases time-delay is caused by the effect produced by the accumulation of a large number of low-order systems. Several industrial processes have the time-delay effect produced by the accumulation of a great number of low-order systems with the identical dynamic. The dynamic behavior of series these low-order systems is expressed by high-order system. One of possibilities of control of such processes is their approximation by low-order model with time-delay. The paper is focused on the design of the digital polynomial control of a set of equal liquid cylinder atmospheric tanks. The designed control algorithms are realized using the digital Smith Predictor (SP based on polynomial approach – by minimization of the Linear Quadratic (LQ criterion. The LQ criterion was combined with pole assignment.
Polynomial Chaos Expansion Approach to Interest Rate Models
Directory of Open Access Journals (Sweden)
Luca Di Persio
2015-01-01
Full Text Available The Polynomial Chaos Expansion (PCE technique allows us to recover a finite second-order random variable exploiting suitable linear combinations of orthogonal polynomials which are functions of a given stochastic quantity ξ, hence acting as a kind of random basis. The PCE methodology has been developed as a mathematically rigorous Uncertainty Quantification (UQ method which aims at providing reliable numerical estimates for some uncertain physical quantities defining the dynamic of certain engineering models and their related simulations. In the present paper, we use the PCE approach in order to analyze some equity and interest rate models. In particular, we take into consideration those models which are based on, for example, the Geometric Brownian Motion, the Vasicek model, and the CIR model. We present theoretical as well as related concrete numerical approximation results considering, without loss of generality, the one-dimensional case. We also provide both an efficiency study and an accuracy study of our approach by comparing its outputs with the ones obtained adopting the Monte Carlo approach, both in its standard and its enhanced version.
Density of Real Zeros of the Tutte Polynomial
DEFF Research Database (Denmark)
Ok, Seongmin; Perrett, Thomas
2018-01-01
The Tutte polynomial of a graph is a two-variable polynomial whose zeros and evaluations encode many interesting properties of the graph. In this article we investigate the real zeros of the Tutte polynomials of graphs, and show that they form a dense subset of certain regions of the plane. This ....... This is the first density result for the real zeros of the Tutte polynomial in a region of positive volume. Our result almost confirms a conjecture of Jackson and Sokal except for one region which is related to an open problem on flow polynomials.......The Tutte polynomial of a graph is a two-variable polynomial whose zeros and evaluations encode many interesting properties of the graph. In this article we investigate the real zeros of the Tutte polynomials of graphs, and show that they form a dense subset of certain regions of the plane...
Density of Real Zeros of the Tutte Polynomial
DEFF Research Database (Denmark)
Ok, Seongmin; Perrett, Thomas
2017-01-01
The Tutte polynomial of a graph is a two-variable polynomial whose zeros and evaluations encode many interesting properties of the graph. In this article we investigate the real zeros of the Tutte polynomials of graphs, and show that they form a dense subset of certain regions of the plane. This ....... This is the first density result for the real zeros of the Tutte polynomial in a region of positive volume. Our result almost confirms a conjecture of Jackson and Sokal except for one region which is related to an open problem on flow polynomials.......The Tutte polynomial of a graph is a two-variable polynomial whose zeros and evaluations encode many interesting properties of the graph. In this article we investigate the real zeros of the Tutte polynomials of graphs, and show that they form a dense subset of certain regions of the plane...
Some Polynomials Associated with the r-Whitney Numbers
Indian Academy of Sciences (India)
26
Abstract. In the present article we study three families of polynomials associated with ... [29, 39] for their relations with the Bernoulli and generalized Bernoulli polynomials and ... generating functions in a similar way as in the classical cases.
On an Inequality Concerning the Polar Derivative of a Polynomial
Indian Academy of Sciences (India)
Abstract. In this paper, we present a correct proof of an -inequality concerning the polar derivative of a polynomial with restricted zeros. We also extend Zygmund's inequality to the polar derivative of a polynomial.
A meromorphic extension of Oka-Weil approximation in a Stein manifold
International Nuclear Information System (INIS)
Lutterodt, C.H.
1988-06-01
The results concerning the generalization of the Oka-Weil approximation theorem over a polynomial polyhedron using as a basic tool a Montessus-type theorem are extended to an analytic polyhedral subset in some Stein manifold X. 9 refs
2-variable Laguerre matrix polynomials and Lie-algebraic techniques
International Nuclear Information System (INIS)
Khan, Subuhi; Hassan, Nader Ali Makboul
2010-01-01
The authors introduce 2-variable forms of Laguerre and modified Laguerre matrix polynomials and derive their special properties. Further, the representations of the special linear Lie algebra sl(2) and the harmonic oscillator Lie algebra G(0,1) are used to derive certain results involving these polynomials. Furthermore, the generating relations for the ordinary as well as matrix polynomials related to these matrix polynomials are derived as applications.
Algebraic limit cycles in polynomial systems of differential equations
International Nuclear Information System (INIS)
Llibre, Jaume; Zhao Yulin
2007-01-01
Using elementary tools we construct cubic polynomial systems of differential equations with algebraic limit cycles of degrees 4, 5 and 6. We also construct a cubic polynomial system of differential equations having an algebraic homoclinic loop of degree 3. Moreover, we show that there are polynomial systems of differential equations of arbitrary degree that have algebraic limit cycles of degree 3, as well as give an example of a cubic polynomial system of differential equations with two algebraic limit cycles of degree 4
The generalized Yablonskii-Vorob'ev polynomials and their properties
International Nuclear Information System (INIS)
Kudryashov, Nikolai A.; Demina, Maria V.
2008-01-01
Rational solutions of the generalized second Painleve hierarchy are classified. Representation of the rational solutions in terms of special polynomials, the generalized Yablonskii-Vorob'ev polynomials, is introduced. Differential-difference relations satisfied by the polynomials are found. Hierarchies of differential equations related to the generalized second Painleve hierarchy are derived. One of these hierarchies is a sequence of differential equations satisfied by the generalized Yablonskii-Vorob'ev polynomials
Polynomial selection in number field sieve for integer factorization
Directory of Open Access Journals (Sweden)
Gireesh Pandey
2016-09-01
Full Text Available The general number field sieve (GNFS is the fastest algorithm for factoring large composite integers which is made up by two prime numbers. Polynomial selection is an important step of GNFS. The asymptotic runtime depends on choice of good polynomial pairs. In this paper, we present polynomial selection algorithm that will be modelled with size and root properties. The correlations between polynomial coefficient and number of relations have been explored with experimental findings.
Contributions to fuzzy polynomial techniques for stability analysis and control
Pitarch Pérez, José Luis
2014-01-01
The present thesis employs fuzzy-polynomial control techniques in order to improve the stability analysis and control of nonlinear systems. Initially, it reviews the more extended techniques in the field of Takagi-Sugeno fuzzy systems, such as the more relevant results about polynomial and fuzzy polynomial systems. The basic framework uses fuzzy polynomial models by Taylor series and sum-of-squares techniques (semidefinite programming) in order to obtain stability guarantees...
Interlacing of zeros of quasi-orthogonal meixner polynomials | Driver ...
African Journals Online (AJOL)
... interlacing of zeros of quasi-orthogonal Meixner polynomials Mn(x;β; c) with the zeros of their nearest orthogonal counterparts Mt(x;β + k; c), l; n ∈ ℕ, k ∈ {1; 2}; is also discussed. Mathematics Subject Classication (2010): 33C45, 42C05. Key words: Discrete orthogonal polynomials, quasi-orthogonal polynomials, Meixner
Strong result for real zeros of random algebraic polynomials
Directory of Open Access Journals (Sweden)
T. Uno
2001-01-01
Full Text Available An estimate is given for the lower bound of real zeros of random algebraic polynomials whose coefficients are non-identically distributed dependent Gaussian random variables. Moreover, our estimated measure of the exceptional set, which is independent of the degree of the polynomials, tends to zero as the degree of the polynomial tends to infinity.
On the Lorentz degree of a product of polynomials
Ait-Haddou, Rachid
2015-01-01
In this note, we negatively answer two questions of T. Erdélyi (1991, 2010) on possible lower bounds on the Lorentz degree of product of two polynomials. We show that the correctness of one question for degree two polynomials is a direct consequence of a result of Barnard et al. (1991) on polynomials with nonnegative coefficients.
A Determinant Expression for the Generalized Bessel Polynomials
Directory of Open Access Journals (Sweden)
Sheng-liang Yang
2013-01-01
Full Text Available Using the exponential Riordan arrays, we show that a variation of the generalized Bessel polynomial sequence is of Sheffer type, and we obtain a determinant formula for the generalized Bessel polynomials. As a result, the Bessel polynomial is represented as determinant the entries of which involve Catalan numbers.
On the estimation of the degree of regression polynomial
International Nuclear Information System (INIS)
Toeroek, Cs.
1997-01-01
The mathematical functions most commonly used to model curvature in plots are polynomials. Generally, the higher the degree of the polynomial, the more complex is the trend that its graph can represent. We propose a new statistical-graphical approach based on the discrete projective transformation (DPT) to estimating the degree of polynomial that adequately describes the trend in the plot
Zeros and uniqueness of Q-difference polynomials of meromorphic ...
Indian Academy of Sciences (India)
Meromorphic functions; Nevanlinna theory; logarithmic order; uniqueness problem; difference-differential polynomial. Abstract. In this paper, we investigate the value distribution of -difference polynomials of meromorphic function of finite logarithmic order, and study the zero distribution of difference-differential polynomials ...
Uniqueness and zeros of q-shift difference polynomials
Indian Academy of Sciences (India)
In this paper, we consider the zero distributions of -shift difference polynomials of meromorphic functions with zero order, and obtain two theorems that extend the classical Hayman results on the zeros of differential polynomials to -shift difference polynomials. We also investigate the uniqueness problem of -shift ...
Polynomially Riesz elements | Živković-Zlatanović | Quaestiones ...
African Journals Online (AJOL)
A Banach algebra element ɑ ∈ A is said to be "polynomially Riesz", relative to the homomorphism T : A → B, if there exists a nonzero complex polynomial p(z) such that the image Tp ∈ B is quasinilpotent. Keywords: Homomorphism of Banach algebras, polynomially Riesz element, Fredholm spectrum, Browder element, ...
Multivariable biorthogonal continuous--discrete Wilson and Racah polynomials
International Nuclear Information System (INIS)
Tratnik, M.V.
