WorldWideScience

Sample records for chebulagic acid ca

  1. Broad-spectrum antiviral activity of chebulagic acid and punicalagin against viruses that use glycosaminoglycans for entry

    OpenAIRE

    Lin, Liang-Tzung; Chen, Ting-Ying; Lin, Song-Chow; Chung, Chueh-Yao; Lin, Ta-Chen; Wang, Guey-Horng; Anderson, Robert; Lin, Chun-Ching; Richardson, Christopher D

    2013-01-01

    Background We previously identified two hydrolyzable tannins, chebulagic acid (CHLA) and punicalagin (PUG) that blocked herpes simplex virus type 1 (HSV-1) entry and spread. These compounds inhibited viral glycoprotein interactions with cell surface glycosaminoglycans (GAGs). Based on this property, we evaluated their antiviral efficacy against several different viruses known to employ GAGs for host cell entry. Results Extensive analysis of the tannins? mechanism of action was performed on a ...

  2. Broad-spectrum antiviral activity of chebulagic acid and punicalagin against viruses that use glycosaminoglycans for entry

    Science.gov (United States)

    2013-01-01

    Background We previously identified two hydrolyzable tannins, chebulagic acid (CHLA) and punicalagin (PUG) that blocked herpes simplex virus type 1 (HSV-1) entry and spread. These compounds inhibited viral glycoprotein interactions with cell surface glycosaminoglycans (GAGs). Based on this property, we evaluated their antiviral efficacy against several different viruses known to employ GAGs for host cell entry. Results Extensive analysis of the tannins’ mechanism of action was performed on a panel of viruses during the attachment and entry steps of infection. Virus-specific binding assays and the analysis of viral spread during treatment with these compounds were also conducted. CHLA and PUG were effective in abrogating infection by human cytomegalovirus (HCMV), hepatitis C virus (HCV), dengue virus (DENV), measles virus (MV), and respiratory syncytial virus (RSV), at μM concentrations and in dose-dependent manners without significant cytotoxicity. Moreover, the natural compounds inhibited viral attachment, penetration, and spread, to different degrees for each virus. Specifically, the tannins blocked all these steps of infection for HCMV, HCV, and MV, but had little effect on the post-fusion spread of DENV and RSV, which could suggest intriguing differences in the roles of GAG-interactions for these viruses. Conclusions CHLA and PUG may be of value as broad-spectrum antivirals for limiting emerging/recurring viruses known to engage host cell GAGs for entry. Further studies testing the efficacy of these tannins in vivo against certain viruses are justified. PMID:23924316

  3. The site of net absorption of Ca from the intestinal tract of growing pigs and effect of phytic acid, Ca level and Ca source on Ca digestibility.

    Science.gov (United States)

    González-Vega, J Caroline; Walk, Carrie L; Liu, Yanhong; Stein, Hans H

    2014-01-01

    An experiment was conducted to test the hypothesis that the standardised digestibility of Ca in calcium carbonate and Lithothamnium calcareum Ca is not different regardless of the level of dietary Ca, and that phytic acid affects the digestibility of Ca in these two ingredients to the same degree. The objectives were to determine where in the intestinal tract Ca absorption takes place and if there are measurable quantities of basal endogenous Ca fluxes in the stomach, small intestine or large intestine. Diets contained calcium carbonate or L. calcareum Ca as the sole source of Ca, 0% or 1% phytic acid and 0.4% or 0.8% Ca. A Ca-free diet was also formulated and used to measure endogenous fluxes and losses of Ca. Nine growing pigs (initial body weight 23.8 ± 1.3 kg) were cannulated in the duodenum and in the distal ileum, and faecal, ileal and duodenal samples were collected. Duodenal endogenous fluxes of Ca were greater (p calcareum Ca diets, but that was not the case if calcium carbonate was the source of Ca (interaction, p calcareum Ca was greater (p calcareum Ca. In conclusion, under the conditions of this experiment, standardised digestibility of Ca is not affected by the level of phytic acid, but may be affected by dietary Ca level depending on the Ca source. Calcium from calcium carbonate is mostly absorbed before the duodenum, but Ca from L. calcareum Ca is mostly absorbed in the jejunum and ileum.

  4. Teratological studies of DTPA-CaNa3, DTPA-ZnNa3 and quinamic acid in mice

    International Nuclear Information System (INIS)

    Luo Meichu; Ruan Tianming; Tong Shungao

    1989-01-01

    DTPA-CaNa 3 , DTPA-ZnNa 3 and quinamic acid are effective chelating agents for removing actinide elements from the body. In this experiment, different doses of DTPA-CaNa 3 , DTPA-ZnNa 3 and quinamic acid were given to mice on gestation days 6-10. Eight groups of mice received 0.8 and 2.0 mM/kg of DTPA-CaNa 3 , 3.8, 7.6, and 11.4 mM/kg of DTPA-ZnNa 3 and 0.42, 2.1, and 4.2 mM/kg of quinamic acid. Hypetonic saline and isotonic saline were given to two control groups. DTPA-CaNa 3 and quinamidic acid were found to be much more toxic to fetus of mice than DTPA-ZnNa 3 . When the doses of DTPA-CaMa 3 and quinamidic acid were 20 times higher than the human dose, the number of resorbed fetus was increased and the number and weight of live fetus were reduced. The result of injection with 7.6 mM/kg (200 times of human dose)DTPA-ZnNa 3 and that of injection with isotonic saline are the same. Therefore, we suggest that the DTPA-CaNa 3 and quinamidic acid should not be given to pregnant woman, if chelation therapy is needed, while the much safer DTPA-ZnNa 3 could be used

  5. CaCO3 supplementation alleviates the inhibition of formic acid on acetone/butanol/ethanol fermentation by Clostridium acetobutylicum.

    Science.gov (United States)

    Qi, Gaoxiang; Xiong, Lian; Lin, Xiaoqing; Huang, Chao; Li, Hailong; Chen, Xuefang; Chen, Xinde

    2017-01-01

    To investigate the inhibiting effect of formic acid on acetone/butanol/ethanol (ABE) fermentation and explain the mechanism of the alleviation in the inhibiting effect under CaCO 3 supplementation condition. From the medium containing 50 g sugars l -1 and 0.5 g formic acid l -1 , only 0.75 g ABE l -1 was produced when pH was adjusted by KOH and fermentation ended prematurely before the transformation from acidogenesis to solventogenesis. In contrast, 11.4 g ABE l -1 was produced when pH was adjusted by 4 g CaCO 3 l -1 . The beneficial effect can be ascribed to the buffering capacity of CaCO 3 . Comparative analysis results showed that the undissociated formic acid concentration and acid production coupled with ATP and NADH was affected by the pH buffering capacity of CaCO 3 . Four millimole undissociated formic acid was the threshold at which the transformation to solventogenesis occurred. The inhibiting effect of formic acid on ABE fermentation can be alleviated by CaCO 3 supplementation due to its buffering capacity.

  6. Random poly(amino acid)s synthesized by ring opening polymerization as additives in the biomimetic mineralization of CaCO3

    NARCIS (Netherlands)

    Dmitrovic, V.; Habraken, G.J.M.; Hendrix, M.M.R.M.; Habraken, W.J.E.M.; Heise, A.; With, de G.; Sommerdijk, N.A.J.M.

    2012-01-01

    Biominerals such as bones, teeth and seashells, very often have advanced material properties and are a source of inspiration for material chemists. As in biological systems acidic proteins play an important role in regulating the formation of CaCO3 biominerals, we employ poly(amino acid)s to mimic

  7. Oleic acid blocks EGF-induced [Ca2+]i release without altering cellular metabolism in fibroblast EGFR T17.

    Science.gov (United States)

    Zugaza, J L; Casabiell, X A; Bokser, L; Casanueva, F F

    1995-02-06

    EGFR-T17 cells were pretreated with oleic acid and 5-10 minutes later stimulated with EGF, to study if early ionic signals are instrumental in inducing metabolic cellular response. Oleic acid blocks EGF-induced [Ca2+]i rise and Ca2+ influx without altering 2-deoxyglucose and 2-aminobutiryc acid uptake nor acute, nor chronically. Oleic acid it is shown, in the first minutes favors the entrance of both molecules to modify the physico-chemical membrane state. On the other hand, oleic acid is unable to block protein synthesis. The results suggest that EGF-induced Ins(1,4,5)P3/Ca2+ pathway does not seem to be decisive in the control of cellular metabolic activity.

  8. A permeability transition in liver mitochondria and liposomes induced by α,ω-dioic acids and Ca(2+).

    Science.gov (United States)

    Dubinin, Mikhail V; Samartsev, Victor N; Astashev, Maxim E; Kazakov, Alexey S; Belosludtsev, Konstantin N

    2014-11-01

    The article examines the molecular mechanism of the Ca(2+)-dependent cyclosporin A (CsA)-insensitive permeability transition in rat liver mitochondria induced by α,ω-dioic acids. The addition of α,ω-hexadecanedioic acid (HDA) to Ca(2+)-loaded liver mitochondria was shown to induce a high-amplitude swelling of the organelles, a drop of membrane potential and the release of Ca(2+) from the matrix, the effects being insensitive to CsA. The experiments with liposomes loaded with sulforhodamine B (SRB) revealed that, like palmitic acid (PA), HDA was able to cause permeabilization of liposomal membranes. However, the kinetics of HDA- and PA-induced release of SRB from liposomes was different, and HDA was less effective than PA in the induction of SRB release. Using the method of ultrasound interferometry, we also showed that the addition of Ca(2+) to HDA-containing liposomes did not change the phase state of liposomal membranes-in contrast to what was observed when Ca(2+) was added to PA-containing vesicles. It was suggested that HDA/Ca(2+)- and PA/Ca(2+)-induced permeability transition occurs by different mechanisms. Using the method of dynamic light scattering, we further revealed that the addition of Ca(2+) to HDA-containing liposomes induced their aggregation/fusion. Apparently, these processes result in a partial release of SRB due to the formation of fusion pores. The possibility that this mechanism underlies the HDA/Ca(2+)-induced permeability transition of the mitochondrial membrane is discussed.

  9. Study of mixed Ca-Zn hydroxyapatite surface modified by lactic acid

    Science.gov (United States)

    Turki, Thouraya; Aissa, Abdallah; Bac, Christophe Goze; Rachdi, Férid; Debbabi, Mongi

    2012-07-01

    The new hybrid inorganic-organic composites, Ca(10-x)Znx(PO4)6(OH)2-lactic acid, at different amounts of zinc and lactic acid were prepared by dissolution of the organic compound in an hydroxyapatite suspension. They were characterized by XRD, IR, MAS NMR (13C and 1H) and chemical analysis. The crystallinity was slightly affected by the presence of organic fragments. IR and (13C and 1H) MAS NMR measurements indicate that the carboxylic groups of the acid interact with calcium and zinc ions of hydroxyapatite surface. Chemical analysis displays that zinc promotes the acid grafting. A mechanism of surface modification is proposed based on the obtained results.

  10. Study of mixed Ca-Zn hydroxyapatite surface modified by lactic acid

    International Nuclear Information System (INIS)

    Turki, Thouraya; Aissa, Abdallah; Bac, Christophe Goze; Rachdi, Férid; Debbabi, Mongi

    2012-01-01

    The new hybrid inorganic-organic composites, Ca (10-x) Zn x (PO 4 ) 6 (OH) 2 -lactic acid, at different amounts of zinc and lactic acid were prepared by dissolution of the organic compound in an hydroxyapatite suspension. They were characterized by XRD, IR, MAS NMR ( 13 C and 1 H) and chemical analysis. The crystallinity was slightly affected by the presence of organic fragments. IR and ( 13 C and 1 H) MAS NMR measurements indicate that the carboxylic groups of the acid interact with calcium and zinc ions of hydroxyapatite surface. Chemical analysis displays that zinc promotes the acid grafting. A mechanism of surface modification is proposed based on the obtained results.

  11. Effect of amino acids on the precipitation kinetics and Ca isotopic composition of gypsum

    Science.gov (United States)

    Harouaka, Khadouja; Kubicki, James D.; Fantle, Matthew S.

    2017-12-01

    Stirred gypsum (CaSO4 · 2H2O) precipitation experiments (initial Ωgypsum = 2.4 ± 0.14, duration ≈ 1.0-1.5 h) were conducted in the presence of the amino acids glycine (190 μM), L-alanine (190 μM), D- and L-arginine (45 μM), and L-tyrosine (200 μM) to investigate the effect of simple organic compounds on both the precipitation kinetics and Ca isotopic composition of gypsum. Relative to abiotic controls, glycine, tyrosine, and alanine inhibited precipitation rates by ∼22%, 27%, and 29%, respectively, while L- and D-arginine accelerated crystal growth by ∼8% and 48%, respectively. With the exception of tyrosine, amino acid induced inhibition resulted in fractionation factors (αs-f) associated with precipitation that were no more than 0.3‰ lower than amino acid-free controls. In contrast, the tyrosine and D- and L-arginine experiments had αs-f values associated with precipitation that were similar to the controls. Our experimental results indicate that Ca isotopic fractionation associated with gypsum precipitation is impacted by growth inhibition in the presence of amino acids. Specifically, we propose that the surface-specific binding of amino acids to gypsum can change the equilibrium fractionation factor of the bulk mineral. We investigate the hypothesis that amino acids can influence the growth of gypsum at specific crystal faces via adsorption and that different faces have distinct fractionation factors (αface-fluid). Accordingly, preferential sorption of amino acids at particular faces changes the relative, face-specific mass fluxes of Ca during growth, which influences the bulk isotopic composition of the mineral. Density functional theory (DFT) calculations suggest that the energetic favorability of glycine sorption onto gypsum crystal faces occurs in the order: (1 1 0) > (0 1 0) > (1 2 0) > (0 1 1), while glycine sorption onto the (-1 1 1) face was found to be energetically unfavorable. Face-specific fractionation factors constrained by

  12. The effect of gallic acid on cytotoxicity, Ca(2+) homeostasis and ROS production in DBTRG-05MG human glioblastoma cells and CTX TNA2 rat astrocytes.

    Science.gov (United States)

    Hsu, Shu-Shong; Chou, Chiang-Ting; Liao, Wei-Chuan; Shieh, Pochuen; Kuo, Daih-Huang; Kuo, Chun-Chi; Jan, Chung-Ren; Liang, Wei-Zhe

    2016-05-25

    Gallic acid, a polyhydroxylphenolic compound, is widely distributed in various plants, fruits and foods. It has been shown that gallic acid passes into blood brain barrier and reaches the brain tissue of middle cerebral artery occlusion rats. However, the effect of gallic acid on Ca(2+) signaling in glia cells is unknown. This study explored whether gallic acid affected Ca(2+) homeostasis and induced Ca(2+)-associated cytotoxicity in DBTRG-05MG human glioblastoma cells and CTX TNA2 rat astrocytes. Gallic acid (20-40 μM) concentration-dependently induced cytotoxicity and intracellular Ca(2+) level ([Ca(2+)]i) increases in DBTRG-05MG cells but not in CTX TNA2 cells. In DBTRG-05MG cells, the Ca(2+) response was decreased by half by removal of extracellular Ca(2+). In Ca(2+)-containing medium, gallic acid-induced Ca(2+) entry was inhibited by store-operated Ca(2+) channel inhibitors (2-APB, econazole and SKF96365). In Ca(2+)-free medium, pretreatment with the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin abolished gallic acid-induced [Ca(2+)]i increases. Conversely, incubation with gallic acid also abolished thapsigargin-induced [Ca(2+)]i increases. Inhibition of phospholipase C with U73122 abolished gallic acid-induced [Ca(2+)]i increases. Gallic acid significantly caused cytotoxicity in DBTRG-05MG cells, which was partially prevented by prechelating cytosolic Ca(2+) with BAPTA-AM. Moreover, gallic acid activated mitochondrial apoptotic pathways that involved ROS production. Together, in DBTRG-05MG cells but not in CTX TNA2 cells, gallic acid induced [Ca(2+)]i increases by causing Ca(2+) entry via 2-APB, econazole and SKF96365-sensitive store-operated Ca(2+) entry, and phospholipase C-dependent release from the endoplasmic reticulum. This Ca(2+) signal subsequently evoked mitochondrial pathways of apoptosis that involved ROS production. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. SYNTHESIS, CHARACTERIZATION AND ANTITUMOR ACTIVITY OF A Ca (II COORDINATION POLYMER BASED ON 3-AMINO-2-PYRAZINECARBOXYLIC ACID

    Directory of Open Access Journals (Sweden)

    XI-SHI TAI

    2015-10-01

    Full Text Available A new Ca(II coordination polymer has been obtained by reaction of Ca(ClO42·H2O with 3-amino-2-pyrazinecarboxylic acid in CH3CH2OH/H2O. It was characterized by IR, 1HNMR, thermal analysis and X-ray single crystal diffraction analysis. X-ray analysis reveals that each Ca(II center is seven-coordination with a N2O5 distorted pentagonal bipyramidal coordination environment. The Ca(II ions are linked through the O atoms of 3-amino-2-pyrazinecarboxylic acid ligands to form 1D chain structure. And then a 3D network structure is constructed by hydrogen bonds and π-π stacking. The antitumor activity of 3-amino-2-pyrazinecarboxylic acid ligand and its Ca(II coordination polymer against human intestinal adenocarcinoma HCT-8 cells, lung adenocarcinoma HCT-116 cells and human lung adenocarcinoma A549 cells line have been investigated.

  14. Study of mixed Ca-Zn hydroxyapatite surface modified by lactic acid

    Energy Technology Data Exchange (ETDEWEB)

    Turki, Thouraya; Aissa, Abdallah [Laboratoire de Physico-Chimie des Materiaux, Faculte des Sciences de Monastir, 5019 Monastir (Tunisia); Bac, Christophe Goze [Laboratoire Charles Coulomb, UMR 5221 CNRS/UM2, Universite Montpellier 2, Place E. Bataillon, 34095 Montpellier (France); Rachdi, Ferid, E-mail: Ferid.Rachdi@univ-montp2.fr [Laboratoire Charles Coulomb, UMR 5221 CNRS/UM2, Universite Montpellier 2, Place E. Bataillon, 34095 Montpellier (France); Debbabi, Mongi [Laboratoire de Physico-Chimie des Materiaux, Faculte des Sciences de Monastir, 5019 Monastir (Tunisia)

    2012-07-01

    The new hybrid inorganic-organic composites, Ca{sub (10-x)}Zn{sub x}(PO{sub 4}){sub 6}(OH){sub 2}-lactic acid, at different amounts of zinc and lactic acid were prepared by dissolution of the organic compound in an hydroxyapatite suspension. They were characterized by XRD, IR, MAS NMR ({sup 13}C and {sup 1}H) and chemical analysis. The crystallinity was slightly affected by the presence of organic fragments. IR and ({sup 13}C and {sup 1}H) MAS NMR measurements indicate that the carboxylic groups of the acid interact with calcium and zinc ions of hydroxyapatite surface. Chemical analysis displays that zinc promotes the acid grafting. A mechanism of surface modification is proposed based on the obtained results.

  15. Studies on the Protective Effects of Scutellarein against Neuronal Injury by Ischemia through the Analysis of Endogenous Amino Acids and Ca2+ Concentration Together with Ca2+-ATPase Activity

    Directory of Open Access Journals (Sweden)

    Hao Tang

    2015-01-01

    Full Text Available Scutellarin, which is extracted from the dried plant of Erigeron breviscapus, has been reported to protect the neural injury against excitotoxicity induced by ischemia. However, there are a few studies on the protective effects of scutellarein, which is the main metabolite of scutellarin in vivo. Thus, this study investigated the neuroprotective effects of scutellarein on cerebral ischemia/reperfusion in rats by bilateral common carotid artery occlusion (BCCAO model, through the analysis of endogenous amino acids using HILIC-MS/MS, and evaluation of Ca2+ concentration together with Ca2+-ATPase activity. The results showed that scutellarein having good protective effects on cerebral ischemia/reperfusion might by decreasing the excitatory amino acids, increasing the inhibitory amino acids, lowing intracellular Ca2+ level, and improving Ca2+-ATPase activity, which suggested that scutellarein might be a promising potent agent for the therapy of ischemic cerebrovascular disease.

  16. Regulation of phenylacetic acid uptake is sigma54 dependent in Pseudomonas putida CA-3.

    LENUS (Irish Health Repository)

    O' Leary, Niall D

    2011-10-13

    Abstract Background Styrene is a toxic and potentially carcinogenic alkenylbenzene used extensively in the polymer processing industry. Significant quantities of contaminated liquid waste are generated annually as a consequence. However, styrene is not a true xenobiotic and microbial pathways for its aerobic assimilation, via an intermediate, phenylacetic acid, have been identified in a diverse range of environmental isolates. The potential for microbial bioremediation of styrene waste has received considerable research attention over the last number of years. As a result the structure, organisation and encoded function of the genes responsible for styrene and phenylacetic acid sensing, uptake and catabolism have been elucidated. However, a limited understanding persists in relation to host specific regulatory molecules which may impart additional control over these pathways. In this study the styrene degrader Pseudomonas putida CA-3 was subjected to random mini-Tn5 mutagenesis and mutants screened for altered styrene\\/phenylacetic acid utilisation profiles potentially linked to non-catabolon encoded regulatory influences. Results One mutant, D7, capable of growth on styrene, but not on phenylacetic acid, harboured a Tn5 insertion in the rpoN gene encoding σ54. Complementation of the D7 mutant with the wild type rpoN gene restored the ability of this strain to utilise phenylacetic acid as a sole carbon source. Subsequent RT-PCR analyses revealed that a phenylacetate permease, PaaL, was expressed in wild type P. putida CA-3 cells utilising styrene or phenylacetic acid, but could not be detected in the disrupted D7 mutant. Expression of plasmid borne paaL in mutant D7 was found to fully restore the phenylacetic acid utilisation capacity of the strain to wild type levels. Bioinformatic analysis of the paaL promoter from P. putida CA-3 revealed two σ54 consensus binding sites in a non-archetypal configuration, with the transcriptional start site being resolved by

  17. Mechanism of cytotoxic action of perfluorinated acids. III. Disturbance in Ca2+ homeostasis

    International Nuclear Information System (INIS)

    Kleszczynski, Konrad; Skladanowski, Andrzej C.

    2011-01-01

    The global distribution of perfluorinated acids (PFAs) in industry and in household is well known. Their increasing environmental occurrence and biomagnification in the living organisms have drawn growing interests in efforts to describe precisely the mechanisms of action in vitro and in vivo. Our previous investigations widely described lipophilicity-dependent cytotoxicity of PFAs as well as the effect of perfluorination of carbon chain on depolarization of plasma membrane potential, acidification or mitochondrial dysfunctions. In this study we presented in dose- and time-dependent manner the impact of PFAs on calcium homeostasis in HCT116 cells. Comparative analysis of cytosolic [Ca 2+ ] c and mitochondrial calcium [Ca 2+ ] m carried out by flow cytometry revealed distinct uptake of calcium into mitochondria in correlation to increasing lipophilicity of PFAs. Massive accumulation of [Ca 2+ ] m was not accompanied by equivalent loss of [Ca 2+ ] c . Indeed, moderate changes of [Ca 2+ ] c were observed after incubation with 400 μM PFDoDA reaching 29.83% and 49.17% decrease at 4th and 72nd hour, respectively. At the same time, mitochondrial calcium uptake increased from 2- to more than 4-fold comparing with non-treated cells. Incubation with non-fluorinated decanoic acid (DA) did not cause any changes in calcium homeostasis. Presented data show that PFAs-induced perturbations in calcium distribution seem to be a missing link related to mitochondria dysfunction playing a crucial role in determination of apoptotic cell death. Complete scheme for the mechanism of cytotoxic action of PFAs has been included.

  18. Synthesis of Fluorite (CaF2 Crystal from Gypsum Waste of Phosphoric Acid Factory in Silica Gel

    Directory of Open Access Journals (Sweden)

    Mohammad Misbah Khunur

    2012-06-01

    Full Text Available This paper report the synthesis and characterization of fluorite single crystal prepared from gypsum waste of phosphoric acid production in silica gel. Instead of its high calcium, gypsum was used to recycle the waste which was massively produces in the phosphoric acid production. The gypsum waste, the raw material of CaCl2 supernatant, was dissolved in concentrated HCl and then precipitated as calcium oxalate (CaC2O4 by addition of ammonium oxalate. The CaCl2 was obtained by dissolving the CaC2O4 with HCl 3M. The crystals were grown at room temperature in silica gel and characterized by AAS, FTIR and powder XRD. The optimum crystal growth condition, which is pH of gel, CaCl2 concentration and growth time, were investigated. The result shows that at optimum condition of pH 5.80, CaCl2 concentrations of 1.2 M, and growth time of 144 hours, colorless crystals with the longest size of 3 mm, were obtained (72.57%. Characterization of the synthesized crystal by AAS indicates that the obtained crystal has high purity. Meanwhile, analysis by FTIR spectra shows a Ca–F peak at 775 cm-1, and powder-XRD analysis confirms that the obtained crystal was fluorite (CaF2. © 2012 BCREC UNDIP. All rights reservedReceived: 11st April 2012; Revised: 4th June 2012; Accepted: 13rd June 2012[How to Cite: M.M. Khunur, A. Risdianto, S. Mutrofin, Y.P. Prananto. (2012. Synthesis of Fluorite (CaF2 Crystal from Gypsum Waste of Phosphoric Acid Factory in Silica Gel. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (1: 71-77.  doi:10.9767/bcrec.7.1.3171.71-77 ][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.1.3171.71-77 ] | View in 

  19. PMR spectroscopy of Ca(II) complexes of ethylenediamine-N,N,N',N' - tetraacetic acid

    International Nuclear Information System (INIS)

    Novomesky, P.; Balgavy, P.; Majer, J.

    1977-01-01

    Proton magnetic resonance spectra for the EDTA complexes of Ca(II) were measured in aqueous solutions as a function of solution pH. It follows from the analysis of chemical shift changes that the nitrogen atoms rather than the carboxylate groups are protonated (as the pH is lowered) in the tetraanion of EDTA. The same conclusion follows for the protonization of the [CaEDTA] 2- complex in the acid pH range where the hydrogen complex [CaH(EDTA)] - is formed. The formation of [Ca(OH)EDTA] 3- was not observed at pH less than 12.6, at [CaEDTA] 2- concentration of 0.5 mol/l. In solutions with a metal-to-ligand molar ratio 1:1.5 two sets of resonance signals appear in the pH range from 12.8 to 6.0, the former for the free ligand and the latter for the stable [CaEDTA] 2- complex. However, from pH 6.0 to 4.35 only one set of broadened signals was observed, which indicates that an exchange process between free ligand, normal [CaEDTA] 2- complex and [CaH(EDTA)] - takes place. (author)

  20. Peroxisome proliferation activation receptor alpha modulation of Ca2+-regulated exocytosis via arachidonic acid in guinea-pig antral mucous cells.

    Science.gov (United States)

    Sawabe, Yukinori; Shimamoto, Chikao; Sakai, Akiko; Kuwabara, Hiroko; Saad, Adel H; Nakano, Takashi; Takitani, Kimitaka; Tamai, Hiroshi; Mori, Hiroshi; Marunaka, Yoshinori; Nakahari, Takashi

    2010-08-01

    Indomethacin (IDM, 10 microm), not aspirin (ASA; 10 microm), enhanced the Ca(2+)-regulated exocytosis stimulated by 1 microm acetylcholine (ACh) in guinea-pig antral mucous cells. Indomethacin inhibits prostaglandin G/H (PGG/H) and 15R-hydroperoxy-eicosatetraenoic acid (15R-HPETE) production from arachidonic acid (AA), while ASA inhibits PGG/H production but accelerates 15R-HPETE production. This suggests that IDM accumulates AA. Arachidonic acid (2 microm) enhanced Ca(2+)-regulated exocytosis in antral mucous cells to a similar extent to IDM. Moreover, a stable analogue of AA, arachidonyltrifluoromethyl ketone (AACOCF(3)), also enhanced Ca(2+)-regulated exocytosis, indicating that AA, not products from AA, enhances Ca(2+)-regulated exocytosis. We hypothesized that AA activates peroxisome proliferation activation receptor alpha (PPARalpha), because AA is a natural ligand for PPARalpha. A PPARalpha agonist (WY14643; 1 microm) enhanced Ca(2+)-regulated exocytosis, and a PPARalpha blocker (MK886; 50 microm) abolished the enhancement of Ca(2+)-regulated exocytosis induced by AA, IDM, AACOCF(3) and WY14643. Western blotting and immunohistochemical examinations demonstrated that PPARalpha exists in antral mucous cells. Moreover, MK886 decreased the frequency of Ca(2+)-regulated exocytosis activated by 1 microm ACh or 2 microm thapsigargin alone by 25-30%. Thus, ACh stimulates AA accumulation via an [Ca(2+)](i) increase, which activates PPARalpha, leading to enhancement of Ca(2+)-regulated exocytosis in antral mucous cells. A novel autocrine mechanism mediated via PPARalpha enhances Ca(2+)-regulated exocytosis in guinea-pig antral mucous cells.

  1. Arachidonic acid-induced Ca2+ entry and migration in a neuroendocrine cancer cell line.

    Science.gov (United States)

    Goswamee, Priyodarshan; Pounardjian, Tamar; Giovannucci, David R

    2018-01-01

    Store-operated Ca 2+ entry (SOCE) has been implicated in the migration of some cancer cell lines. The canonical SOCE is defined as the Ca 2+ entry that occurs in response to near-maximal depletion of Ca 2+ within the endoplasmic reticulum. Alternatively, arachidonic acid (AA) has been shown to induce Ca 2+ entry in a store-independent manner through Orai1/Orai3 hetero-multimeric channels. However, the role of this AA-induced Ca 2+ entry pathway in cancer cell migration has not been adequately assessed. The present study investigated the involvement of AA-induced Ca 2+ entry in migration in BON cells, a model gastro-enteropancreatic neuroendocrine tumor (GEPNET) cell line using pharmacological and gene knockdown methods in combination with live cell fluorescence imaging and standard migration assays. We showed that both the store-dependent and AA-induced Ca 2+ entry modes could be selectively activated and that exogenous administration of AA resulted in Ca 2+ entry that was pharmacologically distinct from SOCE. Also, whereas homomeric Orai1-containing channels appeared to largely underlie SOCE, the AA-induced Ca 2+ entry channel required the expression of Orai3 as well as Orai1. Moreover, we showed that AA treatment enhanced the migration of BON cells and that this migration could be abrogated by selective inhibition of the AA-induced Ca 2+ entry. Taken together, these data revealed that an alternative Orai3-dependent Ca 2+ entry pathway is an important signal for GEPNET cell migration.

  2. Ursodeoxycholic and deoxycholic acids: Differential effects on intestinal Ca(2+) uptake, apoptosis and autophagy of rat intestine.

    Science.gov (United States)

    Rodríguez, Valeria A; Rivoira, María A; Pérez, Adriana del V; Marchionatti, Ana M; Tolosa de Talamoni, Nori G

    2016-02-01

    The aim of this work was to study the effect of sodium deoxycholate (NaDOC) and ursodeoxycholic acid (UDCA) on Ca(2+) uptake by enterocytes and the underlying mechanisms. Rats were divided into four groups: a) controls, b) treated with NaDOC, c) treated with UDCA d) treated with NaDOC and UDCA. Ca(2+) uptake was studied in enterocytes with different degrees of maturation. Apoptosis, autophagy and NO content and iNOS protein expression were evaluated. NaDOC decreased and UDCA increased Ca(2+) uptake only in mature enterocytes. The enhancement of protein expression of Fas, FasL, caspase-8 and caspase-3 activity by NaDOC indicates triggering of the apoptotic extrinsic pathway, which was blocked by UDCA. NO content and iNOS protein expression were enhanced by NaDOC, and avoided by UDCA. The increment of acidic vesicular organelles and LC3 II produced by NaDOC was also prevented by UDCA. In conclusion, the inhibitory effects of NaDOC on intestinal Ca(2+) absorption occur by decreasing the Ca(2+) uptake by mature enterocytes. NaDOC triggers apoptosis and autophagy, in part as a result of nitrosative stress. In contrast, UDCA increases the Ca(2+) uptake by mature enterocytes, and in combination with NaDOC acts as an antiapoptotic and antiautophagic agent normalizing the transcellular Ca(2+) pathway. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Influence of Ca/Mg ratio on phytoextraction properties of Salix viminalis. II. Secretion of low molecular weight organic acids to the rhizosphere.

    Science.gov (United States)

    Magdziak, Z; Kozlowska, M; Kaczmarek, Z; Mleczek, M; Chadzinikolau, T; Drzewiecka, K; Golinski, P

    2011-01-01

    A hydroponic experiment in a phytotron was performed to investigate the effect of two different Ca/Mg ratios (4:1 and 1:10) and trace element ions (Cd, Cu, Pb and Zn) in solution on the efficiency of low molecular weight organic acid (LMWOA) formation in Salix viminalis rhizosphere. Depending on the Ca/Mg ratio and presence of selected trace elements at 0.5mM concentration, the amount and kind of LMWOAs in the rhizosphere were significantly affected. In physiological 4:1 Ca/Mg ratio the following complex of acids was observed: malonic (Pb, Zn), citric, lactic, maleic and succinic (Zn) acids. Under 1:10 Ca/Mg ratio, citric (Cd, Zn), maleic and succinic (Cd, Cu, Pb, Zn) acids were seen. Additionally, high accumulation of zinc and copper in all systems was observed, with the exception of those where one of the metals was at higher concentration. Summing up, the results indicate a significant role of LMWOAs in Salix phytoremediation abilities. Both effects can be modulated depending on the mutual Ca/Mg ratio. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Coupled Ca2+/H+ transport by cytoplasmic buffers regulates local Ca2+ and H+ ion signaling.

    Science.gov (United States)

    Swietach, Pawel; Youm, Jae-Boum; Saegusa, Noriko; Leem, Chae-Hun; Spitzer, Kenneth W; Vaughan-Jones, Richard D

    2013-05-28

    Ca(2+) signaling regulates cell function. This is subject to modulation by H(+) ions that are universal end-products of metabolism. Due to slow diffusion and common buffers, changes in cytoplasmic [Ca(2+)] ([Ca(2+)]i) or [H(+)] ([H(+)]i) can become compartmentalized, leading potentially to complex spatial Ca(2+)/H(+) coupling. This was studied by fluorescence imaging of cardiac myocytes. An increase in [H(+)]i, produced by superfusion of acetate (salt of membrane-permeant weak acid), evoked a [Ca(2+)]i rise, independent of sarcolemmal Ca(2+) influx or release from mitochondria, sarcoplasmic reticulum, or acidic stores. Photolytic H(+) uncaging from 2-nitrobenzaldehyde also raised [Ca(2+)]i, and the yield was reduced following inhibition of glycolysis or mitochondrial respiration. H(+) uncaging into buffer mixtures in vitro demonstrated that Ca(2+) unloading from proteins, histidyl dipeptides (HDPs; e.g., carnosine), and ATP can underlie the H(+)-evoked [Ca(2+)]i rise. Raising [H(+)]i tonically at one end of a myocyte evoked a local [Ca(2+)]i rise in the acidic microdomain, which did not dissipate. The result is consistent with uphill Ca(2+) transport into the acidic zone via Ca(2+)/H(+) exchange on diffusible HDPs and ATP molecules, energized by the [H(+)]i gradient. Ca(2+) recruitment to a localized acid microdomain was greatly reduced during intracellular Mg(2+) overload or by ATP depletion, maneuvers that reduce the Ca(2+)-carrying capacity of HDPs. Cytoplasmic HDPs and ATP underlie spatial Ca(2+)/H(+) coupling in the cardiac myocyte by providing ion exchange and transport on common buffer sites. Given the abundance of cellular HDPs and ATP, spatial Ca(2+)/H(+) coupling is likely to be of general importance in cell signaling.

  5. Behaviour of lactose with the presence of lactic acid and Ca as affected by pH.

    Science.gov (United States)

    Chandrapala, Jayani; Gauthier, Claire; Vasiljevic, Todor

    2017-11-01

    Contradictory statements about the effects of pH change on crystallisation behaviour of lactose exist in the literature. Considering the importance of addressing the processability issue of acid whey, a systematic study is required to establish lactose crystallisation behaviour in the presence of LA and Ca at concentrations present in real acid whey waste streams emphasising impact of pH. Structural modifications of lactose were evident at elevated, more neutral pH in the presence of 1% w/w LA and 0·12% w/w Ca. These structural changes led to changes in the anomeric equilibrium of lactose, which manipulated the water-lactose behaviour and increased the crystallinity. Therefore, altering pH to 6·5 may be the solution to proper industrial processing of acid whey, enhancing the ability of lactose to crystallise properly.

  6. Utilization of Encapsulated CaCO_3 in Liquid Core Capsules for Improving Lactic Acid Fermentation

    International Nuclear Information System (INIS)

    Boon-Beng, Lee; Nurul Ainina Zulkifli

    2016-01-01

    Lactic acid bacteria (LAB) have been used for food fermentation due to its fermentative ability to improve and enhance the quality of the end food products. However, the performance of LAB is affected as fermentation time elapsed because the microbial growth is inhibited by its end product, for example lactic acid. In this study, a new approach was introduced to reduce the product inhibition effect using CaCO_3 which is encapsulated in spherical liquid core capsules of diameter 3.5 mm and 3.6 mm produced through extrusion dripping method. The results showed that the pH and lactic acid concentration of LAB fermentation was well maintained by the capsules. The results of the fermentation conducted to control pH and lactic acid concentration using the capsules were better than those of the control set and comparable with that of the free CaCO_3 set. In addition, the viable cell concentration of L. casei shirota was high at the end of fermentation when the fermentation was conducted using the capsules. The results of this study suggested that the capsules have high potential to be applied for pH and lactic acid level control in LAB fermentation for various productions. (author)

  7. Fabrication of superhydrophobic surfaces via CaCO3 mineralization mediated by poly(glutamic acid)

    Science.gov (United States)

    Cao, Heng; Yao, Jinrong; Shao, Zhengzhong

    2013-03-01

    Surfaces with micrometer and nanometer sized hierarchical structures were fabricated by an one-step in situ additive controlled CaCO3 mineralization method. After chemical modification, the surfaces with various morphologies showed superhydrophobicity in different states, which could be easily adjusted by the initial supersaturation of the mineralization solution (concentration of calcium ion and poly(glutamic acid)). Generally, the "lotus state" surface which was covered by a thick layer of tetrahedron-shaped CaCO3 particles to exhibit a contact angle (CA) of 157±1° and a very low contact angle hysteresis (CAH) (roll-off angle=1°) was produced under high supersaturation. On the other hands, the petal-like surface with flower-shaped calcite spherulites was obtained in a relative low supersaturation, which showed both high CA (156±2°) and CAH (180°) in a "Cassie impregnating wetting state".

  8. Development of novel antibacterial active, HaCaT biocompatible and biodegradable CA-g-P(3HB-EC biocomposites with caffeic acid as a functional entity

    Directory of Open Access Journals (Sweden)

    H. M. N. Iqbal

    2015-09-01

    Full Text Available We have developed novel composites by grafting caffeic acid (CA onto the P(3HB-EC based material and laccase from Trametes versicolor was used for grafting purposes. The resulting composites were designated as CA-g-P(3HB-EC i.e., P(3HB-EC (control, 5CA-g-P(3HB-EC, 10CA-g-P(3HB-EC, 15CA-g-P(3HB-EC and 20CA-g-P(3HB-EC. FT-IR (Fourier-transform infrared spectroscopy was used to examine the functional and elemental groups of the control and laccase-assisted graft composites. Evidently, 15CA-g-P(3HB-EC composite exhibited resilient antibacterial activity against Gram-positive and Gram-negative bacterial strains. Moreover, a significant level of biocompatibility and biodegradability of the CA-g-P(3HB-EC composites was also achieved with the human keratinocytes-like HaCaT cells and soil burial evaluation, respectively. In conclusion, the newly developed novel composites with multi characteristics could well represent the new wave of biomaterials for medical applications, and more specifically have promising future in the infection free would dressings, burn and/or skin regeneration field due to their sophisticated characteristics.

  9. Ca2+ and aminoguanidine on γ-aminobutyric acid accumulation in germinating soybean under hypoxia–NaCl stress

    Directory of Open Access Journals (Sweden)

    Runqiang Yang

    2015-06-01

    Full Text Available Gamma-aminobutyric acid (GABA, a nonproteinous amino acid with some benefits on human health, is synthesized by GABA-shunt and the polyamine degradation pathway in plants. The regulation of Ca2+ and aminoguanidine on GABA accumulation in germinating soybean (Glycine max L. under hypoxia-NaCl stress was investigated in this study. Exogenous Ca2+ increased GABA content significantly by enhancing glutamate decarboxylase gene expression and its activity. Addition of ethylene glycol tetra-acetic acid into the culture solution reduced GABA content greatly due to the inhibition of glutamate decarboxylase activity. Aminoguanidine reduced over 85% of diamine oxidase activity, and 33.28% and 36.35% of GABA content in cotyledon and embryo, respectively. Under hypoxia–NaCl stress, the polyamine degradation pathway contributed 31.61–39.43% of the GABA formation in germinating soybean.

  10. Citric acid induces cell-cycle arrest and apoptosis of human immortalized keratinocyte cell line (HaCaT) via caspase- and mitochondrial-dependent signaling pathways.

    Science.gov (United States)

    Ying, Tsung-Ho; Chen, Chia-Wei; Hsiao, Yu-Ping; Hung, Sung-Jen; Chung, Jing-Gung; Yang, Jen-Hung

    2013-10-01

    Citric acid is an alpha-hydroxyacid (AHA) widely used in cosmetic dermatology and skincare products. However, there is concern regarding its safety for the skin. In this study, we investigated the cytotoxic effects of citric acid on the human keratinocyte cell line HaCaT. HaCaT cells were treated with citric acid at 2.5-12.5 mM for different time periods. Cell-cycle arrest and apoptosis were investigated by 4,6-diamidino-2-phenylindole dihydrochloride (DAPI) staining, flow cytometry, western blot and confocal microscopy. Citric acid not only inhibited proliferation of HaCaT cells in a dose-dependent manner, but also induced apoptosis and cell cycle-arrest at the G2/M phase (before 24 h) and S phase (after 24 h). Citric acid increased the level of Bcl-2-associated X protein (BAX) and reduced the levels of B-cell lymphoma-2 (BCL-2), B-cell lymphoma-extra large (BCL-XL) and activated caspase-9 and caspase-3, which subsequently induced apoptosis via caspase-dependent and caspase-independent pathways. Citric acid also activated death receptors and increased the levels of caspase-8, activated BH3 interacting-domain death agonist (BID) protein, Apoptosis-inducing factor (AIF), and Endonuclease G (EndoG). Therefore, citric acid induces apoptosis through the mitochondrial pathway in the human keratinocyte cell line HaCaT. The study results suggest that citric acid is cytotoxic to HaCaT cells via induction of apoptosis and cell-cycle arrest in vitro.

  11. Changes in the content of fatty acids in CA1 and CA3 areas of the hippocampus of Krushinsky-Molodkina rats after single and fivefold audiogenic seizures.

    Science.gov (United States)

    Savina, Tatyana; Aripovsky, Alexander; Kulagina, Tatyana

    2017-09-01

    Audiogenic seizures (AS) are generalized seizures evoked by high frequency sounds. Since the hippocampus is involved in the generation and maintenance of seizures, the effect of AS on the composition and content of fatty acids in the CA1 and CA3 hippocampal areas of AS-susceptible Krushinsky-Molodkina (KM) rats on days 1, 3, and 14 after single and fivefold seizures were examined. The total content of all fatty acids in field СА1 was found to be lower compared with the control at all times of observation after both a single seizure or fivefold seizures. The total content of fatty acids in field СА3 decreased at all times of examination after a single seizure, whereas it remained unchanged on days 3 and 14 following five AS. The content of omega-3 fatty acids in both fields at all times of observation after a single seizure and fivefold AS did not significantly differ from that in intact animals. The absence of significant changes in the content of stearic and α-linolenic acids and a considerable decrease in the levels of palmitic, oleic, and eicosapentaenoic acids were common to both fields at all times after both a single seizure or fivefold AS. The changes in the content of fatty acids in the СА3 and СА1 fields of the brain of AS-susceptible rats indicate that fatty acids are involved in both the development of seizure activity and neuroprotective anticonvulsive processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Salicylic acid failed to increase the efficacy of Ca-DTPA in the decorporation of plutonium and americium

    International Nuclear Information System (INIS)

    Jones, C.W.; Lloyd, R.D.; Mays, C.W.

    1979-01-01

    Male and female C57BL/Do mice were each given a single i.p. injection of 237+239 Pu + 241 Am as the citrate complex at 45 days of age. Twice weekly i.p. injecctions of either 500 μmol/kg Ca-DTPA or 500 μmol/kg Ca-DTPA, mixed just before injection with 2000 μmol/kg salicylic acid (SA), were begun 3 days after nuclide administration and continued for 5 weeks. Control mice were injected each time with isotonic saline. Nuclide retention was determined by in vivo counting using NaI(T1) spectrometry. At the end of treatment, total-body retention of Pu or Am in the mice given Ca-DTPA was significantly lower (P < 0.001) than in the control animals. Mice treated with Ca-DTPA + SA were statistically indistinguishable from mice treated with Ca-DTPA

  13. Effect of ca2+ to salicylic acid release in pectin based controlled drug delivery system

    Science.gov (United States)

    Kistriyani, L.; Wirawan, S. K.; Sediawan, W. B.

    2016-01-01

    Wastes from orange peel are potentially be utilized to produce pectin, which are currently an import commodity. Pectin can be used in making edible film. Edible films are potentially used as a drug delivery system membrane after a tooth extraction. Drug which is used in the drug delivery system is salicylic acid. It is an antiseptic. In order to control the drug release rate, crosslinking process is added in the manufacturing of membrane with CaCl2.2H2O as crosslinker. Pectin was diluted in water and mixed with a plasticizer and CaCl2.2H2O solution at 66°C to make edible film. Then the mixture was dried in an oven at 50 °C. After edible film was formed, it was coated using plasticizer and CaCl2.2H2O solution with various concentration 0, 0.015, 0.03 and 0.05g/mL. This study showed that the more concentration of crosslinker added, the slower release of salicylic acid would be. This was indicated by the value of diffusivites were getting smaller respectively. The addition of crosslinker also caused smaller gels swelling value,which made the membrane is mechanically stronger

  14. Cu2+ and Ca2+ adsorption to goethite in the presence of fulvic acids

    NARCIS (Netherlands)

    Weng, L.P.; Riemsdijk, van W.H.; Hiemstra, T.

    2008-01-01

    The interaction between copper ions (Cu2+), Strichen fulvic acid (FA), and goethite has been studied with batch experiments in the pH range of 3¿11. Similar systems with Ca2+ have been studied previously and are used here for comparison. Depending on the pH and Cu2+ loading, the binding of Cu ions

  15. Catalytic oxidation of methanol on Pt/X (X = CaTP, NaTP electrodes in sulfuric acid solution

    Directory of Open Access Journals (Sweden)

    Said Benmokhtar

    2013-10-01

    Full Text Available In this paper, we report the synthesis and characterization of electrodes based on NASICON type phosphates. The study of the electrochemical oxidation of methanol at ambient temperature on electrodes based on NASICON type Ca0,5Ti2(PO43 (CaTP and Na5Ti(PO43 (NaTP compared to that of the platinum electrode model has been conducted by cyclic voltammetry in acidic medium. The results showed a significant increase of current density on the electro oxidation of methanol on the material developed based NASICON structure CaTP, cons deactivation of the electro oxidation is observed the closed structure type NaTP.

  16. Mechanisms of Vanadium Recovery from Stone Coal by Novel BaCO3/CaO Composite Additive Roasting and Acid Leaching Technology

    Directory of Open Access Journals (Sweden)

    Zhenlei Cai

    2016-03-01

    Full Text Available In this report, the vanadium recovery mechanisms by novel BaCO3/CaO composite additive roasting and acid leaching technology, including the phase transformations and the vanadium leaching kinetics, were studied. The purpose of this manuscript is to realize and improve the vanadium recovery from stone coal using BaCO3/CaO as the composite additive. The results indicated that during the composite additive BaCO3/CaO roasting process, the monoclinic crystalline structure of muscovite (K(Al,V2[Si3AlO10](OH2 was converted into the hexagonal crystalline structure of BaSi4O9 and the tetragonal crystalline structure of Gehlenite (Ca2Al2SiO7, which could, therefore, facilitate the release and extraction of vanadium. Vanadium in leaching residue was probably in the form of vanadate or pyrovanadate of barium and calcium, which were hardly extracted during the sulfuric acid leaching process. The vanadium leaching kinetic analysis indicated that the leaching process was controlled by the diffusion through a product layer. The apparent activation energy could be achieved as 46.51 kJ/mol. The reaction order with respect to the sulfuric acid concentration was 1.1059. The kinetic model of vanadium recovery from stone coal using novel composite additive BaCO3/CaO could be finally established.

  17. Extracellular Ca(2+)-dependent enhancement of cytocidal potency of zoledronic acid in human oral cancer cells.

    Science.gov (United States)

    Inoue, Sayaka; Arai, Naoya; Tomihara, Kei; Takashina, Michinori; Hattori, Yuichi; Noguchi, Makoto

    2015-08-15

    Direct antitumor effects of bisphosphonates (BPs) have been demonstrated in various cancer cells in vitro. However, the effective concentrations of BPs are typically much higher than their clinically relevant concentrations. Oral cancers frequently invade jawbone and may lead to the release of Ca(2+) in primary lesions. We investigated the effects of the combined application of zoledronic acid (ZA) and Ca(2+) on proliferation and apoptosis of oral cancer cells. Human oral cancer cells, breast cancer cells, and colon cancer cells were treated with ZA at a wide range of concentrations in different Ca(2+) concentration environments. Under a standard Ca(2+) concentration (0.6mM), micromolar concentrations of ZA were required to inhibit oral cancer cell proliferation. Increasing extracellular Ca(2+) concentrations greatly enhanced the potency of the ZA cytocidal effect. The ability of Ca(2+) to enhance the cytocidal effects of ZA was negated by the Ca(2+)-selective chelator EGTA. In contrast, the cytocidal effect of ZA was less pronounced in breast and colon cancer cells regardless of whether extracellular Ca(2+) was elevated. In oral cancer cells incubated with 1.6mM Ca(2+), ZA up-regulated mitochondrial Bax expression and increased mitochondrial Ca(2+) uptake. This was associated with decreased mitochondrial membrane potential and increased release of cytochrome c. We suggest that ZA can specifically produce potent cytocidal activity in oral cancer cells in an extracellular Ca(2+)-dependent manner, implying that BPs may be useful for treatment of oral squamous cell carcinoma with jawbone invasion leading to the hypercalcemic state. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Significant effect of Ca2+ on improving the heat resistance of lactic acid bacteria.

    Science.gov (United States)

    Huang, Song; Chen, Xiao Dong

    2013-07-01

    The heat resistance of lactic acid bacteria (LAB) has been extensively investigated due to its highly practical significance. Reconstituted skim milk (RSM) has been found to be one of the most effective protectant wall materials for microencapsulating microorganisms during convective drying, such as spray drying. In addition to proteins and carbohydrate, RSM is rich in calcium. It is not clear which component is critical in the RSM protection mechanism. This study investigated the independent effect of calcium. Ca(2+) was added to lactose solution to examine its influence on the heat resistance of Lactobacillus rhamnosus ZY, Lactobacillus casei Zhang, Lactobacillus plantarum P8 and Streptococcus thermophilus ND03. The results showed that certain Ca(2+) concentrations enhanced the heat resistance of the LAB strains to different extents, that is produced higher survival and shorter regrowth lag times of the bacterial cells. In some cases, the improvements were dramatic. More scientifically insightful and more intensive instrumental study of the Ca(2+) behavior around and in the cells should be carried out in the near future. In the meantime, this work may lead to the development of more cost-effective wall materials with Ca(2+) added as a prime factor. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  19. Properties of Ca2+ release induced by clofibric acid from the sarcoplasmic reticulum of mouse skeletal muscle fibres

    Science.gov (United States)

    Ikemoto, Takaaki; Endo, Makoto

    2001-01-01

    To characterize the effect of clofibric acid (Clof) on the Ca2+ release mechanism in the sarcoplasmic reticulum (SR) of skeletal muscle, we analysed the properties of Clof-induced Ca2+ release under various conditions using chemically skinned skeletal muscle fibres of the mouse.Clof (>0.5 mM) released Ca2+ from the SR under Ca2+-free conditions buffered with 10 mM EGTA (pCa >8).Co-application of ryanodine and Clof at pCa >8 but not ryanodine alone reduced the Ca2+ uptake capacity of the SR. Thus, Ca2+ release induced by Clof at pCa >8 must be a result of the activation of the ryanodine receptor (RyR).At pCa >8, (i) Clof-induced Ca2+ release was inhibited by adenosine monophosphate (AMP), (ii) the inhibitory effect of Mg2+ on the Clof-induced Ca2+ release was saturated at about 1 mM, and (iii) Clof-induced Ca2+ release was not inhibited by procaine (10 mM). These results indicate that Clof may activate the RyR-Ca2+ release channels in a manner different from Ca2+-induced Ca2+ release (CICR).In addition to this unique mode of opening, Clof also enhanced the CICR mode of opening of RyR-Ca2+ release channels.Apart from CICR, a high concentration of Ca2+ might also enhance the unique mode of opening by Clof.These results suggest that some features of Ca2+ release activated by Clof are similar to those of physiological Ca2+ release (PCR) in living muscle cells and raise the possibility that Clof may be useful in elucidating the mechanism of PCR in skeletal muscle. PMID:11606311

  20. Intracellular alkalinization induces cytosolic Ca2+ increases by inhibiting sarco/endoplasmic reticulum Ca2+-ATPase (SERCA.

    Directory of Open Access Journals (Sweden)

    Sen Li

    Full Text Available Intracellular pH (pHi and Ca(2+ regulate essentially all aspects of cellular activities. Their inter-relationship has not been mechanistically explored. In this study, we used bases and acetic acid to manipulate the pHi. We found that transient pHi rise induced by both organic and inorganic bases, but not acidification induced by acid, produced elevation of cytosolic Ca(2+. The sources of the Ca(2+ increase are from the endoplasmic reticulum (ER Ca(2+ pools as well as from Ca(2+ influx. The store-mobilization component of the Ca(2+ increase induced by the pHi rise was not sensitive to antagonists for either IP(3-receptors or ryanodine receptors, but was due to inhibition of the sarco/endoplasmic reticulum Ca(2+-ATPase (SERCA, leading to depletion of the ER Ca(2+ store. We further showed that the physiological consequence of depletion of the ER Ca(2+ store by pHi rise is the activation of store-operated channels (SOCs of Orai1 and Stim1, leading to increased Ca(2+ influx. Taken together, our results indicate that intracellular alkalinization inhibits SERCA activity, similar to thapsigargin, thereby resulting in Ca(2+ leak from ER pools followed by Ca(2+ influx via SOCs.

  1. The Distribution of Charged Amino Acid Residues and the Ca2+ Permeability of Nicotinic Acetylcholine Receptors: A Predictive Model

    Directory of Open Access Journals (Sweden)

    Sergio Fucile

    2017-05-01

    Full Text Available Nicotinic acetylcholine receptors (nAChRs are cation-selective ligand-gated ion channels exhibiting variable Ca2+ permeability depending on their subunit composition. The Ca2+ permeability is a crucial functional parameter to understand the physiological role of nAChRs, in particular considering their ability to modulate Ca2+-dependent processes such as neurotransmitter release. The rings of extracellular and intracellular charged amino acid residues adjacent to the pore-lining TM2 transmembrane segment have been shown to play a key role in the cation selectivity of these receptor channels, but to date a quantitative relationship between these structural determinants and the Ca2+ permeability of nAChRs is lacking. In the last years the Ca2+ permeability of several nAChR subtypes has been experimentally evaluated, in terms of fractional Ca2+ current (Pf, i.e., the percentage of the total current carried by Ca2+ ions. In the present study, the available Pf-values of nAChRs are used to build a simplified modular model describing the contribution of the charged residues in defined regions flanking TM2 to the selectivity filter controlling Ca2+ influx. This model allows to predict the currently unknown Pf-values of existing nAChRs, as well as the hypothetical Ca2+ permeability of subunit combinations not able to assemble into functional receptors. In particular, basing on the amino acid sequences, a Pf > 50% would be associated with homomeric nAChRs composed by different α subunits, excluding α7, α9, and α10. Furthermore, according to the model, human α7β2 receptors should have Pf-values ranging from 3.6% (4:1 ratio to 0.1% (1:4 ratio, much lower than the 11.4% of homomeric α7 nAChR. These results help to understand the evolution and the function of the large diversity of the nicotinic receptor family.

  2. Effects of Bronsted acidity in the mechanism of selective oxidation of propane to acetone on CaY zeolite at room temperature.

    NARCIS (Netherlands)

    Xu, J.; Mojet, Barbara; van Ommen, J.G.; Lefferts, Leonardus

    2005-01-01

    The importance of Brønsted acid sites for partial oxidation of propane to acetone in CaY was investigated by in situ FTIR spectroscopy. With an increasing number of protons in Ca-Y, Volcano plots were observed for (1) amount of adsorbed propane; (2) initial acetone formation rate; (3) total amount

  3. Ca and S K-edge XANES studies of calcite-acid mine water interactions

    International Nuclear Information System (INIS)

    Myneni, S.C.B.; Perera, R.C.C.

    1997-01-01

    Heavy metal-rich acidic waters (SO 4 2- , AsO 4 3- , SeO 4 2- , Fe 2+ , Fe 3+ , Al 3+ , Cu 2+ , Zn 2+ , Cd 2+ ) and related ochreous coatings are common around abandoned sulfide and coal mine sites. This is mainly caused by the natural weathering of pyrite (FeS 2 ), arsenopyrite (FeAsS), and other metal sulfide containing shales. Acid generation in the case of pyrite can be explained by a general reaction: FeS 2 + 3.5 O 2 + H 2 O ↔ Fe 2+ + SO 4 2- + 2H + . Also, these low pH waters interact with the soils, and mobilize their soluble elements. One of the common remediation strategies is to allow these acid waters to react with limestone (CaCO 3 -rich rock) and neutralize the pH and precipitate out soluble metals. Yet, the associated problem is the precipitation of Fe and Al oxides and hydroxy sulfate coatings on limestone surfaces, which block calcite reactive sites, and make them ineffective a few hours after initiation of treatment. The main objectives of this research are to examine: (1) the chemistry of limestone surface coatings, and (2) their toxic metal uptake and the conditions that inhibit their formation. Previous molecular studies using X-ray diffraction, and vibrational spectroscopy on limestone surface coatings (sampled from Athens, OH) indicate that the surface-most layer (the layer in contact with water) is composed of schwertmannite (Fe(III)-hydroxy sulfate) like phases. However, white, X-ray amorphous; Al-, sulfate- and carbonate-rich; and Ca-poor phases appeared at the interface between the limestone and the iron oxide coatings. The structure, morphology, and coordination chemistry of component major and trace elements of these white precipitate phases have not previously been examined

  4. The effect of CaCl2 on growth rate, wood decay and oxalic acid accumulation in Serpula lacrymans and related brown-rot fungi

    DEFF Research Database (Denmark)

    Hastrup, Anne Christine Steenkjær; Jensen, Bo; Clausen, Carol. A.

    2006-01-01

    The dry rot fungus, Serpula lacrymans, is one of the most destructive copper-tolerant fungi causing timber decay in buildings in temperate regions. Calcium and oxalic acid have been shown to play important roles in the mechanism of wood decay. The effect of calcium on growth and decay was evaluated...... for 12 strains of S. lacrymans and compared to five brown-rot fungi. This was done by treating copper citrate (CC)-treated Southern yellow pine (SYP) wood with a CaCl2 solution and estimating the decay rate and amount of soluble oxalic acid in an ASTM soil block test. Decay by S. lacrymans was found....... In summary, a marked decrease was observed in the decay capacity of S. lacrymans in pine treated with CC+CaCl2. The amount of soluble oxalic acid was measured in CC-treated blocks and blocks also treated with CaCl2. Of the comparative brown-rot fungi, both Antrodia vaillantii (TFFH 294) and Postia placenta...

  5. Adsorption of endotoxins on Ca2+ -iminodiacetic acid by metal ion affinity chromatography.

    Science.gov (United States)

    Lopes, André Moreni; Romeu, Jorge Sánchez; Meireles, Rolando Páez; Perera, Gabriel Marquez; Morales, Rolando Perdomo; Pessoa, Adalberto; Cárdenas, Lourdes Zumalacárregui

    2012-11-01

    Endotoxins (also known as lipopolysaccharides (LPS)) are undesirable by-products of recombinant proteins, purified from Escherichia coli. LPS can be considered stable under a wide range of temperature and pH, making their removal one of the most difficult tasks in downstream processes during protein purification. The inherent toxicity of LPS makes their removal an important step for the application of these proteins in several biological assays and for a safe parenteral administration. Immobilized metal affinity chromatography (IMAC) enables the affinity interactions between the metal ions (immobilized on the support through the chelating compound) and the target molecules, thus enabling high-efficiency separation of the target molecules from other components present in a mixture. Affinity chromatography is applied with Ca2+ -iminodiacetic acid (IDA) to remove most of the LPS contaminants from the end product (more than 90%). In this study, the adsorption of LPS on an IDA-Ca2+ was investigated. The adsorption Freundlich isotherm of LPS-IDA-Ca2+ provides a theoretical basis for LPS removal. It was found that LPS is bound mainly by interactions between the phosphate group in LPS and Ca2+ ligands on the beads. The factors such as pH (4.0 or 5.5) and ionic strength (1.0 mol/L) are essential to obtain effective removal of LPS for contaminant levels between endotoxin' concentration values less than 100 EU/mL and 100 000 EU/mL. This new protocol represents a substantial advantage in time, effort, and production costs.

  6. Study of variation in thermal width of nematic and induced smectic ordering phase of citric acid (CA) and 4-heptyloxybenzoic acid (7OBA) hydrogen bonded liquid crystal complexes

    Science.gov (United States)

    Sundaram, S.; Jayaprakasam, R.; Praveena, R.; Rajasekaran, T. R.; Senthil, T. S.; Vijayakumar, V. N.

    2018-01-01

    Hydrogen-bonded liquid crystals (HBLCs) have been derived from nonmesogenic citric acid (CA) and mesogenic 4-heptyloxybenzoic acid (7OBA) yielding a highly ordered smectic C (Sm C) phase along with the new smectic X (Sm X) phase which has been identified as fingerprint-type texture. Optical (polarizing optical microscopy), thermal (differential scanning calorimetry) and structural (Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy) properties are studied. A noteworthy observation is that the intermolecular H-bond (between CA and 7OBA) influences on its melting point and clearing temperature of the HBLCs which exhibits lower value than those of the individual compounds. A typical extended mesophase region has been observed in the present complex while varying the mixture ratio (1:1 to 1:3) than those of individual compounds. The change in the ratio of the mesogenic compound in the mixture alters thermal properties such as enthalpy value and thermal span width in nematic (N) region of HBLC complex. Optical tilt angle measurement of CA+7OBA in Sm C phase has been discussed to identify the molecular position in the mesophase.

  7. Fatty Acids Composition and Antibacterial Activity of Aristolochia longa L. and Bryonia dioïca Jacq. Growing Wild in Tunisia.

    Science.gov (United States)

    Dhouioui, Mouna; Boulila, Abdennacer; Jemli, Maroua; Schiets, Fréderic; Casabianca, Hervé; Zina, Mongia Saïd

    2016-08-01

    The composition of the fatty acids of the roots and aerial parts of Aritolochia longa (Aristolacheae) and Bryonia dioïca (Cucurbutaceae) was analyzed by gas chromatography (GC-FID) and gas chromatography-mass spectrometry (GC-MS). The oils extracted from the aerial parts of both species were rich in polyunsaturated fatty acids with the essential linolenic and linoleic acids being the most prominent compounds. Oleic and linoleic acids were the majors fatty acids in the roots of both species. Whatever the plant part analyzed and the species, the saturated fatty acids were predominantly composed of palmitic and stearic acids. The antibacterial activity, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the lipid extracts were determined against a panel of five bacterial strains. The results showed that the sensitivity to the lipid extracts was different for the test bacterial strains, and the susceptibility of gram positive bacteria was found to be greater than gram negative bacteria. The antibacterial activity of the root lipid extracts was particularly important against Enterococcus feacium (CMI value of 125 µg/mL; CMB values > 250 µg/mL) and Streptococcus agalactiae (CMI value of 125 µg/mL; CMB values 250 µg/mL for A. longa roots). These results indicate that A. longa and B. dioïca could be considered as good sources of essential fatty acids which can act as natural antibacterial agents.

  8. Arabidopsis Glutamate Receptor Homolog3.5 Modulates Cytosolic Ca2+ Level to Counteract Effect of Abscisic Acid in Seed Germination1[OPEN

    Science.gov (United States)

    Kong, Dongdong; Ju, Chuanli; Parihar, Aisha; Kim, So; Cho, Daeshik; Kwak, June M.

    2015-01-01

    Seed germination is a critical step in a plant’s life cycle that allows successful propagation and is therefore strictly controlled by endogenous and environmental signals. However, the molecular mechanisms underlying germination control remain elusive. Here, we report that the Arabidopsis (Arabidopsis thaliana) glutamate receptor homolog3.5 (AtGLR3.5) is predominantly expressed in germinating seeds and increases cytosolic Ca2+ concentration that counteracts the effect of abscisic acid (ABA) to promote germination. Repression of AtGLR3.5 impairs cytosolic Ca2+ concentration elevation, significantly delays germination, and enhances ABA sensitivity in seeds, whereas overexpression of AtGLR3.5 results in earlier germination and reduced seed sensitivity to ABA. Furthermore, we show that Ca2+ suppresses the expression of ABSCISIC ACID INSENSITIVE4 (ABI4), a key transcription factor involved in ABA response in seeds, and that ABI4 plays a fundamental role in modulation of Ca2+-dependent germination. Taken together, our results provide molecular genetic evidence that AtGLR3.5-mediated Ca2+ influx stimulates seed germination by antagonizing the inhibitory effects of ABA through suppression of ABI4. These findings establish, to our knowledge, a new and pivotal role of the plant glutamate receptor homolog and Ca2+ signaling in germination control and uncover the orchestrated modulation of the AtGLR3.5-mediated Ca2+ signal and ABA signaling via ABI4 to fine-tune the crucial developmental process, germination, in Arabidopsis. PMID:25681329

  9. Eicosapentaenoic acid (EPA) induced apoptosis in HepG2 cells through ROS–Ca{sup 2+}–JNK mitochondrial pathways

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuanyuan; Han, Lirong [Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457 (China); Qi, Wentao [Academy of State Administration of Grain, No.11 Baiwanzhuang Avenue, Xicheng District, Beijing, 100037 (China); Cheng, Dai; Ma, Xiaolei; Hou, Lihua [Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457 (China); Cao, Xiaohong, E-mail: caoxh@tust.edu.cn [Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457 (China); Wang, Chunling, E-mail: wangchunling@tust.edu.cn [Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457 (China)

    2015-01-24

    Highlights: • EPA evoked ROS formation, [Ca{sup 2+}]{sub c} accumulation, the opening of MPTP and the phosphorylation of JNK. • EPA-induced [Ca{sup 2+}]{sub c} elevation was depended on production of ROS. • EPA-induced ROS generation, [Ca{sup 2+}]{sub c} increase, and JNK activated caused MPTP opening. • The apoptosis induced by EPA was related to release of cytochrome C through the MPTP. • EPA induced HepG2 cells apoptosis through ROS–Ca{sup 2+}–JNK mitochondrial pathways. - Abstract: Eicosapentaenoic acid (EPA), a well-known dietary n−3 PUFAS, has been considered to inhibit proliferation of tumor cells. However, the molecular mechanism related to EPA-induced liver cancer cells apoptosis has not been reported. In this study, we investigated the effect of EPA on HepG2 cells proliferation and apoptosis mechanism through mitochondrial pathways. EPA inhibited proliferation of HepG2 cells in a dose-dependent manner and had no significant effect on the cell viability of humor normal liver L-02 cells. It was found that EPA initially evoked ROS formation, leading to [Ca{sup 2+}]{sub c} accumulation and the mitochondrial permeability transition pore (MPTP) opening; EPA-induced HepG2 cells apoptosis was inhibited by N-acetylcysteine (NAC, an inhibitor of ROS), 1,2-bis (2-aminophenoxy) ethane-N,N,N′,N′-tetraacetic acid (BAPTA-AM, a chelator of calcium) and CsA (inhibitor of MPTP). The relationship between ROS production, the increase of cytoplasmic Ca and MPTP opening was detected. It seems that ROS may act as an upstream regulator of EPA-induced [Ca{sup 2+}]{sub c} generation, moreover, generation of ROS, overload of mitochondrial [Ca{sup 2+}]{sub c}, and JNK activated cause the opening of MPTP. Western blotting results showed that EPA elevated the phosphorylation status of JNK, processes associated with the ROS generation. Simultaneously, the apoptosis induced by EPA was related to release of cytochrome C from mitochondria to cytoplasm through the MPTP

  10. Age and adaptation to Ca and P deficiencies: 2. Impacts on amino acid digestibility and phytase efficacy in broilers.

    Science.gov (United States)

    Li, W; Angel, R; Kim, S-W; Jiménez-Moreno, E; Proszkowiec-Weglarz, M; Plumstead, P W

    2015-12-01

    A total of 1,152 straight-run hatchling Heritage 56M×fast feathering Cobb 500F broiler birds were used to determine Ca, age, and adaptation effects on apparent ileal digestibility of crude protein (AID of CP), amino acids (AID of AA) and phytase efficacy. Twelve treatments with 8 replicates, each were fed from 7 to 9 d (6 birds per replicate), 7 to 21 d (6 birds per replicate) and 19 to 21 d (3 birds per replicate) d of age. Diets were prepared with 3 Ca (0.65, 0.80, and 0.95%) and 2 non-phytate P, (0.20 and 0.40%) concentrations. A 6-phytase was added at 500 or 1,000 FTU/kg to the 0.20% nPP diet at each Ca concentration. The age and adaptation effects were determined by comparing the responses between birds fed from 7 to 9 and 19 to 21 d of age, 19 to 21, and 7 to 21 d of age, respectively. An age effect was observed regardless of Ca, nPP, or phytase concentration, with older birds (19 to 21 d) having greater apparent ileal digestibility (AID) of amino acids (AA) and CP than younger birds (7 to 9 d; Pphytase concentrations. Constant lower AID of CP and AA was seen in adapted birds (7 to 21 d) compared to unadapted bird (19 to 21 d) when 0.20% nPP diets were fed at 0.95% Ca concentrations (PPhytase efficacy was significantly lower in younger (7 to 9 d) compared to older birds (19 to 21 d; PPhytase inclusion increased AID of CP and AA regardless of Ca (P<0.05). In conclusion, the AID of CP and AA can be affected by diet, age, and adaptation. © 2015 Poultry Science Association Inc.

  11. Ca and S K-edge XANES studies of calcite-acid mine water interactions

    Energy Technology Data Exchange (ETDEWEB)

    Myneni, S.C.B.; Perera, R.C.C. [Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Heavy metal-rich acidic waters (SO{sub 4}{sup 2{minus}}, AsO{sub 4}{sup 3{minus}}, SeO{sub 4}{sup 2{minus}}, Fe{sup 2+}, Fe{sup 3+}, Al{sup 3+}, Cu{sup 2+}, Zn{sup 2+}, Cd{sup 2+}) and related ochreous coatings are common around abandoned sulfide and coal mine sites. This is mainly caused by the natural weathering of pyrite (FeS{sub 2}), arsenopyrite (FeAsS), and other metal sulfide containing shales. Acid generation in the case of pyrite can be explained by a general reaction: FeS{sub 2} + 3.5 O{sub 2} + H{sub 2}O {leftrightarrow} Fe{sup 2+} + SO{sub 4}{sup 2{minus}} + 2H{sup +}. Also, these low pH waters interact with the soils, and mobilize their soluble elements. One of the common remediation strategies is to allow these acid waters to react with limestone (CaCO{sub 3}-rich rock) and neutralize the pH and precipitate out soluble metals. Yet, the associated problem is the precipitation of Fe and Al oxides and hydroxy sulfate coatings on limestone surfaces, which block calcite reactive sites, and make them ineffective a few hours after initiation of treatment. The main objectives of this research are to examine: (1) the chemistry of limestone surface coatings, and (2) their toxic metal uptake and the conditions that inhibit their formation. Previous molecular studies using X-ray diffraction, and vibrational spectroscopy on limestone surface coatings (sampled from Athens, OH) indicate that the surface-most layer (the layer in contact with water) is composed of schwertmannite (Fe(III)-hydroxy sulfate) like phases. However, white, X-ray amorphous; Al-, sulfate- and carbonate-rich; and Ca-poor phases appeared at the interface between the limestone and the iron oxide coatings. The structure, morphology, and coordination chemistry of component major and trace elements of these white precipitate phases have not previously been examined.

  12. Synthesis, structural characterization and antitumor activity of a Ca(II) coordination polymer based on 4-formyl-1,3-benzenedisulfonate-2-furoic acid hydrazide ligands

    Energy Technology Data Exchange (ETDEWEB)

    Tai, Xi-Shi, E-mail: taixs@wfu.edu.cn [Weifang University, College of Chemistry and Chemical Engineering (China); Wang, Xin [Qinghai Normal University, Department of Chemistry (China)

    2017-03-15

    A new Ca(II) coordination polymer, ([CaL(H{sub 2}O){sub 4}] · (H{sub 2}O){sub 4}){sub n} (L = 4-formyl-1,3-benzenedisulfonate-2-furoic acid hydrazide) has been prepared by one-pot synthesis method. And it was characterized by elemental analysis, IR and thermal analysis. The result of X-ray single-crystal diffraction analysis shows that the Ca(II) complex molecules form one-dimensional chain structure by the bridging oxygen atoms. The anti-tumor activity of L ligand and the Ca(II) coordination polymer has also been studied.

  13. Phytic acid derived bioactive CaO-P2O5-SiO2 gel-glasses.

    Science.gov (United States)

    Li, Ailing; Qiu, Dong

    2011-12-01

    The possibility of using phytic acid as a precursor to synthesize CaO-P(2)O(5)-SiO(2) glasses by sol-gel method has been explored and the pseudo ternary phase diagram has been established. It was shown that gel-glasses over a broader range of compositions could be prepared compared to other phosphorus precursors or melt-quenching method. Furthermore, phytic acid was found to assist calcium being incorporated into glass networks. In vitro tests in simulated body fluid (SBF) were performed on the above gel-glasses and it was found that they were bioactive over a much broader compositional range especially at high phosphate content, thus enabling one to design bioactive materials with various degradation rates by adjusting the phosphate content.

  14. Incorporation of Mg and Ca into nanostructured Fe2O3 improves Fe solubility in dilute acid and sensory characteristics in foods.

    Science.gov (United States)

    Hilty, Florentine M; Knijnenburg, Jesper T N; Teleki, Alexandra; Krumeich, Frank; Hurrell, Richard F; Pratsinis, Sotiris E; Zimmermann, Michael B

    2011-01-01

    Iron deficiency is one of the most common micronutrient deficiencies worldwide. Food fortification can be an effective and sustainable strategy to reduce Fe deficiency but selection of iron fortificants remains a challenge. Water-soluble compounds, for example, FeSO(4), usually demonstrate high bioavailability but they often cause unacceptable sensory changes in foods. On the other hand, poorly acid-soluble Fe compounds, for example FePO(4), may cause fewer adverse sensory changes in foods but are usually not well bioavailable since they need to be dissolved in the stomach prior to absorption. The solubility and the bioavailability of poorly acid-soluble Fe compounds can be improved by decreasing their primary particle size and thereby increasing their specific surface area. Here, Fe oxide-based nanostructured compounds with added Mg or Ca were produced by scalable flame aerosol technology. The compounds were characterized by nitrogen adsorption, X-ray diffraction, transmission electron microscopy, and Fe solubility in dilute acid. Sensory properties of the Fe-based compounds were tested in 2 highly reactive, polyphenol-rich food matrices: chocolate milk and fruit yoghurt. The Fe solubility of nanostructured Fe(2)O(3) doped with Mg or Ca was higher than that of pure Fe(2)O(3). Since good solubility in dilute acid was obtained despite the inhomogeneity of the powders, inexpensive precursors, for example Fe- and Ca-nitrates, can be used for their manufacture. Adding Mg or Ca lightened powder color, while sensory changes when added to foods were less pronounced than for FeSO(4). The combination of high Fe solubility and low reactivity in foods makes these flame-made nanostructured compounds promising for food fortification. Practical Application: The nanostructured iron-containing compounds presented here may prove useful for iron fortification of certain foods; they are highly soluble in dilute acid and likely to be well absorbed in the gut but cause less severe

  15. Extraction of Trivalent La, Nd and Eu from Nitric Acid Solution by Ion quest-801 Loaded on Lewatit CA 9221

    International Nuclear Information System (INIS)

    Nowier, H.G; Metwally, S.S; Abd El-Rehim, S.S; Aly, H.F.

    2005-01-01

    The extraction of La 3+ , Nd 3+ and Eu 3+ from nitric acid medium by Lewatit CA 9221, Containing 2-ethylhexyl mono -2- ethylhexyl phosphonic acid ester, Ion quest-801, was studied. Batch experiments were carried out to investigate the effect of contact time, V/M ratio, extractant concentration, nitric acid molarity, lanthanide concentration and temperature. The data obtained are discussed in terms of extraction equilibrium and separation factors between the lanthanides as well as certain sorption models. Possible use of column chromatography containing the developed extractant material was assessed

  16. Detection of Ca2+-dependent acid phosphatase activity identifies neuronal integrity in damaged rat central nervous system after application of bacterial melanin

    Directory of Open Access Journals (Sweden)

    Tigran R Petrosyan

    2016-01-01

    Full Text Available The study aims to confirm the neuroregenerative effects of bacterial melanin (BM on central nervous system injury using a special staining method based on the detection of Ca2+-dependent acid phosphatase activity. Twenty-four rats were randomly assigned to undergo either unilateral destruction of sensorimotor cortex (group I; n = 12 or unilateral rubrospinal tract transection at the cervical level (C3–4 (group II; n = 12. In each group, six rats were randomly selected after surgery to undergo intramuscular injection of BM solution (BM subgroup and the remaining six rats were intramuscularly injected with saline (saline subgroup. Neurological testing confirmed that BM accelerated the recovery of motor function in rats from both BM and saline subgroups. Two months after surgery, Ca2+-dependent acid phosphatase activity detection in combination with Chilingarian's calcium adenoside triphosphate method revealed that BM stimulated the sprouting of fibers and dilated the capillaries in the brain and spinal cord. These results suggest that BM can promote the recovery of motor function of rats with central nervous system injury; and detection of Ca2+-dependent acid phosphatase activity is a fast and easy method used to study the regeneration-promoting effects of BM on the injured central nervous system.

  17. Colon-specific delivery of 5-aminosalicylic acid from chitosan-Ca-alginate microparticles.

    Science.gov (United States)

    Mladenovska, K; Raicki, R S; Janevik, E I; Ristoski, T; Pavlova, M J; Kavrakovski, Z; Dodov, M G; Goracinova, K

    2007-09-05

    Chitosan-Ca-alginate microparticles for colon-specific delivery and controlled release of 5-aminosalicylic acid after peroral administration were prepared using spray drying method followed by ionotropic gelation/polyelectrolyte complexation. Physicochemical characterization pointed to the negatively charged particles with spherical morphology having a mean diameter less than 9 microm. Chitosan was localized dominantly in the particle wall, while for alginate, a homogeneous distribution throughout the particles was observed. (1)H NMR, FTIR, X-ray and DSC studies indicated molecularly dispersed drug within the particles with preserved stability during microencapsulation and in simulated in vivo drug release conditions. In vitro drug release studies carried out in simulated in vivo conditions in respect to pH, enzymatic and salt content confirmed the potential of the particles to release the drug in a controlled manner. The diffusional exponents according to the general exponential release equation indicated anomalous (non-Fickian) transport in 5-ASA release controlled by a polymer relaxation, erosion and degradation. Biodistribution studies of [(131)I]-5-ASA loaded chitosan-Ca-alginate microparticles, carried out within 2 days after peroral administration to Wistar male rats in which TNBS colitis was induced, confirmed the dominant localization of 5-ASA in the colon with low systemic bioavailability.

  18. The amino-terminal 200 amino acids of the plasma membrane Na+,K+-ATPase alpha subunit confer ouabain sensitivity on the sarcoplasmic reticulum Ca(2+)-ATPase.

    OpenAIRE

    Ishii, T; Takeyasu, K

    1993-01-01

    Cardiac glycosides such as G-strophanthin (ouabain) bind to and inhibit the plasma membrane Na+,K(+)-ATPase but not the sarcoplasmic reticulum (SR) Ca(2+)-ATPase, whereas thapsigargin specifically blocks the SR Ca(2+)-ATPase. The chimera [n/c]CC, in which the amino-terminal amino acids Met1 to Asp162 of the SR Ca(2+)-ATPase (SERCA1) were replaced with the corresponding portion of the Na+,K(+)-ATPase alpha 1 subunit (Met1 to Asp200), retained thapsigargin- and Ca(2+)-sensitive ATPase activity,...

  19. Ab initio study of the binding of collagen amino acids to graphene and A-doped (A = H, Ca) graphene

    Energy Technology Data Exchange (ETDEWEB)

    Cazorla, Claudio, E-mail: c.silva@ucl.ac.u

    2010-09-30

    We present a theoretical study of the binding of collagen amino acids (AA, namely glycine, Gly; proline, Pro; and hydroxyproline, Hyp) to graphene (Gr), Ca-doped graphene and graphane (Gra) using density functional theory calculations and ab initio molecular dynamics (AIMD) simulations. It is found that binding of Gly, Pro and Hyp to Gr and Gra is thermodynamically favorable yet dependent on the amino acid orientation and always very weak (adsorption energies E{sub ads} range from -90 to -20 meV). AIMD simulations reveal that room-temperature thermal excitations are enough to induce detachment of Gly and Pro from Gr and of all three amino acids from Gra. Interestingly, we show that collagen AA binding to Gr is enhanced dramatically by doping the carbon surface with calcium atoms (corresponding E{sub ads} values decrease by practically two orders of magnitude with respect to the non-doped case). This effect is result of electronic charge transfers from the Ca impurity (donor) to Gr (acceptor) and the carboxyl group (COOH) of the amino acid (acceptor). The possibility of using Gr and Gra as nanoframes for sensing of collagen amino acids has also been investigated by performing electronic density of states analysis. It is found that, whether Gr is hardly sensitive, the electronic band gap of Gra can be modulated by attaching different number and species of AAs onto it. The results presented in this work provide fundamental insights on the quantum interactions of collagen protein components with carbon-based nanostructures and can be useful for developments in bio and nanotechnology fields.

  20. A single amino acid residue controls Ca2+ signaling by an octopamine receptor from Drosophila melanogaster.

    Science.gov (United States)

    Hoff, Max; Balfanz, Sabine; Ehling, Petra; Gensch, Thomas; Baumann, Arnd

    2011-07-01

    Rhythmic activity of cells and cellular networks plays an important role in physiology. In the nervous system oscillations of electrical activity and/or second messenger concentrations are important to synchronize neuronal activity. At the molecular level, rhythmic activity can be initiated by different routes. We have recently shown that an octopamine-activated G-protein-coupled receptor (GPCR; DmOctα1Rb, CG3856) from Drosophila initiates Ca(2+) oscillations. Here, we have unraveled the molecular basis of cellular Ca(2+) signaling controlled by the DmOctα1Rb receptor using a combination of pharmacological intervention, site-directed mutagenesis, and functional cellular Ca(2+) imaging on heterologously expressed receptors. Phosphorylation of a single amino acid residue in the third intracellular loop of the GPCR by PKC is necessary and sufficient to desensitize the receptor. From its desensitized state, DmOctα1Rb is resensitized by dephosphorylation, and a new Ca(2+) signal occurs on octopamine stimulation. Our findings show that transient changes of the receptor's surface profile have a strong effect on its physiological signaling properties. We expect that the detailed knowledge of DmOctα1Rb-dependent signal transduction fosters the identification of specific drugs that can be used for GPCR-mediated pest control, since octopamine serves important physiological and behavioral functions in arthropods.

  1. The Cytoplasmic Carbonic Anhydrases βCA2 and βCA4 Are Required for Optimal Plant Growth at Low CO2.

    Science.gov (United States)

    DiMario, Robert J; Quebedeaux, Jennifer C; Longstreth, David J; Dassanayake, Maheshi; Hartman, Monica M; Moroney, James V

    2016-05-01

    Carbonic anhydrases (CAs) are zinc metalloenzymes that interconvert CO2 and HCO3 (-) In plants, both α- and β-type CAs are present. We hypothesize that cytoplasmic βCAs are required to modulate inorganic carbon forms needed in leaf cells for carbon-requiring reactions such as photosynthesis and amino acid biosynthesis. In this report, we present evidence that βCA2 and βCA4 are the two most abundant cytoplasmic CAs in Arabidopsis (Arabidopsis thaliana) leaves. Previously, βCA4 was reported to be localized to the plasma membrane, but here, we show that two forms of βCA4 are expressed in a tissue-specific manner and that the two proteins encoded by βCA4 localize to two different regions of the cell. Comparing transfer DNA knockout lines with wild-type plants, there was no reduction in the growth rates of the single mutants, βca2 and βca4 However, the growth rate of the double mutant, βcaca4, was reduced significantly when grown at 200 μL L(-1) CO2 The reduction in growth of the double mutant was not linked to a reduction in photosynthetic rate. The amino acid content of leaves from the double mutant showed marked reduction in aspartate when compared with the wild type and the single mutants. This suggests the cytoplasmic CAs play an important but not previously appreciated role in amino acid biosynthesis. © 2016 American Society of Plant Biologists. All Rights Reserved.

  2. Depressing effect of phenoxyl acetic acids on flotation of minerals containing Ca2+/Mg2+ gangues

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Phenoxyl acetic acids were applied to determine their depressing effect on minerals containing Ca2+/Mg2+ gangues. Calcite,mixture of calcite and fluorite, and nickel ore were used in the flotation. And the depression mechanism was studied by the determination of contact angle, zeta potential, adsorptive capacity of collector, and IR analysis as well. It is found that 0.1 mmol/L of phenoxyl acetic acid derived from pyrogallol or gallic acid exhibits strong depressing ability on calcite in almost zero yields at pH value of 9.8, and calcite can be depressed in the flotation of calcite/fluorite mixture for approximate 87% yield of fluorite. The flotation result of practical nickel ore containing serpentine indicates that these two depressants may also show better depression performance to serpentine than traditional depressants such as sodium fluosilicate and carboxylmethyl cellulose. Analysis for the depression mechanism reveals that there exists strong chemical interaction between the depressants and minerals.

  3. Molecular cloning of the large subunit of the high-Ca2+-requiring form of human Ca2+-activated neutral protease

    International Nuclear Information System (INIS)

    Imajoh, Shinobu; Aoki, Kazumasa; Ohno, Shigeo; Emori, Yasufumi; Kawasaki, Hiroshi; Sugihara, Hidemitsu; Suzuki, Koichi

    1988-01-01

    A nearly full-length cDNA clone for the large subunit of high-Ca 2+ -requiring Ca 2+ -activated neutral protease (mCANP) from human tissues has been isolated. The deduced protein, determined for the first time as an mCANP, has essentially the same structural features as those revealed previously for the large subunits of the low-Ca 2+ -requiring form (μCANP). Namely, the protein, comprising 700 amino acid residues, is characterized by four domains, containing a cysteine protease like domain and a Ca 2+ -binding domain. The overall amino acid sequence similarities of the mCANP large subunit with those of human μCANP and chicken CANP are 62% and 66%, respectively. These values are slightly lower than that observed between μCANP and chicken CANP (70%). Local sequence similarities vary with the domain, 73-78% in the cysteine protease like domain and 48-65% in the Ca 2+ -binding domain. These results suggest that CANPs with different Ca 2+ sensitivities share a common evolutionary origin and that their regulatory mechanisms are similar except for the Ca 2+ concentrations required for activation

  4. Cardiac microvascular endothelial cells express a functional Ca+ -sensing receptor.

    Science.gov (United States)

    Berra Romani, Roberto; Raqeeb, Abdul; Laforenza, Umberto; Scaffino, Manuela Federica; Moccia, Francesco; Avelino-Cruz, Josè Everardo; Oldani, Amanda; Coltrini, Daniela; Milesi, Veronica; Taglietti, Vanni; Tanzi, Franco

    2009-01-01

    The mechanism whereby extracellular Ca(2+) exerts the endothelium-dependent control of vascular tone is still unclear. In this study, we assessed whether cardiac microvascular endothelial cells (CMEC) express a functional extracellular Ca(2+)-sensing receptor (CaSR) using a variety of techniques. CaSR mRNA was detected using RT-PCR, and CaSR protein was identified by immunocytochemical analysis. In order to assess the functionality of the receptor, CMEC were loaded with the Ca(2+)-sensitive fluorochrome, Fura-2/AM. A number of CaSR agonists, such as spermine, Gd(3+), La(3+) and neomycin, elicited a heterogeneous intracellular Ca(2+) signal, which was abolished by disruption of inositol 1,4,5-trisphosphate (InsP(3)) signaling and by depletion of intracellular stores with cyclopiazonic acid. The inhibition of the Na(+)/Ca(2+) exchanger upon substitution of extracellular Na(+) unmasked the Ca(2+) signal triggered by an increase in extracellular Ca(2+) levels. Finally, aromatic amino acids, which function as allosteric activators of CaSR, potentiated the Ca(2+) response to the CaSR agonist La(3+). These data provide evidence that CMEC express CaSR, which is able to respond to physiological agonists by mobilizing Ca(2+) from intracellular InsP(3)-sensitive stores. Copyright 2008 S. Karger AG, Basel.