1990-01-01
Several families of multivariable, biorthogonal, partly continuous and partly discrete, Wilson polynomials are presented. These yield limit cases that are purely continuous in some of the variables and purely discrete in the others, or purely discrete in all the variables. The latter are referred to as the multivariable biorthogonal Racah polynomials. Interesting further limit cases include the multivariable biorthogonal Hahn and dual Hahn polynomials
Commutators with idempotent values on multilinear polynomials in ...
Indian Academy of Sciences (India)
Multilinear polynomial; derivations; generalized polynomial identity; prime ring; right ideal. Abstract. Let R be a prime ring of characteristic different from 2, C its extended centroid, d a nonzero derivation of R , f ( x 1 , … , x n ) a multilinear polynomial over C , ϱ a nonzero right ideal of R and m > 1 a fixed integer such that.
Degenerate r-Stirling Numbers and r-Bell Polynomials
Kim, T.; Yao, Y.; Kim, D. S.; Jang, G.-W.
2018-01-01
The purpose of this paper is to exploit umbral calculus in order to derive some properties, recurrence relations, and identities related to the degenerate r-Stirling numbers of the second kind and the degenerate r-Bell polynomials. Especially, we will express the degenerate r-Bell polynomials as linear combinations of many well-known families of special polynomials.
International Nuclear Information System (INIS)
Barrios, Dolores; Lopez, Guillermo L; Martinez-Finkelshtein, A; Torrano, Emilio
1999-01-01
The approximability of the resolvent of an operator induced by a band matrix by the resolvents of its finite-dimensional sections is studied. For bounded perturbations of self-adjoint matrices a positive result is obtained. The convergence domain of the sequence of resolvents can be described in this case in terms of matrices involved in the representation. This result is applied to tridiagonal complex matrices to establish conditions for the convergence of Chebyshev continued fractions on sets in the complex domain. In the particular case of compact perturbations this result is improved and a connection between the poles of the limit function and the eigenvalues of the tridiagonal matrix is established
Diophantine approximation and badly approximable sets
DEFF Research Database (Denmark)
Kristensen, S.; Thorn, R.; Velani, S.
2006-01-01
. The classical set Bad of `badly approximable' numbers in the theory of Diophantine approximation falls within our framework as do the sets Bad(i,j) of simultaneously badly approximable numbers. Under various natural conditions we prove that the badly approximable subsets of Omega have full Hausdorff dimension...
International Nuclear Information System (INIS)
Takahashi, Akito; Yamamoto, Junji; Ebisuya, Mituo; Sumita, Kenji
1979-01-01
A new method for calculating the anisotropic neutron transport is proposed for the angular spectral analysis of D-T fusion reactor neutronics. The method is based on the transport equation with new type of anisotropic scattering kernels formulated by a single function I sub(i) (μ', μ) instead of polynomial expansion, for instance, Legendre polynomials. In the calculation of angular flux spectra by using scattering kernels with the Legendre polynomial expansion, we often observe the oscillation with negative flux. But in principle this oscillation disappears by this new method. In this work, we discussed anisotropic scattering kernels of the elastic scattering and the inelastic scatterings which excite discrete energy levels. The other scatterings were included in isotropic scattering kernels. An approximation method, with use of the first collision source written by the I sub(i) (μ', μ) function, was introduced to attenuate the ''oscillations'' when we are obliged to use the scattering kernels with the Legendre polynomial expansion. Calculated results with this approximation showed remarkable improvement for the analysis of the angular flux spectra in a slab system of lithium metal with the D-T neutron source. (author)
Large level crossings of a random polynomial
Directory of Open Access Journals (Sweden)
Kambiz Farahmand
1987-01-01
Full Text Available We know the expected number of times that a polynomial of degree n with independent random real coefficients asymptotically crosses the level K, when K is any real value such that (K2/nÃ¢Â†Â’0 as nÃ¢Â†Â’Ã¢ÂˆÂž. The present paper shows that, when K is allowed to be large, this expected number of crossings reduces to only one. The coefficients of the polynomial are assumed to be normally distributed. It is shown that it is sufficient to let KÃ¢Â‰Â¥exp(nf where f is any function of n such that fÃ¢Â†Â’Ã¢ÂˆÂž as nÃ¢Â†Â’Ã¢ÂˆÂž.
Sparse DOA estimation with polynomial rooting
DEFF Research Database (Denmark)
Xenaki, Angeliki; Gerstoft, Peter; Fernandez Grande, Efren
2015-01-01
Direction-of-arrival (DOA) estimation involves the localization of a few sources from a limited number of observations on an array of sensors. Thus, DOA estimation can be formulated as a sparse signal reconstruction problem and solved efficiently with compressive sensing (CS) to achieve highresol......Direction-of-arrival (DOA) estimation involves the localization of a few sources from a limited number of observations on an array of sensors. Thus, DOA estimation can be formulated as a sparse signal reconstruction problem and solved efficiently with compressive sensing (CS) to achieve...... highresolution imaging. Utilizing the dual optimal variables of the CS optimization problem, it is shown with Monte Carlo simulations that the DOAs are accurately reconstructed through polynomial rooting (Root-CS). Polynomial rooting is known to improve the resolution in several other DOA estimation methods...
On factorization of generalized Macdonald polynomials
International Nuclear Information System (INIS)
Kononov, Ya.; Morozov, A.
2016-01-01
A remarkable feature of Schur functions - the common eigenfunctions of cut-and-join operators from W ∞ - is that they factorize at the peculiar two-parametric topological locus in the space of time variables, which is known as the hook formula for quantum dimensions of representations of U q (SL N ) and which plays a big role in various applications. This factorization survives at the level of Macdonald polynomials. We look for its further generalization to generalized Macdonald polynomials (GMPs), associated in the same way with the toroidal Ding-Iohara-Miki algebras, which play the central role in modern studies in Seiberg-Witten-Nekrasov theory. In the simplest case of the first-coproduct eigenfunctions, where GMP depend on just two sets of time variables, we discover a weak factorization - on a one- (rather than four-) parametric slice of the topological locus, which is already a very non-trivial property, calling for proof and better understanding. (orig.)
Quantum Hurwitz numbers and Macdonald polynomials
Harnad, J.
2016-11-01
Parametric families in the center Z(C[Sn]) of the group algebra of the symmetric group are obtained by identifying the indeterminates in the generating function for Macdonald polynomials as commuting Jucys-Murphy elements. Their eigenvalues provide coefficients in the double Schur function expansion of 2D Toda τ-functions of hypergeometric type. Expressing these in the basis of products of power sum symmetric functions, the coefficients may be interpreted geometrically as parametric families of quantum Hurwitz numbers, enumerating weighted branched coverings of the Riemann sphere. Combinatorially, they give quantum weighted sums over paths in the Cayley graph of Sn generated by transpositions. Dual pairs of bases for the algebra of symmetric functions with respect to the scalar product in which the Macdonald polynomials are orthogonal provide both the geometrical and combinatorial significance of these quantum weighted enumerative invariants.
Polynomial chaos representation of databases on manifolds
Energy Technology Data Exchange (ETDEWEB)
Soize, C., E-mail: christian.soize@univ-paris-est.fr [Université Paris-Est, Laboratoire Modélisation et Simulation Multi-Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-La-Vallée, Cedex 2 (France); Ghanem, R., E-mail: ghanem@usc.edu [University of Southern California, 210 KAP Hall, Los Angeles, CA 90089 (United States)
2017-04-15
Characterizing the polynomial chaos expansion (PCE) of a vector-valued random variable with probability distribution concentrated on a manifold is a relevant problem in data-driven settings. The probability distribution of such random vectors is multimodal in general, leading to potentially very slow convergence of the PCE. In this paper, we build on a recent development for estimating and sampling from probabilities concentrated on a diffusion manifold. The proposed methodology constructs a PCE of the random vector together with an associated generator that samples from the target probability distribution which is estimated from data concentrated in the neighborhood of the manifold. The method is robust and remains efficient for high dimension and large datasets. The resulting polynomial chaos construction on manifolds permits the adaptation of many uncertainty quantification and statistical tools to emerging questions motivated by data-driven queries.
Polynomial structures in one-loop amplitudes
International Nuclear Information System (INIS)
Britto, Ruth; Feng Bo; Yang Gang
2008-01-01
A general one-loop scattering amplitude may be expanded in terms of master integrals. The coefficients of the master integrals can be obtained from tree-level input in a two-step process. First, use known formulas to write the coefficients of (4-2ε)-dimensional master integrals; these formulas depend on an additional variable, u, which encodes the dimensional shift. Second, convert the u-dependent coefficients of (4-2ε)-dimensional master integrals to explicit coefficients of dimensionally shifted master integrals. This procedure requires the initial formulas for coefficients to have polynomial dependence on u. Here, we give a proof of this property in the case of massless propagators. The proof is constructive. Thus, as a byproduct, we produce different algebraic expressions for the scalar integral coefficients, in which the polynomial property is apparent. In these formulas, the box and pentagon contributions are separated explicitly.
Link polynomial, crossing multiplier and surgery formula
International Nuclear Information System (INIS)
Deguchi, Tetsuo; Yamada, Yasuhiko.
1989-01-01
Relations between link polynomials constructed from exactly solvable lattice models and topological field theory are reviewed. It is found that the surgery formula for a three-sphere S 3 with Wilson lines corresponds to the Markov trace constructed from the exactly solvable models. This indicates that knot theory intimately relates various important subjects such as exactly solvable models, conformal field theories and topological quantum field theories. (author)
Completeness of the ring of polynomials
DEFF Research Database (Denmark)
Thorup, Anders
2015-01-01
Consider the polynomial ring R:=k[X1,…,Xn]R:=k[X1,…,Xn] in n≥2n≥2 variables over an uncountable field k. We prove that R is complete in its adic topology, that is, the translation invariant topology in which the non-zero ideals form a fundamental system of neighborhoods of 0. In addition we pro...
Moments, positive polynomials and their applications
Lasserre, Jean Bernard
2009-01-01
Many important applications in global optimization, algebra, probability and statistics, applied mathematics, control theory, financial mathematics, inverse problems, etc. can be modeled as a particular instance of the Generalized Moment Problem (GMP) . This book introduces a new general methodology to solve the GMP when its data are polynomials and basic semi-algebraic sets. This methodology combines semidefinite programming with recent results from real algebraic geometry to provide a hierarchy of semidefinite relaxations converging to the desired optimal value. Applied on appropriate cones,
Polynomials and identities on real Banach spaces
Czech Academy of Sciences Publication Activity Database
Hájek, Petr Pavel; Kraus, M.
2012-01-01
Roč. 385, č. 2 (2012), s. 1015-1026 ISSN 0022-247X R&D Projects: GA ČR(CZ) GAP201/11/0345 Institutional research plan: CEZ:AV0Z10190503 Keywords : Polynomials on Banach spaces Subject RIV: BA - General Mathematics Impact factor: 1.050, year: 2012 http://www.sciencedirect.com/science/article/pii/S0022247X11006743
Kernel-Based Approximate Dynamic Programming Using Bellman Residual Elimination
2010-02-01
Redding, Mike Robbins, Frant Sobolic, Justin Teo, Tuna Toksoz, Glenn Tournier, Aditya Undurti, Mario Valenti, Andy Whitten, Albert Wu, and Rodrigo...vector algorithms. Neural Computation, 12(5):1207–1245, 2000. [143] P. Schweitzer and A. Seidman. Generalized polynomial approximation in Markovian
Dolgov, Sergey
2015-11-03
We apply the tensor train (TT) decomposition to construct the tensor product polynomial chaos expansion (PCE) of a random field, to solve the stochastic elliptic diffusion PDE with the stochastic Galerkin discretization, and to compute some quantities of interest (mean, variance, and exceedance probabilities). We assume that the random diffusion coefficient is given as a smooth transformation of a Gaussian random field. In this case, the PCE is delivered by a complicated formula, which lacks an analytic TT representation. To construct its TT approximation numerically, we develop the new block TT cross algorithm, a method that computes the whole TT decomposition from a few evaluations of the PCE formula. The new method is conceptually similar to the adaptive cross approximation in the TT format but is more efficient when several tensors must be stored in the same TT representation, which is the case for the PCE. In addition, we demonstrate how to assemble the stochastic Galerkin matrix and to compute the solution of the elliptic equation and its postprocessing, staying in the TT format. We compare our technique with the traditional sparse polynomial chaos and the Monte Carlo approaches. In the tensor product polynomial chaos, the polynomial degree is bounded for each random variable independently. This provides higher accuracy than the sparse polynomial set or the Monte Carlo method, but the cardinality of the tensor product set grows exponentially with the number of random variables. However, when the PCE coefficients are implicitly approximated in the TT format, the computations with the full tensor product polynomial set become possible. In the numerical experiments, we confirm that the new methodology is competitive in a wide range of parameters, especially where high accuracy and high polynomial degrees are required.
Perturbative corrections for approximate inference in gaussian latent variable models
DEFF Research Database (Denmark)
Opper, Manfred; Paquet, Ulrich; Winther, Ole
2013-01-01
Expectation Propagation (EP) provides a framework for approximate inference. When the model under consideration is over a latent Gaussian field, with the approximation being Gaussian, we show how these approximations can systematically be corrected. A perturbative expansion is made of the exact b...... illustrate on tree-structured Ising model approximations. Furthermore, they provide a polynomial-time assessment of the approximation error. We also provide both theoretical and practical insights on the exactness of the EP solution. © 2013 Manfred Opper, Ulrich Paquet and Ole Winther....
Canavos, G. C.
1974-01-01
A study is made of the extent to which the size of the sample affects the accuracy of a quadratic or a cubic polynomial approximation of an experimentally observed quantity, and the trend with regard to improvement in the accuracy of the approximation as a function of sample size is established. The task is made possible through a simulated analysis carried out by the Monte Carlo method in which data are simulated by using several transcendental or algebraic functions as models. Contaminated data of varying amounts are fitted to either quadratic or cubic polynomials, and the behavior of the mean-squared error of the residual variance is determined as a function of sample size. Results indicate that the effect of the size of the sample is significant only for relatively small sizes and diminishes drastically for moderate and large amounts of experimental data.
Geometry of polynomials and root-finding via path-lifting
Kim, Myong-Hi; Martens, Marco; Sutherland, Scott
2018-02-01
Using the interplay between topological, combinatorial, and geometric properties of polynomials and analytic results (primarily the covering structure and distortion estimates), we analyze a path-lifting method for finding approximate zeros, similar to those studied by Smale, Shub, Kim, and others. Given any polynomial, this simple algorithm always converges to a root, except on a finite set of initial points lying on a circle of a given radius. Specifically, the algorithm we analyze consists of iterating where the t k form a decreasing sequence of real numbers and z 0 is chosen on a circle containing all the roots. We show that the number of iterates required to locate an approximate zero of a polynomial f depends only on log\\vert f(z_0)/ρ_\\zeta\\vert (where ρ_\\zeta is the radius of convergence of the branch of f-1 taking 0 to a root ζ) and the logarithm of the angle between f(z_0) and certain critical values. Previous complexity results for related algorithms depend linearly on the reciprocals of these angles. Note that the complexity of the algorithm does not depend directly on the degree of f, but only on the geometry of the critical values. Furthermore, for any polynomial f with distinct roots, the average number of steps required over all starting points taken on a circle containing all the roots is bounded by a constant times the average of log(1/ρ_\\zeta) . The average of log(1/ρ_\\zeta) over all polynomials f with d roots in the unit disk is \
Polynomial estimation of the smoothing splines for the new Finnish reference values for spirometry.
Kainu, Annette; Timonen, Kirsi
2016-07-01
Background Discontinuity of spirometry reference values from childhood into adulthood has been a problem with traditional reference values, thus modern modelling approaches using smoothing spline functions to better depict the transition during growth and ageing have been recently introduced. Following the publication of the new international Global Lung Initiative (GLI2012) reference values also new national Finnish reference values have been calculated using similar GAMLSS-modelling, with spline estimates for mean (Mspline) and standard deviation (Sspline) provided in tables. The aim of this study was to produce polynomial estimates for these spline functions to use in lieu of lookup tables and to assess their validity in the reference population of healthy non-smokers. Methods Linear regression modelling was used to approximate the estimated values for Mspline and Sspline using similar polynomial functions as in the international GLI2012 reference values. Estimated values were compared to original calculations in absolute values, the derived predicted mean and individually calculated z-scores using both values. Results Polynomial functions were estimated for all 10 spirometry variables. The agreement between original lookup table-produced values and polynomial estimates was very good, with no significant differences found. The variation slightly increased in larger predicted volumes, but a range of -0.018 to +0.022 litres of FEV1 representing ± 0.4% of maximum difference in predicted mean. Conclusions Polynomial approximations were very close to the original lookup tables and are recommended for use in clinical practice to facilitate the use of new reference values.
Comparison of matrix exponential methods for fuel burnup calculations
International Nuclear Information System (INIS)
Oh, Hyung Suk; Yang, Won Sik
1999-01-01
Series expansion methods to compute the exponential of a matrix have been compared by applying them to fuel depletion calculations. Specifically, Taylor, Pade, Chebyshev, and rational Chebyshev approximations have been investigated by approximating the exponentials of bum matrices by truncated series of each method with the scaling and squaring algorithm. The accuracy and efficiency of these methods have been tested by performing various numerical tests using one thermal reactor and two fast reactor depletion problems. The results indicate that all the four series methods are accurate enough to be used for fuel depletion calculations although the rational Chebyshev approximation is relatively less accurate. They also show that the rational approximations are more efficient than the polynomial approximations. Considering the computational accuracy and efficiency, the Pade approximation appears to be better than the other methods. Its accuracy is better than the rational Chebyshev approximation, while being comparable to the polynomial approximations. On the other hand, its efficiency is better than the polynomial approximations and is similar to the rational Chebyshev approximation. In particular, for fast reactor depletion calculations, it is faster than the polynomial approximations by a factor of ∼ 1.7. (author). 11 refs., 4 figs., 2 tabs
Statistics of Data Fitting: Flaws and Fixes of Polynomial Analysis of Channeled Spectra
Karstens, William; Smith, David
2013-03-01
Starting from general statistical principles, we have critically examined Baumeister's procedure* for determining the refractive index of thin films from channeled spectra. Briefly, the method assumes that the index and interference fringe order may be approximated by polynomials quadratic and cubic in photon energy, respectively. The coefficients of the polynomials are related by differentiation, which is equivalent to comparing energy differences between fringes. However, we find that when the fringe order is calculated from the published IR index for silicon* and then analyzed with Baumeister's procedure, the results do not reproduce the original index. This problem has been traced to 1. Use of unphysical powers in the polynomials (e.g., time-reversal invariance requires that the index is an even function of photon energy), and 2. Use of insufficient terms of the correct parity. Exclusion of unphysical terms and addition of quartic and quintic terms to the index and order polynomials yields significantly better fits with fewer parameters. This represents a specific example of using statistics to determine if the assumed fitting model adequately captures the physics contained in experimental data. The use of analysis of variance (ANOVA) and the Durbin-Watson statistic to test criteria for the validity of least-squares fitting will be discussed. *D.F. Edwards and E. Ochoa, Appl. Opt. 19, 4130 (1980). Supported in part by the US Department of Energy, Office of Nuclear Physics under contract DE-AC02-06CH11357.
Analysis of Discrete L2 Projection on Polynomial Spaces with Random Evaluations
Migliorati, Giovanni
2014-03-05
We analyze the problem of approximating a multivariate function by discrete least-squares projection on a polynomial space starting from random, noise-free observations. An area of possible application of such technique is uncertainty quantification for computational models. We prove an optimal convergence estimate, up to a logarithmic factor, in the univariate case, when the observation points are sampled in a bounded domain from a probability density function bounded away from zero and bounded from above, provided the number of samples scales quadratically with the dimension of the polynomial space. Optimality is meant in the sense that the weighted L2 norm of the error committed by the random discrete projection is bounded with high probability from above by the best L∞ error achievable in the given polynomial space, up to logarithmic factors. Several numerical tests are presented in both the univariate and multivariate cases, confirming our theoretical estimates. The numerical tests also clarify how the convergence rate depends on the number of sampling points, on the polynomial degree, and on the smoothness of the target function. © 2014 SFoCM.
Analysis of Discrete L2 Projection on Polynomial Spaces with Random Evaluations
Migliorati, Giovanni; Nobile, Fabio; von Schwerin, Erik; Tempone, Raul
2014-01-01
We analyze the problem of approximating a multivariate function by discrete least-squares projection on a polynomial space starting from random, noise-free observations. An area of possible application of such technique is uncertainty quantification for computational models. We prove an optimal convergence estimate, up to a logarithmic factor, in the univariate case, when the observation points are sampled in a bounded domain from a probability density function bounded away from zero and bounded from above, provided the number of samples scales quadratically with the dimension of the polynomial space. Optimality is meant in the sense that the weighted L2 norm of the error committed by the random discrete projection is bounded with high probability from above by the best L∞ error achievable in the given polynomial space, up to logarithmic factors. Several numerical tests are presented in both the univariate and multivariate cases, confirming our theoretical estimates. The numerical tests also clarify how the convergence rate depends on the number of sampling points, on the polynomial degree, and on the smoothness of the target function. © 2014 SFoCM.