  5. Demand for Zn2+ in acid-secreting gastric mucosa and its requirement for intracellular Ca2+.

    Directory of Open Access Journals (Sweden)

    JingJing Liu

    Full Text Available Recent work has suggested that Zn(2+ plays a critical role in regulating acidity within the secretory compartments of isolated gastric glands. Here, we investigate the content, distribution and demand for Zn(2+ in gastric mucosa under baseline conditions and its regulation during secretory stimulation.Content and distribution of zinc were evaluated in sections of whole gastric mucosa using X-ray fluorescence microscopy. Significant stores of Zn(2+ were identified in neural elements of the muscularis, glandular areas enriched in parietal cells, and apical regions of the surface epithelium. In in vivo studies, extraction of the low abundance isotope, (70Zn(2+, from the circulation was demonstrated in samples of mucosal tissue 24 hours or 72 hours after infusion (250 µg/kg. In in vitro studies, uptake of (70Zn(2+ from media was demonstrated in isolated rabbit gastric glands following exposure to concentrations as low as 10 nM. In additional studies, demand of individual gastric parietal cells for Zn(2+ was monitored using the fluorescent zinc reporter, fluozin-3, by measuring increases in free intracellular concentrations of Zn(2+ {[Zn(2+](i} during exposure to standard extracellular concentrations of Zn(2+ (10 µM for standard intervals of time. Under resting conditions, demand for extracellular Zn(2+ increased with exposure to secretagogues (forskolin, carbachol/histamine and under conditions associated with increased intracellular Ca(2+ {[Ca(2+](i}. Uptake of Zn(2+ was abolished following removal of extracellular Ca(2+ or depletion of intracellular Ca(2+ stores, suggesting that demand for extracellular Zn(2+ increases and depends on influx of extracellular Ca(2+.This study is the first to characterize the content and distribution of Zn(2+ in an organ of the gastrointestinal tract. Our findings offer the novel interpretation, that Ca(2+ integrates basolateral demand for Zn(2+ with stimulation of secretion of HCl into the lumen of the gastric

  6. Functional roles of the pepper RING finger protein gene, CaRING1, in abscisic acid signaling and dehydration tolerance.

    Science.gov (United States)

    Lim, Chae Woo; Hwang, Byung Kook; Lee, Sung Chul

    2015-09-01

    Plants are constantly exposed to a variety of biotic and abiotic stresses, which include pathogens and conditions of high salinity, low temperature, and drought. Abscisic acid (ABA) is a major plant hormone involved in signal transduction pathways that mediate the defense response of plants to abiotic stress. Previously, we isolated Ring finger protein gene (CaRING1) from pepper (Capsicum annuum), which is associated with resistance to bacterial pathogens, accompanied by hypersensitive cell death. Here, we report a new function of the CaRING1 gene product in the ABA-mediated defense responses of plants to dehydration stress. The expression of the CaRING1 gene was induced in pepper leaves treated with ABA or exposed to dehydration or NaCl. Virus-induced gene silencing of CaRING1 in pepper plants exhibited low degree of ABA-induced stomatal closure and high levels of transpirational water loss in dehydrated leaves. These led to be more vulnerable to dehydration stress in CaRING1-silenced pepper than in the control pepper, accompanied by reduction of ABA-regulated gene expression and low accumulation of ABA and H2O2. In contrast, CaRING1-overexpressing transgenic plants showed enhanced sensitivity to ABA during the seedling growth and establishment. These plants were also more tolerant to dehydration stress than the wild-type plants because of high ABA accumulation, enhanced stomatal closure and increased expression of stress-responsive genes. Together, these results suggest that the CaRING1 acts as positive factor for dehydration tolerance in Arabidopsis by modulating ABA biosynthesis and ABA-mediated stomatal closing and gene expression.

  7. Complex formation of calcium with humic acid and polyacrylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Kirishima, A.; Tanaka, K.; Niibori, Y.; Tochiyama, O. [Dept. of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku Univ., Sendai (Japan)

    2002-07-01

    In order to understand the migration behavior of radionuclides in the underground, it is also important to estimate the effect of the competing cations originally present in the groundwater. In this connection, the complexation of Ca(II) with Aldrich humic acid has been examined. For the study at trace concentrations ({proportional_to} 10{sup -10} M) of Ca(II), the solvent extraction of {sup 45}Ca with TTA and TOPO in cyclohexane has been used. At macro concentrations (10{sup -4} M) of Ca(II), the measurement of the free Ca{sup 2+} ion concentration with a calcium selective electrode has been conducted. To estimate the polyelectrolyte effect of humic acid separately from its heterogeneous composition effect, polyacrylic acid ([-CH{sub 2}CH(COOH)-]{sub n}) has been selected as a representative of the homogeneous polymeric weak acids and its complexation with Ca(II) has also been examined. The values of log {beta}{sub {alpha}} have been obtained at pH 5 {proportional_to} 7 in 0.1, 0.4 and 1.0 M NaCl, where {beta}{sub {alpha}} is the apparent formation constants defined by {beta}{sub {alpha}} = [ML]/([M][R]). In this definition, [ML] and [M] are the concentrations of bound and free Ca{sup 2+} respectively, [R] is the concentration of dissociated proton exchanging sites. log {beta}{sub {alpha}} of humate decreases from 2.19 {proportional_to} 2.92 (depending on pH and ionic strength 1.0 < I < 0.4) at pCa = 10 to 1.98 {proportional_to} 2.44 at pCa = 4, while the variation of pCa has no appreciable influence on the log {beta}{sub {alpha}} of polyacrylate (1.36 {proportional_to} 3.24 for I = 0.1 {proportional_to} 1.0). For both humate and polyacrylate, log {beta}{sub {alpha}} decreases linearly with log[Na{sup +}], where [Na{sup +}] is the bulk concentration of sodium ion. Their dependences of log {beta}{sub {alpha}} on ionic strength are stronger than those of log {beta} of monomeric carboxylates such as oxalate and EDTA, indicating the large electrostatic effect of

  8. 45Ca distribution and transport in saponin skinned vascular smooth muscle

    International Nuclear Information System (INIS)

    Stout, M.A.; Diecke, F.P.

    1983-01-01

    45 Ca distribution and transport were studied in chemically skinned strips of caudal artery from Kyoto Wistar rats. Sarcolemmal membranes were made hyperpermeable by exposure for 60 min to solutions containing 0.1 mg/ml of saponin. Skinned helical strips responded with graded contractions to changes in ethylene glycol bis-(beta-aminoethyl ether)-N,N'-tetraacetic acid buffered free Ca solutions (10(-7) to 10(-5) M) and were sensitive to the Mg-ATP concentration. Tissues loaded in the presence of 10(-7) M Ca contracted in response to 10 mM caffeine. These experiments indicate the strips are skinned and possess a functional regulatory and contractile system and an intact Ca sequestering system. 45 Ca distributes in three compartments in skinned caudal artery strips. The Ca contents of two components are linear functions of the Ca-ethylene glycol bis-(beta-aminoethyl ether)-N,N'-tetraacetic acid concentration and desaturate at rapid rates. They correspond to the extracellular and cytoplasmic spaces. A significantly smaller component releases Ca at comparatively slower rates. 45 Ca uptake by the slow component consists of an ATP-dependent and an ATP-independent fraction. The 45 Ca content of the ATP-dependent fraction is a function of the free Ca concentration and is independent of the Ca-ethylene glycol bis-(beta-aminoethyl ether)-N,N'-tetraacetic acid concentration. Its content was enhanced by oxalate and was abolished by Triton X-100 skinning solutions. The ATP-independent component was not affected by Triton X-100 skinning and may represent Ca binding to cytoplasmic molecules and structures. The sequestered Ca was released with caffeine or Ca but not by epinephrine. The observations indicate that the sarcoplasmic reticulum and mitochondria of vascular smooth muscle strips skinned with saponin retain their functional integrity after saponin skinning

  9. Distinct roles of two ceramide synthases, CaLag1p and CaLac1p, in the morphogenesis of Candida albicans

    DEFF Research Database (Denmark)

    Cheon, Seon Ah; Bal, Jyotiranjan; Song, Yunkyoung

    2012-01-01

    p) and Lac1p (CaLac1p) are functionally distinct. Lack of CaLag1p, but not CaLac1p, caused severe defects in the growth and hyphal morphogenesis of C. albicans. Deletion of CaLAG1 decreased expression of the hypha-specific HWP1 and ECE1 genes. Moreover, overexpression of CaLAG1 induced pseudohyphal...... growth in this organism under non-hypha-inducing conditions, suggesting that CaLag1p is necessary for relaying signals to induce hypha-specific gene expression. Analysis of ceramide and sphingolipid composition revealed that CaLag1p predominantly synthesizes ceramides with C24:0/C26:0 fatty acid moieties...

  10. The possibility of lactic acid fermentation in the triticale stillage

    Directory of Open Access Journals (Sweden)

    MILICA MARKOVIĆ

    2011-06-01

    Full Text Available Triticale stillage is a by-product of bioethanol production. A research study was conducted in order to see if triticale stillage is adequate for lactic acid bacteria growth and lactic acid fermentation. Three Lactobacillus strains: Lactobacillus fermentum NRRL-B-75624, Lactobacillus fermentum PL-1, and Lactobacillus plantarum PL-4 were taken into consideration. Lactic acid fermentation was monitored by measuring pH value and titratable acidity. Lactobacillus fermentum PL-1 had the greatest decrease of pH values and increase of titratable acidity so it was chosen for future work. During the research, it was investigated how nutrient composition of triticale stillage and CaCO3 can influence lactic acid fermentation and CaCO3 role in cell protection. The nutrient composition of triticale stillage was satisfactory for lactic acid fermentation. The addition of CaCO3 helped in lactic acid fermentation. Although the titratable acidity in the samples with CaCO3 was lower than in the samples without CaCO3, the number of viable cells was higher for the samples with CaCO3, which showed that CaCO3 protected lactic acid cells from inhibition by lactic acid.

  11. Radiolysis of Ca14CO3

    International Nuclear Information System (INIS)

    Sanchez, M.G.A.

    1986-01-01

    The partition-ion exclusion chromatography is evaluated to analyse non-ionic organic compounds obtained from radiolysis of high specific activity Ca 14 CO 3 . The Ca 14 CO 3 was irradiated by β - decay of carbon-14 or by γ rays from a cobalt-60 source. The crystals were dissolved for qualitative and quantitative analysis of the radiolytic products. Formic and oxalic acids were produced in high yields. Glyoxylic, acetic and glycolic acids, formaldehyde and methanol were produced in low yields. Quantitative determination was carried out by liquid scintillation spectroscopy and the chemical yields (G-values) were calculated for the products. Mechanisms of product formation are proposed based on thermal annealing experiments. (Author) [pt

  12. Demonstration of the lack of cytotoxicity of unmodified and folic acid modified graphene oxide quantum dots, and their application to fluorescence lifetime imaging of HaCaT cells.

    Science.gov (United States)

    Goreham, Renee V; Schroeder, Kathryn L; Holmes, Amy; Bradley, Siobhan J; Nann, Thomas

    2018-01-24

    The authors describe the synthesis of water-soluble and fluorescent graphene oxide quantum dots via acid exfoliation of graphite nanoparticles. The resultant graphene oxide quantum dots (GoQDs) were then modified with folic acid. Folic acid receptors are overexpressed in cancer cells and hence can bind to functionalized graphene oxide quantum dots. On excitation at 305 nm, the GoQDs display green fluorescence with a peak wavelength at ~520 nm. The modified GoQDs are non-toxic to macrophage cells even after prolonged exposure and high concentrations. Fluorescence lifetime imaging and multiphoton microscopy was used (in combination) to image HeCaT cells exposed to GoQDs, resulting in a superior method for bioimaging. Graphical abstract Schematic representation of graphene oxide quantum dots, folic acid modified graphene oxide quantum dots (red), and the use of fluorescence lifetime to discriminate against green auto-fluorescence of HeCaT cells.

  13. Effect of realgar on extracellular amino acid neurotransmitters in hippocampal CA1 region determined by online microdialysis–dansyl chloride derivatization–high-performance liquid chromatography and fluorescence detection.

    Science.gov (United States)

    Huo, Taoguang; Zhang, Yinghua; Li, Weikai; Yang, Huilei; Jiang, Hong; Sun, Guifan

    2014-09-01

    An online microdialysis (MD)–dansyl chloride (Dns) derivatization–high-performance liquid chromatography (HPLC) and fluorescence detection (FD) system was developed for simultaneous determination of eight extracellular amino acid neurotransmitters in hippocampus. The MD probe was implanted in hippocampal CA1 region. Dialysate and Dns were online mixed and derivatized. The derivatives were separated on an ODS column and detected by FD. The developed online system showed good linearity, precision, accuracy and recovery. This online MD-HPLC system was applied to monitor amino acid neurotransmitters levels in rats exposed to realgar (0.3, 0.9 and 2.7 g/kg body weight). The result shows that glutamate concentrations were significantly increased (p<0.05) in hippocampal CA1 region of rats exposed to three doses of realgar. A decrease in γ-aminobutyric acid concentrations was found in rats exposed to medium and high doses of realgar (p<0.05). Elevation of excitotoxic index (EI) values in hippocampal CA1 region of realgar-exposed rats was observed (p<0.05). Positive correlation was found between EI values and arsenic contents in hippocampus of realgar-exposed rats, which indicates that the change in extracellular EI values is associated with arsenic accumulation in hippocampus. The developed online MD–Dns derivatization–HPLC–FD system provides a new experimental method for studying the effect of toxic Chinese medicines on amino acid neurotransmitters.

  14. Preparation and characterization of composites based on poly(lactic acid) and CaCO{sub 3} nanofiller

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Janaína Fernandes; Silva, Ana Lúcia N. da, E-mail: janamoreno.quim@gmail.com, E-mail: ananazareth@ima.ufrj.br [Instituto de Macromoléculas Professora Eloisa Mano - IMA/UFRJ – Brasil, Rio de Janeiro – RJ (Brazil); Silva, Antonio Henrique Monteiro da Fonseca T. da, E-mail: antoniohmfts@id.uff.br [Departamento Agrícola e Meio Ambiente – UFF – Brasil, Niterói – RJ (Brazil); Sousa, Ana Maria F. de, E-mail: ana.furtado.souza@gmail.com [Instituto de Química da Universidade - IQ/UERJ – Brasil, Rio de Janeiro – RJ (Brazil)

    2015-05-22

    In recent years, extensive studies have been conducted on the study of the poly(lactic acid) (PLA) properties, because of its being a typical biobased and biodegradable polymer, with good mechanical properties. However, its toughness and gas barrier properties are not satisfactory and can be improved by the addition of nanofillers, such as calcium carbonate (n-CaCO{sub 3}). The present work PLA composites with nano-sized precipitated calcium carbonate (n-NPCC) were prepared by melt extrusion. Thermal, mechanical and flow properties of the composites were evaluated by using a factorial design.The results showed that the addition of the nanofiller in the PLA matrix didn’t improve thethermal and mechanical properties of the matrix significantly. This behavior is probably due to the presence of the stearic acid that is coating on the n-NPCC particles, resulting in a weak polymer-particle interaction. Beyond this, it was also observed a decrease in MFI of the composites when nanofiller was added and at a higher screw speed.

  15. Inhibitory mechanism against oxidative stress of caffeic acid

    Directory of Open Access Journals (Sweden)

    Farhan Ahmed Khan

    2016-10-01

    Full Text Available The purpose of this article is to summarize the reported antioxidant activities of a naturally abundant bioactive phenolic acid, caffeic acid (CA, 3,4-dihydroxycinnamic acid, so that new avenues for future research involving CA can be explored. CA is abundantly found in coffee, fruits, vegetables, oils, and tea. CA is among the most potential and abundantly found in nature, hydroxycinnamic acids with the potential of antioxidant behavior. Reactive oxygen species produced as a result of endogenous processes can lead to pathophysiological disturbances in the human body. Foods containing phenolic substances are a potential source for free radical scavenging; these chemicals are known as antioxidants. This review is focused on CA's structure, availability, and potential as an antioxidant along with its mode of action. A brief overview of the literature published about the prooxidant potential of caffeic acid as well as the future perspectives of caffeic acid research is described. CA can be effectively employed as a natural antioxidant in various food products such as oils.

  16. The acidic transformed nano-VO2 causes macrophage cell death by the induction of lysosomal membrane permeabilization and Ca2+ efflux

    Directory of Open Access Journals (Sweden)

    Shaohai Xu

    2015-01-01

    Full Text Available Because of its outstanding thermochromic characteristics and metal-insulator transition (MIT property, nano-vanadium dioxide (abbreviated as nano-VO2 or nVO2 has been applied widely in electrical/optical devices and design of intelligent window. However, the biological effect of nVO2 is not well understood, especially when affected by environmental factors or living organisms. For VO2 is an amphoteric oxide, we simulated pH's influence to nVO2’s physicochemical properties by exposure nVO2 in water of different pH values. We found that nVO2 transformed to a new product after exposure in acidic water for two weeks, as revealed by physicochemical characterization such as SEM, TEM, XRD, and DLS. This transformation product formed in acidic water was referred as (acidic transformed nVO2. Both pristine/untransformed and transformed nVO2 displayed no obvious toxicity to common epithelial cells; however, the acidic transformed nVO2 rapidly induced macrophage cell death. Further investigation demonstrated that transformed nVO2 caused macrophage apoptosis by the induction of Ca2+ efflux and the following mitochondrial membrane permeabilization (MMP process. And a more detailed time course study indicated that transformed nVO2 caused lysosomal membrane permeabilization (LMP at the earlier stage, indicating LMP could be chosen as an earlier and sensitive end point for nanotoxicological study. We conclude that although nVO2 displays no acute toxicity, its acidic transformation product induces macrophage apoptosis by the induction of LMP and Ca2+ efflux. This report suggests that the interplay with environmental factors or living organisms can results in physicochemical transformation of nanomaterials and the ensuing distinctive biological effects.

  17. Individual bile acids have differential effects on bile acid signaling in mice

    International Nuclear Information System (INIS)

    Song, Peizhen; Rockwell, Cheryl E.; Cui, Julia Yue; Klaassen, Curtis D.

    2015-01-01

    Bile acids (BAs) are known to regulate BA synthesis and transport by the farnesoid X receptor in the liver (FXR-SHP) and intestine (FXR-Fgf15). However, the relative importance of individual BAs in regulating these processes is not known. Therefore, mice were fed various doses of five individual BAs, including cholic acid (CA), chenodeoxycholic acid (CDCA), deoxoycholic acid (DCA), lithocholic acid (LCA), and ursodeoxycholic acid (UDCA) in their diets at various concentrations for one week to increase the concentration of one BA in the enterohepatic circulation. The mRNA of BA synthesis and transporting genes in liver and ileum were quantified. In the liver, the mRNA of SHP, which is the prototypical target gene of FXR, increased in mice fed all concentrations of BAs. In the ileum, the mRNA of the intestinal FXR target gene Fgf15 was increased at lower doses and to a higher extent by CA and DCA than by CDCA and LCA. Cyp7a1, the rate-limiting enzyme in BA synthesis, was decreased more by CA and DCA than CDCA and LCA. Cyp8b1, the enzyme that 12-hydroxylates BAs and is thus responsible for the synthesis of CA, was decreased much more by CA and DCA than CDCA and LCA. Surprisingly, neither a decrease in the conjugated BA uptake transporter (Ntcp) nor increase in BA efflux transporter (Bsep) was observed by FXR activation, but an increase in the cholesterol efflux transporter (Abcg5/Abcg8) was observed with FXR activation. Thus in conclusion, CA and DCA are more potent FXR activators than CDCA and LCA when fed to mice, and thus they are more effective in decreasing the expression of the rate limiting gene in BA synthesis Cyp7a1 and the 12-hydroxylation of BAs Cyp8b1, and are also more effective in increasing the expression of Abcg5/Abcg8, which is responsible for biliary cholesterol excretion. However, feeding BAs do not alter the mRNA or protein levels of Ntcp or Bsep, suggesting that the uptake or efflux of BAs is not regulated by FXR at physiological and

  18. Individual bile acids have differential effects on bile acid signaling in mice

    Energy Technology Data Exchange (ETDEWEB)

    Song, Peizhen, E-mail: songacad@gmail.com; Rockwell, Cheryl E., E-mail: rockwelc@msu.edu; Cui, Julia Yue, E-mail: juliacui@uw.edu; Klaassen, Curtis D., E-mail: curtisklaassenphd@gmail.com

    2015-02-15

    Bile acids (BAs) are known to regulate BA synthesis and transport by the farnesoid X receptor in the liver (FXR-SHP) and intestine (FXR-Fgf15). However, the relative importance of individual BAs in regulating these processes is not known. Therefore, mice were fed various doses of five individual BAs, including cholic acid (CA), chenodeoxycholic acid (CDCA), deoxoycholic acid (DCA), lithocholic acid (LCA), and ursodeoxycholic acid (UDCA) in their diets at various concentrations for one week to increase the concentration of one BA in the enterohepatic circulation. The mRNA of BA synthesis and transporting genes in liver and ileum were quantified. In the liver, the mRNA of SHP, which is the prototypical target gene of FXR, increased in mice fed all concentrations of BAs. In the ileum, the mRNA of the intestinal FXR target gene Fgf15 was increased at lower doses and to a higher extent by CA and DCA than by CDCA and LCA. Cyp7a1, the rate-limiting enzyme in BA synthesis, was decreased more by CA and DCA than CDCA and LCA. Cyp8b1, the enzyme that 12-hydroxylates BAs and is thus responsible for the synthesis of CA, was decreased much more by CA and DCA than CDCA and LCA. Surprisingly, neither a decrease in the conjugated BA uptake transporter (Ntcp) nor increase in BA efflux transporter (Bsep) was observed by FXR activation, but an increase in the cholesterol efflux transporter (Abcg5/Abcg8) was observed with FXR activation. Thus in conclusion, CA and DCA are more potent FXR activators than CDCA and LCA when fed to mice, and thus they are more effective in decreasing the expression of the rate limiting gene in BA synthesis Cyp7a1 and the 12-hydroxylation of BAs Cyp8b1, and are also more effective in increasing the expression of Abcg5/Abcg8, which is responsible for biliary cholesterol excretion. However, feeding BAs do not alter the mRNA or protein levels of Ntcp or Bsep, suggesting that the uptake or efflux of BAs is not regulated by FXR at physiological and

  19. Acid-gastric antisecretory effect of the ethanolic extract from Arctium lappa L. root: role of H+, K+-ATPase, Ca2+ influx and the cholinergic pathway.

    Science.gov (United States)

    da Silva, Luisa Mota; Burci, Ligia de Moura; Crestani, Sandra; de Souza, Priscila; da Silva, Rita de Cássia Melo Vilhena de Andrade Fonseca; Dartora, Nessana; de Souza, Lauro Mera; Cipriani, Thales Ricardo; da Silva-Santos, José Eduardo; André, Eunice; Werner, Maria Fernanda de Paula

    2018-04-01

    Arctium lappa L., popularly known as burdock, is a medicinal plant used worldwide. The antiulcer and gastric-acid antisecretory effects of ethanolic extract from roots of Arctium lappa (EET) were already demonstrated. However, the mechanism by which the extract reduces the gastric acid secretion remains unclear. Therefore, this study was designed to evaluate the antisecretory mode of action of EET. The effects of EET on H + , K + -ATPase activity were verified in vitro, whereas the effects of the extract on cholinergic-, histaminergic- or gastrinergic-acid gastric stimulation were assessed in vivo on stimulated pylorus ligated rats. Moreover, ex vivo contractility studies on gastric muscle strips from rats were also employed. The incubation with EET (1000 µg/ml) partially inhibited H + , K + -ATPase activity, and the intraduodenal administration of EET (10 mg/kg) decreased the volume and acidity of gastric secretion stimulated by bethanechol, histamine, and pentagastrin. EET (100-1000 µg/ml) did not alter the gastric relaxation induced by histamine but decreased acetylcholine-induced contraction in gastric fundus strips. Interestingly, EET also reduced the increase in the gastric muscle tone induced by 40 mM KCl depolarizing solution, as well as the maximum contractile responses evoked by CaCl 2 in Ca 2+ -free depolarizing solution, without impairing the effect of acetylcholine on fundus strips maintained in Ca 2+ -free nutritive solution. Our results reinforce the gastric antisecretory properties of preparations obtained from Arctium lappa, and indicate that the mechanisms involved in EET antisecretory effects include a moderate reduction of the H + , K + -ATPase activity associated with inhibitory effects on calcium influx and of cholinergic pathways in the stomach muscle.

  20. Crystal structures of coordination polymers from CaI2 and proline

    Directory of Open Access Journals (Sweden)

    Kevin Lamberts

    2015-06-01

    Full Text Available Completing our reports concerning the reaction products from calcium halides and the amino acid proline, two different solids were found for the reaction of l- and dl-proline with CaI2. The enantiopure amino acid yields the one-dimensional coordination polymer catena-poly[[aqua-μ3-l-proline-tetra-μ2-l-proline-dicalcium] tetraiodide 1.7-hydrate], {[Ca2(C5H9NO25(H2O]I4·1.7H2O}n, (1, with two independent Ca2+ cations in characteristic seven- and eightfold coordination. Five symmetry-independent zwitterionic l-proline molecules bridge the metal sites into a cationic polymer. Racemic proline forms with Ca2+ cations heterochiral chains of the one-dimensional polymer catena-poly[[diaquadi-μ2-dl-proline-calcium] diiodide], {[Ca(C5H9NO22(H2O2]I2}n, (2. The centrosymmetric structure is built by one Ca2+ cation that is bridged towards its symmetry equivalents by two zwitterionic proline molecules. In both structures, the iodide ions remain non-coordinating and hydrogen bonds are formed between these counter-anions, the amino groups, coordinating and co-crystallized water molecules. While the overall composition of (1 and (2 is in line with other structures from calcium halides and amino acids, the diversity of the carboxylate coordination geometry is quite surprising.

  1. Utilization of citric acid in wood bonding

    Science.gov (United States)

    Citric acid (CA) is a weak organic acid. It exists most notably in citrus fruits so that it is named likewise. As a commodity chemical, CA is produced on a large scale by fermentation. In this chapter, we first briefly review the applied research and methods for commercial production of CA. Then we ...

  2. Arachidonic acid is a chemoattractant for Dictyostelium discoideum

    Indian Academy of Sciences (India)

    Arachidonic acid is a chemoattractant for Dictyostelium discoideum cells ... Arachidonic acid; chemotaxis; fatty acids; iplA ... Previously, we have shown that arachidonic acid (AA) induces an increase in the cytosolic Ca2+ concentration by causing the release of Ca2+ from intracellular stores and activating influx of ...

  3. Cholic acid accumulation and its diminution by short-chain fatty acids in bifidobacteria

    NARCIS (Netherlands)

    Kurdi, P; Tanaka, H; van Veen, HW; Asano, K; Tomita, F; Yokota, A

    Cholic acid (CA) transport was investigated in nine intestinal Bifidobacterium strains. Upon energization with glucose, all of the bificlobacteria accumulated CA. The driving force behind CA accumulation was found to be the transmembrane proton gradient (DeltapH, alkaline interior). The levels of

  4. Cajaninstilbene acid relaxes rat renal arteries: roles of Ca2+ antagonism and protein kinase C-dependent mechanism.

    Directory of Open Access Journals (Sweden)

    Dong-Mei Zhang

    Full Text Available Cajaninstilbene acid (CSA is a major active component present in the leaves of Cajanus cajan (L. Millsp. The present study explores the underlying cellular mechanisms for CSA-induced relaxation in rat renal arteries. Vascular reactivity was examined in arterial rings that were suspended in a Multi Myograph System and the expression of signaling proteins was assessed by Western blotting method. CSA (0.1-10 µM produced relaxations in rings pre-contracted by phenylephrine, serotonin, 9, 11-dideoxy-9α, 11α-epoxymethanoprostaglandin F(2α (U46619, and 60 mM KCl. CSA-induced relaxations did not show difference between genders and were unaffected by endothelium denudation, nor by treatment with N(G-nitro-L-arginine methyl ester, indomethacin, ICI-182780, tetraethylammonium ion, BaCl(2, glibenclamide, 4-aminopyridine or propranolol. CSA reduced contraction induced by CaCl(2 (0.01-5 mM in Ca(2+-free 60 mM KCl solution and by 30 nM (--Bay K8644 in 15 mM KCl solution. CSA inhibited 60 mM KCl-induced Ca(2+ influx in smooth muscle of renal arteries. In addition, CSA inhibited contraction evoked by phorbol 12-myristate 13-acetate (PMA, protein kinase C agonist in Ca(2+-free Krebs solution. Moreover, CSA reduced the U46619- and PMA-induced phosphorylation of myosin light chain (MLC at Ser19 and myosin phosphatase target subunit 1 (MYPT1 at Thr853 which was associated with vasoconstriction. CSA also lowered the phosphorylation of protein kinase C (PKCδ at Thr505. In summary, the present results suggest that CSA relaxes renal arteries in vitro via multiple cellular mechanisms involving partial inhibition of calcium entry via nifedipine-sensitive calcium channels, protein kinase C and Rho kinase.

  5. 5-(2-Cyclohexylideneethyl)-5-ethyl barbituric acid (CHEB): correlation of hypnotic and convulsant properties with alterations of synaptosomal 45Ca2+ influx

    International Nuclear Information System (INIS)

    Chandler, L.J.; Leslie, S.W.; Gonzales, R.

    1986-01-01

    Male ICR mice were given either 5-(2-cyclohexylideneethyl)-5-ethyl barbituric acid (CHEB) alone or CHEB after a 1 h pretreatment with phenobarbital CHEB alone produced excitatory behavior but not convulsive seizures. Higher doses produced convulsive seizures resulting in death. Pretreatment with phenobarbital prevented seizure activity. In vitro, CHEB significantly inhibited 'fast-phase' K + -stimulated 45 Ca 2+ uptake into cerebrocortical synaptosomes. CHEB also significantly increased basal 45 Ca 2+ uptake. The addition of CHEB or pentobarbital to striatal synaptosomes inhibited 'fast-phase' K + -stimulated 45 Ca 2+ uptake and endogenous dopamine release. CHEB, but not pentobarbital, produced a time- and dose-dependent increase in the resulting release of endogenous dopamine from striatal synaptosomes. The results of this study show that CHEB possesses hypnotic activity if its lethal convulsant actions are blocked. The hypnotic actions of CHEB appear to correlate with inhibition of voltage-dependent calcium channels in brain synaptosomes. (Auth.)

  6. Epigallocatechin-3-gallate increases intracellular [Ca2+] in U87 cells mainly by influx of extracellular Ca2+ and partly by release of intracellular stores.

    Science.gov (United States)

    Kim, Hee Jung; Yum, Keun Sang; Sung, Jong-Ho; Rhie, Duck-Joo; Kim, Myung-Jun; Min, Do Sik; Hahn, Sang June; Kim, Myung-Suk; Jo, Yang-Hyeok; Yoon, Shin Hee

    2004-02-01

    Green tea has been receiving considerable attention as a possible preventive agent against cancer and cardiovascular disease. Epigallocatechin-3-gallate (EGCG) is a major polyphenol component of green tea. Using digital calcium imaging and an assay for [3H]-inositol phosphates, we determined whether EGCG increases intracellular [Ca2+] ([Ca2+]i) in non-excitable human astrocytoma U87 cells. EGCG induced concentration-dependent increases in [Ca2+]i. The EGCG-induced [Ca2+]i increases were reduced to 20.9% of control by removal of extracellular Ca2+. The increases were also inhibited markedly by treatment with the non-specific Ca2+ channel inhibitors cobalt (3 mM) for 3 min and lanthanum (1 mM) for 5 min. The increases were not significantly inhibited by treatment for 10 min with the L-type Ca2+ channel blocker nifedipine (100 nM). Treatment with the inhibitor of endoplasmic reticulum Ca2+-ATPase thapsigargin (1 micro M) also significantly inhibited the EGCG-induced [Ca2+]i increases. Treatment for 15 min with the phospholipase C (PLC) inhibitor neomycin (300 micro M) attenuated the increases significantly, while the tyrosine kinase inhibitor genistein (30 micro M) had no effect. EGCG increased [3H]-inositol phosphates formation via PLC activation. Treatment for 10 min with mefenamic acid (100 micro M) and flufenamic acid (100 micro M), derivatives of diphenylamine-2-carboxylate, blocked the EGCG-induced [Ca2+]i increase in non-treated and thapsigargin-treated cells but indomethacin (100 micro M) did not affect the increases. Collectively, these data suggest that EGCG increases [Ca2+]i in non-excitable U87 cells mainly by eliciting influx of extracellular Ca2+ and partly by mobilizing intracellular Ca2+ stores by PLC activation. The EGCG-induced [Ca2+]i influx is mediated mainly through channels sensitive to diphenylamine-2-carboxylate derivatives.

  7. Ursodeoxycholic and deoxycholic acids: A good and a bad bile acid for intestinal calcium absorption.

    Science.gov (United States)

    Rodríguez, Valeria; Rivoira, María; Marchionatti, Ana; Pérez, Adriana; Tolosa de Talamoni, Nori

    2013-12-01

    The aim of this study was to investigate the effect of ursodeoxycholic acid (UDCA) on intestinal Ca(2+) absorption and to find out whether the inhibition of this process caused by NaDOC could be prevented by UDCA. Chicks were employed and divided into four groups: (a) controls, (b) treated with 10mM NaDOC, (c) treated with 60 μg UDCA/100g of b.w., and (d) treated with 10mM NaDOC and 60 μg UDCA/100g of b.w. UDCA enhanced intestinal Ca(2+) absorption, which was time and dose-dependent. UDCA avoided the inhibition of intestinal Ca(2+) absorption caused by NaDOC. Both bile acids altered protein and gene expression of molecules involved in the transcellular pathway of intestinal Ca(2+) absorption, but in the opposite way. UDCA aborted the oxidative stress produced by NaDOC in the intestine. UDCA and UDCA plus NaDOC increased vitamin D receptor protein expression. In conclusion, UDCA is a beneficial bile acid for intestinal Ca(2+) absorption. Contrarily, NaDOC inhibits the intestinal cation absorption through triggering oxidative stress. The use of UDCA in patients with cholestasis would be benefited because of the protective effect on the intestinal Ca(2+) absorption, avoiding the inhibition caused by hydrophobic bile acids and neutralizing the oxidative stress. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Pengaruh Kombinasi Senyawa Humik dan CaCO3 terhadap Alumunium dan Fosfat Typic Paleudult Kentrong Banten

    Directory of Open Access Journals (Sweden)

    Sugeng Winarso

    2009-05-01

    Full Text Available Decomposition of organic matter releases humic compounds, that can chelate metals include Al in acidic soils. This chelation of Al is important for decreasing of Al activity and P fixation in acidic soils. This study was aimed to test the effect of humic compounds extracted from rice-straw compost and CaCO3 combination on aluminium activity and phosphate (available P on an Ultisol (Typic Paleudult collected from Kentrong Banten. A laboratory study was conducted by series consentration of CaCO3 (0, 500, 1.000, 2.000, dan 3.000 ppm in 8 grams of acidic soil. The acidic soil had previously been subjected to continuously addition of humic compounds and none. Then, these mix of soil and CaCO3 were added 40 ml contained 5.000 ppm humic compounds to obtain 1:5 soil:suspension ratio and control was made by using aquadest. They were shaked for 2 hours every day and pH was measured. At 11st days incubation Alexch (N KCl and soluble of P (PB and PC were measured. The results showed that liming or addition of CaCO3 to the acidic soils decreased Alexch (precipitated to be Al(OH3 linearly with formula y = -0.778x + 6.108; y = Alexch (Cmol kg-1, x = CaCO3 (M; R² = 0,916. Combination addition of humic compounds and CaCO3 was able to increase pH and Alexch up to not detected. The increased of P-soluble or desorption P untill 384% took place at addition of 0.0016 M CaCO3 and 5000 ppm humic compounds. More desorption of P was observed if the acidic soils has previously been subjected to continuously addition of humic compounds, such us the increased of soluble P up to 739% at addition of CaCO3 0.0008 M.

  9. The promoter of the pepper pathogen-induced membrane protein gene CaPIMP1 mediates environmental stress responses in plants.

    Science.gov (United States)

    Hong, Jeum Kyu; Hwang, Byung Kook

    2009-01-01

    The promoter of the pepper pathogen-induced membrane protein gene CaPIMP1 was analyzed by an Agrobacterium-mediated transient expression assay in tobacco leaves. Several stress-related cis-acting elements (GT-1, W-box and ABRE) are located within the CaPIMP1 promoter. In tobacco leaf tissues transiently transformed with a CaPIMP1 promoter-beta-glucuronidase (GUS) gene fusion, serially 5'-deleted CaPIMP1 promoters were differentially activated by Pseudomonas syringae pv. tabaci, ethylene, methyl jasmonate, abscisic acid, and nitric oxide. The -1,193 bp region of the CaPIMP1 gene promoter sequence exhibited full promoter activity. The -417- and -593 bp promoter regions were sufficient for GUS gene activation by ethylene and methyl jasmonate treatments, respectively. However, CaPIMP1 promoter sequences longer than -793 bp were required for promoter activation by abscisic acid and sodium nitroprusside treatments. CaPIMP1 expression was activated in pepper leaves by treatment with ethylene, methyl jasmonate, abscisic acid, beta-amino-n-butyric acid, NaCl, mechanical wounding, and low temperature, but not with salicylic acid. Overexpression of CaPIMP1 in Arabidopsis conferred hypersensitivity to mannitol, NaCl, and ABA during seed germination but not during seedling development. In contrast, transgenic plants overexpressing CaPIMP1 exhibited enhanced tolerance to oxidative stress induced by methyl viologen during germination and early seedling stages. These results suggest that CaPIMP1 expression may alter responsiveness to environmental stress, as well as to pathogen infection.

  10. Effects of 45Ca on murine skeletal muscle. 2

    International Nuclear Information System (INIS)

    Asotra, K.; Katoch, S.S.; Krishan, K.; Malhotra, R.K.

    1983-01-01

    Swiss albino mice were injected intraperitoneally with 3.7x10 4 Bq and 7.4x10 4 Bq 45 Ca/g body weight. 45 Ca-treated mice were sacrificed on days 1, 3, 5, 7, 14 and 28 and activities of acid phosphatase, alkaline phosphatase and glucose 6-phosphatase bioassayed in diaphragm and gastrocnemius. Activities of acid and alkaline phosphatases decreased after the 1st day of 45 Ca treatment in both the muscles compared with the normal controls. These two enzymes apparently do not contribute to myofiber necrosis in irradiated skeletal muscle. Glucose 6-phosphatase levels increased in the two irradiated muscles and with 7.4x10 4 Bq 45 Ca dose as much as 20-fold and 7-fold elevations are recorded in diaphragm and gastrocnemius, respectively, indicating a radiation-induced stimulation of inhibition of glucose 6-phosphatase channelization for energy generation. The possible role of elevated glucose 6-phosphatase levels in glycogen accumulation on account of radiations in skeletal muscle has been discussed. (author)

  11. CaSO4 Scale Formation on Vibrated Piping System in the Presence Citric Acid

    Science.gov (United States)

    Mangestiyono, W.; Jamari, J.; Muryanto, S.; Bayuseno, A. P.

    2018-02-01

    Vibration in many industries commonly generated by the operation mechanical equipment such as extruder, mixer, blower, compressor, turbine, generator etc. Vibration propagates into the floor and attacks the pipe around those mechanical equipment. In this paper, the influence of vibration in a pipe on the CaSO4 scale formation was investigated to understand the effect of vibration on the kinetics, mass of scale, crystal phases and crystal polymorph. To generate vibration force, mechanical equipment was prepared consisted of electrical motor, crankshaft, connecting rod and a vibration table at where test pipe section mounted. Deposition rate increased significantly when the vibration affected to the system i.e. 0.5997 and 1.6705 gr/hr for vibration frequency 4.00 and 8.00 Hz. The addition 10.00 ppm of citric acid declined the deposition rate of 8 Hz experiment from 3.4599 gr/hr to 2.2865 gr/hr.

  12. Acidic and uncharged polar residues in the consensus motifs of the yeast Ca2+ transporter Gdt1p are required for calcium transport.

    Science.gov (United States)

    Colinet, Anne-Sophie; Thines, Louise; Deschamps, Antoine; Flémal, Gaëlle; Demaegd, Didier; Morsomme, Pierre

    2017-07-01

    The UPF0016 family is a recently identified group of poorly characterized membrane proteins whose function is conserved through evolution and that are defined by the presence of 1 or 2 copies of the E-φ-G-D-[KR]-[TS] consensus motif in their transmembrane domain. We showed that 2 members of this family, the human TMEM165 and the budding yeast Gdt1p, are functionally related and are likely to form a new group of Ca 2+ transporters. Mutations in TMEM165 have been demonstrated to cause a new type of rare human genetic diseases denominated as Congenital Disorders of Glycosylation. Using site-directed mutagenesis, we generated 17 mutations in the yeast Golgi-localized Ca 2+ transporter Gdt1p. Single alanine substitutions were targeted to the highly conserved consensus motifs, 4 acidic residues localized in the central cytosolic loop, and the arginine at position 71. The mutants were screened in a yeast strain devoid of both the endogenous Gdt1p exchanger and Pmr1p, the Ca 2+ -ATPase of the Golgi apparatus. We show here that acidic and polar uncharged residues of the consensus motifs play a crucial role in calcium tolerance and calcium transport activity and are therefore likely to be architectural components of the cation binding site of Gdt1p. Importantly, we confirm the essential role of the E53 residue whose mutation in humans triggers congenital disorders of glycosylation. © 2017 John Wiley & Sons Ltd.

  13. CD36- and GPR120-mediated Ca²⁺ signaling in human taste bud cells mediates differential responses to fatty acids and is altered in obese mice.

    Science.gov (United States)

    Ozdener, Mehmet Hakan; Subramaniam, Selvakumar; Sundaresan, Sinju; Sery, Omar; Hashimoto, Toshihiro; Asakawa, Yoshinori; Besnard, Philippe; Abumrad, Nada A; Khan, Naim Akhtar

    2014-04-01

    It is important to increase our understanding of gustatory detection of dietary fat and its contribution to fat preference. We studied the roles of the fat taste receptors CD36 and GPR120 and their interactions via Ca(2+) signaling in fungiform taste bud cells (TBC). We measured Ca(2+) signaling in human TBC, transfected with small interfering RNAs against messenger RNAs encoding CD36 and GPR120 (or control small interfering RNAs). We also studied Ca(2+) signaling in TBC from CD36(-/-) mice and from wild-type lean and obese mice. Additional studies were conducted with mouse enteroendocrine cell line STC-1 that express GPR120 and stably transfected with human CD36. We measured release of serotonin and glucagon-like peptide-1 from human and mice TBC in response to CD36 and GPR120 activation. High concentrations of linoleic acid induced Ca(2+) signaling via CD36 and GPR120 in human and mice TBC, as well as in STC-1 cells, and low concentrations induced Ca(2+) signaling via only CD36. Incubation of human and mice fungiform TBC with lineoleic acid down-regulated CD36 and up-regulated GPR120 in membrane lipid rafts. Obese mice had decreased spontaneous preference for fat. Fungiform TBC from obese mice had reduced Ca(2+) and serotonin responses, but increased release of glucagon-like peptide-1, along with reduced levels of CD36 and increased levels of GPR120 in lipid rafts. CD36 and GPR120 have nonoverlapping roles in TBC signaling during orogustatory perception of dietary lipids; these are differentially regulated by obesity. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  14. Chlorogenic acid in a Nicotiana plumbaginifolia cell suspension.

    Science.gov (United States)

    Gillet; Mesnard; Fliniaux; Monti; Fliniaux

    1999-11-01

    A phenylpropanoid compound has been characterized in a Nicotiana plumbaginifolia cell suspension. This compound has been isolated and purified by semi-preparative reverse phase-high performance liquid chromatography. Its structure has been identified by NMR spectroscopy as 5-O-caffeoylquinic acid, which is chlorogenic acid (CA). The influence of culture conditions on the accumulation of this metabolite by N. plumbaginifolia cell suspensions has been studied. Darkness strongly inhibits the CA accumulation. Moreover, it has been shown that feeding experiments with caffeic acid had a deleterious effect upon the CA content. This one was not influenced by a supplementation with quinic acid.

  15. Silencing of dehydrin CaDHN1 diminishes tolerance to multiple abiotic stresses in Capsicum annuum L.

    Science.gov (United States)

    Chen, Ru-gang; Jing, Hua; Guo, Wei-li; Wang, Shu-Bin; Ma, Fang; Pan, Bao-Gui; Gong, Zhen-Hui

    2015-12-01

    We cloned a dehydrins gene CaDHN1 from pepper and the expression of CaDHN1 was markedly upregulated by cold, salt, osmotic stresses and salicylic acid (SA) treatment. Dehydrins (DHNs) are a subfamily of group 2 late embryogenesis-abundant (LEA) proteins that are thought to play an important role in enhancing abiotic stress tolerance in plants. In this study, a DHN EST (Expressed Sequence Tag) was obtained from 6 to 8 true leaves seedlings of pepper cv P70 (Capsicum annuum L.) by our laboratory. However, the DHN gene in pepper was not well characterized. According to this EST sequence, we isolated a DHN gene, designated as CaDHN1, and investigated the response and expression of this gene under various stresses. Our results indicated that CaDHN1 has the DHN-specific and conserved K- and S- domain and encodes 219 amino acids. Phylogenetic analysis showed that CaDHN1 belonged to the SKn subgroup. Tissue expression profile analysis revealed that CaDH N1 was expressed predominantly in fruits and flowers. The expression of CaDHN1 was markedly upregulated in response to cold, salt, osmotic stresses and salicylic acid (SA) treatment, but no significant change by abscisic acid (ABA) and heavy metals treatment. Loss of function of CaDHN1 using the virus-induced gene silencing (VIGS) technique led to decreased tolerance to cold-, salt- and osmotic-induced stresses. Overall, these results suggest that CaDHN1 plays an important role in regulating the abiotic stress resistance in pepper plants.

  16. Rosmarinic acid potentiates carnosic acid induced apoptosis in lung fibroblasts.

    Directory of Open Access Journals (Sweden)

    Sana Bahri

    Full Text Available Pulmonary fibrosis is characterized by over-population and excessive activation of fibroblasts and myofibroblasts disrupting normal lung structure and functioning. Rosemary extract rich in carnosic acid (CA and rosmarinic acid (RA was reported to cure bleomycin-(BLM-induced pulmonary fibrosis. We demonstrate that CA decreased human lung fibroblast (HLF viability with IC50 value of 17.13±1.06 μM, while RA had no cytotoxic effect. In the presence of 50 μM of RA, dose-response for CA shifted to IC50 value of 11.70±1.46 μM, indicating synergic action. TGFβ-transformed HLF, rat lung fibroblasts and L929 cells presented similar sensitivity to CA and CA+RA (20μM+100μM, respectively treatment. Rat alveolar epithelial cells died only under CA+RA treatment, while A549 cells were not affected. Annexin V staining and DNA quantification suggested that HLF are arrested in G0/G1 cell cycle phase and undergo apoptosis. CA caused sustained activation of phospho-Akt and phospho-p38 expression and inhibition of p21 protein.Addition of RA potentiated these effects, while RA added alone had no action.Only triple combination of inhibitors (MAPK-p38, pan-caspase, PI3K/Akt/autophagy partially attenuated apoptosis; this suggests that cytotoxicity of CA+RA treatment has a complex mechanism involving several parallel signaling pathways. The in vivo antifibrotic effect of CA and RA was compared with that of Vitamine-E in BLM-induced fibrosis model in rats. We found comparable reduction in fibrosis score by CA, RA and CA+RA, attenuation of collagen deposition and normalization of oxidative stress markers. In conclusion, antifibrotic effect of CA+RA is due to synergistic pro-apoptotic action on lung fibroblasts and myofibroblasts.

  17. The sequence of the CA-SP1 junction accounts for the differential sensitivity of HIV-1 and SIV to the small molecule maturation inhibitor 3-O-{3',3'-dimethylsuccinyl}-betulinic acid

    Directory of Open Access Journals (Sweden)

    Aiken Christopher

    2004-06-01

    Full Text Available Abstract Background Despite the effectiveness of currently available antiretroviral therapies in the treatment of HIV-1 infection, a continuing need exists for novel compounds that can be used in combination with existing drugs to slow the emergence of drug-resistant viruses. We previously reported that the small molecule 3-O-{3',3'-dimethylsuccinyl}-betulinic acid (DSB specifically inhibits HIV-1 replication by delaying the processing of the CA-SP1 junction in Pr55Gag. By contrast, SIVmac239 replicates efficiently in the presence of high concentrations of DSB. To determine whether sequence differences in the CA-SP1 junction can fully account for the differential sensitivity of HIV-1 and SIV to DSB, we engineered mutations in this region of two viruses and tested their sensitivity to DSB in replication assays using activated human primary CD4+ T cells. Results Substitution of the P2 and P1 residues of HIV-1 by the corresponding amino acids of SIV resulted in strong resistance to DSB, but the mutant virus replicated with reduced efficiency. Conversely, replication of an SIV mutant containing three amino acid substitutions in the CA-SP1 cleavage site was highly sensitive to DSB, and the mutations resulted in delayed cleavage of the CA-SP1 junction in the presence of the drug. Conclusions These results demonstrate that the CA-SP1 junction in Pr55Gag represents the primary viral target of DSB. They further suggest that the therapeutic application of DSB will be accompanied by emergence of mutant viruses that are highly resistant to the drug but which exhibit reduced fitness relative to wild type HIV-1.

  18. Eicosapentaenoic acid inhibits TNF-α-induced matrix metalloproteinase-9 expression in human keratinocytes, HaCaT cells

    International Nuclear Information System (INIS)

    Kim, Hyeon Ho; Lee, Youngae; Eun, Hee Chul; Chung, Jin Ho

    2008-01-01

    Eicosapentaenoic acid (EPA) is an omega-3 (ω-3) polyunsaturated fatty acid (PUFA), which has anti-inflammatory and anti-cancer properties. Some reports have demonstrated that EPA inhibits NF-κB activation induced by tumor necrosis factor (TNF)-α or lipopolysaccharide (LPS) in various cells. However, its detailed mode of action is unclear. In this report, we investigated whether EPA inhibits the expression of TNF-α-induced matrix metalloproteinases (MMP)-9 in human immortalized keratinocytes (HaCaT). TNF-α induced MMP-9 expression by NF-κB-dependent pathway. Pretreatment of EPA inhibited TNF-α-induced MMP-9 expression and p65 phosphorylation. However, EPA could not affect IκB-α phosphorylation, nuclear translocation of p65, and DNA binding activity of NF-κB. EPA inhibited TNF-α-induced p65 phosphorylation through p38 and Akt inhibition and this inhibition was IKKα-dependent event. Taken together, we demonstrate that EPA inhibits TNF-α-induced MMP-9 expression through inhibition of p38 and Akt activation

  19. Exogenous γ-aminobutyric acid (GABA) affects pollen tube growth via modulating putative Ca2+-permeable membrane channels and is coupled to negative regulation on glutamate decarboxylase

    Science.gov (United States)

    Yu, Guang-Hui; Zou, Jie; Feng, Jing; Peng, Xiong-Bo; Wu, Ju-You; Wu, Ying-Liang; Palanivelu, Ravishankar; Sun, Meng-Xiang

    2014-01-01

    γ-Aminobutyric acid (GABA) is implicated in pollen tube growth, but the molecular and cellular mechanisms that it mediates are largely unknown. Here, it is shown that exogenous GABA modulates putative Ca2+-permeable channels on the plasma membranes of tobacco pollen grains and pollen tubes. Whole-cell voltage-clamp experiments and non-invasive micromeasurement technology (NMT) revealed that the influx of Ca2+ increases in pollen tubes in response to exogenous GABA. It is also demonstrated that glutamate decarboxylase (GAD), the rate-limiting enzyme of GABA biosynthesis, is involved in feedback controls of Ca2+-permeable channels to fluctuate intracellular GABA levels and thus modulate pollen tube growth. The findings suggest that GAD activity linked with Ca2+-permeable channels relays an extracellular GABA signal and integrates multiple signal pathways to modulate tobacco pollen tube growth. Thus, the data explain how GABA mediates the communication between the style and the growing pollen tubes. PMID:24799560

  20. The bile acid composition of crane gallbladder bile

    Science.gov (United States)

    Serafin, J.A.

    1983-01-01

    1. The biliary bile acids of the whooping crane (Grus americana) and the Florida sandhill crane (G. canadensis pratensis) have been examined.2. Cholic acid (CA), chenodeoxycholic acid (CDOCA) and lithocholic acid were found in bile from both species of these North American cranes.3. CDOCA and CA were the primary bile acids in both species, together constituting 70% or more of the bile acids by weight.4. The primary bile acids of cranes appear to be the same as those that have been identified in other avian species.

  1. Organic products from Ca14Co3 autoradiolysis: effects of thermal annealing

    International Nuclear Information System (INIS)

    Albarran S, M.G.; Collins, K.E.; Collins, C.H.

    1986-01-01

    Autoradiolysis of Ca 14 Co 3 produces several different low molecular mass organic compounds which can be conveniently observed after ion exclusion-partition chromatographic separation of the dissolved sample, provided that the solid was prepared with high specific activity carbon-14 and has been stored for a sufficiently long period. Subsequent thermal annealing changes the distribution of these observed compounds, demonstrating that chemical reactions of the precursor species take place in the solid Ca 14 Co 3 matrix. Specifically, the following products were observed after an autoradiolytic dose of 5 MGy: methanol, formaldehyde, formic acid, oxalic acid, glyoxylic acid, glycolic acid and acetic acid, with-G-values ranging from 5x10 -6 to 2x10 -3 . Isochronal annealing to 500 0 C markedly changes the yields of carbon-14 labelled formic and acetic acids but has lesser effects on the other acidic products. This indicates that several different precursor species are present in the autoradiolyzed solid. (Author) [pt

  2. The use of Zeolite into the controlling of Lithium concentration in the PWR primary water coolant (I) : the influences of Ca, Mg and Boric Acid concentration into the exchanges capacity of Ammonium Zeolite

    International Nuclear Information System (INIS)

    Sumijanto; Siti-Amini

    1996-01-01

    In this first part of research, the influences of calsium, magnesium and boric acid concentrations to the zeolite uptake of lithium in the PWR primary water coolant have been studied. The ammonium form of zeolite was found by modification of the natural zeolite which was originated from Bayah. The results showed that the boric acid concentration in the normal condition of PWR operation absolutely did not affects the lithium uptake. The Li uptake efficiency was influenced by the presence of Ca and Mg ions in order to the presence of cations competition which was dominated by Ca ion

  3. In vivo microdialysis studies on the effects of decortication and excitotoxic lesions on kainic acid-induced calcium fluxes, and endogenous amino acid release, in the rat striatum

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, S.P.; Lazarewicz, J.W.; Hamberger, A.

    1987-11-01

    The in vivo effects of kainate (1 mM) on fluxes of /sup 45/Ca2+, and endogenous amino acids, were examined in the rat striatum using the brain microdialysis technique. Kainate evoked a rapid decrease in dialysate /sup 45/Ca2+, and an increase in the concentration of amino acids in dialysates in Ca2+-free dialysates. Taurine was elevated six- to 10-fold, glutamate two- to threefold, and aspartate 1.5- to twofold. There was also a delayed increase in phosphoethanolamine, whereas nonneuroactive amino acids were increased only slightly. The kainic acid-evoked reduction in dialysate /sup 45/Ca2+ activity was attenuated in striata lesioned previously with kainate, suggesting the involvement of intrinsic striatal neurons in this response. The increase in taurine concentration induced by kainate was slightly smaller under these conditions. Decortication did not affect the kainate-evoked alterations in either dialysate /sup 45/Ca2+ or amino acids. These data suggest that kainate does not release acidic amino acids from their transmitter pools located in corticostriatal terminals.

  4. Activity coefficients of CaCl{sub 2} in (serine or proline + water) mixtures at T = 298.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Ma Jingjing [School of Chemistry and Environmental Science, Henan Normal University, Xinxiang, Henan 453007 (China); Zhang Xinkuan [School of Chemistry and Environmental Science, Henan Normal University, Xinxiang, Henan 453007 (China); School of Chemistry and Chemical Engineering, Xinxiang University, Xinxiang, Henan 453003 (China); Zhuo Kelei, E-mail: lchow@mail.ucf.ed [School of Chemistry and Environmental Science, Henan Normal University, Xinxiang, Henan 453007 (China); Liu Hongxun; Wang Jianji [School of Chemistry and Environmental Science, Henan Normal University, Xinxiang, Henan 453007 (China)

    2010-05-15

    Activity coefficients for the (CaCl{sub 2} + amino acid + water) system were determined at a temperature of 298.15 K using ion-selective electrodes. The range of molalities of CaCl{sub 2} is (0.01 to 0.20) mol . kg{sup -1}, and that of amino acids is (0.10 to 0.40) mol . kg{sup -1}. The activity coefficients obtained from the Debye-Hueckel extended equation and the Pitzer equation are in good agreement with each other. Results show that the interactions between CaCl{sub 2} and amino acid are controlled mainly by the electrostatic interactions (attraction). Gibbs free energy interaction parameters (g{sub EA}) and salting constants (k{sub S}) are positive, indicating that these amino acids are salted out by CaCl{sub 2}. These results are discussed based on group additivity model.

  5. TPC2 is a novel NAADP-sensitive Ca2+ release channel, operating as a dual sensor of luminal pH and Ca2+.

    Science.gov (United States)

    Pitt, Samantha J; Funnell, Tim M; Sitsapesan, Mano; Venturi, Elisa; Rietdorf, Katja; Ruas, Margarida; Ganesan, A; Gosain, Rajendra; Churchill, Grant C; Zhu, Michael X; Parrington, John; Galione, Antony; Sitsapesan, Rebecca

    2010-11-05

    Nicotinic acid adenine dinucleotide phosphate (NAADP) is a molecule capable of initiating the release of intracellular Ca(2+) required for many essential cellular processes. Recent evidence links two-pore channels (TPCs) with NAADP-induced release of Ca(2+) from lysosome-like acidic organelles; however, there has been no direct demonstration that TPCs can act as NAADP-sensitive Ca(2+) release channels. Controversial evidence also proposes ryanodine receptors as the primary target of NAADP. We show that TPC2, the major lysosomal targeted isoform, is a cation channel with selectivity for Ca(2+) that will enable it to act as a Ca(2+) release channel in the cellular environment. NAADP opens TPC2 channels in a concentration-dependent manner, binding to high affinity activation and low affinity inhibition sites. At the core of this process is the luminal environment of the channel. The sensitivity of TPC2 to NAADP is steeply dependent on the luminal [Ca(2+)] allowing extremely low levels of NAADP to open the channel. In parallel, luminal pH controls NAADP affinity for TPC2 by switching from reversible activation of TPC2 at low pH to irreversible activation at neutral pH. Further evidence earmarking TPCs as the likely pathway for NAADP-induced intracellular Ca(2+) release is obtained from the use of Ned-19, the selective blocker of cellular NAADP-induced Ca(2+) release. Ned-19 antagonizes NAADP-activation of TPC2 in a non-competitive manner at 1 μM but potentiates NAADP activation at nanomolar concentrations. This single-channel study provides a long awaited molecular basis for the peculiar mechanistic features of NAADP signaling and a framework for understanding how NAADP can mediate key physiological events.

  6. Caffeic acid, a coffee-related organic acid, inhibits infection by severe fever with thrombocytopenia syndrome virus in vitro.

    Science.gov (United States)

    Ogawa, Motohiko; Shirasago, Yoshitaka; Ando, Shuji; Shimojima, Masayuki; Saijo, Masayuki; Fukasawa, Masayoshi

    2018-04-05

    Severe fever with thrombocytopenia syndrome (SFTS) virus (SFTSV) causes tick-borne hemorrhagic fever in East Asia. The disease is characterized by high morbidity and mortality. Here, we evaluated the effects of caffeic acid (CA), a coffee-related organic acid with antiviral effects, against SFTSV infection. CA dose-dependently inhibited SFTSV infection in permissive human hepatoma Huh7.5.1-8 cells when SFTSV was added into the culture medium with CA. However, quinic acid (QA), another coffee-related organic acid, did not inhibit SFTSV infection. The 50% inhibitory concentration (IC 50 ) of CA against SFTSV was 0.048 mM, whereas its 50% cytotoxic concentration was 7.6 mM. The selectivity index (SI) was 158. Pre-incubation of SFTSV with CA for 4 h resulted in a greater inhibition of SFTSV infection (IC 50  = 0.019 mM; SI = 400). The pre-incubation substantially decreased viral attachment to the cells. CA treatment of the SFTSV-infected cells also inhibited the infection, albeit less effectively. CA activity after cell infection with SFTSV was more pronounced at a low multiplicity of infection (MOI) of 0.01 per cell (IC 50  = 0.18 mM) than at a high MOI of 1 per cell (IC 50  > 1 mM). Thus, CA inhibited virus spread by acting directly on the virus rather than on the infected cells. In conclusion, CA acted on SFTSV and inhibited viral infection and spread, mainly by inhibiting the binding of SFTSV to the cells. We therefore demonstrated CA to be a potential anti-SFTSV drug for preventing and treating SFTS. Copyright © 2018 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  7. Comparative effects of commercial lime (CaCO 3 ) and ground ...

    African Journals Online (AJOL)

    Greenhouse study was carried out to investigate the comparative effect of commercial lime (CaCO3) and ground eggshell on the uptake of calcium and dry matter yield of maize in an ultisol of Southeastern Nigeria using maize (variety Oba supper 92) as the test crop. The soil was acidic and deficient in N, O.C., K, Ca and ...

  8. Lactose behaviour in the presence of lactic acid and calcium.

    Science.gov (United States)

    Wijayasinghe, Rangani; Vasiljevic, Todor; Chandrapala, Jayani

    2016-08-01

    Physical properties of lactose appeared influenced by presence of lactic acid in the system. Some other components such as Ca may further attenuate lactose behaviour and impact its phase transition. A model-based study was thus implemented with varying concentrations of Ca (0·12, 0·072 or 0·035% w/w) and lactic acid (0·05, 0·2, 0·4 or 1% w/w) in establishing the effects of these two main acid whey constituents on lactose phase behaviour. Concentrated solutions (50% w/w) containing lactose, lactic acid and Ca were analysed for thermal behaviour and structural changes by Differential Scanning Colorimetry (DSC) and Fourier Transform Infrared Spectroscopy (FTIR), respectively. Presence of 1% (w/w) lactic acid and 0·12% (w/w) Ca in lactose solution significantly increased the evaporation enthalpy of water, delayed and increased the energy required for lactose crystallisation as compared to pure lactose. FTIR analysis indicated a strong hydration layer surrounding lactose molecules, restricting water mobility and/or inducing structural changes of lactose, hindering its crystallisation. The formation of calcium lactate, which restricts the diffusion of lactose molecules, is also partly responsible. It appears that Ca removal from acid whey may be a necessary step in improving the processability of acid whey.

  9. Comparison of inhibition effects of some benzoic acid derivatives on sheep heart carbonic anhydrase

    Science.gov (United States)

    Kiliç, Deryanur; Yildiz, Melike; Şentürk, Murat; Erdoǧan, Orhan; Küfrevioǧlu, Ömer Irfan

    2016-04-01

    Carbonic anhydrase (CA) is a family of metalloenzymes that requires Zn as a cofactor and catalyze the quick conversion of CO2 to HCO3- and H+. Inhibitors of the carbonic anhydrases (CAs) have medical usage of significant diseases such as glaucoma, epilepsy, gastroduodenal ulcers, acid-base disequilibria and neurological disorders. In the present study, inhibition of CA with some benzoic derivatives (1-6) were investigated. Sheep heart CA (shCA) enzyme was isolated by means of designed affinity chromatography gel (cellulose-benzyl-sulfanylamide) 42.45-fold in a yield of 44 % with 564.65 EU/mg. Purified shCA enzyme was used in vitro studies. In the studies, IC50 values were calculated for 3-aminobenzoic acid (1), 4-aminobenzoic acid (2), 2-hydroxybenzoic acid (3), 2-benzoylbenzoic acid (4), 2,3-dimethoxybenzoic acid (5), and 3,4,5-trimethoxybenzoic acid (6), showing the inhibition effects on the purified enzyme. Such molecules can be used as pioneer for discovery of novel effective CA inhibitors for medicinal chemistry applications.

  10. The investigation of minoxidil-induced [Ca2+]i rises and non-Ca2+-triggered cell death in PC3 human prostate cancer cells.

    Science.gov (United States)

    Chen, I-Shu; Chou, Chiang-Ting; Liu, Yuan-Yuarn; Yu, Chia-Cheng; Liang, Wei-Zhe; Kuo, Chun-Chi; Shieh, Pochuen; Kuo, Daih-Huang; Chen, Fu-An; Jan, Chung-Ren

    2017-02-01

    Minoxidil is clinically used to prevent hair loss. However, its effect on Ca 2+ homeostasis in prostate cancer cells is unclear. This study explored the effect of minoxidil on cytosolic-free Ca 2+ levels ([Ca 2+ ] i ) and cell viability in PC3 human prostate cancer cells. Minoxidil at concentrations between 200 and 800 μM evoked [Ca 2+ ] i rises in a concentration-dependent manner. This Ca 2+ signal was inhibited by 60% by removal of extracellular Ca 2+ . Minoxidil-induced Ca 2+ influx was confirmed by Mn 2+ -induced quench of fura-2 fluorescence. Pre-treatment with the protein kinase C (PKC) inhibitor GF109203X, PKC activator phorbol 12-myristate 13 acetate (PMA), nifedipine and SKF96365 inhibited minoxidil-induced Ca 2+ signal in Ca 2+ containing medium by 60%. Treatment with the endoplasmic reticulum Ca 2+ pump inhibitor 2,5-ditert-butylhydroquinone (BHQ) in Ca 2+ -free medium abolished minoxidil-induced [Ca 2+ ] i rises. Conversely, treatment with minoxidil abolished BHQ-induced [Ca 2+ ] i rises. Inhibition of phospholipase C (PLC) with U73122 abolished minoxidil-evoked [Ca 2+ ] i rises. Overnight treatment with minoxidil killed cells at concentrations of 200-600 μM in a concentration-dependent fashion. Chelation of cytosolic Ca 2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid/AM (BAPTA/AM) did not prevent minoxidil's cytotoxicity. Together, in PC3 cells, minoxidil induced [Ca 2+ ] i rises that involved Ca 2+ entry through PKC-regulated store-operated Ca 2+ channels and PLC-dependent Ca 2+ release from the endoplasmic reticulum. Minoxidil-induced cytotoxicity in a Ca 2+ -independent manner.

  11. Biliary Bile Acids in Primary Biliary Cirrhosis: Effect of Ursodeoxycholic Acid

    Science.gov (United States)

    Combes, Burton; Carithers, Robert L.; Maddrey, Willis C.; Munoz, Santiago; Garcia-Tsao, Guadalupe; Bonner, Gregory F.; Boyer, James L.; Luketic, Velimir A.; Shiffman, Mitchell L.; Peters, Marion G.; White, Heather; Zetterman, Rowen K.; Risser, Richard; Rossi, Stephen S.; Hofmann, Alan F.

    2014-01-01

    Bile acid composition in fasting duodenal bile was assessed at entry and at 2 years in patients with primary biliary cirrhosis (PBC) enrolled in a randomized, double-blind, placebo-controlled trial of ursodeoxycholic acid (UDCA) (10–12 mg/kg/d) taken as a single bedtime dose. Specimens were analyzed by a high-pressure liquid chromatography method that had been validated against gas chromatography. Percent composition in bile (mean ± SD) for 98 patients at entry for cholic (CA), chenodeoxycholic (CDCA), deoxycholic (DCA), lithocholic (LCA), and ursodeoxycholic (UDCA) acids, respectively, were 57.4 ± 18.6, 31.5 ± 15.5, 8.0 ± 9.3, 0.3 ± 1.0, and 0.6 ± 0.9. Values for CA were increased, whereas those for CDCA, DCA, LCA, and UDCA were decreased when compared with values in normal persons. Bile acid composition of the major bile acids did not change after 2 years on placebo medication. By contrast, in patients receiving UDCA for 2 years, bile became enriched with UDCA on average to 40.1%, and significant decreases were noted for CA (to 32.2%) and CDCA (to 19.5%). No change in percent composition was observed for DCA and LCA. Percent composition at entry and changes in composition after 2 years on UDCA were similar in patients with varying severity of PBC. In patients whose bile was not enriched in UDCA (entry and placebo-treated specimens), CA, CDCA, DCA, and the small amount of UDCA found in some of these specimens were conjugated to a greater extent with glycine (52%–64%) than with taurine (36%–48%). Treatment with UDCA caused the proportion of all endogenous bile acids conjugated with glycine to increase to 69% to 78%, while the proportion conjugated with taurine (22%–31%) fell (P < .05). Administered UDCA was also conjugated predominantly with glycine (87%). PMID:10347103

  12. Mechanochemical synthesis and intercalation of Ca(II)Fe(III)-layered double hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Ferencz, Zs.; Szabados, M.; Varga, G.; Csendes, Z. [Department of Organic Chemistry, University of Szeged, Dóm tér 8, Szeged H-6720 (Hungary); Materials and Solution Structure Research Group, Institute of Chemistry, University of Szeged, Aradi Vértanúk tere 1, Szeged H-6720 (Hungary); Kukovecz, Á. [Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720 (Hungary); MTA-SZTE “Lendület” Porous Nanocomposites Research Group, Rerrich Béla tér 1, Szeged H-6720 (Hungary); Kónya, Z. [Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720 (Hungary); MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, Rerrich Béla tér 1, Szeged H-6720 (Hungary); Carlson, S. [MAX IV Laboratory, Ole Römers väg 1, Lund SE-223 63 (Sweden); Sipos, P. [Materials and Solution Structure Research Group, Institute of Chemistry, University of Szeged, Aradi Vértanúk tere 1, Szeged H-6720 (Hungary); Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, Szeged H-6720 (Hungary); and others

    2016-01-15

    A mechanochemical method (grinding the components without added water – dry grinding, followed by further grinding in the presence of minute amount of water or NaOH solution – wet grinding) was used in this work for the preparation and intercalation of CaFe-layered double hydroxides (LDHs). Both the pristine LDHs and the amino acid anion (cystinate and tyrosinate) intercalated varieties were prepared by the two-step grinding procedure in a mixer mill. By systematically changing the conditions of the preparation method, a set of parameters could be determined, which led to the formation of close to phase-pure LDH. The optimisation procedure was also applied for the intercalation processes of the amino acid anions. The resulting materials were structurally characterised by a range of methods (X-ray diffractometry, scanning electron microscopy, energy dispersive analysis, thermogravimetry, X-ray absorption and infra-red spectroscopies). It was proven that this simple mechanochemical procedure was able to produce complex organic–inorganic nanocomposites: LDHs intercalated with amino acid anions. - Graphical abstract: Amino acid anion-Ca(II)Fe(III)-LDHs were successfully prepared by a two-step milling procedure. - Highlights: • Synthesis of pristine and amino acid intercalated CaFe-LDHs by two-step milling. • Identifying the optimum synthesis and intercalation parameters. • Characterisation of the samples with a range of instrumental methods.

  13. Cloning and expression analysis of CaPIP1-1 gene in pepper (Capsicum annuum L.).

    Science.gov (United States)

    Yin, Yan-Xu; Wang, Shu-Bin; Zhang, Huai-Xia; Xiao, Huai-Juan; Jin, Jing-Hao; Ji, Jiao-Jiao; Jing, Hua; Chen, Ru-Gang; Arisha, Mohamed Hamed; Gong, Zhen-Hui

    2015-05-25

    Plant aquaporins are responsible for water transmembrane transport, which play an important role on abiotic and biotic stresses. A novel plasma membrane intrinsic protein of CaPIP1-1 was isolated from the pepper P70 according to transcriptome databases of Phytophthora capsici inoculation and chilling stress library. CaPIP1-1, which is 1155 bp in length with an open reading frame of 861 bp, encoded 286 amino acids. Three introns, exhibited CT/AC splice junctions, were observed in CaPIP1-1. The numbers and location of introns in CaPIP1-1 were the same as observed in tomato and potato. CaPIP1-1 was abundantly expressed in pepper fruit. Increased transcription levels of CaPIP1-1 were found in the different stresses, including chilling stress, salt stress, mannitol stress, salicylic acid, ABA treatment and Phytophthora capsici infection. The expression of CaPIP1-1 was downregulated by 50 μM HgCl2 and 100 μM fluridone. The pepper plants silenced CaPIP1-1 in cv. Qiemen showed growth inhibition and decreased tolerance to salt and mannitol stresses using detached leaf method. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Amino acid 489 is encoded by a mutational "hot spot" on the beta 3 integrin chain: the CA/TU human platelet alloantigen system.

    Science.gov (United States)

    Wang, R; McFarland, J G; Kekomaki, R; Newman, P J

    1993-12-01

    A new platelet alloantigen, termed CA, has recently been implicated in a case of neonatal alloimmune thrombocytopenia (NATP) in a Filipino family in Canada. Maternal anti-CA serum reacted with glycoprotein (GP) IIIa and maintained its reactivity after removal of high mannose carbohydrate residues from GPIIIa. The monoclonal antibody (MoAb) AP3 partially blocked binding of anti-CA to GPIIIa, suggesting that the CA polymorphism is proximal to the AP3 epitope. Platelet RNA polymerase chain reaction (PCR) was used to amplify the region of GPIIIa cDNA that encodes this region of the protein. DNA sequence analysis showed a GA nucleotide substitution at base 1564 that results in an arginine (Arg) (CGG)glutamine (Gln) (CAG) polymorphism in amino acid (AA) 489. Further analysis of PCR-amplified genomic DNA from 27 normal individuals showed that AA 489 is encoded by a mutational "hot spot" of the GPIIIa gene, as three different codons for the wild-type Arg489 of GPIIIa were also found. The codon usage for Arg489 was found to be: CGG (63%), CGA (37%), and CGC (Definition of these new molecular variants of the beta 3 integrin chain should prove valuable in the diagnosis of NATP in these two geographically disparate populations, and it may also provide useful genetic markers for examining other pathologic variations of the GPIIb-IIIa complex.

  15. Metabolic inhibitors as stimulating factors for citric acid production

    International Nuclear Information System (INIS)

    Adham, N.Z.; Ahmed, E.M.; Refai, H.A.E.

    2008-01-01

    The effect of some metabolic inhibitors on citric acid (CA) production by Aspergillus niger in cane molasses medium was investigated. Addition of 0.01-0.1 mM iodoacetic acid and sodium arsenate, 0.05-1.0 mM sodium malonate, 0.01 mM sodium azide, 0.01-0.05 mM sodium fluoride, 0.1-1.0 mM EDTA stimulated CA production (5-49%). Higher concentrations (10 mM) of iodoacetic acid, sodium malonate and 0.5 mM sodium azide caused a complete inhibition of fungal growth, Iodoacetic acid, sodium arsenate and sodium fluoride (0.2 mM) caused a remarkable inhibition of CA production. The implications of those preliminary functions was discussed. (author)

  16. STUDY OF THERMAL AND ACID STABILITY OF BENTONITE CLAY

    Directory of Open Access Journals (Sweden)

    Karna Wijaya

    2010-06-01

    Full Text Available The thermal and acid stability of the bentonite clays (Na- and Ca-bentonite have been tested. The thermal stability testing has been carried out by heating 5 gram of the clays  for five hours at 200, 300 and 500 °C respectively, meanwhile acid stability testing was performed by immersing 5 gram clays into 100 mL sulphuric acid 1M, 2M and 3M for 24 hours. The tested clays, then were characterized by means of X-Ray difractometry and IR-spectroscopy methods. The characterization results showed that upon heating, both Ca- and Na-bentonites indicated same thermal stability. However, upon acid treatment, Na-bentonite was found relatively stabiler and more resistance then Ca-bentonite.   Keywords: bentonite, clay, thermal stability, acid stability.

  17. Synthetic water soluble di-/tritopic molecular receptors exhibiting Ca2+/Mg2+ exchange.

    Science.gov (United States)

    Lavie-Cambot, Aurélie; Tron, Arnaud; Ducrot, Aurélien; Castet, Frédéric; Kauffmann, Brice; Beauté, Louis; Allouchi, Hassan; Pozzo, Jean-Luc; Bonnet, Célia S; McClenaghan, Nathan D

    2017-05-23

    Structural integration of two synthetic water soluble receptors for Ca 2+ and Mg 2+ , namely 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) and o-aminophenol-N,N,O-triacetic acid (APTRA), respectively, gave novel di- and tritopic ionophores (1 and 2). As Mg 2+ and Ca 2+ cannot be simultaneously complexed by the receptors, allosteric control of complexation results. Potentiometric measurements established stepwise protonation constants and showed high affinity for Ca 2+ (log K = 6.08 and 8.70 for 1 and 2, respectively) and an excellent selectivity over Mg 2+ (log K = 3.70 and 5.60 for 1 and 2, respectively), which is compatible with magnesium-calcium ion exchange. While ion-exchange of a single Mg 2+ for a single Ca 2+ is possible in both 1 and 2, the simultaneous binding of two Mg 2+ by 2 appears prohibitive for replacement of these two ions by a single Ca 2+ . Ion-binding and exchange was further rationalized by DFT calculations.

  18. In vitro degradation and electrochemical corrosion evaluations of microarc oxidized pure Mg, Mg-Ca and Mg-Ca-Zn alloys for biomedical applications.

    Science.gov (United States)

    Pan, Yaokun; He, Siyu; Wang, Diangang; Huang, Danlan; Zheng, Tingting; Wang, Siqi; Dong, Pan; Chen, Chuanzhong

    2015-02-01

    Calcium phosphate (CaP) ceramic coatings were fabricated on pure magnesium (Mg) and self-designed Mg-0.6Ca, Mg-0.55Ca-1.74Zn alloys by microarc oxidation (MAO). The coating formation, growth and biomineralization mechanisms were discussed. The coating degradability and bioactivity were evaluated by immersion tests in trishydroxymethyl-aminomethane hydrochloric acid (Tris-HCl) buffer and simulated body fluid (SBF) solutions, respectively. The coatings and corrosion products were characterized by scanning electron microscope (SEM), X-ray diffractometer (XRD), X-ray photoelectron spectrometer (XPS) and fourier transform infrared spectrometer (FT-IR). The electrochemical workstation was used to investigate the electrochemical corrosion behaviors of substrates and coatings. Results showed that Mg-0.55Ca-1.74Zn alloy exhibits the highest mechanical strength and electrochemical corrosion resistance among the three alloys. The MAO-coated Mg-0.55Ca-1.74Zn alloy has the potential to be served as a biodegradable implant. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Analysis of hydrolyzable tannins and other phenolic compounds in emblic leafflower (Phyllanthus emblica L.) fruits by high performance liquid chromatography-electrospray ionization mass spectrometry.

    Science.gov (United States)

    Yang, Baoru; Kortesniemi, Maaria; Liu, Pengzhan; Karonen, Maarit; Salminen, Juha-Pekka

    2012-09-05

    Phenolic compounds were extracted from dried emblic leafflower (Phyllanthus emblica L.) fruits with methanol and separated by Sephadex LH-20 column chromatography. The raw extracts and fractions were analyzed with HPLC coupled with diode array UV spectroscopy, electrospray ionization mass spectrometry, and tandem mass spectrometry. Mucic acid gallate, mucic acid lactone gallate, monogalloylglucose, gallic acid, digalloylglucose, putranjivain A, galloyl-HHDP-glucose, elaeocarpusin, and chebulagic acid were suggested to be the most abundant compounds in the crude methanol extracts of the fruits. In addition, 144 peaks were detected, of which 67 were tentatively identified mostly as ellagitannins, flavonoids, and simple gallic acid derivatives in the fractions. The results indicated the presence of neochebulagic acid, isomers of neochebuloyl galloylglucose, chebuloyl neochebuloyl galloylglucose, ellagic acid glycosides, quercetin glycosides, and eriodictyol coumaroyl glycosides in the fruits. The study provides a systematic report of the retention data and characteristics of UV, MS, and MS/MS spectra of the phenolic compounds in the fruits of emblic leafflower. The fruits of two varieties (Ping Dan No 1 and Fruity) from Guangxi Province differed from those of wild Tian Chuan emblic leafflower from Fujian Province in the content and profile of phenolic compounds.

  20. HIGHLY ACTIVE CaO FOR THE TRANSESTERIFICATION TO ...

    African Journals Online (AJOL)

    Preferred Customer

    1College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an Shannxi, ... acid methyl esters (FAME) yield of the modified CaO was greatly enhanced ... same properties as diesel, to supply or replace such fossil fuel[1, 2].

  1. Thermal unfolding of a Ca- and Lanthanide-binding protein

    Energy Technology Data Exchange (ETDEWEB)

    Fahmy, Karim [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Biophysics; Goettfert, M. [Technische Univ. Dresden (Germany); Knoeppel, J.

    2017-06-01

    The MIIA (metal ion-induced autocleavage)-domain of the protein Vic001052 from the pathogen Vibrio coralliilyticus, comprises 173 amino acids and exhibits Ca-dependent autoproteolytic activity. It shows homology to nodulation proteins which are secreted by Rhizobiacea into plant host cells where they exert Ca-dependent functions. We have studied the structural and energetic aspects of metal protein interactions of the MIIA domain which appear attractive for engineering metal-binding synthetic peptides. Using a non-cleavable MIIA domain construct, we detected very similar structural changes upon binding to Ca{sup 2+} and Eu{sup 3+}. The thermal denaturation of the Ca-bound state was studied by circular dichroism spectroscopy. The metal-bound folded state unfolds reversibly into an unstructured metal-free state similar to the metal-free state at room temperature.

  2. Formation of CaSO4(aq) and CaSeO4(aq) studied as a function of ionic strength and temperature by CE

    International Nuclear Information System (INIS)

    Philippini, V.; Aupiais, J.; Moulin, Ch.; Vercouter, Th.

    2009-01-01

    Ca 2+ complexation by both sulfate and selenate ligands was studied by CE. The species were observed to give a unique retention peak as a result of a fast equilibrium between the free ions and the complexes. The change in the corresponding retention time was interpreted with respect to the equilibrium constant of the complexation reaction. The results confirmed the formation of CaSO 4 (aq) and CaSeO 4 (aq) under our experimental conditions. The formation data were derived from the series of measurements carried out at about 15, 25, 35, 45 and 55 degrees C in 0.1 mol/L NaNO 3 ionic strength solutions, and in 0.5 and 1.0 mol/L NaNO 3 ionic strength solutions at 25 degrees C. Using a constant enthalpy of reaction enabled to fit all the experimental data in a 0.1 mol/L medium, leading to the thermodynamic parameters: Δ r G 0.1M (25 degrees C) = -(7.59±0.23) kJ/mol, Δ r H 0.1M = 5.57±0.80 kJ/mol, and Δ r S 0.1M (25 degrees C) = 44.0±3.0 J mol -1 K -1 for CaSO 4 (aq) and Δ r G 0.1M )(25 degrees C) = - (6.66±0.23) kJ/mol, Δ r H 0.1M = 6.45±0.73 kJ/mol, and Δ r S 0.1M (25 degrees C) = 44.0±3.0 J mol -1 K -1 for CaSeO 4 (aq). Both formation reactions were found to be endothermic and entropy driven. CaSO 4 (aq) appears to be more stable than CaSe O 4(aq) by 0.93 kJ/mol under these experimental conditions, which correlates with the difference of acidity of the anions as expected for interactions between hard acids and hard bases according to the hard and soft acids and bases theory. The effect of the ionic medium on the formation constants was successfully treated using the Specific ion Interaction Theory, leading to significantly different binary coefficients ε Na + ,SO 4 2- (0.15±0.06) mol/kg -1 and ε Na + ,SeO 4 2- -(0.26±0.10)mol/kg -1 . (authors)

  3. Ca2+ pump and Ca2+/H+ antiporter in plasma membrane vesicles isolated by aqueous two-phase partitioning from corn leaves

    International Nuclear Information System (INIS)

    Kasai, M.; Muto, S.

    1990-01-01

    Plasma membrane vesicles, which are mostly right side-out, were isolated from corn leaves by aqueous two-phase partitioning method. Characteristics of Ca2+ transport were investigated after preparing inside-out vesicles by Triton X-100 treatment. 45Ca2+ transport was assayed by membrane filtration technique. Results showed that Ca2+ transport into the plasma membrane vesicles was Mg-ATP dependent. The active Ca2+ transport system had a high affinity for Ca2+(Km(Ca2+) = 0.4 microM) and ATP(Km(ATP) = 3.9 microM), and showed pH optimum at 7.5. ATP-dependent Ca2+ uptake in the plasma membrane vesicles was stimulated in the presence of Cl- or NO3-. Quenching of quinacrine fluorescence showed that these anions also induced H+ transport into the vesicles. The Ca2+ uptake stimulated by Cl- was dependent on the activity of H+ transport into the vesicles. However, carbonylcyanide m-chlorophenylhydrazone (CCCP) and VO4(3-) which is known to inhibit the H+ pump associated with the plasma membrane, canceled almost all of the Cl(-)-stimulated Ca2+ uptake. Furthermore, artificially imposed pH gradient (acid inside) caused Ca2+ uptake into the vesicles. These results suggest that the Cl(-)-stimulated Ca2+ uptake is caused by the efflux of H+ from the vesicles by the operation of Ca2+/H+ antiport system in the plasma membrane. In Cl(-)-free medium, H+ transport into the vesicles scarcely occurred and the addition of CCCP caused only a slight inhibition of the active Ca2+ uptake into the vesicles. These results suggest that two Ca2+ transport systems are operating in the plasma membrane from corn leaves, i.e., one is an ATP-dependent active Ca2+ transport system (Ca2+ pump) and the other is a Ca2+/H+ antiport system. Little difference in characteristics of Ca2+ transport was observed between the plasma membranes isolated from etiolated and green corn leaves

  4. Ca2+-exchange in layered zirconium orthophosphate, α-ZrP: Chemical study and potential application for zinc corrosion inhibition

    Science.gov (United States)

    Bouali, Imane; Rocca, Emmanuel; Veys-Renaux, Delphine; Rhouta, Benaissa; Khalil, Aziza; Aït Aghzzaf, Ahmed

    2017-11-01

    The control of the corrosion phenomenon occurring at the metal interface requires the development of new non-toxic anticorrosion additives. For this purpose, zirconium orthophosphate compounds (Zr(HPO4)2,H2O noted α-ZrP) were synthesized by both hydrothermal and refluxing methods The Ca2+-cationic exchange in the layered structure is kinetically favoured by low crystallinity of α-ZrP synthesized by refluxing process, and leads to the formation of CaZr(PO4)2,4H2O, noted Ca2+-ZrP. The H+/Ca2+ exchange mechanism is mainly triggered by acid-base considerations, and especially the pKa of α-ZrP/Ca2+-ZrP acid-base couple (evaluated to 2.5). Both compounds are acidic compounds by internal exchangeable H+ for α-ZrP and surface protons for Ca2+-ZrP, and can be used as potential inhibitors of zinc corrosion. Electrochemical measurements show that Ca2+-ZrP compounds dispersed in the NaCl electrolyte buffer the pH value over a long time and therefore allow controlling the corrosion rate of zinc.

  5. Protein Kinase Cα and P-Type Ca2+ Channel CaV2.1 in Red Blood Cell Calcium Signalling

    Directory of Open Access Journals (Sweden)

    Lisa Wagner-Britz

    2013-06-01

    Full Text Available Background/Aims: Protein kinase Cα (PKCα is activated by an increase in cytosolic Ca2+ in red blood cells (RBCs. Previous work has suggested that PKCα directly stimulates the CaV2.1 channel, whereas other studies revealed that CaV2.1 is insensitive to activation by PKC. The aim of this study was to resolve this discrepancy. Methods: We performed experiments based on a single cell read-out of the intracellular Ca2+ concentration in terms of Fluo-4 fluorescence intensity and phosphatidylserine exposure to the external membrane leaflet. Measurement modalities included flow cytometry and live cell imaging. Results: Treatment of RBCs with phorbol 12-myristate 13-acetate (PMA led to two distinct populations of cells with an increase in intracellular Ca2+: a weak-responding and a strong-responding population. The EC50 of PMA for the number of cells with Ca2+ elevation was 2.7±1.2 µM; for phosphatidylserine exposure to the external membrane surface, it was 2.8±0.5 µM; and for RBC haemolysis, it was 2.9±0.5 µM. Using pharmacological manipulation with the CaV2.1 inhibitor ω-agatoxin TK and the broad protein kinase C inhibitor Gö6983, we are able to show that there are two independent PMA-activated Ca2+ entry processes: the first is independent of CaV2.1 and directly PKCα-activated, while the second is associated with a likely indirect activation of CaV2.1. Further studies using lysophosphatidic acid (LPA as a stimulation agent have provided additional evidence that PKCα and CaV2.1 are not directly interconnected in a signalling chain. Conclusion: Although we provide evidence for a lack of interaction between PKCα and CaV2.1 in RBCs, further studies are required to decipher the signalling relationship between LPA, PKCα and CaV2.1.

  6. CaSO{sub 4}:Dy microphosphor for thermal neutron dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Bhadane, Mahesh S. [Microtron Accelerator Laboratory, Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Mandlik, Nandkumar [Department of Physics, Fergusson College, Savitribai Phule Pune University, Pune 411007 (India); Patil, B.J. [Department of Physics, Abasaheb Garware College, Pune 411004 (India); Dahiwale, S.S.; Sature, K.R.; Bhoraskar, V.N. [Microtron Accelerator Laboratory, Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Dhole, S.D., E-mail: sanjay@physics.unipune.ac.in [Microtron Accelerator Laboratory, Department of Physics, Savitribai Phule Pune University, Pune 411007 (India)

    2016-02-15

    Dysprosium-doped calcium sulphate (CaSO{sub 4}:Dy) microphosphor was synthesized by acid re-crystallization method and its thermoluminescence (TL) properties irradiated with thermal neutrons was studied. Structural and morphological characteristics have been studied using X-ray diffraction and SEM which mainly exhibits a orthorhombic structure with particle size of 200 to 250 µm. Moreover, thermal neutron dosimetric characteristics of the microphosphor such as thermoluminescence glow curve, TL dose–response have been studied. This microphosphor powder represents a TL glow peak (T{sub max}) centered at around 240 °C. The TL response of CaSO{sub 4}:Dy microphosphor as a function of thermal neutron fluence is observed to be very linear upto the fluence of 52×10{sup 11} n/cm{sup 2} and further saturates. In addition, TL glow curves were deconvoluted by computerized glow curve deconvolution (CGCD) method and corresponding trapping parameters have been determined. It has been found that for every deconvoluted peak there is change in the order of kinetics. Overall, the experimental results show that the CaSO{sub 4}:Dy microphosphor can have potential to be an effective thermal neutron dosimetry. - Highlights: • Acid-recrystallization method is used to prepare CaSO{sub 4}:Dy microphosphor • CaSO{sub 4}:Dy phosphor irradiated thermal neutrons for dosimetric application. • TL response curve showed to be a perfect linear. • Trapping parameters has been calculated using CGCD curve fitting.

  7. Breast cancer 1 (BrCa1 may be behind decreased lipogenesis in adipose tissue from obese subjects.

    Directory of Open Access Journals (Sweden)

    Francisco J Ortega

    Full Text Available CONTEXT: Expression and activity of the main lipogenic enzymes is paradoxically decreased in obesity, but the mechanisms behind these findings are poorly known. Breast Cancer 1 (BrCa1 interacts with acetyl-CoA carboxylase (ACC reducing the rate of fatty acid biosynthesis. In this study, we aimed to evaluate BrCa1 in human adipose tissue according to obesity and insulin resistance, and in vitro cultured adipocytes. RESEARCH DESIGN AND METHODS: BrCa1 gene expression, total and phosphorylated (P- BrCa1, and ACC were analyzed in adipose tissue samples obtained from a total sample of 133 subjects. BrCa1 expression was also evaluated during in vitro differentiation of human adipocytes and 3T3-L1 cells. RESULTS: BrCa1 gene expression was significantly up-regulated in both omental (OM; 1.36-fold, p = 0.002 and subcutaneous (SC; 1.49-fold, p = 0.001 adipose tissue from obese subjects. In parallel with increased BrCa1 mRNA, P-ACC was also up-regulated in SC (p = 0.007 as well as in OM (p = 0.010 fat from obese subjects. Consistent with its role limiting fatty acid biosynthesis, both BrCa1 mRNA (3.5-fold, p<0.0001 and protein (1.2-fold, p = 0.001 were increased in pre-adipocytes, and decreased during in vitro adipogenesis, while P-ACC decreased during differentiation of human adipocytes (p = 0.005 allowing lipid biosynthesis. Interestingly, BrCa1 gene expression in mature adipocytes was restored by inflammatory stimuli (macrophage conditioned medium, whereas lipogenic genes significantly decreased. CONCLUSIONS: The specular findings of BrCa1 and lipogenic enzymes in adipose tissue and adipocytes reported here suggest that BrCa1 might help to control fatty acid biosynthesis in adipocytes and adipose tissue from obese subjects.

  8. Anti-inflammatory and anti-coagulatory activities of caffeic acid and ellagic acid in cardiac tissue of diabetic mice

    Directory of Open Access Journals (Sweden)

    Hsu Cheng-chin

    2009-08-01

    Full Text Available Abstract Background Caffeic acid (CA and ellagic acid (EA are phenolic acids naturally occurring in many plant foods. Cardiac protective effects of these compounds against dyslipidemia, hypercoagulability, oxidative stress and inflammation in diabetic mice were examined. Methods Diabetic mice were divided into three groups (15 mice per group: diabetic mice with normal diet, 2% CA treatment, or 2% EA treatment. One group of non-diabetic mice with normal diet was used for comparison. After 12 weeks supplement, mice were sacrificed, and the variation of biomarkers for hypercoagulability, oxidative stress and inflammation in cardiac tissue of diabetic mice were measured. Results The intake of CA or EA significantly increased cardiac content of these compounds, alleviated body weight loss, elevated plasma insulin and decreased plasma glucose levels in diabetic mice (p p p p p p p Conclusion These results support that CA and EA could provide triglyceride-lowering, anti-coagulatory, anti-oxidative, and anti-inflammatory protection in cardiac tissue of diabetic mice. Thus, the supplement of these agents might be helpful for the prevention or attenuation of diabetic cardiomyopathy.

  9. Removal of uranium and gross radioactivity from coal bottom ash by CaCl{sub 2} roasting followed by HNO{sub 3} leaching

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Xuefei; Qi, Guangxia; Sun, Yinglong; Xu, Hui; Wang, Yi, E-mail: yi_wang@tsinghua.edu.cn

    2014-07-15

    Highlight: • Roasting the ash with CaCl{sub 2} enhanced the removal of uranium and gross radioactivity. • 87.3% of the total uranium was removed via the optimized roast-leach process. • Nearly 90% of gross α and β radioactivity was removed via the roast-leach process. • Molten CaCl{sub 2} promoted the incorporation of Ca and Al into Si-O matrices in ash. • Radionuclides were removed by the acid decomposition of newly formed silicates. - Abstract: A roast-leach method using CaCl{sub 2} and HNO{sub 3} to remove uranium and gross radioactivity in coal bottom ash was investigated. Heat treatment of the ash with 100% CaCl{sub 2} (900 °C, 2 h) significantly enhanced uranium leachability (>95%) compared with direct acid-leaching (22.6–25.5%). The removal efficiency of uranium and gross radioactivity increased steeply with increasing CaCl{sub 2} content, from 10% to 50%, and a HNO{sub 3} leaching time from 5 min to 1 h, but remained nearly constant or decreased slightly with increasing CaCl{sub 2} dosage >50% or acid-leaching time >1 h. The majority of the uranium (87.3%), gross α (92.9%) and gross β (84.9%) were removed under the optimized roast-leach conditions (50% CaCl{sub 2}, 1 M HNO{sub 3} leaching for 1 h). The mineralogical characteristics of roasted clinker indicated that molten CaCl{sub 2} promoted the incorporation of Ca into silica and silicates and resulted in its progressive susceptibility to acid attack. Uranium and other radionuclides, most likely present in the form of silicates or in association with miscellaneous silicates in the highest density fraction (>2.5 g mL{sup −1}), were probably leached out as the result of the acid decomposition of newly formed “gelatinizing silicates”.

  10. Induction of Ca2+-dependent cyclosporin A-insensitive nonspecific permeability of the inner membrane of liver mitochondria and cytochrome c release by α,ω-hexadecanedioic acid in media of varying ionic strength.

    Science.gov (United States)

    Dubinin, M V; Vedernikov, A A; Khoroshavina, E I; Samartsev, V N

    2014-06-01

    In liver mitochondria loaded with Ca2+ or Sr(2+), α,ω-hexadecanedioic acid (HDA) can induce nonspecific permeability of the inner membrane (mitochondrial pore) by the mechanism insensitive to cyclosporin A (CsA). In this work we studied the effect of ionic strength of the incubation medium on the kinetics of the processes that accompany Ca2+-dependent induction of the mitochondrial pore by fatty acid: organelle swelling, Ca2+ release from the matrix, changes in transmembrane potential (Δψ) and rate of oxygen consumption, and the release of cytochrome c from the intermembrane space. Two basic incubation media were used: sucrose medium and isotonic ionic medium containing KCl without sucrose. We found that 200 μM Ca2+ and 20 μM HDA in the presence of CsA effectively induce high-amplitude swelling of mitochondria both in the case of sucrose and in the ionic incubation medium. In the presence of CsA, mitochondria can rapidly absorb Ca2+ and retain it in the matrix for a while without reducing Δψ. Upon incubation in the ionic medium, mitochondria retain most of the added Ca2+ in the matrix for a short time without reducing the Δψ. In both cases the addition of HDA to the mitochondria 2 min after the introduction of Ca2+ leads to the rapid release of these ions from the matrix and total drop in Δψ. The mitochondrial swelling induced by Ca2+ and HDA in non-ionic medium is accompanied by almost maximal stimulation of respiration. Under the same conditions, but during incubation of mitochondria in the ionic medium, it is necessary to add cytochrome c for significant stimulation of respiration. The mitochondrial swelling induced by Ca2+ and HDA leads to the release of cytochrome c in a larger amount in the case of ionic medium than for the sucrose medium. We conclude that high ionic strength of the incubation medium determines the massive release of cytochrome c from mitochondria and liberates it from the respiratory chain, which leads to blockade of electron

  11. In situ synthesis carbonated hydroxyapatite layers on enamel slices with acidic amino acids by a novel two-step method.

    Science.gov (United States)

    Wu, Xiaoguang; Zhao, Xu; Li, Yi; Yang, Tao; Yan, Xiujuan; Wang, Ke

    2015-09-01

    In situ fabrication of carbonated hydroxyapatite (CHA) remineralization layer on an enamel slice was completed in a novel, biomimetic two-step method. First, a CaCO3 layer was synthesized on the surface of demineralized enamel using an acidic amino acid (aspartic acid or glutamate acid) as a soft template. Second, at the same concentration of the acidic amino acid, rod-like carbonated hydroxyapatite was produced with the CaCO3 layer as a sacrificial template and a reactant. The morphology, crystallinity and other physicochemical properties of the crystals were characterized using field emission scanning electron microscopy (FESEM), Fourier transform infrared spectrometry (FTIR), X-ray diffraction (XRD) and energy-dispersive X-ray analysis (EDAX), respectively. Acidic amino acid could promote the uniform deposition of hydroxyapatite with rod-like crystals via absorption of phosphate and carbonate ions from the reaction solution. Moreover, compared with hydroxyapatite crystals coated on the enamel when synthesized by a one-step method, the CaCO3 coating that was synthesized in the first step acted as an active bridge layer and sacrificial template. It played a vital role in orienting the artificial coating layer through the template effect. The results show that the rod-like carbonated hydroxyapatite crystals grow into bundles, which are similar in size and appearance to prisms in human enamel, when using the two-step method with either aspartic acid or acidic glutamate (20.00 mmol/L). Copyright © 2015 Elsevier B.V. All rights reserved.

  12. 134Cs uptake by four plant species and Cs-K relations in the soil-plant system as affected by Ca(OH)2 application to an acid soil

    International Nuclear Information System (INIS)

    Massas, I.; Skarlou, V.; Haidouti, C.; Giannakopoulou, F.

    2010-01-01

    Three rates of Ca(OH) 2 were applied to an acid soil and the 134 Cs uptake by radish, cucumber, soybean and sunflower plants was studied. The 134 Cs concentration in all plant species was reduced from 1.6-fold in the sunflower seeds to 6-fold in the soybean vegetative parts at the higher Ca(OH) 2 rate. Potassium (K) concentration in plants was also reduced, but less effectively. The significantly decreased 134 Cs-K soil to plant distribution factors (D.F.) clearly suggest a stronger effect of soil liming on 134 Cs than on K plant uptake. This observation was discussed in terms of ionic interactions in the soil matrix and within the plants. The results also indicated that the increased Ca 2+ concentration in the exchange phase and in the soil solution along with the improved root activity, due to the soil liming, enhanced the immobilization of 134 Cs in the soil matrix and consequently lowered the 134 Cs availability for plant uptake.

  13. Characteristics of transfer of europium ions from phosphoric acid solution into the CaSO4·O.5H2O solid phase

    International Nuclear Information System (INIS)

    Berdonosova, D.G.; Burlakova, E.V.; Yasenkova, M.A.; Ivanov, L.N.; Melikhov, I.V.

    1989-01-01

    The mechanism of formation of the precipitated CaSO 4 ·0.5H 2 O phase was studied in detail; the precipitation was performed at 80 degree, equimolar solutions of Ca(H 2 PO 4 ) 2 and H 2 SO 4 in phosphoric acid of 38% concentration being used. The availability of detailed information on the mechanism of formation of CaSO 4 ·0.5H 2 O precipitates determined the choice of conditions of study of capture of rare earths. In particular, H 3 PO 4 of 38% P 2 O 5 concentration was used as the medium of formation of the calcium sulfate precipitate. Europium was chosen as the rare earth. Its behavior in the liquid and solid phases was studied by radiometric and luminescence methods. The radionuclide 152 Eu is convenient as a radioactive tracer while luminescence of europium is structure-sensitive; therefore, europium is often used in physicochemical investigations as a luminescent probe. It follows from the data that most of the europium captured by the precipitate during coagulation of the ultramicrocrystals is retained firmly by the solid phase. Therefore, in order to diminish capture of europium (and other rare earths) by the precipitate coagulation of the latter should be prevented

  14. Fasting plasma chenodeoxycholic acid and cholic acid concentrations are inversely correlated with insulin sensitivity in adults

    Directory of Open Access Journals (Sweden)

    Laville Martine

    2011-07-01

    Full Text Available Abstract Background Accumulating data suggest a novel role for bile acids (BAs in modulating metabolic homeostasis. BA treatment has been shown to improve glucose tolerance and to increase energy expenditure in mice. Here, we investigated the relationship between fasting plasma BAs concentrations and metabolic parameters in humans. Findings Fasting plasma glucose, insulin and lipid profile were measured in 14 healthy volunteers, 20 patients with type 2 diabetes (T2D, and 22 non-diabetic abdominally obese subjects. Insulin sensitivity was also assessed by the determination of the glucose infusion rate (GIR during a hyperinsulinemic-euglycemic clamp in a subgroup of patients (9 healthy and 16 T2D subjects. Energy expenditure was measured by indirect calorimetry. Plasma cholic acid (CA, chenodeoxycholic acid (CDCA and deoxycholic acid (DCA concentrations were analyzed by gas chromatograph-mass spectrometry. In univariable analysis, a positive association was found between HOMA-IR and plasma CDCA (β = 0.09, p = 0.001, CA (β = 0.03, p = 0.09 and DCA concentrations (β = 0.07, p Conclusions Both plasma CDCA, CA and DCA concentrations were negatively associated with insulin sensitivity in a wide range of subjects.

  15. Interactions between hydrated cement paste and organic acids: Thermodynamic data and speciation modeling

    Energy Technology Data Exchange (ETDEWEB)

    De Windt, Laurent, E-mail: laurent.dewindt@mines-paristech.fr [MINES ParisTech, PSL Research University, Centre de Géosciences, 35 Rue St-Honoré, 77305 Fontainebleau Cedex (France); Bertron, Alexandra; Larreur-Cayol, Steeves; Escadeillas, Gilles [University of Toulouse, UPS/INSA/LMDC, 135 Av. de Rangueil, 31077 Toulouse Cedex 04 (France)

    2015-03-15

    Interactions of short-chain organic acids with hydrated cement phases affect structure durability in the agro-food and nuclear waste industries but can also be used to modify cement properties. Most previous studies have been experimental, performed at fixed concentrations and pH, without quantitatively discriminating among polyacidity effects, or complexation and salt precipitation processes. This paper addresses such issues by thermodynamic equilibrium calculations for acetic, citric, oxalic, succinic acids and a simplified hydrated CEM-I. The thermodynamic constants collected from the literature allow the speciation to be modeled over a wide range of pH and concentrations. Citric and oxalic had a stronger chelating effect than acetic acid, while succinic acid was intermediate. Similarly, Ca-citrate and Ca-oxalate salts were more insoluble than Ca-acetate and Ca-succinate salts. Regarding aluminium complexation, hydroxyls, sulfates, and acid competition was highlighted. The exploration of acid mixtures showed the preponderant effect of oxalate and citrate over acetate and succinate.

  16. Elevation dependent sensitivity of northern hardwoods to Ca addition at Hubbard Brook Experimental Forest, NH USA

    Science.gov (United States)

    Rakesh Minocha; Stephanie Long; Palaniswamy Thangavel; Subhash C. Minocha; Christopher Eagar; Charles T. Driscoll

    2010-01-01

    Acidic deposition has caused a depletion of calcium (Ca) in the northeastern forest soils. Wollastonite (Ca silicate) was added to watershed 1 (WS1) at the Hubbard Brook Experimental Forest (HBEF) in 1999 to evaluate its effects on various functions of the HBEF ecosystem. The effects of Ca addition on foliar soluble (extractable in 5% HClO4) ions...

  17. Carbonic anhydrase 5 regulates acid-base homeostasis in zebrafish.

    Directory of Open Access Journals (Sweden)

    Ruben Postel

    Full Text Available The regulation of the acid-base balance in cells is essential for proper cellular homeostasis. Disturbed acid-base balance directly affects cellular physiology, which often results in various pathological conditions. In every living organism, the protein family of carbonic anhydrases regulate a broad variety of homeostatic processes. Here we describe the identification, mapping and cloning of a zebrafish carbonic anhydrase 5 (ca5 mutation, collapse of fins (cof, which causes initially a collapse of the medial fins followed by necrosis and rapid degeneration of the embryo. These phenotypical characteristics can be mimicked in wild-type embryos by acetazolamide treatment, suggesting that CA5 activity in zebrafish is essential for a proper development. In addition we show that CA5 regulates acid-base balance during embryonic development, since lowering the pH can compensate for the loss of CA5 activity. Identification of selective modulators of CA5 activity could have a major impact on the development of new therapeutics involved in the treatment of a variety of disorders.

  18. Injectable hydrogels derived from phosphorylated alginic acid calcium complexes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han-Sem; Song, Minsoo, E-mail: minsoosong00@gmail.com; Lee, Eun-Jung; Shin, Ueon Sang, E-mail: usshin12@dankook.ac.kr

    2015-06-01

    Phosphorylation of sodium alginate salt (NaAlg) was carried out using H{sub 3}PO{sub 4}/P{sub 2}O{sub 5}/Et{sub 3}PO{sub 4} followed by acid–base reaction with Ca(OAc){sub 2} to give phosphorylated alginic acid calcium complexes (CaPAlg), as a water dispersible alginic acid derivative. The modified alginate derivatives including phosphorylated alginic acid (PAlg) and CaPAlg were characterized by nuclear magnetic resonance spectroscopy for {sup 1}H, and {sup 31}P nuclei, high resolution inductively coupled plasma optical emission spectroscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. CaPAlg hydrogels were prepared simply by mixing CaPAlg solution (2 w/v%) with NaAlg solution (2 w/v%) in various ratios (2:8, 4:6, 6:4, 8:2) of volume. No additional calcium salts such as CaSO{sub 4} or CaCl{sub 2} were added externally. The gelation was completed within about 3–40 min indicating a high potential of hydrogel delivery by injection in vivo. Their mechanical properties were tested to be ≤ 6.7 kPa for compressive strength at break and about 8.4 kPa/mm for elastic modulus. SEM analysis of the CaPAlg hydrogels showed highly porous morphology with interconnected pores of width in the range of 100–800 μm. Cell culture results showed that the injectable hydrogels exhibited comparable properties to the pure alginate hydrogel in terms of cytotoxicity and 3D encapsulation of cells for a short time period. The developed injectable hydrogels showed suitable physicochemical and mechanical properties for injection in vivo, and could therefore be beneficial for the field of soft tissue engineering. - Highlights: • Preparation of water-soluble alginic acid complexes with calcium phosphate • Self-assembly of the phosphorylated alginic acid calcium complexes with sodium alginate • Preparation of injectable hydrogels with diverse gelation times within about 3–40 min.

  19. Recovery of Acrylic Acid Using Calcium Peroxide Nanoparticles: Synthesis, Characterisation, Batch Study, Equilibrium, and Kinetics

    Directory of Open Access Journals (Sweden)

    B. S. De

    2018-03-01

    Full Text Available Recovery of acrylic acid from aqueous solution using low-cost CaO2 nanoparticles was investigated. CaO2 nanoparticles were synthesized by co-precipitation technique and characterised using XRD and FTIR. A mechanism was proposed for adsorption of acrylic acid onto CaO2 nanoparticles based on FTIR analysis. Acrylic acid recovery is highly dependent on contact time, CaO2 nanoparticle dosage, initial acrylic concentration, and temperature. Langmuir, Freundlich, Dubinin-Radushkevich, Tempkin, Hill, Redlich-Peterson, Sips and Toth isotherms were used and well represented by Redlich-Peterson isotherm (R2 = 0.9998 as compared to other isotherms. Kinetic studies revealed pseudo-second-order kinetics (k2 = 1.962·10–4 g mg–1 min–1 for adsorption of acrylic acid onto CaO2 nanoparticles. CaO2 nanoparticles exhibited high acrylic acid recovery over varied concentration ranges. The acrylic acid can be regenerated by desorption from the surface of adsorbent and utilised for numerous applications. The presented results may be useful for the design of adsorption system using nanoparticles, which can be extended to other systems.

  20. Micronutrients (Ca, Fe, K, Na, Se, Zn) assessment and fatty acids profile in fish most consumed by Cubatao community, Sao Paulo, Brazil

    International Nuclear Information System (INIS)

    Curcho, Michel R.S.M.; Farias, Luciana A.; Fonseca, Barbara C.; Nascimento, Soraia M.; Favaro, Deborah I.T.; Kuniyoshi, Leonardo S.; Braga, Elisabete S.; Baggio, Sueli R.

    2009-01-01

    Fish are a healthy source of protein, providing omega-3 (n-3) the fatty acids that reduce cholesterol levels, and reduce the incidence of heart disease and stroke. The purpose of the present study was to assess the concentration of some micronutrients and also fatty acids profile in muscles of the most consumed fish species from Cubatao coastal region. Cubatao carnivorous fish species analyzed were: Micropogonias furnieri (Corvina), Macrodon ancylodon (Pescada) and Menticirrhus americanus (Perna-de-Moca), and planktivorous species Sardinella braziliensis (Sardinha) and Mugil liza (Tainha). Micronutrients (Ca, Fe, K, Na, Se, Zn) in fish muscle were determined by means of instrumental neutron activation analysis (INAA). Fatty acids profiles in these muscle fish samples were performed by gas chromatography. Total saturated fatty acids ranged from 23.0% in M. ancylodon to 50.0% in M. liza. Total polyunsaturated fatty acid contents varied from 10.9% in M. liza 38.4% in S. braziliensis. These fish species presented different proportions of polyunsaturated fatty acids of the n-3 family and of the n-6 family. Regarding the n-6 family, M. furnieri showed the highest values (13.3%) and M. ancylodon, the lowest ones (4.1%). On the other hand, for the n-3 family, S. braziliensis presented the highest value (31.8%) and M. liza the lowest one (5.7%). Regarding micronutrients content, great concentration variations between individual of the same species and between different species were observed. From the nutritional point of view S. braziliensis is the best choice showing highest content of fatty acid n-3 family and micronutrient concentrations. (author)

  1. Micronutrients (Ca, Fe, K, Na, Se, Zn) assessment and fatty acids profile in fish most consumed by Cubatao community, Sao Paulo, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Curcho, Michel R.S.M.; Farias, Luciana A.; Fonseca, Barbara C.; Nascimento, Soraia M.; Favaro, Deborah I.T., E-mail: mrcurcho@ipen.b, E-mail: defavaro@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Kuniyoshi, Leonardo S.; Braga, Elisabete S., E-mail: edsbraga@usp.b [Universidade de Sao Paulo (USP), SP (Brazil). Inst. Oceanografico. Lab. de Nutrientes, Micronutrientes e Tracos nos Oceanos (LABNUT); Baggio, Sueli R., E-mail: sueli@ital.sp.gov.b [Instituto de Tecnologia de Alimentos (ITAL), Campinas, SP (Brazil). Centro de Ciencia e Qualidade de Alimentos

    2009-07-01

    Fish are a healthy source of protein, providing omega-3 (n-3) the fatty acids that reduce cholesterol levels, and reduce the incidence of heart disease and stroke. The purpose of the present study was to assess the concentration of some micronutrients and also fatty acids profile in muscles of the most consumed fish species from Cubatao coastal region. Cubatao carnivorous fish species analyzed were: Micropogonias furnieri (Corvina), Macrodon ancylodon (Pescada) and Menticirrhus americanus (Perna-de-Moca), and planktivorous species Sardinella braziliensis (Sardinha) and Mugil liza (Tainha). Micronutrients (Ca, Fe, K, Na, Se, Zn) in fish muscle were determined by means of instrumental neutron activation analysis (INAA). Fatty acids profiles in these muscle fish samples were performed by gas chromatography. Total saturated fatty acids ranged from 23.0% in M. ancylodon to 50.0% in M. liza. Total polyunsaturated fatty acid contents varied from 10.9% in M. liza 38.4% in S. braziliensis. These fish species presented different proportions of polyunsaturated fatty acids of the n-3 family and of the n-6 family. Regarding the n-6 family, M. furnieri showed the highest values (13.3%) and M. ancylodon, the lowest ones (4.1%). On the other hand, for the n-3 family, S. braziliensis presented the highest value (31.8%) and M. liza the lowest one (5.7%). Regarding micronutrients content, great concentration variations between individual of the same species and between different species were observed. From the nutritional point of view S. braziliensis is the best choice showing highest content of fatty acid n-3 family and micronutrient concentrations. (author)

  2. Omega-3 carboxylic acids (Epanova): a review of its use in patients with severe hypertriglyceridemia.

    Science.gov (United States)

    Blair, Hannah A; Dhillon, Sohita

    2014-10-01

    Omega-3 carboxylic acids (Epanova) [OM3-CA] is the first free fatty acid form of long-chain marine omega-3 fatty acids (eicosapentaenoic acid and docosahexaenoic acid being the most abundant) to be approved by the US FDA as an adjunct to diet to lower triglyceride levels in patients with severe hypertriglyceridemia (≥ 500 mg/dL). Oral OM3-CA has greater bioavailability than ethyl ester forms of omega-3 and, unlike omega-3 acid ethyl esters, does not require co-ingestion of a high-fat meal, as it does not need pancreatic enzyme activity for absorption. In the 12-week EpanoVa fOr Lowering Very high triglyceridEs (EVOLVE) trial, OM3-CA 2 or 4 g/day significantly reduced serum triglyceride levels relative to placebo. Other lipid parameters, including non-high-density lipoprotein cholesterol (non-HDL-C), total cholesterol, and very low-density lipoprotein cholesterol (VLDL-C) levels, were also reduced significantly with OM3-CA relative to placebo. Low-density lipoprotein cholesterol levels were increased significantly with OM3-CA relative to placebo; however, these increases were not accompanied by increases in the circulating concentrations of non-HDL-C, VLDL-C, or apolipoprotein B. OM3-CA was generally well tolerated in this study, with most adverse events being of mild or moderate severity. Although additional comparative data are needed to position OM3-CA with respect to other formulations of omega-3 fatty acids, current evidence suggests that OM3-CA is a useful addition to the treatment options available for patients with severe hypertriglyceridemia.

  3. Hierarchical CaCO3 chromatography: a stationary phase based on biominerals.

    Science.gov (United States)

    Sato, Kosuke; Oaki, Yuya; Takahashi, Daisuke; Toshima, Kazunobu; Imai, Hiroaki

    2015-03-23

    In biomineralization, acidic macromolecules play important roles for the growth control of crystals through a specific interaction. Inspired by this interaction, we report on an application of the hierarchical structures in CaCO3 biominerals to a stationary phase of chromatography. The separation and purification of acidic small organic molecules are achieved by thin-layer chromatography and flash chromatography using the powder of biominerals as the stationary phase. The unit nanocrystals and their oriented assembly, the hierarchical structure, are suitable for the adsorption site of the target organic molecules and the flow path of the elution solvents, respectively. The separation mode is ascribed to the specific adsorption of the acidic molecules on the crystal face and the coordination of the functional groups to the calcium ions. The results imply that a new family of stationary phase of chromatography can be developed by the fine tuning of hierarchical structures in CaCO3 materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. DA-6034-induced mucin secretion via Ca2+-dependent pathways through P2Y receptor stimulation.

    Science.gov (United States)

    Lee, Hun; Kim, Eung Kweon; Kim, Ji Yeon; Yang, Yu-Mi; Shin, Dong Min; Kang, Kyung Koo; Kim, Tae-im

    2014-09-11

    We evaluated whether DA-6034 is involved in mucin secretion via P2Y receptor activation and/or intracellular Ca2+ concentration ([Ca2+]i) change. Also, we investigated the effect of P2Y receptor inhibitors or Ca2+ chelators on the DA-6034-induced mucin secretion and [Ca2+]i increases. Effects of DA-6034 on mucin expression in primary, cultured, conjunctival epithelial cells was studied using RT-PCR, Western blot analysis, and periodic acid-schiff (PAS) staining. To evaluate thin film layer thickness generated by mucin and fluid secretion, cells were incubated in DA-6034 with/without P2Y antagonists or extracellular/intracellular Ca2+ chelators, and were imaged with confocal microscope using Texas Red-dextran dye. In addition, DA-6034-induced Ca2+-dependent Cl- channels opening was evaluated using perforated patch clamp. Fluo-4/AM was used to measure changes in [Ca2+]i induced by DA-6034 in Ca2+-free or Ca2+-containing buffered condition, as well as P2Y antagonists. DA-6034 induced the expression of mucin genes, production of mucin protein, and increase of number of mucin-secreting cells. P2Y antagonists inhibited DA-6034-induced mucin and fluid secretion, which was also affected by extracellular/intracellular Ca2+ chelators. DA-6034 stimulated Cl- channel opening and [Ca2+]i elevation. Further, [Ca2+]i increases induced by DA-6034 were lacking in either P2Y antagonists or Ca2+-free buffered condition, and diminished when endoplasmic reticulum Ca2+ was depleted by cyclopiazonic acid in Ca2+-free buffered condition. This study demonstrated that DA-6034 has a potential to induce mucin secretion via Ca2+-dependent pathways through P2Y receptors in multilayer, cultured, human conjunctival epithelial cells. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  5. Sequential separation of cs, ca and ba for 90sr assessment

    International Nuclear Information System (INIS)

    Dianu, M.; Bucur, C.

    2015-01-01

    A two-steps chemical treatment technique for strontium assessment from aqueous samples is described in this paper. The method was applied to simulated samples containing stable elements of Ni, Cs, Ca, Ba, Mn, Fe, Co and Eu. The transition elements (Ni, Mn, Fe, Co, Eu) were precipitated as hydroxides, followed by alkaline-earth metals separation (Ca, Ba) as carbonates. Finally, the Sr was purified by extraction chromatography using Triskem International Sr resin. The strength of Sr sorption in nitric acid increases with increasing acid concentration, and the optimal bonding strength is achieved in 8 M HNO3. The combination of successive precipitations with extraction chromatography for complete removal of other interferences from Sr matrix leads to good recovery and decontamination factor values. (authors)

  6. Association mapping of main tomato fruit sugars and organic acids

    Directory of Open Access Journals (Sweden)

    Jiantao Zhao

    2016-08-01

    Full Text Available Association mapping has been widely used to map the significant associated loci responsible for natural variation in complex traits and are valuable for crop improvement. Sugars and organic acids are the most important metabolites in tomato fruits. We used a collection of 174 tomato accessions composed of S. lycopersicum (123 accessions and S. lycopersicum var cerasiforme (51 accessions to detect significantly associated loci controlling the variation of main sugars and organic acids. The accessions were genotyped with 182 SSRs spreading over the tomato genome. Association mapping was conducted on the main sugars and organic acids detected by gas chromatography-mass spectrometer (GC-MS over two years using the mixed linear model (MLM. We detected a total of 58 significantly associated loci (P<0.001 for the 17 sugars and organic acids, including fructose, glucose, sucrose, citric acid, malic acid. These results not only co-localized with several reported QTLs, including fru9.1/PV, suc9.1/PV, ca2.1/HS, ca3.1/PV, ca4.1/PV and ca8.1/PV, but also provided a list of candidate significantly associated loci to be functionally validated. These significantly associated loci could be used for deciphering the genetic architecture of tomato fruit sugars and organic acids and for tomato quality breeding.

  7. Characterization of the differences in the cyclopiazonic acid binding mode to mammalian and P. Falciparum Ca2+ pumps: a computational study.

    KAUST Repository

    Di Marino, Daniele

    2015-03-01

    Despite the investments in malaria research, an effective vaccine has not yet been developed and the causative parasites are becoming increasingly resistant to most of the available drugs. PfATP6, the sarco/endoplasmic reticulum Ca2+ pump (SERCA) of P. falciparum, has been recently genetically validated as a potential antimalarial target and cyclopiazonic acid (CPA) has been found to be a potent inhibitor of SERCAs in several organisms, including P. falciparum. In position 263, PfATP6 displays a leucine residue, whilst the corresponding position in the mammalian SERCA is occupied by a glutamic acid. The PfATP6 L263E mutation has been studied in relation to the artemisinin inhibitory effect on P. falciparum and recent studies have provided evidence that the parasite with this mutation is more susceptible to CPA. Here, we characterized, for the first time, the interaction of CPA with PfATP6 and its mammalian counterpart to understand similarities and differences in the mode of binding of the inhibitor to the two Ca2+ pumps. We found that, even though CPA does not directly interact with the residue in position 263, the presence of a hydrophobic residue in this position in PfATP6 rather than a negatively charged one, as in the mammalian SERCA, entails a conformational arrangement of the binding pocket which, in turn, determines a relaxation of CPA leading to a different binding mode of the compound. Our findings highlight differences between the plasmodial and human SERCA CPA-binding pockets that may be exploited to design CPA derivatives more selective toward PfATP6.

  8. Characterization of the differences in the cyclopiazonic acid binding mode to mammalian and P. Falciparum Ca2+ pumps: a computational study.

    KAUST Repository

    Di Marino, Daniele; D'Annessa, Ilda; Coletta, Andrea; Via, Allegra; Tramontano, Anna

    2015-01-01

    Despite the investments in malaria research, an effective vaccine has not yet been developed and the causative parasites are becoming increasingly resistant to most of the available drugs. PfATP6, the sarco/endoplasmic reticulum Ca2+ pump (SERCA) of P. falciparum, has been recently genetically validated as a potential antimalarial target and cyclopiazonic acid (CPA) has been found to be a potent inhibitor of SERCAs in several organisms, including P. falciparum. In position 263, PfATP6 displays a leucine residue, whilst the corresponding position in the mammalian SERCA is occupied by a glutamic acid. The PfATP6 L263E mutation has been studied in relation to the artemisinin inhibitory effect on P. falciparum and recent studies have provided evidence that the parasite with this mutation is more susceptible to CPA. Here, we characterized, for the first time, the interaction of CPA with PfATP6 and its mammalian counterpart to understand similarities and differences in the mode of binding of the inhibitor to the two Ca2+ pumps. We found that, even though CPA does not directly interact with the residue in position 263, the presence of a hydrophobic residue in this position in PfATP6 rather than a negatively charged one, as in the mammalian SERCA, entails a conformational arrangement of the binding pocket which, in turn, determines a relaxation of CPA leading to a different binding mode of the compound. Our findings highlight differences between the plasmodial and human SERCA CPA-binding pockets that may be exploited to design CPA derivatives more selective toward PfATP6.

  9. Inhibition of VDAC1 prevents Ca²⁺-mediated oxidative stress and apoptosis induced by 5-aminolevulinic acid mediated sonodynamic therapy in THP-1 macrophages.

    Science.gov (United States)

    Chen, Haibo; Gao, Weiwei; Yang, Yang; Guo, Shuyuan; Wang, Huan; Wang, Wei; Zhang, Shuisheng; Zhou, Qi; Xu, Haobo; Yao, Jianting; Tian, Zhen; Li, Bicheng; Cao, Wenwu; Zhang, Zhiguo; Tian, Ye

    2014-12-01

    Ultrasound combined with endogenous protoporphyrin IX derived from 5-aminolevulinic acid (ALA-SDT) is known to induce apoptosis in multiple cancer cells and macrophages. Persistent retention of macrophages in the plaque has been implicated in the pathophysiology and progression of atherosclerosis. Here we investigated the effects of inhibition of voltage-dependent anion channel 1 (VDAC1) on ALA-SDT-induced THP-1 macrophages apoptosis. Cells were pre-treated with VDAC1 inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) disodium salt for 1 h or downregulated VDAC1 expression by small interfering RNA and exposed to ultrasound. Cell viability was assessed by MTT assay, and cell apoptosis along with necrosis was evaluated by Hoechst 33342/propidium iodide staining and flow cytometry. Levels of cytochrome c release was assessed by confocal microscope and Western blot. The levels of full length caspases, caspase activation, and VDAC isoforms were analyzed by Western blot. Intracellular reactive oxygen species generation, mitochondrial membrane permeability, and intracellular Ca(2+) [Ca(2+)]i levels were measured with fluorescent probes. We confirmed that the pharmacological inhibition of VDAC1 by DIDS notably prevented ALA-SDT-induced cell apoptosis in THP-1 macrophages. Additionally, DIDS significantly inhibited intracellular ROS generation and apoptotic biochemical changes such as inner mitochondrial membrane permeabilization, loss of mitochondrial membrane potential, cytochrome c release and activation of caspase-3 and caspase-9. Moreover, ALA-SDT elevated the [Ca(2+)]i levels and it was also notably reduced by DIDS. Furthermore, both of intracellular ROS generation and cell apoptosis were predominately inhibited by Ca(2+) chelating reagent BAPTA-AM. Intriguingly, ALA-treatment markedly augmented VDAC1 protein levels exclusively, and the downregulation of VDAC1 expression by specific siRNA also significantly abolished cell apoptosis. Altogether, these

  10. Effects of 45Ca on murine skeletal muscle. 3

    International Nuclear Information System (INIS)

    Malhotra, R.K.; Asotra, K.; Katoch, S.S.; Krishan, K.

    1983-01-01

    Swiss albino mice were injected intraperitoneally with 3.7x10 4 Bq and 7.4x10 4 Bq 45 Ca/g body weight. Mice of both dose groups were autopsied on days 1, 3, 5, 7, 14 and 28 and activities of alanine aminotransferase and aspartate aminotransferase bioassayed in diaphragm and gastrocnemius in 45 Ca-treated and normal mice. Alanine aminotransferase activity in the two muscles increased in response to 45 Ca administration suggesting a stepped up utilization of alanine in glucose generation. Aspartate aminotransferase levels, on the other hand, diminished in both the 45 Ca-treated muscles and are maintained at low values throughout the 28 day period of study. The results suggest an innate ability of skeletal muscle to selectively utilize either of the two glucogenic amino acids during radiation stress. The data are discussed in light of previous findings on glycogen accumulation in irradiated skeletal muscle. (author)

  11. Gallic acid attenuates calcium calmodulin-dependent kinase II-induced apoptosis in spontaneously hypertensive rats.

    Science.gov (United States)

    Jin, Li; Piao, Zhe Hao; Liu, Chun Ping; Sun, Simei; Liu, Bin; Kim, Gwi Ran; Choi, Sin Young; Ryu, Yuhee; Kee, Hae Jin; Jeong, Myung Ho

    2018-03-01

    Hypertension causes cardiac hypertrophy and leads to heart failure. Apoptotic cells are common in hypertensive hearts. Ca 2+ /calmodulin-dependent protein kinase II (CaMKII) is associated with apoptosis. We recently demonstrated that gallic acid reduces nitric oxide synthase inhibition-induced hypertension. Gallic acid is a trihydroxybenzoic acid and has been shown to have beneficial effects, such as anti-cancer, anti-calcification and anti-oxidant activity. The purpose of this study was to determine whether gallic acid regulates cardiac hypertrophy and apoptosis in essential hypertension. Gallic acid significantly lowered systolic and diastolic blood pressure in spontaneously hypertensive rats (SHRs). Wheat germ agglutinin (WGA) and H&E staining revealed that gallic acid reduced cardiac enlargement in SHRs. Gallic acid treatment decreased cardiac hypertrophy marker genes, including atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), in SHRs. The four isoforms, α, β, δ and γ, of CaMKII were increased in SHRs and were significantly reduced by gallic acid administration. Gallic acid reduced cleaved caspase-3 protein as well as bax, p53 and p300 mRNA levels in SHRs. CaMKII δ overexpression induced bax and p53 expression, which was attenuated by gallic acid treatment in H9c2 cells. Gallic acid treatment reduced DNA fragmentation and the TUNEL positive cells induced by angiotensin II. Taken together, gallic acid could be a novel therapeutic for the treatment of hypertension through suppression of CaMKII δ-induced apoptosis. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  12. The Modulatory Effect of Ellagic Acid and Rosmarinic Acid on Ultraviolet-B-Induced Cytokine/Chemokine Gene Expression in Skin Keratinocyte (HaCaT Cells

    Directory of Open Access Journals (Sweden)

    Serena Lembo

    2014-01-01

    Full Text Available Ultraviolet radiation (UV induces an increase in multiple cutaneous inflammatory mediators. Ellagic acid (EA and rosmarinic acid (RA are natural anti-inflammatory and immunomodulatory compounds found in many plants, fruits, and nuts. We assessed the ability of EA and RA to modulate IL-1β, IL-6, IL-8, IL-10, MCP-1, and TNF-α gene expression in HaCaT cells after UVB irradiation. Cells were treated with UVB (100 mJ/cm2 and simultaneously with EA (5 μM in 0.1% DMSO or RA (2.7 μM in 0.5% DMSO. Moreover, these substances were added to the UVB-irradiated cells 1 h or 6 h before harvesting, depending on the established UVB-induced cytokine expression peak. Cytokine gene expression was examined using quantitative real time polymerase chain reaction. RA produced a significant reduction in UVB-induced expression of IL-6, IL-8, MCP-1, and TNF-α when applied at the same time as irradiation. EA showed milder effects compared with RA, except for TNF-α. Both substances decreased IL-6 expression, also when applied 5 h after irradiation, and always produced a significant increase in UVB-induced IL-10 expression. Our findings suggest that EA and RA are able to prevent and/or limit the UVB-induced inflammatory cascade, through a reduction in proinflammatory mediators and the enhancement of IL-10, with its protective function.

  13. Comparison of the antioxidant effects of carnosic acid and synthetic antioxidants on tara seed oil.

    Science.gov (United States)

    Li, Zhan-Jun; Yang, Feng-Jian; Yang, Lei; Zu, Yuan-Gang

    2018-04-04

    In the present study, tara seed oil was obtained by supercritical fluid extraction and used to investigate the antioxidant strength of carnosic acid (CA) compared with conventional synthetic antioxidants. The antioxidants were added to the tara seed oil at 0.2 mg of antioxidant per gram of oil. The samples were then submitted to at 60 °C 15 days for an accelerated oxidation process, with samples taken regularly for analysis. After oxidation, the samples were analyzed to determine the peroxide value, thiobarbituric acid reactive substances, conjugated diene content, and free fatty acid content. CA was investigated at three purity levels (CA20, CA60, CA99), and compared with three synthetic antioxidants (butylatedhydroxyanisole, butylatedhydroxytoluene, and tert-butylhydroquinone). The oxidation indicators showed that CA was a strong antioxidant compared to the synthetic antioxidants. The antioxidant activities decreased in the order: tert-butylhydroquinone > CA99 > CA60 > CA20 > butylatedhydroxyanisole > butylatedhydroxytoluene. These results show that CA could be used to replace synthetic antioxidants in oil products, and should be safer for human consumption and the environment.

  14. Periodic DFT study of acidic trace atmospheric gas molecule adsorption on Ca- and Fe-doped MgO(001) surface basic sites.

    Science.gov (United States)

    Baltrusaitis, Jonas; Hatch, Courtney; Orlando, Roberto

    2012-08-02

    The electronic properties of undoped and Ca- or Fe-doped MgO(001) surfaces, as well as their propensity toward atmospheric acidic gas (CO2, SO2, and NO2) uptake was investigated with an emphasis on gas adsorption on the basic MgO oxygen surface sites, O(surf), using periodic density functional theory (DFT) calculations. Adsorption energy calculations show that MgO doping will provide stronger interactions of the adsorbate with the O(surf) sites than the undoped MgO for a given adsorbate molecule. Charge transfer from the iron atom in Fe-doped MgO(001) to NO2 was shown to increase the binding interaction between adsorbate by an order of magnitude, when compared to that of undoped and Ca-doped MgO(001) surfaces. Secondary binding interactions of adsorbate oxygen atoms were observed with surface magnesium sites at distances close to those of the Mg-O bond within the crystal. These interactions may serve as a preliminary step for adsorption and facilitate further adsorbate transformations into other binding configurations. Impacts on global atmospheric chemistry are discussed as these adsorption phenomena can affect atmospheric gas budgets via altered partitioning and retention on mineral aerosol surfaces.

  15. Inhibition of Ca2+-activated Cl− channels by gallotannins as a possible molecular basis for health benefits of red wine and green tea

    Science.gov (United States)

    Namkung, Wan; Thiagarajah, Jay R.; Phuan, Puay-Wah; Verkman, A. S.

    2010-01-01

    TMEM16A was found recently to be a calcium-activated Cl− channel (CaCC). CaCCs perform important functions in cell physiology, including regulation of epithelial secretion, cardiac and neuronal excitability, and smooth muscle contraction. CaCC modulators are of potential utility for treatment of hypertension, diarrhea, and cystic fibrosis. Screening of drug and natural product collections identified tannic acid as an inhibitor of TMEM16A, with IC50 ∼ 6 μM and ∼100% inhibition at higher concentrations. Tannic acid inhibited CaCCs in multiple cell types but did not affect CFTR Cl− channels. Structure-activity analysis indicated the requirement of gallic or digallic acid substituents on a macromolecular scaffold (gallotannins), as are present in green tea and red wine. Other polyphenolic components of teas and wines, including epicatechin, catechin, and malvidin-3-glucoside, poorly inhibited CaCCs. Remarkably, a 1000-fold dilution of red wine and 100-fold dilution of green tea inhibited CaCCs by >50%. Tannic acid, red wine, and green tea inhibited arterial smooth muscle contraction and intestinal Cl− secretion. Gallotannins are thus potent CaCC inhibitors whose biological activity provides a potential molecular basis for the cardioprotective and antisecretory benefits of red wine and green tea.—Namkung, W., Thiagarajah, J. R., Phuan, P.-W., Verkman, A. S. Inhibition of Ca2+-activated Cl− channels by gallotannins as a possible molecular basis for health benefits of red wine and green tea. PMID:20581223

  16. Improved mitochondrial function with diet-induced increase in either docosahexaenoic acid or arachidonic acid in membrane phospholipids.

    Directory of Open Access Journals (Sweden)

    Ramzi J Khairallah

    Full Text Available Mitochondria can depolarize and trigger cell death through the opening of the mitochondrial permeability transition pore (MPTP. We recently showed that an increase in the long chain n3 polyunsaturated fatty acids (PUFA docosahexaenoic acid (DHA; 22:6n3 and depletion of the n6 PUFA arachidonic acid (ARA; 20:4n6 in mitochondrial membranes is associated with a greater Ca(2+ load required to induce MPTP opening. Here we manipulated mitochondrial phospholipid composition by supplementing the diet with DHA, ARA or combined DHA+ARA in rats for 10 weeks. There were no effects on cardiac function, or respiration of isolated mitochondria. Analysis of mitochondrial phospholipids showed DHA supplementation increased DHA and displaced ARA in mitochondrial membranes, while supplementation with ARA or DHA+ARA increased ARA and depleted linoleic acid (18:2n6. Phospholipid analysis revealed a similar pattern, particularly in cardiolipin. Tetralinoleoyl cardiolipin was depleted by 80% with ARA or DHA+ARA supplementation, with linoleic acid side chains replaced by ARA. Both the DHA and ARA groups had delayed Ca(2+-induced MPTP opening, but the DHA+ARA group was similar to the control diet. In conclusion, alterations in mitochondria membrane phospholipid fatty acid composition caused by dietary DHA or ARA was associated with a greater cumulative Ca(2+ load required to induced MPTP opening. Further, high levels of tetralinoleoyl cardiolipin were not essential for normal mitochondrial function if replaced with very-long chain n3 or n6 PUFAs.

  17. A Devil in the Details: Matrix-Dependent 40Ca42Ca++/42Ca+ and Its Effects on Estimates of the Initial 41Ca/40Ca in the Solar System

    Science.gov (United States)

    McKeegan, K. D.; Liu, M.-C.

    2015-07-01

    Ian Hutcheon established that the molecular ion interference 40Ca42Ca++/42Ca+ on 41K+ is strongly dependent on the mineral analyzed. Correction for this "matrix effect" led to a downward revision of the initial 41Ca/40Ca of the solar system.

  18. ORF Sequence: Ca19AnnotatedDec2004aaSeq [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available Ca19AnnotatedDec2004aaSeq orf19.4711 >orf19.4711; Contig19-10212; complement(29836...7..>300616); ; acidic repetitive protein; truncated protein DRSDYNEEDNNDFTRKLNEIQSKESNHEDLAQSEVQEGQKDEPDSVNQ

  19. High-Yield Production of Levulinic Acid from Pretreated Cow Dung in Dilute Acid Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Jialei Su

    2017-02-01

    Full Text Available Agricultural waste cow dung was used as feedstock for the production of a high value–added chemical levulinic acid (LA in dilute acid aqueous solutions. A high LA yield of 338.9 g/kg was obtained from the pretreated cow dung, which was much higher than that obtained from the crude cow dung (135 g/kg, mainly attributed to the breakage of the lignin fraction in the lignocellulose structure of the cow dung by potassium hydroxide (KOH pretreatment, and thus enhanced the accessibility of cow dung to the acid sites in the catalytic reaction. Meanwhile, another value-added chemical formic acid could be obtained with a yield of ca. 160 g/kg in the process, implying a total production of ca. 500 g/kg yield for LA and formic acid from the pretreated cow dung with the proposed process. The developed process was shown to be tolerant to high initial substrate loading with a satisfied LA yield. This work provides a promising strategy for the value-increment utilization of liglocellulosic agricultural residues.

  20. Characterization and expression profile of CaNAC2 pepper gene

    Directory of Open Access Journals (Sweden)

    Wei-Li eGuo

    2015-09-01

    Full Text Available The plant-specific NAC (NAM, ATAF, and CUC transcription factors have diverse role in development and stress regulation. A new transcript encoding NAC protein, homologous to nam-like protein 4 from Petunia was identified from an ABA-regulated subtractive cDNA library of Capsicum annuum seedling. Here, this homolog (named CaNAC2 from Capsicum annuum was characterized and investigated its role in abiotic stress tolerance. Our results indicated that a plant-specific and conserved NAC domain was located in the N-terminus domain of CaNAC2 which was predicted to encode a polypeptide of 410 amino acids. Phylogenetic analysis showed that CaNAC2 belonged to the NAC2 subgroup of the orthologous group 4d. The protein CaNAC2 was subcellularly localized in the nucleus and it had transcriptional activity in yeast cell. CaNAC2 was expressed mainly in seed and root. The transcription expression of CaNAC2 was strongly induced by cold, salt and ABA treatment and inhibited by osmotic stress and SA treatment. Silence of CaNAC2 in virus-induced gene silenced pepper seedlings resulted in the increased susceptibility to cold stress and delayed the salt-induced leaf chlorophyll degradation. These results indicated that this novel CaNAC2 gene might be involved in pepper response to abiotic stress tolerance.

  1. Hydrolysis of molten CaCl2-CaF2 with additions of CaO

    Directory of Open Access Journals (Sweden)

    Espen Olsen

    2017-10-01

    Full Text Available Calcium halide based molten salts have recently attracted interest for a number of applications such as direct reduction of oxides for metal production and as liquefying agent in cyclic sorption processes for CO2 by CaO from dilute flue gases (Ca-looping. A fundamental aspect of these melts is the possible hydrolysis reaction upon exposure to gaseous H2O forming corrosive and poisonous hydrogen halides. In this work experiments have been performed investigating the formation of HCl and HF from a molten salt consisting of a 13.8 wt% CaF2 in CaCl2 eutectic exposed to a flowing gas consisting of 10 vol% H2O in N2. Hydrolysis has been investigated as function of content of CaO and temperature. HCl and HF are shown to be formed at elevated temperatures; HCl forms to a substantially larger extent than HF. Addition of CaO has a marked, limiting effect on the hydrolysis. Thermodynamic modeling of the reaction indicates activity coefficients for CaO above unity in the system. For cyclic CO2-capture based on thermal swing, it is advisable to keep the temperature in the carbonation (absorption reactor well below 850 ℃ while maintaining a high CaO content if molten CaCl2 is employed. Similar conclusions can be drawn with regards to CaF2.

  2. Different Proteomics of Ca2+ on SA-induced Resistance to Botrytis cinerea in Tomato

    OpenAIRE

    Linlin Li; Peng Guo; Hua Jin; Tianlai Li

    2016-01-01

    This study aims to comprehensively study the effects of Ca2+ on the SA-induced resistance Botrytis cinerea in tomato through proteomics analysis. A proteomic approach was used to uncover the inducible proteins of tomato in the susceptible tomato cultivars ‘L402’ against Botrytis cinerea after salicylic acid (SA) and a combination treatment of CaCl2 and SA. The results showed that the use of combination treatment of CaCl2 and SA significantly enhanced tomato resistance against Botrytis cinerea...

  3. Ca2+ signaling in taste bud cells and spontaneous preference for fat: unresolved roles of CD36 and GPR120.

    Science.gov (United States)

    Abdoul-Azize, Souleymane; Selvakumar, Subramaniam; Sadou, Hassimi; Besnard, Philippe; Khan, Naim Akhtar

    2014-01-01

    Recent compelling evidences from rodent and human studies raise the possibility for an additional sixth taste modality devoted to oro-gustatory perception of dietary lipids. Understanding the mechanisms underlying oro-gustatory detection of dietary fat is critical for the prevention and treatment of obesity. A number of studies have suggested that lingual CD36, a glycoprotein, highly expressed by circumvallate papillae of the tongue, is implicated in the perception of dietary fat taste. G protein-coupled receptors (GPCRs) are important signaling molecules for many aspects of cellular functions. It has been shown that these receptors, particularly GPR120, are also involved in lipid taste perception. We have shown that dietary long-chain fatty acids (LCFAs), in CD36-positive taste bud cells (TBC), induce increases in free intracellular Ca(2+) concentrations, [Ca(2+)]i, by recruiting Ca(2+) from endoplasmic reticulum (ER) pool via inositol 1,4,5-triphosphate production, followed by Ca(2+) influx via opening of store-operated Ca(2+) (SOC) channels. GPR120 is also coupled to increases in [Ca(2+)]i by dietary fatty acids. We observed that stromal interaction molecule 1 (STIM1), a sensor of Ca(2+) depletion in the ER, mediated fatty acid-induced Ca(2+) signaling and spontaneous preference for fat in the mouse. In this review article, we discuss the recent advances and unresolved roles of CD36 and GPR120 in lipid taste signaling in taste bud cells. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  4. Stoichiometry of H+ ejection during respiration-dependent accumulation of Ca2+ by rat liver mitochondria.

    Science.gov (United States)

    Brand, M D; Chen, C H; Lehninger, A L

    1976-02-25

    We have investigated the energy-dependent uptake of Ca2+ by rat liver mitochondria with succinate as respiratory substrate with rotenone added to block NAD-linked electron transport. In the presence of 3-hydroxybutyric or other permeant monocarboxylic acids Ca2+ was taken up to extents approaching those seen in the presence of phosphate. The quantitative relationship between cation and anion uptake was determined from the slope of a plot of 3-hydroxybutyrate uptake against Ca2+ uptake, a method which allowed determination of the stoichiometry without requiring ambiguous corrections for early nonenergized or nonstoichiometric binding events. This procedure showed that 2 molecules of 3-hydroxtbutyrate were accumulated with each Ca2+ ion. Under these conditions close to 2 Ca2+ ions and 4 molecules of 3-hydroxybutyrate were accumulated per pair of electrons per energy-conserving site of the respiratory chain. Since 3-hydroxybutyrate must be protonated to pass the membrane as the undissociated free acid, it is concluded that 4 protons were ejected (and subsequently reabsorbed) per pair of electrons per energy-conserving site, in contrast to the value 2.0 postulated by the chemiosmotic hypothesis.

  5. Organic acids as analytical reagent: Part 1. Estimation of zirconium by gallic acid

    International Nuclear Information System (INIS)

    Pande, C.S.; Singh, A.K.; Kumar, Ashok

    1975-01-01

    Gallic acid has been found to be a selective reagent for the estimation of zirconium. The acid gives crystalline precipitate at pH of 4.8. The precipitate is ignited and weighed as ZrO 2 . Cations like Ca +2 , Ba +2 , Sr +2 , Mn +2 , Co +2 , Ni +2 , Fe +3 do not interfere in the estimation. (author)

  6. In situ synthesis carbonated hydroxyapatite layers on enamel slices with acidic amino acids by a novel two-step method

    International Nuclear Information System (INIS)

    Wu, Xiaoguang; Zhao, Xu; Li, Yi; Yang, Tao; Yan, Xiujuan; Wang, Ke

    2015-01-01

    In situ fabrication of carbonated hydroxyapatite (CHA) remineralization layer on an enamel slice was completed in a novel, biomimetic two-step method. First, a CaCO 3 layer was synthesized on the surface of demineralized enamel using an acidic amino acid (aspartic acid or glutamate acid) as a soft template. Second, at the same concentration of the acidic amino acid, rod-like carbonated hydroxyapatite was produced with the CaCO 3 layer as a sacrificial template and a reactant. The morphology, crystallinity and other physicochemical properties of the crystals were characterized using field emission scanning electron microscopy (FESEM), Fourier transform infrared spectrometry (FTIR), X-ray diffraction (XRD) and energy-dispersive X-ray analysis (EDAX), respectively. Acidic amino acid could promote the uniform deposition of hydroxyapatite with rod-like crystals via absorption of phosphate and carbonate ions from the reaction solution. Moreover, compared with hydroxyapatite crystals coated on the enamel when synthesized by a one-step method, the CaCO 3 coating that was synthesized in the first step acted as an active bridge layer and sacrificial template. It played a vital role in orienting the artificial coating layer through the template effect. The results show that the rod-like carbonated hydroxyapatite crystals grow into bundles, which are similar in size and appearance to prisms in human enamel, when using the two-step method with either aspartic acid or acidic glutamate (20.00 mmol/L). - Graphical abstract: FESEM images of enamel slices etched for 60 s and repaired by the two-step method with Glu concentration of 20.00 mmol/L. (A) The boundary (dotted line) of the repaired areas (b) and unrepaired areas (a). (Some selected areas of etched enamel slices were coated with a nail polish before the reaction, which was removed by acetone after the reaction); (B) high magnification image of Ga, (C) high magnification image of Gb. In situ fabrication of carbonated

  7. In situ synthesis carbonated hydroxyapatite layers on enamel slices with acidic amino acids by a novel two-step method

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiaoguang [Department of Pediatric Dentistry, The Hospital of Stomatology, Jilin University, Changchun 130021 (China); Zhao, Xu [College of Chemistry, Jilin University, Changchun 130021 (China); Li, Yi, E-mail: lyi99@jlu.edu.cn [Department of Pediatric Dentistry, The Hospital of Stomatology, Jilin University, Changchun 130021 (China); Yang, Tao [Department of Stomatology, Children' s Hospital of Changchun, 130051 (China); Yan, Xiujuan; Wang, Ke [Department of Pediatric Dentistry, The Hospital of Stomatology, Jilin University, Changchun 130021 (China)

    2015-09-01

    In situ fabrication of carbonated hydroxyapatite (CHA) remineralization layer on an enamel slice was completed in a novel, biomimetic two-step method. First, a CaCO{sub 3} layer was synthesized on the surface of demineralized enamel using an acidic amino acid (aspartic acid or glutamate acid) as a soft template. Second, at the same concentration of the acidic amino acid, rod-like carbonated hydroxyapatite was produced with the CaCO{sub 3} layer as a sacrificial template and a reactant. The morphology, crystallinity and other physicochemical properties of the crystals were characterized using field emission scanning electron microscopy (FESEM), Fourier transform infrared spectrometry (FTIR), X-ray diffraction (XRD) and energy-dispersive X-ray analysis (EDAX), respectively. Acidic amino acid could promote the uniform deposition of hydroxyapatite with rod-like crystals via absorption of phosphate and carbonate ions from the reaction solution. Moreover, compared with hydroxyapatite crystals coated on the enamel when synthesized by a one-step method, the CaCO{sub 3} coating that was synthesized in the first step acted as an active bridge layer and sacrificial template. It played a vital role in orienting the artificial coating layer through the template effect. The results show that the rod-like carbonated hydroxyapatite crystals grow into bundles, which are similar in size and appearance to prisms in human enamel, when using the two-step method with either aspartic acid or acidic glutamate (20.00 mmol/L). - Graphical abstract: FESEM images of enamel slices etched for 60 s and repaired by the two-step method with Glu concentration of 20.00 mmol/L. (A) The boundary (dotted line) of the repaired areas (b) and unrepaired areas (a). (Some selected areas of etched enamel slices were coated with a nail polish before the reaction, which was removed by acetone after the reaction); (B) high magnification image of Ga, (C) high magnification image of Gb. In situ fabrication of

  8. Improvement of routes and production of CaSO4-based dosimeters with unusual doping

    International Nuclear Information System (INIS)

    Junot, Danilo Oliveira

    2017-01-01

    The widespread use of ionizing radiation in medicine and industry, associated with the known risks that this type of radiation can cause, has motivated the search for new radiation detectors, seeking improvements in the dosimetric characteristics and in the cost of production in comparison with commercial dosimeters disseminated. The motivation of this work is, therefore, to produce new thermoluminescent detectors through improved routes. Unusual elements in CaSO 4 matrix doping, such as terbium (Tb) and ytterbium (Yb), were used as dopants in this matrix, as well as the europium (Eu), the thulium (Tm) and the silver (Ag), resulting in samples of CaSO 4 :Eu,Tb, CaSO 4 :Tb,Yb, CaSO 4 :Tm,Ag and CaSO 4 :Eu,Ag that were prepared by means of an adaptation of the method developed by Yamashita (1971). The route of synthesis is based on the mixture of calcium carbonate (CaCO 3 ) and dopant oxide (except for silver, incorporated in the form of metallic nanoparticles) in a solution of sulfuric acid. The mixture is heated until all the acid evaporates and only the powder of the material remains. In this route, the sulfuric acid is collected and can be reused. The phosphors produced were characterized by X-ray diffraction and radioluminescence techniques. The silver particles, produced by the polyol method, were characterized by scanning electron microscopy. Composites were obtained from the addition of Teflon to the phosphors. The thermoluminescence (TL) and the optically stimulated luminescence (OSL) of the new materials produced were investigated. Thermoluminescent characteristics such as sensitivity, linearity, reproducibility, minimum detectable dose, kinetic order and fading were evaluated and discussed. The CaSO 4 :Tb,Eu composites showed TL glow curves with peaks at temperatures of 170 °C, 270 °C and 340 °C. The CaSO 4 :Tb,Yb composites presented TL glow curves with peaks at temperatures of 90 °C, 160 °C, 240 °C and 340 °C. CaSO 4 :Tm showed peaks at

  9. Spatial Associations and Chemical Composition of Organic Carbon Sequestered in Fe, Ca, and Organic Carbon Ternary Systems.

    Science.gov (United States)

    Sowers, Tyler D; Adhikari, Dinesh; Wang, Jian; Yang, Yu; Sparks, Donald L

    2018-05-25

    Organo-mineral associations of organic carbon (OC) with iron (Fe) oxides play a major role in environmental OC sequestration, a process crucial to mitigating climate change. Calcium has been found to have high coassociation with OC in soils containing high Fe content, increase OC sorption extent to poorly crystalline Fe oxides, and has long been suspected to form bridging complexes with Fe and OC. Due to the growing realization that Ca may be an important component of C cycling, we launched a scanning transmission X-ray microscopy (STXM) investigation, paired with near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, in order to spatially resolve Fe, Ca, and OC relationships and probe the effect of Ca on sorbed OC speciation. We performed STXM-NEXAFS analysis on 2-line ferrihydrite reacted with leaf litter-extractable dissolved OC and citric acid in the absence and presence of Ca. Organic carbon was found to highly associate with Ca ( R 2 = 0.91). Carboxylic acid moieties were dominantly sequestered; however, Ca facilitated the additional sequestration of aromatic and phenolic moieties. Also, C NEXAFS revealed polyvalent metal ion complexation. Our results provide evidence for the presence of Fe-Ca-OC ternary complexation, which has the potential to significantly impact how organo-mineral associations are modeled.

  10. Acid-base status determines the renal expression of Ca2+ and Mg2+ transport proteins.

    NARCIS (Netherlands)

    Nijenhuis, T.; Renkema, K.Y.; Hoenderop, J.G.J.; Bindels, R.J.M.

    2006-01-01

    Chronic metabolic acidosis results in renal Ca2+ and Mg2+ wasting, whereas chronic metabolic alkalosis is known to exert the reverse effects. It was hypothesized that these adaptations are mediated at least in part by the renal Ca2+ and Mg2+ transport proteins. The aim of this study, therefore, was

  11. Photo-degradation of clofibric acid by ultraviolet light irradiation at 185 nm.

    Science.gov (United States)

    Li, Wenzhen; Lu, Shuguang; Chen, Nuo; Gu, Xiaogang; Qiu, Zhaofu; Fan, Ji; Lin, Kuangfei

    2009-01-01

    As a metabolite of lipid regulators, clofibric acid (CA) was investigated in this study for its ultraviolet (UV) degradation at monochromatic wavelength of 185 nm using Milli-Q water and sewage treatment plant (STP) effluent. The effects of CA initial concentration, solution pH, humic acid (HA), nitrate and bicarbonate anions on CA degradation performances were evaluated. All CA degradation patterns well fitted the pseudo-first-order kinetic model. The results showed that OH generated from water photolysis by UV185 irradiation was involved, resulting in indirect CA photolysis but contributed less to the whole CA removal when compared to the main direct photolysis process. Acid condition favored slightly to CA degradation and other constituents in solution, such as HA (5.0-100.0 mg L(-1)), nitrate and bicarbonate anions (1.0x10(-3) mol L(-1) and 0.1 mol L(-1)), had negative effects on CA degradation. When using real STP effluent CA degradation could reach 97.4% (without filtration) and 99.3% (with filtration) after 1 hr irradiation, showing its potential mean in pharmaceuticals removal in UV disinfection unit. Mineralization tests showed that rapid chloride ion release happened, resulting in no chlorinated intermediates accumulation, and those non-chlorinated intermediate products could further be nearly completely degraded to CO2 and H2O after 6 hrs.

  12. Oxidative degradation stability and hydrogen sulfide removal performance of dual-ligand iron chelate of Fe-EDTA/CA.

    Science.gov (United States)

    Miao, Xinmei; Ma, Yiwen; Chen, Zezhi; Gong, Huijuan

    2017-09-05

    Catalytic oxidation desulfurization using chelated iron catalyst is an effective method to remove H 2 S from various gas streams including biogas. However, the ligand of ethylenediaminetetraacetic acid (EDTA), which is usually adopted to prepare chelated iron catalyst, is liable to be oxidative degraded, and leads to the loss of desulfurization performance. In order to improve the degradation stability of the iron chelate, a series of iron chelates composed of two ligands including citric acid (CA) and EDTA were prepared and the oxidative degradation stability as well as desulfurization performance of these chelated iron catalysts were studied. Results show that the iron chelate of Fe-CA is more stable than Fe-EDTA, while for the desulfurization performance, the situation is converse. For the dual-ligand iron chelates of Fe-EDTA/CA, with the increase of mol ratio of CA to EDTA in the iron chelate solution, the oxidative degradation stability increased while the desulfurization performance decreased. The results of this work showed that Fe-EDTA/CA with a mol ratio of CA:EDTA = 1:1 presents a relative high oxidative degradation stability and an acceptable desulfurization performance with over 90% of H 2 S removal efficiency.

  13. Fabrication and characterization of CaP-coated nanotube arrays

    International Nuclear Information System (INIS)

    Kung, Kuan-Chen; Chen, Jia-Ling; Liu, Yen-Ting; Lee, Tzer-Min

    2015-01-01

    Modified anodization techniques have been shown to improve the biocompatibility of titanium. This study demonstrated the anodic formation of self-organized nanotube arrays on titanium from an electrolyte solution containing 1 M H 3 PO 4 and 1 wt% hydrofluoric acid (HF). Our aim was to investigate the effects of sputter-deposited CaP on nanotube arrays. SEM images revealed a surface with uniform morphology and an average pore diameter of 29 nm. XRD results indicated that the phase of the nanotube arrays was amorphous. Electron spectroscopy for chemical analysis (ESCA) confirmed that the nanotube arrays were coated with calcium and phosphorus. Cell culture experiments using human osteosarcoma (HOS) cells demonstrated that the CaP/nanotube arrays had a pronounced effect on initial cell attachment as well as on the number of cells at 1, 7, and 14 days. Compared to as-polished titanium, the CaP/nanotube arrays accelerated cell proliferation, attachment, and spreading. Our results demonstrate the pronounced effects of CaP/nanotube arrays on the biological responses of HOS cells. - Highlights: • Self-organized nanotube arrays were anodically formed on titanium. • Surfaces of nanotube arrays exhibited uniform morphology and pore size. • According to ESCA results, Ca and P were successfully coated on nanotube arrays. • CaP/nanotube arrays accelerated the attachment and spreading of cells. • CaP/nanotube arrays were shown to affect biological responses of cells

  14. Fabrication and characterization of CaP-coated nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Kung, Kuan-Chen; Chen, Jia-Ling [Institute of Oral Medicine, National Cheng Kung University, Tainan 701, Taiwan (China); Liu, Yen-Ting [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Lee, Tzer-Min, E-mail: tmlee@mail.ncku.edu.tw [Institute of Oral Medicine, National Cheng Kung University, Tainan 701, Taiwan (China); Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan (China); School of Dentistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China)

    2015-03-01

    Modified anodization techniques have been shown to improve the biocompatibility of titanium. This study demonstrated the anodic formation of self-organized nanotube arrays on titanium from an electrolyte solution containing 1 M H{sub 3}PO{sub 4} and 1 wt% hydrofluoric acid (HF). Our aim was to investigate the effects of sputter-deposited CaP on nanotube arrays. SEM images revealed a surface with uniform morphology and an average pore diameter of 29 nm. XRD results indicated that the phase of the nanotube arrays was amorphous. Electron spectroscopy for chemical analysis (ESCA) confirmed that the nanotube arrays were coated with calcium and phosphorus. Cell culture experiments using human osteosarcoma (HOS) cells demonstrated that the CaP/nanotube arrays had a pronounced effect on initial cell attachment as well as on the number of cells at 1, 7, and 14 days. Compared to as-polished titanium, the CaP/nanotube arrays accelerated cell proliferation, attachment, and spreading. Our results demonstrate the pronounced effects of CaP/nanotube arrays on the biological responses of HOS cells. - Highlights: • Self-organized nanotube arrays were anodically formed on titanium. • Surfaces of nanotube arrays exhibited uniform morphology and pore size. • According to ESCA results, Ca and P were successfully coated on nanotube arrays. • CaP/nanotube arrays accelerated the attachment and spreading of cells. • CaP/nanotube arrays were shown to affect biological responses of cells.

  15. Silencing of the CaCP Gene Delays Salt- and Osmotic-Induced Leaf Senescence in Capsicum annuum L.

    Directory of Open Access Journals (Sweden)

    Huai-Juan Xiao

    2014-05-01

    Full Text Available Cysteine proteinases have been known to participate in developmental processes and in response to stress in plants. Our present research reported that a novel CP gene, CaCP, was involved in leaf senescence in pepper (Capsicum annuum L.. The full-length CaCP cDNA is comprised of 1316 bp, contains 1044 nucleotides in open reading frame (ORF, and encodes a 347 amino acid protein. The deduced protein belongs to the papain-like cysteine proteases (CPs superfamily, containing a highly conserved ERFNIN motif, a GCNGG motif and a conserved catalytic triad. This protein localized to the vacuole of plant cells. Real-time quantitative PCR analysis revealed that the expression level of CaCP gene was dramatically higher in leaves and flowers than that in roots, stems and fruits. Moreover, CaCP transcripts were induced upon during leaf senescence. CaCP expression was upregulated by plant hormones, especially salicylic acid. CaCP was also significantly induced by abiotic and biotic stress treatments, including high salinity, mannitol and Phytophthora capsici. Loss of function of CaCP using the virus-induced gene-silencing technique in pepper plants led to enhanced tolerance to salt- and osmotic-induced stress. Taken together, these results suggest that CaCP is a senescence-associated gene, which is involved in developmental senescence and regulates salt- and osmotic-induced leaf senescence in pepper.

  16. Silencing of the CaCP Gene Delays Salt- and Osmotic-Induced Leaf Senescence in Capsicum annuum L.

    Science.gov (United States)

    Xiao, Huai-Juan; Yin, Yan-Xu; Chai, Wei-Guo; Gong, Zhen-Hui

    2014-01-01

    Cysteine proteinases have been known to participate in developmental processes and in response to stress in plants. Our present research reported that a novel CP gene, CaCP, was involved in leaf senescence in pepper (Capsicum annuum L.). The full-length CaCP cDNA is comprised of 1316 bp, contains 1044 nucleotides in open reading frame (ORF), and encodes a 347 amino acid protein. The deduced protein belongs to the papain-like cysteine proteases (CPs) superfamily, containing a highly conserved ERFNIN motif, a GCNGG motif and a conserved catalytic triad. This protein localized to the vacuole of plant cells. Real-time quantitative PCR analysis revealed that the expression level of CaCP gene was dramatically higher in leaves and flowers than that in roots, stems and fruits. Moreover, CaCP transcripts were induced upon during leaf senescence. CaCP expression was upregulated by plant hormones, especially salicylic acid. CaCP was also significantly induced by abiotic and biotic stress treatments, including high salinity, mannitol and Phytophthora capsici. Loss of function of CaCP using the virus-induced gene-silencing technique in pepper plants led to enhanced tolerance to salt- and osmotic-induced stress. Taken together, these results suggest that CaCP is a senescence-associated gene, which is involved in developmental senescence and regulates salt- and osmotic-induced leaf senescence in pepper. PMID:24823878

  17. Improvement of routes and production of CaSO{sub 4}-based dosimeters with unusual doping; Aprimoramento de rotas e producao de dosimetros a base de CaSO{sub 4} com dopagens nao usuais

    Energy Technology Data Exchange (ETDEWEB)

    Junot, Danilo Oliveira

    2017-07-01

    The widespread use of ionizing radiation in medicine and industry, associated with the known risks that this type of radiation can cause, has motivated the search for new radiation detectors, seeking improvements in the dosimetric characteristics and in the cost of production in comparison with commercial dosimeters disseminated. The motivation of this work is, therefore, to produce new thermoluminescent detectors through improved routes. Unusual elements in CaSO{sub 4} matrix doping, such as terbium (Tb) and ytterbium (Yb), were used as dopants in this matrix, as well as the europium (Eu), the thulium (Tm) and the silver (Ag), resulting in samples of CaSO{sub 4}:Eu,Tb, CaSO{sub 4}:Tb,Yb, CaSO{sub 4}:Tm,Ag and CaSO{sub 4}:Eu,Ag that were prepared by means of an adaptation of the method developed by Yamashita (1971). The route of synthesis is based on the mixture of calcium carbonate (CaCO{sub 3}) and dopant oxide (except for silver, incorporated in the form of metallic nanoparticles) in a solution of sulfuric acid. The mixture is heated until all the acid evaporates and only the powder of the material remains. In this route, the sulfuric acid is collected and can be reused. The phosphors produced were characterized by X-ray diffraction and radioluminescence techniques. The silver particles, produced by the polyol method, were characterized by scanning electron microscopy. Composites were obtained from the addition of Teflon to the phosphors. The thermoluminescence (TL) and the optically stimulated luminescence (OSL) of the new materials produced were investigated. Thermoluminescent characteristics such as sensitivity, linearity, reproducibility, minimum detectable dose, kinetic order and fading were evaluated and discussed. The CaSO{sub 4}:Tb,Eu composites showed TL glow curves with peaks at temperatures of 170 °C, 270 °C and 340 °C. The CaSO{sub 4}:Tb,Yb composites presented TL glow curves with peaks at temperatures of 90 °C, 160 °C, 240 °C and 340 °C. Ca

  18. Synthesis, Structural Characterization, and Antitumor Activity of a Ca(II Coordination Polymer Based on 1,6-Naphthalenedisulfonate and 4,4′-Bipyridyl

    Directory of Open Access Journals (Sweden)

    Xishi Tai

    2013-08-01

    Full Text Available A novel Ca(II coordination polymer, [CaL(4,4′-bipyridyl(H2O4]n (L = 1,6-naphthalenedisulfonate, was synthesized by reaction of calcium perchlorate with 1,6-naphthalenedisulfonic acid disodium salt and 4,4′-bipyridyl in CH3CH2OH/H2O. It was characterized by elemental analysis, IR, molar conductivity and thermogravimetric analysis. X-ray crystallography reveals that the Ca(II coordination polymer belongs to the orthorhombic system, with space group P212121. The geometry of the Ca(II ion is a distorted CaNO6 pengonal bipyramid, arising from its coordination by four water molecules, one nitrogen atom of 4,4′-bipyridyl molecule, and two oxygen atoms from two L ligands. The complex molecules form a helical chain by self-assembly. The antitumor activity of 1,6-naphthalenedisulfonic acid disodium salt and the Ca(II coordination polymer against human hepatoma smmc-7721 cell line and human lung adenocarcinoma A549 cell line reveals that the Ca(II coordination polymer inhibits cell growth of human lung adenocarcinoma A549 cell line with IC50 value of 27 μg/mL, and is more resistive to human lung adenocarcinoma A549 cell line as compared to 1,6-naphthalenedisulfonic acid disodium salt.

  19. Role of CA-EDTA on the Synthesizing Process of Cerate-Zirconate Ceramics Electrolyte

    Directory of Open Access Journals (Sweden)

    Nur Athirah Abdullah

    2013-01-01

    Full Text Available The role of a combination between citric acid (CA and ethylenediaminetetra acetic acid (EDTA as chelating agents in preparation of BaCe0.54Zr0.36Y0.1O2.95 powder by a modified sol-gel method is reported. The precursor solutions were prepared from metal nitrate salts (M+, chelating agents (C, and ethylene glycol (EG at molar ratio of M+ : C : EG = 3 : 2 : 3. Chemical and phase transformation of samples during thermal decomposition were analyzed by thermogravimetric analysis (TGA and Fourier transform infrared (FTIR spectroscopy. TGA results show that the sample prepared by a combination of CA-EDTA exhibited the lowest thermal decomposition temperature, Ttd since there was no significant weight loss after 750°C. After calcined at 1100°C, the carbonates residue remained in the samples as proven by FTIR results. It was found that the used combination of CA-EDTA acts as a better combustion reagent to increase the reaction rate and influence the thermal decomposition behaviour compared to a single citric acid and EDTA, respectively. Apparently, calcination temperatures above 1100°C are needed to produce a pure perovskitic BaCe0.54Zr0.36Y0.1O2.95.

  20. Combination of soya pulp and Bacillus coagulans lilac-01 improves intestinal bile acid metabolism without impairing the effects of prebiotics in rats fed a cholic acid-supplemented diet.

    Science.gov (United States)

    Lee, Yeonmi; Yoshitsugu, Reika; Kikuchi, Keidai; Joe, Ga-Hyun; Tsuji, Misaki; Nose, Takuma; Shimizu, Hidehisa; Hara, Hiroshi; Minamida, Kimiko; Miwa, Kazunori; Ishizuka, Satoshi

    2016-08-01

    Intestinal bacteria are involved in bile acid (BA) deconjugation and/or dehydroxylation and are responsible for the production of secondary BA. However, an increase in the production of secondary BA modulates the intestinal microbiota due to the bactericidal effects and promotes cancer risk in the liver and colon. The ingestion of Bacillus coagulans improves constipation via the activation of bowel movement to promote defaecation in humans, which may alter BA metabolism in the intestinal contents. BA secretion is promoted with high-fat diet consumption, and the ratio of cholic acid (CA):chenodeoxycholic acid in primary BA increases with ageing. The dietary supplementation of CA mimics the BA environment in diet-induced obesity and ageing. We investigated whether B. coagulans lilac-01 and soya pulp influence both BA metabolism and the maintenance of host health in CA-supplemented diet-fed rats. In CA-fed rats, soya pulp significantly increased the production of secondary BA such as deoxycholic acid and ω-muricholic acids, and soya pulp ingestion alleviated problems related to plasma adiponectin and gut permeability in rats fed the CA diet. The combination of B. coagulans and soya pulp successfully suppressed the increased production of secondary BA in CA-fed rats compared with soya pulp itself, without impairing the beneficial effects of soya pulp ingestion. In conclusion, it is possible that a combination of prebiotics and probiotics can be used to avoid an unnecessary increase in the production of secondary BA in the large intestine without impairing the beneficial functions of prebiotics.

  1. Value of Combined Detection of Serum CEA, CA72-4, CA19-9, CA15-3 and CA12-5 in the Diagnosis of Gastric Cancer.

    Science.gov (United States)

    Chen, Changguo; Chen, Qiuyuan; Zhao, Qiangyuan; Liu, Min; Guo, Jianwei

    2017-05-01

    To examine whether the combined detection of serum tumor markers (CEA, CA72-4, CA19-9, CA15-3 and CA12-5) improves the sensitivity and accuracy in the diagnosis of gastric cancer (GC). An automatic chemiluminescence immune analyzer with matched kits was used to determine the levels of serum CEA, CA72-4, CA19-9, CA15-3, and CA12-5 in 87 patients with gastric cancer (GC group), 60 patients with gastric benign diseases (GBD group) who were hospitalized during the same period, and 40 healthy subjects undergoing a physical examination. The values of these 5 tumor markers in the diagnosis of gastric cancer were analyzed. The levels of serum CEA, CA72-4, CA19-9, and CA12-5 were higher in the GC group than in the GBD group and healthy subjects, and these differences were significant ( P 0.05). The combined detection of CEA, CA72-4, CA19-9, and CA12-5 had a higher diagnostic value for gastric cancer than did single detection, and the positive detection rate of the combined detection of the four tumor markers was 60.9%. The diagnostic power when using the combined detection of CA72-4, CEA, CA19-9, and CA12-5 was the best. The combined detection of serum CA72-4, CEA, CA19-9 and CA12-5 increases the sensitivity and accuracy in the diagnosis of GC and can thus be considered an important tool for early diagnosis. © 2017 by the Association of Clinical Scientists, Inc.

  2. Triggering of Suicidal Erythrocyte Death Following Boswellic Acid Exposure

    Directory of Open Access Journals (Sweden)

    Salvatrice Calabrò

    2015-08-01

    Full Text Available Background/Aims: The antinflammatory natural product boswellic acid is effective against cancer at least in part by inducing tumor cell apoptosis. Similar to apoptosis of nucleated cells erythrocytes may enter eryptosis, a suicidal death characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Stimulators of eryptosis include oxidative stress, increase of cytosolic Ca2+-activity ([Ca2+]i, energy depletion, ceramide formation and p38 kinase activation. The present study tested, whether and how boswellic acid induces eryptosis. Methods: Phosphatidylserine exposure at the cell surface was estimated from annexin V binding, cell volume from forward scatter, hemolysis from hemoglobin release, [Ca2+]i from Fluo3-fluorescence, ceramide abundance utilizing specific antibodies, reactive oxygen species (ROS from 2′,7′-dichlorodihydrofuorescein diacetate (DCFDA fluorescence, and cytosolic ATP concentration utilizing a luciferin-luciferase assay kit. Results: A 24 hours exposure of human erythrocytes to boswellic acid (5 µg/ml significantly increased the percentage of annexin-V-binding cells (to 9.3 ±0.9 % and significantly decreased forward scatter. Boswellic acid did not significantly modify [Ca2+]i, cytosolic ATP, ROS, or ceramide abundance. The effect of boswellic acid on annexin-V-binding was significantly blunted, but not abolished by p38 kinase inhibitors skepinone (2 µM and SB203580 (2 µM. Conclusions: Boswellic acid stimulates cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect in part dependent on p38 protein kinase activity.

  3. 3-Aminoquinoline/p-coumaric acid as a MALDI matrix for glycopeptides, carbohydrates, and phosphopeptides.

    Science.gov (United States)

    Fukuyama, Yuko; Funakoshi, Natsumi; Takeyama, Kohei; Hioki, Yusaku; Nishikaze, Takashi; Kaneshiro, Kaoru; Kawabata, Shin-Ichirou; Iwamoto, Shinichi; Tanaka, Koichi

    2014-02-18

    Glycosylation and phosphorylation are important post-translational modifications in biological processes and biomarker research. The difficulty in analyzing these modifications is mainly their low abundance and dissociation of labile regions such as sialic acids or phosphate groups. One solution in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry is to improve matrices for glycopeptides, carbohydrates, and phosphopeptides by increasing the sensitivity and suppressing dissociation of the labile regions. Recently, a liquid matrix 3-aminoquinoline (3-AQ)/α-cyano-4-hydroxycinnamic acid (CHCA) (3-AQ/CHCA), introduced by Kolli et al. in 1996, has been reported to increase sensitivity for carbohydrates or phosphopeptides, but it has not been systematically evaluated for glycopeptides. In addition, 3-AQ/CHCA enhances the dissociation of labile regions. In contrast, a liquid matrix 1,1,3,3-tetramethylguanidium (TMG, G) salt of p-coumaric acid (CA) (G3CA) was reported to suppress dissociation of sulfate groups or sialic acids of carbohydrates. Here we introduce a liquid matrix 3-AQ/CA for glycopeptides, carbohydrates, and phosphopeptides. All of the analytes were detected as [M + H](+) or [M - H](-) with higher or comparable sensitivity using 3-AQ/CA compared with 3-AQ/CHCA or 2,5-dihydroxybenzoic acid (2,5-DHB). The sensitivity was increased 1- to 1000-fold using 3-AQ/CA. The dissociation of labile regions such as sialic acids or phosphate groups and the fragmentation of neutral carbohydrates were suppressed more using 3-AQ/CA than using 3-AQ/CHCA or 2,5-DHB. 3-AQ/CA was thus determined to be an effective MALDI matrix for high sensitivity and the suppression of dissociation of labile regions in glycosylation and phosphorylation analyses.

  4. Mast cell mediators in citric acid-induced airway constriction of guinea pigs

    International Nuclear Information System (INIS)

    Lin, C.-H.; Lai, Y.-L.

    2005-01-01

    We demonstrated previously that mast cells play an important role in citric acid (CA)-induced airway constriction. In this study, we further investigated the underlying mediator(s) for this type of airway constriction. At first, to examine effects caused by blocking agents, 67 young Hartley guinea pigs were divided into 7 groups: saline + CA; methysergide (serotonin receptor antagonist) + CA; MK-886 (leukotriene synthesis inhibitor) + CA; mepyramine (histamine H 1 receptor antagonist) + CA; indomethacin (cyclooxygenase inhibitor) + CA; cromolyn sodium (mast cell stabilizer) + CA; and compound 48/80 (mast cell degranulating agent) + CA. Then, we tested whether leukotriene C 4 (LTC 4 ) or histamine enhances CA-induced airway constriction in compound 48/80-pretreated guinea pigs. We measured dynamic respiratory compliance (Crs) and forced expiratory volume in 0.1 s (FEV 0.1 ) during either baseline or recovery period. In addition, we detected histamine level, an index of pulmonary mast cell degranulation, in bronchoalveolar lavage (BAL) samples. Citric acid aerosol inhalation caused decreases in Crs and FEV 0.1 , indicating airway constriction in the control group. This airway constriction was significantly attenuated by MK-886, mepyramine, cromolyn sodium, and compound 48/80, but not by either methysergide or indomethacin. Both LTC 4 and histamine infusion significantly increased the magnitude of CA-induced airway constriction in compound 48/80-pretreated guinea pigs. Citric acid inhalation caused significant increase in histamine level in the BAL sample, which was significantly suppressed by compound 48/80. These results suggest that leukotrienes and histamine originating from mast cells play an important role in CA inhalation-induced noncholinergic airway constriction

  5. Calcium-sensing receptor (CaSR): pharmacological properties and signaling pathways.

    Science.gov (United States)

    Conigrave, Arthur D; Ward, Donald T

    2013-06-01

    In this article we consider the mechanisms by which the calcium-sensing receptor (CaSR) induces its cellular responses via the control (activation or inhibition) of signaling pathways. We consider key features of CaSR-mediated signaling including its control of the heterotrimeric G-proteins Gq/11, Gi/o and G12/13 and the downstream consequences recognizing that very few CaSR-mediated cell phenomena have been fully described. We also consider the manner in which the CaSR contributes to the formation of specific signaling scaffolds via peptide recognition sequences in its intracellular C-terminal along with the origins of its high level of cooperativity, particularly for Ca(2+)o, and its remarkable resistance to desensitization. We also consider the nature of the mechanisms by which the CaSR controls oscillatory and sustained Ca(2+)i mobilizing responses and inhibits or elevates cyclic adenosine monophosphate (cAMP) levels dependent on the cellular and signaling context. Finally, we consider the diversity of the receptor's ligands, ligand binding sites and broader compartment-dependent physiological roles leading to the identification of pronounced ligand-biased signaling for agonists including Sr(2+) and modulators including l-amino acids and the clinically effective calcimimetic cinacalcet. We note the implications of these findings for the development of new designer drugs that might target the CaSR in pathophysiological contexts beyond those established for the treatment of disorders of calcium metabolism. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Nonsteroidal anti-inflammatory drug flufenamic acid is a potent activator of AMP-activated protein kinase.