Chkifa, Abdellah; Cohen, Albert; Migliorati, Giovanni; Nobile, Fabio; Tempone, Raul
2015-01-01
shown that in the univariate case, the least-squares method is quasi-optimal in expectation in [A. Cohen, M A. Davenport and D. Leviatan. Found. Comput. Math. 13 (2013) 819–834] and in probability in [G. Migliorati, F. Nobile, E. von Schwerin, R. Tempone
Analytic Regularity and Polynomial Approximation of Parametric and Stochastic Elliptic PDEs
2010-05-31
problems on D =]− 1, 1[ and the case of a Fourier expansion, a(x, y) = ā(x) + ∑ k≥0 y2k +1αk cos(2πkx) + ∑ k≥1 y2kβk sin(2πkx) where (αk)k≥0 and (βk)k≥1...the decay estimate | y2k +1αk|+ |y2kβk| ≤ C|k|−s, k ≥ 1, y ∈ U with C depending on the Lip(s, L1)-norm of a(·, y)− ā. Assuming that this norm is
A Fully Polynomial-Time Approximation Scheme for Speed Scaling with Sleep State
Antoniadis, Antonios; Huang, Chien-Chung; Ott, Sebastian
2014-01-01
We study classical deadline-based preemptive scheduling of tasks in a computing environment equipped with both dynamic speed scaling and sleep state capabilities: Each task is specified by a release time, a deadline and a processing volume, and has to be scheduled on a single, speed-scalable processor that is supplied with a sleep state. In the sleep state, the processor consumes no energy, but a constant wake-up cost is required to transition back to the active state. In contrast to speed sc...
A Polynomial Estimate of Railway Line Delay
DEFF Research Database (Denmark)
Cerreto, Fabrizio; Harrod, Steven; Nielsen, Otto Anker
2017-01-01
Railway service may be measured by the aggregate delay over a time horizon or due to an event. Timetables for railway service may dampen aggregate delay by addition of additional process time, either supplement time or buffer time. The evaluation of these variables has previously been performed...... by numerical analysis with simulation. This paper proposes an analytical estimate of aggregate delay with a polynomial form. The function returns the aggregate delay of a railway line resulting from an initial, primary, delay. Analysis of the function demonstrates that there should be a balance between the two...
Linear operator pencils on Lie algebras and Laurent biorthogonal polynomials
International Nuclear Information System (INIS)
Gruenbaum, F A; Vinet, Luc; Zhedanov, Alexei
2004-01-01
We study operator pencils on generators of the Lie algebras sl 2 and the oscillator algebra. These pencils are linear in a spectral parameter λ. The corresponding generalized eigenvalue problem gives rise to some sets of orthogonal polynomials and Laurent biorthogonal polynomials (LBP) expressed in terms of the Gauss 2 F 1 and degenerate 1 F 1 hypergeometric functions. For special choices of the parameters of the pencils, we identify the resulting polynomials with the Hendriksen-van Rossum LBP which are widely believed to be the biorthogonal analogues of the classical orthogonal polynomials. This places these examples under the umbrella of the generalized bispectral problem which is considered here. Other (non-bispectral) cases give rise to some 'nonclassical' orthogonal polynomials including Tricomi-Carlitz and random-walk polynomials. An application to solutions of relativistic Toda chain is considered
Need for higher order polynomial basis for polynomial nodal methods employed in LWR calculations
International Nuclear Information System (INIS)
Taiwo, T.A.; Palmiotti, G.
1997-01-01
The paper evaluates the accuracy and efficiency of sixth order polynomial solutions and the use of one radial node per core assembly for pressurized water reactor (PWR) core power distributions and reactivities. The computer code VARIANT was modified to calculate sixth order polynomial solutions for a hot zero power benchmark problem in which a control assembly along a core axis is assumed to be out of the core. Results are presented for the VARIANT, DIF3D-NODAL, and DIF3D-finite difference codes. The VARIANT results indicate that second order expansion of the within-node source and linear representation of the node surface currents are adequate for this problem. The results also demonstrate the improvement in the VARIANT solution when the order of the polynomial expansion of the within-node flux is increased from fourth to sixth order. There is a substantial saving in computational time for using one radial node per assembly with the sixth order expansion compared to using four or more nodes per assembly and fourth order polynomial solutions. 11 refs., 1 tab
Czech Academy of Sciences Publication Activity Database
Knížek, J.; Tichý, Petr; Beránek, L.; Šindelář, Jan; Vojtěšek, B.; Bouchal, P.; Nenutil, R.; Dedík, O.
2010-01-01
Roč. 7, č. 10 (2010), s. 48-60 ISSN 0974-5718 Grant - others:GA MZd(CZ) NS9812; GA ČR(CZ) GAP304/10/0868 Institutional research plan: CEZ:AV0Z10300504; CEZ:AV0Z10750506 Keywords : polynomial regression * orthogonalization * numerical methods * markers * biomarkers Subject RIV: BA - General Mathematics
Multiple Meixner polynomials and non-Hermitian oscillator Hamiltonians
Ndayiragije, François; Van Assche, Walter
2013-01-01
Multiple Meixner polynomials are polynomials in one variable which satisfy orthogonality relations with respect to $r>1$ different negative binomial distributions (Pascal distributions). There are two kinds of multiple Meixner polynomials, depending on the selection of the parameters in the negative binomial distribution. We recall their definition and some formulas and give generating functions and explicit expressions for the coefficients in the nearest neighbor recurrence relation. Followi...
On Roots of Polynomials and Algebraically Closed Fields
Directory of Open Access Journals (Sweden)
Schwarzweller Christoph
2017-10-01
Full Text Available In this article we further extend the algebraic theory of polynomial rings in Mizar [1, 2, 3]. We deal with roots and multiple roots of polynomials and show that both the real numbers and finite domains are not algebraically closed [5, 7]. We also prove the identity theorem for polynomials and that the number of multiple roots is bounded by the polynomial’s degree [4, 6].
Open Problems Related to the Hurwitz Stability of Polynomials Segments
Directory of Open Access Journals (Sweden)
Baltazar Aguirre-Hernández
2018-01-01
Full Text Available In the framework of robust stability analysis of linear systems, the development of techniques and methods that help to obtain necessary and sufficient conditions to determine stability of convex combinations of polynomials is paramount. In this paper, knowing that Hurwitz polynomials set is not a convex set, a brief overview of some results and open problems concerning the stability of the convex combinations of Hurwitz polynomials is then provided.
General quantum polynomials: irreducible modules and Morita equivalence
International Nuclear Information System (INIS)
Artamonov, V A
1999-01-01
In this paper we continue the investigation of the structure of finitely generated modules over rings of general quantum (Laurent) polynomials. We obtain a description of the lattice of submodules of periodic finitely generated modules and describe the irreducible modules. We investigate the problem of Morita equivalence of rings of general quantum polynomials, consider properties of division rings of fractions, and solve Zariski's problem for quantum polynomials
Applications of polynomial optimization in financial risk investment
Zeng, Meilan; Fu, Hongwei
2017-09-01
Recently, polynomial optimization has many important applications in optimization, financial economics and eigenvalues of tensor, etc. This paper studies the applications of polynomial optimization in financial risk investment. We consider the standard mean-variance risk measurement model and the mean-variance risk measurement model with transaction costs. We use Lasserre's hierarchy of semidefinite programming (SDP) relaxations to solve the specific cases. The results show that polynomial optimization is effective for some financial optimization problems.
Root and Critical Point Behaviors of Certain Sums of Polynomials
Indian Academy of Sciences (India)
13
There is an extensive literature concerning roots of sums of polynomials. Many papers and books([5], [6],. [7]) have written about these polynomials. Perhaps the most immediate question of sums of polynomials,. A + B = C, is “given bounds for the roots of A and B, what bounds can be given for the roots of C?” By. Fell [3], if ...
Simulation of aspheric tolerance with polynomial fitting
Li, Jing; Cen, Zhaofeng; Li, Xiaotong
2018-01-01
The shape of the aspheric lens changes caused by machining errors, resulting in a change in the optical transfer function, which affects the image quality. At present, there is no universally recognized tolerance criterion standard for aspheric surface. To study the influence of aspheric tolerances on the optical transfer function, the tolerances of polynomial fitting are allocated on the aspheric surface, and the imaging simulation is carried out by optical imaging software. Analysis is based on a set of aspheric imaging system. The error is generated in the range of a certain PV value, and expressed as a form of Zernike polynomial, which is added to the aspheric surface as a tolerance term. Through optical software analysis, the MTF of optical system can be obtained and used as the main evaluation index. Evaluate whether the effect of the added error on the MTF of the system meets the requirements of the current PV value. Change the PV value and repeat the operation until the acceptable maximum allowable PV value is obtained. According to the actual processing technology, consider the error of various shapes, such as M type, W type, random type error. The new method will provide a certain development for the actual free surface processing technology the reference value.
Quadratic polynomial interpolation on triangular domain
Li, Ying; Zhang, Congcong; Yu, Qian
2018-04-01
In the simulation of natural terrain, the continuity of sample points are not in consonance with each other always, traditional interpolation methods often can't faithfully reflect the shape information which lie in data points. So, a new method for constructing the polynomial interpolation surface on triangular domain is proposed. Firstly, projected the spatial scattered data points onto a plane and then triangulated them; Secondly, A C1 continuous piecewise quadric polynomial patch was constructed on each vertex, all patches were required to be closed to the line-interpolation one as far as possible. Lastly, the unknown quantities were gotten by minimizing the object functions, and the boundary points were treated specially. The result surfaces preserve as many properties of data points as possible under conditions of satisfying certain accuracy and continuity requirements, not too convex meantime. New method is simple to compute and has a good local property, applicable to shape fitting of mines and exploratory wells and so on. The result of new surface is given in experiments.
On factorization of generalized Macdonald polynomials
Energy Technology Data Exchange (ETDEWEB)
Kononov, Ya. [Landau Institute for Theoretical Physics, Chernogolovka (Russian Federation); HSE, Math Department, Moscow (Russian Federation); Morozov, A. [ITEP, Moscow (Russian Federation); Institute for Information Transmission Problems, Moscow (Russian Federation); National Research Nuclear University MEPhI, Moscow (Russian Federation)
2016-08-15
A remarkable feature of Schur functions - the common eigenfunctions of cut-and-join operators from W{sub ∞} - is that they factorize at the peculiar two-parametric topological locus in the space of time variables, which is known as the hook formula for quantum dimensions of representations of U{sub q}(SL{sub N}) and which plays a big role in various applications. This factorization survives at the level of Macdonald polynomials. We look for its further generalization to generalized Macdonald polynomials (GMPs), associated in the same way with the toroidal Ding-Iohara-Miki algebras, which play the central role in modern studies in Seiberg-Witten-Nekrasov theory. In the simplest case of the first-coproduct eigenfunctions, where GMP depend on just two sets of time variables, we discover a weak factorization - on a one- (rather than four-) parametric slice of the topological locus, which is already a very non-trivial property, calling for proof and better understanding. (orig.)
Positive trigonometric polynomials and signal processing applications
Dumitrescu, Bogdan
2017-01-01
This revised edition is made up of two parts: theory and applications. Though many of the fundamental results are still valid and used, new and revised material is woven throughout the text. As with the original book, the theory of sum-of-squares trigonometric polynomials is presented unitarily based on the concept of Gram matrix (extended to Gram pair or Gram set). The programming environment has also evolved, and the books examples are changed accordingly. The applications section is organized as a collection of related problems that use systematically the theoretical results. All the problems are brought to a semi-definite programming form, ready to be solved with algorithms freely available, like those from the libraries SeDuMi, CVX and Pos3Poly. A new chapter discusses applications in super-resolution theory, where Bounded Real Lemma for trigonometric polynomials is an important tool. This revision is written to be more appealing and easier to use for new readers. < Features updated information on LMI...
On factorization of generalized Macdonald polynomials
Kononov, Ya.; Morozov, A.
2016-08-01
A remarkable feature of Schur functions—the common eigenfunctions of cut-and-join operators from W_∞ —is that they factorize at the peculiar two-parametric topological locus in the space of time variables, which is known as the hook formula for quantum dimensions of representations of U_q(SL_N) and which plays a big role in various applications. This factorization survives at the level of Macdonald polynomials. We look for its further generalization to generalized Macdonald polynomials (GMPs), associated in the same way with the toroidal Ding-Iohara-Miki algebras, which play the central role in modern studies in Seiberg-Witten-Nekrasov theory. In the simplest case of the first-coproduct eigenfunctions, where GMP depend on just two sets of time variables, we discover a weak factorization—on a one- (rather than four-) parametric slice of the topological locus, which is already a very non-trivial property, calling for proof and better understanding.
From sequences to polynomials and back, via operator orderings
Energy Technology Data Exchange (ETDEWEB)
Amdeberhan, Tewodros, E-mail: tamdeber@tulane.edu; Dixit, Atul, E-mail: adixit@tulane.edu; Moll, Victor H., E-mail: vhm@tulane.edu [Department of Mathematics, Tulane University, New Orleans, Louisiana 70118 (United States); De Angelis, Valerio, E-mail: vdeangel@xula.edu [Department of Mathematics, Xavier University of Louisiana, New Orleans, Louisiana 70125 (United States); Vignat, Christophe, E-mail: vignat@tulane.edu [Department of Mathematics, Tulane University, New Orleans, Louisiana 70118, USA and L.S.S. Supelec, Universite d' Orsay (France)
2013-12-15
Bender and Dunne [“Polynomials and operator orderings,” J. Math. Phys. 29, 1727–1731 (1988)] showed that linear combinations of words q{sup k}p{sup n}q{sup n−k}, where p and q are subject to the relation qp − pq = ı, may be expressed as a polynomial in the symbol z=1/2 (qp+pq). Relations between such polynomials and linear combinations of the transformed coefficients are explored. In particular, examples yielding orthogonal polynomials are provided.
On Multiple Interpolation Functions of the -Genocchi Polynomials
Directory of Open Access Journals (Sweden)
Jin Jeong-Hee
2010-01-01
Full Text Available Abstract Recently, many mathematicians have studied various kinds of the -analogue of Genocchi numbers and polynomials. In the work (New approach to q-Euler, Genocchi numbers and their interpolation functions, "Advanced Studies in Contemporary Mathematics, vol. 18, no. 2, pp. 105–112, 2009.", Kim defined new generating functions of -Genocchi, -Euler polynomials, and their interpolation functions. In this paper, we give another definition of the multiple Hurwitz type -zeta function. This function interpolates -Genocchi polynomials at negative integers. Finally, we also give some identities related to these polynomials.
Generalized Pseudospectral Method and Zeros of Orthogonal Polynomials
Directory of Open Access Journals (Sweden)
Oksana Bihun
2018-01-01
Full Text Available Via a generalization of the pseudospectral method for numerical solution of differential equations, a family of nonlinear algebraic identities satisfied by the zeros of a wide class of orthogonal polynomials is derived. The generalization is based on a modification of pseudospectral matrix representations of linear differential operators proposed in the paper, which allows these representations to depend on two, rather than one, sets of interpolation nodes. The identities hold for every polynomial family pνxν=0∞ orthogonal with respect to a measure supported on the real line that satisfies some standard assumptions, as long as the polynomials in the family satisfy differential equations Apν(x=qν(xpν(x, where A is a linear differential operator and each qν(x is a polynomial of degree at most n0∈N; n0 does not depend on ν. The proposed identities generalize known identities for classical and Krall orthogonal polynomials, to the case of the nonclassical orthogonal polynomials that belong to the class described above. The generalized pseudospectral representations of the differential operator A for the case of the Sonin-Markov orthogonal polynomials, also known as generalized Hermite polynomials, are presented. The general result is illustrated by new algebraic relations satisfied by the zeros of the Sonin-Markov polynomials.
Implementation of optimal Galerkin and Collocation approximations of PDEs with Random Coefficients
Beck, Joakim
2011-12-22
In this work we first focus on the Stochastic Galerkin approximation of the solution u of an elliptic stochastic PDE. We rely on sharp estimates for the decay of the coefficients of the spectral expansion of u on orthogonal polynomials to build a sequence of polynomial subspaces that features better convergence properties compared to standard polynomial subspaces such as Total Degree or Tensor Product. We consider then the Stochastic Collocation method, and use the previous estimates to introduce a new effective class of Sparse Grids, based on the idea of selecting a priori the most profitable hierarchical surpluses, that, again, features better convergence properties compared to standard Smolyak or tensor product grids.
Space-angle approximations in the variational nodal method
International Nuclear Information System (INIS)
Lewis, E. E.; Palmiotti, G.; Taiwo, T.
1999-01-01
The variational nodal method is formulated such that the angular and spatial approximations maybe examined separately. Spherical harmonic, simplified spherical harmonic, and discrete ordinate approximations are coupled to the primal hybrid finite element treatment of the spatial variables. Within this framework, two classes of spatial trial functions are presented: (1) orthogonal polynomials for the treatment of homogeneous nodes and (2) bilinear finite subelement trial functions for the treatment of fuel assembly sized nodes in which fuel-pin cell cross sections are represented explicitly. Polynomial and subelement trial functions are applied to benchmark water-reactor problems containing MOX fuel using spherical harmonic and simplified spherical harmonic approximations. The resulting accuracy and computing costs are compared
Cvitaš, Marko T; Althorpe, Stuart C
2013-08-14
We extend a recently developed wave packet method for computing the state-to-state quantum dynamics of AB + CD → ABC + D reactions [M. T. Cvitaš and S. C. Althorpe, J. Phys. Chem. A 113, 4557 (2009)] to include the Chebyshev propagator. The method uses the further partitioned approach to reactant-product decoupling, which uses artificial decoupling potentials to partition the coordinate space of the reaction into separate reactant, product, and transition-state regions. Separate coordinates and basis sets can then be used that are best adapted to each region. We derive improved Chebyshev partitioning formulas which include Mandelshtam-and-Taylor-type decoupling potentials, and which are essential for the non-unitary discrete variable representations that must be used in 4-atom reactive scattering calculations. Numerical tests on the fully dimensional OH + H2 → H2O + H reaction for J = 0 show that the new version of the method is as efficient as the previously developed split-operator version. The advantages of the Chebyshev propagator (most notably the ease of parallelization for J > 0) can now be fully exploited in state-to-state reactive scattering calculations on 4-atom reactions.
Relations between zeros of special polynomials associated with the Painleve equations
International Nuclear Information System (INIS)
Kudryashov, Nikolai A.; Demina, Maria V.
2007-01-01
A method for finding relations of roots of polynomials is presented. Our approach allows us to get a number of relations between the zeros of the classical polynomials as well as the roots of special polynomials associated with rational solutions of the Painleve equations. We apply the method to obtain the relations for the zeros of several polynomials. These are: the Hermite polynomials, the Laguerre polynomials, the Yablonskii-Vorob'ev polynomials, the generalized Okamoto polynomials, and the generalized Hermite polynomials. All the relations found can be considered as analogues of generalized Stieltjes relations
Energy Technology Data Exchange (ETDEWEB)
Tumelero, Fernanda, E-mail: fernanda.tumelero@yahoo.com.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Petersen, Claudio Z.; Goncalves, Glenio A.; Lazzari, Luana, E-mail: claudiopeteren@yahoo.com.br, E-mail: gleniogoncalves@yahoo.com.br, E-mail: luana-lazzari@hotmail.com [Universidade Federal de Pelotas (DME/UFPEL), Capao do Leao, RS (Brazil). Instituto de Fisica e Matematica
2015-07-01
In this work, we present a solution of the Neutron Point Kinetics Equations with temperature feedback effects applying the Polynomial Approach Method. For the solution, we consider one and six groups of delayed neutrons precursors with temperature feedback effects and constant reactivity. The main idea is to expand the neutron density, delayed neutron precursors and temperature as a power series considering the reactivity as an arbitrary function of the time in a relatively short time interval around an ordinary point. In the first interval one applies the initial conditions of the problem and the analytical continuation is used to determine the solutions of the next intervals. With the application of the Polynomial Approximation Method it is possible to overcome the stiffness problem of the equations. In such a way, one varies the time step size of the Polynomial Approach Method and performs an analysis about the precision and computational time. Moreover, we compare the method with different types of approaches (linear, quadratic and cubic) of the power series. The answer of neutron density and temperature obtained by numerical simulations with linear approximation are compared with results in the literature. (author)
International Nuclear Information System (INIS)
Tumelero, Fernanda; Petersen, Claudio Z.; Goncalves, Glenio A.; Lazzari, Luana
2015-01-01
In this work, we present a solution of the Neutron Point Kinetics Equations with temperature feedback effects applying the Polynomial Approach Method. For the solution, we consider one and six groups of delayed neutrons precursors with temperature feedback effects and constant reactivity. The main idea is to expand the neutron density, delayed neutron precursors and temperature as a power series considering the reactivity as an arbitrary function of the time in a relatively short time interval around an ordinary point. In the first interval one applies the initial conditions of the problem and the analytical continuation is used to determine the solutions of the next intervals. With the application of the Polynomial Approximation Method it is possible to overcome the stiffness problem of the equations. In such a way, one varies the time step size of the Polynomial Approach Method and performs an analysis about the precision and computational time. Moreover, we compare the method with different types of approaches (linear, quadratic and cubic) of the power series. The answer of neutron density and temperature obtained by numerical simulations with linear approximation are compared with results in the literature. (author)
A quasi-static polynomial nodal method for nuclear reactor analysis
International Nuclear Information System (INIS)
Gehin, J.C.