    Science.gov (United States)

    Chi, Yuan; Li, Kai; Yan, Qiaojing; Koizumi, Schuichi; Shi, Liye; Takahashi, Shuhei; Zhu, Ying; Matsue, Hiroyuki; Takeda, Masayuki; Kitamura, Masanori; Yao, Jian

    2011-10-01

    Flufenamic acid (FFA) is a nonsteroidal anti-inflammatory drug (NSAID). It has anti-inflammatory and antipyretic properties. In addition, it modulates multiple channel activities. The mechanisms underlying the pharmacological actions of FFA are presently unclear. Given that AMP-activated protein kinase (AMPK) has both anti-inflammatory and channel-regulating functions, we examined whether FFA induces AMPK activation. 1) Exposure of several different types of cells to FFA resulted in an elevation of AMPKα phosphorylation at Thr172. This effect of FFA was reproduced by functionally and structurally similar mefenamic acid, tolfenamic acid, niflumic acid, and meclofenamic acid. 2) FFA-induced activation of AMPK was largely abolished by the treatment of cells with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester) (an intracellular Ca(2+) chelator) or depletion of extracellular Ca(2+), whereas it was mimicked by stimulation of cells with the Ca(2+) ionophore 5-(methylamino)-2-({(2R,3R,6S,8S,9R,11R)-3,9,11-trimethyl-8-[(1S)-1-methyl-2-oxo-2-(1H-pyrrol-2-yl)ethyl]-1,7-dioxaspiro[5.5]undec-2-yl}methyl)-1,3-benzoxazole-4-carboxylic acid (A23187) or ionomycin. 3) FFA triggered a rise in intracellular Ca(2+), which was abolished by cyclosporine, a blocker of mitochondrial permeability transition pore. Cyclosporine also abolished FFA-induced activation of AMPK. 4) Inhibition of Ca(2+)/calmodulin-dependent kinase kinase β (CaMKKβ) with 7-oxo-7H-benzimidazo[2,1-a]benz[de]isoquinoline-3-carboxylic acid acetate (STO-609) or down-regulation of CaMKKβ with short interfering RNA largely abrogated FFA-induced activation of AMPK. 5) FFA significantly suppressed nuclear factor-κB activity and inducible nitric-oxide synthase expression triggered by interleukin-1β and tumor necrosis factor α. This suppression was also largely abrogated by STO-609. Taken together, we conclude that FFA induces AMPK activation through the Ca(2+)-CaMKKβ pathway

  7. Gamma radiation effects on fattly acid composition of lipids in cotton leaves

    International Nuclear Information System (INIS)

    Arslanova, S.V.; Stepanenko, G.A.; Umarov, A.K.; Nazirov, N.N.

    1976-01-01

    The mechanism of high irradiation dose (30 kR) effect on the lipid fatty acid composition of cotton leaves was studied in the ontogenesis. The experiment was carried out in vegetation vials (capacity 25 kg, humidity level - 65% of full water capacity). Before seeding, each vial was fertilized with 5g P 2 O 5 , 3g K 2 O and 5gN as an auxillary nutrition during vegetation. The test vials also contained 0.4 - 0.5 g CaO per kg of soil. A portion of irradiated seeds was soaked in 1.5% solution of CaO and Ca(NO 3 ) 2 before seeding. The cotton seeds were gamma-irradiated at 50 R/sec in the Institute of Nuclear Physics, Usbec SSR Academy of Sciences. The fatty acid composition of mature leaf lipids determined by gas-liquid chromatography proved to change in the blooming phase. Leaves of irradiated plants contained traces of myristic acid, higher levels of palmitic, palmitoleinic and strearinic acids and lower levels of oleinic and linoleic acids. Lower content of fatty acids with long carbon chains seemed to handicap the renewal of membranes and their components, especially in mitochondria. When irradiated seeds were soaked in calcium salt solution and CaO is added to the soil, the amount of unsaturated long chain fatty acids increased. The fact probably promotes the membrane renewal in irradiated plants

  8. Multiple C-terminal tail Ca(2+)/CaMs regulate Ca(V)1.2 function but do not mediate channel dimerization.

    Science.gov (United States)

    Kim, Eun Young; Rumpf, Christine H; Van Petegem, Filip; Arant, Ryan J; Findeisen, Felix; Cooley, Elizabeth S; Isacoff, Ehud Y; Minor, Daniel L

    2010-12-01

    Interactions between voltage-gated calcium channels (Ca(V)s) and calmodulin (CaM) modulate Ca(V) function. In this study, we report the structure of a Ca(2+)/CaM Ca(V)1.2 C-terminal tail complex that contains two PreIQ helices bridged by two Ca(2+)/CaMs and two Ca(2+)/CaM-IQ domain complexes. Sedimentation equilibrium experiments establish that the complex has a 2:1 Ca(2+)/CaM:C-terminal tail stoichiometry and does not form higher order assemblies. Moreover, subunit-counting experiments demonstrate that in live cell membranes Ca(V)1.2s are monomers. Thus, contrary to previous proposals, the crystallographic dimer lacks physiological relevance. Isothermal titration calorimetry and biochemical experiments show that the two Ca(2+)/CaMs in the complex have different properties. Ca(2+)/CaM bound to the PreIQ C-region is labile, whereas Ca(2+)/CaM bound to the IQ domain is not. Furthermore, neither of lobes of apo-CaM interacts strongly with the PreIQ domain. Electrophysiological studies indicate that the PreIQ C-region has a role in calcium-dependent facilitation. Together, the data show that two Ca(2+)/CaMs can bind the Ca(V)1.2 tail simultaneously and indicate a functional role for Ca(2+)/CaM at the C-region site.

  9. A novel F-box protein CaF-box is involved in responses to plant hormones and abiotic stress in pepper (Capsicum annuum L.).

    Science.gov (United States)

    Chen, Rugang; Guo, Weili; Yin, Yanxu; Gong, Zhen-Hui

    2014-02-10

    The F-box protein family is characterized by an F-box motif that has been shown to play an important role in regulating various developmental processes and stress responses. In this study, a novel F-box-containing gene was isolated from leaves of pepper cultivar P70 (Capsicum annuum L.) and designated CaF-box. The full-length cDNA is 2088 bp and contains an open reading frame of 1914 bp encoding a putative polypeptide of 638 amino acids with a mass of 67.8 kDa. CaF-box was expressed predominantly in stems and seeds, and the transcript was markedly upregulated in response to cold stress, abscisic acid (ABA) and salicylic acid (SA) treatment, and downregulated under osmotic and heavy metal stress. CaF-box expression was dramatically affected by salt stress, and was rapidly increased for the first hour, then sharply decreased thereafter. In order to further assess the role of CaF-box in the defense response to abiotic stress, a loss-of-function experiment in pepper plants was performed using a virus-induced gene silencing (VIGS) technique. Measurement of thiobarbituric acid reactive substances (TBARS) and electrolyte leakage revealed stronger lipid peroxidation and cell death in the CaF-box-silenced plants than in control plants, suggesting CaF-box plays an important role in regulating the defense response to abiotic stress resistance in pepper plants.

  10. Overexpression of CaDSR6 increases tolerance to drought and salt stresses in transgenic Arabidopsis plants.

    Science.gov (United States)

    Kim, Eun Yu; Seo, Young Sam; Park, Ki Youl; Kim, Soo Jin; Kim, Woo Taek

    2014-11-15

    The partial CaDSR6 (Capsicum annuum Drought Stress Responsive 6) cDNA was previously identified as a drought-induced gene in hot pepper root tissues. However, the cellular role of CaDSR6 with regard to drought stress tolerance was unknown. In this report, full-length CaDSR6 cDNA was isolated. The deduced CaDSR6 protein was composed of 234 amino acids and contained an approximately 30 amino acid-long Asp-rich domain in its central region. This Asp-rich domain was highly conserved in all plant DSR6 homologs identified and shared a sequence identity with the N-terminal regions of yeast p23(fyp) and human hTCTP, which contain Rab protein binding sites. Transgenic Arabidopsis plants overexpressing CaDSR6 (35S:CaDSR6-sGFP) were tolerant to high salinity, as identified by more vigorous root growth and higher levels of total chlorophyll than wild type plants. CaDSR6-overexpressors were also more tolerant to drought stress compared to wild type plants. The 35S:CaDSR6-sGFP leaves retained their water content and chlorophyll more efficiently than wild type leaves in response to dehydration stress. The expression of drought-induced marker genes, such as RD20, RD22, RD26, RD29A, RD29B, RAB18, KIN2, ABF3, and ABI5, was markedly increased in CaDSR6-overexpressing plants relative to wild type plants under both normal and drought conditions. These results suggest that overexpression of CaDSR6 is associated with increased levels of stress-induced genes, which, in turn, conferred a drought tolerant phenotype in transgenic Arabidopsis plants. Overall, our data suggest that CaDSR6 plays a positive role in the response to drought and salt stresses. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Circulating FGF23 levels in response to acute changes in plasma Ca(2+)

    DEFF Research Database (Denmark)

    Gravesen, E; Mace, M.L.; Hofman-Bang, J.

    2014-01-01

    The regulation of fibroblast growth factor 23 (FGF23) synthesis and secretion is still incompletely understood. FGF23 is an important regulator of renal phosphate excretion and has regulatory effects on the calciotropic hormones calcitriol and parathyroid hormone (PTH). Calcium (Ca) and phosphate...... FGF23 levels and whether a close relationship, similar that known for Ca and PTH, exists between Ca and FGF23. Thus, the aim of the present study was to examine whether acute hypercalcemia and hypocalcemia regulate FGF23 levels in the rat. Acute hypercalcemia was induced by an intravenous Ca infusion...... and hypocalcemia by infusion of ethylene glycol tetraacetic acid (EGTA) in normal and acutely parathyroidectomized rats. Intact plasma FGF23 and intact plasma PTH and plasma Ca(2+) and phosphate were measured. Acute hypercalcemia and hypocalcemia resulted as expected in adequate PTH secretory responses. Plasma FGF...

  12. Highly active CaO for the transesterification to biodiesel production ...

    African Journals Online (AJOL)

    TMCS) for transesterification of rapeseed oil and methanol to biodiesel production was studied. It was found that the fatty acid methyl esters (FAME) yield of the modified CaO was greatly enhanced from 85.4% to 94.6% under 65 oC with 15:1 ...

  13. In Vitro Rumen Fermentation Characteristics and Fatty Acid Profiles Added with Calcium Soap of Canola/Flaxseed Oil

    Directory of Open Access Journals (Sweden)

    S. Suharti

    2017-12-01

    Full Text Available This research aimed to assess the effect of adding canola oil and flaxseed oil which were protected with calcium soap (Ca-soap on the fermentation characteristics, rumen microbial population, and the profile of fatty acids in the rumen during 4 and 8 hours in the in vitro fermentation. The research design used in this study was a completely randomized block design with 3 treatments and 4 replications. The treatments consisted of control ration (Napier grass and concentrate at the ratio of 60 : 40, control + 6% of Ca-soap of canola oil, and control + 6% of Ca-soap of flaxseed oil. Variables observed were pH value, NH3 concentration, volatile fatty acid (VFA, dry matter and organic matter digestibility, and fatty acid profile.  The results showed that the addition of Ca-soap of canola or flaxseed oil did not affect the pH value, NH3 concentration, dry matter digestibility, organic matter digestibility, total population of bacteria and protozoa in the rumen. However, the total production of ruminal VFA was increased (P<0.05 with the addition of Ca soap of canola oil/flaxseed oil. The use of Ca-soap of flaxseed oil increased (P<0.05 the content of unsaturated fatty acids in the rumen at 4 h incubation. The addition of Ca-soap of flaxseed oil resulted the lowest (P<0.05 level of unsaturated fatty acids biohydrogenation compared to the other treatments at 4 h incubation. In conclusion, the addition of Ca soap of canola/flaxseed oil could improve VFA total production. Vegetable oils protected using calcium soap could inhibit unsaturated fatty acid biohidrogenation by rumen microbes. Ca-soap of flaxseed oil could survive from rumen biohydrogenation in the rumen better than Ca-soap of canola oil.

  14. Naphthenic acid removal from HVGO by alkaline earth metal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Ding, L.; Rahimi, P.; Hawkins, R.; Bhatt, S.; Shi, Y. [National Centre for Upgrading Technology, Devon, AB (Canada); Natural Resources Canada, Devon, AB (Canada). CanmetENERGY

    2009-07-01

    This poster highlighted a study that investigated naphthenic acid removal from bitumen-derived heavy vacuum gas oil (HVGO) by thermal cracking and catalytic decarboxylation over alkaline earth-metal oxides and ZnO catalysts in a batch reactor and a continuous fixed-bed reactor. X-ray diffraction (XRD), thermogravimetric-differential thermal analysis (TG-DTA) temperature-programmed desorption (TPD) of carbon dioxide (CO{sub 2}-TPD), and scanning electron microscopy were used to characterize the fresh and spent catalysts. With MgO and ZnO, naphthenic acid removal proceeded via catalytic decarboxylation. No crystalline phase changes were observed after reaction. With CaO, multiple pathways such as catalytic decarboxylation, neutralization, and thermal cracking were responsible for naphthenic acid conversion. The spent catalysts contained Ca(OH){sub 2} and CaCO{sub 3}. With BaO, naphthenic acid conversion occurred through neutralization. All BaO was converted to Ba(OH){sub 2} during the reaction. tabs., figs.

  15. Yarrowia lipolytica: a model yeast for citric acid production.

    Science.gov (United States)

    Cavallo, Ema; Charreau, Hernán; Cerrutti, Patricia; Foresti, María Laura

    2017-12-01

    Every year more than 2 million tons of citric acid (CA) are produced around the world for industrial uses. Although initially extracted from citrus, the low profitability of the process and the increasing demand soon stimulated the search for more efficient methods to produce CA. Currently, most world CA demand (99%) is satisfied by fermentations with microorganisms, especially filamentous fungi and yeasts. CA production with yeasts has certain advantages over molds (e.g. higher productivity and easier cultivation), which in the last two decades have triggered a clear increase in publications and patents devoted to the use of yeasts in this field. Yarrowia lipolytica has become a model yeast that proved to be successful in different production systems. Considering the current interest evidenced in the literature, the most significant information on CA production using Y. lipolytica is summarized. The relevance on CA yields of key factors such as strains, media formulation, environmental conditions and production regimes is thoroughly discussed, with particular focus on increasing CA productivity. Besides, the possibility of tuning the mentioned variables to reduce concomitant isocitric acid production-the biggest disadvantage of using yeasts-is analyzed. Available methods for CA purification/quantification are also discussed. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Total fatty acid content of the plasma membrane of Saccharomyces cerevisiae is more responsible for ethanol tolerance than the degree of unsaturation.

    Science.gov (United States)

    Kim, Hyun-Soo; Kim, Na-Rae; Choi, Wonja

    2011-03-01

    The effect of change in unsaturated fatty acid composition on ethanol tolerance in Saccharomyces cerevisiae overexpressing ScOLE1 (∆9 fatty acid desaturase gene of S. cerevisiae), CaFAD2 (∆12 fatty acid desaturase gene of Candida albicans), or CaFAD3 (ω3 fatty acid desaturase gene of C. albicans) was examined. ScOLE1 over-expression increased the total unsaturated fatty acid content and enhanced ethanol tolerance, compared with a control strain. In contrast, overexpression of CaFAD2 and CaFAD3, which led to production of linoleic acid (18:2) and α-linolenic acid (18:3), respectively, neither changed total unsaturated fatty acids nor enhanced ethanol tolerance. The total unsaturated fatty acid content rather than the degree of unsaturation is thus an important factor for ethanol tolerance.

  17. Ca2+/cation antiporters (CaCA: Identification, characterization and expression profiling in bread wheat (Triticum aestivum L.

    Directory of Open Access Journals (Sweden)

    Mehak Taneja

    2016-11-01

    Full Text Available The Ca2+/cation antiporters (CaCA superfamily proteins play vital function in Ca2+ ion homeostasis, which is an important event during development and defense response. Molecular characterization of these proteins has been performed in certain plants, but they are still not characterized in Triticum aestivum (bread wheat. Herein, we identified thirty four TaCaCA superfamily proteins, which were classified into TaCAX, TaCCX, TaNCL and TaMHX protein families based on their structural organization and evolutionary relation with earlier reported proteins. Since the T. aestivum comprises an allohexaploid genome, TaCaCA genes were derived from each A, B and D subgenome and homeologous chromosome (HC, except chromosome-group 1. Majority of genes were derived from more than one HCs in each family that were considered as homeologous genes (HGs due to their high similarity with each other. These HGs showed comparable gene and protein structures in terms of exon/intron organization and domain architecture. Majority of TaCaCA proteins comprised two Na_Ca_ex domains. However, TaNCLs consisted of an additional EF-hand domain with calcium binding motifs. Each TaCaCA protein family consisted of about ten transmembrane and two α-repeat regions with specifically conserved signature motifs except TaNCL, which had single α-repeat. Variable expression of most of the TaCaCA genes during various developmental stages suggested their specified role in development. However, constitutively high expression of a few genes like TaCAX1-A and TaNCL1-B indicated their role throughout the plant growth and development. The modulated expression of certain genes during biotic (fungal infections and abiotic stresses (heat, drought, salt suggested their role in stress response. Majority of TaCCX and TaNCL family genes were found highly affected during various abiotic stresses. However the role of individual gene needs to be established. The present study unfolded the opportunity

  18. Ca2+/Cation Antiporters (CaCA): Identification, Characterization and Expression Profiling in Bread Wheat (Triticum aestivum L.).

    Science.gov (United States)

    Taneja, Mehak; Tyagi, Shivi; Sharma, Shailesh; Upadhyay, Santosh Kumar

    2016-01-01

    The Ca 2+ /cation antiporters (CaCA) superfamily proteins play vital function in Ca 2+ ion homeostasis, which is an important event during development and defense response. Molecular characterization of these proteins has been performed in certain plants, but they are still not characterized in Triticum aestivum (bread wheat). Herein, we identified 34 TaCaCA superfamily proteins, which were classified into TaCAX, TaCCX, TaNCL, and TaMHX protein families based on their structural organization and evolutionary relation with earlier reported proteins. Since the T. aestivum comprises an allohexaploid genome, TaCaCA genes were derived from each A, B, and D subgenome and homeologous chromosome (HC), except chromosome-group 1. Majority of genes were derived from more than one HCs in each family that were considered as homeologous genes (HGs) due to their high similarity with each other. These HGs showed comparable gene and protein structures in terms of exon/intron organization and domain architecture. Majority of TaCaCA proteins comprised two Na_Ca_ex domains. However, TaNCLs consisted of an additional EF-hand domain with calcium binding motifs. Each TaCaCA protein family consisted of about 10 transmembrane and two α-repeat regions with specifically conserved signature motifs except TaNCL, which had single α-repeat. Variable expression of most of the TaCaCA genes during various developmental stages suggested their specified role in development. However, constitutively high expression of a few genes like TaCAX1-A and TaNCL1-B indicated their role throughout the plant growth and development. The modulated expression of certain genes during biotic (fungal infections) and abiotic stresses (heat, drought, salt) suggested their role in stress response. Majority of TaCCX and TaNCL family genes were found highly affected during various abiotic stresses. However, the role of individual gene needs to be established. The present study unfolded the opportunity for detail

  19. Influence of herbicide structure, clay acidity, and humic acid coating on acetanilide herbicide adsorption on homoionic clays.

    Science.gov (United States)

    Liu, Weiping; Gan, Jianying; Yates, Scott R

    2002-07-03

    Adsorption of chloroacetanilide herbicides on homoionic montmorillonite was studied by coupling batch equilibration and FT-IR analysis. Adsorption decreased in the order metolachlor > acetochlor > alachlor > propachlor on Ca(2+)- or Mg(2+)-saturated clays and in the order metolachlor > alachlor > acetachlor > propachlor on Al(3+)- or Fe(3+)-saturated clays. FT-IR spectra showed that the carbonyl group of the herbicide molecule was involved in bonding. For the same herbicide, adsorption of alachlor, acetachlor, and metolachlor on clay followed the order Ca(2+) approximately Mg(2+) < Al(3+) < or = Fe(3+), which coincided with the increasing acidity of homoionic clays. Adsorption of propachlor, however, showed an opposite dependence, suggesting a different governing interaction. In clay and humic acid mixtures, herbicide adsorption was less than that expected from independent additive adsorption by the individual constituents, and the deviation was dependent on the clay-to-humic acid ratio, with the greatest deviation consistently occurring at a 60:40 clay-to-humic acid ratio.

  20. Binary and ternary chelates of scandium (III), Yttrium (III) and lanthanum (III) with ethyleneglycol-bis(. beta. -aminoethylether)-tetraacetic acid as primary and substituted salicylic acids as secondary ligands

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, A K; Chandra, M; Agarwala, B V; Dey, A K [Allahabad Univ. (India). Chemical Labs.

    1980-01-01

    Formation constants of binary and ternary complexes of the systems of the type: M-L and M-egta-L (M = scandium(III), yttrium(III) and lanthanum(III), egta = ethylene glycol-bis(..beta..-aminoethylether)-tetra acetic acid, L = o-cresotic acid (o-ca), m-cresotic acid (m-ca), 5-chlorosalicyclic acid(csa), and 3,5-dibromosalicylic acid (dbsa)) have been determined pH-metrically at 25deg and ..mu.. = 0.1M (KNO/sub 3/) in 50% (v/v) aqueous-ethanol medium. The order of stabilities of ternary complexes has been compared with those of corresponding binary complexes, and results discussed on the basis of coulombic interactions.

  1. Effects of Applying Lime and CalciumMontmorillonite on Nitrification Dynamics in Acidic Soil

    Directory of Open Access Journals (Sweden)

    WANG Mei

    2017-01-01

    Full Text Available Soil acidification is known as a natural and slow process along with clay mineral weathering. In recent years however, with inten sive soil utilization in agriculture, soil acidification has increased dramatically and nitrification of ammonium nitrogen fertilizer is one of the main contributors to soil acidification. Lime application is the traditional practice to improve acidic soils but it often makes the soil acidic a gain leading to soil compaction in most cases. Montmorillonite is the main clay mineral component of alkaline or neutral soils, more so it is known to undergo further weathering processes during soil acidification. The laboratory-based incubations were used in this study, and nitri fication was measured while kinetic curves were fitted to check the effects of decreasing soil acidity by lime(Ca-OHand montmorillonite (Ca-Mon nitrification of the acidic soil. The results showed that significant nitrification was observed both in Ca-OH and Ca-M treatments, and the nitrification process was fitted in the first-order kinetic model, NNO3=N0+Np(1-exp(-k1t(P-1·d-1was significantly higher than that of Ca-M treatment(2.381 mg·kg-1·d-1. The potential nitrifi cation rate(Vpwere 6.42, 8.58 mg N·kg-1·d-1 at pH 5.7 and 6.2 respectively, and the average nitrification rate(Vaof Ca-OH treatment were 2.71, 3.88 mg N·kg-1·d-1 respectively, which were significantly greater than those of Ca-M treatment(Vp were 3.40, 4.56 mg N·kg-1·d-1 and Va were 2.36, 3.04 mg N·kg-1·d-1 at pH 5.7 and 6.2 respectively. Therefore the net nitrification rate, potential nitrification rate(Vp and average nitrification rate(Vaof Ca-OH treatment were significantly higher than that of Ca-M treatment, suggesting that the possibili ty and degree of soil reacidification by using lime to improve acidic soil is greater than using calcium montmorillonite. This study will provide a new reference for the improvement of acid soils.

  2. Organic acids as analytical reagent: Part 1. Estimation of zirconium by gallic acid

    Energy Technology Data Exchange (ETDEWEB)

    Pande, C S; Singh, A K; Kumar, Ashok [Lucknow Univ. (India). Dept. of Chemistry

    1975-07-01

    Gallic acid has been found to be a selective reagent for the estimation of zirconium. The acid gives a crystalline precipitate at pH of 4.8 which is ignited and weighed as ZrO/sub 2/. Cations like Ca/sup +2/, Ba/sup +2/, Sr/sup +2/, Mn/sup +2/, Co/sup +2/, Ni/sup +2/, Fe/sup +3/ do not interfere in the estimation.

  3. Improved dissolution and absorption of ketoconazole in the presence of organic acids as pH-modifiers.

    Science.gov (United States)

    Adachi, Masashi; Hinatsu, Yuta; Kusamori, Kosuke; Katsumi, Hidemasa; Sakane, Toshiyasu; Nakatani, Manabu; Wada, Koichi; Yamamoto, Akira

    2015-08-30

    Formulation development of poorly water-soluble compounds can be challenging because of incomplete dissolution that causes low and variable bioavailability. Enhancing compound solubility is important and many techniques have been investigated to that end, but they require specific materials and machinery. This study investigates the incorporation of a pH-modifier as a method to increase compound solubility and uses ketoconazole (KZ), which is weakly basic (pKa: 6.5), as a model compound. Organic acids are effective pH-modifiers and are generally used in pharmaceutical industries. We successfully obtained granules containing variable organic acids (KZ/acid granule) using a high-shear mixer. Dissolution tests of the KZ/acid granule resulted in highly enhanced solubility under non-sink conditions. Adding water-soluble acids, such as citric acid (CA) and tartaric acid, resulted in more than 8-fold higher dissolution at pH 6.0 compared to that of KZ only. The granules containing citric acid (KZ/CA granule) improved the dissolution of KZ after oral administration to rats under low gastric acid conditions, where the bioavailability of the KZ/CA granules at elevated gastric pH was comparable with that of KZ only at gastric acidic pH. The incorporation of organic acids would result in effective therapeutic outcomes independent of gastric pH in patients. In addition, higher bioavailability of KZ was observed after oral administration of KZ/CA granules under gastric acidic pH conditions than that of KZ alone. Thus, CA improved the dissolution and absorption rate of KZ after oral administration. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Ra/Ca separation by ion exchange chromatography

    International Nuclear Information System (INIS)

    Flores Mendoza, J.

    1990-01-01

    Ra/Ca separation by ion exchange. The objective of this work was to acquire knowledge of the chromatographic behaviour of the alkaline earth cations calcium, barium and radium and the obtention of well-defined alpha spectra of 226 Ra. Three cationic ion exchange resins (Dower 50 W-X8, AG 50W-XB and Merck I) and three complexing agents (ethylenediaminetetraacetic acid, citric acid and tartaric acid) at various pH values have been investigated. The three types of ions are fixed on the resins at pH 4.8; calcium is eluted at pH between 5 and 6 depending on the resin; barium and radium are eluted at pH values from 8 to 11. Radium is also eluted with a 2 M nitric acid solution, from which it can be electrodeposited on a stainless steel disk potassium fluoride as electrolyte at pH 14. The electrolysis is conducted for 18 hours with a current of mA. Under these conditions high resolution alpha spectra were obtained for 226 Ra, which was practically free from radioactive contaminants (Author)

  5. Bile acids induce necrosis in pancreatic stellate cells dependent on calcium entry and sodium‐driven bile uptake

    Science.gov (United States)

    Jakubowska, Monika A.; Gerasimenko, Julia V.; Gerasimenko, Oleg V.; Petersen, Ole H.

    2016-01-01

    Key points Acute biliary pancreatitis is a sudden and severe condition initiated by bile reflux into the pancreas.Bile acids are known to induce Ca2+ signals and necrosis in isolated pancreatic acinar cells but the effects of bile acids on stellate cells are unexplored.Here we show that cholate and taurocholate elicit more dramatic Ca2+ signals and necrosis in stellate cells compared to the adjacent acinar cells in pancreatic lobules; whereas taurolithocholic acid 3‐sulfate primarily affects acinar cells.Ca2+ signals and necrosis are strongly dependent on extracellular Ca2+ as well as Na+; and Na+‐dependent transport plays an important role in the overall bile acid uptake in pancreatic stellate cells.Bile acid‐mediated pancreatic damage can be further escalated by bradykinin‐induced signals in stellate cells and thus killing of stellate cells by bile acids might have important implications in acute biliary pancreatitis. Abstract Acute biliary pancreatitis, caused by bile reflux into the pancreas, is a serious condition characterised by premature activation of digestive enzymes within acinar cells, followed by necrosis and inflammation. Bile acids are known to induce pathological Ca2+ signals and necrosis in acinar cells. However, bile acid‐elicited signalling events in stellate cells remain unexplored. This is the first study to demonstrate the pathophysiological effects of bile acids on stellate cells in two experimental models: ex vivo (mouse pancreatic lobules) and in vitro (human cells). Sodium cholate and taurocholate induced cytosolic Ca2+ elevations in stellate cells, larger than those elicited simultaneously in the neighbouring acinar cells. In contrast, taurolithocholic acid 3‐sulfate (TLC‐S), known to induce Ca2+ oscillations in acinar cells, had only minor effects on stellate cells in lobules. The dependence of the Ca2+ signals on extracellular Na+ and the presence of sodium–taurocholate cotransporting polypeptide (NTCP) indicate a Na

  6. Recognition of acidic phospholipase A2 activity in plasma membranes of resident peritoneal macrophages

    International Nuclear Information System (INIS)

    Shibata, Y.; Abiko, Y.; Ohno, H.; Araki, T.; Takiguchi, H.

    1988-01-01

    Phospholipase (PLase) activities in the plasma membrane of guinea pig peritoneal macrophages were studied, as these enzymes having such activity may be candidates for the release of arachidonic acid (AA) from phosphatidylcholine (PC). An AA release system operating at acidic pH was identified in the macrophage plasma membrane and characterized. This membrane-bound acidic PLase A 2 had an optimum pH at 4.5, and enzyme activation was observed in Ca ++ -free medium; but the maximum activity was found at 0.5 mM Ca ++ concentration. The Km value for PC of acidic PLase A 2 was 4.2 μM, and a Michaelis-Menten relationship was evident. Calcium might act as a cofactor at some intermediate step during the activation of acidic PLase A 2 in light of the uncompetitive manner of Ca ++ action. Furthermore, the release of [ 3 H]-AA from preradiolabelled macrophage plasma membranes occurred with the addition of Ca ++ at pH 4.5. These data suggest that the acid PLase A 2 is a component of the plasma membrane and is not due to lysosomal contamination since membrane-bound acidic PLase A 2 properties are opposite to those found for lysosomal PLase A 2

  7. Measurements of CaF2 concentration in fluorite ore using thermoluminescence techniques

    International Nuclear Information System (INIS)

    Lembo, L.; Maestri, G.; Pimpinella, M.; Benzi, V.; Muntoni, C.

    1990-01-01

    Fluorite powder is produced by means of a flotation process on crude ore extracted by the mines. A full automation of the flotation plant would reduce the operating cost and improve the quality and recovery of fluorite production. However, taking into account that the efficiency of a flotation cycle is directly dependent on the CaF 2 content in the concentrate and tail products, this automation requires a quasi-real-time quantitative analysis of CaF 2 concentration in the floated pulp. The feasibility was studied of using a thermoluminescence technique as an on-line analysis method to measure the CaF 2 concentration during the flotation cycle. A first set of experimental conditions to determine CaF 2 content in acid-grade fluorspar has been already developed and the preliminary results so far obtained are presented. (author)

  8. Control of ciliary motility by Ca2+: Integration of Ca2+-dependent functions and targets for Ca2+ action

    International Nuclear Information System (INIS)

    Evans, T.C.

    1988-01-01

    To identify functions that regulate Ca 2+ -induced ciliary reversal in Paramecium, mutants defective in terminating depolarization-induced backward swimming were selected. Six independent recessive mutations (k-shy) comprising two complementation groups, k-shyA and k-shyB, were identified. All mutants exhibited prolonged backward swimming in depolarizing solutions. Voltage clamp studies revealed that mutant Ca 2+ current amplitudes were reduced, but could be restored to wild type levels by EGTA injection. The recovery of the mutant Ca 2+ current from Ca 2+ -dependent inactivation, and the decay of the Ca 2+ -dependent K + and Ca 2+ -dependent Na + currents after depolarization were slow in k-shy compared to wild type. To identify protein targets of Ca 2+ action, ciliary proteins that interact with calmodulin (CaM) were characterized. With a 125 I-CaM blot assay, several CaM-binding proteins were identified including axonemal, soluble, and membrane-bound polypeptides. Competitive displacement studies with unlabeled Paramecium CaM, bovine CaM, and troponinC suggested that both protein types bind CaM with high affinity and specificity. To examine the presence of CaM-binding sites in intact axonemes, a filtration binding assay was developed

  9. Composition of fatty acids in the Varroa destructor mites and their hosts, Apis mellifera drone-prepupae.

    Science.gov (United States)

    Dmitryjuk, Małgorzata; Zalewski, Kazimierz; Raczkowski, Marek; Żółtowska, Krystyna

    2015-01-01

    The fatty acid (FA) profile of lipids extracted from the Varroa destructor parasitic mite and its host, drone-prepupae of Apis mellifera, was determined by gas chromatography (GC). The percentages of saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) were generally similar in parasites and their hosts. Fatty acids were arranged in the following descending order based on their content: MUFAs (ca. 52-55%), SFAs (ca. 41%) and PUFAs (ca. 3%). The predominant fatty acids were oleic acid (46% in mites, 44% in prepupae) and palmitic acid (23% and 30%, respectively). Varroa parasites differed from their hosts in the quantity of individual FAs and in their FA profiles. Three PUFAs noted in the host were not observed in parasitic mites, whereas the presence of C21:0, C24:0 and C22:1 FAs was reported in mites, but not in drones.

  10. {sup 134}Cs uptake by four plant species and Cs-K relations in the soil-plant system as affected by Ca(OH){sub 2} application to an acid soil

    Energy Technology Data Exchange (ETDEWEB)

    Massas, I., E-mail: massas@aua.g [Soil Science Laboratory, Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens, Iera Odos 75, 11855 Athens (Greece); Skarlou, V.; Haidouti, C.; Giannakopoulou, F. [Soil Science Laboratory, Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens, Iera Odos 75, 11855 Athens (Greece)

    2010-03-15

    Three rates of Ca(OH){sub 2} were applied to an acid soil and the {sup 134}Cs uptake by radish, cucumber, soybean and sunflower plants was studied. The {sup 134}Cs concentration in all plant species was reduced from 1.6-fold in the sunflower seeds to 6-fold in the soybean vegetative parts at the higher Ca(OH){sub 2} rate. Potassium (K) concentration in plants was also reduced, but less effectively. The significantly decreased {sup 134}Cs-K soil to plant distribution factors (D.F.) clearly suggest a stronger effect of soil liming on {sup 134}Cs than on K plant uptake. This observation was discussed in terms of ionic interactions in the soil matrix and within the plants. The results also indicated that the increased Ca{sup 2+} concentration in the exchange phase and in the soil solution along with the improved root activity, due to the soil liming, enhanced the immobilization of {sup 134}Cs in the soil matrix and consequently lowered the {sup 134}Cs availability for plant uptake.

  11. Analysis of Chlorogenic Acid Oxidation Pathway in Simulated ...

    African Journals Online (AJOL)

    Purpose: To investigate the pathways involved in the oxidation of chlorogenic acid (CA) and phenol metabolism in honeysuckle buds. Methods: A model that mimics CA oxidation by honeysuckle polyphenol oxidase (PPO) by controlling the reaction temperature or reaction duration was employed, and the resulting products ...

  12. The parietal cell gastric H, K-ATPase also functions as the Na, K-ATPase and Ca-ATPase in altered states.

    Science.gov (United States)

    Ray, Tushar

    2013-01-01

    This article offers an explanation for the apparent lack of Na, K-ATPase activity in parietal cells although ouabain has been known to inhibit gastric acid secretion since 1962. The gastric H, K-ATPase (proton-pump) seems to be acting in altered states, thus behaving like a Na, K-ATPase (Na-pump) and/or Ca-ATPase (Ca-pump) depending on cellular needs.  This conclusion is based on the following findings. First, parietal cell fractions do not exhibit Na, K-ATPase activity at pH 7.0 but do at pH 8.5. Second, the apical plasma membrane (APM) fraction exhibits a (Ca or Mg)-ATPase activity with negligible H, K-ATPase activity. However, when assayed with Mg alone in presence of the 80 k Da cytosolic proton-pump activator (HAF), the APM fraction reveals remarkably high H, K-ATPase activity, suggesting the observed low affinity of Ca (or Mg)-ATPase is an altered state of the latter. Third, calcium (between 1 and 4 µM) shows both stimulation and inhibition of the HAF-stimulated H, K-ATPase depending on its concentration, revealing a close interaction between the  proton-pump activator and local Ca concentration in gastric H, K-ATPase function. Such interactions suggest that Ca is acting as a terminal member of the intracellular signaling system for the HAF-regulated proton-pump. It appears that during resting state, the HAF-associated H, K-ATPase remains inhibited by Ca (>1 µM) and, prior to resumption of acid secretion the gastric H, K-ATPase acts temporarily as a Ca-pump for removing excess Ca from its immediate environment. This conclusion is consistent with the recent reports of immunochemical co-localization of the gastric H, K-ATPase and Ca-ATPase by superimposition in parietal cells, and a transitory efflux of Ca immediately preceding the onset of acid secretion. These new perspectives on proton-pump function would open new avenues for a fuller understanding of the intracellular regulation of the ubiquitous Na-pump.

  13. Excitatory amino acid receptor ligands: resolution, absolute stereochemistry, and enantiopharmacology of 2-amino-3-(4-butyl-3-hydroxyisoxazol-5-yl)propionic acid

    DEFF Research Database (Denmark)

    Johansen, T N; Ebert, B; Bräuner-Osborne, Hans

    1998-01-01

    (RS)-2-Amino-3-(4-butyl-3-hydroxyisoxazol-5-yl)propionic acid (Bu-HIBO, 6) has previously been shown to be an agonist at (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) receptors and an inhibitor of CaCl2-dependent [3H]-(S)-glutamic acid binding (J. Med. Chem. 1992, 35, 3512......-3519). To elucidate the pharmacological significance of this latter binding affinity, which is also shown by quisqualic acid (3) but not by AMPA, we have now resolved Bu-HIBO via diastereomeric salt formation using the diprotected Bu-HIBO derivative 11 and the enantiomers of 1-phenylethylamine (PEA). The absolute...... equipotent as inhibitors of CaCl2-dependent [3H]-(S)-glutamic acid binding, neither enantiomer showed significant affinity for the synaptosomal (S)-glutamic acid uptake system(s). AMPA receptor affinity (IC50 = 0.48 microM) and agonism (EC50 = 17 microM) were shown to reside exclusively in the S...

  14. Random Poly(Amino Acids Synthesized by Ring Opening Polymerization as Additives in the Biomimetic Mineralization of CaCO3

    Directory of Open Access Journals (Sweden)

    Vladimir Dmitrovic

    2012-05-01

    Full Text Available Biominerals such as bones, teeth and seashells, very often have advanced material properties and are a source of inspiration for material chemists. As in biological systems acidic proteins play an important role in regulating the formation of CaCO3 biominerals, we employ poly(amino acids to mimic the processes involved in the laboratory. Here we report on the synthesis of random aminoacid copolymers of glutamic acid (Glu, lysine (Lys and alanine (Ala using the ring opening polymerization (ROP of their respective N-carboxy anhydrides (NCA. The synthetic approach yields a series of polymers with different monomer composition but with similar degrees of polymerization (DP 45–56 and comparable polydispersities (PDI 1.2–1.6. Using random copolymers we can investigate the influence of composition on the activity of the polymers without having to take into account the effects of secondary structure or specific sequences. We show that variation of the Glu content of the polymer chains affects the nucleation and thereby also the particle size. Moreover, it is shown that the polymers with the highest Glu content affect the kinetics of mineral formation such that the first precipitate is more soluble than in the case of the control.

  15. Predicted Gas-Phase and Liquid-Phase Acidities of Carborane Carboxylic and Dicarboxylic Acids

    Czech Academy of Sciences Publication Activity Database

    Oliva-Enrich, J. M.; Humbel, S.; Santaballa, J.A.; Alkorta, I.; Notario, R.; Dávalos, J. Z.; Canle-L., M.; Bernhardt, E.; Holub, Josef; Hnyk, Drahomír

    2018-01-01

    Roč. 3, č. 16 (2018), s. 4344-4353 ISSN 2365-6549 Institutional support: RVO:61388980 Keywords : Acidity * Carboranes * Computational Chemistry * Delocalization Energy * Electronic Structure Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry

  16. An inhibitory effect of extracellular Ca2+ on Ca2+-dependent exocytosis.

    Directory of Open Access Journals (Sweden)

    Wei Xiong

    Full Text Available AIM: Neurotransmitter release is elicited by an elevation of intracellular Ca(2+ concentration ([Ca(2+](i. The action potential triggers Ca(2+ influx through Ca(2+ channels which causes local changes of [Ca(2+](i for vesicle release. However, any direct role of extracellular Ca(2+ (besides Ca(2+ influx on Ca(2+-dependent exocytosis remains elusive. Here we set out to investigate this possibility on rat dorsal root ganglion (DRG neurons and chromaffin cells, widely used models for studying vesicle exocytosis. RESULTS: Using photolysis of caged Ca(2+ and caffeine-induced release of stored Ca(2+, we found that extracellular Ca(2+ inhibited exocytosis following moderate [Ca(2+](i rises (2-3 µM. The IC(50 for extracellular Ca(2+ inhibition of exocytosis (ECIE was 1.38 mM and a physiological reduction (∼30% of extracellular Ca(2+ concentration ([Ca(2+](o significantly increased the evoked exocytosis. At the single vesicle level, quantal size and release frequency were also altered by physiological [Ca(2+](o. The calcimimetics Mg(2+, Cd(2+, G418, and neomycin all inhibited exocytosis. The extracellular Ca(2+-sensing receptor (CaSR was not involved because specific drugs and knockdown of CaSR in DRG neurons did not affect ECIE. CONCLUSION/SIGNIFICANCE: As an extension of the classic Ca(2+ hypothesis of synaptic release, physiological levels of extracellular Ca(2+ play dual roles in evoked exocytosis by providing a source of Ca(2+ influx, and by directly regulating quantal size and release probability in neuronal cells.

  17. Alterations in cytosol free calcium in horseradish roots simultaneously exposed to lanthanum(III) and acid rain.

    Science.gov (United States)

    Zhang, Xuanbo; Wang, Lihong; Zhou, Anhua; Zhou, Qing; Huang, Xiaohua

    2016-04-01

    The extensive use of rare earth elements (REEs) has increased their environmental levels. REE pollution concomitant with acid rain in many agricultural regions can affect crop growth. Cytosol free calcium ions (Ca(2+)) play an important role in almost all cellular activities. However, no data have been reported regarding the role of cytosol free Ca(2+) in plant roots simultaneously exposed to REE and acid rain. In this study, the effects of exposures to lanthanum(III) and acid rain, independently and in combination, on cytosol free Ca(2+) levels, root activity, metal contents, biomass, cytosol pH and La contents in horseradish roots were investigated. The simultaneous exposures to La(III) and acid rain increased or decreased the cytosol free Ca(2+) levels, depending on the concentration of La(III), and these effects were more evident than independent exposure to La(III) or acid rain. In combined exposures, cytosol free Ca(2+) played an important role in the regulation of root activity, metal contents and biomass. These roles were closely related to La(III) dose, acid rain strength and treatment mode (independent exposure or simultaneous exposure). A low concentration of La(III) (20 mg L(-1)) could alleviate the adverse effects on the roots caused by acid rain, and the combined exposures at higher concentrations of La(III) and acid rain had synergic effects on the roots. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. The microbe-secreted isopeptide poly-γ-glutamic acid induces stress tolerance in Brassica napus L. seedlings by activating crosstalk between H2O2 and Ca2+

    Science.gov (United States)

    Lei, Peng; Pang, Xiao; Feng, Xiaohai; Li, Sha; Chi, Bo; Wang, Rui; Xu, Zongqi; Xu, Hong

    2017-01-01

    Poly-γ-glutamic acid (γ-PGA) is a microbe-secreted isopeptide that has been shown to promote growth and enhance stress tolerance in crops. However, its site of action and downstream signaling pathways are still unknown. In this study, we investigated γ-PGA-induced tolerance to salt and cold stresses in Brassica napus L. seedlings. Fluorescent labeling of γ-PGA was used to locate the site of its activity in root protoplasts. The relationship between γ-PGA-induced stress tolerance and two signal molecules, H2O2 and Ca2+, as well as the γ-PGA-elicited signaling pathway at the whole plant level, were explored. Fluorescent labeling showed that γ-PGA did not enter the cytoplasm but instead attached to the surface of root protoplasm. Here, it triggered a burst of H2O2 in roots by enhancing the transcription of RbohD and RbohF, and the elicited H2O2 further activated an influx of Ca2+ into root cells. Ca2+ signaling was transmitted via the stem from roots to leaves, where it elicited a fresh burst of H2O2, thus promoting plant growth and enhancing stress tolerance. On the basis of these observation, we propose that γ-PGA mediates stress tolerance in Brassica napus seedlings by activating an H2O2 burst and subsequent crosstalk between H2O2 and Ca2+ signaling. PMID:28198821

  19. Inhibition of Fatty Acid Synthesis Induces Apoptosis of Human Pancreatic Cancer Cells.

    Science.gov (United States)

    Nishi, Koji; Suzuki, Kenta; Sawamoto, Junpei; Tokizawa, Yuma; Iwase, Yumiko; Yumita, Nagahiko; Ikeda, Toshihiko

    2016-09-01

    Cancer cells tend to have a high requirement for lipids, including fatty acids, cholesterol and triglyceride, because of their rapid proliferative rate compared to normal cells. In this study, we investigated the effects of inhibition of lipid synthesis on the proliferation and viability of human pancreatic cancer cells. Of the inhibitors of lipid synthesis that were tested, 5-(tetradecyloxy)-2-furoic acid (TOFA), which is an inhibitor of acetyl-CoA carboxylase, and the fatty acid synthase (FAS) inhibitors cerulenin and irgasan, significantly suppressed the proliferation of MiaPaCa-2 and AsPC-1 cells. Treatment of MiaPaCa-2 cells with these inhibitors significantly increased the number of apoptotic cells. In addition, TOFA increased caspase-3 activity and induced cleavage of poly (ADP-ribose) polymerase in MiaPaCa-2 cells. Moreover, addition of palmitate to MiaPaCa-2 cells treated with TOFA rescued cells from apoptotic cell death. These results suggest that TOFA induces apoptosis via depletion of fatty acids and that, among the various aspects of lipid metabolism, inhibition of fatty acid synthesis may be a notable target for the treatment of human pancreatic cancer cells. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  20. Chemical modification of chitosan film via surface grafting of citric acid molecular to promote the biomineralization

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang, E-mail: liuyang@cczu.edu.cn [Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164 (China); Engineering Research Center of Nano-Geo Materials of Ministry of Education, China University of Geosciences, Wuhan 430074 (China); School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Shen, Xin; Zhou, Huan [Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164 (China); Wang, Yingjun [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Deng, Linhong, E-mail: dlh@cczu.edu.cn [Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164 (China)

    2016-05-01

    Graphical abstract: - Highlights: • Chitosan film was modified by surface grafting of citric acid. • The modified film has good hydrophilicity and moisture-retaining capacity. • The citric acid grafting treatment significantly promote the biomineralization. • MC3T3-E1 osteoblasts research confirms the biocompatibility of the film. - Abstract: We develop a novel chitosan–citric acid film (abbreviated as CS–CA) suitable for biomedical applications in this study. In this CS–CA film, the citric acid, which is a harmless organic acid has been extensively investigated as a modifying agent on carbohydrate polymers, was cross-linked by 1-Ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) onto the surface of chitosan (CS) film. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) confirms the graft copolymerization of the modified chitosan film (CS–CA). Surface wettability, moisturizing performance, the capacity of mineralization in vitro and biocompatibility of the films were characterized. After modification, this CS–CA film has good hydrophilicity. It is very evident that the citric acid grafting treatment significantly promotes the biomineralization of the chitosan based substrates. Cell experiments show that the MC3T3-E1 osteoblasts can adhere and proliferate well on the surface of CS–CA film. This CS–CA film, which can be prepared in large quantities and at low cost, should have potential application in bone tissue engineering.

  1. CaMELS: In silico prediction of calmodulin binding proteins and their binding sites.

    Science.gov (United States)

    Abbasi, Wajid Arshad; Asif, Amina; Andleeb, Saiqa; Minhas, Fayyaz Ul Amir Afsar

    2017-09-01

    Due to Ca 2+ -dependent binding and the sequence diversity of Calmodulin (CaM) binding proteins, identifying CaM interactions and binding sites in the wet-lab is tedious and costly. Therefore, computational methods for this purpose are crucial to the design of such wet-lab experiments. We present an algorithm suite called CaMELS (CalModulin intEraction Learning System) for predicting proteins that interact with CaM as well as their binding sites using sequence information alone. CaMELS offers state of the art accuracy for both CaM interaction and binding site prediction and can aid biologists in studying CaM binding proteins. For CaM interaction prediction, CaMELS uses protein sequence features coupled with a large-margin classifier. CaMELS models the binding site prediction problem using multiple instance machine learning with a custom optimization algorithm which allows more effective learning over imprecisely annotated CaM-binding sites during training. CaMELS has been extensively benchmarked using a variety of data sets, mutagenic studies, proteome-wide Gene Ontology enrichment analyses and protein structures. Our experiments indicate that CaMELS outperforms simple motif-based search and other existing methods for interaction and binding site prediction. We have also found that the whole sequence of a protein, rather than just its binding site, is important for predicting its interaction with CaM. Using the machine learning model in CaMELS, we have identified important features of protein sequences for CaM interaction prediction as well as characteristic amino acid sub-sequences and their relative position for identifying CaM binding sites. Python code for training and evaluating CaMELS together with a webserver implementation is available at the URL: http://faculty.pieas.edu.pk/fayyaz/software.html#camels. © 2017 Wiley Periodicals, Inc.

  2. Relationship of Quantity of Citric Acid and Protein Content of Mycelia during Citric Acid Production by Three Strains of Aspergillus niger

    International Nuclear Information System (INIS)

    Abdullah-Al-Mahin; Alamgir Z. Chowdhury; Rehana Begum

    2006-01-01

    The amount of protein in the surface grown mycelia of three strains of Aspergillus niger (CA16,79/20 and 318) was found to decrease with the increase of citric acid production in sucrose based fermentation medium. Throughout the study period of 6 to 10 days of fermentation, highest amount of citric acid was produced by Aspergillus niger 318 although the amount of protein in mycelia was lowest for this strain. On the other hand, lowest amount of citric acid was produced by the strain CA 16 which in tern produced highest amount of mycelial protein. Aspergillus niger 79/20 produced both intermediate level of protein and citric acid. The Protein was estimated by three commonly used methods namely: Kjeldahl, Biuret and Lowry methods. Kjeldahl and Lowry method gave the highest and lowest results respectively for protein determination in all cases.(authors)

  3. In Vivo Performance of a Novel Fluorinated Magnetic Resonance Imaging Agent for Functional Analysis of Bile Acid Transport

    Science.gov (United States)

    2015-01-01

    A novel trifluorinated cholic acid derivative, CA-lys-TFA, was designed and synthesized for use as a tool to measure bile acid transport noninvasively using magnetic resonance imaging (MRI). In the present study, the in vivo performance of CA-lys-TFA for measuring bile acid transport by MRI was investigated in mice. Gallbladder CA-lys-TFA content was quantified using MRI and liquid chromatography/tandem mass spectrometry. Results in wild-type (WT) C57BL/6J mice were compared to those in mice lacking expression of Asbt, the ileal bile acid transporter. 19F signals emanating from the gallbladders of WT mice 7 h after oral gavage with 150 mg/kg CA-lys-TFA were reproducibly detected by MRI. Asbt-deficient mice administered the same dose had undetectable 19F signals by MRI, and gallbladder bile CA-lys-TFA levels were 30-fold lower compared to WT animals. To our knowledge, this represents the first report of in vivo imaging of an orally absorbed drug using 19F MRI. Fluorinated bile acid analogues have potential as tools to measure and detect abnormal bile acid transport by MRI. PMID:24708306

  4. Interaction of calmodulin with the calmodulin binding domain of the plasma membrane Ca2+ pump

    International Nuclear Information System (INIS)

    Vorherr, T.; James, P.; Krebs, J.; Carafoli, E.; McCormick, D.J.; Penniston, J.T.; Enyedi, A.

    1990-01-01

    Peptides corresponding to the calmodulin binding domain of the plasma membrane Ca 2+ pump were synthesized, and their interaction with calmodulin was studied with circular dichroism, infrared spectroscopy, nuclear magnetic resonance, and fluorescence techniques. They corresponded to the complete calmodulin binding domain (28 residues), to its first 15 or 20 amino acids, and to its C-terminal 14 amino acids. The first three peptides interacted with calmodulin. The K value was similar to that of the intact enzyme in the 28 and 20 amino acid peptides, but increased substantially in the shorter 15 amino acid peptide. The 14 amino acid peptide corresponding to the C-terminal portion of the domain failed to bind calmodulin. 2D NMR experiments on the 20 amino acid peptides have indicated that the interaction occurred with the C-terminal half of calmodulin. A tryptophan that is conserved in most calmodulin binding domains of proteins was replaced by other amino acids, giving rise to modified peptides which had lower affinity for calmodulin. An 18 amino acid peptide corresponding to an acidic sequence immediately N-terminal to the calmodulin binding domain which is likely to be a Ca 2+ binding site in the pump was also synthesized. Circular dichroism experiments have shown that it interacted with calmodulin binding domain, supporting the suggestion that the latter, or a portion of it, may act as a natural inhibitor of the pump

  5. Effect of surface chemistries and characteristics of Ti6Al4V on the Ca and P adsorption and ion dissolution in Hank's ethylene diamine tetra-acetic acid solution.

    Science.gov (United States)

    Chang, E; Lee, T M

    2002-07-01

    This study examined the influence of chemistries and surface characteristics of Ti6Al4V on the adsorption of Ca and P species and ion dissolution behavior of the material exposed in Hank's solution with 8.0 mM ethylene diamine tetra-acetic acid at 37 degrees C. The variation of chemistries of the alloy and nano-surface characteristics (chemistries of nano-surface oxides, amphoteric OH group adsorbed on oxides, and oxide thickness) was effected by surface modification and three passivation methods (34% nitric acid passivation. 400 degrees C heated in air, and aged in 100 degrees C water). X-ray photoelectron spectroscopy and Auger electron spectroscopy were used for surface analyses. The chemistries of nano-surface oxides in a range studied should not change the capability of Ca and P adsorption. Nor is the capability affected significantly by amphoteric OH group and oxide thickness. However, passivations influence the surface oxide thickness and the early stage ion dissolution rate of the alloy. The rate-limiting step of the rate can be best explained by metal-ion transport through the oxide film, rather than hydrolysis of the film. Variation of the chemistries of titanium alloy alters the electromotive force potential of the metal, thereby affecting the corrosion and ion dissolution rate.

  6. Reduced endogenous Ca2+ buffering speeds active zone Ca2+ signaling.

    Science.gov (United States)

    Delvendahl, Igor; Jablonski, Lukasz; Baade, Carolin; Matveev, Victor; Neher, Erwin; Hallermann, Stefan

    2015-06-09

    Fast synchronous neurotransmitter release at the presynaptic active zone is triggered by local Ca(2+) signals, which are confined in their spatiotemporal extent by endogenous Ca(2+) buffers. However, it remains elusive how rapid and reliable Ca(2+) signaling can be sustained during repetitive release. Here, we established quantitative two-photon Ca(2+) imaging in cerebellar mossy fiber boutons, which fire at exceptionally high rates. We show that endogenous fixed buffers have a surprisingly low Ca(2+)-binding ratio (∼ 15) and low affinity, whereas mobile buffers have high affinity. Experimentally constrained modeling revealed that the low endogenous buffering promotes fast clearance of Ca(2+) from the active zone during repetitive firing. Measuring Ca(2+) signals at different distances from active zones with ultra-high-resolution confirmed our model predictions. Our results lead to the concept that reduced Ca(2+) buffering enables fast active zone Ca(2+) signaling, suggesting that the strength of endogenous Ca(2+) buffering limits the rate of synchronous synaptic transmission.

  7. Use of heterogeneous CaO and SnO{sub 2} catalysts supported on rice husk ash to produce biodiesel; Emprego de catalisadores heterogeneos de CaO e SnO{sub 2} suportados em cinza de casca de arroz na obtencao de biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Ana Brigida [Instituto Federal do Espirito Santo, Vitoria, ES (Brazil); Silva, Paulo Roberto Nagipe da; Stumbo, Alexandre Moura, E-mail: nagipe@uenf.br [Laboratorio de Ciencias Quimicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ (Brazil); Freitas, Jair C.C. [Departamento de Fisica, Centro de Ciencias Exatas, Universidade Federal do Espirito Santo, Vitoria, ES (Brazil)

    2012-07-01

    Silica obtained from rice husk after acid leaching and calcination was compared to commercial silica as a catalyst support. CaO and SnO{sub 2} catalysts were prepared by impregnation and tested in the transesterification of soybean oil and the esterification of oleic acid. CaO catalysts showed basic character and were the most active for transesterification, whereas SnO{sub 2} catalysts were acid and the most effective for esterification. In both cases the performances of the catalysts prepared with rice husk ash and commercial silica were similar. These results demonstrate that rice husk is a cost-effective and environmentally-friendly source of silica that can be used as a catalyst support. (author)

  8. Reproductive organ and vascular specific promoter of the rice plasma membrane Ca2+ATPase mediates environmental stress responses in plants.

    Science.gov (United States)

    Huda, Kazi Md Kamrul; Banu, Mst Sufara Akhter; Pathi, Krishna Mohan; Tuteja, Narendra

    2013-01-01

    Plasma membrane Ca(2+)ATPase is a transport protein in the plasma membrane of cells and helps in removal of calcium (Ca(2+)) from the cell, hence regulating Ca(2+) level within cells. Though plant Ca(2+)ATPases have been shown to be involved in plant stress responses but their promoter regions have not been well studied. The 1478 bp promoter sequence of rice plasma membrane Ca(2+)ATPase contains cis-acting elements responsive to stresses and plant hormones. To identify the functional region, serial deletions of the promoter were fused with the GUS sequence and four constructs were obtained. These were differentially activated under NaCl, PEG cold, methyl viologen, abscisic acid and methyl jasmonate treatments. We demonstrated that the rice plasma membrane Ca(2+)ATPase promoter is responsible for vascular-specific and multiple stress-inducible gene expression. Only full-length promoter showed specific GUS expression under stress conditions in floral parts. High GUS activity was observed in roots with all the promoter constructs. The -1478 to -886 bp flanking region responded well upon treatment with salt and drought. Only the full-length promoter presented cold-induced GUS expression in leaves, while in shoots slight expression was observed for -1210 and -886 bp flanking region. The -1210 bp deletion significantly responded to exogenous methyl viologen and abscisic acid induction. The -1210 and -886 bp flanking region resulted in increased GUS activity in leaves under methyl jasmonate treatments, whereas in shoots the -886 bp and -519 bp deletion gave higher expression. Salicylic acid failed to induce GUS activities in leaves for all the constructs. The rice plasma membrane Ca(2+)ATPase promoter is a reproductive organ-specific as well as vascular-specific. This promoter contains drought, salt, cold, methyl viologen, abscisic acid and methyl jasmonate related cis-elements, which regulated gene expression. Overall, the tissue-specificity and inducible nature of this

  9. Reproductive organ and vascular specific promoter of the rice plasma membrane Ca2+ATPase mediates environmental stress responses in plants.

    Directory of Open Access Journals (Sweden)

    Kazi Md Kamrul Huda

    Full Text Available Plasma membrane Ca(2+ATPase is a transport protein in the plasma membrane of cells and helps in removal of calcium (Ca(2+ from the cell, hence regulating Ca(2+ level within cells. Though plant Ca(2+ATPases have been shown to be involved in plant stress responses but their promoter regions have not been well studied.The 1478 bp promoter sequence of rice plasma membrane Ca(2+ATPase contains cis-acting elements responsive to stresses and plant hormones. To identify the functional region, serial deletions of the promoter were fused with the GUS sequence and four constructs were obtained. These were differentially activated under NaCl, PEG cold, methyl viologen, abscisic acid and methyl jasmonate treatments. We demonstrated that the rice plasma membrane Ca(2+ATPase promoter is responsible for vascular-specific and multiple stress-inducible gene expression. Only full-length promoter showed specific GUS expression under stress conditions in floral parts. High GUS activity was observed in roots with all the promoter constructs. The -1478 to -886 bp flanking region responded well upon treatment with salt and drought. Only the full-length promoter presented cold-induced GUS expression in leaves, while in shoots slight expression was observed for -1210 and -886 bp flanking region. The -1210 bp deletion significantly responded to exogenous methyl viologen and abscisic acid induction. The -1210 and -886 bp flanking region resulted in increased GUS activity in leaves under methyl jasmonate treatments, whereas in shoots the -886 bp and -519 bp deletion gave higher expression. Salicylic acid failed to induce GUS activities in leaves for all the constructs.The rice plasma membrane Ca(2+ATPase promoter is a reproductive organ-specific as well as vascular-specific. This promoter contains drought, salt, cold, methyl viologen, abscisic acid and methyl jasmonate related cis-elements, which regulated gene expression. Overall, the tissue-specificity and inducible

  10. Chlorogenic Acid Biosynthesis Appears Linked with Suberin Production in Potato Tuber (Solanum tuberosum).

    Science.gov (United States)

    Valiñas, Matías Ariel; Lanteri, María Luciana; ten Have, Arjen; Andreu, Adriana Balbina

    2015-05-20

    Potato (Solanum tuberosum L.) is a good source of dietary antioxidants. Chlorogenic acid (CGA) and caffeic acid (CA) are the most abundant phenolic acid antioxidants in potato and are formed by the phenylpropanoid pathway. A number of CGA biosynthetic routes that involve hydroxycinnamoyl-CoA quinate hydroxycinnamoyl transferase (HQT) and/or hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase (HCT) have been proposed, but little is known about their path in potato. CA production requires a caffeoyl shikimate esterase (CSE), and CA serves as a substrate of lignin precursor ferulic acid via the action of caffeic/5-hydroxyferulic acid O-methyltransferase (COMT I). CGA is precursor of caffeoyl-CoA and, via caffeoyl-CoA O-methyltransferase (CCoAOMT), of feruloyl-CoA. Feruloyl-CoA is required for lignin and suberin biosynthesis, crucial for tuber development. Here, metabolite and transcript levels of the mentioned and related enzymes, such as cinnamate 4-hydroxylase (C4H), were determined in the flesh and skin of fresh and stored tubers. Metabolite and transcript levels were higher in skin than in flesh, irrespective of storage. CGA and CA production appear to occur via p-coumaroyl-CoA, using HQT and CSE, respectively. HCT is likely involved in CGA remobilization toward suberin. The strong correlation between CGA and CA, the correspondence with C4H, HQT, CCoAOMT2, and CSE, and the negative correlation of HCT and COMT I in potato tubers suggest a major flux toward suberin.

  11. Mechanism for enhanced degradation of clofibric acid in aqueous by catalytic ozonation over MnOx/SBA-15

    International Nuclear Information System (INIS)

    Sun, Qiangqiang; Wang, Yu; Li, Laisheng; Bing, Jishuai; Wang, Yingxin; Yan, Huihua

    2015-01-01

    Highlights: • Clofibric acid (CA) is efficiently mineralized by O 3 /MnO x /SBA-15. • Adsorption of CA and its intermediates on MnO x /SBA-15 is proved unimportant. • Initiation of hydroxyl radicals (·OH) is enhanced in O 3 /MnO x /SBA-15. • Uniformly distributed MnO x accounts for the high activity of MnO x /SBA-15. • Degradation routes of CA in ozonation alone and catalytic ozonation are proposed. - Abstract: Comparative experiments were conducted to investigate the catalytic ability of MnO x /SBA-15 for the ozonation of clofibric acid (CA) and its reaction mechanism. Compared with ozonation alone, the degradation of CA was barely enhanced, while the removal of TOC was significantly improved by catalytic ozonation (O 3 /MnO x /SBA-15). Adsorption of CA and its intermediates by MnO x /SBA-15 was proved unimportant in O 3 /MnO x /SBA-15 due to the insignificant adsorption of CA and little TOC variation after ceasing ozone in stopped-flow experiment. The more remarkably inhibition effect of sodium bisulfite (NaHSO 3 ) on the removal of TOC in catalytic ozonation than in ozonation alone elucidated that MnO x /SBA-15 facilitated the generation of hydroxyl radicals (·OH), which was further verified by electron spin-resonance spectroscopy (ESR). Highly dispersed MnO x on SBA-15 were believed to be the main active component in MnO x /SBA-15. Some intermediates were indentified and different degradation routes of CA were proposed in both ozonation alone and catalytic ozonation. The amounts of small molecular carboxylic acids (i.e., formic acid (FA), acetic acid (AA) and oxalic acid (OA)) generated in catalytic ozonation were lower than in ozonation alone, resulting from the generation of more ·OH

  12. Distribution of impurities during crystallization of tellurous acid

    International Nuclear Information System (INIS)

    Debska-Horecka, A.

    1980-01-01

    Crystallization has been used for purification of telluric acid and coprecipitation of Zn(2), Bi(3), Ni(2), Cr(3), Mg(2), Ca(2), Tl(1), Mn(2), Cu(2), Co(2), Cd(2) with telluric acid sediment has been investigated. The optimum conditions for obtaining the telluric acid of high purity have been established. (author)

  13. Transfer of Eu (III) associated with polymaleic acid to Bacillus subtilis

    International Nuclear Information System (INIS)

    Markai, S.; Montavon, G.; Andres, Y.; Grambow, B.

    2003-01-01

    The aim of this study is to contribute to the understanding of the distribution of Eu(III) between dissolved organic matter and microorganisms, and to investigate the effect of competitive ions such as Ca +2 on adsorption properties. Polymaleic acid (PMA), is used as synthetic organic matter, having similar properties as natural fulvic acid, and Bacillus subtilis is chosen as microorganism. A double labeling method was used: [ 14 C]MPA and 152 Eu to quantify the behavior of the various components. Preliminary experiments showed that the adsorption of polymaleic acid onto Bacillus subtilis was negligible at pH=5 in 0.15 mol/l of NaCl. In the absence of Ca +2 , the transfer of Eu(III) from PMA to B. subtilis could be described by a simple empirical model based on data obtained from sorption isotherms on the reference systems Eu(III)/PMA and Eu(III)/B. subtilis. In the presence of Ca +2 , the transfer was increased. The hypothesis that Ca +2 ions acted as a bridging agent between PMA and the bacteria was proposed

  14. Separation of Sr from Ca, Ba and Ra by means of Ca(OH)2 and Ba(Ra)Cl2 or Ba(Ra)SO4 for the determination of radiostrontium

    DEFF Research Database (Denmark)

    Chen, Q.J.; Hou, Xiaolin; Yu, Y.X.

    2002-01-01

    be completed. The new separation procedure has been successfully used for the determination of Sr-90 in samples with high Ca content, such as 451 of seawater and 2001 of drinking water. The analytical quality of the results is comparable to that of the traditional method using fuming nitric acid and BaCrO4......A simple procedure is developed to separate Sr from a large amount of Ca, which relies on the insolubility of Ca(OH)(2) in alkaline solution. Calcium is quantitatively separated from Sr and more than 95% of Sr is recovered from a sample with as much as 50 g of Ca and a Ca/Sr mole ratio of 250....... A new procedure for the separation of Sr from Ba and Ra is also investigated, which is based on the difference in solubility of the chlorides of Sr, Ba and Ra in HCl media. In 9.5 mol 1(-1) HCl or 7.5 mol 1(-1) HCl-10% acetone media, >97% of Ba and Ra can be removed by Ba(Ra)Cl-2 precipitation, and >94...

  15. Photoemission study of Ca-intercalated graphite superconductor CaC6

    International Nuclear Information System (INIS)

    Okazaki, Hiroyuki; Yoshida, Rikiya; Iwai, Keisuke; Noami, Kengo; Muro, Takayuki; Nakamura, Tetsuya; Wakita, Takanori; Muraoka, Yuji; Hirai, Masaaki; Tomioka, Fumiaki; Takano, Yoshihiko; Takenaka, Asami; Toyoda, Masahiro; Oguchi, Tamio; Yokoya, Takayoshi

    2010-01-01

    In this work, we have performed resonant photoemission studies of Ca-intercalated graphite superconductor CaC 6 . Using photon energy of the Ca 2p-3d threshold, the photoemission intensity of the peak at Fermi energy (E F ) is resonantly enhanced. This result provides spectroscopic evidence for the existence of Ca 3d states at E F , and strongly supports that Ca 3d state plays a crucial role for the superconductivity of this material with relatively high T c .

  16. Fabrication of PLA/CaCO3 hybrid micro-particles as carriers for water-soluble bioactive molecules.

    Science.gov (United States)

    Kudryavtseva, Valeriya L; Zhao, Li; Tverdokhlebov, Sergei I; Sukhorukov, Gleb B

    2017-09-01

    We propose the use of polylactic acid/calcium carbonate (PLA/CaCO 3 ) hybrid micro-particles for achieving improved encapsulation of water-soluble substances. Biodegradable porous CaCO 3 microparticles can be loaded with wide range of bioactive substance. Thus, the formation of hydrophobic polymeric shell on surface of these loaded microparticles results on encapsulation and, hence, sealing internal cargo and preventing their release in aqueous media. In this study, to encapsulate proteins, we explore the solid-in-oil-in-water emulsion method for fabricating core/shell PLA/CaCO 3 systems. We used CaCO 3 particles as a protective core for encapsulated bovine serum albumin, which served as a model protein system. We prepared a PLA coating using dichloromethane as an organic solvent and polyvinyl alcohol as a surfactant for emulsification; in addition, we varied experimental parameters such as surfactant concentration and polymer-to-CaCO 3 ratio to determine their effect on particle-size distribution, encapsulation efficiency and capsule permeability. The results show that the particle size decreased and the size distribution narrowed as the surfactant concentration increased in the external aqueous phase. In addition, when the CaCO 3 /PLA mass ratio dropped below 0.8, the hybrid micro-particles were more likely to resist treatment by ethylenediaminetetraacetic acid and thus retained their bioactive cargos within the polymer-coated micro-particles. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Effect of Amino Acids on Morphology of Hydrothermally Synthesized Hydroxyapatite Fibers

    Directory of Open Access Journals (Sweden)

    QI Mei-li

    2017-05-01

    Full Text Available Based on the basic principle of biomineralization, hydroxyapatite fiber (HAF with high crystallinity was fabricated via a hydrothermal route with Ca(NO32·4H2O and (NH42HPO4 as the resources, respectively. Effects of the addition of acidic amino acid L-glutamic acid (Glu, neutral amino acid L-phenylalanine (Phe and basic amino acid L-lysine (Lys on the phase composition and morphology of the obtained products were laid special emphasis on. The results show that the products obtained by using the three amino acids are all hydroxyapatite (HA phase with minor CaCO3 in some samples. Meanwhile, all of the amino acids inhibit the growth of the fibers. Spherical morphology exists when Glu is added, the homogeneity of the fibers deteriorates with the addition of Lys. However, rod-like fibers with good uniformity can be obtained with the addition of Phe.

  18. Solubility of calcium in CaO-CaCl2

    International Nuclear Information System (INIS)

    Perry, G.S.; Shaw, S.J.

    1991-06-01

    The Direct Oxide Reduction (DOR) process is well established as a process to produce plutonium metal from plutonium dioxide by reaction with calcium. Calcium chloride is added to dissolve the calcium oxide produced, allowing the metal to coalesce into a button. Since calcium metal melts at 840 0 C and DOR can take place successfully below this temperature, it is likely calcium dissolved in calcium chloride reacts with the plutonium dioxide. The solubility of calcium in calcium chloride is reasonably well established but the effect of the CaO formed during the DOR process on the solubility of calcium has not been previously determined. For this reason the solubility of calcium in CaCl 2 -CaO melts at 800 o C has been studied. The solubility decreases from 2.7 mol % in CaCl 2 to 0.4 mol % in 9 mol % CaO-CaCl 2 . (author)

  19. Enhancing phosphate adsorption capacity of SDS-based magnetite by surface modification of citric acid

    International Nuclear Information System (INIS)

    Yu, Zhigang; Zhang, Chang; Zheng, Zuhong; Hu, Liang; Li, Xuemei; Yang, Zhongzhu; Ma, Chi; Zeng, Guangming

    2017-01-01

    Highlights: • Citric acid (CA) was used to modify the surface structures of SDS-based magnetite. • Dosage of CA, pH values, ion strength, isotherms and dynamics were analyzed. • High CA dissolved anionic SDS and Fe n+ but increased the stability of magnetite. • 0.05 and 0.1 M CA-modified iron oxide removed about 100% phosphorus. • Precipitation of phosphate and Fe n+ was the main removal mechanism. - Abstract: In this study, citric acid (CA) was employed as a low-molecule organic acid to influence the adsorption performance of phosphorus by as-obtained magnetite. The factors including initial phosphate concentrations, dosage of citric acid, pH value, ion strength, contact time and temperature were examined in detail. Results indicated that the dissolution of anion sodium dodecyl sulfate (SDS) covering on surface of magnetite, a slight decrease of Fe level and a superior structure of magnetite after CA modification occurred. The pH-dependence of phosphate adsorption was impeded and the surface potential of magnetite positively increased at pH > 5.0 when CA was added. Non-linear regression Langmuir-Freundlich model was fitted well in thermodynamics, and the opposite adsorption process as a function of temperatures with or without CA addition was due to the decrease of active energy and active mobility of phosphate ion. Finally, the declining adsorption efficiency with increasing cycles was observed while phosphate removal was approximately finished and had small change with 0.05 and 0.1 M of CA addition. Those improvements of removal efficiency of phosphorus by modified iron oxide were because of the removal of anionic SDS that increased the surface positive charge, and especially the dissolution of element Fe into solution to form precipitate with phosphorus ions. The enhanced stability of magnetite by CA also promoted the high removal efficiency of phosphorus. These implications of CA on phosphate removal can be extended to the field where phosphate

  20. Enhancing phosphate adsorption capacity of SDS-based magnetite by surface modification of citric acid

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zhigang [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Zhang, Chang, E-mail: zhangchang@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Zheng, Zuhong [College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, Hubei Province (China); Hu, Liang; Li, Xuemei; Yang, Zhongzhu; Ma, Chi; Zeng, Guangming [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China)

    2017-05-01

    Highlights: • Citric acid (CA) was used to modify the surface structures of SDS-based magnetite. • Dosage of CA, pH values, ion strength, isotherms and dynamics were analyzed. • High CA dissolved anionic SDS and Fe{sup n+} but increased the stability of magnetite. • 0.05 and 0.1 M CA-modified iron oxide removed about 100% phosphorus. • Precipitation of phosphate and Fe {sup n+} was the main removal mechanism. - Abstract: In this study, citric acid (CA) was employed as a low-molecule organic acid to influence the adsorption performance of phosphorus by as-obtained magnetite. The factors including initial phosphate concentrations, dosage of citric acid, pH value, ion strength, contact time and temperature were examined in detail. Results indicated that the dissolution of anion sodium dodecyl sulfate (SDS) covering on surface of magnetite, a slight decrease of Fe level and a superior structure of magnetite after CA modification occurred. The pH-dependence of phosphate adsorption was impeded and the surface potential of magnetite positively increased at pH > 5.0 when CA was added. Non-linear regression Langmuir-Freundlich model was fitted well in thermodynamics, and the opposite adsorption process as a function of temperatures with or without CA addition was due to the decrease of active energy and active mobility of phosphate ion. Finally, the declining adsorption efficiency with increasing cycles was observed while phosphate removal was approximately finished and had small change with 0.05 and 0.1 M of CA addition. Those improvements of removal efficiency of phosphorus by modified iron oxide were because of the removal of anionic SDS that increased the surface positive charge, and especially the dissolution of element Fe into solution to form precipitate with phosphorus ions. The enhanced stability of magnetite by CA also promoted the high removal efficiency of phosphorus. These implications of CA on phosphate removal can be extended to the field where

  1. Observations on the effects of acid rain treatment on needle surfaces of scots pine and Norway spruce seedlings

    International Nuclear Information System (INIS)

    Turunen, M.; Huttunen, S.; Back, J.

    1994-01-01

    Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies L. Karst.) seedlings were subjected to acid rain treatment at pH 3, pH 4 and pH 7 in a field experiment during 1986-1989. SEM+EDS, TEM, and measurements of wax quantity were used to detect changes in needle surfaces. After 5 weeks at pH 3 and pH 4 acid rain treatment, CaSO 4 -crystallites were observed on visibly undamaged pine and spruce needle surfaces. Direct acid rain damage in conjunction with CaSO 4 -crystallites was observed only occasionally in wax structures. Two-month-old pine needles had 50% less wax in early August after exposure at pH 3 and pH 4 than water controls. The occurrence of CaSO 4 -crystallites on acid rain-treated needle surfaces, and more abundant deposition of Ca oxalate crystallites in the inner walls of epi- and hypodermal cells could be involved with acid rain-induced calcium leaching. Calcium sulphate is probably a result of the disturbed wax and cuticle biosynthesis resulting in undeveloped, permeable cuticles. At the end of experiment, no CaSO 4 -crystallites were seen on needle surfaces. Soil analysis revealed an increase in the soluble Ca concentrations at pH 3. (orig.)

  2. Genome-wide analysis, expression profile of heat shock factor gene family (CaHsfs) and characterisation of CaHsfA2 in pepper (Capsicum annuum L.).

    Science.gov (United States)

    Guo, Meng; Lu, Jin-Ping; Zhai, Yu-Fei; Chai, Wei-Guo; Gong, Zhen-Hui; Lu, Ming-Hui

    2015-06-19

    Heat shock factors (Hsfs) play crucial roles in plant developmental and defence processes. The production and quality of pepper (Capsicum annuum L.), an economically important vegetable crop, are severely reduced by adverse environmental stress conditions, such as heat, salt and osmotic stress. Although the pepper genome has been fully sequenced, the characterization of the Hsf gene family under abiotic stress conditions remains incomplete. A total of 25 CaHsf members were identified in the pepper genome by bioinformatics analysis and PCR assays. They were grouped into three classes, CaHsfA, B and C, based on highly conserved Hsf domains, were distributed over 11 of 12 chromosomes, with none found on chromosome 11, and all of them, except CaHsfA5, formed a protein-protein interaction network. According to the RNA-seq data of pepper cultivar CM334, most CaHsf members were expressed in at least one tissue among root, stem, leaf, pericarp and placenta. Quantitative real-time PCR assays showed that all of the CaHsfs responded to heat stress (40 °C for 2 h), except CaHsfC1 in thermotolerant line R9 leaves, and that the expression patterns were different from those in thermosensitive line B6. Many CaHsfs were also regulated by salt and osmotic stresses, as well as exogenous Ca(2+), putrescine, abscisic acid and methyl jasmonate. Additionally, CaHsfA2 was located in the nucleus and had transcriptional activity, consistent with the typical features of Hsfs. Time-course expression profiling of CaHsfA2 in response to heat stress revealed differences in its expression level and pattern between the pepper thermosensitive line B6 and thermotolerant line R9. Twenty-five Hsf genes were identified in the pepper genome and most of them responded to heat, salt, osmotic stress, and exogenous substances, which provided potential clues for further analyses of CaHsfs functions in various kinds of abiotic stresses and of corresponding signal transduction pathways in pepper.

  3. Combretastatin A4/poly(L-glutamic acid-graft-PEG conjugates self-assembled to nanoparticles

    Directory of Open Access Journals (Sweden)

    Yang Ou

    2018-03-01

    Full Text Available Combretastatin A4 (CA4 possesses varying ability to cause vascular disruption in tumors, while the short half-life, low water solubility and deactivation of many CA4 analogs during storage limited its antitumor efficacy and drug stability. A novel macromolecular conjugate of CA4 (CA4-PL was synthesized by covalent bonding of CA4 onto poly(L-glutamic acid-graft-polyethylene glycol (PLG-g-PEG via Yamaguchi reaction. The obtained CA4-PL was characterized by 1H NMR, GPC, and UV methods, and the properties of the nanoparticles composed of CA4-PL, including critical aggregation concentration, size and size distribution, and morphology, were investigated. CA4-PL can self-assemble to form micelle-like nanoparticles of 80~120 nm in diameter, which may have potential to improve the blood circulation period as well as the targetability of CA4, and find applications to treat various tumors when combined with traditional chemotherapy or radio therapy. Keywords: Combretastatin A4, Macromolecular conjugate, Poly(L-glutamic acid-graft-polyethylene glycol, Self-assemble, Nanoparticles

  4. Back to the future with the AGP–Ca2+ flux capacitor

    Science.gov (United States)

    Lamport, Derek T. A.; Varnai, Peter; Seal, Charlotte E.

    2014-01-01

    Background Arabinogalactan proteins (AGPs) are ubiquitous in green plants. AGPs comprise a widely varied group of hydroxyproline (Hyp)-rich cell surface glycoproteins (HRGPs). However, the more narrowly defined classical AGPs massively predominate and cover the plasma membrane. Extensive glycosylation by pendant polysaccharides O-linked to numerous Hyp residues like beads of a necklace creates a unique ionic compartment essential to a wide range of physiological processes including germination, cell extension and fertilization. The vital clue to a precise molecular function remained elusive until the recent isolation of small Hyp–arabinogalactan polysaccharide subunits; their structural elucidation by nuclear magentic resonance imaging, molecular simulations and direct experiment identified a 15-residue consensus subunit as a β-1,3-linked galactose trisaccharide with two short branched sidechains each with a single glucuronic acid residue that binds Ca2+ when paired with its adjacent sidechain. Scope AGPs bind Ca2+ (Kd ∼ 6 μm) at the plasma membrane (PM) at pH ∼5·5 but release it when auxin-dependent PM H+-ATPase generates a low periplasmic pH that dissociates AGP–Ca2+ carboxylates (pka ∼3); the consequential large increase in free Ca2+ drives entry into the cytosol via Ca2+ channels that may be voltage gated. AGPs are thus arguably the primary source of cytosolic oscillatory Ca2+ waves. This differs markedly from animals, in which cytosolic Ca2+ originates mostly from internal stores such as the sarcoplasmic reticulum. In contrast, we propose that external dynamic Ca2+ storage by a periplasmic AGP capacitor co-ordinates plant growth, typically involving exocytosis of AGPs and recycled Ca2+, hence an AGP–Ca2+ oscillator. Conclusions The novel concept of dynamic Ca2+ recycling by an AGP–Ca2+ oscillator solves the long-standing problem of a molecular-level function for classical AGPs and thus integrates three fields: AGPs, Ca2+ signalling and auxin

  5. Study of solid state interactions in the systems ZnFe2O4 - CaO, ZnFe2O4 - MgO and zinc cake with CaO and MgO

    Directory of Open Access Journals (Sweden)

    Peltekov A.B.

    2013-01-01

    Full Text Available The solid state interactions of CaO and MgO with synthetic and industrial ZnFe2O4 (in zinc cake have been studied using chemical, XRD analysis and Mössbauer spectroscopy. The exchange reactions in the systems ZnFe2O4 - CaO and ZnFe2O4 - MgO have been investigated in the range of 850-1200ºC and duration up to 180 min. It has been established that Ca2+ and Mg2+ ions exchange Zn2+ in ferrite partially and the solubility of zinc in a 7% sulfuric acid solution increases. The possibilities for utilization of the obtained results in zinc hydrometallurgy have been discussed.

  6. K-Ca and Rb-Sr Dating of Lunar Granite 14321 Revisited

    Science.gov (United States)

    Simon, Justin I.; Shih, C.-Y.; Nyquist, L. E.

    2011-01-01

    K-Ca and Rb-Sr age determinations were made for a bulk feldspar-rich portion of an Apollo rock fragment of the pristine lunar granite clast (14321,1062), an acid-leached split of the sample, and the leachate. K-Ca and Rb-Sr data were also obtained for a whole rock sample of Apollo ferroan anorthosite (FAN, 15415). The recent detection [1] of widespread intermediate composition plagioclase indicates that the generation of a diversity of evolved lunar magmas maybe more common and therefore more important to our understanding of crust formation than previously believed. Our new data strengthen the K-Ca and Rb-Sr internal isochrons of the well-studied Apollo sample 14321 [2], which along with a renewed effort to study evolved lunar magmas will provide an improved understanding of the petrogenetic history of evolved rocks on the Moon.

  7. In situ ruminal degradation of phytic acid in formaldehyde treated rice bran

    NARCIS (Netherlands)

    Martin-Tereso, J.; Gonzalez, A.; Laar, van H.; Burbara, C.; Pedrosa, M.; Mulder, K.; Hartog, den L.A.; Verstegen, M.W.A.

    2009-01-01

    Rice bran has a very high content of phytic acid (IP6), which is a nutritional antagonist of Ca. Microbial phytase degrades IP6, but ruminal degradation of nutrients can be reduced by formaldehyde treatment. Milk fever in dairy cows can be prevented by reducing available dietary Ca to stimulate Ca

  8. Effects of heat and ultraviolet radiation on the oxidative stability of pine nut oil supplemented with carnosic acid.

    Science.gov (United States)

    Wang, Han; Zu, Ge; Yang, Lei; Zu, Yuan-gang; Wang, Hua; Zhang, Zhong-hua; Zhang, Ying; Zhang, Lin; Wang, Hong-zheng

    2011-12-28

    The effects of carnosic acid (CA) of different concentrations (0.05, 0.1, and 0.2 mg/g) and two common antioxidants (butylated hydroxytoluene and α-tocopherol) on oxidative stability in pine nut oil at different accelerated conditions (heating and ultraviolet radiation) were compared. The investigation focused on the increase in peroxide and conjugated diene values, as well as free fatty acid and thiobarbituric acid-reactive substances. The changes in trans fatty acid and aldehyde compound contents were investigated by Fourier transform infrared spectroscopy, while the changes in pinolenic acid content were monitored by gas chromatography-mass spectrometry. The results show that CA was more effective in restraining pine nut oil oxidation under heating, UV-A and UV-B radiation, in which a dose-response relationship was observed. The antioxidant activity of CA was stronger than that of α-tocopherol and butylated hydroxytoluene. Pine nut oil supplemented with 0.2 mg/g CA exhibited favorable antioxidant effects and is preferable for effectively avoiding oxidation.

  9. Salicylic acid induces apoptosis in colon carcinoma cells grown in-vitro: Influence of oxygen and salicylic acid concentration

    International Nuclear Information System (INIS)

    Zitta, Karina; Meybohm, Patrick; Bein, Berthold; Huang, Ying; Heinrich, Christin; Scholz, Jens; Steinfath, Markus; Albrecht, Martin

    2012-01-01

    In solid tumors the hypoxic environment can promote tumor progression and resistance to therapy. Recently, acetylsalicylic acid a major component of analgesic drugs and its metabolite salicylic acid (SA) have been shown to reduce the risk of colon cancer, but the mechanisms of action remain still unclear. Here we elucidate the effects of physiologically relevant concentrations of SA on colon carcinoma cells (CaCo-2) grown under normoxic and hypoxic conditions. Western blotting, caspase-3/7 apoptosis assays, MTS cell-proliferation assays, LDH cytotoxicity assays and hydrogen peroxide measurements were performed to investigate the effects of 1 and 10 μM SA on CaCo-2 cells grown under normoxic conditions and cells exposed to hypoxia. Under normoxic conditions, SA did not influence cell proliferation or LDH release of CaCo-2 cells. However, caspase-3/7 activity was significantly increased. Under hypoxia, cell proliferation was reduced and LDH release and caspase-3/7 activities were increased. None of these parameters was altered by the addition of SA under hypoxic conditions. Hypoxia increased hydrogen peroxide concentrations 300-fold and SA significantly augmented the release of hydrogen peroxide under normoxic, but not under hypoxic conditions. Phosphorylation of the pro-survival kinases akt and erk1/2 was not changed by SA under hypoxic conditions, whereas under normoxia SA reduced phosphorylation of erk1/2 after 2 hours. We conclude that in colon carcinoma cells effects of SA on apoptosis and cellular signaling are dependent on the availability of oxygen. -- Highlights: ► Effects of salicylic acid on colon carcinoma cells grown under normoxic and hypoxic conditions ► Salicylic acid increases caspase-3/7 activity and hydrogen peroxide release under normoxia ► Salicylic acid decreases pro-survival erk-1/2 phosphorylation under normoxia ► Salicylic acid does not influence any of the investigated parameters under hypoxia

  10. Contrasting chemical response to artificial acidification of three acid-sensitive streams in Maine, USA

    International Nuclear Information System (INIS)

    Goss, Heather V.; Norton, Stephen A.