1992-09-01
Modern nodal methods are currently available which can accurately and efficiently solve the static and transient neutron diffusion equations. Most of the methods, however, are limited to two energy groups for practical application. The objective of this research is the development of a static and transient, multidimensional nodal method which allows more than two energy groups and uses a non-linear iterative method for efficient solution of the nodal equations. For both the static and transient methods, finite-difference equations which are corrected by the use of discontinuity factors are derived. The discontinuity factors are computed from a polynomial nodal method using a non-linear iteration technique. The polynomial nodal method is based upon a quartic approximation and utilizes a quadratic transverse-leakage approximation. The solution of the time-dependent equations is performed by the use of a quasi-static method in which the node-averaged fluxes are factored into shape and amplitude functions. The application of the quasi-static polynomial method to several benchmark problems demonstrates that the accuracy is consistent with that of other nodal methods. The use of the quasi-static method is shown to substantially reduce the computation time over the traditional fully-implicit time-integration method. Problems involving thermal-hydraulic feedback are accurately, and efficiently, solved by performing several reactivity/thermal-hydraulic updates per shape calculation
A quasi-static polynomial nodal method for nuclear reactor analysis
Energy Technology Data Exchange (ETDEWEB)
Gehin, Jess C. [Massachusetts Inst. of Tech., Cambridge, MA (United States)
1992-09-01
Modern nodal methods are currently available which can accurately and efficiently solve the static and transient neutron diffusion equations. Most of the methods, however, are limited to two energy groups for practical application. The objective of this research is the development of a static and transient, multidimensional nodal method which allows more than two energy groups and uses a non-linear iterative method for efficient solution of the nodal equations. For both the static and transient methods, finite-difference equations which are corrected by the use of discontinuity factors are derived. The discontinuity factors are computed from a polynomial nodal method using a non-linear iteration technique. The polynomial nodal method is based upon a quartic approximation and utilizes a quadratic transverse-leakage approximation. The solution of the time-dependent equations is performed by the use of a quasi-static method in which the node-averaged fluxes are factored into shape and amplitude functions. The application of the quasi-static polynomial method to several benchmark problems demonstrates that the accuracy is consistent with that of other nodal methods. The use of the quasi-static method is shown to substantially reduce the computation time over the traditional fully-implicit time-integration method. Problems involving thermal-hydraulic feedback are accurately, and efficiently, solved by performing several reactivity/thermal-hydraulic updates per shape calculation.
Current advances on polynomial resultant formulations
Sulaiman, Surajo; Aris, Nor'aini; Ahmad, Shamsatun Nahar
2017-08-01
Availability of computer algebra systems (CAS) lead to the resurrection of the resultant method for eliminating one or more variables from the polynomials system. The resultant matrix method has advantages over the Groebner basis and Ritt-Wu method due to their high complexity and storage requirement. This paper focuses on the current resultant matrix formulations and investigates their ability or otherwise towards producing optimal resultant matrices. A determinantal formula that gives exact resultant or a formulation that can minimize the presence of extraneous factors in the resultant formulation is often sought for when certain conditions that it exists can be determined. We present some applications of elimination theory via resultant formulations and examples are given to explain each of the presented settings.
Differential operators associated with Hermite polynomials
International Nuclear Information System (INIS)
Onyango Otieno, V.P.
1989-09-01
This paper considers the boundary value problems for the Hermite differential equation -(e -x2 y'(x))'+e -x2 y(x)=λe -x2 y(x), (x is an element of (-∞, ∞)) in both the so-called right-definite and left-definite cases based partly on a classical approach due to E.C. Titchmarsh. We then link the Titchmarsh approach with operator theoretic results in the spaces L w 2 (-∞, ∞) and H p,q 2 (-∞, ∞). The results in the left-definite case provide an indirect proof of the completeness of the Hermite polynomials in L w 2 (-∞, ∞). (author). 17 refs
Spherical harmonics and energy polynomial solution of the Boltzmann equation for neutrons, 1
International Nuclear Information System (INIS)
Toledo, P.S. de
1974-01-01
The approximate solution of the source-free energy-dependent Boltzmann transport equation for neutrons in plane geometry and isotropic scattering case was given by Leonard and Ferziger using a truncated development in a series of energy-polynomials for the energy dependent neutron flux and solving exactly for the angular dependence. The presence in the general solution of eigenfunctions belonging to a continuous spectrum gives rise to difficult analytical problems in the application of their method even to simple problems. To avoid such difficulties, the angular dependence is treated by a spherical harmonics method and a general solution of the energy-dependent transport equation in plane geometry and isotropic scattering is obtained, in spite of the appearance of matrices as argument of the angular polynomials [pt
International Nuclear Information System (INIS)
Prastyaningrum, I.; Cari, C.; Suparmi, A.
2016-01-01
The approximation analytical solution of Dirac equation for Modified Poschl Teller plus Trigonometric Scarf Potential are investigated numerically in terms of finite Romanovsky Polynomial. The combination of two potentials are substituted into Dirac Equation then the variables are separated into radial and angular parts. The Dirac equation is solved by using Romanovsky Polynomial Method. The equation that can reduce from the second order of differential equation into the differential equation of hypergeometry type by substituted variable method. The energy spectrum is numerically solved using Matlab 2011. Where the increase in the radial quantum number nr and variable of modified Poschl Teller Potential causes the energy to decrease. The radial and the angular part of the wave function also visualized with Matlab 2011. The results show, by the disturbance of a combination between this potential can change the wave function of the radial and angular part. (paper)
Connection coefficients between Boas-Buck polynomial sets
Cheikh, Y. Ben; Chaggara, H.
2006-07-01
In this paper, a general method to express explicitly connection coefficients between two Boas-Buck polynomial sets is presented. As application, we consider some generalized hypergeometric polynomials, from which we derive some well-known results including duplication and inversion formulas.
Mathematical Use Of Polynomials Of Different End Periods Of ...
African Journals Online (AJOL)
This paper focused on how polynomials of different end period of random numbers can be used in the application of encryption and decryption of a message. Eight steps were used in generating information on how polynomials of different end periods of random numbers in the application of encryption and decryption of a ...
On the Lorentz degree of a product of polynomials
Ait-Haddou, Rachid
2015-01-01
In this note, we negatively answer two questions of T. Erdélyi (1991, 2010) on possible lower bounds on the Lorentz degree of product of two polynomials. We show that the correctness of one question for degree two polynomials is a direct consequence
Exponential time paradigms through the polynomial time lens
Drucker, A.; Nederlof, J.; Santhanam, R.; Sankowski, P.; Zaroliagis, C.
2016-01-01
We propose a general approach to modelling algorithmic paradigms for the exact solution of NP-hard problems. Our approach is based on polynomial time reductions to succinct versions of problems solvable in polynomial time. We use this viewpoint to explore and compare the power of paradigms such as
On polynomial selection for the general number field sieve
Kleinjung, Thorsten
2006-12-01
The general number field sieve (GNFS) is the asymptotically fastest algorithm for factoring large integers. Its runtime depends on a good choice of a polynomial pair. In this article we present an improvement of the polynomial selection method of Montgomery and Murphy which has been used in recent GNFS records.
A Combinatorial Proof of a Result on Generalized Lucas Polynomials
Directory of Open Access Journals (Sweden)
Laugier Alexandre
2016-09-01
Full Text Available We give a combinatorial proof of an elementary property of generalized Lucas polynomials, inspired by [1]. These polynomials in s and t are defined by the recurrence relation 〈n〉 = s〈n-1〉+t〈n-2〉 for n ≥ 2. The initial values are 〈0〉 = 2; 〈1〉= s, respectively.
Some Results on the Independence Polynomial of Unicyclic Graphs
Directory of Open Access Journals (Sweden)
Oboudi Mohammad Reza
2018-05-01
Full Text Available Let G be a simple graph on n vertices. An independent set in a graph is a set of pairwise non-adjacent vertices. The independence polynomial of G is the polynomial I(G,x=∑k=0ns(G,kxk$I(G,x = \\sum\
Generalized Freud's equation and level densities with polynomial
Indian Academy of Sciences (India)
Home; Journals; Pramana – Journal of Physics; Volume 81; Issue 2. Generalized Freud's equation and level densities with polynomial potential. Akshat Boobna Saugata Ghosh. Research Articles Volume 81 ... Keywords. Orthogonal polynomial; Freud's equation; Dyson–Mehta method; methods of resolvents; level density.
Higher order branching of periodic orbits from polynomial isochrones
Directory of Open Access Journals (Sweden)
B. Toni
1999-09-01
Full Text Available We discuss the higher order local bifurcations of limit cycles from polynomial isochrones (linearizable centers when the linearizing transformation is explicitly known and yields a polynomial perturbation one-form. Using a method based on the relative cohomology decomposition of polynomial one-forms complemented with a step reduction process, we give an explicit formula for the overall upper bound of branch points of limit cycles in an arbitrary $n$ degree polynomial perturbation of the linear isochrone, and provide an algorithmic procedure to compute the upper bound at successive orders. We derive a complete analysis of the nonlinear cubic Hamiltonian isochrone and show that at most nine branch points of limit cycles can bifurcate in a cubic polynomial perturbation. Moreover, perturbations with exactly two, three, four, six, and nine local families of limit cycles may be constructed.
Describing Quadratic Cremer Point Polynomials by Parabolic Perturbations
DEFF Research Database (Denmark)
Sørensen, Dan Erik Krarup
1996-01-01
We describe two infinite order parabolic perturbation proceduresyielding quadratic polynomials having a Cremer fixed point. The main ideais to obtain the polynomial as the limit of repeated parabolic perturbations.The basic tool at each step is to control the behaviour of certain externalrays.......Polynomials of the Cremer type correspond to parameters at the boundary of ahyperbolic component of the Mandelbrot set. In this paper we concentrate onthe main cardioid component. We investigate the differences between two-sided(i.e. alternating) and one-sided parabolic perturbations.In the two-sided case, we prove...... the existence of polynomials having an explicitlygiven external ray accumulating both at the Cremer point and at its non-periodicpreimage. We think of the Julia set as containing a "topologists double comb".In the one-sided case we prove a weaker result: the existence of polynomials havingan explicitly given...
q-analogue of the Krawtchouk and Meixner orthogonal polynomials
International Nuclear Information System (INIS)
Campigotto, C.; Smirnov, Yu.F.; Enikeev, S.G.
1993-06-01
The comparative analysis of Krawtchouk polynomials on a uniform grid with Wigner D-functions for the SU(2) group is presented. As a result the partnership between corresponding properties of the polynomials and D-functions is established giving the group-theoretical interpretation of the Krawtchouk polynomials properties. In order to extend such an analysis on the quantum groups SU q (2) and SU q (1,1), q-analogues of Krawtchouk and Meixner polynomials of a discrete variable are studied. The total set of characteristics of these polynomials is calculated, including the orthogonality condition, normalization factor, recurrent relation, the explicit analytic expression, the Rodrigues formula, the difference derivative formula and various particular cases and values. (R.P.) 22 refs.; 2 tabs
Primitive polynomials selection method for pseudo-random number generator
Anikin, I. V.; Alnajjar, Kh
2018-01-01
In this paper we suggested the method for primitive polynomials selection of special type. This kind of polynomials can be efficiently used as a characteristic polynomials for linear feedback shift registers in pseudo-random number generators. The proposed method consists of two basic steps: finding minimum-cost irreducible polynomials of the desired degree and applying primitivity tests to get the primitive ones. Finally two primitive polynomials, which was found by the proposed method, used in pseudorandom number generator based on fuzzy logic (FRNG) which had been suggested before by the authors. The sequences generated by new version of FRNG have low correlation magnitude, high linear complexity, less power consumption, is more balanced and have better statistical properties.
Orthogonal polynomials derived from the tridiagonal representation approach
Alhaidari, A. D.
2018-01-01
The tridiagonal representation approach is an algebraic method for solving second order differential wave equations. Using this approach in the solution of quantum mechanical problems, we encounter two new classes of orthogonal polynomials whose properties give the structure and dynamics of the corresponding physical system. For a certain range of parameters, one of these polynomials has a mix of continuous and discrete spectra making it suitable for describing physical systems with both scattering and bound states. In this work, we define these polynomials by their recursion relations and highlight some of their properties using numerical means. Due to the prime significance of these polynomials in physics, we hope that our short expose will encourage experts in the field of orthogonal polynomials to study them and derive their properties (weight functions, generating functions, asymptotics, orthogonality relations, zeros, etc.) analytically.
Multiple Meixner polynomials and non-Hermitian oscillator Hamiltonians
International Nuclear Information System (INIS)
Ndayiragije, F; Van Assche, W
2013-01-01
Multiple Meixner polynomials are polynomials in one variable which satisfy orthogonality relations with respect to r > 1 different negative binomial distributions (Pascal distributions). There are two kinds of multiple Meixner polynomials, depending on the selection of the parameters in the negative binomial distribution. We recall their definition and some formulas and give generating functions and explicit expressions for the coefficients in the nearest neighbor recurrence relation. Following a recent construction of Miki, Tsujimoto, Vinet and Zhedanov (for multiple Meixner polynomials of the first kind), we construct r > 1 non-Hermitian oscillator Hamiltonians in r dimensions which are simultaneously diagonalizable and for which the common eigenstates are expressed in terms of multiple Meixner polynomials of the second kind. (paper)
Polynomial fuzzy model-based approach for underactuated surface vessels
DEFF Research Database (Denmark)
Khooban, Mohammad Hassan; Vafamand, Navid; Dragicevic, Tomislav
2018-01-01
The main goal of this study is to introduce a new polynomial fuzzy model-based structure for a class of marine systems with non-linear and polynomial dynamics. The suggested technique relies on a polynomial Takagi–Sugeno (T–S) fuzzy modelling, a polynomial dynamic parallel distributed compensation...... surface vessel (USV). Additionally, in order to overcome the USV control challenges, including the USV un-modelled dynamics, complex nonlinear dynamics, external disturbances and parameter uncertainties, the polynomial fuzzy model representation is adopted. Moreover, the USV-based control structure...... and a sum-of-squares (SOS) decomposition. The new proposed approach is a generalisation of the standard T–S fuzzy models and linear matrix inequality which indicated its effectiveness in decreasing the tracking time and increasing the efficiency of the robust tracking control problem for an underactuated...
A note on some identities of derangement polynomials.
Kim, Taekyun; Kim, Dae San; Jang, Gwan-Woo; Kwon, Jongkyum
2018-01-01
The problem of counting derangements was initiated by Pierre Rémond de Montmort in 1708 (see Carlitz in Fibonacci Q. 16(3):255-258, 1978, Clarke and Sved in Math. Mag. 66(5):299-303, 1993, Kim, Kim and Kwon in Adv. Stud. Contemp. Math. (Kyungshang) 28(1):1-11 2018. A derangement is a permutation that has no fixed points, and the derangement number [Formula: see text] is the number of fixed-point-free permutations on an n element set. In this paper, we study the derangement polynomials and investigate some interesting properties which are related to derangement numbers. Also, we study two generalizations of derangement polynomials, namely higher-order and r -derangement polynomials, and show some relations between them. In addition, we express several special polynomials in terms of the higher-order derangement polynomials by using umbral calculus.
International Nuclear Information System (INIS)
Chen Changyuan; Sun Dongsheng; Lu Falin
2007-01-01
Using the exponential function transformation approach along with an approximation for the centrifugal potential, the radial Klein-Gordon equation with the vector and scalar Hulthen potential is transformed to a hypergeometric differential equation. The approximate analytical solutions of bound states are attained for different l. The analytical energy equation and the unnormalized radial wave functions expressed in terms of hypergeometric polynomials are given
Weighted approximation by the q-Szász-Schurer-beta type operators
Yüksel, İsmet; Dinlemez, ülkü
2014-01-01
In this study, we investigate approximation properties of a Schurer type generalization of q-Szász-beta type operators. We estimate the rate of weighted approximation of these operators for functions of polynomial growth on the interval [0,∞).
Quadratic head loss approximations for optimisation problems in water supply networks
Pecci, Filippo; Abraham, E.; I, Stoianov
2017-01-01
This paper presents a novel analysis of the accuracy of quadratic approximations for the Hazen–Williams (HW) head loss formula, which enables the control of constraint violations in optimisation problems for water supply networks. The two smooth polynomial approximations considered here minimise the
Solving the Rational Polynomial Coefficients Based on L Curve
Zhou, G.; Li, X.; Yue, T.; Huang, W.; He, C.; Huang, Y.
2018-05-01
The rational polynomial coefficients (RPC) model is a generalized sensor model, which can achieve high approximation accuracy. And it is widely used in the field of photogrammetry and remote sensing. Least square method is usually used to determine the optimal parameter solution of the rational function model. However the distribution of control points is not uniform or the model is over-parameterized, which leads to the singularity of the coefficient matrix of the normal equation. So the normal equation becomes ill conditioned equation. The obtained solutions are extremely unstable and even wrong. The Tikhonov regularization can effectively improve and solve the ill conditioned equation. In this paper, we calculate pathological equations by regularization method, and determine the regularization parameters by L curve. The results of the experiments on aerial format photos show that the accuracy of the first-order RPC with the equal denominators has the highest accuracy. The high order RPC model is not necessary in the processing of dealing with frame images, as the RPC model and the projective model are almost the same. The result shows that the first-order RPC model is basically consistent with the strict sensor model of photogrammetry. Orthorectification results both the firstorder RPC model and Camera Model (ERDAS9.2 platform) are similar to each other, and the maximum residuals of X and Y are 0.8174 feet and 0.9272 feet respectively. This result shows that RPC model can be used in the aerial photographic compensation replacement sensor model.
Zhu, Yuanheng; Zhao, Dongbin; Yang, Xiong; Zhang, Qichao
2018-02-01
Sum of squares (SOS) polynomials have provided a computationally tractable way to deal with inequality constraints appearing in many control problems. It can also act as an approximator in the framework of adaptive dynamic programming. In this paper, an approximate solution to the optimal control of polynomial nonlinear systems is proposed. Under a given attenuation coefficient, the Hamilton-Jacobi-Isaacs equation is relaxed to an optimization problem with a set of inequalities. After applying the policy iteration technique and constraining inequalities to SOS, the optimization problem is divided into a sequence of feasible semidefinite programming problems. With the converged solution, the attenuation coefficient is further minimized to a lower value. After iterations, approximate solutions to the smallest -gain and the associated optimal controller are obtained. Four examples are employed to verify the effectiveness of the proposed algorithm.
International Nuclear Information System (INIS)
Ginsburg, C.A.
1980-01-01
In many problems, a desired property A of a function f(x) is determined by the behaviour of f(x) approximately equal to g(x,A) as x→xsup(*). In this letter, a method for resuming the power series in x of f(x) and approximating A (modulated Pade approximant) is presented. This new approximant is an extension of a resumation method for f(x) in terms of rational functions. (author)
vs. a polynomial chaos-based MCMC
Siripatana, Adil
2014-08-01
Bayesian Inference of Manning\\'s n coefficient in a Storm Surge Model Framework: comparison between Kalman lter and polynomial based method Adil Siripatana Conventional coastal ocean models solve the shallow water equations, which describe the conservation of mass and momentum when the horizontal length scale is much greater than the vertical length scale. In this case vertical pressure gradients in the momentum equations are nearly hydrostatic. The outputs of coastal ocean models are thus sensitive to the bottom stress terms de ned through the formulation of Manning\\'s n coefficients. This thesis considers the Bayesian inference problem of the Manning\\'s n coefficient in the context of storm surge based on the coastal ocean ADCIRC model. In the first part of the thesis, we apply an ensemble-based Kalman filter, the singular evolutive interpolated Kalman (SEIK) filter to estimate both a constant Manning\\'s n coefficient and a 2-D parameterized Manning\\'s coefficient on one ideal and one of more realistic domain using observation system simulation experiments (OSSEs). We study the sensitivity of the system to the ensemble size. we also access the benefits from using an in ation factor on the filter performance. To study the limitation of the Guassian restricted assumption on the SEIK lter, 5 we also implemented in the second part of this thesis a Markov Chain Monte Carlo (MCMC) method based on a Generalized Polynomial chaos (gPc) approach for the estimation of the 1-D and 2-D Mannning\\'s n coe cient. The gPc is used to build a surrogate model that imitate the ADCIRC model in order to make the computational cost of implementing the MCMC with the ADCIRC model reasonable. We evaluate the performance of the MCMC-gPc approach and study its robustness to di erent OSSEs scenario. we also compare its estimates with those resulting from SEIK in term of parameter estimates and full distributions. we present a full analysis of the solution of these two methods, of the
Finite element approximation to a model problem of transonic flow
International Nuclear Information System (INIS)
Tangmanee, S.