    2008-01-01

    We experimentally acidified three low alkalinity first-order streams in forested catchments in Maine, USA. We evaluated water samples from a reference site above the point of hydrochloric acid addition and from two or three sites located 16 to 94 m downstream. Neutralization included protonation of weak acids, adsorption of sulfate, and ion exchange of base cations and aluminum (Al) for protons (H + ). Protonation of bicarbonate was significant in the relatively high pH Hadlock Brook. Protonation of weak organic acids dominated in the high dissolved organic carbon (DOC) Mud Pond Inlet. The response in low DOC, low pH East Bear Brook was dominated by stream substrate release of cations. East Bear Brook had the strongest acid neutralization response per unit catchment area. In all streams, exchangeable calcium (Ca) and magnesium (Mg) were mobilized, with Ca > Mg. Al was also mobilized. During initial stages of acidification, Ca desorbed preferentially, whereas Al mobilization dominated later. Early in the recovery, adsorption of Ca to the streambed sediments was kinetically favored over adsorption of Al. Though pH increased downstream of acid addition, the streams remained undersaturated with respect to amorphous Al(OH) 3 , so Al did not precipitate. In East Bear Brook, however, Al left solution further downstream through adsorption. This process was likely kinetically controlled, because it occurred in East Bear Brook (3-4 L/s) but did not occur in Hadlock Brook (ca. 40 L/s) or Mud Pond Inlet (ca. 60 L/s). During experimental acidification, the initial Al:Ca ratio of a stream's response may indicate the acidification status of the catchment. Short-term stream acidification experiments illuminate processes characteristic of episodic stream acidification and of long-term catchment acidification. East Bear Brook and Hadlock Brook catchments are in early to intermediate stages of acidification. The Mud Pond Inlet catchment (high Al:Ca ratio) is in a later stage of

  11. Simultaneous determination and characterization of tannins and triterpene saponins from the fruits of various species of Terminalia and Phyllantus emblica using a UHPLC-UV-MS method: application to triphala.

    Science.gov (United States)

    Avula, Bharathi; Wang, Yan-Hong; Wang, Mei; Shen, Yun-Heng; Khan, Ikhlas A

    2013-01-01

    Terminalia species are a rich source of tannins. Many preparations of these species are used in traditional medicine and have many different ethnobotanical applications. A simple UHPLC method was developed for the simultaneous analysis of such hydrolysable tannins and triterpene saponins from the fruit rinds of different species of Terminalia (T. chebula, T. arjuna, T. bellirica) and Phyllantus emblica. A separation by LC was achieved using a reversed-phase column and a water/acetonitrile mobile phase, both containing formic acid, using a gradient system and a temperature of 40°C. Eight hydrolysable tannins (gallic acid, gallic acid methyl ester, corilagin, chebulagic acid, 1,2,3,6-tetra-O-galloyl-β-D-glucose, ellagic acid, chebulinic acid, and 1,2,3,4,6-penta-O-galloyl-β-D-glucose) and six triterpene saponins (arjunglucoside-I, arjunglucoside-III, chebuloside II, bellericoside, arjunetin, and arjunglucoside-II) could be separated within 20 minutes. The wavelength used for detection with the diode array detector was 254 and 275 nm for tannins and 205 nm for triterpene saponins. The method was validated for linearity, repeatability, limits of detection, and limits of quantification. The developed method is economical, fast, and especially suitable for quality control analysis of tannins and triterpene saponins in various plant samples and commercial products of Terminalia. Georg Thieme Verlag KG Stuttgart · New York.

  12. Effects of Levetiracetam, Carbamazepine, Phenytoin, Valproate, Lamotrigine, Oxcarbazepine, Topiramate, Vinpocetine and Sertraline on Presynaptic Hippocampal Na(+) and Ca(2+) Channels Permeability.

    Science.gov (United States)

    Sitges, María; Chiu, Luz María; Reed, Ronald C

    2016-04-01

    Ion channels are targets of various antiepileptic drugs. In cerebral presynaptic nerve endings Na(+) and Ca(2+) channels are particularly abundant, as they control neurotransmitter release, including the release of glutamate (Glu), the most concentrated excitatory amino acid neurotransmitter in the brain. Several pre-synaptic channels are implicated in the mechanism of action of the pro-convulsive agent, 4-aminopyridine (4-AP). In the present study the effects of levetiracetam and other established and newer (vinpocetine) anti-epileptic drugs, as well as of the anti-depressant, sertraline on the increase in Ca(2+) induced by 4-AP in hippocampal isolated nerve endings were investigated. Also the effects of some of the anti-seizure drugs on the selective increase in Ca(2+) induced by high K(+), or on the selective increase in Na(+) induced by veratridine were tested. Sertraline and vinpocetine effectively inhibited the rise in Ca(2+) induced by 4-AP, which was dependent on the out-in Na(+) gradient and tetrodotoxin sensitive. Carbamazepine, phenytoin, lamotrigine and oxcarbazepine inhibited the rise in Ca(2+) induced by 4-AP too, but at higher concentrations than sertraline and vinpocetine, whereas levetiracetam, valproic acid and topiramate did not. The three latter antiepileptic drugs also failed in modifying other responses mediated by the activation of brain presynaptic Na(+) or Ca(2+) channels, including Glu release. This indicates that levetiracetam, valproic acid and topiramate mechanisms of action are unrelated with a decrease in presynaptic Na(+) or Ca(2+) channels permeability. It is concluded that depolarized cerebral isolated nerve endings represent a useful tool to unmask potential antiepileptic drugs targeting presynaptic Na(+) and/or Ca(2+) channels in the brain; such as vinpocetine or the anti-depressant sertraline, which high effectiveness to control seizures in the animal in vivo has been demonstrated.

  13. Calcium flouride (CaF2) from oyster shell as a raw material for thermoluminescence dosimeter

    International Nuclear Information System (INIS)

    Coloma, Lyra C.; Fanuga, Lyn N.; Ocreto, Cherries Ann; Rodriguez, Richita

    2006-03-01

    This study aims to develop a thermoluminescence dosimeter raw material made of calcium fluoride from locally available seashells that is suitable for personal radiation monitoring. Oyster shells were collected and grounded as powder samples and analyzed for calcium fluoride (CaF 2 ) content using XRF and XRD testing. Samples include pure CaF 2 , pure oyster shell, and oyster shells treated with acid. Based from the XRF results, natural oyster shell (w/ and w/o HNO 3 ) had high percentage of calcium about 49.64% and 47.45%, next to the pure calcium fluoride of 51.08%. X-ray diffractrogram shows that oyster sample had the nearest desired structure of CaF 2 compared with two seashells relative to the pure CaF 2 as standard materials. Results show that all of the natural oyster samples displayed TL emission glow curves at the temperature range 200-300 o C. It was also found that pure oyster sample has better TL response as compared to the treated ones. The researchers concluded that the calcium fluoride from oyster shells (without acid and heated) is a potentially good low-cost TLD raw material and may be used as an alternative for the much more expensive LiF dosimeters. (Authors)

  14. Ca2+ signaling in injured in situ endothelium of rat aorta.

    Science.gov (United States)

    Berra-Romani, Roberto; Raqeeb, Abdul; Avelino-Cruz, José Everardo; Moccia, Francesco; Oldani, Amanda; Speroni, Francisco; Taglietti, Vanni; Tanzi, Franco

    2008-09-01

    The inner wall of excised rat aorta was scraped by a microelectrode and Ca2+ signals were investigated by fluorescence microscopy in endothelial cells (ECs) directly coupled with injured cells. The injury caused an immediate increase in the intracellular Ca2+ concentration ([Ca2+]i), followed by a long-lasting decay phase due to Ca2+ influx from extracellular space. The immediate response was mainly due to activation of purinergic receptors, as shown by the effect of P2X and P2Y receptors agonists and antagonists, such as suramin, alpha,beta-MeATP, MRS-2179 and 2-MeSAMP. Inhibition of store-operated Ca2+ influx did not affect either the peak response or the decay phase. Furthermore, the latter was: (i) insensitive to phospholipase C inhibition, (ii) sensitive to the gap junction blockers, palmitoleic acid, heptanol, octanol and oleamide, and (iii) sensitive to La3+ and Ni2+, but not to Gd3+. Finally, ethidium bromide or Lucifer Yellow did not enter ECs facing the scraped area. These results suggest that endothelium scraping: (i) causes a short-lasting stimulation of healthy ECs by extracellular nucleotides released from damaged cells and (ii) uncouples the hemichannels of the ECs facing the injury site; these hemichannels do not fully close and allow a long-lasting Ca2+ entry.

  15. Effectiveness of carboxylic acids from Pichia membranifaciens against coffee rust

    Directory of Open Access Journals (Sweden)

    Rosa Laura Andrade Melchor

    Full Text Available ABSTRACT Coffee rust is a fungal disease that has affected every coffee-producing region in the world. Given that the effectivity of the protectant and systemic fungicides applied routinely to control the spread of the causative agent of the disease (Hemileia vastatrix has gradually diminished, besides are harmful to mammals and ecosystems, the objective of this work was to search for a mixture of harmless natural compounds with the potential to be applied in the field. So, a yeast strain producing a battery of long-chain carboxylic acids (CA with fungicide properties was isolated from soil of coffee crop and identified as Pichia membranifaciens by ITS sequencing. Culture conditions of the yeast were optimized and the CA in the solution were characterized by Gas Chromatography-Mass Spectrometry (GC-MS as ethyl formate (55.5 g L-1, octadecenoic acid (3.5 g L-1, propionic acid (7.2 g L-1, 3-(octadecanoyl-propionic acid (7.2 g L-1 and methyl acetate (8.4 g L-1. Randomized field studies were conducted in three different locations in Chiapas, México. Five treatments were tested including three concentrations of the CA solution (389, 584 and 778 ppm and copper oxychloride (5 000 ppm as conventional control. The initial coffee rust incidence averages varied between sites: Maravillas (3-9%, Santo Domingo (10-16% and Búcaro (16-22%. The treatments of CA solution proved to be effective at slowing down the progress of the rust disease even for the sites where initial incidence was high. Likewise, the CA solution reduced the viability of H. vastatrix spores, as assessed by fluorescence microscopy.

  16. Molecular cloning of a peroxisomal Ca2+-dependent member of the mitochondrial carrier superfamily

    Science.gov (United States)

    Weber, Franz E.; Minestrini, Gianluca; Dyer, James H.; Werder, Moritz; Boffelli, Dario; Compassi, Sabina; Wehrli, Ernst; Thomas, Richard M.; Schulthess, Georg; Hauser, Helmut

    1997-01-01

    A cDNA from a novel Ca2+-dependent member of the mitochondrial solute carrier superfamily was isolated from a rabbit small intestinal cDNA library. The full-length cDNA clone was 3,298 nt long and coded for a protein of 475 amino acids, with four elongation factor-hand motifs located in the N-terminal half of the molecule. The 25-kDa N-terminal polypeptide was expressed in Escherichia coli, and it was demonstrated that it bound Ca2+, undergoing a reversible and specific conformational change as a result. The conformation of the polypeptide was sensitive to Ca2+ which was bound with high affinity (Kd ≈ 0.37 μM), the apparent Hill coefficient for Ca2+-induced changes being about 2.0. The deduced amino acid sequence of the C-terminal half of the molecule revealed 78% homology to Grave disease carrier protein and 67% homology to human ADP/ATP translocase; this sequence homology identified the protein as a new member of the mitochondrial transporter superfamily. Northern blot analysis revealed the presence of a single transcript of about 3,500 bases, and low expression of the transporter could be detected in the kidney but none in the liver. The main site of expression was the colon with smaller amounts found in the small intestine proximal to the ileum. Immunoelectron microscopy localized the transporter in the peroxisome, although a minor fraction was found in the mitochondria. The Ca2+ binding N-terminal half of the transporter faces the cytosol. PMID:9238007

  17. Phytotoxic Effects of Cinnamic Acid on Cabbage (Brassica oleracea var. capitata

    Directory of Open Access Journals (Sweden)

    Singh, N. B.

    2013-04-01

    Full Text Available The present study deals with the effects of exogenous application of cinnamic acid (CA on growth and metabolism in growing seedlings of Brassica oleracea var. capitata (cabbage in hydroponic culture. CA was added at 0.5, 1.0 and 1.5 mM concentrations. CA has shown inhibitory effects on shoot and root length, fresh and dry weight of seedlings. CA significantly decreased the photosynthetic pigments, nitrate reductase activity and protein content. Graded concentrations of CA increased lipid peroxidation and sugar content. The increasing concentrations of CA significantly increased the antioxidative enzyme activities viz. superoxide dismutase, catalase, peroxidase against the oxidative stress caused by CA.

  18. Tongqiao Huoxue Decoction ameliorates learning and memory defects in rats with vascular dementia by up-regulating the Ca(2+)-CaMKII-CREB pathway.

    Science.gov (United States)

    Ge, Chao-Liang; Wang, Xin-Ming; Huang, Zhao-Gang; Xia, Quan; Wang, Ning; Xu, Du-Juan

    2015-11-01

    The present study was aimed at determining the effects of Tongqiao Huoxue Decoction (TQHXD) on the Ca(2+)-CaMKII-CREB pathway and the memory and learning capacities of rats with vascular dementia (VD). The rat VD model was established by using an improved bilateral carotid artery ligation method. The Morris water maze experiment was used to evaluate the ethology of the VD rats following treatments with TQHXD at 3.01, 6.02, and 12.04 g·kg(-1) per day for 31 days. At the end of experiment, the hippocampus were harvested and analyzed. Western blotting and RT-PCR were used to measure the expression levels of calmodulin-binding protein kinase II(CaMKII), protein kinase A(PKA), cAMP-response element binding protein(CREB), and three N-methyl-D-aspartic acid receptor subunits (NR1, NR2A, and NR2B). Our results revealed that TQHXD could alleviate the loss of learning abilities and increase the memory capacity (P < 0.05 and P < 0.01 vs the model group, respectively). The treatment with 6.02 and 12.04 g·kg(-1) of TQHXD significantly up-regulated the Ca(2+)-CaMKII-CREB pathway in the hippocampus. In conclusion, TQHXD showed therapeutic effects on a bilateral carotid artery ligation-induced vascular dementia model, through the up-regulation of calcium signalling pathways. Copyright © 2015 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  19. Square-wave stripping voltammetric determination of caffeic acid on electrochemically reduced graphene oxide-Nafion composite film.

    Science.gov (United States)

    Filik, Hayati; Çetintaş, Gamze; Avan, Asiye Aslıhan; Aydar, Sevda; Koç, Serkan Naci; Boz, İsmail

    2013-11-15

    An electrochemical sensor composed of Nafion-graphene nanocomposite film for the voltammetric determination of caffeic acid (CA) was studied. A Nafion graphene oxide-modified glassy carbon electrode was fabricated by a simple drop-casting method and then graphene oxide was electrochemically reduced over the glassy carbon electrode. The electrochemical analysis method was based on the adsorption of caffeic acid on Nafion/ER-GO/GCE and then the oxidation of CA during the stripping step. The resulting electrode showed an excellent electrocatalytical response to the oxidation of caffeic acid (CA). The electrochemistry of caffeic acid on Nafion/ER-GO modified glassy carbon electrodes (GCEs) were studied by cyclic voltammetry and square-wave adsorption stripping voltammetry (SW-AdSV). At optimized test conditions, the calibration curve for CA showed two linear segments: the first linear segment increased from 0.1 to 1.5 and second linear segment increased up to 10 µM. The detection limit was determined as 9.1×10(-8) mol L(-1) using SW-AdSV. Finally, the proposed method was successfully used to determine CA in white wine samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Production of volatiles in fresh-cut apple: effect of applying alginate coatings containing linoleic acid or isoleucine.

    Science.gov (United States)

    Maya-Meraz, Irma O; Espino-Díaz, Miguel; Molina-Corral, Francisco J; González-Aguilar, Gustavo A; Jacobo-Cuellar, Juan L; Sepulveda, David R; Olivas, Guadalupe I

    2014-11-01

    One of the main quality parameters in apples is aroma, its main precursors are fatty acids (FA) and amino acids (AA). In this study, alginate edible coatings were used as carriers of linoleic acid or isoleucine to serve as precursors for the production of aroma in cut apples. Apple wedges were immersed in a CaCl2 solution and coated with one of the following formulations: alginate solution (Alg-Ca), Alg-Ca-low-level linoleic acid (0.61 g/Lt), (LFA), Alg-Ca-high-level linoleic acid (2.44 g/L; HFA), Alg-Ca-low-level isoleucine (0.61 g/L; LAA), and Alg-Ca-high-level isoleucine (2.44 g/L; HAA). Apple wedges were stored at 3 °C and 85% relative humidity for 21 d and key volatiles were studied during storage. Addition of precursors, mainly isoleucine, showed to increase the production of some key volatiles on coated fresh-cut apples during storage. The concentration of 2-methyl-1-butanol was 4 times higher from day 12 to day 21 in HAA, while 2-methyl butyl acetate increased from day 12 to day 21 in HAA. After 21 d, HAA-apples presented a 40-fold value of 2-methyl-butyl acetate, compared to Alg-Ca cut apples. Values of hexanal increased during cut apple storage when the coating carried linoleic acid, mainly on HFA, from 3 to 12 d. The ability of apples to metabolize AA and FA depends on the concentration of precursors, but also depends on key enzymes, previous apple storage, among others. Further studies should be done to better clarify the behavior of fresh-cut apples as living tissue to metabolize precursors contained in edible coatings for the production of volatiles. © 2014 Institute of Food Technologists®

  1. Characterization of CoPK02, a Ca2+/calmodulin-dependent protein kinase in mushroom Coprinopsis cinerea.

    Science.gov (United States)

    Yamashita, Masashi; Sueyoshi, Noriyuki; Yamada, Hiroki; Katayama, Syouichi; Senga, Yukako; Takenaka, Yasuhiro; Ishida, Atsuhiko; Kameshita, Isamu; Shigeri, Yasushi

    2018-04-20

    We surveyed genome sequences from the basidiomycetous mushroom Coprinopsis cinerea and isolated a cDNA homologous to CMKA, a calmodulin-dependent protein kinase (CaMK) in Aspergillus nidulans. We designated this sequence, encoding 580 amino acids with a molecular weight of 63,987, as CoPK02. CoPK02 possessed twelve subdomains specific to protein kinases and exhibited 43, 35, 40% identity with rat CaMKI, CaMKII, CaMKIV, respectively, and 40% identity with CoPK12, one of the CaMK orthologs in C. cinerea. CoPK02 showed significant autophosphorylation activity and phosphorylated exogenous proteins in the presence of Ca 2+ /CaM. By the CaM-overlay assay we confirmed that the C-terminal sequence (Trp346-Arg358) was the calmodulin-binding site, and that the binding of Ca 2+ /CaM to CoPK02 was reduced by the autophosphorylation of CoPK02. Since CoPK02 evolved in a different clade from CoPK12, and showed different gene expression compared to that of CoPK32, which is homologous to mitogen-activated protein kinase-activated protein kinase, CoPK02 and CoPK12 might cooperatively regulate Ca 2+ -signaling in C. cinerea.

  2. 4.3. Decomposition of danburite concentrate of Ak-Arkar Deposit by nitric acid

    International Nuclear Information System (INIS)

    Mirsaidov, U.M.; Kurbonov, A.S.; Mamatov, E.D.

    2015-01-01

    Present article is devoted to decomposition of danburite concentrate of Ak-Arkar Deposit by nitric acid. The influence of temperature on reaction process was studied. The dependence of extraction rate of oxides (B 2 O 3 , Al 2 O 3 , Fe 2 O 3 and Ca O) at nitric acid processing on temperature ranges from 25 to 95 deg C was defined. The dependence of extraction rate of oxides (B 2 O 3 , Al 2 O 3 , Fe 2 O 3 and Ca O) at nitric acid processing on process duration (5-60 minutes) was defined as well. The optimal conditions of decomposition of danburite concentrate by nitric acid were proposed.

  3. Molecular characterisation of a calmodulin gene, VcCaM1, that is differentially expressed under aluminium stress in highbush blueberry.

    Science.gov (United States)

    Inostroza-Blancheteau, C; Aquea, F; Loyola, R; Slovin, J; Josway, S; Rengel, Z; Reyes-Díaz, M; Alberdi, M; Arce-Johnson, P

    2013-11-01

    Calmodulin (CaM), a small acidic protein, is one of the best characterised Ca(2+) sensors in eukaryotes. This Ca(2+) -regulated protein plays a critical role in decoding and transducing environmental stress signals by activating specific targets. Many environmental stresses elicit changes in intracellular Ca(2+) activity that could initiate adaptive responses under adverse conditions. We report the first molecular cloning and characterisation of a calmodulin gene, VcCaM1 (Vaccinium corymbosum Calmodulin 1), in the woody shrub, highbush blueberry. VcCaM1 was first identified as VCAL19, a gene induced by aluminium stress in V. corymbosum L. A full-length cDNA of VcCaM1 containing a 766-bp open reading frame (ORF) encoding 149 amino acids was cloned from root RNA. The sequence encodes four Ca(2+) -binding motifs (EF-hands) and shows high similarity (99%) with the isoform CaM 201 of Daucus carota. Expression analyses showed that following Al treatment, VcCaM1 message level decreased in roots of Brigitta, an Al-resistant cultivar, and after 48 h, was lower than in Bluegold, an Al-sensitive cultivar. VcCAM1 message also decreased in leaves of both cultivars within 2 h of treatment. Message levels in leaves then increased by 24 h to control levels in Brigitta, but not in Bluegold, but then decreased again by 48 h. In conclusion, VcCaM1 does not appear to be directly involved in Al resistance, but may be involved in improved plant performance under Al toxicity conditions through regulation of Ca(2+) homeostasis and antioxidant systems in leaves. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  4. Obtention of agricultural gypsum traced on 34 S (Ca34 SO4.2H2O), by chemical reaction between H234 SO4 and Ca(OH)2

    International Nuclear Information System (INIS)

    Rossete, Alessandra L.R.M.; Bendassolli, Jose A.; Ignoto, Raquel de Fatima; Batagello, Hugo Henrique

    2002-01-01

    The gypsum (CaSO 4 .2H 2 O) has double function in the soil: as source of calcium and sulfur and reducing agent of aluminum saturation. The sulfur for the plants has acting in the vital functions and it is proven fact increase of the S deficiency in Brazilian soils. The isotope tracer 34 S can elucidate important aspects in the sulfur cycle. The Ca 34 SO 4 .2H 2 O was obtained by chemical reaction between Ca(OH) 2 and H 2 34 SO 4 solution. The acid was obtained by chromatography ionic change, using cationic resin Dowex 50WX8 and Na 2 34 SO 4 solution. The reaction was realized under slow agitation. After the reaction, the precipitate was separated and dried in ventilated stove at 60 deg C temperature. The Mass of the Ca 34 SO 4 .2H 2 O produced was determined by method gravimetric. This way, a system contends resin 426 cm 3 , considering volume of 2.2 liters can be obtained a solution contends 44.2 g of H 2 34 SO 4 , theoretically could be produced 78.0 g of Ca 34 SO 4 .2H 2 O approximately. With results of the tests were verified that there was not total precipitation of the Ca 34 SO 4 .2H 2 O. Were produced 73.7± 0.6 g of Ca 34 SO 4 .2H 2 O representing average income 94.6±0.8 %. The purity of the produced CaSO 4 .2H 2 O was 98%. (author)

  5. Thermal stability of products from self-irradiated Ca sup 14 CO sub 3

    Energy Technology Data Exchange (ETDEWEB)

    Albarran, G. (Universidad Nacional Autonoma de Mexico, Mexico City (Mexico). Inst. de Ciencias Nucleares); Collins, K.E.; Collins, C.H. (Universidade Estadual de Campinas, SP (Brazil). Inst. de Quimica)

    1991-01-01

    Five {sup 14}-labelled organic acids are obtained from the self-radiolysis of high specific activity Ca{sup 14}CO{sub 3}. The yields of all products decrease upon isothermal annealing at 548 K. Upon isochronal annealing (1 h), no significant changes occur up to 423 K. In the temperature interval between 476 and 673 K, the yields of formic, oxalic and glyoxylic acids decrease similarly, suggesting that they have the same precursor: the CO{sub 2}{sup -} radical. The isochronal annealing behaviours of the precursors of glycolic and acetic acids are more complex and involve other solid state species. (author).

  6. Removal of area CA3 from hippocampal slices induces postsynaptic plasticity at Schaffer collateral synapses that normalizes CA1 pyramidal cell discharge.

    Science.gov (United States)

    Dumas, Theodore C; Uttaro, Michael R; Barriga, Carolina; Brinkley, Tiffany; Halavi, Maryam; Wright, Susan N; Ferrante, Michele; Evans, Rebekah C; Hawes, Sarah L; Sanders, Erin M

    2018-05-05

    Neural networks that undergo acute insults display remarkable reorganization. This injury related plasticity is thought to permit recovery of function in the face of damage that cannot be reversed. Previously, an increase in the transmission strength at Schaffer collateral to CA1 pyramidal cell synapses was observed after long-term activity reduction in organotypic hippocampal slices. Here we report that, following acute preparation of adult rat hippocampal slices and surgical removal of area CA3, input to area CA1 was reduced and Schaffer collateral synapses underwent functional strengthening. This increase in synaptic strength was limited to Schaffer collateral inputs (no alteration to temporoammonic synapses) and acted to normalize postsynaptic discharge, supporting a homeostatic or compensatory response. Short-term plasticity was not altered, but an increase in immunohistochemical labeling of GluA1 subunits was observed in the stratum radiatum (but not stratum moleculare), suggesting increased numbers of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors and a postsynaptic locus of expression. Combined, these data support the idea that, in response to the reduction in presynaptic activity caused by removal of area CA3, Schaffer collateral synapses undergo a relatively rapid increase in functional efficacy likely supported by insertion of more AMPARs, which maintains postsynaptic excitability in CA1 pyramidal neurons. This novel fast compensatory plasticity exhibits properties that would allow it to maintain optimal network activity levels in the hippocampus, a brain structure lauded for its ongoing experience-dependent malleability. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Preparation and Properties of Nanoparticles of Calcium Phosphates With Various Ca/P Ratios.

    Science.gov (United States)

    Sun, Limin; Chow, Laurence C; Frukhtbeyn, Stanislav A; Bonevich, John E

    2010-01-01

    This study aimed at preparing and studying the properties of nanoparticles of calcium phosphate (nCaP) with Ca/P ratios ranging from 1.0 to 1.67 using a spray-drying technique. Micro-structural analyses suggested that the nCaPs with Ca/P ratios of 1.67 to 1.33 were nano-sized amorphous calcium phosphate (ACP) containing varying amounts of acid phosphate and carbonate. The nCaP with Ca/P ratio of 1 contained only nano-sized low crystalline dicalcium phosphate (DCP). BET measurements of the nCaPs showed specific surface areas of (12 ± 2 to 50 ± 1) m(2)/g, corresponding to estimated equivalent spherical diameters of (38 to 172) nm. However, dynamic light scattering measurements revealed much larger particles of (380 ± 49 to 768 ± 111) nm, owing to agglomeration of the smaller primary nano particles as revealed by Scanning Electron Microscopy (SEM). Thermodynamic solubility measurements showed that the nCaPs with Ca/P ratio of 1.33 - 1.67 all have similar solubility behavior. The materials were more soluble than the crystalline hydroxyapatite (HA) at pH greater than about 4.7, and more soluble than β-tricalcium phosphate (β-TCP), octacalcium phosphate (OCP) and DCP at pH above 5.5. Their solubility approached that of α-tricalcium phosphate (α-TCP) at about pH 7. These nCaPs, which cannot be readily prepared by other currently available methods for nanoparticle preparation, have potential biomedical applications.

  8. Study of Ca-ATMP precipitation in the presence of magnesium ion.

    Science.gov (United States)

    Tantayakom, V; Fogler, H Scott; de Moraes, F F; Bualuang, M; Chavadej, S; Malakul, P

    2004-03-16

    ATMP (aminotri(methylenephosphonic acid)), a phosphonate scale inhibitor used in the petroleum industry, was used as a model scale inhibitor in this study. One of the goals of this work was to determine the range of conditions under which Mg ions, which are formed in reservoir formations containing dolomite, modulate the formation of Ca-ATMP precipitate as a scale inhibitor. The results revealed that the amount of ATMP precipitated decreased with addition of Mg ions in solution at all values of the solution pH. Furthermore, an increase in both the solution pH and the concentration of the divalent cations in solution resulted in a change of the molar ratio of (Ca + Mg) to ATMP in the precipitates. At a low solution pH (pH 1.5), Mg ions had little effect on the composition of the Ca-ATMP precipitate. However, at higher values of the solution pH (pH 4 and 7), the Ca to ATMP molar ratio in the precipitates decreased with increasing concentration of the Mg. Here it was found that Mg ions replaced Ca ions on available reactive sites of ATMP molecules. These results determined the limits of the Mg ion concentration, which affects the precipitation of Ca-ATMP, Mg-ATMP, and (Ca + Mg)-ATMP. The dissolution of the scale inhibitors was studied using a rotating disk reactor. These experiments showed that the total divalent cation molar ratio (Ca + Mg) to ATMP in the precipitates is the primary factor that controls the rate of dissolution (release) of the phosphonate precipitates. The phosphonate precipitate dissolution rates decreased as the molar ratio of divalent cations to ATMP in the precipitates increased.

  9. Fatty acid profiles in tissues of mice fed conjugated linoleic acid

    DEFF Research Database (Denmark)

    Gøttsche, Jesper; Straarup, Ellen Marie

    2006-01-01

    The incorporation of vaccenic acid (VA, 0.5 and 1.2%), conjugated linoleic acid (CLA, mixture of primarily c9,t11- and t10,c12-CLA, 1.2%), linoleic acid (LA, 1.2%) and oleic acid (OA, 1.2%) into different tissues of mice was examined. The effects on the fatty acid composition of triacylglycerols...... (TAG) and phospholipids (PL) in kidney, spleen, liver and adipose tissue were investigated. VA and CLA (c9,t11- and t10,c12-CLA) were primarily found in TAG, especially in kidney and adipose tissue, respectively. Conversion of VA to c9,t11-CLA was indicated by our results, as both fatty acids were...... incorporated into all the analyzed tissues when a diet containing VA but not c9,t11-CLA was fed. Most of the observed effects on the fatty acid profiles were seen in the CLA group, whereas only minor effects were observed in the VA groups compared with the CA group. Thus, CLA increased n-3 polyunsaturated...

  10. Biphasic decay of the Ca transient results from increased sarcoplasmic reticulum Ca leak

    Science.gov (United States)

    Sankaranarayanan, Rajiv; Li, Yatong; Greensmith, David J.; Eisner, David A.

    2016-01-01

    Key points Ca leak from the sarcoplasmic reticulum through the ryanodine receptor (RyR) reduces the amplitude of the Ca transient and slows its rate of decay.In the presence of β‐adrenergic stimulation, RyR‐mediated Ca leak produces a biphasic decay of the Ca transient with a fast early phase and a slow late phase.Two forms of Ca leak have been studied, Ca‐sensitising (induced by caffeine) and non‐sensitising (induced by ryanodine) and both induce biphasic decay of the Ca transient.Only Ca‐sensitising leak can be reversed by traditional RyR inhibitors such as tetracaine.Ca leak can also induce Ca waves. At low levels of leak, waves occur. As leak is increased, first biphasic decay and then slowed monophasic decay is seen. The level of leak has major effects on the shape of the Ca transient. Abstract In heart failure, a reduction in Ca transient amplitude and contractile dysfunction can by caused by Ca leak through the sarcoplasmic reticulum (SR) Ca channel (ryanodine receptor, RyR) and/or decreased activity of the SR Ca ATPase (SERCA). We have characterised the effects of two forms of Ca leak (Ca‐sensitising and non‐sensitising) on calcium cycling and compared with those of SERCA inhibition. We measured [Ca2+]i with fluo‐3 in voltage‐clamped rat ventricular myocytes. Increasing SR leak with either caffeine (to sensitise the RyR to Ca activation) or ryanodine (non‐sensitising) had similar effects to SERCA inhibition: decreased systolic [Ca2+]i, increased diastolic [Ca2+]i and slowed decay. However, in the presence of isoproterenol, leak produced a biphasic decay of the Ca transient in the majority of cells while SERCA inhibition produced monophasic decay. Tetracaine reversed the effects of caffeine but not of ryanodine. When caffeine (1 mmol l−1) was added to a cell which displayed Ca waves, the wave frequency initially increased before waves disappeared and biphasic decay developed. Eventually (at higher caffeine concentrations), the

  11. crdi.ca

    International Development Research Centre (IDRC) Digital Library (Canada)

    et des enfants d'Afrique. INITIATIVE CONCERTÉE. Innovation pour la santé des mères et des enfants d'Afrique. Centre de recherches pour le développement international. CP Box 8500 Ottawa ON Canada K1G 3H9. Téléphone : +1 613 236 6163 • Télécopieur : +1 613 657 7749 ismea@crdi.ca | www.crdi.ca/ismea crdi.ca.

  12. Biotechnology for improved hHydroxy fatty acid production in oilseed lesquerella

    Science.gov (United States)

    The conventional source of hydroxy fatty acid (HFA) is from castor (Ricinus communis), 90% of castor oil is ricinoleic acid (18:1OH). Ricinoleic acid and its derivatives are used as raw materials for numerous industrial products, such as lubricants, plasticizers and surfactants. The production of ca...

  13. Biomimetic Deposition of Hydroxyapatite by Mixed Acid Treatment of Titanium Surfaces.

    Science.gov (United States)

    Zhao, J M; Park, W U; Hwang, K H; Lee, J K; Yoon, S Y

    2015-03-01

    A simple chemical method was established for inducing bioactivity of Ti metal. In the present study, two kinds of mixed acid solutions were used to treat Ti specimens to induce Ca-P formation. Following a strong mixed acid activation process, Ca-P coatings successfully formed on the Ti surfaces in the simulated body fluid. Strong mixed acid etching was used to increase the roughness of the metal surface, because the porous and rough surfaces allow better adhesion between Ca-P coatings and substrate. Nano-scale modification of titanium surfaces can alter cellular and tissue responses, which may benefit osseointegration and dental implant therapy. Some specimens were treated with a 5 M NaOH aqueous solution, and then heat treated at 600 °C in order to form an amorphous sodium titanate layer on their surface. This treated titanium metal is believed to form a dense and uniform bone-like apatite layer on its surface in a simulated body fluid (SBF). This study proved that mixed acid treatment is not only important for surface passivation but is also another bioactive treatment for titanium surfaces, an alternative to alkali treatment. In addition, mixed acid treatment uses a lower temperature and shorter time period than alkali treatment.

  14. Surface modification of calcium-copper hydroxyapatites using polyaspartic acid

    Science.gov (United States)

    Othmani, Masseoud; Aissa, Abdallah; Bachoua, Hassen; Debbabi, Mongi

    2013-01-01

    Mixed calcium-copper hydroxyapatite (Ca-CuHAp), with general formula Ca(10-x)Cux(PO4)6(OH)2, where 0 ≤ x ≤ 0.75 was prepared in aqueous medium in the presence of different concentrations of poly-L-aspartic acid (PASP). XRD, IR, TG-DTA, TEM-EDX, AFM and chemical analyses were used to characterize the structure, morphology and composition of the products. All techniques show the formation of new hybrid compounds Ca-CuHAp-PASP. The presence of the grafting moiety on the apatitic material is more significant with increasing of copper amount and/or organic concentration in the starting solution. These increases lead to the affectation of apatite crystallinity. The IR spectroscopy shows the conservation of (Psbnd OH) band of (HPO4)2- groups, suggesting that PASP acid was interacted only with metallic cations of hydroxyapatite.

  15. Back to the future with the AGP-Ca2+ flux capacitor.

    Science.gov (United States)

    Lamport, Derek T A; Varnai, Peter; Seal, Charlotte E

    2014-10-01

    Arabinogalactan proteins (AGPs) are ubiquitous in green plants. AGPs comprise a widely varied group of hydroxyproline (Hyp)-rich cell surface glycoproteins (HRGPs). However, the more narrowly defined classical AGPs massively predominate and cover the plasma membrane. Extensive glycosylation by pendant polysaccharides O-linked to numerous Hyp residues like beads of a necklace creates a unique ionic compartment essential to a wide range of physiological processes including germination, cell extension and fertilization. The vital clue to a precise molecular function remained elusive until the recent isolation of small Hyp-arabinogalactan polysaccharide subunits; their structural elucidation by nuclear magentic resonance imaging, molecular simulations and direct experiment identified a 15-residue consensus subunit as a β-1,3-linked galactose trisaccharide with two short branched sidechains each with a single glucuronic acid residue that binds Ca(2+) when paired with its adjacent sidechain. AGPs bind Ca(2+) (Kd ∼ 6 μm) at the plasma membrane (PM) at pH ∼5·5 but release it when auxin-dependent PM H(+)-ATPase generates a low periplasmic pH that dissociates AGP-Ca(2+) carboxylates (pka ∼3); the consequential large increase in free Ca(2+) drives entry into the cytosol via Ca(2+) channels that may be voltage gated. AGPs are thus arguably the primary source of cytosolic oscillatory Ca(2+) waves. This differs markedly from animals, in which cytosolic Ca(2+) originates mostly from internal stores such as the sarcoplasmic reticulum. In contrast, we propose that external dynamic Ca(2+) storage by a periplasmic AGP capacitor co-ordinates plant growth, typically involving exocytosis of AGPs and recycled Ca(2+), hence an AGP-Ca(2+) oscillator. The novel concept of dynamic Ca(2+) recycling by an AGP-Ca(2+) oscillator solves the long-standing problem of a molecular-level function for classical AGPs and thus integrates three fields: AGPs, Ca(2+) signalling and auxin. This

  16. Effect of dietary citric acid supplementation and partial replacement ...

    African Journals Online (AJOL)

    Beluga is one of the most important fishes in Caspian Sea. The purpose of this experiment were to evaluate the effect of soybean meal (SBM) as a fishmeal (FM) partial replacement and citric acid (CA) supplement on the calcium (Ca) and phosphorus (P) of muscle, scute and serum of Beluga diets. Three isonitrogenous and ...

  17. Effect of pertussis and cholera toxins administered supraspinally on CA3 hippocampal neuronal cell death and the blood glucose level induced by kainic acid in mice.

    Science.gov (United States)

    Kim, Chea-Ha; Park, Soo-Hyun; Sim, Yun-Beom; Sharma, Naveen; Kim, Sung-Su; Lim, Su-Min; Jung, Jun-Sub; Suh, Hong-Won

    2014-12-01

    The effect of cholera toxin (CTX) or pertussis toxin (PTX) administered supraspinally on hippocampal neuronal cell death in CA3 region induced by kainic acid (KA) was examined in mice. After the pretreatment with either PTX or CTX intracerebroventricularly (i.c.v.), mice were administered i.c.v. with KA. The i.c.v. treatment with KA caused a neuronal cell death in CA3 region and PTX, but not CTX, attenuated the KA-induced neuronal cell death. In addition, i.c.v. treatment with KA caused an elevation of the blood glucose level. The i.c.v. PTX pretreatment alone caused a hypoglycemia and inhibited KA-induced hyperglycemic effect. However, i.c.v. pretreatment with CTX did not affect the basal blood glucose level and KA-induced hyperglycemic effect. Moreover, KA administered i.c.v. caused an elevation of corticosterone level and reduction of the blood insulin level. Whereas, i.c.v. pretreatment with PTX further enhanced KA-induced up-regulation of corticosterone level. Furthermore, i.c.v. administration of PTX alone increased the insulin level and KA-induced hypoinsulinemic effect was reversed. In addition, PTX pretreatment reduces the KA-induced seizure activity. Our results suggest that supraspinally administered PTX, exerts neuroprotective effect against KA-induced neuronal cells death in CA3 region and neuroprotective effect of PTX is mediated by the reduction of KA-induced blood glucose level. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  18. Succinic acid production from acid hydrolysate of corn fiber by Actinobacillus succinogenes.

    Science.gov (United States)

    Chen, Kequan; Jiang, Min; Wei, Ping; Yao, Jiaming; Wu, Hao

    2010-01-01

    Dilute acid hydrolysate of corn fiber was used as carbon source for the production of succinic acid by Actinobacillus succinogenes NJ113. The optimized hydrolysis conditions were obtained by orthogonal experiments. When corn fiber particles were of 20 mesh in size and treated with 1.0% sulfuric acid at 121 degrees C for 2 h, the total sugar yield could reach 63.3%. It was found that CaCO(3) neutralization combined with activated carbon adsorption was an effective method to remove fermentation inhibitors especially furfural that presented in the acid hydrolysate of corn fiber. Only 5.2% of the total sugar was lost, while 91.9% of furfural was removed. The yield of succinic acid was higher than 72.0% with the detoxified corn fiber hydrolysate as the carbon source in anaerobic bottles or 7.5 L fermentor cultures. It was proved that the corn fiber hydrolysate could be an alternative to glucose for the production of succinic acid by A. succinogenes NJ113.

  19. Gibberellic acid promoting phytic acid degradation in germinating soybean under calcium lactate treatment.

    Science.gov (United States)

    Hui, Qianru; Wang, Mian; Wang, Pei; Ma, Ya; Gu, Zhenxin; Yang, Runqiang

    2018-01-01

    Phytic acid as a phosphorus storage vault provides phosphorus for plant development. It is an anti-nutritional factor for humans and some animals. However, its degradation products lower inositol phosphates have positive effects on human health. In this study, the effect of gibberellic acid (GA) on phytic acid degradation under calcium lactate (Ca) existence was investigated. The results showed that Ca + GA treatment promoted the growth status, hormone metabolism and phytic acid degradation in germinating soybean. At the same time, the availability of phosphorus, the activity of phytic acid degradation-associated enzyme and phosphoinositide-specific phospholipase C (PI-PLC) increased. However, the relative genes expression of phytic acid degradation-associated enzymes did not vary in accordance with their enzymes activity. The results revealed that GA could mediate the transport and function of calcium and a series of physiological and biochemical changes to regulate phytic acid degradation of soybean sprouts. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. Production of α-keto acids Part I. Immobilized cells ofTrigonopsis variabilis containing D-amino acid oxidase.

    Science.gov (United States)

    Brodelius, P; Nilsson, K; Mosbach, K

    1981-12-01

    Whole cells ofTrigonopsis variabilis were immobilized by entrapment in Ca(2+)-alginate and used for the production of α-keto acids from the corresponding D-amino acids. The D-amino acid oxidase within the immobilized cells has a broad substrate specificity. Hydrogen peroxide formed in the enzymatic reaction was efficiently hydrolyzed by manganese oxide co-immobilized with the cells. The amino acid oxidase activity was assayed with a new method based on reversed-phase HPLC. Oxygen requirements, bead size, concentration of cells in the beads, flow rate, and other factors were investigated in a " trickle-bed " reactor.

  1. Nanocrystalline K–CaO for the transesterification of a variety of feedstocks: Structure, kinetics and catalytic properties

    International Nuclear Information System (INIS)

    Kumar, Dinesh; Ali, Amjad

    2012-01-01

    The work presented in current manuscript demonstrated the preparation of potassium ion impregnated calcium oxide in nano particle form and its application as solid catalyst for the transesterification of a variety of triglycerides. The catalyst was characterized by powder X-ray diffraction, scanning electron and transmission electron microscopic, BET surface area measurement, and Hammett indicator studies in order to establish the effect of K + impregnation on catalyst structure, particle size, surface morphology, and basic strength. The catalyst prepared by impregnating a mass fraction of 3.5% K + in CaO was found to exist as ∼40 nm sized particles, and same was employed in present study as solid catalyst for the transesterification of a variety of feedstocks viz., mutton fat, soybean, virgin cotton seed, waste cotton seed, castor, karanja and jatropha oil. Under optimized conditions, K–CaO was found to yield 98 ± 2% fatty acid methyl esters (FAMEs) from the employed feedstocks, and showed a high tolerance to the free fatty acid and moisture contents. A pseudo first order kinetic model was applied to evaluate the kinetic parameters and under optimized conditions first order rate constant and activation energy was found to be 0.062 min −1 and 54 kJ mol −1 , respectively. The Koros–Nowak criterion test has been employed to demonstrate that measured catalytic activity was independent of the influence of transport phenomenon. Finally, few physicochemical properties of the FAMEs prepared from waste cotton seed oil, karanja oil and jatropha oils have been studied and compared with European standards. -- Graphical abstract: TEM image of 3.5–K–CaO. Display Omitted Highlights: ► K–CaO as nanosized solid catalyst for the transesterification of variety of feedstock has been prepared and characterized. ► K–CaO was found effective even when 8.4% free fatty acid and 10.3% moisture contents were present in the feedstock. ► K–CaO was reused 3 times and

  2. Characterization of Bacillus subtilis YfkE (ChaA): a calcium-specific Ca2+/H+ antiporter of the CaCA family.

    Science.gov (United States)

    Fujisawa, Makoto; Wada, Yuko; Tsuchiya, Takahiro; Ito, Masahiro

    2009-08-01

    YfkE, a protein from Bacillus subtilis, exhibits homology to the Ca(2+):Cation Antiporter (CaCA) Family. In a fluorescence-based assay of everted membrane vesicles prepared from Na(+)(Ca(2+))/H(+) antiporter-defective mutant Escherichia coli KNabc, YfkE exhibited robust Ca(2+)/H(+) antiport activity, with a K (m) for Ca(2+) estimated at 12.5 muM at pH 8.5 and 113 muM at pH 7.5. Neither Na(+) nor K(+) served as a substrate. Mg(2+) also did not serve as a substrate, but inhibited the Ca(2+)/H(+) antiporter activity. The Ca(2+) transport capability of YfkE was also observed directly by transport assays in everted membrane vesicles using radiolabeled (45)Ca(2+). Transcriptional analysis from the putative yfkED operon using beta-garactosidase activity as a reporter revealed that both of the yfkE and yfkD genes are regulated by forespore-specific sigma factor, SigG, and the general stress response regulator, SigB. These results suggest that YfkE may be needed for Ca(2+) signaling in the sporulation or germination process in B. subtilis. ChaA is proposed as the designation for YfkE of B. subtilis.

  3. Chemistry of the M (M=Fe, Ca, Ba-Se-H2O Systems at 25 °C

    Directory of Open Access Journals (Sweden)

    Fumihiko Hasegawa

    2009-09-01

    Full Text Available The chemistry of the M (M=Fe, Ca, Ba-Se-H2O systems at 25 °C is reviewed based on our previous papers. In this paper, the phase equilibria in the Fe(III-Se(IV-H2O, Ca-Se(IV,VI-H2O and Ba-Se(IV,VI-H2O systems at 25 °C are discussed. Then, the three-stage process for removal of selenium from industrial waste water [Se(IV,VI < 1,500 mg/L] containing sulfuric acid was introduced. This seems to be a promising process for selenium removal from acidic sulfate waste water containing high concentration levels of selenium to below 0.1 mg/L.

  4. Modulation of intracellular calcium waves and triggered activities by mitochondrial ca flux in mouse cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Zhenghang Zhao

    Full Text Available Recent studies have suggested that mitochondria may play important roles in the Ca(2+ homeostasis of cardiac myocytes. However, it is still unclear if mitochondrial Ca(2+ flux can regulate the generation of Ca(2+ waves (CaWs and triggered activities in cardiac myocytes. In the present study, intracellular/cytosolic Ca(2+ (Cai (2+ was imaged in Fluo-4-AM loaded mouse ventricular myocytes. Spontaneous sarcoplasmic reticulum (SR Ca(2+ release and CaWs were induced in the presence of high (4 mM external Ca(2+ (Cao (2+. The protonophore carbonyl cyanide p-(trifluoromethoxyphenylhydrazone (FCCP reversibly raised basal Cai (2+ levels even after depletion of SR Ca(2+ in the absence of Cao (2+ , suggesting Ca(2+ release from mitochondria. FCCP at 0.01 - 0.1 µM partially depolarized the mitochondrial membrane potential (Δψ m and increased the frequency and amplitude of CaWs in a dose-dependent manner. Simultaneous recording of cell membrane potentials showed the augmentation of delayed afterdepolarization amplitudes and frequencies, and induction of triggered action potentials. The effect of FCCP on CaWs was mimicked by antimycin A (an electron transport chain inhibitor disrupting Δψ m or Ru360 (a mitochondrial Ca(2+ uniporter inhibitor, but not by oligomycin (an ATP synthase inhibitor or iodoacetic acid (a glycolytic inhibitor, excluding the contribution of intracellular ATP levels. The effects of FCCP on CaWs were counteracted by the mitochondrial permeability transition pore blocker cyclosporine A, or the mitochondrial Ca(2+ uniporter activator kaempferol. Our results suggest that mitochondrial Ca(2+ release and uptake exquisitely control the local Ca(2+ level in the micro-domain near SR ryanodine receptors and play an important role in regulation of intracellular CaWs and arrhythmogenesis.

  5. Enhancing Cooperativity in Bifunctional Acid–Pd Catalysts with Carboxylic Acid-Functionalized Organic Monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Coan, Patrick D. [Department of Chemical and Biological Engineering, University of Colorado—Boulder, Boulder, Colorado 80309, United States; Ellis, Lucas D. [Department of Chemical and Biological Engineering, University of Colorado—Boulder, Boulder, Colorado 80309, United States; Griffin, Michael B. [National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States; Schwartz, Daniel K. [Department of Chemical and Biological Engineering, University of Colorado—Boulder, Boulder, Colorado 80309, United States; Medlin, J. Will [Department of Chemical and Biological Engineering, University of Colorado—Boulder, Boulder, Colorado 80309, United States

    2018-03-01

    Cooperative catalysts containing a combination of noble metal hydrogenation sites and Bronsted acid sites are critical for many reactions, including the deoxygenation (DO) of biomass-derived oxygenates in the upgrading of pyrolysis oil. One route toward the design of cooperative catalysts is to tether two different catalytically active functions so that they are in close proximity while avoiding undesirable interactions that can block active sites. Here, we deposited carboxylic acid (CA)-functionalized organophosphonate monolayers onto Al2O3-supported Pd nanoparticle catalysts to prepare bifunctional catalysts containing both Bronsted acid and metal sites. Modification with phosphonic acids (PAs) improved activity and selectivity for gas-phase DO reactions, but the degree of improvement was highly sensitive to both the presence and positioning of the CA group, suggesting a significant contribution from both the PA and CA sites. Short spacer lengths of 1-2 methylene groups between the phosphonate head and CA tail were found to yield the best DO rates and selectivities, whereas longer chains performed similarly to self-assembled monolayers having alkyl tails. Results from a combination of density functional theory and Fourier transform infrared spectroscopy suggested that the enhanced catalyst performance on the optimally positioned CAs was due to the generation of strong acid sites on the Al2O3 support adjacent to the metal. Furthermore, the high activity of these sites was found to result from a hydrogen-bonded cyclic structure involving cooperativity between the phosphonate head group and CA tail function. More broadly, these results indicate that functional groups tethered to supports via organic ligands can influence catalytic chemistry on metal nanoparticles.

  6. Comparative study of anisotropic superconductivity in CaAlSi and CaGaSi

    International Nuclear Information System (INIS)

    Tamegai, T.; Uozato, K.; Kasahara, S.; Nakagawa, T.; Tokunaga, M.

    2005-01-01

    In order to get some insight into the origin of the anomalous angular dependence of H c2 in a layered intermetallic compound CaAlSi, electronic, superconducting, and structural properties are compared between CaAlSi and CaGaSi. The angular dependence of H c2 in CaGaSi is well described by the anisotropic GL model. Parallel to this finding, the pronounced lattice modulation accompanying the superstructure along the c-axis in CaAlSi is absent in CaGaSi. A relatively large specific heat jump at the superconducting transition in CaAlSi compared with CaGaSi indicates the presence of strong electron-phonon coupling in CaAlSi, which may cause the superstructure and the anomalous angular dependence of H c2

  7. Mass yield distributions for the reactions Ca+Ca, Nb+Nb and Ca+Ca at E/A=800 MeV in the molecular-dynamical model

    International Nuclear Information System (INIS)

    Kiselev, S.M.

    1987-01-01

    Mass yield distributions obtained on the basis of the molecular-dynamical model are presented for the Ca+Ca, Nb+Nb reactions at E/A=400 MeV and Ca+Ca reaction at E/A=800 MeV. For the fragments with masses upto quarter of the mass of initial nucleus the model predicts a power law for mass spectra with almost the same value of the exponent. Such the behaviour is roughly a result of the superposition of the fireball breakup and the disintegration of spectator regions rather than the evidence of a liquid-gas-like phase transition in hot nuclear matter

  8. Effect of Ca-Fe oxides additives on NOx reduction in iron ore sintering

    Institute of Scientific and Technical Information of China (English)

    Zhi-yuan Yu; Xiao-hui Fan; Min Gan; Xu-ling Chen

    2017-01-01

    As the emission control regulations get stricter, the NOx reduction in the sintering process becomes an important environmental concern owing to its role in the formation of photochemical smog and acid rain. The NOx emissions from the sintering machine account for 48% of total amount from the iron and steel industry.Thus, it is essential to reduce NOx emissions from the sintering machine, for the achievement of clean production of sinter.Ca-Fe oxides, serving as the main binding phase in the sinter, are therefore used as additives into the sintering mixture to reduce NOx emissions.The results show that the NOx re-duction ratio achieves 27.76% with 8% Ca-Fe oxides additives since the Ca-Fe oxides can advance the ig-nition and inhibit the nitrogen oxidation compared with the conventional condition.Meanwhile, the exist-ence of Ca-Fe oxides was beneficial to the sinter quality since they were typical low melting point com-pounds.The optimal mass fraction of Ca-Fe oxides additives should be less than 8% since the permeability of sintering bed was significantly decreased with a further increase of the Ca-Fe oxides fines, inhibiting the mineralization reaction of sintering mixture.Additionally, the appropriate particle size can be obtained when mixing an equal amount of Ca-Fe oxides additives of -0.5 mm and 0.5-3.0 mm in size.

  9. Succinate modulates Ca(2+) transient and cardiomyocyte viability through PKA-dependent pathway.

    Science.gov (United States)

    Aguiar, Carla J; Andrade, Vanessa L; Gomes, Enéas R M; Alves, Márcia N M; Ladeira, Marina S; Pinheiro, Ana Cristina N; Gomes, Dawidson A; Almeida, Alvair P; Goes, Alfredo M; Resende, Rodrigo R; Guatimosim, Silvia; Leite, M Fatima

    2010-01-01

    GPR91 is an orphan G-protein-coupled receptor (GPCR) that has been characterized as a receptor for succinate, a citric acid cycle intermediate, in several tissues. In the heart, the role of succinate is unknown. We now report that rat ventricular cardiomyocytes express GPR91. We found that succinate, through GPR91, increases the amplitude and the rate of decline of global Ca(2+) transient, by increasing the phosphorylation levels of ryanodine receptor and phospholamban, two well known Ca(2+) handling proteins. The effects of succinate on Ca(2+) transient were abolished by pre-treatment with adenylyl cyclase and cAMP-dependent protein kinase (PKA) inhibitors. Direct PKA activation by succinate was further confirmed using a FRET-based A-kinase activity reporter. Additionally, succinate decreases cardiomyocyte viability through a caspase-3 activation pathway, effect also prevented by PKA inhibition. Taken together, these observations show that succinate acts as a signaling molecule in cardiomyocytes, modulating global Ca(2+) transient and cell viability through a PKA-dependent pathway. 2009 Elsevier Ltd. All rights reserved.

  10. 12-lipoxygenase regulates hippocampal long-term potentiation by modulating L-type Ca2+ channels

    Science.gov (United States)

    DeCostanzo, Anthony J.; Voloshyna, Iryna; Rosen, Zev B.; Feinmark, Steven J.; Siegelbaum, Steven A.

    2010-01-01

    Although long-term potentiation (LTP) has been intensely studied, there is disagreement as to which molecules mediate and modulate LTP. This is partly due to the presence of mechanistically distinct forms of LTP that are induced by different patterns of stimulation and that depend on distinct Ca2+ sources. Here we report a novel role for the arachidonic acid-metabolizing enzyme 12-lipoxygenase (12-LO) in LTP at CA3-CA1 hippocampal synapses that is dependent on the pattern of tetanic stimulation. We find that 12-LO activity is required for the induction of LTP in response to a theta-burst stimulation (TBS) protocol, which depends on Ca2+ influx through both NMDA receptors and L-type voltage-gated Ca2+ channels. In contrast, LTP induced by 100 Hz tetanic stimulation, which requires Ca2+ influx through NMDA receptors but not L-type channels, does not require 12-LO. We find that 12-LO regulates LTP by enhancing postsynaptic somatodendritic Ca2+ influx through L-type channels during theta burst stimulation, an action exerted via 12(S)-HPETE, a downstream metabolite of 12-LO. These results help define the role of a long-disputed signaling enzyme in LTP. PMID:20130191

  11. Mechanism for enhanced degradation of clofibric acid in aqueous by catalytic ozonation over MnOx/SBA-15.

    Science.gov (United States)

    Sun, Qiangqiang; Wang, Yu; Li, Laisheng; Bing, Jishuai; Wang, Yingxin; Yan, Huihua

    2015-04-09

    Comparative experiments were conducted to investigate the catalytic ability of MnO(x)/SBA-15 for the ozonation of clofibric acid (CA) and its reaction mechanism. Compared with ozonation alone, the degradation of CA was barely enhanced, while the removal of TOC was significantly improved by catalytic ozonation (O3/MnO(x)/SBA-15). Adsorption of CA and its intermediates by MnO(x)/SBA-15 was proved unimportant in O3/MnO(x)/SBA-15 due to the insignificant adsorption of CA and little TOC variation after ceasing ozone in stopped-flow experiment. The more remarkably inhibition effect of sodium bisulfite (NaHSO3) on the removal of TOC in catalytic ozonation than in ozonation alone elucidated that MnO(x)/SBA-15 facilitated the generation of hydroxyl radicals (OH), which was further verified by electron spin-resonance spectroscopy (ESR). Highly dispersed MnO(x) on SBA-15 were believed to be the main active component in MnO(x)/SBA-15. Some intermediates were indentified and different degradation routes of CA were proposed in both ozonation alone and catalytic ozonation. The amounts of small molecular carboxylic acids (i.e., formic acid (FA), acetic acid (AA) and oxalic acid (OA)) generated in catalytic ozonation were lower than in ozonation alone, resulting from the generation of more OH. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Effect of hydrofluoric acid on acid decomposition mixtures for determining iron and other metallic elements in green vegetables

    International Nuclear Information System (INIS)

    Dogbe, S.A.; Afful, S.; Debrah, C.

    2007-01-01

    The efficiency of acid mixtures, HNO 3 - HCI0 4 -HF, HNO 3 - HCI - HF, HNO 3 - HCIO 4 and HNO 3 - HCI in the decomposition of four edible green vegetables, Gboma (Solanum macrocarpon), Aleefu (Amaranttius hibiridus), Shoeley (Hibiscus sabdariffa) and Ademe (Corchorus olitorius), for flame Atomic Absorption Spectrometer analysis of Fe, Mn, Mg, Cu, Zn and Ca was studied. The concentrations of Fe were higher (120.61 -710.10 mg/kg), while the values of Cu were lower (2.31 - 4.84 mg/kg) in all the samples. The values of concentration for Fe were more reproducible when HF was included in the decomposition mixtures. There were no significant differences in the concentrations of the other elements when HF was included in the acid mixture as compared to the acid mixtures without HF. Therefore, the inclusion of HF in the acid decomposition mixtures would ensure total and precise estimation of Fe in plant materials, but not critical for analysis of Mn, Mg, Cu, Zn and Ca. Performance of the decomposition procedures was verified by applying the methods to analyse Standard Reference Material IAEA-V-10 Hay Powder. (au)

  13. Effects of exchangeable Ca:Mg ratio on the dispersion of soils some ...

    African Journals Online (AJOL)

    The soils studied were acidic, low in nutrient level, showed high dispersion rate, high water- dispersible clay content and the textural class were loamy sand and sandy loam. The exchangeable Ca2+ and Mg2+ contents of the soils dominated the exchange complex. The cation exchange capacity (CEC) ranges between 4 ...

  14. Measurement of Ca, Zn and Sr in enamel of human teeth by XRF

    Energy Technology Data Exchange (ETDEWEB)

    Wielopolski, L.; Featherstone, J.D.B.; Cohn, S.H.

    1984-01-01

    Energy dispersive x-ray fluorescence (EDXRF) has been employed to measure Ca, Zn, and Sr in enamel of human teeth. The calibration of the EDXRF system was performed by comparing Sr/Ca ratios with values obtained by atomic absorption analysis of acid etched biopsies of the enamel surface. Two calibration lines were obtained, one line for untreated teeth and the second line for teeth immersed (treated) in solutions containing Sr. A simple analytical model demonstrated that the two calibration lines were the result of the difference in the depth of the enamel sampled by EDXRF and by the acid-etched biopsy. The multi-elemental, non-destructive and quantitative aspects of EDXRF permit the sequential monitoring of the effects of Sr and Zn ions on the mineralization and demineralization processes in human enamel. The portability of the system and adaptability to non-invasive measurements makes it suitable for field studies. 26 references, 4 figures.

  15. Measurement of Ca, Zn and Sr in enamel of human teeth by XRF

    International Nuclear Information System (INIS)

    Wielopolski, L.; Featherstone, J.D.B.; Cohn, S.H.

    1984-01-01

    Energy dispersive x-ray fluorescence (EDXRF) has been employed to measure Ca, Zn, and Sr in enamel of human teeth. The calibration of the EDXRF system was performed by comparing Sr/Ca ratios with values obtained by atomic absorption analysis of acid etched biopsies of the enamel surface. Two calibration lines were obtained, one line for untreated teeth and the second line for teeth immersed (treated) in solutions containing Sr. A simple analytical model demonstrated that the two calibration lines were the result of the difference in the depth of the enamel sampled by EDXRF and by the acid-etched biopsy. The multi-elemental, non-destructive and quantitative aspects of EDXRF permit the sequential monitoring of the effects of Sr and Zn ions on the mineralization and demineralization processes in human enamel. The portability of the system and adaptability to non-invasive measurements makes it suitable for field studies. 26 references, 4 figures

  16. Measurement of Ca, Zn, and Sr in enamel of human teeth by XRF

    International Nuclear Information System (INIS)

    Wielopolski, L.; Featherstone, J.D.b.; Cohn, S.H.

    1984-01-01

    Energy dispersive x-ray fluorescence (EDXRF) has been employed to measure Ca, Zn, and Sr in enamel of human teeth. The calibration of the EDXRF system was performed by comparing Sr/Ca ratios with values obtained by atomic absorption analysis of acid etched biopsies of the enamel surface. Two calibration lines were obtained, one line for untreated teeth and the second line for teeth immersed (treated) in solutions containing Sr. A simple analytical model demonstrated that the two calibration lines were the result of the difference in the depth of the enamel sampled by EDXRF and by the acid-etched biopsy. The multi-elemental, non-destructive and quantitative aspects of EDXRF permit the sequential monitoring of the effects of Sr and Zn ions on the mineralization and demineralization processes in human enamel. The portability of the system and adaptability to non-invasive measurements makes it suitable for field studies. 26 references, 4 figures

  17. PIK3CA Mutation in Colorectal Cancer: Relationship with Genetic and Epigenetic Alterations

    Directory of Open Access Journals (Sweden)

    Katsuhiko Nosho

    2008-06-01

    Full Text Available Somatic PIK3CA mutations are often present in colorectal cancer. Mutant PIK3CA activates AKT signaling, which up-regulates fatty acid synthase (FASN. Microsatellite instability (MSI and CpG island methylator phenotype (CIMP are important molecular classifiers in colorectal cancer. However, the relationship between PIK3CA mutation, MSI and CIMP remains uncertain. Using Pyrosequencing technology, we detected PIK3CA mutations in 91 (15% of 590 population-based colorectal cancers. To determine CIMP status, we quantified DNA methylation in eight CIMP-specific promoters [CACNA1G, CDKN2A (p16, CRABP1, IGF2, MLH1, NEUROG1, RUNX3, and SOCS1] by real-time polymerase chain reaction (MethyLight. PIK3CA mutation was significantly associated with mucinous tumors [P = .0002; odds ratio (OR = 2.44], KRAS mutation (P < .0001; OR = 2.68, CIMP-high (P = .03; OR = 2.08, phospho–ribosomal protein S6 expression (P = .002; OR = 2.19, and FASN expression (P = .02; OR = 1.85 and inversely with p53 expression (P = .01; OR = 0.54 and β-catenin (CTNNB1 alteration (P = .004; OR = 0.43. In addition, PIK3CA G-to-A mutations were associated with MGMT loss (P = .001; OR = 3.24 but not with MGMT promoter methylation. In conclusion, PIK3CA mutation is significantly associated with other key molecular events in colorectal cancer, and MGMT loss likely contributes to the development of PIK3CA G>A mutation. In addition, Pyrosequencing is useful in detecting PIK3CA mutation in archival paraffin tumor tissue. PIK3CA mutational data further emphasize heterogeneity of colorectal cancer at the molecular level.

  18. Streptomyces clavuligerus shows a strong association between TCA cycle intermediate accumulation and clavulanic acid biosynthesis.

    Science.gov (United States)

    Ramirez-Malule, Howard; Junne, Stefan; Nicolás Cruz-Bournazou, Mariano; Neubauer, Peter; Ríos-Estepa, Rigoberto

    2018-05-01

    Clavulanic acid (CA) is produced by Streptomyces clavuligerus (S. clavuligerus) as a secondary metabolite. Knowledge about the carbon flux distribution along the various routes that supply CA precursors would certainly provide insights about metabolic performance. In order to evaluate metabolic patterns and the possible accumulation of tricarboxylic acid (TCA) cycle intermediates during CA biosynthesis, batch and subsequent continuous cultures with steadily declining feed rates were performed with glycerol as the main substrate. The data were used to in silico explore the metabolic capabilities and the accumulation of metabolic intermediates in S. clavuligerus. While clavulanic acid accumulated at glycerol excess, it steadily decreased at declining dilution rates; CA synthesis stopped when glycerol became the limiting substrate. A strong association of succinate, oxaloacetate, malate, and acetate accumulation with CA production in S. clavuligerus was observed, and flux balance analysis (FBA) was used to describe the carbon flux distribution in the network. This combined experimental and numerical approach also identified bottlenecks during the synthesis of CA in a batch and subsequent continuous cultivation and demonstrated the importance of this type of methodologies for a more advanced understanding of metabolism; this potentially derives valuable insights for future successful metabolic engineering studies in S. clavuligerus.

  19. Surface acidity of calcium phosphate and calcium hydroxyapatite: FTIR spectroscopic study of low-temperature CO adsorption

    International Nuclear Information System (INIS)

    Pekounov, Yassen; Chakarova, Kristina; Hadjiivanov, Konstantin

    2009-01-01

    The surface properties of calcium phosphate precursor (CP) and crystalline calcium hydroxyapatite (HA) prepared biomimetically have been studied by IR spectroscopy of adsorbed CO. Both samples are characterized by the absence of Bronsted acidity. Low-temperature CO adsorption on CP evacuated at 523 K leads to formation of only one family of Ca 2+ -CO species (2168 cm -1 ). The analysis indicates that the respective calcium ions on the surface are not isolated. Similar spectra were obtained with HA evacuated at 573 K. In this case, however, the Ca 2+ -CO band was detected at 2165 cm -1 due to enhanced lateral interaction between the adsorbed CO molecules. Another family of Ca 2+ sites (Ca 2+ -CO band at 2178 cm -1 ) was created after evacuation of the HA sample at 673 K. These sites were assumed to be a result of sample dehydroxylation. The results demonstrate the absence of any protonic acidity of the samples (i.e. P-OH surface groups) and weak electrostatic Lewis acidity caused by coordinatively unsaturated Ca 2+ cations.

  20. Functional links between mucolipin-1 and Ca2+-dependent membrane trafficking in mucolipidosis IV

    International Nuclear Information System (INIS)

    LaPlante, Janice M.; Ye, C.P.; Quinn, Stephen J.; Goldin, Ehud; Brown, Edward M.; Slaugenhaupt, Susan A.; Vassilev, Peter M.

    2004-01-01

    Most of the membrane trafficking phenomena including those involving the interactions between endosomes and lysosomes are regulated by changes in intracellular Ca 2+ (Ca i ). These processes are disturbed in some types of mucolipidoses and other lysosomal storage disorders, such as mucolipidosis IV (MLIV), a neurological disorder that usually presents during the first year of life with blindness, cognitive impairment, and psychomotor delays. It is caused by mutations in MCOLN1, the gene encoding mucolipin-1 (MLN1), which we have recently established to represent a Ca 2+ -permeable cation channel that is transiently modulated by changes in Ca i . The cells of MLIV patients contain enlarged lysosomes that are likely associated with abnormal sorting and trafficking of these and related organelles. We studied fibroblasts from MLIV patients and found disturbed Ca 2+ signaling and large acidic organelles such as late endosomes and lysosomes (LEL) with altered cellular localization in these cells. The fusion between LEL vesicles in these cells was defective. This is a Ca 2+ -dependent process related to signaling pathways involved in regulation of Ca 2+ homeostasis and trafficking. The MLN1 channels could play a key role in Ca 2+ release from LEL vesicles, which triggers the fusion and trafficking of these organelles. The characterization of this MLN1-mediated Ca 2+ -dependent process should provide new insights into the pathophysiological mechanisms that lead to the development of MLIV and other mucolipidoses associated with similar disturbances in membrane trafficking

  1. Surface modification of calcium-copper hydroxyapatites using polyaspartic acid

    Energy Technology Data Exchange (ETDEWEB)

    Othmani, Masseoud; Aissa, Abdallah; Bachoua, Hassen [Laboratoire de Physico-Chimie des Materiaux, Faculte des Sciences de Monastir, 5019 Monastir (Tunisia); Debbabi, Mongi, E-mail: m.debbabi@yahoo.fr [Laboratoire de Physico-Chimie des Materiaux, Faculte des Sciences de Monastir, 5019 Monastir (Tunisia)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer The reaction of polyaspartic acid with calcium hydroxyapatite and mixed calcium-copper hydroxyapatite is tested. Black-Right-Pointing-Pointer Chemical analysis shows that the presence of copper in the apatitic structure increases the reactivity of the apatite surface. Black-Right-Pointing-Pointer X-ray powder analysis shows the conservation of unique crystalline phase of hydroxyapatite after copper incorporation and/or PASP acid reacting. Black-Right-Pointing-Pointer IR spectra show the formation of the formation of organometallic bond M-O-C (M=Ca or Cu) on the apatitic surface. Black-Right-Pointing-Pointer Transmission electron microscopy (TEM) micrographs and atomic force microscopy (AFM) indicated that the texture surface was changed by the grafting. - Abstract: Mixed calcium-copper hydroxyapatite (Ca-CuHAp), with general formula Ca{sub (10-x)}Cu{sub x}(PO{sub 4}){sub 6}(OH){sub 2}, where 0 {<=} x {<=} 0.75 was prepared in aqueous medium in the presence of different concentrations of poly-L-aspartic acid (PASP). XRD, IR, TG-DTA, TEM-EDX, AFM and chemical analyses were used to characterize the structure, morphology and composition of the products. All techniques show the formation of new hybrid compounds Ca-CuHAp-PASP. The presence of the grafting moiety on the apatitic material is more significant with increasing of copper amount and/or organic concentration in the starting solution. These increases lead to the affectation of apatite crystallinity. The IR spectroscopy shows the conservation of (P-OH) band of (HPO{sub 4}){sup 2-} groups, suggesting that PASP acid was interacted only with metallic cations of hydroxyapatite.

  2. Metabolic peculiarities of the citric acid overproduction from glucose in yeasts Yarrowia lipolytica.

    Science.gov (United States)

    Kamzolova, Svetlana V; Morgunov, Igor G

    2017-11-01

    Comparative study of 43 natural yeast strains belonging to 20 species for their capability for overproduction of citric acid (CA) from glucose under nitrogen limitation of cell growth was carried out. As a result, natural strain Yarrowia lipolytica VKM Y-2373 was selected. The effect of growth limitation by biogenic macroelements (nitrogen, phosphorus, or sulfur) on the CA production by the selected strain was studied. It was shown that yeasts Y. lipolytica grown under deficiency of nitrogen, phosphorus, or sulfur were able to excrete CA in industrially sufficient amounts (80-85g/L with the product yield (Y CA ) of 0.70-0.75g/g and the process selectivity of 92.5-95.3%). Based on the obtained data on activities of enzymes involved in the initial stages of glucose oxidation, the cycle of tricarboxylic acids, and the glyoxylate cycle, the conception of the mechanism responsible for the CA overproduction from glucose in Y. lipolytica was formulated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Thermodynamic versus non-equilibrium stability of palmitic acid monolayers in calcium-enriched sea spray aerosol proxy systems.

    Science.gov (United States)

    Wellen Rudd, Bethany A; Vidalis, Andrew S; Allen, Heather C

    2018-04-16

    Of the major cations in seawater (Na+, Mg2+, Ca2+, K+), Ca2+ is found to be the most enriched in fine sea spray aerosols (SSA). In this work, we investigate the binding of Ca2+ to the carboxylic acid headgroup of palmitic acid (PA), a marine-abundant fatty acid, and the impact such binding has on the stability of PA monolayers in both equilibrium and non-equilibrium systems. A range of Ca2+ conditions from 10 μM to 300 mM was utilized to represent the relative concentration of Ca2+ in high and low relative humidity aerosol environments. The CO2- stretching modes of PA detected by surface-sensitive infrared reflection-absorption spectroscopy (IRRAS) reveal ionic binding motifs of the Ca2+ ion to the carboxylate group with varying degrees of hydration. Surface tensiometry was used to determine the thermodynamic equilibrium spreading pressure (ESP) of PA on the various aqueous CaCl2 subphases. Up to concentrations of 1 mM Ca2+, each system reached equilibrium, and Ca2+:PA surface complexation gave rise to a lower energy state revealed by elevated surface pressures relative to water. We show that PA films are not thermodynamically stable at marine aerosol-relevant Ca2+ concentrations ([Ca2+] ≥ 10 mM). IRRAS and vibrational sum frequency generation (VSFG) spectroscopy were used to investigate the surface presence of PA on high concentration Ca2+ aqueous subphases. Non-equilibrium relaxation (NER) experiments were also conducted and monitored by Brewster angle microscopy (BAM) to determine the effect of the Ca2+ ions on PA stability. At high surface pressures, the relaxation mechanisms of PA varied among the systems and were dependent on Ca2+ concentration.

  4. Ventral tegmental area disruption selectively affects CA1/CA2 but not CA3 place fields during a differential reward working memory task.

    Science.gov (United States)

    Martig, Adria K; Mizumori, Sheri J Y

    2011-02-01

    Hippocampus (HPC) receives dopaminergic (DA) projections from the ventral tegmental area (VTA) and substantia nigra. These inputs appear to provide a modulatory signal that influences HPC dependent behaviors and place fields. We examined how efferent projections from VTA to HPC influence spatial working memory and place fields when the reward context changes. CA1 and CA3 process environmental context changes differently and VTA preferentially innervates CA1. Given these anatomical data and electrophysiological evidence that implicate DA in reward processing, we predicted that CA1 place fields would respond more strongly to both VTA disruption and changes in the reward context than CA3 place fields. Rats (N = 9) were implanted with infusion cannula targeting VTA and recording tetrodes aimed at HPC. Then they were tested on a differential reward, win-shift working memory task. One recording session consisted of 5 baseline and 5 manipulation trials during which place cells in CA1/CA2 (N = 167) and CA3 (N = 94) were recorded. Prior to manipulation trials rats were infused with either baclofen or saline and then subjected to control or reward conditions during which the learned locations of large and small reward quantities were reversed. VTA disruption resulted in an increase in errors, and in CA1/CA2 place field reorganization. There were no changes in any measures of CA3 place field stability during VTA disruption. Reward manipulations did not affect performance or place field stability in CA1/CA2 or CA3; however, changes in the reward locations "rescued" performance and place field stability in CA1/CA2 when VTA activity was compromised, perhaps by trigging compensatory mechanisms. These data support the hypothesis that VTA contributes to spatial working memory performance perhaps by maintaining place field stability selectively in CA1/CA2. Copyright © 2009 Wiley-Liss, Inc.

  5. Citric acid fermentation medium from sugar waste

    Energy Technology Data Exchange (ETDEWEB)

    Asai, S.; Yarita, K.; Uchio, R.; Kikuchi, K.

    1977-11-02

    Wastes from a sugar refinery are hydrolyzed to yield fructose and glucose; a part of the fructose is removed from the hydrolyzate by treating with lime and the remaining hydrolyzate is used as a C source for citric acid fermentation. Thus, 1 kg beet molasses was dissolved in 2.5 L water, adjusted to pH 1.5, hydrolyzed at 60/sup 0/ for 4 h, neutralized with Ca(OH)/sub 2/, and the precipitate was removed. The hydrolyzate was cooled to 0/sup 0/, mixed with a solution containing 205 g Ca(OH)/sub 2/, seeded with fructose, and allowed to stand. The precipitate was suspended in cold water, neutralized with H/sub 2/SO/sub 4/, and filtered to obtain a solution containing 169 g fructose and 6.3 g glucose. The filtrate from the Ca(OH)/sub 2/ precipitation was neutralized with H/sub 2/SO/sub 4/ and removal of precipitate yielded a solution containing 87 g fructose and 220 g glucose, which was used as a C source for citric acid fermentation with Aspergillus niger AJ7015.

  6. Lead sulfate nano- and microparticles in the acid plant blow-down generated at the sulfuric acid plant of the El Teniente mine, Chile.

    Science.gov (United States)

    Barassi, Giancarlo M; Klimsa, Martin; Borrmann, Thomas; Cairns, Mathew J; Kinkel, Joachim; Valenzuela, Fernando

    2014-12-01

    The acid plant 'blow-down' (also called weak acid) produced at El Teniente mine in Chile was characterized. This liquid waste (tailing) is generated during the cooling and cleaning of the smelter gas prior to the production of sulfuric acid. The weak acid was composed of a liquid and a solid phase (suspended solids). The liquid phase of the sample analyzed in this study mainly contained Cu (562 mg L(-1)), SO4(2-) (32 800 mg L(-1)), Ca (1449 mg L(-1)), Fe (185 mg L(-1)), As (6 mg L(-1)), K (467 mg L(-1)) and Al (113 mg L(-1)). Additionally, the sample had a pH-value and total acidity of 0.45 and 2970 mg L(-1) as CaCO3, respectively. Hence, this waste was classified as extremely acidic and with a high metal content following the Ficklin diagram classification. Elemental analysis using atomic absorption, inductively coupled plasma, X-ray diffraction and electron microscopy showed that the suspended solids were anglesite (PbSO4) nano- and microparticles ranging from 50 nm to 500 nm in diameter.

  7. Extremely Elevated CA 125 and CA 19-9 in Endometrioma; A Case Series

    Directory of Open Access Journals (Sweden)

    Vugar Bayramov

    2010-03-01

    Full Text Available Although endometriosis is a benign condition, increased levels of the tumor markers CA 125 and CA 19-9 may be seen. However, these tumor markers reach to very high levels, rarely. In this report, 4 patients between 20 and 43 year-old with extremely elevated CA 125, CA 19-9 and CA 15-3 levels are discussed. In endometriosis extremely increased tumor markers are determined in the case of ruptured endometrioma cyst. There are two mechanisms to clarify extremely elevated levels of CA 125 in endometriosis. First, the peritoneal irritation of CA 125 molecule after the rupture of endometioma cyst and CA 125 secretion from the periton. And the second is penetration of the CA 125 moecule easily to the circulation through the peritoneal endothelial surface after the cyst rupture. In conclusion, the diagnosis of ruptured endometrioma cyst should be kept in mind especially in young patients with extremely elevated serum CA 125 levels with regard to the history and ultrasonographical signs and invasive procedures should be avoided.

  8. Experimental study of influence characteristics of flue gas fly ash on acid dew point

    Science.gov (United States)

    Song, Jinhui; Li, Jiahu; Wang, Shuai; Yuan, Hui; Ren, Zhongqiang

    2017-12-01

    The long-term operation experience of a large number of utility boilers shows that the measured value of acid dew point is generally lower than estimated value. This is because the influence of CaO and MgO on acid dew point in flue gas fly ash is not considered in the estimation formula of acid dew point. On the basis of previous studies, the experimental device for acid dew point measurement was designed and constructed, and the acid dew point under different smoke conditions was measured. The results show that the CaO and MgO in the flue gas fly ash have an obvious influence on the acid dew point, and the content of the fly ash is negatively correlated with the temperature of acid dew point At the same time, the concentration of H2SO4 in flue gas is different, and the acid dew point of flue gas is different, and positively correlated with the acid dew point.

  9. Ca isotopes in refractory inclusions

    International Nuclear Information System (INIS)

    Niederer, F.R.; Papanastassiou, D.A.

    1984-01-01

    We report measurements of the absolute isotope abundance of Ca in Ca-Al-rich inclusions from the Allende and Leoville meteorites. Improved high precision measurements are reported also for 46 Ca. We find that nonlinear isotope effects in Ca are extremely rare in these inclusions. The absence of nonlinear effects in Ca, except for the effects in FUN inclusions, is in sharp contrast to the endemic effects in Ti. One fine-grained inclusion shows an excess of 46 Ca of (7 +- 1) per mille, which is consistent with addition of only 46 Ca or of an exotic (*) component with 46 Ca* approx. 48 Ca*. FUN inclusion EK-1-4-1 shows a small 46 Ca excess of (3.3 +- 1.0) per mille; this confirms that the exotic Ca components in EK-1-4-1 were even more deficient in 46 Ca relative to 48 Ca than is the case for normal Ca. The Ca in the Ca-Al-rich inclusions shows mass dependent isotope fractionation effects which have a range from -3.8 to +6.7 per mille per mass unit difference. This range is a factor of 20 wider than the range previously established for bulk meteorites and for terrestrial and lunar samples. Ca and Mg isotope fractionation effects in the Ca-Al-rich inclusions are common and attributed to kinetic isotope effects. (author)

  10. Tau-Induced Ca2+/Calmodulin-Dependent Protein Kinase-IV Activation Aggravates Nuclear Tau Hyperphosphorylation.

    Science.gov (United States)

    Wei, Yu-Ping; Ye, Jin-Wang; Wang, Xiong; Zhu, Li-Ping; Hu, Qing-Hua; Wang, Qun; Ke, Dan; Tian, Qing; Wang, Jian-Zhi

    2018-04-01

    Hyperphosphorylated tau is the major protein component of neurofibrillary tangles in the brains of patients with Alzheimer's disease (AD). However, the mechanism underlying tau hyperphosphorylation is not fully understood. Here, we demonstrated that exogenously expressed wild-type human tau40 was detectable in the phosphorylated form at multiple AD-associated sites in cytoplasmic and nuclear fractions from HEK293 cells. Among these sites, tau phosphorylated at Thr205 and Ser214 was almost exclusively found in the nuclear fraction at the conditions used in the present study. With the intracellular tau accumulation, the Ca 2+ concentration was significantly increased in both cytoplasmic and nuclear fractions. Further studies using site-specific mutagenesis and pharmacological treatment demonstrated that phosphorylation of tau at Thr205 increased nuclear Ca 2+ concentration with a simultaneous increase in the phosphorylation of Ca 2+ /calmodulin-dependent protein kinase IV (CaMKIV) at Ser196. On the other hand, phosphorylation of tau at Ser214 did not significantly change the nuclear Ca 2+ /CaMKIV signaling. Finally, expressing calmodulin-binding protein-4 that disrupts formation of the Ca 2+ /calmodulin complex abolished the okadaic acid-induced tau hyperphosphorylation in the nuclear fraction. We conclude that the intracellular accumulation of phosphorylated tau, as detected in the brains of AD patients, can trigger nuclear Ca 2+ /CaMKIV signaling, which in turn aggravates tau hyperphosphorylation. Our findings provide new insights for tauopathies: hyperphosphorylation of intracellular tau and an increased Ca 2+ concentration may induce a self-perpetuating harmful loop to promote neurodegeneration.

  11. Clinical evaluation of CEA, CA19-9, CA72-4 and CA125 in gastric cancer patients with neoadjuvant chemotherapy.

    Science.gov (United States)

    Sun, Zhipeng; Zhang, Nengwei

    2014-12-29

    In the clinical practice of neoadjuvant chemotherapy, response markers are very important. We aimed o investigate whether tumor markers CEA(carcino-embryonic antigen), CA19-9(carbohydrate antigen 19-9), CA72-4(carbohydrate antigen 72-4), and CA125(carbohydrate antigen 125) can be used to evaluate the response to neoadjuvant chemotherapy, and to evaluate the diagnosis and prognosis value of four tumor markers in the patients of gastric cancer. A retrospective review was performed of 184 gastric cancer patients who underwent a 5-Fu, leucovorin, and oxaliplatin (FOLFOX) neoadjuvant chemotherapy regimen, followed by surgical treatment. Blood samples for CEA, CA19-9, CA72-4, and CA125 levels were taken from patients upon admission to the hospital and after neoadjuvant chemotherapy. Statistical analysis was performed to identify the clinical value of these tumor markers in predicting the survival and the response to neoadjuvant chemotherapy. Median overall survival times of pretreatment CA19-9-positive and CA72-4-positive patients (14.0 +/-2.8 months and 14.8 +/-4.0 months, respectively) were significantly less than negative patients (32.5 +/-8.9 months and 34.0 +/-10.1 months, respectively) (P = 0.000 and P = 0.002, respectively). Pretreatment status of CA19-9 and CA72-4 were independent prognostic factors in gastric cancer patients (P = 0.029 and P = 0.008, respectively). Pretreatment CEA >50 ng/ml had a positive prediction value for clinical disease progression after neoadjuvant chemotherapy according to the ROC curve (AUC: 0.694, 95% CI: 0.517 to 0.871, P = 0.017). The decrease of tumor markers CEA, CA72-4, and CA125 was significant after neoadjuvant chemotherapy (P = 0.030, P = 0.010, and P = 0.009, respectively), especially in patients with disease control (including complete, partial clinical response, and stable disease) (P = 0.012, P = 0.020, and P = 0.025, respectively). A decrease in CA72-4 by more than 70% had

  12. Salicylic acid induces apoptosis in colon carcinoma cells grown in-vitro: Influence of oxygen and salicylic acid concentration

    Energy Technology Data Exchange (ETDEWEB)

    Zitta, Karina; Meybohm, Patrick; Bein, Berthold; Huang, Ying; Heinrich, Christin; Scholz, Jens; Steinfath, Markus; Albrecht, Martin, E-mail: Albrecht@anaesthesie.uni-kiel.de

    2012-04-15

    In solid tumors the hypoxic environment can promote tumor progression and resistance to therapy. Recently, acetylsalicylic acid a major component of analgesic drugs and its metabolite salicylic acid (SA) have been shown to reduce the risk of colon cancer, but the mechanisms of action remain still unclear. Here we elucidate the effects of physiologically relevant concentrations of SA on colon carcinoma cells (CaCo-2) grown under normoxic and hypoxic conditions. Western blotting, caspase-3/7 apoptosis assays, MTS cell-proliferation assays, LDH cytotoxicity assays and hydrogen peroxide measurements were performed to investigate the effects of 1 and 10 {mu}M SA on CaCo-2 cells grown under normoxic conditions and cells exposed to hypoxia. Under normoxic conditions, SA did not influence cell proliferation or LDH release of CaCo-2 cells. However, caspase-3/7 activity was significantly increased. Under hypoxia, cell proliferation was reduced and LDH release and caspase-3/7 activities were increased. None of these parameters was altered by the addition of SA under hypoxic conditions. Hypoxia increased hydrogen peroxide concentrations 300-fold and SA significantly augmented the release of hydrogen peroxide under normoxic, but not under hypoxic conditions. Phosphorylation of the pro-survival kinases akt and erk1/2 was not changed by SA under hypoxic conditions, whereas under normoxia SA reduced phosphorylation of erk1/2 after 2 hours. We conclude that in colon carcinoma cells effects of SA on apoptosis and cellular signaling are dependent on the availability of oxygen. -- Highlights: Black-Right-Pointing-Pointer Effects of salicylic acid on colon carcinoma cells grown under normoxic and hypoxic conditions Black-Right-Pointing-Pointer Salicylic acid increases caspase-3/7 activity and hydrogen peroxide release under normoxia Black-Right-Pointing-Pointer Salicylic acid decreases pro-survival erk-1/2 phosphorylation under normoxia Black-Right-Pointing-Pointer Salicylic acid does

  13. The effectiveness of organic PCM based on lauric acid from coconut oil and inorganic PCM based on salt hydrate CaCl2.6H2o as latent heat energy storage system in Indonesia

    Science.gov (United States)

    U, Sri Rahayu A.; Putri, Widya A.; Sutjahja, I. M.; Kurnia, D.; Wonorahardjo, S.

    2016-08-01

    A latent heat energy storage system utilizing phase change materials (PCM) is an alternative strategy to reduce the use of Air Conditioning (AC) system in big cities in Indonesia in order for energy conservation in the future. In this research we used two kinds of materials, namely organic PCM based on lauric acid from coconut oil (CO) and inorganic PCM based on salt hydrate CaCl2.6H2O, because they have thermophysical parameters suitable for human's thermal comfort application in the building. The CO which contained more than 50% lauric acid has the melting temperature (Tm ) of about 26 °C and heat entalphy (ΔH) around 103 kJ/kg, while CaCl2.6H2O has the melting point of 29 °C and heat entalphy of 190 kJ/kg. In this paper we report the effectiveness of those two kinds of PCM in reducing the air temperature as one of some criteria for human's thermal comfort. The experiments were performed in a close and adiabatic room and the time-temperature measurements were done automatically using Arduino microcontroller and LM35 temperature sensor connected to the PC.

  14. Effects of structure of fatty acid collectors on the adsorption of fluorapatite (0 0 1) surface: A first-principles calculations

    Science.gov (United States)

    Xie, Jun; Li, Xianhai; Mao, Song; Li, Longjiang; Ke, Baolin; Zhang, Qin

    2018-06-01

    Effects of carbon chain length, carbon chain isomerism, Cdbnd C double bonds number on fatty acid adsorption on FAP (0 0 1) surface have been investigated based on DFT. The results revealed that fatty acid collector can form stable adsorption configuration at Ca1 (surf) site. Chemical adsorption was formed between O (mole) of fatty acid collector and the Ca1 (surf) of fluorapatite (0 0 1) surface; hydrogen bond adsorption was formed between the H (mole) of fatty acid and the O (surf) of-[PO4]- of FAP (0 0 1) surface. Fatty acid collectors and FAP (0 0 1) surface are bonding by means of the hybridization of O (mole) 2p and Ca (surf) 4d orbitals, H (mole) 1s and O (surf) 2p orbital. The analysis of adsorption energy, DOS, electron density, Mulliken charge population and Mulliken bond population revealed that with the carbon chain growing within certain limits, the absolute value of the adsorption energy and the overlapping area between the DOS curve of O (mole) and Ca (surf) was greater, while that of H (mole) 1s and O (surf) 2p basically remained unchanged. As Cdbnd C double bonds of fatty acids increased within certain limits, the adsorption energy and the overlapping area between the state density curve of O (mole) and Ca (surf), H (mole) and O (surf) basically remained unchanged. The substituent groups of fatty acid changed, the absolute value of the adsorption energy and the overlapping area between the state density curve had a major change. The influence of fatty acids adsorption on FAP (0 0 1) surface depends mainly on the interaction between O (mole) and Ca (surf).

  15. Effect of pore structure on the removal of clofibric acid by magnetic anion exchange resin.

    Science.gov (United States)

    Tan, Liang; Shuang, Chendong; Wang, Yunshu; Wang, Jun; Su, Yihong; Li, Aimin

    2018-01-01

    The effect of pore structure of resin on clofibric acid (CA) adsorption behavior was investigated by using magnetic anion exchange resins (ND-1, ND-2, ND-3) with increasing pore diameter by 11.68, 15.37, 24.94 nm. Resin with larger pores showed faster adsorption rates and a higher adsorption capacity because the more opened tunnels provided by larger pores benefit the CA diffusion into the resin matrix. The ion exchange by the electrostatic interactions between Cl-type resin and CA resulted in chloride releasing to the solution, and the ratio of released chloride to CA adsorption amount decreased from 0.90 to 0.65 for ND-1, ND-2 and ND-3, indicating that non-electrostatic interactions obtain a larger proportional part of the adsorption into the pores. Co-existing inorganic anions and organic acids reduced the CA adsorption amounts by the competition effect of electrostatic interaction, whereas resins with more opened pore structures weakened the negative influence on CA adsorption because of the existence of non-electrostatic interactions. 85.2% and 65.1% adsorption amounts decrease are calculated for resin ND-1 and ND-3 by the negative influence of 1 mmol L -1 NaCl. This weaken effect of organic acid is generally depends on its hydrophobicity (Log Kow) for carboxylic acid and its ionization degree (pKb) for sulfonic acid. The resins could be reused with the slightly decreases by 1.9%, 3.2% and 5.4% after 7 cycles of regeneration, respectively for ND-1, ND-2 and ND-3, suggesting the ion exchange resin with larger pores are against its reuse by the brine solution regeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Hygroscopic properties of oxalic acid and atmospherically relevant oxalates

    Science.gov (United States)

    Ma, Qingxin; He, Hong; Liu, Chang

    2013-04-01

    Oxalic acid and oxalates represent an important fraction of atmospheric organic aerosols, however, little knowledge about the hygroscopic behavior of these particles is known. In this study, the hygroscopic behavior of oxalic acid and atmospherically relevant oxalates (H2C2O4, (NH4)2C2O4, CaC2O4, and FeC2O4) were studied by Raman spectrometry and vapor sorption analyzer. Under ambient relative humidity (RH) of 10-90%, oxalic acid and these oxalates hardly deliquesce and exhibit low hygroscopicity, however, transformation between anhydrous and hydrated particles was observed during the humidifying and dehumidifying processes. During the water adsorption process, conversion of anhydrous H2C2O4, (NH4)2C2O4, CaC2O4, and FeC2O4 to their hydrated particles (i.e., H2C2O4·2H2O, (NH4)2C2O4·H2O, CaC2O4·H2O, and FeC2O4·2H2O) occurred at about 20% RH, 55% RH, 10% RH, and 75% RH, respectively. Uptake of water on hydrated Ca-oxalate and Fe-oxalate particles can be described by a multilayer adsorption isotherm. During the dehumidifying process, dehydration of H2C2O4·2H2O and (NH4)2C2O4·H2O occurred at 5% RH while CaC2O4·H2O and FeC2O4·2H2O did not undergo dehydration. These results implied that hydrated particles represent the most stable state of oxalic acid and oxalates in the atmosphere. In addition, the assignments of Raman shift bands in the range of 1610-1650 cm-1 were discussed according to the hygroscopic behavior measurement results.

  17. Evaluation of Serum CEA, CA19-9, CA72-4, CA125 and Ferritin as Diagnostic Markers and Factors of Clinical Parameters for Colorectal Cancer.

    Science.gov (United States)

    Gao, Yanfeng; Wang, Jinping; Zhou, Yue; Sheng, Sen; Qian, Steven Y; Huo, Xiongwei

    2018-02-09

    Blood-based protein biomarkers have recently shown as simpler diagnostic modalities for colorectal cancer, while their association with clinical pathological characteristics is largely unknown. In this study, we not only examined the sensitivity and reliability of single/multiple serum markers for diagnosis, but also assessed their connection with pathological parameters from a total of 279 colorectal cancer patients. Our study shown that glycoprotein carcinoembryonic antigen (CEA) owns the highest sensitivity among single marker in the order of CEA > cancer antigen 72-4 (CA72-4) > cancer antigen 19-9 9 (CA19-9) > ferritin > cancer antigen 125 (CA125), while the most sensitive combined-markers for two to five were: CEA + CA72-4; CEA + CA72-4 + CA125; CEA + CA19-9 + CA72-4 + CA125; and CEA + CA19-9 + CA72-4 + CA125 + ferritin, respectively. We also demonstrated that patients who had positive preoperative serum CEA, CA19-9, or CA72-4 were more likely with lymph node invasion, positive CA125 were prone to have vascular invasion, and positive CEA or CA125 were correlated with perineural invasion. In addition, positive CA19-9, CA72-4, or CA125 was associated with poorly differentiated tumor, while CEA, CA19-9, CA72-4, CA125 levels were positively correlated with pathological tumor-node-metastasis stages. We here conclude that combined serum markers can be used to not only diagnose colorectal cancer, but also appraise the tumor status for guiding treatment, evaluation of curative effect, and prognosis of patients.

  18. Syk/Src Pathway-Targeted Inhibition of Skin Inflammatory Responses by Carnosic Acid

    Directory of Open Access Journals (Sweden)

    Jueun Oh

    2012-01-01

    Full Text Available Carnosic acid (CA is a diterpene compound exhibiting antioxidative, anticancer, anti-angiogenic, anti-inflammatory, anti-metabolic disorder, and hepatoprotective and neuroprotective activities. In this study, the effect of CA on various skin inflammatory responses and its inhibitory mechanism were examined. CA strongly suppressed the production of IL-6, IL-8, and MCP-1 from keratinocyte HaCaT cells stimulated with sodium lauryl sulfate (SLS and retinoic acid (RA. In addition, CA blocked the release of nitric oxide (NO, tumor necrosis factor (TNF-α, and prostaglandin E2 (PGE2 from RAW264.7 cells activated by the toll-like receptor (TLR-2 ligands, Gram-positive bacterium-derived peptidoglycan (PGN and pam3CSK, and the TLR4 ligand, Gram-negative bacterium-derived lipopolysaccharide (LPS. CA arrested the growth of dermatitis-inducing Gram-positive and Gram-negative microorganisms such Propionibacterium acnes, Pseudomonas aeruginosa, and Staphylococcus aureus. CA also blocked the nuclear translocation of nuclear factor (NF-κB and its upstream signaling including Syk/Src, phosphoinositide 3-kinase (PI3K, Akt, inhibitor of κBα (IκBα kinase (IKK, and IκBα for NF-κB activation. Kinase assays revealed that Syk could be direct enzymatic target of CA in its anti-inflammatory action. Therefore, our data strongly suggest the potential of CA as an anti-inflammatory drug against skin inflammatory responses with Src/NF-κB inhibitory properties.

  19. Aspirin exerts high anti-cancer activity in PIK3CA-mutant colon cancer cells.

    Science.gov (United States)

    Gu, Mancang; Nishihara, Reiko; Chen, Yang; Li, Wanwan; Shi, Yan; Masugi, Yohei; Hamada, Tsuyoshi; Kosumi, Keisuke; Liu, Li; da Silva, Annacarolina; Nowak, Jonathan A; Twombly, Tyler; Du, Chunxia; Koh, Hideo; Li, Wenbin; Meyerhardt, Jeffrey A; Wolpin, Brian M; Giannakis, Marios; Aguirre, Andrew J; Bass, Adam J; Drew, David A; Chan, Andrew T; Fuchs, Charles S; Qian, Zhi Rong; Ogino, Shuji

    2017-10-20

    Evidence suggests that nonsteroidal anti-inflammatory drug aspirin (acetylsalicylic acid) may improve patient survival in PIK3CA -mutant colorectal carcinoma, but not in PIK3CA -wild-type carcinoma. However, whether aspirin directly influences the viability of PIK3CA -mutant colon cancer cells is poorly understood. We conducted in vitro experiments to test our hypothesis that the anti-proliferative activity of aspirin might be stronger for PIK3CA -mutant colon cancer cells than for PIK3CA -wild-type colon cancer cells. We measured the anti-proliferative effect of aspirin at physiologic concentrations in seven PIK3CA -mutant and six PIK3CA -wild-type human colon cancer cell lines. After exposure to aspirin, the apoptotic index and cell cycle phase of colon cancer cells were assessed. In addition, the effect of aspirin was examined in parental SW48 cells and SW48 cell clones with individual knock-in PIK3CA mutations of either c.3140A>G (p.H1047R) or c.1633G>A (p.E545K). Aspirin induced greater dose-dependent loss of cell viability in PIK3CA -mutant cells than in PIK3CA -wild-type cells after treatment for 48 and 72 hours. Aspirin treatment also led to higher proportions of apoptotic cells and G0/G1 phase arrest in PIK3CA -mutant cells than in PIK3CA -wild-type cells. Aspirin treatment of isogenic SW48 cells carrying a PIK3CA mutation, either c.3140A>G (p.H1047R) or c.1633G>A (p. E545K), resulted in a more significant loss of cell viability compared to wild-type controls. Our findings indicate that aspirin causes cell cycle arrest, induces apoptosis, and leads to loss of cell viability more profoundly in PIK3CA -mutated colon cancer cells than in PIK3CA -wild-type colon cancer cells. These findings support the use of aspirin to treat patients with PIK3CA -mutant colon cancer.

  20. The effect of omega-3 carboxylic acids on apolipoprotein CIII-containing lipoproteins in severe hypertriglyceridemia.

    Science.gov (United States)

    Morton, Allyson M; Furtado, Jeremy D; Lee, Jane; Amerine, William; Davidson, Michael H; Sacks, Frank M

    Lipoprotein subspecies containing apoCIII adversely affect cardiovascular disease (CVD) risk; for example, low density lipoprotein (LDL) with apoCIII is a stronger CVD predictor than LDL without apoCIII. The Epanova for Lowering Very High Triglycerides (EVOLVE) trial showed that Epanova (omega-3 carboxylic acids [OM3-CA]) significantly lowered TG and apoCIII but raised LDL-C. However, it is unknown what subspecies of LDL were affected by treatment. To determine how lipoprotein subspecies are affected by omega-3 fatty acid treatment, we studied the effect of OM3-CA on apoCIII concentrations in high density lipoprotein (HDL), LDL, and very low density lipoprotein (VLDL) and on the concentrations of subspecies of HDL, LDL, and VLDL that contain or do not contain apoCIII. We analyzed plasma from a subset of subjects from the EVOLVE trial, a 12-week double-blind study of 399 subjects with fasting TG of 500 to 2000 mg/dL who were randomized to OM3-CA 2, 3, or 4 g/d or olive oil (placebo). OM3-CA significantly reduced plasma apoCIII relative to placebo, as well as apoCIII in HDL, and apoCIII in LDL. Treatment did not significantly affect the concentration of LDL with apoCIII, a subspecies highly associated with CVD risk. OM3-CA increased selectively the concentration of LDL that does not contain apoCIII, a subspecies with a weak relation to coronary heart disease. The reduction in apoCIII was associated with plasma increases in eicosapentaenoic acid, docosahexaenoic acid, and arachidonic acid and decreases in linoleic, palmitic, and oleic acids. Reduction in apoCIII may be a mechanism for the TG-lowering effects of OM3-CA. The increase in LDL-C seen in the EVOLVE trial may not be associated with increased risk of CVD. Copyright © 2016 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  1. Accessible reactive surface area and abiotic redox reactivity of iron oxyhydroxides in acidic brines

    Science.gov (United States)

    Strehlau, Jennifer H.; Toner, Brandy M.; Arnold, William A.; Penn, R. Lee

    2017-01-01

    The reactivity of iron oxyhydroxide nanoparticles in low pH and high ionic strength solutions was quantified to assess abiotic contributions to oxidation-reduction chemistry in acidic brine environments, such as mine groundwater seepage, lakes in Western Australia, and acid mine drainage settings, which are of global interest for their environmental impacts and unique geomicrobiology. Factors expected to influence accessible and reactive surface area, including Fe(II) adsorption and aggregate size, were measured as a function of pH and CaCl2 concentration and related to the kinetics of redox reactions in aqueous suspensions of synthetic goethite (α-FeOOH), akaganeite (β-FeOOH), and ferrihydrite (Fe10O14(OH)2) nanoparticles. Aqueous conditions and iron oxyhydroxides were chosen based on characterization of natural iron-rich mine microbial mats located in Soudan Underground Mine State Park, Minnesota, USA. Quinone species were used as redox sensors because they are well-defined probes and are present in natural organic matter. Fe(II) adsorption to the iron oxyhydroxide mineral surfaces from aqueous solution was measurable only at pH values above 4 and either decreased or was not affected by CaCl2 concentration. Concentrations at or above 0.020 M CaCl2 in acetate buffer (pH 4.5) induced particle aggregation. Assessment of Fe(II) adsorption and particle aggregation in acidic brine suggested that accessible reactive surface area may be limited in acidic brines. This was supported by observations of decreasing benzoquinone reduction rate by adsorbed Fe(II) at high CaCl2 concentration. In contrast, the hydroquinone oxidation rate increased at high CaCl2 concentrations, which may be due to suppressed adsorption of Fe(II) generated by the reaction. Results suggest that iron geochemical cycling in acidic brine environments will be substantially different than for iron oxyhydroxides in low-saline waters with circumneutral pH. These findings have implications for acidic

  2. A Rice CaMBP Gene is Induced in Organ-Specific Manner by Both Chilling and Heat-Shock Treatments

    Directory of Open Access Journals (Sweden)

    Jia WAN

    2008-09-01

    Full Text Available A rice CaMBP gene, OsCaMBP (AB363406, was isolated from a chilling treated rice using the fluorescent differential display (FDD screening method. Its cDNA sequence (2094 bp contains an opening reading frame (ORF encoding a 569 amino acids protein (63.2 kD. OsCaMBP has the typical structural features of the CaMBP family, including the conserved IQ calmodulin-binding motif at the N-terminus. Homology analysis revealed 38.25%–47.28% identities of OsCaMBP with other CaMBPs in plants. RT-PCR analysis showed that the expression of OsCaMBP was remarkably inducible under the chilling (8°C and heat-shock (42°C treatments. OsCaMBP was undetectable under the normal conditions, and induced under the chilling treatment for 1 h, as well as the heat-shock treatment for 15 min, suggesting that the gene plays important roles in the signaling pathway in rice under both chilling and heat-shock stresses.

  3. Thermodynamics of HEDPA protonation in different media and complex formation with Mg2+ and Ca2+

    International Nuclear Information System (INIS)

    Foti, Claudia; Giuffrè, Ottavia; Sammartano, Silvio

    2013-01-01

    Highlights: • Acid–base properties of etidronic acid in different ionic media and at different ionic strengths. • Complex formation of etidronate with Na + , K + , Ca 2+ and Mg 2+ . • Dependence on ionic strength analysed by a Debye–Hückel type equation and the SIT approach. • Suggested protonation constants calculated at I = 0.1 mol · L −1 and t = 25 °C, in different ionic media. -- Abstract: Acid–base properties of etidronic acid [(1-Hydroxyethane-1,1-diyil)bis(phosphonic acid), HEDPA] in different ionic media and at different ionic strengths (NaCl, KCl: I ⩽ 2 mol · L −1 ; (C 2 H 5 ) 4 NI: I ⩽ 1 mol · L −1 ) were studied at t = 25 °C, determining, by potentiometric and calorimetric techniques, protonation constants and enthalpy changes. The differences in the protonation constants in the different supporting electrolytes were also interpreted in terms of weak complex formation with M i L (with i = 1, 2), MLH j (with j = 1, 2, 3) and M 2 LH species (with L = HEDPA; M = Na + , K + ). The formation constants for the species of Ca 2+ and Mg 2+ , were determined by potentiometric titrations at different ionic strengths (0.1 ⩽ I/mol · L −1 ⩽ 1) in NaCl at t = 25 °C. The stability of these species is fairly high, as an example, at I = 0.1 mol · L −1 and t = 25 °C, for ML species, log β = 6.52 and 6.86, for Ca 2+ and Mg 2+ , respectively, obtained by considering simultaneously HEDPA–Na + interactions. The dependence on ionic strength was analysed by a Debye–Hückel type equation and the SIT (Specific ion Interaction Theory) approach for protonation thermodynamic parameters and by a Debye–Hückel type equation for Mg 2+ and Ca 2+ complex formation. The sequestering ability of HEDPA toward Ca 2+ and Mg 2+ was also analysed. A comparison with literature data is given

  4. Effects of magnesium and fluoride on ion exchange and acid resistance of enamel

    Energy Technology Data Exchange (ETDEWEB)

    Feagin, F; Thiradilok, S [Alabama Univ., Birmingham (USA)

    1979-01-01

    Labial surfaces of bovine incisor enamel, after weak acid demineralization, were exposed for 24 h in solutions that contained trace levels of calcium as /sup 45/Ca, 0.4 mM NaF, and 1.0 mM MgCl/sub 2/ at pH 7.0. The solutions approached saturation with apatites in the absence of NaF, and saturation with fluorapatites in the presence of NaF. NaF greatly increased the exchange of /sup 45/Ca. MgCl/sub 2/ decreased /sup 45/Ca exchange, but had no effect on F/sup -/ exchange in the surface minerals. MgCl/sub 2/ decreased, while NaF increased the acid resistance of the exchanged surface on later exposure to 10 mM acetic acid at pH 4.5. These results indicated that magnesium in oral fluids and tooth minerals may promote caries.

  5. Mechanism for enhanced degradation of clofibric acid in aqueous by catalytic ozonation over MnO{sub x}/SBA-15

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Qiangqiang; Wang, Yu [School of Chemistry & Environment, South China Normal University, Guangzhou 510006 (China); Li, Laisheng, E-mail: llsh@scnu.edu.cn [School of Chemistry & Environment, South China Normal University, Guangzhou 510006 (China); Bing, Jishuai [Key Laboratory of Aquatic Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Wang, Yingxin; Yan, Huihua [School of Chemistry & Environment, South China Normal University, Guangzhou 510006 (China)

    2015-04-09

    Highlights: • Clofibric acid (CA) is efficiently mineralized by O{sub 3}/MnO{sub x}/SBA-15. • Adsorption of CA and its intermediates on MnO{sub x}/SBA-15 is proved unimportant. • Initiation of hydroxyl radicals (·OH) is enhanced in O{sub 3}/MnO{sub x}/SBA-15. • Uniformly distributed MnO{sub x} accounts for the high activity of MnO{sub x}/SBA-15. • Degradation routes of CA in ozonation alone and catalytic ozonation are proposed. - Abstract: Comparative experiments were conducted to investigate the catalytic ability of MnO{sub x}/SBA-15 for the ozonation of clofibric acid (CA) and its reaction mechanism. Compared with ozonation alone, the degradation of CA was barely enhanced, while the removal of TOC was significantly improved by catalytic ozonation (O{sub 3}/MnO{sub x}/SBA-15). Adsorption of CA and its intermediates by MnO{sub x}/SBA-15 was proved unimportant in O{sub 3}/MnO{sub x}/SBA-15 due to the insignificant adsorption of CA and little TOC variation after ceasing ozone in stopped-flow experiment. The more remarkably inhibition effect of sodium bisulfite (NaHSO{sub 3}) on the removal of TOC in catalytic ozonation than in ozonation alone elucidated that MnO{sub x}/SBA-15 facilitated the generation of hydroxyl radicals (·OH), which was further verified by electron spin-resonance spectroscopy (ESR). Highly dispersed MnO{sub x} on SBA-15 were believed to be the main active component in MnO{sub x}/SBA-15. Some intermediates were indentified and different degradation routes of CA were proposed in both ozonation alone and catalytic ozonation. The amounts of small molecular carboxylic acids (i.e., formic acid (FA), acetic acid (AA) and oxalic acid (OA)) generated in catalytic ozonation were lower than in ozonation alone, resulting from the generation of more ·OH.

  6. Super-Hydrophobic High Throughput Electrospun Cellulose Acetate (CA) Nanofibrous Mats as Oil Selective Sorbents

    Science.gov (United States)

    Han, Chao

    The threat of oil pollution increases with the expansion of oil exploration and production activities, as well as the industrial growth around the world. Use of sorbents is a common method to deal with the oil spills. In this work, an advanced sorbent technology is described. A series of non-woven Cellulose Acetate (CA) nanofibrous mats with a 3D fibrous structure were synthesized by a novel high-throughput electrospinning technique. The precursor was solutions of CA/ acetic acid-acetone in various concentrations. Among them, 15.0% CA exhibits a superhydrophobic surface property, with a water contact angle of 128.95°. Its oil sorption capacity is many times higher the oil sorption capacity of the best commercial sorbent available in the market. Also, it showed good buoyancy properties on the water both as dry-mat and oil-saturated mat. In addition, it is biodegradable, easily available, easily manufactured, so the CA nanofibrous mat is an excellent candidate as oil sorbent for oil spill in water treatment.

  7. Ca(2+-dependent regulation of the Ca(2+ concentration in the myometrium mitochondria. II. Ca(2+ effects on mitochondria membranes polarization and [Ca(2+](m

    Directory of Open Access Journals (Sweden)

    L. G. Babich

    2017-06-01

    Full Text Available It is known that Ca2+ accumulation in the mitochondria undergoes complex regulation by Ca2+ itself. But the mechanisms of such regulation are still discussed. In this paper we have shown that Ca ions directly or indirectly regulate the level of myometrium mitochondria membranes polarization. The additions of 100 µM Ca2+ were accompanied by depolarization of the mitochondria membranes. The following experiments were designed to study the impact of Ca2+ on the myometrium mitochondria [Ca2+]m. Isolated myometrium mitochondria were preincubated without or with 10 μM Са2+ followed by 100 μM Са2+ addition. Experiments were conducted in three mediums: without ATP and Mg2+ (0-medium, in the presence of 3 mM Mg2+ (Mg-medium and 3 mM Mg2+ + 3 mM ATP (Mg,ATP-medium. It was shown that the effects of 10 μM Са2+ addition were different in different mediums, namely in 0- and Mg-medium the [Ca2+]m values increased, whereas in Mg,ATP-medium statistically reliable changes were not registered. Preincubation of mitochondria with 10 μM Са2+ did not affect the [Ca2+]m value after the addition of 100 μM Са2+. The [Ca2+]m values after 100 μM Са2+ addition were the same in 0- and Mg,ATP-mediums and somewhat lower in Mg-medium. Preliminary incubation of mitochondria with 10 μM Са2+ in 0- and Mg-mediums reduced changes of Fluo 4 normalized fluorescence values that were induced by 100 μM Са2+ additions, but in Mg,ATP-medium such differences were not recorded. It is concluded that Са2+ exchange in myometrium mitochondria is regulated by the concentration of Ca ions as in the external medium, so in the matrix of mitochondria. The medium composition had a significant impact on the [Са2+]m values in the absence of exogenous cation. It is suggested that light increase of [Са2+]m before the addition of 100 μM Са2+ may have a positive effect on the functional activity of the mitochondria.

  8. The Role of Organic Acids on the Release of Phosphorus and Zinc in a Calcareous Soil

    Directory of Open Access Journals (Sweden)

    Sareh Nezami

    2017-02-01

    that the effect of different concentrations of organic acids at various times on the pH of extractions was significant at 1% level. Low concentrations of organic acids at various times had no effect on the pH of soil extractions compared to control, but organic acids at 10 mM concentration increased the pH of extractions. This high pH amount was related to the organic acid mineralization and consumption of H+ by microorganisms in the soil. The results of variance analysis also showed that the effect of different concentrations of organic acids at various times in the extraction of Ca from the soil was significant at 1% level .Citric acid extracted higher Ca from the soil compared to oxalic acid. The maximum extracted Ca was observed at 10 mM concentration of citric acid at 10 minutes of shaking time. Extracted Ca at 0.1 and 1 mM concentrations of both organic acids was almost the same at all the times. The higher extraction of Ca with citric acid was due to the Ca precipitation as oxalate. The analysis of variance for P showed that the effect of different concentrations of organic acids at various times was significant at the 1% level. Extracted P by oxalic acid was more than citric acid .The highest amount of P was obtained by 10 mM concentration of oxalic acid at 360 minutes. The amounts of extracted P by both organic acids at 0.1 and 1 mM concentrations were similar to control. Citric acid at 10 mM concentration also released lower P compared to other concentrations and control. More P extraction of oxalate than citrate was due to the Ca-oxalate formation and P release from calcium phosphate in calcareous soil. Different concentrations of organic acids at different time periods had no effect on Zn extraction from the soil and the amount of extracted Zn by organic acids was lower than control. Conclusion: Organic acids at 10 mM concentration were effective in Ca and P extraction from the soil but had no significant effect on the Zn extraction. It seems that organic

  9. Release of Polyphenols Is the Major Factor Influencing the Bioconversion of Rice Straw to Lactic Acid.

    Science.gov (United States)

    Chen, Xingxuan; Xue, Yiyun; Hu, Jiajun; Tsang, Yiu Fai; Gao, Min-Tian

    2017-11-01

    In this study, we found that p-coumaric acid (p-CA), ferulic acid (FA), and condensed tannins were released from rice straw during saccharification. The presence of polyphenols prolonged the lag phase and lowered the productivity of lactic acid. p-CA was identified as a key inhibitor. Tannins had a lower inhibitory effect than p-CA; FA had little inhibitory effect. Acid, alkaline, and ball milling pretreatments elicited different levels of polyphenol release from rice straw. Due to the different levels of polyphenol release in the pretreatment step, the enzymatic hydrolysates contained different concentrations of polyphenols. Compared with fermentation with a synthetic medium, fermentation with the hydrolysates of ball-milled rice straw provided much lower productivity and yield of lactic acid due to the presence of polyphenols. Removal of these compounds played an important role in lactic acid fermentation. When rice straw was alkaline pretreated, the hydrolysates contained few phenolic compounds, resulting in high productivity and yield of lactic acid (1.8 g/L/h and 26.7 g/100 g straw), which were comparable to those in a synthetic medium. This indicates that there is a correlation between removal of phenolic compounds and efficiency in lactic acid fermentation.

  10. Mutations in the C-terminal region affect subcellular localization of crucian carp herpesvirus (CaHV) GPCR.

    Science.gov (United States)

    Wang, Jun; Gui, Lang; Chen, Zong-Yan; Zhang, Qi-Ya

    2016-08-01

    G protein-coupled receptors (GPCRs) are known as seven transmembrane domain receptors and consequently can mediate diverse biological functions via regulation of their subcellular localization. Crucian carp herpesvirus (CaHV) was recently isolated from infected fish with acute gill hemorrhage. CaHV GPCR of 349 amino acids (aa) was identified based on amino acid identity. A series of variants with truncation/deletion/substitution mutation in the C-terminal (aa 315-349) were constructed and expressed in fathead minnow (FHM) cells. The roles of three key C-terminal regions in subcellular localization of CaHV GPCR were determined. Lysine-315 (K-315) directed the aggregation of the protein preferentially at the nuclear side. Predicted N-myristoylation site (GGGWTR, aa 335-340) was responsible for punctate distribution in periplasm or throughout the cytoplasm. Predicted phosphorylation site (SSR, aa 327-329) and GGGWTR together determined the punctate distribution in cytoplasm. Detection of organelles localization by specific markers showed that the protein retaining K-315 colocalized with the Golgi apparatus. These experiments provided first evidence that different mutations of CaHV GPCR C-terminals have different affects on the subcellular localization of fish herpesvirus-encoded GPCRs. The study provided valuable information and new insights into the precise interactions between herpesvirus and fish cells, and could also provide useful targets for antiviral agents in aquaculture.

  11. Study of 40Ca-40Ca elastic scattering at intermediate energy

    International Nuclear Information System (INIS)

    Kumar, Ashok; Srivastava, B.B.

    1980-01-01

    The differential cross sections for 40 Ca- 40 Ca elastic scattering have been calculated at laboratory incident energy of 240 MeV using a sharp cut off of the partial waves below a critical angular momentum, 1sub(c)' to account for absorption. The effective 40 Ca- 40 Ca potential is taken to be the sum of a real nuclear potential and the Coulomb potential. The calculated differential cross sections which are in fair agreement with the experimental data are presented and discussed. (author)

  12. Mobilization of Ca2+ by Cyclic ADP-Ribose from the Endoplasmic Reticulum of Cauliflower Florets1

    Science.gov (United States)

    Navazio, Lorella; Mariani, Paola; Sanders, Dale

    2001-01-01

    The NAD+ metabolite cADP-Rib (cADPR) elevates cytosolic free Ca2+ in plants and thereby plays a central role in signal transduction pathways evoked by the drought and stress hormone abscisic acid. cADPR is known to mobilize Ca2+ from the large vacuole of mature cells. To determine whether additional sites for cADPR-gated Ca2+ release reside in plant cells, microsomes from cauliflower (Brassica oleracea) inflorescences were subfractionated on sucrose density gradients, and the distribution of cADPR-elicited Ca2+ release was monitored. cADPR-gated Ca2+ release was detected in the heavy-density fractions associated with rough endoplasmic reticulum (ER). cADPR-dependent Ca2+ release co-migrated with two ER markers, calnexin and antimycin A-insensitive NADH-cytochrome c reductase activity. To investigate the possibility that contaminating plasma membrane in the ER-rich fractions was responsible for the observed release, plasma membrane vesicles were purified by aqueous two-phase partitioning, everted with Brij-58, and loaded with Ca2+: These vesicles failed to respond to cADPR. Ca2+ release evoked by cADPR at the ER was fully inhibited by ruthenium red and 8-NH2-cADPR, a specific antagonist of cADPR-gated Ca2+ release in animal cells. The presence of a Ca2+ release pathway activated by cADPR at higher plant ER reinforces the notion that, alongside the vacuole, the ER participates in Ca2+ signaling. PMID:11299392

  13. INTRACELLULAR Ca2+ HOMEOSTASIS

    Directory of Open Access Journals (Sweden)

    Shahdevi Nandar Kurniawan

    2015-01-01

    Full Text Available Ca2+ signaling functions to regulate many cellular processes. Dynamics of Ca2+ signaling or homeostasis is regulated by the interaction between ON and OFF reactions that control Ca2+ flux in both the plasma membrane and internal organelles such as the endoplasmic reticulum (ER and mitochondria. External stimuli activate the ON reactions, which include Ca2+ into the cytoplasm either through channels in the plasma membrane or from internal storage like in ER. Most of the cells utilize both channels/sources, butthere area few cells using an external or internal source to control certain processes. Most of the Ca2+ entering the cytoplasm adsorbed to the buffer, while a smaller part activate effect or to stimulate cellular processes. Reaction OFF is pumping of cytoplasmic Ca2+ using a combination mechanism of mitochondrial and others. Changes in Ca2+ signal has been detected in various tissues isolated from animals induced into diabetes as well as patients with diabetes. Ca2+ signal interference is also found in sensory neurons of experimental animals with diabetes. Ca2+ signaling is one of the main signaling systems in the cell.

  14. Structure/activity relationship of thapsigargin inhibition on the purified Golgi/secretory pathway Ca2+/Mn2+-transport ATPase (SPCA1a)

    DEFF Research Database (Denmark)

    Chen, Jialin; De Raeymaecker, Joren; Hovgaard, Jannik Brondsted

    2017-01-01

    SPCA1a displays a higher apparent Ca2+ affinity and lower maximal turnover rate than the purified sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA1a). The lipids cholesteryl hemisuccinate, linole-/oleamide and phosphatidyl ethanolamine inhibit, whereas phosphatidic acid and sphingomyelin enhance SPCA1a...... activity. Moreover, SPCA1a is blocked by μM concentrations of commonly used SERCA1a inhibitors thapsigargin (Tg), cyclopiazonic acid (CPA) and 2,5-di-tert-butyl hydroquinone (BHQ). Since tissue-specific targeting of SERCA2b by Tg analogues is considered for prostate cancer therapy, the inhibition of SPCA1a...

  15. Genome Wide Identification of LIM Genes in Cicer arietinum and Response of Ca-2LIMs in Development, Hormone and Pathogenic Stress.

    Directory of Open Access Journals (Sweden)

    Vikas Srivastava

    Full Text Available The eukaryotic lineage-specific LIM protein (LIN11, ISL1, and MEC3 family play pivotal role in modulation of actin dynamics and transcriptional regulation. The systematic investigation of this family has not been carried in detail and rare in legumes. Current study involves the mining of Cicer arietinum genome for the genes coding for LIM domain proteins and displayed significant homology with LIM genes of other species. The analysis led to the identification of 15 members, which were positioned on chickpea chromosomes. The phylogenetic and motif analysis suggested their categorization into two sub-families i.e., Ca-2LIMs and Ca-DA1/DAR, which comprised of nine and six candidates, respectively. Further sub-categories of Ca-2LIMs were recognised as αLIM, βLIM, δLIM and γLIM. The LIM genes within their sub-families displayed conserved genomic and motif organization. The expression pattern of Ca-2LIMs across developmental and reproductive tissues demonstrated strong correlation with established consensus. The Ca-2LIM belongs to PLIM and GLIM (XLIM was found highly expressed in floral tissue. Others showed ubiquitous expression pattern with their dominance in stem. Under hormonal and pathogenic conditions these LIMs were found to up-regulate during salicylic acid, abscisic acid and Ascochyta rabiei treatment or infection; and down-regulated in response to jasmonic acid treatment. The findings of this work, particularly in terms of modulation of LIM genes under biotic stress will open up the way to further explore and establish the role of chickpea LIMs in plant defense response.

  16. Genome Wide Identification of LIM Genes in Cicer arietinum and Response of Ca-2LIMs in Development, Hormone and Pathogenic Stress

    Science.gov (United States)

    Srivastava, Vikas; Verma, Praveen Kumar

    2015-01-01

    The eukaryotic lineage-specific LIM protein (LIN11, ISL1, and MEC3) family play pivotal role in modulation of actin dynamics and transcriptional regulation. The systematic investigation of this family has not been carried in detail and rare in legumes. Current study involves the mining of Cicer arietinum genome for the genes coding for LIM domain proteins and displayed significant homology with LIM genes of other species. The analysis led to the identification of 15 members, which were positioned on chickpea chromosomes. The phylogenetic and motif analysis suggested their categorization into two sub-families i.e., Ca-2LIMs and Ca-DA1/DAR, which comprised of nine and six candidates, respectively. Further sub-categories of Ca-2LIMs were recognised as αLIM, βLIM, δLIM and γLIM. The LIM genes within their sub-families displayed conserved genomic and motif organization. The expression pattern of Ca-2LIMs across developmental and reproductive tissues demonstrated strong correlation with established consensus. The Ca-2LIM belongs to PLIM and GLIM (XLIM) was found highly expressed in floral tissue. Others showed ubiquitous expression pattern with their dominance in stem. Under hormonal and pathogenic conditions these LIMs were found to up-regulate during salicylic acid, abscisic acid and Ascochyta rabiei treatment or infection; and down-regulated in response to jasmonic acid treatment. The findings of this work, particularly in terms of modulation of LIM genes under biotic stress will open up the way to further explore and establish the role of chickpea LIMs in plant defense response. PMID:26418014

  17. CaZF, a plant transcription factor functions through and parallel to HOG and calcineurin pathways in Saccharomyces cerevisiae to provide osmotolerance.

    Directory of Open Access Journals (Sweden)

    Deepti Jain

    Full Text Available Salt-sensitive yeast mutants were deployed to characterize a gene encoding a C2H2 zinc finger protein (CaZF that is differentially expressed in a drought-tolerant variety of chickpea (Cicer arietinum and provides salinity-tolerance in transgenic tobacco. In Saccharomyces cerevisiae most of the cellular responses to hyper-osmotic stress is regulated by two interconnected pathways involving high osmolarity glycerol mitogen-activated protein kinase (Hog1p and Calcineurin (CAN, a Ca(2+/calmodulin-regulated protein phosphatase 2B. In this study, we report that heterologous expression of CaZF provides osmotolerance in S. cerevisiae through Hog1p and Calcineurin dependent as well as independent pathways. CaZF partially suppresses salt-hypersensitive phenotypes of hog1, can and hog1can mutants and in conjunction, stimulates HOG and CAN pathway genes with subsequent accumulation of glycerol in absence of Hog1p and CAN. CaZF directly binds to stress response element (STRE to activate STRE-containing promoter in yeast. Transactivation and salt tolerance assays of CaZF deletion mutants showed that other than the transactivation domain a C-terminal domain composed of acidic and basic amino acids is also required for its function. Altogether, results from this study suggests that CaZF is a potential plant salt-tolerance determinant and also provide evidence that in budding yeast expression of HOG and CAN pathway genes can be stimulated in absence of their regulatory enzymes to provide osmotolerance.

  18. Thermoluminescence properties of home-made CaSO4:Dy For Dosimetry Purposes

    International Nuclear Information System (INIS)

    Kamal, S.M.; Gerges, A.S.; Al-Said, M.A.

    2004-01-01

    Dysprosium doped Calcium Sulfate (CaSO 4 :Dy) had been first prepared by Yamashita in 1968 with method based on acid evaporation in an open system, which pose human health risks, corrosion and pollution to the environment due to sulfuric acid vapor. It has found increasing use in various applications in the field of radiation dosimetry due to their ease of preparation as compared to many other sensitive TL materials. Many researchers emphasized that the grain size and impurities influence the relative intensities of the broad glow peaks as well as overall sensitivities. In this paper, we introduce a new method of preparation for avoiding all of these disadvantages and improving the main TL materials properties, which required for dosimetric use. The main TL characteristics of home-made CaSO 4 :Dy .crystals with different concentrations are investigated alter the preparation and heat treatment conditions. The results indicated a linear response from 5μ .Gy up to 10 Gy with the highest sensitivity obtained at 0.25 mol % and optimum sensitivity at less than 75 jam grain sizes. Three peaks at 137 degree C, 222 degree C and 311 degree C were obtained. We conclude to use our home-made prepared CaSO 4 :Dy with 0.25 mol % concentration for gamma-ray dosimetry as more sensitive and cheaper than commercial phosphor (TLD-900). This will increase the routine and research work in the area of TL dosimetry

  19. F-actin-based Ca signaling-a critical comparison with the current concept of Ca signaling.

    Science.gov (United States)

    Lange, Klaus; Gartzke, Joachim

    2006-11-01

    A short comparative survey on the current idea of Ca signaling and the alternative concept of F-actin-based Ca signaling is given. The two hypotheses differ in one central aspect, the mechanism of Ca storage. The current theory rests on the assumption of Ca-accumulating endoplasmic/sarcoplasmic reticulum-derived vesicles equipped with an ATP-dependent Ca pump and IP3- or ryanodine-sensitive channel-receptors for Ca-release. The alternative hypothesis proceeds from the idea of Ca storage at the high-affinity binding sites of actin filaments. Cellular sites of F-actin-based Ca storage are microvilli and the submembrane cytoskeleton. Several specific features of Ca signaling such as store-channel coupling, quantal Ca release, spiking and oscillations, biphasic and "phasic" uptake kinetics, and Ca-induced Ca release (CICR), which are not adequately described by the current concept, are inherent properties of the F-actin system and its dynamic state of treadmilling. Copyright 2006 Wiley-Liss, Inc.

  20. Role of CA-EDTA on the Synthesizing Process of Cerate-Zirconate Ceramics Electrolyte

    OpenAIRE

    Abdullah, Nur Athirah; Hasan, Sharizal; Osman, Nafisah

    2013-01-01

    The role of a combination between citric acid (CA) and ethylenediaminetetra acetic acid (EDTA) as chelating agents in preparation of BaCe0.54Zr0.36Y0.1O2.95 powder by a modified sol-gel method is reported. The precursor solutions were prepared from metal nitrate salts (M+), chelating agents (C), and ethylene glycol (EG) at molar ratio of M+ : C : EG = 3 : 2 : 3. Chemical and phase transformation of samples during thermal decomposition were analyzed by thermogravimetric analysis (TGA) and Four...

  1. Plasma membrane Ca2+-ATPase isoforms composition regulates cellular pH homeostasis in differentiating PC12 cells in a manner dependent on cytosolic Ca2+ elevations

    DEFF Research Database (Denmark)

    Boczek, Tomasz; Lisek, Malwina; Ferenc, Bozena

    2014-01-01

    isoforms (PMCA1-4) but only PMCA2 and PMCA3, due to their unique localization and features, perform more specialized function. Using differentiated PC12 cells we assessed the role of PMCA2 and PMCA3 in the regulation of intracellular pH in steady-state conditions and during Ca2+ overload evoked by 59 m....... In steady-state conditions, higher TMRE uptake in PMCA2-knockdown line was driven by plasma membrane potential (Ψp). Nonetheless, mitochondrial membrane potential (Ψm) in this line was dissipated during Ca2+ overload. Cyclosporin and bongkrekic acid prevented Ψm loss suggesting the involvement of Ca2......+-driven opening of mitochondrial permeability transition pore as putative underlying mechanism. The findings presented here demonstrate a crucial role of PMCA2 and PMCA3 in regulation of cellular pH and indicate PMCA membrane composition important for preservation of electrochemical gradient...

  2. Evaluation of equilibrium constants for deprotonation and lactonisation of α-D-isosaccharinic acid

    International Nuclear Information System (INIS)

    Rai, Dhanpat; Kitamura, Akira

    2016-01-01

    A great deal of disagreement exists in the literature regarding the intrinsic deprotonation and lactonisation constants of α-D-isosaccharinic acid (ISA). Based on a combination of nuclear magnetic resonance and interpretations using the specific ion interaction theory (SIT) of extensive experimental Ca(ISA) 2 (cr) solubility data involving α-D-isosaccharinic acid, the reliable value of log 10 K° for [HISA(aq) ⇌ ISA - + H + ] is -3.27 ± 0.01 and for [HISA(aq) ⇌ ISL(α-D-isosaccharinate-1,4-lactone)(aq) + H 2 O] is 0.49 ± 0.09. These data also provide log 10 K° of -3.76 ± 0.09 for the reaction [ISL(aq) + H 2 O ⇌ ISA - + H + ] and -3.88 ± 0.09 for the composite reaction [HISA(aq) + ISL(aq) ⇌ ISA - + H + ]. Reinterpretation of extensive Ca(ISA) 2 (cr) solubility data using the SIT activity coefficient model provides log 10 K° of -6.40 ± 0.09 for [Ca(ISA) 2 (cr) ⇌ Ca 2+ + 2(ISA) - ] and of 1.70 ± 0.09 for [Ca 2+ + ISA - ⇌ CaISA + ] which are consistent with all of the available values. (author)

  3. MicroRNA-145 suppresses ROS-induced Ca2+ overload of cardiomyocytes by targeting CaMKIIδ

    International Nuclear Information System (INIS)

    Cha, Min-Ji; Jang, Jin-Kyung; Ham, Onju; Song, Byeong-Wook; Lee, Se-Yeon; Lee, Chang Yeon; Park, Jun-Hee; Lee, Jiyun; Seo, Hyang-Hee; Choi, Eunhyun; Jeon, Woo-min; Hwang, Hye Jin; Shin, Hyun-Taek

    2013-01-01

    Highlights: •CaMKIIδ mediates H 2 O 2 -induced Ca 2+ overload in cardiomyocytes. •miR-145 can inhibit Ca 2+ overload. •A luciferase assay confirms that miR-145 functions as a CaMKIIδ-targeting miRNA. •Overexpression of miR-145 regulates CaMKIIδ-related genes and ameliorates apoptosis. -- Abstract: A change in intracellular free calcium (Ca 2+ ) is a common signaling mechanism of reperfusion-induced cardiomyocyte death. Calcium/calmodulin dependent protein kinase II (CaMKII) is a critical regulator of Ca 2+ signaling and mediates signaling pathways responsible for functions in the heart including hypertrophy, apoptosis, arrhythmia, and heart disease. MicroRNAs (miRNA) are involved in the regulation of cell response, including survival, proliferation, apoptosis, and development. However, the roles of miRNAs in Ca 2+ -mediated apoptosis of cardiomyocytes are uncertain. Here, we determined the potential role of miRNA in the regulation of CaMKII dependent apoptosis and explored its underlying mechanism. To determine the potential roles of miRNAs in H 2 O 2 -mediated Ca 2+ overload, we selected and tested 6 putative miRNAs that targeted CaMKIIδ, and showed that miR-145 represses CaMKIIδ protein expression and Ca 2+ overload. We confirmed CaMKIIδ as a direct downstream target of miR-145. Furthermore, miR-145 regulates Ca 2+ -related signals and ameliorates apoptosis. This study demonstrates that miR-145 regulates reactive oxygen species (ROS)-induced Ca 2+ overload in cardiomyocytes. Thus, miR-145 affects ROS-mediated gene regulation and cellular injury responses

  4. Biomedical graphite and CaF2 preparation and measurement at PRIME Lab

    Science.gov (United States)

    Jackson, George S.; Einstein, Jane A.; Kubley, Tom; Martin, Berdine; Weaver, Connie M.; Caffee, Marc

    2015-10-01

    The biomedical program at PRIME Lab has prepared radiocarbon and 41Ca as tracers for a variety of applications. Over the last decade several hundred 14C samples and several thousand 41Ca samples have been measured per year. Biomedical samples pose challenges that are relatively rare in the AMS community. We will discuss how to prepare and compensate for samples that have isotope ratios above the dynamic range of AMS, high interference rates, and small samples sizes. In the case of 41Ca, the trade off in the chromatography between yield and sample cleanliness will be analyzed. Secondary standards that have isotope ratios commonly encountered in our applications are routinely prepared. We use material from the Joint Research Centre's Institute for Reference Materials and Measurement: IRMM-3701/4, 3701/5, and 3701/6 and a standard produced by PRIME Lab for 41Ca. We use International Atomic Energy Agency's IAEA C-3, IAEA C-7, IAEA C-8, and a ∼12.5× modern oxalic acid secondary standard supplied by Lawrence Livermore National Laboratory for 14C. We will discuss our precision, reproducibility, and the relative agreement between our measured and the reported values for these materials.

  5. Degradation of clofibric acid in UV/chlorine disinfection process: kinetics, reactive species contribution and pathways.

    Science.gov (United States)

    Tang, Yuqing; Shi, Xueting; Liu, Yongze; Feng, Li; Zhang, Liqiu

    2018-02-01

    As a potential endocrine disruptor, clofibric acid (CA) was investigated in this study for its degradation kinetics and pathways in UV/chlorine process. The results showed that CA in both UV photolysis and UV/chlorine processes could be degraded via pseudo-first-order kinetics, while it almost could not be degraded in the dark chlorination process. The observed rate constant ( k obs ) in UV photolysis was 0.0078 min -1, and increased to 0.0107 min -1 combining with 0.1 mM chlorine. The k obs increased to 0.0447 min -1 with further increasing the chlorine dosage from 0.1 to 1.0 mM, and reached a plateau at higher dosage (greater than 1.0 mM). The higher k obs was obtained at acid solution rather than basic solution. Moreover, the calculated contributions of radical species to k obs indicated that the HO• contributed significantly to CA degradation in acidic conditions, while the reactive chlorine species and UV direct photolysis dominated in neutral and basic solution. The degradation of CA was slightly inhibited in the presence of [Formula: see text] (1 ∼ 50 mM), barely affected by the presence of Cl - (1 ∼ 200 mM) and greatly suppressed by humic acid (0 ∼ 5 mg l -1 ). Thirteen main degradation intermediates and three degradation pathways of CA were identified during UV/chlorine process.

  6. Changes in the expression of serum markers CA242, CA199, CA125, CEA, TNF-α and TSGF after cryosurgery in pancreatic cancer patients.

    Science.gov (United States)

    Zhou, Gang; Niu, Lizhi; Chiu, David; He, Lihua; Xu, Kecheng

    2012-07-01

    The presence of serum tumor markers, carbohydrate antigen 242 (CA242), carbohydrate antigen 199 (CA199), carbohydrate antigen 125 (CA125), carcinoembryonic antigen (CEA), tumor-supplied group of factors (TSGF) and tumor necrosis factor-α (TNF-α), is closely associated with invasion and metastasis of many malignancies. The expression of these markers were measured in serum taken from 37 pancreatic cancer patients prior to treatment. Levels of CA242, CA199, CA125, CEA and TNF-α expression correlated with tumor size, clinical stage, tumor differentiation, lymph node and liver metastasis (P markers were significantly reduced compared with levels prior to cryosurgery (P 0.05). Thus, cryosurgery is more effective than chemotherapy for decreasing CA242, CA199, CA125, CEA, TSGF and TNF-α serum levels in these patients.

  7. Chronic effects of clofibric acid in zebrafish (Danio rerio): A multigenerational study

    Energy Technology Data Exchange (ETDEWEB)

    Coimbra, Ana M., E-mail: acoimbra@utad.pt [Centre for The Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real (Portugal); Department of Biology and Environment, Life Sciences and Environment School (ECVA), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real (Portugal); Peixoto, Maria João [CIMAR/CIIMAR, Interdisciplinary Centre for Marine and Environmental Research, University of Porto, Rua dos Bragas 177, 4050-123 Porto (Portugal); Department of Biology and Environment, Life Sciences and Environment School (ECVA), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real (Portugal); Coelho, Inês; Lacerda, Ricardo [CIMAR/CIIMAR, Interdisciplinary Centre for Marine and Environmental Research, University of Porto, Rua dos Bragas 177, 4050-123 Porto (Portugal); Carvalho, António Paulo [CIMAR/CIIMAR, Interdisciplinary Centre for Marine and Environmental Research, University of Porto, Rua dos Bragas 177, 4050-123 Porto (Portugal); FCUP, Faculty of Sciences University of Porto, Department of Biology, Rua do Campo Alegre, 4169-007 Porto (Portugal); Gesto, Manuel [CIMAR/CIIMAR, Interdisciplinary Centre for Marine and Environmental Research, University of Porto, Rua dos Bragas 177, 4050-123 Porto (Portugal); Department of Functional Biology and Health Sciences, Faculty of Biology, University of Vigo, As Lagoas-Marcosende s/n, 36310, Vigo (Spain); Lyssimachou, Angeliki; Lima, Daniela; Soares, Joana; André, Ana; Capitão, Ana [CIMAR/CIIMAR, Interdisciplinary Centre for Marine and Environmental Research, University of Porto, Rua dos Bragas 177, 4050-123 Porto (Portugal); and others

    2015-03-15

    Highlights: • Clofibric acid (CA) induces multigenerational effects in zebrafish (Danio rerio). • CA impacts fish lipid metabolism, with similarities to those reported in mammals. • Weight is impacted in F1 and F2 generations, thought with opposite patterns. - Abstract: Clofibric acid (CA) is an active metabolite of the blood lipid lowering agent clofibrate, a pharmaceutical designed to work as agonist of peroxisome proliferator-activated receptor alpha (PPARa). It is the most commonly reported fibrate in aquatic environments with low degradation rate and potential environmental persistence. Previous fish exposures showed that CA may impact spermatogenesis, growth and the expression of fat binding protein genes. However, there are limited data on the effects of chronic multigenerational CA exposures. Here, we assessed chronic multigenerational effects of CA exposure using zebrafish (Danio rerio) as a teleost model. Zebrafish were exposed through the diet to CA (1 and 10 mg/g) during their whole lifetime. Growth, reproduction-related parameters and embryonic development were assessed in the exposed fish (F1 generation) and their offspring (F2 generation), together with muscle triglyceride content and gonad histology. In order to study the potential underlying mechanisms, the transcription levels of genes coding for enzymes involved in lipid metabolism pathways were determined. The results show that chronic life-cycle exposure to CA induced a significant reduction in growth of F1 generation and lowered triglyceride muscle content (10 mg/g group). Also, an impact in male gonad development was observed together with a decrease in the fecundity (10 mg/g group) and higher frequency of embryo abnormalities in the offspring of fish exposed to the lowest CA dose. The profile of the target genes was sex- and tissue-dependent. In F1 an up-regulation of male hepatic pparaa, pparb and acox transcript levels was observed, suggesting an activation of the fatty acid

  8. Chronic effects of clofibric acid in zebrafish (Danio rerio): A multigenerational study

    International Nuclear Information System (INIS)

    Coimbra, Ana M.; Peixoto, Maria João; Coelho, Inês; Lacerda, Ricardo; Carvalho, António Paulo; Gesto, Manuel; Lyssimachou, Angeliki; Lima, Daniela; Soares, Joana; André, Ana; Capitão, Ana

    2015-01-01

    Highlights: • Clofibric acid (CA) induces multigenerational effects in zebrafish (Danio rerio). • CA impacts fish lipid metabolism, with similarities to those reported in mammals. • Weight is impacted in F1 and F2 generations, thought with opposite patterns. - Abstract: Clofibric acid (CA) is an active metabolite of the blood lipid lowering agent clofibrate, a pharmaceutical designed to work as agonist of peroxisome proliferator-activated receptor alpha (PPARa). It is the most commonly reported fibrate in aquatic environments with low degradation rate and potential environmental persistence. Previous fish exposures showed that CA may impact spermatogenesis, growth and the expression of fat binding protein genes. However, there are limited data on the effects of chronic multigenerational CA exposures. Here, we assessed chronic multigenerational effects of CA exposure using zebrafish (Danio rerio) as a teleost model. Zebrafish were exposed through the diet to CA (1 and 10 mg/g) during their whole lifetime. Growth, reproduction-related parameters and embryonic development were assessed in the exposed fish (F1 generation) and their offspring (F2 generation), together with muscle triglyceride content and gonad histology. In order to study the potential underlying mechanisms, the transcription levels of genes coding for enzymes involved in lipid metabolism pathways were determined. The results show that chronic life-cycle exposure to CA induced a significant reduction in growth of F1 generation and lowered triglyceride muscle content (10 mg/g group). Also, an impact in male gonad development was observed together with a decrease in the fecundity (10 mg/g group) and higher frequency of embryo abnormalities in the offspring of fish exposed to the lowest CA dose. The profile of the target genes was sex- and tissue-dependent. In F1 an up-regulation of male hepatic pparaa, pparb and acox transcript levels was observed, suggesting an activation of the fatty acid

  9. Regulated release of Ca2+ from respiring mitochondria by Ca2+/2H+ antiport.

    Science.gov (United States)

    Fiskum, G; Lehninger, A L

    1979-07-25

    Simultaneous measurements of oxygen consumption and transmembrane transport of Ca2+, H+, and phosphate show that the efflux of Ca2+ from respiring tightly coupled rat liver mitochondria takes place by an electroneutral Ca2+/2H+ antiport process that is ruthenium red-insensitive and that is regulated by the oxidation-reduction state of the mitochondrial pyridine nucleotides. When mitochondrial pyridine nucleotides are kept in a reduced steady state, the efflux of Ca2+ is inhibited; when they are in an oxidized state, Ca2+ efflux is activated. These processes were demonstrated by allowing phosphate-depleted mitochondria respiring on succinate in the presence of rotenone to take up Ca2+ from the medium. Upon subsequent addition of ruthenium red to block Ca2+ transport via the electrophoretic influx pathway, and acetoacetate, to bring mitochondrial pyridine nucleotides into the oxidized state, Ca2+ efflux and H+ influx ensued. The observed H+ influx/Ca2+ efflux ratio was close to the value 2.0 predicted for the operation of an electrically neutral Ca2+/2H+ antiport process.

  10. Filling the gap in Ca input-output budgets in base-poor forest ecosystems: The contribution of non-crystalline phases evidenced by stable isotopic dilution

    Science.gov (United States)

    van der Heijden, Gregory; Legout, Arnaud; Mareschal, Louis; Ranger, Jacques; Dambrine, Etienne

    2017-07-01

    In terrestrial ecosystems, plant-available pools of magnesium and calcium are assumed to be stored in the soil as exchangeable cations adsorbed on the surface of mineral and/or organic particles. The pools of exchangeable magnesium and calcium are measured by ion-exchange soil extractions. These pools are sustained in the long term by the weathering of primary minerals in the soil and atmospheric inputs. This conceptual model is the base of input-output budgets from which soil acidification and the sustainability of soil chemical fertility is inferred. However, this model has been questioned by data from long-term forest ecosystem monitoring sites, particularly for calcium. Quantifying the contribution of atmospheric inputs, ion exchange and weathering of both primary, secondary and non-crystalline phases to tree nutrition in the short term is challenging. In this study, we developed and applied a novel isotopic dilution technique using the stable isotopes of magnesium and calcium to study the contribution of the different soil phases to soil solution chemistry in a very acidic soil. The labile pools of Mg and Ca in the soil (pools in equilibrium with the soil solution) were isotopically labeled by spraying a solution enriched in 26Mg and 44Ca on the soil. Labeled soil columns were then percolated with a dilute acid solution during a 3-month period and the isotopic dilution of the tracers was monitored in the leaching solution, in the exchangeable (2 sequential 1 mol L-1 ammonium acetate extractions) and non-crystalline (2 sequential soil digestions: oxalic acid followed by nitric acid) phases. Significant amounts of Mg and Ca isotope tracer were recovered in the non-crystalline soil phases. These phases represented from 5% to 25% and from 24% to 50%, respectively, of the Mg and Ca labile pools during the experiment. Our results show that non-crystalline phases act as both a source and a sink of calcium and magnesium in the soil, and contribute directly to soil

  11. Applicative Value of Serum CA19-9, CEA, CA125 and CA242 in Diagnosis and Prognosis for Patients with Pancreatic Cancer Treated by Concurrent Chemoradiotherapy.

    Science.gov (United States)

    Gu, Yu-Lei; Lan, Chao; Pei, Hui; Yang, Shuang-Ning; Liu, Yan-Fen; Xiao, Li-Li

    2015-01-01

    To evaluate the application value of serum CA19-9, CEA, CA125 and CA242 in diagnosis and prognosis of pancreatic cancer cases treated with concurrent chemotherapy. 52 patients with pancreatic cancer, 40 with benign pancreatic diseases and 40 healthy people were selected. The electrochemiluminescence immunoassay method was used for detecting levels of CA19-9, CEA and CA125, and a CanAg CA242 enzyme linked immunoassay kit for assessing the level of CA242. The Kaplan-Meier method was used for analyzing the prognostic factors of patients with pancreatic cancer. The Cox proportional hazard model was applied for analyzing the hazard ratio (HR) and 95% confidential interval (CI) for survival time of patients with pancreatic cancer. The levels of serum CA19-9, CEA, CA125 and CA242 in patients with pancreatic cancer were significantly higher than those in patients with benign pancreatic diseases and healthy people (PCEA. The specificity of CA242 is the highest, followed by CA125, CEA and CA19-9. The sensitivity and specificity of joint detection of serum CA19-9, CEA, CA125and CA242 were 90.4% and 93.8%, obviously higher than single detection of those markers in diagnosis of pancreatic cancer. The median survival time of 52 patients with pancreatic cancer was 10 months (95% CI7.389~12.611).. Patients with the increasing level of serum CA19-9, CEA, CA125, CA242 had shorter survival times (P=0.047. 0.043, 0.0041, 0.029). COX regression analysis showed that CA19-9 was an independent prognostic factor for patients with pancreatic cancer (P=0.001, 95%CI 2.591~38.243). The detection of serum tumor markers (CA19.9, CEA, CA125 and CA242) is conducive to the early diagnosis of pancreatic cancer and joint detection of tumor markers helps improve the diagnostic efficiency. Moreover, CA19-9 is an independent prognostic factor for patients with pancreatic cancer.

  12. The effect of Centella asiatica, vitamins, glycolic acid and their mixtures preparations in stimulating collagen and fibronectin synthesis in cultured human skin fibroblast.

    Science.gov (United States)

    Hashim, Puziah

    2014-03-01

    Centella asiatica (Linn.) Urban is well known in promoting wound healing and provides significant benefits in skin care and therapeutic products formulation. Glycolic acid and vitamins also play a role in the enhancement of collagen and fibronectin synthesis. Here, we evaluate the specific effect of Centella asiatica (CA), vitamins, glycolic acid and their mixture preparations to stimulate collagen and fibronectin synthesis in cultured human fibroblast cells. The fibroblast cells are incubated with CA, glycolic acid, vitamins and their mixture preparations for 48 h. The cell lysates were analyzed for protein content and collagen synthesis by direct binding enzyme immunoassay. The fibronectin of the cultured supernatant was measured by sandwich enzyme immunoassay. The results showed that CA, glycolic acid, vitamins A, E and C significantly stimulate collagen and fibronectin synthesis in the fibroblast. Addition of glycolic acid and vitamins to CA further increased the levels of collagen and fibronectin synthesis to 8.55 and 23.75 μg/100 μg, respectively. CA, glycolic acid, vitamins A, E, and C, and their mixtures demonstrated stimulatory effect on both extra-cellular matrix synthesis of collagen and fibronectin in in vitro studies on human foreskin fibroblasts, which is beneficial to skin care and therapeutic products formulation.

  13. Reaction Mechanisms and Structural and Physicochemical Properties of Caffeic Acid Grafted Chitosan Synthesized in Ascorbic Acid and Hydroxyl Peroxide Redox System.

    Science.gov (United States)

    Liu, Jun; Pu, Huimin; Chen, Chong; Liu, Yunpeng; Bai, Ruyu; Kan, Juan; Jin, Changhai

    2018-01-10

    The ascorbic acid (AA) and hydroxyl peroxide (H 2 O 2 ) redox pair induced free radical grafting reaction is a promising approach to conjugate phenolic groups with chitosan (CS). In order to reveal the exact mechanisms of the AA/H 2 O 2 redox pair induced grafting reaction, free radicals generated in the AA/H 2 O 2 redox system were compared with hydroxyl radical ( • OH) produced in the Fe 2+ /H 2 O 2 redox system. Moreover, the structural and physicochemical properties of caffeic acid grafted CS (CA-g-CS) synthesized in these two redox systems were compared. Results showed that only ascorbate radical (Asc •- ) was produced in the AA/H 2 O 2 system. The reaction between Asc •- and CS produced novel carbon-centered radicals, whereas no new free radicals were detected when • OH reacted with CS. Thin layer chromatography, UV-vis, Fourier transform infrared, and nuclear magnetic resonance spectroscopic analyses all confirmed that CA was successfully grafted onto CS through Asc •- . However, CA could be hardly grafted onto CS via • OH. CA-g-CS synthesized through Asc •- exhibited lower thermal stability and crystallinity than the reaction product obtained through • OH. For the first time, our results demonstrated that the synthesis of CA-g-CS in the AA/H 2 O 2 redox system was mediated by Asc •- rather than • OH.

  14. Effects of CaCO3 treatment on the morphology, crystallinity, rheology and hydrolysis of gelatinized maize starch dispersions.

    Science.gov (United States)

    Garcia-Diaz, S; Hernandez-Jaimes, C; Escalona-Buendia, H B; Bello-Perez, L A; Vernon-Carter, E J; Alvarez-Ramirez, J

    2016-09-15

    Using calcium salts instead of lime allows for an ecological nixtamalization of maize grains, where the negative contamination impact of the traditional lime nixtamalization is reduced. This work assessed the effects of calcium carbonate (0.0-2.0%w/w CaCO3) on the morphology, crystallinity, rheology and hydrolysis of gelatinized maize starch dispersions (GMSD). Microscopy analysis showed that CaCO3 changed the morphology of insoluble remnants (ghosts) and decreased the degree of syneresis. Analysis of particle size distribution showed a slight shift to smaller sizes as the CaCO3 was increased. Also, X-ray patterns indicated that crystallinity achieved a minimum value at CaCO3 concentration in the range of 1%w/w. GMSD with higher CaCO3 concentrations exhibited higher thixotropy area and complex viscoelastic behavior that was frequency dependent. A possible mechanism involved in the starch chain modification by CaCO3 is that starch may act as a weak acid ion exchanger capable of exchanging alcoholic group protons for cations (Ca(+2)). Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Constitutively active Arabidopsis MAP Kinase 3 triggers defense responses involving salicylic acid and SUMM2 resistance protein

    KAUST Repository

    Genot, Baptiste; Lang, Julien; Berriri, Souha; Garmier, Marie; Gilard, Franç oise; Pateyron, Sté phanie; Haustraete, Katrien; Van Der Straeten, Dominique; Hirt, Heribert; Colcombet, Jean

    2017-01-01

    ), phytoalexins and the stress-related hormones ethylene and salicylic acid (SA). Remarkably CA-MPK3/sid2 and CA-MPK3/ein2-50 lines which are impaired in SA synthesis and ethylene signaling, respectively, retain most of the CA-MPK3-associated phenotypes

  16. Cerebroprotective activity of U-50488H: Relationship to interactions with excitatory amino acids and calcium

    International Nuclear Information System (INIS)

    Camacho Ochoa, M.

    1987-01-01

    The mechanism underlying the anticonvulsant and cerebroprotective activity of U-50488H was evaluated using 45 Ca ++ uptake in rat Ficoll purified synaptosomes, ( 3 H)-2-deoxyglucose uptake in selected mouse brain regions, ( 3 H)kainic acid binding to mouse forebrain synaptic membranes and incidence of KA-induced lesions in the CA3 region of the mouse hippocampus. U-50488H causes reduction in K + -evoked 45 Ca ++ uptake. These effects are comparable to those of the calcium channel blockers verapamil and nifedipine and seem to be related to calcium dependent mechanisms. Changes in saturability, specificity and dissociation constant values of kainic acid receptor binding were demonstrated in the presence of U-50488H at concentrations similar to those used in 45 Ca ++ uptake studies and in the presence of calcium and chloride ions

  17. Light-Induced Acid Generation on a Gatekeeper for Smart Nitric Oxide Delivery.

    Science.gov (United States)

    Choi, Hyung Woo; Kim, Jihoon; Kim, Jinhwan; Kim, Yonghwi; Song, Hyun Beom; Kim, Jeong Hun; Kim, Kimoon; Kim, Won Jong

    2016-04-26

    We report herein the design of a light-responsive gatekeeper for smart nitric oxide (NO) delivery. The gatekeeper is composed of a pH-jump reagent as an intermediary of stimulus and a calcium phosphate (CaP) coating as a shielding layer for NO release. The light irradiation and subsequent acid generation are used as triggers for uncapping the gatekeeper and releasing NO. The acids generated from a light-activated pH-jump agent loaded in the mesoporous nanoparticles accelerated the degradation of the CaP-coating layers on the nanoparticles, facilitating the light-responsive NO release from diazeniumdiolate by exposing a NO donor to physiological conditions. Using the combination of the pH-jump reagent and CaP coating, we successfully developed a light-responsive gatekeeper system for spatiotemporal-controlled NO delivery.

  18. Effects of titanium surface anodization with CaP incorporation on human osteoblastic response

    Science.gov (United States)

    OLIVEIRA, Natássia Cristina Martins; MOURA, Camilla Christian Gomes; ZANETTA-BARBOSA, Darceny; MENDONÇA, Daniela Baccelli Silveira; MENDONÇA, Gustavo; DECHICHI, Paula

    2015-01-01

    In this study we investigated whether anodization with calcium phosphate (CaP) incorporation (Vulcano®) enhances growth factors secretion, osteoblast-specific gene expression, and cell viability, when compared to acid etched surfaces (Porous®) and machined surfaces (Screw®) after 3 and 7 days. Results showed significant cell viability for Porous and Vulcano at day 7, when compared with Screw (p=0.005). At the same time point, significant differences regarding runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP) and bone sialoprotein (BSP) expression were found for all surfaces (p0.05). Although no significant correlation was found for growth factors secretion and Runx2 expression, a significant positive correlation between this gene and ALP/BSP expression showed that their strong association is independent on the type of surface. The incorporation of CaP affected the biological parameters evaluated similar to surfaces just acid etched. The results presented here support the observations that roughness also may play an important role in determining cell response. PMID:23498218

  19. Interaction of some essential amino acids with synthesized poorly crystalline hydroxyapatite

    Directory of Open Access Journals (Sweden)

    A. El Rhilassi

    2016-09-01

    Full Text Available This study focused on the release of two essential amino acids, l-lysine and dl-leucine, previously adsorbed onto poorly crystalline hydroxyapatite of Ca/P = 1.59, synthesis by precipitation methods. The composition of the calcium-deficient hydroxyapatite (CDHA is chemically and structurally similar to the bone mineral. Their surface reactivity is indeed linked to the existence of hydrated surface particles (HPO42- and Ca2+. The adsorption kinetics is very fast while the release kinetics is relatively slow. The adsorption rate reached approximately 70%, but the release rate did not exceed 12%. The chemical composition of solution has an influence on the release processes. The presence of phosphate ions favored the release of amino acids, while the calcium ions inhibited it. Also, the release process is slightly influenced by Ra (ml/mg ratio and incubation temperature of the medium. The charged –COO− and NH3+ of amino acids are the strongest groups that interact with the surface of hydroxyapatite, the adsorption is mainly due to the electrostatic interaction between the groups –COO− of amino acids and calcium Ca2+ ions of the hydroxyapatite. dl-Leucine (non-polar and l-Lysine (polar–basic interact with the hydroxyapatite surface in the zwitterionic and cationic forms, respectively. The study of interactions between amino acids and hydroxyapatite is carried out in vitro by using UV–vis and infrared spectroscopy IR techniques.

  20. Removal of fluoride from aqueous nitric acid

    International Nuclear Information System (INIS)

    Pruett, D.J.; Howerton, W.B.; Mailen, J.C.

    1981-06-01

    Several methods for removing fluoride from aqueous nitric acid were investigated and compared with the frequently used aluminum nitrate-calcium nitrate (Ca 2+ -Al 3+ ) chemical trap-distillation system. Zirconium oxynitrate solutions were found to be superior in preventing volatilization of fluoride during distillation of the nitric acid, producing decontamination factors (DFs) on the order of 2 x 10 3 (vs approx. 500 for the Ca 2+ -Al 3+ system). Several other metal nitrate systems were tested, but they were less effective. Alumina and zirconia columns proved highly effective in removing HF from HF-HNO 3 vapors distilled through the columns; fluoride DFs on the order of 10 6 and 10 4 , respectively, were obtained. A silica gel column was very effective in adsorbing HF from HF-HNO 3 solutions, producing a fluoride DF of approx. 10 4

  1. Effects of Fuel to Synthesis of CaTiO3 by Solution Combustion Synthesis for High-Level Nuclear Waste Ceramics.

    Science.gov (United States)

    Jung, Choong-Hwan; Kim, Yeon-Ku; Han, Young-Min; Lee, Sang-Jin

    2016-02-01

    A solution combustion process for the synthesis of perovskite (CaTiO3) powders is described. Perovskite is one of the crystalline host matrics for the disposal of high-level radioactive wastes (HLW) because it immobilizes Sr and Lns elements by forming solid solutions. Solution combustion synthesis, which is a self-sustaining oxi-reduction reaction between nitrate and organic fuel, the exothermic reaction, and the heat evolved convert the precursors into their corresponding oxide products above 1100 degrees C in air. To investigate the effects of amino acid on the combustion reaction, various types of fuels were used; a glycine, amine and carboxylic ligand mixture. Sr, La and Gd-nitrate with equivalent amounts of up to 20% of CaTiO3 were mixed with Ca and Ti nitrate and amino acid. X-ray diffraction analysis, SEM and TEM were conducted to confirm the formed phases and morphologies. While powders with an uncontrolled shape are obtained through a general oxide-route process, Ca(Sr, Lns)TiO3 powders with micro-sized soft agglomerates consisting of nano-sized primary particles can be prepared using this method.

  2. Metalion-humic acid nanoparticle interactions

    DEFF Research Database (Denmark)

    Town, Raewyn M.; van Leeuwen, Herman P.

    2016-01-01

    Purely Donnan type models for electrostatic binding by humic acid (HA) nanoparticles are shown to be physically incomplete. To describe the extent of ion binding by HA, such models need to invoke parameters that are not consistent with experimental observations. These disparate parameters include...... binding by humic acid nanoparticles. The extent of Ca2+-HA association can be adequately described solely in terms of electrostatics only, including counterion condensation in the intraparticulate double layer in addition to Donnan partitioning in the remainder of the particle body. The binding of Cd...

  3. The CaV2.3 R-type voltage-gated Ca2+ channel in mouse sleep architecture.

    Science.gov (United States)

    Siwek, Magdalena Elisabeth; Müller, Ralf; Henseler, Christina; Broich, Karl; Papazoglou, Anna; Weiergräber, Marco

    2014-05-01

    Voltage-gated Ca(2+) channels (VGCCs) are key elements in mediating thalamocortical rhythmicity. Low-voltage activated (LVA) CaV 3 T-type Ca(2+) channels have been related to thalamic rebound burst firing and to generation of non-rapid eye movement (NREM) sleep. High-voltage activated (HVA) CaV 1 L-type Ca(2+) channels, on the opposite, favor the tonic mode of action associated with higher levels of vigilance. However, the role of the HVA Non-L-type CaV2.3 Ca(2+) channels, which are predominantly expressed in the reticular thalamic nucleus (RTN), still remains unclear. Recently, CaV2.3(-/-) mice were reported to exhibit altered spike-wave discharge (SWD)/absence seizure susceptibility supported by the observation that CaV2.3 mediated Ca(2+) influx into RTN neurons can trigger small-conductance Ca(2+)-activated K(+)-channel type 2 (SK2) currents capable of maintaining thalamic burst activity. Based on these studies we investigated the role of CaV2.3 R-type Ca(2+) channels in rodent sleep. The role of CaV2.3 Ca(2+) channels was analyzed in CaV2.3(-/-) mice and controls in both spontaneous and artificial urethane-induced sleep, using implantable video-EEG radiotelemetry. Data were analyzed for alterations in sleep architecture using sleep staging software and time-frequency analysis. CaV2.3 deficient mice exhibited reduced wake duration and increased slow-wave sleep (SWS). Whereas mean sleep stage durations remained unchanged, the total number of SWS epochs was increased in CaV2.3(-/-) mice. Additional changes were observed for sleep stage transitions and EEG amplitudes. Furthermore, urethane-induced SWS mimicked spontaneous sleep results obtained from CaV2.3 deficient mice. Quantitative Real-time PCR did not reveal changes in thalamic CaV3 T-type Ca(2+) channel expression. The detailed mechanisms of SWS increase in CaV2.3(-/-) mice remain to be determined. Low-voltage activated CaV2.3 R-type Ca(2+) channels in the thalamocortical loop and extra

  4. Synthesis of pure monetite by heterogeneous acid-base reaction

    Directory of Open Access Journals (Sweden)

    Luis Carlos Moreno Aldana

    2017-01-01

    Full Text Available Five variations of the monetite (M synthesis were evaluated modifying the stirring, the phosphoric acid addition rate, the homogeneity and the drying temperature. Products were assessed by means of XRD, FTIR, SEM-EDS analysis and chemical assay of Ca/P (calcium by titration with potassium permanganate and phosphorus by colorimetric assessment of the molybdenum blue complex. X-ray diffraction, infrared spectroscopy and Ca/P ratio indicate that the synthesized phosphate corresponds to pure monetite. It was found that the most influential factors affecting composition, crystal size and Ca/P were stoichiometry and ballmilling mechanoactivation.

  5. Presence of a Ca2+-sensitive CDPdiglyceride-inositol transferase in canine cardiac sarcoplasmic reticulum

    International Nuclear Information System (INIS)

    Kasinathan, C.; Kirchberger, M.A.

    1988-01-01

    Sarcoplasmic reticulum (SR) and plasma membranes from canine left ventricle were used to evaluate the presence of the enzyme CDPdiglyceride-inositol transferase in these membranes. (K + ,-Ca 2+ )-ATPase activity, a marker for SR, was 79.2 +/- 5.0 (SE) and 11.2 +/- 2.0 μmol x mg -1 x h -1 in SR and plasma membrane preparations, respectively, and (Na + , K + )-ATPase activity, a marker for plasma membranes, was 5.6 +/- 1.2 and 99.2 +/- 8.0 μmol x mg -1 x h -1 , respectively. Contamination of SR and plasma membrane preparations by mitochondria was estimated to be 2% and 8%, respectively, and by Golgi membranes, 0.9% and 1.8%, respectively. The transferase activity detected in the plasma membrane preparation could be accounted for largely, but not entirely, by contaminating SR membranes. The pH optimum for the SR transferase activity was between 8.0 and 9.0. Ca 2+ inhibited the enzyme, half-maximal inhibition occurring at about 10 μM Ca 2+ . No loss of [ 3 H]PtdIns could be detected when membranes were incubated in the presence or absence of Ca 2+ . The Ca 2+ inhibition of the transferase was noncompetitive with respect to CDP-dipalmitin while that with respect to myo-inositol was slightly noncompetitive at low [Ca 2+ ] and became uncompetitive at higher [Ca 2+ ]. It is concluded that CDPdiglyceride-inositol transferase is present on SR membranes and is sensitive to micromolar Ca 2+ . The data are consistent with a putative role for the inhibition of the SR transferase by Ca 2+ and acidic pH in the protection of the SR against calcium overload in ischemic myocardium

  6. Cloning and expression analysis of a new anther-specific gene CaMF4 in Capsicum annuum.

    Science.gov (United States)

    Hao, Xuefeng; Chen, Changming; Chen, Guoju; Cao, Bihao; Lei, Jianjun

    2017-03-01

    Our previous study on the genic male sterile-fertile line 114AB of Capsicum annuum indicated a diversity of differentially expressed cDNA fragments in fertile and sterile lines. In this study, a transcript-derived fragment (TDF), male fertile 4 (CaMF4) was chosen for further investigation to observe that this specific fragment accumulates in the flower buds of the fertile line. The full genomic DNA sequence of CaMF4 was 894 bp in length, containing two exons and one intron, and the complete coding sequence encoded a putative 11.53 kDa protein of 109 amino acids. The derived protein of CaMF4 shared similarity with the members of PGPS/D3 protein family. The expression of CaMF4 was detected in both the flower buds at stage 8 and open flowers of the male fertile line. In contrast to this observation, expression of CaMF4 was not detected in any organs of the male sterile line. Further analysis revealed that CaMF4 was expressed particularly in anthers of the fertile line. Our results suggest that CaMF4 is an anther-specific gene and might be indispensable for anther or pollen development in C. annuum.

  7. Isolation and characterization of a Ca/sup 2 +/ carrier candidate from calf heart inner mitochondrial membrane

    Energy Technology Data Exchange (ETDEWEB)

    Jeng, A.Y.

    1979-01-01

    A protein was isolated from calf heart inner mitochondrial membrane with the aid of an electron paramagnetic resonance assay based on the relative binding properties of Ca/sup 2 +/, Mn/sup 2 +/, and Mg/sup 2 +/ to the protein. Partial delipidation of the protein was performed by using either the organic solvent extraction procedure or the silicic acid column chromatography. Control experiments indicated that the Ca/sup 2 +/ transport properties of the isolated protein were not due to the contaminating phospholipids. A complete delipidation procedure was developd by using Sephadex LH-20 column chromatography. Further characterization of the physical and chemical properties of the delipidated protein showed that delipidated protein becomes more hydrophobic in the presence of Ca/sup 2 +/ and alkaline pH in the organic solvent extraction experiments. Two possible models of calciphorin-mediated Ca/sup 2 +/ transport in mitochondria are proposed. (PCS)

  8. Hollow NiO nanofibers modified by citric acid and the performances as supercapacitor electrode

    International Nuclear Information System (INIS)

    Ren, Bo; Fan, Meiqing; Liu, Qi; Wang, Jun; Song, Dalei; Bai, Xuefeng

    2013-01-01

    Graphical abstract: The possible formation process of NiO nanofibers without citric acid (a), and modified by citric acid (b). When the nanofibers is modified by citric acid, the nickel citrate is produced by complexing action of citric acid and nickel nitrate. Because of the larger space steric hindrance, the structure is limited by the molecular geometry. Under high temperature, the hollow nanofibers composed of NiO slices formed after the removal of PVP. Highlights: ► The method of obtaining hollow nanofibers is raised for the first time. ► The prepared NiO nanofibers are hollow tube and comprised of many NiO sheets. ► The hollow structure facilitated the electrolyte penetration. ► The hollow NiO nanofibers have good electrochemical properties. -- Abstract: NiO nanofibers modified by citric acid (NiO/CA) for supercapacitor material have been fabricated by electrospinning process. The characterizations of the nanofibers are investigated by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Electrochemical properties are characterized by cyclic voltammetry, galvanostatic charge/discharge measurements, and electrochemical impedance spectroscopy. Results show that the NiO/CA nanofibers are hollow tube and comprised of many NiO sheets. Furthermore, the NiO/CA nanofibers have good electrochemical reversibility and display superior capacitive performance with large capacitance (336 F g −1 ), which is 2.5 times of NiO electrodes. Moreover, the NiO/CA nanofibers show excellent cyclic performance after 1000 cycles

  9. A plant EPF-type zinc-finger protein, CaPIF1, involved in defence against pathogens.

    Science.gov (United States)

    Oh, Sang-Keun; Park, Jeong Mee; Joung, Young Hee; Lee, Sanghyeob; Chung, Eunsook; Kim, Soo-Yong; Yu, Seung Hun; Choi, Doil

    2005-05-01

    SUMMARY To understand better the defence responses of plants to pathogen attack, we challenged hot pepper plants with bacterial pathogens and identified transcription factor-encoding genes whose expression patterns were altered during the subsequent hypersensitive response. One of these genes, CaPIF1 (Capsicum annuum Pathogen-Induced Factor 1), was characterized further. This gene encodes a plant-specific EPF-type protein that contains two Cys(2)/His(2) zinc fingers. CaPIF1 expression was rapidly and specifically induced when pepper plants were challenged with bacterial pathogens to which they are resistant. In contrast, challenge with a pathogen to which the plants are susceptible only generated weak CaPIF1 expression. CaPIF1 expression was also strongly induced in pepper leaves by the exogenous application of ethephon, an ethylene-releasing compound, and salicylic acid, whereas methyl jasmonate had only moderate effects. CaPIF1 localized to the nuclei of onion epidermis when expressed as a CaPIF1-smGFP fusion protein. Transgenic tobacco plants over-expressing CaPIF1 driven by the CaMV 35S promoter showed increased resistance to challenge with a tobacco-specific pathogen or non-host bacterial pathogens. These plants also showed constitutive up-regulation of multiple defence-related genes. Moreover, virus-induced silencing of the CaPIF1 orthologue in Nicotiana benthamiana enhanced susceptibility to the same host or non-host bacterial pathogens. These observations provide evidence that an EPF-type Cys(2)/His(2) zinc-finger protein plays a crucial role in the activation of the pathogen defence response in plants.

  10. Bypassing the rumen in dairy ewes: the reticular groove reflex vs. calcium soap of olive fatty acids.

    Science.gov (United States)

    García, C Dobarganes; Hernández, M Pérez; Cantalapiedra, G; Salas, J M; Merino, J A

    2005-02-01

    A 3 x 3 Latin Square experiment was designed to compare 2 ways of bypassing the effects of the rumen with olive oil fatty acids in 'Manchega' dairy ewes. Treatments were a control diet, CaOFA (control diet plus 45 g of olive fatty acids as calcium soap), and OO (control plus 45 g/d of olive fatty acids as olive oil emulsified in skim milk) and bottle-fed to animals trained to maintain the reticular groove reflex). No differences were found in milk, protein, and lactose yields, but fat yield and milk fat content were greater in treatments with added fat (CaOFA and OO). Content of short- and medium-chain fatty acids in milk fat was greater for control treatment than for the other 2 groups, the yield of these fatty acids being similar for all 3 diets, except that of C12:0, which was greater for the control treatment. Content and yield of C18:0 and isomers of C18:1 others than oleic acid were greater in milk from the CaOFA diet than from the other 2 diets. Oleic acid content and yield were greater in milk after OO treatment (23.9% and 16.8 g/d, respectively), intermediate after CaOFA treatment (19.2% and 13.8 g/d, respectively), and lower after control diet (10.7% and 6.52 g/d, respectively). Linoleic acid yield and content were greater in ewes fed the OO diet than in those on the other 2 diets, both of which showed similar data. All these changes indicated that the "protected" olive fatty acids (as calcium soap) were severely affected by the rumen environment and that the use of the reticular groove reflex seems to be a more effective way of bypassing the rumen in adult lactating dairy ewes.

  11. Influence of Calcium Chloride (CaCl/sub 2/) on Fruit Quality of Pear (Pyrus communis) cv. le conte During Storage

    International Nuclear Information System (INIS)

    Sajid, M.; Mukhtiar, M.; Rab, M.; Shah, S.R.; Jan, I.

    2014-01-01

    An experiment was conducted at Postharvest laboratory, Department of Horticulture, The University of Agriculture Peshawar, during 2010 to evaluate the 'Influence of calcium chloride (CaCl/sub 2/) on fruit quality of pear (Pyrus communis) cv. Le-conte'. The experiment was laid out in Randomized Complete Block Design (RCBD) with three factors i.e. (CaCl/sub 2/) concentration (0,3,6 and 9%), dipping time (5,10 and 15 minutes) and storage durations (0,10,20,30 and 40 days). The maximum ascorbic acid (7.93 mg/100 g), reducing sugar (5.86%), while the least percent weight loss (4.52%), pH of fruit juice (4.42), total soluble solids (TSS) (19.83%) and percent disease incidence (2.56%) were observed in fruits treated with 9% CaCl/sub 2/ solution. The dipping time also significantly influenced the quality attributes of pear fruits during storage. The more ascorbic acid (6.88 mg/100 g) and reducing sugar (5.44%) were recorded in the pear fruits dipped for 15 minutes. Storage duration significantly affected the fruit quality 40 days storage. The highest reducing sugar recorded in fresh pear fruits while the highest ascorbic acid (7.83 mg/100 g) were observed in pear fruit stored for 10 days storage duration, while more non-reducing sugar (7.03%) recorded in the fruits stored for 30 days. In the interaction of CaCl/sub 2/ concentration x dipping time, the highest total soluble solid (31.88%) noted in the fruits stored for 40 days and dipped for 5 minutes in CaCl/sub 2/ solution. It is concluded that pear fruit perform best in the postharvest life when treated with 9% CaCl/sub 2/ solution and dipped for 15 minutes. It retained most of the quality attributes up to 10 days storage at ambient temperature while a significant decline was recorded in fruit quality when extended the storage duration from 20 to 40 days. (author)

  12. Aging-related impairments of hippocampal mossy fibers synapses on CA3 pyramidal cells.

    Science.gov (United States)

    Villanueva-Castillo, Cindy; Tecuatl, Carolina; Herrera-López, Gabriel; Galván, Emilio J

    2017-01-01

    The network interaction between the dentate gyrus and area CA3 of the hippocampus is responsible for pattern separation, a process that underlies the formation of new memories, and which is naturally diminished in the aged brain. At the cellular level, aging is accompanied by a progression of biochemical modifications that ultimately affects its ability to generate and consolidate long-term potentiation. Although the synapse between dentate gyrus via the mossy fibers (MFs) onto CA3 neurons has been subject of extensive studies, the question of how aging affects the MF-CA3 synapse is still unsolved. Extracellular and whole-cell recordings from acute hippocampal slices of aged Wistar rats (34 ± 2 months old) show that aging is accompanied by a reduction in the interneuron-mediated inhibitory mechanisms of area CA3. Several MF-mediated forms of short-term plasticity, MF long-term potentiation and at least one of the critical signaling cascades necessary for potentiation are also compromised in the aged brain. An analysis of the spontaneous glutamatergic and gamma-aminobutyric acid-mediated currents on CA3 cells reveal a dramatic alteration in amplitude and frequency of the nonevoked events. CA3 cells also exhibited increased intrinsic excitability. Together, these results demonstrate that aging is accompanied by a decrease in the GABAergic inhibition, reduced expression of short- and long-term forms of synaptic plasticity, and increased intrinsic excitability. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Rates for some reactions involving 42Ca and 44Ca

    International Nuclear Information System (INIS)

    Cheng, C.W.; King, J.D.

    1980-01-01

    Ground-state reaction rates have been deduced from recent cross section measurements for the 42 CA(α, n) 45 Ti, 42 Ca(p, γ) 43 Sc, and 44 Ca(p, n) 44 Sc reactions. Comparison of these rates with those calculated from a statistical model of nuclear reactions. (Woosley et al) shows good agreement for the first two, but the 44 Ca(p, n) rate is more than a factor of 2 less than the theoretical prediction. Stellar reaction rates have been derived from the ground-state rates by multiplying the ground-state rates by the ratio of stellar to ground-state rates given by the statistical model. Both ground-state and stellar rates have been represented by analytic functions of the temperature. The role of these reactions in the approach to quasi-equilibrium during explosive silicon burning is discussed

  14. Mg-Ca Alloys Produced by Reduction of CaO: Understanding of ECO-Mg Alloy Production

    Science.gov (United States)

    Jung, In-Ho; Lee, Jin Kyu; Kim, Shae K.