1986-12-01
A model problem of transonic flow ''the Tricomi equation'' in Ω is contained in IR 2 bounded by the rectangular-curve boundary is posed in the form of symmetric positive differential equations. The finite element method is then applied. When the triangulation of Ω-bar is made of quadrilaterals and the approximation space is the Lagrange polynomial, we get the error estimates. 14 refs, 1 fig
Topological quantum information, virtual Jones polynomials and Khovanov homology
International Nuclear Information System (INIS)
Kauffman, Louis H
2011-01-01
In this paper, we give a quantum statistical interpretation of the bracket polynomial state sum 〈K〉, the Jones polynomial V K (t) and virtual knot theory versions of the Jones polynomial, including the arrow polynomial. We use these quantum mechanical interpretations to give new quantum algorithms for these Jones polynomials. In those cases where the Khovanov homology is defined, the Hilbert space C(K) of our model is isomorphic with the chain complex for Khovanov homology with coefficients in the complex numbers. There is a natural unitary transformation U:C(K) → C(K) such that 〈K〉 = Trace(U), where 〈K〉 denotes the evaluation of the state sum model for the corresponding polynomial. We show that for the Khovanov boundary operator ∂:C(K) → C(K), we have the relationship ∂U + U∂ = 0. Consequently, the operator U acts on the Khovanov homology, and we obtain a direct relationship between the Khovanov homology and this quantum algorithm for the Jones polynomial. (paper)
Sparse approximation with bases
2015-01-01
This book systematically presents recent fundamental results on greedy approximation with respect to bases. Motivated by numerous applications, the last decade has seen great successes in studying nonlinear sparse approximation. Recent findings have established that greedy-type algorithms are suitable methods of nonlinear approximation in both sparse approximation with respect to bases and sparse approximation with respect to redundant systems. These insights, combined with some previous fundamental results, form the basis for constructing the theory of greedy approximation. Taking into account the theoretical and practical demand for this kind of theory, the book systematically elaborates a theoretical framework for greedy approximation and its applications. The book addresses the needs of researchers working in numerical mathematics, harmonic analysis, and functional analysis. It quickly takes the reader from classical results to the latest frontier, but is written at the level of a graduate course and do...
Dynamics of polynomial Chaplygin gas warm inflation
Energy Technology Data Exchange (ETDEWEB)
Jawad, Abdul [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan); Chaudhary, Shahid [Sharif College of Engineering and Technology, Department of Mathematics, Lahore (Pakistan); Videla, Nelson [Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Valparaiso (Chile)
2017-11-15
In the present work, we study the consequences of a recently proposed polynomial inflationary potential in the context of the generalized, modified, and generalized cosmic Chaplygin gas models. In addition, we consider dissipative effects by coupling the inflation field to radiation, i.e., the inflationary dynamics is studied in the warm inflation scenario. We take into account a general parametrization of the dissipative coefficient Γ for describing the decay of the inflaton field into radiation. By studying the background and perturbative dynamics in the weak and strong dissipative regimes of warm inflation separately for the positive and negative quadratic and quartic potentials, we obtain expressions for the most relevant inflationary observables as the scalar power spectrum, the scalar spectral, and the tensor-to-scalar ratio. We construct the trajectories in the n{sub s}-r plane for several expressions of the dissipative coefficient and compare with the two-dimensional marginalized contours for (n{sub s}, r) from the latest Planck data. We find that our results are in agreement with WMAP9 and Planck 2015 data. (orig.)
Global sensitivity analysis using polynomial chaos expansions
International Nuclear Information System (INIS)
Sudret, Bruno
2008-01-01
Global sensitivity analysis (SA) aims at quantifying the respective effects of input random variables (or combinations thereof) onto the variance of the response of a physical or mathematical model. Among the abundant literature on sensitivity measures, the Sobol' indices have received much attention since they provide accurate information for most models. The paper introduces generalized polynomial chaos expansions (PCE) to build surrogate models that allow one to compute the Sobol' indices analytically as a post-processing of the PCE coefficients. Thus the computational cost of the sensitivity indices practically reduces to that of estimating the PCE coefficients. An original non intrusive regression-based approach is proposed, together with an experimental design of minimal size. Various application examples illustrate the approach, both from the field of global SA (i.e. well-known benchmark problems) and from the field of stochastic mechanics. The proposed method gives accurate results for various examples that involve up to eight input random variables, at a computational cost which is 2-3 orders of magnitude smaller than the traditional Monte Carlo-based evaluation of the Sobol' indices
Global sensitivity analysis using polynomial chaos expansions
Energy Technology Data Exchange (ETDEWEB)
Sudret, Bruno [Electricite de France, R and D Division, Site des Renardieres, F 77818 Moret-sur-Loing Cedex (France)], E-mail: bruno.sudret@edf.fr
2008-07-15
Global sensitivity analysis (SA) aims at quantifying the respective effects of input random variables (or combinations thereof) onto the variance of the response of a physical or mathematical model. Among the abundant literature on sensitivity measures, the Sobol' indices have received much attention since they provide accurate information for most models. The paper introduces generalized polynomial chaos expansions (PCE) to build surrogate models that allow one to compute the Sobol' indices analytically as a post-processing of the PCE coefficients. Thus the computational cost of the sensitivity indices practically reduces to that of estimating the PCE coefficients. An original non intrusive regression-based approach is proposed, together with an experimental design of minimal size. Various application examples illustrate the approach, both from the field of global SA (i.e. well-known benchmark problems) and from the field of stochastic mechanics. The proposed method gives accurate results for various examples that involve up to eight input random variables, at a computational cost which is 2-3 orders of magnitude smaller than the traditional Monte Carlo-based evaluation of the Sobol' indices.
Scattering amplitudes from multivariate polynomial division
Energy Technology Data Exchange (ETDEWEB)
Mastrolia, Pierpaolo, E-mail: pierpaolo.mastrolia@cern.ch [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany); Dipartimento di Fisica e Astronomia, Universita di Padova, Padova (Italy); INFN Sezione di Padova, via Marzolo 8, 35131 Padova (Italy); Mirabella, Edoardo, E-mail: mirabell@mppmu.mpg.de [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany); Ossola, Giovanni, E-mail: GOssola@citytech.cuny.edu [New York City College of Technology, City University of New York, 300 Jay Street, Brooklyn, NY 11201 (United States); Graduate School and University Center, City University of New York, 365 Fifth Avenue, New York, NY 10016 (United States); Peraro, Tiziano, E-mail: peraro@mppmu.mpg.de [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany)
2012-11-15
We show that the evaluation of scattering amplitudes can be formulated as a problem of multivariate polynomial division, with the components of the integration-momenta as indeterminates. We present a recurrence relation which, independently of the number of loops, leads to the multi-particle pole decomposition of the integrands of the scattering amplitudes. The recursive algorithm is based on the weak Nullstellensatz theorem and on the division modulo the Groebner basis associated to all possible multi-particle cuts. We apply it to dimensionally regulated one-loop amplitudes, recovering the well-known integrand-decomposition formula. Finally, we focus on the maximum-cut, defined as a system of on-shell conditions constraining the components of all the integration-momenta. By means of the Finiteness Theorem and of the Shape Lemma, we prove that the residue at the maximum-cut is parametrized by a number of coefficients equal to the number of solutions of the cut itself.
q-Bernoulli numbers and q-Bernoulli polynomials revisited
Directory of Open Access Journals (Sweden)
Kim Taekyun
2011-01-01
Full Text Available Abstract This paper performs a further investigation on the q-Bernoulli numbers and q-Bernoulli polynomials given by Acikgöz et al. (Adv Differ Equ, Article ID 951764, 9, 2010, some incorrect properties are revised. It is point out that the generating function for the q-Bernoulli numbers and polynomials is unreasonable. By using the theorem of Kim (Kyushu J Math 48, 73-86, 1994 (see Equation 9, some new generating functions for the q-Bernoulli numbers and polynomials are shown. Mathematics Subject Classification (2000 11B68, 11S40, 11S80
Generalized Freud's equation and level densities with polynomial potential
Boobna, Akshat; Ghosh, Saugata
2013-08-01
We study orthogonal polynomials with weight $\\exp[-NV(x)]$, where $V(x)=\\sum_{k=1}^{d}a_{2k}x^{2k}/2k$ is a polynomial of order 2d. We derive the generalised Freud's equations for $d=3$, 4 and 5 and using this obtain $R_{\\mu}=h_{\\mu}/h_{\\mu -1}$, where $h_{\\mu}$ is the normalization constant for the corresponding orthogonal polynomials. Moments of the density functions, expressed in terms of $R_{\\mu}$, are obtained using Freud's equation and using this, explicit results of level densities as $N\\rightarrow\\infty$ are derived.
Automorphisms of Algebras and Bochner's Property for Vector Orthogonal Polynomials
Horozov, Emil
2016-05-01
We construct new families of vector orthogonal polynomials that have the property to be eigenfunctions of some differential operator. They are extensions of the Hermite and Laguerre polynomial systems. A third family, whose first member has been found by Y. Ben Cheikh and K. Douak is also constructed. The ideas behind our approach lie in the studies of bispectral operators. We exploit automorphisms of associative algebras which transform elementary vector orthogonal polynomial systems which are eigenfunctions of a differential operator into other systems of this type.
Learning Read-constant Polynomials of Constant Degree modulo Composites
DEFF Research Database (Denmark)
Chattopadhyay, Arkadev; Gavaldá, Richard; Hansen, Kristoffer Arnsfelt
2011-01-01
Boolean functions that have constant degree polynomial representation over a fixed finite ring form a natural and strict subclass of the complexity class \\textACC0ACC0. They are also precisely the functions computable efficiently by programs over fixed and finite nilpotent groups. This class...... is not known to be learnable in any reasonable learning model. In this paper, we provide a deterministic polynomial time algorithm for learning Boolean functions represented by polynomials of constant degree over arbitrary finite rings from membership queries, with the additional constraint that each variable...