    2017-04-01

    There have been long debates about the environment conscious (ECO) Mg technology which utilizes CaO to produce Ca-containing Mg alloys. Two key process technologies of the ECO-Mg process are the chemical reduction of CaO by liquid Mg and the maintenance of melt cleanliness during the alloying of Ca. Thermodynamic calculations using FactSage software were performed to explain these two key issues. In addition, an experimental study was performed to compare the melt cleanliness of the Ca-containing Mg alloys produced by the conventional route with metallic Ca and the ECO-Mg route with CaO.

  15. The dissolution of natural and artificial dusts in glutamic acid

    Science.gov (United States)

    Ling, Zhang; Faqin, Dong; Xiaochun, He

    2015-06-01

    This article describes the characteristics of natural dusts, industrial dusts, and artificial dusts, such as mineral phases, chemical components, morphological observation and size. Quartz and calcite are the main phases of natural dusts and industrial dusts with high SiO2 and CaO and low K2O and Na2O in the chemical composition. The dissolution and electrochemical action of dusts in glutamic acid liquor at the simulated human body temperature (37 °C) in 32 h was investigated. The potential harm that the dust could lead to in body glutamic acid acidic environment, namely biological activity, is of great importance for revealing the human toxicological mechanism. The changes of pH values and electric conductivity of suspension of those dusts were similar, increased slowly in the first 8 h, and then the pH values increased rapidly. The total amount of dissolved ions of K, Ca, Na, and Mg was 35.4 to 429 mg/kg, particularly Ca was maximal of 20 to 334 mg/kg. The total amount of dissolved ions of Fe, Zn, Mn, Pb, and Ba was 0.18 to 5.59 mg/kg and in Al and Si was 3.0 to 21.7 mg/kg. The relative solubility order of dusts in glutamic acid is wollastonite > serpentine > sepiolite, the cement plant industrial dusts > natural dusts > power plant industrial dusts. The wollastonite and cement plant industrial dusts have the highest solubility, which also have high content of CaO; this shows that there are a poorer corrosion-resisting ability and lower bio-resistibility. Sepiolite and power plant industrial dusts have lowest solubility, which also have high content of SiO2; this shows that there are a higher corrosion-resisting ability and stronger bio-resistibility.

  16. Effecf of pH and some cations on activity of acid phosphatase secreted from Ustilago sp. isolated from acid sulphate soil

    Directory of Open Access Journals (Sweden)

    Chairatana Nilnond

    2007-03-01

    Full Text Available Acid phosphatase secreted from Ustilago sp. is able to hydrolyze organic phosphorus. These soil yeast microorganisms were isolated from rice roots grown in acid sulphate soil that generally contains highamount of aluminum (Al, iron (Fe and manganese (Mn ions. Therefore, the objectives of this study were to examine the effect of pH and some cations on acid phosphatase activity. Two isolates of Ustilago sp., AR101and AR102, were cultured in 100 mL of modified Pikovskaya's broth containing Na-phytate, pH 4, and acid phosphatase activity was determined at pH 2.0-7.0. Effect of Al, Fe, and Mn, including calcium (Ca ions,on growth of AR101 and AR102, secreted acid phosphatase activity, and the ability of acid phosphatase on the phosphorus release from Na-phytate by Ustilago sp. were investigated. It was found that the optimum pH for acid phosphatase activity was 3.5-4.5. The activity of acid phosphatase secreted from AR101 (3,690nmol min-1 mL-1 was remarkably higher than that from AR102 (956 nmol min-1 mL-1. Aluminum, iron, manganese and calcium ions in the medium did not affect the growth of either isolate. The activity of secretedacid phosphatase of AR101 was inhibited by Al and Ca ion, and synthesis of acid phosphatase of Ustilago sp. AR102 was possibly stimulated by Fe ion. Both AR101 and AR102 solubilized Na-phytate, resulting in therelease of P. However, some amount of released P was then precipitated with Al and Fe ions as the highly insoluble Fe- or Al- phosphate.

  17. The study of skeletal calcium metabolism with 41Ca and 45Ca

    Science.gov (United States)

    Freeman, Stewart P. H. T.; Beck, Belinda; Bierman, June M.; Caffee, Marc W.; Heaney, Robert P.; Holloway, Leah; Marcus, Robert; Southon, John R.; Vogel, John S.

    2000-10-01

    The living skeleton can be labeled for life by the administration of radiologically trivial amounts of 41Ca tracer. After initial elimination of tracer from the readily exchangeable calcium pools subsequent skeletal calcium turnover maintains and modulates the urine 41Ca content. Uniquely, bone calcium metabolism may then be studied with tracer in near equilibrium with the body's calcium and resorbing calcium directly measured by accelerator mass spectrometry (AMS) of excreta. Our experiments with 25 41Ca labeled subjects demonstrate excellent diurnal stability and remarkable response to intervention of the urine signal. Thus the tracer method may prove a competitive means of measuring the effects of antiresorptive osteoporosis treatments, for therapy development or even clinical monitoring. Novel studies of long-term skeletal evolution are also possible. We realize that routinely administered short-lived calcium radiotracers contain 41Ca impurities and that thousands of experimental participants have been historically inadvertently 41Ca labeled. The 41Ca urine index might now rapidly further be characterized by contemporary measurements of these one-time subjects, and with their by now thoroughly skeleton-equilibrated tracer they might be ideal participants in other new experiments. We are also investigating 45Ca AMS. It may prove preferable to label the skeleton with this radiotracer already familiar to bioscientists, but new to AMS.

  18. Rare branched fatty acids characterize the lipid composition of the intra-aerobic methane oxidizer "Candidatus Methylomirabilis oxyfera".

    Science.gov (United States)

    Kool, Dorien M; Zhu, Baoli; Rijpstra, W Irene C; Jetten, Mike S M; Ettwig, Katharina F; Sinninghe Damsté, Jaap S

    2012-12-01

    The recently described bacterium "Candidatus Methylomirabilis oxyfera" couples the oxidation of the important greenhouse gas methane to the reduction of nitrite. The ecological significance of "Ca. Methylomirabilis oxyfera" is still underexplored, as our ability to identify the presence of this bacterium is thus far limited to DNA-based techniques. Here, we investigated the lipid composition of "Ca. Methylomirabilis oxyfera" to identify new, gene-independent biomarkers for the environmental detection of this bacterium. Multiple "Ca. Methylomirabilis oxyfera" enrichment cultures were investigated. In all cultures, the lipid profile was dominated up to 46% by the fatty acid (FA) 10-methylhexadecanoic acid (10MeC(16:0)). Furthermore, a unique FA was identified that has not been reported elsewhere: the monounsaturated 10-methylhexadecenoic acid with a double bond at the Δ7 position (10MeC(16:1Δ7)), which comprised up to 10% of the total FA profile. We propose that the typical branched fatty acids 10MeC(16:0) and 10MeC(16:1Δ7) are key and characteristic components of the lipid profile of "Ca. Methylomirabilis oxyfera." The successful detection of these fatty acids in a peatland from which one of the enrichment cultures originated supports the potential of these unique lipids as biomarkers for the process of nitrite-dependent methane oxidation in the environment.

  19. Advanced glycation end-products (AGEs acutely impair Ca2+ signalling in bovine aortic endothelial cells

    Directory of Open Access Journals (Sweden)

    Nadim eNaser

    2013-03-01

    Full Text Available Post-translational modification of proteins in diabetes, including formation of advanced glycation end products (AGEs are believed to contribute to vascular dysfunction and disease. Impaired function of the endothelium is an early indicator of vascular dysfunction in diabetes and as many endothelial cell processes are dependent upon intracellular [Ca2+] and Ca2+ signalling, the aim of this study was to examine the acute effects of AGEs on Ca2+ signalling in bovine aortic endothelial cells (BAEC. Ca2+ signalling was studied using the fluorescent indicator dye Fura2-AM. AGEs were generated by incubating bovine serum albumin with 0 - 250 mM glucose or glucose-6-phosphate for 0 to 120 days at 37ºC. Under all conditions, the main AGE species generated was carboxymethyl lysine (CML as assayed using both GC-MS and HPLC. In Ca2+-replete solution, exposure of BAEC to AGEs for 5 min caused an elevation in basal [Ca2+] and attenuated the increase in intracellular [Ca2+] caused by ATP (100 µM. In the absence of extracellular Ca2+, exposure of BAEC to AGEs for 5 min caused an elevation in basal [Ca2+] and attenuated subsequent intracellular Ca2+ release caused by ATP, thapsigargin (0.1 µM and ionomycin (3 µM, but AGEs did not affect extracellular Ca2+ entry induced by the re-addition of Ca2+ to the bathing solution in the presence of any of these agents. The anti-oxidant α-lipoic acid (2 µM and NAD(PH oxidase inhibitors apocynin (500 µM and diphenyleneiodonium (DPI, 1 µM abolished these effects of AGEs on BAECs, as did the IP3 receptor antagonist xestospongin C (1 µM. In summary, AGEs caused an acute depletion of Ca2+ from the intracellular store in BAECs, such that the Ca2+ signal stimulated by the subsequent application other agents acting upon this store is reduced. The mechanism may involve generation of ROS from NAD(PH oxidase and possible activation of the IP3 receptor.

  20. BAG3 regulates contractility and Ca(2+) homeostasis in adult mouse ventricular myocytes.

    Science.gov (United States)

    Feldman, Arthur M; Gordon, Jennifer; Wang, JuFang; Song, Jianliang; Zhang, Xue-Qian; Myers, Valerie D; Tilley, Douglas G; Gao, Erhe; Hoffman, Nicholas E; Tomar, Dhanendra; Madesh, Muniswamy; Rabinowitz, Joseph; Koch, Walter J; Su, Feifei; Khalili, Kamel; Cheung, Joseph Y

    2016-03-01

    Bcl2-associated athanogene 3 (BAG3) is a 575 amino acid anti-apoptotic protein that is constitutively expressed in the heart. BAG3 mutations, including mutations leading to loss of protein, are associated with familial cardiomyopathy. Furthermore, BAG3 levels have been found to be reduced in end-stage non-familial failing myocardium. In contrast to neonatal myocytes in which BAG3 is found in the cytoplasm and involved in protein quality control and apoptosis, in adult mouse left ventricular (LV) myocytes BAG3 co-localized with Na(+)-K(+)-ATPase and L-type Ca(2+) channels in the sarcolemma and t-tubules. BAG3 co-immunoprecipitated with β1-adrenergic receptor, L-type Ca(2+) channels and phospholemman. To simulate decreased BAG3 protein levels observed in human heart failure, we targeted BAG3 by shRNA (shBAG3) in adult LV myocytes. Reducing BAG3 by 55% resulted in reduced contraction and [Ca(2+)]i transient amplitudes in LV myocytes stimulated with isoproterenol. L-type Ca(2+) current (ICa) and sarcoplasmic reticulum (SR) Ca(2+) content but not Na(+)/Ca(2+) exchange current (INaCa) or SR Ca(2+) uptake were reduced in isoproterenol-treated shBAG3 myocytes. Forskolin or dibutyryl cAMP restored ICa amplitude in shBAG3 myocytes to that observed in WT myocytes, consistent with BAG3 having effects upstream and at the level of the receptor. Resting membrane potential and action potential amplitude were unaffected but APD50 and APD90 were prolonged in shBAG3 myocytes. Protein levels of Ca(2+) entry molecules and other important excitation-contraction proteins were unchanged in myocytes with lower BAG3. Our findings that BAG3 is localized at the sarcolemma and t-tubules while modulating myocyte contraction and action potential duration through specific interaction with the β1-adrenergic receptor and L-type Ca(2+) channel provide novel insight into the role of BAG3 in cardiomyopathies and increased arrhythmia risks in heart failure. Copyright © 2016 Elsevier Ltd. All rights

  1. BAG3 regulates contractility and Ca2+ homeostasis in adult mouse ventricular myocytes

    Science.gov (United States)

    Feldman, Arthur M.; Gordon, Jennifer; Wang, JuFang; Song, Jianliang; Zhang, Xue-Qian; Myers, Valerie D.; Tilley, Douglas G.; Gao, Erhe; Hoffman, Nicholas E.; Tomar, Dhanendra; Madesh, Muniswamy; Rabinowitz, Joseph; Koch, Walter J.; Su, Feifei; Khalili, Kamel; Cheung, Joseph Y.

    2016-01-01

    Bcl2-associated athanogene 3 (BAG3) is a 575 amino acid anti-apoptotic protein that is constitutively expressed in the heart. BAG3 mutations, including mutations leading to loss of protein, are associated with familial cardiomyopathy. Furthermore, BAG3 levels have been found to be reduced in end-stage non-familial failing myocardium. In contrast to neonatal myocytes in which BAG3 is found in the cytoplasm and involved in protein quality control and apoptosis, in adult mouse left ventricular (LV) myocytes BAG3 co-localized with Na+-K+-ATPase and L-type Ca2+ channels in the sarcolemma and t-tubules. BAG3 co-immunoprecipitated with β1-adrenergic receptor, L-type Ca2+ channels and phospholemman. To simulate decreased BAG3 protein levels observed in human heart failure, we targeted BAG3 by shRNA (shBAG3) in adult LV myocytes. Reducing BAG3 by 55% resulted in reduced contraction and [Ca2+]i transient amplitudes in LV myocytes stimulated with isoproterenol. L-type Ca2+ current (ICa) and sarcoplasmic reticulum (SR) Ca2+ content but not Na+/Ca2+ exchange current (INaCa) or SR Ca2+ uptake were reduced in isoproterenol-treated shBAG3 myocytes. Forskolin or dibutyrl cAMP restored ICa amplitude in shBAG3 myocytes to that observed in WT myocytes, consistent with BAG3 having effects upstream and at the level of the receptor. Resting membrane potential and action potential amplitude were unaffected but APD50 and APD90 were prolonged in shBAG3 myocytes. Protein levels of Ca2+ entry molecules and other important excitation-contraction proteins were unchanged in myocytes with lower BAG3. Our findings that BAG3 is localized at the sarcolemma and t-tubules while modulating myocyte contraction and action potential duration through specific interaction with the β1-adrenergic receptor and L-type Ca2+ channel provide novel insight into the role of BAG3 in cardiomyopathies and increased arrhythmia risks in heart failure. PMID:26796036

  2. MicroRNA-145 suppresses ROS-induced Ca{sup 2+} overload of cardiomyocytes by targeting CaMKIIδ

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Min-Ji [Cardiovascular Research Institute, Yonsei University College of Medicine, 250 Seongsanno, Seodamun-gu, Seoul 120-752 (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 250 Seongsanno, Seodamun-gu, Seoul 120-752 (Korea, Republic of); Jang, Jin-Kyung [College of Pharmacy, Sookmyung Women’s University, 52 HyoChangWon-Gil, Yongsan-ku, Seoul 140-742 (Korea, Republic of); Ham, Onju; Song, Byeong-Wook; Lee, Se-Yeon [Cardiovascular Research Institute, Yonsei University College of Medicine, 250 Seongsanno, Seodamun-gu, Seoul 120-752 (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 250 Seongsanno, Seodamun-gu, Seoul 120-752 (Korea, Republic of); Lee, Chang Yeon; Park, Jun-Hee [Department of Integrated Omics for Biomedical Sciences, Graduate School, Yonsei University, 50 Yonsei-ro, Seodamun-gu, Seoul 120-759 (Korea, Republic of); Lee, Jiyun; Seo, Hyang-Hee [Cardiovascular Research Institute, Yonsei University College of Medicine, 250 Seongsanno, Seodamun-gu, Seoul 120-752 (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 250 Seongsanno, Seodamun-gu, Seoul 120-752 (Korea, Republic of); Choi, Eunhyun [Severance Integrative Research Institute for Cerebral and Cardiovascular Disease, Yonsei University Health System, 250 Seongsanno, Seodamun-gu, Seoul 120-752 (Korea, Republic of); Jeon, Woo-min [Department of Animal Resource, Sahmyook University, Seoul 139-742 (Korea, Republic of); Hwang, Hye Jin [Cardiovascular Research Institute, Yonsei University College of Medicine, 250 Seongsanno, Seodamun-gu, Seoul 120-752 (Korea, Republic of); Shin, Hyun-Taek [College of Pharmacy, Sookmyung Women’s University, 52 HyoChangWon-Gil, Yongsan-ku, Seoul 140-742 (Korea, Republic of); and others

    2013-06-14

    Highlights: •CaMKIIδ mediates H{sub 2}O{sub 2}-induced Ca{sup 2+} overload in cardiomyocytes. •miR-145 can inhibit Ca{sup 2+} overload. •A luciferase assay confirms that miR-145 functions as a CaMKIIδ-targeting miRNA. •Overexpression of miR-145 regulates CaMKIIδ-related genes and ameliorates apoptosis. -- Abstract: A change in intracellular free calcium (Ca{sup 2+}) is a common signaling mechanism of reperfusion-induced cardiomyocyte death. Calcium/calmodulin dependent protein kinase II (CaMKII) is a critical regulator of Ca{sup 2+} signaling and mediates signaling pathways responsible for functions in the heart including hypertrophy, apoptosis, arrhythmia, and heart disease. MicroRNAs (miRNA) are involved in the regulation of cell response, including survival, proliferation, apoptosis, and development. However, the roles of miRNAs in Ca{sup 2+}-mediated apoptosis of cardiomyocytes are uncertain. Here, we determined the potential role of miRNA in the regulation of CaMKII dependent apoptosis and explored its underlying mechanism. To determine the potential roles of miRNAs in H{sub 2}O{sub 2}-mediated Ca{sup 2+} overload, we selected and tested 6 putative miRNAs that targeted CaMKIIδ, and showed that miR-145 represses CaMKIIδ protein expression and Ca{sup 2+} overload. We confirmed CaMKIIδ as a direct downstream target of miR-145. Furthermore, miR-145 regulates Ca{sup 2+}-related signals and ameliorates apoptosis. This study demonstrates that miR-145 regulates reactive oxygen species (ROS)-induced Ca{sup 2+} overload in cardiomyocytes. Thus, miR-145 affects ROS-mediated gene regulation and cellular injury responses.

  3. Formation of rod type structures of CaSO4: Ce,P,Dy TLD phosphor using different synthesis routes

    International Nuclear Information System (INIS)

    Atone, M.S.; Wani, J.A.; Dhoble, S.J.

    2011-01-01

    Effect of Ce and P co-activation in CaSO 4 : Dy, standard TLD phosphor prepared by different synthesis root techniques and it's structural morphology is reported first time in this paper. We have already reported the sensitization of luminescence in CaSO 4 : Dy with phosphorous (P) and cerium (Ce) ions separately via acid distillation route. In the current investigation, we have doped these impurities (Ce, P, Dy) simultaneously in CaSO 4 host lattice. We have employed a well known chemical precipitation method and modified acid distillation method and have attempted to analyse the surface morphology resulted from these two synthesis routes. Chemical precipitation usually takes place at room temperature and in this way allows the reaction to take place silently. In case of acid distillation method we have reduced the synthesis temperature to 493K which is considerably less than 653K employed in previously reported literature. In case of precipitation method particle shape seems to be spherical and particle size is around one micro range or in the neighbourhood of nanorange. However, in the case of modified acid distillation method particles have shaped in to rod like structures and particle size again falls in the micro range. The photoluminescence intensity of the phosphor prepared by chemical precipitation method is weak as compared to the phosphor prepared by modified acid distillation method. Both the phosphors prepared by different methods have shown characteristic transitions of dopants. The emission spectra of prepared phosphors at 309 nm and 329 nm of Ce 3+ ions overlap well with excitation of Dy 3+ ions. Thermoluminescence (TL) property of both phosphors is again good though certain variation is observed in case of phosphor prepared by modified acid distillation method which shows rod like structure of phosphor. This variation in TL may be attributed to change in surface morphology (formation of rod type structure of particles) of the phosphor. (author)

  4. Preparation of Ca0.5Zr2(PO4)3 and Ca0.45Eu0.05Zr2(PO4)3 nanopowders: structural characterization and luminescence emission study

    International Nuclear Information System (INIS)

    Alcaraz, L; Isasi, J; Díaz-Guerra, C; Peiteado, M; Caballero, A C

    2016-01-01

    Ca 0.5 Zr 2 (PO 4 ) 3 and Ca 0.45 Eu 0.05 Zr 2 (PO 4 ) 3 nanophosphors have been synthesized by a sol–gel process under acid and basic conditions. In order to achieve the reduction of Eu 3+ to Eu 2+ , europium-doped samples were treated in a reducing atmosphere flow. The effects of the different synthesis conditions and the partial substitution of calcium by europium ions on the structure of the samples were analyzed by x-ray diffraction (XRD) transmission electron microscopy (TEM) and micro-Raman spectroscopy. Luminescence and magnetic properties were investigated by photoluminescence (PL) spectroscopy and magnetic susceptibility measurements. XRD patterns can be indexed to a rhombohedral symmetry of space group R-3 with Z  =  6, consistent with a NASICON-type structure. A higher crystallinity was found in the samples prepared under basic conditions. TEM images of all the synthesized samples show spherically shaped particles. A broadening of the Raman bands as a result of non-equivalent vibrations of the orthophosphate groups is observed for samples prepared under acid conditions. The same effect was found when calcium is substituted by europium into the Ca 0.5 Zr 2 (PO 4 ) 3 host. PL spectra exhibit strong emission in the blue-green spectral range due to Eu 2+ 4f 6 5d 1 -4f 7 transitions and no evidence of Eu 3+ emission. Magnetic measurements confirm the 2+  oxidation state of europium ions in all samples. (paper)

  5. Structural, electronic, elastic, and thermodynamic properties of CaSi, Ca2Si, and CaSi2 phases from first-principles calculations

    Science.gov (United States)

    Li, X. D.; Li, K.; Wei, C. H.; Han, W. D.; Zhou, N. G.

    2018-06-01

    The structural, electronic, elastic, and thermodynamic properties of CaSi, Ca2Si, and CaSi2 are systematically investigated by using first-principles calculations method based on density functional theory (DFT). The calculated formation enthalpies and cohesive energies show that CaSi2 possesses the greatest structural stability and CaSi has the strongest alloying ability. The structural stability of the three phases is compared according to electronic structures. Further analysis on electronic structures indicates that the bonding of these phases exhibits the combinations of metallic, covalent, and ionic bonds. The elastic constants are calculated, and the bulk modulus, shear modulus, Young's modulus, Poisson's ratio, and anisotropy factor of polycrystalline materials are deduced. Additionally, the thermodynamic properties were theoretically predicted and discussed.

  6. MECHANISMS CONTROLLING Ca ION RELEASE FROM SOL-GEL DERIVED IN SITU APATITE-SILICA NANOCOMPOSITE POWDER

    Directory of Open Access Journals (Sweden)

    Seyed Mohsen Latifi

    2015-03-01

    Full Text Available Ca ion release from bioactive biomaterials could play an important role in their bioactivity and osteoconductivity properties. In order to improve hydroxyapatite (HA dissolution rate, in situ apatite-silica nanocomposite powders with various silica contents were synthesized via sol-gel method and mechanisms controlling the Ca ion release from them were investigated. Obtained powders were characterized by X-ray diffraction (XRD and transmission electron spectroscopy (TEM techniques, acid dissolution test, and spectroscopy by atomic absorption spectrometer (AAS. Results indicated the possible incorporation of (SiO44- into the HA structure and tendency of amorphous silica to cover the surface of HA particles. However, 20 wt. % silica was the lowest amount that fully covered HA particles. All of the nanocomposite powders showed more Ca ion release compared with pure HA, and HA - 10 wt. % silica had the highest Ca ion release. The crystallinity, the crystallite size, and the content of HA, along with the integrity, thickness, and ion diffusion possibility through the amorphous silica layer on the surface of HA, were factors that varied due to changes in the silica content and were affected the Ca ion release from nanocomposite powders.

  7. Synthesis of pure monetite by heterogeneous acid-base reaction

    OpenAIRE

    Luis Carlos Moreno Aldana; Davier Olarte Cárdenas; Edgar Delgado Mejía

    2017-01-01

    Five variations of the monetite (M) synthesis were evaluated modifying the stirring, the phosphoric acid addition rate, the homogeneity and the drying temperature. Products were assessed by means of XRD, FTIR, SEM-EDS analysis and chemical assay of Ca/P (calcium by titration with potassium permanganate and phosphorus by colorimetric assessment of the molybdenum blue complex). X-ray diffraction, infrared spectroscopy and Ca/P ratio indicate that the synthesized phosphate corresponds to pure mo...

  8. Accessing the nuclear symmetry energy in Ca+Ca collisions

    Directory of Open Access Journals (Sweden)

    Chbihi A.

    2012-07-01

    Full Text Available The status of the analysis of the INDRA-VAMOS experiement performed at GANIL, using the reactions 40,48Ca+40,48Ca reactions at 35AMeV, are presented. Isotopic distributions of fragments produced in multifragmentation events provide information on the importance of the surface term contribution in the symmetry energy by comparison to AMD predictions.

  9. Ca2+ cycling in heart cells from ground squirrels: adaptive strategies for intracellular Ca2+ homeostasis.

    Directory of Open Access Journals (Sweden)

    Xiao-Chen Li

    Full Text Available Heart tissues from hibernating mammals, such as ground squirrels, are able to endure hypothermia, hypoxia and other extreme insulting factors that are fatal for human and nonhibernating mammals. This study was designed to understand adaptive mechanisms involved in intracellular Ca(2+ homeostasis in cardiomyocytes from the mammalian hibernator, ground squirrel, compared to rat. Electrophysiological and confocal imaging experiments showed that the voltage-dependence of L-type Ca(2+ current (I(Ca was shifted to higher potentials in ventricular myocytes from ground squirrels vs. rats. The elevated threshold of I(Ca did not compromise the Ca(2+-induced Ca(2+ release, because a higher depolarization rate and a longer duration of action potential compensated the voltage shift of I(Ca. Both the caffeine-sensitive and caffeine-resistant components of cytosolic Ca(2+ removal were more rapid in ground squirrels. Ca(2+ sparks in ground squirrels exhibited larger amplitude/size and much lower frequency than in rats. Due to the high I(Ca threshold, low SR Ca(2+ leak and rapid cytosolic Ca(2+ clearance, heart cells from ground squirrels exhibited better capability in maintaining intracellular Ca(2+ homeostasis than those from rats and other nonhibernating mammals. These findings not only reveal adaptive mechanisms of hibernation, but also provide novel strategies against Ca(2+ overload-related heart diseases.

  10. Improvement in the dosimetric CaSO4: Dy obtention method

    International Nuclear Information System (INIS)

    Campos, L.L.; Frutuoso, P.H.; Souto, V.J.

    1989-08-01

    With the purpose of saving up in the dosimetric CaSO 4 : Dy production, a new method was developed to obtain single crystals. In this method the nitrogen flux used to carry the acid vapour was substituted by compressed air. It was compared all dosimetric properties of the crystals. There is no alteration in the glow curve. The sensitivity is the same in both cases and the lower detection limit is 3.8 x 10 -8 C.Kg -1 (150 μR) [pt

  11. Mg and Ca isotope fractionation during CaCO3 biomineralisation

    International Nuclear Information System (INIS)

    Chang, Veronica T.-C.; Williams, R.J.P.; Makishima, Akio; Belshawl, Nick S.; O'Nions, R. Keith

    2004-01-01

    The natural variation of Mg and Ca stable isotopes of carbonates has been determined in carbonate skeletons of perforate foraminifera and reef coral together with Mg/Ca ratios to assess the influence of biomineralisation processes. The results for coral aragonite suggest its formation, in terms of stable isotope behaviour, approximates to inorganic precipitation from a seawater reservoir. In contrast, results for foraminifera calcite suggest a marked biological control on Mg isotope ratios presumably related to its low Mg content compared with seawater. The bearing of these observations on the use of Mg and Ca isotopes as proxies in paleoceanography is considered

  12. Effects of Ca on microstructure, mechanical and corrosion properties and biocompatibility of Mg-Zn-Ca alloys.

    Science.gov (United States)

    Yin, Ping; Li, Nian Feng; Lei, Ting; Liu, Lin; Ouyang, Chun

    2013-06-01

    Zn and Ca were selected as alloying elements to develop an Mg-Zn-Ca alloy system for biomedical application due to their good biocompatibility. The effects of Ca on the microstructure, mechanical and corrosion properties as well as the biocompatibility of the as-cast Mg-Zn-Ca alloys were studied. Results indicate that the microstructure of Mg-Zn-Ca alloys typically consists of primary α-Mg matrix and Ca₂Mg₆Zn₃/Mg₂Ca intermetallic phase mainly distributed along grain boundary. The yield strength of Mg-Zn-Ca alloy increased slightly with the increase of Ca content, whilst its tensile strength increased at first and then decreased. Corrosion tests in the simulated body fluid revealed that the addition of Ca is detrimental to corrosion resistance due to the micro-galvanic corrosion acceleration. In vitro hemolysis and cytotoxicity assessment disclose that Mg-5Zn-1.0Ca alloy has suitable biocompatibility.

  13. Cholinergic induction of input-specific late-phase LTP via localized Ca2+ release in the visual cortex.

    Science.gov (United States)

    Cho, Kwang-Hyun; Jang, Hyun-Jong; Jo, Yang-Hyeok; Singer, Wolf; Rhie, Duck-Joo

    2012-03-28

    Acetylcholine facilitates long-term potentiation (LTP) and long-term depression (LTD), substrates of learning, memory, and sensory processing, in which acetylcholine also plays a crucial role. Ca(2+) ions serve as a canonical regulator of LTP/LTD but little is known about the effect of acetylcholine on intracellular Ca(2+) dynamics. Here, we investigated dendritic Ca(2+) dynamics evoked by synaptic stimulation and the resulting LTP/LTD in layer 2/3 pyramidal neurons of the rat visual cortex. Under muscarinic stimulation, single-shock electrical stimulation (SES) inducing ∼20 mV EPSP, applied via a glass electrode located ∼10 μm from the basal dendrite, evoked NMDA receptor-dependent fast Ca(2+) transients and the subsequent Ca(2+) release from the inositol 1,4,5-trisphosphate (IP(3))-sensitive stores. These secondary dendritic Ca(2+) transients were highly localized within 10 μm from the center (SD = 5.0 μm). The dendritic release of Ca(2+) was a prerequisite for input-specific muscarinic LTP (LTPm). Without the secondary Ca(2+) release, only muscarinic LTD (LTDm) was induced. D(-)-2-amino-5-phosphopentanoic acid and intracellular heparin blocked LTPm as well as dendritic Ca(2+) release. A single burst consisting of 3 EPSPs with weak stimulus intensities instead of the SES also induced secondary Ca(2+) release and LTPm. LTPm and LTDm were protein synthesis-dependent. Furthermore, LTPm was confined to specific dendritic compartments and not inducible in distal apical dendrites. Thus, cholinergic activation facilitated selectively compartment-specific induction of late-phase LTP through IP(3)-dependent Ca(2+) release.

  14. Modified cytoplasmic Ca2+ sequestration contributes to spinal cord injury-induced augmentation of nerve-evoked contractions in the rat tail artery.

    Directory of Open Access Journals (Sweden)

    Hussain Al Dera

    Full Text Available In rat tail artery (RTA, spinal cord injury (SCI increases nerve-evoked contractions and the contribution of L-type Ca2+ channels to these responses. In RTAs from unoperated rats, these channels play a minor role in contractions and Bay K8644 (L-type channel agonist mimics the effects of SCI. Here we investigated the mechanisms underlying the facilitatory actions of SCI and Bay K8644 on nerve-evoked contractions of RTAs and the hypothesis that Ca2+ entering via L-type Ca2+ channels is rapidly sequestered by the sarcoplasmic reticulum (SR limiting its role in contraction. In situ electrochemical detection of noradrenaline was used to assess if Bay K8644 increased noradrenaline release. Perforated patch recordings were used to assess if SCI changed the Ca2+ current recorded in RTA myocytes. Wire myography was used to assess if SCI modified the effects of Bay K8644 and of interrupting SR Ca2+ uptake on nerve-evoked contractions. Bay K8644 did not change noradrenaline-induced oxidation currents. Neither the size nor gating of Ca2+ currents differed between myocytes from sham-operated (control and SCI rats. Bay K8644 increased nerve-evoked contractions in RTAs from both control and SCI rats, but the magnitude of this effect was reduced by SCI. By contrast, depleting SR Ca2+ stores with ryanodine or cyclopiazonic acid selectively increased nerve-evoked contractions in control RTAs. Cyclopiazonic acid also selectively increased the blockade of these responses by nifedipine (L-type channel blocker in control RTAs, whereas ryanodine increased the blockade produced by nifedipine in both groups of RTAs. These findings suggest that Ca2+ entering via L-type channels is normally rapidly sequestered limiting its access to the contractile mechanism. Furthermore, the findings suggest SCI reduces the role of this mechanism.

  15. The diagnostic value of serum tumor markers CEA, CA19-9, CA125, CA15-3, and TPS in metastatic breast cancer.

    Science.gov (United States)

    Wang, Weigang; Xu, Xiaoqin; Tian, Baoguo; Wang, Yan; Du, Lili; Sun, Ting; Shi, Yanchun; Zhao, Xianwen; Jing, Jiexian

    2017-07-01

    This study aims to understand the diagnostic value of serum tumor markers carcinoembryonic antigen (CEA), cancer antigen 19-9 (CA19-9), cancer antigen 125 (CA125), cancer antigen 15-3 (CA15-3), and tissue polypeptide-specific antigen (TPS) in metastatic breast cancer (MBC). A total of 164 metastatic breast cancer patients in Shanxi Cancer Hospital were recruited between February 2016 and July 2016. 200 breast cancer patients without metastasis in the same period were randomly selected as the control group. The general characteristics, immunohistochemical, and pathological results were investigated between the two groups, and tumor markers were determined. There were statistical differences in the concentration and the positive rates of CEA, CA19-9, CA125, CA15-3, and TPS between the MBC and control group (Ptumor marker at 56.7% and 97.0%, respectively. In addition, two tumor markers were used for the diagnosis of MBC and the CEA and TPS combination had the highest diagnostic sensitivity with 78.7%, while the CA15-3 and CA125 combination had the highest specificity of 91.5%. Analysis of tumor markers of 164 MBC found that there were statistical differences in the positive rates of CEA and CA15-3 between bone metastases and other metastases (χ 2 =6.00, P=0.014; χ 2 =7.32, P=0.007, respectively). The sensitivity and specificity values of the CEA and CA15-3 combination in the diagnosis of bone metastases were 77.1% and 45.8%, respectively. The positive rate of TPS in the lung metastases group was lower than in other metastases (χ 2 =8.06, P=0.005).There were significant differences in the positive rates of CA15-3 and TPS between liver metastases and other metastases (χ 2 =15.42, Ptumor markers have varying diagnostic value. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Biodiesel production from transesterification of palm oil with methanol over CaO supported on bimodal meso-macroporous silica catalyst.

    Science.gov (United States)

    Witoon, Thongthai; Bumrungsalee, Sittisut; Vathavanichkul, Peerawut; Palitsakun, Supaphorn; Saisriyoot, Maythee; Faungnawakij, Kajornsak

    2014-03-01

    Calcium oxide-loaded porous materials have shown promise as catalysts in transesterification. However, the slow diffusion of bulky triglycerides through the pores limited the activity of calcium oxide (CaO). In this work, bimodal meso-macroporous silica was used as a support to enhance the accessibility of the CaO dispersed inside the pores. Unimodal porous silica having the identical mesopore diameter was employed for the purpose of comparison. Effects of CaO content and catalyst pellet size on the yield of fatty acid methyl esters (FAME) were investigated. The basic strength was found to increase with increasing the CaO content. The CaO-loaded bimodal porous silica catalyst with the pellet size of 325μm achieved a high %FAME of 94.15 in the first cycle, and retained an excellent %FAME of 88.87 after five consecutive cycles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. New limits on 2β processes in 40Ca and 46Ca by using low radioactive CaF2(Eu) crystal scintillators

    International Nuclear Information System (INIS)

    Belli, P.; Bernabei, R.; Dai, C.J.

    2001-01-01

    The development of highly radiopure CaF 2 (Eu) crystal scintillators has been performed aiming at a substantial sensitivity enhancement of the 2β decay investigation and of the search for dark matter particles with spin-dependent (SD) interaction. The results of CaF 2 (Eu) background measurements and simulation are presented. New and highly improved T 1/2 limits on the 2β decay of 46 Ca and the double electron capture of 40 Ca are obtained

  18. Mechanisms of acid-base regulation in peritoneal dialysis.

    Science.gov (United States)

    Sow, Amadou; Morelle, Johann; Hautem, Nicolas; Bettoni, Carla; Wagner, Carsten A; Devuyst, Olivier

    2017-11-22

    Peritoneal dialysis (PD) contributes to restore acid-base homeostasis in patients with end-stage renal disease. The transport pathways for buffers and carbon dioxide (CO2) across the peritoneal membrane remain poorly understood. Combining well-established PD protocols, whole-body plethysmography and renal function studies in mice, we investigated molecular mechanisms of acid-base regulation in PD, including the potential role of the water channel aquaporin-1 (AQP1). After instillation in peritoneal cavity, the pH of acidic dialysis solutions increased within minutes to rapidly equilibrate with blood pH, whereas the neutral pH of biocompatible solutions remained constant. Predictions from the three-pore model of peritoneal transport suggested that local production of HCO3- accounts at least in part for the changes in intraperitoneal pH observed with acidic solutions. Carbonic anhydrase (CA) isoforms were evidenced in the peritoneal membrane and their inhibition with acetazolamide significantly decreased local production of HCO3- and delayed changes in intraperitoneal pH. On the contrary, genetic deletion of AQP1 had no effect on peritoneal transport of buffers and diffusion of CO2. Besides intraperitoneal modifications, the use of acidic dialysis solutions enhanced acid excretion both at pulmonary and renal levels. These findings suggest that changes in intraperitoneal pH during PD are mediated by bidirectional buffer transport and by CA-mediated production of HCO3- in the membrane. The use of acidic solutions enhances acid excretion through respiratory and renal responses, which should be considered in patients with renal failure. © The Author 2017. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  19. Impact of seawater [Ca

    NARCIS (Netherlands)

    Mewes, A.; Langer, G.; Thoms, S.; Nehrke, G.; Reichart, G.J.; de Nooijer, L.J.; Bijma, J.

    2015-01-01

    Mg / Ca ratios in foraminiferal tests are routinely used as paleotemperature proxies, but on long timescales, they also hold the potential to reconstruct past seawater Mg / Ca. The impact of both temperature and seawater Mg / Ca on Mg incorporation in Foraminifera has been quantified by a number of

  20. Effect of Mg and Ca on the Stability of the MRI Contrast Agent Gd–DTPA in Seawater

    Directory of Open Access Journals (Sweden)

    Johan Schijf

    2018-04-01

    Full Text Available Gadolinium diethylenetriaminepentaacetic acid (Gd–DTPA is widely applied as a contrast enhancer in medical MRI. As Gd–DTPA is only minimally captured in wastewater treatment plants (WTPs or degraded by UV light and other oxidative processes, concentrations in rivers have increased globally by orders of magnitude following its introduction in 1987. The complex also seems impervious to estuarine scavenging and is beginning to emerge in coastal waters, yet it is unknown how its stability is changed by competition for the DTPA ligand from major seawater cations. We performed potentiometric titrations at seawater ionic strength (0.7 M NaClO4 to determine dissociation constants of the five DTPA carboxylic acid groups, as well as stability constants of Mg, Ca, and Gd complexes with the fully deprotonated and single-protonated ligand. These are in general agreement with literature values at low ionic strength and confirm that complexes with Ca are more stable than with Mg. A new finding, that the DTPA complexes of Mg and Ca appear to be hydrolyzed at elevated pH, implies that their coordination in these chelates is less than hexadentate, enabling additional competition with Gd from dinuclear Mg and Ca species. Side-reaction coefficients for trace-metal-free seawater, calculated from our results, suggest that the higher abundance of Mg and Ca may significantly destabilize Gd–DTPA in coastal waters, causing dissociation and release of as much as 15% of the organically complexed Gd from the ligand. This effect could magnify the particle-reactivity and bioavailability of anthropogenic Gd in sensitive estuarine habitats, indicating an urgent need to further study the fate of this contaminant in marine environments.

  1. CaV 3.1 and CaV 3.3 account for T-type Ca2+ current in GH3 cells

    Directory of Open Access Journals (Sweden)

    M.A. Mudado

    2004-06-01

    Full Text Available T-type Ca2+ channels are important for cell signaling by a variety of cells. We report here the electrophysiological and molecular characteristics of the whole-cell Ca2+ current in GH3 clonal pituitary cells. The current inactivation at 0 mV was described by a single exponential function with a time constant of 18.32 ± 1.87 ms (N = 16. The I-V relationship measured with Ca2+ as a charge carrier was shifted to the left when we applied a conditioning pre-pulse of up to -120 mV, indicating that a low voltage-activated current may be present in GH3 cells. Transient currents were first activated at -50 mV and peaked around -20 mV. The half-maximal voltage activation and the slope factors for the two conditions are -35.02 ± 2.4 and 6.7 ± 0.3 mV (pre-pulse of -120 mV, N = 15, and -27.0 ± 0.97 and 7.5 ± 0.7 mV (pre-pulse of -40 mV, N = 9. The 8-mV shift in the activation mid-point was statistically significant (P < 0.05. The tail currents decayed bi-exponentially suggesting two different T-type Ca2+ channel populations. RT-PCR revealed the presence of a1G (CaV3.1 and a1I (CaV3.3 T-type Ca2+ channel mRNA transcripts.

  2. Overexpression of CaTLP1, a putative transcription factor in chickpea (Cicer arietinum L.), promotes stress tolerance.

    Science.gov (United States)

    Wardhan, Vijay; Jahan, Kishwer; Gupta, Sonika; Chennareddy, Srinivasarao; Datta, Asis; Chakraborty, Subhra; Chakraborty, Niranjan

    2012-07-01

    Dehydration is the most crucial environmental constraint on plant growth and development, and agricultural productivity. To understand the underlying mechanism of stress tolerance, and to identify proteins for improving such important trait, we screened the dehydration-responsive proteome of chickpea and identified a tubby-like protein, referred to as CaTLP1. The CaTLP1 was found to predominantly bind to double-stranded DNA but incapable of transcriptional activation. We investigated the gene structure and organization and demonstrated, for the first time, that CaTLP1 may be involved in osmotic stress response in plants. The transcripts are strongly expressed in vegetative tissues but weakly in reproductive tissues. CaTLP1 is upregulated by dehydration and high salinity, and by treatment with abscisic acid (ABA), suggesting that its stress-responsive function might be associated with ABA-dependent network. Overexpression of CaTLP1 in transgenic tobacco plants conferred dehydration, salinity and oxidative stress tolerance along with improved shoot and root architecture. Molecular genetic analysis showed differential expression of CaTLP1 under normal and stress condition, and its preferential expression in the nucleus might be associated with enhanced stress tolerance. Our work suggests important roles of CaTLP1 in stress response as well as in the regulation of plant development.

  3. Cadmium induces Ca2+ mediated, calpain-1/caspase-3-dependent apoptosis in primary cultured rat proximal tubular cells.

    Science.gov (United States)

    Wang, Hong; Zhai, Nianhui; Chen, Ying; Xu, Haibin; Huang, Kehe

    2017-07-01

    Calcium, as a ubiquitous second messenger, governs a large array of cellular processes and is necessary for cell survival. More recently, it was observed that the cytosolic Ca 2+ concentration ([Ca 2+ ] c ) elevation could induce apoptosis in primary cultured rat proximal tubular (rPT) cells exposed to cadmium (Cd), but the concrete mechanism is still unclear. This study was designed to investigate the signal pathway involved in [Ca 2+ ] c elevation-mediated apoptosis. The results confirmed the elevation of [Ca 2+ ] c by confocal microscopy and enhancement of the apoptosis by Hoechst 33258 staining and flow cytometer when rPT cells were exposed to Cd for 12h. Then we demonstrated that Cd enhanced the protein levels of active calpain-1 and caspase-3 in rPT cells. Pretreatment with a cytosolic Ca 2+ chelator, 1,2-Bis (2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (BAPTA-AM), markedly blocked the up-regulation of active calpain-1 and caspase-3 and inhibited the apoptosis induced by Cd. Further, rPT cells were pretreated with a cell-permeable selective calpain-1 inhibitor, 3-(4-iodophenyl)-2-mercapto-(Z)-2-propenoic acid (PD150606) and caspase-3 inhibitor, N-Acetyl-Asp-Glu-Val-Asp-CHO (Ac-DEVD-CHO), respectively. PD150606 significantly attenuated the up-regulation of active caspase-3 and the apoptosis induced by Cd. As expected, inhibition of active caspase-3 by Ac-DEVD-CHO decreased the apoptosis induced by Cd. Taken together, it could be concluded that [Ca 2+ ] c elevation did act as a pro-apoptotic signal in Cd-induced cytotoxicity of rPT cells, triggered calpain-1 and caspase-3 activation in turn, and induced apoptosis of rPT cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. A combined CaO/electrochemical treatment of the acid mine drainage from the "Robule" Lake.

    Science.gov (United States)

    Orescanin, Visnja; Kollar, Robert

    2012-01-01

    The purpose of this work was development and application of the purification system suitable for the treatment of the acid mine drainage (AMD) accumulated in the "Robule" Lake, which represents the part of the Bor copper mining and smelting complex, Serbia. The study was undertaken in order to minimize adverse effect on the environment caused by the discharge of untreated AMD, which was characterized with low pH value (2.63) and high concentration of heavy metals (up to 610 mg/L) and sulfates (up to 12,000 mg/L). The treatment of the effluent included pretreatment/pH adjustment with CaO followed by electrocoagulation using iron and aluminum electrode sets. Following the final treatment, the decrease in the concentration of heavy metals ranged from 40 up to 61000 times depending on the metal and its initial concentration. The parameters, color and turbidity were removed completely in the pretreatment step, while the removal efficiencies for other considered parameters were as follows: EC = 55.48%, SO(4) (2-) = 70.83%, Hg = 98.36%, Pb = 97.50%, V = 98.43%, Cr = 99.86%, Mn = 97.96%, Fe = 100.00%, Co = 99.96%, Ni = 99.78%, Cu = 99.99% and Zn = 99.94%. Because the concentrations of heavy metals in the electrochemically treated AMD (ranging from 0.001 to 0.336 mg/L) are very low, the negative impact of this effluent on the aquatic life and humans is not expected. The sludge generated during the treatment of AMD is suitable for reuse for at least two purposes (pretreatment of AMD and covering of the flotation waste heap). From the presented results, it could be concluded that electrochemical treatment is a suitable approach for the treatment of AMD.

  5. Calcium binding properties of calcium dependent protein kinase 1 (CaCDPK1) from Cicer arietinum.

    Science.gov (United States)

    Dixit, Ajay Kumar; Jayabaskaran, Chelliah

    2015-05-01

    Calcium plays a crucial role as a secondary messenger in all aspects of plant growth, development and survival. Calcium dependent protein kinases (CDPKs) are the major calcium decoders, which couple the changes in calcium level to an appropriate physiological response. The mechanism by which calcium regulates CDPK protein is not well understood. In this study, we investigated the interactions of Ca(2+) ions with the CDPK1 isoform of Cicer arietinum (CaCDPK1) using a combination of biophysical tools. CaCDPK1 has four different EF hands as predicted by protein sequence analysis. The fluorescence emission spectrum of CaCDPK1 showed quenching with a 5 nm red shift upon addition of calcium, indicating conformational changes in the tertiary structure. The plot of changes in intensity against calcium concentrations showed a biphasic curve with binding constants of 1.29 μM and 120 μM indicating two kinds of binding sites. Isothermal calorimetric (ITC) titration with CaCl2 also showed a biphasic curve with two binding constants of 0.027 μM and 1.7 μM. Circular dichroism (CD) spectra showed two prominent peaks at 208 and 222 nm indicating that CaCDPK1 is a α-helical rich protein. Calcium binding further increased the α-helical content of CaCDPK1 from 75 to 81%. Addition of calcium to CaCDPK1 also increased fluorescence of 8-anilinonaphthalene-1-sulfonic acid (ANS) indicating exposure of hydrophobic surfaces. Thus, on the whole this study provides evidence for calcium induced conformational changes, exposure of hydrophobic surfaces and heterogeneity of EF hands in CaCDPK1. Copyright © 2015 Elsevier GmbH. All rights reserved.

  6. Polyamines mediate abnormal Ca2+ transport and Ca2+-induced cardiac cell injury in the calcium paradox

    International Nuclear Information System (INIS)

    Trout, J.J.; Koenig, H.; Goldstone, A.D.; Lu, C.Y.; Fan, C.C.

    1986-01-01

    Ca 2+ -free perfusion renders heart cells Ca 2+ -sensitive so that readmission of Ca 2+ causes a sudden massive cellular injury attributed to abnormal entry of Ca 2+ into cells (Ca paradox). Hormonal stimulation of Ca 2+ fluxes was earlier shown to be mediated by polyamines (PA). 5 min perfusion of rat heart with Ca 2+ -free medium induce a prompt 40-50% decline in levels of the PA putrescine (PUT), spermidine and spermine and their rate-regulatory synthetic enzyme ornithine decarboxylase (ODC), and readmission of Ca 2+ -containing medium abruptly ( 2+ reperfusion-induced increases in ODC and PA and also prevented increased 45 Ca 2+ uptake and heart injury, manifested by loss of contractility, release of enzymes (CPK, LDH), myoglobin and protein, and E.M. lesions (contracture bands, mitochondrial changes). 1 mM PUT negated DFMO inhibition, repleted heart PA and restored Ca 2+ reperfusion-induced 45 Ca 2+ influx and cell injury. These data indicate that the Ca 2+ -directed depletion-repletion cycle of ODC and PA triggers excessive transsarcolemmal Ca 2+ transport leading to the calcium paradox

  7. Physicochemical characterization of cement kiln dust for potential reuse in acidic wastewater treatment

    International Nuclear Information System (INIS)

    Mackie, A.; Boilard, S.; Walsh, M.E.; Lake, C.B.

    2010-01-01

    Cement kiln dust (CKD) is a fine-grained material produced during the manufacture of cement. Current reuse options are limited and the bulk of CKD not reused in the cement manufacturing process is sent to landfills or stored on-site. Due to the calcium oxide (CaO) content of CKD, it has the potential to be used as a replacement for lime in treating acidic wastewaters such as acid rock drainage (ARD). This paper outlines the results of an examination of the physical and chemical properties of CKD samples collected from six cement plants. The CKD samples were analyzed for major oxides using X-ray diffraction (XRD), available lime, specific surface area, particle size, and morphology using scanning electron microscope (SEM) and compared with a commercial quicklime product. Conductivity, pH, and calcium concentrations of slaked CKD and quicklime solutions were used as indicators of reactivity of the CKD. Slaking of two of the CKD samples with the highest free lime contents (e.g., 34 and 37% free CaO) gave elevated pH values statistically comparable to those of the commercial quicklime sample that was characterized as having 87% available CaO. Acid neutralization trials indicate that even CKD samples with low free lime contents could be effective at neutralizing acidic wastewaters.

  8. Edward C. Little Water Recycling Plant, El Segundo, CA: CA0063401

    Science.gov (United States)

    Joint EPA and Los Angeles Regional Water Quality Control Board NPDES Permit and Waiver from Secondary Treatment for the West Basin Municipal Water District Edward C. Little Water Recycling Plant, El Segundo, CA: CA0063401

  9. TRPP2-dependent Ca2+ signaling in dorso-lateral mesoderm is required for kidney field establishment in Xenopus.

    Science.gov (United States)

    Futel, Mélinée; Leclerc, Catherine; Le Bouffant, Ronan; Buisson, Isabelle; Néant, Isabelle; Umbhauer, Muriel; Moreau, Marc; Riou, Jean-François

    2015-03-01

    In Xenopus laevis embryos, kidney field specification is dependent on retinoic acid (RA) and coincides with a dramatic increase of Ca(2+) transients, but the role of Ca(2+) signaling in the kidney field is unknown. Here, we identify TRPP2, a member of the transient receptor potential (TRP) superfamily of channel proteins encoded by the pkd2 gene, as a central component of Ca(2+) signaling in the kidney field. TRPP2 is strongly expressed at the plasma membrane where it might regulate extracellular Ca(2+) entry. Knockdown of pkd2 in the kidney field results in the downregulation of pax8, but not of other kidney field genes (lhx1, osr1 and osr2). We further show that inhibition of Ca(2+) signaling with an inducible Ca(2+) chelator also causes downregulation of pax8, and that pkd2 knockdown results in a severe inhibition of Ca(2+) transients in kidney field explants. Finally, we show that disruption of RA results both in an inhibition of intracellular Ca(2+) signaling and of TRPP2 incorporation into the plasma membrane of kidney field cells. We propose that TRPP2-dependent Ca(2+) signaling is a key component of pax8 regulation in the kidney field downstream of RA-mediated non-transcriptional control of TRPP2. © 2015. Published by The Company of Biologists Ltd.

  10. Regulatory effect of connexin 43 on basal Ca2+ signaling in rat ventricular myocytes.

    Directory of Open Access Journals (Sweden)

    Chen Li

    Full Text Available BACKGROUND: It has been found that gap junction-associated intracellular Ca(2+ [Ca(2+](i disturbance contributes to the arrhythmogenesis and hyperconstriction in diseased heart. However, whether functional gaps are also involved in the regulation of normal Ca(2+ signaling, in particular the basal [Ca(2+](i activities, is unclear. METHODS AND RESULTS: Global and local Ca(2+ signaling and gap permeability were monitored in cultured neonatal rat ventricular myocytes (NRVMs and freshly isolated mouse ventricular myocytes by Fluo4/AM and Lucifer yellow (LY, respectively. The results showed that inhibition of gap communication by heptanol, Gap 27 and flufenamic acid or interference of connexin 43 (Cx43 with siRNA led to a significant suppression of LY uptake and, importantly, attenuations of global Ca(2+ transients and local Ca(2+ sparks in monolayer NRVMs and Ca(2+ sparks in adult ventricular myocytes. In contrast, overexpression of rat-Cx43 in NRVMs induced enhancements in the above measurements, and so did in HEK293 cells expressing rat Cx43. Additionally, membrane-permeable inositol 1,4,5-trisphosphate (IP(3 butyryloxymethyl ester and phenylephrine, an agonist of adrenergic receptor, could relieve the inhibited Ca(2+ signal and LY uptake by gap uncouplers, whereas blockade of IP(3 receptor with xestospongin C or 2-aminoethoxydiphenylborate mimicked the effects of gap inhibitors. More importantly, all these gap-associated effects on Ca(2+ signaling were also found in single NRVMs that only have hemichannels instead of gap junctions. Further immunostaining/immunoblotting single myocytes with antibody against Cx43 demonstrated apparent increases in membrane labeling of Cx43 and non-junctional Cx43 in overexpressed cells, suggesting functional hemichannels exist and also contribute to the Ca(2+ signaling regulation in cardiomyocytes. CONCLUSIONS: These data demonstrate that Cx43-associated gap coupling plays a role in the regulation of resting Ca(2

  11. Large conductance Ca2+-activated K+ (BK channel: Activation by Ca2+ and voltage

    Directory of Open Access Journals (Sweden)

    RAMÓN LATORRE

    2006-01-01

    Full Text Available Large conductance Ca2+-activated K+ (BK channels belong to the S4 superfamily of K+ channels that include voltage-dependent K+ (Kv channels characterized by having six (S1-S6 transmembrane domains and a positively charged S4 domain. As Kv channels, BK channels contain a S4 domain, but they have an extra (S0 transmembrane domain that leads to an external NH2-terminus. The BK channel is activated by internal Ca2+, and using chimeric channels and mutagenesis, three distinct Ca2+-dependent regulatory mechanisms with different divalent cation selectivity have been identified in its large COOH-terminus. Two of these putative Ca2+-binding domains activate the BK channel when cytoplasmic Ca2+ reaches micromolar concentrations, and a low Ca2+ affinity mechanism may be involved in the physiological regulation by Mg2+. The presence in the BK channel of multiple Ca2+-binding sites explains the huge Ca2+ concentration range (0.1 μM-100 μM in which the divalent cation influences channel gating. BK channels are also voltage-dependent, and all the experimental evidence points toward the S4 domain as the domain in charge of sensing the voltage. Calcium can open BK channels when all the voltage sensors are in their resting configuration, and voltage is able to activate channels in the complete absence of Ca2+. Therefore, Ca2+ and voltage act independently to enhance channel opening, and this behavior can be explained using a two-tiered allosteric gating mechanism.

  12. Hydroxyapatite formation on graphene oxide modified with amino acids: arginine versus glutamic acid.

    Science.gov (United States)

    Tavafoghi, M; Brodusch, N; Gauvin, R; Cerruti, M

    2016-01-01

    Hydroxyapatite (HA, Ca5(PO4)3OH) is the main inorganic component of hard tissues, such as bone and dentine. HA nucleation involves a set of negatively charged phosphorylated proteins known as non-collagenous proteins (NCPs). These proteins attract Ca(2+) and PO4(3-) ions and increase the local supersaturation to a level required for HA precipitation. Polar and charged amino acids (AAs) are highly expressed in NCPs, and seem to be responsible for the mineralizing effect of NCPs; however, the individual effect of these AAs on HA mineralization is still unclear. In this work, we investigate the effect of a negatively charged (Glu) and positively charged (Arg) AA bound to carboxylated graphene oxide (CGO) on HA mineralization in simulated body fluids (SBF). Our results show that Arg induces HA precipitation faster and in larger amounts than Glu. We attribute this to the higher stability of the complexes formed between Arg and Ca(2+) and PO4(3-) ions, and also to the fact that Arg exposes both carboxyl and amino groups on the surface. These can electrostatically attract both Ca(2+) and PO4(3-) ions, thus increasing local supersaturation more than Glu, which exposes carboxyl groups only. © 2016 The Author(s).

  13. Hydroxyapatite formation on graphene oxide modified with amino acids: arginine versus glutamic acid

    Science.gov (United States)

    Tavafoghi, M.; Brodusch, N.; Gauvin, R.; Cerruti, M.

    2016-01-01

    Hydroxyapatite (HA, Ca5(PO4)3OH) is the main inorganic component of hard tissues, such as bone and dentine. HA nucleation involves a set of negatively charged phosphorylated proteins known as non-collagenous proteins (NCPs). These proteins attract Ca2+ and PO43− ions and increase the local supersaturation to a level required for HA precipitation. Polar and charged amino acids (AAs) are highly expressed in NCPs, and seem to be responsible for the mineralizing effect of NCPs; however, the individual effect of these AAs on HA mineralization is still unclear. In this work, we investigate the effect of a negatively charged (Glu) and positively charged (Arg) AA bound to carboxylated graphene oxide (CGO) on HA mineralization in simulated body fluids (SBF). Our results show that Arg induces HA precipitation faster and in larger amounts than Glu. We attribute this to the higher stability of the complexes formed between Arg and Ca2+ and PO43− ions, and also to the fact that Arg exposes both carboxyl and amino groups on the surface. These can electrostatically attract both Ca2+ and PO43− ions, thus increasing local supersaturation more than Glu, which exposes carboxyl groups only. PMID:26791001

  14. Isolation of chicken taste buds for real-time Ca2+ imaging.

    Science.gov (United States)

    Kudo, Ken-ichi; Kawabata, Fuminori; Nomura, Toumi; Aridome, Ayumi; Nishimura, Shotaro; Tabata, Shoji

    2014-10-01

    We isolated chicken taste buds and used a real-time Ca2+ imaging technique to investigate the functions of the taste cells. With RT-PCR, we found that isolated chicken taste bud-like cell subsets express chicken gustducin messenger RNA. Immunocytochemical techniques revealed that the cell subsets were also immunopositive for chicken gustducin. These results provided strong evidence that the isolated cell subsets contain chicken taste buds. The isolated cell subsets were spindle-shaped and approximately 61-75 μm wide and 88-98 μm long, and these characteristics are similar to those of sectional chicken taste buds. Using Ca2+ imaging, we observed the buds' response to 2 mmol/L quinine hydrochloride (a bitter substance) and their response to a mixture of 25 mmol/L L-glutamic acid monopotassium salt monohydrate and 1 mmol/L inosine 5'-monophosphate disodium salt, umami substances. The present study is the first morphological demonstration of isolated chicken taste buds, and our results indicate that the isolated taste buds were intact and functional approaches for examining the taste senses of the chicken using Ca2+ imaging can be informative. © 2014 Japanese Society of Animal Science.

  15. Comparative study of electroless nickel film on different organic acids modified cuprammonium fabric (CF)

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Hang; Lu, Yinxiang, E-mail: yxlu@fudan.edu.cn

    2016-01-30

    Graphical abstract: - Highlights: • An etchant-free and moderate surface pre-treatment process was studied. • Citric acid, malic acid and oxalic acid were selected as modification agents. • High adhesive nickel coating on cuprammonium fabric was obtained. • The electromagnetic parameters were evaluated from the experimental data. - Abstract: Nickel films were grown on citric acid (CA), malic acid (MA) and oxalic acid (OA) modified cuprammonium fabric (CF) substrates via electroless nickel deposition. The nickel films were examined using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Their individual deposition rate and electromagnetic interference (EMI) shielding effectiveness (SE) were also investigated to compare the properties of electroless nickel films. SEM images illustrated that the nickel film on MA modified CF substrate was smooth and uniform, and the density of nickel nuclei was much higher. Compared with that of CA modified CF, the coverage of nickel nuclei on OA and MA modified CF substrate was very limited and the nickel particles size was too big. XRD analysis showed that the nickel films deposited on the different modified CF substrates had a structure with Ni (1 1 1) preferred orientation. All the nickel coatings via different acid modification were firmly adhered to the CF substrates, as demonstrated by an ultrasonic washing test. The result of tensile test indicated that the electroless nickel plating on CF has ability to strengthen the CF substrate while causes limited effect on tensile elongation. Moreover, the nickel film deposited on MA modified CF substrate showed more predominant in EMI SE than that deposited on CA or OA modified CF.

  16. Ultrasonic-assisted production of biodiesel from transesterification of palm oil over ostrich eggshell-derived CaO catalysts.

    Science.gov (United States)

    Chen, Guanyi; Shan, Rui; Shi, Jiafu; Yan, Beibei

    2014-11-01

    In this study, waste ostrich eggshell-derived calcium oxide (denoted as CaO(OE)) particles were synthesized and explored as cost-effective catalysts for the ultrasonic-assisted transesterification of palm oil. The physicochemical properties of the resultant catalysts were characterized by XRD, N2 adsorption, XRF and Hammett indicator, while the catalytic activity was evaluated through transesterification of palm oil with methanol under ultrasonic conditions. More specifically, the CaO(OE) showed comparable catalytic activity to the one derived from commercial calcium carbonate (denoted as CaO(Lab)). Moreover, under ultrasonic conditions, the catalytic activity of CaO(OE) could be enhanced significantly. The maximum yield of fatty acid methyl esters could reach 92.7% under the optimal condition of reaction time of 60 min with ultrasonic power of 60% (120 W), methanol-to-oil ratio of 9:1, and catalyst loading of 8 wt.%. The results indicated that the CaO(OE) catalysts showed good catalytic performance and reusability, and may potentially reduce the cost of biodiesel production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Effects of acidic deposition and soil acidification on sugar maple trees in the Adirondack Mountains, New York

    Science.gov (United States)

    Sullivan, Timothy J.; Lawrence, Gregory B.; Bailey, Scott W.; McDonnell, Todd C.; Beier, Colin M.; Weathers, K.C.; McPherson, G.T.; Bishop, Daniel A.

    2013-01-01

    We documented the effects of acidic atmospheric deposition and soil acidification on the canopy health, basal area increment, and regeneration of sugar maple (SM) trees across the Adirondack region of New York State, in the northeastern United States, where SM are plentiful but not well studied and where widespread depletion of soil calcium (Ca) has been documented. Sugar maple is a dominant canopy species in the Adirondack Mountain ecoregion, and it has a high demand for Ca. Trees in this region growing on soils with poor acid–base chemistry (low exchangeable Ca and % base saturation [BS]) that receive relatively high levels of atmospheric sulfur and nitrogen deposition exhibited a near absence of SM seedling regeneration and lower crown vigor compared with study plots with relatively high exchangeable Ca and BS and lower levels of acidic deposition. Basal area increment averaged over the 20th century was correlated (p < 0.1) with acid–base chemistry of the Oa, A, and upper B soil horizons. A lack of Adirondack SM regeneration, reduced canopy condition, and possibly decreased basal area growth over recent decades are associated with low concentrations of nutrient base cations in this region that has undergone soil Ca depletion from acidic deposition.

  18. In vitro investigation of anodization and CaP deposited titanium surface using MG63 osteoblast-like cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.M. [Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University, 28 Yeongeon-dong, Jongno-gu, Seoul 110-749 (Korea, Republic of); Lee, J.I. [Department of Oral Pathology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul (Korea, Republic of); Lim, Y.J., E-mail: limdds@snu.ac.kr [Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University, 28 Yeongeon-dong, Jongno-gu, Seoul 110-749 (Korea, Republic of)

    2010-03-01

    The aim of the present study was to investigate surface characteristics in four different titanium surfaces (AN: anodized at 270 V; AN-CaP: anodic oxidation and CaP deposited; SLA: sandblasted and acid etched; MA: machined) and to evaluate biological behaviors such as cell adhesion, cell proliferation, cytoskeletal organization, and osteogenic protein expression of MG63 osteoblast-like cells at the early stage. Surface analysis was performed using scanning electron microscopy, thin-film X-ray diffractometry, and a confocal laser scanning microscope. In order to evaluate cellular responses, MG63 osteoblast-like cells were used. The cell viability was evaluated by MTT assay. Immunofluorescent analyses of actin, type I collagen, osteonectin and osteocalcin were performed. The anodized and CaP deposited specimen showed homogeneously distributed CaP particles around micropores and exhibited anatase type oxides, titanium, and HA crystalline structures. This experiment suggests that CaP particles on the anodic oxidation surface affect cellular attachment and spreading. When designing an in vitro biological study for CaP coated titanium, it must be taken into account that preincubation in medium prior to cell seeding and the cell culture medium may affect the CaP coatings. All these observations illustrate the importance of the experimental conditions and the physicochemical parameters of the CaP coating. It is considered that further evaluations such as long-term in vitro cellular assays and in vivo experiments should be necessary to figure out the effect of CaP deposition to biological responses.

  19. In vitro investigation of anodization and CaP deposited titanium surface using MG63 osteoblast-like cells

    International Nuclear Information System (INIS)

    Lee, J.M.; Lee, J.I.; Lim, Y.J.

    2010-01-01

    The aim of the present study was to investigate surface characteristics in four different titanium surfaces (AN: anodized at 270 V; AN-CaP: anodic oxidation and CaP deposited; SLA: sandblasted and acid etched; MA: machined) and to evaluate biological behaviors such as cell adhesion, cell proliferation, cytoskeletal organization, and osteogenic protein expression of MG63 osteoblast-like cells at the early stage. Surface analysis was performed using scanning electron microscopy, thin-film X-ray diffractometry, and a confocal laser scanning microscope. In order to evaluate cellular responses, MG63 osteoblast-like cells were used. The cell viability was evaluated by MTT assay. Immunofluorescent analyses of actin, type I collagen, osteonectin and osteocalcin were performed. The anodized and CaP deposited specimen showed homogeneously distributed CaP particles around micropores and exhibited anatase type oxides, titanium, and HA crystalline structures. This experiment suggests that CaP particles on the anodic oxidation surface affect cellular attachment and spreading. When designing an in vitro biological study for CaP coated titanium, it must be taken into account that preincubation in medium prior to cell seeding and the cell culture medium may affect the CaP coatings. All these observations illustrate the importance of the experimental conditions and the physicochemical parameters of the CaP coating. It is considered that further evaluations such as long-term in vitro cellular assays and in vivo experiments should be necessary to figure out the effect of CaP deposition to biological responses.

  20. Influence of ER leak on resting cytoplasmic Ca2+ and receptor-mediated Ca2+ signalling in human macrophage.

    Science.gov (United States)

    Layhadi, Janice A; Fountain, Samuel J

    2017-06-03

    Mechanisms controlling endoplasmic reticulum (ER) Ca 2+ homeostasis are important regulators of resting cytoplasmic Ca 2+ concentration ([Ca 2+ ] cyto ) and receptor-mediated Ca 2+ signalling. Here we investigate channels responsible for ER Ca 2+ leak in THP-1 macrophage and human primary macrophage. In the absence of extracellular Ca 2+ we employ ionomycin action at the plasma membrane to stimulate ER Ca 2+ leak. Under these conditions ionomycin elevates [Ca 2+ ] cyto revealing a Ca 2+ leak response which is abolished by thapsigargin. IP 3 receptors (Xestospongin C, 2-APB), ryanodine receptors (dantrolene), and translocon (anisomycin) inhibition facilitated ER Ca 2+ leak in model macrophage, with translocon inhibition also reducing resting [Ca 2+ ] cyto . In primary macrophage, translocon inhibition blocks Ca 2+ leak but does not influence resting [Ca 2+ ] cyto . We identify a role for translocon-mediated ER Ca 2+ leak in receptor-mediated Ca 2+ signalling in both model and primary human macrophage, whereby the Ca 2+ response to ADP (P2Y receptor agonist) is augmented following anisomycin treatment. In conclusion, we demonstrate a role of ER Ca 2+ leak via the translocon in controlling resting cytoplasmic Ca 2+ in model macrophage and receptor-mediated Ca 2+ signalling in model macrophage and primary macrophage. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Combined Evaluation of AFP, CA15-3, CA125, CA19-9, and CEA Tumor Markers in Patients with Hepatitis B and C.

    Science.gov (United States)

    Assmar, Mehdi; Yeganeh, Sara; Mansourghanaei, Fariborz; Amirmozafari, Nour

    2016-12-01

    This study aimed to determine the role of tumor markers AFP, CA15-3, CA125, CA19-9 and CEA in patients with hepatitis B and C. This descriptive cross-sectional study was performed from Oct 2012 to Oct 2014. Serum samples of 129 patients with hepatitis B and C referred to Guilan Liver and Digestive Disease Research Center in Rasht, Iran were collected and checked for the existence of the listed tumor markers by ELISA. No increase in serum levels of tumor marker CA19-9, CEA and CA15-3 were seen in patients with hepatitis ( P >0.05). In patients with hepatitis B, increase in CA125 were observed ( P =0.03). In hepatitis C patients, there was an increase in AFP levels ( P =0.03). The levels of AFP and CA125 markers were high in hepatitis C and hepatitis B, respectively. However, the increased levels were not seen is malignancy. Due to the small sample size, further study is necessary to find the reasons of the increase.

  2. Effects of luminal flow and nucleotides on [Ca(2+)](i) in rabbit cortical collecting duct.

    Science.gov (United States)

    Woda, Craig B; Leite, Maurilo; Rohatgi, Rajeev; Satlin, Lisa M

    2002-09-01

    Nucleotide binding to purinergic P2 receptors contributes to the regulation of a variety of physiological functions in renal epithelial cells. Whereas P2 receptors have been functionally identified at the basolateral membrane of the cortical collecting duct (CCD), a final regulatory site of urinary Na(+), K(+), and acid-base excretion, controversy exists as to whether apical purinoceptors exist in this segment. Nor has the distribution of receptor subtypes present on the unique cell populations that constitute Ca(2+) the CCD been established. To examine this, we measured nucleotide-induced changes in intracellular Ca(2+) concentration ([Ca(2+)](i)) in fura 2-loaded rabbit CCDs microperfused in vitro. Resting [Ca(2+)](i) did not differ between principal and intercalated cells, averaging approximately 120 nM. An acute increase in tubular fluid flow rate, associated with a 20% increase in tubular diameter, led to increases in [Ca(2+)](i) in both cell types. Luminal perfusion of 100 microM UTP or ATP-gamma-S, in the absence of change in flow rate, caused a rapid and transient approximately fourfold increase in [Ca(2+)](i) in both cell types (P < 0.05). Luminal suramin, a nonspecific P2 receptor antagonist, blocked the nucleotide- but not flow-induced [Ca(2+)](i) transients. Luminal perfusion with a P2X (alpha,beta-methylene-ATP), P2X(7) (benzoyl-benzoyl-ATP), P2Y(1) (2-methylthio-ATP), or P2Y(4)/P2Y(6) (UDP) receptor agonist had no effect on [Ca(2+)](i). The nucleotide-induced [Ca(2+)](i) transients were inhibited by the inositol-1,4,5-triphosphate receptor blocker 2-aminoethoxydiphenyl borate, thapsigargin, which depletes internal Ca(2+) stores, luminal perfusion with a Ca(2+)-free perfusate, or the L-type Ca(2+) channel blocker nifedipine. These results suggest that luminal nucleotides activate apical P2Y(2) receptors in the CCD via pathways that require both internal Ca(2+) mobilization and extracellular Ca(2+) entry. The flow-induced rise in [Ca(2+)](i) is

  3. Mechanisms of amino acid sensing in mTOR signaling pathway

    OpenAIRE

    Kim, Eunjung

    2009-01-01

    Amino acids are fundamental nutrients for protein synthesis and cell growth (increase in cell size). Recently, many compelling evidences have shown that the level of amino acids is sensed by extra- or intra-cellular amino acids sensor(s) and regulates protein synthesis/degradation. Mammalian target of rapamycin complex 1 (mTORC1) is placed in a central position in cell growth regulation and dysregulation of mTOR signaling pathway has been implicated in many serious human diseases including ca...

  4. Structure of the CaMKIIdelta/calmodulin complex reveals the molecular mechanism of CaMKII kinase activation.

    Directory of Open Access Journals (Sweden)

    Peter Rellos

    2010-07-01

    Full Text Available Long-term potentiation (LTP, a long-lasting enhancement in communication between neurons, is considered to be the major cellular mechanism underlying learning and memory. LTP triggers high-frequency calcium pulses that result in the activation of Calcium/Calmodulin (CaM-dependent kinase II (CaMKII. CaMKII acts as a molecular switch because it remains active for a long time after the return to basal calcium levels, which is a unique property required for CaMKII function. Here we describe the crystal structure of the human CaMKIIdelta/Ca2+/CaM complex, structures of all four human CaMKII catalytic domains in their autoinhibited states, as well as structures of human CaMKII oligomerization domains in their tetradecameric and physiological dodecameric states. All four autoinhibited human CaMKIIs were monomeric in the determined crystal structures but associated weakly in solution. In the CaMKIIdelta/Ca2+/CaM complex, the inhibitory region adopted an extended conformation and interacted with an adjacent catalytic domain positioning T287 into the active site of the interacting protomer. Comparisons with autoinhibited CaMKII structures showed that binding of calmodulin leads to the rearrangement of residues in the active site to a conformation suitable for ATP binding and to the closure of the binding groove for the autoinhibitory helix by helix alphaD. The structural data, together with biophysical interaction studies, reveals the mechanism of CaMKII activation by calmodulin and explains many of the unique regulatory properties of these two essential signaling molecules.This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3-D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the Web plugin are available in Text S1.

  5. Prognostic significance of preoperative serum CA125, CA19-9 and CEA in gastric carcinoma

    Science.gov (United States)

    Wang, Wei; Chen, Xiao-Long; Zhao, Shen-Yu; Xu, Yu-Hui; Zhang, Wei-Han; Liu, Kai; Chen, Xin-Zu; Yang, Kun; Zhang, Bo; Chen, Zhi-Xin; Chen, Jia-Ping; Zhou, Zong-Guang; Hu, Jian-Kun

    2016-01-01

    The prognostic significance of preoperative serum CA125, CA19-9 and CEA in gastric carcinoma (GC) has been widely reported and is still under debate. Here, we evaluated the prognostic significance of preoperative serum CA125, CA19-9 and CEA in patients with GC. 1692 patients with GC who underwent gastrectomy were divided into the training (from January 2005 to December 2011, n = 1024) and the validation (from January 2012 to December 2013, n = 668) cohorts. Positive groups of CA125 (> 13.72 U/ml), CA19-9 (> 23.36 U/ml) and CEA (> 4.28 ng/ml) were significantly associated with more advanced clinicopathological traits and worse outcomes than that of negative groups (all P tumor size (P tumor markers (NPTM) were more accurate in prognostic prediction than TNM stage alone. Our findings suggested that elevated preoperative serum CA125, CA19-9 and CEA were associated with more advanced clinicopathological traits and less favorable outcomes. In addition, CA125 as an independent prognostic factor should be further investigated. Nomogram based on NPTM could accurately predict the prognosis of GC patients. PMID:27097114

  6. Impact parameter determination for 40Ca + 40Ca reactions using a neural network

    International Nuclear Information System (INIS)

    Haddad, F.; Hagel, K.; Li, J.; Mdeiwayeh, N.; Natowitz, J.B.; Wada, R.; Xiao, B.; David, C.; Freslier, M.; Aichelin, J.

    1995-01-01

    A neural network is used for the impact parameter determination in 40 Ca + 40 Ca reactions at energies between 35 and 70 AMeV. A special attention is devoted to the effect of experimental constraints such as the detection efficiency. An overall improvement of the impact parameter determination of 25% is obtained with the neural network. The neural network technique is then used in the analysis of the Ca+Ca data at 35 AMeV and allows separation of three different class of events among the selected 'complete' events. (authors). 8 refs., 5 figs

  7. Effects of inhaled anesthetic isoflurane on long-term potentiation of CA3 pyramidal cell afferents in vivo

    Directory of Open Access Journals (Sweden)

    Ballesteros KA

    2012-11-01

    Full Text Available Kristen A Ballesteros,1 Angela Sikorski,2 James E Orfila,3 Joe L Martinez Jr41Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA; 2Texas A&M University Texarkana, Texarkana, TX, USA; 3University of Colorado in Denver, Denver, CO, USA; 4University of Illinois in Chicago, Chicago, IL, USAAbstract: Isoflurane is a preferred anesthetic, due to its properties that allow a precise concentration to be delivered continually during in vivo experimentation. The major mechanism of action of isoflurane is modulation of the γ-amino butyric acid (GABAA receptor-chloride channel, mediating inhibitory synaptic transmission. Animal studies have shown that isoflurane does not cause cell death, but it does inhibit cell growth and causes long-term hippocampal learning deficits. As there are no studies characterizing the effects of isoflurane on electrophysiological aspects of long-term potentiation (LTP in the hippocampus, it is important to determine whether isoflurane alters the characteristic responses of hippocampal afferents to cornu ammonis region 3 (CA3. We investigated the effects of isoflurane on adult male rats during in vivo induction of LTP, using the mossy fiber pathway, the lateral perforant pathway, the medial perforant pathway, and the commissural CA3 (cCA3 to CA3, with intracranial administration of Ringer’s solution, naloxone, RS-aminoindan-1, 5-dicarboxylic acid (AIDA, or 3-[(R-2-carboxypiperazin-4-yl]-propo-2-enyl-1-phosphonic acid (CPP. Then, we compared these responses to published electrophysiological data, using sodium pentobarbital as an anesthetic, under similar experimental conditions. Our results showed that LTP was exhibited in animals anesthetized with isoflurane under vehicle conditions. With the exception of AIDA in the lateral perforant pathway, the defining characteristics of the four pathways appeared to remain intact, except for the observation that LTP was markedly reduced in animals

  8. Citric acid assisted phytoremediation of copper by Brassica napus L.

    Science.gov (United States)

    Zaheer, Ihsan Elahi; Ali, Shafaqat; Rizwan, Muhammad; Farid, Mujahid; Shakoor, Muhammad Bilal; Gill, Rafaqa Ali; Najeeb, Ullah; Iqbal, Naeem; Ahmad, Rehan

    2015-10-01

    Use of organic acids for promoting heavy metals phytoextraction is gaining worldwide attention. The present study investigated the influence of citric acid (CA) in enhancing copper (Cu) uptake by Brassica napus L. seedlings. 6 Weeks old B. napus seedlings were exposed to different levels of copper (Cu, 0, 50 and 100µM) alone or with CA (2.5mM) in a nutrient medium for 40 days. Exposure to elevated Cu levels (50 and 100µM) significantly reduced the growth, biomass production, chlorophyll content, gas exchange attributes and soluble proteins of B. napus seedlings. In addition, Cu toxicity increased the production of hydrogen peroxide (H2O2), malondialdehyde (MDA) and electrolyte leakage (EL) in leaf and root tissues of B. napus. Activities of antioxidant enzymes such as guaiacol peroxidase (POD), superoxide dismutase (SOD), catalases (CAT), ascorbate peroxidase (APX) in root and shoot tissues of B. napus were increased in response to lower Cu concentration (50µM) but increased under higher Cu concentration (100µM). Addition of CA into nutrient medium significantly alleviated Cu toxicity effects on B. napus seedlings by improving photosynthetic capacity and ultimately plant growth. Increased activities of antioxidant enzymes in CA-treated plants seems to play a role in capturing of stress-induced reactive oxygen species as was evident from lower level of H2O2, MDA and EL in CA-treated plants. Increasing Cu concentration in the nutrient medium significantly increased Cu concentration in in B. napus tissues. Cu uptake was further increased by CA application. These results suggested that CA might be a useful strategy for increasing phytoextraction of Cu from contaminated soils. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. PGC-1α accelerates cytosolic Ca2+ clearance without disturbing Ca2+ homeostasis in cardiac myocytes

    International Nuclear Information System (INIS)

    Chen, Min; Wang, Yanru; Qu, Aijuan

    2010-01-01

    Energy metabolism and Ca 2+ handling serve critical roles in cardiac physiology and pathophysiology. Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) is a multi-functional coactivator that is involved in the regulation of cardiac mitochondrial functional capacity and cellular energy metabolism. However, the regulation of PGC-1α in cardiac Ca 2+ signaling has not been fully elucidated. To address this issue, we combined confocal line-scan imaging with off-line imaging processing to characterize calcium signaling in cultured adult rat ventricular myocytes expressing PGC-1α via adenoviral transduction. Our data shows that overexpressing PGC-1α improved myocyte contractility without increasing the amplitude of Ca 2+ transients, suggesting that myofilament sensitivity to Ca 2+ increased. Interestingly, the decay kinetics of global Ca 2+ transients and Ca 2+ waves accelerated in PGC-1α-expressing cells, but the decay rate of caffeine-elicited Ca 2+ transients showed no significant change. This suggests that sarcoplasmic reticulum (SR) Ca 2+ -ATPase (SERCA2a), but not Na + /Ca 2+ exchange (NCX) contribute to PGC-1α-induced cytosolic Ca 2+ clearance. Furthermore, PGC-1α induced the expression of SERCA2a in cultured cardiac myocytes. Importantly, overexpressing PGC-1α did not disturb cardiac Ca 2+ homeostasis, because SR Ca 2+ load and the propensity for Ca 2+ waves remained unchanged. These data suggest that PGC-1α can ameliorate cardiac Ca 2+ cycling and improve cardiac work output in response to physiological stress. Unraveling the PGC-1α-calcium handing pathway sheds new light on the role of PGC-1α in the therapy of cardiac diseases.

  10. Phytochemistry of cimicifugic acids and associated bases in Cimicifuga racemosa root extracts.

    Science.gov (United States)

    Gödecke, Tanja; Nikolic, Dejan; Lankin, David C; Chen, Shao-Nong; Powell, Sharla L; Dietz, Birgit; Bolton, Judy L; van Breemen, Richard B; Farnsworth, Norman R; Pauli, Guido F

    2009-01-01

    Earlier studies reported serotonergic activity for cimicifugic acids (CA) isolated from Cimicifuga racemosa. The discovery of strongly basic alkaloids, cimipronidines, from the active extract partition and evaluation of previously employed work-up procedures has led to the hypothesis of strong acid/base association in the extract. Re-isolation of the CAs was desired to permit further detailed studies. Based on the acid/base association hypothesis, a new separation scheme of the active partition was required, which separates acids from associated bases. A new 5-HT(7) bioassay guided work-up procedure was developed that concentrates activity into one partition. The latter was subjected to a new two-step centrifugal partitioning chromatography (CPC) method, which applies pH zone refinement gradient (pHZR CPC) to dissociate the acid/base complexes. The resulting CA fraction was subjected to a second CPC step. Fractions and compounds were monitored by (1)H NMR using a structure-based spin-pattern analysis facilitating dereplication of the known acids. Bioassay results were obtained for the pHZR CPC fractions and for purified CAs. A new CA was characterised. While none of the pure CAs was active, the serotonergic activity was concentrated in a single pHZR CPC fraction, which was subsequently shown to contain low levels of the potent 5-HT(7) ligand, N(omega)-methylserotonin. This study shows that CAs are not responsible for serotonergic activity in black cohosh. New phytochemical methodology (pHZR CPC) and a sensitive dereplication method (LC-MS) led to the identification of N(omega)-methylserotonin as serotonergic active principle. Copyright (c) 2009 John Wiley & Sons, Ltd.

  11. Comparison of phosgene, chlorine, and hydrogen chloride as reagents for converting molten CaO.CaCl2 to CaCl2

    International Nuclear Information System (INIS)

    Fife, K.W.

    1985-01-01

    One method at Los Alamos for preparing impure plutonium metal from the impure oxide is by batch reduction with calcium metal at 850 0 C in a CaCl 2 solvent. The solvent salt from this reduction is currently discarded as low-level radioactivity waste only because it is saturated with the CaO byproduct. We have demonstrated a pyrochemical technique for converting the CaO to CaCl 2 thereby incorporating solvent recycling into the batch reduction process. We will discuss the effectiveness of HCl, Cl 2 , and COCl 2 as chlorinating agents and recycling actual spent process solvent salts. 6 refs., 8 figs

  12. Influence of barley grain particle size and treatment with citric acid on digestibility, ruminal fermentation and microbial protein synthesis in Holstein calves.

    Science.gov (United States)

    Kazemi-Bonchenari, M; Salem, A Z M; López, S

    2017-08-01

    Chemical and physical treatments of barley grain increase ruminally resistant starch and can improve the rumen fermentation pattern. The objective of the present study was to evaluate the effects of chemical (addition of citric acid, CA) and physical (grinding to two different particle sizes, PS) treatment of barley grain on performance, rumen fermentation, microbial protein yield in the rumen and selected blood metabolites in growing calves. In all, 28 male Holstein calves (172±5.1 kg initial BW) were used in a complete randomised design with a factorial arrangement of 2 barley grain particle sizes×2 levels of citric acid. The diets were as follows: (i) small PS (average 1200 µm) barley grain soaked in water (no CA addition); (ii) small PS barley grain soaked in a CA solution (adding 20 g CA/kg barley); (iii) large PS (average 2400 µm) barley grain soaked in water (no citric acid addition) and (iv) large PS barley grain soaked in a citric acid solution (adding 20 g CA/kg barley). Barley grain was then incorporated at 35% in a total mixed ration and fed to the calves for 11 weeks. Feeding small PS barley decreased feed intake (P=0.02) and average daily weight gain (P=0.01). The addition of CA to barley grain did not affect intake but increased weight gain (P0.05). However, the molar proportion of propionate was increased (P=0.03) when barley was more finely ground, and that of acetate was increased (P=0.04) when CA was added to barley grain. The ruminal concentration of ammonia nitrogen was increased (Pgrain with citric acid increased fibre digestibility of total mixed rations, attenuated the decrease in ruminal pH, and improved weight gain and feed efficiency in male Holstein growing calves fed a high-cereal diet (550 g cereal grain/kg diet).

  13. Declining acidic deposition begins reversal of forest-soil acidification in the northeastern U.S

    Science.gov (United States)

    Gregory B. Lawrence; Paul W. Hazlett; Ivan J. Fernandez; Rock Ouimet; Scott W. Bailey; Walter C. Shortle; Kevin T. Smith; Michael R. Antidormi

    2015-01-01

    Decreasing trends in acidic deposition levels over the past several decades have led to partial chemical recovery of surface waters. However, depletion of soil Ca from acidic deposition has slowed surface water recovery and led to the impairment of both aquatic and terrestrial ecosystems. Nevertheless, documentation of acidic deposition effects on soils has been...

  14. Effect of the temperature and the CO2 concentration on the behaviour of the citric acid as a scale inhibitor of CaCO3

    Science.gov (United States)

    Blanco, K.; Aponte, H.; Vera, E.

    2017-12-01

    For all Industrial sector is important to extend the useful life of the materials that they use in their process, the scales of CaCO3 are common in situation where fluids are handled with high concentration of ions and besides this temperatures and CO2 concentration dissolved, that scale generates large annual losses because there is a reduction in the process efficiency or corrosion damage under deposit, among other. In order to find new alternatives to this problem, the citric acid was evaluated as scale of calcium carbonate inhibition in critical condition of temperature and concentration of CO2 dissolved. Once the results are obtained it was carried out the statistical evaluation in order to generate an equation that allow to see that behaviour, giving as result, a good efficiency of inhibition to the conditions evaluated the scales of products obtained were characterized through scanning electron microscopy.

  15. The center-to-limb behavior of CaI lambda 6573 and [Ca II] lambda 7324

    International Nuclear Information System (INIS)

    Ayres, T.R.; Testerman, L.

    1978-01-01

    Center-to-limb measurements of the Ca I lambda 6573 intercombination line and the Ca II lambda 7324 forbidden line are compared with synthetic profiles based on a simple representation of the non-LTE Ca-Ca + ionization equilibrium. The effects of photoionization from low lying excited states of neutral calcium are found to reduce the sensitivity of the lambda 6573 center-to-limb behavior as a thermal structure diagnostic. The synthetic center-to-limb behavior is also sensitive to uncertainties in the nonthermal broadening. Nevertheless, the measured center-to-limb behavior of lambda 6573 favors a 'cool' photospheric model similar to the Vernazza, Avrett, and Loeser model M over hotter models based on the Ca II K wings. The non-LTE calcium abundance obtained from the disk center equivalent widths of lambda 6573 and lambda 7324 using the best fit model is Asub(Ca)approximately=2.1+-0.2x10 -6 (by number relative to hydrogen). Applications of these lines as diagnostics of the Ca-Ca + ionization equilibrium in other stars are briefly discussed. (Auth.)

  16. Effect of dietary citric acid supplementation and partial replacement ...

    African Journals Online (AJOL)

    Jane

    2011-10-24

    Oct 24, 2011 ... evaluate the effect of soybean meal (SBM) as a fishmeal (FM) partial replacement and citric acid (CA) .... temperature, pH and salinity were monitored daily and dissolved .... Digestibility, metabolism and excretion of dietary.

  17. Structural analysis and taste evaluation of γ-glutamyl peptides comprising sulfur-containing amino acids.

    Science.gov (United States)

    Amino, Yusuke; Wakabayashi, Hidehiko; Akashi, Satoko; Ishiwatari, Yutaka

    2018-03-01

    The structures, flavor-modifying effects, and CaSR activities of γ-glutamyl peptides comprising sulfur-containing amino acids were investigated. The chemical structures, including the linkage mode of the N-terminal glutamic acid, of γ-L-glutamyl-S-(2-propenyl)-L-cysteine (γ-L-glutamyl-S-allyl-L-cysteine) and its sulfoxide isolated from garlic were established by comparing their NMR spectra with those of authentic peptides prepared using chemical methods. Mass spectrometric analysis also enabled determination of the linkage modes in the glutamyl dipeptides by their characteristic fragmentation. In sensory evaluation, these peptides exhibited flavor-modifying effects (continuity) in umami solutions less pronounced but similar to that of glutathione. Furthermore, the peptides exhibited intrinsic flavor due to the sulfur-containing structure, which may be partially responsible for their flavor-modifying effects. In CaSR assays, γ-L-glutamyl-S-methyl-L-cysteinylglycine was most active, which indicates that the presence of a medium-sized aliphatic substituent at the second amino acid residue in γ-glutamyl peptides enhances CaSR activity.

  18. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils

    International Nuclear Information System (INIS)

    Kuo, S.; Lai, M.S.; Lin, C.W.

    2006-01-01

    Soil washing is considered a useful technique for remediating metal-contaminated soils. This study examined the release edges of Cd, Zn, Ni, Cr, Cu or Pb in two contaminated rice soils from central Taiwan. The concentrations exceeding the trigger levels established by the regulatory agency of Taiwan were Cu, Zn, Ni and Cr for the Ho-Mei soil and Pb for the Nan-Tou soil. Successive extractions with HCl ranging from 0 to 0.2 M showed increased release of the heavy metals with declining pH, and the threshold pH value below which a sharp increase in the releases of the heavy metals was highest for Cd, Zn, and Ni (pH 4.6 to 4.9), intermediate for Pb and Cu (3.1 to 3.8) and lowest for Fe (2.1), Al (2.2) and Cr (1.7) for the soils. The low response slope of Ni and Cr particularly for the rice soils make soil washing with the acid up to the highest concentration used ineffective to reduce their concentrations to below trigger levels. Although soil washing with 0.1 M HCl was moderately effective in reducing Cu, Pb, Zn and Cd, which brought pH of the soils to 1.1 ± 0.1 (S.D.), the concurrent release of large quantities of Fe and Al make this remediation technique undesirable for the rice soils containing high clay. Successive washings with 0.01 M HCl could be considered an alternative as the dissolution of Fe and Al was minimal, and between 46 to 64% of Cd, Zn, and Cu for the Ho-Mei soil and 45% of Pb in the Na-Tou soil were extracted after four successive extractions with this dilute acid solution. The efficacy of Cd extraction improved if CaCl 2 was added to the acid solution. The correlation analysis revealed that Cr extracted was highly correlated (P < 0.001) with Fe extracted, whereas the Cu, Ni, Zn, Cd or Pb extracted was better correlated (P < 0.001) with Al than with Fe extracted. It is possible that the past seasonal soil flooding and drainage in the soils for rice production was conducive to incorporating Cr within the structure of Fe oxide, thereby making them

  19. Preparation of CaO/Fly ash as a catalyst inhibitor for transesterification process off palm oil in biodiesel production

    Science.gov (United States)

    Helwani, Z.; Fatra, W.; Saputra, E.; Maulana, R.

    2018-03-01

    A palm fly ash supported calcium oxide (CaO) catalyst was prepared and used in transesterification from off-grade palm oil for biodiesel production. The catalyst synthesized by loading CaO of calcium nitrate tetrahydrate (Ca(NO3)2.4H2O) into fly ash through impregnation method. The optimum catalyst preparation conditions were determined by influence of calcination temperature and weight ratio of Ca(NO3)2.4H2O and fly ash. Catalyst with highest catalytic activity was achieved when calcined at 800 °C and proportion of Ca(NO3)2.4H2O to fly ash is 80:20. Under the conditions of oil : methanol ratio of 1:6, catalyst dosage of 6 wt% and temperature of 70 °C for 2 h, the biodiesel yield reaches to 71.77%. CaO, SiO2, Ca(OH)2 and Ca2SiO4 were found in the catalyst through X-ray diffraction (XRD) while the basic strength of the catalyst H_ in the range 9.3 – 11. Surface area of the developed catalyst is 24.342 m2/g through Brunauer-Emmett-Teller (BET). Characteristics of biodiesel such as density, kinematic viscosity, acid value, flash point has been matched with standard for biodiesel specification of Indonesia.

  20. Consumption of Pt anode in phosphoric acid

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, N.; Urata, K.; Motohira, N.; Ota, K. [Yokohama National University, Yokohama (Japan)

    1997-12-05

    Consumption of Pt anode was investigated in phosphoric acid of various concentration. In 30-70wt% phosphoric acid, Pt dissolved at the rate of 19{mu}gcm{sup -2}h{sup -1}. On the other hand, in 85 wt% phosphoric acid, the amount increased to 0.91 mgcm{sup -2}h{sup -1} which is ca. 180 and 1800 times as much as in 1M sulfuric acid and 1M alkaline solution, respectively. In the diluted phosphoric acid solution, the Pt surface was covered with Pt oxides during the electrolysis, which would prevent the surface from corrosion. However, in the concentrated phosphoric acid, no such oxide surface was observed. Concentrated phosphoric acid might form stable complex with Pt species, therefore the uncovered bare Pt surface is situated in the serious corrosion condition under the high overvoltage and Pt would dissolve into the solution directly instead of forming the Pt oxides. 11 refs., 9 figs., 1 tab.

  1. Lactic acid bacteria population dynamics during spontaneous fermentation of radish (Raphanus sativus L.) roots in brine.

    Science.gov (United States)

    Pardali, Eleni; Paramithiotis, Spiros; Papadelli, Marina; Mataragas, Marios; Drosinos, Eleftherios H

    2017-06-01

    The aim of the present study was to assess the microecosystem development and the dynamics of the lactic acid bacteria population during spontaneous fermentation of radish (Raphanus sativus L.) roots in brine at 20 and 30 °C. In both temperatures, lactic acid bacteria prevailed the fermentation; as a result, the pH value was reduced to ca. 3.6 and total titrable acidity increased to ca. 0.4% lactic acid. Enterococci population increased and formed a secondary microbiota while pseudomonads, Enterobacteriaceae and yeasts/molds populations were below enumeration limit already before the middle of fermentation. Pediococcus pentosaceus dominated during the first days, followed by Lactobacillus plantarum that prevailed the fermentation until the end. Lactobacillus brevis was also detected during the final days of fermentation. A succession at sub-species level was revealed by the combination of RAPD-PCR and rep-PCR analyses. Glucose and fructose were the main carbohydrates detected in brine and were metabolized into lactic acid, acetic acid and ethanol.

  2. Biomedical graphite and CaF{sub 2} preparation and measurement at PRIME Lab

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, George S.; Einstein, Jane A.; Kubley, Tom [PRIME Lab, Purdue University, Department of Physics and Astronomy, West Lafayette, IN 47907 (United States); Martin, Berdine; Weaver, Connie M. [Nutrition Science, Purdue University, West Lafayette, IN 47907 (United States); Caffee, Marc [PRIME Lab, Purdue University, Department of Physics and Astronomy, West Lafayette, IN 47907 (United States); Department of Earth, Atmospheric and Planetary Sciences (United States)

    2015-10-15

    The biomedical program at PRIME Lab has prepared radiocarbon and {sup 41}Ca as tracers for a variety of applications. Over the last decade several hundred {sup 14}C samples and several thousand {sup 41}Ca samples have been measured per year. Biomedical samples pose challenges that are relatively rare in the AMS community. We will discuss how to prepare and compensate for samples that have isotope ratios above the dynamic range of AMS, high interference rates, and small samples sizes. In the case of {sup 41}Ca, the trade off in the chromatography between yield and sample cleanliness will be analyzed. Secondary standards that have isotope ratios commonly encountered in our applications are routinely prepared. We use material from the Joint Research Centre’s Institute for Reference Materials and Measurement: IRMM-3701/4, 3701/5, and 3701/6 and a standard produced by PRIME Lab for {sup 41}Ca. We use International Atomic Energy Agency’s IAEA C-3, IAEA C-7, IAEA C-8, and a ∼12.5× modern oxalic acid secondary standard supplied by Lawrence Livermore National Laboratory for {sup 14}C. We will discuss our precision, reproducibility, and the relative agreement between our measured and the reported values for these materials.

  3. Kinetics, mechanism, and stoicheiometry of the oxidation of hydroxylamine by nitric acid

    International Nuclear Information System (INIS)

    Pembridge, J.R.; Stedman, G.

    1979-01-01

    Hydroxylamine is oxidised by nitric acid to form dinitrogen monoxide and nitrous acid, the proportions varying with reaction conditions. (The chemistry of hydroxylamine in nitric acid is of potential technological interest, since it has been proposed as a reagent for the reduction of Pu(IV) to Pu(III).) The yield [HNO 2 ]infinity/ [NH 3 OH + ] 0 is a maximum at ca. 4 to 5 mol dm -3 HNO 3 , and is also a function of the hydroxylamine concentration. In 5 mol dm -3 HNO 3 the limiting yield is ca. 0.85 at very low initial hydroxylamine concentrations, but decreases towards zero at higher values of [NH 3 OH + ] 0 . Reaction is only observed at sufficiently high nitric acid concentrations; at 25 0 C the cut-off point is ca. 2.5 mol dm -3 HNO 3 . The reaction is characterised by an induction period, followed by a rapid autocatalytic process. Addition of nitrite eliminates the induction period, while addition of nitrite scavengers completely prevents any reaction. Nitrous acid is an essential catalyst for the reaction, and the initial rate of reaction obeys the equation d[HNO 2 ]/dt = V 0 = k[HNO 2 ][NH 3 OH + ]. Isotopic experiments, using 15 N-enriched hydroxylamine show that virtually all of the N 2 O arises from reaction between HNO 2 and hydroxylamine. The mechanism suggested involves oxidation of un-protonated hydroxylamine by N 2 O 4 to form the nitroxyl diradical HNO; this is then further oxidised to HNO 2 , which reacts with hydroxylamine to form N 2 O. (author)

  4. Nanosilica supported CaO: A regenerable and mechanically hard CO2 sorbent at Ca-looping conditions

    International Nuclear Information System (INIS)

    Sanchez-Jimenez, P.E.; Perez-Maqueda, L.A.; Valverde, J.M.

    2014-01-01

    Highlights: • A synthetic CO 2 sorbent is prepared by impregnation of calcium nitrate on a nanosilica matrix. • Sintering of the nascent CaO in the calcination stage of carbonation/calcination cycles is hindered. • CaO conversion reaches a stable value well above the residual conversion of natural limestone. • Particle fragmentation as caused by ultrasonic irradiation in a liquid dispersion is hindered. - Abstract: This work presents a CO 2 sorbent that may be synthesized from low-cost and widely available materials following a simple method basically consisting of impregnation of a nanostructured silica support with a saturated solution of calcium nitrate. In a first impregnation stage, the use of a stoichiometric CaO/SiO 2 ratio serves to produce a calcium silicate matrix after calcination. This calcium silicate matrix acts as a thermally stable and mechanically hard support for CaO deposited on it by further impregnation. The CaO-impregnated sorbent exhibits a stable CaO conversion at Ca-looping conditions whose value depends on the CaO wt% deposited on the calcium silicate matrix, which can be increased by successive reimpregnations. A 10 wt% CaO impregnated sorbent reaches a stable conversion above 0.6 whereas the stable conversion of a 30 wt% CaO impregnated sorbent is around 0.3, which is much larger than the residual conversion of CaO derived from natural limestone (between 0.07 and 0.08). Moreover, particle size distribution measurements of samples predispersed in a liquid and subjected to high energy ultrasonic waves indicate that the CaO-impregnated sorbent has a relatively high mechanical strength as compared to limestone derived CaO

  5. Effects of chronic acetazolamide administration on gas exchange and acid-base control in pulmonary circulation in exercising horses.

    Science.gov (United States)

    Vengust, M; Stämpfli, H; De Moraes, A N; Teixeiro-Neto, F; Viel, L; Heigenhauser, G

    2010-11-01

    Carbonic anhydrase (CA) catalyses the hydration/dehydration reaction of CO(2) and increases the rate of Cl(-) and HCO(3)(-) exchange between the erythrocytes and plasma. Therefore, chronic inhibition of CA has a potential to attenuate CO(2) output and induce greater metabolic and respiratory acidosis in exercising horses. To determine the effects of Carbonic anhydrase inhibition on CO(2) output and ionic exchange between erythrocytes and plasma and their influence on acid-base balance in the pulmonary circulation (across the lung) in exercising horses with and without CA inhibition. Six horses were exercised to exhaustion on a treadmill without (Con) and with CA inhibition (AczTr). CA inhibition was achieved with administration of acetazolamide (10 mg/kg bwt t.i.d. for 3 days and 30 mg/kg bwt before exercise). Arterial, mixed venous blood and CO(2) output were sampled at rest and during exercise. An integrated physicochemical systems approach was used to describe acid base changes. AczTr decreased the duration of exercise by 45% (P changes across the lung with exception of lactate. CO(2) and chloride changes in erythrocytes across the lung seem to be the major contributors to acid-base and ions balance in pulmonary circulation in exercising horses. © 2010 EVJ Ltd.

  6. The gastric H, K-ATPase system also functions as the Na, K-ATPase and Ca-ATPase in altered states [v1; ref status: indexed, http://f1000r.es/1eo

    Directory of Open Access Journals (Sweden)

    Tushar Ray

    2013-07-01

    Full Text Available This article offers an explanation for the apparent lack of Na, K-ATPase activity in parietal cells although ouabain has been known to inhibit gastric acid secretion since 1962. The gastric H, K-ATPase (proton-pump seems to be acting in altered states, thus behaving like a Na, K-ATPase (Na-pump and/or Ca-ATPase (Ca-pump depending on cellular needs.  This conclusion is based on the following findings. First, parietal cell fractions do not exhibit Na, K-ATPase activity at pH 7.0 but do at pH 8.5. Second, the apical plasma membrane (APM fraction exhibits a (Ca or Mg-ATPase activity with negligible H, K-ATPase activity. However, when assayed with Mg alone in presence of the 80 k Da cytosolic proton-pump activator (HAF, the APM fraction reveals remarkably high H, K-ATPase activity, suggesting the observed low affinity of Ca (or Mg-ATPase is an altered state of the latter. Third, calcium (between 1 and 4 µM shows both stimulation and inhibition of the HAF-stimulated H, K-ATPase depending on its concentration, revealing a close interaction between the  proton-pump activator and local Ca concentration in gastric H, K-ATPase function. Such interactions suggest that Ca is acting as a terminal member of the intracellular signaling system for the HAF-regulated proton-pump. It appears that during resting state, the HAF-associated H, K-ATPase remains inhibited by Ca (>1 µM and, prior to resumption of acid secretion the gastric H, K-ATPase acts temporarily as a Ca-pump for removing excess Ca from its immediate environment. This conclusion is consistent with the recent reports of immunochemical co-localization of the gastric H, K-ATPase and Ca-ATPase by superimposition in parietal cells, and a transitory efflux of Ca immediately preceding the onset of acid secretion. These new perspectives on proton-pump function would open new avenues for a fuller understanding of the intracellular regulation of the ubiquitous Na-pump.

  7. Cell cycle-dependent activity of the volume- and Ca2+-activated anion currents in Ehrlich lettre ascites cells

    DEFF Research Database (Denmark)

    Klausen, Thomas Kjaer; Bergdahl, Andreas; Christophersen, Palle

    2007-01-01

    Recent evidence implicates the volume-regulated anion current (VRAC) and other anion currents in control or modulation of cell cycle progression; however, the precise involvement of anion channels in this process is unclear. Here, Cl- currents in Ehrlich Lettre Ascites (ELA) cells were monitored...... during cell cycle progression, under three conditions: (i) after osmotic swelling (i.e., VRAC), (ii) after an increase in the free intracellular Ca2+ concentration (i.e., the Ca2+-activated Cl- current, CaCC), and (iii) under steady-state isotonic conditions. The maximal swelling-activated VRAC current......+ in the pipette), was unaltered from G0 to G1, but decreased in early S phase. A novel high-affinity anion channel inhibitor, the acidic di-aryl-urea NS3728, which inhibited both VRAC and CaCC, attenuated ELA cell growth, suggesting a possible mechanistic link between cell cycle progression and cell cycle...

  8. Effects of acidity on primary productivity in lakes: phytoplankton. [Lakes Panther, Sagamore, and Woods

    Energy Technology Data Exchange (ETDEWEB)

    Hendrey, G R

    1979-01-01

    Relationships between phytoplankton communities and lake acidity are being studied at Woods Lake (pH ca. 4.9), Sagamore Lake (pH ca. 5.5), and Panther Lake (pH ca. 7.0). Numbers of phytoplankton species observed as of July 31, 1979 are Woods 27, Sagamore 38, and Panther 64, conforming to other observations that species numbers decrease with increasing acidity. Patterns of increasing biomass and productivity found in Woods Lake may be atypical of similar oligotrophic lakes in that they develop rather slowly instead of occuring very close to ice-out. Contributions of netplankton (net > 48 ..mu..m), nannoplankton (48 > nanno > 20 ..mu..m) and ultraplankton (20 > ultra >0.45 ..mu..m) to productivity per m/sup -2/ show that the smaller plankton are relatively more important in the more acid lakes. This pattern could be determined by nutrient availability (lake acidification leading to decreased availability of phosphorus). The amount of /sup 14/C-labelled dissolved photosynthate (/sup 14/C-DOM), as a percent of total productivity, is ordered Woods > Sagamore > Panther. This is consistent with a hypothesis that microbial heterotrophic activity is reduced with increasing acidity, but the smaller phytoplankton may be more leaky at low pH. (ERB)

  9. Comparative study of electroless nickel film on different organic acids modified cuprammonium fabric (CF)

    Science.gov (United States)

    Zhao, Hang; Lu, Yinxiang

    2016-01-01

    Nickel films were grown on citric acid (CA), malic acid (MA) and oxalic acid (OA) modified cuprammonium fabric (CF) substrates via electroless nickel deposition. The nickel films were examined using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Their individual deposition rate and electromagnetic interference (EMI) shielding effectiveness (SE) were also investigated to compare the properties of electroless nickel films. SEM images illustrated that the nickel film on MA modified CF substrate was smooth and uniform, and the density of nickel nuclei was much higher. Compared with that of CA modified CF, the coverage of nickel nuclei on OA and MA modified CF substrate was very limited and the nickel particles size was too big. XRD analysis showed that the nickel films deposited on the different modified CF substrates had a structure with Ni (1 1 1) preferred orientation. All the nickel coatings via different acid modification were firmly adhered to the CF substrates, as demonstrated by an ultrasonic washing test. The result of tensile test indicated that the electroless nickel plating on CF has ability to strengthen the CF substrate while causes limited effect on tensile elongation. Moreover, the nickel film deposited on MA modified CF substrate showed more predominant in EMI SE than that deposited on CA or OA modified CF.

  10. Induced Smectic X Phase Through Intermolecular Hydrogen-Bonded Liquid Crystals Formed Between Citric Acid and p- n-(Octyloxy)Benzoic Acid

    Science.gov (United States)

    Sundaram, S.; Subhasri, P.; Rajasekaran, T. R.; Jayaprakasam, R.; Senthil, T. S.; Vijayakumar, V. N.

    2017-08-01

    Hydrogen-bonded liquid crystal (HBLC) is synthesized from citric acid (CA) and 4-(octyloxy)benzoic acid (8OBA) with different mole ratios. Fourier transform infrared spectroscopy (FT-IR) confirms the presence of hydrogen bond between CA and 8OBA. Nuclear magnetic resonance (NMR) spectroscopic studies validate the intermolecular complementary, cyclic type of hydrogen bond, and molecular environment in the designed HBLC complex. Powder X-ray diffraction analysis reveals the monoclinic nature of liquid crystal complex in solid phase. Liquid crystal parameters such as phase transition temperature and enthalpy values for the corresponding mesogenic phases are investigated using a polarizing optical microscope (POM) and differential scanning calorimetry (DSC). It is observed that the change in chain length and steric hindrance while increasing the mole ratio in HBLC complex induces a new smectic X (Sm X) along with higher-order smectic G (Sm G) phases by quenching of smectic C (Sm C). From the experimental observations, induced Sm X phase has been identified as a finger print texture. Also, Sm G is a multi-colored mosaic texture in 1:1, 1:2, and 1:3 mol ratios. The optical tilt angle, thermal stability factor, and enhanced thermal span width of CA + 8OBA complex are discussed.

  11. Promiscuous Seven Transmembrane Receptors Sensing L-α-amino Acids

    DEFF Research Database (Denmark)

    Smajilovic, Sanela; Wellendorph, Petrine; Bräuner-Osborne, Hans

    2014-01-01

    A number of nutrient sensing seven trans-membrane (7TM) receptors have been identified and characterized over the past few years. While the sensing mechanisms to carbohydrates and free fatty acids are well understood, the molecular basis of amino acid sensing has recently come to the limelight....... The present review describes the current status of promiscuous L-α-amino acid sensors, the calcium sensing receptor (CaSR), the GPRC6A receptor, the T1R1/T1R3 receptor and also their molecular pharmacology, expression pattern and physiological significance....

  12. Thermoluminescence of CaCO3:Dy and CaCO3:Mn

    International Nuclear Information System (INIS)

    Bapat, V.N.; Nambi, K.S.V.

    1976-01-01

    CaCO 3 samples doped with Dy and Mn were prepared in the laboratory by co-precipitation techniques. Thermoluminescence and emission spectra of these phosphors were studied and were compared with those of the naturally occuring calcite and undoped CaCO 3 samples. Dy-doping seems to give a more efficient phosphor and indicates a possibility of getting a better phosphor by a judicious choice of a rare earth doping of CaCO 3 . Interesting result have been obtained on the TL glow curve variations of these phosphors with different temperature treatments prior to irradiation. (author)

  13. Smaller Dentate Gyrus and CA2 and CA3 Volumes Are Associated with Kynurenine Metabolites in Collegiate Football Athletes.

    Science.gov (United States)

    Meier, Timothy B; Savitz, Jonathan; Singh, Rashmi; Teague, T Kent; Bellgowan, Patrick S F

    2016-07-15

    An imbalance in kynurenine pathway metabolism is hypothesized to be associated with dysregulated glutamatergic neurotransmission, which has been proposed as a mechanism underlying the hippocampal volume loss observed in a variety of neurological disorders. Pre-clinical models suggest that the CA2-3 and dentate gyrus hippocampal subfields are particularly susceptible to excitotoxicity after experimental traumatic brain injury. We tested the hypothesis that smaller hippocampal volumes in collegiate football athletes with (n = 25) and without (n = 24) a concussion history would be most evident in the dentate gyrus and CA2-3 subfields relative to nonfootball healthy controls (n = 27). Further, we investigated whether the concentration of peripheral levels of kynurenine metabolites are altered in football athletes. Football athletes with and without a self-reported concussion history had smaller dentate gyrus (p Football athletes with and without a concussion history had a trend toward lower (p history had greater levels of quinolinic acid compared with athletes without a concussion history (p football athletes with a concussion history (p football athletes without a concussion history (p < 0.05). Our results raise the possibility that abnormalities of the kynurenine metabolic pathway constitute a mechanism for hippocampal volume differences in the context of sports-related brain injury.

  14. Ca2+-mediated potentiation of the swelling-induced taurine efflux from HeLa cells: On the role of calmodulin and novel protein kinase C isoforms

    DEFF Research Database (Denmark)

    Falktoft, Birgitte; Lambert, Ian H.

    2004-01-01

    The present work sets out to investigate how Ca2+ regulates the volume-sensitive taurine-release pathway in HeLa cells. Addition of Ca2+-mobilizing agonists at the time of exposure to hypotonic NaCl medium augments the swelling-induced taurine release and subsequently accelerates the inactivation...... of the release pathway. The accelerated inactivation is not observed in hypotonic Ca2+-free or high-K+ media. Addition of Ca2+-mobilizing agonists also accelerates the regulatory volume decrease, which probably reflects activation of Ca2+-activated K+ channels. The taurine release from control cells and cells...... exposed to Ca2+ agonists is equally affected by changes in cell volume, application of DIDS and arachidonic acid, indicating that the volume-sensitive taurine leak pathway mediates the Ca2+-augmented taurine release. Exposure to Ca2+-mobilizing agonists prior to a hypotonic challenge also augments...

  15. Accurate determination of 41Ca concentrations in spent resins from the nuclear industry by Accelerator Mass Spectrometry

    International Nuclear Information System (INIS)

    Nottoli, Emmanuelle; Bourlès, Didier; Bienvenu, Philippe; Labet, Alexandre; Arnold, Maurice; Bertaux, Maité

    2013-01-01

    The radiological characterisation of nuclear waste is essential for managing storage sites. Determining the concentration of Long‐Lived RadioNuclides (LLRN) is fundamental for their long-term management. This paper focuses on the measurement of low 41 Ca concentrations in ions exchange resins used for primary fluid purification in Pressurised Water Reactors (PWR). 41 Ca concentrations were successfully measured by Accelerator Mass Spectrometry (AMS) after the acid digestion of resin samples, followed by radioactive decontamination and isobaric suppression through successive hydroxide, carbonate, nitrate and final CaF 2 precipitations. Measured 41 Ca concentrations ranged from 0.02 to 0.03 ng/g, i.e. from 0.06 to 0.09 Bq/g. The 41 Ca/ 60 Co activity ratios obtained were remarkably reproducible and in good agreement with the current ratio used for resins management. - Highlights: • In the context of radioactive waste management, this study aimed at measuring 41 Ca in spent resins using Accelerator Mass Spectrometry. • A chemical treatment procedure was developed to quantitatively recover calcium in solution and selectively extract it. • Developed firstly on synthetic matrices, the chemical treatment procedure was then successfully applied to real resin samples. • Accelerator mass spectrometry allowed measuring concentrations of 41 Ca in spent resins as low as 0.02 ng/g of dry resin. • Final results are in agreement with current data used for spent resins management

  16. Comparison of efficacy of the phosphate binders nicotinic acid and sevelamer hydrochloride in hemodialysis patients

    Directory of Open Access Journals (Sweden)

    Farrokhlagha Ahmadi

    2012-01-01

    Full Text Available Hyperphosphatemia is a significant risk factor for the development of ectopic calcification and coronary artery diseases in patients on hemodialysis (HD, and must be controlled with the use of phosphate binders. Studies comparing the effects of sevelamer and nicotinic acid, both similar non-calcium and non-aluminum phosphate binders, are not available. In this study, 40 patients on HD with a serum phosphorus level of more than 6 mg/dL were enrolled. After a two week washout period without phosphate binders, the patients were randomly divided into two equal groups (n = 20 and were started on nicotinic acid or sevelamer for a period of four weeks. The dose of nicotinic acid used was 500 mg and that of sevelamer was 1600 mg daily. Blood samples were drawn for the measurement of the total calcium (Ca, phosphorus (P, alkaline phosphatase (ALP, triglyceride (TG, total cholesterol (Chol, high-density lipoprotein (HDL, low-density lipoprotein (LDL, uric acid and parathyroid hormone (PTH. Patients receiving sevelamer showed a significant reduction in serum P level (2.2 ± 0.69 mg/dL; P <0.0001 in comparison with the nicotinic acid group (1.7 ± 1.06 mg/dL; P = 0.004. Reduction in the Ca-P product was significantly different in the two groups; in the sevelamer group, it was 21 ± 7; (P <0.0001 while in the nicotinic acid group, it was 16 ± 11 (P = 0.007. Also, patients on sevelamer showed greater reduction in the mean TG level (38.9 ± 92 mg/dL; P = 0.005. No significant changes were observed in the mean serum Ca, total Chol, HDL, LDL, ALP and iPTH levels in the two study groups. Our short-term study suggests that although nicotinic acid reduced hyperphosphatemia, sevelamer showed higher efficacy in controlling hyperphosphatemia as well as the Ca-P product.

  17. Chemical purification of CaCO{sub 3} and CaWO{sub 4} powders used for CaWO{sub 4} crystal production for the CRESST experiment

    Energy Technology Data Exchange (ETDEWEB)

    Trinh Thi, H.H.; Defay, X.; Erb, A.; Hampf, R.; Lanfranchi, J.C.; Langenkaemper, A.; Morgalyuk, V.; Muenster, A.; Mondragon, E.; Oppenheimer, C.; Potzel, W.; Schoenert, S.; Steiger, H.; Ulrich, A.; Wawoczny, S.; Willers, M.; Zoeller, A. [Physik-Department and Excellence Cluster Universe, Technische Universitaet Muenchen, Garching (Germany)

    2016-07-01

    CRESST (Cryogenic Rare Event Search with Superconducting Thermometers) uses CaWO{sub 4} single crystals as targets for the direct search for dark matter particles. Since several years these CaWO{sub 4} crystals are grown at the Technische Universitaet Muenchen. Thereby, commercially available CaCO{sub 3} and WO{sub 3} powders are used for the synthesis of CaWO{sub 4} powder. For the experiment low intrinsic contaminations of the crystals play a crucial role. In order to improve the radiopurity of the crystals it is necessary to reduce potential sources for radioactive backgrounds such as U and Th. In this poster we will present our studies of the chemical purification of the CaCO{sub 3} and CaWO{sub 4} powders.

  18. Kinetics Studies on citric acid production by gamma ray induced mutant of Aspergillus niger

    International Nuclear Information System (INIS)

    Begum, A.A.; Choudhury, N.; Islam, M.S.

    1991-01-01

    Effect of cultural pH and incubation temperature on citric acid yield and kinetic patterns of citric acid fermentation by a natural isolate of aspergillus niger as CA16 and one of its gamma ray induced mutants were studied using cane molasses as growth and fermentation substrate. Mutant strain, 277/30 gave maximum citric acid yield of 85 g/l at pH 3.5 and 28 degree centigrade in molasses medium adjusted to 16% sugar and 25% prescott salt in the medium. Parent strain, CA16 gave a maximum yield of 34 g/l at pH 4.0 and 26 degree centigrade in molasses medium adjusted to 16% sugar and 100% prescott salt in the medium. In kinetic studies, strains showed combination kinetics of citric acid fermentation where product formation is directly related to growth and cell mass and indirectly related to carbohydrate uptake

  19. Ischemic damage in hippocampal CA1 is dependent on glutamate release and intact innervation from CA3

    DEFF Research Database (Denmark)

    Benveniste, H; Jørgensen, M B; Sandberg, M

    1989-01-01

    The removal of glutamatergic afferents to CA1 by destruction of the CA3 region is known to protect CA1 pyramidal cells against 10 min of transient global ischemia. To investigate further the pathogenetic significance of glutamate, we measured the release of glutamate in intact and CA3-lesioned CA...

  20. Up-regulation of Ca2+/CaMKII/CREB signaling in salicylate-induced tinnitus in rats.

    Science.gov (United States)

    Zhao, Jiuhan; Wang, Biao; Wang, Xiaohong; Shang, Xiuli

    2018-02-09

    The purpose of the study was to investigate the changes of Ca 2+ /calmodulin-dependent protein kinases II (CaMKII)/cAMP response element-binding protein (CREB) signaling pathway in a rat tinnitus model. Eighteen Wistar rats were randomly divided into three groups: normal control (NC), normal saline (NS), and tinnitus model (TM) groups. Tinnitus model was induced by intraperitoneal injection of salicylate. The concentration of intracellular calcium level in auditory cortex cells was determined using Fura-2 acetoxymethyl ester (Fura-2 AM) method with fluorospectrophotometer. Expressions of calmodulin (CaM), N-methyl-D-aspartate receptor 2B subunit (NR2B), calcium-calmodulin kinase II (CaMKII), and cAMP response element-binding protein (CREB) were detected with Western blot. Tinnitus model was successfully established by the intraperitoneal administration of salicylate in rats. Compared with rats in NC and NS groups, salicylate administration significantly elevated CaM, NR2B, phospho-CaMKII and phospho-CREB expression in auditory cortex from tinnitus model group (p salicylate administration causes tinnitus symptoms and elevates Ca 2+ /CaMKII/CREB signaling pathway in auditory cortex cells. Our study likely provides a new understanding of the development of tinnitus.

  1. Blood Cockle Shells Waste as Renewable Source for the Production of Biogenic CaCO3 and Its Characterisation

    Science.gov (United States)

    Asmi, D.; Zulfia, A.

    2017-11-01

    The prowess to reuse and recycle of blood cockle shells for raw material in bio-ceramics applications is an attractive component of integrated waste management program. In this paper an attempt is made to introduce a simple process to manufacture biogenic CaCO3 powder from blood cockle shells waste. The biogenic CaCO3 powder was produced from rinsing of blood cockle shells waste using deionised water and oxalic acid for cleaning the dirt and stain on the shells, then drying and grinding followed by heat treatment at 500 and 800 °C for 5 h. The powder obtained was characterised by XRF, DTA/TG, SEM, FTIR, and XRD analysis. The amount of 97.1 % CaO was obtained from XRF result. The thermal decomposition of CaCO3 become CaO due to mass loss was observed in the TG curve. The SEM result shows the needle-like aragonite morphology of blood cockle shells powder transformed to cubic-like calcite after heat treated at 500 °C. These results were consistent with FTIR and XRD results.

  2. Nutritional quality assessment of tomato fruits after exposure to uncoated and citric acid coated cerium oxide nanoparticles, bulk cerium oxide, cerium acetate and citric acid.

    Science.gov (United States)

    Barrios, Ana Cecilia; Medina-Velo, Illya A; Zuverza-Mena, Nubia; Dominguez, Osvaldo E; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2017-01-01

    Little is known about the effects of surface modification on the interaction of nanoparticles (NPs) with plants. Tomato (Solanum lycopersicum L.) plants were cultivated in potting soil amended with bare and citric acid coated nanoceria (nCeO 2, nCeO 2 +CA), cerium acetate (CeAc), bulk cerium oxide (bCeO 2 ) and citric acid (CA) at 0-500 mg kg -1 . Fruits were collected year-round until the harvesting time (210 days). Results showed that nCeO 2 +CA at 62.5, 250 and 500 mg kg -1 reduced dry weight by 54, 57, and 64% and total sugar by 84, 78, and 81%. At 62.5, 125, and 500 mg kg -1 nCeO 2 +CA decreased reducing sugar by 63, 75, and 52%, respectively and at 125 mg kg -1 reduced starch by 78%, compared to control. The bCeO 2 at 250 and 500 mg kg -1 , increased reducing sugar by 67 and 58%. In addition, when compared to controls, nCeO 2 at 500 mg kg -1 reduced B (28%), Fe (78%), Mn (33%), and Ca (59%). At 125 mg kg -1 decreased Al by 24%; while nCeO 2 +CA at 125 and 500 mg kg -1 increased B by 33%. On the other hand, bCeO 2 at 62.5 mg kg -1 increased Ca (267%), but at 250 mg kg -1 reduced Cu (52%), Mn (33%), and Mg (58%). Fruit macromolecules were mainly affected by nCeO 2 +CA, while nutritional elements by nCeO 2 ; however, all Ce treatments altered, in some way, the nutritional quality of tomato fruit. To our knowledge, this is the first study comparing effects of uncoated and coated nanoceria on tomato fruit quality. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Ca isotopic fractionation patterns in forest ecosystems

    Science.gov (United States)

    Kurtz, A. C.; Takagi, K.

    2012-12-01

    Calcium stable isotope ratios are an emerging tracer of the biogeochemical cycle of Ca that are just beginning to see significant application to forest ecosystems. The primary source of isotopic fractionation in these systems is discrimination against light Ca during uptake by plant roots. Cycling of vegetation-fractionated Ca establishes isotopically distinct Ca pools within a forest ecosystem. In some systems, the shallow soil exchangeable Ca pool is isotopically heavy relative to Ca inputs. This has been explained by preferential removal of light Ca from the soil. In other systems, the soil exchange pool is isotopically light relative to inputs, which is explained by recycling of plant-fractionated light Ca back into soil. Thus vegetation uptake of light Ca has been called on to account for both isotopically heavy and light Ca in the shallow soil exchange pools. We interpret patterns in ecosystem δ44Ca with the aid of a simple box model of the forest Ca cycle. We suggest that the δ44Ca of exchangeable Ca in the shallow soil pool primarily reflects the relative magnitude of three key fluxes in a forest Ca cycle, 1) the flux of external Ca into the system via weathering or atmospheric deposition, 2) the uptake flux of Ca from soils into the vegetation pool, and 3) the return flux of Ca to shallow soils via remineralization of leaf litter. Two observations that emerge from our model may aid in the application of Ca isotopes to provide insight into the forest Ca cycle. First, regardless of the magnitude of both vegetation Ca uptake and isotopic fractionation, the δ44Ca of the soil exchange pool will equal the input δ44Ca unless the plant uptake and remineralization fluxes are out of balance. A second observation is that the degree to which the shallow soil exchange pool δ44Ca can differ from the input ratio is controlled by the relative rates of biological uptake and external Ca input. Significant differences between soil exchange and input δ44Ca are seen only

  4. A Review of Analytical Methods for p-Coumaric Acid in Plant-Based Products, Beverages, and Biological Matrices.

    Science.gov (United States)

    Ferreira, Paula Scanavez; Victorelli, Francesca Damiani; Fonseca-Santos, Bruno; Chorilli, Marlus

    2018-05-14

    p-Coumaric acid (p-CA), also known as 4-hydroxycinnamic acid, is a phenolic acid, which has been widely studied due to its beneficial effects against several diseases and its wide distribution in the plant kingdom. This phenolic compound can be found in the free form or conjugated with other molecules; therefore, its bioavailability and the pathways via which it is metabolized change according to its chemical structure. p-CA has potential pharmacological effects because it has high free radical scavenging, anti-inflammatory, antineoplastic, and antimicrobial activities, among other biological properties. It is therefore essential to choose the most appropriate and effective analytical method for qualitative and quantitative determination of p-CA in different matrices, such as plasma, urine, plant extracts, and drug delivery systems. The most-reported analytical method for this purpose is high-performance liquid chromatography, which is mostly coupled with some type of detectors, such as UV/Vis detector. However, other analytical techniques are also used to evaluate this compound. This review presents a summary of p-CA in terms of its chemical and pharmacokinetic properties, pharmacological effects, drug delivery systems, and the analytical methods described in the literature that are suitable for its quantification.

  5. Spin decomposition of the responses of 44Ca and 48Ca to 300 MeV protons

    International Nuclear Information System (INIS)

    Baker, F.T.; Bimbot, L.; Fergerson, R.W.; Glashausser, C.; Green, A.; Haeusser, O.; Hicks, K.; Jones, K.; Miller, C.A.; Vetterli, M.; Abegg, R.; Beatty, D.; Bonin, B.; Castel, B.; Chen, X.Y.; Cupps, V.; Djalali, C.; Henderson, R.; Jackson, K.P.; Jeppesen, R.; Nakayama, K.; Nanda, S.K.; Sawafta, R.; Yen, S.; Institut de Physique Nucleaire, F-91406 Orsay, France; Rutgers University, Piscataway, New Jersey 08854; Simon Fraser University, Burnaby, Canada V5A1S6; TRIUMF, 4004 Westbrook Mall, Vancouver, Canada V6T2A3; Los Alamos National Laboratory, Los Alamos, New Mexico 87544; Centre d'Etudes Nucleaires de Saclay, 91191 Gif sur Yvette, CEDEX, France; Queen's University, Kingston, Canada K7L3N6; University of Colorado, Boulder, Colorado 80309; University of South Carolina, Columbia, South Carolina 29208; Continuous Electron Beam Accelerator Facility, 12000 Jefferson Ave., Newport News, Virginia 23606; University of Alberta, Edmonton, Canada T6G2J1)

    1991-01-01

    Angular distributions of the double-differential cross section d 2 σ/dΩ dE(σ) and the spin-flip probability S nn have been measured for inclusive proton inelastic scattering from 44 Ca at 290 MeV and from 48 Ca at 318 MeV. Excitation energies up to about 50 MeV for 44 Ca and 40 MeV for 48 Ca have been investigated over the laboratory angular ranges of 3 degree to 12 degree for 44 Ca and 3 degree to 9 degree for 48 Ca. Multipole decompositions of angular distributions of both the spin-flip cross section σS nn and the estimated cross section for ΔS=0 transitions have been performed. Distributions of strengths were deduced for ΔL=1, ΔS=0 (the giant dipole), ΔL=2, ΔS=0 (the giant quadrupole), ΔL=0, ΔS=1 (the magnetic dipole), ΔL=1, ΔS=1 (the spin dipole), and ΔL=2, ΔS=1 (the spin quadrupole). The ΔS=0 summed strengths for 44 Ca are lower than for 40 Ca and 48 Ca. The spin-dipole summed strengths are found to be approximately independent of A. For 48 Ca, essentially all M1 strength observed was in the 10.23 MeV 1 + state; for 44 Ca, M1 strength was observed to be fragmented over a range of 7 to 18 Mev

  6. In vitro combined effect of oregano essential oil and caprylic acid against Salmonella serovars, Escherichia coli O157:H7, Staphylococcus aureus and Listeria monocytogenes

    Directory of Open Access Journals (Sweden)

    Radka Hulánková

    2011-01-01

    Full Text Available In vitro inhibition of foodborne pathogens via action of natural antimicrobials – caprylic acid (CA and essential oil from Origanum vulgare L. (OEO with high carvacrol content (72% was evaluated. For 15 Salmonella strains the minimum inhibitory concentration (MIC determined by broth microdilution method ranged between 3.67–4.33 μl·ml-1 for CA and between 0.48–0.57 μl·ml-1 for OEO. For 7 Listeria monocytogenes strains the MIC ranged between 2.17–2.83 μl·ml-1 for CA and between 0.52–0.58 μl·ml-1 for OEO. Type strains of Escherichia coli O157:H7 and Staphylococcus aureus were tested, too, with MIC of CA 3.60 μl·ml-1 and 3.20 μl·ml-1 and MIC of OEO 0.51 μl·ml-1 and 0.48 μl·ml-1, respectively. Furthermore, it was found that the MIC of CA can be decreased by even low addition (0.05% of citric or acetic acid and to a lesser extent by lactic acid, whereas the MICs of OEO did not notably decrease. Combined application of CA and OEO determined by FIC index led only to an additive effect (0.5 ≤ FIC ≤ 1. Combination of natural additives OEO, CA and eventually acetic or citric acid seems to have the potential to be an effective mixture for inhibition of foodborne pathogens, predominantly Salmonella spp. and L. monocytogenes, even in only slightly acidic food.

  7. Obtention of agricultural gypsum traced on {sup 34} S (Ca{sup 34} SO{sub 4}.2H{sub 2}O), by chemical reaction between H{sub 2}{sup 34} SO{sub 4} and Ca(OH){sub 2}; Obtencao do gesso agricola marcado no {sup 34} S (Ca{sup 34} SO{sub 4}.2H{sub 2}O), por reacao quimica entre o H{sub 2}{sup 34} SO{sub 4} e Ca(OH){sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Rossete, Alessandra L.R.M.; Bendassolli, Jose A.; Ignoto, Raquel de Fatima; Batagello, Hugo Henrique [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Isotopos Estaveis

    2002-07-01

    The gypsum (CaSO{sub 4}.2H{sub 2}O) has double function in the soil: as source of calcium and sulfur and reducing agent of aluminum saturation. The sulfur for the plants has acting in the vital functions and it is proven fact increase of the S deficiency in Brazilian soils. The isotope tracer {sup 34} S can elucidate important aspects in the sulfur cycle. The Ca{sup 34} SO{sub 4}.2H{sub 2}O was obtained by chemical reaction between Ca(OH){sub 2} and H{sub 2}{sup 34} SO{sub 4} solution. The acid was obtained by chromatography ionic change, using cationic resin Dowex 50WX8 and Na{sub 2}{sup 34} SO{sub 4} solution. The reaction was realized under slow agitation. After the reaction, the precipitate was separated and dried in ventilated stove at 60 deg C temperature. The Mass of the Ca{sup 34} SO{sub 4}.2H{sub 2}O produced was determined by method gravimetric. This way, a system contends resin 426 cm{sup 3}, considering volume of 2.2 liters can be obtained a solution contends 44.2 g of H{sub 2}{sup 34} SO{sub 4}, theoretically could be produced 78.0 g of Ca{sup 34} SO{sub 4}.2H{sub 2}O approximately. With results of the tests were verified that there was not total precipitation of the Ca{sup 34}SO{sub 4}.2H{sub 2}O. Were produced 73.7{+-} 0.6 g of Ca{sup 34} SO{sub 4}.2H{sub 2}O representing average income 94.6{+-}0.8 %. The purity of the produced CaSO{sub 4}.2H{sub 2}O was 98%. (author)

  8. Analysis of Chlorogenic Acid Oxidation Pathway in Simulated ...

    African Journals Online (AJOL)

    Keywords: Honeysuckle, Chlorogenic acid, Enzymatic browning, Mimic system, Oxidation pathway, ... enzymatic oxidation of CA is the major cause of ..... to the concentration of catechol, o-quinone and current at PPO-modified microcylinder biosensor for diffusion- kinetic model. J Electroanal Chem 2011; 660: 200-208.

  9. Mineral concentrations of forage legumes and grasses grown in acidic soil amended with flue gas desulfurization products

    Energy Technology Data Exchange (ETDEWEB)

    Clark, R.B.; Baligar, V.C. [USDA ARS, Beltsville, MD (USA). Beltsville Agricultural Research Center West

    2003-07-01

    Considerable quantities of flue gas desulfurization products (FGDs) are generated when coal is burned for production of electricity, and these products have the potential to be reused rather than discarded. Use of FGDs as soil amendments could be important in overall management of these products, especially on acidic soils. Glasshouse studies were conducted to determine shoot concentrations of calcium (Ca), sulfur (S), potassium (K), magnesium (Mg), phosphorus (P), boron (B), zinc (Zn), copper (Cu), manganese (Mn), iron (Fe), aluminum (Al), sodium (Na), molybdenum (Mo), nickel (Ni), cadmium (Cd), chromium (Cr), and lead (Pb) in alfalfa (Medicago sativa), white clover (Trifolium repens), orchardgrass (Dacrylis glomerata), tall fescue (Festuca arundinacea), switchgrass (Panicum virgatum), and eastern gamagrass (Tripsacum dactyloides) grown in acidic (pH 4) soil (Typic Hapludult) amended with various levels of three FGDs and the control compounds CaCO{sub 3}, CaSO{sub 3}, and CaSO{sub 4}. Shoot concentrations of Ca, S, Mg, and B generally increased as levels of soil applied FGD increased. Concentrations of Mn, Fe, Zn, Cu were lower in shoots, especially when soil pH was high ({gt}7). Shoot concentrations of the trace elements Mo, Ni, Cd, Cr, and Pb were not above those reported as normal for foliage. Overall concentrations of most minerals remained near normal for shoots when plants were grown in FGD amended acidic soil.

  10. Treatment with Docosahexaenoic Acid, but Not Eicosapentaenoic Acid, Delays Ca2+-Induced Mitochondria Permeability Transition in Normal and Hypertrophied Myocardium

    OpenAIRE

    Khairallah, Ramzi J.; O'Shea, Karen M.; Brown, Bethany H.; Khanna, Nishanth; Des Rosiers, Christine; Stanley, William C.

    2010-01-01

    Intake of fish oil containing docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) prevents heart failure; however, the mechanisms are unclear. Mitochondrial permeability transition pore (MPTP) opening contributes to myocardial pathology in cardiac hypertrophy and heart failure, and treatment with DHA + EPA delays MPTP opening. Here, we assessed: 1) whether supplementation with both DHA and EPA is needed for optimal prevention of MPTP opening, and 2) whether this benefit occurs in hyper...

  11. β-carbonic anhydrases play a role in salicylic acid perception in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Laura Medina-Puche

    Full Text Available The plant hormone salicylic acid (SA is required for defense responses. NON EXPRESSER OF PATHOGENESIS RELATED 1 (NPR1 and NON RECOGNITION OF BTH-4 (NRB4 are required for the response to SA in Arabidopsis (Arabidopsis thaliana. Here, we isolated several interactors of NRB4 using yeast two-hybrid assays. Two of these interactors, βCA1 and βCA2, are β-carbonic anhydrase family proteins. Since double mutant βca1 βca2 plants did not show any obvious phenotype, we investigated other βCAs and found that NRB4 also interacts with βCA3 and βCA4. Moreover, several βCAs interacted with NPR1 in yeast, including one that interacted in a SA-dependent manner. This interaction was abolished in loss-of-function alleles of NPR1. Interactions between βCAs and both NRB4 and NPR1 were also detected in planta, with evidence for a triple interaction, NRB4-βCA1-NPR1. The quintuple mutant βca1 βca2 βca3 βca4 βca6 showed partial insensitivity to SA. These findings suggest that one of the functions of carbonic anhydrases is to modulate the perception of SA in plants.

  12. The parietal cell gastric H, K-ATPase also functions as the Na, K-ATPase and Ca-ATPase in altered states [v2; ref status: indexed, http://f1000r.es/1tc

    Directory of Open Access Journals (Sweden)

    Tushar Ray

    2013-09-01

    Full Text Available This article offers an explanation for the apparent lack of Na, K-ATPase activity in parietal cells although ouabain has been known to inhibit gastric acid secretion since 1962. The gastric H, K-ATPase (proton-pump seems to be acting in altered states, thus behaving like a Na, K-ATPase (Na-pump and/or Ca-ATPase (Ca-pump depending on cellular needs.  This conclusion is based on the following findings. First, parietal cell fractions do not exhibit Na, K-ATPase activity at pH 7.0 but do at pH 8.5. Second, the apical plasma membrane (APM fraction exhibits a (Ca or Mg-ATPase activity with negligible H, K-ATPase activity. However, when assayed with Mg alone in presence of the 80 k Da cytosolic proton-pump activator (HAF, the APM fraction reveals remarkably high H, K-ATPase activity, suggesting the observed low affinity of Ca (or Mg-ATPase is an altered state of the latter. Third, calcium (between 1 and 4 µM shows both stimulation and inhibition of the HAF-stimulated H, K-ATPase depending on its concentration, revealing a close interaction between the  proton-pump activator and local Ca concentration in gastric H, K-ATPase function. Such interactions suggest that Ca is acting as a terminal member of the intracellular signaling system for the HAF-regulated proton-pump. It appears that during resting state, the HAF-associated H, K-ATPase remains inhibited by Ca (>1 µM and, prior to resumption of acid secretion the gastric H, K-ATPase acts temporarily as a Ca-pump for removing excess Ca from its immediate environment. This conclusion is consistent with the recent reports of immunochemical co-localization of the gastric H, K-ATPase and Ca-ATPase by superimposition in parietal cells, and a transitory efflux of Ca immediately preceding the onset of acid secretion. These new perspectives on proton-pump function would open new avenues for a fuller understanding of the intracellular regulation of the ubiquitous Na-pump.

  13. Research and performance evaluation on an HA integrated acid system for sandstone acidizing

    Directory of Open Access Journals (Sweden)

    Liqiang Zhao

    2018-03-01

    Full Text Available When the conventional sandstone acidizing technologies are adopted, many slugs are needed in the injection of prepad fluid, treatment fluid and postpad fluid, and consequently the production and operation suffers inconveniences and difficulties. In view of this, a kind of HA integrated acid system which is mainly composed of organic polybasic acids (HA+HCl + HF and an efficient organic solvent was developed in this paper based on the idea of integrated acid replacing ''multiple steps'' and high efficiency and intensification. Via this HA integrated acid system, the complicated blockage in sandstone reservoirs can be removed effectively. Then, experiments were carried out on this system to evaluate its performance in terms of its retardance, organic blockage dissolution, chelating and precipitation inhibition. It is indicated that this new system can not only realize the acidizing of conventional integrated acid, but also present a good retarding performance by controlling H+ multi-stage ionization step by step and by forming silica acid-aluminum phosphonate film on the surface of clay minerals; that via this new HA integrated acid system, the organic blockage can be removed efficiently; and that it is wider in pH solution range than conventional APCs (aminopolycarboxyliates chelants, stronger in chelating capacity of Ca2+, Mg2+ and Fe3+ than conventional chelants (e.g. EDTA, NTA and DTPA, and better in precipitation inhibition on metal fluoride, fluosilicic acid alkali metal, fluoaluminic acid alkali metal and hydroxide than multi-hydrogen acid, fluoboric acid and mud acid systems. These research results provide a technical support for the plugging removal in high-temperature deep oil and gas reservoirs. Keywords: Organic polybasic acid, Integrated acid, Retardance, Chelating, Precipitation, Acidizing, Sandstone, Reservoir

  14. Tumor markers CA19-9, CA242 and CEA in the diagnosis of pancreatic cancer: a meta-analysis.

    Science.gov (United States)

    Zhang, Yimin; Yang, Jun; Li, Hongjuan; Wu, Yihua; Zhang, Honghe; Chen, Wenhu

    2015-01-01

    Pancreatic cancer has the worst prognosis and early detection is crucial for improving patient prognosis. Therefore, we performed a meta-analysis to evaluate and compare the sensitivity and specificity of single test of CA19-9, CA242, and CEA, as well as combination test in pancreatic cancer detection. We searched PubMed, Embase, Medline, and Wanfang databases for studies that evaluated the diagnostic validity of CA19-9, CA242, and CEA between January 1990 and September 2014. Data were analyzed by Meta-Disc and STATA software. A total of 21 studies including 3497 participants, which fulfilled the inclusion criteria were considered for analysis. The pooled sensitivities for CA19-9, CA242, and CEA were 75.4 (95% CI: 73.4-77.4), 67.8 (95% CI: 65.5-70), and 39.5 (95% CI: 37.3-41.7), respectively. The pooled specificities of CA19-9, CA242, and CEA were 77.6 (95% CI: 75.4-79.7), 83 (95% CI: 81-85), and 81.3 (95% CI: 79.3-83.2), respectively. Parallel combination of CA19-9+CA242 has a higher sensitivity (89, 95% CI: 80-95) without impairing the specificity (75, 95% CI: 67-82). Our meta-analysis showed that CA242 and CA19-9 have better performance in the diagnosis of pancreatic cancer than CEA. Furthermore, parallel combination test of CA19-9+CA242 could be of better diagnostic value than individual CA242 or CA19-9 test.

  15. Chemical hazards from acid crater lakes

    Science.gov (United States)

    van Bergen, M. J.; Sumarti, S.; Heikens, A.; Bogaard, T. A.; Hartiyatun, S.

    2003-04-01

    Acid crater lakes, which are hosted by a considerable number of active volcanoes, form a potential threat for local ecosystems and human health, as they commonly contain large amounts of dissolved chemicals. Subsurface seepage or overflow can lead to severe deterioration of the water quality of rivers and wells, as observations around several of these volcanoes have shown. The Ijen crater lake in East Java (Indonesia) is a striking example, as this reservoir of hyperacid (pHfluoride-rich water is the source of a ca. 50 km long acid river that transports substantial quantities of potentially toxic elements. A downstream trend of increasing pH from fluoride levels pose some of the most severe environmental threats. Its concentration decreases from ca. 1300 mg/kg in the lake to ca. 10 mg/kg in a coastal area downstream, where virtually all of the river water is used for irrigating rice fields and other cropland. Apart from serious problems for agriculture, our survey of 55 drinking water wells in the irrigation area shows that 50% contain fluoride above the 1.5 ppm WHO limit, in line with the observation that dental fluorosis is widespread among the ca. 100,000 residents of the area. A conspicuous spatial correlation between fluoride concentrations and the irrigation system suggest that long-term (century) infiltration of irrigation water may have affected the quality of groundwater. Fluorosis is also a problem in some villages within the caldera, where well water sources may have a more direct subsurface connection with the lake system. From our observations we conclude that water-quality monitoring is especially needed for health reasons in volcanic areas where volatile elements, derived from passively degassing magma, are intercepted by (sub) surface water bodies.

  16. Modelling of acid-base titration curves of mineral assemblages

    Directory of Open Access Journals (Sweden)

    Stamberg Karel

    2016-01-01

    Full Text Available The modelling of acid-base titration curves of mineral assemblages was studied with respect to basic parameters of their surface sites to be obtained. The known modelling approaches, component additivity (CA and generalized composite (GC, and three types of different assemblages (fucoidic sandstones, sedimentary rock-clay and bentonite-magnetite samples were used. In contrary to GC-approach, application of which was without difficulties, the problem of CA-one consisted in the credibility and accessibility of the parameters characterizing the individual mineralogical components.

  17. Interleukin-6 deficiency reduces the brain inflammatory response and increases oxidative stress and neurodegeneration after kainic acid-induced seizures

    DEFF Research Database (Denmark)

    Penkowa, M; Molinero, A; Carrasco, J

    2001-01-01

    and were killed six days later. Morphological damage to the hippocampal field CA1-CA3 was seen after kainic acid treatment. Reactive astrogliosis and microgliosis were prominent in kainic acid-injected normal mice hippocampus, and clear signs of increased oxidative stress were evident. Thus......The role of interleukin-6 in hippocampal tissue damage after injection with kainic acid, a rigid glutamate analogue inducing epileptic seizures, has been studied by means of interleukin-6 null mice. At 35mg/kg, kainic acid induced convulsions in both control (75%) and interleukin-6 null (100%) mice......, and caused a significant mortality (62%) only in the latter mice, indicating that interleukin-6 deficiency increased the susceptibility to kainic acid-induced brain damage. To compare the histopathological damage caused to the brain, control and interleukin-6 null mice were administered 8.75mg/kg kainic acid...

  18. Ab-initio calculations of the Ruddlesden-Popper phases CaMnO3, CaO(CaMnO3) and CaO(CaMnO3)2

    International Nuclear Information System (INIS)

    Cardoso, C; Borges, R P; Gasche, T; Godinho, M

    2008-01-01

    The present work reports ab-initio density functional theory calculations for the Ruddlesden-Popper phase CaO(CaMnO 3 ) n compounds. In order to study the evolution of the properties with the number of perovskite layers, a detailed analysis of the densities of states calculated for each compound and for several magnetic configurations was performed. The effect of distortions of the crystal structure on the magnetic ground state is also analysed and the exchange constants and transition temperatures are calculated for the three compounds using a mean field model. The calculated magnetic ground state structures and magnetic moments are in good agreement with experimental results and previous calculations

  19. Abscisic Acid-Induced H2O2 Accumulation Enhances Antioxidant Capacity in Pumpkin-Grafted Cucumber Leaves under Ca(NO3)2 Stress

    Science.gov (United States)

    Shu, Sheng; Gao, Pan; Li, Lin; Yuan, Yinghui; Sun, Jin; Guo, Shirong

    2016-01-01

    With the aim to clarifying the role of the ABA/H2O2 signaling cascade in the regulating the antioxidant capacity of grafted cucumber plants in response to Ca(NO3)2 stress, we investigated the relationship between ABA-mediated H2O2 production and the activities of antioxidant enzymes in the leaves of pumpkin-grafted cucumber seedlings. The results showed that both ABA and H2O2 were detected in pumpkin-grafted cucumber seedlings in response to Ca(NO3)2 treatment within 0.5 h in the leaves and peaked at 3 and 6 h after Ca(NO3)2 treatment, respectively, compared to the levels under control conditions. The activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), and peroxidase (POD) in pumpkin-grafted cucumber leaves gradually increased over time and peaked at 12 h of Ca(NO3)2 stress. Furthermore, in the leaves of pumpkin-grafted cucumber seedlings, the H2O2 generation, the antioxidant enzyme activities and the expression of SOD, POD and cAPX were strongly blocked by an inhibitor of ABA under Ca(NO3)2 stress, but this effect was eliminated by the addition of exogenous ABA. Moreover, the activities and gene expressions of these antioxidant enzymes in pumpkin-grafted leaves were almost inhibited under Ca(NO3)2 stress by pretreatment with ROS scavengers. These results suggest that the pumpkin grafting-induced ABA accumulation mediated H2O2 generation, resulting in the induction of antioxidant defense systems in leaves exposed to Ca(NO3)2 stress in the ABA/H2O2 signaling pathway. PMID:27746808

  20. The effect of long-term acidifying feeding on digesta organic acids, mineral balance, and bone mineralization in growing pigs

    DEFF Research Database (Denmark)

    Nørgaard, Jan Værum; Højberg, Ole; Sørensen, Kristina Ulrich

    2014-01-01

    Acidification of slurry through dietary manipulation of urinary pH is a means of mitigating nitrogen emission from pig production, but long-term effects of diet acidification on bone mineralization and mineral balance is less investigated. The objective was therefore to study the long-term effects...... of feeding benzoic acid (BA) and calcium chloride (CaCl2) on the mineral balance and microbial activity in the gastrointestinal tract of pigs. Four diets containing the combinations of 0 or 10 g/kg BA and 0 or 20 g/kg CaCl2 were fed to 24 pigs in a factorial design. For the diets without CaCl2, calcium...... carbonate (CaCO3) was added to provide equimolar levels of Ca. The pigs were fed the diets from 36 kg until slaughter at 113 kg BW, and they were housed in balance cages for 12 d from 60 to 66 kg BW. Supplementation of BA and/or CaCl2 had only minor effect on accumulation of digesta organic acids (acetate...

  1. [Effects of Low-Molecular-Weight Organic Acids on the Speciation of Pb in Purple Soil and Soil Solution].

    Science.gov (United States)

    Liu, Jiang; Jiang, Tao; Huang, Rong; Zhang, Jin-zhong; Chen, Hong

    2016-04-15

    Lead (Pb) in purple soil was selected as the research target, using one-step extraction method with 0.01 mol · L⁻¹ sodium nitrate as the background electrolyte to study the release effect of citric acid (CA), tartaric acid (TA) and acetic acid (AC) with different concentrations. Sequential extraction and geochemical model (Visual Minteq v3.0) were applied to analyze and predict the speciation of Pb in soil solid phase and soil solution phase. Then the ebvironmental implications and risks of low-molecule weight organic acid (LMWOA) on soil Pb were analyzed. The results indicated that all three types of LMWOA increased the desorption capacity of Pb in purple soil, and the effect followed the descending order of CA > TA > AC. After the action of LMWOAs, the exchangeable Pb increased; the carbonate-bound Pb and Fe-Mn oxide bound Pb dropped in soil solid phase. Organic bound Pb was the main speciation in soil solution phase, accounting for 45.16%-75.05%. The following speciation of Pb in soil solution was free Pb, accounting for 22.71%-50.25%. For CA and TA treatments, free Pb ions and inorganic bound Pb in soil solution increased with increasing LMWOAs concentration, while organic bound Pb suffered a decrease in this process. An opposite trend for AC treatment was observed compared with CA and TA treatments. Overall, LMWOAs boosted the bioavailability of Pb in purple soil and had a potential risk to contaminate underground water. Among the three LMWOAs in this study, CA had the largest potential to activate soil Pb.

  2. The induction of apoptosis in pre-malignant keratinocytes by omega-3 polyunsaturated fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) is inhibited by albumin.

    Science.gov (United States)

    Nikolakopoulou, Zacharoula; Shaikh, Mushfiq Hassan; Dehlawi, Hebah; Michael-Titus, Adina Teodora; Parkinson, Eric Kenneth

    2013-04-12

    The long chain omega-3 polyunsaturated fatty acids (PUFA) have been reported to exert anti-cancer effects. At this study we tested the effect of the omega-3 PUFA, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), on pre-malignant keratinocytes growth in the well-characterised human pre-malignant epidermal cell line, HaCaT and attempted to identify a PUFA serum antagonist. Both EPA and DHA inhibited HaCaT growth and induced apoptosis. At the 10% (v/v) foetal bovine serum (FBS) medium, limited growth inhibition (3-20% for 50μM DHA and EPA respectively) and negligible apoptosis were observed with PUFA use. However, at 3% (v/v) FBS medium, 30-50μM of PUFA caused impressive levels of growth inhibition (82-83% for 50μM DHA and EPA respectively) and increase of apoptosis (8-19% increase in 72h). None of the numerous serum growth factors present in FBS or the antioxidant n-tert-butyl-α-phenylnitrone could inhibit the PUFA-induced cytotoxicity. In contrast, bovine and human albumin (0.1-0.3%, w/v) significantly antagonized the growth inhibitory and apoptosis-inducing effects of PUFA. In conclusion, we have shown for the first time that omega-3 PUFA inhibit the growth and induce apoptosis of pre-malignant keratinocytes and identified albumin as a major antagonistic factor in serum that could limit their effectiveness at pharmacologically-achievable doses. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Presenilin 1 Maintains Lysosomal Ca(2+) Homeostasis via TRPML1 by Regulating vATPase-Mediated Lysosome Acidification.

    Science.gov (United States)

    Lee, Ju-Hyun; McBrayer, Mary Kate; Wolfe, Devin M; Haslett, Luke J; Kumar, Asok; Sato, Yutaka; Lie, Pearl P Y; Mohan, Panaiyur; Coffey, Erin E; Kompella, Uday; Mitchell, Claire H; Lloyd-Evans, Emyr; Nixon, Ralph A

    2015-09-01

    Presenilin 1 (PS1) deletion or Alzheimer's disease (AD)-linked mutations disrupt lysosomal acidification and proteolysis, which inhibits autophagy. Here, we establish that this phenotype stems from impaired glycosylation and instability of vATPase V0a1 subunit, causing deficient lysosomal vATPase assembly and function. We further demonstrate that elevated lysosomal pH in Presenilin 1 knockout (PS1KO) cells induces abnormal Ca(2+) efflux from lysosomes mediated by TRPML1 and elevates cytosolic Ca(2+). In WT cells, blocking vATPase activity or knockdown of either PS1 or the V0a1 subunit of vATPase reproduces all of these abnormalities. Normalizing lysosomal pH in PS1KO cells using acidic nanoparticles restores normal lysosomal proteolysis, autophagy, and Ca(2+) homeostasis, but correcting lysosomal Ca(2+) deficits alone neither re-acidifies lysosomes nor reverses proteolytic and autophagic deficits. Our results indicate that vATPase deficiency in PS1 loss-of-function states causes lysosomal/autophagy deficits and contributes to abnormal cellular Ca(2+) homeostasis, thus linking two AD-related pathogenic processes through a common molecular mechanism. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Presenilin 1 Maintains Lysosomal Ca2+ Homeostasis via TRPML1 by Regulating vATPase-Mediated Lysosome Acidification

    Directory of Open Access Journals (Sweden)

    Ju-Hyun Lee

    2015-09-01

    Full Text Available Presenilin 1 (PS1 deletion or Alzheimer’s disease (AD-linked mutations disrupt lysosomal acidification and proteolysis, which inhibits autophagy. Here, we establish that this phenotype stems from impaired glycosylation and instability of vATPase V0a1 subunit, causing deficient lysosomal vATPase assembly and function. We further demonstrate that elevated lysosomal pH in Presenilin 1 knockout (PS1KO cells induces abnormal Ca2+ efflux from lysosomes mediated by TRPML1 and elevates cytosolic Ca2+. In WT cells, blocking vATPase activity or knockdown of either PS1 or the V0a1 subunit of vATPase reproduces all of these abnormalities. Normalizing lysosomal pH in PS1KO cells using acidic nanoparticles restores normal lysosomal proteolysis, autophagy, and Ca2+ homeostasis, but correcting lysosomal Ca2+ deficits alone neither re-acidifies lysosomes nor reverses proteolytic and autophagic deficits. Our results indicate that vATPase deficiency in PS1 loss-of-function states causes lysosomal/autophagy deficits and contributes to abnormal cellular Ca2+ homeostasis, thus linking two AD-related pathogenic processes through a common molecular mechanism.

  5. Quantifying Ca2+ release and inactivation of Ca2+ release in fast- and slow-twitch muscles.

    Science.gov (United States)

    Barclay, C J

    2012-12-01

    The aims of this study were to quantify the Ca(2+) release underlying twitch contractions of mammalian fast- and slow-twitch muscle and to comprehensively describe the transient inactivation of Ca(2+) release following a stimulus. Experiments were performed using bundles of fibres from mouse extensor digitorum longus (EDL) and soleus muscles. Ca(2+) release was quantified from the amount of ATP used to remove Ca(2+) from the myoplasm following stimulation. ATP turnover by crossbridges was blocked pharmacologically (N-benzyl-p-toluenesulphonamide for EDL, blebbistatin for soleus) and muscle heat production was used as an index of Ca(2+) pump ATP turnover. At 20°C, Ca(2+) release in response to a single stimulus was 34 and 84 μmol (kg muscle)(-1) for soleus and EDL, respectively, and increased with temperature (30°C: soleus, 61 μmol kg(-1); EDL, 168 μmol kg(-1)). Delivery of another stimulus within 100 ms of the first produced a smaller Ca(2+) release. The maximum magnitude of the decrease in Ca(2+) release was greater in EDL than soleus. Ca(2+) release recovered with an exponential time course which was faster in EDL (mean time constant at 20°C, 32.1 ms) than soleus (65.6 ms) and faster at 30°C than at 20°C. The amounts of Ca(2+) released and crossbridge cycles performed are consistent with a scheme in which Ca(2+) binding to troponin-C allowed an average of ∼1.7 crossbridge cycles in the two muscles.

  6. Caffeic acid, morin hydrate and quercetin partially attenuate sulfur mustard-induced cell death by inhibiting the lipoxygenase pathway.

    Science.gov (United States)

    Kim, Shin; Jeong, Kwang-Joon; Cho, Sung Kweon; Park, Joo-Won; Park, Woo-Jae

    2016-11-01

    Sulfur mustard (SM) is an alkylating agent, which has been used as in chemical warfare in a number of conflicts. As the generation of reactive oxygen species (ROS), and adducts in DNA and proteins have been suggested as the mechanism underlying SM‑induced cytotoxicity, the present study screened several antioxidant candidates, including tannic acid, deferoxamine mesylate, trolox, vitamin C, ellagic acid and caffeic acid (CA) to assess their potential as therapeutic agents for SM‑induced cell death. Among several antioxidants, CA partially alleviated SM‑induced cell death in a dose‑dependent manner. Although CA treatment decreased the phosphorylation of p38 mitogen‑activated protein (MAP) kinase and p53, p38 MAP kinase inhibition by SB203580 did not affect SM‑induced cell death. As CA has also been reported as a 15‑lipoxygenase (15‑LOX) inhibitor, the role of 15‑LOX in SM‑induced cytotoxicity was also examined. Similar to the results observed with CA, treatment with PD146176, a specific 15‑LOX inhibitor, decreased SM‑induced cytotoxicity, accompanied by decreases in the production of tumor necrosis factor‑α and 15‑hydroxyeicosatetraenoic acid. Furthermore, the present study investigated the protective effects of two natural 15‑LOX inhibitors, morin hydrate and quercetin, in SM‑induced cytotoxicity. As expected, these inhibitors had similar protective effects against SM‑induced cytotoxicity. These antioxidants also reduced the generation of ROS and nitrate/nitrite. Therefore, the results of the present study indicated that the natural products, CA, quercetin and morin hydrate, offer potential as adjuvant therapeutic agents for SM‑induced toxicity, not only by reducing inflammation mediated by the p38 and LOX signaling pathways, but also by decreasing the generation of ROS and nitrate/nitrite.

  7. Atmospheric acids in Venezuelan earth atmosphere

    International Nuclear Information System (INIS)

    Figueroa Rojas, Luis Beltran

    1996-01-01

    In order to study the behavior of formic and acetic acids in different Venezuelan ecosystems there were carried out its determinations in rains in the areas of Caracas (Coastal Area), Altos de Pipe (Cloudy Forest) and the savannas of Calabozo (Estado Guarico) and Canaima (Estado Bolivar), during the dry and raining seasons. Likewise in the Rains were determined the ions Cl -, NO3 -, SO4 =, NH4+ Na+, Ca+2, Mg+2, and the pH. The formic and acetic gassy acids were collected using a cloud chamber, and the resulting solutions were analyzed by ion chromatography [es

  8. Measurements of natural 41Ca concentrations

    International Nuclear Information System (INIS)

    Steinhof, A.

    1989-05-01

    Atomic mass spectroscopic examinations on 41 Ca were carried out in the UNILAC accelerator. A sensitivity of about 10 -15 was achieved. This would allow the measurement of present natural 41 Ca concentrations as soon as the problem of the transmission determination is solved. In this respect suggestions were worked out and their feasibility discussed. The detection of 41 Ca-ions is especially free of background when high UNILAC-energies are applied. An estimation showed a background level corresponding with a 41 Ca concentration of less then 10 -17 referred to 40 Ca. Besides an independent concept for the electromagnetic concentration of 41 Ca with variable concentration factors was developed. After being concentrated up to 50 respectively 25 times the initial concentration in the GSI mass separator, the 41 Ca concentration of three recent deer bones found in the Odenwald was measured by atomic mass spectroscopy in the 14UD-Pelletron Tandem in Rehovot (Israel). The measured 41 Ca concentrations ranged between 10 -14 to 10 -13 with consideration of the concentration factor. A theoretical study of the 41 Ca production in the earth's surface based on cosmic radiation illustrates the influence of trace elements on the neutron flux and thus on the 41 Ca production. This influence might be a possible explanation for the observed amplitude of variation of the 41 Ca concentration in recent bones which are of decisive importance for the feasibility of 41 Ca-related dating. In this work a method is suggested that does not depend on the amplitude of variation mentioned above and which would allow the determination of the erosion rate of rocks by its 41 Ca concentrations. (orig./HP) [de

  9. Bax regulates neuronal Ca2+ homeostasis.

    Science.gov (United States)

    D'Orsi, Beatrice; Kilbride, Seán M; Chen, Gang; Perez Alvarez, Sergio; Bonner, Helena P; Pfeiffer, Shona; Plesnila, Nikolaus; Engel, Tobias; Henshall, David C; Düssmann, Heiko; Prehn, Jochen H M

    2015-01-28

    Excessive Ca(2+) entry during glutamate receptor overactivation ("excitotoxicity") induces acute or delayed neuronal death. We report here that deficiency in bax exerted broad neuroprotection against excitotoxic injury and oxygen/glucose deprivation in mouse neocortical neuron cultures and reduced infarct size, necrotic injury, and cerebral edema formation after middle cerebral artery occlusion in mice. Neuronal Ca(2+) and mitochondrial membrane potential (Δψm) analysis during excitotoxic injury revealed that bax-deficient neurons showed significantly reduced Ca(2+) transients during the NMDA excitation period and did not exhibit the deregulation of Δψm that was observed in their wild-type (WT) counterparts. Reintroduction of bax or a bax mutant incapable of proapoptotic oligomerization equally restored neuronal Ca(2+) dynamics during NMDA excitation, suggesting that Bax controlled Ca(2+) signaling independently of its role in apoptosis execution. Quantitative confocal imaging of intracellular ATP or mitochondrial Ca(2+) levels using FRET-based sensors indicated that the effects of bax deficiency on Ca(2+) handling were not due to enhanced cellular bioenergetics or increased Ca(2+) uptake into mitochondria. We also observed that mitochondria isolated from WT or bax-deficient cells similarly underwent Ca(2+)-induced permeability transition. However, when Ca(2+) uptake into the sarco/endoplasmic reticulum was blocked with the Ca(2+)-ATPase inhibitor thapsigargin, bax-deficient neurons showed strongly elevated cytosolic Ca(2+) levels during NMDA excitation, suggesting that the ability of Bax to support dynamic ER Ca(2+) handling is critical for cell death signaling during periods of neuronal overexcitation. Copyright © 2015 the authors 0270-6474/15/351706-17$15.00/0.

  10. Ultrasound-assisted extraction of Ca, K and Mg from in vitro citrus culture

    Directory of Open Access Journals (Sweden)

    Arruda Sandra C. C.

    2003-01-01

    Full Text Available An ultrasound extraction procedure for Ca, K and Mg from in vitro plant cultures is proposed, comparing cultures of different embryogenic levels of Citrus sinensis and Citrus limonia, employing ultrasound energy. Parameters related to metals extraction, such as plant material sampling, acid concentration and sonication time were investigated. For accuracy check, the proposed ultrasound extraction procedure was compared with a microwave-assisted digestion procedure and no differences in the results were verified at 95% of the confidence level. With this simple and accurate extraction procedure, it was possible to determine differences in Ca, K and Mg concentrations during Citrus embryo formation/development and between cultures (embryogenic and non-embryogenic. Finally, the ultrasound extraction method demonstrated to be an excellent alternative for handless sampling and operational costs.

  11. Structural basis for the differential effects of CaBP1 and calmodulin on CaV1.2 calcium-dependent inactivation

    Science.gov (United States)

    Findeisen, Felix; Minor, Daniel L.

    2010-01-01

    Calcium-binding protein 1 (CaBP1), a calmodulin (CaM) homolog, endows certain voltage-gated calcium channels (CaVs) with unusual properties. CaBP1 inhibits CaV1.2 calcium-dependent inactivation (CDI) and introduces calcium-dependent facilitation (CDF). Here, we show that the ability of CaBP1 to inhibit CaV1.2 CDI and induce CDF arises from interaction between the CaBP1 N-lobe and interlobe linker residue Glu94. Unlike CaM, where functional EF hands are essential for channel modulation, CDI inhibition does not require functional CaBP1 EF-hands. Furthermore, CaBP1-mediated CDF has different molecular requirements than CaM-mediated CDF. Overall, the data show that CaBP1 comprises two structural modules having separate functions: similar to CaM, the CaBP1 C-lobe serves as a high-affinity anchor that binds the CaV1.2 IQ domain at a site that overlaps with the Ca2+/CaM C-lobe site, whereas the N-lobe/linker module houses the elements required for channel modulation. Discovery of this division provides the framework for understanding how CaBP1 regulates CaVs. PMID:21134641

  12. Structural basis for the differential effects of CaBP1 and calmodulin on Ca(V)1.2 calcium-dependent inactivation.

    Science.gov (United States)

    Findeisen, Felix; Minor, Daniel L

    2010-12-08

    Calcium-binding protein 1 (CaBP1), a calmodulin (CaM) homolog, endows certain voltage-gated calcium channels (Ca(V)s) with unusual properties. CaBP1 inhibits Ca(V)1.2 calcium-dependent inactivation (CDI) and introduces calcium-dependent facilitation (CDF). Here, we show that the ability of CaBP1 to inhibit Ca(V)1.2 CDI and induce CDF arises from interaction between the CaBP1 N-lobe and interlobe linker residue Glu94. Unlike CaM, where functional EF hands are essential for channel modulation, CDI inhibition does not require functional CaBP1 EF hands. Furthermore, CaBP1-mediated CDF has different molecular requirements than CaM-mediated CDF. Overall, the data show that CaBP1 comprises two structural modules having separate functions: similar to CaM, the CaBP1 C-lobe serves as a high-affinity anchor that binds the Ca(V)1.2 IQ domain at a site that overlaps with the Ca²+/CaM C-lobe site, whereas the N-lobe/linker module houses the elements required for channel modulation. Discovery of this division provides the framework for understanding how CaBP1 regulates Ca(V)s. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Organic acids production by rhizosphere microorganisms isolated from a Typic Melanudands and its effects on the inorganic phosphates solubilization

    Directory of Open Access Journals (Sweden)

    Eduardo José Serna Posso

    2017-04-01

    Full Text Available It has been established that organic acid secretion by rhizosphere microorganisms is one of the mechanisms to solubilize the phosphorus (P attached to insoluble mineral compounds in soil. This action is an important biotechnological alternative, especially in those soils where high fixation of this nutrient occurs, a very common situation in the tropics. This research evaluated the ability performed by five bacterial and five fungal isolates from Typic Melanudands soil to produce organic acids and generate available phosphorus from insoluble P sources. Given these concerns, the selected microorganisms were replicated for 7 days in liquid medium Pikovskaya (PVK modified sources tricalcium phosphate (P-Ca, aluminum phosphate (P-Al and iron phosphate (P-Fe. The results indicated that phosphorus availability in the media, correlates positively with the organic acids production in each of the sources used (P-Ca (0.63, P-Al (0.67 and P-Fe (0.63. In turn, the chemical processes linked to the phosphates solubilization (e.g., Ca availability affected the development of the microorganisms tested. Both, fungi and bacteria varied in their ability production and type of metabolized organic acids, the most frequent were as follows: citric and gluconic acid.

  14. Comparison of the effectiveness of seven amiloride congeners as inhibitors of Na/H and Na/Ca antiport in cultured smooth muscle cells

    International Nuclear Information System (INIS)

    Smith, L.; Higgins, B.L.; Cragoe, E.J. Jr.; Smith, J.B.

    1987-01-01

    The authors cultured smooth muscle cells from rat aorta and assayed Na/Ca antiport by measuring the initial rate of 45 Ca influx in Na-loaded cells. Na/H antiport was assayed by measuring the initial rate of 22 Na influx in acid-loaded cells. The external medium was the same for both assays except Na was 10 mM for Na/H antiport and O for the Na/Ca antiport assay. The dose of each congener that caused 50% inhibition (I 50 ) was calculated using a log-log median effect plot. The linear regression coefficients ranged from 0.916 to 0.998. Of all the compounds tested only dimethylbenzamil is more potent as an inhibitor of Na/Ca compared to Na/H antiport

  15. Acids with an equivalent taste lead to different erosion of human dental enamel.

    Science.gov (United States)

    Beyer, Markus; Reichert, Jörg; Bossert, Jörg; Sigusch, Bernd W; Watts, David C; Jandt, Klaus D

    2011-10-01

    The consumption of acidic soft drinks may lead to demineralization and softening of human dental enamel, known as dental erosion. The aims of this in vitro study were to determine: (i) if different acids with a similar sensorial acidic taste lead to different hardness loss of enamel and (ii) if the fruit acids tartaric, malic, lactic or ascorbic acid lead to less hardness loss of enamel than citric or phosphoric acid when their concentration in solution is based on an equivalent sensorial acidic taste. Enamel samples of non-erupted human third molars were treated with acidic solutions of tartaric (TA), malic (MA), lactic (LA), ascorbic (AA), phosphoric (PA) and citric (CA) acids with a concentration that gave an equivalent sensorial acidic taste. The acidic solutions were characterized by pH value and titratable acidity. Atomic force microscopy (AFM) based nanoindentation was used to study the nano mechanical properties and scanning electron microscopy (SEM) was used to study the morphology of the treated enamel samples and the untreated control areas, respectively. The investigated acids fell into two groups. The nano hardnesses of MA, TA and CA treated enamel samples (group I) were statistically significantly greater (penamel samples (group II). Within each group the nano hardness was not statistically significantly different (p>0.05). The SEM micrographs showed different etch prism morphologies depending on the acid used. In vitro, the acids investigated led to different erosion effects on human dental enamel, despite their equivalent sensorial acidic taste. This has not been reported previously. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. Elementary properties of CaV1.3 Ca2+ channels expressed in mouse cochlear inner hair cells

    Science.gov (United States)

    Zampini, Valeria; Johnson, Stuart L; Franz, Christoph; Lawrence, Neil D; Münkner, Stefan; Engel, Jutta; Knipper, Marlies; Magistretti, Jacopo; Masetto, Sergio; Marcotti, Walter

    2010-01-01

    Mammalian cochlear inner hair cells (IHCs) are specialized to process developmental signals during immature stages and sound stimuli in adult animals. These signals are conveyed onto auditory afferent nerve fibres. Neurotransmitter release at IHC ribbon synapses is controlled by L-type CaV1.3 Ca2+ channels, the biophysics of which are still unknown in native mammalian cells. We have investigated the localization and elementary properties of Ca2+ channels in immature mouse IHCs under near-physiological recording conditions. CaV1.3 Ca2+ channels at the cell pre-synaptic site co-localize with about half of the total number of ribbons present in immature IHCs. These channels activated at about −70 mV, showed a relatively short first latency and weak inactivation, which would allow IHCs to generate and accurately encode spontaneous Ca2+ action potential activity characteristic of these immature cells. The CaV1.3 Ca2+ channels showed a very low open probability (about 0.15 at −20 mV: near the peak of an action potential). Comparison of elementary and macroscopic Ca2+ currents indicated that very few Ca2+ channels are associated with each docked vesicle at IHC ribbon synapses. Finally, we found that the open probability of Ca2+ channels, but not their opening time, was voltage dependent. This finding provides a possible correlation between presynaptic Ca2+ channel properties and the characteristic frequency/amplitude of EPSCs in auditory afferent fibres. PMID:19917569

  17. Elementary properties of CaV1.3 Ca(2+) channels expressed in mouse cochlear inner hair cells.

    Science.gov (United States)

    Zampini, Valeria; Johnson, Stuart L; Franz, Christoph; Lawrence, Neil D; Münkner, Stefan; Engel, Jutta; Knipper, Marlies; Magistretti, Jacopo; Masetto, Sergio; Marcotti, Walter

    2010-01-01

    Mammalian cochlear inner hair cells (IHCs) are specialized to process developmental signals during immature stages and sound stimuli in adult animals. These signals are conveyed onto auditory afferent nerve fibres. Neurotransmitter release at IHC ribbon synapses is controlled by L-type Ca(V)1.3 Ca(2+) channels, the biophysics of which are still unknown in native mammalian cells. We have investigated the localization and elementary properties of Ca(2+) channels in immature mouse IHCs under near-physiological recording conditions. Ca(V)1.3 Ca(2+) channels at the cell pre-synaptic site co-localize with about half of the total number of ribbons present in immature IHCs. These channels activated at about 70 mV, showed a relatively short first latency and weak inactivation, which would allow IHCs to generate and accurately encode spontaneous Ca(2+) action potential activity characteristic of these immature cells. The Ca(V)1.3 Ca(2+) channels showed a very low open probability (about 0.15 at 20 mV: near the peak of an action potential). Comparison of elementary and macroscopic Ca(2+) currents indicated that very few Ca(2+) channels are associated with each docked vesicle at IHC ribbon synapses. Finally, we found that the open probability of Ca(2+) channels, but not their opening time, was voltage dependent. This finding provides a possible correlation between presynaptic Ca(2+) channel properties and the characteristic frequency/amplitude of EPSCs in auditory afferent fibres.

  18. Effects of Food on the Pharmacokinetics of Omega-3-Carboxylic Acids in Healthy Japanese Male Subjects: A Phase I, Randomized, Open-label, Three-period, Crossover Trial.

    Science.gov (United States)

    Shimada, Hitoshi; Nilsson, Catarina; Noda, Yoshinori; Kim, Hyosung; Lundström, Torbjörn; Yajima, Toshitaka

    2017-09-01

    Omega-3-carboxylic acids (OM3-CA) contain omega-3 free fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), as carboxylic acids. Food intake is known to affect the bioavailability of ethyl ester fatty acid formulations. We conducted a phase I study to investigate the effects of the timing of OM3-CA administration relative to food intake on the pharmacokinetics of EPA and DHA. In this randomized, open-label, three-period crossover study, Japanese healthy male subjects were administered 4×1 g OM3-CA capsules with continued fasting, before a meal, or after a meal. All subjects fasted for ≥10 h prior to drug/meal administration. The primary objective was to examine the effect of meal timing on the pharmacokinetics of EPA and DHA after OM3-CA administration. The secondary objectives were to examine the safety and tolerability of OM3-CA. A total of 42 Japanese subjects was enrolled in the study. The baseline-adjusted maximum concentration and area under the concentration-time curve from 0 to 72 h for EPA, DHA, and EPA +DHA were lower in the fasting and before meal conditions than in the after meal condition. The maximum total EPA, total DHA, and total EPA+DHA concentrations were reached later when administered in fasting conditions than in fed conditions, indicating slower absorption in fasting conditions. Diarrhea was reported by five, six, and no subjects in the fasting, before meal, and after meal conditions, respectively. The timing of OM3-CA administration relative to food intake influences the systemic bioavailability of EPA and DHA in healthy Japanese male subjects. NCT02372344.

  19. Electronic structures and magnetism of CaFeAsH and CaFeAsF

    International Nuclear Information System (INIS)

    Wang Guangtao; Shi Xianbiao; Liu Haipeng; Liu Qingbo

    2015-01-01

    We studied the electronic structures, magnetism, and Fermi surface (FS) nesting of CaFeAsH and CaFeAsF by first-principles calculations. In the nonmagnetic (NM) states, we found strong FS nesting, which induces magnetic instability and a spin density wave (SDW). Our calculations indicate that the ground state of CaFeAsH and CaFeAsF is the stripe antiferromagnetic state. The calculated bare susceptibility χ 0 (q) peaked at the M-point and was clearly suppressed and became slightly incommensurate with both electron doping and hole doping for both materials. (author)

  20. Physical conditions in CaFe interstellar clouds

    OpenAIRE

    Gnacinski, P.; Krogulec, M.

    2007-01-01

    Interstellar clouds that exhibit strong Ca I and Fe I lines were called CaFe clouds. The ionisation equilibrium equations were used to model the column densities of Ca II, Ca I, K I, Na I, Fe I and Ti II in CaFe clouds. The chemical composition of CaFe clouds is that of the Solar System and no depletion of elements onto dust grains is seen. The CaFe clouds have high electron densities n=1 cm^-3 that leads to high column densities of neutral Ca and Fe.